Sample records for lagoon dead sea

  1. The effect of lagoons on Adriatic Sea tidal dynamics

    NASA Astrophysics Data System (ADS)

    Ferrarin, Christian; Maicu, Francesco; Umgiesser, Georg

    2017-11-01

    In this study the effects that lagoons exert on the barotropic tidal dynamics of a regional sea, the Adriatic Sea, were numerically explored. This semi-enclosed basin is one of the places with the highest tidal range in the Mediterranean Sea and is characterised by the presence of several lagoons in its northern part. The tidal dynamics of a system comprising the whole Adriatic Sea and the lagoons of Venice, Marano-Grado and Po Delta were investigated using an unstructured hydrodynamic model. Numerical experiments with and without lagoons reveal that even if the considered shallow water bodies represent only the 0.5 and 0.002% of the Adriatic Sea surface and volume, respectively, they significantly affect the entire Northern Adriatic Sea tidal dynamics by enhancing tidal range (by 5%) and currents (by 10%). The inclusion of lagoons in the computation improved the model performance by 25% in reproducing tidal constituents in the Adriatic Sea. The back-effect of the lagoons on the open-sea tide is due to the waves radiating from the co-oscillating lagoons into the adjacent sea. This is the first time these processes are shown to be relevant for the Adriatic Sea, thus enhancing the understanding of the tidal dynamics in this regional sea. These findings may also apply to other coastal seas with connections to lagoons, bays and estuaries.

  2. Raising the Dead without a Red Sea-Dead Sea Canal? A hydro-economic-institutional analysis

    NASA Astrophysics Data System (ADS)

    Rosenberg, D. E.

    2010-12-01

    Presently, just 100 million cubic meters per year (MCM/year) of the 1,000+ MCM/year that historically flowed in the lower Jordan River reach the Dead Sea. Israeli, Jordanian, and Syrian dam and extraction projects built over seven decades have principally caused the reduced flow, associated falling Dead Sea level, shrinking surface area, sink holes, salinity, and other catastrophic problems. These problems will be magnified in the face of up to 20% reductions in precipitation expected with climate change. The fix proposed by Jordan, Israel, and Palestine—and now under study by the World Bank—envisions building a $US 5 billion multipurpose canal from the Red Sea to the Dead Sea that would also generate hydropower and desalinated water. Yet alternatives to raise the Dead Sea level that could take advantage of hydrologic variability remain unstudied. Here we show system-wide hydrologic and economic impacts of and discusses institutional management for alternatives to raise the Dead Sea level. Hydro-economic model results for the inter-tied Israel-Jordan-Palestinian water systems show the desalination component of the Red Sea-Dead Sea project is economically unviable. Further, many decentralized new supply, wastewater reuse, conveyance, conservation, and leak reduction projects and programs in each country together increase economic benefits and can reliably deliver up to 900 MCM/year to the Dead Sea. In all cases, results show that net benefits fall and water scarcity rises as the flow volume delivered to the Dead Sea increases. These findings suggest that (i) each country has little individual incentive to allow water to flow to the Dead Sea, and (ii) outside institutions—such as the World Bank—that seek to raise the Dead should instead offer the countries direct incentives to deliver water rather than build them new infrastructure. The work expands the set of viable options to raise the Dead Sea level and can help the World Bank and others recommend whether

  3. The Dead Sea

    NASA Technical Reports Server (NTRS)

    2006-01-01

    The Dead Sea is the lowest point on Earth at 418 meters below sea level, and also one of the saltiest bodies of water on Earth with a salinity of about 300 parts-per-thousand (nine times greater than ocean salinity). It is located on the border between Jordan and Israel, and is fed by the Jordan River. The Dead Sea is located in the Dead Sea Rift, formed as a result of the Arabian tectonic plate moving northward away from the African Plate. The mineral content of the Dead Sea is significantly different from that of ocean water, consisting of approximately 53% magnesium chloride, 37% potassium chloride and 8% sodium chloride. In the early part of the 20th century, the Dead Sea began to attract interest from chemists who deduced that the Sea was a natural deposit of potash and bromine. From the Dead Sea brine, Israel and Jordan produce 3.8 million tons potash, 200,000 tons elemental bromine, 45,000 tons caustic soda, 25, 000 tons magnesium metal, and sodium chloride. Both countries use extensive salt evaporation pans that have essentially diked the entire southern end of the Dead Sea.

    With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products.

    The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop

  4. Dead sea asphalts: historical aspects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nissenbaum, A.

    1978-05-01

    Asphalts are present in the Dead Sea basin in three forms: (1) huge blocks, up to 100 tons in weight, composed of extremely pure (>99.99%) solid asphalt occasionally found floating on the lake, (2) veins, seepages, and cavity and fissure fillings in Lower Cretaceous to Holocene rocks, and (3) ozocerite veins on the eastern shore of the lake. Dead Sea asphalts probably have been documented over a longer period of time than any other hydrocarbon deposit--from antiquity to the 19th century. Major uses of asphalt from the Dead Sea have been as an ingredient in the embalming process, for medicinalmore » purposes, for fumigation, and for agriculture. The first known war for control of a hydrocarbon deposit was in the Dead Sea area in 312 B.C. between the Seleucid Syrians and the Nabatean Arabs who lived around the lake. Surface manifestations of asphalt are linked closely to tectonic activity. In the lake itself, the asphalt is associated with diapirs During certain historic periods, tectonic and diapiric activity caused frequent liberation to the Dead Sea surface of semiliquid asphalt associated with large amounts of hydrogen sulfide gas. When the tectonic activity was attenuated, as in the 19th and 20th centuries, the rate of asphalt seepage to the bottom sediments of the Dead Sea was much slower and the asphalt solidified on the lake bottom. The release of asphalt to the surface became much more sporadic, and may have resulted in part from earthquakes. Thus, future asphalt prospecting in the Dead Sea area should be conducted along the boundaries of diapirs or their associated faults.« less

  5. Chemistry of modern sediments in a hypersaline lagoon, north of Jeddah, Red Sea

    NASA Astrophysics Data System (ADS)

    El-Sayed, Mahmoud Kh.

    1987-10-01

    Previous studies of modern peritidal sedimentary environments of the Red Sea, such as hypersaline lagoons and sea-marginal flats, have concentrated on its northern part, particularly in the Gulf of Aqaba. However, little is known about lagoon sediments in other localities along the Red Sea coastal stretches. This paper deals with the chemical characteristics of the sediments of a hypersaline (Ras Hatiba) lagoon, north of Jeddah, Saudi Arabia. The chemistry of hypersaline lagoon sediments is considerably changed following the modifications to the water chemistry by evaporation and precipitation. Ras Hatiba lagoon is a hypersaline elongated water body connected to the Red Sea by a narrow and shallow opening. The total area of the lagoon is c. 30 km 2. Coarse bioclastic sands are dominant in the lagoon and mostly surround lithified calcareous grounds. However, fine silt and clay sediments are present in separate patches. The sediments are rich in carbonates (average 78·5%) and organic carbon (average 7·3%), although they are negatively correlated. Calcium (average 25·1%) and magnesium (average 10·8‰) show a similar distribution pattern in the lagoon sediments. Strontium (average 5·2‰) is positively correlated with calcium. Sodium and potassium are relatively highly concentrated in the sediments (average 118 ppm and 173 ppm, respectively). Magnesium and strontium are of prime importance in the process of mineralization and diagenesis. The sabkha formation surrounding the lagoon is of low carbonate and organic carbon content, compared with the lagoon sediments, whilst it is characterized by high magnesium, sodium and potassium concentrations. Ras Hatiba lagoon sediments and sabkha resemble those of the northern Red Sea in the Gulfs of Aqaba and Suez and the Arabian Gulf in their major sedimentological and chemical characteristics.

  6. Extreme Dead Sea drying event during the last interglacial from the ICDP Dead Sea Deep Drill Core

    NASA Astrophysics Data System (ADS)

    Goldstein, S.; Stein, M.; Ben-Avraham, Z.; Agnon, A.; Ariztegui, D.; Brauer, A.; Haug, G.; Ito, E.; Kitagawa, H.; Torfstein, A.; Yasuda, Y.

    2012-04-01

    The ICDP funded Dead Sea Deep Drilling Project (DSDDP) recovered the longest and most complete paleo-environmental record in the Middle East, drilling holes in a deep and a shallow site extending to ~450 meters. The Dead Sea expands during the glacials and contracts during interglacials, and the sediments are an archive of the evolving climatic conditions. During glacials the sediments comprise intervals of marl (aragonite, gypsum and detritus) and during interglacials they are salts and marls. We estimate that the deep site core spans ~200 kyr (to early MIS 7). A dramatic discovery is a ~40 cm interval of rounded pebbles at ~235 m below the lake floor, the only clean pebbly unit in the entire core. It appears to be a beach layer, near the deepest part of the Dead Sea, lying above ~35 meters of mainly salt. If it is a beach layer, it implies an almost complete dry-down of the paleo-Dead Sea. The pebble layer lies within the last interglacial interval. Our initial attempt to estimate the age of the possible dry down shows an intriguing correlation between the salt-mud stratigraphy of the Dead Sea core and the oxygen isotope record of Soreq Cave, whereby excursions to light oxygen in the speleothems correspond to periods of salt deposition. Through this comparison, we estimate that the dry down occurred during MIS 5e. The occurrence of ~35 meters of mainly salt along with the pebble layer demonstrates a severe dry interval during MIS 5. This observation has implications for the Middle East today, where the Dead Sea level is dropping as all the countries in the area use the runoff. GCM models indicate a more arid future in the region. The core shows that the runoff nearly stopped during a past warm period without human intervention.

  7. Flushing of a coastal lagoon in the Red Sea

    NASA Astrophysics Data System (ADS)

    Sultan, S. A. R.; Ahmad, F.

    1990-09-01

    Shu'aiba Lagoon (Lat. 20°45'N; Long. 39°28'E) is located on the eastern coast of the Red Sea. It is relatively shallow with an area of approximately 11·7 km 2. The inlet to the lagoon is narrow with a cross-sectional area of about 245 m 2. This lagoon is a future site to develop mariculture. With this objective in view the flushing time scale of the lagoon was calculated, as flushing is an important abiotic factor in lagoon ecology. The average flushing time for the months February to June and September to November is about 20 days. Oceanic inputs play an important part in the process of fertilization of the lagoons. The marine environment in arid zone lagoons is under natural stress due to high temperatures and salinities. However, the flushing time scale of 20 days may not exert intolerable stress on the ecology of the Shu'aiba Lagoon.

  8. Dead Sea Scrolls

    NASA Technical Reports Server (NTRS)

    1994-01-01

    A consortium of researchers from Jet Propulsion Laboratory and three other organizations used charged coupled devices (CCDs) and other imaging enhancement technology to decipher previously unreadable portions of the Dead Sea Scrolls. The technique has potentially important implications for archeology.

  9. Vertical Mixing in the Dead Sea

    NASA Astrophysics Data System (ADS)

    Gertman, Isaac; Ozer, Tal; Katsenelson, Boris; Lensky, Nadav

    2015-04-01

    For hundreds of years, the Dead Sea was characterized by a stable haline stratification, supported by runoff. The penetration of the winter convection was limited to an upper mixed layer (UML) of about 30-50 m. Below the UML, a stable halocline prevented the mixing. As a result of the runoff reduction, the UML salinity increased and the gravitational stability diminished. During the winter of 1978-1979, the sea water overturned, ending the long-term stable hydrological regime. Since 1979, the haline stratification structure reoccurred twice after extremely rainy winters, in 1980-82 and 1992-1995. In other years, the sea was entirely mixed by winter thermal convection ( which occurs from November to March ) and had a seasonal pycnocline beneath the UML during summer. Profiles of temperature and quasi-salinity (density anomaly from 1000 kg/m3 for the chosen reference temperature of 32° C) during the last 19 years, show the formation of summer ``overturning halocline'' beneath the UML, and the thermocline that supports the stable stratification. Another warm and saline layer is formed also during the summer period near the bottom. This layer spreads from the southern part of the sea, where end-brine is discharged to the sea from the Israeli and Jordanian salt plants' evaporation ponds. The end-brine has extremely high salinity (˜ 350 g/kg) and, in spite of the high temperatures ( ˜ 45° C), high density (1350 kg/m^3), it therefore spreads as a gravitational current in the Dead Sea deep basin. Estimation of the density ratio (Rρ) for the Dead Sea water (where measurements of water salinity is quite difficult) was done using quasi-salinity (σ32) and potential temperature (θ): Rρ= [α(partialθ/partial z)]/[β(partial σ32/partial z)], where α and β are temperature expansion and quasi-salinity contraction coefficients respectively. The values of α and β for the Dead Sea water were defined from water samples collected during 2008. The Rρ values confirm that

  10. Extreme drying event in the Dead Sea basin during MIS5 from the ICDP Dead Sea Deep Drill Core

    NASA Astrophysics Data System (ADS)

    Goldstein, S. L.; Stein, M.; Ben-Avraham, Z.; Agnon, A.; Ariztegui, D.; Brauer, A.; Haug, G. H.; Ito, E.; Kitagawa, H.; Torfstein, A.; Yasuda, Y.; The Icdp-Dsddp Scientific Party

    2011-12-01

    The ICDP funded Dead Sea Deep Drilling Project (DSDDP) recovered the longest and most complete paleo-environmental record in the Middle East, drilling holes of ~450 and ~350 meters in length in deep (~300 m below the lake level) and shallow sites (~3 mbll) respectively. The Dead Sea expands during the glacials and contracts during interglacials, and the sediments comprise a geological archive of the evolving environmental conditions (e.g. rains, floods, dust-storms, droughts). Dead Sea sediments include inorganic aragonite, allowing for dating by U-series (e.g. Haase-Schramm et al. GCA 2004). The deep site cores were opened and described in June 2011. The cores are composed mainly of alternating intervals of marl (aragonite, gypsum and detritus) during glacials, and salts and marls during interglacials. From this stratigraphy we estimate that the deep site core spans ~200 kyr (to the boundary of MIS 6 and 7). A dramatic discovery is a ~40 cm thick interval of partly rounded pebbles at ~235 m below the lake floor. This is the only clean pebbly unit in the entire core. It appears to be a beach layer, near the deepest part of the Dead Sea, lying above ~35 meters of mainly salt. If it is a beach layer, it implies an almost complete dry-down of the paleo-Dead Sea. The pebble layer lies within the last interglacial interval. Our initial attempt to more precisely estimate the age of the possible dry down shows an intriguing correlation between the salt-mud stratigraphy of the Dead Sea core and the oxygen isotope record of Soreq Cave, whereby excursions to light oxygen in the speleothems correspond to periods of salt deposition. Through this comparison, we estimate that the possible dry down occurred during MIS 5e. The occurrence of ~35 meters of mainly salt along with the pebble layer demonstrates a severe dry interval during MIS 5. This observation has implications for the Middle East today, where the Dead Sea level is dropping as all the countries in the area use the

  11. The Dead Sea, The Lake and Its Setting

    NASA Astrophysics Data System (ADS)

    Brink, Uri ten

    I cannot think of a subject more befitting the description of interdisciplinary research with societal relevance than the study of the Dead Sea, a terminal lake of the Jordan River in Israel and Jordan. The scientific study of the Dead Sea is intimately connected with politics, religion, archeology, economic development, tourism, and environmental change.The Dead Sea is a relatively closed geologic and limnologic system with drastic physical changes often occurring on human timescales and with a long human history to observe these changes. Research in this unique area covers diverse aspects such as active subsidence and deformation along strike-slip faults; vertical stratification and stability of the water column; physical properties of extremely saline and dense (1234 kg/m3) water; spontaneous precipitation of minerals in an oversaturated environment; origin of the unusual chemical composition of the brine; existence of life in extreme environments; use of lake level fluctuations as a paleoclimatic indicator; and effects on the environment of human intervention versus natural climatic variability. Although the Dead Sea covers a small area on a global scale, it is nevertheless one of the largest natural laboratories for these types of research on Earth. These reasons make the Dead Sea a fascinating topic for the curious mind.

  12. Scientific evidence of the therapeutic effects of dead sea treatments: a systematic review.

    PubMed

    Katz, Uriel; Shoenfeld, Yehuda; Zakin, Varda; Sherer, Yaniv; Sukenik, Shaul

    2012-10-01

    The Dead Sea, the deepest and most saline lake on earth, has been known from biblical times for its healing properties. The aim of this systematic review was to present critically the level of evidence for the claims of therapeutic effects of Dead Sea treatments in several rheumatologic diseases and psoriasis as well as to review these treatments' safety. All articles cited in MEDLINE under the query, "Dead Sea," were reviewed. We found bona fide evidence that Dead Sea treatments are especially effective in psoriasis due to both the special characteristics of solar ultraviolet radiation in the Dead Sea and the Dead Sea water balneotherapy. Dead Sea mud and Dead Sea balneotherapy have been found to be beneficial in rheumatologic diseases, including rheumatoid arthritis, psoriatic arthritis, ankylosing spondylitis, and knee osteoarthritis. In the safety analysis, we found no evidence for an increase in skin neoplasia, although skin actinic damage seems to be increased in patients treated in the Dead Sea. Dead Sea treatments do not lead to worsening of blood pressure. Substantial ingestion of Dead Sea water (generally in unusual near-drowning cases) is toxic and can result in cardiac rhythm disturbances because of electrolyte concentration abnormalities. Laboratory analysis of Dead Sea mud did not reveal mineral concentrations that could represent a health concern for their intended use. Dead Sea treatments are beneficial in several rheumatologic diseases and psoriasis and have a good safety profile. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Occurrence of organohalogens at the Dead Sea Basin

    NASA Astrophysics Data System (ADS)

    Tubbesing, Christoph; Kotte, Karsten; Keppler, Frank; Krause, Torsten; Bahlmann, Enno; Schöler, Heinfried

    2013-04-01

    Most arid and semi-arid regions are characterized by evaporites, which are assured sources for volatile organohalogens (VOX) [1]. These compounds play an important role in tropospheric and stratospheric chemistry. The Dead Sea between Israel and Jordan is the world's most famous and biggest all-season water covered salt lake. In both countries chemical plants like the Dead Sea Works and the Arab Potash Company are located at the southern part of the Dead Sea and mine various elements such as bromine and magnesium. Conveying sea water through constructed evaporation pans multifarious salts are enriched and precipitated. In contrast, the Northern basin and main part of the Dead Sea has remained almost untouched by industrial salt production. Its fresh water supply from the Jordan River is constantly decreasing, leading to further increased salinity. During a HALOPROC campaign (Natural Halogenation Processes in the Environment) we collected various samples including air, soils, sediments, halophytic plants, ground- and seawater from the Northern and Southern basin of the Israeli side of the Dead Sea. These samples were investigated for the occurrence of halocarbons using different analytical techniques. Most samples were analyzed for volatile organohalogens such as haloalkanes using gas chromatography- mass spectrometry (GC-MS). Interestingly, there is a strong enrichment of trihalomethanes (THM), especially all chlorinated and brominated ones and also the iodinated compound dichloroiodomethane were found in the Southern basin. In addition, volatile organic carbons (VOC) such as ethene and some other alkenes were analyzed by a gas chromatography-flame ionisation detector (GC-FID) to obtain further information about potential precursors of halogenated compounds. Halophytic plants were investigated for their potential to release chloromethane and bromomethane but also for their stable carbon and hydrogen isotope composition. For this purpose, a plant chamber was

  14. Natural Oxidation of Bromide to Bromine in Evaporated Dead Sea Brines

    NASA Astrophysics Data System (ADS)

    Gavrieli, Ittai; Golan, Rotem; Lazar, Boaz; Baer, Gidi; Zakon, Yevgeni; Ganor, Jiwchar

    2016-04-01

    Highly evaporated Dead Sea brines are found in isolated sinkholes along the Dead Sea. Many of these brines reach densities of over 1.3 kg/L and pH<5 and are the product of evaporation of Dead Sea brine that drain into the sinkholes. The low pH and the reddish to brownish hue of these brines were an enigma until recently. Despite the rather high total alkalinity (TA) of the Dead Sea (3.826 mmol/kg) the pH of the Dead Sea brine is known to be slightly acidic with a value of ~6.3. In comparison, seawater with the same alkalinity would have a pH value well above 8.3, meaning that H+ activity is 100 fold lower than that of Dead Sea brine. In the present work we assess the apparent dissociation constant value of boric acid (K`B) for the Dead Sea brine and use it to explain the brine's low pH value. We then show that pH decreases further as the brine evaporates and salinity increases. Finally we explain the reddish hue of the hypersaline brines in the sinkholes as due to the presence of dissolved bromine. The latter is the product of oxidation of dissolved bromide, a process that is enabled by the low pH of the hypersaline brines and their high bromide concentration.

  15. Comprehensive Measurements of Wind Systems at the Dead Sea

    NASA Astrophysics Data System (ADS)

    Metzger, Jutta; Corsmeier, Ulrich; Kalthoff, Norbert; Wieser, Andreas; Alpert, Pinhas; Lati, Joseph

    2016-04-01

    The Dead Sea is a unique place on earth. It is located at the lowest point of the Jordan Rift valley and its water level is currently at -429 m above mean sea level (amsl). To the West the Judean Mountains (up to 1000 m amsl) and to the East the Moab mountains (up to 1300 m amsl) confine the north-south oriented valley. The whole region is located in a transition zone of semi-arid to arid climate conditions and together with the steep orography, this forms a quite complex and unique environment. The Virtual Institute DEad SEa Research Venue (DESERVE) is an international project funded by the German Helmholtz Association and was established to study coupled atmospheric, hydrological, and lithospheric processes in the changing environment of the Dead Sea. Previous studies showed that the valley's atmosphere is often governed by periodic wind systems (Bitan, 1974), but most of the studies were limited to ground measurements and could therefore not resolve the three dimensional development and evolution of these wind systems. Performed airborne measurements found three distinct layers above the Dead Sea (Levin, 2005). Two layers are directly affected by the Dead Sea and the third is the commonly observed marine boundary layer over Israel. In the framework of DESERVE a field campaign with the mobile observatory KITcube was conducted to study the three dimensional structure of atmospheric processes at the Dead Sea in 2014. The combination of several in-situ and remote sensing instruments allows temporally and spatially high-resolution measurements in an atmospheric volume of about 10x10x10 km3. With this data set, the development and evolution of typical local wind systems, as well as the impact of regional scale wind conditions on the valley's atmosphere could be analyzed. The frequent development of a nocturnal drainage flow with wind velocities of over 10 m s-1, the typical lake breeze during the day, its onset and vertical extension as well as strong downslope winds

  16. Water input requirements of the rapidly shrinking Dead Sea

    NASA Astrophysics Data System (ADS)

    Abu Ghazleh, Shahrazad; Hartmann, Jens; Jansen, Nils; Kempe, Stephan

    2009-05-01

    The deepest point on Earth, the Dead Sea level, has been dropping alarmingly since 1978 by 0.7 m/a on average due to the accelerating water consumption in the Jordan catchment and stood in 2008 at 420 m below sea level. In this study, a terrain model of the surface area and water volume of the Dead Sea was developed from the Shuttle Radar Topography Mission data using ArcGIS. The model shows that the lake shrinks on average by 4 km2/a in area and by 0.47 km3/a in volume, amounting to a cumulative loss of 14 km3 in the last 30 years. The receding level leaves almost annually erosional terraces, recorded here for the first time by Differential Global Positioning System field surveys. The terrace altitudes were correlated among the different profiles and dated to specific years of the lake level regression, illustrating the tight correlation between the morphology of the terrace sequence and the receding lake level. Our volume-level model described here and previous work on groundwater inflow suggest that the projected Dead Sea-Red Sea channel or the Mediterranean-Dead Sea channel must have a carrying capacity of >0.9 km3/a in order to slowly re-fill the lake to its former level and to create a sustainable system of electricity generation and freshwater production by desalinization. Moreover, such a channel will maintain tourism and potash industry on both sides of the Dead Sea and reduce the natural hazard caused by the recession.

  17. Monitoring the Dead Sea Region by Multi-Parameter Stations

    NASA Astrophysics Data System (ADS)

    Mohsen, A.; Weber, M. H.; Kottmeier, C.; Asch, G.

    2015-12-01

    The Dead Sea Region is an exceptional ecosystem whose seismic activity has influenced all facets of the development, from ground water availability to human evolution. Israelis, Palestinians and Jordanians living in the Dead Sea region are exposed to severe earthquake hazard. Repeatedly large earthquakes (e.g. 1927, magnitude 6.0; (Ambraseys, 2009)) shook the whole Dead Sea region proving that earthquake hazard knows no borders and damaging seismic events can strike anytime. Combined with the high vulnerability of cities in the region and with the enormous concentration of historical values this natural hazard results in an extreme earthquake risk. Thus, an integration of earthquake parameters at all scales (size and time) and their combination with data of infrastructure are needed with the specific aim of providing a state-of-the-art seismic hazard assessment for the Dead Sea region as well as a first quantitative estimate of vulnerability and risk. A strong motivation for our research is the lack of reliable multi-parameter ground-based geophysical information on earthquakes in the Dead Sea region. The proposed set up of a number of observatories with on-line data access will enable to derive the present-day seismicity and deformation pattern in the Dead Sea region. The first multi-parameter stations were installed in Jordan, Israel and Palestine for long-time monitoring. All partners will jointly use these locations. All stations will have an open data policy, with the Deutsches GeoForschungsZentrum (GFZ, Potsdam, Germany) providing the hard and software for real-time data transmission via satellite to Germany, where all partners can access the data via standard data protocols.

  18. Near bottom temperature anomalies in the Dead Sea

    NASA Astrophysics Data System (ADS)

    Ben-Avraham, Zvi; Ballard, Robert D.

    1984-12-01

    A bottom photographic and temperature study was carried out in the Dead Sea using a miniature version of the unmanned camera system ANGUS (mini-ANGUS). Due to the low transparency of the Dead Sea water, the bottom photographs provide very poor results. Only in a very few locations was the floor visible and in those cases it was found to be a white undulating sedimentary surface. The bottom temperature measurements, which were made continuously along the ship track, indicate the presence of a large zone of temperature anomalies. This zone is located in the deep part of the north basin at a water depth of over 330 m. The anomalies occur above a portion of an east-west fault which cuts through the Dead Sea suggesting the presence of hydrothermal activity.

  19. Reconstruction of historic sea ice conditions in a sub-Arctic lagoon

    USGS Publications Warehouse

    Petrich, Chris; Tivy, Adrienne C.; Ward, David H.

    2014-01-01

    Historical sea ice conditions were reconstructed for Izembek Lagoon, Bering Sea, Alaska. This lagoon is a crucial staging area during migration for numerous species of avian migrants and a major eelgrass (Zostera marina) area important to a variety of marine and terrestrial organisms, especially Pacific Flyway black brant geese (Branta bernicla nigricans). Ice cover is a common feature of the lagoon in winter, but appears to be declining, which has implications for eelgrass distribution and abundance, and its use by wildlife. We evaluated ice conditions from a model based on degree days, calibrated to satellite observations, to estimate distribution and long-term trends in ice conditions in Izembek Lagoon. Model results compared favorably with ground observations and 26 years of satellite data, allowing ice conditions to be reconstructed back to 1943. Specifically, periods of significant (limited access to eelgrass areas) and severe (almost complete ice coverage of the lagoon) ice conditions could be identified. The number of days of severe ice within a single season ranged from 0 (e.g., 2001) to ≥ 67 (e.g., 2000). We detected a slight long-term negative trend in ice conditions, superimposed on high inter-annual variability in seasonal aggregate ice conditions. Based on reconstructed ice conditions, the seasonally cumulative number of significant or severe ice days correlated linearly with mean air temperature from January until March. Further, air temperature at Izembek Lagoon was correlated with wind direction, suggesting that ice conditions in Izembek Lagoon were associated with synoptic-scale weather patterns. Methods employed in this analysis may be transferable to other coastal locations in the Arctic.

  20. Quantifying surface water runoff from Wadi Arogut towards the Dead Sea

    NASA Astrophysics Data System (ADS)

    Geyer, Stefan; Khayat, Saed; Marei, Amer

    2015-04-01

    The surrounded area of the Dead Sea, especially the west side suffers from many hydrological problems. While the Dead Sea level drop considered a major problem that affect the quality of the surrounded freshwater resources, a lot of the surface water flood from the adjacent Wadi are lost through direct run off without any exploitation. Therefore, it is necessary to maintain a type of balance between surface water exploitation through the Wadi and at the same time allow a sufficient amount of flow to the Dead Sea to ensure its sustainability. In this study, we choose one of the larger tributaries in the western side of the Dead Sea basin. The stream was modelled for runoff response to different rainfall amount and climate conditions (dry, normal, and wet seasons) which were chosen from the rainy seasons in the previous 30 years. Finally, the amount of surface water contribution from each of the three seasons of the Dead Sea was quantified. The outcome of the model shows the results from the normal rainy season, which is frequently reoccurs and common in the region. The model data show that such events normally contribute with about 18-22 MCM annually to the Dead Sea. The problem is with the recurrence of dry season such as 2005/2006, by which the amount of the surface water decrease and consequently has adverse effect on the Dead Sea. However, the presence of less frequent thunder storm season such as that one in 1991/1992 has also a positive effect on the Dead Sea level. In the rainy season 1991/1992 there was a higher amount of rainfall over the study area that reaches around 155 MCM. Despite the presence of this high amount most of the recharge lost to the ground as groundwater recharge. The high amount of rain increases the amount of inundated surface water out of the Wadi banks and covers more surfaces all over the study area, which in role promote more water loss to the ground. That is why the total loss (rather than surface runoff) was much higher (77

  1. Modelling alpha-diversities of coastal lagoon fish assemblages from the Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Riera, R.; Tuset, V. M.; Betancur-R, R.; Lombarte, A.; Marcos, C.; Pérez-Ruzafa, A.

    2018-07-01

    Coastal lagoons are marine ecosystems spread worldwide with high ecological value; however, they are increasingly becoming deteriorated as a result of anthropogenic activity. Their conservation requires a better understanding of the biodiversity factors that may help identifying priority areas. The present study is focused on 37 Mediterranean coastal lagoons and we use predictive modelling approaches based on Generalized Linear Model (GLM) analysis to investigate variables (geomorphological, environmental, trophic or biogeographic) that may predict variations in alpha-diversity. It included taxonomic diversity, average taxonomic distinctness, and phylogenetic and functional diversity. Two GLM models by index were built depending on available variables for lagoons: in the model 1 all lagoons were used, and in the model 2 only 23. All alpha-diversity indices showed variability between lagoons associated to exogenous factors considered. The biogeographic region strongly conditioned most of models, being the first variable introduced in the models. The salinity and chlorophyll a concentration played a secondary role for the models 1 and 2, respectively. In general, the highest values of alpha-diversities were found in northwestern Mediterranean (Balearic Sea, Alborán Sea and Gulf of Lion), hence they might be considered "hotspots" at the Mediterranean scale and should have a special status for their protection.

  2. Potential Evaporite Biomarkers from the Dead Sea

    NASA Technical Reports Server (NTRS)

    Morris, Penny A.; Wentworth, Susan J.; Thomas-Keprta, Kathie; Allen, Carlton C.; McKay, David S.

    2001-01-01

    The Dead Sea is located on the northern branch of the African-Levant Rift systems. The rift system, according to one model, was formed by a series of strike slip faults, initially forming approximately two million years ago. The Dead Sea is an evaporite basin that receives freshwater from springs and from the Jordan River. The Dead Sea is different from other evaporite basins, such as the Great Salt Lake, in that it possesses high concentrations of magnesium and has an average pH of 6.1. The dominant cation in the Great Salt Lake is sodium, and the pH is 7.7. Calcium concentrations are also higher in the Dead Sea than in the Great Salt Lake. Both basins are similar in that the dominant anion is chlorine and the salinity levels are approximately 20 %. Other common cations that have been identified from the waters of the Dead Sea and the Great Salt Lake include sodium and potassium. A variety of Archea, Bacteria, and a single genus of a green algal, Dunaliella, has been described from the Dead Sea. Earlier studies concentrated on microbial identification and analysis of their unique physiology that allows them to survive in this type of extreme environment. Potential microbial fossilization processes, microbial fossils, and the metallic ions associated with fossilization have not been studied thoroughly. The present study is restricted to identifying probable microbial morphologies and associated metallic ions. XRD (X Ray Diffraction) analysis indicates the presence of halite, quartz, and orthoclase feldspar. In addition to these minerals, other workers have reported potassium chloride, magnesium bromide, magnesium chloride, calcium chloride, and calcium sulfate. Halite, calcium sulfate, and orthoclase were examined in this report for the presence of microbes, microbially induced deposits or microbial alteration. Neither the gypsum nor the orthoclase surfaces possesses any obvious indications of microbial life or fossilization. The sand-sized orthoclase particles are

  3. Deciphering The Fall And Rise Of The Dead Sea In Relation To Solar Forcing

    NASA Astrophysics Data System (ADS)

    Yousef, Shahinaz M.

    2005-03-01

    Solar Forcing on closed seas and Lakes is space time dependent. The Cipher of the Dead Sea level variation since 1200 BC is solved in the context of millenium and Wolf-Gleissberg solar cycles time scales. It is found that the pattern of Dead Sea level variation follows the pattern of major millenium solar cycles. The 70 m rise of Dead Sea around 1AD is due to the forcing of the maximum millenium major solar cycle. Although the pattern of the Dead Sea level variation is almost identical to major solar cycles pattern between 1100 and 1980 AD, there is a dating problem of the Dead Sea time series around 1100-1300 AD that time. A discrepancy that should be corrected for the solar and Dead Sea series to fit. Detailed level variations of the Dead Sea level for the past 200 years are solved in terms of the 80-120 years solar Wolf-Gliessberg magnetic cycles. Solar induced climate changes do happen at the turning points of those cycles. Those end-start and maximum turning points are coincident with the change in the solar rotation rate due to the presence of weak solar cycles. Such weak cycles occur in series of few cycles between the end and start of those Wolf-Gleissberg cycles. Another one or two weak r solar cycle occur following the maximum of those Wolf-Gleissberg cycles. Weak cycles induce drop in the energy budget emitted from the sun and reaching the Earth thus causing solar induced climate change. An 8 meter sudden rise of Dead Sea occur prior 1900 AD due to positive solar forcing of the second cycle of the weak cycles series on the Dead Sea. The same second weak cycle induced negative solar forcing on Lake Chad. The first weak solar cycle forced Lake Victoria to rise abruptly in 1878. The maximum turning point of the solar Wolf-Gleissberg cycle induced negative forcing on both the Aral Sea and the Dead Sea causing their shrinkage to an alarming reduced area ever since. On the other hand, few years delayed positive forcing caused Lake Chad and the Equatorial

  4. 77 FR 64373 - Culturally Significant Objects Imported for Exhibition Determinations: “The Dead Sea Scrolls...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-19

    ... Determinations: ``The Dead Sea Scrolls: Life and Faith in Ancient Times,'' Formerly Titled ``The Dead Sea Scrolls... the Department of State pertaining to the exhibition ``The Dead Sea Scrolls: Life and Faith in Biblical Times.'' The referenced notice is corrected here to change the exhibition name to ``The Dead Sea...

  5. 78 FR 62354 - Culturally Significant Objects Imported for Exhibition Determinations: “The Dead Sea Scrolls...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-18

    ... Determinations: ``The Dead Sea Scrolls: Life and Faith in Ancient Times'' Formerly Titled ``The Dead Sea Scrolls... Department of State pertaining to the exhibition ``The Dead Sea Scrolls: Life and Faith in Biblical Times... of the Federal Register (volume 77, number 203) to change the exhibition name to ``The Dead Sea...

  6. 78 FR 24462 - Culturally Significant Objects Imported for Exhibition; Determinations: “The Dead Sea Scrolls...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-25

    ...; Determinations: ``The Dead Sea Scrolls: Life and Faith in Ancient Times'' Formerly Titled ``The Dead Sea Scrolls... Department of State pertaining to the exhibition ``The Dead Sea Scrolls: Life and Faith in Biblical Times... of the Federal Register (volume 77, number 203) to change the exhibition name to ``The Dead Sea...

  7. 78 FR 16565 - Culturally Significant Objects Imported for Exhibition Determinations: “The Dead Sea Scrolls...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-15

    ... Determinations: ``The Dead Sea Scrolls: Life and Faith in Ancient Times'' Formerly Titled ``The Dead Sea Scrolls... Department of State pertaining to the exhibition ``The Dead Sea Scrolls: Life and Faith in Biblical Times... of the Federal Register (volume 77, number 203) to change the exhibition name to ``The Dead Sea...

  8. Synoptic conditions of fine-particle transport to the last interglacial Red Sea-Dead Sea from Nd-Sr compositions of sediment cores

    NASA Astrophysics Data System (ADS)

    Palchan, Daniel; Stein, Mordechai; Goldstein, Steven L.; Almogi-Labin, Ahuva; Tirosh, Ofir; Erel, Yigal

    2018-01-01

    The sediments deposited at the depocenter of the Dead Sea comprise high-resolution archive of hydrological changes in the lake's watershed and record the desert dust transport to the region. This paper reconstructs the dust transport to the region during the termination of glacial Marine Isotope Stage 6 (MIS 6; ∼135-129 ka) and the last interglacial peak period (MIS5e, ∼129-116 ka). We use chemical and Nd and Sr isotope compositions of fine detritus material recovered from sediment core drilled at the deepest floor of the Dead Sea. The data is integrated with data achieved from cores drilled at the floor of the Red Sea, thus, forming a Red Sea-Dead Sea transect extending from the desert belt to the Mediterranean climate zone. The Dead Sea accumulated flood sediments derived from three regional surface cover types: settled desert dust, mountain loess-soils and loess-soils filling valleys in the Dead Sea watershed termed here "Valley Loess". The Valley Loess shows a distinct 87Sr/86Sr ratio of 0.7081 ± 1, inherited from dissolved detrital calcites that originate from dried waterbodies in the Sahara and are transported with the dust to the entire transect. Our hydro-climate and synoptic conditions reconstruction illustrates the following history: During glacial period MIS6, Mediterranean cyclones governed the transport of Saharan dust and rains to the Dead Sea watershed, driving the development of both mountain soils and Valley Loess. Then, at Heinrich event 11, dry western winds blew Saharan dust over the entire Red Sea - Dead Sea transect marking latitudinal expansion of the desert belt. Later, when global sea-level rose, the Dead Sea watershed went through extreme aridity, the lake retreated, depositing salt and accumulating fine detritus of the Valley Loess. During peak interglacial MIS 5e, enhanced flooding activity flushed the mountain soils and fine detritus from all around the Dead Sea and Red Sea, marking a significant "contraction" of the desert belt

  9. The active structure of the Dead Sea depression

    NASA Astrophysics Data System (ADS)

    Shamir, G.

    2003-04-01

    The ~220km long gravitational and structural Dead Sea Depression (DSD), situated along the southern section of the Dead Sea Transform (DST), is centered by the Dead Sea basin sensu strictu (DSB), which has been described since the 1960?s as a pull-apart basin over a presumed left-hand fault step. However, several observations, or their lack thereof, question this scheme, e.g. (i) It is not supported by recent seismological and geomorphic data; (ii) It does not explain the fault pattern and mixed sinistral and dextral offset along the DSB western boundary; (iii) It does not simply explain the presence of intense deformation outside the presumed fault step zone; (iv) It is inconsistent with the orientation of seismically active faults within the Dead Sea and Jericho Valley; (v); It is apparently inconsistent with the symmetrical structure of the DSD; (vi) The length of the DSB exceeds the total offset along the Dead Sea Transform, while its subsidence is about the age of the DST. Integration of newly acquired and analyzed data (high resolution and petroleum seismic reflection data, earthquake relocation and fault plane solutions) with previously published data (structural mapping, fracture orientation distribution, Bouguer anomaly maps, sinkhole distribution, geomorphic lineaments) now shows that the active upper crustal manifestation of the DSD is a broad shear zone dominated by internal fault systems oriented NNE and NNW. These fault systems are identified by earthquake activity, seismic reflection observations, alignment of recent sinkholes, and distribution of Bouguer anomaly gradients. Motion on the NNE system is normal-dextral, suggesting that counterclockwise rotation may have taken place within the shear zone. The overall sinistral motion between the Arabian and Israel-Sinai plates along the DSD is thus accommodated by distributed shear across the N-S extending DSD. The three-dimensionality of this motion at the DSD may be related to the rate of convergence

  10. Future evolution of a tidal inlet due to changes in wave climate, Sea level and lagoon morphology (Óbidos lagoon, Portugal)

    NASA Astrophysics Data System (ADS)

    Bruneau, Nicolas; Fortunato, André B.; Dodet, Guillaume; Freire, Paula; Oliveira, Anabela; Bertin, Xavier

    2011-11-01

    Tidal inlets are extremely dynamic, as a result of an often delicate balance between the effects of tides, waves and other forcings. Since the morphology of these inlets can affect navigation, water quality and ecosystem dynamics, there is a clear need to anticipate their evolution in order to promote adequate management decisions. Over decadal time scales, the position and size of tidal inlets are expected to evolve with the conditions that affect them, for instance as a result of climate change. A process-based morphodynamic modeling system is validated and used to analyze the effects of sea level rise, an expected shift in the wave direction and the reduction of the upper lagoon surface area by sedimentation on a small tidal inlet (Óbidos lagoon, Portugal). A new approach to define yearly wave regimes is first developed, which includes a seasonal behavior, random inter-annual variability and the possibility to extrapolate trends. Once validated, this approach is used to produce yearly time series of wave spectra for the present and for the end of the 21st century, considering the local rotation trends computed using hindcast results for the past 57 years. Predictions of the mean sea level for 2100 are based on previous studies, while the bathymetry of the upper lagoon for the same year is obtained by extrapolation of past trends. Results show, and data confirm, that the Óbidos lagoon inlet has three stable configurations, largely determined by the inter-annual variations in the wave characteristics. Both sea level rise and the reduction of the lagoon surface area will promote the accretion of the inlet. In contrast, the predicted rotation of the wave regime, within foreseeable limits, will have a negligible impact on the inlet morphology.

  11. The formation of graben morphology in the Dead Sea Fault, and its implications

    NASA Astrophysics Data System (ADS)

    Ben-Avraham, Zvi; Katsman, Regina

    2015-09-01

    The Dead Sea Fault (DSF) is a 1000 km long continental transform. It forms a narrow and elongated valley with uplifted shoulders showing an east-west asymmetry, which is not common in other continental transforms. This topography may have strongly affected the course of human history. Several papers addressed the geomorphology of the DSF, but there is still no consensus with respect to the dominant mechanism of its formation. Our thermomechanical modeling demonstrates that existence of a transform prior to the rifting predefined high strain softening on the faults in the strong upper crust and created a precursor weak zone localizing deformations in the subsequent transtensional period. Together with a slow rate of extension over the Arabian plate, they controlled a narrow asymmetric morphology of the fault. This rift pattern was enhanced by a fast deposition of evaporites from the Sedom Lagoon, which occupied the rift depression for a short time period.

  12. Spatio-temporal development of sinkholes on the eastern shore of the Dead Sea

    NASA Astrophysics Data System (ADS)

    Holohan, Eoghan; Saberi, Leila; Al-Halbouni, Djamil; Sawarieh, Ali; Closson, Damien; Alrshdan, Hussam; Walter, Thomas; Dahm, Torsten

    2017-04-01

    The ongoing, largely anthropogenically-forced decline of the Dead Sea is associated with the most prolific development of sinkholes worldwide. The fall in hydrological base level since the 1960s is thought to enable relatively fresh ground waters to dissolve underground salt deposits that were previously in equilibrium with hypersaline Dead Sea brine. Sinkhole development in response to this dissolution began in the 1980s and is still ongoing; it represents a significant geohazard in the Dead Sea region. We present new research undertaken within the Dead Sea Research Venue (DESERVE) on the spatio-temporal evolution of the main sinkhole-affected site on the Eastern shore of the Dead Sea, at Ghor Al-Haditha in Jordan. Our data set includes optical satellite imagery, aerial survey photographs and drone-based photogrammetric surveys with high spatial (< 1 m2 - 0.05 m per pixel) and temporal (decadal from 1970-2010, annual from 2004-2016) resolution. These enable new quantitative insights into this, the largest of all the Dead Sea sinkhole sites. Our analysis shows that there are now over 800 sinkholes at Ghor al-Haditha. Sinkholes initiated as spatially distinct clusters in the late 1980's to early 1990s. While some clusters have since become inactive, most have expanded and merged with time. New clusters have also developed, mainly in the more recently exposed north of the area. With the retreat of the Dead Sea, the roughly coastline-parallel zone of sinkhole formation has expanded unevenly but systematically seawards. Such a seaward migration of sinkhole formation is predicted from hydrogeological theory, but as yet not consistently observed elsewhere at the Dead Sea. The rate of sinkhole formation at Ghor Haditha accelerated markedly during the late 2000s to a peak of about 100 per year in 2009. Similar accelerations are observed on the western shore, but differ in timing. The rate of sinkhole formation on the Eastern shore has since declined to about 50 per year

  13. Stress tensor and focal mechanisms in the Dead Sea basin

    NASA Astrophysics Data System (ADS)

    Hofstetter, A.; Dorbath, C.; Dorbath, L.; Braeuer, B.; Weber, M. H.

    2015-12-01

    We use the recorded seismicity, confined to the Dead Sea basin and its boundaries, by the Dead Sea Integrated Research (DESIRE) portable seismic network and the Israel and Jordan permanent seismic networks for studying the mechanisms of earthquakes that occurred in the Dead Sea basin. The observed seismicity in the Dead Sea basin was divided into 9 regions according to the spatial distribution of the earthquakes and the known tectonic features. The large number of recording stations and the good station distribution allowed the reliable determinations of 494 earthquake focal mechanisms. For each region, based on the inversion of the observed polarities of the earthquakes, we determine the focal mechanisms and the associated stress tensor. For 159 earthquakes out of the 494 mechanisms we could determine compatible fault planes. On the eastern side, the focal mechanisms are mainly strike-slip mechanism with nodal planes in the N-S and E-W directions. The azimuths of the stress axes are well constrained presenting minimal variability in the inversion of the data, which is in good agreement with the Arava fault on the eastern side of the Dead Sea basin and what we had expected from the regional geodynamics. However, larger variabilities of the azimuthal and dip angles are observed on the western side of the basin. Due to the wider range of azimuths of the fault planes, we observe the switching of sigma1 and sigma2 or the switching of sigma2 and sigma3as major horizontal stress directions. This observed switching of stress axes allows having dip-slip and normal mechanisms in a region that is dominated by strike-slip motion.

  14. Energy Balance, Evapo-transpiration and Dew deposition in the Dead Sea Valley

    NASA Astrophysics Data System (ADS)

    Metzger, Jutta; Corsmeier, Ulrich

    2016-04-01

    The Dead Sea is a unique place on earth. It is a terminal hypersaline lake, located at the lowest point on earth with a lake level of currently -429 m above mean sea level (amsl). It is located in a transition zone of semiarid to arid climate conditions, which makes it highly sensible to climate change (Alpert1997, Smiatek2011). The Virtual Institute DEad SEa Research Venue (DESERVE) is an international project funded by the German Helmholtz Association and was established to study coupled atmospheric hydrological, and lithospheric processes in the changing environment of the Dead Sea. At the moment the most prominent environmental change is the lake level decline of approximately 1 m / year due to anthropogenic interferences (Gertman, 2002). This leads to noticeable changes in the fractions of the existing terrestrial surfaces - water, bare soil and vegetated areas - in the valley. Thus, the partitioning of the net radiation in the valley changes as well. To thoroughly study the atmospheric and hydrological processes in the Dead Sea valley, which are driven by the energy balance components, sound data of the energy fluxes of the different surfaces are necessary. Before DESERVE no long-term monitoring network simultaneously measuring the energy balance components of the different surfaces in the Dead Sea valley was available. Therefore, three energy balance stations were installed at three characteristic sites at the coast-line, over bare soil, and within vegetation, measuring all energy balance components by using the eddy covariance method. The results show, that the partitioning of the energy into sensible and latent heat flux on a diurnal scale is totally different at the three sites. This results in gradients between the sites, which are e.g. responsible for the typical diurnal wind systems at the Dead Sea. Furthermore, driving forces of evapo-transpiration at the sites were identified and a detailed analysis of the daily evaporation and dew deposition rates

  15. Microbial and Chemical Characterization of Underwater Fresh Water Springs in the Dead Sea

    PubMed Central

    Ionescu, Danny; Siebert, Christian; Polerecky, Lubos; Munwes, Yaniv Y.; Lott, Christian; Häusler, Stefan; Bižić-Ionescu, Mina; Quast, Christian; Peplies, Jörg; Glöckner, Frank Oliver; Ramette, Alban; Rödiger, Tino; Dittmar, Thorsten; Oren, Aharon; Geyer, Stefan; Stärk, Hans-Joachim; Sauter, Martin; Licha, Tobias; Laronne, Jonathan B.; de Beer, Dirk

    2012-01-01

    Due to its extreme salinity and high Mg concentration the Dead Sea is characterized by a very low density of cells most of which are Archaea. We discovered several underwater fresh to brackish water springs in the Dead Sea harboring dense microbial communities. We provide the first characterization of these communities, discuss their possible origin, hydrochemical environment, energetic resources and the putative biogeochemical pathways they are mediating. Pyrosequencing of the 16S rRNA gene and community fingerprinting methods showed that the spring community originates from the Dead Sea sediments and not from the aquifer. Furthermore, it suggested that there is a dense Archaeal community in the shoreline pore water of the lake. Sequences of bacterial sulfate reducers, nitrifiers iron oxidizers and iron reducers were identified as well. Analysis of white and green biofilms suggested that sulfide oxidation through chemolitotrophy and phototrophy is highly significant. Hyperspectral analysis showed a tight association between abundant green sulfur bacteria and cyanobacteria in the green biofilms. Together, our findings show that the Dead Sea floor harbors diverse microbial communities, part of which is not known from other hypersaline environments. Analysis of the water’s chemistry shows evidence of microbial activity along the path and suggests that the springs supply nitrogen, phosphorus and organic matter to the microbial communities in the Dead Sea. The underwater springs are a newly recognized water source for the Dead Sea. Their input of microorganisms and nutrients needs to be considered in the assessment of possible impact of dilution events of the lake surface waters, such as those that will occur in the future due to the intended establishment of the Red Sea−Dead Sea water conduit. PMID:22679498

  16. Safety evaluation of traces of nickel and chrome in cosmetics: The case of Dead Sea mud.

    PubMed

    Ma'or, Ze'evi; Halicz, Ludwik; Portugal-Cohen, Meital; Russo, Matteo Zanotti; Robino, Federica; Vanhaecke, Tamara; Rogiers, Vera

    2015-12-01

    Metal impurities such as nickel and chrome are present in natural ingredients-containing cosmetic products. These traces are unavoidable due to the ubiquitous nature of these elements. Dead Sea mud is a popular natural ingredient of cosmetic products in which nickel and chrome residues are likely to occur. To analyze the potential systemic and local toxicity of Dead Sea mud taking into consideration Dead Sea muds' natural content of nickel and chrome. The following endpoints were evaluated: (Regulation No. 1223/20, 21/12/2009) systemic and (SCCS's Notes of Guidance) local toxicity of topical application of Dead Sea mud; health reports during the last five years of commercial marketing of Dead Sea mud. Following exposure to Dead Sea mud, MoS (margin of safety) calculations for nickel and chrome indicate no toxicological concern for systemic toxicity. Skin sensitization is also not to be expected by exposure of normal healthy skin to Dead Sea mud. Topical application, however, is not recommended for already nickel-or chrome-sensitized persons. As risk assessment of impurities present in cosmetics may be a difficult exercise, the case of Dead Sea mud is taken here as an example of a natural material that may contain traces of unavoidable metals. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Polybrominated diphenyl ethers and their methoxylated analogs in mullet (Mugil cephalus) and sea bass (Dicentrarchus labrax) from Bizerte Lagoon, Tunisia.

    PubMed

    Ben Ameur, Walid; Ben Hassine, Sihem; Eljarrat, Ethel; El Megdiche, Yassine; Trabelsi, Souad; Hammami, Bèchir; Barceló, Damià; Driss, Mohamed Ridha

    2011-12-01

    Concentrations of ten polybrominated diphenyl ethers (PBDEs) and eight methoxylated polybrominated diphenyl ethers (MeO-PBDEs) in mullet (Mugil cephalus) and sea bass (Dicentrarchus labrax) collected from the Bizerte Lagoon and the Mediterranean Sea were investigated. To the best of our knowledge, this is the first report of these compounds in marine fishes from Tunisia. The PBDE mean concentrations in fish from Bizerte Lagoon were 45.3 and 96.2 ng g(-1) lw respectively in mullet and sea bass, while the concentrations of these compounds in mullet and sea bass from Mediterranean Sea were 7.80 and 27.9 ng g(-1) lw respectively. MeO-PBDE concentrations in mullet and sea bass from Bizerte Lagoon ranged from 6.46 to 286 ng g(-1) lw and from 49.4 to 798 ng g(-1) lw respectively, while the concentrations of these compounds in mullet and sea bass from Mediterranean Sea ranged from 190 to 401 ng g(-1) lw and from 353 to 578 ng g(-1) lw respectively. The total PBDEs and total MeO-PBDEs concentration in fish from Bizerte Lagoon were similar or slightly lower than those reported for other species from other locations around the world. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Monitoring benthic foraminiferal dynamics at Bottsand coastal lagoon (western Baltic Sea)

    NASA Astrophysics Data System (ADS)

    Schönfeld, Joachim

    2018-04-01

    Benthic foraminifera from Bottsand coastal lagoon, western Baltic Sea, have been studied since the mid-1960s. They were monitored annually in late autumn since 2003 at the terminal ditch of the lagoon. There were 12 different species recognised, of which three have not been recorded during earlier investigations. Dominant species showed strong interannual fluctuations and a steady increase in population densities over the last decade. Elphidium incertum, a stenohaline species of the Baltic deep water fauna, colonised the Bottsand lagoon in 2016, most likely during a period of salinities >19 units and water temperatures of 18 °C on average in early autumn. The high salinities probably triggered their germination from a propagule bank in the ditch bottom sediment. The new E. incertum population showed densities higher by an order of magnitude than those of the indigenous species. The latter did not decline, revealing that E. incertum used another food source or occupied a different microhabitat. Elphidium incertum survived transient periods of lower salinities in late autumn 2017, though with reduced abundances, and became a regular faunal constituent at the Bottsand lagoon.

  19. Recent sea-level changes and related engineering problems in the Lagoon of Venice (Italy)

    NASA Astrophysics Data System (ADS)

    Pirazzoli, Paolo Antonio

    In the city of Venice, where the average altitude is only a few tens of centimetres, there has been a dangerous increase in the frequency of flooding during the past few decades. Since 1872, the average increase in flooding levels (“acqua alta”) has been about 40cm: 27cm of this is due to the local rise in mean sea-level (of which some 14cm are related to man-induced subsidence of land, and 3-7cm to geological factors), and at least 14cm are caused by hydrodynamical factors, of which about 10cm can be ascribed to man-induced tidal changes. These latter are due above all to the dredging of deep artificial channels, the reclamation of wide areas of tidal flats, and the diking of fish ponds (“valli”), which have changed the ratio between the surface of the lagoon and that of the inlets. Since the latest modification (1963-1969), the lagoon has been open to large oil tankers, thereby allowing an easier entry of storm surges arising out at sea. Indeed an incompatibility exists between the accessibility of very large boats to the lagoon and the safeguard of Venice. Several engineering projects have been proposed with a view to improving the present critical situation. These projects include underground injections to raise the islands, the construction of new embankments, a reduction in the size of the passes, new access to wide areas for the tide, and the construction of flood gates at the passes. The reliability and effects of these projects are analysed and discussed. In conclusion, the removal of the oil terminal from the lagoon and a stricter control of water pollution are considered the most urgent preliminary actions for a long term solution of the flooding problem. This would enable a decrease in the exchanges between the lagoon and the sea, without, however, reducing the depth of the navigation channels to levels inconsistent with most of the present non-oil traffic. A final measure would be the construction of mobile gates at the passes which would

  20. The Active Structure of the Greater Dead Sea Basin

    NASA Astrophysics Data System (ADS)

    Shamir, G.

    2002-12-01

    The Greater Dead Sea Basin (GDSB) is a 220km long depression situated along the southern section of the Dead Sea Transform (DST), between two structurally and gravitationally elevated points, Wadi Malih in the north and Paran fault zone in the south. In its center is the Dead Sea basin 'sensu strictu' (DSB), which has been described since the 1970s as a pull-apart basin at a left step-over along the DST. However, several observations, or their lack thereof, contradict this scheme, e.g. (i) It is not supported by recent seismological and geomorphic data; (ii) It does not explain the fault pattern and mixed sinistral and dextral offset along the DSB western boundary; (iii) It does not simply explain the presence of intense deformation outside the presumed fault step zone; (iv) It is inconsistent with the orientation of seismically active faults within the Dead Sea and Jericho Valley; (v) The length of the DSB exceeds the total offset along the Dead Sea Transform, while its subsidence is about the age of the DST. In this study, newly acquired and analyzed data (high resolution seismic reflection and earthquake relocation and fault plane solutions) has been integrated with previously published data (structural mapping, fracture orientation distribution, Bouguer anomaly maps, sinkhole distribution, geomorphic lineaments). The results show that the GDSB is dominated by two active fault systems, one trending NNE and showing normal-dextral motion, the other trending NW. These systems are identified by earthquake activity, seismic reflection observations, alignment of recent sinkholes, and distribution of Bouguer anomaly gradients. As a result, the intra-basin structure is of a series of rectangular blocks. The dextral slip component along NNE trending faults, the mixed sense of lateral offset along the western boundary of the DSB and temporal change in fracture orientation in the Jericho Valley suggest that the intra-basin blocks have rotated counterclockwise since the

  1. Ultraviolet radiation properties as applied to photoclimatherapy at the Dead Sea.

    PubMed

    Kudish, A I; Abels, D; Harari, M

    2003-05-01

    The Dead Sea basin, the lowest terrestrial point on earth, is recognized as a natural treatment center for patients with various cutaneous and rheumatic diseases. Psoriasis is the major skin disease treated at the Dead Sea with excellent improvement to complete clearance exceeding 85% after 4 weeks of treatment. These results were postulated to be associated with a unique spectrum of ultraviolet radiation present in the Dead Sea area. The UVB and UVA radiation at two sites is measured continuously by identical sets of broad-band Solar Light Co. Inc. meters (Philadelphia, PA). The spectral selectivity within the UVB and UVA spectrum was determined using a narrow-band spectroradiometer, UV-Optronics 742 (Orlando, FL). The optimum exposure time intervals for photoclimatherapy, defined as the minimum ratio of erythema to therapeutic radiation intensities, were also determined using a Solar Light Co. Inc. Microtops II, Ozone Monitor-Sunphotometer. The ultraviolet radiation at the Dead Sea is attenuated relative to Beer Sheva as a result of the increased optical path length and consequent enhanced scattering. The UVB radiation is attenuated to a greater extent than UVA and the shorter erythema UVB spectral range decreased significantly compared with the longer therapeutic UVB wavelengths. It was demonstrated that the relative attenuation within the UVB spectral range is greatest for the shorter erythema rays and less for the longer therapeutic UVB wavelengths, thus producing a greater proportion of the longer therapeutic UVB wavelengths in the ultraviolet spectrum. These measurements can be utilized to minimize the exposure to solar radiation by correlating the cumulative UVB radiation dose to treatment efficacy and by formulating a patient sun exposure treatment protocol for Dead Sea photoclimatherapy.

  2. Challenges to estimate surface- and groundwater flow in arid regions: the Dead Sea catchment.

    PubMed

    Siebert, Christian; Rödiger, Tino; Mallast, Ulf; Gräbe, Agnes; Guttman, Joseph; Laronne, Jonathan B; Storz-Peretz, Yael; Greenman, Anat; Salameh, Elias; Al-Raggad, Marwan; Vachtman, Dina; Zvi, Arie Ben; Ionescu, Danny; Brenner, Asher; Merz, Ralf; Geyer, Stefan

    2014-07-01

    The overall aim of the this study, which was conducted within the framework of the multilateral IWRM project SUMAR, was to expand the scientific basement to quantify surface- and groundwater fluxes towards the hypersaline Dead Sea. The flux significance for the arid vicinity around the Dead Sea is decisive not only for a sustainable management in terms of water availability for future generations but also for the resilience of the unique ecosystems along its coast. Coping with different challenges interdisciplinary methods like (i) hydrogeochemical fingerprinting, (ii) satellite and airborne-based thermal remote sensing, (iii) direct measurement with gauging station in ephemeral wadis and a first multilateral gauging station at the river Jordan, (iv) hydro-bio-geochemical approach at submarine and shore springs along the Dead Sea and (v) hydro(geo)logical modelling contributed to the overall aim. As primary results, we deduce that the following: (i) Within the drainage basins of the Dead Sea, the total mean annual precipitation amounts to 300 mm a(−1) west and to 179 mm a(−1) east of the lake, respectively. (ii) The total mean annual runoff volumes from side wadis (except the Jordan River) entering the Dead Sea is approximately 58–66 × 10(6) m(3) a(−1) (western wadis: 7–15 × 10(6) m(3) a(−1); eastern wadis: 51 × 10(6) m(3) a(−1)). (iii) The modelled groundwater discharge from the upper Cretaceous aquifers in both flanks of the Dead Sea towards the lake amounts to 177 × 10(6) m(3) a(−1). (iv) An unexpected abundance of life in submarine springs exists, which in turn explains microbial moderated geo-bio-chemical processes in the Dead Sea sediments, affecting the highly variable chemical composition of on- and offshore spring waters.The results of this work show a promising enhancement of describing and modelling the Dead Sea basin as a whole. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Using coastal lagoons to better constrain the isostatic signal in the western Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Vacchi, M.; Rovere, A.; Melis, R. T.; Ghilardi, M.; Marriner, N.; Giaime, M.

    2017-12-01

    Coastal lagoons represent a very common feature of the microtidal Mediterranean coastlines. They are inland waterbodies, usually developing parallel to the coast, typically separated from the open sea by a sandy barrier. One or more restricted inlets ensure their continuous or intermittent connection to the open sea. The water depth is generally less than 1 m and seldom exceeds a few meters. They represent a very useful proxy for the reconstruction of Mediterranean Relative Sea Level (RSL). However, caution should be used in the definition of a correct indicative meaning that can be obtained only with a multiproxy analysis of both sedimentary features and faunal assemblages of the cores extracted in marshy to lagoonal environment. We report here the results of a wide coring campaign we carried out in in the last 2 years in a number of Mediterranean lagoons located close to important archaeological settlements in Corsica (France) Sardinia (Italy) and Mallorca Island (Spain). The multiproxy analysis of the cores allowed defining the depositional environments and their relationship (or non relationship) with the former mean sea level. These data were chronologically supported by a significant dataset of more than 100 new 14C dating performed on organic sediments, wood, plant remains and marine/lagoonal shells. We then produced alarge amount of new data to constrain the RSL evolution in the center of Western Mediterranean where the available geophysical models predict the largest glacio-hydro isostatic (GIA) influence at basin scale. However, such models where tested only on a limited dataset mainly composed of archaeological RSL indicators (i.e. last 2 ka BP). Our new record, expanding the last 10 ka BP, significantly improves the ability to define the general anatomy of Mediterranean Holocene RSL changes and to constrain the maximal GIA magnitude in the basin.

  4. Space Radar Image of Jerusalem and the Dead Sea

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This space radar image shows the area surrounding the Dead Sea along the West Bank between Israel and Jordan. This region is of major cultural and historical importance to millions of Muslims, Jews and Christians who consider it the Holy Land. The yellow area at the top of the image is the city of Jericho. A portion of the Dead Sea is shown as the large black area at the top right side of the image. The Jordan River is the white line at the top of the image which flows into the Dead Sea. Jerusalem, which lies in the Judaean Hill Country, is the bright, yellowish area shown along the left center of the image. Just below and to the right of Jerusalem is the town of Bethlehem. The city of Hebron is the white, yellowish area near the bottom of the image. The area around Jerusalem has a history of more than 2,000 years of settlement and scientists are hoping to use these data to unveil more about this region's past. The Jordan River Valley is part of an active fault and rift system that extends from southern Turkey and connects with the east African rift zone. This fault system has produced major earthquakes throughout history and some scientists theorize that an earthquake may have caused the fall of Jericho's walls. The Dead Sea basin is formed by active earthquake faulting and contains the lowest place on the Earth's surface at about 400 meters (1,300 feet) below sea level. It was in caves along the northern shore of the Dead Sea that the Dead Sea Scrolls were found in 1947. The blue and green areas are generally regions of undeveloped hills and the dark green areas are the smooth lowlands of the Jordan River valley. This image is 73 kilometers by 45 kilometers (45 miles by 28 miles) and is centered at 31.7 degrees north latitude, 35.4 degrees east longitude. North is toward the upper left. The colors are assigned to different radar frequencies and polarizations as follows: red is L-band, horizontally transmitted and vertically received; green is L-band, horizontally

  5. Simulation of the Aerosol-Atmosphere Interaction in the Dead Sea Area with COSMO-ART

    NASA Astrophysics Data System (ADS)

    Vogel, Bernhard; Bangert, Max; Kottmeier, Christoph; Rieger, Daniel; Schad, Tobias; Vogel, Heike

    2014-05-01

    The Dead Sea is a unique environment located in the Dead Sea Rift Valley. The fault system of the Dead Sea Rift Valley marks the political borders between Israel, Jordan, and Palestine. The Dead Sea region and the ambient Eastern Mediterranean coastal zone provide a natural laboratory for studying atmospheric processes ranging from the smallest scale of cloud processes to regional weather and climate. The virtual institute DESERVE is designed as a cross-disciplinary and cooperative international project of the Helmholtz Centers KIT, GFZ, and UFZ with well-established partners in Israel, Jordan and Palestine. One main focus of one of the work packages is the role of aerosols in modifying clouds and precipitation and in developing the Dead Sea haze layer as one of the most intriguing questions. The haze influences visibility, solar radiation, and evaporation and may even affect economy and health. We applied the online coupled model system COSMO-ART, which is able to treat the feedback processes between aerosol, radiation, and cloud formation, for a case study above the Dead Sea and adjacent regions. Natural aerosol like mineral dust and sea salt as well as anthropogenic primary and secondary aerosol is taken into account. Some of the observed features like the vertical double structure of the haze layer are already covered by the simulation. We found that absorbing aerosol like mineral dust causes a temperature increase in parts of the model domain. In other areas a decrease in temperature due to cirrus clouds modified by elevated dust layers is simulated.

  6. The fate of Mediterranean lagoons under climate change

    NASA Astrophysics Data System (ADS)

    Umgiesser, Georg; Ferrarin, Christian; Cucco, Andrea; De Pascalis, Francesca; Ghezzo, Michol; Bellafiore, Debora; Bajo, Marco

    2014-05-01

    A numerical model (SHYFEM) has been applied to 10 Mediterranean lagoons and a comparison study between the lagoons has been carried out. The lagoons are the lagoons of Venice, Marano-Grado, Varano and Lesina in the Adriatic Sea, the Taranto basin in the Ionian Sea, the Cabras lagoon in Sardinia, and the lagoons of Ganzirri and Faro in Sicily, the Mar Menor in Spain and the Nador lagoon in Morocco. These lagoons give a representative picture of the lagoons situated around the Mediterranean basin. The lagoons range from a leaky type of lagoons to a choked type. The number of inlets ranges from just one in the Nador lagoon to 6 in the case of the Marano-Grado lagoons. Tidal range is from nano-tidal to micro-tidal. The depth ranges from an average depth of 1 m to up to 40 meters. The model is a finite element model, especially suited to shallow water basins with complicated geometric and morphologic variations. The model can compute the basic hydrodynamics, dispersion of tracers, temperature and salinity evolution, sediment transport and ecological parameters. Building on an earlier study that focused on the classification of Mediterranean lagoons based on hydrodynamics, exchange rates and renewal time, this study is concerned with the changes in physical parameters under climate change. Data from IPCC has been used to simulate the changes in renewal time, salinity and temperature of all lagoons, with respect to the control simulation. Whenever possible downscaled data for the Mediterranean basin have been used. Sea level rise scenarios are taken from the last IPCC report. The model has been applied in its 3D version and the chosen setup allows a comparison between results in the different lagoons. Results indicate that the differences of renewal time between all studied lagoons become smaller. This means that leaky lagoons become less leaky and choked lagoons less choked. What concerns temperature and salinity, changes occurring in the sea are amplified inside lagoons

  7. The Dead Sea Mud and Salt: A Review of Its Characterization, Contaminants, and Beneficial Effects

    NASA Astrophysics Data System (ADS)

    Bawab, Abeer Al; Bozeya, Ayat; Abu-Mallouh, Saida; Abu Irmaileh, Basha'er; Daqour, Ismail; Abu-Zurayk, Rund A.

    2018-02-01

    The Dead Sea has been known for its therapeutic and cosmetic properties. The unique climatic conditions in the Dead Sea area make it a renowned site worldwide for the field of climatotherapy, which is a natural approach for the provision of medications for many human diseases including unusual exclusive salt composition of the water, a special natural mud, thermal mineral springs, solar irradiation, oxygen-rich and bromine-rich haze. This review focuses on the physical, chemical, and biological characteristics of the Dead Sea mud and salts, in addition to their contaminants, allowing this review to serve as a guide to interested researchers to their risks and the importance of treatment. Beneficial effects of Dead Sea mud and salts are discussed in terms of therapy and cosmetics. Additional benefits of both Dead Sea mud and salts are also discussed, such as antimicrobial action of the mud in relation to its therapeutic properties, and the potency of mud and salts to be a good medium for the growth of a halophilic unicellular algae, used for the commercial production of β-carotene Dunaliella.

  8. The 1170 and 1202 CE Dead Sea Rift earthquakes and long-term magnitude distribution of the Dead Sea Fault zone

    USGS Publications Warehouse

    Hough, S.E.; Avni, R.

    2009-01-01

    In combination with the historical record, paleoseismic investigations have provided a record of large earthquakes in the Dead Sea Rift that extends back over 1500 years. Analysis of macroseismic effects can help refine magnitude estimates for large historical events. In this study we consider the detailed intensity distributions for two large events, in 1170 CE and 1202 CE, as determined from careful reinterpretation of available historical accounts, using the 1927 Jericho earthquake as a guide in their interpretation. In the absence of an intensity attenuation relationship for the Dead Sea region, we use the 1927 Jericho earthquake to develop a preliminary relationship based on a modification of the relationships developed in other regions. Using this relation, we estimate M7.6 for the 1202 earthquake and M6.6 for the 1170 earthquake. The uncertainties for both estimates are large and difficult to quantify with precision. The large uncertainties illustrate the critical need to develop a regional intensity attenuation relation. We further consider the distribution of magnitudes in the historic record and show that it is consistent with a b-value distribution with a b-value of 1. Considering the entire Dead Sea Rift zone, we show that the seismic moment release rate over the past 1500 years is sufficient, within the uncertainties of the data, to account for the plate tectonic strain rate along the plate boundary. The results reveal that an earthquake of M7.8 is expected within the zone on average every 1000 years. ?? 2011 Science From Israel/LPPLtd.

  9. Modeling radium distribution in coastal aquifers during sea level changes: The Dead Sea case

    USGS Publications Warehouse

    Kiro, Yael; Yechieli, Yoseph; Voss, Clifford I.; Starinsky, Abraham; Weinstein, Yishai

    2012-01-01

    We present a new approach to studying the behavior of radium isotopes in a coastal aquifer. In order to simulate radium isotope distributions in the dynamic flow field of the Dead Sea aquifer, a multi-species density dependent flow model (SUTRA-MS) was used. Field data show that the activity of 226Ra decreases from 140 to 60 dpm/L upon entering the aquifer from the Dead Sea, and then further decreases linearly due to mixing with Ra-poor fresh water. On the other hand, an increase is observed in the activity of the shorter-lived isotopes (up to 52 dpm/L 224Ra and 31 dpm/L 223Ra), which are relatively low in Dead Sea water (up to 2.5 dpm/L 224Ra and 0.5 dpm/L 223Ra). The activities of the short lived radium isotopes also decrease with decreasing salinity, which is due to the effect of salinity on the adsorption of radium. The relationship between 224Ra and salinity suggests that the adsorption partition coefficient (K) is linearly related to salinity. Simulations of the steady-state conditions, show that the distance where equilibrium activity is attained for each radium isotope is affected by the isotope half-life, K and the groundwater velocity, resulting in a longer distance for the long-lived radium isotopes. K affects the radium distribution in transient conditions, especially that of the long-lived radium isotopes. The transient conditions in the Dead Sea system, with a 1 m/yr lake level drop, together with the radium field data, constrains K to be relatively low (226Ra cannot be explained by adsorption, and it is better explained by removal via coprecipitation, probably with barite or celestine.

  10. Synoptic conditions of fine-particle transport to the last interglacial Red Sea -Dead Sea from Nd-Sr compositions of sediment cores

    NASA Astrophysics Data System (ADS)

    Stein, M.; Palchan, D.; Goldstein, S. L.; Almogi-Labin, A.; Tirosh, O.; Erel, Y.

    2017-12-01

    The last interglacial peak, Marine Isotope Stage 5e (MIS 5e), was associated with stronger northern hemisphere insolation, higher global sea levels and higher average global temperatures compared to the Holocene, and is considered as an analogue for a future warming world. In this perspective the present-day areas of the Sahara - Arabia deserts (the "desert belt") are of special interest since their margins are densely inhabited and global climate models predict enhanced aridity in these regions due to future warming. The Red Sea situated at the midst of the desert belt and the Dead Sea at the northern fringe of the desert belt comprise sensitive monitors for past hydroclimate changes in the Red Sea-Levant regions as global climate shifted from glacial to interglacial conditions. Here, we reconstruct the synoptic conditions that controlled desert dust transport to the Red Sea and the Dead Sea during MIS5e. The reconstruction is based on Nd-Sr isotopes and chemical composition of carbonate-free detritus recovered from sediment cores drilled at the deep floors of these water-bodies combined with data of contemporaneous dust storms transporting dust to the lake and sea floors. During Termination 2 ( 134-130 ka) the Sahara, Nile River desiccated and the Dead Sea watershed were under extreme dry conditions manifested by lake level drop, deposition of salt and enhanced transport of Sahara dusts to the entire studied transect. At the peak of the interglacial MIS 5e ( 130-120 ka), enhanced flooding activity mobilized local fine detritus from the surroundings of the Red Sea and the Dead Sea watershed into the water-bodies. This interval coincided with the Sapropel event S5 in the Mediterranean that responded to enhanced monsoon rains at the heads of the Blue Nile River. At the end of MIS 5e ( 120-116 ka) the effect of the regional floods faded and the Dead Sea and Red Sea areas re-entered sever arid conditions with salt deposition at the Dead Sea. Overall, the desert

  11. Integrated 3D density modelling and segmentation of the Dead Sea Transform

    NASA Astrophysics Data System (ADS)

    Götze, H.-J.; El-Kelani, R.; Schmidt, S.; Rybakov, M.; Hassouneh, M.; Förster, H.-J.; Ebbing, J.

    2007-04-01

    A 3D interpretation of the newly compiled Bouguer anomaly in the area of the “Dead Sea Rift” is presented. A high-resolution 3D model constrained with the seismic results reveals the crustal thickness and density distribution beneath the Arava/Araba Valley (AV), the region between the Dead Sea and the Gulf of Aqaba/Elat. The Bouguer anomalies along the axial portion of the AV, as deduced from the modelling results, are mainly caused by deep-seated sedimentary basins ( D > 10 km). An inferred zone of intrusion coincides with the maximum gravity anomaly on the eastern flank of the AV. The intrusion is displaced at different sectors along the NNW-SSE direction. The zone of maximum crustal thinning (depth 30 km) is attained in the western sector at the Mediterranean. The southeastern plateau, on the other hand, shows by far the largest crustal thickness of the region (38-42 km). Linked to the left lateral movement of approx. 105 km at the boundary between the African and Arabian plate, and constrained with recent seismic data, a small asymmetric topography of the Moho beneath the Dead Sea Transform (DST) was modelled. The thickness and density of the crust suggest that the AV is underlain by continental crust. The deep basins, the relatively large intrusion and the asymmetric topography of the Moho lead to the conclusion that a small-scale asthenospheric upwelling could be responsible for the thinning of the crust and subsequent creation of the Dead Sea basin during the left lateral movement. A clear segmentation along the strike of the DST was obtained by curvature analysis: the northern part in the neighbourhood of the Dead Sea is characterised by high curvature of the residual gravity field. Flexural rigidity calculations result in very low values of effective elastic lithospheric thickness ( t e < 5 km). This points to decoupling of crust in the Dead Sea area. In the central, AV the curvature is less pronounced and t e increases to approximately 10 km

  12. 77 FR 36329 - Culturally Significant Objects Imported for Exhibition Determinations: “Dead Sea Scrolls & The...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-18

    ... DEPARTMENT OF STATE [Public Notice 7923] Culturally Significant Objects Imported for Exhibition Determinations: ``Dead Sea Scrolls & The Bible Ancient Artifacts-- Timeless Treasures'' SUMMARY: Notice is hereby... objects to be included in the exhibition ``Dead Sea Scrolls & The Bible Ancient Artifacts--Timeless...

  13. Are Sea Surface Temperature satellite measurements reliable proxies of lagoon temperature in the South Pacific?

    NASA Astrophysics Data System (ADS)

    Van Wynsberge, Simon; Menkes, Christophe; Le Gendre, Romain; Passfield, Teuru; Andréfouët, Serge

    2017-12-01

    In remote coral reef environments, lagoon and reef in situ measurements of temperature are scarce. Sea Surface Temperature (SST) measured by satellite has been frequently used as a proxy of the lagoon temperature experienced by coral reef organisms (TL) especially during coral bleaching events. However, the link between SST and TL is poorly characterized. First, we compared the correlation between various SST series and TL from 2012 to 2016 in three atolls and one island in the Central South Pacific Ocean. Simple linear correlation between SST and TL ranged between 0.44 and 0.97 depending on lagoons, localities of sensors, and type of SST data. High-resolution-satellite-measurements of SST inside the lagoons did not outperform oceanic SST series, suggesting that SST products are not adapted for small lagoons. Second, we modelled the difference between oceanic SST and TL as a function of the drivers of lagoon water renewal and mixing, namely waves, tide, wind, and season. The multivariate models reduced significantly the bias between oceanic SST and TL. In atoll lagoons, and probably in other hydrodynamically semi-open systems, a correction taking into account these factors is necessary when SST are used to characterize organisms' thermal stress thresholds.

  14. Quality of life at the Dead Sea region: the lower the better? An observational study.

    PubMed

    Avriel, Avital; Fuchs, Lior; Plakht, Ygal; Cicurel, Assi; Apfelbaum, Armando; Satran, Robert; Friger, Michael; Dartava, Dimitry; Sukenik, Shaul

    2011-05-27

    The Dead Sea region, the lowest in the world at 410 meters below sea level, is considered a potent climatotherapy center for the treatment of different chronic diseases. To assess the prevalence of chronic diseases and the quality of life of residents of the Dead Sea region compared with residents of the Ramat Negev region, which has a similar climate, but is situated 600 meters above sea level. An observational study based on a self-administered questionnaire. Data were collected from kibbutz (communal settlement) members in both regions. Residents of the Dead Sea were the study group and of Ramat Negev were the control group. We compared demographic characteristics, the prevalence of different chronic diseases and health-related quality of life (HRQOL) using the SF-36 questionnaire. There was a higher prevalence of skin nevi and non-inflammatory rheumatic diseases (NIRD) among Dead Sea residents, but they had significantly higher HRQOL mean scores in general health (68.7 ± 21 vs. 64.4 ± 22, p = 0.023) and vitality (64.7 ± 17.9 vs. 59.6 ± 17.3, p = 0.001), as well as significantly higher summary scores: physical component score (80.7 ± 18.2 vs. 78 ± 18.6, p = 0.042), and mental component score (79 ± 16.4 vs. 77.2 ± 15, p = 0.02). These results did not change after adjusting for social-demographic characteristics, health-related habits, and chronic diseases. No significant difference between the groups was found in the prevalence of most chronic diseases, except for higher rates of skin nevi and NIRD among Dead Sea residents. HRQOL was significantly higher among Dead Sea residents, both healthy or with chronic disease.

  15. Diurnal Course of Evaporation From the Dead Sea in Summer: A Distinct Double Peak Induced by Solar Radiation and Night Sea Breeze

    NASA Astrophysics Data System (ADS)

    Lensky, N. G.; Lensky, I. M.; Peretz, A.; Gertman, I.; Tanny, J.; Assouline, S.

    2018-01-01

    Partitioning between the relative effects of the radiative and aerodynamic components of the atmospheric forcing on evaporation is challenging since diurnal distributions of wind speed and solar radiation typically overlap. The Dead Sea is located about a 100 km off the Eastern Mediterranean coast, where and the Mediterranean Sea breeze front reaches it after sunset. Therefore, in the Dead Sea the peaks of solar radiation and wind speed diurnal cycles in the Dead Sea are distinctly separated in time, offering a unique opportunity to distinguish between their relative impacts on evaporation. We present mid-summer eddy covariance and meteorological measurements of evaporation rate and surface energy fluxes over the Dead Sea. The evaporation rate is characterized by a clear diurnal cycle with a daytime peak, few hours after solar radiation peak, and a nighttime peak coincident with wind speed peak. Evaporation rate is minimum during sunrise and sunset. Measurements of evaporation rate from two other water bodies that are closer to the Mediterranean coast, Eshkol Reservoir, and Lake Kinneret, present a single afternoon peak, synchronous with the sea breeze. The inland diurnal evaporation rate cycle varies with the distance from the Mediterranean coast, following the propagation of sea breeze front: near the coast, wind speed, and radiation peaks are close and consequently a single daily evaporation peak appears in the afternoon; at the Dead Sea, about a 100 km inland, the sea breeze front arrives at sunset, resulting in a diurnal evaporation cycle characterized by a distinct double peak.

  16. Dead Sea deep cores: A window into past climate and seismicity

    NASA Astrophysics Data System (ADS)

    Stein, Mordechai; Ben-Avraham, Zvi; Goldstein, Steven L.

    2011-12-01

    The area surrounding the Dead Sea was the locus of humankind's migration out of Africa and thus has been the home of peoples since the Stone Age. For this reason, understanding the climate and tectonic history of the region provides valuable insight into archaeology and studies of human history and helps to gain a better picture of future climate and tectonic scenarios. The deposits at the bottom of the Dead Sea are a geological archive of the environmental conditions (e.g., rains, floods, dust storms, droughts) during ice ages and warm ages, as well as of seismic activity in this key region. An International Continental Scientific Drilling Program (ICDP) deep drilling project was performed in the Dead Sea between November 2010 and March 2011. The project was funded by the ICDP and agencies in Israel, Germany, Japan, Norway, Switzerland, and the United States. Drilling was conducted using the new Large Lake Drilling Facility (Figure 1), a barge with a drilling rig run by DOSECC, Inc. (Drilling, Observation and Sampling of the Earth's Continental Crust), a nonprofit corporation dedicated to advancing scientific drilling worldwide. The main purpose of the project was to recover a long, continuous core to provide a high resolution record of the paleoclimate, paleoenvironment, paleoseismicity, and paleomagnetism of the Dead Sea Basin. With this, scientists are beginning to piece together a record of the climate and seismic history of the Middle East during the past several hundred thousand years in millennial to decadal to annual time resolution.

  17. Foehn-induced effects on dust pollution, frontal clouds and solar radiation in the Dead Sea valley

    NASA Astrophysics Data System (ADS)

    Kishcha, Pavel; Starobinets, Boris; Alpert, Pinhas; Kaplan, Michael

    2017-04-01

    The significant drying up of the Dead Sea over the past 40 years has led to an increase in an exposed area contributing to local dust pollution. Measurements show that, sometimes, in the Dead Sea valley, dust pollution can reach extreme concentrations up to several thousands of micrograms per cubic meters. Our analysis of a meteorological situation shows that a foehn phenomenon can be a causal factor for the aforementioned extreme local dust concentration. This foehn phenomenon creates strong warm and dry winds, which are accompanied by air turbulence and temperature inversion. In our study, foehn-induced effects on dust pollution, frontal clouds and solar radiation were analyzed over the Judean Mountains ( 1000 m) and over the Dead Sea valley (-420 m), using high-resolution numerical simulations and in-situ observations at meteorological stations located across the mountain ridge. An extreme dust episode occurring on March 22, 2013, was analyzed, which was characterized by measured surface dust concentrations of up to 7000 µg m-3 in the Dead Sea valley. We simulated this foehn phenomenon with the 3-km resolution COSMO-ART model. Our analysis has shown that the foehn phenomenon could be observed even over the relatively low Judean Mountains. This analysis was based on various meteorological, pyranometer, radar, and aerosol measurements together with high-resolution model data. In the Dead Sea valley, the maximum aerosol optical depth (AOD) did not coincide with the maximum surface dust concentration. This lack of coincidence indicates difficulties in using satellite-based AOD for initializing dust concentration within numerical forecast systems over this region with complex terrain. In the western Dead Sea valley, strong foehn winds of over 20 m/s were accompanied by maximal air turbulence leading to maximal local dust emissions. Thus, the model showed that, by creating significant turbulence, the foehn phenomenon intensified the saltation (bombardment) mechanism

  18. 76 FR 63341 - Culturally Significant Objects Imported for Exhibition Determinations: “The Dead Sea Scrolls...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-12

    ... DEPARTMENT OF STATE [Public Notice 7644] Culturally Significant Objects Imported for Exhibition Determinations: ``The Dead Sea Scrolls: Life and Faith in Biblical Times'' SUMMARY: Notice is hereby given of the... exhibition ``The Dead Sea Scrolls: Life and Faith in Biblical Times'' imported from abroad for temporary...

  19. 75 FR 7536 - Culturally Significant Objects Imported for Exhibition Determinations: “The Dead Sea Scrolls...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-19

    ... DEPARTMENT OF STATE [Public Notice 6898] Culturally Significant Objects Imported for Exhibition Determinations: ``The Dead Sea Scrolls: Words That Changed the World'' Summary: Notice is hereby given of the... included in the exhibition ``The Dead Sea Scrolls: Words That Changed the World,'' imported from abroad for...

  20. Foehn-induced effects on local dust pollution, frontal clouds and solar radiation in the Dead Sea valley

    NASA Astrophysics Data System (ADS)

    Kishcha, Pavel; Starobinets, Boris; Savir, Amit; Alpert, Pinhas; Kaplan, Michael

    2018-06-01

    Despite the long history of investigation of foehn phenomena, there are few studies of the influence of foehn winds on air pollution and none in the Dead Sea valley. For the first time the foehn phenomenon and its effects on local dust pollution, frontal cloudiness and surface solar radiation were analyzed in the Dead Sea valley, as it occurred on 22 March 2013. This was carried out using both numerical simulations and observations. The foehn winds intensified local dust emissions, while the foehn-induced temperature inversion trapped dust particles beneath this inversion. These two factors caused extreme surface dust concentration in the western Dead Sea valley. The dust pollution was transported by west winds eastward, to the central Dead Sea valley, where the speed of these winds sharply decreased. The transported dust was captured by the ascending airflow contributing to the maximum aerosol optical depth (AOD) over the central Dead Sea valley. On the day under study, the maximum surface dust concentration did not coincide with the maximum AOD: this being one of the specific effects of the foehn phenomenon on dust pollution in the Dead Sea valley. Radar data showed a passage of frontal cloudiness through the area of the Dead Sea valley leading to a sharp drop in noon solar radiation. The descending airflow over the downwind side of the Judean Mountains led to the formation of a cloud-free band followed by only the partial recovery of solar radiation because of the extreme dust pollution caused by foehn winds.

  1. Air--sea gaseous exchange of PCB at the Venice lagoon (Italy).

    PubMed

    Manodori, L; Gambaro, A; Moret, I; Capodaglio, G; Cescon, P

    2007-10-01

    Water bodies are important storage media for persistent organic pollutants (POPs) such as polychlorinated biphenyls (PCBs) and this function is increased in coastal regions because their inputs are higher than those to the open sea. The air-water interface is extensively involved with the global cycling of PCBs because it is the place where they accumulate due to depositional processes and where they may be emitted by gaseous exchange. In this work the parallel collection of air, microlayer and sub-superficial water samples was performed in July 2005 at a site in the Venice lagoon to evaluate the summer gaseous flux of PCBs. The total concentration of PCBs (sum of 118 congeners) in air varies from 87 to 273 pg m(-3), whereas in the operationally defined dissolved phase of microlayer and sub-superficial water samples it varies from 159 to 391 pg L(-1). No significant enrichment of dissolved PCB into the microlayer has been observed, although a preferential accumulation of most hydrophobic congeners occurs. Due to this behaviour, we believe that the modified two-layer model was the most suitable approach for the evaluation of the flux at the air-sea interface, because it takes into account the influence of the microlayer. From its application it appears that PCB volatilize from the lagoon waters with a net flux varying from 58 to 195 ng m(-2)d(-1) (uncertainty: +/-50-64%) due to the strong influence of wind speed. This flux is greater than those reported in the literature for the atmospheric deposition and rivers input and reveals that PCB are actively emitted from the Venice lagoon in summer months.

