Sample records for lagoon nebula m8

  1. The Gaia-ESO Survey: dynamics of ionized and neutral gas in the Lagoon nebula (M 8)

    NASA Astrophysics Data System (ADS)

    Damiani, F.; Bonito, R.; Prisinzano, L.; Zwitter, T.; Bayo, A.; Kalari, V.; Jiménez-Esteban, F. M.; Costado, M. T.; Jofré, P.; Randich, S.; Flaccomio, E.; Lanzafame, A. C.; Lardo, C.; Morbidelli, L.; Zaggia, S.

    2017-08-01

    Aims: We present a spectroscopic study of the dynamics of the ionized and neutral gas throughout the Lagoon nebula (M 8), using VLT-FLAMES data from the Gaia-ESO Survey. The new data permit exploration of the physical connections between the nebular gas and the stellar population of the associated star cluster NGC 6530. Methods: We characterized through spectral fitting emission lines of Hα, [N II] and [S II] doublets, [O III], and absorption lines of sodium D doublet, using data from the FLAMES-Giraffe and UVES spectrographs, on more than 1000 sightlines toward the entire face of the Lagoon nebula. Gas temperatures are derived from line-width comparisons, densities from the [S II] doublet ratio, and ionization parameter from Hα/[N II] ratio. Although doubly-peaked emission profiles are rarely found, line asymmetries often imply multiple velocity components along the same line of sight. This is especially true for the sodium absorption, and for the [O III] lines. Results: Spatial maps for density and ionization are derived, and compared to other known properties of the nebula and of its massive stars 9 Sgr, Herschel 36 and HD 165052 which are confirmed to provide most of the ionizing flux. The detailed velocity fields across the nebula show several expanding shells, related to the cluster NGC 6530, the O stars 9 Sgr and Herschel 36, and the massive protostar M 8East-IR. The origins of kinematical expansion and ionization of the NGC 6530 shell appear to be different. We are able to put constrains on the line-of-sight (relative or absolute) distances between some of these objects and the molecular cloud. The data show that the large obscuring band running through the middle of the nebula is being compressed by both sides, which might explain its enhanced density. We also find an unexplained large-scale velocity gradient across the entire nebula. At larger distances, the transition from ionized to neutral gas is studied using the sodium lines. Based on observations

  2. WISE Catches the Lagoon Nebula in Center of Action

    NASA Image and Video Library

    2011-01-06

    This colorful picture is a mosaic of Messier 8, or the Lagoon nebula, taken by NASA Wide-field Infrared Survey Explorer. This nebula is composed of clouds of gas and dust in which new stars are forming.

  3. Hubble reveals heart of Lagoon Nebula

    NASA Image and Video Library

    2010-09-22

    Image release date September 22, 2010 To view a video of this image go here: www.flickr.com/photos/gsfc/5014452203 Caption: A spectacular new NASA/ESA Hubble Space Telescope image reveals the heart of the Lagoon Nebula. Seen as a massive cloud of glowing dust and gas, bombarded by the energetic radiation of new stars, this placid name hides a dramatic reality. The Advanced Camera for Surveys (ACS) on the NASA/ESA Hubble Space Telescope has captured a dramatic view of gas and dust sculpted by intense radiation from hot young stars deep in the heart of the Lagoon Nebula (Messier 8). This spectacular object is named after the wide, lagoon-shaped dust lane that crosses the glowing gas of the nebula. This structure is prominent in wide-field images, but cannot be seen in this close-up. However the strange billowing shapes and sandy texture visible in this image make the Lagoon Nebula’s watery name eerily appropriate from this viewpoint too. Located four to five thousand light-years away, in the constellation of Sagittarius (the Archer), Messier 8 is a huge region of star birth that stretches across one hundred light-years. Clouds of hydrogen gas are slowly collapsing to form new stars, whose bright ultraviolet rays then light up the surrounding gas in a distinctive shade of red. The wispy tendrils and beach-like features of the nebula are not caused by the ebb and flow of tides, but rather by ultraviolet radiation’s ability to erode and disperse the gas and dust into the distinctive shapes that we see. In recent years astronomers probing the secrets of the Lagoon Nebula have found the first unambiguous proof that star formation by accretion of matter from the gas cloud is ongoing in this region. Young stars that are still surrounded by an accretion disc occasionally shoot out long tendrils of matter from their poles. Several examples of these jets, known as Herbig-Haro objects, have been found in this nebula in the last five years, providing strong support for

  4. Into the Depths of the Lagoon Nebula

    NASA Image and Video Library

    2011-09-16

    Swirling dust clouds and bright newborn stars dominate the view in this image of the Lagoon nebula from NASA Spitzer Space Telescope. The nebula lies in the general direction of the center of our galaxy in the constellation Sagittarius.

  5. Trifid Nebula

    NASA Image and Video Library

    1999-12-02

    Atlas Image mosaic, covering 14.8 x 20.0 on the sky, of the Trifid Nebula, aka Messier 20 and NGC 6514. The Trifid is only about 1.5 degrees northwest on the sky of the larger Lagoon Nebula Messier 8 in the constellation Sagittarius

  6. Very bright optical transient near the Trifid and Lagoon Nebulae

    NASA Astrophysics Data System (ADS)

    Dunsby, Peter

    2018-03-01

    Peter Dunsby (University of Cape Town) reports the detection of a very bright optical transient in the region between the Lagoon and Trifid Nebulae based on observations obtained from Cape Town on 20 March 2018, between 01:00 and 03:45 UT. The object was visible throughout the full duration of the observations and not seen when this field was observed previously (08 March 2018).

  7. Discovery of a Circumstellar Disk in the Lagoon Nebula

    NASA Astrophysics Data System (ADS)

    1997-04-01

    Circumstellar disks of gas and dust play a crucial role in the formation of stars and planets. Until now, high-resolution images of such disks around young stars within the Orion Nebula obtained with the Hubble Space Telescope (HST) constituted the most direct proof of their existence. Now, another circumstellar disk has been detected around a star in the Lagoon Nebula - also known as Messier 8 (M8) , a giant complex of interstellar gas and dust with many young stars in the southern constellation of Sagittarius and four times more distant than the Orion Nebula. The observations were carried out by an international team of scientists led by Bringfried Stecklum (Thüringer Landessternwarte, Tautenburg, Germany) [1] who used telescopes located at the ESO La Silla observatory and also observations from the HST archive. These new results are paving the road towards exciting research programmes on star formation which will become possible with the ESO Very Large Telescope. The harsh environment of circumstellar disks The existence of circumstellar disks has been inferred from indirect measurements of young stellar objects, such as the spectral energy distribution, the analysis of the profiles of individual spectral lines and measurements of the polarisation of the emitted light [2]. Impressive images of such disks in the Orion Nebula, known as proplyds (PROto-PLanetarY DiskS), have been obtained by the HST during the recent years. They have confirmed the interpretation of previous ground-based emission-line observations and mapping by radio telescopes. Moreover, they demonstrated that those disks which are located close to hot and massive stars are subject to heating caused by the intense radiation from these stars. Subsequently, the disks evaporate releasing neutral gas which streams off. During this process, shock fronts (regions with increased density) with tails of ionised gas result at a certain distance between the disk and the hot star. These objects appear on

  8. An XMM-Newton Study of 9SGR and the Lagoon Nebula

    NASA Technical Reports Server (NTRS)

    Rauw, G.; Blomme, R.; Waldron, W. L.; Naze, Y.; Harries, T. J.; Chapman, J. M.; Corcoran, M. F.; Detal, A.; Gosset, E.

    2001-01-01

    We report preliminary results of an XMM-Newton observation of the 04 V star 9 Sgr (= HD 164794). 9 Sgr is one of a few single OB stars that display a non-thermal radio emission attributed to synchrotron emission by relativistic electrons. Inverse Compton scattering of photospheric UV photons by these relativistic electrons is a priori expected to generate a non-thermal power-law tail in the X-ray spectrum. Our EPIC and RGS spectra of 9 Sgr suggest a more complex situation than expected from this 'simple' theoretical picture. Furthermore, soft-band EPIC images of the region around 9 Sgr reveal a number of point sources inside the Lagoon Nebula (M8). Most of these sources have optical counterparts inside the very young open cluster NGC 6530 and several X-ray sources are associated with low and intermediate mass pre-main sequence stars. Finally, we also detect (probably) diffuse X-ray emission from the Hourglass Region that might reveal a hot bubble blown by the stellar wind of Herschel 36, the ionizing star of the HG region.

  9. The Search for Pre-Main Sequence Eclipsing Binary Stars in the Lagoon Nebula

    NASA Astrophysics Data System (ADS)

    Henderson, Calen B.; Stassun, K. G.

    2009-01-01

    We report time-series CCD I-band photometry for the pre-main-sequence cluster NGC 6530, located within the Lagoon Nebula. The data were obtained with the 4Kx4K imager on the SMARTS 1.0m telescope at CTIO on 36 nights over the summers of 2005 and 2006. In total we have light curves for 50,000 stars in an area 1 deg2, with a sampling cadence of 1 hour. The stars in our sample have masses in the range 0.25-4.0 Msun, assuming a distance of 1.25 kpc to the cluster. Our goals are to look for stars with rotation periods and to identify eclipsing binary candidates. Here we present light curves of photometrically variable stars and potential eclipsing binary star systems. This work has been supported by the National Science Foundation under Career grant AST-0349075.

  10. The origin of the Crab Nebula and the electron capture supernova in 8-10 M solar mass stars

    NASA Technical Reports Server (NTRS)

    Nomoto, K.

    1981-01-01

    The chemical composition of the Crab Nebula is compared with several presupernova models. The small carbon and oxygen abundances in the helium-rich nebula are consistent with only the presupernova model of the star whose main sequence mass was MMS approximately 8-9.5 M. More massive stars contain too much carbon in the helium layer and smaller mass stars do not leave neutron stars. The progenitor star of the Crab Nebula lost appreciable part of the hydrogen-rich envelope before the hydrogen-rich and helium layers were mixed by convection. Finally it exploded as the electron capture supernova; the O+Ne+Mg core collapsed to form a neutron star and only the extended helium-rich envelope was ejected by the weak shock wave.

  11. Near-Infrared Polarimetry of the Eagle Nebula (M 16)

    NASA Astrophysics Data System (ADS)

    Sugitani, Koji; Watanabe, Makoto; Tamura, Motohide; Kandori, Ryo; Hough, James H.; Nishiyama, Shogo; Nakajima, Yasushi; Kusakabe, Nobuhiko; Hashimoto, Jun; Nagayama, Takahiro; Nagashima, Chie; Kato, Daisuke; Fukuda, Naoya

    2007-06-01

    We carried out deep and wide (˜ 8 × 8) JHKs imaging polarimetry in the southern region of the Eagle Nebula (M 16). The polarization intensity map reveals that two YSOs with near-IR reflection nebulae are located at the tips of two famous molecular pillars (Pillars 1 and 2) facing toward the exciting stars of M 16. The centrosymmetric polarization pattern are consistent with those around Class I objects having circumstellar envelopes, confirming that star formation is now taking place at the two tips of the pillars under the influence of UV radiation from the exciting stars. Polarization measurements of point sources show that magnetic fields are aligned along some of the pillars, but in a direction that is quite different to the global structure in M 16.

  12. An XMM-Newton Observation of the Lagoon Nebula and the Very Young Open Cluster NGC 6530

    NASA Technical Reports Server (NTRS)

    Rauw, G.; Naze, Y.; Gosset, E.; Stevens, I. R.; Blomme, R.; Corcoran, M. F.; Pittard, J. M.; Runacres, M. C.

    2002-01-01

    We report the results of an XMM-Newton observation of the Lagoon Nebula (M 8). Our EPIC images of this region reveal a cluster of point sources, most of which have optical counterparts inside the very young open cluster NGC 6530. The bulk of these X-ray sources are probably associated with low and intermediate mass pre-main sequence stars. One of the sources experiences a flare-like increase of its X-ray flux making it the second brightest source in M 8 after the O4 star 9 Sgr. The X-ray spectra of most of the brightest sources can be fitted with thermal plasma models with temperatures of kT approximately a few keV. Only a few of the X-ray selected PMS candidates are known to display H(alpha) emission and were previously classified as classical T Tauri stars. This suggests that most of the X-ray emitting PMS stars in NGC 6530 are weak line T Tauri stars. In addition to 9 Sgr, our EPIC field of view contains also a few early-type stars. The X-ray emission from HD 164816 is found to be typical for an O9.5III-IV star. At least one of the known Herbig Be stars in NGC 6530 (LkH(alpha) 115) exhibits a relatively strong X-ray emission, while most of the main sequence stars of spectral type B1 and later are not detected. We also detect (probably) diffuse X-ray emission from the Hourglass Region that might reveal a hot bubble blown by the stellar wind of Herschel 36, the ionizing star of the Hourglass Region.

  13. VISTA Stares Deeply into the Blue Lagoon

    NASA Astrophysics Data System (ADS)

    2011-01-01

    This new infrared image of the Lagoon Nebula was captured as part of a five-year study of the Milky Way using ESO's VISTA telescope at the Paranal Observatory in Chile. This is a small piece of a much larger image of the region surrounding the nebula, which is, in turn, only one part of a huge survey. Astronomers are currently using ESO's Visible and Infrared Survey Telescope for Astronomy (VISTA) to scour the Milky Way's central regions for variable objects and map its structure in greater detail than ever before. This huge survey is called VISTA Variables in the Via Lactea (VVV) [1]. The new infrared image presented here was taken as part of this survey. It shows the stellar nursery called the Lagoon Nebula (also known as Messier 8, see eso0936), which lies about 4000-5000 light-years away in the constellation of Sagittarius (the Archer). Infrared observations allow astronomers to peer behind the veil of dust that prevents them from seeing celestial objects in visible light. This is because visible light, which has a wavelength that is about the same size as the dust particles, is strongly scattered, but the longer wavelength infrared light can pass through the dust largely unscathed. VISTA, with its 4.1-metre diameter mirror - the largest survey telescope in the world - is dedicated to surveying large areas of the sky at near-infrared wavelengths deeply and quickly. It is therefore ideally suited to studying star birth. Stars typically form in large molecular clouds of gas and dust, which collapse under their own weight. The Lagoon Nebula, however, is also home to a number of much more compact regions of collapsing gas and dust, called Bok globules [2]. These dark clouds are so dense that, even in the infrared, they can block the starlight from background stars. But the most famous dark feature in the nebula, for which it is named, is the lagoon-shaped dust lane that winds its way through the glowing cloud of gas. Hot, young stars, which give off intense

  14. Bi-Abundance Ionisation Structure of the Wolf-Rayet Planetary Nebula PB 8

    NASA Astrophysics Data System (ADS)

    Danehkar, A.

    2018-01-01

    The planetary nebula PB 8 around a [WN/WC]-hybrid central star is one of planetary nebulae with moderate abundance discrepancy factors (ADFs 2-3), which could be an indication of a tiny fraction of metal-rich inclusions embedded in the nebula (bi-abundance). In this work, we have constructed photoionisation models to reproduce the optical and infrared observations of the planetary nebula PB 8 using a non-LTE stellar model atmosphere ionising source. A chemically homogeneous model initially used cannot predict the optical recombination lines. However, a bi-abundance model provides a better fit to most of the observed optical recombination lines from N and O ions. The metal-rich inclusions in the bi-abundance model occupy 5.6% of the total volume of the nebula, and are roughly 1.7 times cooler and denser than the mean values of the surrounding nebula. The N/H and O/H abundance ratios in the metal-rich inclusions are 1.0 and 1.7 dex larger than the diffuse warm nebula, respectively. To reproduce the Spitzer spectral energy distribution of PB 8, dust grains with a dust-to-gas ratio of 0.01 (by mass) were also included. It is found that the presence of metal-rich inclusions can explain the heavy element optical recombination lines, while a dual-dust chemistry with different grain species and discrete grain sizes likely produces the infrared continuum of this planetary nebula. This study demonstrates that the bi-abundance hypothesis, which was examined in a few planetary nebulae with large abundance discrepancies (ADFs > 10), could also be applied to those typical planetary nebulae with moderate abundance discrepancies.

  15. IUE observations of the 'Butterfly' Nebula M2-9

    NASA Technical Reports Server (NTRS)

    Feibelman, W. A.

    1984-01-01

    IUE observations of the peculiar 'Butterfy' nebula M2-9 indicate that it is not a normal planetary nebula. The ultraviolet spectrum is characterized by few emission lines and a weak continuum. Mg II 2800 A is the strongest emission line present and may be indicative of a binary nucleus. Lines of N v, Q I, N III, N IV, Si III, and C III are seen, but C IV and O III are conspicuous by their absence. T(e) = 10,250 + or - 400 K was determined for the core. Nitrogen in the core is found to be overabundant by about a factor of 5 over the solar value. M2-9 may be an object in the early stages of becoming a planetary nebula.

  16. Ring nebulae around Wolf-Rayet stars in M33

    NASA Technical Reports Server (NTRS)

    Drissen, Laurent; Shara, Michael M.; Moffat, Anthony F. J.

    1991-01-01

    Results of a systematic search for H II ring nebulae surrounding Wolf-Rayet (WR) stars in M33 are presented. Eleven objects are found to be good candidates, while eight others are classified as possible WR ring nebulae. The WR rings in M33 are larger on average than their Galactic counterparts, but the H-alpha luminosity of most of them is comparable to the bright Galactic wind-blown bubbles. The rings are associated with WC as well as with WN stars.

  17. A disc inside the bipolar planetary nebula M2-9

    NASA Astrophysics Data System (ADS)

    Lykou, F.; Chesneau, O.; Zijlstra, A. A.; Castro-Carrizo, A.; Lagadec, E.; Balick, B.; Smith, N.

    2011-03-01

    Aims: Bipolarity in proto-planetary and planetary nebulae is associated with events occurring in or around their cores. Past infrared observations have revealed the presence of dusty structures around the cores, many in the form of discs. Characterising those dusty discs provides invaluable constraints on the physical processes that govern the final mass expulsion of intermediate mass stars. We focus this study on the famous M2-9 bipolar nebula, where the moving lighthouse beam pattern indicates the presence of a wide binary. The compact and dense dusty core in the centre of the nebula can be studied by means of optical interferometry. Methods: M2-9 was observed with VLTI/MIDI at 39-47 m baselines with the UT2-UT3 and UT3-UT4 baseline configurations. These observations are interpreted using a dust radiative transfer Monte Carlo code. Results: A disc-like structure is detected perpendicular to the lobes, and a good fit is found with a stratified disc model composed of amorphous silicates. The disc is compact, 25 × 35 mas at 8 μm and 37 × 46 mas at 13 μm. For the adopted distance of 1.2 kpc, the inner rim of the disc is ~15 AU. The mass represents a few percent of the mass found in the lobes. The compactness of the disc puts strong constraints on the binary content of the system, given an estimated orbital period 90-120 yr. We derive masses of the binary components between 0.6-1.0 M⊙ for a white dwarf and 0.6-1.4 M⊙ for an evolved star. We present different scenarios on the geometric structure of the disc accounting for the interactions of the binary system, which includes an accretion disc as well. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile, ESO N: 079.D-146.

  18. SULFUR- AND SILICON-BEARING MOLECULES IN PLANETARY NEBULAE: THE CASE OF M2-48

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edwards, J. L.; Ziurys, L. M., E-mail: lziurys@email.arizona.edu

    Molecular-line observations of the bipolar planetary nebula (PN) M2-48 have been conducted using the Sub-Millimeter Telescope and the 12 m antenna of the Arizona Radio Observatory at 1, 2, and 3 mm. M2-48 is estimated to be ∼4800 yr old, midway through the PN evolutionary track. SiO and SO{sub 2} were detected in this source—the first identification of either molecule in a PN. CN, HCN, HNC, CS, SO, HCO{sup +}, N{sub 2}H{sup +}, and several {sup 13}C isotopologues such as {sup 13}CN, H{sup 13}CN, and H{sup 13}CO{sup +} were also observed toward this object. A radiative transfer analysis of multiplemore » SiO transitions indicates a gas kinetic temperature of T {sub K} ∼ 55 K and a density of n(H{sub 2}) ∼ 9 × 10{sup 5} cm{sup –3} in M2-48, in agreement with previous CS and CO modeling. After CO, CN, and SO were found to be the most prevalent molecules in this nebula, with fractional abundances, relative to H{sub 2}, of f ∼ 3.8 × 10{sup –7} and 2.4 × 10{sup –7}, respectively. SO{sub 2} and HCN are also abundant, with f ∼ 1.2 × 10{sup –7}, indicating an [SO]/[SO{sub 2}] ratio of ∼2. Relatively high ion abundances were measured in M2-48 as well, with f ∼ 10{sup –7} for both HCO{sup +} and N{sub 2}H{sup +}. An [HCN]/[HNC] ratio of ∼2 was determined, as typically observed in other PNe, independent of age. The high abundances of SO and SO{sub 2}, along with the presence of SiO with f ∼ 2.9 × 10{sup –8}, suggest O/C > 1 in this source; furthermore, the prevalence of CN and N{sub 2}H{sup +} indicates nitrogen enrichment. The {sup 12}C/{sup 13}C ratio of ∼3 in the nebula was also established. These factors indicate hot-bottom burning occurred in the progenitor star of M2-48, suggesting an initial mass > 4 M {sub ☉}.« less

  19. ABUNDANCES OF PLANETARY NEBULAE IN THE OUTER DISK OF M31

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwitter, Karen B.; Lehman, Emma M. M.; Balick, Bruce

    2012-07-01

    We present spectroscopic observations and chemical abundances of 16 planetary nebulae (PNe) in the outer disk of M31. The [O III] {lambda}4363 line is detected in all objects, allowing a direct measurement of the nebular temperature essential for accurate abundance determinations. Our results show that the abundances in these M31 PNe display the same correlations and general behaviors as Type II PNe in the Milky Way. We also calculate photoionization models to derive estimates of central star properties. From these we infer that our sample PNe, all near the bright-end cutoff of the planetary nebula luminosity function, originated from starsmore » near 2 M{sub Sun }. Finally, under the assumption that these PNe are located in M31's disk, we plot the oxygen abundance gradient, which appears shallower than the gradient in the Milky Way.« less

  20. NASA SOFIA Captures Images of the Planetary Nebula M2-9

    NASA Image and Video Library

    2012-03-29

    Researchers using NASA Stratospheric Observatory for Infrared Astronomy SOFIA have captured infrared images of the last exhalations of a dying sun-like star. This image is of the planetary Nebula M2-9.

  1. FAST, LOW-IONIZATION EMISSION REGIONS OF THE PLANETARY NEBULA M2-42

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Danehkar, A.; Parker, Q. A.; Steffen, W., E-mail: ashkbiz.danehkar@cfa.harvard.edu

    Spatially resolved observations of the planetary nebula M2-42 (PN G008.2−04.8) obtained with the Wide Field Spectrograph on the Australian National University 2.3 m telescope have revealed the remarkable features of bipolar collimated jets emerging from its main structure. Velocity-resolved channel maps derived from the [N ii] λ6584 emission line disentangle different morphological components of the nebula. This information is used to develop a three-dimensional morpho-kinematic model, which consists of an equatorial dense torus and a pair of asymmetric bipolar outflows. The expansion velocity of about 20 km s{sup −1} is measured from the spectrum integrated over the main shell. However,more » the deprojected velocities of the jets are found to be in the range of 80–160 km s{sup −1} with respect to the nebular center. It is found that the mean density of the collimated outflows, 595 ± 125 cm{sup −3}, is five times lower than that of the main shell, 3150 cm{sup −3}, whereas their singly ionized nitrogen and sulfur abundances are about three times higher than those determined from the dense shell. The results indicate that the features of the collimated jets are typical of fast, low-ionization emission regions.« less

  2. A morpho-kinematic and spectroscopic study of the bipolar nebulae: M 2-9, Mz 3, and Hen 2-104

    NASA Astrophysics Data System (ADS)

    Clyne, N.; Akras, S.; Steffen, W.; Redman, M. P.; Gonçalves, D. R.; Harvey, E.

    2015-10-01

    Context. Complex bipolar shapes can be generated either as a planetary nebula or a symbiotic system. The origin of the material ionised by the white dwarf is very different in these two scenarios, and it complicates the understanding of the morphologies of planetary nebulae. Aims: The physical properties, structure, and dynamics of the bipolar nebulae, M 2-9, Mz 3, and Hen 2-104, are investigated in detail with the aim of understanding their nature, shaping mechanisms, and evolutionary history. Both a morpho-kinematic study and a spectroscopic analysis, can be used to more accurately determine the kinematics and nature of each nebula. Methods: Long-slit optical echelle spectra are used to investigate the morpho-kinematics of M 2-9, Mz 3, and Hen 2-104. The morpho-kinematic modelling software SHAPE is used to constrain both the morphology and kinematics of each nebula by means of detailed 3D models. Near-infrared (NIR) data, as well as optical, spectra are used to separate Galactic symbiotic-type nebulae from genuine planetary nebulae by means of a 2MASS J-H/H-Ks diagram and a λ4363/Hγ vs. λ5007/Hβ diagnostic diagram, respectively. Results: The best-fitted 3D models for M 2-9, Mz 3, and Hen 2-104 provide invaluable kinematical information on the expansion velocity of its nebular components by means of synthetic spectra. The observed spectra match up very well with the synthetic spectra for each model, thus showing that each model is tightly constrained both morphologically and kinematically. Kinematical ages of the different structures of M 2-9 and Mz 3 have also been determined. Both diagnostic diagrams show M 2-9 and Hen 2-104 to fall well within the category of having a symbiotic source, whereas Mz 3 borders the region of symbiotic and young planetary nebulae in the optical diagram but is located firmly in the symbiotic region of the NIR colour-colour diagram. The optical diagnostic diagram is shown to successfully separate the two types of nebulae, however

  3. Seasonal Variability in Mercury Speciation within Select Coastal Lagoons of Central California

    NASA Astrophysics Data System (ADS)

    Ganguli, P. M.; Conaway, C. H.; Dimova, N. T.; Swarzenski, P. W.; Kehrlein, N. C.; Flegal, A. R.

    2011-12-01

    Coastal lagoons may play an important role in mercury biogeochemical cycling at the land-sea margin. Along the coast of California, these systems are seasonally dynamic, behaving as estuaries during the wet season and as lagoons in the dry season when ephemeral sand berms develop and isolate terrestrial freshwater from direct exchange with the ocean. As a consequence, many lagoons become eutrophic in the dry season and are characterized by high nutrient and low dissolved oxygen concentrations. Because monomethylmercury (MMHg) production can be mediated by anaerobic bacteria, coastal lagoons are a potential source of biologically available MMHg that may be transported to the nearshore environment via submarine groundwater discharge. To evaluate the importance of coastal lagoons at the land-sea margin, we quantified total mercury (HgT) and MMHg concentrations in surface water and coastal seawater from six sites during dry and wet season conditions, including one storm event. Additionally, we conducted a tidal study at one lagoon in which we sampled surface water, seawater, and groundwater over a 10-hour period during a falling tide (+1.63 to 0.00 m). Groundwater was collected using a multi-port piezometer screened at depths ranging from 1 m to a few centimeters below the lagoon's sediment-water interface. This enabled us to characterize surface water - groundwater interaction. During wet season conditions, the average unfiltered HgT (U-HgT) concentration in surface water at the tidal study lagoon was 13 pM and did not fluctuate in response to tidal changes. Filtered (< 0.45 μm) HgT (F-HgT) concentrations in the lagoon were similar to U-HgT concentrations during high tide and decreased to 8 pM during low tide. Groundwater F-HgT concentrations were about 1.5 pM at a depth of 1 m and systematically increased at shallower depths, reaching approximately 6 pM near the surface. These data indicate F-HgT exchange between the lagoon and groundwater to a depth of at least 1 m

  4. Submarine groundwater discharge into typical tropical lagoons: A case study in eastern Hainan Island, China

    NASA Astrophysics Data System (ADS)

    Wang, Xilong; Du, Jinzhou

    2016-11-01

    Assessing submarine groundwater discharge (SGD) into lagoons and bays can be helpful to understand biogeochemical processes, especially nutrient dynamics. In the present paper, radium (Ra) isotopes were used to quantify SGD in two typical tropical lagoons (Laoye Lagoon (LY Lagoon) and Xiaohai Lagoon (XH Lagoon)) of eastern Hainan Island, China. The Ra mass balance model provided evidence that SGD plays an important role in the hydrology of the LY Lagoon and the XH Lagoon, delivering average SGD fluxes of 1.7 × 106 (94 L m-2 d-1) and 1.8 × 106 (41 L m-2 d-1) m3 d-1, respectively. Tidal pumping was one of the important driving forces for SGD fluxes in the LY and the XH Lagoons. Tidal-driven SGD into the tidal channels of both lagoons can account for approximately 10% of the total SGD flux into the lagoons. In addition, the dissolved inorganic nutrient budgets were reassessed in the LY Lagoon and the XH Lagoon, which showed that SGD was the major source of nutrients entering the LY Lagoon and that the LY Lagoon behaved as a source for dissolved inorganic nitrogen (DIN) and dissolved inorganic phosphorus (DIP) and as a sink for dissolved silicate (DSi). Nutrient loads in the XH Lagoon were mainly derived from riverine inputs and SGD, and the XH Lagoon behaved as a source for DIP, but a sink for DIN and DSi.