  2. Antimicrobial Activity of Bacillus Persicus 24-DSM Isolated from Dead Sea Mud.

    PubMed

    Al-Karablieh, Nehaya

    2017-01-01

    Dead Sea is a hypersaline lake with 34% salinity, gains its name due to the absence of any living macroscopic creatures. Despite the extreme hypersaline environment, it is a unique ecosystem for various halophilic microorganisms adapted to this environment. Halophilic microorganisms are known for various potential biotechnological applications, the purpose of the current research is isolation and screening of halophilic bacteria from Dead Sea mud for potential antimicrobial applications. Screening for antagonistic bacteria was conducted by bacterial isolation from Dead Sea mud samples and agar plate antagonistic assay. The potential antagonistic isolates were subjected to biochemical characterization and identification by 16S-rRNA sequencing. Among the collected isolates, four isolates showed potential antagonistic activity against Bacillus subtilis 6633 and Escherichia coli 8739. The most active isolate (24-DSM) was subjected for antagonistic activity and minimal inhibitory concentration against different gram positive and negative bacterial strains after cultivation in different salt concentration media. Results: The results of 16S-rRNA analysis revealed that 24-DSM is very closely related to Bacillus persicus strain B48, which was isolated from hypersaline lake in Iran. Therefore, the isolate 24-DSM is assigned as a new strain of B. persicusi isolated from the Dead Sea mud. B. persicusi 24-DSM showed higher antimicrobial activity, when it was cultivated with saline medium, against all tested bacterial strains, where the most sensitive bacterial strain was Corynebacterium diphtheria 51696.

  3. Space Radar Image of Jerusalem and the Dead Sea

    NASA Image and Video Library

    1999-04-15

    This space radar image shows the area surrounding the Dead Sea along the West Bank between Israel and Jordan. This region is of major cultural and historical importance to millions of Muslims, Jews and Christians who consider it the Holy Land.

  4. Sediment characteristics and water quality in the two hyper-saline lagoons along the Red Sea coast of Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Rasul, Najeeb; Al-Farawati, Radwan; Al-Harbi, Omer; Naser Qutub, Abdul

    2013-04-01

    widens. In the case of Khawr ash Shaibah al Masdudah the mouth is wide and it faces the open sea directly, whereas the mouth of Khawr ash Shaibah al Maftuhah, although narrower, the tidal current is only strong until the channel to the lagoon bends almost 90° where the tidal current dissipates, resulting in the restricted water and sediment movement in the lagoon. The coarser sediments are stained gray-black because of a reducing environment and formation of authigenic pyrite. Stagnant condition prevails inside the lagoons because of insufficient exchange of water with the open sea and lack of rainfall causes hyper-saline conditions. Higher salinity values were evident in the shallow waters, whereas oxygen saturation ranged between 77 % (southern lagoon) and 107 % (northern lagoon) which could be attributed to the complex nature of the southern lagoon. Reactive phosphate and nitrite concentrations in the surface waters were low and in many locations under the detection limit reflecting the oligotrophic behaviour of the Red Sea and limited supply of nutrients from adjacent areas. There is an abundant presence of trace metals especially in fine sediments that has the tendency to adsorb the metals more efficiently. There is an inverse correlation between heavy metals and carbonate content in the sediments, and much stronger particularly with Cr, V and Co. The Landsat ETM identifies two depth zones in the lagoons and shows the effects of the influence of flooding and ebbing on the sediment distribution and the extent of the water cover seasonally.

  5. Continuous CO2 escape from the hypersaline Dead Sea caused by aragonite precipitation

    NASA Astrophysics Data System (ADS)

    Golan, Rotem; Lazar, Boaz; Wurgaft, Eyal; Lensky, Nadav; Ganor, Jiwchar; Gavrieli, Ittai

    2017-06-01

    Chemical precipitation of CaCO3 occurs in diverse marine and lacustrine environments. In the hypersaline Ca-chloride lakes that have been occupying the Dead Sea basin since the late Pleistocene, CaCO3 precipitated, mostly as aragonite. The aragonite sediments precipitated mainly during periods of high lake level stands as a result of mixing of bicarbonate-rich freshwater runoff with Dead Sea brine, that is Ca-rich and have high Mg/Ca ratio. During periods of arid conditions with limited freshwater inflow, water level declined, salinity increased and gypsum and halite became the dominant evaporitic minerals to precipitate. The present study investigates the carbon cycle of the Dead Sea under the current limited water and bicarbonate supply to the brine, representing periods of extremely arid conditions. The decrease of inflows to the Dead Sea in recent years stems mainly from diversion of freshwater from the drainage basin and results in dramatic water level decline and massive halite precipitation. During 2013-2014, bi-monthly depth profiles of total alkalinity, dissolved inorganic carbon (DIC) and its isotopic composition (δ13C) were conducted in the Dead Sea, from surface down to the bottom of the lake (290 m). Mass balance calculations conducted for the period 1993-2013 show that while inventories of conservative ions such as Mg2+ remained constant, the net DIC inventory of the lake decreased by ∼10%. DIC supply to the lake during this period, however, amounted to ∼10% of lake's inventory indicating that during 20 years, the lake lost ∼20% of its 1993s inventory. Compilation of historical data with our data shows that during the past two decades the lake's low DIC (∼1 mmol kg-1) and very high PCO2 (1800 ppm V) remained relatively constant, suggesting that a quasi-steady-state situation prevails. In spite of the surprisingly stable DIC and CO2 concentrations, during this 20 year period δ13CDIC increased significantly, from 1.4‰ to 2.7‰. An isotopic

  6. New perspectives on interdisciplinary earth science at the Dead Sea: The DESERVE project.

    PubMed

    Kottmeier, Christoph; Agnon, Amotz; Al-Halbouni, Djamil; Alpert, Pinhas; Corsmeier, Ulrich; Dahm, Torsten; Eshel, Adam; Geyer, Stefan; Haas, Michael; Holohan, Eoghan; Kalthoff, Norbert; Kishcha, Pavel; Krawczyk, Charlotte; Lati, Joseph; Laronne, Jonathan B; Lott, Friederike; Mallast, Ulf; Merz, Ralf; Metzger, Jutta; Mohsen, Ayman; Morin, Efrat; Nied, Manuela; Rödiger, Tino; Salameh, Elias; Sawarieh, Ali; Shannak, Benbella; Siebert, Christian; Weber, Michael

    2016-02-15

    The Dead Sea region has faced substantial environmental challenges in recent decades, including water resource scarcity, ~1m annual decreases in the water level, sinkhole development, ascending-brine freshwater pollution, and seismic disturbance risks. Natural processes are significantly affected by human interference as well as by climate change and tectonic developments over the long term. To get a deep understanding of processes and their interactions, innovative scientific approaches that integrate disciplinary research and education are required. The research project DESERVE (Helmholtz Virtual Institute Dead Sea Research Venue) addresses these challenges in an interdisciplinary approach that includes geophysics, hydrology, and meteorology. The project is implemented by a consortium of scientific institutions in neighboring countries of the Dead Sea (Israel, Jordan, Palestine Territories) and participating German Helmholtz Centres (KIT, GFZ, UFZ). A new monitoring network of meteorological, hydrological, and seismic/geodynamic stations has been established, and extensive field research and numerical simulations have been undertaken. For the first time, innovative measurement and modeling techniques have been applied to the extreme conditions of the Dead Sea and its surroundings. The preliminary results show the potential of these methods. First time ever performed eddy covariance measurements give insight into the governing factors of Dead Sea evaporation. High-resolution bathymetric investigations reveal a strong correlation between submarine springs and neo-tectonic patterns. Based on detailed studies of stratigraphy and borehole information, the extension of the subsurface drainage basin of the Dead Sea is now reliably estimated. Originality has been achieved in monitoring flash floods in an arid basin at its outlet and simultaneously in tributaries, supplemented by spatio-temporal rainfall data. Low-altitude, high resolution photogrammetry, allied to

  7. Using palynology to re-assess the Dead Sea laminated sediments - Indeed varves?

    NASA Astrophysics Data System (ADS)

    Bookman, Revital; Lopez-Merino, Lourdes; Belmaker, Reuven; Eshel, Amram; Epshtein Epshtein, Valentina; Leroy, Suzanne

    2017-04-01

    Lacustrine laminated sediments are often varves representing annual rhythmic deposition. The Dead Sea high-stand laminated sections consist of mm-scale alternating detrital and authigenic aragonite laminae. Previous studies assumed these laminae were varves; detritus deposition during the winter and aragonite in the summer. These sequences were used for varve counting and chronology, however this assumption has never been robustly validated. Here, we report an examination of the seasonal deposition of detrital and aragonite couplets from two well-known Late Holocene laminated sections at the Ze'elim fan-delta using palynology and grain-size distribution analyses. These analyses are complemented by the study of contemporary flash-flood samples and multivariate statistical analysis. Because transport affects the pollen preservation state, well-preserved (mostly) air-borne transported pollen was analysed separately from badly-preserved pollen and fungal spores, which are more indicative of water transport and reworking from soils. Our results indicate that (i) both detrital and aragonite laminae were deposited during the rainy season; (ii) aragonite laminae have significantly lower reworked pollen and fungal spore concentrations than detrital and flash-flood samples; and (iii) detrital laminae are composed of recycling of local and distal sources, with coarser particles that were initially deposited in the Dead Sea watershed and later transported via run-off to the lake. The conclusions suggest that detrital and aragonite couplets in the Dead Sea laminated sediments are most likely not varves and that the laminae deposition is related to the occurrence of flash-flood events. Consequently, at least for the Holocene sequences, laminated sediments cannot be considered as varves and Quaternary laminated sequences should be re-evaluated. The Dead Sea Basin laminated sequences (as the ICDP Dead Sea Deep Drilling Project record) should be used for the reconstruction of

  8. First results from a temporary seismological network in the Southern Dead Sea area

    NASA Astrophysics Data System (ADS)

    Braeuer, B.; Asch, G.; Hofstetter, A.; Haberland, C.; Darwish, J.; El-Kelani, R.; Weber, M.

    2008-12-01

    Within the framework of the international project DESIRE (Dead Sea Integrated Research Project) a local seismological network was operated in the Southern Dead Sea area as a co-operation between the GFZ Germany, GII Israel, NRA Jordan and An-Najah National Univer-sity Palestine. From October 2006 to March 2008 about 65 short period (38) and broadband (27) instruments recorded continuously the seismicity of the Dead Sea basin. This investiga-tion aims in studying the deeper structure of the Dead Sea area based on the distribution of the local seismicity. About 500 local events have been recorded and more than 300 have been processed up to now. A dominant feature in this first part of the dataset we found a cluster of 78 earthquakes, occurring in February 2007, including multiplets. We determined a 1D-reference model of P- and S-velocities using Velest (Kissling et al., 1994). The model shows a high velocity increase between 6 and 10 km depth. This could be related to a prominent reflector found in the results of the wide angle reflection experiment in the area in 2006 (Mechie et al., 2008). The station corrections suggest a 2D structure with the basin in the middle and the shoulders on the east and west. Additionally the results are compared with receiver function and magnetotelluric studies, part of the DESIRE project.

  9. 5000 yr of paleoseismicity along the southern Dead Sea fault

    NASA Astrophysics Data System (ADS)

    Klinger, Y.; Le Béon, M.; Al-Qaryouti, M.

    2015-07-01

    The 1000-km-long left-lateral Dead Sea fault is a major tectonic structure of the oriental Mediterranean basin, bounding the Arabian Plate to the west. The fault is located in a region with an exceptionally long and rich historical record, allowing to document historical seismicity catalogues with unprecedented level of details. However, if the earthquake time series is well documented, location and lateral extent of past earthquakes remain often difficult to establish, if only based on historical testimonies. We excavated a palaeoseismic trench in a site located in a kilometre-size extensional jog, south of the Dead Sea, in the Wadi Araba. Based on the stratigraphy exposed in the trench, we present evidence for nine earthquakes that produced surface ruptures during a time period spanning 5000 yr. Abundance of datable material allows us to tie the five most recent events to historical earthquakes with little ambiguities, and to constrain the possible location of these historical earthquakes. The events identified at our site are the 1458 C.E., 1212 C.E., 1068 C.E., one event during the 8th century crisis, and the 363 C.E. earthquake. Four other events are also identified, which correlation with historical events remains more speculative. The magnitude of earthquakes is difficult to assess based on evidence at one site only. The deformation observed in the excavation, however, allows discriminating between two classes of events that produced vertical deformation with one order of amplitude difference, suggesting that we could distinguish earthquakes that started/stopped at our site from earthquakes that potentially ruptured most of the Wadi Araba fault. The time distribution of earthquakes during the past 5000 yr is uneven. The early period shows little activity with return interval of ˜500 yr or longer. It is followed by a ˜1500-yr-long period with more frequent events, about every 200 yr. Then, for the past ˜550 yr, the fault has switched back to a quieter mode

  10. The circulation of the Dead Sea brine in the regional aquifer

    NASA Astrophysics Data System (ADS)

    Weber, Nurit; Yechieli, Yoseph; Stein, Mordechai; Yokochi, Reika; Gavrieli, Ittai; Zappala, Jake; Mueller, Peter; Lazar, Boaz

    2018-07-01

    Ca-chloride brines have circulated between the lakes and the adjacent aquifers throughout the history of the Dead Sea lacustrine-hydrology system. The Ein-Qedem (EQ) hydrothermal saline springs system discharging at the western shores of the modern Dead Sea is the modern manifestation of this essential and continuous process. The EQ springs comprise the most significant source of Ca-chloride brine that currently discharges into the lake. The chemical composition of EQ brine has remained virtually uniform during the past ca. 40 yr, indicating that the brine represents a large groundwater reservoir. The EQ brine evolved from ancient Ca-chloride brine that occupied the tectonic depression of the Dead Sea Basin during the Quaternary. During this period, the composition of lake's brine was affected by mixing with freshwater and formation of primary minerals. Based on chronological and geochemical data, we argue that the EQ brine comprises the epilimnetic solution of last glacial Lake Lisan that penetrated and circulated through the adjacent Judea Group aquifer. 14C and 81Kr dating indicates recharge ages spanning the time interval of ∼40-20 ka, coinciding with the period when the lake reached its highest stand (of ∼ 200 ± 30 m below msl, at ∼31-17.4 ka) and maintained a stable layered (stratified) configuration for a period of several ten thousand years. The presented evidence suggests that the circulation of the Ca-chloride brine involves penetration into the aquifer during high stands (EQ brine recharge) and its discharge back into the lake during the modern low stands (∼400 to 430 m below msl). Accordingly, the mechanism of brine circulation between the lake and the marginal aquifers is related to the long-term hydro-climate history of the Dead Sea basin and its vicinity.

  11. Scottish saline lagoons: Impacts and challenges of climate change

    NASA Astrophysics Data System (ADS)

    Angus, Stewart

    2017-11-01

    The majority of Scotland's saline lagoons are located on the low-lying coastlines of the Western Isles and the northern archipelagos of Orkney and Shetland, where recorded annual relative sea level rise rates are among the highest in Scotland. The sediment-impounded lagoons of Orkney and Shetland will either lose their impoundment and become incorporated in marine coastal waters, or become increasingly saline, as relative sea levels rise. The rock-basin lagoons of the Western Isles will retain their restricted exchange with the sea but will also become more saline with rising sea level. Specialist lagoonal organisms tend to have wide salinity tolerances but may succumb to competition from marine counterparts. In all areas, there are sufficient fresh-water inland water bodies with potential to be captured as lagoons to compensate for loss of extent and number, but the specialist lagoon biota tend to have limited dispersal powers. It is thus possible that they will be unable to transfer to their analogue sites before existing lagoons become fully marine, giving conservation managers the problem of deciding on management options: leave natural processes to operate without interference, manage the saline inflow to maintain the current salinity regime, or translocate lagoon organisms perceived as threatened by rising salinities. Timing of conversion and capture is unpredictable due to local topography and complications caused by variable stratification.

  12. Dead Sea drawdown and monsoonal impacts in the Levant during the last interglacial

    NASA Astrophysics Data System (ADS)

    Torfstein, Adi; Goldstein, Steven L.; Kushnir, Yochanan; Enzel, Yehouda; Haug, Gerald; Stein, Mordechai

    2015-02-01

    Sediment cores recovered by the Dead Sea Deep Drilling Project (DSDDP) from the deepest basin of the hypersaline, terminal Dead Sea (lake floor at ∼725 m below mean sea level) reveal the detailed climate history of the lake's watershed during the last interglacial period (Marine Isotope Stage 5; MIS5). The results document both a more intense aridity during MIS5 than during the Holocene, and the moderating impacts derived from the intense MIS5e African Monsoon. Early MIS5e (∼133-128 ka) was dominated by hyperarid conditions in the Eastern Mediterranean-Levant, indicated by thick halite deposition triggered by a lake-level drop. Halite deposition was interrupted however, during the MIS5e peak (∼128-122 ka) by sequences of flood deposits, which are coeval with the timing of the intense precession-forced African monsoon that generated Mediterranean sapropel S5. A subsequent weakening of this humidity source triggered extreme aridity in the Dead Sea watershed and resulting in the biggest known lake level drawdown in its history, reflected by the deposition of thick salt layers, and a capping pebble layer corresponding to a hiatus at ∼116-110 ka. The DSDDP core provides the first evidence for a direct association of the African monsoon with mid subtropical latitude climate systems effecting the Dead Sea watershed. Combined with coeval deposition of Arabia and southern Negev speleothems, Arava travertines, and calcification of Red Sea corals, the evidence points to a climatically wet corridor that could have facilitated homo sapiens migration "out of Africa" during the MIS5e peak. The hyperaridity documented during MIS5e may provide an important analogue for future warming of arid regions of the Eastern Mediterranean-Levant.

  13. Taxonomic analysis of extremely halophilic archaea isolated from 56-years-old dead sea brine samples.

    PubMed

    Arahal, D R; Gutiérrez, M C; Volcani, B E; Ventosa, A

    2000-10-01

    A taxonomic study comprising both phenotypic and genotypic characterization, has been carried out on a total of 158 extremely halophilic aerobic archaeal strains. These strains were isolated from enrichments prepared from Dead Sea water samples dating from 1936 that were collected by B. E. Volcani for the demonstration of microbial life in the Dead Sea. The isolates were examined for 126 morphological, physiological, biochemical and nutritional tests. Numerical analysis of the data, by using the S(J) coefficient and UPGMA clustering method, showed that the isolates clustered into six phenons. Twenty-two out of the 158 strains used in this study were characterized previously (ARAHAL et al., 1996) and were placed into five phenotypic groups. The genotypic study included both the determination of the guanineplus-cytosine content of the DNA and DNA-DNA hybridization studies. For this purpose, representative strains from the six phenons were chosen. These groups were found to represent some members of three different genera - Haloarcula (phenons A, B, and C), Haloferax (phenons D and E) and Halobacterium (phenon F) - of the family Halobacteriaceae, some of them never reported to occur in the Dead Sea, such as Haloarcula hispanica, while Haloferax volcanii (phenons D and E) was described in the Dead Sea by studies carried out several decades later than Volcani's work.

  14. Assessment of sea lamprey (Petromyzon marinus) predation by recovery of dead lake trout (Salvelinus namaycush) from Lake Ontario, 1982-85

    USGS Publications Warehouse

    Bergstedt, Roger A.; Schneider, Clifford P.

    1988-01-01

    During 1982-85, 89 dead lake trout (Salvelinus namaycush) were recovered with bottom trawls in U.S. waters of Lake Ontario: 28 incidentally during four annual fish-stock assessment surveys and 61 during fall surveys for dead fish. During the assessment surveys, no dead lake trout were recovered in April-June, one was recovered in August, and 27 were recovered in October or November, implying that most mortality from causes other than fishing occurred in the fall. The estimated numbers of dead lake trout between the 30- and 100-m depth contours in U.S. waters ranged from 16 000 (0.08 carcass/ha) in 1983 to 94 000 (0.46 carcass/ha) in 1982. Of 76 carcasses fresh enough to enable recognition of sea lamprey (Petromyzon marinus) wounds, 75 bore fresh wounds. Assuming that sea lamprey wounding rates on dead fish were the same as on live ones of the same length range (430-740 mm), the probability of 75 of the 76 dead lake trout bearing sea lamprey wounds was 3.5 x 10-63 if death was independent of sea lamprey attack, thus strongly implicating sea lampreys as the primary cause of death of fish in the sample. The recovery of only one unwounded dead lake trout also suggested that natural mortality from causes other than sea lamprey attactks is negligible.

  15. Wind systems the driving force of evaporation at the Dead Sea

    NASA Astrophysics Data System (ADS)

    Metzger, Jutta; Corsmeier, Ulrich; Alpert, Pinhas

    2017-04-01

    The Dead Sea is a unique place on earth. It is located in the Eastern Mediterranean at the lowest point of the Jordan Rift valley and its water level is currently at 429 m below mean sea level. The region is located in a transition zone of semi-arid to arid climate conditions and endangered by severe environmental problems, especially the rapid lake level decline (>1m/year), causing the shifting of fresh/saline groundwater interfaces and the drying up of the lake. Two key features are relevant for these environmental changes: the evaporation from the water surface and its driving mechanisms. The main driver of evaporation at the Dead Sea is the wind velocity and hence the governing wind systems with different scales in space and time. In the framework of the Virtual Institute DEad SEa Research Venue (DESERVE) an extensive field campaign was conducted to study the governing wind systems in the valley and the energy balance of the water and land surface simultaneously. The combination of several in-situ and remote sensing instruments allowed temporally and spatially high-resolution measurements to investigate the frequency of occurrence of the wind systems, their three-dimensional structure, associated wind velocities and their impact on evaporation. The characteristics of the three local wind systems governing the valley's wind field, as well as their impact on evaporation, will be presented. Mostly decoupled from the large scale flow a local lake breeze determines the conditions during the day. Strong downslope winds drive the evaporation in the afternoon, and down valley flows with wind velocities of over 10 m s-1 dominate during the night causing unusually high evaporation rates after sunset.

  16. Scale-free distribution of Dead Sea sinkholes: Observations and modeling

    NASA Astrophysics Data System (ADS)

    Yizhaq, H.; Ish-Shalom, C.; Raz, E.; Ashkenazy, Y.

    2017-05-01

    There are currently more than 5500 sinkholes along the Dead Sea in Israel. These were formed due to the dissolution of subsurface salt layers as a result of the replacement of hypersaline groundwater by fresh brackish groundwater. This process has been associated with a sharp decline in the Dead Sea water level, currently more than 1 m/yr, resulting in a lower water table that has allowed the intrusion of fresher brackish water. We studied the distribution of the sinkhole sizes and found that it is scale free with a power law exponent close to 2. We constructed a stochastic cellular automata model to understand the observed scale-free behavior and the growth of the sinkhole area in time. The model consists of a lower salt layer and an upper soil layer in which cavities that develop in the lower layer lead to collapses in the upper layer. The model reproduces the observed power law distribution without involving the threshold behavior commonly associated with criticality.

  17. Evolution of genomic diversity and sex at extreme environments: Fungal life under hypersaline Dead Sea stress

    PubMed Central

    Kis-Papo, Tamar; Kirzhner, Valery; Wasser, Solomon P.; Nevo, Eviatar

    2003-01-01

    We have found that genomic diversity is generally positively correlated with abiotic and biotic stress levels (1–3). However, beyond a high-threshold level of stress, the diversity declines to a few adapted genotypes. The Dead Sea is the harshest planetary hypersaline environment (340 g·liter–1 total dissolved salts, ≈10 times sea water). Hence, the Dead Sea is an excellent natural laboratory for testing the “rise and fall” pattern of genetic diversity with stress proposed in this article. Here, we examined genomic diversity of the ascomycete fungus Aspergillus versicolor from saline, nonsaline, and hypersaline Dead Sea environments. We screened the coding and noncoding genomes of A. versicolor isolates by using >600 AFLP (amplified fragment length polymorphism) markers (equal to loci). Genomic diversity was positively correlated with stress, culminating in the Dead Sea surface but dropped drastically in 50- to 280-m-deep seawater. The genomic diversity pattern paralleled the pattern of sexual reproduction of fungal species across the same southward gradient of increasing stress in Israel. This parallel may suggest that diversity and sex are intertwined intimately according to the rise and fall pattern and adaptively selected by natural selection in fungal genome evolution. Future large-scale verification in micromycetes will define further the trajectories of diversity and sex in the rise and fall pattern. PMID:14645702

  18. Lithology of the long sediment record recovered by the ICDP Dead Sea Deep Drilling Project (DSDDP)

    NASA Astrophysics Data System (ADS)

    Neugebauer, Ina; Brauer, Achim; Schwab, Markus J.; Waldmann, Nicolas D.; Enzel, Yehouda; Kitagawa, Hiroyuki; Torfstein, Adi; Frank, Ute; Dulski, Peter; Agnon, Amotz; Ariztegui, Daniel; Ben-Avraham, Zvi; Goldstein, Steven L.; Stein, Mordechai

    2014-10-01

    The sedimentary sections that were deposited from the Holocene Dead Sea and its Pleistocene precursors are excellent archives of the climatic, environmental and seismic history of the Levant region. Yet, most of the previous work has been carried out on sequences of lacustrine sediments exposed at the margins of the present-day Dead Sea, which were deposited only when the lake surface level rose above these terraces (e.g. during the Last Glacial period) and typically are discontinuous due to major lake level variations in the past. Continuous sedimentation can only be expected in the deepest part of the basin and, therefore, a deep drilling has been accomplished in the northern basin of the Dead Sea during winter of 2010-2011 within the Dead Sea Deep Drilling Project (DSDDP) in the framework of the ICDP program. Approximately 720 m of sediment cores have been retrieved from two deep and several short boreholes. The longest profile (5017-1), revealed at a water depth of ˜300 m, reaches 455 m below the lake floor (blf, i.e. to ˜1175 m below global mean sea level) and comprises approximately the last 220-240 ka. The record covers the upper part of the Amora (penultimate glacial), the Last Interglacial Samra, the Last Glacial Lisan and the Holocene Ze'elim Formations and, therewith, two entire glacial-interglacial cycles. Thereby, for the first time, consecutive sediments deposited during the MIS 6/5, 5/4 and 2/1 transitions were recovered from the Dead Sea basin, which are not represented in sediments outcropping on the present-day lake shores. In this paper, we present essential lithological data including continuous magnetic susceptibility and geochemical scanning data and the basic stratigraphy including first chronological data of the long profile (5017-1) from the deep basin. The results presented here (a) focus on the correlation of the deep basin deposits with main on-shore stratigraphic units, thus providing a unique comprehensive stratigraphic framework for

  19. Earth observation image of the Dead Sea taken during STS-100

    NASA Image and Video Library

    2001-04-26

    S100-E-5366 (26 April 2001) --- The southern part of the Dead Sea and parts of Israel and Jordan were photographed with a digital still camera by the crew members aboard the Space Shuttle Endeavour on April 26, 2001.

  20. The deeper structure of the southern Dead Sea basin derived from neural network analysis of velocity and attenuation tomography

    NASA Astrophysics Data System (ADS)

    Braeuer, Benjamin; Haberland, Christian; Bauer, Klaus; Weber, Michael

    2014-05-01

    The Dead Sea basin is a pull-apart basin at the Dead Sea transform fault, the boundary between the African and the Arabian plates. Though the DSB has been studied for a long time, the available knowledge - based mainly on surface geology, drilling and seismic reflection surveys - gives only a partial picture of its shallow structure. Therefore, within the framework of the international DESIRE (DEad Sea Integrated REsearch) project, a dense temporary local seismological network was operated in the southern Dead Sea area. Within 18 month of recording 650 events were detected. In addition to an already published tomography study revealing the distribution of P velocities and the Vp/Vs ratios a 2D P-wave attenuation tomography (parameter Qp) was performed. The neural network technique of Self-organizing maps (SOM) is used for the joint interpretation of these three parameters (Vp, Vp/Vs, Qp). The resulting clusters in the petrophysical parameter space are assigned to the main lithological units below the southern part of the Dead Sea basin: (1) The basin sediments characterized by strong attenuation, high vp/vs ratios and low P velocities. (2) The pre-basin sediments characterized by medium to strong attenuation, low Vp/Vs ratios and medium P velocities. (3) The basement characterized by low to moderate attenuation, medium vp/vs ratios and high P velocities. Thus, the asymmetric southern Dead Sea basin is filled with basin sediments down to depth of 7 to 12 km. Below the basin sediments, the pre-basin sediments are extending to a depth between 13 and 18 km.

  1. Literary Genres in Poetic Texts from the Dead Sea Scrolls

    ERIC Educational Resources Information Center

    Pickut, William Douglas

    2017-01-01

    Among the texts of the Dead Sea Scrolls, there are four literary compositions that bear the superscriptional designations shir and mizmor. These designations correspond directly to superscriptional designations provided many times in both the now-canonical Psalter and the various witnesses to those texts unearthed at Qumran. On its face, this fact…

  2. Understanding Flash Flood Generation in the Arid Region of the Dead Sea

    NASA Astrophysics Data System (ADS)

    Merz, R.; Hennig, H.; Rödiger, T.; Laronne, J. B.

    2017-12-01

    The arid region of the Dead Sea is prone by flash floods. Such flash floods in (semi-) arid regions are impressive. Generated within minutes, the peak unit discharge can be as high as 25 m³/s km². Floods are the main mechanism supplying water to alluvial aquifers, forming fluvial landscapes including canyons and often causing damage to humans, infrastructure, industry and tourism. Existing hydrological models in this region focus on peak discharges. However, these models are often based on simplified concepts and/or on concepts which were developed for humid regions. To more closely relate such models to local conditions, processes within catchments where floods occur require consideration. Therefore, a measurement network of rain gauges and level loggers to monitor runoff was installed in the beginning of the 2015/16 hydrological season in the tributaries of Wadi Arugot. The Arugot catchment is one of the largest ephemeral Wadis draining to the western shoreline of the Dead Sea at 450 m bsl. Due to the high gradient in elevation, the climate within the basin ranges from semiarid in the Judean Mountains, to hyper-arid near the Dead Sea with respective mean annual rainfall of 650 and 50 mm. The installed rain gauge network in the mountains is more dense compared to the Dead Sea area. Arid to semiarid catchments have different runoff generation processes compared to humid regions due local storm rainfall, low density of vegetation cover as well as patchy and shallow soil. These characteristics limit the contribution of groundwater flow, saturated overland flow and shallow subsurface flow, and therefore Hortonian overland flow is the most important contributor to overland flow. First analyses of the runoff data have shown that the storage capacity in the mountain area is lower compared to the more arid region. This is an evidence of high transmission losses in the coarse gravel wadi bed, therefore having a high permeability. The rain event duration and the amount of

  3. Multi-centennial scale precipitation and following lagoon ecosystem fluctuation in the Holocene reconstructed by East Korean Lagoon sediment analysis

    NASA Astrophysics Data System (ADS)

    Katsuki, K.; Yang, D. Y.; Lim, J.; Nahm, W. H.; Nakanishi, T.; Seto, K.; Otsuka, M.; Kashima, K.

    2014-12-01

    There are lagoons in the northern east coast of the South Korea, which were formed during the transgression period in the early Holocene. These lagoons shrank about 5-30 % during the first half of 20 century due to terrestrial sediment input from soil erosion in reclamation lands. However, buried lagoonal sediments record Holocene climate change. In this study, multi-centennial scale paleo-climate and paleo-ecosystem change were investigated by analysis of this buried and present lagoon deposits. Based on the diatom assemblage analysis of the sediment in the lagoon Maeho where it is the east coast lagoons in Korea, this lagoon was formed about 8,400 years ago, and halophilic diatoms showed high peaks at three times within the last 8,400 years. Timings of these peaks were well coincident with the high-sea level periods reported in the western Japan. It is considered that sea-level of the east coast in Korea also showed high at three times during the mid-late Holocene, and then, salinity of the lagoon increased in these periods. Except for such sea-level dependent change, salinity of the lagoon Maeho showed the multi-centennial (200 or 400 years) scale periodic variation. Magnetic susceptibility (MS) also showed the clear 400 years periodicity in the mid-late Holocene. When the MS showed high value, oligohalobous diatoms showed high value. However, halophilic diatoms and number of total diatom valves increased when the MS showed low value. This correspondence probably indicates that magnetic minerals flew into the lagoon with river fresh water, and then volume of fresh water inflow has changed with 400 years cycles. Such MS cycle was also confirmed in the sediments of other lagoons. Change of fresh water inflow should be not local event, was a part of regional environmental change. These results probably indicate that the precipitation on the northeastern South Korea has changed by the 400 years cycle. On the basis of lagoon bottom sediment, it made clear that the

  4. Stratigraphy, climate and downhole logging data - an example from the ICDP Dead Sea deep drilling project

    NASA Astrophysics Data System (ADS)

    Coianiz, Lisa; Ben-Avraham, Zvi; Lazar, Michael

    2017-04-01

    During the late Quaternary a series of lakes occupied the Dead Sea tectonic basin. The sediments that accumulated within these lakes preserved the environmental history (tectonic and climatic) of the basin and its vicinity. Most of the information on these lakes was deduced from exposures along the marginal terraces of the modern Dead Sea, e.g. the exposures of the last glacial Lake Lisan and Holocene Dead Sea. The International Continental Drilling Program (ICDP) project conducted in the Dead Sea during 2010-2011 recovered several cores that were drilled in the deep depocenter of the lake (water depth of 300 m) and at the margin (depth of 3 m offshore Ein Gedi spa). New high resolution logging data combined with a detailed lithological description and published age models for the deep 5017-1-A borehole were used to establish a sequence stratigraphic framework for the Lakes Amora, Samra, Lisan and Zeelim strata. This study presents a stratigraphic timescale for reconstructing the last ca 225 ka. It provides a context within which the timing of key sequence surfaces identified in the distal part of the basin can be mapped on a regional and stratigraphic time frame. In addition, it permitted the examination of depositional system tracts and related driving mechanisms controlling their formation. The sequence stratigraphic model developed for the Northern Dead Sea Basin is based on the identification of sequence bounding surfaces including: sequence boundary (SB), transgressive surface (TS) and maximum flooding surface (MFS). They enabled the division of depositional sequences into a Lowstand systems tracts (LST), Transgressive systems tracts (TST) and Highstand systems tracts (HST), which can be interpreted in terms of relative lake level changes. The analysis presented here show that system tract stacking patterns defined for the distal 5017-1-A borehole can be correlated to the proximal part of the basin, and widely support the claim that changes in relative lake

  5. The DESIRE Airborne gravity project in the Dead Sea Basin and 3D numerical gravity modeling

    NASA Astrophysics Data System (ADS)

    Choi, S.; Goetze, H.; Meyer, U.; Group, D.

    2008-12-01

    This geo-scientific research focuses on the geological setting of the Dead Sea Transform (DST) and the Dead Sea Basin (DSB) and its resulting pull-apart basins. Since the late 1970s, crustal scale geophysical experiments have been carried out in this region. However, the nature of the crust underlying the eastern and western shoulders of the DSB and underneath the DST itself is still a hotly debated topic among researchers. To address one of the central questions of plate tectonics - How do large transform systems work and what are their typical features? - An international geoscientific Dead Sea Integrated Research project (DESIRE) is being conducted by colleagues from Germany, Israel, Palestine, and Jordan. In order to provide a high resolution gravity database that support 3D numerical modeling and hence a more comprehensive understanding of the nature and segmentation of the DST, an airborne gravity survey as a part of the DESIRE project has been carried out from February to March 2007. The airborne gravity survey covered the DST from Elat/Aqaba in the South to the northern rim of the Dead Sea. The low speed and terrain-following helicopter gravity flights were performed to acquire the highest possible data quality. In total, 32 north-south profiles and 16 west-east profiles crossing the DST have been measured. Most of the profiles concentrated in areas that lacked terrestrial gravity data coverage, e. g. over the shoulders of the DSB. The airborne gravity data are merged with existing conventional (terrestrial) data sets to provide a seamless gravity map of the area of interest. Using that combined gravity dataset and DESIRE wide angle refractions seismic interpretation we modified density structures in the DSB. As results we estimated that (1) the Moho depth varies from 26 km in the Israel side to 34 km in the Jordan side. (2) The maximum thickness of the Dead Sea sediment Basin is about 15 km. (3) The salt rock with an average thickness of about 5 km is

  6. Should the Dead Sea Be Sustainable?: Investigating Environmental Issues Using a Case Study

    ERIC Educational Resources Information Center

    Saunders, Cheston Andrew

    2016-01-01

    Many students leave the environmental science classroom with misconceptions centered on the availability of natural resources such as water. This article presents a case study where students assume the roles of various stakeholders and articulate their position on whether or not to pipe water from the Red Sea to the Dead Sea. Additionally,…

  7. The taxonomic status of "Halobacterium marismortui" from the Dead Sea: a comparison with Halobacterium vallismortis

    NASA Technical Reports Server (NTRS)

    Oren, A.; Lau, P. P.; Fox, G. E.

    1988-01-01

    A Halobacterium strain, isolated by Ginzburg et al. from the Dead Sea in the late 1960's, often referred to as "Halobacterium marismortui" or "Halobacterium of the Dead Sea" (deposited in the American Type Culture Collection as ATCC 43049) was compared with Halobacterium (Haloarcula) vallismortis ATCC 29715. The strains appeared to be very closely related, as shown by the near identity of their 5S and 16S ribosomal RNA's, and a large number of other common properties. Distinct differences exist, however, in cell morphology, and in their potency to utilize different sugars and other compounds.

  8. The Last Interglacial in the Levant: Perspective from the ICDP Dead Sea Deep Drill Core

    NASA Astrophysics Data System (ADS)

    Goldstein, S. L.; Torfstein, A.; Stein, M.; Kushnir, Y.; Enzel, Y.; Haug, G. H.

    2014-12-01

    Sediments recovered by the ICDP Dead Sea Deep Drilling Project provide a new perspective on the climate history of the Levant during the last interglacial period MIS5. They record the extreme impacts of an intense interglacial characterized by stronger insolation, warmer mean global temperatures, and higher sea-levels than the Holocene. Results show both extreme hyper-aridity during MIS5e, including an unprecedented drawdown of Dead Sea water levels, and the impacts of a strong precession-driven African monsoon responsible for a major sapropel event (S5) in the eastern Mediterranean. Hyper-arid conditions at the beginning of MIS5e prior to S5 (~132-128 ka) are evidenced by halite deposition, indicating declining Dead Sea lake levels. Surprisingly, the hyper-arid phase is interrupted during the MIS5e peak (~128-120 ka), coinciding with the S5 sapropel, which is characterized by a thick (23 m) section of silty detritus (without any halite) whose provenance indicates southern-sourced wetness in the watershed. Upon weakening of the S5 monsoon (~120-115 ka), the return of extreme aridity resulted in an unprecedented lake level drawdown, reflected by massive salt deposition, and followed by a sediment hiatus (~115-100 ka) indicating prolonged low lake level. The resumption of section follows classic Levant patterns with more wetness during cooler MIS5b and hyper-aridity during warmer MIS5a. The ICDP core provides the first evidence for a direct linkage between an intense precession-driven African monsoon and wetness at the high subtropical latitude (~30N) of the Dead Sea watershed. Combined with coeval deposition of Negev speleothems and travertines, and calcitification of Red Sea corals, the evidence indicates a wet climatic corridor that could facilitate homo sapiens migration out of Africa during the MIS5e peak. In addition, the MIS 5e hyper-arid intervals may provide an important cautionary analogue for the impact of future warming on regional water resources.

  9. Comparison of the seasonal variability in abundance of the copepod Pseudocalanus newmani in Lagoon Notoro-ko and a coastal area of the southwestern Okhotsk Sea

    NASA Astrophysics Data System (ADS)

    Kitamura, Mitsuaki; Nakagawa, Yoshizumi; Nishino, Yasuto; Segawa, Susumu; Shiomoto, Akihiro

    2018-03-01

    Replacement of the warm water of the Soya Warm Current (SWC) and the cold water of the East Sakhalin Current (ESC) occurs seasonally along the coast of the southwestern Okhotsk Sea, and sea ice covers the surface during winter. Pseudocalanus newmani is one of the dominant copepods in coastal waters of the northern hemisphere. To better understand the population dynamics of the copepod P. newmani in coastal areas of the southwestern Okhotsk Sea, this study compared the seasonal variation in P. newmani abundance in Lagoon Notoro-ko and a coastal area of the Okhotsk Sea with regard to developmental stage. We sampled P. newmani in the lagoon, including during the ice cover season, and the coastal waters. Pseudocalanus newmani was abundant at both sites in spring. During summer-fall, adults disappeared from the populations at both sites, whereas the early developmental stages were abundant and dominated the population. Total length of adult females decreased toward summer at both sites. Pseudocalanus newmani abundance in the lagoon increased in early winter, and larger females were found in the populations at both sites. These phenomena at both sites corresponded with seasonal variation in water temperature caused by seasonal water-mass replacement and sea ice.

  10. (90)Sr in fish from the southern Baltic Sea, coastal lagoons and freshwater lake.

    PubMed

    Zalewska, Tamara; Saniewski, Michał; Suplińska, Maria; Rubel, Barbara

    2016-07-01

    Activity concentrations of radioactive (90)Sr were studied in four fish species: herring, flounder, sprat and cod caught in the southern Baltic Sea in two periods: 2005-2009 and 2013-2014. The study included also perch from the coastal lagoons - Vistula Lagoon and Szczcin Lagoon and a freshwater lake - Żarnowieckie Lake as well as additional lake species: pike and bream. (90)Sr activity concentrations were compared in relation to species and to particular tissue: muscle, whole fish (eviscerated) and bones. In 2014, in the Baltic, the maximal (90)Sr concentrations were found in fishbones: herring - 0.39 Bq kg(-1) w.w., cod - 0.48 Bq kg(-1) w.w., and flounder - 0.54 Bq kg(-1) w.w. In the whole fish the maximal concentrations were found in flounder - 0.16 Bq kg(-1) w.w. and cod - 0.15 Bq kg(-1) w.w., while in herring - 0.022 Bq kg(-1) w.w. and sprat - 0.026 Bq kg(-1) w.w. they stayed at lower level. Relatively high (90)Sr concentrations were detected in whole fish from freshwater Lake Żarnowieckie: perch - 0.054 Bq kg(-1) w.w., pike - 0.062 Bq kg(-1) w.w. and bream - 0.140 Bq kg(-1) w.w. Concentration ratio (CR) determined for particular fish tissues and for whole eviscerated fish in relation to (90)Sr concentrations in seawater and lake water were showing significant variability unlike the corresponding (137)Cs concentration ratios which are stable and specific for fish species. The study corroborates with the conviction of the growing role of (90)Sr in the overall radioactivity in the southern Baltic Sea as compared to (137)Cs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Intercomparison of global, ultraviolet B and A radiation measurements in the Dead Sea region (Ein Bokek) and Beer Sheva.

    PubMed

    Kushelevsky, A P; Kudish, A I

    1996-07-01

    Thousands of patients suffering from psoriasis have been treated successfully in the Dead Sea area by climatological methods, without medication. This high rate of success, measured in terms of partial to complete plaque clearance and reported to exceed 85% after 3-4 weeks of treatment, has been assumed to be associated with a unique ultraviolet (UV) radiation environment present in the Dead Sea region. In order to broaden our knowledge of the UV radiation environment at the Dead Sea, continuous monitoring of UV (both B and A) and global radiation has recently been initiated at two sites--Ein Bokek (located in the vicinity of the Dead Sea 375 m below mean sea level) and Beer Sheva (315 m above mean sea level)--to facilitate an intercomparison of their respective radiation intensities. The results of the first year of a detailed study of the global, UVB and UVA radiation intensities measured at both sites are summarized and reported in terms of the monthly average daily, average midday (11:00-13:00) and the corresponding maximum values. The radiation data for clear days (based upon the absolute magnitude of the global radiation) were also analyzed to perform an intercomparison between Ein Bokek and Beer Sheva for a winter month and a summer month for which all three types of radiation data were available at both sites.

  12. Investigating Western Dead Sea spring systems and their origin by application of hydrogeochemical patterns

    NASA Astrophysics Data System (ADS)

    Wilske, Cornelia; Siebert, Christian; Geyer, Stefan; Rödiger, Tino; Merkel, Broder

    2013-04-01

    One of the ecologic and touristic hot spots along the western Dead Sea shore is the spring system of Ein Feshkha (Enot Zukim), which suffers from a changing environment. Its feeding Cretaceous aquifers are hosted in the western Graben flank of the Jordan-Dead Sea Rift. However, the origin of water and the ratio of influence of the unconsolidated Quaternary Graben fill is a controversial issue. The aim of the study is to combine hydrogeochemical information of the spring waters and the potential source aquifers to characterize and differentiate the groundwater origins, groundwater flow paths and eventually groundwater mixtures. Within this case study, which is embedded in the SMART II project (Sustainable Management of Available Water Resources of the Lower Jordan Valley), the investigation area extends in the Judean Mountains from the vicinity of Ramallah down to Hebron and ends along the north-western shoreline of the Dead Sea. The Cretaceous limestone aquifers of Turonian/Upper Cenomanian and Albian age are widely separated by a clayey aquiclude. That so called Judea Group is underlaid by the Kurnub sandstone aquifer. Mainly due to the development of the Rift, the entire area is intensely folded and crossed by faults. Groundwater recharge takes place in the uplands and the groundwater flow gradient is oriented towards the Valley, where it transgresses into the Quaternary Graben fill. Our hypothesis is that Ein Feshkha springs are fed by groundwater originating in general in the mountain range, which also takes a detour through the Graben fill in the north of the Dead Sea. Groundwater from these aquifers emerges along the coast of the Dead Sea through springs. The methodological approach is to use geogenic and anthropogenic hydrochemical parameters like major- and trace elements, stable isotopes like δ2H, δ18O or δ87Sr and heavy metals. Sampling campaigns were and will be carried out quarterly within one hydrological year to uncover possible seasonal variations

  13. Constraints on evaporation and dilution of terminal, hypersaline lakes under negative water balance: The Dead Sea, Israel

    NASA Astrophysics Data System (ADS)

    Zilberman, Tami; Gavrieli, Ittai; Yechieli, Yoseph; Gertman, Isaac; Katz, Amitai

    2017-11-01

    The response of hypersaline terminal lakes to negative water balance was investigated by studying brines evaporating to extreme salinities in sinkholes along the western coast of the Dead Sea and during on-site evaporation experiments of the Dead Sea brine. Density and temperature were determined in the field and all samples were analyzed for their major and a few minor solutes. The activity of H2O (aH2O) in the brines was calculated, and the degree of evaporation (DE) was established using Sr2+as a conservative solute. The relations between density and water activity were obtained by polynomial regression, and the relation between the lake's volume and level was established using Hall's (1996) hypsographic model for the Dead Sea basin. Relating the results to the modern, long-term relative humidity (RH) over the basin shows that (a) The lowermost attainable level of a terminal lake undergoing evaporation with no inflow is dictated by the median RH; this level represents equilibrium between the brine's aH2O and RH; (b) Small, saline water bodies with high surface to volume ratios (A/V), such as the hypersaline brines in the sinkholes, are very sensitive to short term changes in RH; in these, the brines' aH2O closely follows the seasonal changes; (c) the level decline of the Dead Sea due to evaporation under present climatic conditions and assuming no inflow to the lake may continue down to 516-537 m below mean sea level (bmsl), corresponding to a water activity range of 0.46-0.39 in its brine, in equilibrium with the overlying relative air humidity; this suggests that the lake level cannot drop more than ∼100 m from its present level; and (d) The maximum RH values that existed over the precursor lake of the Dead Sea (Lake Lisan) during geologically reconstructed minima levels can be similarly calculated.

  14. Long term effect of a modified hydrodynamic at a lagoon inlet on the salt marsh ability to keep pace with sea level rise.

    NASA Astrophysics Data System (ADS)

    Carniello, L.; Nordio, G.; D'Alpaos, A.; Silvestri, S.

    2016-12-01

    In a context of global increase of mean sea level, the fate of salt marshes relates to their ability of keeping pace with relative sea level rise (SLR) and depends on the external sediment supply and organic soil production. Detecting the vertical sinking of salt marshes is a difficult task being the process characterized by time scales of tens to hundreds of years. Thanks to the availability of historical maps of the Venice lagoon, we reconstructed the reduction of salt mash areas that occurred in the northern part of the lagoon in the last two centuries. In this period, anthropic interventions played a crucial role in promoting the disappearance of vast marsh surfaces in the inner lagoon, while the marshes closer to the inlet remained fairly stable. Using a 2D numerical model we investigated the hydrodynamic behavior of different ancient lagoon configurations analyzing the effect of i) the construction of the jetties at the Lido inlet in 1882-1892 and ii) the removal of reed barriers that protected a fish farm area in the same period. Our results show that the deepening of the inlet induced by the construction of the jetties had a positive feedback on the vertical accretion of the salt marshes close to the inlet by lowering the local mean sea level and increasing the tidal amplitude. This effect contrasted the eustatic SLR for more than 30 years, allowing these marshes to increase their height with respect to the local mean sea level. On the contrary, the salt marshes far from the inlet could not take the same rapid advantage of this effect due to tidal wave dissipation characterizing tide propagation in shallow basins. Elevation of inner marshes is low due to the small tidal excursion, making these marshes extremely vulnerable to changes in sediment supply and SLR. We show that the removal of reed barriers used by ancient Venetians to create fish farms in the inner lagoon may have reduced the sediments available to the marshes thus contributing to their drowning.

  15. The stereoisomeric composition of phytanyl chains in lipids of Dead Sea sediments

    NASA Technical Reports Server (NTRS)

    Anderson, R.; Kates, M.; Baedecker, M. J.; Kaplan, I. R.; Ackman, R. G.

    1977-01-01

    Lipid extracts from five recent Dead Sea sediments were analyzed for isoprenoid compounds and the following were isolated: free and phospholipid-bound di-O-phytanylglycerol, free phytanol and free and esterified phytanic acid. The phytanyl groups of the diether and the free phytanol were oxidized to the corresponding phytanic acid; the stereoisomeric composition of the derived phytanic acids as well as of the ester-bound phytanic acid was determined by open-tubular gas-liquid chromatography of the corresponding methyl esters on butanediolsuccinate polyester. Only the 3R, 7R, 11R-isomer of phytanic acid was detected in each of the phytanate samples, indicating that these phytanyl chains in the Dead Sea sediments are most likely derived from extremely halophilic bacteria rather than from phytol of chlorophyll origin. These findings also provide further evidence that the mixtures of RRR and SRR-phytanic acids previously isolated from organic-rich shales were most likely derived from the phytyl chain in chlorophyll.

  16. The stereoisomeric composition of phytanyl chains in lipids of Dead Sea sediments

    USGS Publications Warehouse

    Anderson, R.; Kates, M.; Baedecker, M.J.; Kaplan, I.R.; Ackman, R.G.

    1977-01-01

    Lipid extracts from five recent Dead Sea sediments were analyzed for isoprenoid compounds and the following were isolated: free and phospholipid-bound di-O-phytanylglycerol, free phytanol and free and esterifled phytanic acid. The phytanyl groups of the diether and the free phytanol were oxidized to the corresponding phytanic acid; the stereoisomeric composition of the derived phytanic acids as well as of the ester-bound phytanic acid was determined by open-tubular gas-liquid chromatography of the corresponding methyl esters on butanediolsuccinate polyester. Only the 3R,7R,11R-isomer of phytanic acid was detected in each of the phytanate samples, indicating that these phytanyl chains in the Dead Sea sediments are most likely derived from extremely halophilic bacteria rather than from phytol of chlorophyll origin. These findings also provide further evidence that the mixtures of RRR and SRR-phytanic acids previously isolated from organic-rich shales were most likely derived from the phytyl chain in chlorophyll. ?? 1977.

  17. Dongsha Atoll: A potential thermal refuge for reef-building corals in the South China Sea.

    PubMed

    Tkachenko, Konstantin S; Soong, Keryea

    2017-06-01

    Dongsha Atoll (also known as the Pratas Islands), the northernmost atoll in the South China Sea, experiences two contrasting physical phenomena: repetitive anomalies of the sea surface temperature exceeding the coral bleaching threshold and regular effects of the world's strongest internal waves resulting in the rhythmic upwelling of cold deep waters at the outer reef slopes of the atoll. This unique combination may result in significant differences in coral species composition and structure between the lagoon and forereef. Surveys conducted in August-September 2016 at 12 study sites in the 2-15 m depth range at Dongsha Atoll revealed a clear spatial separation between 'thermally-susceptible' stony coral genera, including Acropora, Pocillopora and Montipora, which mainly inhabited the forereef, and 'thermally-resistant' genera, including massive Porites, foliaceous Echinopora, Pavona and Turbinaria, which mainly resided in the lagoon. The mean coral cover and species richness on the forereef were respectively 1.8 and 1.4 times higher than those in the lagoon (61.3% and 98 species on the forereef vs. 34.2% and 69 species in the lagoon). Coral mortality rates, expressed as the ratio of dead to live stony corals, showed the same pattern (0.4 in the lagoon vs. 0.009 on the forereef). Furthermore, in a laboratory experiment, 'thermally-susceptible' taxa from the lagoon, (e.g. Pocillopora verrucosa and P. damicornis), exhibited higher resistance to bleaching than did their counterparts from the forereef. The present findings indicate that Dongsha Atoll is a potential thermal refuge for reef-building corals in the northern South China Sea and reveal the development of resilience and resistance to bleaching in coral communities of the lagoon. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Assessing hydrological effects of human interventions on coastal systems: numerical applications to the Venice Lagoon

    NASA Astrophysics Data System (ADS)

    Ferrarin, C.; Ghezzo, M.; Umgiesser, G.; Tagliapietra, D.; Camatti, E.; Zaggia, L.; Sarretta, A.

    2013-05-01

    The hydrological consequences of historical, contemporary and future human activities on a coastal system were investigated by means of numerical models. The changes in the morphology of the Lagoon of Venice during the last century result from the sedimentological response to the combined effects of human interventions on the environment and global changes. This study focuses on changes from 1927 to 2012 and includes the changes planned for the protection of the city of Venice from storm surges and exceptional tides under future sea level rise scenarios. The application of a hydrodynamic model allowed for the analysis of the morphological effects on the lagoon circulation, the interaction with the sea and the internal mixing processes. The absolute values of the exchange between the lagoon and sea increased from 1927 to 2002 (from 3900 to 4600 m3 s-1), while the daily fraction of lagoon water volume exchanged decreased. At the same time, the flattening of the lagoon and loss of morphological heterogeneity enhanced the internal mixing processes driven by the tide and wind, reducing thus the overall water renewal time from 11.9 days in 1927 to 10.8 days in 2002. Morphological changes during the last decade reduced the water exchange through the inlets and induced an increase of the basin-wide water renewal time of 0.5 day. In the future, Venice Lagoon will evolve to a more restricted environment due to sea level rise, which increases the lagoon volume, and periodical closure of the lagoon from the sea during flooding events, which reduces the communication with the open sea. Therefore, the flushing capacity of the lagoon will decrease considerably, especially in its central part. Furthermore, some considerations on the impact of the hydromorphological changes on the ecological dynamics are proposed.

  19. Microphallids in Gammarus insensibilis Stock, 1966 from a Black Sea lagoon: manipulation hypothesis going East?

    PubMed

    Kostadinova, A; Mavrodieva, R S

    2005-09-01

    Patterns of parasite site selection, variation in infection parameters and interspecific associations are examined in the light of new field data on larval microphallids in Gammarus insensibilis from a Black Sea lagoon. These patterns are discussed in relation to the predictions for the manipulative effect of Microphallus papillorobustus and its relationships with the other microphallid species based on studies on the French Mediterranean coast. Four species were recovered: Maritrema subdolum, Microphallus hoffmanni, M. papillorobustus and Levinseniella propinqua. The latter two were located in both corporal and cephalic segments, but the selection of brain appeared stronger for L. propinqua. M. subdolum was the first colonizer of amphipod population recruits, and unequivocally the dominant species in the lagoon. There was a significant positive relationship between the parasite load of all 4 species. Concurrent infections were exceedingly frequent, and no departures from random association were detected. We found no evidence that the cerebral metacercariae of M. papillorobustus consistently predict the parasite load of any of the other species in the system and identify sources for heterogeneity that may account for the differences between the Black Sea and the Mediterranean system: habitat heterogeneity, bird diversity and host-parasite systems used to infer relationships between microphallids.

  20. Detailed seismicity analysis revealing the dynamics of the southern Dead Sea area

    NASA Astrophysics Data System (ADS)

    Braeuer, B.; Asch, G.; Hofstetter, R.; Haberland, Ch.; Jaser, D.; El-Kelani, R.; Weber, M.

    2014-10-01

    Within the framework of the international DESIRE (DEad Sea Integrated REsearch) project, a dense temporary local seismological network was operated in the southern Dead Sea area. During 18 recording months, 648 events were detected. Based on an already published tomography study clustering, focal mechanisms, statistics and the distribution of the microseismicity in relation to the velocity models from the tomography are analysed. The determined b value of 0.74 leads to a relatively high risk of large earthquakes compared to the moderate microseismic activity. The distribution of the seismicity indicates an asymmetric basin with a vertical strike-slip fault forming the eastern boundary of the basin, and an inclined western boundary, made up of strike-slip and normal faults. Furthermore, significant differences between the area north and south of the Bokek fault were observed. South of the Bokek fault, the western boundary is inactive while the entire seismicity occurs on the eastern boundary and below the basin-fill sediments. The largest events occurred here, and their focal mechanisms represent the northwards transform motion of the Arabian plate along the Dead Sea Transform. The vertical extension of the spatial and temporal cluster from February 2007 is interpreted as being related to the locking of the region around the Bokek fault. North of the Bokek fault similar seismic activity occurs on both boundaries most notably within the basin-fill sediments, displaying mainly small events with strike-slip mechanism and normal faulting in EW direction. Therefore, we suggest that the Bokek fault forms the border between the single transform fault and the pull-apart basin with two active border faults.

  1. Responses to the 2800 years BP climatic oscillation in shallow- and deep-basin sediments from the Dead Sea

    NASA Astrophysics Data System (ADS)

    Neugebauer, Ina; Brauer, Achim; Schwab, Markus; Dulski, Peter; Frank, Ute; Hadzhiivanova, Elitsa; Kitagawa, Hiroyuki; Litt, Thomas; Schiebel, Vera; Taha, Nimer; Waldmann, Nicolas

    2015-04-01

    Laminated lake sediments from the Dead Sea basin provide high-resolution records of climatic variability in the eastern Mediterranean region, which is considered being especially sensitive to changing climatic conditions. In the study presented here, we aim to reconstruct palaeoclimatic changes and their relation to the frequency of flood/erosion and dust deposition events as archived in the Dead Sea basin for the time interval from ca 3700 to 1700 years BP. A ca 4 m thick, mostly annually laminated (varved) sediment section from the western margin of the Dead Sea (shallow-water DSEn - Ein Gedi profile) was analysed and correlated to the new ICDP Dead Sea Deep Drilling Project core 5017-1 from the deep basin. To detect even single event layers, we applied a multi-proxy approach of high-resolution microscopic thin section analyses, µXRF element scanning and magnetic susceptibility measurements, supported by grain size and palynological analyses. Based on radiocarbon and varve dating two pronounced dry periods were detected at ~3500-3300 yrs BP and ~2900-2400 yrs BP that are characterized by a sand deposit during the older dry period and enhanced frequency of coarse detrital layers during the younger dry period in the shallow-water DSEn core, both interpreted as increased erosion processes. In the 5017-1 deep-basin core these dry periods are depicted by halite deposits. The timing of the younger dry period broadly coincides with the Homeric Minimum of solar activity at ca 2800 yrs BP. Our results suggest that during this period the Dead Sea region experienced a change in synoptic weather patterns leading to an increased occurrence of flash-flood events, overprinting the overall dry climatic conditions. Following this dry spell, a 250-yrs period of increased dust deposition is observed, coinciding with more regular aragonite precipitation during less arid climatic conditions.

  2. Developing a model for the mercury cycle in the Marano-Grado Lagoon (Italy)

    EPA Science Inventory

    The Marano-Grado Lagoon is a wetland system of about 160 km2 located in the Northern Adriatic Sea (Italy) between the Tagliamento and the Isonzo River mouths. The lagoon morphology and biogeochemistry are primarily controlled by the exchange with the Adriatic Sea and, to a lesser...

  3. Mosquito Lagoon environmental resources inventory

    NASA Technical Reports Server (NTRS)

    Provancha, Jane A.; Hall, Carlton R.; Oddy, Donna M.

    1992-01-01

    This document provides a synopsis of biotic and abiotic data collected in the Mosquito Lagoon area in relation to water quality. A holistic ecological approach was used in this review to allow for summaries of climate, land use, vegetation, geohydrology, water quality, fishes, sea turtles, wading birds, marine mammals, invertebrates, shellfish, and mosquito control. The document includes a bibliographic database list of 157 citations that have references to the Mosquito Lagoon, many of which were utilized in development of the text.

  4. Tectonic evolution of the Qumran Basin from high-resolution 3.5-kHz seismic profiles and its implication for the evolution of the northern Dead Sea Basin

    NASA Astrophysics Data System (ADS)

    Lubberts, Ronald K.; Ben-Avraham, Zvi

    2002-02-01

    The Dead Sea Basin is a morphotectonic depression along the Dead Sea Transform. Its structure can be described as a deep rhomb-graben (pull-apart) flanked by two block-faulted marginal zones. We have studied the recent tectonic structure of the northwestern margin of the Dead Sea Basin in the area where the northern strike-slip master fault enters the basin and approaches the western marginal zone (Western Boundary Fault). For this purpose, we have analyzed 3.5-kHz seismic reflection profiles obtained from the northwestern corner of the Dead Sea. The seismic profiles give insight into the recent tectonic deformation of the northwestern margin of the Dead Sea Basin. A series of 11 seismic profiles are presented and described. Although several deformation features can be explained in terms of gravity tectonics, it is suggested that the occurrence of strike-slip in this part of the Dead Sea Basin is most likely. Seismic sections reveal a narrow zone of intensely deformed strata. This zone gradually merges into a zone marked by a newly discovered tectonic depression, the Qumran Basin. It is speculated that both structural zones originate from strike-slip along right-bending faults that splay-off from the Jordan Fault, the strike-slip master fault that delimits the active Dead Sea rhomb-graben on the west. Fault interaction between the strike-slip master fault and the normal faults bounding the transform valley seems the most plausible explanation for the origin of the right-bending splays. We suggest that the observed southward widening of the Dead Sea Basin possibly results from the successive formation of secondary right-bending splays to the north, as the active depocenter of the Dead Sea Basin migrates northward with time.

  5. A new interpretation of seismic tomography in the southern Dead Sea basin using neural network clustering techniques

    NASA Astrophysics Data System (ADS)

    Braeuer, Benjamin; Bauer, Klaus

    2015-11-01

    The Dead Sea is a prime location to study the structure and development of pull-apart basins. We analyzed tomographic models of Vp, Vs, and Vp/Vs using self-organizing map clustering techniques. The method allows us to identify major lithologies by their petrophysical signatures. Remapping the clusters into the subsurface reveals the distribution of basin sediments, prebasin sedimentary rocks, and crystalline basement. The Dead Sea basin shows an asymmetric structure with thickness variation from 5 km in the west to 13 km in the east. Most importantly, we identified a distinct, well-defined body under the eastern part of the basin down to 18 km depth. Considering its geometry and petrophysical signature, this unit is interpreted as a buried counterpart of the shallow prebasin sediments encountered outside of the basin and not as crystalline basement. The seismicity distribution supports our results, where events are concentrated along boundaries of the basin and the deep prebasin sedimentary body. Our results suggest that the Dead Sea basin is about 4 km deeper than assumed from previous studies.

  6. Decline in sea snake abundance on a protected coral reef system in the New Caledonian Lagoon

    NASA Astrophysics Data System (ADS)

    Goiran, C.; Shine, R.

    2013-03-01

    Monitoring results from a small reef (Ile aux Canards) near Noumea in the New Caledonian Lagoon reveal that numbers of turtle-headed sea snakes ( Emydocephalus annulatus) have been in consistent decline over a 9-year period, with average daily counts of snakes decreasing from >6 to <2 over this period. Causal factors for the decline are unclear, because the site is a protected area used only for tourism. Our results suggest that wildlife management authorities should carefully monitor sea snake populations to check whether the declines now documented for New Caledonia and in nearby Australian waters also occur around the islands of the Indo-Pacific.

  7. Assessing hydrological effects of human interventions on coastal systems: numerical applications to the Venice Lagoon

    NASA Astrophysics Data System (ADS)

    Ferrarin, C.; Ghezzo, M.; Umgiesser, G.; Tagliapietra, D.; Camatti, E.; Zaggia, L.; Sarretta, A.

    2012-12-01

    The hydrological consequences of historical, contemporary and future human activities on a coastal system were investigated by means of numerical models. The changes in the morphology of the Lagoon of Venice during the last century result from the sedimentological response to the combined effects of human interventions on the environment and global changes. This study focuses on changes from 1927 to 2012 and includes the changes planned for the protection of the city of Venice from storm surges and exceptional tides under future sea level rise scenarios. The application of a hydrodynamic model to simulate the circulation of water masses and the transport of a passive tracer enabled the analysis of the morphodynamic effects on the lagoon circulation and the interaction with the sea. The absolute values of the exchange between the lagoon and sea increased from 1927 to 2002 (from 3900 to 4600 m3 s-1), while the daily fraction of lagoon water volume exchanged decreased. At the same time, the water renewal time shortened from 11.9 to 10.8 days. Morphological changes during the last decade induced an increase of the basin-wide water renewal time (from 10.8 to 11.3 days). In the future, Venice Lagoon will evolve to a more restricted environment due to sea level rise and periodical closure of the lagoon from the sea during flooding events. Simulated scenarios of sea level rise showed that under fall-winter conditions the water renewal time will increased considerably especially in the central part of the lagoon. Furthermore, some considerations on the impact of the hydromorphological changes on the ecological dynamics are proposed.

  8. A Century of changes for Razelm-Sinoe Lagoon System

    NASA Astrophysics Data System (ADS)

    Scrieciu, Marian-Albert; Stanica, Adrian

    2014-05-01

    A Century of changes for Razelm-Sinoe Lagoon System Marian-Albert Scrieciu (a), Adrian Stanica (a) (a) National Institute of Marine Geology and Geoecology e GeoEcoMar, Str. Dimitrie Onciul 23e25, Sector 2, 024053 Bucharest, Romania Razelm-Sinoe Lagoon System, situated in the NW part of the Black Sea, in tight connection with the Danube Delta, has been subject to major changes due to human interventions in the past century. These changes have resulted into a complete change of the Lagoon specific ecosystems compared to its pristine state. In its natural state, as brackish - transitional environment, Antipa (1894) mentions Razelm Lagoon as one of the places with the greatest fisheries around the Black Sea coast (about 1879 - 1884, there were approximately 10,000 fishermen, all working on the Razelm Sinoe Lagoon System). Starting with the end of the XIXth Century, new canals were dug and existing channels were dredged in order to develop tighter connections with the Danube River. The natural inlet of Portita was blocked four decades ago and connections between the various parts of the lagoon system were controlled by the building of locks and sluices. The 2 inlets of Sinoe Lagoon were also controlled during early 1980s. Under these conditions, the lagoon ecosystem changed from brackish towards freshwater, with major effects on the existing flora and fauna. The period of brutal interventions ended in 1989 and the Razelm-Sinoe Lagoon System became part of the Danube Delta Biosphere Reserve in 1991, with a strict policy of nature protection and restoration. Spatial planning has been the major management option for the entire reserve, lagoon system included. Plans for sustainable development of the Razelm-Sinoe Lagoon System have been built in a participative manner, involving the local stakeholders, as part of FP7 ARCH project. Special attention has been given to impacts of climate change. The study presents the vision for the development Razelm-Sinoe Lagoon System over

  9. Harmful Algae Records in Venice Lagoon and in Po River Delta (Northern Adriatic Sea, Italy)

    PubMed Central

    Bilaničovà, Dagmar; Marcomini, Antonio

    2014-01-01

    A detailed review of harmful algal blooms (HAB) in northern Adriatic Sea lagoons (Po River Delta and Venice lagoon) is presented to provide “updated reference conditions” for future research and monitoring activities. In the study areas, the high mollusc production requires the necessity to identify better methods able to prevent risks for human health and socioeconomical interests. So, an integrated approach for the identification and quantification of algal toxins is presented by combining microscopy techniques with Liquid Chromatography coupled with High Resolution Time of Flight Mass Spectrometry (HPLC-HR-TOF-MS). The method efficiency was first tested on some samples from the mentioned coastal areas, where Dinophysis spp. occurred during summer in the sites directly affected by seawaters. Although cell abundance was always <200 cells/L, the presence of Pectenotoxin-2 (PTX2), detected by HPLC-HR-TOF-MS, indicated the potential release of detectable amounts of toxins even at low cell abundance. PMID:24683360

  10. Harmful algae records in Venice lagoon and in Po River Delta (northern Adriatic Sea, Italy).

    PubMed

    Facca, Chiara; Bilaničovà, Dagmar; Pojana, Giulio; Sfriso, Adriano; Marcomini, Antonio

    2014-01-01

    A detailed review of harmful algal blooms (HAB) in northern Adriatic Sea lagoons (Po River Delta and Venice lagoon) is presented to provide "updated reference conditions" for future research and monitoring activities. In the study areas, the high mollusc production requires the necessity to identify better methods able to prevent risks for human health and socioeconomical interests. So, an integrated approach for the identification and quantification of algal toxins is presented by combining microscopy techniques with Liquid Chromatography coupled with High Resolution Time of Flight Mass Spectrometry (HPLC-HR-TOF-MS). The method efficiency was first tested on some samples from the mentioned coastal areas, where Dinophysis spp. occurred during summer in the sites directly affected by seawaters. Although cell abundance was always <200 cells/L, the presence of Pectenotoxin-2 (PTX2), detected by HPLC-HR-TOF-MS, indicated the potential release of detectable amounts of toxins even at low cell abundance.

  11. Rapid response of tidal channel networks to sea-level variations (Venice Lagoon, Italy)

    NASA Astrophysics Data System (ADS)

    Rizzetto, Federica; Tosi, Luigi

    2012-07-01

    The aim of the present paper is to examine the effects of long- and short-term sea-level fluctuations (i.e. relative sea-level rise and tides) on the geomorphologic evolution of modern tidal channels through the joint interpretation of channel modifications, the 1938-2010 yearly time series of relative sea-level rise, and the variations of strength and frequency of high tides which occurred in the same period. We analyzed a salt marsh area not particularly modified by human interventions, located in the northern Venice Lagoon, Italy. The availability of a long historical record of high-resolution aerial photographs provided us the opportunity to reconstruct in detail the evolution of the drainage patterns from 1938 to the present. Results from our analyses gave us information about the degree of control of long- and short-term sea-level fluctuations on planimetric development of tidal channels and provided demonstration of the rapid response of the drainage network to these oscillations. We found that both relative sea-level rise and high tide frequency greatly influenced salt marsh margin shift and meander evolution of tidal channels in the long term, but short-term sinuosity changes of creeks were often also closely related to tide variations. Channels nearer the marsh margin were more exposed to the action of the increasing tides.

  12. Optically stimulated luminescence of natural NaCl mineral from Dead Sea exposed to gamma radiation.

    PubMed

    Roman-Lopez, J; Piña López, Y I; Cruz-Zaragoza, E; Marcazzó, J

    2018-08-01

    In this work, the continuous wave - optically stimulated luminescence (CW-OSL) emissions of natural salt minerals, collected from Dead Sea in summer of 2015, were studied. The CW-OSL dose response of natural salt showed a linear range between 0.5Gy and 10Gy of gamma radiation of 60 Co. Samples exposed at 3Gy exhibited good repeatability with a variation coefficient of 4.6%. The CW-OSL response as function of the preheating temperature (50-250°C) was analyzed. An increase of 15% of the CW-OSL response was observed in NaCl samples during storage period of 336h. The results showed that the natural Dead Sea salt minerals could be applied as natural dosimeter of gamma radiation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Dead Sea evaporation by eddy covariance measurements vs. aerodynamic, energy budget, Priestley-Taylor, and Penman estimates

    NASA Astrophysics Data System (ADS)

    Metzger, Jutta; Nied, Manuela; Corsmeier, Ulrich; Kleffmann, Jörg; Kottmeier, Christoph

    2018-02-01

    The Dead Sea is a terminal lake, located in an arid environment. Evaporation is the key component of the Dead Sea water budget and accounts for the main loss of water. So far, lake evaporation has been determined by indirect methods only and not measured directly. Consequently, the governing factors of evaporation are unknown. For the first time, long-term eddy covariance measurements were performed at the western Dead Sea shore for a period of 1 year by implementing a new concept for onshore lake evaporation measurements. To account for lake evaporation during offshore wind conditions, a robust and reliable multiple regression model was developed using the identified governing factors wind velocity and water vapour pressure deficit. An overall regression coefficient of 0.8 is achieved. The measurements show that the diurnal evaporation cycle is governed by three local wind systems: a lake breeze during daytime, strong downslope winds in the evening, and strong northerly along-valley flows during the night. After sunset, the strong winds cause half-hourly evaporation rates which are up to 100 % higher than during daytime. The median daily evaporation is 4.3 mm d-1 in July and 1.1 mm d-1 in December. The annual evaporation of the water surface at the measurement location was 994±88 mm a-1 from March 2014 until March 2015. Furthermore, the performance of indirect evaporation approaches was tested and compared to the measurements. The aerodynamic approach is applicable for sub-daily and multi-day calculations and attains correlation coefficients between 0.85 and 0.99. For the application of the Bowen ratio energy budget method and the Priestley-Taylor method, measurements of the heat storage term are inevitable on timescales up to 1 month. Otherwise strong seasonal biases occur. The Penman equation was adapted to calculate realistic evaporation, by using an empirically gained linear function for the heat storage term, achieving correlation coefficients between 0

  14. Tidal dynamics in a changing lagoon: Flooding or not flooding the marginal regions

    NASA Astrophysics Data System (ADS)

    Lopes, Carina L.; Dias, João M.

    2015-12-01

    Coastal lagoons are low-lying systems under permanent changes motivated by natural and anthropogenic factors. Ria de Aveiro is such an example with its margins currently threatened by the advance of the lagoonal waters recorded during the last decades. This work aims to study the tidal modifications found between 1987 and 2012 in this lagoon, motivated by the main channels deepening which induce higher inland tidal levels. Additionally it aims to study the impact that protective walls designed to protect the margins against flooding may have in those modifications under sea level rise predictions. The hydrodynamic model ELCIRC previously calibrated for Ria de Aveiro was used and tidal asymmetry, tidal ellipses and residual currents were analyzed for different scenarios, considering the mean sea level rise predicted for 2100 and the implementation of probable flood protection walls. Results evidenced that lagoon dominance remained unchanged between 1987 and 2012, but distortion decreased/increased in the deeper/shallower channels. The same trend was found under mean sea level rise conditions. Tidal currents increased over this period inducing an amplification of the water properties exchange within the lagoon, which will be stronger under mean sea level rise conditions. The deviations between scenarios with or without flood protection walls can achieve 60% for the tidal distortion and residual currents and 20% for the tidal currents, highlighting that tidal properties are extremely sensitive to the lagoon geometry. In summary, the development of numerical modelling applications dedicated to study the influence of mean sea level rise on coastal low-lying systems subjected to human influence should include structural measures designed for flood defence in order to accurately predict changes in the local tidal properties.

  15. A GIS Approach for Reconstructing the Litorina Sea Lagoon in Tolkuse-Rannametsa Area, Eastern Gulf of Riga.

    NASA Astrophysics Data System (ADS)

    Habicht, Hando-Laur; Rosentau, Alar; Jõeleht, Argo; Hang, Tiit; Kohv, Marko

    2015-04-01

    The eastern coast of the Gulf of Riga in the NE Baltic Sea is characterized by slow post-glacial isostatic uplift (about 1mm/yr) and slowly undulating low topography. Therefore even small increases in sea-level can easily lead to the flooding of considerable areas. The complex deglaciation history of the Baltic Sea area left, at times, south western Estonia submerged, while at other times, it emerged as terrestrial land. Different transgressive and regressive development stages of the Baltic Sea did not only shape the landscape, but also influenced the locations of the Stone Age settlements which were closely bound to the coastal areas which also include estuaries and lagoonal systems. The coastal region of the Gulf of Riga is abundant in Meso- and Neolithic settlement sites. The present study combines LiDAR, ground-penetrating radar (GPR) and geological data to reconstruct development of the Litorina Sea lagoon in Tolkuse-Rannametsa area and to create prognostic palaeogeographic maps in order to search for Meso- and Neolithic coastal settlement sites. Over 47 km of GPR profiling was done; sediments were described and dated in 37 cores two riverbank outcrops. Diatoms were analysed in the master core. A semi-automatic method for the removal of modern anthropogenic features from LiDAR derived digital elevation model (DEM) was developed, tested and used. In modelling process the impact of sedimentary processes subsequent to the time being modelled was taken into account by employing a backstripping methodology. The differential glacio-isostatic uplift within the study area was taken into account by using interpolated water-level surfaces. Palaeogeographic reconstructions shed new light into region's post-glacial coastal evolution and enabled us to suggest the possible locations of the Stone Age settlements with some of the proposed areas buried under up to 3 m thick peat layer. The results of the current study provide new chronological and shore displacement data

  16. [THE EFFECT OF 5 DAYS IMMERSION IN DEAD SEA WATER ON BLOOD GLUCOSE LEVELS IN TYPE 2 DIABETES MELLITUS PATIENTS].

    PubMed

    Brzezinski Sinai, Isaac; Lior, Yotam; Brzezinski Sinai, Noa; Harari, Marco; Liberty, Idit F

    2016-02-01

    Body immersion in plain water or mineral water induces significant and unique physiological changes in most body systems. In a previous pilot study, a significant reduction in blood glucose levels among diabetes mellitus (DM) patients was found following a single immersion in Dead Sea water but not after immersion in plain water. To study the immediate and long term effects of immersion in mineral water for five consecutive days on blood glucose in patients with type 2 DM. A total of 34 patients with type 2 DM were divided into 2 groups: The first immersed in a plain water pool and the second immersed in a Dead Sea water pool; both pools were warmed to a temperature of 35°C. Immersions for 20 minutes occurred twice daily: two hours after breakfast and before dinner. Seven samples of capillary blood glucose levels were taken: fasting, before and after every immersion, prior to lunch and before bedtime. Hemoglobin A1C (HbA1c) was taken prior to the study and a re-check was conducted during the 12 weeks following the study. Blood glucose levels significantly decreased immediately after immersion both in Dead Sea water and plain water compared to their values prior to immersion (p<0.001). No significant difference was noted between both types of water. A decrease in fasting glucose levels was observed only in the group immersed in Dead Sea water when compared to plain water (6.83±5.68 mg/dl versus 4.37±1.79 respectively and the difference was close to statistical significance (p=0.071. There were no changes in HbA1c levels. Immersion for 20 minutes in water (Dead Sea or plain water) at a temperature of 35°C induced an immediate reduction in glucose levels in patients with type 2 DM.

  17. Consequences of the anthropogenic alterations along the Jordanian Dead Sea coast

    NASA Astrophysics Data System (ADS)

    Closson, Damien; Abou Karaki, Najib

    2014-05-01

    The Dead Sea is a terminal lake located over the Jordan - Dead Sea transform fault. At around 428 m bsl, it is the lowest emerged place on Earth. Since the 1960s, the over-exploitation of the water resources in the catchment area has lead to lower the level at an increasing pace. In 2014, it is upper than 1m/year. In the last 50 years, a 50 by 15 km slice of brine, around 33 m thick, has disappeared. With a salinity ten times greater than the average ocean water, the lake and its underground lateral extensions act as a high density layer over which the fresh groundwater is in hydrostatic equilibrium. The slope of the interface between saline and fresh waters is ten times shallower than normally expected near the ocean. According to a number of wells, in some places, the water table does not drop at the same speed than the Dead Sea. There, the head difference is constantly increasing. The fresh groundwater moves rapidly towards the lake to compensate for the imbalance. The most conspicuous consequence is the proliferation of thousands of sinkholes and wide shallow subsidence. In parallel, in the last two decades, industrial and touristic developments have taken place along the coast. Hence, such a dynamic environment provides a unique test bed to study Human-Earth interaction in the Anthropocene. As an example, numerous ground collapses are distributed along lineaments whose orientations fit with the main structural directions. This observation highlights the role of conduit played by underground discontinuities, such as faults and fractures. Very rapid underground water circulation explains the appearance of vegetation (Tamarisk) in unexpected places such as the northern tip of the Lisan peninsula and an "aborted" hectometer-scale landslide. The reactivation of a paleo-channel located below a 38 M salt evaporation pond of the Arab Potash Company, Lisan area, Jordan, provides an example for the implementation of an Early warning System. Time series analysis of high

  18. Seasonality and toxin production of Pyrodinium bahamense in a Red Sea lagoon.

    PubMed

    Banguera-Hinestroza, E; Eikrem, W; Mansour, H; Solberg, I; Cúrdia, J; Holtermann, K; Edvardsen, B; Kaartvedt, S

    2016-05-01

    Harmful algal blooms of the dinoflagellate Pyrodinium bahamense have caused human and economic losses in the last decades. This study, for the first time, documents a bloom of P. bahamense in the Red Sea. The alga was recurrently present in a semi-enclosed lagoon throughout nearly 2 years of observations. The highest cell densities (10 4 -10 5 cellsL -1 ) were recorded from September to beginning of December at temperatures and salinities of ∼26-32°C and ∼41, respectively. The peak of the bloom was recorded mid-November, before a sharp decrease in cell numbers at the end of December. Minimum concentrations in summer were at ∼10 3 cellsL -1 . A saxitoxin ELISA immunoassay of cultures and water samples confirmed the toxicity of the strain found in the Red Sea. Moreover, a gene expression analysis of the saxitoxin gene domain SxtA4 showed that transcript production peaked at the culmination of the bloom, suggesting a relation between transcript production, sudden cells increment-decline, and environmental factors. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Controls on the pH of hyper-saline lakes - A lesson from the Dead Sea

    NASA Astrophysics Data System (ADS)

    Golan, Rotem; Gavrieli, Ittai; Ganor, Jiwchar; Lazar, Boaz

    2016-01-01

    The pH of aqueous environments is determined by the dominant buffer systems of the water, defined operationally as total alkalinity (TA). The major buffer systems in the modern ocean are carbonic and boric acids of which the species bicarbonate, carbonate and borate make up about 77%, 19% and 4% of the TA, respectively. During the course of seawater evaporation (e.g. lagoons) the residual brine loses considerable portion of the dissolved inorganic carbon (DIC) and carbonate alkalinity (CA) already at the early stages of evaporation. DIC and CA decrease due to massive precipitation of CaCO3, while total boron (TB) increases conservatively, turning borate to the dominant alkalinity species in marine derived brines. In the present work we assess the apparent dissociation constant value of boric acid (KB‧) in saline and hypersaline waters, using the Dead Sea (DS) as a case study. We explain the DS low pH (∼6.3) and the effect of the boric and carbonic acid pK‧-s on the behavior of the brine's buffer system, including the pH increase that results from brine dilution. The KB‧ in DS was estimated from TB, TA, DIC and pH data measured in this study and early empirical data on artificial DS brines containing just carbonic acid. The KB‧ value was corroborated by Pitzer ion interaction model calculations using PHREEQC thermodynamic code applied to the chemical composition of the DS. Our results show that KB‧ increases considerably with the brine's ionic strength, reaching in the DS to a factor of 100 higher than in ;mean; seawater. Based on theoretical calculations and analyses of other natural brines it is suggested that brines' composition is a major factor in determining the KB‧ value and in turn the pH of such brines. We show that the higher the proportion of divalent cations in the brine the higher the dissociation constants of the weak acids (presumably due to formation of complexes). The low pH of the Dead Sea is accordingly explained by its extremely

  20. Habitat use and foraging patterns of molting male Long-tailed Ducks in lagoons of the central Beaufort Sea, Alaska

    USGS Publications Warehouse

    Flint, Paul L.; Reed, John; Deborah Lacroix,; Richard Lanctot,

    2016-01-01

    From mid-July through September, 10 000 to 30 000 Long-tailed Ducks (Clangula hyemalis) use the lagoon systems of the central Beaufort Sea for remigial molt. Little is known about their foraging behavior and patterns of habitat use during this flightless period. We used radio transmitters to track male Long-tailed Ducks through the molt period from 2000 to 2002 in three lagoons: one adjacent to industrial oil field development and activity and two in areas without industrial activity. We found that an index to time spent foraging generally increased through the molt period. Foraging, habitat use, and home range size showed similar patterns, but those patterns were highly variable among lagoons and across years. Even with continuous daylight during the study period, birds tended to use offshore areas during the day for feeding and roosted in protected nearshore waters at night. We suspect that variability in behaviors associated with foraging, habitat use, and home range size are likely influenced by availability of invertebrate prey. Proximity to oil field activity did not appear to affect foraging behaviors of molting Long-tailed Ducks.

  1. Groundwater-saline lakes interaction - The contribution of saline groundwater circulation to solute budget of saline lakes: a lesson from the Dead Sea

    NASA Astrophysics Data System (ADS)

    Kiro, Yael; Weinstein, Yishai; Starinsky, Abraham; Yechieli, Yoseph

    2013-04-01

    Saline lakes act as base level for both surface water and groundwater. Thus, a change in lake levels is expected to result in changes in the hydrogeological system in its vicinity, exhibited in groundwater levels, location of the fresh-saline water interface, sub-lacustrine groundwater discharge (SGD) and saline water circulation. All these processes were observed in the declining Dead Sea system, whose water level dropped by ~35 meters in the last 50 years. This work focuses mainly on the effect of circulation of Dead Sea water in the aquifer, which continues even in this very rapid base level drop. In general, seawater circulation in coastal aquifers is now recognized as a major process affecting trace element mass balances in coastal areas. Estimates of submarine groundwater discharge (SGD) vary over several orders of magnitude (1-1000000 m3/yr per meter shoreline). These estimates are sensitive to fresh-saline SGD ratios and to the temporal and spatial scales of the circulation. The Dead Sea system is an excellent natural field lab for studying seawater-groundwater interaction and large-scale circulation due to the absence of tides and to the minor role played by waves. During Dead Sea water circulation in the aquifer several geochemical reactions occur, ranging from short-term adsorption-desorption reactions and up to long-term precipitation and dissolution reactions. These processes affect the trace element distribution in the saline groundwater. Barite and celestine, which are supersaturated in the lake water, precipitate during circulation in the aquifer, reducing barium (from 5 to 1.5 mg/L), strontium (from 350 to 300 mg/L) and the long-lived 226Ra (from 145 to 60 dpm/L) in the saline groundwater. Redox-controlled reactions cause a decrease in uranium from 2.4 to 0.1 μg/L, and an increase in iron from 1 to 13 mg/L. 228Ra (t1/2=5.75 yr) activity in the Dead Sea is ~1 dpm/L and increase gradually as the saline water flows further inland until reaching

  2. Groundwater-driven nutrient inputs to coastal lagoons: The relevance of lagoon water recirculation as a conveyor of dissolved nutrients.

    PubMed

    Rodellas, Valentí; Stieglitz, Thomas C; Andrisoa, Aladin; Cook, Peter G; Raimbault, Patrick; Tamborski, Joseph J; van Beek, Pieter; Radakovitch, Olivier

    2018-06-16

    Evaluating the sources of nutrient inputs to coastal lagoons is required to understand the functioning of these ecosystems and their vulnerability to eutrophication. Whereas terrestrial groundwater processes are increasingly recognized as relevant sources of nutrients to coastal lagoons, there are still limited studies evaluating separately nutrient fluxes driven by terrestrial groundwater discharge and lagoon water recirculation through sediments. In this study, we assess the relative significance of these sources in conveying dissolved inorganic nutrients (NO 3 - , NH 4 + and PO 4 3- ) to a coastal lagoon (La Palme lagoon; France, Mediterranean Sea) using concurrent water and radon mass balances. The recirculation of lagoon water through sediments represents a source of NH 4 + (1900-5500 mol d -1 ) and PO 4 3- (22-71 mol d -1 ), but acts as a sink of NO 3 - . Estimated karstic groundwater-driven inputs of NO 3 - , NH 4 + and PO 4 3- to the lagoon are on the order of 200-1200, 1-12 and 1.5-8.7 mol d -1 , respectively. A comparison between the main nutrient sources to the lagoon (karstic groundwater, recirculation, diffusion from sediments, inputs from a sewage treatment plant and atmospheric deposition) reveals that the recirculation of lagoon water through sediments is the main source of both dissolved inorganic nitrogen (DIN) and phosphorous (DIP) to La Palme lagoon. These results are in contrast with several studies conducted in systems influenced by terrestrial groundwater inputs, where groundwater is often assumed to be the main pathway for dissolved inorganic nutrient loads. This work highlights the important role of lagoon water recirculation through permeable sediments as a major conveyor of dissolved nutrients to coastal lagoons and, thus, the need for a sound understanding of the recirculation-driven nutrient fluxes and their ecological implications to sustainably manage lagoonal ecosystems. Copyright © 2018. Published by Elsevier B.V.

  3. Hydrogeological perturbations along the Dead Sea coast revealed by submarine sinkholes, Lisan and Ghor al Haditha, Jordan

    NASA Astrophysics Data System (ADS)

    Closson, D.; Abou Karaki, N.; Milisavljevic, N.; Pasquali, P.; Holecz, F.; Bouaraba, A.

    2012-04-01

    For several decades, surface water and groundwater located in the closed Dead Sea basin experience excessive exploitation. In fifty years, the level of the terminal lake has fallen by about 30 meters and its surface shrunk by one third. The coastal zone is the one that best shows the stigma of the general environmental degradation. Among these are the sinkholes, landslides and subsidence. For years, these phenomena are relatively well documented, particularly sinkholes and subsidence. Over the past five years, field observations combined with ground deformations measurements by radar interferometric stacking techniques have shown that the intensity (size, frequency) of the collapses is increasing in the most affected part of the southern Dead Sea area. The zones of the dried up Lynch Strait, the Lisan peninsula and Ghor Al Haditha in Jordan seem the most affected. Very high resolution (0.5 to 2 m) GeoEye satellite images have shown that many sinkholes also formed below the level of the Dead Sea. The water transparency allows observations up to several meters deep. These data contribute to the validation of the models developed in connection with the deformation of the fresh/saline water interface due to an imbalance always more pronounced between the levels of the surrounding groundwaters and of the terminal lake.

  4. Nutrient dynamics in tropical rivers, lagoons, and coastal ecosystems of eastern Hainan Island, South China Sea

    NASA Astrophysics Data System (ADS)

    Li, R. H.; Liu, S. M.; Li, Y. W.; Zhang, G. L.; Ren, J. L.; Zhang, J.

    2014-01-01

    Nutrient dynamics based on field observations made along the eastern Hainan Island during the period 2006-2009 were investigated to understand nutrient biogeochemical processes, and to provide an overview of human perturbations of coastal ecosystems in this tropical region. The rivers showed seasonal variations in nutrient concentrations, with enrichment of dissolved inorganic nitrogen and dissolved silicate, and depletion of PO43-. High riverine concentrations of nitrate mainly originated from agricultural fertilizer inputs. The DIN : PO43- ratios ranged from 37 to 1063, suggesting preferential depletion of PO43- relative to nitrogen in rivers. Chemical weathering in the drainage area might explain the high levels of dissolved silicate. Aquaculture ponds contained high concentrations of NH4+ and dissolved organic nitrogen. The particulate phosphorus concentrations in the study area were lower than those reported for estuaries worldwide. The particulate silicate levels in rivers and lagoons were lower than the global average level. Nutrient biogeochemistry in coastal areas was affected by human activities (e.g., aquaculture, agriculture), and by natural phenomena including typhoons. The nutrient concentrations in coastal waters were low because of dispersion of land-derived nutrients in the sea. Nutrient budgets were built based on a steady-state box model, which showed that riverine fluxes are magnified by estuarine processes (e.g., regeneration, desorption) in estuaries and Laoyehai Lagoon, but not in Xiaohai Lagoon. Riverine and groundwater inputs were the major sources of nutrients to Xiaohai and Laoyehai lagoons, respectively, and riverine inputs and aquaculture effluents were the major sources for the eastern coast of Hainan Island. Nutrient inputs to the coastal ecosystem increased with typhoon-induced runoff of rainwater, elucidating the important influence of typhoons on small tropical rivers.

  5. Monitoring and modeling of sinkholes affecting the Jordanian coast of the Dead Sea through satellite interferometric techniques

    NASA Astrophysics Data System (ADS)

    Tessari, Giulia; Pasquali, Paolo; Floris, Mario

    2016-04-01

    Differential Interferometric Synthetic Aperture Radar (DInSAR) techniques have been applied to investigate sinkholes affecting the Jordanian coast of the Dead Sea. The Dead Sea is a hyper saline terminal lake located in a pull-apart basin. Most of the area is characterized by highly karstic and fractured rock formations that are connected with faults. Karstic conduits extend from the land into the sea. Since the 1960s, the Dead Sea level is dropping at an increasing rate: from about 60 cm/yr in the 1970s up to 1 m/yr in the 2000s. From about the mid-1980s, sinkholes appeared more and more frequently over and around the emerged mudflats and salt flats. Strong subsidence and landslides also affect some segments of the coast. Nowadays, several thousands of sinkholes attest that the degradation of the Dead Sea coast is worsening. Deformation analysis has been focused on the Ghor Al Haditha area, located in the South-Eastern part of the lake coast. SAR data acquired by three different sensors, ERS, ENVISAT and COSMO- SkyMed have been analysed. 70 ERS images from 1992 to 2009 and 30 ENVISAT images from 2003 to 2010 have been processed. SBAS technique has been applied to define surface velocity and displacement maps. Results obtained from the SBAS technique, applied to ERS and Envisat data, highlight a diffuse subsiding of the entire Eastern coast of the Dead Sea. It was not possible to detect single sinkholes because of the resolution of these sensors (25m2) and the small size of each punctual event that is generally varying from a few meters to a hundred meters diameter. Furthermore, SBAS has been applied to 23 COSMO-SkyMed SAR satellite images from December 2011 to May 2013. The high resolution of these data (3m x 3m) and the short revisiting time allowed precise information of the displacement of punctual sinkholes beyond the overall subsidence of the coast. A specific sinkhole has been identified in order to understand its temporal evolution. The considered

  6. The DESIRE Airborne gravity project in the Dead Sea Basin and 3D numerical gravity modeling

    NASA Astrophysics Data System (ADS)

    Choi, Sungchan; Götze, Hans-Jürgen; Meyer, Uwe; Desire-Group

    2010-05-01

    This geo-scientific research focuses on the geological setting of the Dead Sea Transform (DST) and the Dead Sea Basin (DSB) and its resulting pull-apart basins. Since the late 1970s, crustal scale geophysical experiments have been carried out in this region. However, the nature of the crust underlying the eastern and western shoulders of the DSB and underneath the DST itself is still a hotly debated topic among researchers. To address one of the central questions of plate tectonics - How do large transform systems work and what are their typical features? - An international geoscientific Dead Sea Integrated Research project (DESIRE) is being conducted by colleagues from Germany, Israel, Palestine, and Jordan. In order to provide a high resolution gravity database that support 3D numerical modeling and hence a more comprehensive understanding of the nature and segmentation of the DST, an airborne gravity survey as a part of the DESIRE project has been carried out from February to March 2007. The airborne gravity survey covered the DST from Elat/Aqaba in the South to the northern rim of the Dead Sea. The low speed and terrain-following helicopter gravity flights were performed to acquire the highest possible data quality. In total, 32 north-south profiles and 16 west-east profiles crossing the DST have been measured. Most of the profiles concentrated in areas that lacked terrestrial gravity data coverage, e. g. over the shoulders of the DSB. The airborne gravity data are merged with existing conventional (terrestrial) data sets to provide a seamless gravity map of the area of interest. The results of the 3D gravity modelling based the GPS analysis, magnetic field characters, seismic researches and analysis of earthquake data allow us to propose that (1) the DSB is divided into two tectonic blocks by the region between the Lisan peninsula and the southern margin of the northern DSB and (2) the tectonic system in the DSB is defined as a counter-clockwise rotating pull

  7. Multi-Spectral Digital Imaging of Dead Sea Scrolls and Other Ancient Documents

    NASA Technical Reports Server (NTRS)

    Bearman, Gregory; Zuckerman, Bruce; Zuckerman, Ken; Chiu, Joseph

    1993-01-01

    It is well known that the Dead Sea scrolls and similar soft media texts are often difficult to read due to the inability of the epigrapher to distinguish the black ink with which they were written from the aged, blacked parchment on which they were inscribed. While considerable success has been achieved in enhancing the readability of these texts through infrared photography, this technique-as conventionally applied today-has distinct limitations.

  8. Anthropogenic-enhanced erosion following the Neolithic Revolution in the Southern Levant: Records from the Dead Sea deep drilling core

    NASA Astrophysics Data System (ADS)

    Lu, Yin; Waldmann, Nicolas; Nadel, Dani; Marco, Shmuel

    2017-04-01

    In addition to tectonics and climatic changes, humans have exerted a significant impact on surface erosion over timescales ranging from years to centuries. However, such kind of impact over millennial timescales remains unsubstantiated. The Dead Sea drainage basin offers a rare combination of well-documented substantial climate change, intense tectonics and abundant archaeological evidence for past human activity in the Southern Levant. It serves as a natural laboratory for understanding how sedimentation rates in a deep basin are related to climate change, tectonics, and anthropogenic impacts on the landscape. Here we show how basin-wide erosion rates are recorded by thicknesses of rhythmic detritus laminae and clastic sediment accumulation rates in a long core retrieved by the Dead Sea Deep Drilling Project in the Dead Sea depocenter. During the last 11.5 kyr the average detrital accumulation rate is 3-4 times that during the last two glacial cycles (MIS 7c-2), and the average thickness of detritus laminae in the last 11.6 kyr is 4.5 times that between 21.7 and 11.6 ka, implying an increased erosion rate on the surrounding slopes during the Holocene. We estimate that this intensified erosion is incompatible with tectonic and climatic regimes during the corresponding time interval and further propose a close association with the Neolithic Revolution in the Levant (beginning at 11.5 ka). We thus suggest that human impact on the landscape was the primary driver causing the intensified erosion and that the Dead Sea sedimentary record serves as a reliable recorder of this impact since the Neolithic Revolution.

  9. Are coastal lagoons physically or biologically controlled ecosystems? Revisiting r vs. K strategies in coastal lagoons and estuaries

    NASA Astrophysics Data System (ADS)

    Pérez-Ruzafa, Angel; Marcos, Concepción; Pérez-Ruzafa, Isabel María; Pérez-Marcos, María

    2013-11-01

    Environmental stress influences biological assemblages, with species responding to stress by adopting particular life-history strategies (e.g., r vs. K). Coastal lagoons and estuaries are considered naturally stressed and physically controlled systems with frequent environmental disturbances and fluctuations. At the same time, their transitional nature (between terrestrial, freshwater and marine) makes them especially vulnerable to human impacts and land and freshwater inputs. As a result, it is hypothesised that residents of coastal lagoons would display characteristics of r-selected species. The r-strategy involves increased reproductive effort through early reproduction, small and numerous offspring with a large dispersive capability, short lifespan and small adult body size. Together, these traits provide a selective advantage in such unpredictable or short-lived environments. Alternatively, immigrants to coastal lagoons should mostly be K-strategists, with a competitive advantage over the r-strategists, at least on a temporary time scale. These hypotheses were explored using a dataset from 73 Atlanto-Mediterranean sites: 27 estuaries, 42 coastal lagoons and 4 from the sea, obtained from published sources. A detailed analysis of the distributions of the different resident fish species according to lagoon characteristics indicated that in lagoons with a higher marine influence the families Gobiidae, Blenniidae and Syngnathidae were common, while lagoons with freshwater influence are characterized by Cyprinidae and other freshwater species. In analyzing the biological strategies of lagoon species we found that fish assemblages inhabiting marine influenced lagoons were characterized by solitary, necto-benthonic sedentary species. These species are often hermaphroditic, with benthic broods and many exhibit brooding behaviour. This suggests that marine influenced lagoons are dominated by K-strategist species, while r-strategy species will be more common in

  10. Brazil The Duck Lagoon

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (Ruppia maritima) which reaches peak production during summer. Sea turtles (Chelonia mydas) can be found in the lagoon during spring and summer. Although the lowland tapir (Tapirus terrestris) is found in some parts of Rio Grande do Sul, the Baird's tapir (Tapirus bairdii), is not distributed within the image area (it is restricted to Central America). MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology. Image credit: NASA/GSFC/LaRC/JPL, MISR Team.

  11. Self-accelerated development of salt karst during flash floods along the Dead Sea Coast, Israel

    NASA Astrophysics Data System (ADS)

    Avni, Yoav; Lensky, Nadav; Dente, Elad; Shviro, Maayan; Arav, Reuma; Gavrieli, Ittai; Yechieli, Yoseph; Abelson, Meir; Lutzky, Hallel; Filin, Sagi; Haviv, Itai; Baer, Gidon

    2016-01-01

    We document and analyze the rapid development of a real-time karst system within the subsurface salt layers of the Ze'elim Fan, Dead Sea, Israel by a multidisciplinary study that combines interferometric synthetic aperture radar and light detection and ranging measurements, sinkhole mapping, time-lapse camera monitoring, groundwater level measurements and chemical and isotopic analyses of surface runoff and groundwater. The >1 m/yr drop of Dead Sea water level and the subsequent change in the adjacent groundwater system since the 1960s resulted in flushing of the coastal aquifer by fresh groundwater, subsurface salt dissolution, gradual land subsidence and formation of sinkholes. Since 2010 this process accelerated dramatically as flash floods at the Ze'elim Fan were drained by newly formed sinkholes. During and immediately after these flood events the dissolution rates of the subsurface salt layer increased dramatically, the overlying ground surface subsided, a large number of sinkholes developed over short time periods (hours to days), and salt-saturated water resurged downstream. Groundwater flow velocities increased by more than 2 orders of magnitudes compared to previously measured velocities along the Dead Sea. The process is self-accelerating as salt dissolution enhances subsidence and sinkhole formation, which in turn increase the ponding areas of flood water and generate additional draining conduits to the subsurface. The rapid terrain response is predominantly due to the highly soluble salt. It is enhanced by the shallow depth of the salt layer, the low competence of the newly exposed unconsolidated overburden and the moderate topographic gradients of the Ze'elim Fan.

  12. Amino Acid Coding Bias of the Hypersaline Dead Sea on an Environmental Scale

    NASA Astrophysics Data System (ADS)

    Rhodes, M. E.; Fitz-Gibbon, S.; Bodaker, I.; Beja, O.; Oren, A.; House, C.

    2008-12-01

    Metagenomic approaches can offer a broad overview of the microbial diversity in and environment and the metabolic processes performed within. At the most general level, knowing merely the GC content of an environment is enough to yield valuable insights as to the makeup of a microbial community. It has been documented that various environmental stresses, such as extreme acidity or salinity, can alter the usage of amino acids within members of an ecosystem. Here we explore the proportion of amino acids encoded within a variety of metagenomes including microbiomes from the human gut, the deep sea subsurface, acid mines, and the Dead Sea. Our primary focus is on strategies employed by hyperhalophiles to cope with the multimolar salinities of their environments. One of the approaches, used by archaea of the order Halobacteriales , as well as by a limited number of halophilc Bacteria is to accumulate comparable salt concentrations within their cytoplasm. It has been shown within individual species that the cytoplasmic proteins must then be modified in order to maintain their functionality. The changes include an overall increase in acidic amino acids coupled to a decrease in basic amino acids and a decrease in hydrophobic amino acids compensated for by an increase in the borderline hydrophobic amino acids Ser and Thr. We observed these trends within all fully sequenced hyperhalophilic Archaea and two distinct Dead Sea metagenomes (1992 and 2007). Additonally, the ratio of acidic to basic amino acids in the Dead Sea increased between the years 1992 and 2007, from 1.55 to 1.83. This corresponds to an increase of salinity of approximately 30 percent (from 270 ppt to 350 ppt) over the same time period. The shift in ratio of acidic to basic amino acids was not just observable in the metagenome as a whole and the archaeal subpopulation but was also pronounced in the bacterial subpopulation, from 1.27 to 1.62. This shift seems to indicate a restriction of the community from a

  13. Mercury in the sediments of the Marano and Grado Lagoon (northern Adriatic Sea): Sources, distribution and speciation

    NASA Astrophysics Data System (ADS)

    Acquavita, Alessandro; Covelli, Stefano; Emili, Andrea; Berto, Daniela; Faganeli, Jadran; Giani, Michele; Horvat, Milena; Koron, Neža; Rampazzo, Federico

    2012-11-01

    The existence of mining tailings in Idrija (Slovenia) and their subsequent transportation via the Isonzo River has been the primary source of mercury (Hg) in the northern Adriatic Sea for almost 500 years, making the Gulf of Trieste and the adjacent Marano and Grado Lagoon two of the most contaminated marine areas in the world. A further, more recent, contribution of Hg has been added by the operation of a chlor-alkali plant (CAP) located in the drainage basin flowing into the Lagoon. On the basis of previous research, as well as new data obtained from the "MIRACLE" project (Mercury Interdisciplinary Research for Appropriate Clam farming in a Lagoon Environment), the spatial distribution of Hg and its relationships with methylmercury (MeHg), organic matter and several geochemical parameters in surface sediments were investigated. The predominant and long-term impacts of the cinnabar-rich Isonzo River particulate matter in the Lagoon surface sediments are evident and confirmed by a decreasing concentration gradient from east (>11 μg g-1) to west (0.7 μg g-1). Hg originated from the CAP is only significant in the central sector of the Lagoon. Hg is primarily associated with fine-grained sediments (<16 μm), as a consequence of transport and dispersion from the fluvial source through littoral and tidal currents. However, speciation analyses highlighted the presence of Hg sulphides in the coarse sandy fraction of sediments from the eastern area, as expected given the origin of the sedimentary material. Unlike Hg, the distribution of MeHg (0.47-7.85 ng g-1) does not show a clear trend. MeHg constitutes, on average, 0.08% of total Hg and percentages are comparable to those obtained in similar lagoon environments. Higher MeHg concentrations in low to intermediate Hg-contaminated sediments indicate that the metal availability is not a limiting factor for MeHg occurrence, thus suggesting a major role played by environmental conditions and/or speciation. The reasonably

  14. Sustainability assessment of traditional fisheries in Cau Hai lagoon (South China Sea).

    PubMed

    Marconi, Michele; Sarti, Massimo; Marincioni, Fausto

    2010-01-01

    Overfishing and progressive environmental degradation of the Vietnamese Cau Hai coastal lagoon appear to be threatening the ecological integrity and water quality of the largest estuarine complex of Southeast Asia. This study assessed the relationships between the density of traditional fisheries and organic matter sedimentary contents in Cau Hai lagoon. Data revealed that the density of stake traps (the most common fishing gear used in this lagoon), decreasing hydrodynamic energy in shallow water, causes the accumulation of a large fraction of organic matter refractory to degradation. The relationship between biopolymeric carbon (a proxy of availability of organic matter) and stake traps density fits a S-shape curve. The logistic equation calculated a stake traps density of 90 m of net per hectare, as the threshold over which maximum accumulation of organic matter occurs in Cau Hai. With such level of stake trap density, and assuming a theoretical stationary status of the lagoon, the time necessary for the system to reach hypoxic conditions has been calculated to be circa three weeks. We recommend that this density threshold should not be exceeded in the Cau Hai lagoon and that further analyses of organic loads in the sediment should be conducted to monitor the trophic conditions of this highly eutrophicated lagoon. 2010 Elsevier Ltd. All rights reserved.

  15. Biogeochemical responses of shallow coastal lagoons to Climate Change

    NASA Astrophysics Data System (ADS)

    Brito, A.; Newton, A.; Tett, P.; Fernandes, T.

    2009-04-01

    The importance of climate change and global warming in the near future is becoming consensual within the scientific community (e.g. Kerr et al., 2008; Lloret et al., 2008). The surface temperature and sea level have increased during the last few years in the northern hemisphere (IPCC, 2007). Predictions for future changes include an increase of surface temperature and sea level for Europe. Moreover, the global warming phenomenon will also change the hydrological cycle and increase precipitation in northern and central Europe (IPCC, 2007). Sea level rise already threatens to overwhelm some lagoons, such as Venice and Moroccan lagoons (Snoussi et al., 2008). Shallow coastal lagoons are some of the most vulnerable systems that will be impacted by these changes (Eisenreich, 2005). Environmental impacts on coastal lagoons include an increase of water turbidity and therefore light attenuation. If these effects are strong enough, the lighted bottoms of shallow lagoons may loose a significant part of the benthic algal community. These communities are highly productive and are essential to control nutrient dynamics of the system by uptaking large amounts of nutrients both from the water column and from the sediments. A decrease in benthic algal communities and photosynthetic oxygen production will also contribute to increasing the vulnerability of the lagoons to hypoxia and anoxia. The flux of nutrients such as phosphate from the sediments may increase dramatically, further disrupting the nutrient balance and condition and promoting cyanobacterial blooms. Microbial activity is temperature dependent, therefore, the increase of temperature will increase the concentrations of ammonium within sediments. The release of phosphate and silicate will also increase with temperature. Coastal lagoons are valuable ecosystems and may be severely impacted, both ecologically and economically, by global change. Shallow coastal lagoons should be considered as sentinel systems and should be

  16. Microbial community analysis of the hypersaline water of the Dead Sea using high-throughput amplicon sequencing.

    PubMed

    Jacob, Jacob H; Hussein, Emad I; Shakhatreh, Muhamad Ali K; Cornelison, Christopher T

    2017-10-01

    Amplicon sequencing using next-generation technology (bTEFAP ® ) has been utilized in describing the diversity of Dead Sea microbiota. The investigated area is a well-known salt lake in the western part of Jordan found in the lowest geographical location in the world (more than 420 m below sea level) and characterized by extreme salinity (approximately, 34%) in addition to other extreme conditions (low pH, unique ionic composition different from sea water). DNA was extracted from Dead Sea water. A total of 314,310 small subunit RNA (SSU rRNA) sequences were parsed, and 288,452 sequences were then clustered. For alpha diversity analysis, sample was rarefied to 3,000 sequences. The Shannon-Wiener index curve plot reached a plateau at approximately 3,000 sequences indicating that sequencing depth was sufficient to capture the full scope of microbial diversity. Archaea was found to be dominating the sequences (52%), whereas Bacteria constitute 45% of the sequences. Altogether, prokaryotic sequences (which constitute 97% of all sequences) were found to predominate. The findings expand on previous studies by using high-throughput amplicon sequencing to describe the microbial community in an environment which in recent years has been shown to hide some interesting diversity. © 2017 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  17. A 300m-width sinkhole threatens the stability of the embankment of a saltpan in Jordan, Dead Sea Region

    NASA Astrophysics Data System (ADS)

    Closson, Damien; Abou Karaki, Najib; Pasquali, Paolo; Riccardi, Paolo

    2013-04-01

    Since the 1980s, the Dead Sea coastal zone is affected by sinkholes. The dynamic of the salt karst system is attested by a drastic increase of collapse events. The energy available for sub-surface erosion (or cavities genesis) is related to the head difference between the water table and the lake level which drop down at an accelerating rate of more than 1 m/yr. In the region of Ghor Al Haditha, Jordan, the size of the craters increased significantly during the last decade. Up to now, the greatest compound structure observed (association of metric subsidence, decametric sinkholes, and landslides) was about 150-200 m in diameter. End of December 2012, a single circular structure having 250-300 m in diameter was identified within a 10 km x 1.5 km saltpan of the Arab Potash Company. This finding raises questions regarding the origin of the underlying cavity and the capability of prediction of all models developed up to now in Israel and Jordan regarding the Dead Sea sinkholes. The analysis of satellite images of the past shows that the appearance of this unique depression is very recent (probably less than 5 years). Cosmo-SkyMed radar images have been processed to map the associated deformation field. Ground motions attest that the overall diameter could be around 600 m. Currently, this sinkhole is threatening the stability of more than one kilometer of a 12 km long dike holding 90 million m3 of Dead Sea brine. This case study underlines the great fragility of the Dead Sea salt karst and demonstrates the need for the setting up of an early warning system.

  18. Lower crustal flow and the role of shear in basin subsidence: An example from the Dead Sea basin

    USGS Publications Warehouse

    Al-Zoubi, A.; ten Brink, Uri S.

    2002-01-01

    We interpret large-scale subsidence (5–6 km depth) with little attendant brittle deformation in the southern Dead Sea basin, a large pull-apart basin along the Dead Sea transform plate boundary, to indicate lower crustal thinning due to lower crustal flow. Along-axis flow within the lower crust could be induced by the reduction of overburden pressure in the central Dead Sea basin, where brittle extensional deformation is observed. Using a channel flow approximation, we estimate that lower crustal flow would occur within the time frame of basin subsidence if the viscosity is ≤7×1019–1×1021 Pa s, a value compatible with the normal heat flow in the region. Lower crustal viscosity due to the strain rate associated with basin extension is estimated to be similar to or smaller than the viscosity required for a channel flow. However, the viscosity under the basin may be reduced to 5×1017–5×1019 Pa s by the enhanced strain rate due to lateral shear along the transform plate boundary. Thus, lower crustal flow facilitated by shear may be a viable mechanism to enlarge basins and modify other topographic features even in the absence of underlying thermal anomalies.

  19. The role of connectivity and hydrodynamic conditions in the configuration of ichthyoplankton assemblages in coastal lagoons

    NASA Astrophysics Data System (ADS)

    Pérez-Ruzafa, Angel; Quispe, Jhoni I.; Umgiesser, Georg; Ghezzo, Michol; De Pascalis, Francesca; Marcos, Concepción

    2014-05-01

    Fish assemblages in coastal lagoons are constituted by species with different gilds and life stories including estuarine residents but also a high percentage of marine stragglers and marine migrants. Previous studies showed that different ichthyoplancton assemblages can be identified inside a lagoon, depending on hydrological conditions, but at the same time a high spatial and temporal variability haven observed. The proposed models to explain lagoon assemblages configuration based on probabilities of colonization from the open sea involves an important stochastic component and introduces some randomness that could lead to that high spatial and temporal variability at short and long-term scales. In this work we analyze the relationship between ichthyoplankton assemblages in the Mar Menor lagoon and the adjacent open sea in the framework of the hydrodynamics of the lagoon and connectivity between sampling stations using hydrodynamic models. The results, show a complex interaction between the different factors that lead to a highly variable system with high accumulated richness and diversity of species, and a large proportion of occasional visitors and stragglers suggesting that the mechanisms of competitive lottery can play an important role in the maintenance of communities of coastal lagoons , where environmental variability occurs in a system with strong differences in colonization rates and connectivity, not only with the open sea, but also between locations within the lagoon.

  20. Crustal structure of the southern Dead Sea basin derived from project DESIRE wide-angle seismic data

    NASA Astrophysics Data System (ADS)

    Mechie, J.; Abu-Ayyash, K.; Ben-Avraham, Z.; El-Kelani, R.; Qabbani, I.; Weber, M.

    2009-07-01

    As part of the DEad Sea Integrated REsearch project (DESIRE) a 235 km long seismic wide-angle reflection/refraction (WRR) profile was completed in spring 2006 across the Dead Sea Transform (DST) in the region of the southern Dead Sea basin (DSB). The DST with a total of about 107 km multi-stage left-lateral shear since about 18 Ma ago, accommodates the movement between the Arabian and African plates. It connects the spreading centre in the Red Sea with the Taurus collision zone in Turkey over a length of about 1100 km. With a sedimentary infill of about 10 km in places, the southern DSB is the largest pull-apart basin along the DST and one of the largest pull-apart basins on Earth. The WRR measurements comprised 11 shots recorded by 200 three-component and 400 one-component instruments spaced 300 m to 1.2 km apart along the whole length of the E-W trending profile. Models of the P-wave velocity structure derived from the WRR data show that the sedimentary infill associated with the formation of the southern DSB is about 8.5 km thick beneath the profile. With around an additional 2 km of older sediments, the depth to the seismic basement beneath the southern DSB is about 11 km below sea level beneath the profile. Seismic refraction data from an earlier experiment suggest that the seismic basement continues to deepen to a maximum depth of about 14 km, about 10 km south of the DESIRE profile. In contrast, the interfaces below about 20 km depth, including the top of the lower crust and the Moho, probably show less than 3 km variation in depth beneath the profile as it crosses the southern DSB. Thus the Dead Sea pull-apart basin may be essentially an upper crustal feature with upper crustal extension associated with the left-lateral motion along the DST. The boundary between the upper and lower crust at about 20 km depth might act as a decoupling zone. Below this boundary the two plates move past each other in what is essentially a shearing motion. Thermo

  1. Hydrological behavior of coastal lagoons associated to wetlands, an example from southernmost bahía Samborombón (Argentina).

    NASA Astrophysics Data System (ADS)

    Tejada Tejada, Macarena; Carol, Eleanora; Galliari, Julieta; Richiano, Sebastian

    2017-04-01

    Coastal wetlands are located at a critical interface between the terrestrial and marine environments and are ideally positioned to reduce impacts from land-based sources. At the southern region of Bahía Samborombón (Argentina) the wetlands includes several small coastal lagoons developed inside of a sandy spike. The main object of this work is to analyze the hydrological behavior of the lagoons evaluating their role in the maintenances of the wetland. In order to do this, satellite image analysis was performed to identify the marshy areas, drainage features, morphology and connections of the lagoons, both with the tidal flows from the Río de la Plata estuary and from the Argentine Sea. Field surveys were carried out in one of the lagoons to define their geological and geomorphological characteristics. After that, a monitoring network was designed for sampling the superficial and the underground water, additionally electrical conductivity and pH of the water were determined in situ. In all the water samples extracted the content of majority ions was determined by standard methods. Complementary, sedimentological and malacological aspects were observed at several stations in the lagoon. The obtained results allow us to recognize that the tidal flow that enters from the sea, at least in the studied lagoon, is the main hydrological sustenance of the wetland. This flow enters mainly using one tidal channel which connects (in a semi-permanent way) the sea with the lagoon during extraordinary tide and storm events. During low tide the lagoon loses connection and the drainage towards the sea is scarce. The tidal water that accumulates in the lagoon is subsequently evaporated causing an increase in the salinity of the surface water to values higher than the sea. Groundwater that accumulates through the infiltration of rainfall in the sandy sediments of the spike also discharges to the lagoon and supports the wetland surrounding the coastal lagoon. This flow, even when it

  2. Dead Sea pollen provides new insights into the paleoenvironment of the southern Levant during MIS 6-5

    NASA Astrophysics Data System (ADS)

    Chen, Chunzhu; Litt, Thomas

    2018-05-01

    The paleoclimate of the southern Levant, especially during the last interglacial (LIG), is still under debate. Reliable paleovegetation information for this period, as independent evidence to the paleoenvironment, was still missing. In this study, we present a high-resolution pollen record encompassing 147-89 ka from the Dead Sea deep drilling core 5017-1A. The sediment profile is marked by alternations of laminated marl deposits and thick massive halite, indicating lake-level fluctuations. The pollen record suggests that steppe and desert components predominated in the Dead Sea surroundings during the whole investigated interval. The late penultimate glacial (147.3-130.9 ka) and early last glacial (115.5-89.1 ka) were cool and relatively dry, with sub-humid conditions confined to the mountains that sustained moderate amounts of deciduous oaks. Prior to the LIG optimum, a prevalence of desert components and a concomitant increase in frost-sensitive pistachio trees demonstrate the occurrence of an arid initial warming phase (130.9-124.2 ka). The LIG optimum (124.2 ka-115.5 ka) was initiated by an abrupt grass expansion that was followed by a rapid spread of woodlands in the mountains due to increased moisture availability. The remarkable sclerophyllous expansion points to a strong seasonal moisture deficit. These results contradict previous Dead Sea lake-level investigations that suggested pluvial glacials and a warm, dry LIG in the southern Levant. Prominent discrepancies between vegetation and Dead Sea lake stands are also registered at 128-115 ka, and the potential causes are discussed. In particular, while the pollen spectra mirror increased effective moisture during the LIG optimum, the massive halite deposition is indicative of an extremely low lake level. Given that the climate amelioration triggered the migration of early modern humans to the southern Levant, we speculate that the diverse ecosystems in the region provided great potential for their residence

  3. The ICDP Dead Sea deep drill cores: records of climate change and tectonics in the Levant

    NASA Astrophysics Data System (ADS)

    Goldstein, S. L.; Stein, M.; Ben-Avraham, Z.; Agnon, A.; Ariztegui, D.; Brauer, A.; Haug, G. H.; Ito, E.; Kitagawa, H.; Torfstein, A.

    2012-12-01

    The Dead Sea drainage basin sits at the boundary of the Mediterranean and the Saharan climate zones, and the basin is formed by the Dead Sea transform fault. The ICDP-funded Dead Sea Deep Drilling Project recovered the longest and most complete paleo-environmental and paleo-seismic record in the Middle East, drilling holes of ~450 and ~350 meters in deep (~300 m below the lake level) and shallow sites (~3 m), respectively, and. The sediments record the evolving environmental conditions (e.g. droughts, rains, floods, dust-storms), as well as tectonics (earthquake layers). The core can be dated using 14C on organic materials, U-Th on inorganic aragonite, stable isotopes, and layer counting. They were opened, described, and XRF-scanned during June to November 2011, the first sampling party took place in July 2012, and study is now underway. Some important conclusions can already be drawn. The stratigraphy reflects the climate conditions. During wet climate intervals the lithology is typically varve-like laminated aragonite and detritus (aad), reflecting summer and winter seasons, respectively, and sequences of mud. Gypsum layers reflect more arid climate, and salt (halite) indicates extreme aridity. The Dead Sea expands during glacials, and the portion of the core that corresponds to the last glacial Lisan Formation above the shoreline is easily recognized in the core based on the common lithological sequence, and this allows us to infer a broad scale age model. Interglacials show all the lithologic facies (aad, mud, gypsum, salt), reflecting extreme climate variability, while glacials contain the aad, mud, and gypsum but lack salt layers. Thus we estimate that the deep site hole extends into MIS 7 (to ~200,000 years). Thin (up to several cm thick) seismic layers occur throughout the core, but thick (up to several meters) landslide deposits only occur during glacial intervals. The most dramatic discovery is evidence of an extreme dry interval during MIS 5 at the deep

  4. Effect of climate change and mollusc invasion on eutrophication and algae blooms in the lagoon ecosystems of the Baltic Sea

    NASA Astrophysics Data System (ADS)

    Aleksandrov, Sergei; Gorbunova, Julia; Rudinskaya, Lilia

    2015-04-01

    Coastal lagoons are most vulnerable to impacts of natural environmental and anthropogenic factors. The Curonian Lagoon and Vistula Lagoon are the largest coastal lagoons of the Baltic Sea, relating to the most highly productive water bodies of Europe. The Curonian Lagoon is choke mostly freshwater lagoon, while the Vistula Lagoon is restricted brackish water lagoon. In the last decades the nutrients loading changes, warming trend and biological invasions are observed. The researches (chlorophyll, primary production, nutrients, phytoplankton, benthos, etc) were carried out monthly since 1991 to 2014. The database includes 1600 stations in the Curonian Lagoon, 1650 stations in the Vistula Lagoon. Eutrophication and algae blooms are most important problems. Multiple reductions of nutrients loading from the watershed area in 1990s did not result in considerable improvement of the ecological situation in the lagoons. The Curonian Lagoon may be characterized as hypertrophic water body with "poor" water quality. Climate change in 1990s-2000s combined with other factors (freshwater, slow-flow exchange, high nutrients concentrations) creates conditions for Cyanobacteria "hyperblooms". Hyperbloom of Cyanophyta (average for the growing season Chl > 100 μg/l) were observed during 4 years in 1990s and 7 years in 2000s. The summer water temperature is the key environmental factor determining the seasonal and long-term variability of the primary production and algae blooms. Mean annual primary production in 2010-2014 (600 gC·m-2·year-1) is considerable higher, than in the middle of 1970s (300 gC·m-2·year-1). The local climate warming in the Baltic region caused ongoing eutrophication and harmful algae blooms in the Curonian Lagoon despite of significant reduction of nutrients loading in 1990s-2000s. Harmful algal blooms in July-October (chlorophyll to 700-3400 μg/l) result in deterioration of the water chemical parameters, death of fish in the coastal zone and pollution

  5. Geochemical assessment of hydrocarbon migration phenomena: Case studies from the south-western margin of the Dead Sea Basin

    NASA Astrophysics Data System (ADS)

    Sokol, Ella; Kozmenko, Olga; Smirnov, Sergey; Sokol, Ivan; Novikova, Sofya; Tomilenko, Anatoliy; Kokh, Svetlana; Ryazanova, Tatyana; Reutsky, Vadim; Bul'bak, Taras; Vapnik, Yevgeny; Deyak, Michail

    2014-10-01

    Calcite veins with fluid and solid bitumen inclusions have been discovered in the south-western shoulder of the Dead Sea rift within the Masada-Zohar block, where hydrocarbons exist in small commercial gas fields and non-commercial fields of heavy and light oils. The gas-liquid inclusions in calcite are dominated either by methane or CO2, and aqueous inclusions sometimes bear minor dissolved hydrocarbons. The enclosed flake-like solid bitumen matter is a residue of degraded oil, which may be interpreted as “dead carbon”. About 2/3 of this matter is soot-like amorphous carbon and 1/3 consists of n-C8sbnd C18 carboxylic acids and traces of n-alkanes, light dicarboxylic acids, and higher molecular weight (>C20) branched and/or cyclic carboxylic acids. Both bitumen and the host calcites show genetic relationship with mature Maastrichtian chalky source rocks (MCSRs) evident in isotopic compositions (δ13C, δ34S, and δ18O) and in REE + Y patterns. The bitumen precursor may have been heavy sulfur-rich oil which was generated during the burial compaction of the MCSR strata within the subsided blocks of the Dead Sea graben. The δ18O and δ13C values and REE + Y signatures in calcites indicate mixing of deep buried fluids equilibrated with post-mature sediments and meteoric waters. The temperatures of fluid generation according to Mg-Li-geothermometer data range from 55 °С to 90 °С corresponding to the 2.5-4.0 km depths, and largely overlap with the oil window range (60-90 °С) in the Dead Sea rift (Hunt, 1996; Gvirtzman and Stanislavsky, 2000; Buryakovsky et al., 2005). The bitumen-rich vein calcites originated in the course of Late Cenozoic rifting and related deformation, when tectonic stress triggers damaged small hydrocarbon reservoirs in the area, produced pathways, and caused hydrocarbon-bearing fluids to rise to the subsurface; the fluids filled open fractures and crystallized to calcite with entrapped bitumen. The reported results are in good agreement

  6. Detection of sinkhole precursors along the Dead Sea, Israel by SAR interferometry

    NASA Astrophysics Data System (ADS)

    Nof, Ran; Baer, Gidon; Ziv, Alon; Eyal, Yehuda; Raz, Eli; Atzori, Simone; Salvi, Stefano

    2013-04-01

    The water level of the Dead Sea (Israel and Jordan) has been dropping at an increasing rate since the 1960s, exceeding a meter per year during the last decade. This water-level drop has triggered the formation of sinkholes and widespread land subsidence along the Dead Sea shorelines, resulting in severe economic loss and infrastructural damage. In this study, sinkhole-related precursory subsidence and the effects of human activities on sinkhole development are examined through Interferometric Synthetic Aperture Radar (InSAR) measurements and field surveys conducted in Israel during the year 2012. Interferograms were generated using the COSMO-SkyMed satellite images and a high-resolution (0.5 m/pixel) elevation model that was obtained from airborne Light Detection and Ranging (LiDAR). Thanks to this unique integration of high-resolution datasets, mm-scale subsidence may be resolved in both undisturbed and human-disturbed environments. A few months long precursory subsidence occurred in all three sinkhole sites reported in this study. The centers of the subsiding areas and successive sinkholes in a specific site show lateral migration, possibly due to progressive dissolution and widening of the underlying cavities. Certain human activities, such as filling of newly formed sinkholes by gravel, or mud injections into nearby drill holes, seem to enhance land subsidence, widen existing sinkholes or even generate new sinkholes.

  7. Intermittent balneotherapy at the Dead Sea area for patients with knee osteoarthritis.

    PubMed

    Sherman, Gilad; Zeller, Lior; Avriel, Avital; Friger, Michael; Harari, Marco; Sukenik, Shaul

    2009-02-01

    Balneotherapy, traditionally administered during a continuous stay at the Dead Sea area, has been shown to be effective for patients suffering from knee osteoarthritis. To evaluate the effectiveness of an intermittent regimen of balneotherapy at the Dead Sea for patients with knee osteoarthritis. Forty-four patients with knee osteoarthritis were included in a prospective randomized single-blind controlled study. The patients were divided into two groups: a treatment group (n=24), which were treated twice weekly for 6 consecutive weeks in a sulfur pool heated to 35-36 degrees C, and a control group (n=20) treated in a Jacuzzi filled with tap water heated to 35-36 degrees C. Participants were assessed by the Lequesne index of osteoarthritis severity, the WOMAC index, the SF-36 quality of health questionnaire, VAS scales for pain (completed by patients and physicians), and physical examination. A statistically significant improvement, lasting up to 6 months, was observed in the treatment group for most of the clinical parameters. In the control group the only improvements were in the SF-36 bodily pain scale at 6 months, the Lequesne index at 1 month and the WOMAC pain score at the end of the treatment period. Although the patients in the control group had milder disease, the difference between the two groups was not statistically significant. Intermittent balneotherapy appears to be effective for patients with knee osteoarthritis.

  8. New evidence on the accurate displacement along the Arava/Araba segment of the Dead Sea Transform

    NASA Astrophysics Data System (ADS)

    Beyth, M.; Sagy, A.; Hajazi, H.; Alkhraisha, S.; Mushkin, A.; Ginat, H.

    2018-06-01

    The sinistral displacement along the Dead Sea Transform (DST), the plate boundary between the African and the Arabian plates, south of the Dead Sea basin, was previously attributed to two main fault zones: the Arava/Araba or Dead Sea fault and the Feinan or Al Quwayra fault zone. This was based on similarities of features on either side of the Araba Valley. In particular, the Timna and the Feinan copper mines, located north of the Themed and Dana faults, and the onlap of the Cambrian formations southward onto the Amram rhyolite and Ahyamir volcanics. To these we add a more accurate offset indicator in the form of an offset Early Cambrian (532 Ma) dolerite dyke previously mapped in Mount Amram (Israel) on the African plate and recently discovered across the Araba Valley in Jabal Sumr al Tayyiba (southwest Jordan) on the Arabian plate. This dolerite dyke is 20 m thick, strikes N50°E and is the only dyke intruding the Jabal Sumr al Tayyiba pink rhyolite flows of the Ahyamir Volcanics. Geochemical and geochronological correlations between the Jabal Sumr al Tayyiba dolerite dyke and the Mount Amram dolerite dyke demonstrate 85 km of sinistral offset across the Arava/Araba fault. Our results also suggest approximately 109 km of combined sinistral displacement across the Arava/Araba and Feinan faults based on petrological correlations between the Timna and Jabal Hanna igneous complexes on the African and Arabian plates, respectively. This constrains the total sinistral displacement of the Feinan fault and its accessory faults to be 24 km.

  9. New evidence on the accurate displacement along the Arava/Araba segment of the Dead Sea Transform

    NASA Astrophysics Data System (ADS)

    Beyth, M.; Sagy, A.; Hajazi, H.; Alkhraisha, S.; Mushkin, A.; Ginat, H.

    2017-11-01

    The sinistral displacement along the Dead Sea Transform (DST), the plate boundary between the African and the Arabian plates, south of the Dead Sea basin, was previously attributed to two main fault zones: the Arava/Araba or Dead Sea fault and the Feinan or Al Quwayra fault zone. This was based on similarities of features on either side of the Araba Valley. In particular, the Timna and the Feinan copper mines, located north of the Themed and Dana faults, and the onlap of the Cambrian formations southward onto the Amram rhyolite and Ahyamir volcanics. To these we add a more accurate offset indicator in the form of an offset Early Cambrian (532 Ma) dolerite dyke previously mapped in Mount Amram (Israel) on the African plate and recently discovered across the Araba Valley in Jabal Sumr al Tayyiba (southwest Jordan) on the Arabian plate. This dolerite dyke is 20 m thick, strikes N50°E and is the only dyke intruding the Jabal Sumr al Tayyiba pink rhyolite flows of the Ahyamir Volcanics. Geochemical and geochronological correlations between the Jabal Sumr al Tayyiba dolerite dyke and the Mount Amram dolerite dyke demonstrate 85 km of sinistral offset across the Arava/Araba fault. Our results also suggest approximately 109 km of combined sinistral displacement across the Arava/Araba and Feinan faults based on petrological correlations between the Timna and Jabal Hanna igneous complexes on the African and Arabian plates, respectively. This constrains the total sinistral displacement of the Feinan fault and its accessory faults to be 24 km.

  10. Implications of S1 tephra findings in Dead Sea and Tayma palaeolake sediments for marine reservoir age estimation and palaeoclimate synchronisation

    NASA Astrophysics Data System (ADS)

    Neugebauer, Ina; Wulf, Sabine; Schwab, Markus J.; Serb, Johanna; Plessen, Birgit; Appelt, Oona; Brauer, Achim

    2017-08-01

    Here we report on the first findings of a cryptotephra in the Holocene lacustrine sediment records of the Dead Sea and Tayma palaeolake (NW Arabian Peninsula). The major element glass composition of this rhyolitic tephra is identical to the distal 'S1' tephra layer identified in the Yammoûneh palaeolake (Lebanon), in a marine sediment record from the SE Levantine basin and in the Sodmein Cave archaeological site in Egypt. The S1 tephra corresponds to the early Holocene 'Dikkartın' dome eruption of the Erciyes Dağ volcano in central Anatolia (Turkey) and has been dated in the marine record at 8830 ± 140 cal yr BP. We present new age estimates of the S1 tephra based on radiocarbon dating of terrestrial plant remains and pollen concentrates revealing ages of 8939 ± 83 cal yr BP in the Dead Sea sediments and 9041 ± 254 cal yr BP in Tayma. The precise date from the Dead Sea allows refining the early Holocene marine reservoir age in the SE Levantine Sea to ca. 320 ± 50 years. Synchronisation of marine and terrestrial palaeoclimate records in the eastern Mediterranean region using the S1 tephra further suggests a time-transgressive expansion of the early Holocene humid period.

  11. Testing lagoonal sediments with early life stages of the copepod Acartia tonsa (Dana): An approach to assess sediment toxicity in the Venice Lagoon.

    PubMed

    Picone, Marco; Bergamin, Martina; Delaney, Eugenia; Ghirardini, Annamaria Volpi; Kusk, Kresten Ole

    2018-01-01

    The early-life stages of development of the calanoid copepod Acartia tonsa from egg to copepodite I is proposed as an endpoint for assessing sediment toxicity by exposing newly released eggs directly onto the sediment-water interface. A preliminary study of 5 sediment samples collected in the lagoon of Venice highlighted that the larval development rate (LDR) and the early-life stages (ELS) mortality endpoints with A. tonsa are more sensitive than the standard amphipod mortality test; moreover LDR resulted in a more reliable endpoint than ELS mortality, due to the interference of the sediment with the recovery of unhatched eggs and dead larvae. The LDR data collected in a definitive study of 48 sediment samples from the Venice Lagoon has been analysed together with the preliminary data to evaluate the statistical performances of the bioassay (among replicate variance and minimum significant difference between samples and control) and to investigate the possible correlation with sediment chemistry and physical properties. The results showed that statistical performances of the LDR test with A. tonsa correspond with the outcomes of other tests applied to the sediment-water interface (Strongylocentrotus purpuratus embryotoxicity test), sediments (Neanthes arenaceodentata survival and growth test) and porewater (S. purpuratus); the LDR endpoint did, however, show a slightly higher variance as compared with other tests used in the Lagoon of Venice, such as 10-d amphipod lethality test and larval development with sea urchin and bivalves embryos. Sediment toxicity data highlighted the high sensitivity and the clear ability of the larval development to discriminate among sediments characterized by different levels of contamination. The data of the definitive study evidenced that inhibition of the larval development was not affected by grain-size and the organic carbon content of the sediment; in contrast, a strong correlation between inhibition of the larval development

  12. Sediment budget in the Lagoon of Venice, Italy

    NASA Astrophysics Data System (ADS)

    Sarretta, A.; Pillon, S.; Molinaroli, E.; Guerzoni, S.; Fontolan, G.

    2010-05-01

    A comparison of 1927, 1970 and 2002 bathymetric surveys in the Lagoon of Venice was used to reconstruct historical changes in sedimentation. A detailed GIS-based analysis of the charts revealed the timing and pattern of geomorphic changes and allowed calculation of sediment deposition and erosion for the entire lagoon and each of its four sub-basins: Treporti, Lido, Malamocco and Chioggia. Two main developments are discernible from comparative observation of the areal distribution of the main elevation ranges: the diminution in area of the saltmarshes, which decreased by more than 50%, from 68 km 2 in 1927 to 32 km 2 in 2002, and the progressive deepening of the lagoon, with a huge increase in the area of subtidal flats (between -0.75 and -2.00 m depth), from 88 to 206 km 2 during the same period. Generally, the lagoon showed a clear-cut change in the most frequent depths (modal depth) from a value of -0.62 m in 1927 to -0.88 m in 2002. The deepening of the lagoon affected mostly the lagoonal sub-basins south of the town of Venice, where modal depth increased from -0.65 to -1.12 m in Lido, from -0.64 to -1.75 m in Malamocco and from -0.39 to -0.88 m in Chioggia. Large changes in lagoonal morphology were caused by human-induced subsidence, the dredging of navigation channels between 1927 and 1970, and intense natural erosion enhanced by sediment re-suspension due to Manila clam fishing between 1970 and 2002. There was a net loss of about 110 Mm 3 of sediment from the lagoon, most of which (73 Mm 3, ca.70%) was in the earlier period. A significant amount was lost by dredging and direct disposal outside the system, either on land or at sea, and there was a net loss of 39 Mm 3 from the lagoon to the sea through the inlets, at an annual rate of 0.5 Mm 3. Comparison of erosion rates in the two periods revealed an alarming acceleration, from a net sediment loss of 0.3 Mm 3 yr -1 in the period 1927-1970 to 0.8 Mm 3 yr -1 in 1970-2002. Deterioration caused a shift from a

  13. Geochemical characterization of fluids along the Dead Sea Rift: implications for fluids sources and regional geodynamic setting

    NASA Astrophysics Data System (ADS)

    Inguaggiato, Claudio; Censi, Paolo; D'Alessandro, Walter; Zuddas, Pierpaolo

    2016-04-01

    The Dead Sea Fault where a lateral displacement between the African and Arabian plates occurs is characterized by anomalous heat flux in the northern Israel area close to the border with Syria and Jordan (Shalev et al., 2012). The concentrations of He and CO2, and isotopic composition of He and total dissolved inorganic carbon were studied in cold and thermal waters collected along the Dead Sea Fault, in order to investigate the source of volatiles and their relationship with the tectonic framework of the Dead Sea Fault. The waters with higher temperature (up to 57.2 ° C) are characterized by higher amounts of CO2and helium (up to 55.72 and 1.91*10-2 cc l-1, respectively). Helium isotopic data (R/Ra from 0.11 to 2.14) and 4He/20Ne ratios (0.41 - 106.86) show the presence of deep-deriving fluids consisting of a variable mixture of mantle and crust end-members, with the former reaching up to 35%. Carbon isotope signature of total dissolved carbon from hot waters falls within the range of magmatic values, suggesting the delivery of deep-seated CO2. The geographical distribution of helium isotopic data and isotopic carbon (CO2) values coupled with (CO2/3He ratios) indicate a larger contribution of mantle-derived fluids affecting the northern part of the investigated area, where the waters reach the highest temperature and anomalous heat flux was recognized by Shalev et al. (2012). Such occurrence is probably favoured by the peculiar tectonic framework recognized in the northern part of Israel (Segev et al., 2006), including a Moho discontinuity up-rise and/or the presence of a deep fault system coupled with the recent magmatic activity. References: Segev, A., Rybakov, M., Lyakhovsky, V, Hofstetter, A, Tibor, G., Goldshmidt, V., 2006. The structure, isostasy and gravity field of the Levant continental margin and the southeast Mediterranean area. Tectonophysics 425, 137-157. Shalev, E., Lyakhosky, V., Weinstein, Y., Ben-Avraham, Z., 2013. The thermal structure of Israel

  14. Macroalgae, nutrient cycles, and pollutants in the lagoon of Venice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sfriso, A.; Pavoni, B.; Marcomini, A.

    1992-12-01

    The Lagoon of Venice is a wide, shallow coastal basin that extends for about 50 km along the northwest coast of the Adriatic Sea. The lagoon has been substantially modified through the actions of man over the last century through the artificial control of the hydraulic dynamics of the lagoon including the construction of channels to facilitate navigation. The lagoon is subjected to considerable pollutant loading through the drainage of land under cultivation, municipal sewage, and industrial effluents. In this paper are reported the results of observations designed to document recent changes in macroalgal species composition, seasonal cycles of primarymore » producers and nutrient levels, and the effects of the macroalgal community on concentrations of organic and inorganic pollutants. The dominant macroalgae in the lagoon was Ulva rigida, and the levels of plant nutrients and pollutants were influenced by the seasonal cycles of the macroalgal community. 44 refs., 11 figs., 2 tabs.« less

  15. Dissolved Copper, Nickel and Lead in Tampamachoco Lagoon and Tuxpan River Estuary in the SW Gulf of Mexico.

    PubMed

    Garduño Ruiz, E P; Rosales Hoz, L; Carranza Edwards, A

    2016-10-01

    In order to estimate the effects of a thermal power plant, physicochemical parameters and the concentrations of copper, nickel and lead were evaluated in water from both Tampamachoco Lagoon and the estuary of the Tuxpan River. Average salinities were 33.66 ups in the lagoon area, 32.77 ups in the channel that joins the lagoon and the river, and 24.74 ups in the river estuary. Total average metal concentrations were 21.95 for Cu, 29.67 for Ni and 4.31 µ/L for Pb. Sampling point 1 and samples from the bottom water of the lagoon present the highest salinities and concentrations of suspended matter, TOC, Cu, Ni and Pb.These high values may be associated with the infiltration of sea water either from plant operation or from the channel that connects the lagoon with the sea.

  16. Climate change and dead zones.

    PubMed

    Altieri, Andrew H; Gedan, Keryn B

    2015-04-01

    Estuaries and coastal seas provide valuable ecosystem services but are particularly vulnerable to the co-occurring threats of climate change and oxygen-depleted dead zones. We analyzed the severity of climate change predicted for existing dead zones, and found that 94% of dead zones are in regions that will experience at least a 2 °C temperature increase by the end of the century. We then reviewed how climate change will exacerbate hypoxic conditions through oceanographic, ecological, and physiological processes. We found evidence that suggests numerous climate variables including temperature, ocean acidification, sea-level rise, precipitation, wind, and storm patterns will affect dead zones, and that each of those factors has the potential to act through multiple pathways on both oxygen availability and ecological responses to hypoxia. Given the variety and strength of the mechanisms by which climate change exacerbates hypoxia, and the rates at which climate is changing, we posit that climate change variables are contributing to the dead zone epidemic by acting synergistically with one another and with recognized anthropogenic triggers of hypoxia including eutrophication. This suggests that a multidisciplinary, integrated approach that considers the full range of climate variables is needed to track and potentially reverse the spread of dead zones. © 2014 John Wiley & Sons Ltd.

  17. The Northern end of the Dead Sea Basin: Geometry from reflection seismic evidence

    USGS Publications Warehouse

    Al-Zoubi, A. S.; Heinrichs, T.; Qabbani, I.; ten Brink, Uri S.

    2007-01-01

    Recently released reflection seismic lines from the Eastern side of the Jordan River north of the Dead Sea were interpreted by using borehole data and incorporated with the previously published seismic lines of the eastern side of the Jordan River. For the first time, the lines from the eastern side of the Jordan River were combined with the published reflection seismic lines from the western side of the Jordan River. In the complete cross sections, the inner deep basin is strongly asymmetric toward the Jericho Fault supporting the interpretation of this segment of the fault as the long-lived and presently active part of the Dead Sea Transform. There is no indication for a shift of the depocenter toward a hypothetical eastern major fault with time, as recently suggested. Rather, the north-eastern margin of the deep basin takes the form of a large flexure, modestly faulted. In the N-S-section along its depocenter, the floor of the basin at its northern end appears to deepen continuously by roughly 0.5??km over 10??km distance, without evidence of a transverse fault. The asymmetric and gently-dipping shape of the basin can be explained by models in which the basin is located outside the area of overlap between en-echelon strike-slip faults. ?? 2007 Elsevier B.V. All rights reserved.

  18. An Environmental Survey of Canton Atoll Lagoon, 1973

    DTIC Science & Technology

    1976-06-01

    isolated /’e)ll~opora heads. Observation track perpendicular to shoreline. Numnerous sea 4 ~ urchins (L~Ivnomo’ra sp.) in surf zone. 200 m - ,-observation...narrowest and shallowest point Is approximately 150 m wide and 5 m deep. In his original field notes, E. H -. Bryan. Jr. I(notes at Whitney South Sea ...a height ot over 5 in1 above sea leyel. 1’ho turning basin wits cleared and the deep channel was prouhubly dredged front the lagoon side, Later, the

  19. Seasonal Variability in Mercury Speciation within Select Coastal Lagoons of Central California

    NASA Astrophysics Data System (ADS)

    Ganguli, P. M.; Conaway, C. H.; Dimova, N. T.; Swarzenski, P. W.; Kehrlein, N. C.; Flegal, A. R.

    2011-12-01

    Coastal lagoons may play an important role in mercury biogeochemical cycling at the land-sea margin. Along the coast of California, these systems are seasonally dynamic, behaving as estuaries during the wet season and as lagoons in the dry season when ephemeral sand berms develop and isolate terrestrial freshwater from direct exchange with the ocean. As a consequence, many lagoons become eutrophic in the dry season and are characterized by high nutrient and low dissolved oxygen concentrations. Because monomethylmercury (MMHg) production can be mediated by anaerobic bacteria, coastal lagoons are a potential source of biologically available MMHg that may be transported to the nearshore environment via submarine groundwater discharge. To evaluate the importance of coastal lagoons at the land-sea margin, we quantified total mercury (HgT) and MMHg concentrations in surface water and coastal seawater from six sites during dry and wet season conditions, including one storm event. Additionally, we conducted a tidal study at one lagoon in which we sampled surface water, seawater, and groundwater over a 10-hour period during a falling tide (+1.63 to 0.00 m). Groundwater was collected using a multi-port piezometer screened at depths ranging from 1 m to a few centimeters below the lagoon's sediment-water interface. This enabled us to characterize surface water - groundwater interaction. During wet season conditions, the average unfiltered HgT (U-HgT) concentration in surface water at the tidal study lagoon was 13 pM and did not fluctuate in response to tidal changes. Filtered (< 0.45 μm) HgT (F-HgT) concentrations in the lagoon were similar to U-HgT concentrations during high tide and decreased to 8 pM during low tide. Groundwater F-HgT concentrations were about 1.5 pM at a depth of 1 m and systematically increased at shallower depths, reaching approximately 6 pM near the surface. These data indicate F-HgT exchange between the lagoon and groundwater to a depth of at least 1 m

  20. Annual dynamics of halite precipitation in the Dead Sea: In situ observations and their geological implications

    NASA Astrophysics Data System (ADS)

    Sirota, Ido; enzel, Yehouda; Lensky, Nadav G.

    2017-04-01

    Layered halite sequences deposited in deep basins throughout the geological record. However, analogues of such sequences are commonly studied in sallow environments. Here we study active precipitation of halite layers from the only modern analog for deep, halite-precipitating basin, the hypersaline Dead Sea. In situ observations in the Dead Sea link seasonal thermohaline stratification, halite saturation, and the characteristics of the actively forming halite layers. The spatiotemporal evolution of halite precipitation in the Dead Sea was characterized by means of monthly observations of the i) lake thermohaline stratification (temperature, salinity, and density), ii) degree of halite saturation, and iii) textural evolution of the active halite deposits. We present the observed relationships between textural characteristics of layered halite deposits (i.e. grain size, consolidation, and roughness) and the degree of saturation, which in turn reflected the limnology and hydro-climatology. The lakefloor is divided into two principle environments: A deep, hypolimnetic and a shallow, epilimnetic lakefloor. In the deeper hypolimnetic lakefloor halite continuously precipitates with seasonal variations: (a) during summer, consolidated coarse halite crystals form rough surfaces under slight super-saturation. (b) During winter, unconsolidated, fine halite crystals form smooth seafloor deposits under high supersaturation. The observations also emphasize the thought regarding seasonal alternation of halite crystallization mechanism. The shallow epilimnetic lake floor is highly influenced by the seasonal temperature variations, and by intensive summer dissolution of part of the previous year's halite deposit which results in thin sequences with annual unconformities. This emphasizes the control of temperature seasonality on the precipitated halite layers characteristics. In addition, precipitation of halite in the hypolimnetic floor, on the expense of the dissolution of the

  1. LANDSAT imagery of the Venetian Lagoon: A multitemporal analysis

    NASA Technical Reports Server (NTRS)

    Alberotanza, L.; Zandonella, A. (Principal Investigator)

    1980-01-01

    The use of LANDSAT multispectral scanner images from 1975 to 1979 to determine pollution dispersion in the central basin of the lagoon under varying tidal conditions is described. Images taken during the late spring and representing both short and long range tidal dynamics were processed for partial haze removal and removal of residual striping. Selected spectral bands were correlated to different types of turbid water. The multitemporal data was calibrated, classified considering sea truth data, and evaluated. The classification differentiated tide diffusion, algae belts, and industrial, agricultural, and urban turbidity distributions. Pollution concentration is derived during the short time interval between inflow and outflow and from the distance between the two lagoon inlets and the industrial zones. Increasing pollution of the lagoon is indicated.

  2. A spatially resolved model of seasonal variations in phytoplankton and clam ( Tapes philippinarum) biomass in Barbamarco Lagoon, Italy

    NASA Astrophysics Data System (ADS)

    Spillman, C. M.; Hamilton, D. P.; Hipsey, M. R.; Imberger, J.

    2008-08-01

    Barbamarco Lagoon (area = 7 km 2) is in the Po River Delta, adjoining the Northern Adriatic Sea, and supports a commercially valuable clam ( Tapes philippinarum) fishery. This study investigated interactions of the lagoon with adjacent coastal waters and inland riverine inputs by modelling both the lagoon and the Northern Adriatic Sea, using a coupled three-dimensional (3D) hydrodynamic-ecological model (ELCOM-CAEDYM) adapted to include the clam population. The clam model accounted for carbon (C), nitrogen (N) and phosphorus (P) biomass in the benthos through parameterisations for filtration, excretion, egestion, respiration, mortality, and harvesting. Multiple clam size classes were included in a new population dynamics sub-model. Output from the coupled model was validated against hydrodynamic and water quality data from intensive field sampling and routine monitoring. Time scales of tidal flushing, primary production and clam grazing were investigated with the model to demonstrate that food supply to clam populations is dominated by phytoplankton inputs from the Northern Adriatic Sea. Effects of clam cultivation on nutrient concentrations and phytoplankton biomass in Barbamarco Lagoon were primarily localised, with strong tidal flushing minimising impacts of clam filtration on lagoon-wide nutrient concentrations at current clam stocking levels. Clam populations were found to alter the cycling of nutrients in the system, causing the lagoon to become a net sink for particulate organic matter and to export dissolved organic matter to the adjacent sea via tidal flushing. Ecosystem health and sensitivity of nutrient cycles to clam cultivation are important considerations for the long term sustainable management and potential expansion of the fishery.

  3. Human impact and the historical transformation of saltmarshes in the Marano and Grado Lagoon, northern Adriatic Sea

    NASA Astrophysics Data System (ADS)

    Fontolan, Giorgio; Pillon, Simone; Bezzi, Annelore; Villalta, Renato; Lipizer, Marco; Triches, Antonella; D'Aietti, Alessandro

    2012-11-01

    Historical transformations of the saltmarshes in the six sub-basins of the Marano and Grado Lagoon were analyzed using aerial photographs (1954, 1990, 2006), and the support of historical maps and topographic surveys. Analysis of the 2006 set of aerial photographs enabled the definition of the present extent and distribution of the saltmarshes inside the lagoon (760 ha), with a total reduction in saltmarsh area of 16% (144 ha) compared to 1954. Direct human actions played a significant role in the budget, since total loss due to land reclamation and dredging during this period amounted to 126 ha. After excluding the total loss due to direct human interventions, different erosional and depositional marsh types were recognized and associated with different forcing factors, based on morphological and geographical evidence. Over the 52-year period marshes were lost due to: (a) drowning - the combined effects of eustatism, regional subsidence and autocompaction (102 ha); (b) edge-retreat by wind wave attack (34 ha); (c) erosion by vessel-generated waves (37 ha); and (d) coastal dynamics and inlet migration (5.7 ha). Conversely, marshes gained in area due to: (a) fluvial input (63 ha); (b) tidal input (27 ha); (c) paralagoonal deposition (45 ha); (d) the re-opening of abandoned fish farms (18 ha); and (e) the dumping of dredged material (8 ha). Our analysis demonstrates that local and short-term forcing factors can obliterate or compensate the long-term ones, especially the relative sea-level rise. A test of the integrated sediment budget carried out on one third of the total lagoon, through a bathymetric comparison between datasets from 1964 to 2009, pointed out that conservation or slight expansion of the marshes inside these basins were linked to an overall positive sediment budget of 61,000 m3/y. Nevertheless, significant morphological changes occurred in the submerged basin, which is affected by sustained deposition along the inner margins due to sediment supplies

  4. Microbiological and parasitological investigation among food handlers in hotels in the Dead Sea area, Jordan.

    PubMed

    Abdel-Dayem, Muna; Al Zou'bi, Renad; Hani, Rehan Bani; Amr, Zuhair Sami

    2014-10-01

    Intestinal parasitic and bacterial infections constitute a major health issue in developing countries. The present study investigates and assesses infection rates among food handlers with intestinal parasites and microbial agents in luxurious hotels in the Dead Sea area of Jordan. A total of 901 stool samples were collected from food handlers (35 females and 866 males) employed in four main hotels in the Dead Sea area. Fecal samples were examined microscopically for intestinal parasites. Standard culture and biochemical techniques were used for the isolation and identification of Salmonella and Shigella spp. in stool samples. Five species of protozoan (Blastocystis hominis, Giardia intestinalis, Entamoeba coli, Entamoeba histolytica, and Endolimax nana), one helminth (Hymenolepis nana), and one cylindrical worm (Enterobius vermicularis) were recovered with an overall infection rate of 3.7%. G. intestinalis was the most prevalent parasitic infection with infection rate of 2.44%. All samples were negative for both Salmonella and Shigella. Findings highlight the important role of food handlers in the transmission of intestinal parasites to high-class clients accommodated in luxury hotels, and stress the urgent need for regular health and parasitologic examination of food handlers. Copyright © 2013. Published by Elsevier B.V.

  5. Lagoon-sea exchanges, nutrient dynamics and water quality management of the Ria Formosa (Portugal)

    NASA Astrophysics Data System (ADS)

    Newton, Alice; Mudge, Stephen M.

    2005-02-01

    Historical data from the Ria Formosa lagoon are classified according to the EEA 2001 guidelines to provide a frame of reference to evaluate the effect of management during the implementation of the environmental legislative Directives. Water samples from the Ria Formosa lagoon were significantly enriched in nitrogen (NH 4+ NO 2- and NO 3-) with respect to the adjacent coastal waters indicating that inputs from sewage, agricultural runoff and benthic fluxes were not fully assimilated within the lagoon. Tidal flushing was insufficient in the inner areas of the lagoon to remove or effectively dilute these inputs. Enrichment was most severe close to the urban centres of Faro and Olhão, as well as in the Gilão Estuary and the shallow extremities. Dissolved oxygen undersaturation (mean 75% during daylight hours) was associated with the area close to the sewage outlets of Faro. In the shallow west end of the lagoon during summer, dissolved oxygen supersaturation reached 140% during the day but fell to 50% at night. Classification using the EEA (2001) guidelines suggests the system is "poor" or "bad" with respect to phosphate concentrations for the majority of the year and "poor" in nitrogen contamination during the autumn rainy period. Due to the high overall nitrogen load in the lagoon, there is a net export to the coastal waters, especially during November and December, and phosphate only becomes limiting briefly during the spring bloom (April). Therefore, substantial phytoplankton populations may be supported year-round in the lagoon. The consequences of water quality deterioration in the Ria Formosa would negatively affect the lagoon as a regional resource, important for its ecological, economic and recreational value. The industries most affected would be tourism, fisheries and aquaculture. Management options include Urban Waste Water Treatment, dredging, artificial inlets, limits on urban development and changes in agricultural practices.

  6. A new model evaluating Holocene sediment dynamics: Insights from a mixed carbonate-siliciclastic lagoon (Bora Bora, Society Islands, French Polynesia, South Pacific)

    NASA Astrophysics Data System (ADS)

    Isaack, Anja; Gischler, Eberhard; Hudson, J. Harold; Anselmetti, Flavio S.; Lohner, Andreas; Vogel, Hendrik; Garbode, Eva; Camoin, Gilbert F.

    2016-08-01

    Mixed carbonate-siliciclastic lagoons of barrier reefs provide great potential as sedimentary archives focusing on paleoenvironmental and paleoclimatic changes as well as on event deposition. Sediment sources include lagoonal carbonate production, the marginal reef and the volcanic hinterland. Mixed carbonate-siliciclastic continent-attached coastal lagoons have been intensively studied, however, their isolated oceanic counterparts have been widely disregarded. Here, we present a new model of Holocene sediment dynamics in the barrier-reef lagoon of Bora Bora based on sedimentological, paleontological, geochronological and geochemical data. The lagoonal succession started with a Pleistocene soil representing the Lowstand Systems Tract. As the rising Holocene sea inundated the carbonate platform, peat accumulated locally 10,650-9400 years BP. Mixed carbonate-siliciclastic sedimentation started ca. 8700-5500 years BP and represents the Transgressive Systems Tract. During that time, sediments were characterized by relatively coarse grain size and contained high amounts of terrestrial material from the volcanic hinterland as well as carbonate sediments mainly produced within the lagoon. Siliciclastic content decreases throughout the Holocene. After the rising sea had reached its modern level, sand aprons formed between reef crest and lagoon creating transport pathways for reef-derived material leading to carbonate-dominated sedimentation ca. 6000-3000 years BP during the Highstand Systems Tract. However, mainly fine material was transported and accumulated in the lagoon while coarser grains were retained on the prograding sand apron. From ca. 4500-500 years BP, significant variations in grain-size, total organic carbon as indicator for primary productivity, Ca and Cl element intensities as qualitative indicators for carbonate availability and lagoonal salinity are seen. Such patterns could indicate event (re-)deposition and correlate with contemporaneous event deposits

  7. Evaluation of sediment contamination by monoaromatic hydrocarbons in the coastal lagoons of Gulf of Saros, NE Aegean Sea.

    PubMed

    Ünlü, Selma; Alpar, Bedri

    2017-05-15

    The concentrations and distribution of monoaromatic hydrocarbons (benzene, toluene, ethyl benzene and the sum of m-, p- and o-, xylenes) were determined in the sediments of coastal lagoons of the Gulf of Saros, using a static headspace GC-MS. The total concentrations of BTEX compounds ranged from 368.5 to below detection limit 0.6μgkg -1 dw, with a mean value of 61.5μgkg -1 dw. The light aromatic fraction of m-, p-xylene was the most abundant compound (57.1% in average), and followed by toluene (38.1%)>ethylbenzene (4.1%)>o-xylene (2.5%)>benzene (1.1%). The factor analysis indicated that the levels and distribution of BTEX compounds depend on the type of contaminant source (mobile/point), absorbance of compounds in sediment, and mobility of benzene compound and degradation processes. Point sources are mainly related to agricultural facilities and port activities while the dispersion of compounds are related with their solubility, volatility and effect of sea/saline waters on lagoons. Copyright © 2017. Published by Elsevier Ltd.

  8. Fingerprints of lagoonal life: Migration of the marine flatfish Solea solea assessed by stable isotopes and otolith microchemistry

    NASA Astrophysics Data System (ADS)

    Dierking, Jan; Morat, Fabien; Letourneur, Yves; Harmelin-Vivien, Mireille

    2012-06-01

    The commercially important marine flatfish common sole (Solea solea) facultatively uses NW Mediterranean lagoons as nurseries. To assess the imprint left by the lagoonal passage, muscle carbon (C) and nitrogen (N) isotope values of S. solea juveniles caught in Mauguio lagoon in spring (shortly after arrival from the sea) and in autumn (before the return to the sea) were compared with values of juveniles from adjacent coastal marine nurseries. In addition, in the lagoon, sole otolith stable isotope (C and oxygen (O)) and elemental (11 elements) composition in spring and autumn, and the stable isotope composition (C and N) of organic matter sources in autumn, were determined. Overall, our data indicate that a distinct lagoonal signature existed. Specifically, lagoon soles showed a strong enrichment in muscle tissue 15N (>6‰) compared to their coastal relatives, likely linked to sewage inputs (see below), and a depletion in 13C (1-2‰), indicative of higher importance of 13C depleted terrestrial POM in the lagoon compared to coastal nurseries. In addition, over the time spent in the lagoon, sole otolith δ13C and δ18O values and otolith elemental composition changed significantly. Analysis of the lagoon sole foodweb based on C and N isotopes placed sediment particulate organic matter (POM) at the base. Seagrasses, formerly common but in decline in Mauguio lagoon, played a minor role in the detritus cycle. The very strong 15N enrichment of the entire foodweb (+7 to +11‰) compared to little impacted lagoons and coastal areas testified of important human sewage inputs. Regarding the S. solea migration, the analysis of higher turnover and fast growth muscle tissue and metabolically inert and slower growth otoliths indicated that soles arrived at least several weeks prior to capture in spring, and that no migrations took place in summer. In the autumn, the high muscle δ15N value acquired in Mauguio lagoon would be a good marker of recent return to the sea, whereas

  9. Shallow lithological structure across the Dead Sea Transform derived from geophysical experiments

    USGS Publications Warehouse

    Stankiewicz, J.; Munoz, G.; Ritter, O.; Bedrosian, P.A.; Ryberg, T.; Weckmann, U.; Weber, M.

    2011-01-01

    In the framework of the DEad SEa Rift Transect (DESERT) project a 150 km magnetotelluric profile consisting of 154 sites was carried out across the Dead Sea Transform. The resistivity model presented shows conductive structures in the western section of the study area terminating abruptly at the Arava Fault. For a more detailed analysis we performed a joint interpretation of the resistivity model with a P wave velocity model from a partially coincident seismic experiment. The technique used is a statistical correlation of resistivity and velocity values in parameter space. Regions of high probability of a coexisting pair of values for the two parameters are mapped back into the spatial domain, illustrating the geographical location of lithological classes. In this study, four regions of enhanced probability have been identified, and are remapped as four lithological classes. This technique confirms the Arava Fault marks the boundary of a highly conductive lithological class down to a depth of ???3 km. That the fault acts as an impermeable barrier to fluid flow is unusual for large fault zone, which often exhibit a fault zone characterized by high conductivity and low seismic velocity. At greater depths it is possible to resolve the Precambrian basement into two classes characterized by vastly different resistivity values but similar seismic velocities. The boundary between these classes is approximately coincident with the Al Quweira Fault, with higher resistivities observed east of the fault. This is interpreted as evidence for the original deformation along the DST originally taking place at the Al Quweira Fault, before being shifted to the Arava Fault. 

  10. Bacterioplankton diversity and community composition in the Southern Lagoon of Venice.

    PubMed

    Simonato, Francesca; Gómez-Pereira, Paola R; Fuchs, Bernhard M; Amann, Rudolf

    2010-04-01

    The Lagoon of Venice is a large water basin that exchanges water with the Northern Adriatic Sea through three large inlets. In this study, the 16S rRNA approach was used to investigate the bacterial diversity and community composition within the southern basin of the Lagoon of Venice and at one inlet in October 2007 and June 2008. Comparative sequence analysis of 645 mostly partial 16S rRNA gene sequences indicated high diversity and dominance of Alphaproteobacteria, Gammaproteobacteria and Bacteroidetes at the lagoon as well as at the inlet station, therefore pointing to significant mixing. Many of these sequences were close to the 16S rRNA of marine, often coastal, bacterioplankton, such as the Roseobacter clade, the family Vibrionaceae, and class Flavobacteria. Sequences of Actinobacteria were indicators of a freshwater input. The composition of the bacterioplankton was quantified by catalyzed reporter deposition fluorescence in situ hybridization (CARD-FISH) with a set of rRNA-targeted oligonucleotide probes. CARD-FISH counts corroborated the dominance of members of the phyla Alphaproteobacteria, Gammaproteobacteria and Bacteroidetes. When assessed by a probe set for the quantification of selected clades within Alphaproteobacteria and Gammaproteobacteria, bacterioplankton composition differed between October 2007 and June 2008, and also between the inlet and the lagoon. In particular, members of the readily culturable copiotrophic gammaproteobacterial genera Vibrio, Alteromonas and Pseudoalteromonas were enriched in the southern basin of the Lagoon of Venice. Interestingly, the alphaproteobacterial SAR11 clade and related clusters were also present in high abundances at the inlet and within the lagoon, which was indicative of inflow of water from the open sea.

  11. Chasing boundaries and cascade effects in a coupled barrier-marsh-lagoon system

    NASA Astrophysics Data System (ADS)

    Lorenzo-Trueba, Jorge; Mariotti, Giulio

    2017-08-01

    The long-term dynamic evolution of an idealized barrier-marsh-lagoon system experiencing sea-level rise is studied by coupling two existing numerical models. The barrier model accounts for the interaction between shoreface dynamics and overwash flux, which allows the occurrence of barrier drowning. The marsh-lagoon model includes both a backbarrier marsh and an interior marsh, and accounts for the modification of the wave regime associated with changes in lagoon width and depth. Overwash, the key process that connects the barrier shoreface with the marsh-lagoon ecosystems, is formulated to account for the role of the backbarrier marsh. Model results show that a number of factors that are not typically associated with the dynamics of coastal barriers can enhance the rate of overwash-driven landward migration by increasing backbarrier accommodation space. For instance, lagoon deepening could be triggered by marsh edge retreat and consequent export of fine sediment via tidal dispersion, as well as by an expansion of inland marshes and consequent increase in accommodation space to be filled in with sediment. A deeper lagoon results in a larger fraction of sediment overwash being subaqueous, which coupled with a slow shoreface response sending sediment onshore can trigger barrier drowning. We therefore conclude that the supply of fine sediments to the back-barrier and the dynamics of both the interior and backbarrier marsh can be essential for maintaining the barrier system under elevated rates of sea-level rise. Our results highlight the importance of considering barriers and their associated backbarriers as part of an integrated system in which sediment is exchanged.

  12. Lithosphere structure across the Dead Sea Transform as constrained by Rayleigh waves observed during the DESERT experiment

    NASA Astrophysics Data System (ADS)

    Laske, G.; Weber, M.

    2008-05-01

    The interdisciplinary Dead Sea Rift Transect (DESERT) project that was conducted in Israel, the Palestine Territories and Jordan has provided a rich palette of data sets to examine the crust and uppermost mantle beneath one of Earth's most prominent fault systems, the Dead Sea Transform (DST). As part of the passive seismic component, thirty broad-band sensors were deployed in 2000 across the DST for roughly one year. During this deployment, we recorded 115 teleseismic earthquakes that are suitable for a fundamental mode Rayleigh wave analysis at intermediate periods (35-150s). Our initial analysis reveals overall shear velocities that are reduced by up to 4 per cent with respect to reference Earth model PREM. To the west of the DST, we find a seismically relatively fast but thin lid that is about 80 km thick. Towards the east, shallow seismic velocities are low while a deeper low velocity zone is not detected. This contradicts the currently favoured thermomechanical model for the DST that predicts lithospheric thinning through mechanical erosion by an intruding plume from the Red Sea. On the other hand, our current results are somewhat inconclusive regarding asthenosphere velocities east of the DST due to the band limitation of the recording equipment in Jordan.

  13. Relationships between lake-level changes and water and salt budgets in the Dead Sea during extreme aridities in the Eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Kiro, Yael; Goldstein, Steven L.; Garcia-Veigas, Javier; Levy, Elan; Kushnir, Yochanan; Stein, Mordechai; Lazar, Boaz

    2017-04-01

    Thick halite intervals recovered by the Dead Sea Deep Drilling Project cores show evidence for severely arid climatic conditions in the eastern Mediterranean during the last three interglacials. In particular, the core interval corresponding to the peak of the last interglacial (Marine Isotope Stage 5e or MIS 5e) contains ∼30 m of salt over 85 m of core length, making this the driest known period in that region during the late Quaternary. This study reconstructs Dead Sea lake levels during the salt deposition intervals, based on water and salt budgets derived from the Dead Sea brine composition and the amount of salt in the core. Modern water and salt budgets indicate that halite precipitates only during declining lake levels, while the amount of dissolved Na+ and Cl- accumulates during wetter intervals. Based on the compositions of Dead Sea brines from pore waters and halite fluid inclusions, we estimate that ∼12-16 cm of halite precipitated per meter of lake-level drop. During periods of halite precipitation, the Mg2+ concentration increases and the Na+/Cl- ratio decreases in the lake. Our calculations indicate major lake-level drops of ∼170 m from lake levels of 320 and 310 m below sea level (mbsl) down to lake levels of ∼490 and ∼480 mbsl, during MIS 5e and the Holocene, respectively. These lake levels are much lower than typical interglacial lake levels of around 400 mbsl. These lake-level drops occurred as a result of major decreases in average fresh water runoff, to ∼40% of the modern value (pre-1964, before major fresh water diversions), reflecting severe droughts during which annual precipitation in Jerusalem was lower than 350 mm/y, compared to ∼600 mm/y today. Nevertheless, even during salt intervals, the changes in halite facies and the occurrence of alternating periods of halite and detritus in the Dead Sea core stratigraphy reflect fluctuations between drier and wetter conditions around our estimated average. The halite intervals include

  14. Chasing boundaries and cascade effects in a coupled barrier - marshes - lagoon system

    NASA Astrophysics Data System (ADS)

    Lorenzo Trueba, J.; Mariotti, G.

    2015-12-01

    Low-lying coasts are often characterized by barriers islands, shore-parallel stretches of sand separated from the mainland by marshes and lagoons. We built an exploratory numerical model to examine the morphological feedbacks within an idealized barrier - marshes -lagoon system and predict its evolution under projected rates of sea level rise and sediment supply to the backbarrier environment. Our starting point is a recently developed morphodynamic model, which couples shoreface evolution and overwash processes in a dynamic framework. As such, the model is able to capture dynamics not reproduced by morphokinematic models, which advect geometries without specific concern to processes. These dynamics include periodic barrier retreat due to time lags in the shoreface response to barrier overwash, height drowning due to insufficient overwash fluxes as sea level rises, and width drowning, which occurs when the shoreface response rate is insufficient to maintain the barrier geometry during overwash-driven landward migration. We extended the model by coupling the barrier model with a model for the evolution of the marsh platform and the boundary between the marsh and the adjacent lagoon. The coupled model explicitly describes marsh edge processes and accounts for the modification of the wave regime associated with lagoon width (fetch). Model results demonstrate that changes in factors that are not typically associated with the dynamics of coastal barriers, such as the lagoon width and the rate of export/import of sediments from and to the lagoon, can lead to previously unidentified complex responses of the coupled system. In particular, a wider lagoon in the backbarrier, and/or a reduction in the supply of muddy sediments to the backbarrier, can increase barrier retreat rates and even trigger barrier drowning. Overall, our findings highlight the importance of incorporating backbarrier dynamics in models that aim at predicting the response of barrier systems.

  15. How climate change threats water resource: the case of the Thau coastal lagoon (Mediterranean Sea, France)

    NASA Astrophysics Data System (ADS)

    La Jeunesse, Isabelle; Sellami, Haykel; Cirelli, Claudia

    2014-05-01

    The latest reports of the intergovernmental panel on climate change explained that the Mediterranean regions are especially vulnerable to the impacts of climate change. These latest are expected to have strong impacts on the management of water resources and on regional economies. The aim of this paper is to discuss impacts of climate changes on the Thau case study in relation to the evolution of water balance, water uses and adaptation to climate change. The Thau coastal lagoon is located in the Mediterranean coast in south of France in the Languedoc-Roussillon Region. Economic activities are diverse from shellfish farming, fertilizers industries to agriculture and tourism. However, tourism and shellfish farming are of major importance for local economy. If tourism is mainly turned to the Sea coast, shellfishes grow within the lagoon and rely on water quality. Previous studies have demonstrated the link between the coastal lagoon water quality and inputs of freshwater from the catchment. Thus, changes in rainfalls, runoff and water balance would not only affect water uses but also water quality. Climate changes projections are presented following the implementation of 4 downscaled climatic models. Impacts on water balance are modelled with SWAT (Soil Water Assessment Tool) for 2041-2070 compared to the 1971-2000 reference period. The decrease of precipitations and water balance will impact discharges and thus decrease the freshwater inputs to the coastal lagoon. A study of water uses conducted in interactions with stakeholders within the Thau area has permitted to assess both current and evolution of water uses. It has revealed local water resources are depleting while water demand is increasing and is planned to continue to increase in the really near future. To prevent water scarcity events, mainly due to the climate change context, the Regional authorities have connected the catchment to the Rhône river to import water. The conclusion of this study is while

  16. Tracing organic matter sources in a tropical lagoon of the Caribbean Sea

    NASA Astrophysics Data System (ADS)

    Alonso-Hernández, Carlos M.; Garcia-Moya, Alejandro; Tolosa, Imma; Diaz-Asencio, Misael; Corcho-Alvarado, Jose Antonio; Morera-Gomez, Yasser; Fanelli, Emanuela

    2017-09-01

    The natural protected lagoon of Guanaroca, located between Cienfuegos Bay and the Arimao River, Cuba, has been heavily impacted by human-induced environmental changes over the past century. Sources of organic matter in the Guanaroca lagoon and concentrations of radioisotopes (210Pb, 226Ra, 137Cs and 239,240Pu), as tracers of anthropogenic impacts, were investigated in a 78 cm sediment core. Variations in total organic carbon (TOC), total nitrogen (TN), stable isotopic composition (δ13C and δ15N) and ratio of total organic carbon to total nitrogen (C/N) were analysed. On such a basis, environmental changes in the lagoon were revealed. Down core variation patterns of the parameters representing sources of organic matter were predominantly related to the impacts of human activities. Up to the nineteenth century, the principal sources of organic matter to sediments (more than 80%) were a mixing of terrestrial vascular plants ( 48%) and freshwater phytoplankton ( 8%), with minimal contribution from the marine component ( 16%). In the period 1900-1980, due to the strong influence of human activities in the catchment area, the water exchange capacity of the lagoon declined substantially, as indicated by the relatively high proportion of organic matter originated from human activities (58%). Since 1980, as a result of management actions in the protected area, the lagoon has regained gradually its capability to exchange freshwater, showing sources of organic matter similar to the natural conditions recorded previous to 1900, although an indication of human impact (treated sewage contributed for 26% to the organic matter in sediments) was still observed and further management measures would be required.

  17. A Tale of Two Cataclysmic Earthquakes: 39 and 52 kyr BP, Dead Sea Transform, Israel; a Multi-archive Study

    NASA Astrophysics Data System (ADS)

    Kagan, E. J.; Stein, M.; Bar-Matthews, M.; Agnon, A.

    2007-12-01

    We have documented earthquake histories in four lacustrine sites and a cave in the Dead Sea Transform region in central Israel. The lacustrine Lake Lisan (last Glacial paleo-Dead Sea) sites include: Massada Plain (M1b), Perazim (PZ1), Tovlan (NT), and Tamar (TM). They are up to 110 kms apart, along the Dead Sea Basin. These lacustrine sites have a variety of deformed marls (e.g. brecciated, homogenated, folded, and/or faulted). Except for the more fluvial NT site, where there is only one breccia layer, the sites show numerous (up to 29) earthquake events. Brecciated marls have been shown to be valuable earthquake markers by correlation with historical earthquakes and by their relationship to intraformational fault scarps (Agnon et al., 2006). The Soreq Cave, a carbonate cave richly decorated with speleothems, is 40 km west of the Dead Sea Basin, near the town Bet Shemesh. Earthquake damage in the cave includes collapsed stalactites and ceilings and severed stalagmites. During the last Glacial time period the cave, more distant from the Transform than the lake sites, experienced ~7 damaging events, documented by tens of dated collapses. The Soreq cave collapses have been shown to be viable earthquake markers by correlation to lacustrine documented seismic events and by absence of potential non-seismic sources of damage in the cave (Kagan et al., 2005). All the earthquake evidence, speleological and lacustrine, was rigorously dated by high resolution mass spectrometry by MC-ICP-MS at the Geological Survey of Israel. Both the Soreq cave and the Lisan sediments have been studied intensely for paleo- climate purposes in other studies. From these different and distant paleoseismic sites two events stand out. At ~39±1 ka and ~52±2 ka there is paleoseismic evidence at 5 and 3 sites, respectively. The later event, ~39±1 ka, has left evidence of brecciated marls at all four Lisan sites (with extremely thick seismites at the PZ1 site and the only breccia at the NT site) as

  18. New types of submarine groundwater discharge from a saliferous clay formation - the case of the Dead Sea

    NASA Astrophysics Data System (ADS)

    Siebert, Christian; Broder, Merkel; Thomas, Pohl; Yossi, Yechieli; Eldat, Hazan; Danny, Ionescu; Ulf, Mallast

    2017-04-01

    Along the coastline of the hyper-saline and dramatically dropping Dead Sea, fresh to highly saline groundwaters discharge abundantly from dry falling lakebed. During its history, the level and hence salinity of the lake strongly fluctuated, resulting in the deposition of an alternating sequence of clayey and chemical sediments (mainly halite, carbonates and sulfates), intercalated by thick beds of halite and of coarse clastics around wadi outlets, respectively. Due to the asymmetrical shape of the lake's basin, these strata are deposited unequally along the eastern and western flank, why only groundwaters coming from the west have to pass thick layers of these sediments on their way into the lake. On the base of trace elements (REE), element ratios, stable and radioisotopes and microbiological findings, the observed onshore and offshore springs revealed, freshwaters discharge from both Cretaceous limestone aquifers and efficiently dissolve the easily soluble halite and flush the interstitial brines from the saliferous clay formation, immediately after entering the sedimentary strata. Abundant microbial activity result in the widespread production of sulfuric acid, accelerating erosion of carbonates and sulfates. These processes result in a fast and striking karstification of the strata, enabling groundwaters to transcendent the fresh/saltwater interface trough open pipes. As results, submarine groundwater discharge (SGD) occurs randomly and in addition to terrestrial, submarine sinkholes develop very quickly too. Due to the variable maturity of the flow paths, salinity and chemical composition of SGD shows an extremely wide range, from potable water to TDS of >250 g/l. Submarine emerging groundwaters with salinities even higher then that of the Dead Sea and distinctly different chemical and isotopic composition form outlets, which are not known elsewhere and represent a novel and unique type of SGD, only observed in the Dead Sea yet.