  5. Integral field spectroscopy of M1-67. A Wolf-Rayet nebula with luminous blue variable nebula appearance

    NASA Astrophysics Data System (ADS)

    Fernández-Martín, A.; Vílchez, J. M.; Pérez-Montero, E.; Candian, A.; Sánchez, S. F.; Martín-Gordón, D.; Riera, A.

    2013-06-01

    Aims: This work aims to disentangle the morphological, kinematic, and chemical components of the nebula M1-67 to shed light on its process of formation around the central Wolf-Rayet (WR) star WR124. Methods: We have carried out integral field spectroscopy observations over two regions of M1-67, covering most of the nebula in the optical range. Maps of electron density, line ratios, and radial velocity were created to perform a detailed analysis of the two-dimensional structure. We studied the physical and chemical properties by means of integrated spectra selected over the whole nebula. Photoionization models were performed to confirm the empirical chemical results theoretically. In addition, we obtained and analysed infrared spectroscopic data and the MIPS 24 μm image of M1-67 from Spitzer. Results: We find that the ionized gas of M1-67 is condensed in knots aligned in a preferred axis along the NE-SW direction, like a bipolar structure. Both electron density and radial velocity decrease in this direction when moving away from the central star. From the derived electron temperature, Te ~ 8200 K, we have estimated chemical abundances, obtaining that nitrogen appears strongly enriched and oxygen depleted. From the last two results, we infer that this bipolarity is the consequence of an ejection of an evolved stage of WR124 with material processed in the CNO cycle. Furthermore, we find two regions placed outside of the bipolar structure with different spectral and chemical properties. The infrared study has revealed that the bipolar axis is composed of ionized gas with a low ionization degree that is well mixed with warm dust and of a spherical bubble surrounding the ejection at 24 μm. Taking the evolution of a 60 M⊙ star and the temporal scale of the bipolar ejection into account, we propose that the observed gas was ejected during an eruption in the luminous blue variable stage. The star has entered the WR phase recently without apparent signs of interaction

  6. 1548C27 - An interesting new cometary nebula

    NASA Technical Reports Server (NTRS)

    Craine, E. R.; Byard, P. L.; Boeshaar, G. O.

    1981-01-01

    The object 1548C27, a faint cometary nebula of classical form, discovered by an examination of early Near Infrared Photographic Sky Survey (NIPSS) data (1979) is presented. Direct imaging and polarimetric, photometric, and spectroscopic observations are reported. Early survey test photographs show that the object lies at R.A. 19h40m48s, Decl. +23 deg 17 arcmin 09 arc sec (1950) in the Vulpecula constellation in the immediate vicinity of the complex H II region and galactic cluster NGC 6820/6823. From the photographs, the nebula was estimated to be 15 m visual and of color class one. The object was observed spectroscopically in the region 5700-6800 A using an Image Dissector Scanner with a 1.8 m reflector, and the spectral scan, obtained on November 4, 1978, is presented. New information on cometary nebulae may further illuminate the evolutionary importance of the objects.

  7. Sediment budget in the Lagoon of Venice, Italy

    NASA Astrophysics Data System (ADS)

    Sarretta, A.; Pillon, S.; Molinaroli, E.; Guerzoni, S.; Fontolan, G.

    2010-05-01

    A comparison of 1927, 1970 and 2002 bathymetric surveys in the Lagoon of Venice was used to reconstruct historical changes in sedimentation. A detailed GIS-based analysis of the charts revealed the timing and pattern of geomorphic changes and allowed calculation of sediment deposition and erosion for the entire lagoon and each of its four sub-basins: Treporti, Lido, Malamocco and Chioggia. Two main developments are discernible from comparative observation of the areal distribution of the main elevation ranges: the diminution in area of the saltmarshes, which decreased by more than 50%, from 68 km 2 in 1927 to 32 km 2 in 2002, and the progressive deepening of the lagoon, with a huge increase in the area of subtidal flats (between -0.75 and -2.00 m depth), from 88 to 206 km 2 during the same period. Generally, the lagoon showed a clear-cut change in the most frequent depths (modal depth) from a value of -0.62 m in 1927 to -0.88 m in 2002. The deepening of the lagoon affected mostly the lagoonal sub-basins south of the town of Venice, where modal depth increased from -0.65 to -1.12 m in Lido, from -0.64 to -1.75 m in Malamocco and from -0.39 to -0.88 m in Chioggia. Large changes in lagoonal morphology were caused by human-induced subsidence, the dredging of navigation channels between 1927 and 1970, and intense natural erosion enhanced by sediment re-suspension due to Manila clam fishing between 1970 and 2002. There was a net loss of about 110 Mm 3 of sediment from the lagoon, most of which (73 Mm 3, ca.70%) was in the earlier period. A significant amount was lost by dredging and direct disposal outside the system, either on land or at sea, and there was a net loss of 39 Mm 3 from the lagoon to the sea through the inlets, at an annual rate of 0.5 Mm 3. Comparison of erosion rates in the two periods revealed an alarming acceleration, from a net sediment loss of 0.3 Mm 3 yr -1 in the period 1927-1970 to 0.8 Mm 3 yr -1 in 1970-2002. Deterioration caused a shift from a

  8. Light and Velocity Variability in Seven Bright Proto-Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    McGuire, Ryan

    2009-01-01

    Light and Velocity Variability in Seven Bright Proto-Planetary Nebulae R.B. McGuire, C.M. Steele, B.J. Hrivnak, W. Lu, D. Bohlender, C.D. Scarfe We present new contemporaneous light and velocity observations of seven proto-planetary nebulae obtained over the past two years. Proto-planetary nebulae are objects evolving between the AGB and planetary nebula phases. In these seven objects, the central star is bright (V= 7-10), surrounded by a faint nebula. We knew from past monitoring that the light from each of these varied by a few tenths of a magnitude over intervals of 30-150 days and that the velocity varied by 10 km/s. These appear to be due to pulsation. With these new contemporaneous observations, we are able to measure the correlation between the brightness, color, and velocity, which will constrain the pulsation models. This is an ongoing project with the light monitoring being carried out with the Valparaiso University 0.4 m telescope and CCD camera and the radial velocity observations being carried out with the Dominion Astrophysical Observatory 1.8 m telescope and spectrograph. This research is partially supported by NSF grant 0407087 and the Indiana Space Grant Consortium.

  9. The Twin Jet Nebula

    NASA Image and Video Library

    2015-08-26

    The Twin Jet Nebula, or PN M2-9, is a striking example of a bipolar planetary nebula. Bipolar planetary nebulae are formed when the central object is not a single star, but a binary system, Studies have shown that the nebula’s size increases with time, and measurements of this rate of increase suggest that the stellar outburst that formed the lobes occurred just 1200 years ago.

  10. Ring Nebulae: Tracers of the CNO Nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Mesa-Delgado, A.; Esteban, C.; García-Rojas, J.

    Preliminary results are presented from spectroscopic data in the optical range of the Galactic ring nebulae NGC 6888, G2:4+1:4, RCW 58 and Sh2-308. Deep observations with long exposure times were carried out at the 6.5m Clay Telescope and at the 10.4m Gran Telescopio Canarias. In NGC 6888, recombination lines of C ii, O ii and N ii are detected with signal-to-noise ratios higher than 8. The chemical content of NGC 6888 is discussed within the chemical enrichment predicted by evolution models of massive stars. For all nebulae, a forthcoming work will content in-depth details about observations, analysis and final results (Esteban et al. 2015, in prep.).

  11. Mercury Concentrations in Coastal Sediment from Younger Lagoon, Central California

    NASA Astrophysics Data System (ADS)

    Hohn, R. A.; Ganguli, P. M.; Swarzenski, P. W.; Richardson, C. M.; Merckling, J.; Johnson, C.; Flegal, A. R.

    2013-12-01

    Younger Lagoon Reserve, located in northern Monterey Bay, is one of the few relatively undisturbed wetlands that remain along the Central Coast of California. This lagoon system provides protected habitat for more than 100 bird species and for populations of fish, mammals, and invertebrates. Total mercury (HgT) concentrations in water within Younger Lagoon appear to vary with rainfall conditions and range from about 5-15 pM. These concentrations are similar to HgT in water from six nearby lagoon systems. However, Younger Lagoon contains elevated concentrations of dissolved organic carbon (~1 mM) and monomethylmercury (MMHg, ~1 pM) relative to our comparison lagoon sites (DOC < 0.5 mM and MMHg < 0.5 pM). We attribute Younger Lagoon's high DOC and MMHg to its restricted connection to the ocean and minor riverine contribution. Coastal lagoons in this region typically form at the mouth of streams. They behave as small estuaries during the wet season when surface water discharge keeps the mouth of the stream open to the ocean, and then transition into lagoons in the dry season when a sand berm develops and effectively cuts off surface water exchange. At Younger Lagoon, the sand berm remains intact throughout the year, breaching only during particularly high tides or intense rain events. Therefore, the lagoon's connection to nearshore seawater is primarily via surface water - groundwater interaction through the sand berm. Because Younger Lagoon is largely isolated from a surface water connection with the ocean, runoff from upgradient urban and agricultural land has an enhanced impact on water (and presumably sediment) quality. As a result, the lagoon is eutrophic and experiences annual algal blooms. Groundwater surveys suggest surface water, groundwater, and coastal seawater are hydraulically connected at Younger Lagoon, and mixing among these water masses appears to influence water geochemistry. To date, no chemical analyses have been conducted on sediment from Younger

  12. Orion Nebula and Planetary Nebulae

    NASA Technical Reports Server (NTRS)

    Dufour, Reginald J.

    1998-01-01

    This report summarizes the research performed at Rice University related to NASA-Ames University consortium grant NCC2-5199 during the two year period 1996 September 1 through 1998 August 31. The research program, titled Orion Nebula and Planetary Nebulae, involved the analysis of Hubble Space Telescope (HST) imagery and spectroscopy of the Orion Nebula and of the planetary nebulae NGC 6818 and NGC 6210. In addition, we analyzed infrared spectra of the Orion Nebula taken with the Infrared Space Observatory (ISO) The primary collaborators at NASA-Ames were Drs. R. H. Rubin, A. G. C. M. Tielens, S. W. J. Colgan, and S. D. Lord (Tielens & Lord has since changed institutions). Other collaborators include Drs. P. G. Martin (CITA, Toronto), G. J. Ferland (U. KY), J. A. Baldwin (CTIO, Chile), J. J. Hester (ASU), D. K. Walter (SCSU), and P. Harrington (U. MD). In addition to the Principal Investigator, Professor Reginald J. Dufour of the Department of Space Physics & Astronomy, the research also involved two students, Mr. Matthew Browning and Mr. Brent Buckalew. Mr. Browning will be graduating from Rice in 1999 May with a B.A. degree in Physics and Mr. Buckalew continues as a graduate student in our department, having recently received a NASA GSRP research fellowship (sponsored by Ames). The collaboration was very productive, with two refereed papers already appearing in the literature, several others in preparation, numerous meeting presentations and two press releases. Some of our research accomplishments are highlighted below. Attached to the report are copies of the two major publications. Note that this research continues to date and related extensions of it recently has been awarded time with the HST for 1999-2000.

  13. The Trifid Nebula

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This NASA Hubble Space Telescope (HST) image of the Trifid Nebula reveals a stellar nursery being torn apart by a nearby massive star. Embryonic stars are forming within an ill-fated cloud of dust and gas, which is destined to be eaten away by the glare from the massive neighbor. The cloud is about 8 light years away from the nebula' s central star. This stellar activity is a beautiful example of how the life cycle of stars like our Sun is intimately cornected with their more powerful siblings. Residing in the constellation Sagittarius, the Trifid Nebula is about 9,000 light years from Earth.

  14. Fotometría infrarroja del Reloj de Arena en M8

    NASA Astrophysics Data System (ADS)

    Arias, J.; Barbá, R.; Morrell, N.; Rubio, M.

    We present sub-arcsecond resolution JHKs imaging of the Hourglass Nebula in Messier 8, obtained with the 2.5-m du Pont telescope at Las Campanas Observatory (LCO), Chile. Near-infrared colors have been measured for numerous infrared sources around the O-type star Herschel 36 (O7 V), the brightest source in the field and main responsible for the nebula ionization. Several of those IR sources are identified as Hα emission stars from narrow-band Hubble Space Telescope images, and some of them display a knotty shape, characteristic of proplyd-like objects. Based on the NIR color-color and color-magnitude diagrams, we also identified dozens of NIR excess sources which %we selected as are prime candidates to be intermediate and low-mass pre-main-sequence stars. Additionally, we present preliminary results of the spectroscopic confirmation of some T Tauri stars among these objects, based on spectra recently obtained with the 6.5-m Magellan telescope at LCO.

  15. Spectroscopy of Planetary Nebulae at the Bright End of the Luminosity Function

    NASA Astrophysics Data System (ADS)

    Rilinger, Anneliese; Kwitter, Karen B.; Balick, Bruce; Corradi, R. L. M.; Galera Rosillo, Rebeca; Jacoby, George H.; Shaw, Richard A.

    2017-01-01

    We have obtained spectra of 8 luminous planetary nebulae (PNe) in M31 and 4 in the Large Magellanic Cloud with the goal of understanding their properties and those of their progenitor stars. These PNe are at or near the M* region (the most luminous PNe) in their respective galaxies. M31 PNe were observed at the Gran Telescopio Canarias using the OSIRIS spectrograph; LMC PNe were observed with the FORS2 spectrograph at the Very Large Telescope. Line intensities were measured in IRAF. Using our n-level atom program, ELSA (Johnson, et.al, 2006, Planetary Nebulae in our Galaxy and Beyond, 234, 439), we determined temperature, density, and elemental abundances for each nebula. We then modeled the nebulae and central stars with Cloudy (Ferland, et al. 1998, PASP, 110, 761). We plan to use these models of the central stars to estimate the masses and ages of the progenitor stars. We hope to discover whether the progenitor stars of M* PNe exhibit consistently different characteristics from those of other PNe progenitors.

  16. Planetary Nebulae and their parent stellar populations. Tracing the mass assembly of M87 and Intracluster light in the Virgo cluster core

    NASA Astrophysics Data System (ADS)

    Arnaboldi, Magda; Longobardi, Alessia; Gerhard, Ortwin

    2016-08-01

    The diffuse extended outer regions of galaxies are hard to study because they are faint, with typical surface brightness of 1% of the dark night sky. We can tackle this problem by using resolved star tracers which remain visible at large distances from the galaxy centers. This article describes the use of Planetary Nebulae as tracers and the calibration of their properties as indicators of the star formation history, mean age and metallicity of the parent stars in the Milky Way and Local Group galaxies. We then report on the results from a deep, extended, planetary nebulae survey in a 0.5 deg2 region centered on the brightest cluster galaxy NGC 4486 (M87) in the Virgo cluster core, carried out with SuprimeCam@Subaru and FLAMES-GIRAFFE@VLT. Two planetary nebulae populations are identified out to 150 kpc distance from the center of M87. One population is associated with the M87 halo and the second one with the intracluster light in the Virgo cluster core. They have different line-of-sight velocity and spatial distributions, as well as different planetary nebulae specific frequencies and luminosity functions. The intracluster planetary nebulae in the surveyed region correspond to a luminosity of four times the luminosity of the Large Magellanic Cloud. The M87 halo planetary nebulae trace an older, more metal-rich, parent stellar population. A substructure detected in the projected phase-space of the line-of-sight velocity vs. major axis distance for the M87 halo planetary nebulae provides evidence for the recent accretion event of a satellite galaxy with luminosity twice that of M33. The satellite stars were tidally stripped about 1 Gyr ago, and reached apocenter at a major axis distance of 60-90 kpc from the center of M87. The M87 halo is still growing significantly at the distances where the substructure is detected.

  17. A Study of the 3.3 and 3.4 μm Emission Features in Proto-Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    Hrivnak, Bruce J.; Geballe, T. R.; Kwok, Sun

    2007-06-01

    Medium-resolution spectra have been obtained of seven carbon-rich proto-planetary nebulae (PPNs) and one young planetary nebula from 3.2 to 3.8 μm, an interval containing the prominent hydrocarbon CH stretches at 3.3 and 3.4 μm due to aromatic and aliphatic structures, respectively. The 3.3 μm feature is newly identified in IRAS 23304+6147, 22223+4327, and 06530-0213 and is confirmed in Z02229+6208. Three of the PPNs emit in the 3.4 μm feature, two of these being new identifications, IRAS 20000+3239 and 01005+7910, with two others showing possible detections. The 3.3 and 3.4 μm emission features in IRAS 22272+5435 are seen in the nebula offset from the star but not at the position of the central star, consistent with the 2003 results of Goto et al. A similar distribution is seen for the 3.3 μm feature in IRAS 22223+4327. All of the PPNs except IRAS 22272+5435 show Class A 3 μm emission features. These observations, when combined with those of the approximately equal number of other carbon-rich PPNs previously observed, demonstrate that there are large differences in the 3 μm emission bands, even for PPNs with central stars of similar spectral type, and thus that the behavior of the bands does not depend solely on spectral type. We also investigated other possible correlations to help explain these differences. These differences do not depend on the C/O value, since the Class B sources fall within the C/O range found for Class A. All of these 3.3 μm sources also show C2 absorption and 21 μm emission features, except IRAS 01005+7910, which is the hottest source at B0. This research is based on observations made at the W. M. Keck Observatory by Gemini staff, supported by the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., on behalf of the international Gemini partnership of Argentina, Australia, Brazil, Canada, Chile, the United Kingdom, and the United States of America. The W. M. Keck Observatory is

  18. Patterns of seasonal variation in lagoonal macrozoobenthic assemblages (Mellah lagoon, Algeria).

    PubMed

    Magni, Paolo; Draredja, Brahim; Melouah, Khalil; Como, Serena

    2015-08-01

    In coastal lagoons, many studies indicated that macrozoobenthic assemblages undergo marked temporal fluctuations as related to the strong environmental variability of these systems. However, most of these studies have not assessed the seasonal patterns of these fluctuations and none of them has investigated the consistency of this variation in different areas within the same lagoon system. In this study, we assessed patterns of variation at multiple temporal (date, season and year) scales in two different areas in the coastal lagoon of Mellah (northeast Algeria). These areas (hereafter Shore and Center) are representative of two different environments typically found in coastal lagoons. The Shore (water depth of about 1.5-2 m) is characterized by relatively higher hydrodynamics, sand to silty-sand sediments and the presence of vegetation (Ruppia maritima), the Center (water depth of about 3-3.5 m) is characterized by mud to sandy-mud, organic-enriched sediments due to fine particle accumulation. Results showed two distinct patterns of seasonal variation in Shore and Center assemblages for two consecutive years. In Shore, species richness (S), total abundance (N) and the abundance of several dominant taxa were highest in summer and/or autumn. This pattern can be related to the local environmental conditions maintaining relatively well oxidized conditions, while increasing food availability, and favoring the recruitment of species and individuals in summer/autumn. On the contrary in Center, S was lowest in summer and autumn, and N and the abundance of fewer dominant taxa were lowest in summer. In Center, the bivalve Loripes lucinalis showed a 10-fold increase from summer to autumn in both years, likely related to the lagoon's hydrodynamics favoring larval transport and settlement in the central sector of the lagoon. Overall, the seasonal variation found in Center followed a regression/recovery pattern typical of opportunistic assemblages occurring in confined

  19. ESO 2.2-m WFI Image of the Tarantula Nebula

    NASA Image and Video Library

    2017-12-08

    NASA image release May 11, 2010 Hubble Catches Heavyweight Runaway Star Speeding from 30 Doradus Image: ESO 2.2-m WFI Image of the Tarantula Nebula A blue-hot star, 90 times more massive than our Sun, is hurtling across space fast enough to make a round trip from Earth to the Moon in merely two hours. Though the speed is not a record-breaker, it is unique to find a homeless star that has traveled so far from its nest. The only way the star could have been ejected from the star cluster where it was born is through a tussle with a rogue star that entered the binary system where the star lived, which ejected the star through a dynamical game of stellar pinball. This is strong circumstantial evidence for stars as massive as 150 times our Sun's mass living in the cluster. Only a very massive star would have the gravitational energy to eject something weighing 90 solar masses. The runaway star is on the outskirts of the 30 Doradus nebula, a raucous stellar breeding ground in the nearby Large Magellanic Cloud. The finding bolsters evidence that the most massive stars in the local universe reside in 30 Doradus, making it a unique laboratory for studying heavyweight stars. 30 Doradus, also called the Tarantula Nebula, is roughly 170,000 light-years from Earth. To learn more about this image go to: www.nasa.gov/mission_pages/hubble/science/runaway-star.html Credit: NASA/ESO, J. Alves (Calar Alto, Spain), and B. Vandame and Y. Beletski (ESO) NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.

  20. Abundances in Eight M31 Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    Hensley, Kerry G.; Kwitter, Karen B.; Corradi, Romano; Galera-Rosillo, R.; Balick, Bruce; Henry, Richard B. C.

    2014-06-01

    As part of a continuing project using planetary nebulae (PNe) to study the chemical evolution and formation history of M31 (see accompanying poster by Balick et al.), we obtained spectra of eight PNe in the fall of 2013 with the OSIRIS spectrograph on the GTC. All of these PNe are located outside M31’s inner disk and bulge. Spectral coverage extended from 3700-7800Å with a resolution of ~6 Å. Especially important in abundance determinations is the detection of the weak, temperature-sensitive auroral line of [O III], at 4363Å, which is often contaminated by Hg I 4358Å from streetlights; the remoteness of the GTC eliminated this difficulty. We reduced and measured the spectra using IRAF, and derived nebular diagnostics and abundances with ELSA, our in-house five-level-atom program. Here we report the chemical abundances determined from these spectra. The bottom line is that the oxygen abundances in these PNe are all within a factor of 2-3 of the solar value, (as are all the other M31 PNe our team has previously measured) despite the significant range of galactocentric distance. Future work will use these abundances to constrain models of the central star to estimate progenitor masses and ages. In particular we will use the results to investigate the hypothesis that these PNe might represent a population related to the encounter between M31 and M33 ~3 Gy ago. We gratefully acknowledge support from Williams College.

  1. METAL-RICH PLANETARY NEBULAE IN THE OUTER REACHES OF M31

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balick, B.; Kwitter, K. B.; Corradi, R. L. M.

    2013-09-01

    Spectroscopic data of two relatively [O III]-luminous planetary nebulae (PNe) have been obtained with the 10.4 m Gran Telescopio Canarias. M174 and M2496 are each {approx}1 Degree-Sign from the center of M31 along opposite sides of its minor axis. The ensemble of these 2 distant PNe plus 16 similarly luminous outer-disk PNe published previously by Kwitter et al. forms a homogeneous group in luminosity, metal content, progenitor mass, age, and kinematics. The main factual findings of our work are (1) O/H (and other low-mass {alpha} elements and their ratios to O) is uniformly solar-like in all 18 PNe ((12 +more » log(O/H)) = 8.62 {+-} 0.14); (2) the general sky distribution and kinematics of the ensemble much more closely resemble the rotation pattern of the classical disk of M31 than its halo or bulge; (3) the O/H gradient is surprisingly flat beyond R{sub g} {approx} 20 kpc. The PNe are too metal-rich to be bona fide members of M31's disk or halo, and (4) the abundance patterns of the sample are distinct from those in the spiral galaxies M33, M81, and NGC 300. Using standard PN age diagnostic methods, we suggest that all of the PNe formed {approx}2 Gyr ago in a starburst of metal-rich interstellar medium that followed an M31-M33 encounter about 3 Gyr ago. We review supporting evidence from stellar studies. Other more prosaic explanations, such as dwarf galaxy assimilation, are unlikely.« less

  2. Aspects of fish conservation in the upper Patos Lagoon basin.

    PubMed

    Fontoura, N F; Vieira, J P; Becker, F G; Rodrigues, L R; Malabarba, L R; Schulz, U H; Möller, O O; Garcia, A M; Vilella, F S

    2016-07-01

    The Patos Lagoon basin is a large (201 626 km(2) ) and complex drainage system in southern Brazil. The lagoon is 250 km long and 60 km wide, covering an area of 10 360 km(2) . The exchange of water with the Atlantic Ocean occurs through a 0·8 km wide and 15 m deep inlet, fixed by 4 km long jetties, at the southernmost part of the Patos Lagoon. The estuarine area is restricted to its southern portion (10%), although the upper limit of saline waters migrates seasonally and year to year, influenced by the wind regime and river discharge. The known number of recorded limnetic fish species is 200, but this number is expected to increase. A higher endemism is observed in fish species occurring in upper tributaries. The basin suffers from the direct impact of almost 7 million inhabitants, concentrated in small to large cities, most with untreated domestic effluents. There are at least 16 non-native species recorded in natural habitats of the Patos Lagoon basin, about half of these being from other South American river basins. Concerning the fishery, although sport and commercial fisheries are widespread throughout the Patos Lagoon basin, the lagoon itself and the estuarine area are the main fishing areas. Landing statistics are not available on a regular basis or for the whole basin. The fishery in the northern Patos Lagoon captures 31 different species, nine of which are responsible for most of the commercial catches, but only three species are actually sustaining the artisanal fishery: the viola Loricariichthys anus: 455 kg per 10 000 m(2) gillnet per day, the mullet Mugil liza: 123 kg per 10 000 m(2) gillnet per day and the marine catfish Genidens barbus: 50 kg per 10 000 m(2) gillnet per day. A decline of the fish stocks can be attributed to inadequate fishery surveillance, which leads to overfishing and mortality of juveniles, or to decreasing water quality because of urban and industrial activities and power production. Global climatic changes also represent a

  3. On planetary nebulae as sources of carbon dust: Infrared emission from planetary nebulae of the galactic halo

    NASA Technical Reports Server (NTRS)

    Dinerstein, Harriet L.; Lester, Daniel F.

    1990-01-01

    Planetary nebulae of the galactic disk are generally seen to emit a thermal continuum due to dust grains heated by stellar and nebular photons. This continuum typically peaks between 25 and 60 micron m, so that the total power emitted by the dust is sampled well by the broad-band measurements made by IRAS. Researchers examine here the characteristics of the infrared emission from the four planetary nebulae which are believed on the basis of their low overall metallicities to belong to the halo population. These nebulae are of particular interest because they are the most metal-poor ionized nebulae known in our Galaxy, and offer the opportunity to probe possible dependences of the dust properties on nebular composition. Researchers present fluxes extracted from co-addition of the IRAS data, as well as ground-based near infrared measurements. Each of the four halo objects, including the planetary nebula in the globular cluster M15, is detected in at least one infrared band. Researchers compare the estimated infrared excesses of these nebulae (IRE, the ratio of measured infrared power to the power available in the form of resonantly-trapped Lyman alpha photons) to those of disk planetary nebulae with similar densities but more normal abundances. Three of the halo planetaries have IRE values similar to those of the disk nebulae, despite the fact that their Fe- and Si-peak gas phase abundances are factors of 10 to 100 lower. However, these halo nebulae have normal or elevated C/H ratios, due to nuclear processing and mixing in their red giant progenitors. Unlike the other halo planetaries, DDDM1 is deficient in carbon as well as in the other light metals. This nebula has a substantially lower IRE than the other halo planetaries, and may be truly dust efficient. Researchers suggest that the deficiency is due to a lack of the raw material for producing carbon-based grains, and that the main bulk constituent of the dust in these planetary nebulae is carbon.

  4. POPULATION I WOLF-RAYET RUNAWAY STARS: THE CASE OF WR124 AND ITS EXPANDING NEBULA M1-67

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marchenko, S. V.; Moffat, A. F. J.; Crowther, P. A., E-mail: sergey.marchenko@ssaihq.co, E-mail: moffat@astro.umontreal.c, E-mail: Paul.Crowther@sheffield.ac.u

    2010-11-20

    In 1997 and 2008 we used the WFPC2 camera on board the Hubble Space Telescope to obtain two sets of narrow-band H{alpha} images of the runaway Wolf-Rayet (WR) star WR 124 surrounded by its nebula M1-67. This two-epoch imaging provides an expansion parallax and thus a practically assumption-free geometric distance to the nebula, d = 3.35 {+-} 0.67 kpc. Combined with the global velocity distribution in the ejected nebula, this confirms the extreme runaway status of WR 124. WR stars embedded within such ejection nebulae at the point of core collapse would produce different supernova characteristics from those expected formore » stars surrounded by wind-filled cavities. In galaxies with extremely low ambient metallicity, Z {<=} 10{sup -3} Z {sub sun}, {gamma}-ray bursts originating from fast-moving runaway WR stars may produce afterglows which appear to be coming from regions with a relatively homogeneous circumburst medium.« less

  5. The Charge State of Polycyclic Aromatic Hydrocarbons across a Reflection Nebula, an H II Region, and a Planetary Nebula

    NASA Astrophysics Data System (ADS)

    Boersma, C.; Bregman, J.; Allamandola, L. J.

    2018-05-01

    Low-resolution Spitzer-IRS spectral map data of a reflection nebula (NGC 7023), H II region (M17), and planetary nebula (NGC 40), totaling 1417 spectra, are analyzed using the data and tools available through the NASA Ames PAH IR Spectroscopic Database. The polycyclic aromatic hydrocarbon (PAH) emission is broken down into PAH charge and size subclass contributions using a database-fitting approach. The resulting charge breakdown results are combined with those derived using the traditional PAH band strength ratio approach, which interprets particular PAH band strength ratios as proxies for PAH charge. Here the 6.2/11.2 μm PAH band strength ratio is successfully calibrated against its database equivalent: the {n}PAH}+}/{n}PAH}0} ratio. In turn, this ratio is converted into the PAH ionization parameter, which relates it to the strength of the radiation field, gas temperature, and electron density. Population diagrams are used to derive the {{{H}}}2 density and temperature. The bifurcated plot of the 8.6 versus 11.2 μm PAH band strength for the northwest photo dissociation region in NGC 7023 is shown to be a robust diagnostic template for the {n}PAH}+}/{n}PAH}0} ratio in all three objects. Template spectra for the PAH charge and size subclasses are determined for each object and shown to favorably compare. Using the determined template spectra from NGC 7023 to fit the emission in all three objects yields, upon inspection of the Structure SIMilarity maps, satisfactory results. The choice of extinction curve proves to be critical. Concluding, the distinctly different astronomical environments of a reflection nebula, H II region, and planetary nebula are reflected in their PAH emission spectra.

  6. Copper complexation capacity in surface waters of the Venice Lagoon.

    PubMed

    Delgadillo-Hinojosa, Francisco; Zirino, Alberto; Nasci, Cristina

    2008-10-01

    Total copper (Cu(T)), copper ion activity (pCu) and the copper complexation capacity (CuCC) were determined in samples of seawater collected in July 2003 from the Venice Lagoon. Cu(T) and CuCC showed considerable spatial variability: Cu(T) ranged from 1.8 to 70.0nM, whereas the CuCC varied from 195 to 573nM. pCu values varied from 11.6 to 12.6 and are consistent with those previously reported in estuarine and coastal areas (10.9-14.1). The range of Cu(T) values compares well with those reported in the past in the lagoon and in the adjacent Adriatic Sea. The highest concentrations of Cu(T) were found in samples collected near the industrial area of Porto Marghera, whereas the lowest were measured near the Chioggia and Malamocco inlets, where an intense tidally-driven renewal of seawater takes place. Although CuCC showed a high degree of spatial variability, the values recorded in the Venice Lagoon are comparable to those reported in other estuarine systems. In addition, CuCC was positively correlated with dissolved organic carbon (DOC), suggesting that organic ligands responsible for Cu complexation are part of the bulk organic matter pool in the lagoon. The CuCC:Cu(T) molar ratio was, on average 55:1, indicating that a large excess of complexation capacity exists in the Venice Lagoon. The high levels of CuCC and the narrow range of pCu indicates the importance of the role played by organic ligands in controlling the free ion Cu concentrations in the lagoon, and as a consequence, regulating its availability and/or toxicity.

  7. GIANT Hα NEBULA SURROUNDING THE STARBURST MERGER NGC 6240

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoshida, Michitoshi; Yagi, Masafumi; Komiyama, Yutaka

    We revealed the detailed structure of a vastly extended Hα-emitting nebula (“Hα nebula”) surrounding the starburst/merging galaxy NGC 6240 by deep narrow-band imaging observations with the Subaru Suprime-Cam. The extent of the nebula is ∼90 kpc in diameter and the total Hα luminosity amounts to L{sub Hα} ≈ 1.6 × 10{sup 42} erg s{sup −1}. The volume filling factor and the mass of the warm ionized gas are ∼10{sup −4}–10{sup −5} and ∼5 × 10{sup 8} M{sub ⊙}, respectively. The nebula has a complicated structure, which includes numerous filaments, loops, bubbles, and knots. We found that there is a tight spatial correlation between the Hαmore » nebula and the extended soft-X-ray-emitting gas, both in large and small scales. The overall morphology of the nebula is dominated by filamentary structures radially extending from the center of the galaxy. A large-scale bipolar bubble extends along the minor axis of the main stellar disk. The morphology strongly suggests that the nebula was formed by intense outflows—superwinds—driven by starbursts. We also found three bright knots embedded in a looped filament of ionized gas that show head-tail morphologies in both emission-line and continuum, suggesting close interactions between the outflows and star-forming regions. Based on the morphology and surface brightness distribution of the Hα nebula, we propose the scenario that three major episodes of starburst/superwind activities, which were initiated ∼10{sup 2} Myr ago, formed the extended ionized gas nebula of NGC 6240.« less

  8. Atoms, Stars, and Nebulae

    NASA Astrophysics Data System (ADS)

    Aller, Lawrence H.

    1991-09-01

    1. Introducing stars and nebulae; 2. Stellar rainbows; 3. Atoms and molecules; 4. The climate in a stellar atmosphere; 5. Analysing the stars; 6. Dwarfs, giants, and supergiants; 7. What makes a star shine?; 8. The youth and middle age of a common star; 9. Wind, dust and pulsations; 10. A star's last hurray?; 11. The interstellar medium and gaseous nebulae; 12. Uncommon stars and their sometimes violent behaviour; 13. High energy astronomy.

  9. Near-infrared morphology of protoplanetary nebulae - The icy dust torus of Minkowski's Footprint (M1-92)

    NASA Technical Reports Server (NTRS)

    Eiroa, C.; Hodapp, K.-W.

    1989-01-01

    High-resolution near-infrared images and ice-band spectra of the protoplanetary nebula M1-92 (Minkowski's Footprint) are presented. The direct images of the object display a typical bipolar morphology with the star located in the center of the nebula illuminating two lobes. The overall dimensions are the same in the J, H, and K infrared bands, and they are similar to those in the optical range. The near-infrared color images clearly reveal a dust torus around the central star. The orientation of the object in the plane of the sky allows the simultaneous view of the illuminating star, the nebular lobes, and the dust torus in a highly favorable perspective, only rarely found in other bipolar nebulae. The ice-band spectra make it possible to locate the H2O-ice grains within the dust torus; in addition, the narrow ice feature indicates that the ices are primarily pure crystalline water.

  10. An IFU-view of Planetary Nebulae: Exploring NGC 6720 (Ring Nebula) with KCWI

    NASA Astrophysics Data System (ADS)

    Hoadley, Keri; Matuszewski, Matt; Hamden, Erika; Martin, Christopher; Neill, Don; Kyne, Gillian

    2018-01-01

    Studying the interaction between the ejected stellar material and interstellar clouds is important for understanding how stellar deaths influences the pollution of matter that will later form other stars. Planetary nebulae provide ideal laboratories to study such interactions. I will present on a case study of one close-by planetary nebula, the Ring Nebula (M 57, NGC 6720), to infer the abundances, temperatures, structures, and dynamics of important atomic and ionic species in two distinct regions of the nebula using a newly-commissioned integral field spectrograph (IFS) on Keck: the Keck Cosmic Web Imager (KCWI). The advantage of an IFS over traditional filter-imaging techniques is the ability to simultaneously observe the spectrum of any given pixel in the imaging area, which provides crucial information about the dynamics of the observed region. This technique is powerful for diffuse or extended astrophysical objects, and I will demonstrate the different imaging and spectral modes of KCWI used to observe the Ring Nebula.KCWI observations of the Ring Nebula focused mainly on the innermost region of the nebula, with a little coverage of the Inner Ring. We also observed the length of the Ring in one set of observations, for which we will estimate the elemental abundances, temperatures, and dynamics of the region. KCWI observations also capture an inner arc and blob that have distinctly difference characteristics than the Ring itself and may be a direct observation of either the planetary nebula ramming into an interstellar cloud projected onto the sightline or a dense interstellar cloud being illuminated by the stellar continuum from the hot central white dwarf.

  11. 3He Abundances in Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    Guzman-Ramirez, Lizette

    2017-10-01

    Determination of the 3He isotope is important to many fields of astrophysics, including stellar evolution, chemical evolution, and cosmology. The isotope is produced in stars which evolve through the planetary nebula phase. Planetary nebulae are the final evolutionary phase of low- and intermediate-mass stars, where the extensive mass lost by the star on the asymptotic giant branch is ionised by the emerging white dwarf. This ejecta quickly disperses and merges with the surrounding ISM. 3He abundances in planetary nebulae have been derived from the hyperfine transition of the ionised 3He, 3He+, at the radio rest frequency 8.665 GHz. 3He abundances in PNe can help test models of the chemical evolution of the Galaxy. Many hours have been put into trying to detect this line, using telescopes like the Effelsberg 100m dish of the Max Planck Institute for Radio Astronomy, the National Radio Astronomy Observatory (NRAO) 140-foot telescope, the NRAO Very Large Array, the Arecibo antenna, the Green Bank Telescope, and only just recently, the Deep Space Station 63 antenna from the Madrid Deep Space Communications Complex.

  12. Spatial and temporal variation of water quality in the coastal lagoons of Sinaloa

    NASA Astrophysics Data System (ADS)

    Paez-Osuna, F.; Lopez-Aguiar, L. K.; Del Río-Chuljak, A.; Ruiz-Fernandez, A. C.

    2007-05-01

    The Mexican state of Sinaloa has 656 km of coastline and 221,600 ha of coastal lagoons, and is characterized by a high fishing and agriculture activity. It is well known that agricultural activities constitute a major factor affecting the water quality in the coastal waters. The current study focused on the 6 more important coastal lagoons of Sinaloa (Topolobampo-Ohuira-Santa María, Navachiste-San Ignacio-Macapule, Santa María-La Reforma, Altata-Ensenada del Pabellón, Ceuta and Teacapán-Agua Brava) with the aim to evaluate the water quality spatial and temporal variation at the lagoons (physico-chemical parameters, nutrients (N, P and Si), dissolved oxygen, total suspended solids and chlorophyll a) and to assess its eutrophication status. The water samples were collected in several stations at each lagoon (between 9 and 23 stations depending on the lagoon area) at low and high tides, during three different weather periods (dry-warm, rainy and dry-cold seasons) between May 2004 and April 2005. Mean concentrations of nutrients (μM), dissolved oxygen (mg/L) and chlorophyll a (mg/m3) obtained for each variable were comparable between lagoons (total N=51±45; total P= 2.5±1.5; Si=23±31; DO=6.7±1.8; Chll=1.7±1.9) although seasonal and spatial differences were observed at each lagoon. The nutrient concentrations measured fell in the typical concentration intervals for coastal lagoons; however, critical sampling points were identified and related to direct discharges of untreated effluents from municipal wastes, aquaculture farms and agriculture drain ditches.

  13. Hydroxyl Emission in the Westbrook Nebula

    NASA Astrophysics Data System (ADS)

    Strack, Angelica; Araya, Esteban; Ghosh, Tapasi; Arce, Hector G.; Lebron, Mayra E.; Salter, Christopher J.; Minchin, Robert F.; Pihlstrom, Ylva; Kurtz, Stan; Hofner, Peter; Olmi, Luca

    2016-06-01

    CRL 618, also known as the Westbrook Nebula, is a carbon-rich pre-planetary nebula. Hydroxyl (OH) transitions are typically not detected in carbon-rich late-type stellar objects, however observations conducted with the 305m Arecibo Telescope in 2008 resulted in the detection of 4765 MHz OH emission in CRL 618. We present results of observations carried out a few months after the original detection that confirm the line. This is the first detection of 4765 MHz OH emission (most likely a maser) in a pre-planetary nebula. Follow up observations conducted in 2015 resulted in non-detection of the 4765 MHz OH transition. This behavior is consistent with the high level of variability of excited OH lines that have been detected toward a handful of other pre-planetary nebulae. Our work supports that excited OH masers are short-lived during the pre-planetary nebula phase. We also conducted a search for other OH transitions from 1612 MHz to 8611 MHz with the Arecibo Telescope; we report no other detections at rms levels of ~5 mJy.This work has made use of the computational facilities donated by Frank Rodeffer to the WIU Astrophysics Research Laboratory. We also acknowledge support from M. & C. Wong RISE scholarships and a grant from the WIU College of Arts and Sciences.

  14. Assessing Pathogen Levels in Dairy Lagoon Wastewater and Potential Evaporation Losses

    NASA Astrophysics Data System (ADS)

    Pandey, P.; Biswas, S.; Souza, A.; Silva-del-Rio, N.; Vaddella, V. K.; Castillo, A. R.

    2014-12-01

    The ongoing drought in California necessitates the conservation of existing water resources while protecting the water quality. There is a critical need to improve the understanding of evaporation losses from dairy lagoons in California, and their corresponding changes in pathogen levels in the lagoon wastewater. We have carried out preliminary studies involving extensive dairy lagoon water sampling, and batch-scale experiments. The dairy wastewater was collected from both primary and secondary lagoons in three counties of California (Merced, Tulare, and Glenn Counties) for enumerating the levels of E. coli O157:H7, Salmonella spp., and Listeria monocytogenes. Subsequently, we conducted batch-scale experiments at mesophilic (31 and 37 ⁰C) and thermophilic temperatures (43 and 49 ⁰C) to understand the E. coli O157:H7 inactivation process and potential evaporative water losses. In addition, we compared the evaporation losses under the environment of biological activity and the environment of restricted biological activity (extreme environment with low pH). For E. coli O157:H7 enumeration, we used MacConkey agar, while for Salmonella spp., XLD agar was used. Listeria monocytogenes levels were measured using PALCAM agar (with selective supplement). In flushed dairy wastewater (fresh) samples, the average of E. coli O157:H7 levels were 2 × 104 CFU/mL. The average Listeria monocytogenes levels in flushed manure were 9 × 101. The levels of Salmonella spp. were non-detectable. In mesophilic condition (37 ⁰C) after 5 days of incubation, 8% of total water loss was observed, while at thermophilic temperature (49 ⁰C), 70% of total water loss was observed. After 5 days of incubation at 37 ⁰C, E. coli O157:H7 levels in flushed dairy manure were increased from 2.8 × 103 to 5.2 × 104 CFU/mL, while at 49 ⁰C, E. coli O157:H7 levels were reduced from 2.8 × 103 to 5 × 101 CFU/mL after 4 days of incubation. We anticipate that the results of this study would be useful

  15. Multi-centennial scale precipitation and following lagoon ecosystem fluctuation in the Holocene reconstructed by East Korean Lagoon sediment analysis

    NASA Astrophysics Data System (ADS)

    Katsuki, K.; Yang, D. Y.; Lim, J.; Nahm, W. H.; Nakanishi, T.; Seto, K.; Otsuka, M.; Kashima, K.

    2014-12-01

    There are lagoons in the northern east coast of the South Korea, which were formed during the transgression period in the early Holocene. These lagoons shrank about 5-30 % during the first half of 20 century due to terrestrial sediment input from soil erosion in reclamation lands. However, buried lagoonal sediments record Holocene climate change. In this study, multi-centennial scale paleo-climate and paleo-ecosystem change were investigated by analysis of this buried and present lagoon deposits. Based on the diatom assemblage analysis of the sediment in the lagoon Maeho where it is the east coast lagoons in Korea, this lagoon was formed about 8,400 years ago, and halophilic diatoms showed high peaks at three times within the last 8,400 years. Timings of these peaks were well coincident with the high-sea level periods reported in the western Japan. It is considered that sea-level of the east coast in Korea also showed high at three times during the mid-late Holocene, and then, salinity of the lagoon increased in these periods. Except for such sea-level dependent change, salinity of the lagoon Maeho showed the multi-centennial (200 or 400 years) scale periodic variation. Magnetic susceptibility (MS) also showed the clear 400 years periodicity in the mid-late Holocene. When the MS showed high value, oligohalobous diatoms showed high value. However, halophilic diatoms and number of total diatom valves increased when the MS showed low value. This correspondence probably indicates that magnetic minerals flew into the lagoon with river fresh water, and then volume of fresh water inflow has changed with 400 years cycles. Such MS cycle was also confirmed in the sediments of other lagoons. Change of fresh water inflow should be not local event, was a part of regional environmental change. These results probably indicate that the precipitation on the northeastern South Korea has changed by the 400 years cycle. On the basis of lagoon bottom sediment, it made clear that the

  16. Groundwater-driven nutrient inputs to coastal lagoons: The relevance of lagoon water recirculation as a conveyor of dissolved nutrients.

    PubMed

    Rodellas, Valentí; Stieglitz, Thomas C; Andrisoa, Aladin; Cook, Peter G; Raimbault, Patrick; Tamborski, Joseph J; van Beek, Pieter; Radakovitch, Olivier

    2018-06-16

    Evaluating the sources of nutrient inputs to coastal lagoons is required to understand the functioning of these ecosystems and their vulnerability to eutrophication. Whereas terrestrial groundwater processes are increasingly recognized as relevant sources of nutrients to coastal lagoons, there are still limited studies evaluating separately nutrient fluxes driven by terrestrial groundwater discharge and lagoon water recirculation through sediments. In this study, we assess the relative significance of these sources in conveying dissolved inorganic nutrients (NO 3 - , NH 4 + and PO 4 3- ) to a coastal lagoon (La Palme lagoon; France, Mediterranean Sea) using concurrent water and radon mass balances. The recirculation of lagoon water through sediments represents a source of NH 4 + (1900-5500 mol d -1 ) and PO 4 3- (22-71 mol d -1 ), but acts as a sink of NO 3 - . Estimated karstic groundwater-driven inputs of NO 3 - , NH 4 + and PO 4 3- to the lagoon are on the order of 200-1200, 1-12 and 1.5-8.7 mol d -1 , respectively. A comparison between the main nutrient sources to the lagoon (karstic groundwater, recirculation, diffusion from sediments, inputs from a sewage treatment plant and atmospheric deposition) reveals that the recirculation of lagoon water through sediments is the main source of both dissolved inorganic nitrogen (DIN) and phosphorous (DIP) to La Palme lagoon. These results are in contrast with several studies conducted in systems influenced by terrestrial groundwater inputs, where groundwater is often assumed to be the main pathway for dissolved inorganic nutrient loads. This work highlights the important role of lagoon water recirculation through permeable sediments as a major conveyor of dissolved nutrients to coastal lagoons and, thus, the need for a sound understanding of the recirculation-driven nutrient fluxes and their ecological implications to sustainably manage lagoonal ecosystems. Copyright © 2018. Published by Elsevier B.V.

  17. Initial crop growth in soil collected from a closed animal waste lagoon.

    PubMed

    Zhu, L; Kirkham, M B

    2003-03-01

    In the 21st century, remediation of the soil beneath animal waste lagoons will become an important issue, as they are closed due to environmental regulations or to abandonment. The possibility of growing crops in the soil, which has high concentrations of ammonium-N, has not been studied. The objective of this experiment was to determine if crop species would germinate and grow in lagoon soil. Soil was gathered from a lagoon that had received wastes from swine (Sus scrofa) and beef (Bos taurus) since 1968. Eight crops were grown in greenhouse pots containing the lagoon soil: winter barley (Hordeum vulgare L. 'Weskan'); field corn (Zea mays L., Cargill's hybrid 7997); 'Plainsman' winter rapeseed [Brassica napus L. spp. oleifera (Metzg.) Sinsk. f. biennis]; soybean [Glycine max (L.) Merr. 'KS 4694'); forage sorghum [Sorghum bicolor (L.) Moench 'Norkan']; sunflower (Helianthus annuus L. 'Hysun 354'); and winter wheat (Triticum aestivum L.)--two cultivars: '2137' and 'Turkey.' Plants were grown for 35 days in lagoon soil or an agricultural soil (Haynie very fine sandy loam; coarse-silty, mixed, superactive, calcareous, mesic Mollic Udifluvent) obtained from a field near the closed lagoon. Ammonium-N (average value of 692 mg/kg) was about 70-85 times greater than the average value of 8-10 mg/kg NH4-N in Kansan soils. The lagoon soil was nonsodic and had a salinity ranking of "medium" with an electrical conductivity averaging 2.29 dS/m. The high ammonium-N concentration in the lagoon soil was not inhibitory to emergence and growth. The eight crops grew taller in the lagoon soil than in the agricultural soil. Except for '2137' wheat, dry weight was higher in the lagoon soil than in the agricultural soil. The results showed that the lagoon soil is not detrimental to early growth of eight crops.

  18. The fate of Mediterranean lagoons under climate change

    NASA Astrophysics Data System (ADS)

    Umgiesser, Georg; Ferrarin, Christian; Cucco, Andrea; De Pascalis, Francesca; Ghezzo, Michol; Bellafiore, Debora; Bajo, Marco

    2014-05-01

    A numerical model (SHYFEM) has been applied to 10 Mediterranean lagoons and a comparison study between the lagoons has been carried out. The lagoons are the lagoons of Venice, Marano-Grado, Varano and Lesina in the Adriatic Sea, the Taranto basin in the Ionian Sea, the Cabras lagoon in Sardinia, and the lagoons of Ganzirri and Faro in Sicily, the Mar Menor in Spain and the Nador lagoon in Morocco. These lagoons give a representative picture of the lagoons situated around the Mediterranean basin. The lagoons range from a leaky type of lagoons to a choked type. The number of inlets ranges from just one in the Nador lagoon to 6 in the case of the Marano-Grado lagoons. Tidal range is from nano-tidal to micro-tidal. The depth ranges from an average depth of 1 m to up to 40 meters. The model is a finite element model, especially suited to shallow water basins with complicated geometric and morphologic variations. The model can compute the basic hydrodynamics, dispersion of tracers, temperature and salinity evolution, sediment transport and ecological parameters. Building on an earlier study that focused on the classification of Mediterranean lagoons based on hydrodynamics, exchange rates and renewal time, this study is concerned with the changes in physical parameters under climate change. Data from IPCC has been used to simulate the changes in renewal time, salinity and temperature of all lagoons, with respect to the control simulation. Whenever possible downscaled data for the Mediterranean basin have been used. Sea level rise scenarios are taken from the last IPCC report. The model has been applied in its 3D version and the chosen setup allows a comparison between results in the different lagoons. Results indicate that the differences of renewal time between all studied lagoons become smaller. This means that leaky lagoons become less leaky and choked lagoons less choked. What concerns temperature and salinity, changes occurring in the sea are amplified inside lagoons

  19. What Are M31 Disk Planetary Nebulae Trying to Tell Us?

    NASA Astrophysics Data System (ADS)

    Kwitter, Karen B.; Balick, Bruce; Henry, Richard B. C.; Corradi, Romano L. M.

    2015-01-01

    Over the past eight years we have observed optical spectra of planetary nebulae (PNe) in the disk of M31 using DIS on the 3.5-m ARC telescope at Apache Point Observatory and OSIRIS on the 10.4-m GTC on La Palma. We have so far studied more than two dozen objects over a projected galactocentric radius range from 5 - 33 kpc; this corresponds to a deprojected in-disk range of 15 - 106 kpc. Using ELSA, a five-level atom package, we have derived nebular diagnostics and ionic and total nebular abundances of He and O, as well as estimates for other elements. The average 12+log(O/H) for 23 disk PNe we have observed is 8.6, or about 80% of the solar value. The inferred oxygen abundance gradient across the disk is surprisingly shallow (~ -0.004 dex/kpc) out to R(deprojected)~60 kpc. CLOUDY models we have computed for many of these objects indicate central star masses whose main-sequence progenitors are estimated to be in the range of 1.7-2.5 solar masses, with lifetimes under ~2 Gyr. The existence of such young, relatively massive, and metal-rich stars past the outer edge of the spiral arms at ~18 kpc and the H I warp at ~30 kpc (beyond which stellar [Fe/H] < -1) is unexpected, and disagrees with standard models of outer galaxy assembly via assimilation of metal-poor dwarf galaxies. Star formation from inner-disk ISM ejected by a putative gravitational encounter between M31 and M33 about 3 GY ago (Bernard et al. 2012, ApJ 420, 2625) supplies a possible explanation.

  20. Close-up of M27, the Dumbbell Nebula

    NASA Image and Video Library

    2003-02-11

    An aging star last hurrah creates a flurry of glowing knots of gas that appear to be streaking through space. This closeup image of the Dumbbell Nebula was taken by the JPL-built and designed WFC3 camera, onboard NASA's Hubble Space Telescope. http://photojournal.jpl.nasa.gov/catalog/PIA04249

  1. Carbon Chemistry in Planetary Nebulae: Observations of the CCH Radical

    NASA Astrophysics Data System (ADS)

    Schmidt, Deborah Rose; Ziurys, Lucy

    2015-08-01

    The presence of infrared (IR) emission features observed in interstellar environments is consistent with models that suggest they are produced by complex organic species containing both aliphatic and aromatic components (Kwok & Zhang 2011). These IR signals change drastically over the course of the AGB, proto-planetary, and planetary nebulae phases, and this dramatic variation is yet to be understood. The radical CCH is a potential tracer of carbon chemistry and its evolution in dying stars. CCH is very common in carbon-rich circumstellar envelopes of AGB stars, and is present in the proto-planetary nebulae. It has also been observed at one position in the very young planetary nebula, NGC 7027 (Hasegawa & Kwok 2001), as well as at one position in the Helix Nebula (Tenenbaum et al. 2009) - a dense clump east of the central white dwarf. In order to further probe the chemistry of carbon, we have initiated a search for CCH in eight PNe previously detected in HCN and HCO+ from a survey conducted by Schmidt and Ziurys, using the telescopes of the Arizona Radio Observatory (ARO). Observations of the N=1→0 transition of CCH at 87 GHz have been conducted using the new ARO 12-m ALMA prototype antenna, while measurements of the N=3→2 transition at 262 GHz are being made with the ARO Sub-Millimeter Telescope (SMT). We also have extended our study in the Helix Nebula. Thus far, CCH has been detected at 8 new positions across the Helix Nebula, and appears to be widespread in this source. The radical has also been identified in K4-47, M3-28, K3-17, and K3-58. These sources represent a range of nebular ages. Additional observations are currently being conducted for CCH in other PNe, as well as abundance analyses. These results will be presented.

  2. The halo of M 49 and its environment as traced by planetary nebulae populations

    NASA Astrophysics Data System (ADS)

    Hartke, J.; Arnaboldi, M.; Longobardi, A.; Gerhard, O.; Freeman, K. C.; Okamura, S.; Nakata, F.

    2017-07-01

    Context. The galaxy M 49 (NGC 4472) is the brightest early-type galaxy in the Virgo Cluster. It is located in subcluster B and has an unusually blue, metal-poor outer halo. Planetary nebulae (PNe) are excellent tracers of diffuse galaxy and intragroup light (IGL). Aims: We aim to present a photometric survey of PNe in the galaxy's extended halo to characterise its PN population, as well as the surrounding IGL of the subcluster B. Methods: PNe were identified based on their bright [OIII]5007 Å emission and absence of a broad-band continuum through automated detection techniques. Results: We identify 738 PNe out to a radius of 155 kpc from M 49's centre from which we define a complete sample of 624 PNe within a limiting magnitude of m5007,lim = 28.8. Comparing the PN number density to the broad-band stellar surface brightness profile, we find a variation of the PN-specific frequency (α-parameter) with radius. The outer halo beyond 60kpc has a 3.2 times higher α-parameter compared to the main galaxy halo (α2.5,innerM 49 = (3.20 ± 0.43) × 10-9 PN L-1⊙,bol), which is likely due to contribution from the surrounding blue IGL. We use the planetary nebulae luminosity function (PNLF) as an indicator of distance and stellar population. Its slope, which correlates empirically with galaxy type, varies within the inner halo. In the eastern quadrant of M 49, the PNLF slope is shallower, indicating an additional localised, bright PN population following an accretion event, likely that of the dwarf irregular galaxy VCC1249. We also determined a distance modulus of μPNLF = 31.29+ 0.07-0.08 for M 49, corresponding to a physical distance of 18.1 ± 0.6 Mpc, which agrees with a recent surface-brightness fluctuations distance. Conclusions: The PN populations in the outer halo of M 49 are consistent with the presence of a main Sérsic galaxy halo with a slight (B - V) colour gradient of 10-4 mag arcsec-1 surrounded by IGL with a very blue colour of (B - V) = 0.25 and a constant

  3. Flushing of a coastal lagoon in the Red Sea

    NASA Astrophysics Data System (ADS)

    Sultan, S. A. R.; Ahmad, F.

    1990-09-01

    Shu'aiba Lagoon (Lat. 20°45'N; Long. 39°28'E) is located on the eastern coast of the Red Sea. It is relatively shallow with an area of approximately 11·7 km 2. The inlet to the lagoon is narrow with a cross-sectional area of about 245 m 2. This lagoon is a future site to develop mariculture. With this objective in view the flushing time scale of the lagoon was calculated, as flushing is an important abiotic factor in lagoon ecology. The average flushing time for the months February to June and September to November is about 20 days. Oceanic inputs play an important part in the process of fertilization of the lagoons. The marine environment in arid zone lagoons is under natural stress due to high temperatures and salinities. However, the flushing time scale of 20 days may not exert intolerable stress on the ecology of the Shu'aiba Lagoon.