  19. A step forward in understanding step-overs: the case of the Dead Sea Fault in northern Israel

    NASA Astrophysics Data System (ADS)

    Dembo, Neta; Granot, Roi; Hamiel, Yariv

    2017-04-01

    The rotational deformation field around step-overs between segments of strike-slip faults is poorly resolved. Vertical-axis paleomagnetic rotations can be used to characterize the deformation field, and together with mechanical modeling, can provide constraints on the characteristics of the adjacent fault segments. The northern Dead Sea Fault, a major segmented sinistral transform fault that straddles the boundary between the Arabian Plate and Sinai Subplate, offers an appropriate tectonic setting for our detailed mechanical and paleomagnetic investigation. We examine the paleomagnetic vertical-axis rotations of Neogene-Pleistocene basalt outcrops surrounding a right step-over between two prominent segments of the fault: the Jordan Gorge section and the Hula East Boundary Fault. Results from 20 new paleomagnetic sites reveal significant (>20˚) counterclockwise rotations within the step-over and small clockwise rotations in the vicinity. Sites located further (>2.5 km) away from the step-over generally experience negligible to minor rotations. Finally, we construct a mechanical model guided by the observed rotational field that allows us to characterize the structural, mechanical and kinematic behavior of the Dead Sea Fault in northern Israel.

  20. [Book Review] The Dead Sea, the lake and its setting, edited by T. Niemi, Z. Ben-Avraham, J. Gat

    USGS Publications Warehouse

    ten Brink, Uri S.

    1998-01-01

    Review of The Dead Sea, the Lake and its Setting. Tina M. Niemi, Zvi Ben-Avraham, and Joel R. Gat (Editors). Oxford Monographs on Geology and Geophysics No. 36. Oxford University Press, N.Y. 286 pp. ISBN 0-19-508703-8, 1997. $75.

  1. [Mangrove dynamics in the Cispata lagoon system (Colombian Caribbean) during last 900 years].

    PubMed

    Castaño, Ana; Urrego, Ligia; Bernal, Gladys

    2010-12-01

    The lagoon complex of Cispatá (old Sinú river delta) located at the Northwestern coast of the Colombian Caribbean, encloses one of the biggest mangrove areas in this region. This area has changed during the last 330 years because of several environmental and climatic causes, mainly changes in the position of the delta (Sinú River), which is the main freshwater source in this area, and sea level rise. We hypothesized that the climatic and geomorphologic dynamics has caused changes in the extension and composition of mangrove vegetation, especially during last 150 years. The dynamics of mangroves during the last 900 years was reconstructed based on the changes in the stratigraphy, pollen record, calcite concentrations (CaCO3) and C/N ratio, along two sediment cores from La Flotante and Navio lagoons, located in Cispatá complex. The age model was built based on lineal interpolation of 210Pb ages and changes in granulometry. Establishment and expansion of mangrove forests during the last 900 years were related to fluviomarine dynamics in the area and the lagoon formation. During the period encompassed between 1064 and 1762 A.D., the Mestizos spit was formed when marine conditions predominated in the surroundings of La Flotante Lagoon. At the site of Navío, a river dominated lagoon, terrigenous conditions dominated since 1830. Although the colonization of herbaceous pioneer vegetation started between 1142 and 1331 A.D., mangrove colonization only took place since 1717 A.D. Mangrove colonization was a result of the delta progradation. In 1849 A.D. the Sinú river delta migrated to the Cispatá bay. The eustatic sea level rise, the increase in river discharges and sedimentation rates produced the establishment of mangrove forests dominated by Rhizophora since 1849. Since 1900 a marine intrusion was recorded in both lagoons. In 1938, the migration of the delta toward its actual location in Tinajones gave place to the formation of the present lagoon system and to the

  2. Age depth model construction of the upper section of ICDP Dead Sea Deep Drilling Project based on the high-resolution 14C dating

    NASA Astrophysics Data System (ADS)

    Kitagawa, H.; Nakamura, T.; Neugebauer, I.; Schwab, M. J.; Brauer, A.; Goldstein, S. L.; Stein, M.

    2014-12-01

    To reconstruct environmental, climatic and tectonic histories of the Levant, a deep drilling has been accomplished in the northern basin of the Dead Sea during the fall winter of 2010-2011 by the Dead Sea Deep Drilling Project (DSDDP) in the framework of the ICDP program. The sediment cores from site 5017-1 (water depth of ~300 m) recorded the paleoenvironmental and paleohydrological changes in the Dead Sea and the Levant during the last two glacial-interglacial cycles (Neugebauer et al., QSR in press). To provide precise timing of sedimentological - limnological events in the lake and its watershed, and more critically the relative timing of these events, radiocarbon dating of >70 well-preserved terrestrial plants and some carbonate deposits from the upper 150 m long section of the sediment core were performed. Based on the high-resolution radiocarbon dating, a statistical age-depth model was constructed with assumptions on the deposition condition and the radiocarbon age offset of carbonate samples. We discuss the practicality and the limitation of the age-depth model toward interpreting the high-resolution records of environmental, climatic and tectonic events recorded in the long sediment cores from site 5017-1.

  3. Primary production of phytoplankton in the estuaries of different types (by the example of the Curonian and Vistula Lagoons of the Baltic Sea and the Volga delta)

    NASA Astrophysics Data System (ADS)

    Aleksandrov, Sergei; Gorbunova, Julia

    2016-04-01

    The aim was to analyze the long-term change of the primary production in large estuaries of different types (Volga delta, Curonian and Vistula Lagoons) under the impact of environmental factors (e.g. climate changes, algal blooms, invasion mollusk). The researches (primary production, chlorophyll, nutrients and others) were carried out monthly from March-April to November in the Vistula and Curonian Lagoons since 1991 to 2015, and in the Lower part of the Volga Delta and fore-delta since 1996 to 2007. The Volga River is the largest river in Europe that flows into the Caspian Sea and it forms a great delta. According to the analysis of long-term data (from the 1960s), the maximum eutrophication and primary production (85-100 gCṡm-2ṡyear-1) in the Volga Delta was observed in the 1980s. In the 1990s, fertilizers use and the input of nutrients into the Volga Delta decreased significantly. Due of the high-flow exchange in the delta, especially during high-water years, observed in the 1980s - early 2000s, this led to a significant decrease in the concentration of nutrients in the water in the Volga Delta. As a result, in the 1990-2000s, the primary production has decreased to the level of 1960s-1970s (40-60 gCṡm-2ṡyear-1) and the process of eutrophication was replaced by de-eutrophication. At present, the trophic status of the Volga delta assessed as mesotrophic. The future trend of phytoplankton primary production of the Volga delta will greatly depend on the scenario of nutrients loading and river runoff. The Curonian Lagoon and Vistula Lagoon are the largest coastal lagoons of the Baltic Sea, relating to the most highly productive water bodies of Europe. The Curonian Lagoon is choke mostly freshwater lagoon, while the Vistula Lagoon is restricted brackish water lagoon. In the last decades the nutrients loading changes, warming trend and biological invasions are observed. The Curonian Lagoon may be characterized as hypertrophic water body. The local climate

  4. The distribution of salinity and main forcing effects in the Berre lagoon

    NASA Astrophysics Data System (ADS)

    Roux, Bernard; Alekseenko, Elena; Chen, Paul Gang; Kharif, Christian; Kotarba, Richard; Fougere, Dominique

    2014-05-01

    The results from previous studies in lagoons and well mixed estuaries indicate that salt transport is primarily in response to advection associated with freshwater outflow, tidal diffusion, and to shear effects arising from spatial correlations of vertical and especially transverse deviations in salinity and current speed (Smith, 1994). Therefore, the inflow of fresh and salt water into coastal lagoons is an important factor influencing the structure and function of lagoonal ecosystems worldwide (Lirman et al., 2007). The predominance of marine or freshwater inflow leads to the different ecosystems. Among several lagoons located along the Mediterranean shore of France, the Berre lagoon has been under intense anthropogenic pressure for several decades (Delpy et al., 2012). Moreover, the salinity level of the Berre lagoon was varying dramatically from the 19th century up to now. In this work, a special attention is focused on the salinity variation in the Berre lagoon due to the three dominant abiotic forcing mechanisms, i.e., incoming sea tide, runoff from a hydropower and a strong wind. Four different model scenarios were considered in order to examine the impact of each forcing mechanism or combined effects, i.e. : (a) tide only, (b) runoff only, (c) combined tide and runoff, and (d) an N-NW wind, tide and runoff together. Numerical modeling and interpretation of numerical results are based on three-dimensional hydrodynamic model MARS3D. It is found that the strongest negative impact is related to the huge hydropower runoffs, inducing the desalinization of the surface and subsurface waters not only in the centre of the lagoon, but also in the entire water column in the coastal seagrass recolonization zones. In the absence of wind, the huge inputs of freshwater from the hydropower lead to a haline stratification and thus, to anoxic conditions, making most of the lagoon unproductive. On the contrary, strong winds play a positive role on the salinity level of the

  5. Seismic surface-wave prospecting methods for sinkhole hazard assessment along the Dead Sea shoreline

    NASA Astrophysics Data System (ADS)

    Ezersky, M.; Bodet, L.; Al-Zoubi, A.; Camerlynck, C.; Dhemaied, A.; Galibert, P.-Y.; Keydar, S.

    2012-04-01

    The Dead Sea's coastal areas have been dramatically hit by sinkholes occurrences since around 1990 and there is an obvious potential for further collapse beneath main highways, agricultural lands and other populated places. The sinkhole hazard in this area threatens human lives and compromise future economic developments. The understanding of such phenomenon is consequently of great importance in the development of protective solutions. Several geological and geophysical studies tend to show that evaporite karsts, caused by slow salt dissolution, are linked to the mechanism of sinkhole formation along both Israel and Jordan shorelines. The continuous drop of the Dead Sea level, at a rate of 1m/yr during the past decade, is generally proposed as the main triggering factor. The water table lowering induces the desaturation of shallow sediments overlying buried cavities in 10 to 30 meters thick salt layers, at depths from 25 to 50 meters. Both the timing and location of sinkholes suggest that: (1) the salt weakens as result of increasing fresh water circulation, thus enhancing the karstification process; (2) sinkholes appear to be related to the decompaction of the sediments above karstified zones. The location, depth, thickness and weakening of salt layers along the Dead Sea shorelines, as well as the thickness and mechanical properties of the upper sedimentary deposits, are thus considered as controlling factors of this ongoing process. Pressure-wave seismic methods are typically used to study sinkhole developments in this area. P-wave refraction and reflection methods are very useful to delineate the salt layers and to determine the thickness of overlying sediments. But the knowledge of shear-wave velocities (Vs) should add valuable insights on their mechanical properties, more particularly when the groundwater level plays an important role in the process. However, from a practical point of view, the measurement of Vs remains delicate because of well-known shear

  6. Carbon and nitrogen cycling in the Zhubi coral reef lagoon of the South China Sea as revealed by 210Po and 210Pb.

    PubMed

    Yang, W F; Huang, Y P; Chen, M; Qiu, Y S; Li, H B; Zhang, L

    2011-05-01

    The radionuclides (210)Po and (210)Pb were examined to trace the cycling of particulate organic carbon (POC) and particulate organic nitrogen (PON) in the Zhubi coral reef lagoon. The net export flux of POC to the open sea is 14 mg Cm(-2) d(-1). However, the net exchange of PON has not yet been observed. On average, the vertical export fluxes in the lagoon of POC and PON, as derived from (210)Po/(210)Pb disequilibria, are 43 mg Cm(-2) d(-1) and 13.8 mg Nm(-2) d(-1), respectively. The deficit of (210)Po relative to (210)Pb in particulate matter provides evidence for the degradation of particulate organic matter. According to the mass balance budgets, 310 mg Cm(-2) d(-1) and 121 mg Nm(-2) d(-1) were recycled into dissolved fractions. Based on a first-order kinetics model, the degradation rate constants of POC and PON are 0.28 and 0.30 m(-1), respectively. Thus, (210)Po and (210)Pb can quantify the cycling of carbon and nitrogen in this coral lagoon. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Correlation between the silica concentration and the orifice temperature in the warm springs along the jordan-dead sea rift valley

    USGS Publications Warehouse

    Levitte, D.; Eckstein, Y.

    1978-01-01

    Analysis of twenty-one thermal springs emerging along the Jordan-Dead Sea Rift Valley in Israel indicates a very good correlation between the concentration of dissolved silica and the temperature of the spring orifice. Dissolution of quartz was identified as the apparent source of the silica in the water. Application of the silica geothermometer for mixed systems suggests that the springs in the Tiberias Lake Basin are supplied with hot water from deep reservoir (or reservoirs) at a temperature of 115??C (239??F). The same temperature was postulated earlier by the application of the Na-K-Ca hydro-geothermometer to a group of thermal springs in the same basin. The temperature of the reservoir supplying hot brines to the springs emerging along the western shore of the Dead Sea is estimated at 90??C (194??F).

  8. Butyltin residues in southern sea otters (Enhydra lutris nereis) found dead along California coastal waters

    USGS Publications Warehouse

    Kannan, K.; Guruge, K.S.; Thomas, N.J.; Tanabe, S.; Giesy, J.P.

    1998-01-01

    Tributyltin (TBT) and its degradation products, mono- (MBT) and dibutyltin (DBT), were determined in liver, kidney, and brain tissues of adult southern sea otters (Enhydra lutris nereis) found dead along the coast of California during 1992a??1996. Hepatic concentrations of butyltin compounds (BTs = MBT + DBT + TBT) ranged from 40 to 9200 ng/g wet wt, which varied depending on the sampling location and gender. Concentrations of BTs in sea otters were comparable to those reported in stranded bottlenose dolphins from the U.S. Atlantic Coast during 1989a??1994. Greater accumulation of butyltins in sea otters was explained by their bottom-feeding habit and the diet that consists exclusively of invertebrates such as mollusks and gastropods. Livers of female sea otters contained approximately 2-fold greater concentrations of BTs than did those of males. The composition of butyltin compounds in sea otter tissues was predominated by TBT in most cases and suggestive of recent exposure. Large harbors such as Monterey Harbor that handle ships legally painted with TBT-containing antifouling paints continued to experience ecotoxicologically significant butyltin contamination. Sea otters, which were affected by infectious diseases, contained greater concentrations of BTs in their tissues than those that died from trauma and other unknown causes.

  9. Possible connection between large volcanic eruptions and level rise episodes in the Dead Sea Basin

    NASA Astrophysics Data System (ADS)

    Bookman, R.; Filin, S.; Avni, Y.; Rosenfeld, D.; Marco, S.

    2014-12-01

    The June 1991 Pinatubo volcanic eruption perturbed the atmosphere, triggering short-term worldwide changes in climate. The following winter was anomalously wet in the Levant, with a ~2-meter increase in the Dead Sea level that created a morphological terrace along the lake's shore. Given the global effects of volcanogenic aerosols, we tested the hypothesis that the 1991-92 shore terrace is a modern analogue to the linkage between past volcanic eruptions and a sequence of shore terraces in the Dead Sea Basin. Analysis of precipitation series from Jerusalem showed a significant positive correlation between the Dust Veil Index (DVI) of the modern eruptions and annual rainfall. The DVI was found to explain nearly 50% of the variability in the annual rainfall, such that greater DVI means more rainfall. Other factors that may affect the annual rainfall in the region as the Southern Oscillation Index (SOI) and the North Atlantic oscillations (NAO) were incorporated along with the DVI in a linear multiple regression model. It was found that the NAO did not contribute anything except for increased noise, but the added SOI increased the explained variability of rainfall to more than 60%. Volcanic eruptions with a VEI of 6, as in the Pinatubo, occurred about once a century during the Holocene and the last glacial-interglacial cycle. This occurrence is similar to the frequency of shore terrace build-up during the Lake Lisan desiccation. Sixteen shore terraces, detected using airborne laser scanning data, were interpreted as indicating short-term level rises due to episodes of enhanced precipitation and runoff during the dramatic drop in Lake Lisan's (palaeo-Dead Sea) level at the end of the LGM. The terraces were compared with a time series of volcanogenic sulfate from the GISP2 record, and similar numbers of sulfate concentration peaks and terraces were found. Furthermore, a significant correlation was found between SO4 concentration peaks and the terraces heights. This

  10. Haloarcula marismortui (Volcani) sp. nov., nom. rev., an extremely halophilic bacterium from the Dead Sea

    NASA Technical Reports Server (NTRS)

    Oren, A.; Ginzburg, M.; Ginzburg, B. Z.; Hochstein, L. I.; Volcani, B. E.

    1990-01-01

    An extremely halophilic red archaebacterium isolated from the Dead Sea (Ginzburg et al., J. Gen. Physiol. 55: 187-207, 1970) belongs to the genus Haloarcula and differs sufficiently from the previously described species of the genus to be designated a new species; we propose the name Haloarcula marismortui (Volcani) sp. nov., nom. rev. because of the close resemblance of this organism to "Halobacterium marismortui," which was first described by Volcani in 1940. The type strain is strain ATCC 43049.

  11. An integrated Pan-European perspective on coastal Lagoons management through a mosaic-DPSIR approach

    PubMed Central

    Dolbeth, Marina; Stålnacke, Per; Alves, Fátima L.; Sousa, Lisa P.; Gooch, Geoffrey D.; Khokhlov, Valeriy; Tuchkovenko, Yurii; Lloret, Javier; Bielecka, Małgorzata; Różyński, Grzegorz; Soares, João A.; Baggett, Susan; Margonski, Piotr; Chubarenko, Boris V.; Lillebø, Ana I.

    2016-01-01

    A decision support framework for the management of lagoon ecosystems was tested using four European Lagoons: Ria de Aveiro (Portugal), Mar Menor (Spain), Tyligulskyi Liman (Ukraine) and Vistula Lagoon (Poland/Russia). Our aim was to formulate integrated management recommendations for European lagoons. To achieve this we followed a DPSIR (Drivers-Pressures-State Change-Impacts-Responses) approach, with focus on integrating aspects of human wellbeing, welfare and ecosystem sustainability. The most important drivers in each lagoon were identified, based on information gathered from the lagoons’ stakeholders, complemented by scientific knowledge on each lagoon as seen from a land-sea perspective. The DPSIR cycles for each driver were combined into a mosaic-DPSIR conceptual model to examine the interdependency between the multiple and interacting uses of the lagoon. This framework emphasizes the common links, but also the specificities of responses to drivers and the ecosystem services provided. The information collected was used to formulate recommendations for the sustainable management of lagoons within a Pan-European context. Several common management recommendations were proposed, but specificities were also identified. The study synthesizes the present conditions for the management of lagoons, thus analysing and examining the activities that might be developed in different scenarios, scenarios which facilitate ecosystem protection without compromising future generations. PMID:26776151

  12. Studies on the toxic elements and organic degradation products in aquatic bodies and sediments around Kennedy Space Center (KSC) South Mosquito lagoon

    NASA Technical Reports Server (NTRS)

    Ghuman, G. S.; Menon, M. P.; Emeh, C. O.

    1978-01-01

    A compilation was put together of research work performed on the aquatic systems around Kennedy Space Center (KSC). The report includes a brief description of the study area, field data and analytical results of all the samples collected during the five visits to KSC up to December 17, 1977. The aquatic area selected for the study is the Southern part of Mosquito Lagoon which extends from the Haulover Canal to the dead end boundary of this lagoon southwards.

  13. Anatomy of the Dead Sea transform: Does it reflect continuous changes in plate motion?

    USGS Publications Warehouse

    ten Brink, Uri S.; Rybakov, M.; Al-Zoubi, A. S.; Hassouneh, M.; Frieslander, U.; Batayneh, A.T.; Goldschmidt, V.; Daoud, M.N.; Rotstein, Y.; Hall, J.K.

    1999-01-01

    A new gravity map of the southern half of the Dead Sea transform offers the first regional view of the anatomy of this plate boundary. Interpreted together with auxiliary seismic and well data, the map reveals a string of subsurface basins of widely varying size, shape, and depth along the plate boundary and relatively short (25-55 km) and discontinuous fault segments. We argue that this structure is a result of continuous small changes in relative plate motion. However, several segments must have ruptured simultaneously to produce the inferred maximum magnitude of historical earthquakes.

  14. Communicating mega-projects in the face of uncertainties: Israeli mass media treatment of the Dead Sea Water Canal.

    PubMed

    Fischhendler, Itay; Cohen-Blankshtain, Galit; Shuali, Yoav; Boykoff, Max

    2015-10-01

    Given the potential for uncertainties to influence mega-projects, this study examines how mega-projects are deliberated in the public arena. The paper traces the strategies used to promote the Dead Sea Water Canal. Findings show that the Dead Sea mega-project was encumbered by ample uncertainties. Treatment of uncertainties in early coverage was dominated by economics and raised primarily by politicians, while more contemporary media discourses have been dominated by ecological uncertainties voiced by environmental non-governmental organizations. This change in uncertainty type is explained by the changing nature of the project and by shifts in societal values over time. The study also reveals that 'uncertainty reduction' and to a lesser degree, 'project cancellation', are still the strategies most often used to address uncertainties. Statistical analysis indicates that although uncertainties and strategies are significantly correlated, there may be other intervening variables that affect this correlation. This research also therefore contributes to wider and ongoing considerations of uncertainty in the public arena through various media representational practices. © The Author(s) 2013.

  15. Unusually high (210)Po activities in the surface water of the Zhubi Coral Reef Lagoon in the South China Sea.

    PubMed

    Yang, Weifeng; Huang, Yipu; Chen, Min; Qiu, Yusheng; Li, Hongbin; Zhang, Lei

    2011-10-01

    Recent researches revealed the exciting application of (210)Po in tracing carbon and nitrogen cycling in the coral reef system. In order to quantify the recycling of particulate organic nitrogen (PON), both (210)Po and (210)Pb were examined at both high and low tides in the Zhubi Coral Reef lagoon, the South China Sea. Unusually, much higher (210)Po activities and (210)Po/(210)Pb ratios, in comparison with those found in the open seawater and the lagoon subsurface water, showed additional input of (210)Po besides production from in situ(210)Pb in the lagoon surface water. Statistical analysis identified that the reef flat seawater was the additional (210)Po source. Based on a mass balance model, the input rates of (210)Po varied from 0.04 Bq m(-3)year(-1) to 8.41 Bq m(-3)year(-1). On average, the additional (210)Po contributed more than 60% of the total (210)Po. The particulate (210)Po significantly correlated with the concentrations of PON, indicating that diffusion of (210)Po from sediment could be used to quantify the recycling of nitrogen. The average input rate of nitrogen was 16 mmol m(-3)year(-1), which can support up to 11% of the primary production rate. These results suggested that the unusual behavior of (210)Po could provide new insight into the nitrogen recycling in the coral reef system. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Crustal Deformation across the Jericho Valley Section of the Dead Sea Fault as Resolved by Detailed Field and Geodetic Observations

    NASA Astrophysics Data System (ADS)

    Hamiel, Yariv; Piatibratova, Oksana; Mizrahi, Yaakov; Nahmias, Yoav; Sagy, Amir

    2018-04-01

    Detailed field and geodetic observations of crustal deformation across the Jericho Fault section of the Dead Sea Fault are presented. New field observations reveal several slip episodes that rupture the surface, consist with strike slip and extensional deformation along a fault zone width of about 200 m. Using dense Global Positioning System measurements, we obtain the velocities of new stations across the fault. We find that this section is locked for strike-slip motion with a locking depth of 16.6 ± 7.8 km and a slip rate of 4.8 ± 0.7 mm/year. The Global Positioning System measurements also indicate asymmetrical extension at shallow depths of the Jericho Fault section, between 0.3 and 3 km. Finally, our results suggest the vast majority of the sinistral slip along the Dead Sea Fault in southern Jorden Valley is accommodated by the Jericho Fault section.

  17. The Challenge of High-resolution Mapping of Very Shallow Coastal Areas: Case Study of the Lagoon of Venice, Italy

    NASA Astrophysics Data System (ADS)

    Madricardo, F.; Foglini, F.; Kruss, A.; Bajo, M.; Campiani, E.; Ferrarin, C.; Fogarin, S.; Grande, V.; Janowski, L.; Keppel, E.; Leidi, E.; Lorenzetti, G.; Maicu, F.; Maselli, V.; Montereale Gavazzi, G.; Pellegrini, C.; Petrizzo, A.; Prampolini, M.; Remia, A.; Rizzetto, F.; Rovere, M.; Sarretta, A.; Sigovini, M.; Toso, C.; Zaggia, L.; Trincardi, F.

    2017-12-01

    Very shallow coastal environments are often highly urbanized with half of the world's population and 13 of the largest mega-cities located close to the coast. These environments undergo rapid morphological changes due to natural and anthropogenic pressure that will likely be enhanced in the near future by mean sea-level rise. Therefore, there is a strong need for high resolution seafloor mapping to monitor and protect shallow coastal areas. To date, only about 5% of their seafloor has been mapped: their shallowness has prevented so far the use of underwater acoustics to reveal their morphological features; their turbidity often hindered the efficient use of LIDAR technology, particularly in lagoons and estuaries. The recent technological development of multibeam echosounder systems, however, enables these instruments to achieve very high performances also in such shallow environments. In this work, we present the results of an extensive multibeam survey carried out in the Lagoon of Venice (Italy) in 2013. The Lagoon of Venice is the biggest lagoon in the Mediterranean Sea (surface area of about 550 km2, average depth of about 1 m) and it is a UNESCO World Cultural and Natural Heritage site together with the historical city of Venice which is currently endangered by relative sea-level rise. Major engineering works are ongoing at the lagoon inlets (MOSE project) to protect Venice from flood events. In the last century, the morphology and ecology of the lagoon changed dramatically: the extent of the salt marshes was reduced by 60% and some parts of the lagoon deepened by more than 1 m with a net sediment flux exiting from the inlets. To understand and monitor the future evolution of the Lagoon of Venice in view of the inlet modifications and mean sea-level rise, CNR-ISMAR within the project RITMARE (a National Research Programme funded by the Italian Ministry of University and Research) carried out an extensive survey, involving a team of more than 25 scientists, to

  18. Modelling the salinization of a coastal lagoon-aquifer system

    NASA Astrophysics Data System (ADS)

    Colombani, N.; Mastrocicco, M.

    2017-08-01

    In this study, a coastal area constituted by alternations of saline-brackish lagoons and freshwater bodies was studied and modelled to understand the hydrological processes occurring between the lagoons, the groundwater system of the Po River Delta (Italy) and the Adriatic Sea. The contribution of both evaporation and anthropogenic factors on groundwater salinization was assessed by means of soil, groundwater and surface water monitoring. Highresolution multi-level samplers were used to capture salinity gradients within the aquifer and surface water bodies. Data were employed to calibrate a density-dependent numerical transport model implemented with SEAWAT code along a transect perpendicular to the coast line. The results show that the lagoon is hydraulically well connected with the aquifer, which provides the major source of salinity because of the upcoming of paleo-seawater from the aquitard laying at the base of the unconfined aquifer. On the contrary, the seawater (diluted by the freshwater river outflow) creates only a limited saltwater wedge. The increase in groundwater salinity could be of serious concern, especially for the pinewood located in the dune near the coast, sensitive to salinity increases. This case study represents an interesting paradigm for other similar environmental setting, where the assumption of classical aquifer salinization from a saltwater wedge intruding from the sea is often not representative of the actual aquifer’s salinization mechanisms.

  19. Geophysical analysis of the recent sinkhole trend at Ghor-Haditha (Dead Sea, Jordan)

    NASA Astrophysics Data System (ADS)

    Camerlynck, Christian; Bodet, Ludovic; Galibert, Pierre-Yves; Boucher, Marie; Al-Zoubi, Abdallah

    2013-04-01

    For essentially the last 30 year the water level of the Dead Sea has highly dropped. One of the major associated facts is sinkhole occurrences along the shoreline both in Jordan and Israel. As the principal invoked mechanism, many studies have concluded that sinkhole formation results from the dissolution of a previously immersed salt layer, progressively in contact with fresh to brackish water. In Jordan, the triggering of this phenomenon could also be the result of particular tectonic settings, associated with the Jordan-Dead Sea transform fault system. At Ghor Haditha (south-est Jordan), the consequences have been dramatic for farmers with the shrinking of temporary available lands and industry with the closing of at least one factory. The shallow material in this area is heterogeneous and composed of intercalated sand and clay layers of alluvial-colluvial origin, over a salty substratum, whose precise depth and thickness are yet partially hypothesized. Between 2005 and 2008, a multi-method high-resolution geophysical survey was performed, approximately over a 1 km2 area at Ghor Haditha, associating mainly electromagnetic soundings, magnetic resonance soundings (MRS), and seismic profiling, ground-penetrating radar and electrical resistivity tomography. At the same time, this specific area was the location of a dramatic evolution of sinkhole occurences, regularly followed by geodetic measurements. Over the 3 years period, about 120 TEM (Transient ElectroMagnetic) soundings allow to map precisely the depth of the conductive layers below the resistive overburden. Two conductive layer are then revealed, the latter showing the lowest resistivity below 1 Ohm.m corresponding to the saline substratum. Several MRS (3 in 2005, repeated in 2007 and 12 additional soundings) show an east-west hydraulic gradient towards the Dead. However, the main sinkhole trend coincides with both: - a clear low transmissivity axis determined from MRS measurements; - the western side of a

  20. Optical researches for cyanobacteria bloom monitoring in Curonian Lagoon

    NASA Astrophysics Data System (ADS)

    Shirshin, Evgeny A.; Budylin, Gleb B.; Yakimov, Boris P.; Voloshina, Olga V.; Karabashev, Genrik S.; Evdoshenko, Marina A.; Fadeev, Victor V.

    2016-04-01

    Cyanobacteria bloom is a great ecological problem of Curonian Lagoon and Baltic Sea. The development of novel methods for the on-line control of cyanobacteria concentration and, moreover, for prediction of bloom spreading is of interest for monitoring the state of ecosystem. Here, we report the results of the joint application of hyperspectral measurements and remote sensing of Curonian Lagoon in July 2015 aimed at the assessment of cyanobacteria communities. We show that hyperspectral data allow on-line detection and qualitative estimation of cyanobacteria concentration, while the remote sensing data indicate the possibility of cyanobacteria bloom detection using the spectral features of upwelling irradiation.

  1. Spatial variation of acid-volatile sulfide and simultaneously extracted metals in Egyptian Mediterranean Sea lagoon sediments.

    PubMed

    Younis, Alaa M; El-Zokm, Gehan M; Okbah, Mohamed A

    2014-06-01

    In risk assessment of aquatic sediments, the immobilizing effect of acid-volatile sulfide (AVS) on trace metals is a principal control on availability and associated toxicity of metals to aquatic biota, which reduces metal bioavailability and toxicity by binding and immobilizing metals as insoluble sulfides. Spatial variation pattern of AVS, simultaneously extracted metals (SEM), and sediment characteristics were studied for the first time in surface sediment samples (0-20 cm) from 43 locations in Egyptian northern delta lagoons (Manzalah, Burullus, and Maryut) as predictors of the bioavailability of some divalent metals (Cu, Zn, Cd, Pb, and Ni) in sediments as well as indicators of metal toxicity in anaerobic sediments. The results indicated that the ∑SEM (Cu + Zn + Cd + Pb + Ni) values in sediments of lagoon Burullus had higher concentrations than those of Maryut and Manzalah. In contrast, AVS concentrations were considerably higher in lagoons Manzalah and Maryut and seemed to be consistent with the increase in organic matter than lagoon Burullus. Generally, the average concentrations of the SEM in all lagoons were in the order of Zn > Cu > Ni > Pb > Cd. The ratios of ∑SEM/AVS were less than 1 at all the sampling stations except at one station in lagoon Maryut as well as four stations located in lagoon Burullus (∑SEM/AVS > 1), which suggests that the metals have toxicity potential in these sediments. Therefore, SEM concentrations probably are better indicators of the metal bioavailability in sediments than the conventional total metal concentrations.

  2. Rheology of Dead Sea shampoo containing the antidandruff climbazole.

    PubMed

    Abu-Jdayil, B; Mohameed, H A

    2004-12-01

    In this study, the effect of the antidandruff climbazole on the rheology of hair shampoo containing Dead Sea (DS) salt was investigated. The presence of either DS salt or the climbazole led to increase in the shampoo viscosity. An optimum concentration was found where the viscosity of shampoo was maximum. In the absence of DS salt, the viscosity of hair shampoo increased with increasing the climbazole concentration to reach a maximum value at 1.0 wt%. Further addition of climbazole decreased the viscosity of shampoo. Adjusting the pH of the shampoo at 5.5 and 5.0 shifted the optimum climbazole concentration (corresponds to maximum viscosity) to 0.8 wt% and led to increase in the viscosity of shampoo. On the other hand, the addition of climbazole to the shampoo containing DS salt resulted in a decrease in shampoo viscosity. This decrease of shampoo viscosity became more pronounced with increasing the climbazole and/or DS salt concentrations. By controlling the pH of shampoo, an optimum formula of shampoo comprising both climbazole and DS salt and having maximum viscosity was obtained.

  3. North Atlantic influence on 19th-20th century rainfall in the Dead Sea watershed, teleconnections with the Sahel, and implication for Holocene climate fluctuations

    NASA Astrophysics Data System (ADS)

    Kushnir, Yochanan; Stein, Mordechai

    2010-12-01

    The importance of understanding processes that govern the hydroclimate of the Mediterranean Basin is highlighted by the projected significant drying of the region in response to the increase in greenhouse gas concentrations. Here we study the long-term hydroclimatic variability of the central Levant region, situated in the eastern boundary of the Basin, as reveled by instrumental observations and the Holocene record of Dead Sea level variations. Observations of 19th and 20th century precipitation in the Dead Sea watershed region display a multidecadal, anti-phase relationship to North Atlantic (NAtl) sea surface temperature (SST) variability, such that when the NAtl is relatively cold, Jerusalem experiences higher than normal precipitation and vice versa. This association is underlined by a negative correlation to precipitation in the sub-Saharan Sahel and a positive correlation to precipitation in western North America, areas that are also affected by multidecadal NAtl SST variability. These observations are consistent with a broad range of Holocene hydroclimatic fluctuations from the epochal, to the millennial and centennial time scales, as displayed by the Dead Sea lake level, by lake levels in the Sahel, and by direct and indirect proxy indicators of NAtl SSTs. On the epochal time scale, the gradual cooling of NAtl SSTs throughout the Holocene in response to precession-driven reduction of summer insolation is associated with previously well-studied wet-to-dry transition in the Sahel and with a general increase in Dead Sea lake levels from low stands after the Younger Dryas to higher stands in the mid- to late-Holocene. On the millennial and centennial time scales there is also evidence for an anti-phase relationship between Holocene variations in the Dead Sea and Sahelian lake levels and with proxy indicators of NAtl SSTs. However the records are punctuated by abrupt lake-level drops, which appear to be in-phase and which occur during previously documented

  4. Temporal evolution of the environmental quality of the Vallona Lagoon (Northern Mediterranean, Adriatic Sea).

    PubMed

    Maggi, Chiara; Berducci, Maria Teresa; Di Lorenzo, Bianca; Dattolo, Manuela; Cozzolino, Antonella; Mariotti, Silvia; Fabrizi, Valerio; Spaziani, Roberta; Virno Lamberti, Claudia

    2017-12-15

    Guidance Document 25/2010, suggests sediment and biota are the most suitable matrices for the trend monitoring purpose, because they integrate the pollution over time and space. So, from 2005 to 2014, the sediment and biota concentrations of heavy metals (As, Cd, Cr, Hg, Ni, Pb) were analysed in the Vallona Lagoon (northern Adriatic Sea, Italy), widely used for intensive and extensive bivalve farming. The contamination levels in sediment and biota were compared with Environmental Quality Standard (EQS) and threshold levels (TL) for human health. The results identified critical issues related to Cd in sediment samples as well as to Hg and Pb in biota which were not only ascribable to the physiological and seasonal variability of organisms. The Cr and Ni levels in sediment were higher than the EQS. However, the concentration increases at biota stations close to sites where EQS excesses were observed in sediment were not verified. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Distribution of tributyltin in surface sediments from transitional marine-lagoon system of the south-eastern Baltic Sea, Lithuania.

    PubMed

    Suzdalev, Sergej; Gulbinskas, Saulius; Blažauskas, Nerijus

    2015-02-01

    The current research paper presents the results of contamination by tributyltin (TBT) compounds in Klaipėda Port, which is situated in a unique marine-lagoon water interaction zone. One hundred fifty-four surface sediment samples have been taken along the whole transition path from lagoon to the sea and analysed in order to quantify the contamination rate in specific environment of high anthropogenic pressure. The detected TBT concentrations ranged from 1 to 5,200 ng Sn g(-1) of dry weight of sediment. The back-trace of horizontal distribution of TBT-contaminated sediments show obvious increase of tributyltin concentrations closer to port areas dealing with ship repair and places of dry-docking facilities. This is a clear indication that those activities are the main source of contamination in the study area. The estimated correlation of TBT concentration in sediments with total organic carbon and the amount of fine fraction (<0.063 mm) was significant for most of the stations. The TBT concentration in those sites varies from 1 to 100 ng Sn g(-1). This fact indicates that the most intensive accumulation of tributyltin is related to potential contamination source areas (ship repairing, dockyards) due to direct input of hazardous substances into the water.

  6. Metagenomic Survey of a Military-Impacted Lagoon in Puerto Rico

    NASA Astrophysics Data System (ADS)

    Davila-Santiago, L.; DeLeon-Rodriguez, N.; LaSanta-Pagan, K. Y.; Kurt, Z.; Padilla-Crespo, E.; Hatt, J.; Spain, J.; Konstantinidis, K.; Massol-Deya, A.

    2016-02-01

    Military practices have left a legacy of contamination worldwide. In Puerto Rico, the east part of the populated Vieques Island was used for over fifty years as a bombing range by the Navy. A year after the base was closed in 2003, the impacted area was designated as a Superfund site. Previous studies have shown elevated levels of heavy metals, explosives (e.g. RDX, TNT, HMX), and other toxic chemicals at the site. The Anones Lagoon, located in the middle of the bombing range is one of the most polluted spots within the site. Intermittently, the lagoon is connected through a channel to the Caribbean Sea. In order to describe the microbial diversity and its potential contribution to natural attenuation of explosives, sediment samples have been collected since 2005. Sediment from reference lagoons (San Juan and Cabo Rojo) have also been sampled and analyzed in parallel for comparisons. Total DNA was extracted and sequenced using Ilumina My-Seq platform. Results indicate that Gammaproteobacteria were abundant in all lagoons samples but the Vieques lagoon harbors overall different microbial taxa. Alpha diversity analysis showed that Anones was less diverse compared to the pristine Cabo Rojo lagoon. Importantly, a clear shift was seen in the Anones Lagoon in 2013 compared to 2005, were Halomonas spp. became dominant (up to 25%) while other groups like Marinobacter showed signs of enrichment as well. Interestingly, these groups have been shown to degrade explosive-related chemicals in tropical sediments. Functional gene annotation of the Anones metagenome showed the presence of RDX degradation genes such as cytochrome p450. This study is the first comparative metagenomic survey of lagoons in Puerto Rico that explored the microbial diversity and biodegradation potential at Vieques.

  7. Toxic metals in Venics lagoon sediments: Model, observation, an possible removal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basu, A.; Molinaroli, E.

    1994-11-01

    We have modeled the distribution of nine toxic metals in the surface sediments from 163 stations in the Venice lagoon using published data. Three entrances from the Adriatic Sea control the circulation in the lagoon and divide it into three basins. We assume, for purposes of modeling, that Porto Marghera at the head of the Industrial Zone area is the single source of toxic metals in the Venice lagoon. In a standing body of lagoon water, concentration of pollutants at distance x from the source (C{sub 0}) may be given by C=C{sub 0}e{sup -kx} where k is the rate constantmore » of dispersal. We calculated k empirically using concentrations at the source, and those farthest from it, that is the end points of the lagoon. Average k values (ppm/km) in the lagoon are: Zn 0.165, Cd 0.116, Hg 0.110, Cu 0.105, Co 0.072, Pb 0.058, Ni 0.008, Cr (0.011) and Fe (0.018 percent/km), and they have complex distributions. Given the k values, concentration at source (C{sub 0}), and the distance x of any point in the lagoon from the source, we have calculated the model concentrations of the nine metals at each sampling station. Tides, currents, floor morphology, additional sources, and continued dumping perturb model distributions causing anomalies (observed minus model concentrations). Positive anomalies are found near the source, where continued dumping perturbs initial boundary conditions, and in areas of sluggish circulation. Negative anomalies are found in areas with strong currents that may flush sediments out of the lagoon. We have thus identified areas in the lagoon where higher rate of sediment removal and exchange may lesson pollution. 41 refs., 4 figs., 3 tabs.« less

  8. Geology and hydrocarbon potential of the Dead Sea Rift Basins of Israel and Jordan

    USGS Publications Warehouse

    Coleman, James; ten Brink, Uri S.

    2016-01-01

    Geochemical analyses indicate that the source of all oils, asphalts, and tars recovered in the Lake Lisan basin is the Ghareb Formation. Geothermal gradients along the Dead Sea fault zone vary from basin to basin. Syn-wrench potential reservoir rocks are highly porous and permeable, whereas pre-wrench strata commonly exhibit lower porosity and permeability. Biogenic gas has been produced from Pleistocene reservoirs. Potential sealing intervals may be present in Neogene evaporites and tight lacustrine limestones and shales. Simple structural traps are not evident; however, subsalt traps may exist. Unconventional source rock reservoir potential has not been tested.

  9. Groundwater dependence of coastal lagoons: The case of La Pletera salt marshes (NE Catalonia)

    NASA Astrophysics Data System (ADS)

    Menció, A.; Casamitjana, X.; Mas-Pla, J.; Coll, N.; Compte, J.; Martinoy, M.; Pascual, J.; Quintana, X. D.

    2017-09-01

    Coastal wetlands are among the most productive ecosystems of the world, playing an important role in coastal defense and wildlife conservation. These ecosystems, however, are usually affected by human activities, which may cause a loss and degradation of their ecological status, a decline of their biodiversity, an alteration of their ecological functioning, and a limitation of their ecosystem services. La Pletera salt marshes (NE Spain) are located in a region mainly dominated by agriculture and tourism activities. Part of these wetlands and lagoons has been affected by an incomplete construction of an urban development and in this moment is the focus of a Life+ project, whose aim is to restore this protected area. Several studies have analyzed the role of hydrological regime in nutrients, phytoplankton and zooplankton in this area, however, the role of groundwater was never considered as a relevant factor in the lagoon dynamics, and its influence is still unknown. In this study, the hydrogeological dynamics in La Pletera salt marshes has been analyzed, as a basis to set sustainable management guidelines for this area. In order to determine their dependence on groundwater resources, monthly hydrochemical (with major ions and nutrients) and isotopic (δ18OH2O and δD) campaigns have been conducted, from November 2014 to October 2015. In particular, groundwater from six wells, surface water from two nearby streams and three permanent lagoons, and sea water was considered in these surveys. Taking into account the meteorological data and the water levels in the lagoons, the General Lake Model has been conducted to determine, not only evaporation and rainfall occurring in the lagoons, but also the total inflows and outflows. In addition, the Gonfiantini isotopic model, together with equilibrium chemical-speciation/mass transfer models, has been used to analyze the evaporation and the physicochemical processes affecting the lagoons. Results show that during the dry

  10. Mercury methylation and demethylation in Hg-contaminated lagoon sediments (Marano and Grado Lagoon, Italy)

    NASA Astrophysics Data System (ADS)

    Hines, Mark E.; Poitras, Erin N.; Covelli, Stefano; Faganeli, Jadran; Emili, Andrea; Žižek, Suzana; Horvat, Milena

    2012-11-01

    Mercury (Hg) transformation activities and sulfate (SO42-) reduction were studied in sediments of the Marano and Grado Lagoons in the Northern Adriatic Sea region as part of the "MIRACLE" project. The lagoons, which are sites of clam (Tapes philippinarum) farming, have been receiving excess Hg from the Isonzo River for centuries. Marano Lagoon is also contaminated from a chlor-alkali plant. Radiotracer methods were used to measure mercury methylation (230Hg, 197Hg), methylmercury (MeHg) demethylation (14C-MeHg) and SO42- reduction (35S) in sediment cores collected in autumn, winter and summer. Mercury methylation rate constants ranged from near zero to 0.054 day-1, generally decreased with depth, and were highest in summer. Demethylation rate constants were much higher than methylation reaching values of ˜0.6 day-1 in summer. Demethylation occurred via the oxidative pathway, except in winter when the reductive pathway increased in importance in surficial sediments. Sulfate reduction was also most active in summer (up to 1600 nmol mL-1 day-1) and depth profiles reflected seasonally changing redox conditions near the surface. Methylation and demethylation rate constants correlated positively with SO42- reduction and pore-water Hg concentrations, and inversely with Hg sediment-water partition coefficients indicating the importance of SO42- reduction and Hg dissolution on Hg cycling. Hg transformation rates were calculated using rate constants and concentrations of Hg species. In laboratory experiments, methylation was inhibited by amendments of the SO42--reduction inhibitor molybdate and by nitrate. Lagoon sediments displayed a dynamic seasonal cycle in which Hg dissolution in spring/summer stimulated Hg methylation, which was followed by a net loss of MeHg in autumn from demethylation. Sulfate-reducing bacteria (SRB) tended to be responsible for methylation of Hg and the oxidative demethylation of MeHg. However, during winter in surficial sediments, iron

  11. Transport of (137)Cs, (241)Am and Pu isotopes in the Curonian Lagoon and the Baltic Sea.

    PubMed

    Lujanienė, G; Remeikaitė-Nikienė, N; Garnaga, G; Jokšas, K; Šilobritienė, B; Stankevičius, A; Šemčuk, S; Kulakauskaitė, I

    2014-01-01

    Activities of (137)Cs, (241)Am and (239,240)Pu were analyzed with special emphasis on better understanding of radionuclide transport from land via the Neman River estuaries to the Baltic Sea and behavior in the marine environment. Although activity concentrations of (137)Cs in water samples collected the Baltic Sea were almost 100 times higher as compared to the Curonian Lagoon, its activities in the bottom sediments were found to be comparable. Activity (238)Pu/(239,240)Pu and atom (240)Pu/(239)Pu ratios indicated a different contribution of the Chernobyl-originated Pu to the suspended particulate matter (SPM) and bottom sediments. The largest amount of the Chernobyl-derived Pu was found in the smallest suspended matter particles of 0.2-1 μm in size collected in the Klaipeda Strait in 2011-2012. The decrease of characteristic activity (238)Pu/(239,240)Pu and atom (240)Pu/(239)Pu ratios towards the global fallout ones in surface soil and the corresponding increase of plutonium (Pu) ratios in the suspended particulate matter and bottom sediments have indicated that the Chernobyl-derived Pu, primarily deposited on the soil surface, was washed out and transported to the Baltic Sea. Behavior of (241)Am was found to be similar to that of Pu isotopes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Coastal Processes with Improved Tidal Opening in Chilika Lagoon (east Coast of India)

    NASA Astrophysics Data System (ADS)

    Jayaraman, Girija; Dube, Anumeha

    Chilika Lagoon (19°28-19°54¢N and 85°06-85°36¢E) is the largest brackish water lagoon with estuarine character. Interest in detailed analysis of the ecology of the lagoon and the various factors affecting it is due to the opening of the new mouth on September 23, 2000 to resolve the threat to its environment from various factors - Eutrophication, weed proliferation, siltation, industrial pollution, and depletion of bioresources. The opening of the new mouth has changed the lagoon environment significantly with better socio­economic implications. There is a serious concern if the significant improvement in the biological productivity of the lagoon post-mouth opening is indeed sustainable. The present study focuses on the changes in the coastal processes as a result of the additional opening of a new mouth. Our results based on mathematical modeling and numerical simulation compare the dynamics, nutrient, and plankton distribution before and after the new mouth opening. The model could confirm the significant increase (14-66% depending on the sector) in the salinity after the new mouth opening, the maximum change being observed in the channel which connects the lagoon to the sea. The constriction in the lagoon which blocks the tidal effects entering the lagoon must be responsible for maintaining the main body of the lagoon with low salinity. The ecological model is first tested for different sectors individually before a complete model, including the entire lagoon area, is included incorporating their distinct characteristics. The model is validated with available observations of plankton and nutrients made before the opening of the new mouth. It predicts the annual distribution of plankton in all the sectors of the lagoon for post-mouth opening which is to be verified when the data will be forthcoming.

  13. Coastal Processes with Improved Tidal Opening in Chilika Lagoon (east Coast of India)

    NASA Astrophysics Data System (ADS)

    Jayaraman, Girija; Dube, Anumeha

    Chilika Lagoon (19°28-19°54'N and 85°06-85°36'E) is the largest brackish water lagoon with estuarine character. Interest in detailed analysis of the ecology of the lagoon and the various factors affecting it is due to the opening of the new mouth on September 23, 2000 to resolve the threat to its environment from various factors — Eutrophication, weed proliferation, siltation, industrial pollution, and depletion of bioresources. The opening of the new mouth has changed the lagoon environment significantly with better socio-economic implications. There is a serious concern if the significant improvement in the biological productivity of the lagoon post-mouth opening is indeed sustainable. The present study focuses on the changes in the coastal processes as a result of the additional opening of a new mouth. Our results based on mathematical modeling and numerical simulation compare the dynamics, nutrient, and plankton distribution before and after the new mouth opening. The model could confirm the significant increase (14-66% depending on the sector) in the salinity after the new mouth opening, the maximum change being observed in the channel which connects the lagoon to the sea. The constriction in the lagoon which blocks the tidal effects entering the lagoon must be responsible for maintaining the main body of the lagoon with low salinity. The ecological model is first tested for different sectors individually before a complete model, including the entire lagoon area, is included incorporating their distinct characteristics. The model is validated with available observations of plankton and nutrients made before the opening of the new mouth. It predicts the annual distribution of plankton in all the sectors of the lagoon for post-mouth opening which is to be verified when the data will be forthcoming.

  14. Evaporation estimates from the Dead Sea and their implications on its water balance

    NASA Astrophysics Data System (ADS)

    Oroud, Ibrahim M.

    2011-12-01

    The Dead Sea (DS) is a terminal hypersaline water body situated in the deepest part of the Jordan Valley. There is a growing interest in linking the DS to the open seas due to severe water shortages in the area and the serious geological and environmental hazards to its vicinity caused by the rapid level drop of the DS. A key issue in linking the DS with the open seas would be an accurate determination of evaporation rates. There exist large uncertainties of evaporation estimates from the DS due to the complex feedback mechanisms between meteorological forcings and thermophysical properties of hypersaline solutions. Numerous methods have been used to estimate current and historical (pre-1960) evaporation rates, with estimates differing by ˜100%. Evaporation from the DS is usually deduced indirectly using energy, water balance, or pan methods with uncertainty in many parameters. Accumulated errors resulting from these uncertainties are usually pooled into the estimates of evaporation rates. In this paper, a physically based method with minimum empirical parameters is used to evaluate historical and current evaporation estimates from the DS. The more likely figures for historical and current evaporation rates from the DS were 1,500-1,600 and 1,200-1,250 mm per annum, respectively. Results obtained are congruent with field observations and with more elaborate procedures.

  15. Wind effects on prey availability: How northward migrating waders use brackish and hypersaline lagoons in the sivash, Ukraine

    NASA Astrophysics Data System (ADS)

    Verkuil, Yvonne; Koolhaas, Anita; Van Der Winden, Jan

    Large numbers of waders migrating northward in spring use the Sivash, a large system of shallow, brackish and hypersaline lagoons in the Black Sea and Azov Sea region (Ukraine). The bottoms of these lagoons are often uncovered by the wind. Hence, for waders the time and space available for feeding depend on wind conditions. In hypersaline lagoons the benthic and pelagic fauna was very poor, consisting mainly of chironomid larvae (0.19 g AFDM·m -2) and brine shrimps Artemia salina, respectively. Brine shrimp abundance was correlated with salinity, wind force, wind direction and water depth. Dunlin Calidris alpina and curlew sandpiper Calidris ferruginea were the only species feeding on brine shrimp. As brine shrimp densities are higher in deeper water, smaller waders such as broad-billed sandpipers Limicola falcinellus are too short-legged to reach exploitable densities of brine shrimp. In brackish lagoons the benthic and pelagic fauna was rich, consisting of polychaetes, bivalves, gastropods, chironomid larvae, isopods and amphipods (8.9 to 30.5 g AFDM·m -2), but there were no brine shrimps. Prey biomass increased with the distance from the coast, being highest on the site that was most frequently inundated. Dunlin, broad-billed sandpiper and grey plover Pluvialis squatarola were the most abundant birds in the brackish lagoon. Due to the effects of wind-tides only a small area was usually available as a feeding site. Gammarus insensibilis was the alternative prey resource in the water layer, and their density varied with wind direction in the same way as brine shrimp. Curlew sandpipers and dunlins in the hypersaline lagoons and broad-billed sandpipers in the brackish lagoons often changed feeding sites, probably following the variation in prey availability. Only because of the large size and variety of lagoons are waders in the Sivash always able to find good feeding sites.

  16. Surface Water Quality Survey of Northern Indian River Lagoon from Sebastian Inlet to Mosquito Lagoon

    NASA Astrophysics Data System (ADS)

    Weaver, R. J.; Webb, B. M.

    2012-12-01

    Following news of an emerging brown tide algal bloom in the northern Indian River Lagoon (IRL), researchers sought to gain insight into the surface water quality in the IRL, as well as the extent of the algae coverage. A Portable SeaKeeper from YSI, mounted to a personal watercraft-based coastal profiling system, autonomously collected and analyzed the surface water. The system operates by recording sample data every 12 seconds while continuously underway at speeds up to and greater than 50 km/hr. The researchers covered a transect that started at Sebastian Inlet and followed a zig-zag path extending up through the Haulover Canal and into the Mosquito Lagoon. The survey path covered 166.7 km, and collected 2248 samples. Along the way stops were made at water quality stations used by the Saint John's River Water Management District, so that the data collected can be incorporated into ongoing monitoring efforts. The system analyzed the surface water for dissolved oxygen, pH, chlorophyll-a, salinity, temperature, turbidity, refined fuels, and CDOM. In the two days following the lagoon survey, the inlets at Port Canaveral and Sebastian were also surveyed for tidal currents and hydrography. The IRL transect survey data recorded evidence of the southern extent of the algae bloom in both chlorophyll-a and pH levels. Visual evidence of the bloom was striking as the water in the northern IRL turned a milk chocolaty brown color. Chlorophyll-a levels in the two inlets suggested bloom activity at these locations; however this bloom was different. This oceanic bloom was a result of a persistent upwelling event along the East Florida shelf, and the color was a paler green-yellow. The near-synoptic nature of the comprehensive lagoon survey, conducted in just over 7 hours, allows researchers to obtain a better understanding of water quality in coastal lagoons. Elevated levels of salinity, temperature, and refined fuels in the northern IRL indicate a low exchange rate and absence

  17. Monitoring of sinkholes and subsidence affecting the Jordanian coast of the Dead Sea through Synthetic Aperture Radar data and last generation Sentinel-1 data

    NASA Astrophysics Data System (ADS)

    Tessari, Giulia; Riccardi, Paolo; Lecci, Daniele; Pasquali, Paolo; Floris, Mario

    2017-04-01

    Since the mid-1980s the coast of the Dead Sea is affected by sinkholes occurring over and around the emerged mud and salt flats. Strong subsidence and landslides also affect some segments of the coast. Nowadays, several thousands of sinkholes attest that the degradation of the Dead Sea coast is worsening. Furthermore, soil deformations are interesting the main streets running along both the Israeli and Jordanian sides of the Dead Sea. These hazards are due to the dramatic dropping of the Dead Sea level, characterized by an increasing rate from about 60 cm/yr in the 1970s up to 1 m/yr in the 2000s, which provokes a lowering of the fresh-saline groundwater interface, replacing the hypersaline groundwater with fresh water and causing a consequent erosion of the subsurface salt layers. Subsidence, sinkholes, river erosion and landslides damage bridges, roads, dikes, houses, factories worsening this ongoing disaster. One of the most emblematic effects is the catastrophic collapse of a 12-km newly constructed dyke, located on the Lisan Peninsula (Jordan), occurred in 2000. Differential Interferometric Synthetic Aperture Radar (DInSAR) techniques and Advanced stacking DInSAR techniques (A-DInSAR) were applied to investigate sinkholes and subsidence affecting the Jordanian coast of the Dead Sea. The use of SAR data already proof to be efficient on the risk management of the area, allowing to identify a vulnerable portion of an Israeli highway, averting a possible collapse. Deformation analysis has been focused on the Ghor Al Haditha area and Lisan peninsula, located in the South-Eastern part of the lake coast. The availability of a huge database of SAR data, since the beginning of the 90s, allowed to observe the evolution of the displacements which are damaging this area. Furthermore, last generation Sentinel-1 data, acquired by the ESA mission, were processed to obtain information about the recent evolution of the subsidence and sinkholes affecting the study area, from

  18. Magnetic character of a large continental transform: an aeromagnetic survey of the Dead Sea Fault

    USGS Publications Warehouse

    ten Brink, Uri S.; Rybakov, Michael; Al-Zoubi, Abdallah S.; Rotstein, Yair

    2007-01-01

    New high-resolution airborne magnetic (HRAM) data along a 120-km-long section of the Dead Sea Transform in southern Jordan and Israel shed light on the shallow structure of the fault zone and on the kinematics of the plate boundary. Despite infrequent seismic activity and only intermittent surface exposure, the fault is delineated clearly on a map of the first vertical derivative of the magnetic intensity, indicating that the source of the magnetic anomaly is shallow. The fault is manifested by a 10–20 nT negative anomaly in areas where the fault cuts through magnetic basement and by a

  19. State-of-the-lagoon reports as vehicles of cross-disciplinary integration.

    PubMed

    Zaucha, Jacek; Davoudi, Simin; Slob, Adriaan; Bouma, Geiske; van Meerkerk, Ingmar; Oen, Amy Mp; Breedveld, Gijs D

    2016-10-01

    An integrative approach across disciplines is needed for sustainable lagoon and estuary management as identified by integrated coastal zone management. The ARCH research project (Architecture and roadmap to manage multiple pressures on lagoons) has taken initial steps to overcome the boundaries between disciplines and focus on cross-disciplinary integration by addressing the driving forces, challenges, and problems at various case study sites. A model was developed as a boundary-spanning activity to produce joint knowledge and understanding. The backbone of the model is formed by the interaction between the natural and human systems, including economy and governance-based subsystems. The model was used to create state-of-the-lagoon reports for 10 case study sites (lagoons and estuarine coastal areas), with a geographical distribution covering all major seas surrounding Europe. The reports functioned as boundary objects to build joint knowledge. The experiences related to the framing of the model and its subsequent implementation at the case study sites have resulted in key recommendations on how to address the challenges of cross-disciplinary work required for the proper management of complex social-ecological systems such as lagoons, estuarine areas, and other land-sea regions. Cross-disciplinary integration is initially resource intensive and time consuming; one should set aside the required resources and invest efforts at the forefront. It is crucial to create engagement among the group of researchers by focusing on a joint, appealing overall concept that will stimulate cross-sectoral thinking and focusing on the identified problems as a link between collected evidence and future management needs. Different methods for collecting evidence should be applied including both quantitative (jointly agreed indicators) and qualitative (narratives) information. Cross-disciplinary integration is facilitated by functional boundary objects. Integration offers important

  20. Comparative oceanography of coastal lagoons

    NASA Technical Reports Server (NTRS)

    Kjerfve, Bjorn

    1986-01-01

    The hypothesis that physical lagoon characteristics and variability depend on the channel connecting the lagoon to the adjacent coastal ocean is evaluated. The geographical, hydrological, and oceanographic characteristics of 10 lagoon systems are described and analyzed; these oceanographic features are utilized to classify the lagoon systems. Choked lagoons (Laguna Joyuda, Coorong, Lake St.Lucia, Gippsland Lakes, Lake Songkla/Thale Luang/Thale Noi, and Lagoa dos Patos) are prevalent on coasts with high wave energy and low tidal range; restricted lagoons (Lake Pontchartrain and Laguna de Terminos) are located on low/medium wave energy coasts with a low tidal range; and leaky lagoons (Mississippi Sound and Belize Lagoon/Chetumal Bay) are connected to the ocean by wide tidal passes that transmit oceanic effects into the lagoon with a minimum of resistance. The data support the hypothesis that the nature of the connecting channel controls system functions.

  1. Wind-induced circulation in a large tropical lagoon: Chetumal Bay

    NASA Astrophysics Data System (ADS)

    Palacios, E.; Carrillo, L.

    2013-05-01

    Chetumal Bay is a large tropical lagoon located at the Mesoamerican Reef System. Windinduced circulation in this basin was investigated by using direct measurements of current, sea level, and 2d barotropic numerical model. Acoustic Doppler Profiler (ADP) transects covering the north of Chetumal Bay during two campaigns September 2006 and March 2007 were used. The 2d barotropic numerical model was ROMs based and wind forced. Wind information was obtained from a meteorological station located at ECOSUR Chetumal. Sea level data was collected from a pressure sensor deployed in the lagoon. A seasonal pattern of circulation was observed. From observations, during September 2006, a northward flow was shown in most part of the bay and a southward flow in the eastern coast was observed with velocities ranged from 6 cm s-1 to 36 cm s-1. In March 2007, the current pattern was more complex; divergences and converges were identified. The dominant circulation was northward in eastern portion, and southward in the central and western zone. The average current speed was 6 cm s-1 with maximum values of 26 -34 cm s-1. During September 2006 predominant wind was easternsoutheastern and during March 2007, northerly wind events were recorded. Sea level amplitude responded quickly to changes in the magnitude and direction of the wind. Results of sea level and circulation from the 2d barotropic numerical model agreed with observations at first approximation.

  2. Copper complexation capacity in surface waters of the Venice Lagoon.

    PubMed

    Delgadillo-Hinojosa, Francisco; Zirino, Alberto; Nasci, Cristina

    2008-10-01

    Total copper (Cu(T)), copper ion activity (pCu) and the copper complexation capacity (CuCC) were determined in samples of seawater collected in July 2003 from the Venice Lagoon. Cu(T) and CuCC showed considerable spatial variability: Cu(T) ranged from 1.8 to 70.0nM, whereas the CuCC varied from 195 to 573nM. pCu values varied from 11.6 to 12.6 and are consistent with those previously reported in estuarine and coastal areas (10.9-14.1). The range of Cu(T) values compares well with those reported in the past in the lagoon and in the adjacent Adriatic Sea. The highest concentrations of Cu(T) were found in samples collected near the industrial area of Porto Marghera, whereas the lowest were measured near the Chioggia and Malamocco inlets, where an intense tidally-driven renewal of seawater takes place. Although CuCC showed a high degree of spatial variability, the values recorded in the Venice Lagoon are comparable to those reported in other estuarine systems. In addition, CuCC was positively correlated with dissolved organic carbon (DOC), suggesting that organic ligands responsible for Cu complexation are part of the bulk organic matter pool in the lagoon. The CuCC:Cu(T) molar ratio was, on average 55:1, indicating that a large excess of complexation capacity exists in the Venice Lagoon. The high levels of CuCC and the narrow range of pCu indicates the importance of the role played by organic ligands in controlling the free ion Cu concentrations in the lagoon, and as a consequence, regulating its availability and/or toxicity.

  3. Genomic adaptations of the halophilic Dead Sea filamentous fungus Eurotium rubrum.

    PubMed

    Kis-Papo, Tamar; Weig, Alfons R; Riley, Robert; Peršoh, Derek; Salamov, Asaf; Sun, Hui; Lipzen, Anna; Wasser, Solomon P; Rambold, Gerhard; Grigoriev, Igor V; Nevo, Eviatar

    2014-05-09

    The Dead Sea is one of the most hypersaline habitats on Earth. The fungus Eurotium rubrum (Eurotiomycetes) is among the few species able to survive there. Here we highlight its adaptive strategies, based on genome analysis and transcriptome profiling. The 26.2 Mb genome of E. rubrum shows, for example, gains in gene families related to stress response and losses with regard to transport processes. Transcriptome analyses under different salt growth conditions revealed, among other things differentially expressed genes encoding ion and metabolite transporters. Our findings suggest that long-term adaptation to salinity requires cellular and metabolic responses that differ from short-term osmotic stress signalling. The transcriptional response indicates that halophilic E. rubrum actively counteracts the salinity stress. Many of its genes encode for proteins with a significantly higher proportion of acidic amino acid residues. This trait is characteristic of the halophilic prokaryotes as well, supporting the theory of convergent evolution under extreme hypersaline stress.

  4. A note on the correlation between geophysical observations and seismicity in the Arava/(Araba) Valley at the southern part of the Dead Sea fault

    USGS Publications Warehouse

    Rybakov, M.; Shapira, A.; Al-Zoubi, A.; ten Brink, Uri S.; Hofstetter, R.; Kraeva, N.; Feldman, L.

    2006-01-01

    The spatial distribution of the earthquakes in the Arava Valley, a 150-km section of the Dead Sea Transform, is compared for the first time with the local subsurface geological features derived from geophysical and geological data. Gravity data suggested that the Gharandal, Timna, and Elat basins were filled by low-density young sediments. These features were confirmed by seismic reflection profiles and high-resolution aeromagnetic (HRAM) survey. The HRAM survey delineated the trace of the Dead Sea Transform (DST), which separates magnetic anomalies in the eastern and western parts of the valley, and revealed the occurrence of the unknown deep magmatics. Overall, the earthquake activity appears to be strongly related to the Dead Sea Transform. However, on a local scale, there is no apparent correlation between the seismicity and the mapped fault segments comprising the DST fault system. Absence of the correlation may be a result of insufficient accuracy of the earthquake localization and/or the inclined fault plane. However, in spite of such inaccuracy, it is clearly observed that the large clusters of the low-magnitude earthquakes coincide well with the sedimentary basins. Two pronounced clusters appear to coincide with the subsurface magmatics. We assume that the subsurface geology predetermines areas of stress accumulation and earthquakes. These areas can be the end of faults, or fault jogs, which sometimes create basins. Magmatism can also be affected by the stress field and predetermine the stress and earthquakes' allocation. ?? 2007 Science From Israel/LPPLtd.

  5. Recent carbonate firm- to hardgrounds in the Abu Dhabi lagoon: Environmental controls and petrography

    NASA Astrophysics Data System (ADS)

    Immenhauser, Adrian; Lokier, Stephen W.; Kwiecien, Ola; Riechelmann, Sylvia; Buhl, Dieter

    2017-04-01

    Marine carbonate firm- and hardgrounds have been described from the Precambrian to the recent sedimentary archive. In comparison to the numerous publications dealing with fossil case examples, well-constrained studies of shoalwater hardground formation from modern (sub)tropical seas are comparably scarce. This comes as a surprise as only modern depositional environments offer direct insight into the plethora of environmental, geochemical, kinetic, and biological parameters that affect these features at formation and during diagenetic pathways. Here, we present the first results of a combined field and laboratory study with focus on firm- to hardgrounds (also termed "discontinuity" in the sense of a catch-it-all term) forming both in the shallow inner lagoon and the outer lagoon ooid shoals of the Abu Dhabi barrier-island complex. Essentially, the discontinuities found represent sub-grounds in the sense that they form a few centimetres beneath the sediment surface. Sub-grounds in the outer lagoon ooid shoals are cemented by characteristic needle-shaped aragonite crystals and essentially represent lithified crab burrows. In contrast, sub-grounds in the inner lagoon of Abu Dhabi form brittle intervals, perhaps 5 cm in thickness, that are cemented by platy aragonitic crystals that show uncommon morphologies. Botryoids are abundant and generally seem to affect crystal morphologies. First evidence suggests that these features form below the uppermost oxic layer of pore fluids in the shallow sedimentary column. These findings are placed in context with temporally-resolved data on sea and porewater chemistry.

  6. Benthic foraminiferal and organic matter compounds as proxies of environmental quality in a tropical coastal lagoon: The Itaipu lagoon (Brazil).

    PubMed

    Raposo, Débora; Clemente, Iara; Figueiredo, Marcos; Vilar, Amanda; Lorini, Maria Lucia; Frontalini, Fabrizio; Martins, Virgínia; Belart, Pierre; Fontana, Luiz; Habib, Renan; Laut, Lazaro

    2018-04-01

    Lagoons in the southeast coast of Brazil have experienced eutrophication due to the exponential increase of human population and sewage discharges. Living benthic foraminifera have demonstrated to be good bioindicators of such impacts. This study aims to evaluate the organic matter accumulation effects on the foraminiferal distribution in the Itaipu lagoon (Brazil). On the basis of the biotic and abiotic analyses, three sectors are identified. The Sector I, an inner area, is characterized by high dissolved oxygen values and foraminiferal species with preference for marine conditions, demonstrating the sea influence. The Sector II, in the mangrove margins, is associated to sandy sediment and biopolymers and mainly represented by euryhaline species. The Sector III is marked by low density or absence of living foraminifera and corresponds to a low quality organic matter enriched area (North, Southwest and Centre). Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. KENNEDY SPACE CENTER, FLA. - Karen Holloway-Adkins, KSC wildlife specialist, holds a sample of the sea grass she collected from the floor of the Banana River. She is studying the life history of sea turtles, especially what they eat, where they lay their eggs and what factors might harm their survival. On the boat trip she is also monitoring the growth of sea grasses and algae and the water quality of estuaries and lagoons used by sea turtles and other aquatic wildlife.

    NASA Image and Video Library

    2004-02-05

    KENNEDY SPACE CENTER, FLA. - Karen Holloway-Adkins, KSC wildlife specialist, holds a sample of the sea grass she collected from the floor of the Banana River. She is studying the life history of sea turtles, especially what they eat, where they lay their eggs and what factors might harm their survival. On the boat trip she is also monitoring the growth of sea grasses and algae and the water quality of estuaries and lagoons used by sea turtles and other aquatic wildlife.

  8. KENNEDY SPACE CENTER, FLA. - Karen Holloway-Adkins, KSC wildlife specialist, shows a sample of the sea grass she collected from the floor of the Banana River. She is studying the life history of sea turtles, especially what they eat, where they lay their eggs and what factors might harm their survival. On the boat trip she is also monitoring the growth of sea grasses and algae and the water quality of estuaries and lagoons used by sea turtles and other aquatic wildlife.

    NASA Image and Video Library

    2004-02-05

    KENNEDY SPACE CENTER, FLA. - Karen Holloway-Adkins, KSC wildlife specialist, shows a sample of the sea grass she collected from the floor of the Banana River. She is studying the life history of sea turtles, especially what they eat, where they lay their eggs and what factors might harm their survival. On the boat trip she is also monitoring the growth of sea grasses and algae and the water quality of estuaries and lagoons used by sea turtles and other aquatic wildlife.

  9. Hydrological heterogeneity, nutrient dynamics and water quality of a non-tidal lentic ecosystem (Lesina Lagoon, Italy)

    NASA Astrophysics Data System (ADS)

    Roselli, Leonilde; Fabbrocini, Adele; Manzo, Cristina; D'Adamo, Raffaele

    2009-10-01

    The dynamics of the Lesina coastal lagoon (Italy) in terms of nutrients, phytoplankton and chemical-physical parameters were evaluated, together with their functional relationships with freshwater inputs, in order to identify ecosystem responses to changes in driving forces in a Mediterranean non-tidal lentic environment. Lesina Lagoon is a shallow coastal environment characterised by limited exchange with coastal waters, which favours enrichment of nutrients and organic matter and benthic fluxes within the system. Lagoon-sea exchanges are influenced by human management. There is a steep salinity gradient from East to West. High nitrogen and silica values were found close to freshwater inputs, indicating wastewater discharges and agricultural runoff, especially in winter. Dissolved oxygen was well below saturation (65%) near sewage and runoff inputs in the western part of the lagoon during summer. Classification in accordance with EEA (2001) guidelines suggests the system is of "poor" or "bad" quality in terms of nitrogen concentrations in the eastern zone during the winter rainy period. In terms of phosphate concentrations, the majority of the stations fall into the "good" category, with only two stations (close to the sewage and runoff inputs) classed as "bad". In both cases, the raw nitrogen levels make the lagoon a P-limited system, especially in the eastern part. There was wide space-time variability in chlorophyll a concentrations, which ranged from 0.25 to 56 μg l -1. No relationships between chlorophyll a and nutrients were found, suggesting that autotrophic biomass may be controlled by a large number of internal and external forcing factors driving eutrophication processes. Water quality for this type of environment depends heavily on pressure from human activities but also on the management of sewage treatment plants, agricultural practices and the channels connecting the lagoon with the sea.

  10. Effects of regional climate changes on the planktonic ecosystem and water environment in the frozen Notoro Lagoon, northern Japan.

    PubMed

    Katsuki, Kota; Seto, Koji; Noguchi, Takuro; Sonoda, Takeshi; Kim, JuYong

    2012-10-01

    Diatom fossils from core sediments and living diatoms from water samples of Notoro Lagoon in northern Japan were examined to evaluate natural climate effects on lagoon environmental changes. In 1974, the artificial inlet was excavated. Immediately after, the anoxic bottom water in Notoro Lagoon began to disappear due to an increasing water exchange rate. However, chemical oxygen demand (COD) in the bottom water of Notoro Lagoon gradually increased, with fluctuations, during the last 30 years. In addition, the dominant diatom assemblages in Notoro Lagoon shifted to ice-related and spring bloom taxa after the excavation. The dominant taxa of each year in the sediment core were also strongly related to the timing of lagoon ice melting. This is because the COD in Notoro Lagoon was affected by the deposited volume of blooming diatoms, which was controlled by the duration of ice cover and the timing of ice discharge to the Okhotsk Sea likely due to an air pressure pattern change over the northern North Pacific like the Pacific Decadal Oscillation (PDO). Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. View of the ODS in the Atlantis payload bay prior to docking

    NASA Image and Video Library

    1996-09-17

    STS079-824-081 (16-26 Sept. 1996) --- In this 70mm frame from the space shuttle Atlantis, the Jordan River Valley can be traced as it separates Lebanon, Palestine and Israel on the west, from Syria and Jordan on the east. The river flows along the Dead Sea rift; the east side of the fault zone (Syria, Jordan, Saudi Arabia) has moved north about 100 kilometers relative to the west side (Lebanon, Israel, Egypt) during the past 24 million years. The Dead Sea and Sea of Galilee are in depressions formed where faults of the zone diverge or step over. The Dead Sea once covered the area of salt evaporation pans (the bright blue water). The lagoon, barrier islands and evaporite deposits (bright white) along the Mediterranean coast of the Sinai Peninsula (lower left of frame) are just east of Port Said.

  12. Depositional history and fault-related studies, Bolinas Lagoon, California

    USGS Publications Warehouse

    Berquist, Joel R.

    1978-01-01

    Studies of core sediments and seismic reflection profiles elucidate the structure and depositional history of Bolinas Lagoon, Calif., which covers 4.4 km 2 and lies in the San Andreas fault zone at the southeast corner of the Point Reyes Peninsula 20 km northwest of San Francisco. The 1906 trace of the San Andreas fault crosses the west side of the lagoon and was determined from (1) tectonically caused salt-marsh destruction indicated by comparison of 1854 and 1929 U.S. Coast and Geodetic Survey (U.S.C. & G.S.) topographic surveys, (2) formation of a tidal channel along the border of destroyed salt marshes, and (3) azimuths of the trend of the fault measured in 1907. Subsidence in the lagoon of 30 cm occurred east of the San Andreas fault in 1906. Near the east shore, seismic-reflection profiling indicates the existence of a graben fault that may connect to a graben fault on the Golden Gate Platform. Comparison of radiocarbon dates on shells and plant debris from boreholes drilled on Stinson Beach spit with a relative sea-level curve constructed for southern San Francisco Bay indicates 5.8 to more than 17.9 m of tectonic subsidence of sediments now located 33 m below mean sea level. Cored sediments indicate a marine transgression dated at 7770?65 yrs B.P. overlying freshwater organic-rich lake deposits. Fossil pollen including 2 to 8 percent Picea (spruce) indicate a late Pleistocene (?)-Early Holocene climate, cooler, wetter, and foggier than at present. Above the transgression are discontinuous and interfingering sequences of transgressive-regressive marine, estuarine, and barrier sediments that reflect rapid lateral and vertical shifts of successive depositional environments. Fossil megafauna indicate (1) accumulation in a protected, shallow-water estuary or bay, and (2) that the lagoon was probably continuously shallow and never a deep-water embayment. Analysis of grain-size parameters, pollen frequencies, and organic remains from a core near the north end of

  13. Temporal stability of otolith elemental fingerprints discriminates among lagoon nursery habitats

    NASA Astrophysics Data System (ADS)

    Tournois, Jennifer; Ferraton, Franck; Velez, Laure; McKenzie, David J.; Aliaume, Catherine; Mercier, Lény; Darnaude, Audrey M.

    2013-10-01

    The chemical composition of fish otoliths reflects that of the water masses that they inhabit. Otolith elemental compositions can, therefore, be used as natural tags to discriminate among habitats. However, for retrospective habitat identification to be valid and reliable for any adult, irrespective of its age, significant differences in environmental conditions, and therefore otolith signatures, must be temporally stable within each habitat, otherwise connectivity studies have to be carried out by matching year-classes to the corresponding annual fingerprints. This study investigated how various different combinations of chemical elements in otoliths could distinguish, over three separate years, between four coastal lagoon habitats used annually as nurseries by gilthead sea bream (Sparus aurata L.) in the Gulf of Lions (NW Mediterranean). A series of nine elements were measured in otoliths of 301 S. aurata juveniles collected in the four lagoons in 2008, 2010 and 2011. Percentages of correct re-assignment of juveniles to their lagoon of origin were calculated with the Random Forest classification method, considering every possible combination of elements. This revealed both spatial and temporal variations in accuracy of habitat identification, with correct re-assignment to each lagoon ranging from 44 to 99% depending on the year and the lagoon. There were also annual differences in the combination of elements that provided the best discrimination among the lagoons. Despite this, when the data from the three years were pooled, a combination of eight elements (B, Ba, Cu, Li, Mg, Rb, Sr and Y) provided greater than 70% correct re-assignment to each single lagoon, with a multi-annual global accuracy of 79%. When considering the years separately, discrimination accuracy with these elemental fingerprints was above 90% for 2008 and 2010. It decreased to 61% in 2011, when unusually heavy rainfall occurred, which presumably reduced chemical differences among several of the

  14. Millennial-scale record of overwash deposits preserved within lagoon sediments from the Arabian Peninsula

    NASA Astrophysics Data System (ADS)

    Griffis, A. M.; Jessica, P.; Reinhardt, E. G.; Kosciuch, T. J.; Kovacs, S. E.; Hoffmann, G.

    2017-12-01

    Coastlines along the Arabian Sea are susceptible to tsunami-related inundation due to their proximity to the Makran Subduction Zone (MSZ). This subduction zone has seen decades of low intensity events, but has historically produced large tsunamigenic-earthquakes that have impacted the 100 million people living along the Arabian Sea. One major problem in assessing the seismic risk of the MSZ is that the historical record of events are spatially and temporally limited and rely heavily on eye witness accounts. This hinders our ability to forecast the potential magnitude and recurrence intervals of earthquakes and tsunamis that can be expected in the future. Sediments deposited by paleotsunamis are useful as they expand the decadal record of events to include millennial timescales that more accurately capture the full range of magnitudes and recurrence intervals. On November 28, 1945 a 8.1 Mw earthquake originating from the MSZ generated a tsunami inundating coastlines along the Arabian Sea with wave heights up to 13m. At Sur, a small village on the northeastern coastline of Oman, the tsunami deposited a laterally continuous shell-rich layer within a 12 km2 lagoon. This layer contained distinctive taphonomic assemblages of foraminifera and bivalves. Below the 1945 shelly deposit at Sur Lagoon, seven anomalous sand layers were found preserved within fine-grained lagoonal sediment. These layers of medium-coarse sands range in thickness from 5 to 35 cm and are separated by sandy-mud sediment. Grain size analysis shows that these anomalously coarse layers are followed by an abrupt return to lagoonal mud. The sand layers have features consistent with the 1945 tsunami deposit such as fining upward trends, sharp basal contact, and marine foraminifera (e.g., Amphistegina sp., planktics). In contrast, the surrounding lagoon deposits are generally massive, finer in grain size, and contain foraminiferal species typically found in shallow quiescent coastal environments (e

  15. Water sources, mixing and evaporation in the Akyatan lagoon, Turkey

    NASA Astrophysics Data System (ADS)

    Lécuyer, C.; Bodergat, A.-M.; Martineau, F.; Fourel, F.; Gürbüz, K.; Nazik, A.

    2012-12-01

    Akyatan lagoon, located southeast of Turkey along the Mediterranean coast, is a choked and hypersaline lagoon, and hosts a large and specific biodiversity including endangered sea turtles and migrating birds. Physicochemical properties of this lagoon were investigated by measuring temperature, salinity, and hydrogen and oxygen isotope ratios of its waters at a seasonal scale during years 2006 and 2007. Winter and spring seasons were dominated by mixing processes between freshwaters and Mediterranean seawater. The majority of spring season waters are formed by evapoconcentration of brackish water at moderate temperatures of 22 ± 2 °C. During summer, hypersaline waters result from evaporation of seawater and brackish waters formed during spring. Evaporation over the Akyatan lagoon reaches up to 76 wt% based on salinity measurements and operated with a dry (relative humidity of 0.15-0.20) and hot (44 ± 6 °C) air. These residual waters were characterized by the maximal seasonal isotopic enrichment in both deuterium and 18O relative to VSMOW. During autumn, most lagoonal waters became hypersaline and were formed by evaporation of waters that had isotopic compositions and salinities close to that of seawater. These autumnal hypersaline waters result from an air humidity close to 0.45 and an atmospheric temperature of evaporation of 35 ± 5 °C, which are responsible for up to 71 wt% of evaporation, with restricted isotopic enrichments relative to VSMOW. During the warm seasons, the combination of air humidity, wind velocity and temperature were responsible for a large kinetic component in the total isotopic fractionation between water liquid and water vapour.

  16. The Influence of Wind and Tide on the Hydrodynamics of a Highly Frictional Coastal Lagoon System

    NASA Astrophysics Data System (ADS)

    Polanco-Arias, C.; Marino-Tapia, I.; Enriquez, C.

    2016-02-01

    This study is focused on the influence of wind and tide on the hydrodynamics of a tropical coastal lagoon in Telchac, Yucatan, Mexico. The system is very shallow (z < 1m) and covered with a rim of mangrove forests, both aspects that enhance its frictional characteristics. The lagoon is an important habitat for the exotic flamingo birds and several species of fish, but also is used for fishing and serves as a harbor for small boats. Water level and velocity data gathered during one month in the summer of 2009, shows the expected attenuation of the tidal signal in the head of the system, but during the final ten days of the campaign there is an unusual behavior where the water level in the lagoon head was between 16% and 33% bigger than in the lagoon mouth. Analysis of the data shows a high coherence between the sea level and the wind velocity, primarily at diurnal frequencies. This reinforces the hypothesis of a synchronization between strong sea breezes and the predominant diurnal tide in such a way that amplification of the diurnal signal can occur at the head. Numerical simulations using the Delft3D model are performed to confirm this hypothesis and to better understand the conditions under which such phenomenon can occur. The effects of basin orientation, shape and depth are investigated with the numerical model.

  17. Impact of earthquakes on agriculture during the Roman-Byzantine period from pollen records of the Dead Sea laminated sediment

    NASA Astrophysics Data System (ADS)

    Leroy, Suzanne A. G.; Marco, Shmuel; Bookman, Revital; Miller, Charlotte S.

    2010-03-01

    The Dead Sea region holds the archives of a complex relationship between an ever-changing nature and ancient civilisations. Regional pollen diagrams show a Roman-Byzantine period standing out in the recent millennia by its wetter climate that allowed intensive arboriculture. During that period, the Dead Sea formed laminites that display mostly a seasonal character. A multidisciplinary study focused on two earthquakes, 31 BC and AD 363, recorded as seismites in the Ze'elim gully A unit III which has been well dated by radiocarbon in a previous study. The sampling of the sediment was done at an annual resolution starting from a few years before and finishing a decade after each earthquake. A clear drop in agricultural indicators (especially Olea and cereals) is shown. These pollen indicators mostly reflect human activities in the Judean Hills and coastal oases. Agriculture was disturbed in large part of the rift valley where earthquake damage affected irrigation and access to the fields. It took 4 to 5 yr to resume agriculture to previous conditions. Earthquakes must be seen as contributors to factors damaging societies. If combined with other factors such as climatic aridification, disease epidemics and political upheaval, they may lead to civilisation collapse.

  18. Anatomy of the dead sea transform from lithospheric to microscopic scale

    USGS Publications Warehouse

    Weber, M.; Abu-Ayyash, K.; Abueladas, A.; Agnon, A.; Alasonati-Tasarova, Z.; Al-Zubi, H.; Babeyko, A.; Bartov, Y.; Bauer, K.; Becken, M.; Bedrosian, P.A.; Ben-Avraham, Z.; Bock, G.; Bohnhoff, M.; Bribach, J.; Dulski, P.; Ebbing, J.; El-Kelani, R.; Forster, A.; Forster, H.-J.; Frieslander, U.; Garfunkel, Z.; Goetze, H.J.; Haak, V.; Haberland, C.; Hassouneh, M.; Helwig, S.; Hofstetter, A.; Hoffmann-Rotrie, A.; Jackel, K.H.; Janssen, C.; Jaser, D.; Kesten, D.; Khatib, M.; Kind, R.; Koch, O.; Koulakov, I.; Laske, Gabi; Maercklin, N.; Masarweh, R.; Masri, A.; Matar, A.; Mechie, J.; Meqbel, N.; Plessen, B.; Moller, P.; Mohsen, A.; Oberhansli, R.; Oreshin, S.; Petrunin, A.; Qabbani, I.; Rabba, I.; Ritter, O.; Romer, R.L.; Rumpker, G.; Rybakov, M.; Ryberg, T.; Saul, J.; Scherbaum, F.; Schmidt, S.; Schulze, A.; Sobolev, S.V.; Stiller, M.; Stromeyer, D.; Tarawneh, K.; Trela, C.; Weckmann, U.; Wetzel, U.; Wylegalla, K.