  4. Hydrogen Sulfide Emissions from Sow Farm Lagoons across Climates Zones.

    PubMed

    Grant, Richard H; Boehm, Matthew T; Lawrence, Alfred J; Heber, Albert J

    2013-11-01

    Hydrogen sulfide (HS) emissions were measured periodically over the course of 2 yr at three sow waste lagoons representing humid mesothermal (North Carolina, NC), humid microthermal (Indiana, IN), and semiarid (Oklahoma, OK) climates. Emissions were determined using a backward Lagrangian stochastic model in conjunction with line-sampled HS concentrations and measured turbulence. The median annual sow-specific (area-specific) lagoon emissions at the OK farm were approximately 1.6 g head [hd] d (5880 µg m s), whereas those at the IN and NC sow farms were 0.035 g hd d (130 µg m s), and 0.041 g hd d (260 µg m s), respectively. Hydrogen sulfide emissions generally increased with wind speed. The daily HS emissions from the OK lagoon were greatest during the first half of the year and decreased as the year progressed. Emissions were episodic at the NC and IN lagoons. The generally low emissions at the NC and IN lagoons were probably a result of significant populations of purple sulfur bacteria maintained in the humid mesothermal and humid microthermal climates. Most of the large HS emission events at the NC and IN lagoons appeared to be a result of either precipitation events or liquid pump-out events. The high emissions at the OK lagoon in a semiarid climate were largely a result of high wind speeds enhancing both lagoon and air boundary layer mixing. The climate (air temperature, winds, and precipitation) appeared to influence the HS emissions from lagoons. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  5. A Study of Planetary Nebulae using the Faint Object Infrared Camera for the SOFIA Telescope

    NASA Technical Reports Server (NTRS)

    Davis, Jessica

    2012-01-01

    A planetary nebula is formed following an intermediate-mass (1-8 solar M) star's evolution off of the main sequence; it undergoes a phase of mass loss whereby the stellar envelope is ejected and the core is converted into a white dwarf. Planetary nebulae often display complex morphologies such as waists or torii, rings, collimated jet-like outflows, and bipolar symmetry, but exactly how these features form is unclear. To study how the distribution of dust in the interstellar medium affects their morphology, we utilize the Faint Object InfraRed CAmera for the SOFIA Telescope (FORCAST) to obtain well-resolved images of four planetary nebulae--NGC 7027, NGC 6543, M2-9, and the Frosty Leo Nebula--at wavelengths where they radiate most of their energy. We retrieve mid infrared images at wavelengths ranging from 6.3 to 37.1 micron for each of our targets. IDL (Interactive Data Language) is used to perform basic analysis. We select M2-9 to investigate further; analyzing cross sections of the southern lobe reveals a slight limb brightening effect. Modeling the dust distribution within the lobes reveals that the thickness of the lobe walls is higher than anticipated, or rather than surrounding a vacuum surrounds a low density region of tenuous dust. Further analysis of this and other planetary nebulae is needed before drawing more specific conclusions.

  6. Chemical Abundances of Planetary Nebulae in the Bulge and Disk of M31

    NASA Technical Reports Server (NTRS)

    Jacoby, George H.; Ciardullo, Robin

    1998-01-01

    We derive abundances and central star parameters for 15 planetary nebulae (PNe) in M31: 12 in the bulge and 3 in a disk field 14 kpc from the nucleus. No single abundance value characterizes the bulge stars: although the median abundances of the sample are similar to those seen for PNe in the LMC, the distribution of abundances is several times broader, spanning over 1 decade. None of the PNe in our sample approach the super metal-rich ([Fe/H] approximately 0.25) expectations for the bulge of M31, although a few PNe in the sample of Stasinska, Richer, & Mc Call (1998) come close. This [O/H] vs [Fe/H] discrepancy is likely due to a combination of factors, including an inability of metal-rich stars to produce bright PNe, a luminosity selection effect, and an abundance gradient in the bulge of M31. We show that PNe that are near the bright limit of the [O III] lambda.5007 planetary nebula luminosity function (PNLF) span nearly a decade in oxygen abundance, and thus, support the use of the PNLF for deriving distances to galaxies (Jacoby 1996) with differing metallicities. We also identify a correlation between central star mass and PN dust formation that partially alleviates any dependence of the PNLF maximum magnitude on population age. Additionally, we identify a spatially compact group of 5 PNe having unusually high O/H; this subgroup may arise from a recent merger, but velocity information is needed to assess the true nature of the objects.

  7. Ultraviolet spectra of planetary nebulae. X - Physical conditions in the compact planetary nebula Sw St 1

    NASA Technical Reports Server (NTRS)

    Flower, D. R.; Goharji, A.; Cohen, M.

    1984-01-01

    Photoelectric visual and ultraviolet observations of the compact planetary nebula Sw St 1 are analyzed. The electron density, determined from the C III 1907/1909 A line ratio, is N(e) = (1.1 + or - 0.1) x 10 to the 5th/cu cm, consistent with the high emission measure and high critical frequency determined from observations of the thermal radio emission. The C/O abundance ratio in the nebula is found to be N(C)/N(O) = 0.72 + or - 0.1, i.e. the envelope is oxygen-rich, as suggested by the identification of the silicate feature in the 8-13 micron infrared spectrum. Difficulties remain in accurately determining the reddening constant to the nebula and its electron temperature.

  8. Assessing hydrological effects of human interventions on coastal systems: numerical applications to the Venice Lagoon

    NASA Astrophysics Data System (ADS)

    Ferrarin, C.; Ghezzo, M.; Umgiesser, G.; Tagliapietra, D.; Camatti, E.; Zaggia, L.; Sarretta, A.

    2012-12-01

    The hydrological consequences of historical, contemporary and future human activities on a coastal system were investigated by means of numerical models. The changes in the morphology of the Lagoon of Venice during the last century result from the sedimentological response to the combined effects of human interventions on the environment and global changes. This study focuses on changes from 1927 to 2012 and includes the changes planned for the protection of the city of Venice from storm surges and exceptional tides under future sea level rise scenarios. The application of a hydrodynamic model to simulate the circulation of water masses and the transport of a passive tracer enabled the analysis of the morphodynamic effects on the lagoon circulation and the interaction with the sea. The absolute values of the exchange between the lagoon and sea increased from 1927 to 2002 (from 3900 to 4600 m3 s-1), while the daily fraction of lagoon water volume exchanged decreased. At the same time, the water renewal time shortened from 11.9 to 10.8 days. Morphological changes during the last decade induced an increase of the basin-wide water renewal time (from 10.8 to 11.3 days). In the future, Venice Lagoon will evolve to a more restricted environment due to sea level rise and periodical closure of the lagoon from the sea during flooding events. Simulated scenarios of sea level rise showed that under fall-winter conditions the water renewal time will increased considerably especially in the central part of the lagoon. Furthermore, some considerations on the impact of the hydromorphological changes on the ecological dynamics are proposed.

  9. Turbulent Concentration of MM-Size Particles in the Protoplanetary Nebula: Scaled-Dependent Multiplier Functions

    NASA Technical Reports Server (NTRS)

    Cuzzi, Jeffrey N.; Hartlep, Thomas; Weston, B.; Estremera, Shariff Kareem

    2014-01-01

    The initial accretion of primitive bodies (asteroids and TNOs) from freely-floating nebula particles remains problematic. Here we focus on the asteroids where constituent particle (read "chondrule") sizes are observationally known; similar arguments will hold for TNOs, but the constituent particles in those regions will be smaller, or will be fluffy aggregates, and are unobserved. Traditional growth-bysticking models encounter a formidable "meter-size barrier" [1] (or even a mm-cm-size barrier [2]) in turbulent nebulae, while nonturbulent nebulae form large asteroids too quickly to explain long spreads in formation times, or the dearth of melted asteroids [3]. Even if growth by sticking could somehow breach the meter size barrier, other obstacles are encountered through the 1-10km size range [4]. Another clue regarding planetesimal formation is an apparent 100km diameter peak in the pre-depletion, pre-erosion mass distribution of asteroids [5]; scenarios leading directly from independent nebula particulates to this size, which avoid the problematic m-km size range, could be called "leapfrog" scenarios [6-8]. The leapfrog scenario we have studied in detail involves formation of dense clumps of aerodynamically selected, typically mm-size particles in turbulence, which can under certain conditions shrink inexorably on 100-1000 orbit timescales and form 10-100km diameter sandpile planetesimals. The typical sizes of planetesimals and the rate of their formation [7,8] are determined by a statistical model with properties inferred from large numerical simulations of turbulence [9]. Nebula turbulence can be described by its Reynolds number Re = L/eta sup(4/3), where L = ETA alpha sup (1/2) the largest eddy scale, H is the nebula gas vertical scale height, and a the nebula turbulent viscosity parameter, and ? is the Kolmogorov or smallest scale in turbulence (typically about 1km), with eddy turnover time t?. In the nebula, Re is far larger than any numerical simulation can

  10. Microcystins Presence in Mussels (M. galloprovincialis) and Water of Two Productive Mediterranean's Lagoons (Sardinia, Italy)

    PubMed Central

    Baralla, Elena; Varoni, Maria Vittoria; Sedda, Tiziana; Floris, Antonello; Demontis, Maria Piera

    2017-01-01

    Microcystins (MCs) are hepatotoxins harmful for animal and human health. The most toxic type between them is MC-LR whose presence has been investigated in different reservoirs all around the world. In this work microcystins were monitored in spring and summer in water and mussels (Mytilus galloprovincialis) of two Sardinia lagoons: Cabras and Calich lagoons. A Solid Phase Extraction method was developed to clean and concentrate samples before the Enzyme Linked Immunosorbent Assay (ELISA) and the following Mass Spectrometry detection. MCs presence was detected using the screening ELISA test in both lagoons. MCs peak was revealed in July for water and mussels belonging to Cabras lagoon (0.75 ± 0.07 ng/L in water and 0.12 ± 0.04 ng/g ww in mussels). In water of Calich lagoon there was a constant trend in the concentration of MCs during the considered months, while there was a MCs peak in July (0.6 ± 0.5 ng/g ww) in mussels. The following LC-MS/MS analysis did not reveal MC-LR presence in all analyzed samples. These results can be useful to enrich knowledge on public health and consumer's safeguard. PMID:29359150

  11. Planetary Nebula

    NASA Image and Video Library

    2017-12-08

    This planetary nebula's simple, graceful appearance is thought to be due to perspective: our view from Earth looking straight into what is actually a barrel-shaped cloud of gas shrugged off by a dying central star. Hot blue gas near the energizing central star gives way to progressively cooler green and yellow gas at greater distances with the coolest red gas along the outer boundary. Credit: NASA/Hubble Heritage Team ---- The Ring Nebula's distinctive shape makes it a popular illustration for astronomy books. But new observations by NASA's Hubble Space Telescope of the glowing gas shroud around an old, dying, sun-like star reveal a new twist. "The nebula is not like a bagel, but rather, it's like a jelly doughnut, because it's filled with material in the middle," said C. Robert O'Dell of Vanderbilt University in Nashville, Tenn. He leads a research team that used Hubble and several ground-based telescopes to obtain the best view yet of the iconic nebula. The images show a more complex structure than astronomers once thought and have allowed them to construct the most precise 3-D model of the nebula. "With Hubble's detail, we see a completely different shape than what's been thought about historically for this classic nebula," O'Dell said. "The new Hubble observations show the nebula in much clearer detail, and we see things are not as simple as we previously thought." The Ring Nebula is about 2,000 light-years from Earth and measures roughly 1 light-year across. Located in the constellation Lyra, the nebula is a popular target for amateur astronomers. Read more: 1.usa.gov/14VAOMk NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  12. Protoplanetary Nebulae

    NASA Astrophysics Data System (ADS)

    Kwok, S.; Murdin, P.

    2000-11-01

    Protoplanetary nebulae (or pre-planetary nebulae, PPNs) are defined as objects that are in transition between the asymptotic giant branch (AGB) and planetary nebula phases of STELLAR EVOLUTION. Stars on the AGB lose mass at a high rate ((10-7-10-4)M⊙ yr-1) in the form of a stellar wind. Such mass loss eventually depletes the hydrogen envelope of the star and exposes the electron-degenerate carbon...

  13. Depositional history and fault-related studies, Bolinas Lagoon, California

    USGS Publications Warehouse

    Berquist, Joel R.

    1978-01-01

    Studies of core sediments and seismic reflection profiles elucidate the structure and depositional history of Bolinas Lagoon, Calif., which covers 4.4 km 2 and lies in the San Andreas fault zone at the southeast corner of the Point Reyes Peninsula 20 km northwest of San Francisco. The 1906 trace of the San Andreas fault crosses the west side of the lagoon and was determined from (1) tectonically caused salt-marsh destruction indicated by comparison of 1854 and 1929 U.S. Coast and Geodetic Survey (U.S.C. & G.S.) topographic surveys, (2) formation of a tidal channel along the border of destroyed salt marshes, and (3) azimuths of the trend of the fault measured in 1907. Subsidence in the lagoon of 30 cm occurred east of the San Andreas fault in 1906. Near the east shore, seismic-reflection profiling indicates the existence of a graben fault that may connect to a graben fault on the Golden Gate Platform. Comparison of radiocarbon dates on shells and plant debris from boreholes drilled on Stinson Beach spit with a relative sea-level curve constructed for southern San Francisco Bay indicates 5.8 to more than 17.9 m of tectonic subsidence of sediments now located 33 m below mean sea level. Cored sediments indicate a marine transgression dated at 7770?65 yrs B.P. overlying freshwater organic-rich lake deposits. Fossil pollen including 2 to 8 percent Picea (spruce) indicate a late Pleistocene (?)-Early Holocene climate, cooler, wetter, and foggier than at present. Above the transgression are discontinuous and interfingering sequences of transgressive-regressive marine, estuarine, and barrier sediments that reflect rapid lateral and vertical shifts of successive depositional environments. Fossil megafauna indicate (1) accumulation in a protected, shallow-water estuary or bay, and (2) that the lagoon was probably continuously shallow and never a deep-water embayment. Analysis of grain-size parameters, pollen frequencies, and organic remains from a core near the north end of

  14. Image of the Great Nebula in Andromeda, M31 Taken by the High Energy Astronomy Observatory (HEAO)-2

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Both of the High Energy Astronomy Observatory (HEAO)-2/Einstein Observatory imaging devices were used to observe the Great Nebula in Andromeda, M31. This is a smaller field and more detailed view of the central region of the Great Nebula in Andromeda, M31, taken with the High Resolution Imager. The HEAO-2, the first imaging and largest x-ray telescope built to date, was capable of producing actual photographs of x-ray objects. Shortly after launch, the HEAO-2 was nicknamed the Einstein Observatory by its scientific experimenters in honor of the centernial of the birth of Albert Einstein, whose concepts of relativity and gravitation have influenced much of modern astrophysics, particularly x-ray astronomy. The HEAO-2, designed and developed by TRW, Inc. under the project management of the Marshall Space Flight Center, was launched aboard an Atlas/Centaur launch vehicle on November 13, 1978.

  15. Fish fauna recovery in a newly re-flooded Mediterranean coastal lagoon

    NASA Astrophysics Data System (ADS)

    Koutrakis, Emmanuil; Sylaios, Georgios; Kamidis, Nikolaos; Markou, Dimitrios; Sapounidis, Argyris

    2009-08-01

    Drana Lagoon, located at the NW site of Evros River Delta, was drained in 1987 and re-flooded in 2004 within the framework of an integrated wetland restoration project. This study presents the results of a monitoring program of the lagoon's oceanographic, water quality and fish fauna characteristics, during the pre- and post-restoration period. Results depict the presence of high salinity water (up to 41) due to seawater intrusion, strong evaporation in its interior and inadequate freshwater inflows. Overall, nutrient levels were low depicting local changes. Tidal variability at the mouth was approximately 0.2 m, producing high velocity tidal currents (up to 0.75 m/s). Eleven fish fauna species were collected; seven species were caught in both the inlet channel and the lagoon during the pre-restoration period and nine species in the post-restoration period. Atherina boyeri (37.6%) and Pomatoschistus marmoratus (31.7%) dominated the lagoon during the post-restoration period. Most of the A. boyeri specimens (88.5%) were caught inside the lagoon, while P. marmoratus had an almost equal distribution in the inlet channel and the lagoon (56.3% and 43.7% respectively). The presence of species of the Mugilidae family (5.2% total average catches after lagoon re-flooding) was mainly in the inlet channel (12.6% of the average catches) and not inside the lagoon (only 1.3% of the average catches). The small number of fish species inhabiting the lagoon might be the result of the recent restoration or it could be related with the increased water flow observed at the lagoon mouth during the flood and ebb tidal phases, and also in the presence of a smooth bank in the concrete waterspout that connects the entrance channel with the lagoon. The limited presence of the Mugilidae juveniles inside the lagoon could be related to the prevailing tidal inlet dynamics (i.e. strong ebb flow at lagoon inlet), thus preventing the species to enter the lagoon. In order to restore the lagoon

  16. Planetary nebulae with UVIT: Far ultra-violet halo around the Bow Tie nebula (NGC 40)

    NASA Astrophysics Data System (ADS)

    Kameswara Rao, N.; Sutaria, F.; Murthy, J.; Krishna, S.; Mohan, R.; Ray, A.

    2018-01-01

    Context. NGC 40 is a planetary nebula with diffuse X-ray emission, suggesting an interaction of the high-speed wind from WC8 central star (CS) with the nebula. It shows strong C IV 1550 Å emission that cannot be explained by thermal processes alone. We present here the first map of this nebula in C IV emission using broad band filters on the Ultra-Violet Imaging Telescope (UVIT). Aim. We aim to map the hot C IV-emitting gas and its correspondence with soft X-ray (0.3-8 keV) emitting regions in order to study the shock interaction between the nebula and the ISM. We also aim to illustrate the potential of UVIT for nebular studies. Methods: We carry out a morphological study of images of the nebula obtained at an angular resolution of about 1.3″ in four UVIT filter bands that include C IV 1550 Å and [C II] 2326 Å lines as well as UV continuum. We also make comparisons with X-ray, optical, and IR images from the literature. Results: The [C II] 2326 Å images show the core of the nebula with two lobes on either side of CS similar to [N II]. The C IV emission in the core shows similar morphology and extent to that of diffuse X-ray emission concentrated in nebular condensations. A surprising UVIT discovery is the presence of a large faint far UV (FUV) halo in an FUV filter with λeff of 1608 Å. The UV halo is not present in any other UV filter. The FUV halo is most likely due to UV fluorescence emission from the Lyman bands of H2 molecules. Unlike the optical and IR halo, the FUV halo trails predominantly towards the south-east side of the nebular core, opposite to the CS's proper motion direction. Conclusions: Morphological similarity of C IV 1550 Å and X-ray emission in the core suggests that it results mostly from the interaction of strong CS wind with the nebula. The FUV halo in NGC 40 highlights the extensive existence of H2 molecules in the regions even beyond the optical and IR halos. Thus UV studies are important to estimate the amount of H2, which is

  17. Comparative oceanography of coastal lagoons

    NASA Technical Reports Server (NTRS)

    Kjerfve, Bjorn

    1986-01-01

    The hypothesis that physical lagoon characteristics and variability depend on the channel connecting the lagoon to the adjacent coastal ocean is evaluated. The geographical, hydrological, and oceanographic characteristics of 10 lagoon systems are described and analyzed; these oceanographic features are utilized to classify the lagoon systems. Choked lagoons (Laguna Joyuda, Coorong, Lake St.Lucia, Gippsland Lakes, Lake Songkla/Thale Luang/Thale Noi, and Lagoa dos Patos) are prevalent on coasts with high wave energy and low tidal range; restricted lagoons (Lake Pontchartrain and Laguna de Terminos) are located on low/medium wave energy coasts with a low tidal range; and leaky lagoons (Mississippi Sound and Belize Lagoon/Chetumal Bay) are connected to the ocean by wide tidal passes that transmit oceanic effects into the lagoon with a minimum of resistance. The data support the hypothesis that the nature of the connecting channel controls system functions.

  18. DISCOVERY OF TWIN WOLF-RAYET STARS POWERING DOUBLE RING NEBULAE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mauerhan, Jon C.; Wachter, Stefanie; Van Dyk, Schuyler D.

    We have spectroscopically discovered a pair of twin, nitrogen-type, hydrogen-rich, Wolf-Rayet stars (WN8-9h) that are both surrounded by circular, mid-infrared-bright nebulae detected with the Spitzer Space Telescope and MIPS instrument. The emission is probably dominated by a thermal continuum from cool dust, but also may contain contributions from atomic line emission. There is no counterpart at shorter Spitzer/IRAC wavelengths, indicating a lack of emission from warm dust. The two nebulae are probably wind-swept stellar ejecta released by the central stars during a prior evolutionary phase. The nebulae partially overlap on the sky and we speculate on the possibility that theymore » are in the early stage of a collision. Two other evolved massive stars have also been identified within the area subtended by the nebulae, including a carbon-type Wolf-Rayet star (WC8) and an O7-8 III-I star, the latter of which appears to be embedded in one of the larger WN8-9h nebulae. The derived distances to these stars imply that they are coeval members of an association lying 4.9 {+-} 1.2 kpc from Earth, near the intersection of the Galaxy's Long Bar and the Scutum-Centaurus spiral arm. This new association represents an unprecedented display of complex interactions between multiple stellar winds, outflows, and the radiation fields of evolved massive stars.« less

  19. Revisiting the Orion Nebula

    NASA Astrophysics Data System (ADS)

    2004-06-01

    ESO/MPG 2.2m telescope at La Silla, to obtain very deep images of this region. ESO PR Photo 20/04 shows a false-colour composite of images obtained in four different wavebands (see technical information below). Among others, these observations allow the astronomers to measure the rates of mass that falls onto the young stars (the mass accretion rates) and to determine if it depends on the position of the stars in the cluster. If this were the case, it would indicate that the final stages of star formation are affected by the onset of ionising radiation from the most massive stars. From a preliminary study with the Hubble Space Telescope, the astronomers found that indeed the mass accretion rates are lower in the Orion Nebula Cluster than in other, more diffuse star-forming regions. The analysis of these new WFI images should allow confirmation of this hypothesis. The astronomers also obtained images of the Orion Nebula in several narrow-band filters corresponding to emission lines - hydrogen (Halpha), oxygen ([OIII]), and sulphur ([SII]) - enabling them to probe the morphology of the nebula in these prominent lines. It is rather obvious from the image that for example some regions are redder than others, providing the astronomers with important clues on the conditions prevailing in the nebula. In the next months, a large international collaboration also led by M. Robberto will use the Hubble Space Telescope to survey with unprecedented sensitivity (23-25 mag) and spatial resolution approximately 50% of the field imaged by the present WFI observations. The astronomers expect to discover and classify an unknown but substantial population of young double stars, low mass stars and brown dwarfs.

  20. Hubble Space Telescope Image of Omega Nebula

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This sturning image, taken by the newly installed Advanced Camera for Surveys (ACS) aboard the Hubble Space Telescope (HST), is an image of the center of the Omega Nebula. It is a hotbed of newly born stars wrapped in colorful blankets of glowing gas and cradled in an enormous cold, dark hydrogen cloud. The region of nebula shown in this photograph is about 3,500 times wider than our solar system. The nebula, also called M17 and the Swan Nebula, resides 5,500 light-years away in the constellation Sagittarius. The Swan Nebula is illuminated by ultraviolet radiation from young, massive stars, located just beyond the upper-right corner of the image. The powerful radiation from these stars evaporates and erodes the dense cloud of cold gas within which the stars formed. The blistered walls of the hollow cloud shine primarily in the blue, green, and red light emitted by excited atoms of hydrogen, nitrogen, oxygen, and sulfur. Particularly striking is the rose-like feature, seen to the right of center, which glows in the red light emitted by hydrogen and sulfur. As the infant stars evaporate the surrounding cloud, they expose dense pockets of gas that may contain developing stars. One isolated pocket is seen at the center of the brightest region of the nebula. Other dense pockets of gas have formed the remarkable feature jutting inward from the left edge of the image. The color image is constructed from four separate images taken in these filters: blue, near infrared, hydrogen alpha, and doubly ionized oxygen. Credit: NASA, H. Ford (JHU), G. Illingworth (USCS/LO), M. Clampin (STScI), G. Hartig (STScI), the ACS Science Team, and ESA.

  1. Stormy seas in Sagittarius

    NASA Image and Video Library

    2017-12-08

    Some of the most breathtaking views in the Universe are created by nebulae — hot, glowing clouds of gas. This new NASA/ESA Hubble Space Telescope image shows the centre of the Lagoon Nebula, an object with a deceptively tranquil name. The region is filled with intense winds from hot stars, churning funnels of gas, and energetic star formation, all embedded within an intricate haze of gas and pitch-dark dust. Nebulae are often named based on their key characteristics — particularly beautiful examples include the Ring Nebula (heic1310), the Horsehead Nebula (heic1307) and the Butterfly Nebula (heic0910). This new NASA/ESA Hubble Space Telescope image shows the centre of the Lagoon Nebula, otherwise known as Messier 8, in the constellation of Sagittarius (The Archer). The inspiration for this nebula’s name may not be immediately obvious — this is because the image captures only the very heart of the nebula. The Lagoon Nebula’s name becomes much clearer in a wider field view (opo0417i) when the broad, lagoon-shaped dust lane that crosses the glowing gas of the nebula can be made out. Another clear difference between this new image and others is that this image combines both infrared and optical light rather than being purely optical(heic1015). Infrared light cuts through thick, obscuring patches of dust and gas, revealing the more intricate structures underneath and producing a completely different landscape [1]. However, even in visible light, the tranquil name remains misleading as the region is packed full of violent phenomena. The bright star embedded in dark clouds at the centre of this image is known as Herschel 36. This star is responsible for sculpting the surrounding cloud, stripping away material and influencing its shape. Herschel 36 is the main source of ionising radiation [2] for this part of the Lagoon Nebula. This central part of the Lagoon Nebula contains two main structures of gas and dust connected by wispy twisters, visible in the middle

  2. Soul Nebula

    NASA Image and Video Library

    2010-04-05

    This mosaic from NASA WISE Telescope is of the Soul Nebula. It is an open cluster of stars surrounded by a cloud of dust and gas located about 6,500 light-years from Earth in the constellation Cassiopeia, near the Heart Nebula.

  3. Assessing hydrological effects of human interventions on coastal systems: numerical applications to the Venice Lagoon

    NASA Astrophysics Data System (ADS)

    Ferrarin, C.; Ghezzo, M.; Umgiesser, G.; Tagliapietra, D.; Camatti, E.; Zaggia, L.; Sarretta, A.

    2013-05-01

    The hydrological consequences of historical, contemporary and future human activities on a coastal system were investigated by means of numerical models. The changes in the morphology of the Lagoon of Venice during the last century result from the sedimentological response to the combined effects of human interventions on the environment and global changes. This study focuses on changes from 1927 to 2012 and includes the changes planned for the protection of the city of Venice from storm surges and exceptional tides under future sea level rise scenarios. The application of a hydrodynamic model allowed for the analysis of the morphological effects on the lagoon circulation, the interaction with the sea and the internal mixing processes. The absolute values of the exchange between the lagoon and sea increased from 1927 to 2002 (from 3900 to 4600 m3 s-1), while the daily fraction of lagoon water volume exchanged decreased. At the same time, the flattening of the lagoon and loss of morphological heterogeneity enhanced the internal mixing processes driven by the tide and wind, reducing thus the overall water renewal time from 11.9 days in 1927 to 10.8 days in 2002. Morphological changes during the last decade reduced the water exchange through the inlets and induced an increase of the basin-wide water renewal time of 0.5 day. In the future, Venice Lagoon will evolve to a more restricted environment due to sea level rise, which increases the lagoon volume, and periodical closure of the lagoon from the sea during flooding events, which reduces the communication with the open sea. Therefore, the flushing capacity of the lagoon will decrease considerably, especially in its central part. Furthermore, some considerations on the impact of the hydromorphological changes on the ecological dynamics are proposed.

  4. Rotten Egg Nebula

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Violent gas collisions that produced supersonic shock fronts in a dying star are seen in a new, detailed image from NASA's Hubble Space Telescope.

    The picture, taken by Hubble's Wide Field and Planetary Camera 2, is online at http://www.jpl.nasa.gov/images/wfpc . The camera was designed and built by NASA's Jet Propulsion Laboratory, Pasadena, Calif.

    Stars like our Sun will eventually die and expel most of their material outward into shells of gas and dust. These shells eventually form some of the most beautiful objects in the universe, called planetary nebulae.

    'This new image gives us a rare view of the early death throes of stars like our Sun. For the first time, we can see phenomena leading to the formation of planetary nebulae. Until now, this had only been predicted by theory, but had never been seen directly,' said Dr. Raghvendra Sahai, research scientist and member of the science team at JPL for the Wide Field and Planetary Camera 2.

    The object is sometimes called the Rotten Egg Nebula, because it contains a lot of sulphur, which would produce an awful odor if one could smell in space. The object is also known as the Calabash Nebula or by the technical name OH231.8+4.2.

    The densest parts of the nebula are composed of material ejected recently by the central star and accelerated in opposite directions. This material, shown as yellow in the image, is zooming away at speeds up to one and a half million kilometers per hour (one million miles per hour). Most of the star's original mass is now contained in these bipolar gas structures.

    A team of Spanish and American astronomers used NASA's Hubble Space Telescope to study how the gas stream rams into the surrounding material, shown in blue. They believe that such interactions dominate the formation process in planetary nebulae. Due to the high speed of the gas, shock-fronts are formed on impact and heat the surrounding gas. Although computer calculations have predicted the existence and

  5. HUBBLE SEES SUPERSONIC EXHAUST FROM NEBULA

    NASA Technical Reports Server (NTRS)

    2002-01-01

    2-9 is a striking example of a 'butterfly' or a bipolar planetary nebula. Another more revealing name might be the 'Twin Jet Nebula.' If the nebula is sliced across the star, each side of it appears much like a pair of exhausts from jet engines. Indeed, because of the nebula's shape and the measured velocity of the gas, in excess of 200 miles per second, astronomers believe that the description as a super-super-sonic jet exhaust is quite apt. Ground-based studies have shown that the nebula's size increases with time, suggesting that the stellar outburst that formed the lobes occurred just 1,200 years ago. The central star in M2-9 is known to be one of a very close pair which orbit one another at perilously close distances. It is even possible that one star is being engulfed by the other. Astronomers suspect the gravity of one star pulls weakly bound gas from the surface of the other and flings it into a thin, dense disk which surrounds both stars and extends well into space. The disk can actually be seen in shorter exposure images obtained with the Hubble telescope. It measures approximately 10 times the diameter of Pluto's orbit. Models of the type that are used to design jet engines ('hydrodynamics') show that such a disk can successfully account for the jet-exhaust-like appearance of M2-9. The high-speed wind from one of the stars rams into the surrounding disk, which serves as a nozzle. The wind is deflected in a perpendicular direction and forms the pair of jets that we see in the nebula's image. This is much the same process that takes place in a jet engine: The burning and expanding gases are deflected by the engine walls through a nozzle to form long, collimated jets of hot air at high speeds. M2-9 is 2,100 light-years away in the constellation Ophiucus. The observation was taken Aug. 2, 1997 by the Hubble telescope's Wide Field and Planetary Camera 2. In this image, neutral oxygen is shown in red, once-ionized nitrogen in green, and twice-ionized oxygen in

  6. Detection of molecular hydrogen emission from five planetary nebulae

    NASA Technical Reports Server (NTRS)

    Beckwith, S.; Gatley, I.; Persson, S. E.