    2009-01-01

    Fault zones are the locations where motion of tectonic plates, often associated with earthquakes, is accommodated. Despite a rapid increase in the understanding of faults in the last decades, our knowledge of their geometry, petrophysical properties, and controlling processes remains incomplete. The central questions addressed here in our study of the Dead Sea Transform (DST) in the Middle East are as follows: (1) What are the structure and kinematics of a large fault zone? (2) What controls its structure and kinematics? (3) How does the DST compare to other plate boundary fault zones? The DST has accommodated a total of 105 km of leftlateral transform motion between the African and Arabian plates since early Miocene (???20 Ma). The DST segment between the Dead Sea and the Red Sea, called the Arava/ Araba Fault (AF), is studied here using a multidisciplinary and multiscale approach from the ??m to the plate tectonic scale. We observe that under the DST a narrow, subvertical zone cuts through crust and lithosphere. First, from west to east the crustal thickness increases smoothly from 26 to 39 km, and a subhorizontal lower crustal reflector is detected east of the AF. Second, several faults exist in the upper crust in a 40 km wide zone centered on the AF, but none have kilometer-size zones of decreased seismic velocities or zones of high electrical conductivities in the upper crust expected for large damage zones. Third, the AF is the main branch of the DST system, even though it has accommodated only a part (up to 60 km) of the overall 105 km of sinistral plate motion. Fourth, the AF acts as a barrier to fluids to a depth of 4 km, and the lithology changes abruptly across it. Fifth, in the top few hundred meters of the AF a locally transpressional regime is observed in a 100-300 m wide zone of deformed and displaced material, bordered by subparallel faults forming a positive flower structure. Other segments of the AF have a transtensional character with small pull

  19. Possible connection between large volcanic eruptions and level rise episodes in the Dead Sea Basin

    NASA Astrophysics Data System (ADS)

    Bookman, Revital; Filin, Sagi; Avni, Yoav; Rosenfeld, Daniel; Marco, Shmuel

    2014-05-01

    The June 1991 Pinatubo volcanic eruption perturbed the atmosphere, triggering short-term worldwide changes in surface and lower troposphere temperatures, precipitation, and runoff. The following winter was anomalously wet in the Levant, with a ~2-meter increase in the Dead Sea level that created a distinct morphological terrace along the lake's shore. Given the global radiative and chemical effects of volcanogenic aerosols on climatic systems, we tested the hypothesis that the 1991-92 winter shore terrace is a modern analogue to the linkage between past volcanic eruptions and a sequence of shore terraces on the cliffs around the Dead Sea Basin. Analysis of historical annual precipitation series from Jerusalem showed a significant positive correlation between the Dust Veil Index (DVI) of the modern largest eruptions and corresponding annual rainfall. The DVI was found to explain nearly 50% of the variability in the annual rainfall, such that greater DVI means more rainfall. Other factors that may affect the annual rainfall in the region as the Southern Oscillation Index (SOI) and the North Atlantic oscillations (NAO) were incorporated along with the DVI in a linear multiple regression model. It was found that the NAO did not contribute anything except for increased noise, but the added SOI increased the explained variability of rainfall to more than 60%. The atmospheric effect of the volcanic aerosol cloud produced after the Mt. Pinatubo eruption shows responses in the climate system on a hemispherical to global scale. Volcanic eruptions with a VEI of 6, as in the Pinatubo, occurred about once a century during the Holocene period at a rate that persisted throughout the last glacial-interglacial cycle, though with large variations in the mean. This occurrence is similar to the frequency of shore terrace build-up during the Lake Lisan desiccation. Sixteen shore terraces, detected using airborne laser scanning data, were interpreted as indicating short-term level rises

  20. Methane fluxes from tropical coastal lagoons surrounded bymangroves, Yucatán, Mexico

    USGS Publications Warehouse

    Chuang, Pei-Chuan; Young, Megan B.; Dale, Andrew W.; Miller, Laurence G.; Herrera-Silveira, Jorge A; Paytan, Adina

    2017-01-01

    Methane concentrations in the water column and emissions to the atmosphere were determined for three tropical coastal lagoons surrounded by mangrove forests on the Yucatán Peninsula, Mexico. Surface water dissolved methane was sampled at different seasons over a period of 2 years in areas representing a wide range of salinities and anthropogenic impacts. The highest surface water methane concentrations (up to 8378 nM) were measured in a polluted canal associated with Terminos Lagoon. In Chelem Lagoon, methane concentrations were typically lower, except in the polluted harbor area (1796 nM). In the relatively pristine Celestún Lagoon, surface water methane concentrations ranged from 41 to 2551 nM. Methane concentrations were negatively correlated with salinity in Celestún, while in Chelem and Terminos high methane concentrations were associated with areas of known pollution inputs, irrespective of salinity. The diffusive methane flux from surface lagoon water to the atmosphere ranged from 0.0023 to 15 mmol CH4 m−2 d−1. Flux chamber measurements revealed that direct methane release as ebullition was up to 3 orders of magnitude greater than measured diffusive flux. Coastal mangrove lagoons may therefore be an important natural source of methane to the atmosphere despite their relatively high salinity. Pollution inputs are likely to substantially enhance this flux. Additional statistically rigorous data collected globally are needed to better consider methane fluxes from mangrove-surrounded coastal areas in response to sea level changes and anthropogenic pollution in order to refine projections of future atmospheric methane budgets.

  1. Late Quaternary environmental and human events at En Gedi, reflected by the geology and archaeology of the Moringa Cave (Dead Sea area, Israel)

    NASA Astrophysics Data System (ADS)

    Lisker, Sorin; Porat, Roi; Davidovich, Uri; Eshel, Hanan; Lauritzen, Stein-Erik; Frumkin, Amos

    2007-09-01

    The Moringa Cave within Pleistocene sediments in the En Gedi area of the Dead Sea Fault Escarpment contains a sequence of various Pleistocene lacustrine deposits associated with higher-than-today lake levels at the Dead Sea basin. In addition it contains Chalcolithic remains and 5th century BC burials attributed to the Persian period, cemented and covered by Late Holocene travertine flowstone. These deposits represent a chain of Late Pleistocene and Holocene interconnected environmental and human events, echoing broader scale regional and global climate events. A major shift between depositional environments is associated with the rapid fall of Lake Lisan level during the latest Pleistocene. This exposed the sediments, providing for cave formation processes sometime between the latest Pleistocene (ca. 15 ka) and the Middle Holocene (ca. 4500 BC), eventually leading to human use of the cave. The Chalcolithic use of the cave can be related to a relatively moist desert environment, probably related to a shift in the location of the northern boundary of the Saharo-Arabian desert belt. The travertine layer was U-Th dated 2.46 ± 0.10 to 2.10 ± 0.04 ka, in agreement with the archaeological finds from the Persian period. Together with the inner consistency of the dating results, this strongly supports the reliability of the radiometric ages. The 2.46-2.10 ka travertine deposition within the presently dry cave suggests a higher recharge of the Judean Desert aquifer, correlative to a rising Dead Sea towards the end of the 1st millennium BC. This suggests a relatively moist local and regional climate facilitating human habitation of the desert.

  2. Seismic imaging of deep low-velocity zone beneath the Dead Sea basin and transform fault: Implications for strain localization and crustal rigidity

    USGS Publications Warehouse

    ten Brink, Uri S.; Al-Zoubi, A. S.; Flores, C.H.; Rotstein, Y.; Qabbani, I.; Harder, S.H.; Keller, Gordon R.

    2006-01-01

    New seismic observations from the Dead Sea basin (DSB), a large pull-apart basin along the Dead Sea transform (DST) plate boundary, show a low velocity zone extending to a depth of 18 km under the basin. The lower crust and Moho are not perturbed. These observations are incompatible with the current view of mid-crustal strength at low temperatures and with support of the basin's negative load by a rigid elastic plate. Strain softening in the middle crust is invoked to explain the isostatic compensation and the rapid subsidence of the basin during the Pleistocene. Whether the deformation is influenced by the presence of fluids and by a long history of seismic activity on the DST, and what the exact softening mechanism is, remain open questions. The uplift surrounding the DST also appears to be an upper crustal phenomenon but its relationship to a mid-crustal strength minimum is less clear. The shear deformation associated with the transform plate boundary motion appears, on the other hand, to cut throughout the entire crust. Copyright 2006 by the American Geophysical Union.

  3. Environmental quality of transitional waters: the lagoon of Venice case study.

    PubMed

    Micheletti, C; Gottardo, S; Critto, A; Chiarato, S; Marcomini, A

    2011-01-01

    The health status of European aquatic environments, including transitional waters such as coastal lagoons, is regulated by the Water Framework Directive (WFD), which requires the classification of the water bodies' environmental quality and the achievement of a good ecological status by 2015. In the Venice lagoon, a transitional water body located in the northeastern part of Italy, the achievement of a good ecological status is hampered by several anthropogenic and natural pressures, such as sediment and water chemical contamination, and sediment erosion. In order to evaluate the lagoon's environmental quality according to the WFD (i.e. 5 quality classes, from High to Bad), an integrated Weight-of-Evidence methodology was developed and applied to classify the quality of the lagoon water bodies, integrating biological, physico-chemical, chemical, ecotoxicological, and hydromorphological data (i.e. Lines of Evidence, LOE). The quality assessment was carried out in two lagoon habitat typologies (previously defined on the basis of morphological, sediment, and hydrodynamic characteristics) which were selected taking into account the ecological gradient from sea to land, and the differences in anthropogenic pressure and contamination levels. The LOE classification was carried out by using indicators scored by comparing site specific conditions to reference conditions measured in lagoon reference sites, or provided by local, national or European regulations (e.g. Environmental Quality Standards, EQS, for chemicals). Finally, the overall quality status for each water body was calculated by a probabilistic approach, i.e. by reporting the final result as the frequency distribution of quality classes. The developed procedure was applied by using data and information concerning selected LOE and collected from monitoring programs and research studies carried out in the last 15 years in the lagoon of Venice. A set of sampling stations characterized by spatially and temporally

  4. Lagoon Restoration Project: Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This project is a multiyear effort focusing on energy flow in the Palace of Fine Arts lagoon just outside the Exploratorium in San Francisco. Phase 1 was a pilot study to determine the feasibility of improving biological energy flow through the small freshwater lagoon, using the expertise and resources of an environmental artist in collaboration with museum biologists and arts department staff. The primary outcome of Phase 1 is an experimental fountain exhibit inside the museum designed by public artist Laurie Lundquist with Exploratorium staff. This fountain, with signage, functions both as a model for natural aeration and filtration systemsmore » and as a focal point for museum visitors to learn about how biological processes cycle energy through aquatic systems. As part of the study of the lagoon`s health, volunteers continued biweekly bird consus from March through September, 1994. The goal was to find out whether the poor water quality of the lagoon is affecting the birds. Limited dredging was undertaken by the city Parks and Recreation Department. However, a more peermanent solution to the lagoon`s ecological problems would require an ambitious redesign of the lagoon.« less

  5. Metal bioaccumulation pattern by Cotylorhiza tuberculata (Cnidaria, Scyphozoa) in the Mar Menor coastal lagoon (SE Spain).

    PubMed

    Muñoz-Vera, Ana; García, Gregorio; García-Sánchez, Antonio

    2015-12-01

    Coastal lagoons are ecosystems highly vulnerable to human impacts because of their situation between terrestrial and marine environment. Mar Menor coastal lagoon is one of the largest lagoons of the Mediterranean Sea, placed in SE Spain and subjected to major human impacts, in particular the mining of metal sulphides. As a consequence, metal concentration in water column and sediments of this ecosystem is usually higher than in other areas. For monitoring ecosystem health, the present study has assessed the ability of Cotylorhiza tuberculata for bioaccumulating metals from sea water. Up to 65 individuals were sampled at 8 different sampling stations during the summer of 2012. Although the concentration values for different elements considered were moderate (Pb: 0.04-29.50 ppm, Zn: 2.27-93.44 ppm, Cd: 0-0.67 ppm, As: 0.56-130.31 ppm) by dry weight of the jellyfish tissues (bell and oral arms combined), bioconcentration levels in relation to seawater metal concentration were extremely high. In any case, the use or disposal of these organisms should consider their metal content because of their potential environmental and health implications.

  6. Three-dimensional modeling of pull-apart basins: implications for the tectonics of the Dead Sea Basin

    USGS Publications Warehouse

    Katzman, Rafael; ten Brink, Uri S.; Lin, Jian

    1995-01-01

    We model the three-dimensional (3-D) crustal deformation in a deep pull-apart basin as a result of relative plate motion along a transform system and compare the results to the tectonics of the Dead Sea Basin. The brittle upper crust is modeled by a boundary element technique as an elastic block, broken by two en echelon semi-infinite vertical faults. The deformation is caused by a horizontal displacement that is imposed everywhere at the bottom of the block except in a stress-free “shear zone” in the vicinity of the fault zone. The bottom displacement represents the regional relative plate motion. Results show that the basin deformation depends critically on the width of the shear zone and on the amount of overlap between basin-bounding faults. As the width of the shear zone increases, the depth of the basin decreases, the rotation around a vertical axis near the fault tips decreases, and the basin shape (the distribution of subsidence normalized by the maximum subsidence) becomes broader. In contrast, two-dimensional plane stress modeling predicts a basin shape that is independent of the width of the shear zone. Our models also predict full-graben profiles within the overlapped region between bounding faults and half-graben shapes elsewhere. Increasing overlap also decreases uplift near the fault tips and rotation of blocks within the basin. We suggest that the observed structure of the Dead Sea Basin can be described by a 3-D model having a large overlap (more than 30 km) that probably increased as the basin evolved as a result of a stable shear motion that was distributed laterally over 20 to 40 km.

  7. Brazil: Duck Lagoon

    Atmospheric Science Data Center

    2013-04-18

    article title:  Brazil - The Duck Lagoon     View Larger Image ... the Brazilian state of Rio Grande do Sul, translates to "the Duck Lagoon". It was named by 16th century Jesuit settlers, who asked the King ...

  8. Satellite observations of turbidity in the Dead Sea

    NASA Astrophysics Data System (ADS)

    Nehorai, R.; Lensky, I. M.; Hochman, L.; Gertman, I.; Brenner, S.; Muskin, A.; Lensky, N. G.

    2013-06-01

    A methodology to attain daily variability of turbidity in the Dead Sea by means of remote sensing was developed. 250 m/pixel moderate resolution imaging spectroradiometer (MODIS) surface reflectance data were used to characterize the seasonal cycle of turbidity and plume spreading generated by flood events in the lake. Fifteen minutes interval images from meteosat second generation 1.6 km/pixel high-resolution visible (HRV) channel were used to monitor daily variations of turbidity. The HRV reflectance was normalized throughout the day to correct for the changing geometry and then calibrated against available MODIS surface reflectance. Finally, hourly averaged reflectance maps are presented for summer and winter. The results show that turbidity is concentrated along the silty shores of the lake and the southern embayments, with a gradual decrease of turbidity values from the shoreline toward the center of the lake. This pattern is most pronounced following the nighttime hours of intense winds. A few hours after winds calm the concentric turbidity pattern fades. In situ and remote sensing observations show a clear relation between wind intensity, wave amplitude and water turbidity. In summer and winter similar concentric turbidity patterns are observed but with a much narrower structure in winter. A simple Lagrangain trajectory model suggests that the combined effects of horizontal transport and vertical mixing of suspended particles leads to more effective mixing in winter. The dynamics of suspended matter contributions from winter desert floods are also presented in terms of hourly turbidity maps showing the spreading of the plumes and their decay.

  9. The Role of Terrestrial Inputs of Organic Matter in Arctic Lagoons: Comparative Studies from Open-Water and Ice-Covered Periods

    NASA Astrophysics Data System (ADS)

    Dunton, K. H.; McClelland, J. W.; Connelly, T.; Linn, S.; Khosh, M.

    2012-12-01

    Coastal ecosystems of the Arctic receive extraordinarily large quantities of terrestrial organic matter through river discharge and shoreline erosion. This organic matter, both in dissolved and particulate form, may provide an important carbon and energy subsidy that supports and maintains heterotrophic activity and food webs in coastal waters, especially in the lagoons. Recent food web studies using stable isotopes confirm the significant assimilation of terrestrial organic matter, based on the depletion in both 13C and 15N content of invertebrate and vertebrate consumers collected in eastern Beaufort Sea lagoons vs. offshore waters. Our current work specifically focuses on a set of 12 field sites along the eastern Alaskan Beaufort Sea coast, from Barter Island to Demarcation Bay. To examine linkages between biological communities and organic matter inputs from land, we compared sites ranging from lagoons to open coastal systems that receive differing amounts of freshwater runoff and also differ markedly in their exchange characteristics with shelf waters. Our temporal and spatial effort included field sampling during the ice covered period in a number of lagoons characterized by differences in their exchange characteristics with the nearshore shelf. Our preliminary chemical and biological measurements, the first of their kind in arctic coastal lagoons, reveal that lagoon benthos can become hypersaline (43) and net heterotrophic (values to 30% oxygen saturation) during winter, before rebounding during the period of ice break-up to net autotrophic (>100% saturation) under continued hypersaline conditions. Measurements of water and sediment chemistry, benthic and water column community characteristics, and natural abundance isotopic tracers promise to reveal the dynamic nature of these productive lagoon ecosystems under different hydrologic conditions. The possible role of terrestrially derived carbon to arctic estuarine food webs is especially important in view of

  10. Methane fluxes from tropical coastal lagoons surrounded by mangroves, Yucatán, Mexico

    NASA Astrophysics Data System (ADS)

    Chuang, P.-C.; Young, M. B.; Dale, A. W.; Miller, L. G.; Herrera-Silveira, J. A.; Paytan, A.

    2017-05-01

    Methane concentrations in the water column and emissions to the atmosphere were determined for three tropical coastal lagoons surrounded by mangrove forests on the Yucatán Peninsula, Mexico. Surface water dissolved methane was sampled at different seasons over a period of 2 years in areas representing a wide range of salinities and anthropogenic impacts. The highest surface water methane concentrations (up to 8378 nM) were measured in a polluted canal associated with Terminos Lagoon. In Chelem Lagoon, methane concentrations were typically lower, except in the polluted harbor area (1796 nM). In the relatively pristine Celestún Lagoon, surface water methane concentrations ranged from 41 to 2551 nM. Methane concentrations were negatively correlated with salinity in Celestún, while in Chelem and Terminos high methane concentrations were associated with areas of known pollution inputs, irrespective of salinity. The diffusive methane flux from surface lagoon water to the atmosphere ranged from 0.0023 to 15 mmol CH4 m-2 d-1. Flux chamber measurements revealed that direct methane release as ebullition was up to 3 orders of magnitude greater than measured diffusive flux. Coastal mangrove lagoons may therefore be an important natural source of methane to the atmosphere despite their relatively high salinity. Pollution inputs are likely to substantially enhance this flux. Additional statistically rigorous data collected globally are needed to better consider methane fluxes from mangrove-surrounded coastal areas in response to sea level changes and anthropogenic pollution in order to refine projections of future atmospheric methane budgets.

  11. GPS measurements of crustal deformation across the southern Arava Valley section of the Dead Sea Fault and implications to regional seismic hazard assessment

    NASA Astrophysics Data System (ADS)

    Hamiel, Yariv; Masson, Frederic; Piatibratova, Oksana; Mizrahi, Yaakov

    2018-01-01

    Detailed analysis of crustal deformation along the southern Arava Valley section of the Dead Sea Fault is presented. Using dense GPS measurements we obtain the velocities of new near- and far-field campaign stations across the fault. We find that this section is locked with a locking depth of 19.9 ± 7.7 km and a slip rate of 5.0 ± 0.8 mm/yr. The geodetically determined locking depth is found to be highly consistent with the thickness of the seismogenic zone in this region. Analysis of instrumental seismic record suggests that only 1% of the total seismic moment accumulated since the last large event occurred about 800 years ago, was released by small to moderate earthquakes. Historical and paleo-seismic catalogs of this region together with instrumental seismic data and calculations of Coulomb stress changes induced by the 1995 Mw 7.2 Nuweiba earthquake suggest that the southern Arava Valley section of the Dead Sea Fault is in the late stage of the current interseismic period.

  12. The high resolution mapping of the Venice Lagoon tidal network

    NASA Astrophysics Data System (ADS)

    Madricardo, Fantina; Foglini, Federica; Kruss, Aleksandra; Bellafiore, Debora; Trincardi, Fabio

    2017-04-01

    One of the biggest challenges of the direct observation of the ocean is to achieve a high resolution mapping of its seafloor morphology and benthic habitats. So far, sonars have mapped just 0.05% of the ocean floor with less than ten-meter resolution. The recent efforts of the scientific community have been devoted towards the mapping of both Deep Ocean and very shallow coastal areas. Coastal and transitional environments in particular undergo strong morphological changes due to natural and anthropogenic pressure. Nowadays, only about 5% of the seafloor of these environments † have been mapped: the shallowness of these environments has prevented the use of underwater acoustics to reveal their morphological features. The recent technological development of multibeam echosounder systems, however, enables these instruments to achieve very high performances also in such shallow environments. In this work, we present results and case studies of an extensive multibeam survey carried out in the Lagoon of Venice in 2013. The Lagoon of Venice is the biggest lagoon in the Mediterranean Sea with a surface of about 550 km2 and with an average depth of about 1 m. In the last century, the morphological and ecological properties of the lagoon changed dramatically: the surface of the salt marshes was reduced by 60% and some parts of the lagoon are deepening with a net sediment flux exiting from the inlets. Moreover, major engineering interventions are currently ongoing at the inlets (MOSE project). These changes at the inlets could affect substantially the lagoon environment. To understand and monitor the future evolution of the Lagoon of Venice, ISMAR within the project RITMARE (a National Research Programme funded by the Italian Ministry of University and Research) carried out an extensive survey, involving a team of more than 25 scientists, to collect high resolution (0.5 m) bathymetry of key study areas such as the tidal inlets and channels. Following a broad

  13. Fish communities across a spectrum of habitats in the western Beaufort Sea and Chukchi Sea

    NASA Astrophysics Data System (ADS)

    Logerwell, E.; Busby, M.; Carothers, C.; Cotton, S.; Duffy-Anderson, J.; Farley, E.; Goddard, P.; Heintz, R.; Holladay, B.; Horne, J.; Johnson, S.; Lauth, B.; Moulton, L.; Neff, D.; Norcross, B.; Parker-Stetter, S.; Seigle, J.; Sformo, T.

    2015-08-01

    The increased scientific interest in the Arctic due to climate change and potential oil and gas development has resulted in numerous surveys of Arctic marine fish communities since the mid-2000s. Surveys have been conducted in nearly all Arctic marine fish habitats: from lagoons, beaches and across the continental shelf and slope. This provides an opportunity only recently available to study Arctic fish communities across a spectrum of habitats. We examined fish survey data from lagoon, beach, nearshore benthic, shelf pelagic and shelf benthic habitats in the western Beaufort Sea and Chukchi Sea. Specifically, we compare and contrast relative fish abundance and length (a proxy for age) among habitats and seas. We also examined ichthyoplankton presence/absence and abundance of dominant taxa in the shelf habitat. Our synthesis revealed more similarities than differences between the two seas. For example, our results show that the nearshore habitat is utilized by forage fish across age classes, and is also a nursery area for other species. Our results also indicated that some species may be expanding their range to the north, for example, Chinook Salmon. In addition, we documented the presence of commercially important taxa such as Walleye Pollock and flatfishes (Pleuronectidae). Our synthesis of information on relative abundance and age allowed us to propose detailed conceptual models for the life history distribution of key gadids in Arctic food webs: Arctic and Saffron Cod. Finally, we identify research gaps, such as the need for surveys of the surface waters of the Beaufort Sea, surveys of the lagoons of the Chukchi Sea, and winter season surveys in all areas. We recommend field studies on fish life history that sample multiple age classes in multiple habitats throughout the year to confirm, resolve and interpret the patterns in fish habitat use that we observed.

  14. Sediment facies of Enewetak Atoll lagoon. Geologic and geophysical investigations of Enewetak Atoll, Republic of the Marshall Islands. Professional paper

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wardlaw, B.R.; Henry, T.W.; Martin, W.E.

    1991-01-01

    Two sets of benthic (bottom-surface) samples were taken from the lagoon on Enewetak Atoll, Republic of the Marshall Islands, during the PEACE Program (1984-1985). These samples were collected to (1) familiarize project geologists with the distribution of sediment types and facies within Enewetak lagoon, (2) increase understanding of the distribution of modern microfaunas in the lagoon, and (3) supplement studies of the sea-floor features both within and near OAK and KOA craters. The benthic sample studies aided both evaluation of the stratigraphic sequence penetrated during the Drilling Phase and interpretation of the litho- and biostratigraphic framework used in analysis ofmore » OAK and KOA.« less

  15. Meiobenthic communities in permanently open estuaries and open/closed coastal lagoons of Uruguay (Atlantic coast of South America)

    NASA Astrophysics Data System (ADS)

    Kandratavicius, N.; Muniz, P.; Venturini, N.; Giménez, L.

    2015-09-01

    This study aimed to determine if estuarine meiofaunal communities of Uruguay (South America) vary between permanently open estuaries and open/closed coastal lagoons, or if they respond to the sediment composition. In Uruguay, estuaries and coastal lagoons vary in the degree of connectivity to the sea and in the sediment composition; sediments in estuaries are characterized by fine-medium sands but sediments vary from lagoon to lagoon (either fine-medium or coarse sand). Taxa richness (total = 16) showed less temporal variability in lagoons than in estuaries, due to patterns of presence/absence of the less abundant taxa. However, no major response to habitat was found in the most abundant groups: polychaetes (6% of total fauna) were on average 5% more abundant in lagoons than in estuaries. Some level of zonation, within estuaries and lagoons, was found in the most abundant groups, nematodes (63% of total fauna) and copepods (15%) in response to medium and fine sands. In addition, sediment type modulated seasonal patterns in the frequency of presence/absence in ostracods, polychaetes and oligochaetes. For instance, in polychaetes and ostracods the increase in the frequency of absences, occurring from summer to winter, was stronger in lagoons and estuaries dominated by fine sands. The lagoon habitat appears to ameliorate the effects of unfavourable (winter) conditions in less abundant meiofaunal taxa. In summary, sediment fractions explain spatial patterns in the average abundance of organisms (e.g. nematodes) as well as the seasonal changes in frequency of presence/absence (e.g. polychaetes).

  16. Biological control of trace metal and organometal benthic fluxes in a eutrophic lagoon (Thau Lagoon, Mediterranean Sea, France)

    NASA Astrophysics Data System (ADS)

    Point, D.; Monperrus, M.; Tessier, E.; Amouroux, D.; Chauvaud, L.; Thouzeau, G.; Jean, F.; Amice, E.; Grall, J.; Leynaert, A.; Clavier, J.; Donard, O. F. X.

    2007-04-01

    In situ benthic chamber experiments were conducted in the Thau Lagoon that allowed the simultaneous determination of the benthic exchanges of trace metals (Cd, Co, Cu, Mn, Pb and U) and mercury species (iHg and MMHg). Fluxes of organotin compounds (MBT, DBT and TBT) were also investigated for the first time. The benthic incubations were performed during two campaigns at four stations that presented different macrobenthic and macrophytic species distribution and abundance (see [Thouzeau, G., Grall, J., Clavier, J., Chauvaud, L., Jean, F., Leynaert, A., Longpuirt, S., Amice, E., Amouroux, D., 2007. Spatial and temporal variability of benthic biogeochemical fluxes associated with macrophytic and macrofaunal distributions in the Thau lagoon (France). Estuarine, Coastal and Shelf Science 72 (3), 432 446.]). The results indicate that most of the flux intensity as well as the temporal and spatial variability can be explained by the combined influence of microscale and macroscale processes. Microscale changes were identified using Mn flux as a good indicator of the redox conditions at the sediment water interface, and by extension, as an accurate proxy of benthic fluxes for most trace metals and mercury species. We also observed that the redox gradient at the interface is promoted by both microbial and macrobenthic species activity that governs O2 budgets. Macroscale processes have been investigated considering macrobenthic organisms activity (macrofauna and macroalgal cover). The density of such macroorganisms is able to explain most of the spatial and temporal variability of the benthic metal fluxes within a specific site. A tentative estimation of the flux of metals and organometals associated with deposit feeder and suspension feeder activity was found to be in the range of the flux determined within the chambers for most considered elements. Furthermore, a light/dark incubation investigating a dense macroalgal cover present at the sediment surface illustrates the role

  17. Effect of algal blooms on retention of N, Si and P in Europe's largest coastal lagoon

    NASA Astrophysics Data System (ADS)

    Vybernaite-Lubiene, I.; Zilius, M.; Giordani, G.; Petkuviene, J.; Vaiciute, D.; Bukaveckas, P. A.; Bartoli, M.

    2017-07-01

    Nutrient fluxes from land to sea are regulated by climatic factors governing hydrologic loading rates (e.g., storm events, snowmelt) and by internal processes within estuaries that affect nutrient transformation and retention. We compared monthly input and output fluxes of N, Si, and P at the entrance and exit of the hypereutrophic Curonian Lagoon to better understand how seasonal changes in the stoichiometry of nutrient inputs and the occurrence of algal blooms affected nutrient retention within the lagoon. Nutrient ratios were indicative of increasing Si and N limitation during the growing season, and these were associated with a shift from a diatom-based to a cyanobacteria dominated phytoplankton community. The estuary was a net sink for dissolved nutrients, but we observed large interannual difference in the overall retention of N and P. The occurrence of a large cyanobacteria bloom in 2012 was associated with increased export of particulate matter to the Baltic Sea resulting in a net surplus of P export. Bloom conditions mobilized P from sediments and resulted in a shift from net retention to net export for the lagoon. The findings of our study illustrate how changes in nutrient loading ratios influence phytoplankton community composition, which in turn alters the source-sink status of the estuary.

  18. Aged keratinocyte phenotyping: morphology, biochemical markers and effects of Dead Sea minerals.

    PubMed

    Soroka, Yoram; Ma'or, Zeev; Leshem, Yael; Verochovsky, Lilian; Neuman, Rami; Brégégère, François Menahem; Milner, Yoram

    2008-10-01

    The aging process and its characterization in keratinocytes have not been studied in depth until now. We have assessed the cellular and molecular characteristics of aged epidermal keratinocytes in monolayer cultures and in skin by measuring their morphological, fluorometric and biochemical properties. Light and electron microscopy, as well as flow cytometry, revealed increase in cell size, changes in cell shape, alterations in mitochondrial structure and cytoplasmic content with aging. We showed that the expression of 16 biochemical markers was altered in aged cultured cells and in tissues, including caspases 1 and 3 and beta-galactosidase activities, immunoreactivities of p16, Ki67, 20S proteasome and effectors of the Fas-dependent apoptotic pathway. Aged cells diversity, and individual variability of aging markers, call for a multifunctional assessment of the aging phenomenon, and of its modulation by drugs. As a test case, we have measured the effects of Dead Sea minerals on keratinocyte cultures and human skin, and found that they stimulate proliferation and mitochondrial activity, decrease the expression of some aging markers, and limit apoptotic damage after UVB irradiation.

  19. Patterns of seasonal variation in lagoonal macrozoobenthic assemblages (Mellah lagoon, Algeria).

    PubMed

    Magni, Paolo; Draredja, Brahim; Melouah, Khalil; Como, Serena

    2015-08-01

    In coastal lagoons, many studies indicated that macrozoobenthic assemblages undergo marked temporal fluctuations as related to the strong environmental variability of these systems. However, most of these studies have not assessed the seasonal patterns of these fluctuations and none of them has investigated the consistency of this variation in different areas within the same lagoon system. In this study, we assessed patterns of variation at multiple temporal (date, season and year) scales in two different areas in the coastal lagoon of Mellah (northeast Algeria). These areas (hereafter Shore and Center) are representative of two different environments typically found in coastal lagoons. The Shore (water depth of about 1.5-2 m) is characterized by relatively higher hydrodynamics, sand to silty-sand sediments and the presence of vegetation (Ruppia maritima), the Center (water depth of about 3-3.5 m) is characterized by mud to sandy-mud, organic-enriched sediments due to fine particle accumulation. Results showed two distinct patterns of seasonal variation in Shore and Center assemblages for two consecutive years. In Shore, species richness (S), total abundance (N) and the abundance of several dominant taxa were highest in summer and/or autumn. This pattern can be related to the local environmental conditions maintaining relatively well oxidized conditions, while increasing food availability, and favoring the recruitment of species and individuals in summer/autumn. On the contrary in Center, S was lowest in summer and autumn, and N and the abundance of fewer dominant taxa were lowest in summer. In Center, the bivalve Loripes lucinalis showed a 10-fold increase from summer to autumn in both years, likely related to the lagoon's hydrodynamics favoring larval transport and settlement in the central sector of the lagoon. Overall, the seasonal variation found in Center followed a regression/recovery pattern typical of opportunistic assemblages occurring in confined

  20. 75 FR 47825 - Emergency Exemption; Issuance of Emergency Permit to Rehabilitate Sea Turtles Affected by the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-09

    ... tag live sea turtles; transport live and dead sea turtles to rehabilitation facilities, satellite transmitter attachment sites, and necropsy sites and necropsy dead sea turtles and collect samples; examine gut contents from dead sea turtles; attach satellite transmitters to nesting Kemp's ridley turtles...

  1. Dynamics and contaminants in the coastal lagoon system of Nichupte-Bojórquez located in the Peninsula of Yucatan, Mexico

    NASA Astrophysics Data System (ADS)

    Carbajal, N.; Gaviño, J.; Galicia, M. A.

    2007-05-01

    Measurements of hydrographic parameters like temperature, salinity, pH, turbidity, dissolved oxygen and determination of concentrations of contaminants like ammonia, surfactants, phosphate, nitrite and nitrate give a picture about the degradation of the lagoon system of Nichupté-Bojórquez. Numerical experiments reveal that the tidal circulation is not intense enough to induce an efficient exchange of water. Tidal currents are small and limited to regions near the two mouths which connect the lagoon system with the Caribbean Sea. The circulation induced by wind forcing is more effective in generating strong currents in the different lagoons of the system. The wind induced circulation reduces the residence time of water. To explain the observed distribution of contaminants, we also simulate numerically the dispersion of contaminants. We present a general picture of the environmental problems of this beautiful lagoon system.

  2. Rates and cycles of microbial sulfate reduction in the hyper-saline Dead Sea over the last 200 kyrs from sedimentary d34S and d18O(SO4)

    NASA Astrophysics Data System (ADS)

    Torfstein, Adi; Turchyn, Alexandra V.

    2017-08-01

    We report the d34S and d18O(SO4) values measured in gypsum, pyrite, and elemental sulfur through a 456-m thick sediment core from the center of the Dead Sea, representing the last 200 kyrs, as well as from the exposed glacial outcrops of the Masada M1 section located on the margins of the modern Dead Sea. The results are used to explore and quantify the evolution of sulfur microbial metabolism in the Dead Sea and to reconstruct the lake’s water column configuration during the late Quaternary. Layers and laminae of primary gypsum, the main sulfur-bearing mineral in the sedimentary column, display the highest d34S and d18O(SO4) in the range of 13-28‰ and 13-30‰, respectively. Within this group, gypsum layers deposited during interglacials have lower d34S and d18O(SO4) relative to those associated with glacial or deglacial stages. The reduced sulfur phases, including chromium reducible sulfur, and secondary gypsum crystals are characterized by extremely low d34S in the range of -27 to +7‰. The d18O(SO4) of the secondary gypsum in the M1 outcrop ranges from 8 to 14‰. The relationship between d34S and d18O(SO4) of primary gypsum suggests that the rate of microbial sulfate reduction was lower during glacial relative to interglacial times. This suggests that the freshening of the lake during glacial wet intervals, and the subsequent rise in sulfate concentrations, slowed the rate of microbial metabolism. Alternatively, this could imply that sulfate-driven anaerobic methane oxidation, the dominant sulfur microbial metabolism today, is a feature of the hypersalinity in the modern Dead Sea. Sedimentary sulfides are quantitatively oxidized during epigenetic exposure, retaining the lower d34S signature; the d18O(SO4) of this secondary gypsum is controlled by oxygen atoms derived equally from atmospheric oxygen and from water, which is likely a unique feature in this hyperarid environment.

  3. Metals in some lagoons of Mexico.

    PubMed

    Vazquez, F G; Sharma, V K; Alexander, V H; Frausto, C A

    1995-02-01

    The concentrations of metals, Cd, Cu, Fe, Mn, Ni, Pb, and Zn were determined in some lagoons to establish the level of metal pollution. The lagoons studied were Alvarado lagoon, Veracruz; San Andres lagoon, Tamaulipas; and Terminos lagoon, Campeche. The concentrations were determined in water, oyster (Crassostrea virginica), and sediments. Metals were accumulated in either oysters or sediments. Cu and Zn were higher in oysters and Fe and Mn were higher in sediments. The results in water samples were compared with the limit established by the Secretaria de Ecologia and Desarrollo Urbano Report and briefly discussed.

  4. Metals in some lagoons of Mexico.

    PubMed Central

    Vazquez, F G; Sharma, V K; Alexander, V H; Frausto, C A

    1995-01-01

    The concentrations of metals, Cd, Cu, Fe, Mn, Ni, Pb, and Zn were determined in some lagoons to establish the level of metal pollution. The lagoons studied were Alvarado lagoon, Veracruz; San Andres lagoon, Tamaulipas; and Terminos lagoon, Campeche. The concentrations were determined in water, oyster (Crassostrea virginica), and sediments. Metals were accumulated in either oysters or sediments. Cu and Zn were higher in oysters and Fe and Mn were higher in sediments. The results in water samples were compared with the limit established by the Secretaria de Ecologia and Desarrollo Urbano Report and briefly discussed. PMID:7621796

  5. Variability of lipid constituents of the coil cyanobacterium Microcoleus vaginatus from the Dead Sea basin and Negev desert.

    PubMed

    Dembitsky, V M; Dor, I; Shkrob, I

    2000-12-01

    A study of lipids of the soil cyanobacterium Microcoleus vaginatus, which was isolated from microbial crusts collected in the Dead Sea basin and in the Negev desert, was performed. Twenty-six hydrocarbons and fatty acids were separated and identified by GC/MS using serially coupled capillary columns of different polarity. Changes in the lipid composition were evaluated by comparison of samples collected from different locations. Heptadecane, 1-heptadecene, 6- and 7-methylheptadecane, hexadecanoic and 9(Z)-octadecenoic acids were identified as the major constituents. Biochemical mechanisms of production of the different lipid compounds under UV irradiation are proposed.

  6. Nutrient dynamics in tropical rivers, estuarine-lagoons, and coastal ecosystems along the eastern Hainan Island

    NASA Astrophysics Data System (ADS)

    Li, R. H.; Liu, S. M.; Li, Y. W.; Zhang, G. L.; Ren, J. L.; Zhang, J.

    2013-06-01

    Nutrient dynamics were studied along the eastern Hainan Island based on field observations during 2006-2009, to understand nutrient biogeochemical processes and to have an overview of human perturbations on coastal ecosystems in this tropical region. The concentrations of nutrients in the rivers had seasonal variations enriched with dissolved inorganic nitrogen (DIN). High riverine concentrations of nitrate were mainly originated from agricultural fertilizer input. The ratios of DIN : PO43- ranged from 37 to 1063, suggesting preferential PO43- relative to nitrogen in the rivers. The areal yields of dissolved silicate (DSi) varied from 76 to 448 × 103 mol km-2 yr-1 due to erosion over the drainage area, inducing high levels of DSi among worldwide tropical systems. Aquaculture ponds contained high concentrations of NH4+ (up to 157 μM) and DON (up to 130 μM). Particulate phosphorus concentrations (0.5 ∼1.4 μM) were in lower level comparied with estuaries around the world. Particulate silicate levels in rivers and lagoons were lower than global average level. Nutrient biogeochemistry in coastal areas were affected by human activities (e.g. aquaculture, agriculture), as well as natural events such as typhoon. Nutrient concentrations were low because open sea water dispersed land-derived nutrients. Nutrient budgets were built based on a steady-state box model, which showed that riverine fluxes would be magnified by estuarine processes (e.g. regeneration, desorption) in the Wenchanghe/Wenjiaohe Estuary, Wanquan River estuary, and the Laoyehai Lagoon except in the Xiaohai Lagoon. Riverine and groundwater input were the major sources of nutrients to the Xiaohai Lagoon and the Laiyehai Lagoon, respectively. Riverine input and aquaculture effluent were the major sources of nutrients to the eastern coastal of Hainan Island. Nutrient inputs to the coastal ecosystem can be increased by typhoon-induced runoff of rainwater, and phytoplankton bloom in the sea would be

  7. Residence times in a hypersaline lagoon: Using salinity as a tracer

    NASA Astrophysics Data System (ADS)

    Mudge, Stephen M.; Icely, John D.; Newton, Alice

    2008-04-01

    down the Ramalhete Channel, from where it was unable to exit the lagoon in one tidal cycle due to the extensive path length of ˜14 km to the sea. Although the overall exchange rate of water is short in the outer lagoon, this study emphasizes that management models should take into account additional complexities that might arise from the much longer exchange rates of the inner lagoon. For example, the principal sewage discharge for the urban area of Faro is into the section of the Ramalhete Channel where efficient flushing is impeded by the relatively high residence times of the water body in this channel. The implementation of the techniques used for this study are a quick and relatively cost effective approach to testing assumptions about water quality and exchange in shallow coastal systems.

  8. Evidence of climatic variations in upper Pleistocene and Holocene sediments from the lagoon of Venice (Italy and the Bohai Sea (China))

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonardi, M.; Carbognin, L.; Tosi, L.

    1996-12-31

    An accurate forecasting of environmental impact on sea level and shoreline changes due to global warming, requires a detailed investigation and interpretation of the events that occurred during the past 20,000 years. This time interval in fact corresponds to two significant climatic global changes: the last Wuermian glaciation, during the Upper Pleistocene, and the warming during the Holocene. Examples of the climatic variation impact on paleoenvironments are here evidenced by sedimentological studies, radiocarbon dating, paleobotanic, paleontological, mineralogical and geochemical investigations of two stratigraphic columns that are geographically far apart: the Lagoon of Venice, Italy, and the Bohai Sea, China. Themore » study focuses first on a general overview of the regional paleoclimatic history of these two core locations and their correlation with the sedimentological variations; second on some depositional events, such clay layers and beachrock formations, that carry the imprints of the climatic conditions. The results of this investigation may contribute to a better understanding of diagenetic processes, still not sufficiently described, caused by the climatic changes. Furthermore the study provided information that may be useful to a more complete overview of the environmental impact caused by natural global warming before the anthropogenic input.« less

  9. Contamination status and accumulation profiles of organotins in sea otters (Enhydra lutris) found dead along the coasts of California, Washington, Alaska (USA), and Kamchatka (Russia)

    USGS Publications Warehouse

    Murata, S.; Takahashi, S.; Agusa, T.; Thomas, N.J.; Kannan, K.; Tanabe, S.

    2008-01-01

    Organotin compounds (OTs) including mono- to tri-butyltins, -phenyltins, and -octyltins were determined in the liver of adult sea otters (Enhydra lutris) found dead along the coasts of California, Washington, and Alaska in the USA and Kamchatka, Russia. Total concentrations of OTs in sea otters from California ranged from 34 to 4100 ng/g on a wet weight basis. The order of concentrations of OTs in sea otters was total butyltins ??? total octyltins ??? total phenyltins. Elevated concentrations of butyltins (BTs) were found in some otters classified under 'infectious-disease' mortality category. Concentrations of BTs in few of these otters were close to or above the threshold levels for adverse health effects. Total butyltin concentrations decreased significantly in the livers of California sea otters since the 1990s. Based on the concentrations of organotins in sea otters collected from 1992 to 2002, the half-lives of tributyltin and total butyltins in sea otters were estimated to be approximately three years. ?? 2008 Elsevier Ltd. All rights reserved.

  10. Lagoon Seepage Testing Report for Central Facilities Area (CFA) Sewage Lagoons at Idaho National Laboratory, Butte County, Idaho

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morrison, Bridger

    J-U-B ENGINEERS, Inc. (J-U-B) performed seepage tests on the CFA Wastewater Lagoons 1, 2, and 3 between August 26th and September 22nd, 2014. The lagoons were tested to satisfy the Idaho Department of Environmental Quality (DEQ) Rules (IDAPA 58.01.16) that require all lagoons be tested at a frequency of every 10 years and the Compliance Activity CA-141-03 in the DEQ Wastewater Reuse Permit for the CFA Sewage Treatment Plant (LA-000141-03). The lagoons were tested to determine if the average seepage rates are less than 0.25 in/day, the maximum seepage rate allowed for lagoons built prior to April 15, 2007. Themore » average seepage rates were estimated for each lagoon and are given in Table-ES1. The average seepage rates for Lagoons 1 and 2 are less than the allowable seepage rate of 0.25 in/day. Lagoon 1 and 2 passed the seepage test and will not have to be tested again until the year 20241. However, the average seepage rate for Lagoon 3 appears to exceed the allowable seepage rate of 0.25 in/day which means the potential source for the excessive leakage should be investigated further.« less

  11. Dead Sea mud packs for chronic low back pain.

    PubMed

    Abu-Shakra, Mahmoud; Mayer, Amit; Friger, Michael; Harari, Marco

    2014-09-01

    Low back pain (LBP) is chronic disease without a curative therapy. Alternative and complementary therapies are widely used in the management of this condition. To evaluate the efficacy of home application of Dead Sea mud compresses to the back of patients with chronic LBP. Forty-six consecutive patients suffering from chronic LBP were recruited. All patients were followed at the Soroka University Rheumatic Diseases Unit. The patients were randomized into two groups: one group was treated with mineral-rich mud compresses, and the other with mineral-depleted compresses. Mud compresses were applied five times a week for 3 consecutive weeks. The primary outcome was the patient's assessment of the overall back pain severity. The score of the Ronald & Morris questionnaire served as a secondary outcome. Forty-four patients completed the therapy and the follow-up assessments: 32 were treated with real mud packs and 12 used the mineral-depleted packs. A significant decrease in intensity of pain, as described by the patients, was observed only in the treatment group. In this group, clinical improvement was clearly seen at completion of therapy and was sustained a month later. Significant improvement in the scores of the Roland & Morris questionnaire was observed in both groups. The data suggest that pain severity was reduced in patients treated with mineral-rich mud compresses compared with those treated with mineral-depleted compresses. Whether this modest effect is the result of a "true" mud effect or other causes can not be determined in this study.

  12. Tidal dynamics of the Terminos Lagoon, Mexico: observations and 3D numerical modelling

    NASA Astrophysics Data System (ADS)

    Contreras Ruiz Esparza, Adolfo; Douillet, Pascal; Zavala-Hidalgo, Jorge

    2014-09-01

    The tidal circulation patterns in the Terminos Lagoon were studied based on the analysis of 1 year of measurements and numerical simulations using a baroclinic 3D hydrodynamic model, the MARS3D. A gauging network was installed consisting of six self-recording pressure-temperature sensors, a tide gauge station and two current profilers, with pressure and temperature sensors moored in the main lagoon inlets. Model simulations were validated against current and sea level observations and were used to analyse the circulation patterns caused by the tidal forcing. The numerical model was forced with eight harmonic components, four diurnal ( K 1, O 1, P 1, Q 1) and four semi-diurnal ( M 2, S 2, N 2, K 2), extracted from the TPX0.7 database. The tidal patterns in the study area vary from mixed, mainly diurnal in the two main inlets of the lagoon, to diurnal in its interior. The tidal residual circulation inside the lagoon is dominated by a cyclonic gyre. The results indicate a net flux from the southwest Ciudad del Carmen inlet (CdC) towards the northeast Puerto Real inlet (PtR) along the southern side of the lagoon and the opposite in the northern side. The results indicate two areas of strong currents in the vicinity of the inlets and weak currents inside the lagoon. The area of strong currents in the vicinity of the CdC inlet is larger than that observed in the PtR inlet. Nevertheless, the current analysis indicates that the highest current speeds, which can reach a magnitude of 1.9 m s-1, occurred in PtR. A further analysis of the tide distortion in the inlets revealed that both passages are ebb dominated.

  13. Biotic variation in coastal water bodies in Sussex, England: Implications for saline lagoons

    NASA Astrophysics Data System (ADS)

    Joyce, Chris B.; Vina-Herbon, Cristina; Metcalfe, Daniel J.

    2005-12-01

    Coastal water bodies are a heterogeneous resource typified by high spatial and temporal variability and threatened by anthropogenic impacts. This includes saline lagoons, which support a specialist biota and are a priority habitat for nature conservation. This paper describes the biotic variation in coastal water bodies in Sussex, England, in order to characterise the distinctiveness of the saline lagoon community and elucidate environmental factors that determine its distribution. Twenty-eight coastal water bodies were surveyed for their aquatic flora and invertebrate fauna and a suite of exploratory environmental variables compiled. Ordination and cluster analyses were used to examine patterns in community composition and relate these to environmental parameters. Biotic variation in the coastal water body resource was high. Salinity was the main environmental parameter explaining the regional distribution of taxa; freshwater and saline assemblages were evident and related to sea water ingress. Freshwater sites were indicated by the plant Myriophyllum spicatum and gastropod mollusc Lymnaea peregra, while more saline communities supported marine and brackish water taxa, notably a range of chlorophytic algae and the bivalve mollusc Cerastoderma glaucum. Site community differences were also related to bank slope and parameters describing habitat heterogeneity. A saline lagoon community was discerned within the matrix of biotic variation consisting of specialist lagoonal species with associated typically euryhaline taxa. For fauna, the latter were the molluscs Abra tenuis and Hydrobia ulvae, and the crustaceans Corophium volutator and Palaemonetes varians, and for flora they were the algae Ulva lactuca, Chaetomorpha mediterranea, Cladophora spp. and Enteromorpha intestinalis. One non-native polychaete species, Ficopomatus enigmaticus, also strongly influenced community structure within the lagoonal resource. The community was not well defined as specialist and

  14. Impacts of abrupt climate changes in the Levant from Last Glacial Dead Sea levels

    NASA Astrophysics Data System (ADS)

    Torfstein, Adi; Goldstein, Steven L.; Stein, Mordechai; Enzel, Yehouda

    2013-06-01

    A new, detailed lake level curve for Lake Lisan (the Last Glacial Dead Sea) reveals a high frequency of abrupt fluctuations during Marine Isotope Stage 3 (MIS3) compared to the relatively high stand characterizing MIS2, and the significantly lower Holocene lake. The lake level fluctuations reflect the hydrological conditions in the large watershed of the lake, which in turn reflects the hydro-climatic conditions in the central Levant region. The new curve shows that the fluctuations coincide on millennial timescales with temperature variations recorded in Greenland. Four patterns of correlation are observed through the last ice age: (1) maximum lake elevations were reached during MIS2, the coldest interval; (2) abrupt lake level drops to the lowest elevations coincided with the occurrence of Heinrich (H) events; (3) the lake returned to higher-stand conditions along with warming in Greenland that followed H-events; (4) significant lake level fluctuations coincided with virtually every Greenland stadial-interstadial cycle. Over glacial-interglacial time-scales, Northern Hemisphere glacial cooling induces extreme wetness in the Levant, with high lake levels reaching ˜160 m below mean sea level (mbmsl), approximately 240 m above typical Holocene levels of ˜400 mbmsl. These orbital time-scale shifts are driven by expansions of the European ice sheet, which deflect westerly storm tracks southward to the Eastern Mediterranean, resulting in increased sea-air temperature gradients that invoke increased cyclogenesis, and enhanced moisture delivery to the Levant. The millennial-scale lake level drops associated with Greenland stadials are most extreme during Heinrich stadials and reflect abrupt cooling of the Eastern Mediterranean atmosphere and sea-surface, which weaken the cyclogenic rain engine and cause extreme Levant droughts. During the recovery from the effect of Heinrich stadials, the regional climate configuration resumed typical glacial conditions, with enhanced

  15. Hydrologic characteristics of lagoons at San Juan, Puerto Rico, during an October 1974 tidal cycle

    USGS Publications Warehouse

    Gómez-Gómez, Fernando; Ellis, S.R.

    1983-01-01

    Flow and water-quality changes were studied during a period of intense rainfall in the San Juan Lagoon system. The study covered a 25-hour period beginning 0900 hours 22 October, 1974. Precipitation during the study period averaged 70 millimeters. Sampling stations were located at Boca de Cangrejos, the main ocean outlet; Canal Pinones between Laguna de Pinones and Laguna La Torrecilla; Canal Suarez between Laguna San Jose, connects to Laguna La Torrecilla; and Cano de Martin Pena between Laguna San Jose and Bahia de San Juan. In addition water-elevation recording gages were installed at each lagoon. Water samples from the canal stations were analyzed for organic carbon, nitrogen and phosphorus species, and suspended sediment. Specific-conductance measurements were used with the chemical data to estimate the runoff contributions of nutrients. Runoff into the lagoon, system during the study period was about 2.8 million cubic meters, or about 70 percent of the average precipitation. The runoff contributed chemical loadings to the lagoons of 95,000 kilograms total-organic carbon; 2,700 kilograms of total phosphorus; and 10,000 kilograms of total Khjeldhal nitrogen. A comparison with a prior study during which there was no significant rain, show that dry-period loadings are less than 10 percent of the wet-period loadings. At the end of the study period the system had not reached equilibrium, and the lagoons retained 80 percent of the water inflows from 50 to 90 percent of the chemical loads. Nearly 95 percent of the water outflows occurred at the Boca de Cangrejos sea outlet. The three lagoons and interconnecting canals form a very complex hydraulic system that is difficult to study using traditional techniques. A model of the system will facilitate management to improve the quality of water in the lagoons.

  16. The measurement and analysis of normal incidence solar UVB radiation and its application to the photoclimatherapy protocol for psoriasis at the Dead Sea, Israel.

    PubMed

    Kudish, Avraham I; Harari, Marco; Evseev, Efim G

    2011-01-01

    The broad-band normal incidence UVB beam radiation has been measured at Neve Zohar, Dead Sea basin, using a prototype tracking instrument composed of a Model 501A UV-Biometer mounted on an Eppley Solar Tracker Model St-1. The diffuse and beam fraction of the solar global UVB radiation have been determined using the concurrently measured solar global UVB radiation. The diffuse fraction was observed to exceed 80% throughout the year. The application of the results of these measurements to the possible revision of the photoclimatherapy protocol for psoriasis patients at the Dead Sea medical spas is now under investigation. The suggested revision would enable the sun-exposure treatment protocol to take advantage of the very high diffuse fraction by allowing the patient to receive the daily dose of UVB radiation without direct exposure to the sun, viz. receive the diffuse UVB radiation under a sunshade. This would require an increase in sun-exposure time intervals, as the UVB radiation intensity beneath a sunshade is less than that on an exposed surface. © 2010 The Authors. Photochemistry and Photobiology © 2010 The American Society of Photobiology.

  17. Abnormally high phytoplankton biomass near the lagoon mouth in the Huangyan Atoll, South China Sea.

    PubMed

    Ke, Zhixin; Liu, Huajian; Wang, Junxing; Liu, Jiaxing; Tan, Yehui

    2016-11-15

    Nutrient concentration and phytoplankton biomass were investigated in Huangyan Atoll in May 2015. The concentrations of nutrients were very low, and dissolved inorganic nitrogen was composed mainly of ammonia. Nitrogen likely was the primary limiting factor for phytoplankton growth. The spatial variation of phytoplankton biomass was significant among the lagoon, reef flats, and outer reef slopes. Extremely high chlorophyll a concentration and micro-phytoplankton abundance were found in the region near the lagoon mouth. This high phytoplankton biomass might be due to nutrient input from fishing vessels and phytoplankton aggregation driven by the southwestern wind. Our results indicate that phytoplankton biomass could be a reliable indicator of habitat differences in this coral reef ecosystem, and micro-phytoplankton seems to be more sensitive to nutrient input than pico-phytoplankton. Copyright © 2016. Published by Elsevier Ltd.

  18. Macrobenthic molluscs from a marine - lagoonal environmental transition in Lesvos Island (Greece).

    PubMed

    Evagelopoulos, Athanasios; Koutsoubas, Drosos; Gerovasileiou, Vasilis; Katsiaras, Nikolaos

    2016-01-01

    This paper describes an occurence dataset, also including numerical abundance and biomass data, pertaining to the macrobenthic molluscan assemblages from a marine - lagoonal environmental transition. The study system was the soft-substrate benthoscape of the area of the Kalloni solar saltworks (Lesvos Island, Greece). Specifically, the study area extended from the infralittoral zone of the inner Kalloni Gulf (marine habitat) to the bottoms of the first two evaporation ponds of the Kalloni solar saltworks (lagoonal habitat). Bottom sediment samples (3 replicates) were collected with a Van Veen grab sampler (0.1 m 2 ) at four sampling sites, along a 1.5 km long line transect that spanned the marine - lagoonal environmental transition. A total of four surveys were carried out seasonally in 2004.  A total of 39,345 molluscan individuals were sorted out of the sediment samples and were identified to 71 species, belonging to the Gastropoda (36), Bivalvia (34) and Scaphopoda (1) classes. Numerical abundance and wet biomass (with shells) data are included in the dataset. The dataset described in the present paper partially fills a significant gap in the scientific literature: Because ecological research of coastal lagoons has seldom explicitly considered the marine - lagoonal habitats interface, there are no openly accessible datasets pertaining to the particular structural component of the transitional waters benthoscapes of the Mediterranean Sea. Such datasets could prove valuable in the research of the structure and functioning of transitional waters benthoscapes. The present dataset is available as a supplementary file (Suppl. material 1) and can also be accessed at http://ipt.medobis.eu/resource?r=kalloni_saltworks_phd.

  19. KENNEDY SPACE CENTER, FLA. - As Karen Holloway-Adkins, KSC wildlife specialist, begins a tour of the Banana River, this alligator sunning itself attracts attention. Holloway-Adkins is studying the life history of sea turtles, especially what they eat, where they lay their eggs and what factors might harm their survival. On the boat trip she is also monitoring the growth of sea grasses and algae and the water quality of estuaries and lagoons used by sea turtles and other aquatic wildlife.

    NASA Image and Video Library

    2004-02-05

    KENNEDY SPACE CENTER, FLA. - As Karen Holloway-Adkins, KSC wildlife specialist, begins a tour of the Banana River, this alligator sunning itself attracts attention. Holloway-Adkins is studying the life history of sea turtles, especially what they eat, where they lay their eggs and what factors might harm their survival. On the boat trip she is also monitoring the growth of sea grasses and algae and the water quality of estuaries and lagoons used by sea turtles and other aquatic wildlife.

  20. KENNEDY SPACE CENTER, FLA. - Karen Holloway-Adkins, KSC wildlife specialist, at the helm of a boat on the Banana River, heads for a research area. She is studying the life history of sea turtles, especially what they eat, where they lay their eggs and what factors might harm their survival. On the boat trip she is also monitoring the growth of sea grasses and algae and the water quality of estuaries and lagoons used by sea turtles and other aquatic wildlife.

    NASA Image and Video Library

    2004-02-05

    KENNEDY SPACE CENTER, FLA. - Karen Holloway-Adkins, KSC wildlife specialist, at the helm of a boat on the Banana River, heads for a research area. She is studying the life history of sea turtles, especially what they eat, where they lay their eggs and what factors might harm their survival. On the boat trip she is also monitoring the growth of sea grasses and algae and the water quality of estuaries and lagoons used by sea turtles and other aquatic wildlife.

  1. KENNEDY SPACE CENTER, FLA. - Karen Holloway-Adkins, KSC wildlife specialist, takes the helm on the boat as she begins a tour of the Banana River. She is studying the life history of sea turtles, especially what they eat, where they lay their eggs and what factors might harm their survival. On the boat trip she is also monitoring the growth of sea grasses and algae and the water quality of estuaries and lagoons used by sea turtles and other aquatic wildlife.

    NASA Image and Video Library

    2004-02-05

    KENNEDY SPACE CENTER, FLA. - Karen Holloway-Adkins, KSC wildlife specialist, takes the helm on the boat as she begins a tour of the Banana River. She is studying the life history of sea turtles, especially what they eat, where they lay their eggs and what factors might harm their survival. On the boat trip she is also monitoring the growth of sea grasses and algae and the water quality of estuaries and lagoons used by sea turtles and other aquatic wildlife.

  2. Historical flux of mercury associated with mining and industrial sources in the Marano and Grado Lagoon (northern Adriatic Sea)

    NASA Astrophysics Data System (ADS)

    Covelli, Stefano; Langone, Leonardo; Acquavita, Alessandro; Piani, Raffaella; Emili, Andrea

    2012-11-01

    The "MIRACLE" Project was established in order to assess the feasibility of clam farming and high levels of sediment mercury (Hg) contamination coexisting in the Marano and Grado Lagoon, Italy. This lagoon has been subjected to Hg input from both industrial waste (chlor-alkali plant) and long-term mining activity (Idrija mine, NW Slovenia). One of the subtasks of the "MIRACLE" Project was to determine the historical evolution of Hg accumulation in the lagoon's bottom sediments. Thirteen 1-m deep sediment cores were collected from the subtidal and intertidal zones, plus one in a saltmarsh, all of which were then analyzed for total Hg content and several physicochemical parameters. Sedimentation rate assessments were performed by measuring short-lived radionuclides (excess 210Pb and 137Cs). For most of the analyzed cores, natural background levels of Hg were observed at depths of 50-100 cm. In the eastern area, Hg contamination was found to be at its maximum level at the core top (up to 12 μg g-1) as a consequence of the long-term mining activity. The vertical distribution of Hg was related to the influence of the single-point contamination sources, whereas the grain-size variability or organic matter content seemed not to affect it. In the western area, Hg content at the surface was found not to exceed 7 μg g-1 and contamination was recorded only in the first 20-30 cm. Geochronological measurements showed that the depositional flux of Hg was influenced by anthropogenic inputs after 1800, when mining activity was more intense. After 1950, Hg in the surface sediment, most remarkable in the central-western sector, seemed to also be affected by the discharge of the Aussa River, which delivers Hg from the chlor-alkali plant. In 1996, Hg mining at Idrija ceased, however the core profiles did not show any subsequent decreasing trend in terms of Hg flux, which implies the system retaining some "memory" of contamination. Thus, in the short term, a decrease in Hg inputs

  3. Lagoonal deposits in the Upper Cretaceous Rock Springs Formation (Mesaverde Group), southwest Wyoming

    USGS Publications Warehouse

    Kirschbaum, M.A.

    1989-01-01

    Most paleogeographic reconstructions of the Rock Springs Formation show shorelines having lobate to arcuate deltas. These shorelines are oriented NE-SW, with the sea to the southeast. Brackish-water bodies are usually shown in interdistributary areas or associated with abandoned delta lobes, and are open to the sea. In this study, a sedimentary sequence 30-50 m thick is interpreted as interdeltaic deposits. Brackish-water deposits within the sequence are interpreted as interdeltaic lagoons rather than interdistributary bays. Three facies associations (units) are recognized in nine measured sections of the study interval. Unit A consists of interbedded sandstone, mudrock and coal which occur in both fining- and coarsening-upward sequences less than 10 m thick. Fining-upward sequences decrease in thickness and frequency upwards in unit A and are interpreted as distributary channels. Coarsening-upward sequences associated with the channels are interpreted as crevasse splays that filled lakes or interdistributary bays. In the upper part of the unit where only minor channels are present, the coarsening-upward sequences are interpreted as bay deltas. Unit B consists of fossiliferous silty shale and bioturbated sandy siltstone. A low-diversity fauna of bivalves, gastropods, ostracods and foraminifers indicates that brackish-water conditions existed. Unit B intertongues with unit A to the northwest and with unit C to the southeast, and is interpreted as lagoonal deposits. Unit C consists of crossbedded and burrowed sandstone in beds 0.5-9 m thick. Sandstones are laterally continuous in the southeast but become tabular bodies enclosed within unit B to the northwest. Laterally continuous sandstones are interpreted as shoreface deposits on the basis of multidirectional crossbeds, marine trace fossils and continuity. Tabular sandstones are interpreted as flood-tidal deltas on the basis of NW-oriented crossbeds, pinchouts to the northwest and enclosure within unit B. Scoured

  4. Patterns and Controls of Erosion along the Elson Lagoon Coastline, Barrow, Alaska (2003-2016)

    NASA Astrophysics Data System (ADS)

    Tweedie, C. E.; Escarzaga, S. M.; Cody, R. P.; Manley, W. F.; Gaylord, A. G.; Aiken, Q.; Lopez, A. F.; Aguirre, A.; George, C.; Nelson, L.; Brown, J.

    2016-12-01

    With arctic warming and the combined effect of decreased summer sea ice extent, longer fetch for wave propagation, warmer sea surface and ground temperature, and longer periods of open water; the propensity for increased arctic coastal erosion rates and land-ocean sediment inputs to increase has been recognized for some time. In this study, we report on coastal erosion trends along a 11km stretch of coastline adjacent to the Barrow Environmental Observatory (BEO) where the position of the 2-4 meter high coastal bluff has been monitored annually with survey grade differential GPS (dGPS). Modern and historic erosion trends can be viewed through interactive web mapping applications at http://barrowmapped.org/. Rates of aerial and volumetric erosion losses averaged 0.7-2.8 meters and 0.8-3.5 cubic meters per meter of coast per year from 2003-2015 for each of the four coastal sections monitored. These losses equate to losses to the atmosphere and/or inputs to lagoon waters 53-220kgC per meter of coast per year. Such aerial losses are lower than from other areas of the Beaufort Sea coast that lack protective barrier islands, but 25-30% higher than historic decadal-scale change rates estimated for this section of coastline. However, regression analyses indicate no significant change to the rate of erosion during the past 13 years. Historic hotspots of erosion remained modern hotspots of erosion, and increases in modern erosion rates were greatest for sections of coast where historically high rates of erosion have been recorded. Regionally, the Elson Lagoon study area shows some of the highest rates of erosion for the Barrow Peninsula, which are generally 2-3 times mean annual erosion rates recorded for the Chukchi Sea Coastline near Barrow. Regression tree analysis used to isolate the relative importance of different biophysical controls of erosion differ between analyses run for aerial and volumetric losses along the Elson Lagoon Coast. These analyses also highlight key

  5. Clustering and interpretation of local earthquake tomography models in the southern Dead Sea basin

    NASA Astrophysics Data System (ADS)

    Bauer, Klaus; Braeuer, Benjamin

    2016-04-01

    The Dead Sea transform (DST) marks the boundary between the Arabian and the African plates. Ongoing left-lateral relative plate motion and strike-slip deformation started in the Early Miocene (20 MA) and produced a total shift of 107 km until presence. The Dead Sea basin (DSB) located in the central part of the DST is one of the largest pull-apart basins in the world. It was formed from step-over of different fault strands at a major segment boundary of the transform fault system. The basin development was accompanied by deposition of clastics and evaporites and subsequent salt diapirism. Ongoing deformation within the basin and activity of the boundary faults are indicated by increased seismicity. The internal architecture of the DSB and the crustal structure around the DST were subject of several large scientific projects carried out since 2000. Here we report on a local earthquake tomography study from the southern DSB. In 2006-2008, a dense seismic network consisting of 65 stations was operated for 18 months in the southern part of the DSB and surrounding regions. Altogether 530 well-constrained seismic events with 13,970 P- and 12,760 S-wave arrival times were used for a travel time inversion for Vp, Vp/Vs velocity structure and seismicity distribution. The work flow included 1D inversion, 2.5D and 3D tomography, and resolution analysis. We demonstrate a possible strategy how several tomographic models such as Vp, Vs and Vp/Vs can be integrated for a combined lithological interpretation. We analyzed the tomographic models derived by 2.5D inversion using neural network clustering techniques. The method allows us to identify major lithologies by their petrophysical signatures. Remapping the clusters into the subsurface reveals the distribution of basin sediments, prebasin sedimentary rocks, and crystalline basement. The DSB shows an asymmetric structure with thickness variation from 5 km in the west to 13 km in the east. Most importantly, a well-defined body

  6. Geometry and subsidence history of the Dead Sea basin: A case for fluid-induced mid-crustal shear zone?

    USGS Publications Warehouse

    ten Brink, Uri S.; Flores, C.H.

    2012-01-01

    Pull-apart basins are narrow zones of crustal extension bounded by strike-slip faults that can serve as analogs to the early stages of crustal rifting. We use seismic tomography, 2-D ray tracing, gravity modeling, and subsidence analysis to study crustal extension of the Dead Sea basin (DSB), a large and long-lived pull-apart basin along the Dead Sea transform (DST). The basin gradually shallows southward for 50 km from the only significant transverse normal fault. Stratigraphic relationships there indicate basin elongation with time. The basin is deepest (8-8.5 km) and widest (???15 km) under the Lisan about 40 km north of the transverse fault. Farther north, basin depth is ambiguous, but is 3 km deep immediately north of the lake. The underlying pre-basin sedimentary layer thickens gradually from 2 to 3 km under the southern edge of the DSB to 3-4 km under the northern end of the lake and 5-6 km farther north. Crystalline basement is ???11 km deep under the deepest part of the basin. The upper crust under the basin has lower P wave velocity than in the surrounding regions, which is interpreted to reflect elevated pore fluids there. Within data resolution, the lower crust below ???18 km and the Moho are not affected by basin development. The subsidence rate was several hundreds of m/m.y. since the development of the DST ???17 Ma, similar to other basins along the DST, but subsidence rate has accelerated by an order of magnitude during the Pleistocene, which allowed the accumulation of 4 km of sediment. We propose that the rapid subsidence and perhaps elongation of the DSB are due to the development of inter-connected mid-crustal ductile shear zones caused by alteration of feldspar to muscovite in the presence of pore fluids. This alteration resulted in a significant strength decrease and viscous creep. We propose a similar cause to the enigmatic rapid subsidence of the North Sea at the onset the North Atlantic mantle plume. Thus, we propose that aqueous fluid flux

  7. Aerated Lagoons. Student Manual. Biological Treatment Process Control.

    ERIC Educational Resources Information Center

    Andersen, Lorri

    This student manual contains the textual material for a unit which focuses on the structural and operationally unique features of aerated lagoons. Topic areas discussed include: (1) characteristics of completely mixed aerated lagoons; (2) facultative aerated lagoons; (3) aerated oxidation ponds; (4) effects of temperature on aerated lagoons; (5)…

  8. The evolution of the Lagoon of Venice as a paradigm of anthropogenic alteration of ecosystems: a palaeoenvironmental reconstruction through wide-area acoustic surveys and core sampling

    NASA Astrophysics Data System (ADS)

    Madricardo, Fantina; Donnici, Sandra

    2013-04-01

    The Lagoon of Venice (Italy) is the unique result of natural and anthropogenic changes. Through the centuries, human activities, steadily modified its environment, bringing it to the point that the Lagoon of Venice is itself a signature of human activities. Moreover, the historical city of Venice, a world heritage site, is threatened by flooding caused by sea level rises, so much so that major modifications of the lagoon inlets are ongoing in order to protect it. For these reasons, the Lagoon of Venice is at the same time a paradigm of a relatively circumscribed ecosystem in which the Anthropocene has started long ago, and a sensitive testbed of the environmental changes that are taking place at the global level. In this context, a large geophysical survey was carried out to explore the Holocene sediments in order to establish the natural evolution of the lagoon and the impact of human activities. The survey is the basis of an interdisciplinary study that has allowed the reconstruction of ancient landscapes of the lagoon from before its origin to present days. In particular, thanks to acoustic and geologic investigation of the lagoon sub-bottom, and by crossing our data with the environmental records provided by archaeological findings and by the city's historical archives, we could distinguish different phases of the lagoon evolution and evaluate the weight of human-induced changes We first mapped the position and the depth of the alluvial plain that was flooded during the last marine transgression, about 6000 years before present (BP), when the lagoon originated. Then, we mapped the areal extension of a dense network of palaeochannels and palaeosurfaces corresponding to different hydrological conditions and relative mean sea levels. Using many radiocarbon dating and the acoustical sub-bottom reconstruction, we could establish an average sedimentation rate of about 1 mm/year from 2500 and 1500 BP and 0.5 mm/year from 1500 BP up to present and an average migration

  9. Contaminant fate and transport in the Venice Lagoon: results from a multi-segment multimedia model.

    PubMed

    Sommerfreund, J K; Gandhi, N; Diamond, M L; Mugnai, C; Frignani, M; Capodaglio, G; Gerino, M; Bellucci, L G; Giuliani, S

    2010-03-01

    Contaminant loadings to the Venice Lagoon peaked from 1950s-1980s and although they have since declined, contaminant concentrations remain elevated in sediment and seafood. In order to identify the relative importance of contaminant sources, inter-media exchange and removal pathways, a modified 10-segment fugacity/aquivalence-based model was developed for octachlorodibenzodioxin/furan (OCDD/F), PCB-180, Pb and Cu in the Venice Lagoon. Results showed that in-place pollution nearby the industrial area, current industrial discharges, and tributary loadings were the main sources of contaminants to the lagoon, with negligible contributions from the atmosphere. The fate of these contaminants was governed by sediment-water exchange with simultaneous advective transport by water circulation. Contaminants circulated amongst the northern and central basins with a small fraction reaching the far southern basin and the Chioggia inlet. As a consequence, we estimated limited contaminant transfer to the Adriatic Sea, trapping the majority of contaminants in the sediment in this "average" circulation scenario which does not account for periodic flooding events. (c) 2009 Elsevier Inc. All rights reserved.

  10. Biodiversity patterns of macrophyte and macroinvertebrate communities in two lagoons of Western Greece.

    NASA Astrophysics Data System (ADS)

    Fyttis, G.; Reizopoulou, S.; Papastergiadou, E.

    2012-04-01

    Aquatic macrophytes and benthic macroinvertebrates were studied seasonally (Spring, Autumn, Summer) between the years 2009 - 2011 in two coastal lagoons (Kotychi and Prokopos) located in Peloponnese, Greece, in order to investigate spatial and temporal biodiversity trends related to hydrological processes (degree of confinement, nitrates, phosphates, chl-a, total suspended materials, light irradiance, pH, salinity, temperature and dissolved oxygen). Kotychi lagoon presents a better communication with the sea, while Prokopos has a high degree of confinement. Both ecosystems seasonally receive freshwater input from streams. The submerged aquatic macrophytes constituted a major component of the ecosystems studied. In total, 22 taxa of aquatic macrophytes (angiosperms and macroalgae), 16 taxa for Kotychi (2 Rhodophyta, 8 Chlorophyta, 5 Magnoliophyta, 1 Streptophyta) and 14 taxa for Prokopos (1 Rhodophyta, 5 Chlorophyta, 5 Magnoliophyta, 3 Streptophyta) were found. Ruppia cirrhosa, and Potamogeton pectinatus were dominant in both lagoons. Kotychi lagoon was also dominated by Zostera noltii and Prokopos by Zannichellia pallustris ssp. pedicellata, while the biomass of aquatic species peaked during the summer periods, in both lagoons. The total number of macroinvertebrates found in the lagoons was 28 taxa for Kotychi and 19 for Prokopos. Chironomidae were dominant in both lagoons, while Kotychi was also dominated by Lekanesphaera monodi and Monocorophium insidiosum, and Prokopos by Ostracoda and Lekanesphaera monodi. Benthic diversity ranged from 1.33 to 2.57 in Kotychi and from 0.67 to 2.48 in Prokopos. Species richness, diversity, and abundance of benthic macroinvertebrates were strongly related to aquatic vegetation and to the degree of communication with the marine environment. Moreover, species richness and abundance of both macrophytes and macroinvertebrates were mainly dependent on depth, temperature, pH and concentration of total suspended materials (TSM). Results

  11. Live and dead deep-sea benthic foraminiferal macrofauna of the Levantine basin (SE Mediterranean) and their ecological characteristics

    NASA Astrophysics Data System (ADS)

    Hyams-Kaphzan, Orit; Lubinevsky, Hadas; Crouvi, Onn; Harlavan, Yehudit; Herut, Barak; Kanari, Mor; Tom, Moshe; Almogi-Labin, Ahuva

    2018-06-01

    The present study sought to quantitatively characterize the live and dead benthic foraminifera communities of the deep southeastern Levantine basin of the Mediterranean Sea (33.4º-31.7 ºN, 31.3º-34.9 ºE; 100-1900 m water depth) and their relationships to environmental conditions. Box corer samples were collected at 50 sites between June and July 2013. The foraminiferal macrofauna (> 250 μm) were enumerated and identified (76% to the species level). Six live foraminiferal assemblages were identified, inhabiting six biotopes, the shelf margin (SM), two upper continental slopes (UCS1 and UCS2), the lower continental slope (LCS), the eastern bathyal plain (EBP) and the western bathyal plain (WBP). The dead communities were divided into four biotopes, generally compatible with the live ones, excluding the UCS2 and the EBP. The foraminiferal density in the various live biotopes was relatively stable across the studied area, excluding the UCS2 and EBP, unlike the density of the dead shells, which increased with depth. The number of taxa per biotope was estimated by rarefaction curves and compared to the observed numbers, with a decreasing number of live taxa with water depth. The alpha-diversity, which was evaluated in relation to the number of sampled individuals, reached an asymptote in all biotopes, with very low values in the WBP. The within-biotope heterogeneity was evaluated by the average Chao-Sørensen similarity index and by a beta-diversity index (exp(gamma diversity) - exp(alpha diversity)), revealing variable heterogeneities in both assemblages. Water depth, sediment grain size mode, CaCO3 (wt%), and clay fraction (wt%) were jointly but feebly correlated with live faunal composition.

  12. Ageing of native cellulose fibres under archaeological conditions: textiles from the Dead Sea region studied using synchrotron X-ray microdiffraction

    NASA Astrophysics Data System (ADS)

    Müller, M.; Murphy, B.; Burghammer, M.; Riekel, C.; Pantos, E.; Gunneweg, J.

    2007-12-01

    Archaeological cellulose textile fibres (linen and cotton) from caves in the Dead Sea region were investigated using synchrotron X-ray microdiffraction. The degradation of the up to 2100 year old fibres was found to depend on the climatic conditions at the place of storage. The size and the lattice parameters of the cellulose nanocrystals (microfibrils) in the fibres change upon degradation; these parameters are shown to be strongly correlated, leading to a microscopic description of the degradation process in terms of molecular disorder. Artificial ageing does not seem to reproduce the effects observed here for the first time on archaeological cellulose fibres.

  13. Living in the Past: Phylogeography and Population Histories of Indo-Pacific Wrasses (Genus Halichoeres) in Shallow Lagoons versus Outer Reef Slopes

    PubMed Central

    Ludt, William B.; Bernal, Moisés A.; Bowen, Brian W.; Rocha, Luiz A.

    2012-01-01

    Sea level fluctuations during glacial cycles affect the distribution of shallow marine biota, exposing the continental shelf on a global scale, and displacing coral reef habitat to steep slopes on oceanic islands. In these circumstances we expect that species inhabiting lagoons should show shallow genetic architecture relative to species inhabiting more stable outer reefs. Here we test this expectation on an ocean-basin scale with four wrasses (genus Halichoeres): H. claudia (N = 194, with ocean-wide distribution) and H. ornatissimus (N = 346, a Hawaiian endemic) inhabit seaward reef slopes, whereas H. trimaculatus (N = 239) and H. margaritaceus (N = 118) inhabit lagoons and shallow habitats throughout the Pacific. Two mitochondrial markers (cytochrome oxidase I and control region) were sequenced to resolve population structure and history of each species. Haplotype and nucleotide diversity were similar among all four species. The outer reef species showed significantly less population structure, consistent with longer pelagic larval durations. Mismatch distributions and significant negative Fu’s F values indicate Pleistocene population expansion for all species, and (contrary to expectations) shallower histories in the outer slope species. We conclude that lagoonal wrasses may persist through glacial habitat disruptions, but are restricted to refugia during lower sea level stands. In contrast, outer reef slope species have homogeneous and well-connected populations through their entire ranges regardless of sea level fluctuations. These findings contradict the hypothesis that shallow species are less genetically diverse as a consequence of glacial cycles. PMID:22701597

  14. Radiochemical methodology for the determination of the mass balance of suspended particulate materials exchanged at the inlets of the Venice Lagoon

    NASA Astrophysics Data System (ADS)

    Degetto, S.; Cantaluppi, C.

    2004-11-01

    The Venice Lagoon is connected to the Adriatic Sea by three inlets, with an average daily water inflow of 345∗10 6 m 3. Due to the diversion of the major rivers out of the lagoon (done in the past centuries), the sediment supply from the drainage basin is now very low when compared to the amount of sediment exchanged at the inlets (<1%). The limited sediment supply and the combined action of natural and anthropic pressures (e.g. waves, ships, fishing activities, dredging for navigation purposes) have caused in the last few decades a significant erosion of mudflats and salt-marshes. In order to investigate the history and the characteristics of the above phenomenon, with particular regard to the most recent years and the future trend, a wide radiochemical survey has been carried out in the whole lagoon, including the characterisation of the suspended particulate matter entering and leaving the lagoon in different tidal and meteorological conditions, with the aim of obtaining an indirect estimate of the sediment mass balance of the lagoon. The proposed radiochemical methodology, which is based on concentration measurements of airborne radionuclides in suspended particulate matter, appears to be an useful alternative to direct methods (e.g. bathymetric campaigns in the lagoon or mass fluxes measurements of the suspended particulate materials exchanged at the inlets). The results obtained, which show a complex sedimentary situation, highlight the erosion acting in some central and southern lagoon areas but recognise also the present accumulation phase coming into view in the northern lagoon.

  15. Sinkhole formation and subsidence along the Dead Sea coast, Israel

    NASA Astrophysics Data System (ADS)

    Yechieli, Yoseph; Abelson, Meir; Baer, Gideon

    2016-05-01

    More than 4,000 sinkholes have formed since the 1980s within a 60-km-long and 1-km-wide strip along the western coast of the Dead Sea (DS) in Israel. Their formation rate accelerated in recent years to >400 sinkholes per year. They cluster mostly in specific sites up to 1,000 m long and 200 m wide, which align parallel to the general direction of the fault systems associated with the DS Rift. The abrupt appearance of the sinkholes reflects changes to the groundwater regime around the shrinking DS. The eastward retreat of the shoreline and the lake-level drop (1 m/year in recent years) cause an eastward and downward migration of the fresh/saline groundwater interface. Consequently, a subsurface salt layer, which was previously enveloped by saline groundwater, is gradually being invaded and submerged by relatively fresh groundwater, and cavities form due to the rapid dissolution of the salt. Collapse of the overlying sediments into these cavities results in sinkholes at the surface. An association between sinkhole sites and land subsidence is revealed by interferometric synthetic aperture radar (InSAR) measurements. On a broad scale (hundreds of meters), subsidence occurs due to compaction of fine-grained sediments as groundwater levels decline along the retreating DS shoreline. At smaller scales (tens of meters), subsidence appears above subsurface cavities in association with the sinkholes, serving in many cases as sinkhole precursors, a few weeks to more than a year before their actual appearance at the surface. This paper overviews the processes of sinkhole formation and their relation to land subsidence.

  16. Identification of toxigenic Cyanobacteria of the genus Microcystis in the Curonian Lagoon (Baltic Sea)

    NASA Astrophysics Data System (ADS)

    Belykh, O. I.; Dmitrieva, O. A.; Gladkikh, A. S.; Sorokovikova, E. G.

    2013-02-01

    In 2002-2008, seasonal (April-November) monitoring of the phytoplankton in the Russian part of the Curonian Lagoon at five fixed sites was performed. A total of 91 Cyanobacteria, 100 Bacillariophyta, 280 Chlorophyta, 21 Cryptophyta, and 24 Dinophyta species were found. Six potentially toxic species of cyanobacteria: Aphanizomenon flos-aquae, Anabaena sp., Microcystis aeruginosa, M. viridis, M. wesenbergii, and Planktothrix agardhii dominated the phytoplankton biomass and caused water blooms. The seasonal average phytoplankton biomass ranged from 30 to 137 g/m3. The cyanobacteria's biomass varied from 10 to 113 g/m3 forming 30-82% of the total with a mean of 50%. With the aid of genetic markers (microcystin ( mcy) and nodularin synthetases), six variants of the microcystin-producing gene mcyE from the genus Microcystis were identified. Due to the intensive and lengthy blooms of potentially toxic and toxigenic cyanobacteria, the environmental conditions in the Curonian Lagoon appear unfavorable. The water should be monitored for cyanotoxins with analytical methods in order to determine if the area is safe for recreational use.

  17. Natural and human-induced driving factors in the evolution of tidal channels: case studies in the Venice Lagoon (Italy).

    NASA Astrophysics Data System (ADS)

    Rizzetto, Federica

    2013-04-01

    Coastal wetlands are largely affected by a complex variety of both natural and anthropogenic factors, which induce evident, often irreversible, geomorphological transformations. In particular, this research focuses on the main processes that influence the evolution of tidal channels in salt marshes and shows the results derived from the analysis of some case studies in the Venice Lagoon (northwestern Adriatic Sea, Italy). Here tidal network has been recognized as significantly sensitive to sea-level rise and tide oscillations (Rizzetto and Tosi, 2011; Rizzetto and Tosi, 2012), but it is also vulnerable to human impact. The sites were selected in areas characterized by low anthropogenic pressure to prevent strong human interferences from completely masking the effects of natural forces. The interpretation of a large number of high-resolution aerial photographs, taken since the mid 1930s, allowed identifying in detail tidal channel evolution, both in the long- and in the short-term. The observation of historical and recent topographic maps completed the study and provided other important data to define the modifications occurred in the past two centuries. The channel planform changes were determined through the morphometric analysis of the tidal network, carried out using a Geographic Information System software. These modifications were interpreted in the light of sea-level oscillations (i.e. relative sea-level rise and strength/frequency of high tides, which are increasing owing to climate changes), variations of sediment supply, and human activities occurred in the past century. The joint analysis of all the data allowed distinguishing the changes induced by both relative sea-level rise and high tides on planform pattern and evolution of tidal channels, and identifying the effects of human interferences, which magnified the impact of natural factors (e.g. groundwater exploitation responsible for high subsidence rates between 1950 and 1970 and, consequently, for an

  18. Assessment of sediment quality in the Mediterranean Sea-Boughrara lagoon exchange areas (southeastern Tunisia): GIS approach-based chemometric methods.

    PubMed

    Kharroubi, Adel; Gargouri, Dorra; Baati, Houda; Azri, Chafai

    2012-06-01

    Concentrations of selected heavy metals (Cd, Pb, Zn, Cu, Mn, and Fe) in surface sediments from 66 sites in both northern and eastern Mediterranean Sea-Boughrara lagoon exchange areas (southeastern Tunisia) were studied in order to understand current metal contamination due to the urbanization and economic development of nearby several coastal regions of the Gulf of Gabès. Multiple approaches were applied for the sediment quality assessment. These approaches were based on GIS coupled with chemometric methods (enrichment factors, geoaccumulation index, principal component analysis, and cluster analysis). Enrichment factors and principal component analysis revealed two distinct groups of metals. The first group corresponded to Fe and Mn derived from natural sources, and the second group contained Cd, Pb, Zn, and Cu originated from man-made sources. For these latter metals, cluster analysis showed two distinct distributions in the selected areas. They were attributed to temporal and spatial variations of contaminant sources input. The geoaccumulation index (I (geo)) values explained that only Cd, Pb, and Cu can be considered as moderate to extreme pollutants in the studied sediments.

  19. Organic matter quantity and quality, metals availability and foraminiferal assemblages as environmental proxy applied to the Bizerte Lagoon (Tunisia).

    PubMed

    Martins, Maria Virgínia Alves; Helali, Mohamed Amine; Zaaboub, Noureddine; Boukef-BenOmrane, Imen; Frontalini, Fabrizio; Reis, Darlly; Portela, Helena; Clemente, Iara Martins Matos Moreira; Nogueira, Leandro; Pereira, Egberto; Miranda, Paulo; El Bour, Monia; Aleya, Lotfi

    2016-04-15

    This study analyzes the benthic trophic state of Bizerte Lagoon (Tunisia) based on the total organic matter and the bioavailability of biopolymeric carbon including proteins (PTN), carbohydrates (CHO), lipids (LIP), chlorophyll a, as well as bacteria counts. The overall simultaneously extracted metals (SEM), and acid volatile sulfides (AVS) as well as the SEM/AVS ratio indicative of the toxicity of the sediments also were analyzed aiming to study their impact in the dimension, composition and structure of both dead and living benthic foraminiferal assemblages. In the studied sites TOC content is relatively high and the PTN/CHO values indicate that they can be considered as meso-eutrophic environments. The CHO/TOC and C/N values suggest that the OM which accumulated on the sediments surface has mainly natural origin despite the introduction of municipal and industrial effluents in the lagoon and the large bacterial pool. The living assemblages of benthic foraminifera of Bizerte Lagoon are quite different to other Mediterranean transitional systems studied until now. They are composed of typical lagoonal species but also include several marine and opportunistic species including significant numbers of bolivinids, buliminids, Nonionella/Nonionoides spp. and Cassidulina/Globocassidulina spp. These assemblages seem to benefitfrom the physicochemical parameters and the sediment stability. They may however face environmental stress in the lagoon related to the AVS production as a result of the organic matter degradation and toxicity in some areas due to the available concentrations of metals. Nonetheless statistical results evidence that the structure and dimension of assemblages are being controlled mostly by OM quantity and quality related mainly to the availability of PTN, CHO and chlorophyll a. Results of this work support the importance of considering OM quantity and quality in studies of environmental impact in coastal systems. Copyright © 2016 Elsevier Ltd. All

  20. Taxonomic diversity and structure of benthic macroinvertebrates in Aby Lagoon (Ivory Coast, West Africa).

    PubMed

    Kouadio, K N; Diomandé, D; Ouattara, A; Koné, Y J M; Gourène, G

    2008-09-15

    The benthic macroinvertebrates of Aby lagoon (West Africa: Ivory coast) was studied during four seasons (high dry season, high rainy season, low dry season and low rainy season, respectively) from June 2006 to March 2007. The distribution of the benthic macroinvertebrates species was recorded at 13 stations on the whole of the lagoon. A total of 62 taxa of benthic macroinvertebrates belonging to 28 families and 10 orders were listed. The molluscs and crustaceans dominate qualitatively by adding up 51 and 24%, respectively of the total number of organisms. Five taxa (Corbula trigona (20%), Pachymelania aurita (12%), Clibernhardius cooki (7%), Oligochaeta (7%) and Crassostrea gasar (6%) accounted for 52% of total abundance. Classification analysis used to perform the characterisation of the lagoon on the basis of benthic macroinvertebrates showed the existence of four main clusters in which the seasonal pattern in benthic macroinvertebrates were very similar in the four seasons. In contrast the species richness and diversity indices were significantly different. Furthermore these indices where higher in the stations closer to the sea and surrounded by mangrove trees (southern area) compared to the inland ones.

  1. Boundary-layer mantle flow under the Dead Sea transform fault inferred from seismic anisotropy.

    PubMed

    Rümpker, Georg; Ryberg, Trond; Bock, Günter

    2003-10-02

    Lithospheric-scale transform faults play an important role in the dynamics of global plate motion. Near-surface deformation fields for such faults are relatively well documented by satellite geodesy, strain measurements and earthquake source studies, and deeper crustal structure has been imaged by seismic profiling. Relatively little is known, however, about deformation taking place in the subcrustal lithosphere--that is, the width and depth of the region associated with the deformation, the transition between deformed and undeformed lithosphere and the interaction between lithospheric and asthenospheric mantle flow at the plate boundary. Here we present evidence for a narrow, approximately 20-km-wide, subcrustal anisotropic zone of fault-parallel mineral alignment beneath the Dead Sea transform, obtained from an inversion of shear-wave splitting observations along a dense receiver profile. The geometry of this zone and the contrast between distinct anisotropic domains suggest subhorizontal mantle flow within a vertical boundary layer that extends through the entire lithosphere and accommodates the transform motion between the African and Arabian plates within this relatively narrow zone.

  2. Unravelling environmental conditions during the Holocene in the Dead Sea region using multiple archives

    NASA Astrophysics Data System (ADS)

    Rambeau, Claire; van Leeuwen, Jacqueline; van der Knaap, Pim; Gobet, Erika

    2016-04-01

    For the most arid parts of the Southern Levant (roughly corresponding to modern Jordan, Israel and Palestine), environmental reconstructions are impeded by the limited number of archives, and the frequent contradictions between individual palaeoenvironmental records. The Southern Levant is characterised by steep climate gradients; local conditions presently range from arid to dry Mediterranean, with limits that may have fluctuated during the Holocene. This further complicates the determination of site-specific past environmental conditions. Understanding past climate and environmental evolution through time, at a local level, is however crucial to compare these with societal evolution during the Holocene, which features major cultural developments such as cereal cultivation, animal domestication, water management, as well as times of preferential settlement growth or site abandonment. This contribution proposes to examine the different archives available for the Dead Sea region, paying special attention to the most recent pollen data obtained from the area. It will particularly critically compare local to regional-scale information, and try to decipher the main evolutions of environmental conditions during the Holocene in arid and semi-arid Southern Levant.

  3. Mud deposit formation on the open coast of the larger Patos Lagoon-Cassino Beach system

    NASA Astrophysics Data System (ADS)

    Vinzon, S. B.; Winterwerp, J. C.; Nogueira, R.; de Boer, G. J.

    2009-03-01

    This paper proposes an explanation of the mud deposits on the inner Shelf of Cassino Beach, South Brazil, by using computational modeling. These mud deposits are mainly formed by sediments delivered from Patos Lagoon, a coastal lagoon connected to the Shelf, next to Cassino Beach. The deposits are characterized by (soft) mud layers of about 1 m thick and are found between the -5 and -20 isobaths. Two hydrodynamic models of the larger Patos Lagoon-Cassino Beach system were calibrated against water elevation measured for a 5 months period, and against currents and salinity measured for a week period. The circulation patterns and water exchange through the mouth were analyzed as a function of local and remote wind effects, and river discharges. The remote wind effect mainly governs the quantity of water exchange with the Lagoon through its effect on mean sea level as a result of Ekman dynamics, while river discharges are important for the salinity of the exchanged water masses. Local winds augment the export-import rates by set-up and set-down within the Lagoon, but their effects are much smaller than those of the remote wind. Currents patterns on the inner Shelf during water outflow revealed a recirculation zone south of the Lagoon, induced by the local geometry and bathymetry of the system. This recirculation zone coincides with observed locations of mud deposition. Water, hence suspended sediment export occurs when remote and local winds are from the N-E, which explains why fine sediment deposits are mainly found south of the Lagoon's breakwater. A sensitivity analysis with the numerical model quantified the contribution of the various mechanisms driving the transport and fate of the fine suspended sediments, i.e. the effects of remote and local wind, of the astronomical tide, of river discharge and fresh-salt water-induced density currents, and of earth rotation. It is concluded that gravitational circulation and earth rotation affects the further dispersion of

  4. Influence of environmental variation on the bacterioplankton community and its loss to viral lysis in the Curonian Lagoon

    NASA Astrophysics Data System (ADS)

    Šulčius, Sigitas; Reunamo, Anna; Paškauskas, Ričardas; Leskinen, Piia

    2018-05-01

    Coastal lagoons are continuously exposed to strong environmental gradients that determine the distribution and trophic interactions of microbial communities. Therefore, in this study we assessed whether and how environmental changes influence the bacterial community and its vulnerability to viral infection and lysis along the major environmental gradient in the Curonian Lagoon. We found significant differences in bacterial community profiles, their richness and evenness between the riverine, freshwater southern part and the Baltic Sea water intrusion-influenced northern part of the lagoon, suggesting strong environmental control of the structure of bacterial communities. Viruses were found to be play an important role in bacterial mortality in the Curonian Lagoon, being responsible for the removal of 20-50% of the bacterial standing stock. We observed differences in virioplankton decay rates and virus burst sizes between the northern and southern parts of the lagoon. However, no relationships were found between viral activity and bacterial communities within the lagoon ecosystem. The frequency of infected cells and virus-mediated bacterial mortality (VMBM) remained constant among the sampling sites irrespective of differences in bacteria community assemblages and environmental conditions. The results indicate that factors determining changes in bacterial diversity are different from the factors limiting their vulnerability to viral infection and lysis. This study also suggests that under changing environmental conditions, virus-bacteria interactions are more stable than the interacting viral and bacterial communities themselves. These findings are important for understanding the functioning of the coastal ecosystems under the rapidly changing local (spatial and temporal) and global (e.g. eutrophication, climate change) conditions.

  5. Field Investigations and a Tsunami Modeling for the 1766 Marmara Sea Earthquake, Turkey

    NASA Astrophysics Data System (ADS)

    Aykurt Vardar, H.; Altinok, Y.; Alpar, B.; Unlu, S.; Yalciner, A. C.

    2016-12-01

    Turkey is located on one of the world's most hazardous earthquake zones. The northern branch of the North Anatolian fault beneath the Sea of Marmara, where the population is most concentrated, is the most active fault branch at least since late Pliocene. The Sea of Marmara region has been affected by many large tsunamigenic earthquakes; the most destructive ones are 549, 553, 557, 740, 989, 1332, 1343, 1509, 1766, 1894, 1912 and 1999 events. In order to understand and determine the tsunami potential and their possible effects along the coasts of this inland sea, detailed documentary, geophysical and numerical modelling studies are needed on the past earthquakes and their associated tsunamis whose effects are presently unknown.On the northern coast of the Sea of Marmara region, the Kucukcekmece Lagoon has a high potential to trap and preserve tsunami deposits. Within the scope of this study, lithological content, composition and sources of organic matters in the lagoon's bottom sediments were studied along a 4.63 m-long piston core recovered from the SE margin of the lagoon. The sedimentary composition and possible sources of the organic matters along the core were analysed and their results were correlated with the historical events on the basis of dating results. Finally, a tsunami scenario was tested for May 22nd 1766 Marmara Sea Earthquake by using a widely used tsunami simulation model called NAMIDANCE. The results show that the candidate tsunami deposits at the depths of 180-200 cm below the lagoons bottom were related with the 1766 (May) earthquake. This work was supported by the Scientific Research Projects Coordination Unit of Istanbul University (Project 6384) and by the EU project TRANSFER for coring.

  6. KENNEDY SPACE CENTER, FLA. - Karen Holloway-Adkins, KSC wildlife specialist, searches the Banana River for a grass specimen. In the background is one of the launch pads. The biologist is studying the life history of sea turtles, especially what they eat, where they lay their eggs and what factors might harm their survival. On the boat trip she is also monitoring the growth of sea grasses and algae and the water quality of estuaries and lagoons used by sea turtles and other aquatic wildlife.

    NASA Image and Video Library

    2004-02-05

    KENNEDY SPACE CENTER, FLA. - Karen Holloway-Adkins, KSC wildlife specialist, searches the Banana River for a grass specimen. In the background is one of the launch pads. The biologist is studying the life history of sea turtles, especially what they eat, where they lay their eggs and what factors might harm their survival. On the boat trip she is also monitoring the growth of sea grasses and algae and the water quality of estuaries and lagoons used by sea turtles and other aquatic wildlife.

  7. KENNEDY SPACE CENTER, FLA. - From a boat on the Banana River the Vehicle Assembly Building looms over the water. The boat holds Karen Holloway-Adkins, KSC wildlife specialist, who is studying the life history of sea turtles, especially what they eat, where they lay their eggs and what factors might harm their survival. On the boat trip she is also monitoring the growth of sea grasses and algae and the water quality of estuaries and lagoons used by sea turtles and other aquatic wildlife.

    NASA Image and Video Library

    2004-02-05

    KENNEDY SPACE CENTER, FLA. - From a boat on the Banana River the Vehicle Assembly Building looms over the water. The boat holds Karen Holloway-Adkins, KSC wildlife specialist, who is studying the life history of sea turtles, especially what they eat, where they lay their eggs and what factors might harm their survival. On the boat trip she is also monitoring the growth of sea grasses and algae and the water quality of estuaries and lagoons used by sea turtles and other aquatic wildlife.

  8. Temporal and spatial fluctuations of phytoplankton in a tropical coastal lagoon, southeast Brazil.

    PubMed

    Melo, S; Bozelli, R L; Esteves, F A

    2007-08-01

    Spatial and temporal variability of the phytoplankton community in the tropical coastal Imboassica lagoon, an environment naturally isolated from the ocean by a narrow sandbar, was analysed every two weeks for 19 months by sampling three sites. During this study, the lagoon received direct input of marine water three times, resulting in remarkable salinity, nutrient concentrations and phytoplankton biomass variations in both temporal and spatial aspects. The phytoplankton biomass presented relatively low values ranging, on average, from 0.54 mg x L(-1) in the station closest to the sea (station 1) to 1.34 mg x L(-1) in the station close to a macrophyte bank (station 3). Diatoms and cryptomonads dominated in stations 1 and 2 (located relatively close to station 1, yet receiving the runoff of domestic sewage), and euglenoids, cryptomonads and dinoflagellates at station 3. Stations 1 and 2 usually presented the same dominant species but station 2 presented a higher phytoplankton biomass. On the other hand, station 3 showed more similar results concerning phytoplankton biomass with station 2, however the dominant species were usually different. The high fluctuations of salinity and the reduced nutrient availability are pointed out as the main factors structuring the dynamics of the phytoplankton community at the Imboassica lagoon.

  9. Vulnerability of artisanal fisheries to climate change in the Venice Lagoon.

    PubMed

    Pranovi, F; Caccin, A; Franzoi, P; Malavasi, S; Zucchetta, M; Torricelli, P

    2013-10-01

    Within the context of global warming, the western coast of the northern Adriatic Sea can be regarded as an extremely vulnerable area. Owing to the local geographic features, this area has been described as the Venetian lacuna, where Mediterranean Sea climatic conditions are replaced by Atlantic Ocean ones, supporting the presence of glacial relicts, such as sprat Sprattus sprattus, flounder Platichthys flesus and brown shrimp Crangon crangon. Nektonic assemblage therefore represents a good candidate in terms of an early proxy for thermal regime alterations. It represents a dynamic component of the lagoon ecosystem, changing in space and time, actively moving through the entire system, and dynamically exchanging with the open sea. Here, the first signals of the change have been already detected, such as the presence of alien thermophilic species. Within this context, since the beginning of the century, sampling of the nektonic assemblage has been carried out, integrating them with landings data from the fish market. Vulnerabilities to thermal regime changes have been tested by (1) categorizing species according to the mean distribution area in terms of latitudinal range (over 45°, 30°-45° and below 30°), and (2) analysing both spatial and temporal variations within fishing grounds. Results indicated a high potential vulnerability of the artisanal fishery to climate change, as the commercial catch is entirely composed of species from cold (>45° N) and temperate (between 45° and 30° N) latitudes. At present no alien thermophilic species have been recorded within the lagoon, which is possibly a sign of good resilience of the assemblage. Finally, abundance of species from cold latitudes has decreased during the past decade. All of this has been discussed in the context of the mean annual temperature trend. © 2013 The Authors. Journal of Fish Biology © 2013 The Fisheries Society of the British Isles.

  10. Enhydrina schistosa (Elapidae: Hydrophiinae) the most dangerous sea snake in Sri Lanka: three case studies of severe envenoming.

    PubMed

    Kularatne, S A M; Hettiarachchi, R; Dalpathadu, J; Mendis, A S V; Appuhamy, P D S A N; Zoysa, H D J; Maduwage, K; Weerasinghe, V S; de Silva, A

    2014-01-01

    Sea snakes are highly venomous and inhabit tropical waters of the Indian and Pacific Oceans. Enhydrina schistosa is a common species of sea snake that lives in the coastal waters, lagoons, river mouths and estuaries from the Persian Gulf through Sri Lanka and to Southeast Asia. It is considered one of the most aggressive sea snakes in Sri Lanka where fishermen and people wading are at high risk. However, sea snake bites are rarely reported. In this report, we describe three cases where E. schistosa was the offending species. These three patients presented to two hospitals on the west coast of Sri Lanka within the course of 14 months from November 2011 with different degrees of severity of envenoming. The first patient was a 26-year-old fisherman who developed severe myalgia with very high creatine kinase (CK) levels lasting longer than 7 days. The second patient was a 32-year-old fisherman who developed gross myoglobinuria, high CK levels and hyperkalaemia. Both patients recovered and their electromyographic recordings showed myopathic features. The nerve conduction and neuromuscular transmission studies were normal in both patients suggesting primary myotoxic envenoming. The third patient was a 41-year-old man who trod on a sea snake in a river mouth and developed severe myalgia seven hours later. He had severe rhabdomyolysis and died three days later due to cardiovascular collapse. In conclusion, we confirm that E. schistosa is a deadly sea snake and its bite causes severe rhabdomyolysis. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Long-term changes of fisheries landings in enclosed gulf lagoons (Amvrakikos gulf, W Greece): Influences of fishing and other human impacts

    NASA Astrophysics Data System (ADS)

    Katselis, George N.; Moutopoulos, Dimitrios K.; Dimitriou, Evagelos N.; Koutsikopoulos, Constantin

    2013-10-01

    The present study analyses long-term annual fishery landings time series (1980-2007) for species derived from six lagoons (covering about 70 km2) around an important European wetland, the fjord-like Amvrakikos gulf. Landing trends for most abundant species revealed that typical lagoon fish species-groups, such as Mugilidae (Mugil cephalus, Chelon labrosus, Liza saliens, Liza aurata and Liza ramada), eels (Anguilla anguilla) and Gobies (mainly Zosteriosessor ophiocephalus) had largely decreased, while the landings of Sparus aurata increased during the entire study period. These trends led to a significant change in species composition during recent years that might be attributed to large-scale climatic changes as well as serious anthropogenic impacts that degraded the water quality and altered the hydrology within the gulf and lagoons, the increase of fishing exploitation in Amvrakikos gulf, the expansion of aquaculture activities within the gulf, the application of new fishing management practices in lagoons, and the increase of fish-eating sea-bird populations. The findings are needed for the implementation of an efficient and integrated management tool for the study of coastal systems.

  12. Inverse-dispersion technique for assessing lagoon gas emissions

    USDA-ARS?s Scientific Manuscript database

    Measuring gas emissions from treatment lagoons and storage ponds poses challenging conditions for existing micrometeorological techniques because of non-ideal wind conditions, such as those induced by trees and crops surrounding the lagoons, and lagoons with dimensions too small to establish equilib...

  13. Characterizing a large shear-zone with seismic and magnetotelluric methods: The case of the Dead Sea Transform

    USGS Publications Warehouse

    Maercklin, N.; Bedrosian, P.A.; Haberland, C.; Ritter, O.; Ryberg, T.; Weber, M.; Weckmann, U.

    2005-01-01

    Seismic tomography, imaging of seismic scatterers, and magnetotelluric soundings reveal a sharp lithologic contrast along a ???10 km long segment of the Arava Fault (AF), a prominent fault of the southern Dead Sea Transform (DST) in the Middle East. Low seismic velocities and resistivities occur on its western side and higher values east of it, and the boundary between the two units coincides partly with a seismic scattering image. At 1-4 km depth the boundary is offset to the east of the AF surface trace, suggesting that at least two fault strands exist, and that slip occurred on multiple strands throughout the margin's history. A westward fault jump, possibly associated with straightening of a fault bend, explains both our observations and the narrow fault zone observed by others. Copyright 2005 by the American Geophysical Union.

  14. Morphology and stratigraphy of small barrier-lagoon systems in Maine

    USGS Publications Warehouse

    Duffy, W.; Belknap, D.F.; Kelley, J.T.

    1989-01-01

    The coast of Maine contains over 200 individual barrier-lagoon systems, most quite small, with an aggregate length of nearly 100 km. Although they represent less than 5% of the tidally influenced coastline of Maine, they are widely distributed and occur in a variety of dynamic regimes and physiographic regions. Their morphology and backbarrier stratigraphy are different from better studied coastal plain systems, and provide important clues to the Holocene evolution of the Maine coast. In a study of geomorphic form and backbarrier stratigraphy, inlet processes and Holocene sea-level rise have been identified as the principal controls on coarse-grained barrier stratigraphy. Barriers in Maine are found in five distinct geomorphic forms, identified herein as: barrier spits, pocket barriers, double tombolos, cuspate barriers and looped barriers. The few long sandy beaches in southwestern Maine are mostly barrier spits. The remainder of the barrier types is composed primarily of gravel or mixed sand and gravel. The barriers protect a variety of backbarrier environments: fresh and brackish ponds, lagoons and fresh- and saltwater marshes. The barriers may or may not have inlets. Normal wave action, coarse-grain size and a deeply embayed coast result in barriers with steep, reflective profiles several meters above MHW. Occasional storm events completely wash over the barriers, building steep, lobate gravel fans along their landward margin. Few, if any, extensive storm layers are recognized as extending into the distal backbarrier environments, however. During sea-level rise and landward barrier retreat, this abrupt, storm-generated transition zone inters the backbarrier sediments. Statistical comparisons of barrier morphology, location and backbarrier environment type with backbarrier stratigraphy show that Holocene backbarrier stratigraphy is best predicted by the modern backbarrier environment type. This, in turn, is influenced most by the absence or presence, and long

  15. Can CO2 help save Venice from the Sea?

    NASA Astrophysics Data System (ADS)

    Comerlati, Andrea; Ferronato, Massimiliano; Gambolati, Giuseppe; Putti, Mario; Teatini, Pietro

    On 14 May this year, Italian Prime Minister Silvio Berlusconi cut the ribbon on a multi-billion-dollar project named MOSE that is aimed at solving the problem of “acqua alta,” the increasingly frequent floods that jeopardize the survival of Venice. Cost is estimated (a few say conservatively) at 3 billion euros and construction time (a few say optimistically) at 8 years. MOSE involves building mobile barriers at the Venice Lagoon inlets to prevent severe Adriatic Sea storms from flooding the city. Although the Italian government and the local administrations have given their final approval, MOSE still has several opponents who believe it will cause severe threats to the lagoon ecosystem, and will soon become obsolete because of the expected sea level rise due to global warming.

  16. Mercury Concentrations in Coastal Sediment from Younger Lagoon, Central California

    NASA Astrophysics Data System (ADS)

    Hohn, R. A.; Ganguli, P. M.; Swarzenski, P. W.; Richardson, C. M.; Merckling, J.; Johnson, C.; Flegal, A. R.

    2013-12-01

    Younger Lagoon Reserve, located in northern Monterey Bay, is one of the few relatively undisturbed wetlands that remain along the Central Coast of California. This lagoon system provides protected habitat for more than 100 bird species and for populations of fish, mammals, and invertebrates. Total mercury (HgT) concentrations in water within Younger Lagoon appear to vary with rainfall conditions and range from about 5-15 pM. These concentrations are similar to HgT in water from six nearby lagoon systems. However, Younger Lagoon contains elevated concentrations of dissolved organic carbon (~1 mM) and monomethylmercury (MMHg, ~1 pM) relative to our comparison lagoon sites (DOC < 0.5 mM and MMHg < 0.5 pM). We attribute Younger Lagoon's high DOC and MMHg to its restricted connection to the ocean and minor riverine contribution. Coastal lagoons in this region typically form at the mouth of streams. They behave as small estuaries during the wet season when surface water discharge keeps the mouth of the stream open to the ocean, and then transition into lagoons in the dry season when a sand berm develops and effectively cuts off surface water exchange. At Younger Lagoon, the sand berm remains intact throughout the year, breaching only during particularly high tides or intense rain events. Therefore, the lagoon's connection to nearshore seawater is primarily via surface water - groundwater interaction through the sand berm. Because Younger Lagoon is largely isolated from a surface water connection with the ocean, runoff from upgradient urban and agricultural land has an enhanced impact on water (and presumably sediment) quality. As a result, the lagoon is eutrophic and experiences annual algal blooms. Groundwater surveys suggest surface water, groundwater, and coastal seawater are hydraulically connected at Younger Lagoon, and mixing among these water masses appears to influence water geochemistry. To date, no chemical analyses have been conducted on sediment from Younger

  17. Facultative Lagoons. Student Manual. Biological Treatment Process Control.

    ERIC Educational Resources Information Center

    Andersen, Lorri

    The textual material for a unit on facultative lagoons is presented in this student manual. Topic areas discussed include: (1) loading; (2) microbial theory; (3) structure and design; (4) process control; (5) lagoon start-up; (6) data handling and analysis; (7) lagoon maintenance (considering visual observations, pond structure, safety, odor,…

  18. Bacillus marismortui sp. nov., a new moderately halophilic species from the Dead Sea.

    PubMed

    Arahal, D R; Márquez, M C; Volcani, B E; Schleifer, K H; Ventosa, A

    1999-04-01

    A group of 91 moderately halophilic, Gram-positive, rod-shaped strains were isolated from enrichments prepared from Dead Sea water samples collected 57 years ago. These strains were examined for 117 morphological, physiological, biochemical, nutritional and antibiotic susceptibility characteristics. All strains formed endospores and were motile, strictly aerobic and positive for catalase and oxidase. They grew in media containing 5-25% (w/v) total salts, showing optimal growth at 10% (w/v). Eighteen strains were chosen as representative isolates and were studied in more detail. All these strains had mesodiaminopimelic acid in the cell wall and a DNA G + C content of 39.0-42.8 mol%; they constitute a group with levels of DNA-DNA similarity of 70-100%. The sequences of the 16S rRNA genes of three representative strains (strains 123T, 557 and 832) were almost identical (99.9%), and placed the strains in the low G + C content Gram-positive bacteria. On the basis of their features, these isolates should be regarded as members of a new species of the genus Bacillus, for which the name Bacillus marismortui sp. nov. is proposed. The type strain is strain 123T (= DSM 12325T = ATCC 700626T = CIP 105609T = CECT 5066T).

  19. Santa Margarita Lagoon Water Quality Monitoring Data

    DTIC Science & Technology

    2012-08-01

    sits entirely within the boundaries of Marine Corps Base Camp Pendleton. It forms up where the Santa Margarita River meets the Pacific Ocean just north...of Oceanside, California. The western boundary of the lagoon is the beach berm that borders the ocean . The estuarine lagoon is usually open to the... ocean through a limited section of berm, although there are occasions when the lagoon is effectively closed to exchange with the ocean . The eastern

  20. 77 FR 14347 - Proposed Information Collection; Comment Request; Reporting of Sea Turtle Incidental Take in...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-09

    ... interactions with endangered and threatened sea turtles, found both live and dead, in their pound net operations. When a live or dead sea turtle is discovered during a pound net trip, the Virginia pound net...

  1. Copepod community succession during warm season in Lagoon Notoro-ko, northeastern Hokkaido, Japan

    NASA Astrophysics Data System (ADS)

    Nakagawa, Yoshizumi; Ichikawa, Hideaki; Kitamura, Mitsuaki; Nishino, Yasuto; Taniguchi, Akira

    2015-06-01

    Lagoon Notoro-ko, located on the northeastern coast of Hokkaido, Japan, and connected to the Okhotsk Sea by a human-made channel, is strongly influenced by local hydrography, as water masses in the lagoon are seasonally influenced by the Soya Warm Current and the East Sakhalin Current. We here report on the succession of copepod communities during the warm season in relation to water mass exchange. Copepods were categorized into four seasonal communities (spring/early-summer, mid-summer, late-summer/fall, and early-winter) via a cluster analysis based on Bray-Curtis similarities. Spring/early-summer and early-winter communities were characterized by the temperate-boreal calanoid Pseudocalanus newmani, comprising 34.9%-77.6% of the total abundance of copepods during times of low temperature/salinity, as influenced by the prevailing East Sakhalin Current. Late-summer/fall communities were characterized by the neritic warm-water calanoid Paracalanus parvus s.l., comprising 63.9%-96.3% of the total abundance, as influenced by the Soya Warm Current. Mid-summer communities comprised approximately equal abundances of P. parvus, Eurytemora herdmani, Scolecithricella minor, and Centropages abdominalis (12.8%-28.2%); this community is transitional between those of the spring/early-summer and late-summer/fall. Copepod community succession in Lagoon Notoro-ko can be largely explained by seasonal changes in water masses.

  2. Sedimentological, archeological and historical evidences of paleoclimatic changes during the holocene in the lagoon of Venice (Italy)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonardi, M.; Canal, E.; Cavazzoni, S.

    1997-12-31

    Sedimentological investigations and archeological and historical information have allowed to correlate paleoenvironmental and coastline variations, in the Lagoon of Venice, to climatic changes during the Holocene. In particular, we report the results of a detailed study of Holocene sediments, from salt marshes and small islands, taken above and below a level with well dated archeological findings that gave a good indication of the mean sea level.

  3. Identifying tsunami deposits using shell taphonomy: Sur lagoon, Oman

    NASA Astrophysics Data System (ADS)

    Donato, S.; Reinhardt, E.; Rothaus, R.; Boyce, J.

    2007-05-01

    On November 28th, 1945 an 8.1 magnitude earthquake focused in the eastern portion of the Makran subduction zone (Arabian Sea) generated a powerful tsunami that destroyed many coastal villages in Pakistan and India. Reports indicate that the tsunami also caused significant damage in Muscat, Oman, although its effects elsewhere in Oman are unknown. A thick bivalve dominated shell horizon was discovered inside the Sur lagoon, which is located on the eastern promontory of Oman (200 km south of Muscat). This shell deposit is significant because it is laterally extensive (> 1 km2), extends deep within the lagoon (>2 km), ranges in thickness from 5 - 25 cm at the sample localities, contains numerous subtidal and offshore bivalve species, and articulated subtidal and offshore bivalve species are abundant. Although there is an absence of typical tsunami indicators such as allochthonous sediment in and around the lagoon, verbal accounts, cultural evidence recovered during coring, and the absence of strong storms during the past 100 years indicates that this shell unit was caused by the 1945 tsunami. In this setting, it would be advantageous to have another proxy for tsunami detection and risk prediction. The use of shell taphonomy is one of the potential indicators and here we present new evidence of its utility. We sampled this unit in eight locations, and compared the shell taphonomy to surface shell samples collected from beach and reworked horizons in the lagoon, and to shell samples from a known tsunami and corresponding storm/ballast deposit in Israel (Reinhardt et al., 2006). Taphonomic analysis yielded promising results, as the two tsunami horizons shared excellent agreement between the amount of fragmented shells, and the percentage of shells displaying angular breaks. Both of these categories were significantly different from the percentage of fragments and angular fragments recovered from the reworked, beach, and storm/ballast deposits, indicating different

  4. Hydrodynamic response of a fringing coral reef to a rise in mean sea level

    NASA Astrophysics Data System (ADS)

    Taebi, Soheila; Pattiaratchi, Charitha

    2014-07-01

    Ningaloo Reef, located along the northwest coast of Australia, is one of the longest fringing coral reefs in the world extending ~300 km. Similar to other fringing reefs, it consists of a barrier reef ~1-6 km offshore with occasional gaps, backed by a shallow lagoon. Wave breaking on the reef generates radiation stress gradients that produces wave setup across the reef and lagoon and mean currents across the reef. A section of Ningaloo Reef at Sandy Bay was chosen as the focus of an intense 6-week field experiment and numerical simulation using the wave model SWAN coupled to the three-dimensional circulation model ROMS. The physics of nearshore processes such as wave breaking, wave setup and mean flow across the reef was investigated in detail by examining the various momentum balances established in the system. The magnitude of the terms and the distance of their peaks from reef edge in the momentum balance were sensitive to the changes in mean sea level, e.g. the wave forces decreased as the mean water depth increased (and hence, wave breaking dissipation was reduced). This led to an increase in the wave power at the shoreline, a slight shift of the surf zone to the lee side of the reef and changes in the intensity of the circulation. The predicted hydrodynamic fields were input into a Lagrangian particle tracking model to estimate the transport time scale of the reef-lagoon system. Flushing time of the lagoon with the open ocean was computed using two definitions in renewal of semi-enclosed water basins and revealed the sensitivity of such a transport time scale to methods. An increase in the lagoon exchange rate at smaller mean sea-level rise and the decrease at higher mean sea-level rise was predicted through flushing time computed using both methods.

  5. Biologically-controlled multiple equilibria of tidal landforms and the fate of the Venice lagoon

    NASA Astrophysics Data System (ADS)

    Marani, Marco; D'Alpaos, Andrea; Lanzoni, Stefano; Carniello, Luca; Rinaldo, Andrea

    2007-06-01

    Looking across a tidal landscape, can one foresee the signs of impending shifts among different geomorphological structures? This is a question of paramount importance considering the ecological, cultural and socio-economic relevance of tidal environments and their worldwide decline. In this Letter we argue affirmatively by introducing a model of the coupled tidal physical and biological processes. Multiple equilibria, and transitions among them, appear in the evolutionary dynamics of tidal landforms. Vegetation type, disturbances of the benthic biofilm, sediment availability and marine transgressions or regressions drive the bio-geomorphic evolution of the system. Our approach provides general quantitative routes to model the fate of tidal landforms, which we illustrate in the case of the Venice lagoon (Italy), for which a large body of empirical observations exists spanning at least five centuries. Such observations are reproduced by the model, which also predicts that salt marshes in the Venice lagoon may not survive climatic changes in the next century if IPCC's scenarios of high relative sea level rise occur.

  6. Historical evolution of a micro-tidal lagoon simulated by a 2-D schematic model

    NASA Astrophysics Data System (ADS)

    Bonaldo, D.; Di Silvio, G.

    2013-11-01

    Coastal transitional environments such as estuaries, coastal inlets and tidal lagoons are the result of the interaction of several exogenous forcing factors (e.g. tidal regime, local wind and wave climate, sea-level rise, sediment supply) many of which are, in principle, variable in time over historical and geological timescales. Besides the natural variability of the external constraints, human interventions in some components of the system can either directly or indirectly affect long-term sediment dynamics in the whole system. In this paper the evolution of a schematic tidal basin, with non-uniform sediments and subject to geological and anthropogenic processes, is reproduced by means of a two dimensional morphodynamic model and qualitatively compared to the events which historically took place in the Venice Lagoon during the last four centuries; the trend for the next 200 years is also investigated. In particular, the effect on both morphology and bottom composition of river diversion, jetty construction, human-induced subsidence and channel dredging are presented and discussed.

  7. Salt precipitation and dissolution in the late Quaternary Dead Sea: Evidence from chemical and δ37Cl composition of pore fluids and halites

    NASA Astrophysics Data System (ADS)

    Levy, Elan J.; Yechieli, Yoseph; Gavrieli, Ittai; Lazar, Boaz; Kiro, Yael; Stein, Mordechai; Sivan, Orit

    2018-04-01

    The chemical composition and δ37Cl of pore fluids from the ICDP core drilled in the deepest floor of the terminal and hypersaline Dead Sea, and halites from the adjacent Mount Sedom salt diapir, are used to establish the dynamics of halite precipitation and dissolution during the last interglacial and glacial periods. Between ∼132 and 116 thousand years ago (ka) halites precipitated in the lake resulting in the expulsion of Na+ and Cl- from the residual solution. Over 50% of the Cl- reservoir was removed, resulting in a decrease in the Na/Cl ratio from 0.57 to 0.19. This process was accompanied by a decrease in δ37Cl values in the precipitating halites and the associated residual Cl- in the lake. The observed decrease fits a Rayleigh distillation curve with a fractionation factor of Δ(NaCl-Dead Sea solution) = +0.32‰ (±0.12) determined in the present study. This behavior implies negligible contribution of external sources of Cl- to the lake during the main peak of the last interglacial, MIS5e. Subsequently, during the last glacial (ca. 117 to 17 ka) dissolution of halite took place, the Na+ and Cl- inventory were replenished, accompanied by an increase in Na/Cl from 0.21 to 0.55 and in the δ37Cl values from -0.46‰ to -0.12‰. While the lake underwent significant dilution during that time, the decrease in salinity was somewhat suppressed by the dissolution of the halite which was mostly derived from Mount Sedom salt diapir.

  8. Organic micropollutants in wet and dry depositions in the Venice Lagoon.

    PubMed

    Gambaro, Andrea; Radaelli, Marta; Piazza, Rossano; Stortini, Angela Maria; Contini, Daniele; Belosi, Franco; Zangrando, Roberta; Cescon, Paolo

    2009-08-01

    Atmospheric transport is an important route by which pollutants are conveyed from the continents to both coastal and open sea. The role of aerosol deposition in the transport of polycyclic aromatic hydrocarbons (PAHs), polychlorobiphenyls (PCBs) and polybromodiphenyls ethers (PBDEs) to water and soil systems has been evaluated by measuring their concentrations in wet and dry depositions to the Venice Lagoon. The organic micropollutant flux data indicate that they contribute to the total deposition flux in different ways through wet and dry deposition, showing that the prevalent contribution derives from wet deposition. The fluxes calculated for PBDEs, showed the prevalence of 47, 99, 100 and 183 congeners, both in dry and wet fluxes. With regard to PCBs, the flux of summation operatorPCB for wet deposition is in the same order of magnitude of the diffusive flux at the air-water interface. The PAH fluxes obtained in the present study are similar to those obtained in previous studies on the atmospheric bulk deposition to the Venice Lagoon. The ratios between Phe/Ant and Fl/Py indicate that the pollutants sources are pyrolytic, deriving from combustion fuels.

  9. Nutrient-Chlorophyll Relationships in the Indian River Lagoon, Florida

    EPA Science Inventory

    The Indian River Lagoon is a highly diverse estuary located along Florida’s Atlantic coast. The system is made up of the main stem and two side-lagoons: the Banana River and Mosquito Lagoon. We segmented the main stem into three sections based on spatial trends in water quality ...

  10. Effects of organic pollution and physical stress on benthic macroinvertebrate communities from two intermittently closed and open coastal lagoons (ICOLLs)

    NASA Astrophysics Data System (ADS)

    Coelho, Susana; Pérez-Ruzafa, Angel; Gamito, Sofia

    2015-12-01

    Benthic macroinvertebrate communities and environmental conditions were studied in two intermittently closed and open coastal lakes and lagoons (ICOLLs), located in southern Algarve (Foz do Almargem e Salgados), with the purpose of evaluating the effects of organic pollution, originated mainly from wastewater discharges, and the physical stress caused by the irregular opening of the lagoons. Most of the year, lagoons were isolated from the sea, receiving the freshwater inputs from small rivers and in Salgados, also from the effluents of a wastewater plant. According to environmental and biotic conditions, Foz do Almargem presented a greater marine influence and a lower trophic state (mesotrophic) than Salgados (hypereutrophic). Benthic macroinvertebrate communities in the lagoons were distinct, just as their relations with environmental parameters. Mollusca were the most abundant macroinvertebrates in Foz do Almargem, while Insecta, Oligochaeta and Crustacea were more relevant in Salgados. Corophium multisetosum occurred exclusively in Salgados stations and, just as Chironomus sp., other Insecta and Oligochaeta, densities were positively related to total phosphorus, clay content and chlorophyll a concentration in the sediment, chlorophyll a concentration in water and with total dissolved inorganic nitrogen. Abra segmentum, Cerastoderma glaucum, Peringia ulvae and Ecrobia ventrosa occurred only in Foz do Almargem, with lower values of the above mentioned parameters. Both lagoons were dominated by deposit feeders and taxa tolerant to environmental stress, although in Salgados there was a greater occurrence of opportunistic taxa associated to pronounced unbalanced situations, due to excess organic matter enrichment.

  11. The 11th Century Collapse of Aqaba on the North Coast of the Gulf of Aqaba, Dead Sea Fault System, Jordan

    NASA Astrophysics Data System (ADS)

    Niemi, Tina; Allison, Alivia; Rucker, John

    2010-05-01

    The city of Aqaba is situated at the northern end of the Gulf of Aqaba along the southern part of the Dead Sea Transform Fault. Based both on the historical accounts and archaeological excavations, it is clear that earthquakes have played a significant role in the history of the region. The early Islamic city of Ayla was probably founded around 650 A.D., suffered some damage as a result of the 748 A.D. earthquake, and saw extensive reconstruction around the beginning of the Abbasid period (Whitcomb, 1994). Among other evidence of earthquake destruction at the Islamic city of Ayla is the leaning city Sea wall. Stratified pottery collections from our February 2009 excavation of the buttress of the city wall of Ayla strongly suggest a date for revetment construction in the early 11th Century. Based on the fact that the most recent pottery from sealed loci inside the buttress wall is late Abbasid - Fatimid and the absence of handmade pottery often found in the abandonment phases, the buttress was likely constructed after liquefaction damage from the 1033 earthquake. Damage from distant source earthquakes (748 and 1033) in the ancient city was repaired in antiquity. The destruction and loss of life (accounts claim that all but 12 residents who had been out fishing were killed) caused by the 1068 earthquake may account for the relative ease with which Baldwin I of Jerusalem took over when he arrived with a small retinue in 1116 A.D. Paleoseismic trenches in the modern city of Aqaba indicate that at least two earthquakes have occurred after deposits dated to 1045-1278 A.D. A preliminary analysis of the stratigraphy in new trenches in the Taba sabkha north of Aqaba shows at least three separate faulting events, with the most recent event located at a depth of 70 cm below the ground surface. This finding supports the initial ground penetrating radar survey conducted at the southern end of the Taba sabkha by Abueladas (2005). These data document a long period of quiescence

  12. An example of aerosol pattern variability over bright surface using high resolution MODIS MAIAC: The eastern and western areas of the Dead Sea and environs.

    PubMed

    Lee, Sever; Pinhas, Alpert; Alexei, Lyapustin; Yujie, Wang; Alexandra, Chudnovsky A

    2017-09-01

    The extreme rate of evaporation of the Dead Sea (DS) has serious implicatios for the surrounding area, including atmospheric conditions. This study analyzes the aerosol properties over the western and eastern parts of the DS during the year 2013, using MAIAC (Multi-Angle Implementation of Atmospheric Correction) for MODIS, which retrieves aerosol optical depth (AOD) data at a resolution of 1km. The main goal of the study is to evaluate MAIAC over the study area and determine, for the first time, the prevailing aerosol spatial patterns. First, the MAIAC-derived AOD data was compared with data from three nearby AERONET sites (Nes Ziona - an urban site, and Sede Boker and Masada - two arid sites), and with the conventional Dark Target (DT) and Deep Blue (DB) retrievals for the same days and locations, on a monthly basis throughout 2013. For the urban site, the correlation coefficient (r) for DT/DB products showed better performance than MAIAC (r=0.80, 0.75, and 0.64 respectively) year-round. However, in the arid zones, MAIAC showed better correspondence to AERONET sites than the conventional retrievals (r=0.58-0.60 and 0.48-0.50 respectively). We investigated the difference in AOD levels, and its variability, between the Dead Sea coasts on a seasonal basis and calculated monthly/seasonal AOD averages for presenting AOD patterns over arid zones. Thus, we demonstrated that aerosol concentrations show a strong preference for the western coast, particularly during the summer season. This preference, is most likely a result of local anthropogenic emissions combined with the typical seasonal synoptic conditions, the Mediterranean Sea breeze, and the region complex topography. Our results also indicate that a large industrial zone showed higher AOD levels compared to an adjacent reference-site, i.e., 13% during the winter season.

  13. Benthic ecology of tropical coastal lagoons: Environmental changes over the last decades in the Términos Lagoon, Mexico

    NASA Astrophysics Data System (ADS)

    Grenz, Christian; Fichez, Renaud; Silva, Carlos Álvarez; Benítez, Laura Calva; Conan, Pascal; Esparza, Adolfo Contreras Ruiz; Denis, Lionel; Ruiz, Silvia Díaz; Douillet, Pascal; Martinez, Margarita E. Gallegos; Ghiglione, Jean-François; Mendieta, Francisco José Gutiérrez; Origel-Moreno, Montserrat; Garcia, Antonio Zoilo Marquez; Caravaca, Alain Muñoz; Pujo-Pay, Mireille; Alvarado, Rocío Torres; Zavala-Hidalgo, Jorge

    2017-10-01

    The Términos Lagoon is a 2000-km2 wide coastal lagoon linked to the largest river catchment in Mesoamerica. Economic development, together with its ecological importance, led the Mexican government to pronounce the Términos Lagoon and its surrounding wetlands as a Federal protected area for flora and fauna in 1994. It is characterized by small temperature fluctuations, but with two distinct seasons (wet and dry) that control the biological, geochemical, and physical processes and components. This paper presents a review of the available information about the Términos Lagoon. The review shows that the diversity of benthic communities is structured by the balance between marine and riverine inputs and that this structuration strongly influences the benthic metabolism and its coupling with the biogeochemistry of the water column. The paper also presents many specific drivers and recommendations for a long-term environmental survey strategy in the context of the expected Global Change in the Central American region.

  14. Biotically constrained palaeoenvironmental conditions of a mid-Holocene intertidal lagoon on the southern shore of the Arabian Gulf: evidence associated with a whale skeleton at Musaffah, Abu Dhabi, UAE

    NASA Astrophysics Data System (ADS)

    Stewart, J. R.; Aspinall, S.; Beech, M.; Fenberg, P.; Hellyer, P.; Larkin, N.; Lokier, S. W.; Marx, F. G.; Meyer, M.; Miller, R.; Rainbow, P. S.; Taylor, J. D.; Whittaker, J. E.; Al-Mehsin, K.; Strohmenger, C. J.

    2011-12-01

    Whale remains (a left and right mandible, scapula, humerus and fragmentary radius and ulna as well as parts of the cranium and rostrum) belonging to a probable humpback whale ( Megaptera cf. novaeangliae) were found in the well-described sabkha sequence exposed in the Musaffah Industrial Channel, Abu Dhabi, United Arab Emirates. More precisely, the whale remains were found in a series of sediments representing a range of lagoonal facies. The sediments surrounding the whale bones were age-dated at approximately 5200 14C yrs BP and are therefore interpreted to correspond to the previously documented late Flandrian sea-level peak, preceding a fall in sea-level which culminated in the supratidal sabkha overprint of the carbonates. Associated with the whale remains is an assemblage of molluscs, foraminifera and ostracods. Together with the inferred presence of sea grass and algae, these facies are interpreted to indicate a very shallow subtidal to intertidal lagoonal environment. Cirripede remains found associated with the skeleton were identified as those of the whale barnacle Coronula diadema and hence had their origins with the whale. Significantly, the low species diversity of microfossils suggests that higher salinities existed in the mid-Holocene lagoon than are present in modern counterparts. This is here inferred to be related to the onset of continental aridity in Arabia during the mid-Holocene.

  15. Both riverine detritus and dissolved nutrients drive lagoon fisheries

    NASA Astrophysics Data System (ADS)

    Bonthu, Subbareddy; Ganguly, Dipnarayan; Ramachandran, Purvaja; Ramachandran, Ramesh; Pattnaik, Ajit K.; Wolanski, Eric

    2016-12-01

    The net ecosystem metabolism in lagoons has often been estimated from the net budget of dissolved nutrients. Such is the case of the LOICZ estuarine biogeochemistry nutrient budget model that considers riverine dissolved nutrients, but not riverine detritus. However the neglect of detritus can lead to inconsistencies; for instance, it results in an estimate of 5-10 times more seaward export of nutrients than there is import from rivers in Chilika Lagoon, India. To resolve that discrepancy the UNESCO estuarine ecohydrology model, that considers both dissolved nutrients and detritus, was used and, for Chilika Lagoon, it reproduced successfully the spatial distribution of salinity, dissolved nutrients, phytoplankton and zooplankton as well as the fish yield data. Thus the model suggests that the riverine input of both detritus and dissolved nutrients supports the pelagic food web. The model also reproduces well the observation of decreased fish yield when the mouth of the lagoon was choked in the 1990s, demonstrating the importance of the physics that determine the flushing rate of waterborne matter. Thus, both farming in the watershed by driving the nutrient and detritus inputs to the lagoon, and dredging and engineering management of the mouth by controlling the flushing rate of the lagoon, have a major influence on fish stocks in the lagoon.

  16. Coastal estuaries and lagoons: The delicate balance at the edge of the sea

    USGS Publications Warehouse

    Conrads, Paul A.; Rodgers, Kirk D.; Passeri, Davina L.; Prinos, Scott T.; Smith, Christopher; Swarzenski, Christopher M.; Middleton, Beth A.

    2018-04-19

    Coastal communities are increasingly concerned about the dynamic balance between freshwater and saltwater because of its implications for societal, economic, and ecological resources. While the mixing of freshwater and saltwater sources defines coastal estuaries and lagoons, sudden changes in this balance can have a large effect on critical ecosystems and infrastructure. Any change to the delivery of water from either source has the potential to affect the health of both humans and natural biota and also to damage coastal infrastructure. This fact sheet discusses the potential of major shifts in the dynamic freshwater-saltwater balance to alter the environment and coastal stability.

  17. Fish fauna recovery in a newly re-flooded Mediterranean coastal lagoon

    NASA Astrophysics Data System (ADS)

    Koutrakis, Emmanuil; Sylaios, Georgios; Kamidis, Nikolaos; Markou, Dimitrios; Sapounidis, Argyris

    2009-08-01

    Drana Lagoon, located at the NW site of Evros River Delta, was drained in 1987 and re-flooded in 2004 within the framework of an integrated wetland restoration project. This study presents the results of a monitoring program of the lagoon's oceanographic, water quality and fish fauna characteristics, during the pre- and post-restoration period. Results depict the presence of high salinity water (up to 41) due to seawater intrusion, strong evaporation in its interior and inadequate freshwater inflows. Overall, nutrient levels were low depicting local changes. Tidal variability at the mouth was approximately 0.2 m, producing high velocity tidal currents (up to 0.75 m/s). Eleven fish fauna species were collected; seven species were caught in both the inlet channel and the lagoon during the pre-restoration period and nine species in the post-restoration period. Atherina boyeri (37.6%) and Pomatoschistus marmoratus (31.7%) dominated the lagoon during the post-restoration period. Most of the A. boyeri specimens (88.5%) were caught inside the lagoon, while P. marmoratus had an almost equal distribution in the inlet channel and the lagoon (56.3% and 43.7% respectively). The presence of species of the Mugilidae family (5.2% total average catches after lagoon re-flooding) was mainly in the inlet channel (12.6% of the average catches) and not inside the lagoon (only 1.3% of the average catches). The small number of fish species inhabiting the lagoon might be the result of the recent restoration or it could be related with the increased water flow observed at the lagoon mouth during the flood and ebb tidal phases, and also in the presence of a smooth bank in the concrete waterspout that connects the entrance channel with the lagoon. The limited presence of the Mugilidae juveniles inside the lagoon could be related to the prevailing tidal inlet dynamics (i.e. strong ebb flow at lagoon inlet), thus preventing the species to enter the lagoon. In order to restore the lagoon

  18. Resilience and stability of Cymodocea nodosa seagrass meadows over the last four decades in a Mediterranean lagoon

    NASA Astrophysics Data System (ADS)

    Garrido, Marie; Lafabrie, Céline; Torre, Franck; Fernandez, Catherine; Pasqualini, Vanina

    2013-09-01

    Understanding what controls the capacity of a coastal lagoon ecosystem to recover following climatic and anthropogenic perturbations and how these perturbations can alter this capacity is critical to efficient environmental management. The goal of this study was to examine the resilience and stability of Cymodocea nodosa-dominated seagrass meadows in Urbino lagoon (Corsica, Mediterranean Sea) by characterizing the spatio-temporal dynamics of seagrass meadows over a 40-year period and comparing (anthropogenic and climatic) environmental fluctuations. The spatio-temporal evolution of seagrass meadows was investigated using previous maps (1973, 1979, 1990, 1994, 1996, 1999) and a 2011 map realized by aerial photography-remote sensing combined with GIS technology. Environmental fluctuation was investigated via physical-chemical parameters (rainfall, water temperature, salinity, turbidity, dissolved oxygen) and human-impact changes (aquaculture, artificial channel). The results showed a severe decline (estimated at -49%) in seagrass meadows between 1973 and 1994 followed by a period of strong recovery (estimated to +42%) between 1994 and 2011. Increased turbidity, induced either by rainfall events, dredging or phytoplankton growth, emerged as the most important driver of the spatio-temporal evolution of Cymodocea nodosa-dominated meadows in Urbino lagoon over the last four decades. Climate events associated to increased turbidity and reduced salinity and temperature could heavily impact seagrass dynamics. This study shows that Urbino lagoon, a system relatively untouched by human impact, shelters seagrass meadows that exhibit high resilience and stability.

  19. Nutrient removal from swine lagoon effluent by duckweed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bergmann, B.A.; Cheng, J.; Classen, J.

    2000-04-01

    Three duckweed geographic isolates were grown on varying concentrations of swine lagoon effluent in a greenhouse to determine their ability to remove nutrients from the effluent. Duckweed biomass was harvested every other day over a 12-day period. Duckweed biomass production, nutrient loss from the swine lagoon effluent, and nutrient content of duckweed biomass were used to identify effluent concentrations/geographic isolate combinations that are effective in terms of nutrient utilization from swine lagoon effluent and production of healthy duckweed biomass. When Lemna minor geographic isolate 8627 was grown on 50% swine lagoon effluent, respective losses of TKN, NH{sub 3}-N, TP, OPO{submore » 4}-P, TOC, K, Cu, and Zn were 83, 100, 49, 31, 68, 21, 28 and 67%.« less

  20. Accuracy of lagoon gas emissions using an inverse dispersion method

    USDA-ARS?s Scientific Manuscript database

    Measuring gas emissions from treatment lagoons and storage ponds poses challenging conditions for existing micrometeorological techniques because of non-ideal wind conditions. These include those induced by trees and crops surrounding the lagoons, and lagoons with dimensions too small to establish ...

  1. Assessment of heavy metals pollution using AVS-SEM and fractionation techniques in Edku Lagoon sediments, Mediterranean Sea, Egypt.

    PubMed

    El Zokm, Gehan M; Okbah, Mohamed A; Younis, Alaa M

    2015-01-01

    A method is presented to evaluate the fractionation of metals (Fe, Zn, Cu, Pb, Cd and Ni), acid volatile sulfide (AVS) and simultaneously extracted metals (SEM) in Edku lagoon sediments. Thirteen sediment samples were collected from the study area in the period of 2010-2011 to assess the potential bioavailability and toxicity of the selected metals. According to classification of the Interim Sediment Quality Quidelines (ISQG), five stations near the drains exhibited 10% toxic probability. The high AVS and low ∑SEM ranges in Summer were identified as 6-138 and 0.86-3.3 µmol g(-1) dry wet, respectively which are referring to the low mobility of heavy metals in this season and vice versa for winter (2.5-23.9 and 1.16-3.82 µmol g(-1) dry wet, respectively). According to the evaluation of USEPA, all sediment samples showed ∑SEM/AVS < 1 and ΣSEM-AVS < 0 and this indicates that Edku lagoon sediments didn't cause any adverse effects. Meanwhile, the calculations of the global contamination factor (GCF) and the individual contamination factors (ICF) using fractionation technique gave values of 111.644 and 84.555 in El Bosily drain and station 1 near the cages of fish farm, respectively due to possible contamination. Interestingly, the collected data refer that the mobility and bioavailability of heavy metals in Edku lagoon sediments posed a low risk of adverse biological effects due to cadmium, copper, lead, nickel and zinc in all evaluated stations.

  2. Improved marine reservoir age estimation and palaeoclimate synchronisation of the early Holocene Levantine/NW-Arabian region based on identification of the S1 tephra in Dead Sea and Tayma palaeolake sediments

    NASA Astrophysics Data System (ADS)

    Neugebauer, Ina; Wulf, Sabine; Schwab, Markus J.; Serb, Johanna; Plessen, Birgit; Appelt, Oona; Brauer, Achim

    2017-04-01

    Due to a lack of tephras identified in marine and terrestrial palaeoclimate records from the Levantine-Arabian area, this region is still not sufficiently connected to the eastern Mediterranean tephrostratigraphical lattice. Here we report on the first finding of cryptotephra in the Holocene lacustrine sediment records of the Dead Sea and the Tayma palaeolake (NW Arabian Peninsula). The major elemental chemistry of the rhyolitic glass shards proves this tephra identical to the distal 'S1 tephra' identified in the Yammoûneh palaeolake, Lebanon (Develle et al, 2009), in a marine sediment record from the SE Levantine basin (Hamann et al., 2010) and in the Sodmein Cave archaeological site in Egypt (Barton et al., 2015). The 'S1 tephra', most likely corresponding to the early Holocene 'Dikkartın' dome eruption of the Erciyes Daǧ volcano in central Anatolia, Turkey, has been dated in the marine record at 8830 ± 140 cal yr BP. We present new age estimates of the 'S1 tephra' based on radiocarbon dating of terrestrial plant remains (Migowski et al., 2004) and pollen concentrates (Dinies et al., 2015), which reveal modelled ages of 8939 ± 83 cal yr BP in the Dead Sea sediments and 9041 ± 254 cal yr BP in Tayma. This allows the estimation of an early Holocene marine reservoir age of ca. 320 years in the SE Levantine Sea. The timing of the volcanic eruption during the early Holocene humid period, which led to the formation of sapropel S1 in the Mediterranean Sea, and the identification of the 'S1 tephra' more than 1200 km to the south are crucial for the synchronisation of marine and terrestrial palaeoclimate records in the eastern Mediterranean region. References: Barton et al., 2015. The role of cryptotephra in refining the chronology of Late Pleistocene human evolution and cultural change in North Africa. Quaternary Sci. Rev. 118, 151-169. Develle et al., 2009. Early Holocene volcanic ash fallout in the Yammoûneh lacustrine basin (Lebanon): Tephrochronological

  3. Metagenomes of Mediterranean Coastal Lagoons

    PubMed Central

    Ghai, Rohit; Hernandez, Claudia Mella; Picazo, Antonio; Mizuno, Carolina Megumi; Ininbergs, Karolina; Díez, Beatriz; Valas, Ruben; DuPont, Christopher L.; McMahon, Katherine D.; Camacho, Antonio; Rodriguez-Valera, Francisco

    2012-01-01

    Coastal lagoons, both hypersaline and freshwater, are common, but still understudied ecosystems. We describe, for the first time, using high throughput sequencing, the extant microbiota of two large and representative Mediterranean coastal lagoons, the hypersaline Mar Menor, and the freshwater Albufera de Valencia, both located on the south eastern coast of Spain. We show there are considerable differences in the microbiota of both lagoons, in comparison to other marine and freshwater habitats. Importantly, a novel uncultured sulfur oxidizing Alphaproteobacteria was found to dominate bacterioplankton in the hypersaline Mar Menor. Also, in the latter prokaryotic cyanobacteria were almost exclusively comprised by Synechococcus and no Prochlorococcus was found. Remarkably, the microbial community in the freshwaters of the hypertrophic Albufera was completely in contrast to known freshwater systems, in that there was a near absence of well known and cosmopolitan groups of ultramicrobacteria namely Low GC Actinobacteria and the LD12 lineage of Alphaproteobacteria. PMID:22778901

  4. Benthic Primary Production Budget of a Caribbean Reef Lagoon (Puerto Morelos, Mexico)

    PubMed Central

    Naumann, Malik S.; Jantzen, Carin; Haas, Andreas F.; Iglesias-Prieto, Roberto; Wild, Christian

    2013-01-01

    High photosynthetic benthic primary production (P) represents a key ecosystem service provided by tropical coral reef systems. However, benthic P budgets of specific ecosystem compartments such as macrophyte-dominated reef lagoons are still scarce. To address this, we quantified individual and lagoon-wide net (Pn) and gross (Pg) primary production by all dominant functional groups of benthic primary producers in a typical macrophyte-dominated Caribbean reef lagoon near Puerto Morelos (Mexico) via measurement of O2 fluxes in incubation experiments. The photosynthetically active 3D lagoon surface area was quantified using conversion factors to allow extrapolation to lagoon-wide P budgets. Findings revealed that lagoon 2D benthic cover was primarily composed of sand-associated microphytobenthos (40%), seagrasses (29%) and macroalgae (27%), while seagrasses dominated the lagoon 3D surface area (84%). Individual Pg was highest for macroalgae and scleractinian corals (87 and 86 mmol O2 m−2 specimen area d−1, respectively), however seagrasses contributed highest (59%) to the lagoon-wide Pg. Macroalgae exhibited highest individual Pn rates, but seagrasses generated the largest fraction (51%) of lagoon-wide Pn. Individual R was highest for scleractinian corals and macroalgae, whereas seagrasses again provided the major lagoon-wide share (68%). These findings characterise the investigated lagoon as a net autotrophic coral reef ecosystem compartment revealing similar P compared to other macrophyte-dominated coastal environments such as seagrass meadows and macroalgae beds. Further, high lagoon-wide P (Pg: 488 and Pn: 181 mmol O2 m−2 lagoon area d−1) and overall Pg:R (1.6) indicate substantial benthic excess production within the Puerto Morelos reef lagoon and suggest the export of newly synthesised organic matter to surrounding ecosystems. PMID:24367570

  5. Beryllium isotopes as tracers of Lake Lisan (last Glacial Dead Sea) hydrology and the Laschamp geomagnetic excursion

    NASA Astrophysics Data System (ADS)

    Belmaker, Reuven; Stein, Mordechai; Beer, Jürg; Christl, Marcus; Fink, David; Lazar, Boaz

    2014-08-01

    The content of the cosmogenic isotope 10Be (t1/2=1.39 Ma) in lacustrine sediments that deposit in lakes with a large watershed is susceptible to both climate and cosmogenic production rate variations. In order to distinguish between these two controls, we measured 10Be and major elements in several sections of the annually laminated sediments of the Lake Lisan (the last Glacial precursor of the Dead Sea) that are composed of detrital sediments and primary (evaporitic) aragonites. The sections were selected to represent regional hydrology and climate as reflected by different lake configurations (level rise, drop and high-stands) and rapid change in the 10Be production rate during the Laschamp geomagnetic excursion. Since the short-lived cosmogenic “sister” of 10Be, 7Be (t1/2=53.3 d) has virtually no recycled component, the recycled 10Be in Lake Lisan detrital sediments was evaluated by measuring 7Be in their modern equivalents: modern flood suspended matter, dust and mud cracks. Our results demonstrate that although the recycled 10Be component is significant, secular variations in the 10Be concentration in Lake Lisan sediments correlate with hydrological variations and geomagnetic excursions. During periods of moderate variations in 10Be production rate, the 10Be concentration in the Lisan detrital sediments positively correlates with lake level, Al + Fe content and the (Al + Fe)/(Ca + Mg) ratio. These correlations suggest that the 10Be is adsorbed on the fine silicate component (probably clays) of the detrital laminae. The fine silicates together with carbonates were transported to Dead Sea drainage basin mainly as airborne dust that after a short residence time was washed into Lake Lisan as flood suspended matter. We suggest that preferential dissolution of carbonates in the flood suspended matter concentrated the residual fine component leading to the positive correlation between 10Be and the (Al + Fe)/(Ca + Mg) ratio. During periods of increased water

  6. Sinkholes, subsidence and subrosion on the eastern shore of the Dead Sea as revealed by a close-range photogrammetric survey

    NASA Astrophysics Data System (ADS)

    Al-Halbouni, Djamil; Holohan, Eoghan P.; Saberi, Leila; Alrshdan, Hussam; Sawarieh, Ali; Closson, Damien; Walter, Thomas R.; Dahm, Torsten

    2017-05-01

    Ground subsidence and sinkhole collapse are phenomena affecting regions of karst geology worldwide. The rapid development of such phenomena around the Dead Sea in the last four decades poses a major geological hazard to the local population, agriculture and industry. Nonetheless many aspects of this hazard are still incompletely described and understood, especially on the eastern Dead Sea shore. In this work, we present a first low altitude (< 150 m above ground) aerial photogrammetric survey with a Helikite Balloon at the sinkhole area of Ghor Al-Haditha, Jordan. We provide a detailed qualitative and quantitative analysis of a new, high resolution digital surface model (5 cm px-1) and orthophoto of this area (2.1 km2). We also outline the factors affecting the quality and accuracy of this approach. Our analysis reveals a kilometer-scale sinuous depression bound partly by flexure and partly by non-tectonic faults. The estimated minimum volume loss of this subsided zone is 1.83 ṡ 106 m3 with an average subsidence rate of 0.21 m yr-1 over the last 25 years. Sinkholes in the surveyed area are localized mainly within this depression. The sinkholes are commonly elliptically shaped (mean eccentricity 1.31) and clustered (nearest neighbor ratio 0.69). Their morphologies and orientations depend on the type of sediment they form in: in mud, sinkholes have a low depth to diameter ratio (0.14) and a long-axis azimuth of NNE-NE. In alluvium, sinkholes have a higher ratio (0.4) and are orientated NNW-N. From field work, we identify actively evolving artesian springs and channelized, sediment-laden groundwater flows that appear locally in the main depression. Consequently, subrosion, i.e. subsurface mechanical erosion, is identified as a key physical process, in addition to dissolution, behind the subsidence and sinkhole hazard. Furthermore, satellite image analysis links the development of the sinuous depression and sinkhole formation at Ghor Al-Haditha to preferential

  7. Lockport Sewage Lagoon.

    ERIC Educational Resources Information Center

    Perry, John

    1995-01-01

    Describes a student initiated stewardship project that resulted in the transformation of a sewage lagoon near the school into a place to study nature. Contains a list of 20 things that discourage a successful stewardship project. (LZ)

  8. Side-Scan Sonar Imagery of The Recent Seabed and Sediment Properties on The Inner Shelf Off The Lagoons of Küçükçekmece and Büyükçekmece

    NASA Astrophysics Data System (ADS)

    Alp, H.; Vardar, D.; Alpar, B.

    2017-12-01

    The sea-bottom sediment distribution, benthic habitats and erosional pathways between Küçükçekmece and Büyükçekmece lagoons at the northern margin of the Marmara Sea were mapped via 340-680 kHz dual frequency side scan sonar, one of the most effective tools for underwater exploration. In fact these lagoons were two former estuaries, later separated from the sea by coarse grained sediments mainly made up of natural sand bars and man-made barriers constructed for roads about a century ago. In the summer 2016, a total of 250-km long side scan data were acquired, with a 300 m of swath width. The coastal strip between the present coastline and the -10 m depth, the seafloor sediments are made up of coarse-grained sandy deposits and determined as continuous bright reflections on the sonograms. Silty and muddy sand units are distributed between the water depths of -10 to -20 m, and they give continuous less bright reflections on sonograms if compared to those of shallow sandy deposits. Deeper muddy units (sandy silt) appeared on the sonograms as uniform dark reflections and soft scatterings. The areal distribution of seafloor sediments and their acoustical characteristics indicated that the net sediment transport in the study area is mainly controlled under the E-W directional longshore currents and dominant southerly waves. Some strong sonar reflections observed at shallow depths (0-15 m) in the Küçükçekmece lagoon and characteristically comprised of remarkable round-shape structures, represent reefs which need sunlight and stable hydrographic conditions to be formed. Various sand ripples are defined in the lagoon, as well.

  9. Digging navigable waterways through lagoon tidal flats: which short and long-term impacts on groundwater dynamics and quality?

    NASA Astrophysics Data System (ADS)

    Teatini, Pietro; Isotton, Giovanni; Nardean, Stefano; Ferronato, Massimiliano; Tosi, Luigi; Da Lio, Cristina; Zaggia, Luca; Bellafiore, Debora; Zecchin, Massimo; Baradello, Luca; Corami, Fabiana; Libralato, Giovanni; Morabito, Elisa; Broglia, Riccardo; Zaghi, Stefano

    2017-04-01

    Coastal lagoons are highly valued ephemeral habitats that have experienced in many cases the pressure of human activities since the development of urbanisation and economic activities within or around their boundaries. One typical intervention is dredging of canals to increase the exchange of water with the sea or for navigation purposes. In order to divert the route of large cruise liners from the historic center of Venice, Italy, the Venice Port Authority has recently proposed a project for the dredging of a new 3-km long and 10-m deep navigation canal (called Marghera-Venice Canal, MVC, in the sequel) through the shallows of the Venice Lagoon. The MVC will connect the passenger terminal located in the southwestern part of the historic center to a main channel that reaches the industrial area on the western lagoon margin. Can the new MVC facilitate saltwater intrusion below the lagoon bottom? Can the release into the lagoon of the chemicals detected in the groundwater around the industrial site be favoured by the MVC excavation? Can the depression waves generated by the ship transit (known as ship-wakes) along the MVC affect the flow and contaminant exchange between the subsurface and surficial systems? A response to these questions has been provided by the use of uncoupled and coupled density-dependent groundwater flow and transport simulators. The hydrogeological modelling has been supported by an in-depth characterization of the Venice lagoon subsurface along the MVC. Geophysical surveys, laboratory analyses on groundwater and sediment samples, in-situ measurements through piezometers and pressure sensors, and the outcome of 3D hydrodynamic and computational fluid dynamic (CFD) models have been used to set-up and calibrate the subsurface multi-model approach. The modelling results can be summarized as follows: i) the MVC has a negligible effect in relation to the propagation of the tidal regime into the subsoil; ii) the depression caused by the ship transit

  10. Nutrient-Chlorophyll Relationships in the Indian River Lagoon, Florida(SEERS)

    EPA Science Inventory

    The Indian River Lagoon is a highly diverse estuary located along Florida’s Atlantic coast. The system is made up of the main stem and two side-lagoons: the Banana River and Mosquito Lagoon. We segmented the main stem into three sections based on spatial trends in water quality ...

  11. Hydrogen Sulfide Emissions from Sow Farm Lagoons across Climates Zones.

    PubMed

    Grant, Richard H; Boehm, Matthew T; Lawrence, Alfred J; Heber, Albert J

    2013-11-01

    Hydrogen sulfide (HS) emissions were measured periodically over the course of 2 yr at three sow waste lagoons representing humid mesothermal (North Carolina, NC), humid microthermal (Indiana, IN), and semiarid (Oklahoma, OK) climates. Emissions were determined using a backward Lagrangian stochastic model in conjunction with line-sampled HS concentrations and measured turbulence. The median annual sow-specific (area-specific) lagoon emissions at the OK farm were approximately 1.6 g head [hd] d (5880 µg m s), whereas those at the IN and NC sow farms were 0.035 g hd d (130 µg m s), and 0.041 g hd d (260 µg m s), respectively. Hydrogen sulfide emissions generally increased with wind speed. The daily HS emissions from the OK lagoon were greatest during the first half of the year and decreased as the year progressed. Emissions were episodic at the NC and IN lagoons. The generally low emissions at the NC and IN lagoons were probably a result of significant populations of purple sulfur bacteria maintained in the humid mesothermal and humid microthermal climates. Most of the large HS emission events at the NC and IN lagoons appeared to be a result of either precipitation events or liquid pump-out events. The high emissions at the OK lagoon in a semiarid climate were largely a result of high wind speeds enhancing both lagoon and air boundary layer mixing. The climate (air temperature, winds, and precipitation) appeared to influence the HS emissions from lagoons. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  12. Bioprospecting Red Sea Coastal Ecosystems for Culturable Microorganisms and Their Antimicrobial Potential.

    PubMed

    Al-Amoudi, Soha; Essack, Magbubah; Simões, Marta F; Bougouffa, Salim; Soloviev, Irina; Archer, John A C; Lafi, Feras F; Bajic, Vladimir B

    2016-09-10

    Microorganisms that inhabit unchartered unique soil such as in the highly saline and hot Red Sea lagoons on the Saudi Arabian coastline, represent untapped sources of potentially new bioactive compounds. In this study, a culture-dependent approach was applied to three types of sediments: mangrove mud (MN), microbial mat (MM), and barren soil (BS), collected from Rabigh harbor lagoon (RHL) and Al-Kharrar lagoon (AKL). The isolated bacteria were evaluated for their potential to produce bioactive compounds. The phylogenetic characterization of 251 bacterial isolates based on the 16S rRNA gene sequencing, supported their assignment to five different phyla: Proteobacteria, Firmicutes, Actinobacteria, Bacteroidetes, and Planctomycetes. Fifteen putative novel species were identified based on a 16S rRNA gene sequence similarity to other strain sequences in the NCBI database, being ≤98%. We demonstrate that 49 of the 251 isolates exhibit the potential to produce antimicrobial compounds. Additionally, at least one type of biosynthetic gene sequence, responsible for the synthesis of secondary metabolites, was recovered from 25 of the 49 isolates. Moreover, 10 of the isolates had a growth inhibition effect towards Staphylococcus aureus, Salmonella typhimurium and Pseudomonas syringae. We report the previously unknown antimicrobial activity of B. borstelensis, P. dendritiformis and M. salipaludis against all three indicator pathogens. Our study demonstrates the evidence of diverse cultured microbes associated with the Red Sea harbor/lagoon environments and their potential to produce antimicrobial compounds.

  13. The distribution and diversity of sea cucumbers in the coral reefs of the South China Sea, Sulu Sea and Sulawesi Sea

    NASA Astrophysics Data System (ADS)

    Woo, Sau Pinn; Yasin, Zulfigar; Ismail, Siti Hasmah; Tan, Shau Hwai

    2013-11-01

    A study on the distribution and diversity of sea cucumbers in the coral reefs of the South China Sea, Sulu Sea and Sulawesi Sea was carried out in July 2009. The survey was done using wandering transect underwater with SCUBA. Twelve species of sea cucumber were found from four different families and nine genera. The most dominant family was Holothuriidae (five species), followed by Stichopodidae (three species), Synaptidae (three species) and Cucumariidae with only one species. The most dominant species found around the island was Pearsonothuria graffei, which can be found abundantly on substrate of dead corals in a wide range of depth (6-15 m). The Sulawesi Sea showed a higher diversity of sea cucumber with seven different species compared to the South China Sea with only six different species and Sulu Sea with only two species. Ordination by multidimensional scaling of Bray-Curtis similarities clustered the sampling locations to three main clusters with two outgroups. Previous studies done indicated a higher diversity of sea cucumber as compared to this study. This can be indication that the population and diversity of sea cucumbers in the reef is under threat.

  14. Is the Venice Lagoon Noisy? First Passive Listening Monitoring of the Venice Lagoon: Possible Effects on the Typical Fish Community.

    PubMed

    Bolgan, Marta; Picciulin, Marta; Codarin, Antonio; Fiorin, Riccardo; Zucchetta, Matteo; Malavasi, Stefano

    2016-01-01

    Three passive listening surveys have been carried out in two of the three Venice lagoon tide inlets and inside the Venice island. The spectral content and the intensity level of the underwater noise as well as the presence or absence of Sciaena umbra and the distribution of its different sound patterns have been investigated in all the recording sites. The passive listening proved to be successful in detecting S. umbra drumming sounds in both Venice lagoon tide inlets. Our results indicate that the spectral content and the level of underwater noise pollution in the Venice lagoon could affect fish acoustic communication.

  15. Can reef islands keep up with sea level? Exploring the interplay between sea-level rise, sediment supply, and overwash processes

    NASA Astrophysics Data System (ADS)

    Lorenzo-Trueba, J.

    2016-02-01

    Coral reef islands are accumulations of carbonate sediment deposited subaerially atop coral reef platforms. We hypothesize that the long-term evolution of reef islands is primarily controlled by the interplay between sea-level rise, sediment supply, and sediment overwash. Reef islands are supplied with sediment from offshore, in the form of reworked coral skeletons that originate at the reef edge and are carried onto the reef platform by waves, as well as in situ production on the reef flat itself. However, the primary mechanism that allows reef islands to keep pace with sea level is storm overwash, which enables the vertical transport of sediment from the periphery to the top of the island. Given the current lack of understanding on how production and overwash processes interact, we have constructed a morphodynamic model to elucidate and quantify how reef islands may respond to sea-level rise and changes in sediment production. Model results demonstrate that even if reef islands can remain subaerial over the coming century, this will require significant deposition of sediment atop the island and, in many cases, the island is expected to roll considerably over itself; both of these morphologic changes will negatively affect homes and infrastructure atop these islands. The model also suggests that as reef islands approach the lagoon edge of the reef platform, shoreline erosion and island drowning can be enhanced as sediment overwashes into the lagoon. Interestingly, this situation can only be avoided if either a high offshore sediment supply bulwarks the island in place or the system undergoes similar rates of overwash sedimentation from both the ocean and the lagoon sides. The model also allows us to explore the potential for increased overwash with increased storminess, increases in sediment supply due to bleaching or disturbance, or reduction of sediment supply as a result of reduced calcification rates due to ocean acidification.

  16. Response of early Ruppia cirrhosa litter breakdown to nutrient addition in a coastal lagoon affected by agricultural runoff

    NASA Astrophysics Data System (ADS)

    Menéndez, Margarita

    2009-05-01

    The response of early Ruppia cirrhosa Petagna (Grande) litter decomposition to external nitrogen and phosphorus availability in La Tancada (Ebro River, NE Spain), a coastal lagoon that receives agricultural freshwater runoff from rice fields has been examined. Recently abscised dead R. cirrhosa stems were collected and 25 g of fresh weight was placed in litter bags with a mesh size of 100 μm and 1 mm. These bags were fertilised by adding nitrogen (N), a mixture of nitrogen plus phosphorus (N + P), or phosphorus (P), or were left untreated (CT). Macroinvertebrates were retrieved from the bags and the ash-free dry weight, and carbon, and N and P content of the remaining plant material were measured after 0, 3, 7, 14, 22 and 32 days. Litter decomposition rates, k (day -1), were estimated using a simple exponential model. Litter decay was clearly accelerated by the addition of P in the fine (100 μm) litter bags (0.042), but when N was added alone (0.0099) the decomposition rate was lower than in the CT treatments (0.022). No significant difference was observed between the N (0.0099-0.018) and N + P (0.0091-0.015) treatments in either the fine or the coarse (1 mm) litter bags. These results could be attributed to the relatively high availability of external (environmental) and internal (detritus contents) N. No significant effect of macro invertebrates was observed in the CT treatment or under N or P or N + P addition. The ratio between the decomposition rates in coarse and fine litter bags (k c/k f) was lower in disturbed Tancada lagoon (0.82) than in Cesine lagoon (2.11), a similar Mediterranean coastal water body with almost pristine conditions. These results indicate that, in addition to data on macroinvertebrate community structure, decomposition rates could also be used to assess water quality in coastal lagoons.

  17. Environmental enhancement of swine lagoons through influent treatment

    USDA-ARS?s Scientific Manuscript database

    Confined swine production generates large volumes of wastewater typically stored and treated in anaerobic lagoons. Failure of these lagoons during tropical storms in North Carolina along with major public environmental concerns led to a permanent state moratorium of construction of new anaerobic lag...

  18. Rheological characterization of hair shampoo in the presence of dead sea salt.

    PubMed

    Abu-Jdayil, B; Mohameed, H A; Sa'id, M; Snobar, T

    2004-02-01

    In Jordan, a growing industry has been established to produce different types of Dead Sea (DS) cosmetics that have DS salt (contains mainly NaCl, KCl, and MgCl(2)) in their formulas. In this work, the effect of DS salt on the rheology of hair shampoo containing the sodium lauryl ether sulfate as a main active matter was studied. The effects of DS salt and active matter concentration, and the temperature and time of salt mixing, on the rheological properties of hair shampoo were investigated. The salt-free shampoo showed a Newtonian behavior at 'low active matter' (LAM) and shear thinning at 'high active matter' (HAM). The presence of DS salt changed the rheological behavior of LAM shampoo from Newtonian (for the salt-free shampoo) to shear thinning. On the other hand, the behavior of HAM shampoo switched from shear thinning to Newtonian behavior in the presence of high concentration of DS salt. The addition of DS salt increased the apparent viscosity of shampoo to reach a maximum value that corresponded to a salt concentration of 1.5 wt.%. Further addition of DS salt led to a decrease in the shampoo viscosity to reach a value less than that of the salt-free sample at high salt concentration. Changing the mixing temperature (25-45 degrees C) and mixing time (15-120 min) of DS salt with shampoo has no significant influence on the rheological behavior. However, the mixing process increased the apparent viscosity of salt-free shampoo. The power law model fitted well the flow curves of hair shampoo with and without DS salt.

  19. Bouguer gravity and crustal structure of the Dead Sea transform fault and adjacent mountain belts in Lebanon

    NASA Astrophysics Data System (ADS)

    Kamal; Khawlie, Mohamad; Haddad, Fuad; Barazangi, Muawia; Seber, Dogan; Chaimov, Thomas

    1993-08-01

    The northern extension of the Dead Sea transform fault in southern Lebanon bifurcates into several faults that cross Lebanon from south to north. The main strand, the Yammouneh fault, marks the boundary between the Levantine (eastern Mediterranean) and Arabian plates and separates the western mountain range (Mount Lebanon) from the eastern mountain range (Anti-Lebanon). Bouguer gravity contours in Lebanon approximately follow topographic contours; i.e., positive Bouguer anomalies are associated with the Mount Lebanon and Anti-Lebanon ranges. This suggests that the region is not in simple isostatic compensation. Gravity observations based on 2.5-dimensional modeling and other available geological and geophysical information have produced the following interpretations. (1) The crust of Lebanon thins from ˜35 km beneath the Anti-Lebanon range, near the Syrian border, to ˜27 km beneath the Lebanese coast. No crustal roots exist beneath the Lebanese ranges. (2) The depth to basement is ˜3.5-6 km below sea level under the ranges and is ˜8-10 km beneath the Bekaa depression. (3) The Yammouneh fault bifurcates northward into two branches; one passes beneath the Yammouneh Lake through the eastern part of Mount Lebanon and another bisects the northern part of the Bekaa Valley (i.e., Mid-Bekaa fault). The Lebanese mountain ranges and the Bekaa depression were formed as a result of transtension and later transpression associated with the relative motion of a few crustal blocks in response to the northward movement of the Arabian plate relative to the Levantine plate.

  20. Spring and Summer Proliferation of Floating Macroalgae in a Mediterranean Coastal Lagoon (Tancada Lagoon, Ebro Delta, NE Spain)

    NASA Astrophysics Data System (ADS)

    Menéndez, M.; Comín, F. A.

    2000-08-01

    During the last 10 years, a drastic change in the structure of the community of primary producers has been observed in Tancada Lagoon (Ebro Delta, NE Spain). This consisted of a decrease in the abundance of submerged rooted macrophyte cover and a spring and summer increase in floating macroalgae. Two spatial patterns have been observed. In the west part of the lagoon, Chaetomorpha linum Kützing, dominated during winter and decreased progressively in spring when Cladophora sp. reached its maximum development. In the east part of the lagoon, higher macroalgal diversity was observed, together with lower cover in winter and early spring. Cladophora sp., Gracilaria verrucosa Papenfuss and Chondria tenuissima Agardh, increased cover and biomass in summer. Maximum photosynthetic production was observed in spring for G. verrucosa (10·9 mg O 2 g -1 DW h -1) and C. tenuissima (19·0 mg O 2 g -1 DW h -1) in contrast with Cladophora sp. (15·9 mg O 2 g -1 DW h -1) and Chaetomorpha linum (7·2 mg O 2 g -1 DW h -1) which reached maximum production in summer. Increased conductivity from reduced freshwater inflow, and higher water temperatures during periods of lagoon isolation, mainly in summer, were the main physical factors associated with an increase in floating macroalgal biomass across the lagoon. Reduced nitrogen availability and temperature-related changes in carbon availability during summer were related to a decrease in abundance of C. linum and increases in G. verrucosa and Cladophora sp.

  1. Factors driving the seasonal distribution of zooplankton in a eutrophicated Mediterranean Lagoon.

    PubMed

    Ziadi, Boutheina; Dhib, Amel; Turki, Souad; Aleya, Lotfi

    2015-08-15

    The distribution of the zooplankton community was studied along with environmental factors at five sampling stations in Ghar El Melh Lagoon (GML) (Mediterranean Sea, northern Tunisia). GML is characterized by specific following properties: broad and shallow, freshwater supply (Station 1); connection to the sea (S2); stagnation (S3 especially), and eutrophic conditions with enhanced nutrient concentrations (S4 and S5). Samples were taken twice monthly from February 2011 to January 2012. Twenty-three zooplankton groups comprising 10 larval stages were identified. Zooplankton assemblages were largely dominated by copepods (37.25%), followed respectively by ciliates (21.09%), bivalve larvae (14.88%) and gastropod veligers (12.53%). Redundancy analysis indicated that while no significant difference was found in the distribution of zooplankton at any station, a strong difference was observed according to season. Both temporal and physicochemical fluctuations explain more than 50% of changes in zooplankton abundances. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Submarine groundwater discharge into typical tropical lagoons: A case study in eastern Hainan Island, China

    NASA Astrophysics Data System (ADS)

    Wang, Xilong; Du, Jinzhou

    2016-11-01

    Assessing submarine groundwater discharge (SGD) into lagoons and bays can be helpful to understand biogeochemical processes, especially nutrient dynamics. In the present paper, radium (Ra) isotopes were used to quantify SGD in two typical tropical lagoons (Laoye Lagoon (LY Lagoon) and Xiaohai Lagoon (XH Lagoon)) of eastern Hainan Island, China. The Ra mass balance model provided evidence that SGD plays an important role in the hydrology of the LY Lagoon and the XH Lagoon, delivering average SGD fluxes of 1.7 × 106 (94 L m-2 d-1) and 1.8 × 106 (41 L m-2 d-1) m3 d-1, respectively. Tidal pumping was one of the important driving forces for SGD fluxes in the LY and the XH Lagoons. Tidal-driven SGD into the tidal channels of both lagoons can account for approximately 10% of the total SGD flux into the lagoons. In addition, the dissolved inorganic nutrient budgets were reassessed in the LY Lagoon and the XH Lagoon, which showed that SGD was the major source of nutrients entering the LY Lagoon and that the LY Lagoon behaved as a source for dissolved inorganic nitrogen (DIN) and dissolved inorganic phosphorus (DIP) and as a sink for dissolved silicate (DSi). Nutrient loads in the XH Lagoon were mainly derived from riverine inputs and SGD, and the XH Lagoon behaved as a source for DIP, but a sink for DIN and DSi.

  3. The Wadden Sea in transition - consequences of sea level rise

    NASA Astrophysics Data System (ADS)

    Becherer, Johannes; Hofstede, Jacobus; Gräwe, Ulf; Purkiani, Kaveh; Schulz, Elisabeth; Burchard, Hans

    2018-01-01

    The impact of sea level rise (SLR) on the future morphological development of the Wadden Sea (North Sea) is investigated by means of extensive process-resolving numerical simulations. A new sediment and morphodynamic module was implemented in the well-established 3D circulation model GETM. A number of different validations are presented, ranging from an idealized 1D channel over a semi-idealized 2D Wadden Sea basin to a fully coupled realistic 40-year hindcast without morphological amplification of the Sylt-Rømøbight, a semi-enclosed subsystem of the Wadden Sea. Based on the results of the hindcast, four distinct future scenarios covering the period 2010-2100 are simulated. While these scenarios differ in the strength of SLR and wind forcing, they also account for an expected increase of tidal range over the coming century. The results of the future projections indicate a transition from a tidal-flat-dominated system toward a lagoon-like system, in which large fractions of the Sylt-Rømøbight will remain permanently covered by water. This has potentially dramatic implications for the unique ecosystem of the Wadden Sea. Although the simulations also predict an increased accumulation of sediment in the back-barrier basin, this accumulation is far too weak to compensate for the rise in mean sea level.

  4. Hydroclimatic variability in the Levant during the early last glacial (˜ 117-75 ka) derived from micro-facies analyses of deep Dead Sea sediments

    NASA Astrophysics Data System (ADS)

    Neugebauer, I.; Schwab, M. J.; Waldmann, N. D.; Tjallingii, R.; Frank, U.; Hadzhiivanova, E.; Naumann, R.; Taha, N.; Agnon, A.; Enzel, Y.; Brauer, A.

    2016-01-01

    The new sediment record from the deep Dead Sea basin (ICDP core 5017-1) provides a unique archive for hydroclimatic variability in the Levant. Here, we present high-resolution sediment facies analysis and elemental composition by micro-X-ray fluorescence (µXRF) scanning of core 5017-1 to trace lake levels and responses of the regional hydroclimatology during the time interval from ca. 117 to 75 ka, i.e. the transition between the last interglacial and the onset of the last glaciation. We distinguished six major micro-facies types and interpreted these and their alterations in the core in terms of relative lake level changes. The two end-member facies for highest and lowest lake levels are (a) up to several metres thick, greenish sediments of alternating aragonite and detrital marl laminae (aad) and (b) thick halite facies, respectively. Intermediate lake levels are characterised by detrital marls with varying amounts of aragonite, gypsum or halite, reflecting lower-amplitude, shorter-term variability. Two intervals of pronounced lake level drops occurred at ˜ 110-108 ± 5 and ˜ 93-87 ± 7 ka. They likely coincide with stadial conditions in the central Mediterranean (Melisey I and II pollen zones in Monticchio) and low global sea levels during Marine Isotope Stage (MIS) 5d and 5b. However, our data do not support the current hypothesis of an almost complete desiccation of the Dead Sea during the earlier of these lake level low stands based on a recovered gravel layer. Based on new petrographic analyses, we propose that, although it was a low stand, this well-sorted gravel layer may be a vestige of a thick turbidite that has been washed out during drilling rather than an in situ beach deposit. Two intervals of higher lake stands at ˜ 108-93 ± 6 and ˜ 87-75 ± 7 ka correspond to interstadial conditions in the central Mediterranean, i.e. pollen zones St. Germain I and II in Monticchio, and Greenland interstadials (GI) 24+23 and 21 in Greenland, as well as to

  5. Hydroclimatic variability in the Levant during the early last glacial (∼ 117-75 ka) derived from micro-facies analyses of deep Dead Sea sediments

    NASA Astrophysics Data System (ADS)

    Neugebauer, I.; Schwab, M. J.; Waldmann, N. D.; Tjallingii, R.; Frank, U.; Hadzhiivanova, E.; Naumann, R.; Taha, N.; Agnon, A.; Enzel, Y.; Brauer, A.