    1978-01-01

    The v = 1 to 0 S(1) line of molecular hydrogen has been detected in five planetary nebulae. They are the Ring Nebula (M57, NGC 6720), BD+30 deg 3639, Hb 12, CRL 618, and CRL 2688. A region in the northeast of the Ring Nebula has been mapped in both the v = 1 to 0 S(1) molecular hydrogen line and the Brackett gamma line of atomic hydrogen. The H2 emission is not spatially correlated with the B-gamma, but is correlated with the (OI) emission as determined from interference filter photographs.

  7. Wind effects on prey availability: How northward migrating waders use brackish and hypersaline lagoons in the sivash, Ukraine

    NASA Astrophysics Data System (ADS)

    Verkuil, Yvonne; Koolhaas, Anita; Van Der Winden, Jan

    Large numbers of waders migrating northward in spring use the Sivash, a large system of shallow, brackish and hypersaline lagoons in the Black Sea and Azov Sea region (Ukraine). The bottoms of these lagoons are often uncovered by the wind. Hence, for waders the time and space available for feeding depend on wind conditions. In hypersaline lagoons the benthic and pelagic fauna was very poor, consisting mainly of chironomid larvae (0.19 g AFDM·m -2) and brine shrimps Artemia salina, respectively. Brine shrimp abundance was correlated with salinity, wind force, wind direction and water depth. Dunlin Calidris alpina and curlew sandpiper Calidris ferruginea were the only species feeding on brine shrimp. As brine shrimp densities are higher in deeper water, smaller waders such as broad-billed sandpipers Limicola falcinellus are too short-legged to reach exploitable densities of brine shrimp. In brackish lagoons the benthic and pelagic fauna was rich, consisting of polychaetes, bivalves, gastropods, chironomid larvae, isopods and amphipods (8.9 to 30.5 g AFDM·m -2), but there were no brine shrimps. Prey biomass increased with the distance from the coast, being highest on the site that was most frequently inundated. Dunlin, broad-billed sandpiper and grey plover Pluvialis squatarola were the most abundant birds in the brackish lagoon. Due to the effects of wind-tides only a small area was usually available as a feeding site. Gammarus insensibilis was the alternative prey resource in the water layer, and their density varied with wind direction in the same way as brine shrimp. Curlew sandpipers and dunlins in the hypersaline lagoons and broad-billed sandpipers in the brackish lagoons often changed feeding sites, probably following the variation in prey availability. Only because of the large size and variety of lagoons are waders in the Sivash always able to find good feeding sites.

  8. Trace metals in sediments of two estuarine lagoons from Puerto Rico.

    PubMed

    Acevedo-Figueroa, D; Jiménez, B D; Rodríguez-Sierra, C J

    2006-05-01

    Concentrations of As, Cd, Cu, Fe, Hg, Pb and Zn were evaluated in surface sediments of two estuaries from Puerto Rico, known as San José Lagoon (SJL) and Joyuda Lagoon. Significantly higher concentrations in microg/g dw of Cd (1.8 vs. 0.1), Cu (105 vs. 22), Hg (1.9 vs. 0.17), Pb (219 vs. 8), and Zn (531 vs. 52) were found in sediment samples from SJL when compared to Joyuda Lagoon. Average concentrations of Hg, Pb, and Zn in some sediment samples from SJL were above the effect range median (ERM) that predict toxic effects to aquatic organisms. Enrichments factors using Fe as a normalizer, and correlation matrices showed that metal pollution in SJL was the product of anthropogenic sources, while the metal content in Joyuda Lagoon was of natural origins. Sediment metal concentrations found in SJL were comparable to aquatic systems classified as contaminated from other regions of the world.

  9. Lagoon Restoration Project: Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This project is a multiyear effort focusing on energy flow in the Palace of Fine Arts lagoon just outside the Exploratorium in San Francisco. Phase 1 was a pilot study to determine the feasibility of improving biological energy flow through the small freshwater lagoon, using the expertise and resources of an environmental artist in collaboration with museum biologists and arts department staff. The primary outcome of Phase 1 is an experimental fountain exhibit inside the museum designed by public artist Laurie Lundquist with Exploratorium staff. This fountain, with signage, functions both as a model for natural aeration and filtration systemsmore » and as a focal point for museum visitors to learn about how biological processes cycle energy through aquatic systems. As part of the study of the lagoon`s health, volunteers continued biweekly bird consus from March through September, 1994. The goal was to find out whether the poor water quality of the lagoon is affecting the birds. Limited dredging was undertaken by the city Parks and Recreation Department. However, a more peermanent solution to the lagoon`s ecological problems would require an ambitious redesign of the lagoon.« less

  10. A Starfish Preplanetary Nebula: IRAS 19024+0044

    NASA Astrophysics Data System (ADS)

    Sahai, Raghvendra; Sánchez Contreras, Carmen; Morris, Mark

    2005-02-01

    Using the Hubble Space Telescope, we have imaged the OH/IR star IRAS 19024+0044 (I19024) at 0.6, 0.8, 1.1, and 1.6 μm, as part of our surveys of candidate preplanetary nebulae. The images show a multipolar nebula of size ~3.7"×2.3", with at least six elongated lobes emanating from the center of the nebula. Two of the lobes show limb-brightened tips having point-symmetric structure with respect to the expected location of the central star. The central region shows two dark bands southwest and northeast of a central shallow maximum that may be either two inclined dusty toroidal structures or the dense parts of a single wide, inhomogeneous, toroid. A very faint, surface brightness-limited, diffuse halo surrounds the lobes. Long-slit/echelle optical spectroscopy obtained at the Mount Palomar and Keck observatories shows a spatially compact source of Hα emission; the Hα line shows a strong, narrow, central core with very broad (+/-1000 km s-1), weak wings, and a narrower blueshifted absorption feature signifying the presence of a ~100 km s-1 outflow. The spectrum is characterized by a strong, relatively featureless, continuum and lacks the strong forbidden emission lines characteristic of planetary nebulae, confirming that IRAS 19024 is a preplanetary nebula; the spectral type for the central star, although uncertain, is most likely early G. Interferometric observations of the CO J=1-0 line emission with the Owens Valley Radio Interferometer show a marginally resolved molecular envelope (size 5.5"×4.4") with an expansion velocity of 13 km s-1, resulting from the asymptotic giant granch (AGB) progenitor's dense, slow wind. We derive a kinematic distance of 3.5 kpc to I19024, based on its radial velocity. The bolometric flux is 7.3×10-9 ergs s-1 cm-2, and the luminosity 2850 Lsolar. The relatively low luminosity of I19024, in comparison with stellar evolutionary models, indicates that the initial mass of its central star was ~1-1.5 Msolar. The lobes, which appear to

  11. Brazil The Duck Lagoon

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This Multi-angle Imaging SpectroRadiometer (MISR) image of Brazil covers an area of about 298 kilometers x 358 kilometers, and was captured by the instrument's vertical-viewing (nadir) camera on December 27, 2001. The 'Lagoa dos Patos', in the Brazilian state of Rio Grande do Sul, translates to 'the Duck Lagoon'. It was named by 16th century Jesuit settlers, who asked the King of Spain to grant them title to the lagoon so that they could breed ducks. The King consented, but revoked his edict when he discovered that the 'duck-pond' (measuring about 14,000 square kilometers) was one of the largest lagoonal systems in the world. Note the sediment plume emanating from the southern end of the lagoon. Sailors in the 16th century imagined this outlet to be the mouth of a large river. Early Portuguese explorers mistook the entrance to the lagoon for the mouth of a great river and called it the Rio Grande. A series of wave-like points and curls form 'cusps' on the inner shores of the lagoon. The lagoon's characteristics change with short-term tide-induced cyclic perturbations, and with longer term large scale meteorological conditions. The distinctive wavelike 'cusps' along the inner shores result from the circulation, erosion and accumulation of sediments driven by wind and tidal action. The El Nino Southern Oscillation (ENSO) circulation affects precipitation amount and continental runoff, thereby changing the contents of the lagoon waters. High rainfall and increased freshwater discharge during El Nino events correspond with elevated dissolved nutrient concentrations and increased phytoplankton growth. La Nina years are dry and the associated low rainfall reduces the freshwater recharge to the lagoon, causing an increase in salinity. Occasional blooms of toxic cyanobacteria (Microcystis aeruginosa), have been registered in the lagoon when nutrient concentrations are elevated. A number of reeds and grasses are important to the lagoon estuary, including widgeon grass

  12. A Morpho-kinematic and Spectroscopic study of Bipolar Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    Clyne, Niall

    2015-09-01

    In this thesis, studies of the kinematic properties for a sample of Galactic bipolar planetary nebulae, based on optical and infrared observations, were performed using a morpho-kinematic code, optical and NIR diagnostic diagrams, and techniques using data analyses. The mechanisms that form complex bipolar planetary nebulae remain unclear, and their shapes can be generated either as a planetary or symbiotic nebula. The origin of the material ionised by the white dwarf is very different in these two scenarios, and it complicates the understanding of the morphologies of planetary nebulae. The physical properties, structure, and dynamics of the bipolar nebulae, MyCn 18, M 2-9, Mz 3, Hen 2-104, and Abell 14, are each investigated in detail with the aim of understanding their nature, shaping mechanisms, and evolutionary history. For MyCn 18, VLT infrared images, VLT ISAAC infrared spectra, and long-slit optical echelle spectra are used to investigate the inner and outer regions of the nebula. The morpho-kinematic modelling tool shape was used to firmly constrain the structure and kinematics of the source. A timescale analysis was used to help determine the kinematical age of the nebula and its main components. A spectroscopic study of MyCn 18's central region reveals the detailed make-up of its nebular composition. Molecular hydrogen, atomic helium, and Brackett gamma emission are detected in the central regions. ISAAC spectra from a slit position along the narrow waist of the nebula demonstrate that the ionised gas resides closer to the centre of the nebula than the molecular emission. A final reconstructed 3-D model of MyCn 18 was generated, providing kinematical information on the expansion velocity of its nebular components by means of position-velocity arrays (or observed long-slit spectra). A kinematical age of the nebula and its components were obtained using the position-velocity arrays and timescale analysis. For M 2-9, Mz 3, and Hen 2-104, long-slit optical

  13. Brazil: Duck Lagoon

    Atmospheric Science Data Center

    2013-04-18

    article title:  Brazil - The Duck Lagoon     View Larger Image ... the Brazilian state of Rio Grande do Sul, translates to "the Duck Lagoon". It was named by 16th century Jesuit settlers, who asked the King ...

  14. Planetary nebulae search in the outskirts of M33: looking for the farthest candidates

    NASA Astrophysics Data System (ADS)

    Galera Rosillo, Rebeca; Corradi, Romano L. M.; Mampaso Recio, Antonio

    2015-08-01

    The nearby disc galaxy M33 is one of the best laboratories for testing chemical evolution models in galaxies and for understanding disc formation mechanisms. In this galaxy, planetary nebulae (PNe) were previously extensively studied only within a galactocentric radius of 8 kpc.In the framework of a broad study of the population of PNe in Local Group disc galaxies, we present the results of a deep narrow-band imaging of the outer regions of M33, performed using the Wide Field Camera at the 2.5 m Isaac Newton Telescope (INT).The INT images were obtained in the narrow-band filters selecting the [OIII] 5007 Å and Hα 6563 Å lines, plus broad-band filters SDSS g and i. A photometric catalog of around 150000 sources covering a total area of 5 square degrees, and extending out to 2 deg (30 kpc at the adopted distance of 840 kpc) from the centre of the galaxy is presented.PNe candidates are selected in the [OIII]-g vs Hα-r colour-colour diagram as bright emitters in the narrowband filters. A number of candidates with similar colours to those of known PNe, and with an apparent [OIII] magnitude > 21 have been selected for future follow-up. Three of these have been already spectroscopically confirmed at the William Herschel Telescope (WHT).Our survey will improve the knowledge of the PNe population in the outskirts of M33, constraining the properties of its metal-poor halo and of the extended disc substructures that have been proposed to be related to a relatively recent interaction with M31.

  15. Biogeochemical responses of shallow coastal lagoons to Climate Change

    NASA Astrophysics Data System (ADS)

    Brito, A.; Newton, A.; Tett, P.; Fernandes, T.

    2009-04-01

    carefully monitored so that appropriate responses can be timely to mitigate the impacts from global change. References: Eisenreich, S.J. (2005). Climate Change and the European Water Dimension - A report to the European Water Directors. Institute for Environment and Sustainability, European Comission-Joint Research Centre. Ispra, Italy. 253pp. Kerr, R. (2008). Global warming throws some curves in the Atlantic Ocean. Science, 322, 515. IPCC (2007). Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K., Tignor, M., Miller, H. (eds.)]. Cambridge University Press. Cambridge, United Kingdom and New York, NY, USA, 996pp. Lloret, J., Marín, A., Marín-Guirao, L. (2008). Is coastal lagoon eutrophication likely to be aggravated by global climate change? Estuarine, Coastal and Shelf Science, 78, 403-412. Snoussi, M., Ouchani, T., Niazi, S. (2008). Vulnerability assessment of the impact of sea-level rise and flooding on the Moroccan coast: The case of the Mediterranean eastern zone. Estuarine, Coastal and Shelf Science, 77, 206-213.

  16. Modeling Line Emission from Structures Seen at High Resolution in the Nebulae m1 and M16

    NASA Astrophysics Data System (ADS)

    Sankrit, Ravi

    1998-12-01

    Narrow band images of the Crab Nebula supernova remnant and of the Eagle Nebula H II region taken with the Hubble Space Telescope (HST) show the ionization structure of the emitting gas in unprecedented detail because of the high spatial resolution. The physics of the emission processes-shock excited emission and photoionized emission-is well understood. Sophisticated numerical codes are used to model the ionization structure and emission observed in these images. It is found that the thin skin of material around the Crab synchrotron nebula visible in (O III) λ5007 emission is best explained as the cooling region behind a shock driven by the synchrotron nebula into a surrounding remnant of freely expanding ejecta. Shock models, with parameters derived from independently known properties of the Crab, explain the observed spectrum of the skin while photoionization models fail to explain the observed strength of high ionization lines such as C IV λ1549. This result is clear evidence that the synchrotron nebula is interacting with an extended remnant of ejecta, which in turn has significant implications for the structure and evolution of the Crab. At HST resolution, it is seen that low ionization emission, from lines such as (O I) λ6300, is concentrated in sharp structures while high ionization emission (from (O III) λ5007) is much more diffuse. Individual filaments are found to lie along a sequence of ionization structure ranging from features in which all lines are concentrated in the same compact volume through features with low ionization cores surrounded by high ionization envelopes. Photoionization models of cylindrically symmetrical filaments with varying 'core-halo' density profiles can match the observed variation in the filament structure in the Crab. A photoionization model of a uniform low density medium matches the extended diffuse component which dominates the high ionization emission. It is found that detailed knowledge of the filament structures

  17. VLT Images the Horsehead Nebula

    NASA Astrophysics Data System (ADS)

    2002-01-01

    Summary A new, high-resolution colour image of one of the most photographed celestial objects, the famous "Horsehead Nebula" (IC 434) in Orion, has been produced from data stored in the VLT Science Archive. The original CCD frames were obtained in February 2000 with the FORS2 multi-mode instrument at the 8.2-m VLT KUEYEN telescope on Paranal (Chile). The comparatively large field-of-view of the FORS2 camera is optimally suited to show this extended object and its immediate surroundings in impressive detail. PR Photo 02a/02 : View of the full field around the Horsehead Nebula. PR Photo 02b/02 : Enlargement of a smaller area around the Horse's "mouth" A spectacular object ESO PR Photo 02a/02 ESO PR Photo 02a/02 [Preview - JPEG: 400 x 485 pix - 63k] [Normal - JPEG: 800 x 970 pix - 896k] [Full-Res - JPEG: 1951 x 2366 pix - 4.7M] ESO PR Photo 02b/02 ESO PR Photo 02b/02 [Preview - JPEG: 400 x 501 pix - 91k] [Normal - JPEG: 800 x 1002 pix - 888k] [Full-Res - JPEG: 1139 x 1427 pix - 1.9M] Caption : PR Photo 02a/02 is a reproduction of a composite colour image of the Horsehead Nebula and its immediate surroundings. It is based on three exposures in the visual part of the spectrum with the FORS2 multi-mode instrument at the 8.2-m KUEYEN telescope at Paranal. PR Photo 02b/02 is an enlargement of a smaller area. Technical information about these photos is available below. PR Photo 02a/02 shows the famous "Horsehead Nebula" , which is situated in the Orion molecular cloud complex. Its official name is Barnard 33 and it is a dust protrusion in the southern region of the dense dust cloud Lynds 1630 , on the edge of the HII region IC 434 . The distance to the region is about 1400 light-years (430 pc). This beautiful colour image was produced from three images obtained with the multi-mode FORS2 instrument at the second VLT Unit Telescope ( KUEYEN ), some months after it had "First Light", cf. PR 17/99. The image files were extracted from the VLT Science Archive Facility and the

  18. Project summary. PERSISTENCE OF PATHOGENS IN LAGOON-STORED SLUDGE (EPA/600/S2-89/015)

    EPA Science Inventory

    The project objective was to investigate pathogen inactlvation in lagoon-stored municipal sludges. The in-field lagoons were located in Louisiana (New Orleans) and in Texas (Port Aransas), both semitropical areas of the United States. Each lagoon was filled with 7.56 mL of ...

  19. Effect of climate change and mollusc invasion on eutrophication and algae blooms in the lagoon ecosystems of the Baltic Sea

    NASA Astrophysics Data System (ADS)

    Aleksandrov, Sergei; Gorbunova, Julia; Rudinskaya, Lilia

    2015-04-01

    with toxins, symptoms of exposure are observed at different trophic levels (zooplankton, fish). "Hyperblooms" of Cyanobacteria is the most dangerous for coastal towns (Polessk, Zelenogradsk) and tourist resorts (UNESCO National Park "Curonian Spit"). Also, unfavorable effects of eutrophication have been observed in restricted Vistula Lagoon. Mean annual temperature increased by 1.4°С for 40 years, and water warming combined with other factors created conditions for phytoplankton "hyperblooms" (70-80 μg Chl/l) in 1995-2010. Mean annual primary production in 2000s (430 gC·m-2·year-1) is considerable higher, than in the middle of 1970s (300 gC·m-2·year-1). The climate warming was cause ongoing eutrophication and harmful algal blooms in summer in 1990-2010 despite of significant reduction of nutrients loading in the lagoon. After the invasion of the North American filter-feeding bivalve Rangia cuneata the benthic biomass increased by 8 times (360 g/m2), and chlorophyll decreased by 3.5 times (10 μg/l) in 2011. Water quality is significantly improved from "poor" to "satisfactory" level in 2011-2014, e.g., transparency increased by 2 times. The phytoplankton assimilation numbers increased to maximum (300-400 mgC·mgChl-1·day-1), which are discover in aquatic ecosystems, and primary production remained at previous level. Therefore mollusc invasion improved water quality, but Vistula lagoon ecosystem remained at eutrophic-hypertrophic level. This allowed the function to other trophic groups (zooplankton, fish) at a stable long-term level.

  20. VizieR Online Data Catalog: Stars associated to Eagle Nebula (M16=NGC6611) (Guarcello+ 2010)

    NASA Astrophysics Data System (ADS)

    Guarcello, M. G.; Micela, G.; Peres, G.; Prisinzano, L.; Sciortino, S.

    2010-08-01

    This catalog contains coordinates and both optical and infrared photometry, plus usefull tags, of the candidate stars associated to the Eagle Nebula (M16), bost disk-less and disk-bearing, selected in Guarcello et al. 2010: "Chronology of star formation and disks evolution in the Eagle Nebula". The optical photometry in BVI bands comes from observations with WFI@ESO (Guarcello et al. 2007, Cat. J/A+A/462/245); JHK photometry have been obtained from 2MASS/PSC (Bonatto et al. 2006A&A...445..567B, Guarcello et al. 2007, Cat. J/A+A/462/245) and UKIDSS/GPS catalogs (Guarcello et al., 2010, in prep.) ; IRAC data are from GLIMPSE public survey (Indebetouw 2007ApJ...666..321I, Guarcello et al., 2009, Cat. J/A+A/496/453); X-ray data from three observations with Chandra/ACIS-I (Linsky et al., 2007, Cat. J/ApJ/654/347, Guarcello et al., 2007, J/A+A/462/245, Guarcello et al. 2010, in prep.). (1 data file).

  1. Stellar Populations in the Local Group: Contribution from Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    Maciel, W. J.; Costa, R. D. D.; Idiart, T. E. P.; Escudero, A. V.

    2007-05-01

    The role of planetary nebulae (PN) as a key indicator of stellar populations both in the Milky Way and in galaxies of the Local Group has been emphasized in some recent publications (see for example Maciel et al. 2006, Planetary nebulae beyond the Milky Way, ed. L. Stanghellini, J.R. Walsh, N. G. Douglas, Springer, p.209; Richer and McCall 2006, ibid, p. 220; Buzzoni et al. 2006, MNRAS (in press); Ciardullo, R. 2006, IAU Symposium 234, ed. M.J. Barlow, R.H. Mendez, ASP, in press). As the offspring of stars within a reasonably large mass bracket (0.8 to about 8 solar masses), PN encompass an equally large age spread, as well as different spatial and kinematic distributions. For example, in spiral galaxies PN have different properties depending on their location in the disk, bulge or halo populations. They usually present bright emission lines and can be easily distinguished from other emission line objects, so that their chemical composition and spatiokinematical properties are relatively well determined. Therefore, they are particularly suitable for stellar population studies. In this work, we take into account the available data samples of PN in Local Group galaxies and compare the derived information from different objects, particularly regarding the luminosity-specific PN number density, the chemical composition, space distribution and kinematics. Data by our own group on the Milky Way and Magellanic Clouds are combined with recent surveys and theoretical analyses of other galaxies in the Local Group. Special emphasis is given to the disk and bulge populations of PN in the Milky Way and M31, including an analysis of the metallicity distribution, presence of abundance gradients and a determination of the luminosity function from planetary nebulae.

  2. Horsehead nebula

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Rising from a sea of dust and gas like a giant seahorse, the Horsehead nebula is one of the most photographed objects in the sky. NASA's Hubble Space Telescope took a close-up look at this heavenly icon, revealing the cloud's intricate structure. This detailed view of the horse's head is being released to celebrate the orbiting observatory's eleventh anniversary. Produced by the Hubble Heritage Project, this picture is a testament to the Horsehead's popularity. Internet voters selected this object for the orbiting telescope to view.

    The Horsehead, also known as Barnard 33, is a cold, dark cloud of gas and dust, silhouetted against the bright nebula, IC 434. The bright area at the top left edge is a young star still embedded in its nursery of gas and dust. But radiation from this hot star is eroding the stellar nursery. The top of the nebula also is being sculpted by radiation from a massive star located out of Hubble's field of view.

    Only by chance does the nebula roughly resemble the head of a horse. Its unusual shape was first discovered on a photographic plate in the late 1800s. Located in the constellation Orion, the Horsehead is a cousin of the famous pillars of dust and gas known as the Eagle nebula. Both tower-like nebulas are cocoons of young stars.

    The Horsehead nebula lies just south of the bright star Zeta Orionis, which is easily visible to the unaided eye as the left-hand star in the line of three that form Orion's Belt. Amateur astronomers often use the Horsehead as a test of their observing skills; it is known as one of the more difficult objects to see visually in an amateur-sized telescope.

    The magnificent extent of the Horsehead is best appreciated in a new wide-field image of the nebula being released today by the National Optical Astronomy Observatory, taken by Travis Rector with the National Science Foundation's 0.9 meter telescope at Kitt Peak National Observatory near Tucson, AZ.

    This popular celestial target was the clear

  3. Comets Kick up Dust in Helix Nebula

    NASA Technical Reports Server (NTRS)

    2007-01-01

    This infrared image from NASA's Spitzer Space Telescope shows the Helix nebula, a cosmic starlet often photographed by amateur astronomers for its vivid colors and eerie resemblance to a giant eye.

    The nebula, located about 700 light-years away in the constellation Aquarius, belongs to a class of objects called planetary nebulae. Discovered in the 18th century, these colorful beauties were named for their resemblance to gas-giant planets like Jupiter.

    Planetary nebulae are the remains of stars that once looked a lot like our sun. When sun-like stars die, they puff out their outer gaseous layers. These layers are heated by the hot core of the dead star, called a white dwarf, and shine with infrared and visible colors. Our own sun will blossom into a planetary nebula when it dies in about five billion years.

    In Spitzer's infrared view of the Helix nebula, the eye looks more like that of a green monster's. Infrared light from the outer gaseous layers is represented in blues and greens. The white dwarf is visible as a tiny white dot in the center of the picture. The red color in the middle of the eye denotes the final layers of gas blown out when the star died.

    The brighter red circle in the very center is the glow of a dusty disk circling the white dwarf (the disk itself is too small to be resolved). This dust, discovered by Spitzer's infrared heat-seeking vision, was most likely kicked up by comets that survived the death of their star. Before the star died, its comets and possibly planets would have orbited the star in an orderly fashion. But when the star blew off its outer layers, the icy bodies and outer planets would have been tossed about and into each other, resulting in an ongoing cosmic dust storm. Any inner planets in the system would have burned up or been swallowed as their dying star expanded.

    So far, the Helix nebula is one of only a few dead-star systems in which evidence for comet survivors has been found.

    This image

  4. Methane fluxes from tropical coastal lagoons surrounded by mangroves, Yucatán, Mexico

    NASA Astrophysics Data System (ADS)

    Chuang, P.-C.; Young, M. B.; Dale, A. W.; Miller, L. G.; Herrera-Silveira, J. A.; Paytan, A.

    2017-05-01

    Methane concentrations in the water column and emissions to the atmosphere were determined for three tropical coastal lagoons surrounded by mangrove forests on the Yucatán Peninsula, Mexico. Surface water dissolved methane was sampled at different seasons over a period of 2 years in areas representing a wide range of salinities and anthropogenic impacts. The highest surface water methane concentrations (up to 8378 nM) were measured in a polluted canal associated with Terminos Lagoon. In Chelem Lagoon, methane concentrations were typically lower, except in the polluted harbor area (1796 nM). In the relatively pristine Celestún Lagoon, surface water methane concentrations ranged from 41 to 2551 nM. Methane concentrations were negatively correlated with salinity in Celestún, while in Chelem and Terminos high methane concentrations were associated with areas of known pollution inputs, irrespective of salinity. The diffusive methane flux from surface lagoon water to the atmosphere ranged from 0.0023 to 15 mmol CH4 m-2 d-1. Flux chamber measurements revealed that direct methane release as ebullition was up to 3 orders of magnitude greater than measured diffusive flux. Coastal mangrove lagoons may therefore be an important natural source of methane to the atmosphere despite their relatively high salinity. Pollution inputs are likely to substantially enhance this flux. Additional statistically rigorous data collected globally are needed to better consider methane fluxes from mangrove-surrounded coastal areas in response to sea level changes and anthropogenic pollution in order to refine projections of future atmospheric methane budgets.

  5. Taphonomy of coral reefs from Southern Lagoon of Belize

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westphall, M.J.; Ginsburg, R.N.

    1985-02-01

    The Southern Lagoon of the Belize barrier complex, an area of some 600 km/sup 2/, contains a tremendous number of lagoon reefs, which range in size from patches several meters across to rhomboidal-shaped structures several kilometers in their long dimension. These lagoon reefs are remarkable because they have Holocene sediment accumulations in excess of 13 m consisting almost entirely of coral debris and lime mud and sand, and rise up to 30 m above the surrounding lagoon floor with steeply sloping sides (50-80/sup 0/), yet are totally uncemented. The reef-building biota and their corresponding deposits were studied at a representativemore » reef, the rhomboidal complex of Channel Cay. As with many of the reefs in this area, the steeply sloping flanks of Channel Cay are covered mainly by the branched staghorn coral Acropora cervicornis and ribbonlike and platy growth of Agaricia spp. The living corals are not cemented to the substrate, but are merely intergrown. Fragmented pieces of corals accumulate with an open framework below the living community; this open framework is subsequently infilled by lime muds and sands produced mainly from bioerosion. Results from probing and coring suggest that the bafflestone fabric of coral debris and sediment extends at least 13 m into the subsurface. Radiocarbon-age estimates indicate these impressive piles of coral rubble and sediment have accumulated in the past 9000 yr (giving a minimum accumulation rate of 1.4 m/1000 yr) and illustrate the potential for significant carbonate buildups without the need for early lithification.« less

  6. Succession within the prokaryotic communities during the VAHINE mesocosms experiment in the New Caledonia lagoon

    NASA Astrophysics Data System (ADS)

    Pfreundt, Ulrike; Van Wambeke, France; Caffin, Mathieu; Bonnet, Sophie; Hess, Wolfgang R.