    2015-08-01

    The new sediment record from the deep Dead Sea basin (ICDP core 5017-1) provides a unique archive for hydroclimatic variability in the Levant. Here, we present high-resolution sediment facies analysis and elemental composition by μXRF scanning of core 5017-1 to trace lake levels and responses of the regional hydroclimatology during the time interval from ca 117-75 ka, i.e. the transition between the last interglacial and the onset of the last glaciation. We distinguished six major micro-facies types and interpreted these and their alterations in the core in terms of relative lake level changes. The two end-member facies for highest and lowest lake levels are (a) up to several meters thick, greenish sediments of alternating aragonite and detrital marl laminae (aad) and (b) thick halite facies, respectively. Intermediate lake levels are characterised by detrital marls with varying amounts of aragonite, gypsum or halite, reflecting lower-amplitude, shorter-term variability. Two intervals of pronounced lake level drops occurred at ∼110-108 ± 5 and ∼93-87 ± 7 ka. They likely coincide with stadial conditions in the central Mediterranean (Melisey I and II pollen zones in Monticchio) and low global sea levels during MIS 5d and 5b. However, our data do not support the current hypothesis of an almost complete desiccation of the Dead Sea during the earlier of these lake level low stands based on a recovered gravel layer. Based on new petrographic analyses, we propose that, although it was a low stand, this well-sorted gravel layer may be a vestige of a thick turbidite that has been washed out during drilling rather than an in-situ beach deposit. Two intervals of higher lake stands at ∼108-93 ± 6 and ∼87-75 ± 7 ka correspond to interstadial conditions in the central Mediterranean, i.e. pollen zones St. Germain I and II in Monticchio, and GI 24 + 23 and 21 in Greenland, as well as to sapropels S4 and S3 in the Mediterranean Sea. These apparent correlations

  6. Influence of the surface drag coefficient (young waves) on the current structure of the Berre lagoon

    NASA Astrophysics Data System (ADS)

    Alekseenko, Elena; Roux, Bernard; Kharif, Christian; Sukhinov, Alexander; Kotarba, Richard; Fougere, Dominique; Chen, Paul Gang

    2013-04-01

    Due to the shallowness, currents and hydrodynamics of Berre lagoon (South of France) are closely conditioned by the bottom topography, and wind affects the entire water column, as for many other Mediterranean lagoons (Perez-Ruzafa, 2011). Wind stress, which is caused by moving atmospheric disturbance, is known to have a major influence in lagoon water circulation. According to the numerical simulation for the main directions of the wind: N-NW, S-SE and W (wind speed of 80 km/h) it is observed that the current is maximal alongshore in the wind direction; the bottom nearshore current being larger in shallower area. This fact is coherent with fundamental principle of wind-driven flows in closed or partially closed basins which states that in shallow water the dominant force balance is between surface wind stress and bottom friction, yielding a current in the direction of the wind (Mathieu et al, 2002, Hunter and Hearn, 1987; Hearn and Hunter,1990). A uniform wind stress applied at the surface of a basin of variable depth sets up a circulation pattern characterized by relatively strong barotropic coastal currents in the direction of the wind, with return flow occurring over the deeper regions (Csanady, 1967; Csanady, 1971). One of the key parameters characterizing the wind stress formulation is a surface drag coefficient (Cds). Thus, an effect of a surface drag coefficient, in the range 0.0016 - 0.0032, will be analyzed in this work. The value of surface drag coefficient Cds = 0.0016 used in our previous studies (Alekseenko et al., 2012), would correspond to mature waves (open sea). But, in the case of semi-closed lagoonal ecosystem, it would be more appropriate to consider "young waves" mechanism. A dependency of this coefficient in terms of the wind speed is given by Young (1999) in both cases of mature waves and young waves. For "young waves" generated at a wind speed of 80 km/h, Cds = 0.0032. So, the influence of Cds on the vertical profile of the velocity in the

  7. Last interglacial (MIS5e) sea-levels and uplift along the north-east Gulf of Aqaba

    NASA Astrophysics Data System (ADS)

    BAR (KOHN), N.; Stein, M.; Agnon, A.; Yehudai, M.; Lazar, B.; Shaked, Y.

    2014-12-01

    An uplifted flight of coral reef terraces, extending along the north-east margin of the Gulf of Aqaba (GOA), provides evidence for uplift rates and sea level high stands. GOA fills a narrow and deep tectonic depression lying along the southern sector of the Dead Sea Transform where it meets the Red Sea. This special configuration of the GOA and its latitude turn it into a dependable paleo-sea level monitor, sensitive only to global eustatic changes and local tectonic movements. A sequence of five uplifted coral reef terraces were mapped and characterized on basis of morphology and reef-facies, and their elevation above the present sea level was determined. The fossil reefs studied comprise fringing reefs, some with clear reef-structure that includes a reef flat and a shallow back lagoon. Most outcrops in the study area represent a transgressive sequence in which, during its highest stand, formed fringing reef terraces. We use U-Th ages of fossil corals samples found in growth position at various terraces. Corals from three uplifted reef terraces, R1, R2, and R3 were dated to the last interglacial period particularly to marine isotope stage (MIS) 5e. These ages were achieved from mainly calcitic corals (recrystallized in a freshwater phreatic environment). A few ages were derived from aragonite corals. The three terraces represent three sub-stages within MIS5e: R3 formed during a short standstill at ~130 ka BP; R2 formed during a long and steady standstill between ~128 to ~121 ka BP; and R1 represents a short standstill at ~117 ka BP. Assuming that terrace reef flats represent past sea level high stands, we calculated the coast average uplift rate and constrained the original terraces elevations. The reconstructed eustatic sea level variation during MIS 5e at GOA resembles observations from reef terraces in other locations. Combined, all indicate a significant sea-level rise from the MIS 6 low stand at ~134-130 ka and followed by a long and stable sea level high

  8. Metals concentrations in sediments and oyster Crassostrea gigas from La Pitahaya lagoon, Sinaloa, NW Mexico

    NASA Astrophysics Data System (ADS)

    Luna Varela, R.; Muñoz Sevilla, N.; Campos Villegas, L.; Rodriguez Espinosa, P.; Gongora Gomez, A.; MP, J.

    2013-05-01

    This present study was performed in a culture of Crassostrea gigas in La Pitahaya, Sinaloa, México. The main objective is to identify the enrichment pattern of trace elements (Cu, Cd, Cr, Ni, Pb, Zn, Hg, As, V) also was determine concentrations thereof in oyster. Four sampling sites were selected, two smaller channels which connect the lagoon directly , the region of culture and connection with the sea ; and each sampling consisted of 4 sample sediments and 50 oysters of commercial size per mounth . Concentrations of trace metals were determined using atomic absorption spectrophotometry (AAS). The higher concentration of elements in certain samples clearly suggests that they are directly fed by the smaller channels which connect the lagoon directly. These small channels often carry the contaminants which are absorbed and deposited in the sediments. The results were also compared with the Effect Range Low (ERL) and Effect Range Medium (ERM) of NOAA and it indicates that Ni is above the ERL values. Cadmium, lead, chrome and copper concentrations exceeded the limits permissible of bivalbe mollusks established by the sanitary regulations

  9. Wave forcing and morphological changes of New Caledonia lagoon islets: Insights on their possible relations

    NASA Astrophysics Data System (ADS)

    Aucan, Jérôme; Vendé-Leclerc, Myriam; Dumas, Pascal; Bricquir, Marianne

    2017-10-01

    In the present study, we examine how waves may contribute to the morphological changes of islets in the New Caledonia lagoon. We collected in situ wave data to investigate their characteristics. Three types of waves are identified and quantified: (1) high-frequency waves generated within the lagoon, (2) low-frequency waves originating from swells in the Tasman Sea, and (3) infragravity waves. We found out that high-frequency waves are the dominant forcing on the islets during typical wind events throughout the year, while infragravity waves, likely generated by the breaking of low-frequency waves, dominate during seasonal swell events. During swell events, low-frequency waves can also directly propagate to the islets through channels across the barrier reef, or be tidally modulated across the barrier reef before reaching the islets. Topographic surveys and beach profiles on one islet indicate areas with seasonal morphological changes and other areas with longer, interannual or decadal, erosion patterns. Although more data are needed to validate this hypothesis, we suspect that a relation exists between wave forcing and morphological changes of the islets.

  10. Initial crop growth in soil collected from a closed animal waste lagoon.

    PubMed

    Zhu, L; Kirkham, M B

    2003-03-01

    In the 21st century, remediation of the soil beneath animal waste lagoons will become an important issue, as they are closed due to environmental regulations or to abandonment. The possibility of growing crops in the soil, which has high concentrations of ammonium-N, has not been studied. The objective of this experiment was to determine if crop species would germinate and grow in lagoon soil. Soil was gathered from a lagoon that had received wastes from swine (Sus scrofa) and beef (Bos taurus) since 1968. Eight crops were grown in greenhouse pots containing the lagoon soil: winter barley (Hordeum vulgare L. 'Weskan'); field corn (Zea mays L., Cargill's hybrid 7997); 'Plainsman' winter rapeseed [Brassica napus L. spp. oleifera (Metzg.) Sinsk. f. biennis]; soybean [Glycine max (L.) Merr. 'KS 4694'); forage sorghum [Sorghum bicolor (L.) Moench 'Norkan']; sunflower (Helianthus annuus L. 'Hysun 354'); and winter wheat (Triticum aestivum L.)--two cultivars: '2137' and 'Turkey.' Plants were grown for 35 days in lagoon soil or an agricultural soil (Haynie very fine sandy loam; coarse-silty, mixed, superactive, calcareous, mesic Mollic Udifluvent) obtained from a field near the closed lagoon. Ammonium-N (average value of 692 mg/kg) was about 70-85 times greater than the average value of 8-10 mg/kg NH4-N in Kansan soils. The lagoon soil was nonsodic and had a salinity ranking of "medium" with an electrical conductivity averaging 2.29 dS/m. The high ammonium-N concentration in the lagoon soil was not inhibitory to emergence and growth. The eight crops grew taller in the lagoon soil than in the agricultural soil. Except for '2137' wheat, dry weight was higher in the lagoon soil than in the agricultural soil. The results showed that the lagoon soil is not detrimental to early growth of eight crops.

  11. Overview of ecotoxicological studies performed in the Venice Lagoon (Italy).

    PubMed

    Losso, C; Ghirardini, A Volpi

    2010-01-01

    This work reports on the state of the art of the bioindicators used to assess environmental quality (regarding chemical pollutant impacts) in the Venice lagoon. After a brief description of the roles, advantages and limitations of bioindicators in marine and transitional environments and a summary of the Venice lagoon characteristics, the ecotoxicological methods used during scientific studies and research projects in the Lagoon are reported. Since not all data are available and no database can be formulated, the main evidence from toxicity bioassays, biomarkers and bioaccumulation analyses since the end of the 1970s is spatially synthesized using maps and discussed according to the four Venice lagoon basins. The majority of indicators showed that the Lido basin (north-central lagoon), affected by the presence of the industrial area and the city of Venice, is the one most highly impacted (particularly in the sites located within or in front of the industrial area, which showed very high sediment toxicity and high levels of DNA damage). The Malamocco basin (south-central lagoon) seems to be the least problematic. The southern basin (Chioggia basin) was shown to be impacted by urban contaminants from the town of Chioggia. The northern basin (Treporti basin) presented both impacted sites (high toxicity and high bioaccumulation factor) and relatively unpolluted sites (absence of toxicity, absence of imposex and low levels of bioaccumulation). This review can serve as a basis on which to select pragmatic, cost-effective biomonitoring techniques for environmental effects in lagoon ecosystems.

  12. Correlation of Coral Bleaching Events and Remotely-Sensed Sea Surface Temperatures

    DTIC Science & Technology

    1994-05-19

    water column. Diving on the reefs, they found significant tracts of bleached corals, zoanthids , gorgonians, and sea anemones (Bunckley-Williams and... zoanthids between May and July 1988 on shallow lagoonal reefs and rim margin reefs was the first indication of any sort of bleaching event at Bermuda

  13. Sludge Lagoons. Sludge Treatment and Disposal Course #166. Instructor's Guide [and] Student Workbook.

    ERIC Educational Resources Information Center

    Sharman, Ronald M.

    This lesson describes three different types of sludge lagoons: (1) drying lagoons; (2) facultative lagoons; and (3) anaerobic lagoons. Normal operating sequence and equipment are also described. The lesson is designed to be used in sequence with the complete Sludge Treatment and Disposal Course #166 or as an independent lesson. The instructor's…

  14. Flux model to estimate the transport of mercury species in a contaminated lagoon (Ria de Aveiro, Portugal).

    PubMed

    Stoichev, Teodor; Tessier, Emmanuel; Almeida, Cristina Marisa R; Basto, Maria Clara P; Vasconcelos, Vitor M; Amouroux, David

    2018-04-13

    The concentrations of dissolved and particulate inorganic mercury (IHg(II)) and methylmercury (MeHg) from the contaminated Laranjo Bay (main freshwater discharge from the Antuã River) were measured by species-specific isotope dilution during six sampling campaigns at high and at low tide. Different effective riverine concentrations were calculated, based on salinity profiles, for specific hydrological conditions. The export fluxes of total Hg and MeHg (324 and 1.24 mol year -1 , respectively) from the bay to the rest of the Aveiro Lagoon are much higher than the input fluxes from the Hg source (3.9 and 0.05 mol year -1 ) and from the Antuã River (10.4 and 0.10 mol year -1 ). Resuspension of contaminated sediments from Laranjo Bay is crucial for the transport of both IHg(II) and MeHg. Methylation and/or selective enrichment into biogenic particles is responsible for the mobilization of MeHg. Sorption of dissolved IHg(II) onto suspended particles limits its export flux. This is one of the rarest examples where both speciation fluxes and partitioning of mercury are studied in a contaminated coastal environment. Despite the lower fraction of total MeHg (relative to total Hg), the contaminated lagoon may have an impact on coastal areas, particularly if change in the lagoon geometry occurs, due to sea level rise.

  15. The calcium isotope evolution of Lake Lisan, the Dead Sea glacial precursor

    NASA Astrophysics Data System (ADS)

    Bradbury, H. J.; Turchyn, A. V.; Wong, K.; Torfstein, A.

    2016-12-01

    Calcium is a stoichiometric component of carbonate minerals whose calcium isotopic composition reflects changes in the calcium isotope composition of the water from which it precipitates as well as the calcium isotope fractionation factor during precipitation. The lacustrine deposits of the last glacial Dead Sea (Lisan Formation) are dominated by carbonate minerals (aragonite) that record the geochemical history of the lake. The sediment sequence comprises alternating laminae of aragonite and clay-rich marls, interspersed with primary gypsum beds and disseminated secondary gypsum crystals. The aragonite precipitated annually during high lake stands associated with wet periods, while the primary gypsum precipitated during low lake conditions (arid periods). We report the calcium isotopic composition (δ44Ca in ‰ relative to bulk silicate earth) of primary aragonite laminae, primary gypsum and secondary gypsum at 1-5kyr resolution throughout the Lisan Formation sampled at the Masada section (70 - 14.5 ka). The δ44Ca of the primary gypsum averages +0.29‰, and displays smaller temporal variations than the aragonite, which averages -0.35‰ but ranges between +0.18‰ and -0.68‰. The aragonite δ44Ca changes temporally in sync with the previously reconstructed lake level suggesting the aragonite δ44Ca reflects changes in the lake calcium balance during lake level changes. The secondary gypsum composition (-0.3‰) corresponds to coeval aragonite samples. For the secondary gypsum to have a similar δ44Ca to the aragonite it is likely that the calcium derived from the aragonite in a near quantitative fashion through recrystallization of the aragonite to gypsum. A numerical box model is used to explore the effect of changing lake water levels on the calcium isotope composition of the aragonite and gypsum over the time interval studied.

  16. Quantitative assessment of glacial fluctuations in the level of Lake Lisan, Dead Sea rift

    NASA Astrophysics Data System (ADS)

    Rohling, Eelco J.

    2013-06-01

    A quantitative understanding of climatic variations in the Levant during the last glacial cycle is needed to support archaeologists in assessing the drivers behind hominin migrations and cultural developments in this key region at the intersection between Africa and Europe. It will also foster a better understanding of the region's natural variability as context to projections of modern climate change. Detailed documentation of variations in the level of Lake Lisan - the lake that occupied the Dead Sea rift during the last glacial cycle - provides crucial climatic information for this region. Existing reconstructions suggest that Lake Lisan highstands during cold intervals of the last glacial cycle represent relatively humid conditions in the region, but these interpretations have remained predominantly qualitative. Here, I evaluate realistic ranges of the key climatological parameters that controlled lake level, based on the observed timing and amplitudes of lake-level variability. I infer that a mean precipitation rate over the wider catchment area of about 500 mm y-1, as proposed in the literature, would be consistent with observed lake levels if there was a concomitant 15-50% increase in wind speed during cold glacial stadials. This lends quantitative support to previous inferences of a notable increase in the intensity of Mediterranean (winter) storms during glacial periods, which tracked eastward into the Levant. In contrast to highstands during ‘regular’ stadials, lake level dropped during Heinrich Events. I demonstrate that this likely indicates a further intensification of the winds during those times.

  17. Salt diapirs in the Dead Sea basin and their relationship to Quaternary extensional tectonics

    USGS Publications Warehouse

    Al-Zoubi, A.; ten Brink, Uri S.

    2001-01-01

    Regional extension of a brittle overburden and underlying salt causes differential loading that is thought to initiate the rise of reactive diapirs below and through regions of thin overburden. We present a modern example of a large salt diapir in the Dead Sea pull-apart basin, the Lisan diapir, which we believe was formed during the Quaternary due to basin transtension and subsidence. Using newly released seismic data that are correlated to several deep wells, we determine the size of the diapir to be 13 x 10 km. its maximum depth 7.2 km. and its roof 125 m below the surface. From seismic stratigraphy, we infer that the diapir started rising during the early to middle Pleistocene as this section of the basin underwater rapid subsidence and significant extension of the overburden. During the middle to late Pleistocene, the diapir pierced through the extensionally thinned overburden, as indicated by rim synclines, which attest to rapid salt withdrawal from the surrounding regions. Slight positive topography above the diapir and shallow folded horizons indicate that it is still rising intermittently. The smaller Sedom diapir, exposed along the western bounding fault of the basin is presently rising and forms a 200 m-high ridge. Its initiation is explained by localized E-W extension due monoclinal draping over the edge of a rapidly subsiding basin during the early to middle Pleistocene, and its continued rise by lateral squeezing due to continued rotation of the Amazyahu diagonal fault. 

  18. Natural Recovery and Planned Intervention in Coastal Wetlands: Venice Lagoon (Northern Adriatic Sea, Italy) as a Case Study

    PubMed Central

    Ceoldo, Sonia; Pellegrino, Nicola

    2014-01-01

    The goals of conservation and sustainable use of environmental ecosystems have increased the need for detailed knowledge of ecological evolution and responses to both anthropogenic pressures and recovery measures. The present study shows the effects of natural processes and planned intervention in terms of reducing nutrient inputs in a highly exploited coastal lagoon, describing its evolution over a 16-year period from the late 1980s (when eutrophication was at its peak) until 2003. Changes in nutrient and carbon concentrations in the top layer of sediments were investigated in parallel with macroalgal and seagrass biomass in the most anthropized basin of Venice Lagoon in four surveys conducted in accordance with the same protocols in 1987, 1993, 1998, and 2003. A pronounced reduction in trophic state (mainly total nitrogen, organic phosphorus, and organic carbon concentrations) and macroalgal biomass was recorded, together with the progressive expansion of seagrass meadows. General considerations are also made on the effects of Manila clam farming and the shift from illegal to managed clam farming. PMID:25126611

  19. Natural recovery and planned intervention in coastal wetlands: Venice Lagoon (northern Adriatic Sea, Italy) as a case study.

    PubMed

    Facca, Chiara; Ceoldo, Sonia; Pellegrino, Nicola; Sfriso, Adriano

    2014-01-01

    The goals of conservation and sustainable use of environmental ecosystems have increased the need for detailed knowledge of ecological evolution and responses to both anthropogenic pressures and recovery measures. The present study shows the effects of natural processes and planned intervention in terms of reducing nutrient inputs in a highly exploited coastal lagoon, describing its evolution over a 16-year period from the late 1980s (when eutrophication was at its peak) until 2003. Changes in nutrient and carbon concentrations in the top layer of sediments were investigated in parallel with macroalgal and seagrass biomass in the most anthropized basin of Venice Lagoon in four surveys conducted in accordance with the same protocols in 1987, 1993, 1998, and 2003. A pronounced reduction in trophic state (mainly total nitrogen, organic phosphorus, and organic carbon concentrations) and macroalgal biomass was recorded, together with the progressive expansion of seagrass meadows. General considerations are also made on the effects of Manila clam farming and the shift from illegal to managed clam farming.

  20. Uncinariasis in northern fur seal and California sea lion pups from California.

    PubMed

    Lyons, E T; DeLong, R L; Melin, S R; Tolliver, S C

    1997-10-01

    Northern fur seal (Callorhinus ursinus) (n = 25) and California sea lion (Zalophus californianus) (n = 53) pups, found dead on rookeries on San Miguel Island (California, USA), were examined for adult Uncinaria spp. Prevalence of these nematodes was 96% in fur seal pups and 100% in sea lion pups. Mean intensity of Uncinaria spp. per infected pup was 643 in fur seals and 1,284 in sea lions. Eggs of Uncinaria spp. from dead sea lion pups underwent embryonation in an incubator; development to the free-living third stage larva occurred within the egg. This study provided some specific information on hookworm infections in northern fur seal and California sea lion pups on San Miguel Island. High prevalence rate of Uncinaria spp. in both species of pinnipeds was documented and much higher numbers (2X) of hookworms were present in sea lion than fur seal pups.

  1. Present-Day Strain and Rotation in the Lebanese Restraining Bend of the Dead Sea Fault System Based on Analysis of GPS Velocities

    NASA Astrophysics Data System (ADS)

    Gomez, F.; Jaafar, R.; Abdallah, C.; Karam, G.

    2012-12-01

    The Lebanese Restraining Bend (LRB) is a ~200-km-long bend in the central part of the Dead Sea Fault system (DSFS). As with other large restraining bends, this part of the transform is characterized by more complicated structure than other parts. Additionally, results from recent GPS studies have documented slower velocities north of the LRB than are observed along the southern DSFS to the south. In an effort to understand how strain is transferred through the LRB, this study analyzes improved GPS velocities within the central DSFS based on new data and additional stations. Despite relatively modest rates of seismicity, the Dead Sea Fault system (DSFS) has a historically documented record of producing large and devastating earthquakes. Hence, geodetic measurements of crustal deformation may provide key constraints on processes of strain accumulation that may not be evident in instrumentally recorded seismicity. Within the LRB, the transform splays into two prominent strike-slip faults: The through-going Yammouneh fault and the Serghaya fault. The latter appears to terminate in the Anti-Lebanon Mountains. Additionally, some oblique plate motion is accommodated by thrusting along the coast of Lebanon. This study used GPS observations from survey-mode GPS sites, as well as continuous GPS stations in the region. In total, 22 GPS survey sites have been measured in Lebanon between 2002 and 2010, along with GPS data from the adjacent area. Elastic models are used for initial assessment of fault slip rates. Incorporating two major strike-slip faults, as well as an offshore thrust fault, this modeling suggests left-lateral slip rates of 3.8 mm/yr and 1.1 mm/yr for the Yammouneh and Serghaya faults, respectively. The GPS survey network has sufficient density for analyzing velocity gradients in an effort to quantify tectonic strains and rotations. The velocity gradients suggest that differential rotations play a role in accommodating some plate motion.

  2. Fracture patterns of the drainage basin of Wadi Dahab in relation to tectonic-landscape evolution of the Gulf of Aqaba - Dead Sea transform fault

    NASA Astrophysics Data System (ADS)

    Shalaby, Ahmed

    2017-10-01

    Crustal rifting of the Arabian-Nubian Shield and formation of the Afro-Arabian rifts since the Miocene resulted in uplifting and subsequent terrain evolution of Sinai landscapes; including drainage systems and fault scarps. Geomorphic evolution of these landscapes in relation to tectonic evolution of the Afro-Arabian rifts is the prime target of this study. The fracture patterns and landscape evolution of the Wadi Dahab drainage basin (WDDB), in which its landscape is modeled by the tectonic evolution of the Gulf of Aqaba-Dead Sea transform fault, are investigated as a case study of landscape modifications of tectonically-controlled drainage systems. The early developed drainage system of the WDDB was achieved when the Sinai terrain subaerially emerged in post Eocene and initiation of the Afro-Arabian rifts in the Oligo-Miocene. Conjugate shear fractures, parallel to trends of the Afro-Arabian rifts, are synthesized with tensional fracture arrays to adapt some of inland basins, which represent the early destination of the Sinai drainage systems as paleolakes trapping alluvial sediments. Once the Gulf of Aqaba rift basin attains its deeps through sinistral movements on the Gulf of Aqaba-Dead Sea transform fault in the Pleistocene and the consequent rise of the Southern Sinai mountainous peaks, relief potential energy is significantly maintained through time so that it forced the Pleistocene runoffs to flow via drainage systems externally into the Gulf of Aqaba. Hence the older alluvial sediments are (1) carved within the paleolakes by a new generation of drainage systems; followed up through an erosional surface by sandy- to silty-based younger alluvium; and (2) brought on footslopes of fault scarps reviving the early developed scarps and inselbergs. These features argue for crustal uplifting of Sinai landscapes syn-rifting of the Gulf of Aqaba rift basin. Oblique orientation of the Red Sea-Gulf of Suez rift relative to the WNW-trending Precambrian Najd faults; and

  3. First steps of ecological restoration in Mediterranean lagoons: Shifts in phytoplankton communities

    NASA Astrophysics Data System (ADS)

    Leruste, A.; Malet, N.; Munaron, D.; Derolez, V.; Hatey, E.; Collos, Y.; De Wit, R.; Bec, B.

    2016-10-01

    Along the French Mediterranean coast, a complex of eight lagoons underwent intensive eutrophication over four decades, mainly related to nutrient over-enrichment from continuous sewage discharges. The lagoon complex displayed a wide trophic gradient from mesotrophy to hypertrophy and primary production was dominated by phytoplankton communities. In 2005, the implementation of an 11 km offshore outfall system diverted the treated sewage effluents leading to a drastic reduction of anthropogenic inputs of nitrogen and phosphorus into the lagoons. Time series data have been examined from 2000 to 2013 for physical, chemical and biological (phytoplankton) variables of the water column during the summer period. Since 2006, total nitrogen and phosphorus concentrations as well as chlorophyll biomass strongly decreased revealing an improvement in lagoon water quality. In summertime, the decline in phytoplankton biomass was accompanied by shifts in community structure and composition that could be explained by adopting a functional approach by considering the common functional traits of the main algal groups. These phytoplankton communities were dominated by functional groups of small-sized and fast-growing algae (diatoms, cryptophytes and green algae). The trajectories of summer phytoplankton communities displayed a complex response to changing nutrient loads over time. While diatoms were the major group in 2006 in all the lagoons, the summer phytoplankton composition in hypertrophic lagoons has shifted towards green algae, which are particularly well adapted to summertime conditions. All lagoons showed increasing proportion and occurrence of peridinin-rich dinophytes over time, probably related to their capacity for mixotrophy. The diversity patterns were marked by a strong variability in eutrophic and hypertrophic lagoons whereas phytoplankton community structure reached the highest diversity and stability in mesotrophic lagoons. We observe that during the re

  4. Dynamic energy budget model: a monitoring tool for growth and reproduction performance of Mytilus galloprovincialis in Bizerte Lagoon (Southwestern Mediterranean Sea).

    PubMed

    Béjaoui-Omri, Amel; Béjaoui, Béchir; Harzallah, Ali; Aloui-Béjaoui, Nejla; El Bour, Monia; Aleya, Lotfi

    2014-11-01

    Mussel farming is the main economic activity in Bizerte Lagoon, with a production that fluctuates depending on environmental factors. In the present study, we apply a bioenergetic growth model to the mussel Mytilus galloprovincialis, based on dynamic energy budget (DEB) theory which describes energy flux variation through the different compartments of the mussel body. Thus, the present model simulates both mussel growth and sexual cycle steps according to food availability and water temperature and also the effect of climate change on mussel behavior and reproduction. The results point to good concordance between simulations and growth parameters (metric length and weight) for mussels in the lagoon. A heat wave scenario was also simulated using the DEB model, which highlighted mussel mortality periods during a period of high temperature.

  5. Panoramic Sinai Peninsula, Red Sea

    NASA Image and Video Library

    1984-10-13

    An excellent panoramic view of the entire Sinai Peninsula (29.0N, 34.0E) and the nearby Nile River Delta and eastern Mediterranean coastal region. The Suez Canal, at the top of the scene just to the right of the Delta, connects the Mediterranean Sea with the Gulf of Suez on the west side of the Sinai Peninsula and the Gulf of Aqaba is on the west where they both flow into the Red Sea. At upper right, is the Dead Sea, Jordan River and Lake Tiberius.

  6. Effect of formulation variables on the physical properties and stability of Dead Sea mud masks.

    PubMed

    Shahin, Sawsan; Hamed, Saja; Alkhatib, Hatim S

    2015-01-01

    The physical stability of Dead Sea mud mask formulations under different conditions and their rheological properties were evaluated as a function of the type and level of thickeners, level of the humectant, incorporation of ethanol, and mode of mud treatment. Formulations were evaluated in terms of visual appearance, pH, moisture content, spreadability, extrudability, separation, rate of drying at 32 degrees C, and rheological properties. Prepared mud formulations and over-the-shelf products showed viscoplastic shear thinning behavior; satisfactory rheological behavior was observed with formulations containing a total concentration of thickeners less than 10% (w/w). Casson and Herschel-Bulkley models were found the most suitable to describe the rheological data of the prepared formulations. Thickener incorporation decreased phase separation and improved formulation stability. Bentonite incorporation in the mud prevented color changes during stability studies while glycerin improved spreadability. Addition of 5% (w/w) ethanol improved mud extrudability, slightly increased percent separation, accelerated drying at 32 degrees C, and decreased viscosity and yield stress values. Different mud treatment techniques did not cause a clear behavioral change in the final mud preparation. B10G and K5B5G were labeled as "best formulas" based on having satisfactory physical and aesthetic criteria investigated in this study, while other formulations failed in one or more of the tests we have performed.

  7. DESIGN INFORMATION REPORT: PROTECTION OF WASTEWATER LAGOON INTERIOR SLOPES

    EPA Science Inventory

    A problem common to many wastewater treatment and storage lagoons is erosion of the interior slopes. Erosion may be caused by surface runoff and wind-induced wave action. The soils that compose the steep interior slopes of lagoons are especially susceptible to erosion and slumpin...

  8. On the Lateral Retreat of Salt Marshes: Field Monitoring in the Venice Lagoon (Italy)

    NASA Astrophysics Data System (ADS)

    Solari, L.; Bendoni, M.; Mel, R.; Oumeraci, H.; Francalanci, S.; Lanzoni, S.

    2014-12-01

    Salt marshes are geomorphic structures located in ecotone environments such as lagoon and estuaries, providing lot of ecosystem services to local population. In the last decades they are disappearing due to several factors such as sea level rise, subsidence and edge erosion due to surface waves. The latter is likely the chief mechanism modeling marsh boundaries and leading to the loss of wide marsh areas. In the case of the Venice Lagoon, from the beginning of the last century, the whole salt marsh surface has more than halved and trends indicate that the salt marshes might completely disappear over the next 50 years. Here, we present a field monitoring activity that we are currently carrying out on a retreating salt marsh located in the north part of the Lagoon of Venice (Italy). The marsh is subject to North-East (Bora) wind. Marsh area loss during the last decades has been documented through the comparison of georeferenced aerial photographs showing a retreat rate of the order of 1 m/year. Field measurements started by the end of November 2013 and consist of: salt marsh bank geometry at different cross-sections and wave climate in the lagoon about 30 m in front of the salt marsh. Erosion data are obtained by means of erosion pins located horizontally on the marsh scarp; at higher banks (about 0.9 m), two pins are located along the same vertical direction, for lower banks (about 0.4m), only one pin is employed. Significant wave height has been measured during three storm surges by means of pressure transducers (Pts). The measured wave climate in front of the bank was then put into relationship with the offshore wave climate estimated using wind data (intensity and direction) and bathymetric data. Wind intensity and direction is measured hourly by several measurement stations located in the Lagoon of Venice. In this way, it is possible to extrapolate wave climate hourly at the monitored marsh and calculate the wave power that acted on the bank in a given time

  9. Masterplan to safeguard Venice and to restore the lagoon and conterminous areas

    NASA Astrophysics Data System (ADS)

    Bini, Claudio; Gallo, Alba; Nadimi-Goki, Mandana; Wahsha, Mohammad

    2015-04-01

    ). PAH and metals, in particular, present wide diffusion, both horizontal and vertical (until 5 m below the sea level), with As, Zn, Cd and Hg being the elements more represented in all the soil strata considered. The lagoon sediments inside industrial channels is higher than the other parts of the lagoon; major contaminants are metals (As, Cd, Hg, Pb) and organic micro-pollutants (PCB, PAH); ammonia and phosphate too are present with conspicuous concentrations, contributing to lagoon eutrophication. Groundwater contamination is diffused and complex, with As prevailing over Pb and Cr(VI). The primary objective of the Master Plan was to reduce/eliminate the risk associated to the contamination sources of past activities, and the consequent environmental and human health hazard. Restoration is still in progress, and concerns different intervention strategies: • Channel overbank containment to prevent contaminant migration to water; • Excavation, physical removal and re-distribution of channel sediments (A and B classes); • Landfilling of heavily contaminated sediments (C class); • Soil containment to impede contact with people and the environment; • Restoration of contaminated agricultural land with phytoremediation techniques. Concerning in particular the last item, restoration has been carried out with native or exotic vegetation (e.g. Fragmites australis, Juncus lacustris, Pterix vittata, Spartina maritima), or cultivated plants (e.g. Heliantus annuus, Zea mays, Brassica napus), with contrasting results. The exotic fern (Pterix vittata) proved highly effective to accumulate As, consistently with data from literature; Spartina maritima proved more effective than Fragmites australis to uptake metals, while cultivated plants could not survive to high heavy metal concentrations. At some sites, soil has been stored, selected and finally (the most contaminated part) delivered to landfill, while groundwater was remediated by bioremediation techniques.

  10. Environmental Assessment of the Bolinas Lagoon: a study utilizing benthic foraminifera

    NASA Astrophysics Data System (ADS)

    Benton, L.; Espinoza Madrid, N.; Grande, C.

    2016-12-01

    Benthic foraminifera have long been recognized for their utility in environmental assessments. They are abundant, diverse, and found in all marine environments, but species distributions depend largely on local environmental conditions. This study analyses benthic foraminiferal assemblages from the Bolinas Lagoon, Marin County, California. The Careers in Science Intern Program collected 36 sediment samples from 13 sites within the Bolinas Lagoon. Foraminiferal assemblages for each site are reported, and species richness, relative abundance, and Shannon's diversity calculated. Results indicate that Shannon's diversity is low throughout the Bolinas Lagoon and stress tolerant taxa are abundant, which suggests that current conditions in the Bolinas Lagoon are sub optimal.

  11. The potential of tidal barrages and lagoons to manage future coastal flood risk

    NASA Astrophysics Data System (ADS)

    Prime, Thomas; Wolf, Judith; Lyddon, Charlotte; Plater, Andrew; Brown, Jennifer

    2017-04-01

    In the face of a changing climate, adaptation and mitigation measures are important for coastal communities that seek to maintain their resilience to extreme events. Measures that can be classed as being both adaptation and mitigation can doubly contribute to this. Tide barrages and lagoons have the capacity to generate electricity from the rise and fall of the tide, which over the assets lifetime would contribute significantly towards emission reduction targets and towards a low carbon economy. In addition to electricity generation, the barrage or lagoon can also act as a flood defence during extreme events. This means that coastal communities protected by the barrage will have adaptation benefits to the increasing frequency of storm surges that are a result of sea-level rise. Finally, the barrage also has the potential to act as a transport link with vehicles able to cross, reducing travel times and emissions. The research project RISES-AM focuses on the implications of the higher end climate scenarios, particularly those with a global average warming that is greater than 2 ⁰C with respect to pre-industrial temperatures. RISES-AM aims to produce a better quantification of the impacts and vulnerabilities associated with these high end climate scenarios, and show that adaptation to them is possible at an affordable cost when compared to the increase in risk resulting from them. We investigated the physical and economic impact of extreme flood events of on the Mersey Estuary and surrounding areas. It is thought the Mersey Estuary is likely to be more sensitive to changes in forcing factors in the future than in the past where industrial impacts where the main drivers of change. Extreme events were simulated, for the present day and in 2100 where high impact emission scenarios have resulted in SLR ranging from 0.71 m to 1.80 m depending on the higher end emission scenario selected. If built, the barrage in the Estuary or lagoon in surrounding areas such as the

  12. Diel variation of ichthyoplankton recruitment in a wind-dominated temperate coastal lagoon (Argentina)

    NASA Astrophysics Data System (ADS)

    Bruno, Daniel O.; Delpiani, Sergio M.; Acha, Eduardo M.

    2018-05-01

    This study aimed to assess the diel changes of ichthyoplankton occurrence, during a known recruitment period, to a wind-dominated coastal lagoon (Argentina). We collected plankton samples at three sites of the lagoon's inlet area every 3 h during four 24 h cycles in mid austral summer. For each early-life history stage (eggs, yolk sac, preflexion larvae, postflexion larvae and early juveniles), the relationship between the abundance and possible combinations of the time of sampling, the wind effect, the wave period and the tidal state was evaluated by fitting generalized linear mix-effects models (GLMM). The wind effects depending on the time of sampling mainly affected fish abundance in all developmental stages. Overall, the highest abundances were collected at nocturnal hours when low-speed offshore winds blew. In addition, higher abundances of eggs, yolk sac and preflexion larvae were related to the incoming flood tide; whereas higher abundances of postflexion larvae and early juveniles were related to longer wave periods. We argued that the daily variation in the abundance of early-life history stages of fishes is related to the sea-land breeze cycle. Therefore, a conceptual framework of the recruitment process of eggs, larvae and early juveniles of fishes into this estuarine system considering the daily effect of winds is proposed.

  13. Evaluation of short-rotation woody crops to stabilize a decommissioned swine lagoon

    Treesearch

    K.C. Dipesh; Rodney E. Will; Thomas C. Hennessey; Chad J. Penn

    2012-01-01

    Fast growing tree stands represent an environmentally friendly, less expensive method for stabilization of decommissioned animal production lagoons than traditional lagoon closure. We tested the feasibility of using short-rotation woody crops (SRWCs) in central Oklahoma to close a decommissioned swine lagoon by evaluating the growth performance and nutrient uptake of...

  14. Drivers of pCO2 dynamics in two contrasting coral reef lagoons: The influence of submarine groundwater discharge (Invited)

    NASA Astrophysics Data System (ADS)

    Cyronak, T.; Santos, I. R.; Erler, D.; Maher, D. T.; Eyre, B.

    2013-12-01

    The carbon chemistry of coral reef lagoons can be highly variable over short time scales. While much of the diel variability in seawater carbon chemistry is explained by biological processes, external sources such as river and groundwater seepage may deliver large amounts of organic and inorganic carbon to coral reefs and represent a poorly understood feedback to ocean acidification. Here, we assess the impact of submarine groundwater discharge (SGD) on pCO2 variability in two coral reef lagoons with distinct SGD driving mechanisms. Diel variability of pCO2 in the two ecosystems was explained by a combination of biological drivers and SGD inputs. In Rarotonga, a South Pacific volcanic island, SGD was driven primarily by a steep terrestrial hydraulic gradient, and the lagoon was influenced by the high pCO2 (5,501 μatm) of the fresh groundwater. In Heron Island, a Great Barrier Reef coral cay, SGD was dominated by seawater recirculation through sediments (i.e. tidal pumping) and pCO2 was mainly impacted through the stimulation of biological processes. The Rarotonga water column had a relatively higher average pCO2 (549 μatm) than Heron Island (471 μatm). However, pCO2 exhibited a greater diel range in Heron Island (778 μatm) than in Rarotonga (507 μatm). The Rarotonga lagoon received 31.2 mmol CO2 m-2 d-1 from SGD, while the Heron Island lagoon received 12.3 mmol CO2 m-2 d-1. Over the course of this study both systems were sources of CO2 to the atmosphere (3.00 to 9.67 mmol CO2 m-2 d-1), with SGD-derived CO2 contributing a large portion to the air-sea CO2 flux. The relationship between both water column pH and aragonite saturation state (ΩAr) and radon (222Rn) concentrations indicate that SGD may enhance the local acidification of some coral reef lagoons. Studies measuring the carbon chemistry of coral reefs (e.g. community metabolism, calcification rates) may need to consider SGD-derived CO2.

  15. The effect of floods on sediment contamination in a microtidal coastal lagoon: the lagoon of Lesina, Italy.

    PubMed

    D'Adamo, Raffaele; Specchiulli, Antonietta; Cassin, Daniele; Botter, Margherita; Zonta, Roberto; Fabbrocini, Adele

    2014-10-01

    The effects on the microtidal lagoon of Lesina of runoff and the discharge of water and material from agricultural activities were investigated combining chemical analyses of pollutants [11 metals and 16 priority polycyclic aromatic compounds (PAHs)], determination of organic matter and grain size, and performance of innovative ecotoxicological tests. For metals, enrichment factors >3 for arsenic, nickel, and copper (Cu) were observed in the eastern zone of the lagoon, which is affected by nearby urban activities with discharge of water and domestic waste and by agricultural input with waters rich in fertilizers. Cu was correlated with no other metal, and its high concentrations (≤77 µg g(-1)) may result from the use of Cu-based fungicides in vineyards. Total PAHs (2,230 ± 3,150 ng g(-1)) displayed a wide range of concentrations with hot spots near freshwater inputs from the part of the catchment area exploited for wheat crops. Pyrolitic contamination also emerged, with higher-mass PAH congeners, such as asphalt, bitumen or coal, usually present in higher fractions as the dominant components. Ecotoxicological evaluations recorded moderate to high toxicity levels; the innovative MOT test bioassay showed good discriminatory ability because it identified a lagoon area whose inputs mainly depend on agricultural activities and which is impacted by metals rather than PAHs. Floods during periods of heavy rain and the discharge of water and material from agricultural activities may impact vulnerable systems, such as the lagoon of Lesina, where the presence of hot spots with remarkably high pollution values was observed.

  16. Thermal impacts of magmatic intrusions on dolomitization processes in the Tiberias Basin, Jordan-Dead Sea Transform

    NASA Astrophysics Data System (ADS)

    Koltzer, Nora; Möller, Peter; Inbar, Nimrod; Siebert, Christian; Rosenthal, Eliyahu; Al-Raggad, Marwan; Magri, Fabien

    2017-04-01

    The Tiberias Basin (TB) is located within the Jordan-Dead Sea Transform and is bordered to the west by the Lower Galilee (Israel), where Pliocene basalts cover an area of 35 km2. Hydrochemical analyses highlight that two types of brines exist around Lake Tiberias (LT) (Mandel 1965; Möller et al. 2009): (1) Along the eastern side of LT, brine is characterized by Mg/Ca>1, which resulted from evaporation of seawater during the Late Miocene, whereas (2) along the western side of the lake, brine is characterized by Mg/Ca<1, possibly formed out of the Mg-rich brine by dolomitization of limestones (Möller et al. 2012). Dolomitization of limestones occurs at temperatures of at least 100 °C. We suppose that basalts which erupted through numerous fissures, forming nowadays sills within the Cretaceous and Eocene limestones, sufficiently heated the formations, which build up the Lower Galilee, west of LT. As a result, the Cenomanian Formations, where the original brine is mostly buried, were only sufficiently heated in the eastern Galilee. In this study, we try to estimate to which extent and through which mechanisms fissure eruptions have induced heated brine to flow within the limestone aquifers. 2D simulations of coupled heat transport and fluid flow show that different aspects control the heat transport in the limestone aquifer. Preliminary results indicate that conductive heat transport generates sharp temperature fronts that extent 30 meters after 5 years of continuous magmatic intrusion from the fissures, ruling out heat conduction as a major mechanism for dolomitization. By contrast, convective cells in the Turonian and Cenomanian aquiferous formations have the potential to develop at different scales that depend on (a) hydraulic conductivity and porosity of the aquifer, (b) the orientation of the regional flow and (c) the topography of the aquifer. As a result of convective flow, brines surrounding a single fissure intrusion are heated more than 100 °C up to a

  17. Sludge-Drying Lagoons: a Potential Significant Methane Source in Wastewater Treatment Plants.

    PubMed

    Pan, Yuting; Ye, Liu; van den Akker, Ben; Ganigué Pagès, Ramon; Musenze, Ronald S; Yuan, Zhiguo

    2016-02-02

    "Sludge-drying lagoons" are a preferred sludge treatment and drying method in tropical and subtropical areas due to the low construction and operational costs. However, this method may be a potential significant source of methane (CH4) because some of the organic matter would be microbially metabolized under anaerobic conditions in the lagoon. The quantification of CH4 emissions from lagoons is difficult due to the expected temporal and spatial variations over a lagoon maturing cycle of several years. Sporadic ebullition of CH4, which cannot be easily quantified by conventional methods such as floating hoods, is also expected. In this study, a novel method based on mass balances was developed to estimate the CH4 emissions and was applied to a full-scale sludge-drying lagoon over a three year operational cycle. The results revealed that processes in a sludge-drying lagoon would emit 6.5 kg CO2-e per megaliter of treated sewage. This would represent a quarter to two-thirds of the overall greenhouse gas (GHG) emissions from wastewater-treatment plants (WWTPs). This work highlights the fact that sludge-drying lagoons are a significant source of CH4 that adds substantially to the overall GHG footprint of WWTPs despite being recognized as a cheap and energy-efficient means of drying sludge.

  18. Redistribution of fallout radionuclides in Enewetak Atoll lagoon sediments by callianassid bioturbation.

    PubMed

    McMurtry, G M; Schneider, R C; Colin, P L; Buddemeier, R W; Suchanek, T H

    The lagoon sediments of Enewetak Atoll in the Marshall Islands contain a large selection of fallout radionuclides as a result of 43 nuclear weapon tests conducted there between 1948 and 1958. Studies of the burial of fallout radionuclides have been conducted on the islands and in several of the large craters, but studies of their vertical distribution have been limited to about the upper 20 cm of the lagoon sediments. We have found elevated fallout radionuclide concentrations buried more deeply in the lagoon sediments and evidence of burrowing into the sediment by several species of callianassid ghost shrimp (Crustacea: Thalassinidea) which has displaced highly radioactive sediment. The burrowing activities of callianassids, which are ubiquitous on the lagoon floor, facilitate radionuclide redistribution and complicate the fallout radionuclide inventory of the lagoon.

  19. Holocene development of the eastern Gulf of Finland coastal zone (Baltic Sea)

    NASA Astrophysics Data System (ADS)

    Ryabchuk, Daria; Sergeev, Alexander; Gusentsova, Tatiana; Gerasimov, Dmitry; Zhamoida, Vladimir; Amantov, Aleksey; Kulkova, Marianna; Sorokin, Peter

    2014-05-01

    In 2011-2013 geoarcheological and marine geological research of the eastern Gulf of Finland coasts and near-shore bottom were undertaken. Researches were concentrated within several key-areas (Sestroretskaya Lowland, Narva-Luga Klint Bay and southern coastal zone of the Gulf (near Bolshaya Izhora village). Study areas can provide important information about Gulf of Finland Holocene coastal development as since Ancylus time (about 10000 cal.BP). Development of numerous sand accretion forms (spits, bars, dunes) of different shape, age and genesis caused formation of lagoon systems, situated now on-land due to land uplift. Coasts of lagoons in Sestroretskaya Lowland and Narva-Luga Klint Bay were inhabited by Neolithic and Early Metal people. Analysis of coastal morphology and results of geological research (GIS relief analyses, ground penetrating radar, drilling, grain-size analyses, radiocarbon dating) and geoarcheological studies allowed to reconstruct the mechanism of large accretion bodies (bars and spits) and lagoon systems formation during last 8000 years. Geoarcheological studies carried out within eastern Gulf of Finland coasts permitted to find some features of the Neolithic - Early Metal settlements distribution. Another important features of the eastern Gulf of Finland coastal zone relief are the series of submarine terraces found in the Gulf bottom (sea water depths 10 to 2 m). Analyses of the submarine terraces morphology and geology (e.g. grain-size distribution, pollen analyses and organic matter dating) allow to suppose that several times during Holocene (including preAncylus (11000 cal.BP) and preLittorina (8500 cal.BP) regressions) the sea-water level was lower than nowadays. During the maximal stage of the Littorina transgression (7600-7200 cal. BP) several open bays connected with the Littorina Sea appeared in this area. The lagoon systems and sand accretion bodies (spits and bars) were formed during the following decreasing of the sea level. Late

  20. More Dead than Dead: Perceptions of Persons in the Persistent Vegetative State

    ERIC Educational Resources Information Center

    Gray, Kurt; Knickman, T. Anne; Wegner, Daniel M.

    2011-01-01

    Patients in persistent vegetative state (PVS) may be biologically alive, but these experiments indicate that people see PVS as a state curiously more dead than dead. Experiment 1 found that PVS patients were perceived to have less mental capacity than the dead. Experiment 2 explained this effect as an outgrowth of afterlife beliefs, and the…

  1. Spatiotemporal variation of bacterial community composition and possible controlling factors in tropical shallow lagoons.

    PubMed

    Laque, Thaís; Farjalla, Vinicius F; Rosado, Alexandre S; Esteves, Francisco A

    2010-05-01

    Bacterial community composition (BCC) has been extensively related to specific environmental conditions. Tropical coastal lagoons present great temporal and spatial variation in their limnological conditions, which, in turn, should influence the BCC. Here, we sought for the limnological factors that influence, in space and time, the BCC in tropical coastal lagoons (Rio de Janeiro State, Brazil). The Visgueiro lagoon was sampled monthly for 1 year and eight lagoons were sampled once for temporal and spatial analysis, respectively. BCC was evaluated by bacteria-specific PCR-DGGE methods. Great variations were observed in limnological conditions and BCC on both temporal and spatial scales. Changes in the BCC of Visgueiro lagoon throughout the year were best related to salinity and concentrations of NO (3) (-) , dissolved phosphorus and chlorophyll-a, while changes in BCC between lagoons were best related to salinity and dissolved phosphorus concentration. Salinity has a direct impact on the integrity of the bacterial cell, and it was previously observed that phosphorus is the main limiting nutrient to bacterial growth in these lagoons. Therefore, we conclude that great variations in limnological conditions of coastal lagoons throughout time and space resulted in different BCCs and salinity and nutrient concentration, particularly dissolved phosphorus, are the main limnological factors influencing BCC in these tropical coastal lagoons.

  2. Mechanism of nitrogen removal in wastewater lagoon: a case study.

    PubMed

    Vendramelli, Richard A; Vijay, Saloni; Yuan, Qiuyan

    2017-06-01

    Ammonia being a nutrient facilitates the growth of algae in wastewater and causes eutrophication. Nitrate poses health risk if it is present in drinking water. Hence, nitrogen removal from wastewater is required. Lagoon wastewater treatment systems have become common in Canada these days. The study was conducted to understand the nitrogen removal mechanisms from the existing wastewater treatment lagoon system in the town of Lorette, Manitoba. The lagoon system consists of two primary aerated cells and two secondary unaerated cells. Surface samples were collected periodically from lagoon cells and analysed from 5 May 2015 to 9 November 2015. The windward and leeward sides of the ponds were sampled and the results were averaged. It was found that the free ammonia volatilization to the atmosphere is responsible for most of the ammonia removal. Ammonia and nitrate assimilation into biomass and biological growth in the cells appears to be the other mechanisms of nitrogen removal over the monitoring period. Factors affecting the nitrogen removal efficiency were found to be pH, temperature and hydraulic residence time. Also, the ammonia concentration in the effluent from the wastewater treatment lagoon was compared with the regulatory standard.

  3. Anaerobic oxidation of methane by sulfate in hypersaline groundwater of the Dead Sea aquifer

    PubMed Central

    Avrahamov, N; Antler, G; Yechieli, Y; Gavrieli, I; Joye, S B; Saxton, M; Turchyn, A V; Sivan, O

    2014-01-01

    Geochemical and microbial evidence points to anaerobic oxidation of methane (AOM) likely coupled with bacterial sulfate reduction in the hypersaline groundwater of the Dead Sea (DS) alluvial aquifer. Groundwater was sampled from nine boreholes drilled along the Arugot alluvial fan next to the DS. The groundwater samples were highly saline (up to 6300 mm chlorine), anoxic, and contained methane. A mass balance calculation demonstrates that the very low δ13CDIC in this groundwater is due to anaerobic methane oxidation. Sulfate depletion coincident with isotope enrichment of sulfur and oxygen isotopes in the sulfate suggests that sulfate reduction is associated with this AOM. DNA extraction and 16S amplicon sequencing were used to explore the microbial community present and were found to be microbial composition indicative of bacterial sulfate reducers associated with anaerobic methanotrophic archaea (ANME) driving AOM. The net sulfate reduction seems to be primarily controlled by the salinity and the available methane and is substantially lower as salinity increases (2.5 mm sulfate removal at 3000 mm chlorine but only 0.5 mm sulfate removal at 6300 mm chlorine). Low overall sulfur isotope fractionation observed (34ε = 17 ± 3.5‰) hints at high rates of sulfate reduction, as has been previously suggested for sulfate reduction coupled with methane oxidation. The new results demonstrate the presence of sulfate-driven AOM in terrestrial hypersaline systems and expand our understanding of how microbial life is sustained under the challenging conditions of an extremely hypersaline environment. PMID:25039851

  4. Anaerobic oxidation of methane by sulfate in hypersaline groundwater of the Dead Sea aquifer.

    PubMed

    Avrahamov, N; Antler, G; Yechieli, Y; Gavrieli, I; Joye, S B; Saxton, M; Turchyn, A V; Sivan, O

    2014-11-01

    Geochemical and microbial evidence points to anaerobic oxidation of methane (AOM) likely coupled with bacterial sulfate reduction in the hypersaline groundwater of the Dead Sea (DS) alluvial aquifer. Groundwater was sampled from nine boreholes drilled along the Arugot alluvial fan next to the DS. The groundwater samples were highly saline (up to 6300 mm chlorine), anoxic, and contained methane. A mass balance calculation demonstrates that the very low δ(13) CDIC in this groundwater is due to anaerobic methane oxidation. Sulfate depletion coincident with isotope enrichment of sulfur and oxygen isotopes in the sulfate suggests that sulfate reduction is associated with this AOM. DNA extraction and 16S amplicon sequencing were used to explore the microbial community present and were found to be microbial composition indicative of bacterial sulfate reducers associated with anaerobic methanotrophic archaea (ANME) driving AOM. The net sulfate reduction seems to be primarily controlled by the salinity and the available methane and is substantially lower as salinity increases (2.5 mm sulfate removal at 3000 mm chlorine but only 0.5 mm sulfate removal at 6300 mm chlorine). Low overall sulfur isotope fractionation observed ((34) ε = 17 ± 3.5‰) hints at high rates of sulfate reduction, as has been previously suggested for sulfate reduction coupled with methane oxidation. The new results demonstrate the presence of sulfate-driven AOM in terrestrial hypersaline systems and expand our understanding of how microbial life is sustained under the challenging conditions of an extremely hypersaline environment. © 2014 The Authors. Geobiology Published by John Wiley & Sons Ltd.

  5. Impact of accelerated future global mean sea level rise on hypoxia in the Baltic Sea

    NASA Astrophysics Data System (ADS)

    Meier, H. E. M.; Höglund, A.; Eilola, K.; Almroth-Rosell, E.

    2017-07-01

    Expanding hypoxia is today a major threat for many coastal seas around the world and disentangling its drivers is a large challenge for interdisciplinary research. Using a coupled physical-biogeochemical model we estimate the impact of past and accelerated future global mean sea level rise (GSLR) upon water exchange and oxygen conditions in a semi-enclosed, shallow sea. As a study site, the Baltic Sea was chosen that suffers today from eutrophication and from dead bottom zones due to (1) excessive nutrient loads from land, (2) limited water exchange with the world ocean and (3) perhaps other drivers like global warming. We show from model simulations for the period 1850-2008 that the impacts of past GSLR on the marine ecosystem were relatively small. If we assume for the end of the twenty-first century a GSLR of +0.5 m relative to today's mean sea level, the impact on the marine ecosystem may still be small. Such a GSLR corresponds approximately to the projected ensemble-mean value reported by the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. However, we conclude that GSLR should be considered in future high-end projections (>+1 m) for the Baltic Sea and other coastal seas with similar hydrographical conditions as in the Baltic because GSLR may lead to reinforced saltwater inflows causing higher salinity and increased vertical stratification compared to present-day conditions. Contrary to intuition, reinforced ventilation of the deep water does not lead to overall improved oxygen conditions but causes instead expanded dead bottom areas accompanied with increased internal phosphorus loads from the sediments and increased risk for cyanobacteria blooms.

  6. Evaluation of surficial sediment toxicity and sediment physico-chemical characteristics of representative sites in the Lagoon of Venice (Italy)

    NASA Astrophysics Data System (ADS)

    Losso, C.; Arizzi Novelli, A.; Picone, M.; Marchetto, D.; Pessa, G.; Molinaroli, E.; Ghetti, P. F.; Volpi Ghirardini, A.

    2004-11-01

    Toxic hazard in sites with varying types and levels of contamination in the Lagoon of Venice was estimated by means of toxicity bioassays based on the early life-stages of the autochthonous sea urchin Paracentrotus lividus. Elutriate was chosen as the test matrix, due to its ability to highlight potential toxic effects towards sensitive biological components of the water column caused by sediment resuspension phenomena affecting the Lagoon. Surficial sediments (core-top 5 cm deep), directly influenced by resuspension/redeposition processes, and core sediments (core 20 cm deep), recording time-mediated contamination, were sampled in some sites located in the lagoonal area most greatly influenced by anthropogenic activities. Particle size, organic matter and water content were also analysed. In two sites, the results of physical parameters showed that the core-top sediments were coarser than the 20-cm core sediments. Sperm cell toxicity test results showed the negligible acute toxicity of elutriates from all investigated sites. The embryo toxicity test demonstrated a short-term chronic toxicity gradient for elutriates from the 20-cm core sediments, in general agreement both with the expected contamination gradient and with results of the Microtox® solid-phase test. Elutriates of the core-top 5-cm sediments revealed a totally inverted gradient, in comparison with that for the 20-cm core sediments, and the presence of a "hot spot" of contamination in the site chosen as a possible reference. Investigations on ammonia and sulphides as possible confounding factors excluded their contribution to this "hot spot". Integrated physico-chemical and toxicity results on sediments at various depths demonstrated the presence of disturbed sediments in the central basin of the Lagoon of Venice.

  7. Occurrence of brackish water phytoplankton species at a closed coral reef in Nansha Islands, South China Sea.

    PubMed

    Shen, Ping-Ping; Tan, Ye-Hui; Huang, Liang-Min; Zhang, Jian-Lin; Yin, Jian-Qiang

    2010-10-01

    The phytoplankton assemblage of Zhubi Reef, a closed coral reef in Nansha Islands (South China Sea, SCS) was studied in June 2007. A total of 92 species belonging to 53 genera and four phyla have been identified. The dominant taxa in the lagoon were the diatom Chaetoceros and cyanobacteria Nostoc and Microcystis, while in reef flats were cyanobacteria Trichodesmium erythraeum, dinoflagellates Gymnodinium and Prorocentrum. The species richness and diversity were consistently lower in the lagoon than in reef flats. Classification and nMDS ordination also revealed significant dissimilarity in phytoplankton community structure between the reef flat and lagoon, with statistical difference in species composition and abundance between them (ANOSIM, p=0.025). Nutrient concentrations also spatially varied, with ammonium-enrichment in the lagoon, while high Si-concentration existed in reef flat areas. Both nutrient levels and currents in SCS may play important roles in determining the composition and distribution of microalgae in Zhubi Reef and SCS. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Lithospheric strength variations as a control on new plate boundaries: examples from the northern Red Sea region

    NASA Astrophysics Data System (ADS)

    Steckler, Michael S.; ten Brink, Uri S.

    1986-08-01

    The complex plate boundary between Arabia and Africa at the northern end of the Red Sea includes the Gulf of Suez rift and the Gulf of Aqaba—Dead Sea transform. Geologic evidence indicates that during the earliest phase of rifting the Red Sea propagated NNW towards the Mediterranean Sea creating the Gulf of Suez. Subsequently, the majority of the relative movement between the plates shifted eastward to the Dead Sea transform. We propose that an increase in the strength of the lithosphere across the Mediterranean continental margin acted as a barrier to the propagation of the rift. A new plate boundary, the Dead Sea transform formed along a zone of minimum strength. We present an analysis of lithospheric strength variations across the Mediterranean continental margin. The main factors controlling these variations are the geotherm, crustal thickness and composition, and sediment thickness. The analysis predicts a characteristic strength profile at continental margins which consists of a marked increase in strength seaward of the hinge zone and a strength minimum landward of the hinge zone. This strength profile also favors the creation of thin continental slivers such as the Levant west of the Dead Sea transform and the continental promontory containing Socotra Island at the mouth of the Gulf of Aden. Calculations of strength variations based on changes of crustal thickness, geotherm and sediment thickness can be extended to other geologic settings as well. They can explain the location of rerifting events at intracratonic basins, of backarc basins and of major continental strike-slip zones.

  9. 9 CFR 82.6 - Interstate movement of dead birds and dead poultry from a quarantined area.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Interstate movement of dead birds and... (END) § 82.6 Interstate movement of dead birds and dead poultry from a quarantined area. (a) Except as provided in paragraph (b) of this section for dressed carcasses, dead birds and dead poultry, including any...

  10. 9 CFR 82.6 - Interstate movement of dead birds and dead poultry from a quarantined area.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Interstate movement of dead birds and... (END) § 82.6 Interstate movement of dead birds and dead poultry from a quarantined area. (a) Except as provided in paragraph (b) of this section for dressed carcasses, dead birds and dead poultry, including any...

  11. Interannual and cyclone-driven variability in phytoplankton communities of a tropical coastal lagoon.

    PubMed

    Srichandan, Suchismita; Kim, Ji Yoon; Kumar, Abhishek; Mishra, Deepak R; Bhadury, Punyasloke; Muduli, Pradipta R; Pattnaik, Ajit K; Rastogi, Gurdeep

    2015-12-15

    One of the main challenges in phytoplankton ecology is to understand their variability at different spatiotemporal scales. We investigated the interannual and cyclone-derived variability in phytoplankton communities of Chilika, the largest tropical coastal lagoon in Asia and the underlying mechanisms in relation to environmental forcing. Between July 2012 and June 2013, Cyanophyta were most prolific in freshwater northern region of the lagoon. A category-5 very severe cyclonic storm (VSCS) Phailin struck the lagoon on 12th October 2013 and introduced additional variability into the hydrology and phytoplankton communities. Freshwater Cyanophyta further expanded their territory and occupied the northern as well as central region of the lagoon. Satellite remote sensing imagery revealed that the phytoplankton biomass did not change much due to high turbidity prevailing in the lagoon after Phailin. Modeling analysis of species-salinity relationship identified specific responses of phytoplankton taxa to the different salinity regime of lagoon. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Geology and taphonomy of the L'Espinau dinosaur bonebed, a singular lagoonal site from the Maastrichtian of South-Central Pyrenees

    NASA Astrophysics Data System (ADS)

    Fondevilla, V.; Vicente, A.; Battista, F.; Sellés, A. G.; Dinarès-Turell, J.; Martín-Closas, C.; Anadón, P.; Vila, B.; Razzolini, N. L.; Galobart, À.; Oms, O.

    2017-06-01

    The L'Espinau site is a dinosaur bonebed from the Upper Cretaceous of the South-Central Pyrenees (north-eastern Spain) that have provided hundreds of bone remains attributed to hadrosauroids, together with a rich assemblage of herpetofauna, fish and microflora. Magnetostratigraphy calibrated the site with the early late Maastrichtian, and the combined sedimentology, stable isotope geochemistry and palaeoecology revealed that this fossil site formed in a lagoon, in which a mixed freshwater-brackish palaeoenvironment was developed. This setting displays a south-north charophyte zonation from freshwater (Clavator brachycerus-dominated assemblage) to brackish or eurihaline conditions (Feistiella malladae-dominated assemblage), revealing a palaeoenvironment change towards the coast. Sedimentology and taphonomy (bidirectional arrangement of long bones, abrasion and disarticulation) indicate that the L'Espinau site is the result of a cohesive mass flow event originated very close to the sea. This process entrained and mixed fauna from both the terrestrial and the brackish/marine environment of a lagoon. An increasing of the water runoff (e.g. by intense rainfall) reworking poorly consolidated sediments is considered here as the most probable triggering mechanism. Mass flow-hosted bonebeds are commonly linked to fluvial palaeoenvironments, so our study case is a rare example of bones accumulating near the sea. This study adds evidence that hadrosauroids inhabited littoral environments during the Maastrichtian in the southern Pyrenean area.

  13. Do common eiders nest in kin groups? Microgeographic genetic structure in a philopatric sea duck

    USGS Publications Warehouse

    Sonsthagen, S.A.; Talbot, S.L.; Lanctot, Richard B.; McCracken, K.G.

    2010-01-01

    We investigated local genetic associations among female Pacific common eiders (Somateria mollissima v-nigrum) nesting in a stochastic Arctic environment within two groups of barrier islands (Simpson Lagoon and Mikkelsen Bay) in the Beaufort Sea, Alaska. Nonrandom genetic associations were observed among nesting females using regional spatial autocorrelation analyses for distance classes up to 1000 m in Simpson Lagoon. Nearest-neighbour analyses identified clusters of genetically related females with positive lr values observed for 0-13% and 0-7% of the comparisons in Simpson Lagoon and Mikkelsen Bay, respectively, across years. These results indicate that a proportion of females are nesting in close proximity to more genetically related individuals, albeit at low frequency. Such kin groupings may form through active association between relatives or through natal philopatry and breeding site fidelity. Eiders nest in close association with driftwood, which is redistributed annually by seasonal storms. Yet, genetic associations were still observed. Microgeographic structure may thus be more attributable to kin association than natal philopatry and site fidelity. However, habitat availability may also influence the level of structure observed. Regional structure was present only within Simpson Lagoon and this island group includes at least three islands with sufficient driftwood for colonies, whereas only one island at Mikkelsen Bay has these features. A long-term demographic study is needed to understand more fully the mechanisms that lead to fine-scale genetic structure observed in common eiders breeding in the Beaufort Sea. ?? Published 2010. This article is a US Government work and is in the public domain in the USA.

  14. A Tale of Two Inlets: Tidal Currents at Two Adjacent Inlets in the Indian River Lagoon

    NASA Astrophysics Data System (ADS)

    Webb, B. M.; Weaver, R. J.

    2012-12-01

    The tidal currents and hydrography at two adjacent inlets of the Indian River Lagoon estuary (Florida) were recently measured using a personal watercraft-based coastal profiling system. Although the two inlets—Sebastian Inlet and Port Canaveral Inlet—are separated by only 60 km, their characteristics and dynamics are quite unique. While Sebastian Inlet is a shallow (~4 m), curved inlet with a free connection to the estuary, Port Canaveral Inlet is dominated by a deep (~13 m), straight ship channel and has limited connectivity to the Banana River through a sector gate lock. Underway measurements of tidal currents were obtained using a bottom tracking acoustic Doppler current profiler; vertical casts of hydrography were obtained with a conductivity-temperature-depth profiling instrument; and continuous underway measurements of surface water hydrography were made using a Portable SeaKeeper system. Survey transects were performed to elucidate the along-channel variability of tidal flows, which appears to be significant in the presence of channel curvature. Ebb and flood tidal currents in Sebastian Inlet routinely exceeded 2.5 m/s from the surface to the bed, and an appreciable phase lag exists between tidal stage and current magnitude. The tidal currents at Port Canaveral Inlet were much smaller (~0.2 m/s) and appeared to be sensitive to meteorological forcing during the study period. Although the lagoon has free connections to the ocean 145 km to the north and 45 km to the south, Sebastian Inlet likely drains much of the lagoon to its north, an area of ~550 sq. km.

  15. Aral Sea basin: a sea dies, a sea also rises.

    PubMed

    Glantz, Michael H

    2007-06-01

    The thesis of this article is quite different from many other theses of papers, books, and articles on the Aral Sea. It is meant to purposely highlight the reality of the situation in Central Asia: the Aral Sea that was once a thriving body of water is no more. That sea is dead. What does exist in its place are the Aral seas: there are in essence three bodies of water, one of which is being purposefully restored and its level is rising (the Little Aral), and two others which are still marginally connected, although they continue to decline in level (the Big Aral West and the Big Aral East). In 1960 the level of the sea was about 53 m above sea level. By 2006 the level had dropped by 23 m to 30 m above sea level. This was not a scenario generated by a computer model. It was a process of environmental degradation played out in real life in a matter of a few decades, primarily as a result of human activities. Despite wishes and words to the contrary, it will take a heroic global effort to save what remains of the Big Aral. It would also take a significant degree of sacrifice by people and governments in the region to restore the Big Aral to an acceptable level, given that the annual rate of flow reaching the Amudarya River delta is less than a 10th of what it was several decades ago. Conferring World Heritage status to the Aral Sea(s) could spark restoration efforts for the Big Aral.

  16. Selenihalanaerobacter shriftii gen. nov., sp. nov., a halophilic anaerobe from Dead Sea sediments that respires selenate

    USGS Publications Warehouse

    Switzer, Blum J.; Stolz, J.F.; Oren, A.; Oremland, R.S.

    2001-01-01

    We isolated an obligately anaerobic halophilic bacterium from the Dead Sea that grew by respiration of selenate. The isolate, designated strain DSSe-1, was a gram-negative, non-motile rod. It oxidized glycerol or glucose to acetate+CO2 with concomitant reduction of selenate to selenite plus elemental selenium. Other electron acceptors that supported anaerobic growth on glycerol were nitrate and trimethylamine-N-oxide; nitrite, arsenate, fumarate, dimethylsulfoxide, thiosulfate, elemental sulfur, sulfite or sulfate could not serve as electron acceptors. Growth on glycerol in the presence of nitrate occurred over a salinity range from 100 to 240 g/l, with an optimum at 210 g/l. Analysis of the 16S rRNA gene sequence suggests that strain DSSe-1 belongs to the order Halanaerobiales, an order of halophilic anaerobes with a fermentative or homoacetogenic metabolism, in which anaerobic respiratory metabolism has never been documented. The highest 16S rRNA sequence similarity (90%) was found with Acetohalobium arabaticum (X89077). On the basis of physiological properties as well as the relatively low homology of 16S rRNA from strain DSSe-1 with known genera, classification in a new genus within the order Halanaerobiales, family Halobacteroidaceae is warranted. We propose the name Selenihalanaerobacter shriftii. Type strain is strain DSSe-1 (ATCC accession number BAA-73).

  17. Sarcocystis neurona retinochoroiditis in a sea otter (Enhydra lutris kenyoni)

    USDA-ARS?s Scientific Manuscript database

    Sarcocystis neurona is an important cause of fatal disease in sea otters in the USA. Encephalitis is the predominant lesion and parasites are confined to the central nervous system and muscles. Here we report retinochoroiditis in a sea otter (Enhydra lutris kenyoni) found dead on Copalis Beach, WA, ...

  18. Spectral response of the coral rubble, living corals, and dead corals: study case on the Spermonde Archipelago, Indonesia

    NASA Astrophysics Data System (ADS)

    Nurdin, Nurjannah; Komatsu, Teruhisa; Yamano, Hiroya; Arafat, Gulam; Rani, Chair; Akbar AS, M.

    2012-10-01

    Coral reefs play important ecological services such as providing foods, biodiversity, nutrient recycling etc. for human society. On the other hand, they are threatened by human impacts such as illegal fishing and environmental changes such as rises of sea water temperature and sea level due to global warming. Thus, it is very important to monitor dynamic spatial distributions of coral reefs and related habitats such as coral rubble, dead coral, bleached corals, seagrass, etc. Hyperspectral data, in particular, offer high potential for characterizing and mapping coral reefs because of their capability to identify individual reef components based on their detailed spectral response. We studied the optical properties by measuring in situ spectra of living corals, dead coral and coral rubble covered with algae. Study site was selected in Spermonde archipelago, South Sulawesi, Indonesia because this area is included in the highest diversity of corals in the world named as Coral Triangle, which is recognized as the global centre of marine biodiversity and a global priority for conservation. Correlation analysis and cluster analysis support that there are distinct differences in reflectance spectra among categories. Common spectral characteristic of living corals, dead corals and coral rubble covered with algae was a reflectance minimum at 674 nm. Healthy corals, dead coral covered with algae and coral rubble covered with algae showed high similarity of spectral reflectance. It is estimated that this is due to photsynthetic pigments.

  19. Dynamics of copper and zinc sedimentation in a lagooning system receiving landfill leachate.

    PubMed

    Guigue, Julien; Mathieu, Olivier; Lévêque, Jean; Denimal, Sophie; Steinmann, Marc; Milloux, Marie-Jeanne; Grisey, Hervé

    2013-11-01

    This study characterises the sediment dredged from a lagooning system composed of a settling pond and three lagoons that receive leachates from a municipal solid waste (MSW) landfill in France. Organic carbon, carbonate, iron oxyhydroxides, copper (Cu) and zinc (Zn) concentrations were measured in the sediment collected from upstream to downstream in the lagooning system. In order to complete our investigation of sedimentation mechanisms, leachates were sampled in both dry (spring) and wet (winter) seasonal conditions. Precipitation of calcite and amorphous Fe-oxyhydroxides and sedimentation of organic matter occurred in the settling pond. Since different distributions of Zn and Cu concentrations are measured in sediment samples collected downstream in the lagooning system, it is suggested that these elements were not distributed in a similar way in the leachate fractions during the first stage of treatment in the settling pond, so that their sedimentation dynamics in the lagooning system differ. In the lagoons, it was found that organic carbon plays a major role in Cu and Zn mobility and trapping. The presence of macrophytes along the edges provided an input of organic matter that enhanced Cu and Zn scavenging. This edge effect resulted in a two-fold increase in Cu and Zn concentrations in the sediment deposited near the banks of the lagoons, thus confirming the importance of vegetation for the retention of Cu and Zn in lagooning systems. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Use of nearshore and estuarine areas by gray whales (Eschrichtius robustus) in the eastern Bering Sea

    USGS Publications Warehouse

    Gill, Robert E.; Hall, John D.

    1983-01-01

    During spring aerial surveys of the coast of the southeastern Bering Sea significant numbers of gray whales were seen in nearshore waters along the north side of the Alaska Peninsula. Many (50-80%) of these animals were observed surfacing with mud trails or lying on their sides, characteristics both associated with feeding. A migration route close to shore (within 1-2 km) was used until whales neared Egegik Bay, where they began to head west 5-8 km offshore, across northern Bristol Bay. Smaller numbers of gray whales were present throughout summer in nearshore waters and estuaries along the north side of the Alaska Peninsula. At Nelson Lagoon gray whales normally used the lagoon in spring, were absent during early summer, returned in mid-summer, and then were present until late November when they departed for the wintering grounds. Gray whales were present in the lagoon most often during periods of peak tidal flow; those that appeared to be feeding were oriented into the current. Three behaviors that appeared to be associated with feeding were observed: side-feeding from a stationary position within shallow waters of lagoon channels, diving within the lagoon and in nearshore waters, and elliptical side-feeding in the surf zone along the outer coast. Large crustaceans of the genus Crangon were available to and probably eaten by gray whales at Nelson Lagoon.

  1. Regional hard coral distribution within geomorphic and reef flat ecological zones determined by satellite imagery of the Xisha Islands, South China Sea

    NASA Astrophysics Data System (ADS)

    Zuo, Xiuling; Su, Fenzhen; Zhao, Huanting; Zhang, Junjue; Wang, Qi; Wu, Di

    2017-05-01

    Coral reefs in the Xisha Islands (also known as the Paracel Islands in English), South China Sea, have experienced dramatic declines in coral cover. However, the current regional scale hard coral distribution of geomorphic and ecological zones, essential for reefs management in the context of global warming and ocean acidification, is not well documented. We analyzed data from field surveys, Landsat-8 and GF-1 images to map the distribution of hard coral within geomorphic zones and reef flat ecological zones. In situ surveys conducted in June 2014 on nine reefs provided a complete picture of reef status with regard to live coral diversity, evenness of coral cover and reef health (live versus dead cover) for the Xisha Islands. Mean coral cover was 12.5% in 2014 and damaged reefs seemed to show signs of recovery. Coral cover in sheltered habitats such as lagoon patch reefs and biotic dense zones of reef flats was higher, but there were large regional differences and low diversity. In contrast, the more exposed reef slopes had high coral diversity, along with high and more equal distributions of coral cover. Mean hard coral cover of other zones was <10%. The total Xisha reef system was estimated to cover 1 060 km2, and the emergent reefs covered 787 m2. Hard corals of emergent reefs were considered to cover 97 km2. The biotic dense zone of the reef flat was a very common zone on all simple atolls, especially the broader northern reef flats. The total cover of live and dead coral can reach above 70% in this zone, showing an equilibrium between live and dead coral as opposed to coral and algae. This information regarding the spatial distribution of hard coral can support and inform the management of Xisha reef ecosystems.

  2. Living and dead foraminiferal assemblages from an active submarine canyon and surrounding sectors: the Gioia Canyon system (Tyrrhenian Sea, Southern Italy)

    NASA Astrophysics Data System (ADS)

    Letizia, Di Bella; Martina, Pierdomenico; Roberta, Porretta; Chiocci, Francesco Latino; Eleonora, Martorelli

    2017-05-01

    Living (rose Bengal stained) and dead benthic foraminiferal assemblages were studied from 23 stations located between 60 and 670 m depth along the Gioia Canyon and the adjacent continental shelf and slope (Southern Tyrrhenian Sea). The aim of this study is to investigate the relationships among sedimentary processes, hydrological patterns and benthic foraminiferal distribution, in a highly dynamic environment. High sedimentation rates on the shelf and occasional turbidity flows along the canyon, lead to unstable environmental conditions at the seafloor that reflect on the microbenthic community influencing faunal density, diversity, species composition and distribution inside the sediment. The foraminiferal distribution seems to be controlled by sedimentary processes, nutrient supply and organic matter recycling, which in turn are strongly controlled by the seasonal variability of riverine inputs and current dynamics in the Gulf of Gioia. From the inner shelf to the upper continental slope (550 m depth), the living foraminiferal assemblage is dominated by agglutinated taxa, likely favored by the high terrigenous supply. Frequent eutrophic taxa (Valvulineria bradyana and Nonionella turgida) tolerant high turbidity (Leptohalysis scottii,) and low oxygen (Bolivina spp. and Bulimina spp.) are recorded on the edge of the inner shelf, where channeling, deposition of coastal deposits and occasional sediment gravity flows occur. In the outer sector of the shelf a turnover of species is observed; L. scottii replaced by the opportunistic species Reophax scorpiurus, and taxa indicative of high energy conditions (Cassidulina spp.) become dominant in association with mesotrophic species like Globocassidulina subglobosa. Along the continental slope, lower sedimentation rates and more stable environmental conditions support richer and more diversified foraminiferal assemblage. The abundance of Bulimina marginata indicates eutrophic conditions at the shallower station (300 m depth

  3. Lethality of sea lamprey attacks on lake trout in relation to location on the body surface

    USGS Publications Warehouse

    Bergstedt, Roger A.; Schneider, Clifford P.; O'Gorman, Robert

    2001-01-01

    We compared the locations of healed attack marks of the sea lamprey Petromyzon marinus on live lake trout Salvelinus namaycush with those of unhealed attack marks on dead lake trout to determine if the lethality of a sea lamprey attack was related to attack location. Lake trout were collected from Lake Ontario, live fish with gill nets in September 1985 and dead fish with trawls in October 1983−1986. Attack location was characterized by the percent distances from snout to tail and from the ventral to the dorsal midline. Kolmogorov−Smirnov two-sample tests did not detect significant differences in the distribution of attack location along either the anteroposterior axis or the dorsoventral axis. When attack locations were grouped into six anatomical regions historically used to record sea lamprey attacks, dead fish did not exhibit a significantly higher proportion of attacks in the more anterior regions. Even if the differences in attack location on live and dead fish were significant, they were too small to imply substantial spatial differences in attack lethality that should be accounted for when modeling the effects of sea lampreys feeding on lake trout. We suggest that the tendency for sea lamprey attacks to occur on the anterior half of the fish is related to the lower amplitude of lateral body movement there during swimming and thus the lower likelihood of being dislodged.

  4. Eutrophication Process on Coastal Lagoons of North of Sinaloa, Mexico

    NASA Astrophysics Data System (ADS)

    Escobedo-Urias, D.; Martinez-Lopez, A.

    2007-05-01

    Coastal ecosystems in the Gulf of California support diverse and important fisheries and are reservoirs of great biological diversity. In northern Sinaloa, population growth and development, as well as increased use of these natural systems for recreation, has substantially increased the pressure placed upon marine resources. Discharge of untreated wastewaters generated by diverse human activities has been notably altered its health and integrity, principally along the lagoon's eastern shore In the late 60s, agriculture moved into a dominant role in coastal northern Sinaloa. The coastal plain encompasses more than 200,000 hectares under cultivation that now introduces large amounts of organic material, pesticides, heavy metals, and fertilizers into the lagoon systems of Topolobampo and San Ignacio-Navachiste-Macapule System at drainage discharge points and a minor grade in Colorado Lagoon. These lagoons are shallow and exhibit low water quality, lost of lagoon depth, presence of toxic substances (heavy metals) near the discharge points of wastewaters, and presence of harmful algal blooms. With the aim of evaluate the nutrients loadings (wastewaters, groundwaters) and their effects on the coastal lagoons of north of Sinaloa, the preliminary analysis of the physical, chemical and biologic variables data series are analyzed. From 1987-2007 eutrophication process is identified in Topolobampo Complex show increase tendency in annual average concentrations of DIN (Dissolved Inorganic Nitrogen= NO2+NO3) from 0.5 μ M in 1987 to 2.7 μ M in 2006. Trophic Index (TRIX) values, low nutrient ratios (N: P and N: Si) and the phytoplanktonic community structure support this result. Preliminary results of nutrients loadings show a mayor contribution of wastewaters into the coastal zone.

  5. Hydrology and Salt Balance in a Large, Hypersaline Coastal Lagoon: Lagoa de Araruama, Brazil

    NASA Astrophysics Data System (ADS)

    Kjerfve, Björn; Schettini, C. A. F.; Knoppers, Bastiaan; Lessa, Guilherme; Ferreira, H. O.

    1996-06-01

    Lagoa de Araruama in the state of Rio de Janeiro, Brazil, is a hypersaline coastal lagoon as a result of semi-arid climate conditions, a small drainage basin and a choked entrance channel. The lagoon has been continuously hypersaline for at least 4·5 centuries, but the mean salinity has varied substantially. It has recently decreased from 57 to 52 as indicated by density (salinity) measurements between 1965 and 1990. Analysis of more than 20 years of salinity time series data, in addition to monthly lagoon cruises to measure the spatial salinity distribution, indicate that the lagoon salinity largely fluctuates in response to the difference between evaporation and precipitation. The major factor explaining the long-term trend of decreasing salinity in the lagoon is the constant pumping of 1 m 3s -1of freshwater to the communities surrounding the lagoon from an adjacent watershed, and subsequent discharge of this water into Lagoa de Araruama. The net salt budget is primarily a balance between the advective import of salt from the coastal ocean and eddy diffusive export of salt to the ocean, although the extensive mining of salt from the lagoon during past decades is also a small but significant contribution to the salt budget. The flushing half-life is proposed as a useful time scale of water exchange, is calculated based on a combination of hydrological and tidal processes, and is excellent for comparison of lagoons and assessing water quality changes. The flushing half-life measures 83·5 days for Lagoa de Araruama, considerably longer than for most other coastal lagoons. The proposed dredging of a second ocean channel to Lagoa de Araruama is probably not a good idea. It is likely to accelerate the decrease of lagoon salinity and somewhat improve the lagoon water exchange. At the same time, this will eliminate the apparent buffering capacity provided by the hypersaline environment, and thus may potentially cause water quality problems.

  6. Consistency of temporal and habitat-related differences among assemblages of fish in coastal lagoons

    NASA Astrophysics Data System (ADS)

    Gray, Charles A.; Rotherham, Douglas; Johnson, Daniel D.

    2011-12-01

    The consistency of habitat-related differences in coastal lagoon fish assemblages was assessed across different spatial and temporal scales. Multimesh gillnets were used to sample assemblages of fish on a monthly basis for 1-year in three habitats (shallow seagrass, shallow bare and deep substrata) at two locations (>1 km apart), in each of two coastal lagoons (approximately 500 km apart), in southeastern Australia. A total of 48 species was sampled with 34 species occurring in both lagoons and in all three habitats; species caught in only one lagoon or habitat occurred in low numbers. Ten species dominated assemblages and accounted for more than 83% of all individuals sampled. In both lagoons, assemblages in the deep habitat consistently differed to those in the shallow strata (regardless of habitat). Several species were caught more frequently or in larger numbers in the deep habitat. Assemblages in the two shallow habitats did not differ consistently and were dominated by the same species and sizes of fish, possibly due to habitat heterogeneity and the scale and method of sampling. Within each lagoon, very few between location differences in assemblages within each habitat were observed. Consistent differences in assemblages were detected between lagoons for the shallow bare and deep habitats, indicating there were some intrinsic differences in ichthyofauna between lagoons. Assemblages in spring differed to those in summer, which differed to those in winter for the shallow bare habitat in both lagoons, and the deep habitat in only one lagoon. Fish-habitat relationships are complex and differences in the fish fauna between habitats were often temporally inconsistent. This study highlights the need for greater testing of habitat relationships in space and time to assess the generality of observations and to identify the processes responsible for structuring assemblages.

  7. Remote sensing application possibilities on groundwater characterization in arid regions at the example of the Dead Sea

    NASA Astrophysics Data System (ADS)

    Mallast, U.; Siebert, C.; Gloaguen, R.; Wagner, B.; Schwonke, F.; Rödiger, T.; Geyer, S.; Krieg, R.; Sauter, M.; Kühn, F.; Merz, R.

    2012-04-01

    In arid regions like the Dead Sea (DS) water supply mostly relies on restricted groundwater resources, which are in many cases defined by large inaccessible areas with scarce in-situ data. However, particularly in these regions it is essential to obtain detailed information of this precious resource in order to develop a sustainable water management - one of the main aims of the BMBF-funded multilateral SUMAR (Sustainable Management of Arid and Semiarid Regions) project. The usage of remote sensing offers different indicators and directly sensed patterns from different platforms providing important data where practical alternatives or simply spatial data are not available (Becker, 2006). One application possibility regards the identification of lineaments which are simple or composite linear features of a surface and which have been proven to reflect general groundwater flow-paths (Sander, 1997). In a previous study we derived lineaments using a freely available digital elevation model (30 m spatial resolution) and developed a semi-automatic approach composed of low pass and 2nd order Laplace linear filtering and a subsequent object based classification. Based on these lineaments we could identify general groundwater flow-paths with striking directional trends towards known spring areas along the DS (Mallast et al., 2011). With the knowledge of both, location of spring areas and a given temperature contrast between ground- and DS water, we derived by using thermal remote sensing from satellite and airborne platforms a second application possibility. Satellite based thermal remote sensing with Landsat ETM+ images allowed us to identify groundwater discharge pattern, which highly correlate in location with the previously derived flow-paths, but also enabled us to relatively quantify also seasonal varying groundwater discharge over a time period of 12 years (2000-2011). The drawback remains in the spatial resolution of 30 m (resampled from United States Geological

  8. Climate variability in SE Europe since 1450 AD based on a varved sediment record from Etoliko Lagoon (Western Greece)

    NASA Astrophysics Data System (ADS)

    Koutsodendris, Andreas; Brauer, Achim; Reed, Jane M.; Plessen, Birgit; Friedrich, Oliver; Hennrich, Barbara; Zacharias, Ierotheos; Pross, Jörg

    2017-03-01

    To achieve deeper understanding of climate variability during the last millennium in SE Europe, we report new sedimentological and paleoecological data from Etoliko Lagoon, Western Greece. The record represents the southernmost annually laminated (i.e., varved) archive from the Balkan Peninsula spanning the Little Ice Age, allowing insights into critical time intervals of climate instability such as during the Maunder and Dalton solar minima. After developing a continuous, ca. 500-year-long varve chronology, high-resolution μ-XRF counts, stable-isotope data measured on ostracod shells, palynological (including pollen and dinoflagellate cysts), and diatom data are used to decipher the season-specific climate and ecosystem evolution at Etoliko Lagoon since 1450 AD. Our results show that the Etoliko varve record became more sensitive to climate change from 1740 AD onwards. We attribute this shift to the enhancement of primary productivity within the lagoon, which is documented by an up to threefold increase in varve thickness. This marked change in the lagoon's ecosystem was caused by: (i) increased terrestrial input of nutrients, (ii) a closer connection to the sea and human eutrophication particularly from 1850 AD onwards, and (iii) increasing summer temperatures. Integration of our data with those of previously published paleolake sediment records, tree-ring-based precipitation reconstructions, simulations of atmospheric circulation and instrumental precipitation data suggests that wet conditions in winter prevailed during 1740-1790 AD, whereas dry winters marked the periods 1790-1830 AD (Dalton Minimum) and 1830-1930 AD, the latter being sporadically interrupted by wet winters. This variability in precipitation can be explained by shifts in the large-scale atmospheric circulation patterns over the European continent that affected the Balkan Peninsula (e.g., North Atlantic Oscillation). The transition between dry and wet phases at Etoliko points to longitudinal

  9. Microbial community analysis of swine wastewater anaerobic lagoons by next-generation DNA sequencing.

    PubMed

    Ducey, Thomas F; Hunt, Patrick G

    2013-06-01

    Anaerobic lagoons are a standard practice for the treatment of swine wastewater. This practice relies heavily on microbiological processes to reduce concentrated organic material and nutrients. Despite this reliance on microbiological processes, research has only recently begun to identify and enumerate the myriad and complex interactions that occur in this microbial ecosystem. To further this line of study, we utilized a next-generation sequencing (NGS) technology to gain a deeper insight into the microbial communities along the water column of four anaerobic swine wastewater lagoons. Analysis of roughly one million 16S rDNA sequences revealed a predominance of operational taxonomic units (OTUs) classified as belonging to the phyla Firmicutes (54.1%) and Proteobacteria (15.8%). At the family level, 33 bacterial families were found in all 12 lagoon sites and accounted for between 30% and 50% of each lagoon's OTUs. Analysis by nonmetric multidimensional scaling (NMS) revealed that TKN, COD, ORP, TSS, and DO were the major environmental variables in affecting microbial community structure. Overall, 839 individual genera were classified, with 223 found in all four lagoons. An additional 321 genera were identified in sole lagoons. The top 25 genera accounted for approximately 20% of the OTUs identified in the study, and the low abundances of most of the genera suggests that most OTUs are present at low levels. Overall, these results demonstrate that anaerobic lagoons have distinct microbial communities which are strongly controlled by the environmental conditions present in each individual lagoon. Published by Elsevier Ltd.

  10. Unified dead-time compensation structure for SISO processes with multiple dead times.

    PubMed

    Normey-Rico, Julio E; Flesch, Rodolfo C C; Santos, Tito L M

    2014-11-01

    This paper proposes a dead-time compensation structure for processes with multiple dead times. The controller is based on the filtered Smith predictor (FSP) dead-time compensator structure and it is able to control stable, integrating, and unstable processes with multiple input/output dead times. An equivalent model of the process is first computed in order to define the predictor structure. Using this equivalent model, the primary controller and the predictor filter are tuned to obtain an internally stable closed-loop system which also attempts some closed-loop specifications in terms of set-point tracking, disturbance rejection, and robustness. Some simulation case studies are used to illustrate the good properties of the proposed approach. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  11. Groundwater and porewater as a major source of alkalinity to a fringing coral reef lagoon (Muri Lagoon, Cook Islands)

    NASA Astrophysics Data System (ADS)

    Cyronak, T.; Santos, I. R.; Erler, D. V.; Eyre, B. D.

    2012-11-01

    To better predict how ocean acidification will affect coral reefs, it is important to understand how biogeochemical cycles on reefs alter carbonate chemistry over various temporal and spatial scales. This study quantifies the contribution of fresh groundwater discharge (as traced by radon) and shallow porewater exchange (as quantified from advective chamber incubations) to total alkalinity (TA) dynamics on a fringing coral reef lagoon along the southern Pacific island of Rarotonga over a tidal and diel cycle. Benthic alkalinity fluxes were affected by the advective circulation of water through permeable sediments, with net daily flux rates of carbonate alkalinity ranging from -1.55 to 7.76 mmol m-2 d-1, depending on the advection rate. Submarine groundwater discharge (SGD) was a source of TA to the lagoon, with the highest flux rates measured at low tide, and an average daily TA flux of 1080 mmol m-2 d-1. Both sources of TA were important on a reef wide basis, although SGD acted solely as a delivery mechanism of TA to the lagoon, while porewater advection was either a sink or source of TA dependant on the time of day. On a daily basis, groundwater can contribute approximately 70% to 80% of the TA taken up by corals within the lagoon. This study describes overlooked sources of TA to coral reef ecosystems that can potentially alter water-column carbonate chemistry. We suggest that porewater and groundwater fluxes of TA should be taken into account in ocean acidification models in order to properly address changing carbonate chemistry within coral reef ecosystems.

  12. Contrasting key roles of Ruppia cirrhosa in a southern Mediterranean lagoon: reservoir for both biodiversity and harmful species and indicator of lagoon health status.

    PubMed

    Dhib, Amel; Ben Brahim, Mounir; Turki, Souad; Aleya, Lotfi

    2013-11-15

    The distribution of Ruppia cirrhosa meadow density and its epiphytic organisms in relation with environmental factors were studied in summer 2011 at five stations in the Ghar El Melh lagoon (GML; southern Mediterranean Sea). Eleven epiphytic groups were recognised among which diatoms and dinoflagellates were the dominant groups and greatest contributors to temporal dissimilarity. An overwhelming concentrations of harmful microalgae was recorded, mainly represented by the toxic dinoflagellate Prorocentrum lima with maximal concentrations attaining 6 × 10(5)cells 100g(-1) of Ruppia fresh weight. The epifauna community accounted for only 1.4% of total epiphyte abundance and was comprised predominantly of nematodes (47.51%), ciliates (32.59%), fish eggs (7.2%) and larvae (4.95%). PERMANOVA analyses revealed a significant spatio-temporal variation of all epiphytic groups (p<0.01). In this study, R. cirrhosa and its epiphytes were studied as potential early warning indicators of the health status of GML waters. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Diversions of the Ribeira river flow and their Influence on Sediment Supply in the Cananeia-Iguape Estuarine-Lagoonal System (SE Brazil)

    NASA Astrophysics Data System (ADS)

    Cornaggia, Flaminia; Jovane, Luigi; Alessandretti, Luciano; Alves de Lima Ferreira, Paulo; Lopes Figueira, Rubens C.; Rodelli, Daniel; Bueno Benedetti Berbel, Gláucia; Braga, Elisabete S.

    2018-04-01

    The Cananéia-Iguape system is a combined estuarine-lagoonal sedimentary system, located along the SE coast of Brazil. It consists of a network of channels and islands oriented mainly parallel to the coast. About 165 years ago, an artificial channel, the Valo Grande, was opened in the northern part of this system to connect a major river of the region, the Ribeira River, to the estuarine-lagoon complex. The Valo Grande was closed with a dam and re-opened twice between 1978 and 1995, when it was finally left open. These openings and closures of the Valo Grande had a significant influence on the Cananéia-Iguape system. In this study we present mineralogical, chemical, palaeomagnetic, and geochronological data from a sediment core collected at the southern end of the 50-km long lagoonal system showing how the phases of the opening and closure of the channel through time are expressed in the sedimentary record. Despite the homogeneity of the grain size and magnetic properties throughout the core, significant variations in the mineralogical composition showed the influence of the opening of the channel on the sediment supply. Less mature sediment, with lower quartz and halite and higher kaolinite, brucite, and franklinite, corresponded to periods when the Valo Grande was open. On the other hand, higher abundance of quartz and halite, as well as the disappearance of other detrital minerals, corresponded with periods of absence or closure of the channel, indicating a more sea-influenced depositional setting. This work represented an example of anthropogenic influence in a lagoonal-estuarine sedimentary system, which is a common context along the coast of Brazil.

  14. More dead than dead: perceptions of persons in the persistent vegetative state.

    PubMed

    Gray, Kurt; Knickman, T Anne; Wegner, Daniel M

    2011-11-01

    Patients in persistent vegetative state (PVS) may be biologically alive, but these experiments indicate that people see PVS as a state curiously more dead than dead. Experiment 1 found that PVS patients were perceived to have less mental capacity than the dead. Experiment 2 explained this effect as an outgrowth of afterlife beliefs, and the tendency to focus on the bodies of PVS patients at the expense of their minds. Experiment 3 found that PVS is also perceived as "worse" than death: people deem early death better than being in PVS. These studies suggest that people perceive the minds of PVS patients as less valuable than those of the dead - ironically, this effect is especially robust for those high in religiosity. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Subtidal hydrodynamics in a tropical lagoon: A dimensionless numbers approach

    NASA Astrophysics Data System (ADS)

    Tenorio-Fernandez, L.; Valle-Levinson, A.; Gomez-Valdes, J.

    2018-01-01

    Observations in a tropical lagoon of the Yucatan peninsula motivated a non-dimensional number analysis to examine the relative influence of tidal stress, density gradients and wind stress on subtidal hydrodynamics. A two-month observation period in Chelem Lagoon covered the transition from the dry to the wet season. Chelem Lagoon is influenced by groundwater inputs and exhibits a main sub-basin (central sub-basin), a west sub-basin and an east sub-basin. Subtidal hydrodynamics were associated with horizontal density gradients that were modified seasonally by evaporation, precipitation, and groundwater discharge. A tidal Froude number (Fr0), a Wedderburn number (W), and a Stress ratio (S0) were used to diagnose the relative importance of dominant subtidal driving forces. The Froude number (Fr0) compares tidal forcing and baroclinic forcing through the ratio of tidal stress to longitudinal baroclinic pressure gradient. The Wedderburn number (W) relates wind stress to baroclinicity. The stress ratio (S0) sizes tidal stress and wind stress. S0 is a new diagnostic tool for systems influenced by tides and winds, and represents the main contribution of this research. Results show that spring-tide subtidal flows in the tropical lagoon had log(Fr0) ≫ 0 and log(S0) > 0 , i.e., driven mainly by tidal stresses (advective accelerations). Neap tides showed log(Fr0) ≪ 0 and log(S0) < 0) , i.e., flows driven by baroclinicity, especially at the lagoon heads of the east and west sub-basins. However, when the wind stress intensified over the lagoon, the relative importance of baroclinicity decreased and the wind stress controlled the dynamics (log(W) ≫ 0). Each sub-basin exhibited a different subtidal response, according to the dimensionless numbers. The response depended on the fortnightly tidal cycle, the location and magnitude of groundwater input, and the direction and magnitude of the wind stress.

  16. Spatial and temporal variation of water quality in the coastal lagoons of Sinaloa

    NASA Astrophysics Data System (ADS)

    Paez-Osuna, F.; Lopez-Aguiar, L. K.; Del Río-Chuljak, A.; Ruiz-Fernandez, A. C.

    2007-05-01

    The Mexican state of Sinaloa has 656 km of coastline and 221,600 ha of coastal lagoons, and is characterized by a high fishing and agriculture activity. It is well known that agricultural activities constitute a major factor affecting the water quality in the coastal waters. The current study focused on the 6 more important coastal lagoons of Sinaloa (Topolobampo-Ohuira-Santa María, Navachiste-San Ignacio-Macapule, Santa María-La Reforma, Altata-Ensenada del Pabellón, Ceuta and Teacapán-Agua Brava) with the aim to evaluate the water quality spatial and temporal variation at the lagoons (physico-chemical parameters, nutrients (N, P and Si), dissolved oxygen, total suspended solids and chlorophyll a) and to assess its eutrophication status. The water samples were collected in several stations at each lagoon (between 9 and 23 stations depending on the lagoon area) at low and high tides, during three different weather periods (dry-warm, rainy and dry-cold seasons) between May 2004 and April 2005. Mean concentrations of nutrients (μM), dissolved oxygen (mg/L) and chlorophyll a (mg/m3) obtained for each variable were comparable between lagoons (total N=51±45; total P= 2.5±1.5; Si=23±31; DO=6.7±1.8; Chll=1.7±1.9) although seasonal and spatial differences were observed at each lagoon. The nutrient concentrations measured fell in the typical concentration intervals for coastal lagoons; however, critical sampling points were identified and related to direct discharges of untreated effluents from municipal wastes, aquaculture farms and agriculture drain ditches.

  17. Distribution and stability of eelgrass beds at Izembek Lagoon, Alaska

    USGS Publications Warehouse

    Ward, David H.; Markon, Carl J.; Douglas, David C.

    1997-01-01

    Spatial change in eelgrass meadows, Zostera marina L., was assessed between 1978 and 1987 and between 1987 and 1995 at Izembek Lagoon, Alaska. Change in total extent was evaluated through a map to map comparison of data interpreted from a 1978 Landsat multi-spectral scanner image and 1987 black and white aerial photographs. A ground survey in 1995 was used to assess spatial change from 1987. Eelgrass beds were the predominant vegetation type in the lagoon, comprising 44-47% (15000-16000 ha) of the total area in 1978 and 1987. Izembek Lagoon contains the largest bed of seagrass along the Pacific Coast of North America and largest known single stand of eelgrass in the world. There was a high degree of overlap in the spatial distribution of eelgrass among years of change detection. The overall net change was a 6% gain between, 1978 and 1987 and a <1% gain between 1987 and 1995. The lack of significant change in eelgrass cover suggests that eelgrass meadows in Izembek Lagoon have been stable during the 17-year period of our study.

  18. 9 CFR 82.6 - Interstate movement of dead birds and dead poultry from a quarantined area.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Interstate movement of dead birds and dead poultry from a quarantined area. 82.6 Section 82.6 Animals and Animal Products ANIMAL AND PLANT... (END) § 82.6 Interstate movement of dead birds and dead poultry from a quarantined area. (a) Except as...

  19. 9 CFR 82.6 - Interstate movement of dead birds and dead poultry from a quarantined area.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Interstate movement of dead birds and dead poultry from a quarantined area. 82.6 Section 82.6 Animals and Animal Products ANIMAL AND PLANT... movement of dead birds and dead poultry from a quarantined area. (a) Except as provided in paragraph (b) of...

  20. 9 CFR 82.6 - Interstate movement of dead birds and dead poultry from a quarantined area.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Interstate movement of dead birds and dead poultry from a quarantined area. 82.6 Section 82.6 Animals and Animal Products ANIMAL AND PLANT... (END) § 82.6 Interstate movement of dead birds and dead poultry from a quarantined area. (a) Except as...

  1. Gene transcript profiling in sea otters post-Exxon Valdez oil spill: A tool for marine ecosystem health assessment

    USGS Publications Warehouse

    Bowen, Lizabeth; Miles, A. Keith; Ballachey, Brenda E.; Waters, Shannon C.; Bodkin, James L.

    2016-01-01

    Using a panel of genes stimulated by oil exposure in a laboratory study, we evaluated gene transcription in blood leukocytes sampled from sea otters captured from 2006–2012 in western Prince William Sound (WPWS), Alaska, 17–23 years after the 1989 Exxon Valdez oil spill (EVOS). We compared WPWS sea otters to reference populations (not affected by the EVOS) from the Alaska Peninsula (2009), Katmai National Park and Preserve (2009), Clam Lagoon at Adak Island (2012), Kodiak Island (2005) and captive sea otters in aquaria. Statistically, sea otter gene transcript profiles separated into three distinct clusters: Cluster 1, Kodiak and WPWS 2006–2008 (higher relative transcription); Cluster 2, Clam Lagoon and WPWS 2010–2012 (lower relative transcription); and Cluster 3, Alaska Peninsula, Katmai and captive sea otters (intermediate relative transcription). The lower transcription of the aryl hydrocarbon receptor (AHR), an established biomarker for hydrocarbon exposure, in WPWS 2010–2012 compared to earlier samples from WPWS is consistent with declining hydrocarbon exposure, but the pattern of overall low levels of transcription seen in WPWS 2010–2012 could be related to other factors, such as food limitation, pathogens or injury, and may indicate an inability to mount effective responses to stressors. Decreased transcriptional response across the entire gene panel precludes the evaluation of whether or not individual sea otters show signs of exposure to lingering oil. However, related studies on sea otter demographics indicate that by 2012, the sea otter population in WPWS had recovered, which indicates diminishing oil exposure.

  2. Aspects of fish conservation in the upper Patos Lagoon basin.

    PubMed

    Fontoura, N F; Vieira, J P; Becker, F G; Rodrigues, L R; Malabarba, L R; Schulz, U H; Möller, O O; Garcia, A M; Vilella, F S

    2016-07-01

    The Patos Lagoon basin is a large (201 626 km(2) ) and complex drainage system in southern Brazil. The lagoon is 250 km long and 60 km wide, covering an area of 10 360 km(2) . The exchange of water with the Atlantic Ocean occurs through a 0·8 km wide and 15 m deep inlet, fixed by 4 km long jetties, at the southernmost part of the Patos Lagoon. The estuarine area is restricted to its southern portion (10%), although the upper limit of saline waters migrates seasonally and year to year, influenced by the wind regime and river discharge. The known number of recorded limnetic fish species is 200, but this number is expected to increase. A higher endemism is observed in fish species occurring in upper tributaries. The basin suffers from the direct impact of almost 7 million inhabitants, concentrated in small to large cities, most with untreated domestic effluents. There are at least 16 non-native species recorded in natural habitats of the Patos Lagoon basin, about half of these being from other South American river basins. Concerning the fishery, although sport and commercial fisheries are widespread throughout the Patos Lagoon basin, the lagoon itself and the estuarine area are the main fishing areas. Landing statistics are not available on a regular basis or for the whole basin. The fishery in the northern Patos Lagoon captures 31 different species, nine of which are responsible for most of the commercial catches, but only three species are actually sustaining the artisanal fishery: the viola Loricariichthys anus: 455 kg per 10 000 m(2) gillnet per day, the mullet Mugil liza: 123 kg per 10 000 m(2) gillnet per day and the marine catfish Genidens barbus: 50 kg per 10 000 m(2) gillnet per day. A decline of the fish stocks can be attributed to inadequate fishery surveillance, which leads to overfishing and mortality of juveniles, or to decreasing water quality because of urban and industrial activities and power production. Global climatic changes also represent a

  3. Marshall Islands Fringing Reef and Atoll Lagoon Observations of the Tohoku Tsunami

    NASA Astrophysics Data System (ADS)

    Ford, Murray; Becker, Janet M.; Merrifield, Mark A.; Song, Y. Tony

    2014-12-01

    The magnitude 9.0 Tohoku earthquake on 11 March 2011 generated a tsunami which caused significant impacts throughout the Pacific Ocean. A description of the tsunami within the lagoons and on the surrounding fringing reefs of two mid-ocean atoll islands is presented using bottom pressure observations from the Majuro and Kwajalein atolls in the Marshall Islands, supplemented by tide gauge data in the lagoons and by numerical model simulations in the deep ocean. Although the initial wave arrival was not captured by the pressure sensors, subsequent oscillations on the reef face resemble the deep ocean tsunami signal simulated by two numerical models, suggesting that the tsunami amplitudes over the atoll outer reefs are similar to that in deep water. In contrast, tsunami oscillations in the lagoon are more energetic and long lasting than observed on the reefs or modelled in the deep ocean. The tsunami energy in the Majuro lagoon exhibits persistent peaks in the 30 and 60 min period bands that suggest the excitation of closed and open basin normal modes, while energy in the Kwajalein lagoon spans a broader range of frequencies with weaker, multiple peaks than observed at Majuro, which may be associated with the tsunami behavior within the more irregular geometry of the Kwajalein lagoon. The propagation of the tsunami across the reef flats is shown to be tidally dependent, with amplitudes increasing/decreasing shoreward at high/low tide. The impact of the tsunami on the Marshall Islands was reduced due to the coincidence of peak wave amplitudes with low tide; however, the observed wave amplitudes, particularly in the atoll lagoon, would have led to inundation at different tidal phases.

  4. Influence of fluctuations of historic water bodies on fault stability and earthquake recurrence interval: The Dead Sea Rift as a case study

    NASA Astrophysics Data System (ADS)

    Belferman, Mariana; Katsman, Regina; Agnon, Amotz; Ben-Avraham, Zvi

    2017-04-01

    Despite the global, social and scientific impact of earthquakes, their triggering mechanisms remain often poorly defined. We suggest that dynamic changes in the levels of the historic water bodies occupying tectonic depressions at the Dead Sea Rift cause significant variations in the shallow crustal stress field and affect local fault systems in a way that may promote or suppress earthquakes. This mechanism and its spatial and temporal scales differ from those in tectonically-driven deformations. We use analytical and numerical poroelastic models to simulate immediate and delayed seismic responses resulting from the observed historic water level changes. The role of variability in the poroelastic and the elastic properties of the rocks composing the upper crust in inducing or retarding deformations under a strike-slip faulting regime is studied. The solution allows estimating a possible reduction in a seismic recurrence interval. Considering the historic water level fluctuation, our preliminary simulations show a promising agreement with paleo-seismic rates identified in the field.

  5. Genesis and morphological evolution of coastal talus-platforms (fajãs) with lagoons: The case study of the newly-formed Fajã dos Milagres (Corvo Island, Azores)

    NASA Astrophysics Data System (ADS)

    Melo, Carlos S.; Ramalho, Ricardo S.; Quartau, Rui; Hipólito, Ana; Gil, Artur; Borges, Paulo A.; Cardigos, Frederico; Ávila, Sérgio P.; Madeira, José; Gaspar, João L.

    2018-06-01

    supply sufficient mobile sediment to the shelf; b) presence of a shallow, wide insular shelf where the sediments can be transported without significant loss to the submarine slopes; and c) a wave-dominated, high-energy regime, capable of significant cross-shore and longshore sediment drift. These observations allowed us to propose a preliminary conceptual evolutionary model for the generation of fajãs with lagoons, where marine reworking plays a fundamental role. Finally, this study documents the generation and very rapid subsequent evolution of a clastic coastal morphology solely driven by the action of waves and currents, and without interference from relative sea level and/or external sediment replenishment, with possible implications to other settings.

  6. Coastal nurseries and their importance for conservation of sea kraits.

    PubMed

    Bonnet, Xavier; Brischoux, François; Bonnet, Christophe; Plichon, Patrice; Fauvel, Thomas

    2014-01-01

    Destruction and pollution of coral reefs threaten these marine biodiversity hot stops which shelter more than two thirds of sea snake species. Notably, in many coral reef ecosystems of the Western Pacific Ocean, large populations of sea kraits (amphibious sea snakes) have drastically declined during the past three decades. Protecting remaining healthy populations is thus essential. In New Caledonia, coral reefs shelter numerous sea krait colonies spread throughout an immense lagoon (24,000 km2). Sea kraits feed on coral fish but lay their eggs on land. However, ecological information on reproduction and juveniles is extremely fragmentary, precluding protection of key habitats for reproduction. Our 10 years mark recapture study on Yellow sea kraits (L. saintgironsi >8,700 individuals marked) revealed that most neonates aggregate in highly localized coastal sites, where they feed and grow during several months before dispersal. Hundreds of females emigrate seasonally from remote populations (>50 km away) to lay their eggs in these coastal nurseries, and then return home. Protecting these nurseries is a priority to maintain recruitment rate, and to retain sea krait populations in the future.

  7. Trace metals in sediments of two estuarine lagoons from Puerto Rico.

    PubMed

    Acevedo-Figueroa, D; Jiménez, B D; Rodríguez-Sierra, C J

    2006-05-01

    Concentrations of As, Cd, Cu, Fe, Hg, Pb and Zn were evaluated in surface sediments of two estuaries from Puerto Rico, known as San José Lagoon (SJL) and Joyuda Lagoon. Significantly higher concentrations in microg/g dw of Cd (1.8 vs. 0.1), Cu (105 vs. 22), Hg (1.9 vs. 0.17), Pb (219 vs. 8), and Zn (531 vs. 52) were found in sediment samples from SJL when compared to Joyuda Lagoon. Average concentrations of Hg, Pb, and Zn in some sediment samples from SJL were above the effect range median (ERM) that predict toxic effects to aquatic organisms. Enrichments factors using Fe as a normalizer, and correlation matrices showed that metal pollution in SJL was the product of anthropogenic sources, while the metal content in Joyuda Lagoon was of natural origins. Sediment metal concentrations found in SJL were comparable to aquatic systems classified as contaminated from other regions of the world.

  8. Microbial loop contribution to exergy in the sediments of the Marsala lagoon (Italy)

    NASA Astrophysics Data System (ADS)

    Pusceddu, A.; Danovaro, R.

    2003-04-01

    Recent advances in ecological modelling have stressed the need for new descriptors of ecosystem health, able to consider the actual transfer of energy through food webs, including also the potential transfer/loss of (genetic) information. In ecological terms, exergy is defined as a goal function which, as sum of energy (biomass) and (genetic) information contained in a given system due to living organisms, acts as a quality indicator of ecosystems. Biopolymeric organic carbon (BPC) quantity and biochemical composition, bacteria, heterotrophic nanoflagellate and meiofauna abundance, biomass and exergy contents were investigated, on a seasonal basis, in the Marsala lagoon (Mediterranean Sea), at two stations characterized by contrasting hydrodynamic conditions. Carbohydrate (2.8 mg g-1), protein (1.6 mg g-1) and lipid (0.86 mg g-1) contents were extremely high, with values at the more exposed station about 3 times lower than those at the sheltered one. BPC (on average 2.5 mg C g-1), dominated by carbohydrates (50%), was mostly refractory and largely unaccounted for by primary organic matter (4% of BPC), indicating that the Marsala lagoon sediments act as a "detritus sink". At both stations, bacterial (on average 0.3 mg C g-1) and heterotrophic nanoflagellate (9.8 μgC g-1) biomass values were rather high, whereas meiofauna biomass was extremely low (on average 7.2 μg C cm-2). The exergy transfer along the benthic microbial loop components in the Marsala lagoon appeared largely bottlenecked by the refractory composition of organic detritus. In the more exposed station, the exergy transfer towards the higher trophic levels was more efficient than in the sheltered one. Although total exergy values were significantly higher in summer than in winter, at both stations the exergy transfer in winter was more efficient than in summer. Our results indicate that, in 'detritus sink' systems, auxiliary energy (e.g., wind-induced sediment resuspension) might be of paramount

  9. Towards flash-flood prediction in the dry Dead Sea region utilizing radar rainfall information

    NASA Astrophysics Data System (ADS)

    Morin, Efrat; Jacoby, Yael; Navon, Shilo; Bet-Halachmi, Erez

    2009-07-01

    Flash-flood warning models can save lives and protect various kinds of infrastructure. In dry climate regions, rainfall is highly variable and can be of high-intensity. Since rain gauge networks in such areas are sparse, rainfall information derived from weather radar systems can provide useful input for flash-flood models. This paper presents a flash-flood warning model which utilizes radar rainfall data and applies it to two catchments that drain into the dry Dead Sea region. Radar-based quantitative precipitation estimates (QPEs) were derived using a rain gauge adjustment approach, either on a daily basis (allowing the adjustment factor to change over time, assuming available real-time gauge data) or using a constant factor value (derived from rain gauge data) over the entire period of the analysis. The QPEs served as input for a continuous hydrological model that represents the main hydrological processes in the region, namely infiltration, flow routing and transmission losses. The infiltration function is applied in a distributed mode while the routing and transmission loss functions are applied in a lumped mode. Model parameters were found by calibration based on the 5 years of data for one of the catchments. Validation was performed for a subsequent 5-year period for the same catchment and then for an entire 10-year record for the second catchment. The probability of detection and false alarm rates for the validation cases were reasonable. Probabilistic flash-flood prediction is presented applying Monte Carlo simulations with an uncertainty range for the QPEs and model parameters. With low probability thresholds, one can maintain more than 70% detection with no more than 30% false alarms. The study demonstrates that a flash-flood warning model is feasible for catchments in the area studied.

  10. Towards flash flood prediction in the dry Dead Sea region utilizing radar rainfall information

    NASA Astrophysics Data System (ADS)

    Morin, E.; Jacoby, Y.; Navon, S.; Bet-Halachmi, E.

    2009-04-01

    Flash-flood warning models can save lives and protect various kinds of infrastructure. In dry climate regions, rainfall is highly variable and can be of high-intensity. Since rain gauge networks in such areas are sparse, rainfall information derived from weather radar systems can provide useful input for flash-flood models. This paper presents a flash-flood warning model utilizing radar rainfall data and applies it to two catchments that drain into the dry Dead Sea region. Radar-based quantitative precipitation estimates (QPEs) were derived using a rain gauge adjustment approach, either on a daily basis (allowing the adjustment factor to change over time, assuming available real-time gauge data) or using a constant factor value (derived from rain gauge data) over the entire period of the analysis. The QPEs served as input for a continuous hydrological model that represents the main hydrological processes in the region, namely infiltration, flow routing and transmission losses. The infiltration function is applied in a distributed mode while the routing and transmission loss functions are applied in a lumped mode. Model parameters were found by calibration based on five years of data for one of the catchments. Validation was performed for a subsequent five-year period for the same catchment and then for an entire ten year record for the second catchment. The probability of detection and false alarm rates for the validation cases were reasonable. Probabilistic flash-flood prediction is presented applying Monte Carlo simulations with an uncertainty range for the QPEs and model parameters. With low probability thresholds, one can maintain more than 70% detection with no more than 30% false alarms. The study demonstrates that a flash-flood-warning model is feasible for catchments in the area studied.

  11. Project summary. PERSISTENCE OF PATHOGENS IN LAGOON-STORED SLUDGE (EPA/600/S2-89/015)

    EPA Science Inventory

    The project objective was to investigate pathogen inactlvation in lagoon-stored municipal sludges. The in-field lagoons were located in Louisiana (New Orleans) and in Texas (Port Aransas), both semitropical areas of the United States. Each lagoon was filled with 7.56 mL of ...

  12. 46 CFR 171.117 - Dead covers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Dead covers. 171.117 Section 171.117 Shipping COAST... Dead covers. (a) Except as provided in paragraph (b) of this section, each port light with the sill located below the margin line must have a hinged, inside dead cover. (b) The dead cover on a port light...

  13. 46 CFR 171.117 - Dead covers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Dead covers. 171.117 Section 171.117 Shipping COAST... Dead covers. (a) Except as provided in paragraph (b) of this section, each port light with the sill located below the margin line must have a hinged, inside dead cover. (b) The dead cover on a port light...

  14. 46 CFR 171.117 - Dead covers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Dead covers. 171.117 Section 171.117 Shipping COAST... Dead covers. (a) Except as provided in paragraph (b) of this section, each port light with the sill located below the margin line must have a hinged, inside dead cover. (b) The dead cover on a port light...

  15. 46 CFR 171.117 - Dead covers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Dead covers. 171.117 Section 171.117 Shipping COAST... Dead covers. (a) Except as provided in paragraph (b) of this section, each port light with the sill located below the margin line must have a hinged, inside dead cover. (b) The dead cover on a port light...

  16. 46 CFR 171.117 - Dead covers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Dead covers. 171.117 Section 171.117 Shipping COAST... Dead covers. (a) Except as provided in paragraph (b) of this section, each port light with the sill located below the margin line must have a hinged, inside dead cover. (b) The dead cover on a port light...

  17. Impact of mussel bioengineering on fine-grained sediment dynamics in a coastal lagoon: A numerical modelling investigation

    NASA Astrophysics Data System (ADS)

    Forsberg, Pernille L.; Lumborg, Ulrik; Bundgaard, Klavs; Ernstsen, Verner B.

    2017-12-01

    Rødsand lagoon in southeast Denmark is a non-tidal coastal lagoon. It is home to a wide range of marine flora and fauna and part of the Natura 2000 network. An increase in turbidity through elevated levels of suspended sediment concentration (SSC) within the lagoon may affect the ecosystem health due to reduced light penetration. Increasing SSC levels within Rødsand lagoon could be caused by increasing storm intensity or by a sediment spill from dredging activities west of the lagoon in relation to the planned construction of the Fehmarnbelt fixed link between Denmark and Germany. The aim of the study was to investigate the impact of a mussel reef on sediment import and SSC in a semi-enclosed lagoon through the development of a bioengineering modelling application that makes it possible to include the filtrating effect of mussels in a numerical model of the lagoonal system. The numerical implementation of an exterior mussel reef generated a reduction in the SSC in the vicinity of the reef, through the adjacent inlet and in the western part of the lagoon. The mussel reef reduced the sediment import to Rødsand lagoon by 13-22% and reduced the SSC within Rødsand lagoon by 5-9% depending on the filtration rate and the reef length. The results suggest that the implementation of a mussel reef has the potential to relieve the pressure of increasing turbidity levels within a semi-enclosed lagoonal system. However, further assessment and development of the bioengineering application and resulting ecosystem impacts are necessary prior to actual implementation.

  18. Analysis of the unique geothermal microbial ecosystem of the Blue Lagoon.

    PubMed

    Petursdottir, Solveig K; Bjornsdottir, Snaedis H; Hreggvidsson, Gudmundur O; Hjorleifsdottir, Sigridur; Kristjansson, Jakob K

    2009-12-01

    Cultivation and culture-independent techniques were used to describe the geothermal ecosystem of the Blue Lagoon in Iceland. The lagoon contains both seawater and freshwater of geothermal origin and is extremely high in silica content. Water samples were collected repeatedly in summer and autumn in 2003 and 2005 and in winter 2006 were analyzed for species composition. The study revealed the typical traits of an extreme ecosystem characterized by dominating species and other species represented in low numbers. A total of 35 taxa were identified. The calculated biodiversity index of the samples was 2.1-2.5. The majority (83%) of analyzed taxa were closely related to bacteria of marine and geothermal origin reflecting a marine character of the ecosystem and the origin of the Blue Lagoon hydrothermal fluid. A high ratio (63%) of analyzed taxa represented putative novel bacterial species. The majority (71%) of analyzed clones were Alphaproteobacteria, of which 80% belonged to the Roseobacter lineage within the family of Rhodobacteraceae. Of seven cultivated species, the two most abundant ones belonged to this lineage. Silicibacter lacuscaerulensis was confirmed as a dominating species in the Blue Lagoon. One group of isolates represented a recently identified species within the genus of Nitratireductor within Rhizobiales. This study implies an annually stable and seasonally dynamic ecosystem in the Blue Lagoon.

  19. Foraminiferal biotopes and their distribution control in Ria de Aveiro (Portugal): a multiproxy approach.

    PubMed

    Martins, Maria Virgínia Alves; Frontalini, Fabrizio; Laut, Lazaro L M; Silva, Frederico S; Moreno, João; Sousa, Silvia; Zaaboub, Noureddine; El Bour, Monia; Rocha, Fernando

    2014-12-01

    Ria de Aveiro, which is located in the centre of Portugal (40° 38' N, 8° 45' W), is a well-mixed and complex coastal lagoon that is separated from the sea by a sandy barrier and connects with the Atlantic through an artificial inlet. Tidal currents are the main factor controlling the lagoon's hydrodynamics and, to a great extent, the sedimentary dynamic. The inner lagoonal zones receive input from several rivers and experience the pressure caused by the accumulation of organic matter and pollutants (namely, trace metals) from diverse anthropic activities. This paper is the first piece of work aiming to recognize, characterize and explain the main benthic foraminiferal biotopes in Ria de Aveiro. To provide a broad overview of this kind of setting, our results are compared to those of previous published studies conducted in similar transitional environments. The research is based on an investigation of 225 sites spread throughout this ecosystem. Utilizing a statistical approach, this study analyses the details of dead benthic foraminiferal assemblages composed of 260 taxa, the texture and composition (mineralogical and geochemical) of the sediment and physicochemical data. On the basis of the results of R-mode and Q-mode cluster analyses, several different biotopes can be defined as marsh biotope/near-marsh biotope; marginal urban/marginal urban mixing biotope; inner-outer lagoon biotope or enclosed lagoon; outer lagoon biotope, mixed sub-biotope; and outer lagoon, marine sub-biotope. These biotopes are related to foraminifera assemblages and substrate type and are influenced by local currents, water depth, chemical and physicochemical conditions, river or oceanic proximity, and anthropogenic impact, as evidenced by the mapping of the six factor loadings of the principal component analysis conducted herein. Based on a similar methodology of analysis as that applied in previous studies in the Lagoon of Venice, comparable biotypes were identified in Lagoon of Aveiro.

  20. Changes in sludge accumulation of anaerobic swine lagoons receiving pretreated influent

    USDA-ARS?s Scientific Manuscript database

    This study evaluated the changes in sludge depth and volume of anaerobic swine lagoon in North Carolina after six years of applying treatment to the liquid flushed manure prior to entering the lagoon. The farm had seven swine barns with a permitted capacity of 5,145 head feeder to finish (735 head/b...

  1. Geochemical characterisation of gases along the dead sea rift: Evidences of mantle-co2 degassing

    NASA Astrophysics Data System (ADS)

    Inguaggiato, C.; Censi, P.; D'Alessandro, W.; Zuddas, P.

    2016-06-01

    The Dead Sea Transform (DST) fault system, where a lateral displacement between the African and Arabian plates occurs, is characterised by anomalous heat flux in the Israeli area close to the border with Syria and Jordan. The concentration of He and CO2, and isotopic composition of He and total dissolved inorganic carbon were studied in cold and thermal waters collected along the DST, in order to investigate the source of volatiles and their relationship with the tectonic framework of the DST. The waters with higher temperature (up to 57.2 °C) are characterised by higher amounts of CO2 and helium (up to 55.72 and 1.91 ∗ 10- 2 cc l- 1, respectively). Helium isotopic data (R/Ra from 0.11 to 2.14) and 4He/20Ne ratios (0.41-106.86) show the presence of deep-deriving fluids consisting of a variable mixture of mantle and crust end-members, with the former reaching up to 35%. Carbon isotope signature of total dissolved carbon from hot waters falls within the range of magmatic values, suggesting the delivery of deep-seated CO2. The geographical distribution of helium isotopic data and isotopic carbon (CO2) values coupled with (CO2/3He ratios) indicate a larger contribution of mantle-derived fluids affecting the northern part of the investigated area, where the waters reach the highest temperature. These evidences suggest the occurrence of a favourable tectonic framework, including a Moho discontinuity up-rise and/or the presence of a deep fault system coupled with the recent magmatic activity recognised in the northern part of Israel.

  2. Structuring factors and recent changes in subtidal macrozoobenthic communities of a coastal lagoon, Arcachon Bay (France)

    NASA Astrophysics Data System (ADS)

    Blanchet, Hugues; de Montaudouin, Xavier; Chardy, Pierre; Bachelet, Guy

    2005-09-01

    Fourteen years after a previous investigation in Arcachon Bay (SW France), the quantitative distribution of subtidal macrozoobenthic communities was assessed in 2002 through a stratified sampling strategy involving a larger number of stations (89 vs. 18) than in 1988. A total of 226 taxa were recorded. Cluster Analysis and Correspondence Analysis identified nine station groups corresponding to benthic faunal assemblages and their characteristic species. Multiple Discriminant Analysis showed that the main environmental factors influencing the distribution of faunal assemblages were sediment parameters and distance from the ocean. Depth was a minor structuring factor. At the scale of the lagoon, biogenic structures such as Zostera marina beds, Crepidula fornicata-dominated bottoms or dead oyster shell bottoms did not display any particular assemblage of infauna. Comparison with previous quantitative data from the 1988 survey provided more precision on the distribution of benthic assemblages and revealed community changes at a 14-year scale. These modifications reflected a general increase of silt and clay content in the sediment in the internal parts of channels, inducing community change. These changes can be correlated to the recent first signs of a moderate eutrophication process which have appeared, since 1988, through the development of green macroalgae in some parts of the lagoon. This trend was enhanced in transverse channels with reduced hydrodynamics and led to muddy areas where green macroalgae tended to accumulate. Locally, the dredging of sandbanks induced stronger currents and allowed the marine influence to occur, and also induced community change. These observations confirm that surveys of macrobenthic communities are useful tools to assess coastal ecosystem change even in moderately disturbed environments.

  3. Impact of sea-level rise on cross-shore sediment transport on fetch-limited barrier reef island beaches under modal and cyclonic conditions.

    PubMed

    Baldock, T E; Golshani, A; Atkinson, A; Shimamoto, T; Wu, S; Callaghan, D P; Mumby, P J

    2015-08-15

    A one-dimensional wave model is combined with an analytical sediment transport model to investigate the likely influence of sea-level rise on net cross-shore sediment transport on fetch-limited barrier reef and lagoon island beaches. The modelling considers if changes in the nearshore wave height and wave period in the lagoon induced by different water levels over the reef flat are likely to lead to net offshore or onshore movement of sediment. The results indicate that the effects of SLR on net sediment movement are highly variable and controlled by the bathymetry of the reef and lagoon. A significant range of reef-lagoon bathymetry, and notably shallow and narrow reefs, appears to lead hydrodynamic conditions and beaches that are likely to be stable or even accrete under SLR. Loss of reef structural complexity, particularly on the reef flat, increases the chance of sediment transport away from beaches and offshore. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Whiteriver Sewage Lagoons, Whiteriver, AZ: AZ0024058

    EPA Pesticide Factsheets

    Authorization to Discharge Under National Pollutant Discharge Elimination System (NPDES) Permit No. AZ0024058 for Tribal Utility Authority, White Mountain Apache Tribe Whiteriver Sewage Lagoons, Whiteriver, AZ.

  5. No Time for Dead Time: Use the Fourier Amplitude Differences to Normalize Dead-time-affected Periodograms

    NASA Astrophysics Data System (ADS)

    Bachetti, Matteo; Huppenkothen, Daniela

    2018-02-01

    Dead time affects many of the instruments used in X-ray astronomy, by producing a strong distortion in power density spectra. This can make it difficult to model the aperiodic variability of the source or look for quasi-periodic oscillations. Whereas in some instruments a simple a priori correction for dead-time-affected power spectra is possible, this is not the case for others such as NuSTAR, where the dead time is non-constant and long (∼2.5 ms). Bachetti et al. (2015) suggested the cospectrum obtained from light curves of independent detectors within the same instrument as a possible way out, but this solution has always only been a partial one: the measured rms was still affected by dead time because the width of the power distribution of the cospectrum was modulated by dead time in a frequency-dependent way. In this Letter, we suggest a new, powerful method to normalize dead-time-affected cospectra and power density spectra. Our approach uses the difference of the Fourier amplitudes from two independent detectors to characterize and filter out the effect of dead time. This method is crucially important for the accurate modeling of periodograms derived from instruments affected by dead time on board current missions like NuSTAR and Astrosat, but also future missions such as IXPE.

  6. [Species and size composition of fishes in Barra de Navidad lagoon, Mexican central Pacific].

    PubMed

    González-Sansón, Gaspar; Aguilar-Betancourt, Consuelo; Kosonoy-Aceves, Daniel; Lucano-Ramírez, Gabriela; Ruiz-Ramírez, Salvador; Flores-Ortega, Juan Ramón; Hinojosa-Larios, Angel; de Asís Silva-Bátiz, Francisco

    2014-03-01

    Coastal lagoons are considered important nursery areas for many coastal fishes. Barra de Navidad coastal lagoon (3.76km2) is important for local economy as it supports tourism development and artisanal fisheries. However, the role of this lagoon in the dynamics of coastal fish populations is scarcely known. Thus, the objectives of this research were: to characterize the water of the lagoon and related weather conditions, to develop a systematic list of the ichthyofauna, and to estimate the proportion of juveniles in the total number of individuals captured of most abundant species. Water and fish samples were collected between March 2011 and February 2012. Physical and chemical variables were measured in rainy and dry seasons. Several fishing gears were used including a cast net, beach purse seine and gillnets of four different mesh sizes. Our results showed that the lagoon is most of the time euhaline (salinity 30-40ups), although it can be mixopolyhaline (salinity 18-30ups) during short periods. Chlorophyll and nutrients concentrations suggested eutrophication in the lagoon. Mean water temperature changed seasonally from 24.9 degrees C (April, high tide) to 31.4 degrees C (October, low tide). Considering ichthyofauna species, a total of 36 448 individuals of 92 species were collected, 31 of them adding up to 95% of the total of individuals caught. Dominant species were Anchoa spp. (44.6%), Diapterus peruvianus (10.5%), Eucinostomus currani (8.1%), Cetengraulis mysticetus (7.8%), Mugil curema (5.2%) and Opisthonema libertate (4.5%). The lagoon is an important juvenile habitat for 22 of the 31 most abundant species. These included several species of commercial importance such as snappers (Lutjanus argentiventris, L. colorado and L. novemfasciatus), snook (Centropomus nigrescens) and white mullet (Mugil curema). Other four species seem to use the lagoon mainly as adults. This paper is the first contribution on the composition of estuarine ichthyofauna in Jalisco

  7. Genetic connectivity between land and sea: the case of the beachflea Orchestia montagui (Crustacea, Amphipoda, Talitridae) in the Mediterranean Sea.

    PubMed

    Pavesi, Laura; Tiedemann, Ralph; De Matthaeis, Elvira; Ketmaier, Valerio

    2013-04-25

    We examined patterns of genetic divergence in 26 Mediterranean populations of the semi-terrestrial beachflea Orchestia montagui using mitochondrial (cytochrome oxidase subunit I), microsatellite (eight loci) and allozymic data. The species typically forms large populations within heaps of dead seagrass leaves stranded on beaches at the waterfront. We adopted a hierarchical geographic sampling to unravel population structure in a species living at the sea-land transition and, hence, likely subjected to dramatically contrasting forces. Mitochondrial DNA showed historical phylogeographic breaks among Adriatic, Ionian and the remaining basins (Tyrrhenian, Western and Eastern Mediterranean Sea) likely caused by the geological and climatic changes of the Pleistocene. Microsatellites (and to a lesser extent allozymes) detected a further subdivision between and within the Western Mediterranean and the Tyrrhenian Sea due to present-day processes. A pattern of isolation by distance was not detected in any of the analyzed data set. We conclude that the population structure of O. montagui is the result of the interplay of two contrasting forces that act on the species population genetic structure. On one hand, the species semi-terrestrial life style would tend to determine the onset of local differences. On the other hand, these differences are partially counter-balanced by passive movements of migrants via rafting on heaps of dead seagrass leaves across sites by sea surface currents. Approximate Bayesian Computations support dispersal at sea as prevalent over terrestrial regionalism.

  8. Genetic connectivity between land and sea: the case of the beachflea Orchestia montagui (Crustacea, Amphipoda, Talitridae) in the Mediterranean Sea

    PubMed Central

    2013-01-01

    Introduction We examined patterns of genetic divergence in 26 Mediterranean populations of the semi-terrestrial beachflea Orchestia montagui using mitochondrial (cytochrome oxidase subunit I), microsatellite (eight loci) and allozymic data. The species typically forms large populations within heaps of dead seagrass leaves stranded on beaches at the waterfront. We adopted a hierarchical geographic sampling to unravel population structure in a species living at the sea-land transition and, hence, likely subjected to dramatically contrasting forces. Results Mitochondrial DNA showed historical phylogeographic breaks among Adriatic, Ionian and the remaining basins (Tyrrhenian, Western and Eastern Mediterranean Sea) likely caused by the geological and climatic changes of the Pleistocene. Microsatellites (and to a lesser extent allozymes) detected a further subdivision between and within the Western Mediterranean and the Tyrrhenian Sea due to present-day processes. A pattern of isolation by distance was not detected in any of the analyzed data set. Conclusions We conclude that the population structure of O. montagui is the result of the interplay of two contrasting forces that act on the species population genetic structure. On one hand, the species semi-terrestrial life style would tend to determine the onset of local differences. On the other hand, these differences are partially counter-balanced by passive movements of migrants via rafting on heaps of dead seagrass leaves across sites by sea surface currents. Approximate Bayesian Computations support dispersal at sea as prevalent over terrestrial regionalism. PMID:23618554

  9. Spatial variability in fish species assemblage and community structure in four subtropical lagoons of the Okavango Delta, Botswana

    NASA Astrophysics Data System (ADS)

    Mosepele, K.; Mosepele, B.; Bokhutlo, T.; Amutenya, K.

    The species assemblage and community structure of four lagoons was assessed through time series data collected between 2001 and 2005 in the Okavango Delta. The main aim of this study was to evaluate the importance of lagoons as fish habitats in the Delta. Therefore, this study assessed the importance of these habitats through determining fish species diversity, composition, relative abundance, and community structure between the lagoons. Forty six species belonging to 11 families and five orders were collected over the study period. Main results showed that Cichlidae was the most important family and had the highest species richness in the lagoons. Significant differences ( p < 0.05) were observed in species richness, faunal composition, and diversity among some of the lagoons. Moreover, there were also variations in species composition, and also significant differences in mean length and weight of some selected fish species in the four lagoons. This study showed that lagoons are important repositories of food fish to local communities. Moreover, a management of the fish stocks based on restricting fishing in some lagoons as protected areas is not feasible because of these significant differences in species assemblages between lagoons. Furthermore, lagoons are subject to multiple where most of the lodges are constructed, which makes subsequently makes them vulnerable to pollution. Therefore, the integrity of lagoon habitats needs to be maintained so that their ecosystem functioning (i.e. fish repositories) is maintained.

  10. Assessment of the trophic state of a hypersaline-carbonatic environment: Vermelha Lagoon (Brazil)

    PubMed Central

    Martins, Maria Virginia Alves; Frontalini, Fabrizio; Ballalai, João M.; Belart, Pierre; Habib, Renan; Fontana, Luiz F.; Clemente, Iara M. M. M.; Lorini, Maria Lucia; Mendonça Filho, João G.; Laut, Vanessa M.; Figueiredo, Marcos de Souza Lima

    2017-01-01

    Vermelha Lagoon is a hypersaline shallow transitional ecosystem in the state of Rio de Janeiro (Brazil). This lagoon is located in the protected area of Massambaba, between the cities of Araruama and Saquarema (Brazil), and displays two quite uncommon particularities: it exhibits carbonate sedimentation and displays the development of Holocene stromatolites. Due to both particularities, the salt industry and property speculation have been, increasingly, generating anthropic pressures on this ecosystem. This study aims to apply a multiproxy approach to evaluate the trophic state of Vermelha Lagoon based on physicochemical parameters and geochemical data for the quantification and qualification of organic matter (OM), namely total organic carbon (TOC), total sulfur (TS), total phosphorus (TP) and biopolymeric carbon (BPC), including carbohydrates (CHO), lipids (LIP) and proteins (PTN). The CHO/TOC ratio values suggest that OM supplied to the sediment is of autochthonous origin and results, essentially, from microbial activity. The cluster analyses allowed the identification of four regions in Vermelha Lagoon. The Region I included stations located in shallow areas of the eastern sector of Vermelha lagoon affected by the impact of the artificial channel of connection with Araruama Lagoon. The Region II, under the influence of salt pans, is characterized by the highest values of BPC, namely CHO promoted by microbiological activity. The Region III include stations spread through the lagoon with high values of dissolved oxygen and lower values of TP. Stromatolites and microbial mattes growth was observed in some stations of this sector. Region IV, where the highest values of TOC and TS were found, represents depocenters of organic matter, located in general in depressed areas. Results of this work evidences that the Vermelha Lagoon is an eutrophic but alkaline and well oxygenated environment (at both water column and surface sediment) where the autotrophic activity is

  11. Induction of Purple Sulfur Bacterial Growth in Dairy Wastewater Lagoons by Circulation

    USDA-ARS?s Scientific Manuscript database

    Aims: To determine if circulation of diary wastewater induces the growth of phototrophic purple sulfur bacteria (PSB). Methods and Results: Two dairy wastewater lagoons that were similar in size, geographic location, number and type of cattle loading the lagoons were chosen. The only obvious diffe...

  12. Assessing hog lagoon waste contamination in the Cape Fear Watershed using Bacteroidetes 16S rRNA gene pyrosequencing.

    PubMed

    Arfken, Ann M; Song, Bongkeun; Mallin, Michael A

    2015-09-01

    Hog lagoons can be major sources of waste and nutrient contamination to watersheds adjacent to pig farms. Fecal source tracking methods targeting Bacteroidetes 16S rRNA genes in pig fecal matter may underestimate or fail to detect hog lagoon contamination in riverine environments. In order to detect hog lagoon wastewater contamination in the Cape Fear Watershed, where a large number of hog farms are present, we conducted pyrosequencing analyses of Bacteroidetes 16S rRNA genes in hog lagoon waste and identified new hog lagoon-specific marker sequences. Additional pyrosequencing analyses of Bacteroidetes 16S rRNA genes were conducted with surface water samples collected at 4 sites during 5 months in the Cape Fear Watershed. Using an operational taxonomic unit (OTU) identity cutoff value of 97 %, these newly identified hog lagoon markers were found in 3 of the river samples, while only 1 sample contained the pig fecal marker. In the sample containing the pig fecal marker, there was a relatively high percentage (14.1 %) of the hog lagoon markers and a low pig fecal marker relative abundance of 0.4 % in the Bacteroidetes 16S rRNA gene sequences. This suggests that hog lagoon contamination must be somewhat significant in order for pig fecal markers to be detected, and low levels of hog lagoon contamination cannot be detected targeting only pig-specific fecal markers. Thus, new hog lagoon markers have a better detection capacity for lagoon waste contamination, and in conjunction with a pig fecal marker, provide a more comprehensive and accurate detection of hog lagoon waste contamination in susceptible watersheds.

  13. Protective effects of a cream containing Dead Sea minerals against UVB-induced stress in human skin.

    PubMed

    Portugal-Cohen, Meital; Soroka, Yoram; Ma'or, Zeevi; Oron, Miriam; Zioni, Tamar; Brégégère, François Menahem; Neuman, Rami; Kohen, Ron; Milner, Yoram

    2009-09-01

    Dead Sea (DS) mud and water are known for their unique composition of minerals, and for their therapeutic properties on psoriasis and other inflammatory skin diseases. Their mode of action, however, remains poorly known. To analyse the ability of Dermud, a leave-on skin preparation containing DS mud and other ingredients like DS water, zinc oxide, aloe-vera extract, pro-vitamin B5 and vitamin E, to antagonize biological effects induced by UVB irradiation in skin when topically applied in organ cultures. We have used human skin organ cultures as a model to assess the biological effects of UVB irradiation and of Dermud cream topical application. Skin pieces were analysed for mitochondrial activity by MTT assay, for apoptosis by caspase 3 assay, for cytokine secretion by solid phase ELISA, for overall antioxidant capacity by ferric reducing antioxidant power and Oxygen radical absorbance capacity assays (epidermis) or by cyclic voltammetry (external medium), and for uric acid (UA) content by HPLC. We report that UVB irradiation decreases cell viability, total antioxidant capacity and UA contents in the epidermis of skin organ cultures, while increasing the levels of apoptosis in cells and their cytokine secretion. Topical application of Dermud decreased all these effects significantly. Our results clearly show that Dermud has protective, anti-oxidant and anti-inflammatory properties that can antagonize biological effects of UVB irradiation in skin. It may therefore be able to reduce skin photodamage and photoaging, and more generally to reduce oxidative stress and inflammation in skin pathologies.

  14. Hubble reveals heart of Lagoon Nebula

    NASA Image and Video Library

    2010-09-22

    Image release date September 22, 2010 To view a video of this image go here: www.flickr.com/photos/gsfc/5014452203 Caption: A spectacular new NASA/ESA Hubble Space Telescope image reveals the heart of the Lagoon Nebula. Seen as a massive cloud of glowing dust and gas, bombarded by the energetic radiation of new stars, this placid name hides a dramatic reality. The Advanced Camera for Surveys (ACS) on the NASA/ESA Hubble Space Telescope has captured a dramatic view of gas and dust sculpted by intense radiation from hot young stars deep in the heart of the Lagoon Nebula (Messier 8). This spectacular object is named after the wide, lagoon-shaped dust lane that crosses the glowing gas of the nebula. This structure is prominent in wide-field images, but cannot be seen in this close-up. However the strange billowing shapes and sandy texture visible in this image make the Lagoon Nebula’s watery name eerily appropriate from this viewpoint too. Located four to five thousand light-years away, in the constellation of Sagittarius (the Archer), Messier 8 is a huge region of star birth that stretches across one hundred light-years. Clouds of hydrogen gas are slowly collapsing to form new stars, whose bright ultraviolet rays then light up the surrounding gas in a distinctive shade of red. The wispy tendrils and beach-like features of the nebula are not caused by the ebb and flow of tides, but rather by ultraviolet radiation’s ability to erode and disperse the gas and dust into the distinctive shapes that we see. In recent years astronomers probing the secrets of the Lagoon Nebula have found the first unambiguous proof that star formation by accretion of matter from the gas cloud is ongoing in this region. Young stars that are still surrounded by an accretion disc occasionally shoot out long tendrils of matter from their poles. Several examples of these jets, known as Herbig-Haro objects, have been found in this nebula in the last five years, providing strong support for

  15. Pan-European management of coastal lagoons: A science-policy-stakeholder interface perspective

    NASA Astrophysics Data System (ADS)

    Lillebø, Ana I.; Stålnacke, Per; Gooch, Geoffrey D.; Krysanova, Valentina; Bielecka, Małgorzata

    2017-11-01

    The main objective of the work carried out in the scope of a three years collaborative research project was to develop science-based strategies and a decision support framework for the integrated management of coastal lagoons and their catchments and, in this context, to enhance connectivity between research and policymaking. In this paper our main objective is to share the lessons learned from the innovative methodology used throughout the project. To achieve the proposed objectives, the multidisciplinary scientific knowledge in the project team was combined and integrated with the knowledge and views of local stakeholders of four selected European coastal lagoons, using a three step participatory approach. With this innovative approach, which included the usage of eco-hydrological and water quality-modelling tools, the team developed and analyzed integrated scenarios of possible economic development and environmental impacts in four European lagoons and their catchments. These scenarios were presented and discussed with stakeholders, giving rise to management recommendations for each case study lagoon. Results show that some management options might be transferrable to other European lagoons having similar climatic, geophysical and socio-economic settings. In management terms, the project output provides a set of policy guidelines derived from the different analyses conducted and proposes initiatives concerning management implementation in a local-regional-national-European setting.

  16. Protozoan Bacterivory in the Ice and the Water Column of a Cold Temperate Lagoon.

    PubMed

    Sime-Ngando; Demers; Juniper

    1999-02-01

    > Abstract Bacterial abundance and bacterivorous protist abundance and activity were examined in ice-brine and water column communities of a cold temperate Japanese lagoon (Saroma-Ko Lagoon, Hokkaido, 44 degreesN, 144 degreesE), during the late winter phase of ice community development (February-March 1992). Bacterial abundance averaged 6 and 1 x 10(5) cells ml-1 in the ice-brine and plankton samples, respectively, and generally decreased during the sampling period. Bacterivorous protists, identified based on direct observation of short-term (<1 h) ingested fluorescently labeled bacteria (FLB) in their food vacuoles, were largely dominated by flagellates, mainly cryothecomonad-type and chrysomonad-like cells and small dinoflagellates of the genus Gymnodinium. Bacterivorous ciliates included mainly the prostomatid Urotricha sp., the scuticociliates Uronema and Cyclidium, the choreotrichs Lohmaniella oviformis and Strobilidium, and the hypotrich Euplotes sp. Protist abundance averaged 4 x 10(3) and 8.1 cells ml-1 in the ice-brine and 0.3 x 10(3) and 1.2 cells ml-1 in the plankton, for flagellates and ciliates, respectively. In contrast to bacteria, the abundance of protists generally increased throughout the sampling period, indicating predator-prey interactions. Protistan bacterivory, measured from the rate of FLB disappearance over 24 h, averaged 36% (ice) and 24% (plankton) of bacterial standing stock and exhibited the same seasonal pattern as for protist abundance. The calculated specific clearance (range, 2-67 nl protozoa-1 h-1) and ingestion (<1-26 particles protozoa-1 h-1) rates were likely to be minimal estimates and grazing impact may have been higher on occasion. Indications for the dependence of "bacterivorous protists" on nonbacterial food items were also provided. Although alternative sources of bacterial loss are likely to be of importance, this study provides evidence for the potential of protozoan assemblages as bacterial grazers in both sea ice

  17. Benthic flux measurements of Hg species in a northern Adriatic lagoon environment (Marano and Grado Lagoon, Italy)

    NASA Astrophysics Data System (ADS)

    Emili, Andrea; Acquavita, Alessandro; Koron, Neža; Covelli, Stefano; Faganeli, Jadran; Horvat, Milena; Žižek, Suzana; Fajon, Vesna

    2012-11-01

    As part of the "MIRACLE" project, the biogeochemical cycling of mercury (Hg) at the sediment-water interface was studied in the field in the Marano and Grado Lagoon (Northern Adriatic Sea). Seasonal investigations were conducted at selected experimental sites, where Manila Clams (Tapes philippinarum) were previously seeded. Measurements were performed seasonally during three campaigns, using two benthic chambers, one transparent and one dark, to evaluate the effect of light on Hg cycling. Total dissolved Hg (THg), methylmercury (MeHg), and dissolved gaseous Hg (DGM) species were considered. Diurnal benthic fluxes were found to significantly exceed the diffusive fluxes at all stations. The assessment of the annual recycling of Hg species from sediments to the water column showed that up to 99% of MeHg is recycled annually to the water column, while Hg recycling ranges from 30 to 60%. MeHg poses the higher risk for potential bioaccumulation in clams, but it is partially mitigated by Hg reduction, which seems to be an important process leading to evasion losses of Hg from these environments. Estimated benthic fluxes suggest that Hg recycling at the sediment-water interface is more active in the Grado sector. Hence, based on the estimated release of MeHg from sediments, it is suggested that the western sector seems to be more suitable for clam farming and the extension of rearing activities.

  18. Investigation of lagoon lakes in Kocacay delta by using remote sensing method.

    PubMed

    Irtem, Emel; Sacin, Yener

    2012-04-01

    Coasts are areas that are under the influence of the interaction of the air, water and land and attract attention with the abundance of their natural resources and therefore are subjected to excessive usage. This excessive usage may disturb the sensitive balance of the coast ecosystem. In this study, the changes in Arapçiftligi, Poyraz, Dalyan lakes area found in Kocacay delta located in the south coast of Marmara sea was evaluated between the periods of 2000 to 2007 with remote sensing method. These lakes, located on the shores, have a very sensitive naturally dynamic balance and very importance in terms of natural surroundings and the coastal zones management plan. It must be known the change of the lakes mentioned above area according to years. Research and applications have demonstrated the advantages of remote sensing and geographic information system techiques on river,delta, lake, lagoon lake, sensitivite areas in a lakeshore, coastal erosion etc. monitoring and management. In the study, we benefited from Erdas and Intergraph-Geomedia 6.1 image processing and GIS, and also from AutoCAD 2007 and NetCAD 4.0 computer-aided design (CAD) software. For 2000, 2001, 2005 and 2007 years (4 number) Landsat-5 TM satellite images belonging to the region were used. As a result of the study, Arapçiftligi, Dalyan and Poyraz lake areas, number of islets that are seen in the lakes were given in respect to years. Arapçiftligi lake shrank 29.5% in size in the years 2000 and 2007. The fact that the lake continued to get smaller in size even in periods of high precipitation may be due to the sediment flowing from the agricultural fields established close to the lake area. Dalyan and Poyraz lakes lost 60% in terms of their surface area in the years 2000 and 2007. In 2000-2001 periods, Dalyan and Poyraz lakes increased in size by 3.2%. The reason for this could be the excessive precipitation and the fact that the seawater from Marmara sea seeps into the lake. Protection of the

  19. CISOCUR - Residence time modelling in the Curonian Lagoon and validation through stable isotope measurements

    NASA Astrophysics Data System (ADS)

    Umgiesser, Georg; Razinkovas-Baziukas, Arturas; Zemlys, Petras; Ertürk, Ali; Mėžinė, Jovita

    2015-04-01

    The spatial pattern of the hydrodynamic circulation of the Curonian lagoon, the largest European coastal lagoon, is still little understood. In absence of automatic current registration data all the existing models relied mostly on such data as water levels leaving high level of uncertainty. Here we present CISOCUR, a new project financed by European Social Fund under the Global Grant measure. The project applies a new methodology that uses the carbon stable isotope (SI) ratio of C12 and C13 that characterize different water sources entering the lagoon and may be altered by internal kinetic processes. Through the tracing of these isotope ratios different water masses can be identified. This gives the possibility to validate several hypotheses of water circulation and validate hydrodynamic models. In particular it will be possible to 1) trace water masses entering the lagoon through the Nemunas and the Klaipeda strait; 2) test the hypothesis of sediment transport mechanisms inside the lagoon; 3) evaluate the importance of physical forcing on the lagoon circulation. The use of a hydrodynamic finite element model, coupled with the SI method, will allow for a realistic description of the transport processes inside the Curonian lagoon. So the main research goal is to apply the stable isotope tracers and a finite element model to determine the circulation patterns in the Curonian lagoon. Here we show how the SI analysis was used to validate the hydrodynamic model on the basis of residence time. The average residence time of the Nemunas waters is estimated through SI data and is then compared with the model data computed through standard algorithms. Seasonal changes of carbon content are taken care of through a preliminary application of a carbon kinetic model. The results are compared to literature data.

  20. Spatial Variation in Development of Epibenthic Assemblages in a Coastal Lagoon

    NASA Astrophysics Data System (ADS)

    Benedetti-Cecchi, L.; Rindi, F.; Bertocci, I.; Bulleri, F.; Cinelli, F.

    2001-05-01

    Spatial and temporal patterns in colonization of epibenthic assemblages were measured in a coastal lagoon on the west coast of Italy using recruitment panels. It was proposed that if the ecological processes influencing development of assemblages were homogeneous within the lagoon, then there should be no differences in mean cover of colonists nor in spatial patterns of variance in abundance in different areas of the lagoon. In contrast, heterogeneity in ecological processes affecting development would be revealed by spatial variability in colonization. To test these hypotheses, two sticks each with five replicate panels were placed 3-5 m apart in each of two sites 30-100 m apart in each of three locations 500-100 m apart; the experiment was repeated three times between April and December 1999, using new sites at each location each time. The results revealed considerable spatial variation in the structure of developing assemblages across locations. There were significant Location or Time×Location effects in the mean abundance of common taxa, such as Enteromorpha intestinalis , Ulva rigida, Cladophora spp., bryozoans and serpulids. Patterns in spatial variation differed among locations for these organisms. Collectively, the results supported a model of spatial heterogeneity in intensity of processes influencing patterns of recruitment and development of epibenthic assemblages in the Lagoon of Orbetello. The implications of these results for management of environmental problems in complex, variable habitats such as coastal lagoons, are discussed.

  1. Phosphorus recovery from anaerobic swine lagoon sludge using the quick wash process

    USDA-ARS?s Scientific Manuscript database

    Long term accumulation of sludge in anaerobic swine lagoons reduces its storage volume and ability to treat waste. Usually, excess accumulation of lagoon sludge is removed using pumping dredges. The dredged sludge is then land applied at agronomic rates according to its nutrient content. The accumul...

  2. Phosphorus recovery from anaerobic swine lagoon sludge using the quick wash process

    USDA-ARS?s Scientific Manuscript database

    Long term and significant accumulation of sludge in anaerobic swine lagoons reduces its storage volume and ability to treat waste. Usually, excess accumulation of lagoon sludge is removed by dredging. The dredged sludge is then land applied at agronomic rates according to its nutrient content. Becau...

  3. Transcriptome-wide analysis of DEAD-box RNA helicase gene family in an Antarctic psychrophilic alga Chlamydomonas sp. ICE-L.

    PubMed

    Liu, Chenlin; Huang, Xiaohang

    2015-09-01

    DEAD-box RNA helicase family proteins have been identified in almost all living organisms. Some of them play a crucial role in adaptation to environmental changes and stress response, especially in the low-temperature acclimation in different kinds of organisms. Compared with the full swing study in plants and bacteria, the characters and functions of DEAD-box family proteins had not been surveyed in algae. To identify genes critical for freezing acclimation in algae, we screened DEAD-box RNA helicase genes from the transcriptome sequences of a psychrophilic microalga Chlamydomonas sp. ICE-L which was isolated from Antarctic sea ice. Totally 39 DEAD-box RNA helicase genes had been identified. Most of the DEAD-box RNA helicase have 1:1 homologous relationships in Chlamydomonas reinhardtii and Chlamydomonas sp. ICE-L with several exceptions. The homologous proteins in ICE-L to the helicases critical for cold or freezing tolerance in Arabidopsis thaliana had been identified based on phylogenetic comparison studies. The response of these helicase genes is not always identical in the Chlamydomonas sp. ICE-L and Arabidopsis under the same low-temperature treatment. The expression of several DEAD-box RNA helicase genes including CiRH5, CiRH25, CiRH28, and CiRH55 were significantly up-regulated under freezing treatment of ICE-L and their function in freezing acclimation of ICE-L deserved further investigation.

  4. Brominated Flame Retardants in Sediments of Four Coastal Lagoons of Yucatan, Mexico.

    PubMed

    Valenzuela-Sánchez, I S; Gold-Bouchot, G; Hernández-Núñez, E; Barrientos-Medina, R C; Garza-Gisholt, E; Zapata-Pérez, O

    2018-05-02

    We examined the sediments of four coastal lagoons (Ria Lagartos, Bocas de Dzilam, Laguna de Chelem and Ria Celestun) from the state of Yucatan, Mexico, for three widely used commercial polybrominated diphenyl ethers formulations (penta-, octa- and deca-BDE). The most commonly found congeners in all four lagoons were BDEs 47, 99 and 100 (all in the penta-BDE formulation) and BDE209 (deca-BDE formulation). The greatest variety and highest concentrations of brominated flame retardants were found in Ria Lagartos, which also showed the highest BDE 100 concentration (24.129 ng/g). Hexabromocyclododecane was found in all lagoons, but at lower concentrations than those of the various polybrominated diphenyl ethers. Dispersal routes of these compounds are discussed, such as a ring of sinkholes (cenotes) adjacent to the lagoons. Moreover, electronic waste is a serious problem because municipal landfills have been the primary disposal method for these wastes and therefore represent a reservoir of brominated fire retardants.

  5. Effect of Water Surface Salinity on Evaporation: The Case of a Diluted Buoyant Plume Over the Dead Sea

    NASA Astrophysics Data System (ADS)

    Mor, Z.; Assouline, S.; Tanny, J.; Lensky, I. M.; Lensky, N. G.

    2018-03-01

    Evaporation from water bodies strongly depends on surface water salinity. Spatial variation of surface salinity of saline water bodies commonly occurs across diluted buoyant plumes fed by freshwater inflows. Although mainly studied at the pan evaporation scale, the effect of surface water salinity on evaporation has not yet been investigated by means of direct measurement at the scale of natural water bodies. The Dead Sea, a large hypersaline lake, is fed by onshore freshwater springs that form local diluted buoyant plumes, offering a unique opportunity to explore this effect. Surface heat fluxes, micrometeorological variables, and water temperature and salinity profiles were measured simultaneously and directly over the salty lake and over a region of diluted buoyant plume. Relatively close meteorological conditions prevailed in the two regions; however, surface water salinity was significantly different. Evaporation rate from the diluted plume was occasionally 3 times larger than that of the main salty lake. In the open lake, where salinity was uniform with depth, increased wind speed resulted in increased evaporation rate, as expected. However, in the buoyant plume where diluted brine floats over the hypersaline brine, wind speed above a threshold value (˜4 m s-1) caused a sharp decrease in evaporation probably due to mixing of the stratified plume and a consequent increase in the surface water salinity.

  6. Accuracy of vertical radial plume mapping technique in measuring lagoon gas emissions.

    PubMed

    Viguria, Maialen; Ro, Kyoung S; Stone, Kenneth C; Johnson, Melvin H

    2015-04-01

    Recently, the U.S. Environmental Protection Agency (EPA) posted a ground-based optical remote sensing method on its Web site called Other Test Method (OTM) 10 for measuring fugitive gas emission flux from area sources such as closed landfills. The OTM 10 utilizes the vertical radial plume mapping (VRPM) technique to calculate fugitive gas emission mass rates based on measured wind speed profiles and path-integrated gas concentrations (PICs). This study evaluates the accuracy of the VRPM technique in measuring gas emission from animal waste treatment lagoons. A field trial was designed to evaluate the accuracy of the VRPM technique. Control releases of methane (CH4) were made from a 45 m×45 m floating perforated pipe network located on an irrigation pond that resembled typical treatment lagoon environments. The accuracy of the VRPM technique was expressed by the ratio of the calculated emission rates (QVRPM) to actual emission rates (Q). Under an ideal condition of having mean wind directions mostly normal to a downwind vertical plane, the average VRPM accuracy was 0.77±0.32. However, when mean wind direction was mostly not normal to the downwind vertical plane, the emission plume was not adequately captured resulting in lower accuracies. The accuracies of these nonideal wind conditions could be significantly improved if we relaxed the VRPM wind direction criteria and combined the emission rates determined from two adjacent downwind vertical planes surrounding the lagoon. With this modification, the VRPM accuracy improved to 0.97±0.44, whereas the number of valid data sets also increased from 113 to 186. The need for developing accurate and feasible measuring techniques for fugitive gas emission from animal waste lagoons is vital for livestock gas inventories and implementation of mitigation strategies. This field lagoon gas emission study demonstrated that the EPA's vertical radial plume mapping (VRPM) technique can be used to accurately measure lagoon gas

  7. Nutrient budgets and trophic state in a hypersaline coastal lagoon: Lagoa de Araruama, Brazil

    NASA Astrophysics Data System (ADS)

    Souza, Marcelo F. L.; Kjerfve, Björn; Knoppers, Bastiaan; Landim de Souza, Weber F.; Damasceno, Raimundo N.

    2003-08-01

    Lagoa de Araruama in the state of Rio de Janeiro, Brazil, is a hypersaline lagoon with salinity varying spatially from 45 to 56. We collected water samples during monthly cruises throughout the lagoon, and along the streams feeding the system, from April 1991 to March 1992. Nutrients and other water quality parameters exhibited great spatial and temporal variations. Mass balance calculations indicate large amounts of anthropogenic nutrient inputs. The data indicate that the lagoon currently is oligotrophic but is in a state of transition to become a mesotrophic system. Molar dissolved inorganic nitrogen:dissolved inorganic phosphorus (DIN/DIP) varied between 2.2:1 and 659:1 with a volume-weighted average of 22:1. The high DIN/DIP ratio contrasts with that found in nearby lagoons, suggesting that phytoplankton primary production is limited by phosphorus in Lagoa de Araruama. The major loss of DIP is apparently driven by biological assimilation and diagenic reactions in the sediments. Calculations indicate that the lagoon is slightly net autotrophic at +0.9 mol C m -2 yr -1. This suggests that the biomass of the primary producers is restricted by phosphorus availability. Phosphorus retention in the sediment and the hypersaline state of the lagoon prevent changes in autotrophic communities and the formation of eutrophic conditions.

  8. Spatial distribution, enrichment, and source of environmentally important elements in Batticaloa lagoon, Sri Lanka.

    PubMed

    Adikaram, Madurya; Pitawala, Amarasooriya; Ishiga, Hiroaki; Jayawardana, Daham

    2017-01-01

    The present paper is the first documentation of distribution and contamination status of environmentally important elements of superficial sediments in the Batticaloa lagoon that is connected to the largest bay of the world. Surface sediment samples were collected from 34 sites covering all over the lagoon. Concentrations of elements such as As, Cr, Cu, Fe, Nb, Ni, Pb, Sc, Sr, Th, V, Y, Zn, and Zr were measured by X-ray florescence analysis. Geochemically, the lagoon has three different zones that were influenced mainly by fresh water sources, marine fronts, and intermediate mixing zones. The marine sediment quality standards indicate that Zr and Th values are exceeded throughout the lagoon. According to the freshwater sediment quality standards, Cr levels of all sampling sites exceed the threshold effect level (TEL) and 17 % of them are even above the probable effect level (PEL). Most sampling sites of the channel discharging areas show minor enrichment of Cu, Ni, and Zn with respect to the TEL. Contamination indices show that the lagoon mouth area is enriched with As. Statistical analysis implies that discharges from agricultural channel and marine fluxes of the lagoon effects on the spatial distribution of measured elements. Further research is required to understand the rate of contamination in the studied marine system.

  9. Coastal Nurseries and Their Importance for Conservation of Sea Kraits

    PubMed Central

    Bonnet, Xavier; Brischoux, François; Bonnet, Christophe; Plichon, Patrice; Fauvel, Thomas

    2014-01-01

    Destruction and pollution of coral reefs threaten these marine biodiversity hot stops which shelter more than two thirds of sea snake species. Notably, in many coral reef ecosystems of the Western Pacific Ocean, large populations of sea kraits (amphibious sea snakes) have drastically declined during the past three decades. Protecting remaining healthy populations is thus essential. In New Caledonia, coral reefs shelter numerous sea krait colonies spread throughout an immense lagoon (24,000 km2). Sea kraits feed on coral fish but lay their eggs on land. However, ecological information on reproduction and juveniles is extremely fragmentary, precluding protection of key habitats for reproduction. Our 10 years mark recapture study on Yellow sea kraits (L. saintgironsi >8,700 individuals marked) revealed that most neonates aggregate in highly localized coastal sites, where they feed and grow during several months before dispersal. Hundreds of females emigrate seasonally from remote populations (>50 km away) to lay their eggs in these coastal nurseries, and then return home. Protecting these nurseries is a priority to maintain recruitment rate, and to retain sea krait populations in the future. PMID:24670985

  10. Risk Assessment for the Explosive Washout Lagoons (Site 4), Umatilla Depot Activity Hermiston, Oregon

    DTIC Science & Technology

    1992-03-01

    Activity .............................. 2 2-2 Explosive Washout Lagoons (Site 4) and Washout Plant Area ............................... 2-3 3-1 Site 4...ponds for liquid wastes from bomb-washing operations in the washout plant . The measured dimensions of the flat bottoms of the two lagoons are 30 by 80...explosives washout plant system was drained, flushed, and cleaned approximately once each week from the mid-1950s until 1965. The lagoons received all of the

  11. Investigating Aquatic Dead Zones

    ERIC Educational Resources Information Center

    Testa, Jeremy; Gurbisz, Cassie; Murray, Laura; Gray, William; Bosch, Jennifer; Burrell, Chris; Kemp, Michael

    2010-01-01

    This article features two engaging high school activities that include current scientific information, data, and authentic case studies. The activities address the physical, biological, and chemical processes that are associated with oxygen-depleted areas, or "dead zones," in aquatic systems. Students can explore these dead zones through both…

  12. Dynamics of harmful dinoflagellates driven by temperature and salinity in a northeastern Mediterranean lagoon.

    PubMed

    Dhib, Amel; Frossard, Victor; Turki, Souad; Aleya, Lotfi

    2013-04-01

    To attempt to determine the effects of temperature and salinity on the dynamics of the dinoflagellate community, a monthly sampling was carried out from October 2008 to March 2009 at eight sampling stations in Ghar El Melh Lagoon (GML; Mediterranean Sea, Northern Tunisia). Dinoflagellates were dominant among plankton, accounting for 73.9 % of the lagoon's overall plankton community, and were comprised of 25 different species among which 17 were reported in the literature as harmful. While no significant difference was found in the distribution of dinoflagellates among the stations, a strong monthly difference was observed. This temporal variability was due to an increase in the abundance of Prorocentrum micans from December to February, leading to a strong decrease in the Shannon diversity index from station to station. At the onset of P. micans development, dinoflagellate abundances reached 1.26.10(5) cells l(-1). A redundance analysis indicates that both temperature and salinity have a significant effect on the dynamics of the dinoflagellate community. Using a generalized additive model, both temperature and salinity appear to have significant nonlinear relationships with P. micans abundances. Model predictions indicate that outbreaks of P. micans may occur at a temperature below 22.5 °C and with salinity above 32.5. We discuss our results against a backdrop of climate change which, by affecting temperature and salinity, is likely to have an antagonistic impact on P. micans development and subsequently on the dinoflagellate dynamics in GML.

  13. Lagoon microbialites on Isla Angel de la Guarda and associated peninsular shores, Gulf of California (Mexico)

    NASA Astrophysics Data System (ADS)

    Johnson, Markes E.; Ledesma-Vázquez, Jorge; Backus, David H.; González, Maria R.

    2012-07-01

    Examples of two closed lagoons with extensive growth of Recent microbialites showing variable surface morphology and internal structure are found on Isla Angel de la Guarda in the Gulf of California. Comparable lagoonal microbialites also occur ashore from Ensenada El Quemado on the adjacent peninsular mainland of Baja California. The perimeters of all three lagoons feature crusted structures indicative of thrombolites with a knobby surface morphology 2 cm to 3 cm in relief and internal clotting without any sign of laminations. Outward from this zone, thrombolitic construction thins to merge with a white calcified crust below which a soft substratum of dark organic material 4 cm to 6 cm in thickness is concealed. The substratum is laminated and heavily mucilaginous, as observed along the edges of extensive shrinkage cracks in the overlying crust. The thrombolitic crust is anchored to the shore, while the thinner crust and associated stromatolitic mats float on the surface of the lagoons. Laboratory cultures of the dark organic material yielded the solitary cyanobacterium Chroococcidiopsis as the predominant taxon interspersed with filamentous forms. In decreasing order of abundance, other morphotypes present include Phormidium, Oscillatoria, Geitlerinema, Chroococus, and probably Spirulina. The larger of the two island lagoons follows an east-west azimuth and covers 0.225 km2, while the smaller lagoon has a roughly north-south axis and covers only 0.023 km2. The salinity of water in the smaller lagoon was measured as148 ppt. Pliocene strata along the edge of the smaller modern lagoon include siltstone bearing calcified platelets suggestive of a microbial origin. Dry lagoons abandoned during the later Quaternary occur inland at higher elevations on the island, but retain no fossils except for sporadic white crusts cemented on cobbles around distinct margins. Raised Quaternary lagoons parallel to the big lagoon on Isla Angel de la Guarda are partly obscured by flood

  14. Socio-economic appraisal of fishing community in Pulicat lagoon, south east coast of India: case study.

    PubMed

    Devi, V Vandhana; Krishnaveni, M

    2012-10-01

    Assessment of socio-economic issues of fishing community is an important aspect in framing a strategy for the preservation of eco-systems which leads to sustainable lagoon management. The present investigation analyses the current potential socio-economic status of the fishing community of Pulicat lagoon, the second largest lagoon in India. The socio-economic indicators considered in the study include demography, economic aspects, social aspects and occupation details. The relevant details were collected from 300 fisher folk family by conducting field survey through a well prepared questionnaire in the villages around Pulicat lagoon. The data analysis was done using Statistical Program for Social Sciences (SPSS) to assess the adequacy and precision of the collected data. The important and encouraging socio-economic indicators identified from the field survey for effective lagoon management includes significant presence of younger generation in the region; affinity and self-belongingness of fisher folk towards the lake; better economic status and moderate education level; appreciable fishing income and affinity towards fishing profession. It is emphasized to motivate the fisher folk to improve their work attitude for betterment in economic status. The pertinent lagoon issues, comprising seasonal variation, local fishing issues, pollution from industries, water intake to thermal power plant which directly or indirectly affects the socio-economic status of fishing community, also need much emphasis while proposing sustainable lagoon management system. The information and observation from this study will be very helpful in formulating management policies on the conservation of the Pulicat lagoon ecosystem.

  15. The atypical hydrodynamics of the Mayotte Lagoon (Indian Ocean): Effects on water age and potential impact on plankton productivity

    NASA Astrophysics Data System (ADS)

    Chevalier, C.; Devenon, J. L.; Pagano, M.; Rougier, G.; Blanchot, J.; Arfi, R.

    2017-09-01

    In mesotidal lagoons of the Indian Ocean, the coral reef barrier may be temporarily submerged at high tide and partially exposed at low tide, and this may cause unusual lagoon dynamics. A field measurement campaign was conducted in the north-east Mayotte Lagoon in order to understand these processes. An experimental approach was used, combining measurements taken by 1) a side-mounted Acoustic Doppler Current Profiler (ADCP) on a moving boat along transects through the reef passages (17 transects) and 2) by more conventional high-resolution moored ADCP measurements. A specific tidal analysis methodology was used to determine the spatial variability of the velocity. The tidal hydrodynamics within the lagoon were determined using a numerical model and then analyzed. The tide acted as a quasi-progressive forced wave in the lagoon: at low tide, water entered through the south passage, over the reef and left the lagoon through the north passage. This flow was reversed at high tide. The tide-driven quasi-progressive wave created a specific lagoon dynamics. Contrary to most other channel lagoons, the flow over the reef was mainly outward. This increases the inflow through the passages, which renews the water in the lagoon as shown by the indicators of age and origin of the water inside the lagoon. This study also showed the importance of these indicators for better understanding the variations and levels of plankton biomass (with chlorophyll concentration as proxy) which is quite high in this lagoon.

  16. Long-term field study of sea kraits in New Caledonia: fundamental issues and conservation.

    PubMed

    Bonnet, Xavier

    2012-08-01

    This short review focuses on the findings associated with a long-term field study on two species of sea kraits in New Caledonia. Since 2002, more than 30 sites in the lagoon have been sampled, and in most places mark-recapture was implemented. We collected detailed data on more than 14,000 marked individuals (>6000 recaptures) and used different techniques (stable isotopes, bio-logging, analyses of diet). The objective was fundamental: to examine how amphibious snakes cope with both terrestrial and aquatic environments. As access to abundant food is likely the main evolutionary driver for the return transition toward the sea in marine tetrapods, foraging ecology was an important part of the research and novel information was obtained on this subject. Rapidly however, field observations revealed the potential interest of sea kraits for conservation issues. Our results show that these snakes are useful bio-indicators of marine biodiversity; they also provide a useful signal to monitor levels of contamination by heavy metals in the lagoon, and more generally as a means of studying the functioning of reef ecosystems. Importantly, anecdotal observations (e.g., a krait drinking during rain) provided unsuspected physiological insights of general importance to fundamental problems and conservation. One of the lessons of this long-term study is that key results emerged in an unexpected way, but all were dependent on intensive field work.

  17. Unmanned aerial vehicle observations of water surface elevation and bathymetry in the cenotes and lagoons of the Yucatan Peninsula, Mexico

    NASA Astrophysics Data System (ADS)

    Bandini, Filippo; Lopez-Tamayo, Alejandro; Merediz-Alonso, Gonzalo; Olesen, Daniel; Jakobsen, Jakob; Wang, Sheng; Garcia, Monica; Bauer-Gottwein, Peter

    2018-04-01

    Observations of water surface elevation (WSE) and bathymetry of the lagoons and cenotes of the Yucatán Peninsula (YP) in southeast Mexico are of hydrogeological interest. Observations of WSE (orthometric water height above mean sea level, amsl) are required to inform hydrological models, to estimate hydraulic gradients and groundwater flow directions. Measurements of bathymetry and water depth (elevation of the water surface above the bed of the water body) improve current knowledge on how lagoons and cenotes connect through the complicated submerged cave systems and the diffuse flow in the rock matrix. A novel approach is described that uses unmanned aerial vehicles (UAVs) to monitor WSE and bathymetry of the inland water bodies on the YP. UAV-borne WSE observations were retrieved using a radar and a global navigation satellite system on-board a multi-copter platform. Water depth was measured using a tethered floating sonar controlled by the UAV. This sonar provides depth measurements also in deep and turbid water. Bathymetry (wet-bed elevation amsl) can be computed by subtracting water depth from WSE. Accuracy of the WSE measurements is better than 5-7 cm and accuracy of the water depth measurements is estimated to be 3.8% of the actual water depth. The technology provided accurate measurements of WSE and bathymetry in both wetlands (lagoons) and cenotes. UAV-borne technology is shown to be a more flexible and lower cost alternative to manned aircrafts. UAVs allow monitoring of remote areas located in the jungle of the YP, which are difficult to access by human operators.

  18. Environmental forcing on the flux of organic-walled dinoflagellate cysts in recent sediments from a subtropical lagoon in the Gulf of California.

    PubMed

    Cuellar-Martinez, Tomasa; Alonso-Rodríguez, Rosalba; Ruiz-Fernández, Ana Carolina; de Vernal, Anne; Morquecho, Lourdes; Limoges, Audrey; Henry, Maryse; Sanchez-Cabeza, Joan-Albert

    2018-04-15

    To evaluate the relationship of changes in organic-walled dinoflagellate cyst (dinocyst) fluxes to sediments with environmental variables (air and sea surface temperatures, El Niño conditions, rainfall, and terrigenous index), cyst assemblages were analyzed in a 210 Pb-dated sediment core (~100years) from the pristine San José Lagoon (San José Island, SW Gulf of California). The dinocyst abundance ranged from 3784 to 25,108cystsg -1 and fluxes were of the order of 10 3 -10 4 cystscm -2 yr -1 . Lingulodinium machaerophorum, Polysphaeridium zoharyi and Spiniferites taxa accounted for 96% of the total dinocyst assemblages, and the abundances of these species increased towards the core surface. P. zoharyi fluxes increased from about 1965 onwards. Redundancy analyses, showed that mean minimum air temperature and terrigenous index were the key factors governing dinocyst fluxes. In this study, dinocyst fluxes of dominant taxa had responded to changes in climate-dependent environmental variables during the past ~20years; this may also be the case in other subtropical coastal lagoons. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Groundwater and porewater as major sources of alkalinity to a fringing coral reef lagoon (Muri Lagoon, Cook Islands)

    NASA Astrophysics Data System (ADS)

    Cyronak, T.; Santos, I. R.; Erler, D. V.; Eyre, B. D.

    2013-04-01

    To better predict how ocean acidification will affect coral reefs, it is important to understand how biogeochemical cycles on reefs alter carbonate chemistry over various temporal and spatial scales. This study quantifies the contribution of shallow porewater exchange (as quantified from advective chamber incubations) and fresh groundwater discharge (as traced by 222Rn) to total alkalinity (TA) dynamics on a fringing coral reef lagoon along the southern Pacific island of Rarotonga over a tidal and diel cycle. Benthic alkalinity fluxes were affected by the advective circulation of water through permeable sediments, with net daily flux rates of carbonate alkalinity ranging from -1.55 to 7.76 mmol m-2 d-1, depending on the advection rate. Submarine groundwater discharge (SGD) was a source of TA to the lagoon, with the highest flux rates measured at low tide, and an average daily TA flux of 1080 mmol m-2 d-1 at the sampling site. Both sources of TA were important on a reef-wide basis, although SGD acted solely as a delivery mechanism of TA to the lagoon, while porewater advection was either a sink or source of TA dependent on the time of day. This study describes overlooked sources of TA to coral reef ecosystems that can potentially alter water column carbonate chemistry. We suggest that porewater and groundwater fluxes of TA should be taken into account in ocean acidification models in order to properly address changing carbonate chemistry within coral reef ecosystems.

  20. 7 CFR 322.29 - Dead bees.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 5 2012-01-01 2012-01-01 false Dead bees. 322.29 Section 322.29 Agriculture..., DEPARTMENT OF AGRICULTURE BEES, BEEKEEPING BYPRODUCTS, AND BEEKEEPING EQUIPMENT Importation and Transit of Restricted Articles § 322.29 Dead bees. (a) Dead bees imported into or transiting the United States must be...