    2016-04-01

    N2 fixation fuels ˜ 50 % of new primary production in the oligotrophic South Pacific Ocean. The VAHINE experiment has been designed to track the fate of diazotroph-derived nitrogen (DDN) and carbon within a coastal lagoon ecosystem in a comprehensive way. For this, large-volume ( ˜ 50 m3) mesocosms were deployed in the New Caledonian lagoon and were intentionally fertilized with dissolved inorganic phosphorus (DIP) to stimulate N2 fixation. This study examined the temporal dynamics of the prokaryotic community together with the evolution of biogeochemical parameters for 23 consecutive days in one of these mesocosms (M1) and in the Nouméa lagoon using MiSeq 16S rRNA gene sequencing and flow cytometry. Combining these methods allowed for inference of absolute cell numbers from 16S data. We observed clear successions within M1, some of which were not mirrored in the lagoon. The dominating classes in M1 were Alpha- and Gammaproteobacteria, Cyanobacteria, eukaryotic microalgae, Marine Group II Euryarchaeota, Flavobacteriia, and Acidimicrobia. Enclosure led to significant changes in the M1 microbial community, probably initiated by the early decay of Synechococcus and diatoms. However, we did not detect a pronounced bottle effect with a copiotroph-dominated community. The fertilization with ˜ 0.8 µM DIP on day 4 did not have directly observable effects on the overall community within M1, as the data samples obtained from before and 4 days after fertilization clustered together, but likely influenced the development of individual populations later on, like Defluviicoccus-related bacteria and UCYN-C-type diazotrophic cyanobacteria (Cyanothece). Growth of UCYN-C led to among the highest N2-fixation rates ever measured in this region and enhanced growth of nearly all abundant heterotrophic groups in M1. We further show that different Rhodobacteraceae were the most efficient heterotrophs in the investigated system and we observed niche partitioning within the SAR86 clade

  7. Succession within the prokaryotic communities during the VAHINE mesocosms experiment in the New Caledonia lagoon

    NASA Astrophysics Data System (ADS)

    Pfreundt, U.; Van Wambeke, F.; Bonnet, S.; Hess, W. R.

    2015-12-01

    N2 fixation fuels ~ 50 % of new primary production in the oligotrophic South Pacific Ocean. The VAHINE experiment has been designed to track the fate of diazotroph derived nitrogen (DDN) and carbon within a coastal lagoon ecosystem in a comprehensive way. For this, large-volume (~ 50 m3) mesocosms were deployed in the New Caledonia lagoon and were intentionally fertilized with dissolved inorganic phosphorus (DIP) to stimulate N2 fixation. This study examined the temporal dynamics of the prokaryotic community together with the evolution of biogeochemical parameters for 23 consecutive days in one of these mesocosms (M1) and in the Nouméa lagoon using MiSeq 16S rRNA gene sequencing. We observed clear successions within M1, some of which were not mirrored in the lagoon. The dominating classes in M1 were alpha- and gammaproteobacteria, cyanobacteria (mainly Synechococcus), eukaryotic microalgae, on days 10 and 14 Marine Group II euryarchaea, on days 12-23 also Flavobacteriia. Enclosure led to significant changes in the M1 microbial community, probably initiated by the early decay of Synechococcus and diatoms. However, we did not detect a pronounced bottle effect with a copiotroph-dominated community. The fertilization with ~ 0.8 μM DIP on day 4 did not have directly observable effects on the overall community within M1, as the data samples obtained from before and four days after fertilization clustered together, but likely influenced the development of individual populations later on, like Defluviicoccus-related bacteria and UCYN-C type diazotrophic cyanobacteria. Growth of UCYN-C led to among the highest N2 fixation rates ever measured in this region and enhanced growth of nearly all abundant heterotrophic groups in M1. We further show that different Rhodobacteraceae were the most efficient heterotrophs in the investigated system and we observed niche partitioning within the SAR86 clade. Whereas the location in- or outside the mesocosm had a significant effect on

  8. Methane fluxes from tropical coastal lagoons surrounded bymangroves, Yucatán, Mexico

    USGS Publications Warehouse

    Chuang, Pei-Chuan; Young, Megan B.; Dale, Andrew W.; Miller, Laurence G.; Herrera-Silveira, Jorge A; Paytan, Adina

    2017-01-01

    Methane concentrations in the water column and emissions to the atmosphere were determined for three tropical coastal lagoons surrounded by mangrove forests on the Yucatán Peninsula, Mexico. Surface water dissolved methane was sampled at different seasons over a period of 2 years in areas representing a wide range of salinities and anthropogenic impacts. The highest surface water methane concentrations (up to 8378 nM) were measured in a polluted canal associated with Terminos Lagoon. In Chelem Lagoon, methane concentrations were typically lower, except in the polluted harbor area (1796 nM). In the relatively pristine Celestún Lagoon, surface water methane concentrations ranged from 41 to 2551 nM. Methane concentrations were negatively correlated with salinity in Celestún, while in Chelem and Terminos high methane concentrations were associated with areas of known pollution inputs, irrespective of salinity. The diffusive methane flux from surface lagoon water to the atmosphere ranged from 0.0023 to 15 mmol CH4 m−2 d−1. Flux chamber measurements revealed that direct methane release as ebullition was up to 3 orders of magnitude greater than measured diffusive flux. Coastal mangrove lagoons may therefore be an important natural source of methane to the atmosphere despite their relatively high salinity. Pollution inputs are likely to substantially enhance this flux. Additional statistically rigorous data collected globally are needed to better consider methane fluxes from mangrove-surrounded coastal areas in response to sea level changes and anthropogenic pollution in order to refine projections of future atmospheric methane budgets.

  9. Spatial Variation in Development of Epibenthic Assemblages in a Coastal Lagoon

    NASA Astrophysics Data System (ADS)

    Benedetti-Cecchi, L.; Rindi, F.; Bertocci, I.; Bulleri, F.; Cinelli, F.

    2001-05-01

    Spatial and temporal patterns in colonization of epibenthic assemblages were measured in a coastal lagoon on the west coast of Italy using recruitment panels. It was proposed that if the ecological processes influencing development of assemblages were homogeneous within the lagoon, then there should be no differences in mean cover of colonists nor in spatial patterns of variance in abundance in different areas of the lagoon. In contrast, heterogeneity in ecological processes affecting development would be revealed by spatial variability in colonization. To test these hypotheses, two sticks each with five replicate panels were placed 3-5 m apart in each of two sites 30-100 m apart in each of three locations 500-100 m apart; the experiment was repeated three times between April and December 1999, using new sites at each location each time. The results revealed considerable spatial variation in the structure of developing assemblages across locations. There were significant Location or Time×Location effects in the mean abundance of common taxa, such as Enteromorpha intestinalis , Ulva rigida, Cladophora spp., bryozoans and serpulids. Patterns in spatial variation differed among locations for these organisms. Collectively, the results supported a model of spatial heterogeneity in intensity of processes influencing patterns of recruitment and development of epibenthic assemblages in the Lagoon of Orbetello. The implications of these results for management of environmental problems in complex, variable habitats such as coastal lagoons, are discussed.

  10. Horsehead Nebula

    NASA Image and Video Library

    2017-12-08

    Image released April 19, 2013. Astronomers have used NASA's Hubble Space Telescope to photograph the iconic Horsehead Nebula in a new, infrared light to mark the 23rd anniversary of the famous observatory's launch aboard the space shuttle Discovery on April 24, 1990. Looking like an apparition rising from whitecaps of interstellar foam, the iconic Horsehead Nebula has graced astronomy books ever since its discovery more than a century ago. The nebula is a favorite target for amateur and professional astronomers. It is shadowy in optical light. It appears transparent and ethereal when seen at infrared wavelengths. The rich tapestry of the Horsehead Nebula pops out against the backdrop of Milky Way stars and distant galaxies that easily are visible in infrared light. Credit: NASA, ESA, and the Hubble Heritage Team (STScI/AURA) More on this image. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  11. Do stellar and nebular abundances in the Cocoon nebula agree?

    NASA Astrophysics Data System (ADS)

    García-Rojas, J.; Simón-Díaz, S.; Esteban, C.

    2015-05-01

    The Cocoon nebula is an apparently spherical Galactic HII region ionized by a single star (BD+46 3474). This nebula seems to be appropriate to investigate the chemical behavior of oxygen and other heavy elements from two different points of view: a detailed analysis of the chemical content of the ionized gas through nebular spectrophotometry and a detailed spectroscopic analysis of the spectrum of the ionizing star using the state-of-the-art stellar atmosphere modelling. In this poster we present the results from a set of high-quality observations, from 2m-4m class telescopes, including the optical spectrum of the ionizing star BD+46 3474, along with long-slit spatially resolved spectroscopy of the nebula. We have used state-of-the-art stellar atmosphere codes to determine stellar parameters and the chemical content of several heavy elements. Traditional nebular techniques along with updated atomic data have been used to compute gaseous abundances of O, N and S in the Cocoon nebula. Thanks to the low ionization degree of the nebula, we could determine total abundances directly from observable ions (no ionization correction factors were needed) for three of the analyzed elements (O, S, and N). The derived stellar and nebular abundances are compared and the influence of the possible presence of the so-called temperature fluctuations on the nebula is discussed. The results of this study are presented in more detail in García-Rojas, Simón-Díaz & Esteban 2014, A&A, 571, A93.

  12. Groundwater and porewater as a major source of alkalinity to a fringing coral reef lagoon (Muri Lagoon, Cook Islands)

    NASA Astrophysics Data System (ADS)

    Cyronak, T.; Santos, I. R.; Erler, D. V.; Eyre, B. D.

    2012-11-01

    To better predict how ocean acidification will affect coral reefs, it is important to understand how biogeochemical cycles on reefs alter carbonate chemistry over various temporal and spatial scales. This study quantifies the contribution of fresh groundwater discharge (as traced by radon) and shallow porewater exchange (as quantified from advective chamber incubations) to total alkalinity (TA) dynamics on a fringing coral reef lagoon along the southern Pacific island of Rarotonga over a tidal and diel cycle. Benthic alkalinity fluxes were affected by the advective circulation of water through permeable sediments, with net daily flux rates of carbonate alkalinity ranging from -1.55 to 7.76 mmol m-2 d-1, depending on the advection rate. Submarine groundwater discharge (SGD) was a source of TA to the lagoon, with the highest flux rates measured at low tide, and an average daily TA flux of 1080 mmol m-2 d-1. Both sources of TA were important on a reef wide basis, although SGD acted solely as a delivery mechanism of TA to the lagoon, while porewater advection was either a sink or source of TA dependant on the time of day. On a daily basis, groundwater can contribute approximately 70% to 80% of the TA taken up by corals within the lagoon. This study describes overlooked sources of TA to coral reef ecosystems that can potentially alter water-column carbonate chemistry. We suggest that porewater and groundwater fluxes of TA should be taken into account in ocean acidification models in order to properly address changing carbonate chemistry within coral reef ecosystems.

  13. Eutrophication Process on Coastal Lagoons of North of Sinaloa, Mexico

    NASA Astrophysics Data System (ADS)

    Escobedo-Urias, D.; Martinez-Lopez, A.

    2007-05-01

    Coastal ecosystems in the Gulf of California support diverse and important fisheries and are reservoirs of great biological diversity. In northern Sinaloa, population growth and development, as well as increased use of these natural systems for recreation, has substantially increased the pressure placed upon marine resources. Discharge of untreated wastewaters generated by diverse human activities has been notably altered its health and integrity, principally along the lagoon's eastern shore In the late 60s, agriculture moved into a dominant role in coastal northern Sinaloa. The coastal plain encompasses more than 200,000 hectares under cultivation that now introduces large amounts of organic material, pesticides, heavy metals, and fertilizers into the lagoon systems of Topolobampo and San Ignacio-Navachiste-Macapule System at drainage discharge points and a minor grade in Colorado Lagoon. These lagoons are shallow and exhibit low water quality, lost of lagoon depth, presence of toxic substances (heavy metals) near the discharge points of wastewaters, and presence of harmful algal blooms. With the aim of evaluate the nutrients loadings (wastewaters, groundwaters) and their effects on the coastal lagoons of north of Sinaloa, the preliminary analysis of the physical, chemical and biologic variables data series are analyzed. From 1987-2007 eutrophication process is identified in Topolobampo Complex show increase tendency in annual average concentrations of DIN (Dissolved Inorganic Nitrogen= NO2+NO3) from 0.5 μ M in 1987 to 2.7 μ M in 2006. Trophic Index (TRIX) values, low nutrient ratios (N: P and N: Si) and the phytoplanktonic community structure support this result. Preliminary results of nutrients loadings show a mayor contribution of wastewaters into the coastal zone.

  14. Bipolar nebulae and mass loss from red giant stars

    NASA Technical Reports Server (NTRS)

    Cohen, M.

    1985-01-01

    Observations of several bipolar nebulae are used to learn something of the nature of mass loss from the probable red-giant progenitors of these nebulae. Phenomena discussed are: (1) probable GL 2688's optical molecular emissions; (2) newly discovered very high velocity knots along the axis of OH 0739 - 14, which reveal evidence for mass ejections of + or 300 km/s from the M9 III star embedded in this nebula; (3) the bipolar structure of three extreme carbon stars, and the evidence for periodic mass ejection in IRC + 30219, also at high speed (about 80 km/s); and (4) the curious cool TiO-rich region above Parsamian 13, which may represent the very recent shedding of photospheric material from a cool, oxygen-rich giant. Several general key questions about bipolar nebulae that relate to the process of mass loss from their progenitor stars are raised.

  15. H2 Imaging of Three Proto-Planetary and Young Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    Volk, Kevin; Hrivnak, Bruce J.; Kwok, Sun

    2004-12-01

    High-resolution (0.15") 2.12 μm H2 and narrowband K images have been obtained of one cool proto-planetary nebula, IRAS 20028+3910, and two hot proto-planetary/young planetary nebulae, IRAS 19306+1407 and IRAS 22023+5249. The observations were made with an adaptive optics system and near-infrared imager on the Gemini North 8 m telescope. All three nebulae are seen to be extended, and in two and possibly all three of them H2 is found to be emitting from bipolar lobes. In IRAS 19306+1407, H2 emission is seen arising from a ring close to the star and from the edges of emerging bipolar lobes. In IRAS 20028+3910, one bright lobe and a very faint second lobe are seen in the H2 and K-band images, similar to the published visible images, but in the H2 and K-band images a faint filament appears to connect the two lobes. The central star is not seen in IRAS 20028+3910, indicating that the nebula is optically thick even at 2 μm, which is unusual. The images suggest that extended H2 emission is often the manifestation of fast-slow wind interactions in the bipolar lobes. The paper is based on observations obtained at the Gemini Observatory with the Adaptive Optics System Hokupa'a/QUIRC, developed and operated by the University of Hawaii Adaptive Optics Group, with support from the National Science Foundation. The Gemini Observatory is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Particle Physics and Astronomy Research Council (United Kingdom), the National Research Council (Canada), Comisión Nacional de Investigación Científica y Tecnológica (CONICYT; Chile), the Australian Research Council (Australia), Laboratório Nacional de Astrofísica (CNPq; Brazil), and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET; Argentina).

  16. International Symposium on Coastal Lagoons. (Bordeaux, France, September 8-14, 1981). Unesco Technical Papers in Marine Science 43.

    ERIC Educational Resources Information Center

    United Nations Educational, Scientific, and Cultural Organization, Paris (France). Div. of Marine Sciences.

    Lagoons and their characteristic coastal bay-mouth bars represent 15 percent of the world coastal zone. They are among the most productive ecosystems in the biosphere, this productivity resulting from the interplay of ocean and continent. An International Symposium on Coastal Lagoons (ISCOL) was held to: assess the state of knowledge in the…

  17. THE ROTTEN EGG NEBULA A PLANETARY NEBULA IN THE MAKING

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The object shown in these NASA/ESA Hubble Space Telescope images is a remarkable example of a star going through death throes just as it dramatically transforms itself from a normal red giant star into a planetary nebula. This process happens so quickly that such objects are quite rare, even though astronomers believe that most stars like the Sun will eventually go through such a phase. This star, with the prosaic name of OH231.8+4.2, is seen in these infrared pictures blowing out gas and dust in two opposite directions. So much dust has been cast off and now surrounds the star that it cannot be seen directly, only its starlight that is reflected off the dust. The flow of gas is very fast, with a velocity up to 450,000 mph (700,000 km/h). With extreme clarity, these Hubble Near Infrared Camera and Multi-Object Spectrometer (NICMOS) images reveal that the fast-moving gas and dust are being collimated into several thin streamers (on the right) and a jet-like structure (on the left), which can be seen extending away from the centers of both pictures. On the right, wisps of material in jet-like streamers appear to strike some dense blobs of gas. This interaction must produce strong shock waves in the gas. The pictures represent two views of the object. The color image is a composite of four images taken with different NICMOS infrared filters on March 28, 1998. It shows that the physical properties of the material, both composition and temperature, vary significantly throughout the outflowing material. The black-and-white image was taken with one NICMOS infrared filter. That image is able to show more clearly the faint detail and structure in the nebula than can be achieved with the color composites. Observations by radio astronomers have found many unusual molecules in the gas around this star, including many containing sulfur, such as hydrogen sulfide and sulfur dioxide. These sulfur compounds are believed to be produced in the shock waves passing through the gas

  18. Metals in some lagoons of Mexico.

    PubMed

    Vazquez, F G; Sharma, V K; Alexander, V H; Frausto, C A

    1995-02-01

    The concentrations of metals, Cd, Cu, Fe, Mn, Ni, Pb, and Zn were determined in some lagoons to establish the level of metal pollution. The lagoons studied were Alvarado lagoon, Veracruz; San Andres lagoon, Tamaulipas; and Terminos lagoon, Campeche. The concentrations were determined in water, oyster (Crassostrea virginica), and sediments. Metals were accumulated in either oysters or sediments. Cu and Zn were higher in oysters and Fe and Mn were higher in sediments. The results in water samples were compared with the limit established by the Secretaria de Ecologia and Desarrollo Urbano Report and briefly discussed.

  19. Metals in some lagoons of Mexico.

    PubMed Central

    Vazquez, F G; Sharma, V K; Alexander, V H; Frausto, C A

    1995-01-01

    The concentrations of metals, Cd, Cu, Fe, Mn, Ni, Pb, and Zn were determined in some lagoons to establish the level of metal pollution. The lagoons studied were Alvarado lagoon, Veracruz; San Andres lagoon, Tamaulipas; and Terminos lagoon, Campeche. The concentrations were determined in water, oyster (Crassostrea virginica), and sediments. Metals were accumulated in either oysters or sediments. Cu and Zn were higher in oysters and Fe and Mn were higher in sediments. The results in water samples were compared with the limit established by the Secretaria de Ecologia and Desarrollo Urbano Report and briefly discussed. PMID:7621796

  20. YSOVAR: Six Pre-main-sequence Eclipsing Binaries in the Orion Nebula Cluster

    DTIC Science & Technology

    2012-06-25

    reserved. Printed in the U.S.A. YSOVAR: SIX PRE-MAIN-SEQUENCE ECLIPSING BINARIES IN THE ORION NEBULA CLUSTER M. Morales-Calderón1,2, J. R. Stauffer1, K. G...multi-color light curves for∼2400 candidate Orion Nebula Cluster (ONC) members from our Warm Spitzer Exploration Science Program YSOVAR, we have...readable tables 1. INTRODUCTION The Orion Nebula Cluster (ONC) contains several thousand members, and since it is nearby, it provides an excellent em

  1. A COMPREHENSIVE SEARCH FOR STELLAR BOWSHOCK NEBULAE IN THE MILKY WAY: A CATALOG OF 709 MID-INFRARED SELECTED CANDIDATES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobulnicky, Henry A.; Chick, William T.; Schurhammer, Danielle P.

    2016-12-01

    We identify 709 arc-shaped mid-infrared nebula in 24 μ m Spitzer Space Telescope or 22 μ m Wide Field Infrared Explorer surveys of the Galactic Plane as probable dusty interstellar bowshocks powered by early-type stars. About 20% are visible at 8 μ m or at shorter mid-infrared wavelengths. The vast majority (660) have no previous identification in the literature. These extended infrared sources are strongly concentrated near the Galactic mid-plane, with an angular scale height of ∼0.°6. All host a symmetrically placed star implicated as the source of a stellar wind sweeping up interstellar material. These are candidate “runaway” starsmore » potentially having high velocities in the reference frame of the local medium. Among the 286 objects with measured proper motions, we find an unambiguous excess with velocity vectors aligned with the infrared morphology—kinematic evidence that many of these are “runaway” stars with large peculiar motions responsible for the bowshock signature. We discuss a population of “in situ” bowshocks (∼103 objects) that face giant H ii regions where the relative motions between the star and ISM may be caused by bulk outflows from an overpressured bubble. We also identify ∼58 objects that face 8 μ m bright-rimmed clouds and apparently constitute a sub-class of in situ bowshocks where the stellar wind interacts with a photoevaporative flow (PEF) from an eroding molecular cloud interface (i.e., “PEF bowshocks”). Orientations of the arcuate nebulae exhibit a correlation over small angular scales, indicating that external influences such as H ii regions are responsible for producing some bowshock nebulae. However, the vast majority of the nebulae in this sample appear to be isolated (499 objects) from obvious external influences.« less

  2. A 205 {mu}m [N II] MAP OF THE CARINA NEBULA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oberst, T. E.; Parshley, S. C.; Nikola, T.

    We present the results of a {approx}250 arcmin{sup 2} mapping of the 205 {mu}m [N II] fine-structure emission over the northern Carina Nebula, including the Car I and Car II H II regions. Spectra were obtained using the South Pole Imaging Fabry-Perot Interferometer (SPIFI) at the Antarctic Submillimeter Telescope and Remote Observatory (AST/RO) at the South Pole. We supplement the 205 {mu}m data with new reductions of far-IR fine-structure spectra from the Infrared Space Observatory (ISO) Long Wavelength Spectrometer (LWS) in 63 {mu}m [O I], 122 {mu}m [N II], 146 {mu}m [O I], and 158 {mu}m [C II]; the 146more » {mu}m [O I] data include 90 raster positions which have not been previously published. Morphological comparisons are made with optical, radio continuum, and CO maps. The 122/205 line ratio is used to probe the density of the low-ionization gas, and the 158/205 line ratio is used to probe the fraction of C{sup +} arising from photodissociation regions (PDRs). The [O I] and [C II] lines are used to construct a PDR model of Carina. When the PDR properties are compared with other sources, Carina is found to be more akin to 30 Doradus than galactic star-forming regions such as Orion, M17, or W49; this is consistent with the view of Carina as a more evolved region, where much of the parent molecular cloud has been ionized or swept away. These data constitute the first ground-based detection of the 205 {mu}m [N II] line, and the third detection overall since those of COBE FIRAS and the Kuiper Airborne Observatory in the early 1990s.« less

  3. Liquid and atmospheric ammonia concentrations from a dairy lagoon during an aeration experiment

    NASA Astrophysics Data System (ADS)

    Rumburg, Brian; Neger, Manjit; Mount, George H.; Yonge, David; Filipy, Jenny; Swain, John; Kincaid, Ron; Johnson, Kristen

    Ammonia emissions from agriculture are an environmental and human health concern, and there is increasing pressure to reduce emissions. Animal agriculture is the largest global source of ammonia emissions and on a per cow basis dairy operations are the largest emitters. The storage and disposal of the dairy waste is one area where emissions can be reduced, aerobic biological treatment of wastewater being a common and effective way of reducing ammonia emissions. An aeration experiment in a dairy lagoon with two commercial aerators was performed for 1 month. Liquid concentrations of ammonia, total nitrogen, nitrite and nitrate were monitored before, during and after the experiment and atmospheric ammonia was measured downwind of the lagoon using a short-path differential optical absorption spectroscopy (DOAS) instrument with 1 ppbv sensitivity. No changes in either liquid or atmospheric ammonia concentrations were detected throughout the experiment, and neither dissolved oxygen, nitrite nor nitrate could be detected in the lagoon at any time. The average ammonia concentration at 10 sampling sites in the lagoon at a depth of 0.15 m was 650 mg l -1 and at 0.90 m it was 700 mg l -1 NH 3-N. The average atmospheric ammonia concentration 50 m downwind was about 300 ppbv. The 0.90 m depth total nitrogen concentrations and total and volatile solids concentrations decreased during the experiment due to some mixing of the lagoon but the 0.15 m depth concentrations did not decrease indicating that the aerators were not strong enough to mix the sludge off the bottom into the whole water column.

  4. Lagoon Seepage Testing Report for Central Facilities Area (CFA) Sewage Lagoons at Idaho National Laboratory, Butte County, Idaho

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morrison, Bridger

    J-U-B ENGINEERS, Inc. (J-U-B) performed seepage tests on the CFA Wastewater Lagoons 1, 2, and 3 between August 26th and September 22nd, 2014. The lagoons were tested to satisfy the Idaho Department of Environmental Quality (DEQ) Rules (IDAPA 58.01.16) that require all lagoons be tested at a frequency of every 10 years and the Compliance Activity CA-141-03 in the DEQ Wastewater Reuse Permit for the CFA Sewage Treatment Plant (LA-000141-03). The lagoons were tested to determine if the average seepage rates are less than 0.25 in/day, the maximum seepage rate allowed for lagoons built prior to April 15, 2007. Themore » average seepage rates were estimated for each lagoon and are given in Table-ES1. The average seepage rates for Lagoons 1 and 2 are less than the allowable seepage rate of 0.25 in/day. Lagoon 1 and 2 passed the seepage test and will not have to be tested again until the year 20241. However, the average seepage rate for Lagoon 3 appears to exceed the allowable seepage rate of 0.25 in/day which means the potential source for the excessive leakage should be investigated further.« less

  5. LMC X-1: A New Spectral Analysis of the O-star in the Binary and Surrounding Nebula

    NASA Astrophysics Data System (ADS)

    Hyde, E. A.; Russell, D. M.; Ritter, A.; Filipović, M. D.; Kaper, L.; Grieve, K.; O'Brien, A. N.

    2017-09-01

    We provide new observations of the LMC X-1 O star and its extended nebula structure using spectroscopic data from VLT/UVES as well as Hα imaging from the Wide Field Imager on the Max Planck Gesellschaft/European Southern Observatory 2.2 m telescope and ATCA imaging of the 2.1 GHz radio continuum. This nebula is one of the few known to be energized by an X-ray binary. We use a new spectrum extraction technique that is superior to other methods used to obtain both radial velocities and fluxes. This provides an updated spatial velocity of ≃ 21.0 +/- 4.8 km s-1 for the O star. The slit encompasses both the photo-ionized and shock-ionized regions of the nebula. The imaging shows a clear arc-like structure reminiscent of a wind bow shock in between the ionization cone and shock-ionized nebula. The observed structure can be fit well by the parabolic shape of a wind bow shock. If an interpretation of a wind bow shock system is valid, we investigate the N159-O1 star cluster as a potential parent of the system, suggesting a progenitor mass of ˜60 M ⊙ for the black hole. We further note that the radio emission could be non-thermal emission from the wind bow shock, or synchrotron emission associated with the jet-inflated nebula. For both wind- and jet-powered origins, this would represent one of the first radio detections of such a structure.

  6. Dynamo magnetic field-induced angular momentum transport in protostellar nebulae - The 'minimum mass' protosolar nebula

    NASA Technical Reports Server (NTRS)

    Stepinski, T. F.; Levy, E. H.

    1990-01-01

    Magnetic torques can produce angular momentum redistribution in protostellar nebulas. Dynamo magnetic fields can be generated in differentially rotating and turbulent nebulas and can be the source of magnetic torques that transfer angular momentum from a protostar to a disk, as well as redistribute angular momentum within a disk. A magnetic field strength of 100-1000 G is needed to transport the major part of a protostar's angular momentum into a surrounding disk in a time characteristic of star formation, thus allowing formation of a solar-system size protoplanetary nebula in the usual 'minimum-mass' model of the protosolar nebula. This paper examines the possibility that a dynamo magnetic field could have induced the needed angular momentum transport from the proto-Sun to the protoplanetary nebula.

  7. Star Formation in the Eagle Nebula

    NASA Astrophysics Data System (ADS)

    Oliveira, J. M.

    2008-12-01

    M16 (the Eagle Nebula) is a striking star forming region, with a complex morphology of gas and dust sculpted by the massive stars in NGC 6611. Detailed studies of the famous ``elephant trunks'' dramatically increased our understanding of the massive star feedback into the parent molecular cloud. A rich young stellar population (2-3 Myr) has been identified, from massive O-stars down to substellar masses. Deep into the remnant molecular material, embedded protostars, Herbig-Haro objects and maser sources bear evidence of ongoing star formation in the nebula, possibly triggered by the massive cluster members. M 16 is a excellent template for the study of star formation under the hostile environment created by massive O-stars. This review aims at providing an observational overview not only of the young stellar population but also of the gas remnant of the star formation process.

  8. THE 'SPIROGRAPH' NEBULA

    NASA Technical Reports Server (NTRS)

    2002-01-01

    THE 'SPIROGRAPH' NEBULA Glowing like a multi-faceted jewel, the planetary nebula IC 418 lies about 2,000 light-years from Earth in the direction of the constellation Lepus. This photograph is one of the latest from NASA's Hubble Space Telescope, obtained with the Wide Field Planetary Camera 2. A planetary nebula represents the final stage in the evolution of a star similar to our Sun. The star at the center of IC 418 was a red giant a few thousand years ago, but then ejected its outer layers into space to form the nebula, which has now expanded to a diameter of about 0.1 light-year. The stellar remnant at the center is the hot core of the red giant, from which ultraviolet radiation floods out into the surrounding gas, causing it to fluoresce. Over the next several thousand years, the nebula will gradually disperse into space, and then the star will cool and fade away for billions of years as a white dwarf. Our own Sun is expected to undergo a similar fate, but fortunately this will not occur until some 5 billion years from now. The Hubble image of IC 418 is shown in a false-color representation, based on Wide Field Planetary Camera 2 exposures taken in February and September, 1999 through filters that isolate light from various chemical elements. Red shows emission from ionized nitrogen (the coolest gas in the nebula, located furthest from the hot nucleus), green shows emission from hydrogen, and blue traces the emission from ionized oxygen (the hottest gas, closest to the central star). The remarkable textures seen in the nebula are newly revealed by the Hubble telescope, and their origin is still uncertain. Credit: NASA and The Hubble Heritage Team (STScI/AURA) Acknowledgment: Dr. Raghvendra Sahai (JPL) and Dr. Arsen R. Hajian (USNO). EDITOR'S NOTE: For additional information, please contact Dr. Raghvendra Sahai, Jet Propulsion Laboratory, MS 183-900, 4800 Oak Grove Drive, Pasadena, CA 91109, (phone) 818-354-0452, (fax) 818-393-9088, (e-mail) sahai@bb8.jpl

  9. Spatio-temporal impacts of dairy lagoon water reuse on soil: heavy metals and salinity.

    PubMed

    Corwin, Dennis L; Ahmad, Hamaad Raza

    2015-10-01

    Diminishing freshwater resources have brought attention to the reuse of degraded water as a water resource rather than a disposal problem. The spatial impact and sustainability of dairy lagoon water reuse from concentrated animal feeding operations (CAFOs) has not been evaluated at field scale. The objective of this study is to monitor the impact of dairy lagoon water blended with recycled water on a 32 ha field near San Jacinto, CA from 2007 to 2011. Spatial monitoring was based on soil samples collected at locations identified from apparent soil electrical conductivity (ECa) directed sampling. Soil samples were taken at depth increments of 0-0.15, 0.15-0.3, 0.3-0.6, 0.6-0.9, 0.9-1.2, 1.2-1.5, and 1.5-1.8 m at 28 sample sites on 7-11 May 2007 and again on 31 May - 2 June 2011 after 4 years of irrigation with the blended waters. Chemical analyses included salinity (electrical conductivity of the saturation extract, ECe), pHe (pH of the saturation extract), SAR (sodium adsorption ratio), trace elements (As, B, Mo, Se), and heavy metals (Cd, Cu, Mn, Ni, Zn). Results indicate a decrease in mean values of pHe at all depth increments; a decrease in ECe and SAR above a depth of 0.15 m, but an increase below 0.15 m; a decrease in all trace elements except B, which increased throughout the 1.8 m profile; and the accumulation of Cd, Mn, and Ni at all depth increments, while Cu was readily leached from the 1.8 m profile. Zinc showed little change. The results focused concern on the potential long-term agronomic effect of salinity, SAR, and B, and the long-term environmental threat of salinity and Cu to detrimentally impact groundwater. The accumulation of Cd, Mn, and Ni in the soil profile raised concern since it provided a potential future source of metals for leaching. The long-term sustainability of dairy lagoon water reuse hinges on regular monitoring to provide spatial feedback for site-specific management.

  10. Nature versus Nurture: Luminous Blue Variable Nebulae in and near Massive Stellar Clusters at the Galactic Center

    NASA Astrophysics Data System (ADS)

    Lau, R. M.; Herter, T. L.; Morris, M. R.; Adams, J. D.

    2014-04-01

    Three luminous blue variables (LBVs) are located in and near the Quintuplet Cluster at the Galactic center: the Pistol Star, G0.120-0.048, and qF362. We present imaging at 19, 25, 31, and 37 μm of the region containing these three LBVs, obtained with SOFIA using FORCAST. We argue that Pistol and G0.120-0.048 are identical "twins" that exhibit contrasting nebulae due to the external influence of their different environments. Our images reveal the asymmetric, compressed shell of hot dust surrounding the Pistol Star and provide the first detection of the thermal emission from the symmetric, hot dust envelope surrounding G0.120-0.048. However, no detection of hot dust associated with qF362 is made. Dust and gas composing the Pistol nebula are primarily heated and ionized by the nearby Quintuplet Cluster stars. The northern region of the Pistol nebula is decelerated due to the interaction with the high-velocity (2000 km s-1) winds from adjacent Wolf-Rayet Carbon (WC) stars. From fits to the spectral energy distribution (SED) of the Pistol nebula with the DustEM code we determine that the Pistol nebula is composed of a distribution of very small, transiently heated grains (10 to ~ 35 Å) having a total dust mass of 0.03 M ⊙, and that it exhibits a gradient of decreasing grain size from south to north due to differential sputtering by the winds from the WC stars. The total IR luminosity of the Pistol nebula is 5.2 × 105 L ⊙. Dust in the G0.120-0.048 nebula is primarily heated by the central star; however, the nebular gas is ionized externally by the Arches Cluster. Unlike the Pistol nebula, the G0.120-0.048 nebula is freely expanding into the surrounding medium. A grain size distribution identical to that of the non-sputtered region of the Pistol nebula satisfies the constraints placed on the G0.120-0.048 nebula from DustEM model fits to its SED and implies a total dust mass of 0.021 M ⊙. The total IR luminosity of the G0.120-0.048 nebula is ~105 L ⊙. From

  11. The blue supergiant MN18 and its bipolar circumstellar nebula

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.; Kniazev, A. Y.; Bestenlehner, J. M.; Bodensteiner, J.; Langer, N.; Greiner, J.; Grebel, E. K.; Berdnikov, L. N.; Beletsky, Y.

    2015-11-01

    We report the results of spectrophotometric observations of the massive star MN18 revealed via discovery of a bipolar nebula around it with the Spitzer Space Telescope. Using the optical spectrum obtained with the Southern African Large Telescope, we classify this star as B1 Ia. The evolved status of MN18 is supported by the detection of nitrogen overabundance in the nebula, which implies that it is composed of processed material ejected by the star. We analysed the spectrum of MN18 by using the code CMFGEN, obtaining a stellar effective temperature of ≈21 kK. The star is highly reddened, E(B - V) ≈ 2 mag. Adopting an absolute visual magnitude of MV = -6.8 ± 0.5 (typical of B1 supergiants), MN18 has a luminosity of log L/L⊙ ≈ 5.42 ± 0.30, a mass-loss rate of ≈(2.8-4.5) × 10- 7 M⊙ yr- 1, and resides at a distance of ≈5.6^{+1.5} _{-1.2} kpc. We discuss the origin of the nebula around MN18 and compare it with similar nebulae produced by other blue supergiants in the Galaxy (Sher 25, HD 168625, [SBW2007] 1) and the Large Magellanic Cloud (Sk-69°202). The nitrogen abundances in these nebulae imply that blue supergiants can produce them from the main-sequence stage up to the pre-supernova stage. We also present a K-band spectrum of the candidate luminous blue variable MN56 (encircled by a ring-like nebula) and report the discovery of an OB star at ≈17 arcsec from MN18. The possible membership of MN18 and the OB star of the star cluster Lynga 3 is discussed.

  12. A SUCCESSFUL BROADBAND SURVEY FOR GIANT Ly{alpha} NEBULAE. II. SPECTROSCOPIC CONFIRMATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prescott, Moire K. M.; Dey, Arjun; Jannuzi, Buell T., E-mail: mkpresco@physics.ucsb.edu

    2013-01-01

    Using a systematic broadband search technique, we have carried out a survey for large Ly{alpha} nebulae (or Ly{alpha} {sup b}lobs{sup )} at 2 {approx}< z {approx}< 3 within 8.5 deg{sup 2} of the NOAO Deep Wide-Field Survey Booetes field, corresponding to a total survey comoving volume of Almost-Equal-To 10{sup 8} h {sup -3} {sub 70} Mpc{sup 3}. Here, we present our spectroscopic observations of candidate giant Ly{alpha} nebulae. Of 26 candidates targeted, 5 were confirmed to have Ly{alpha} emission at 1.7 {approx}< z {approx}< 2.7, 4 of which were new discoveries. The confirmed Ly{alpha} nebulae span a range of Ly{alpha}more » equivalent widths, colors, sizes, and line ratios, and most show spatially extended continuum emission. The remaining candidates did not reveal any strong emission lines, but instead exhibit featureless, diffuse, blue continuum spectra. Their nature remains mysterious, but we speculate that some of these might be Ly{alpha} nebulae lying within the redshift desert (i.e., 1.2 {approx}< z {approx}< 1.6). Our spectroscopic follow-up confirms the power of using deep broadband imaging to search for the bright end of the Ly{alpha} nebula population across enormous comoving volumes.« less

  13. OBSERVATIONS OF THE CRAB NEBULA'S ASYMMETRICAL DEVELOPMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loll, A. M.; Desch, S. J.; Scowen, P. A.

    2013-03-10

    We present the first Hubble Space Telescope Wide Field Planetary Camera-2 imaging survey of the entire Crab Nebula, in the filters F502N ([O III] emission), F673N ([S II]), F631N ([O I]), and F547M (continuum). We use our mosaics to characterize the pulsar wind nebula (PWN) and its three-dimensional structure, the ionizational structure in the filaments forming at its periphery, the speed of the shock driven by the PWN into surrounding ejecta (by inferring the cooling rates behind the shock), and the morphology and ionizational structure of the Rayleigh-Taylor (R-T) fingers. We quantify a number of asymmetries between the northwest (NW)more » and southeast (SE) quadrants of the Crab Nebula. The lack of observed filaments in the NW, and our observations of the spatial extent of [O III] emission lead us to conclude that cooling rates are slower, and therefore the shock speeds are greater, in the NW quadrant of the nebula, compared with the SE. We conclude that R-T fingers are longer, more ionizationally stratified, and apparently more massive in the NW than in the SE, and the R-T instability appears more fully developed in the NW.« less

  14. Hubble Hatches Image of Rotten Egg Nebula Shocks

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Some 5,000 light years (2,900 trillion miles) from Earth, in the constellation Puppis, is the 1.4 light years (more than 8 trillion miles) long Calabash Nebula, referred to as the Rotten Egg Nebula because of its sulfur content which would produce an awful odor if one could smell in space. This image of the nebula captured by NASA's Hubble Space Telescope (HST) depicts violent gas collisions that produced supersonic shock fronts in a dying star. Stars, like our sun, will eventually die and expel most of their material outward into shells of gas and dust These shells eventually form some of the most beautiful objects in the universe, called planetary nebulae. The yellow in the image depicts the material ejected from the central star zooming away at speeds up to one and a half million kilometers per hour (one million miles per hour). Due to the high speeds of the gas, shock-fronts are formed on impact and heat the surrounding gas. Although computer calculations have predicted the existence and structure of such shocks for some time, previous observations have not been able to prove the theory.

  15. Mercury methylation and demethylation in Hg-contaminated lagoon sediments (Marano and Grado Lagoon, Italy)

    NASA Astrophysics Data System (ADS)

    Hines, Mark E.; Poitras, Erin N.; Covelli, Stefano; Faganeli, Jadran; Emili, Andrea; Žižek, Suzana; Horvat, Milena

    2012-11-01

    Mercury (Hg) transformation activities and sulfate (SO42-) reduction were studied in sediments of the Marano and Grado Lagoons in the Northern Adriatic Sea region as part of the "MIRACLE" project. The lagoons, which are sites of clam (Tapes philippinarum) farming, have been receiving excess Hg from the Isonzo River for centuries. Marano Lagoon is also contaminated from a chlor-alkali plant. Radiotracer methods were used to measure mercury methylation (230Hg, 197Hg), methylmercury (MeHg) demethylation (14C-MeHg) and SO42- reduction (35S) in sediment cores collected in autumn, winter and summer. Mercury methylation rate constants ranged from near zero to 0.054 day-1, generally decreased with depth, and were highest in summer. Demethylation rate constants were much higher than methylation reaching values of ˜0.6 day-1 in summer. Demethylation occurred via the oxidative pathway, except in winter when the reductive pathway increased in importance in surficial sediments. Sulfate reduction was also most active in summer (up to 1600 nmol mL-1 day-1) and depth profiles reflected seasonally changing redox conditions near the surface. Methylation and demethylation rate constants correlated positively with SO42- reduction and pore-water Hg concentrations, and inversely with Hg sediment-water partition coefficients indicating the importance of SO42- reduction and Hg dissolution on Hg cycling. Hg transformation rates were calculated using rate constants and concentrations of Hg species. In laboratory experiments, methylation was inhibited by amendments of the SO42--reduction inhibitor molybdate and by nitrate. Lagoon sediments displayed a dynamic seasonal cycle in which Hg dissolution in spring/summer stimulated Hg methylation, which was followed by a net loss of MeHg in autumn from demethylation. Sulfate-reducing bacteria (SRB) tended to be responsible for methylation of Hg and the oxidative demethylation of MeHg. However, during winter in surficial sediments, iron

  16. Are coastal lagoons physically or biologically controlled ecosystems? Revisiting r vs. K strategies in coastal lagoons and estuaries

    NASA Astrophysics Data System (ADS)

    Pérez-Ruzafa, Angel; Marcos, Concepción; Pérez-Ruzafa, Isabel María; Pérez-Marcos, María

    2013-11-01

    Environmental stress influences biological assemblages, with species responding to stress by adopting particular life-history strategies (e.g., r vs. K). Coastal lagoons and estuaries are considered naturally stressed and physically controlled systems with frequent environmental disturbances and fluctuations. At the same time, their transitional nature (between terrestrial, freshwater and marine) makes them especially vulnerable to human impacts and land and freshwater inputs. As a result, it is hypothesised that residents of coastal lagoons would display characteristics of r-selected species. The r-strategy involves increased reproductive effort through early reproduction, small and numerous offspring with a large dispersive capability, short lifespan and small adult body size. Together, these traits provide a selective advantage in such unpredictable or short-lived environments. Alternatively, immigrants to coastal lagoons should mostly be K-strategists, with a competitive advantage over the r-strategists, at least on a temporary time scale. These hypotheses were explored using a dataset from 73 Atlanto-Mediterranean sites: 27 estuaries, 42 coastal lagoons and 4 from the sea, obtained from published sources. A detailed analysis of the distributions of the different resident fish species according to lagoon characteristics indicated that in lagoons with a higher marine influence the families Gobiidae, Blenniidae and Syngnathidae were common, while lagoons with freshwater influence are characterized by Cyprinidae and other freshwater species. In analyzing the biological strategies of lagoon species we found that fish assemblages inhabiting marine influenced lagoons were characterized by solitary, necto-benthonic sedentary species. These species are often hermaphroditic, with benthic broods and many exhibit brooding behaviour. This suggests that marine influenced lagoons are dominated by K-strategist species, while r-strategy species will be more common in

  17. Planetesimal Formation in the Protoplanetary Nebula

    NASA Technical Reports Server (NTRS)

    Cuzzi, Jeffrey N.; Mrad, Susan (Technical Monitor)

    1998-01-01

    In this talk we will address two distinct phases of planetesimal formation, each of which is fundamentally dependent upon the coupled interactions of particles and turbulent nebula gas. It has been shown both numerically and experimentally that 3-D (three dimensional) turbulence concentrates aerodynamically size-selected particles by orders of magnitude. In a previous review chapter we illustrated the initial predictions of Turbulent Concentration (TC) as applied to the solar nebula. We predicted the particle size which will be most effectively concentrated by turbulence; it is the particle which has a gas drag stopping time equal to the overturn time of the smallest (Kolmogorov scale) eddy. The primary uncertainty is the level of nebula turbulence, or Reynolds number Re, which can be expressed in terms of the standard nebula eddy viscosity parameter alpha = Rev(sub m)/cH, where v(sub m) is molecular viscosity, c is sound speed, and H is vertical scale height. Several studies, and observed lifetimes of circumstellar disks, have suggested that the level of nebula turbulence can be described by alpha = 10(exp -2) - 10(exp -4). There is some recent concern about how energy is provided to maintain this turbulence, but the issue remains open. We adopt a canonical minimum mass nebula with a range of alpha is greater than 0. We originally showed that chondrule-sized particles are selected for concentration in the terrestrial planet region if alpha = 10(exp -3) - 10(exp -4). In addition, Paque and Cuzzi found that the size distribution of chondrules is an excellent match for theoretical predictions. One then asks by what concentration factor C these particles can be concentrated; our early numerical results indicated an increase of C with alpha, and were supported by simple scaling arguments, but the extrapolation range was quite large and the predictions (C is approximately equal to 10(exp 5) - 10(exp 6) not unlikely) uncertain. The work presented here, which makes use of

  18. A search for ejecta nebulae around Wolf-Rayet stars using the SHS Hα survey

    NASA Astrophysics Data System (ADS)

    Stock, D. J.; Barlow, M. J.

    2010-12-01

    Recent large-scale Galactic plane Hα surveys allow a re-examination of the environs of Wolf-Rayet (WR) stars for the presence of a circumstellar nebula. Using the morphologies of WR nebulae known to be composed of stellar ejecta as a guide, we constructed ejecta nebula criteria similar to those of Chu and searched for likely WR ejecta nebulae in the Southern Hα Survey (SHS). A new WR ejecta nebula around WR 8 is found and its morphology is discussed. The fraction of WR stars with ejecta-type nebulae is roughly consistent between the Milky Way (MW) and Large Magellanic Cloud (LMC) at around 5-6 per cent, with the MW sample dominated by nitrogen-rich WR central stars (WN type) and the LMC stars having a higher proportion of carbon-rich WR central stars (WC type). We compare our results with those of previous surveys, including those of Marston and Miller & Chu, and find broad consistency. We investigate several trends in the sample: most of the clear examples of ejecta nebulae have WNh central stars, and very few ejecta nebulae have binary central stars. Finally, the possibly unique evolutionary status of the nebula around the binary star WR 71 is explored.

  19. Determining the Location of the Snowline in an Externally-Photoevaporated Solar Nebula

    NASA Astrophysics Data System (ADS)

    Kalyaan, Anusha; Desch, Steven

    2015-11-01

    The water snowline in the solar nebula, the point beyond which water exists abundantly as ice, is often taken to lie at 2.7 AU from the Sun, where temperatures are ~170 K, the sublimation point of water [1,2]. While superficially consistent with the spatial distribution of (wet) C-type and (dry) S-type asteroids between 2-3AU [3], most disk models place the snowline closer to ~1AU [4]. Aside from temperature, radial transport and outward diffusion of water vapor, and the inward drift of ices also determine where the snowline is [5,6]. Over many Myr, a steady cycling of water inward and outward across the T=170 K line balance out, with an enhanced ice abundance outside creating the ‘snowline’[2]. But external effects like photoevaporation of the nebula by nearby massive stars can potentially shift this balance, lead to net outward water vapor transport from the inner nebula [7,8], pushing the snowline beyond T=170 K, thus giving rise to water-poor planets.To test this hypothesis, we have first built a 1+1D protoplanetary disk evolution model, incorporating viscosity due to the magnetorotational instability with a non-uniform turbulent viscosity α across disk radius r, ionization equilibrium with dust, and external photoevaporation [8]. Our simulation results suggest that the structure of the photoevaporated solar nebula with a non-uniform α(r) was more complex than previously thought, with the following features: (i) very steep Σ profile (Σ(r)=Σ0 r-p, where slope p = 3-5, > pMMSN=1.5) due to the varying α(r), that is further steepened by the effect of dust and photoevaporation, and (ii) transition radius (where net disk mass flow changes from inward flow to outward) that is present very close to the star (~3AU). We apply these new results to study the distribution of water in the solar nebula. References: [1] Hayashi, C., (1981) PThP.Supp. 70, 35-53 [2] Stevenson,D., & Lunine,J., (1988) Icarus 75, 146-155 [3] Gradie, J., & Tedesco, E.,(1982) Science 216

  20. Atoll-phosphate genesis: Role of lagoonal biomass and possible role of endo-upwelling processes in phosphate concentration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trichet, J.; Rougerie, F.

    1990-06-01

    Sedimentological and hydrogeological data in Niau, a closed atoll in French Polynesia where P-concentration has been measured, suggest the role played by lagoonal organic matter in P-accumulation and the possible role of endo-upwelling processes in P-input in the system. A 15 m deep core through the lagoonal deposits shows the succession of organic-rich strata in which the P-content can reach up to 1.3% P{sub 2}O{sub 5}. Such a pattern suggests that, whatever the source of P within the lagoon (lagoonal water, bird guano, or endo-upwelled solutions, see below), this element is likely to be incorporated in quantitatively important lagoonal biomassmore » whose decay releases phosphorus back to the sediment. An example of such biomass and organic matter is given by the large amounts of cyano-bacterial organic matter that are present in the lagoon of Niau. A source for island phosphate has recently been proposed to be relatively deep seawater, which would be endo-upwelled from depths of hundreds of meters ({approximately}500 m, where P content is approximately 1.5 mmol.m{sup {minus}3} PO{sub 4}-P) through the permeable reef-body up to its surface (i.e., to its lagoonal waters, where P content reaches 5 mmol.m{sup {minus}3} in Niau atoll). The energy necessary for the transport of such solutions would be geothermal (at the bottom of the water column, i.e., close to the volcanic substrate of the reef body) and solar at its top through evaporation.« less

  1. Chemistry of modern sediments in a hypersaline lagoon, north of Jeddah, Red Sea

    NASA Astrophysics Data System (ADS)

    El-Sayed, Mahmoud Kh.

    1987-10-01

    Previous studies of modern peritidal sedimentary environments of the Red Sea, such as hypersaline lagoons and sea-marginal flats, have concentrated on its northern part, particularly in the Gulf of Aqaba. However, little is known about lagoon sediments in other localities along the Red Sea coastal stretches. This paper deals with the chemical characteristics of the sediments of a hypersaline (Ras Hatiba) lagoon, north of Jeddah, Saudi Arabia. The chemistry of hypersaline lagoon sediments is considerably changed following the modifications to the water chemistry by evaporation and precipitation. Ras Hatiba lagoon is a hypersaline elongated water body connected to the Red Sea by a narrow and shallow opening. The total area of the lagoon is c. 30 km 2. Coarse bioclastic sands are dominant in the lagoon and mostly surround lithified calcareous grounds. However, fine silt and clay sediments are present in separate patches. The sediments are rich in carbonates (average 78·5%) and organic carbon (average 7·3%), although they are negatively correlated. Calcium (average 25·1%) and magnesium (average 10·8‰) show a similar distribution pattern in the lagoon sediments. Strontium (average 5·2‰) is positively correlated with calcium. Sodium and potassium are relatively highly concentrated in the sediments (average 118 ppm and 173 ppm, respectively). Magnesium and strontium are of prime importance in the process of mineralization and diagenesis. The sabkha formation surrounding the lagoon is of low carbonate and organic carbon content, compared with the lagoon sediments, whilst it is characterized by high magnesium, sodium and potassium concentrations. Ras Hatiba lagoon sediments and sabkha resemble those of the northern Red Sea in the Gulfs of Aqaba and Suez and the Arabian Gulf in their major sedimentological and chemical characteristics.

  2. An Audience Favorite Nebula

    NASA Image and Video Library

    2012-03-08

    This nebula, which is in the constellation of Scutum, has no common name since it is hidden behind dust clouds. It takes an infrared telescope like NASA Spitzer to see through this dark veil and reveal this spectacular hidden nebula.

  3. The Trifid Nebula: Stellar Sibling Rivalry

    NASA Technical Reports Server (NTRS)

    2001-01-01

    A zoom into the Trifid Nebula starts with ground-based observations and ends with a Hubble Space Telescope (HST) image. Another HST image shows star formation in the nebula and the video concludes with a ground-based image of the Trifid Nebula.

  4. Nature versus nurture: Luminous blue variable nebulae in and near massive stellar clusters at the galactic center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lau, R. M.; Herter, T. L.; Adams, J. D.

    Three luminous blue variables (LBVs) are located in and near the Quintuplet Cluster at the Galactic center: the Pistol Star, G0.120-0.048, and qF362. We present imaging at 19, 25, 31, and 37 μm of the region containing these three LBVs, obtained with SOFIA using FORCAST. We argue that Pistol and G0.120-0.048 are identical 'twins' that exhibit contrasting nebulae due to the external influence of their different environments. Our images reveal the asymmetric, compressed shell of hot dust surrounding the Pistol Star and provide the first detection of the thermal emission from the symmetric, hot dust envelope surrounding G0.120-0.048. However, nomore » detection of hot dust associated with qF362 is made. Dust and gas composing the Pistol nebula are primarily heated and ionized by the nearby Quintuplet Cluster stars. The northern region of the Pistol nebula is decelerated due to the interaction with the high-velocity (2000 km s{sup –1}) winds from adjacent Wolf-Rayet Carbon (WC) stars. From fits to the spectral energy distribution (SED) of the Pistol nebula with the DustEM code we determine that the Pistol nebula is composed of a distribution of very small, transiently heated grains (10 to ∼ 35 Å) having a total dust mass of 0.03 M {sub ☉}, and that it exhibits a gradient of decreasing grain size from south to north due to differential sputtering by the winds from the WC stars. The total IR luminosity of the Pistol nebula is 5.2 × 10{sup 5} L {sub ☉}. Dust in the G0.120-0.048 nebula is primarily heated by the central star; however, the nebular gas is ionized externally by the Arches Cluster. Unlike the Pistol nebula, the G0.120-0.048 nebula is freely expanding into the surrounding medium. A grain size distribution identical to that of the non-sputtered region of the Pistol nebula satisfies the constraints placed on the G0.120-0.048 nebula from DustEM model fits to its SED and implies a total dust mass of 0.021 M {sub ☉}. The total IR luminosity of the G0

  5. The high resolution mapping of the Venice Lagoon tidal network

    NASA Astrophysics Data System (ADS)

    Madricardo, Fantina; Foglini, Federica; Kruss, Aleksandra; Bellafiore, Debora; Trincardi, Fabio

    2017-04-01

    One of the biggest challenges of the direct observation of the ocean is to achieve a high resolution mapping of its seafloor morphology and benthic habitats. So far, sonars have mapped just 0.05% of the ocean floor with less than ten-meter resolution. The recent efforts of the scientific community have been devoted towards the mapping of both Deep Ocean and very shallow coastal areas. Coastal and transitional environments in particular undergo strong morphological changes due to natural and anthropogenic pressure. Nowadays, only about 5% of the seafloor of these environments † have been mapped: the shallowness of these environments has prevented the use of underwater acoustics to reveal their morphological features. The recent technological development of multibeam echosounder systems, however, enables these instruments to achieve very high performances also in such shallow environments. In this work, we present results and case studies of an extensive multibeam survey carried out in the Lagoon of Venice in 2013. The Lagoon of Venice is the biggest lagoon in the Mediterranean Sea with a surface of about 550 km2 and with an average depth of about 1 m. In the last century, the morphological and ecological properties of the lagoon changed dramatically: the surface of the salt marshes was reduced by 60% and some parts of the lagoon are deepening with a net sediment flux exiting from the inlets. Moreover, major engineering interventions are currently ongoing at the inlets (MOSE project). These changes at the inlets could affect substantially the lagoon environment. To understand and monitor the future evolution of the Lagoon of Venice, ISMAR within the project RITMARE (a National Research Programme funded by the Italian Ministry of University and Research) carried out an extensive survey, involving a team of more than 25 scientists, to collect high resolution (0.5 m) bathymetry of key study areas such as the tidal inlets and channels. Following a broad

  6. Reconstruction of historical atmospheric deposition of DDT in the Zempoala Lagoon, in the center of Mexico

    USGS Publications Warehouse

    van, Afferden M.; Hansen, A.M.; Fuller, C.C.

    2005-01-01

    Historical trend in deposition of DDT and its metabolites has been reconstructed by analyzing sediment cores of the Zempoala Lagoon, in the center of Mexico. The small watershed of this mountain lagoon is closed, and it is located between 2.800 and 3.700 masl. It ls neither affected by agriculture nor by permanent populations. The Zempoala Lagoon has an average depth of 3.9 mand a maximum depth of 8.8 m. Sediments were extracted with a eore sampler and analyzed by isotope methods (137CS and 2'OPb) for dating. Average sedimentation rate was determined in 0.129 9 cm" yr', corresponding to a maximum age of the 44 cm eore of approximately 60 years. The first presence of total-DDT oecurs in a depth between 28 and 32 cm of the sediment profile, corresponding to the 1960's, with a concentration of 5.3 I1g kg-'. The maximum eoncentration of total-DDT (13.0I1g kg-') occurs in sediment layers representing the late 1970's and beginning 1980's. More recently the concentration decreases towards the present concentration of 1.6 I1g kg-'. This concentration is below most DDT levels reported in recent sediment studies in the USA. The results indicate that the Zempoala Lagoon represents a natural reeipient for studies of the reconstruction of historical trends of atmospheric contaminant deposition in this region. The limitations of the methodology applied, due to the influenee of biodegradation on the definition of correct historical coneentrations of DDT depositions, are demonstrated.

  7. Observations of the Crab Nebula at energies 4.10(11)

    NASA Technical Reports Server (NTRS)

    Cawley, M. F.; Regan, D. J.; Gibbs, K.; Gorham, P. W.; Lamb, R. C.; Liebing, D. F.; Mackeown, P. K.; Porter, N. A.; Stenger, V. J.; Weekes, T. C.

    1985-01-01

    Since the development of gamma-ray astronomical telescopes, the Crab Nebula has been a prime target for observations. From 100 to 1000 MeV, the pulsar PSR0531 is the dominant source with a light-curve similar to that seen at lower energies; there is also some evidence for longterm amplitude variations but none for emission from the Nebula itself. In the very high energy gamma-ray region there have been reported detections of pulsed emission with longterm time variations from minutes to months. Recently a pulsed flux has been reported that resisted over a long time interval. The detection of a flux from the Nebula at the 3 sigma level at energies of 3x1011eV was reported; there was no evidence of periodic emissions on any time scale during the three years of observations. A new measurement of very high energy gamma rays from the Crab Nebula is reported using the imaging system on the Whipple Observatory 10m reflector.

  8. Enterprising Nebulae

    NASA Image and Video Library

    2016-09-08

    Just in time for the 50th anniversary of the TV series "Star Trek," which first aired September 8th,1966, this infrared image from NASA's Spitzer Space Telescope may remind fans of the historic show. Just as one might see the shapes of animals or other objects in clouds -- a phenomenon called pareidolia -- iconic starships from the series may seem to emerge in these nebulae./ With a little scrutiny (see Figure 1), you may see hints of the saucer and hull of the original USS Enterprise, captained by James T. Kirk, as if it were emerging from a dark nebula. To the left, its "Next Generation" successor, Jean-Luc Picard's Enterprise-D, flies off in the opposite direction. Astronomically speaking, the region pictured here falls within the disk of our Milky Way galaxy, and displays two regions of star formation that are hidden behind a haze of dust when viewed in visible light. Spitzer's ability to peer deeper into dust clouds has revealed a myriad of stellar birthplaces like these, which are officially known only by their catalog numbers, IRAS 19340+2016 and IRAS19343+2026. Trekkies, however, may prefer using the more familiar designations NCC-1701 and NCC-1701-D. This image was assembled using data from Spitzer's biggest surveys of the Milky Way, called GLIMPSE and MIPSGAL. Light with a wavelength of 3.5 microns is shown in blue, 8.0 microns is green, and 24 microns in red. The green colors highlight organic molecules in the dust clouds, illuminated by starlight. Red colors are related to thermal radiation emitted from the very hottest areas of dust. http://photojournal.jpl.nasa.gov/catalog/PIA20917

  9. A new sampler for stratified lagoon chemical and microbiological assessments.

    PubMed

    McLaughlin, M R; Brooks, J P; Adeli, A

    2014-07-01

    A sampler was needed for a spatial and temporal study of microbial and chemical stratification in a large swine manure lagoon that was known to contain zoonotic bacteria. Conventional samplers were limited to collections of surface water samples near the bank or required a manned boat. A new sampler was developed to allow simultaneous collection of multiple samples at different depths, up to 2.3 m, without a manned boat. The sampler was tethered for stability, used remote control (RC) for sample collection, and accommodated rapid replacement of sterile tubing modules and sample containers. The sampler comprised a PVC pontoon with acrylic deck and watertight enclosures, for a 12 VDC gearmotor, to operate the collection module, and vacuum system, to draw samples into reusable autoclavable tubing and 250-mL bottles. Although designed primarily for water samples, the sampler was easily modified to collect sludge. The sampler held a stable position during deployment, created minimal disturbance in the water column, and was readily cleaned and sanitized for transport. The sampler was field tested initially in a shallow fresh water lake and subsequently in a swine manure treatment lagoon. Analyses of water samples from the lagoon tests showed that chemical and bacterial levels, pH, and EC did not differ between 0.04, 0.47, and 1.0 m depths, but some chemical and bacterial levels differed between winter and spring collections. These results demonstrated the utility of the sampler and suggested that future manure lagoon studies employ fewer or different depths and more sampling dates.

  10. [Species and size composition of fishes in Barra de Navidad lagoon, Mexican central Pacific].

    PubMed

    González-Sansón, Gaspar; Aguilar-Betancourt, Consuelo; Kosonoy-Aceves, Daniel; Lucano-Ramírez, Gabriela; Ruiz-Ramírez, Salvador; Flores-Ortega, Juan Ramón; Hinojosa-Larios, Angel; de Asís Silva-Bátiz, Francisco

    2014-03-01

    Coastal lagoons are considered important nursery areas for many coastal fishes. Barra de Navidad coastal lagoon (3.76km2) is important for local economy as it supports tourism development and artisanal fisheries. However, the role of this lagoon in the dynamics of coastal fish populations is scarcely known. Thus, the objectives of this research were: to characterize the water of the lagoon and related weather conditions, to develop a systematic list of the ichthyofauna, and to estimate the proportion of juveniles in the total number of individuals captured of most abundant species. Water and fish samples were collected between March 2011 and February 2012. Physical and chemical variables were measured in rainy and dry seasons. Several fishing gears were used including a cast net, beach purse seine and gillnets of four different mesh sizes. Our results showed that the lagoon is most of the time euhaline (salinity 30-40ups), although it can be mixopolyhaline (salinity 18-30ups) during short periods. Chlorophyll and nutrients concentrations suggested eutrophication in the lagoon. Mean water temperature changed seasonally from 24.9 degrees C (April, high tide) to 31.4 degrees C (October, low tide). Considering ichthyofauna species, a total of 36 448 individuals of 92 species were collected, 31 of them adding up to 95% of the total of individuals caught. Dominant species were Anchoa spp. (44.6%), Diapterus peruvianus (10.5%), Eucinostomus currani (8.1%), Cetengraulis mysticetus (7.8%), Mugil curema (5.2%) and Opisthonema libertate (4.5%). The lagoon is an important juvenile habitat for 22 of the 31 most abundant species. These included several species of commercial importance such as snappers (Lutjanus argentiventris, L. colorado and L. novemfasciatus), snook (Centropomus nigrescens) and white mullet (Mugil curema). Other four species seem to use the lagoon mainly as adults. This paper is the first contribution on the composition of estuarine ichthyofauna in Jalisco

  11. Planetary Nebula NGC 7293 also Known as the Helix Nebula

    NASA Image and Video Library

    2005-05-05

    This ultraviolet image from NASA Galaxy Evolution Explorer is of the planetary nebula NGC 7293 also known as the Helix Nebula. It is the nearest example of what happens to a star, like our own Sun, as it approaches the end of its life when it runs out of fuel, expels gas outward and evolves into a much hotter, smaller and denser white dwarf star. http://photojournal.jpl.nasa.gov/catalog/PIA07902

  12. Groundwater and porewater as major sources of alkalinity to a fringing coral reef lagoon (Muri Lagoon, Cook Islands)

    NASA Astrophysics Data System (ADS)

    Cyronak, T.; Santos, I. R.; Erler, D. V.; Eyre, B. D.

    2013-04-01

    To better predict how ocean acidification will affect coral reefs, it is important to understand how biogeochemical cycles on reefs alter carbonate chemistry over various temporal and spatial scales. This study quantifies the contribution of shallow porewater exchange (as quantified from advective chamber incubations) and fresh groundwater discharge (as traced by 222Rn) to total alkalinity (TA) dynamics on a fringing coral reef lagoon along the southern Pacific island of Rarotonga over a tidal and diel cycle. Benthic alkalinity fluxes were affected by the advective circulation of water through permeable sediments, with net daily flux rates of carbonate alkalinity ranging from -1.55 to 7.76 mmol m-2 d-1, depending on the advection rate. Submarine groundwater discharge (SGD) was a source of TA to the lagoon, with the highest flux rates measured at low tide, and an average daily TA flux of 1080 mmol m-2 d-1 at the sampling site. Both sources of TA were important on a reef-wide basis, although SGD acted solely as a delivery mechanism of TA to the lagoon, while porewater advection was either a sink or source of TA dependent on the time of day. This study describes overlooked sources of TA to coral reef ecosystems that can potentially alter water column carbonate chemistry. We suggest that porewater and groundwater fluxes of TA should be taken into account in ocean acidification models in order to properly address changing carbonate chemistry within coral reef ecosystems.

  13. A Tactile Carina Nebula

    NASA Astrophysics Data System (ADS)

    Grice, Noreen A.; Mutchler, M.

    2010-01-01

    Astronomy was once considered a science restricted to fully sighted participants. But in the past two decades, accessible books with large print/Braille and touchable pictures have brought astronomy and space science to the hands and mind's eye of students, regardless of their visual ability. A new universally-designed tactile image featuring the Hubble mosaic of the Carina Nebula is being presented at this conference. The original dataset was obtained with Hubble's Advanced Camera for Surveys (ACS) hydrogen-alpha filter in 2005. It became an instant icon after being infused with additional color information from ground-based CTIO data, and released as Hubble's 17th anniversary image. Our tactile Carina Nebula promotes multi-mode learning about the entire life-cycle of stars, which is dramatically illustrated in this Hubble mosaic. When combined with descriptive text in print and Braille, the visual and tactile components seamlessly reach both sighted and blind populations. Specific touchable features of the tactile image identify the shapes and orientations of objects in the Carina Nebula that include star-forming regions, jets, pillars, dark and light globules, star clusters, shocks/bubbles, the Keyhole Nebula, and stellar death (Eta Carinae). Visit our poster paper to touch the Carina Nebula!

  14. The Formation of a Planetary Nebula.

    ERIC Educational Resources Information Center

    Harpaz, Amos

    1991-01-01

    Proposes a scenario to describe the formation of a planetary nebula, a cloud of gas surrounding a very hot compact star. Describes the nature of a planetary nebula, the number observed to date in the Milky Way Galaxy, and the results of research on a specific nebula. (MDH)

  15. THE TRIFID NEBULA: STELLAR SIBLING RIVALRY

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This NASA Hubble Space Telescope image of the Trifid Nebula reveals a stellar nursery being torn apart by radiation from a nearby, massive star. The picture also provides a peek at embryonic stars forming within an ill-fated cloud of dust and gas, which is destined to be eaten away by the glare from the massive neighbor. This stellar activity is a beautiful example of how the life cycles of stars like our Sun is intimately connected with their more powerful siblings. The Hubble image shows a small part of a dense cloud of dust and gas, a stellar nursery full of embryonic stars. This cloud is about 8 light-years away from the nebula's central star, which is beyond the top of this picture. Located about 9,000 light-years from Earth, the Trifid resides in the constellation Sagittarius. A stellar jet [the thin, wispy object pointing to the upper left] protrudes from the head of a dense cloud and extends three-quarters of a light-year into the nebula. The jet's source is a very young stellar object that lies buried within the cloud. Jets such as this are the exhaust gases of star formation. Radiation from the massive star at the center of the nebula is making the gas in the jet glow, just as it causes the rest of the nebula to glow. The jet in the Trifid is a 'ticker tape,' telling the history of one particular young stellar object that is continuing to grow as its gravity draws in gas from its surroundings. But this particular ticker tape will not run for much longer. Within the next 10,000 years the glare from the central, massive star will continue to erode the nebula, overrunning the forming star, and bringing its growth to an abrupt and possibly premature end. Another nearby star may have already faced this fate. The Hubble picture shows a 'stalk' [the finger-like object] pointing from the head of the dense cloud directly toward the star that powers the Trifid. This stalk is a prominent example of the evaporating gaseous globules, or 'EGGs,' that were seen

  16. The Tarantula Nebula

    NASA Technical Reports Server (NTRS)

    2004-01-01

    NASA's new Spitzer Space Telescope, formerly known as the Space Infrared Telescope Facility, has captured in stunning detail the spidery filaments and newborn stars of the Tarantula Nebula, a rich star-forming region also known as 30 Doradus. This cloud of glowing dust and gas is located in the Large Magellanic Cloud, the nearest galaxy to our own Milky Way, and is visible primarily from the Southern Hemisphere. This image of an interstellar cauldron provides a snapshot of the complex physical processes and chemistry that govern the birth - and death - of stars.

    At the heart of the nebula is a compact cluster of stars, known as R136, which contains very massive and young stars. The brightest of these blue supergiant stars are up to 100 times more massive than the Sun, and are at least 100,000 times more luminous. These stars will live fast and die young, at least by astronomical standards, exhausting their nuclear fuel in a few million years.

    The Spitzer Space Telescope image was obtained with an infrared array camera that is sensitive to invisible infrared light at wavelengths that are about ten times longer than visible light. In this four-color composite, emission at 3.6 microns is depicted in blue, 4.5 microns in green, 5.8 microns in orange, and 8.0 microns in red. The image covers a region that is three-quarters the size of the full moon.

    The Spitzer observations penetrate the dust clouds throughout the Tarantula to reveal previously hidden sites of star formation. Within the luminescent nebula, many holes are also apparent. These voids are produced by highly energetic winds originating from the massive stars in the central star cluster. The structures at the edges of these voids are particularly interesting. Dense pillars of gas and dust, sculpted by the stellar radiation, denote the birthplace of future generations of stars.

    The Spitzer image provides information about the composition of the material at the edges of the voids. The surface layers

  17. The Tarantula Nebula

    NASA Image and Video Library

    2004-01-13

    NASA Spitzer Space Telescope, formerly known as the Space Infrared Telescope Facility, has captured in stunning detail the spidery filaments and newborn stars of theTarantula Nebula, a rich star-forming region also known as 30 Doradus. This cloud of glowing dust and gas is located in the Large Magellanic Cloud, the nearest galaxy to our own Milky Way, and is visible primarily from the Southern Hemisphere. This image of an interstellar cauldron provides a snapshot of the complex physical processes and chemistry that govern the birth - and death - of stars. At the heart of the nebula is a compact cluster of stars, known as R136, which contains very massive and young stars. The brightest of these blue supergiant stars are up to 100 times more massive than the Sun, and are at least 100,000 times more luminous. These stars will live fast and die young, at least by astronomical standards, exhausting their nuclear fuel in a few million years. The Spitzer Space Telescope image was obtained with an infrared array camera that is sensitive to invisible infrared light at wavelengths that are about ten times longer than visible light. In this four-color composite, emission at 3.6 microns is depicted in blue, 4.5 microns in green, 5.8 microns in orange, and 8.0 microns in red. The image covers a region that is three-quarters the size of the full moon. The Spitzer observations penetrate the dust clouds throughout the Tarantula to reveal previously hidden sites of star formation. Within the luminescent nebula, many holes are also apparent. These voids are produced by highly energetic winds originating from the massive stars in the central star cluster. The structures at the edges of these voids are particularly interesting. Dense pillars of gas and dust, sculpted by the stellar radiation, denote the birthplace of future generations of stars. The Spitzer image provides information about the composition of the material at the edges of the voids. The surface layers closest to the

  18. Observatories Combine to Crack Open the Crab Nebula

    NASA Image and Video Library

    2017-12-08

    Astronomers have produced a highly detailed image of the Crab Nebula, by combining data from telescopes spanning nearly the entire breadth of the electromagnetic spectrum, from radio waves seen by the Karl G. Jansky Very Large Array (VLA) to the powerful X-ray glow as seen by the orbiting Chandra X-ray Observatory. And, in between that range of wavelengths, the Hubble Space Telescope's crisp visible-light view, and the infrared perspective of the Spitzer Space Telescope. This video starts with a composite image of the Crab Nebula, a supernova remnant that was assembled by combining data from five telescopes spanning nearly the entire breadth of the electromagnetic spectrum: the Very Large Array, the Spitzer Space Telescope, the Hubble Space Telescope, the XMM-Newton Observatory, and the Chandra X-ray Observatory. The video dissolves to the red-colored radio-light view that shows how a neutron star’s fierce “wind” of charged particles from the central neutron star energized the nebula, causing it to emit the radio waves. The yellow-colored infrared image includes the glow of dust particles absorbing ultraviolet and visible light. The green-colored Hubble visible-light image offers a very sharp view of hot filamentary structures that permeate this nebula. The blue-colored ultraviolet image and the purple-colored X-ray image shows the effect of an energetic cloud of electrons driven by a rapidly rotating neutron star at the center of the nebula. Read more: go.nasa.gov/2r0s8VC Credits: NASA, ESA, J. DePasquale (STScI)

  19. The Making of a Pre-Planetary Nebula

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-07-01

    The gas expelled by dying stars gets twisted into intricate shapes and patterns as nebulae form. Now a team of researchers might have some answers about how this happens.Whats a Pre-Planetary Nebula?This H-R diagram for the globular cluster M5 shows where AGB stars lie: they are represented by blue markers here. The AGB is one of the final stages in a low- to intermediate-mass stars lifetime. [Lithopsian]When a low- to intermediate-mass star approaches the end of its lifetime, it moves onto the Asymptotic Giant Branch (AGB) in the Herzsprung-Russell diagram. As the star exhausts its fuel here, it shrugs off its outer layers. These layers of gas then encase the stars core, which is not yet hot enough to ionize the gas and cause it to glow.Instead, during this time the gas is relatively cool and dark, faintly reflecting light from the star and emitting only very dim infrared emission of its own. At this stage, the gas represents a pre-planetary nebula. Only later when the stellar core contracts enough to heat up and emit ionizing radiation does the nebula begin to properly glow, at which point it qualifies as a full planetary nebula.Images of OH231 in optical light (top) and 12CO (bottom) taken from the literature. [See Balick et al. 2017 for full credit]Unexpected ShapesPre-planetary nebulae are a very short-lived evolutionary stage, so weve observed only a few hundred of them which has left many unanswered questions about these objects.One particular mystery is that of their shapes: if these nebulae are formed by stars expelling their outer layers, we would naively expect them to be simple spherical shells and yet we observe pre-planetary nebulae to have intricate shapes and patterns. How does the star create these asymmetric shapes? A team of scientists led by Bruce Balick (University of Washington, Seattle) has now used simulations to address this question.Injecting MassBalick and collaborators use 3D hydrodynamic simulations to model one particular pre

  20. Aerated Lagoons. Student Manual. Biological Treatment Process Control.

    ERIC Educational Resources Information Center

    Andersen, Lorri

    This student manual contains the textual material for a unit which focuses on the structural and operationally unique features of aerated lagoons. Topic areas discussed include: (1) characteristics of completely mixed aerated lagoons; (2) facultative aerated lagoons; (3) aerated oxidation ponds; (4) effects of temperature on aerated lagoons; (5)…

  1. Spatially Resolved Far-Infrared Spectroscopic Analysis of Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    Rattray, Rebecca; Ueta, Toshiya

    2015-01-01

    Planetary Nebulae (PNs) are late-life intermediate-mass (1-8 solar mass) stars that have shed their outer layers. A wide variety of morphologies and physical conditions is seen in PNs, but a complete understanding of what causes these various conditions is still needed. Spatially resolved far-infrared spectroscopic analysis has been performed on 11 targets using both PACS and SPIRE instruments on the Herschel Space Observatory as part of the Herschel Planetary Nebula Survey (HerPlaNS). Far-IR lines probe the ionized parts of the nebulae and suffer less extinction than optical lines, so observations in the far-IR are critical to our complete understanding of PNs. Because PNs are extended objects, the spectral mapping capabilities of both PACS and SPIRE allow us to better understand the spatial variations of the objects by tracking line strengths as a function of location within the nebula. The far-IR lines detected in this study can be used as tracers of electron density and electron temperature which are critical parameters in radiative transfer modeling of PNs. Information on atomic, ionic, and molecular lines identified in these 11 targets will be presented.

  2. Sustainability assessment of traditional fisheries in Cau Hai lagoon (South China Sea).

    PubMed

    Marconi, Michele; Sarti, Massimo; Marincioni, Fausto

    2010-01-01

    Overfishing and progressive environmental degradation of the Vietnamese Cau Hai coastal lagoon appear to be threatening the ecological integrity and water quality of the largest estuarine complex of Southeast Asia. This study assessed the relationships between the density of traditional fisheries and organic matter sedimentary contents in Cau Hai lagoon. Data revealed that the density of stake traps (the most common fishing gear used in this lagoon), decreasing hydrodynamic energy in shallow water, causes the accumulation of a large fraction of organic matter refractory to degradation. The relationship between biopolymeric carbon (a proxy of availability of organic matter) and stake traps density fits a S-shape curve. The logistic equation calculated a stake traps density of 90 m of net per hectare, as the threshold over which maximum accumulation of organic matter occurs in Cau Hai. With such level of stake trap density, and assuming a theoretical stationary status of the lagoon, the time necessary for the system to reach hypoxic conditions has been calculated to be circa three weeks. We recommend that this density threshold should not be exceeded in the Cau Hai lagoon and that further analyses of organic loads in the sediment should be conducted to monitor the trophic conditions of this highly eutrophicated lagoon. 2010 Elsevier Ltd. All rights reserved.

  3. Recovery of viruses from field samples of raw, digested, and lagoon-dried sludges*

    PubMed Central

    Sattar, Syed A.; Westwood, J. C. N.

    1979-01-01

    In a 22-month study, viruses were detected in 84% (62/74) of raw, 53% (19/36) of anaerobically digested, and 39% (11/28) of lagoon-dried sludge samples. Lagoon sludge contained detectable viruses (reovirus and enterovirus groups) even after 8 months of retention. Because of such prolonged virus survival in sludge, care must be taken in its disposal or utilization. PMID:311705

  4. The albedo of particles in reflection nebulae

    NASA Technical Reports Server (NTRS)

    Rush, W. F.

    1974-01-01

    The relation between the apparent angular extent of a reflection nebula and the apparent magnitude of its illuminating star was reconsidered under a less restrictive set of assumptions. A computational technique was developed which permits the use of fits to the observed m-log a values to determine the albedo of particles composing reflection nebulae, providing only that a phase function and average optical thickness are assumed. Multiple scattering, anisotropic phase functions, and illumination by the general star field are considered, and the albedo of reflection nebular particles appears to be the same as that for interstellar particles in general. The possibility of continuous fluorescence contributions to the surface brightness is also considered.

  5. Lightning in the Protoplanetary Nebula?

    NASA Technical Reports Server (NTRS)

    Love, Stanley G.

    1997-01-01

    Lightning in the protoplanetary nebula has been proposed as a mechanism for creating meteoritic chondrules: enigmatic mm-sized silicate spheres formed in the nebula by the brief melting of cold precursors.

  6. Do the Infrared Emission Features Need UV Excitation? The PAH Model in UV-poor Reflection Nebulae

    NASA Astrophysics Data System (ADS)

    Li, A.; Draine, B. T.

    2001-12-01

    One of the major challenges of identifying the 3.3, 6.2, 7.7, 8.6, and 11.3μ m interstellar infrared emission bands with polycyclic aromatic hydrocarbon (PAH) molecules has been the recent detection of these bands in regions with little ultraviolet (UV) illumination since small, neutral PAH molecules have little or no absorption at visible wavelengths and thus are excited primarily by UV photons. The ``astronomical'' PAH model (Li & Draine 2001), incorporating the experimental result that the visual absorption edge shifts to longer wavelength upon ionization and/or as the PAH size increases (Allamandola, Hudgins, & Sandford 1999), is shown to be able to closely reproduce the observed infrared emission bands of vdB 133, a UV-poor reflection nebula (Uchida, Sellgren, & Werner 1998) as well as the 6.2, 7.7, and 11.3μ m band ratios of the UV-deficient ring in the Andromeda galaxy M31 (Pagani et al. 1999). It is also shown that ``astronomical'' PAHs can be heated sufficiently by a T eff=3000 K black-body to emit at 6.2, 7.7, 8.6, and 11.3μ m. Illustrative mid-IR emission spectra are calculated for reflection nebulae illuminated by cool stars with T eff=3600, 4500, 5000 K. These will allow comparison with future Space Infrared Telescope Facility (SIRTF) observations of vdB 135 (T eff=3600 K), vdB 47 (T eff=4500 K), and vdB 101 (T eff=5000 K) (Houck 2001). This research was supported in part by NASA grant NAG5-7030 and NSF grant AST-9619429. { References:} Allamandola, L.J., Hudgins, D.M., & Sandford, S.A. 1999, ApJ, 511, L115 Houck, J.R. 2001, SIRTF Observations of the Mid IR Features in Reflection Nebulae, {\\sf http://sirtf.caltech.edu/ROC/pid19} Li, A., & Draine, B.T. 2001, ApJ, 554, 778 Pagani, L., et al. 1999, A&A, 351, 447 Uchida, K.I., Sellgren, K., & Werner, M.W. 1998, ApJ, 493, L109

  7. Clipperton, a possible future for atoll lagoons

    NASA Astrophysics Data System (ADS)

    Charpy, L.; Rodier, M.; Couté, A.; Perrette-Gallet, C.; Bley-Loëz, C.

    2010-09-01

    Closure of the Clipperton Island atoll (10°17' N 109°13' W), now a meromictic lake, is estimated to have occurred between 1839 and 1849. It was still closed in 2005. Brackish waters in the upper layer (0-10 m) were oxygenated, while saline waters in the deep layer (>20 m) were anoxic. Allowing for the methodological difficulties of earlier measurements, the physical characteristics of the lagoon did not seem to have changed significantly since the last expedition (1980). The intermediate layer between brackish and saline waters was characterized by a strong density gradient and a temperature inversion of up to 1.6°C. Microbial activity, water exchange between the deep layer and surrounding oceanic waters and the geothermal flux hypothesis are discussed. The low DIN and SRP concentrations observed in the upper layer, despite high nutrient input by seabird droppings, reflect the high nutrient uptake by primary producers as attested by the elevated overall gross primary production (6.6 g C m-2 day-1), and high suspended photosynthetic biomass (2.23 ± 0.23 μg Chl a l-1) and production (263 ± 27 μg C l-1 day-1). Phytoplankton composition changed in 67 years with the advent of new taxa and the disappearance of previously recorded species. The freshwater phytoplanktonic community comprised 43 taxa: 37 newly identified during the expedition and 6 previously noted; 16 species previously found were not seen in 2005. The closure of the lagoon, combined with the positive precipitation-evaporation budget characteristic of the region, has induced drastic changes in lagoon functioning compared with other closed atolls.

  8. Processing NASA Earth Science Data on Nebula Cloud

    NASA Technical Reports Server (NTRS)

    Chen, Aijun; Pham, Long; Kempler, Steven

    2012-01-01

    Three applications were successfully migrated to Nebula, including S4PM, AIRS L1/L2 algorithms, and Giovanni MAPSS. Nebula has some advantages compared with local machines (e.g. performance, cost, scalability, bundling, etc.). Nebula still faces some challenges (e.g. stability, object storage, networking, etc.). Migrating applications to Nebula is feasible but time consuming. Lessons learned from our Nebula experience will benefit future Cloud Computing efforts at GES DISC.

  9. Lifetime of the solar nebula constrained by meteorite paleomagnetism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Huapei; Weiss, Benjamin P.; Bai, Xue-Ning

    We present that a key stage in planet formation is the evolution of a gaseous and magnetized solar nebula. However, the lifetime of the nebular magnetic field and nebula are poorly constrained. We present paleomagnetic analyses of volcanic angrites demonstrating that they formed in a near-zero magnetic field (<0.6 microtesla) at 4563.5 ± 0.1 million years ago, ~3.8 million years after solar system formation. This indicates that the solar nebula field, and likely the nebular gas, had dispersed by this time. This sets the time scale for formation of the gas giants and planet migration. Furthermore, it supports formation ofmore » chondrules after 4563.5 million years ago by non-nebular processes like planetesimal collisions. In conclusion, the core dynamo on the angrite parent body did not initiate until about 4 to 11 million years after solar system formation.« less

  10. Lifetime of the solar nebula constrained by meteorite paleomagnetism.

    PubMed

    Wang, Huapei; Weiss, Benjamin P; Bai, Xue-Ning; Downey, Brynna G; Wang, Jun; Wang, Jiajun; Suavet, Clément; Fu, Roger R; Zucolotto, Maria E

    2017-02-10

    A key stage in planet formation is the evolution of a gaseous and magnetized solar nebula. However, the lifetime of the nebular magnetic field and nebula are poorly constrained. We present paleomagnetic analyses of volcanic angrites demonstrating that they formed in a near-zero magnetic field (<0.6 microtesla) at 4563.5 ± 0.1 million years ago, ~3.8 million years after solar system formation. This indicates that the solar nebula field, and likely the nebular gas, had dispersed by this time. This sets the time scale for formation of the gas giants and planet migration. Furthermore, it supports formation of chondrules after 4563.5 million years ago by non-nebular processes like planetesimal collisions. The core dynamo on the angrite parent body did not initiate until about 4 to 11 million years after solar system formation. Copyright © 2017, American Association for the Advancement of Science.

  11. Lifetime of the solar nebula constrained by meteorite paleomagnetism

    DOE PAGES

    Wang, Huapei; Weiss, Benjamin P.; Bai, Xue-Ning; ...

    2017-02-10

    We present that a key stage in planet formation is the evolution of a gaseous and magnetized solar nebula. However, the lifetime of the nebular magnetic field and nebula are poorly constrained. We present paleomagnetic analyses of volcanic angrites demonstrating that they formed in a near-zero magnetic field (<0.6 microtesla) at 4563.5 ± 0.1 million years ago, ~3.8 million years after solar system formation. This indicates that the solar nebula field, and likely the nebular gas, had dispersed by this time. This sets the time scale for formation of the gas giants and planet migration. Furthermore, it supports formation ofmore » chondrules after 4563.5 million years ago by non-nebular processes like planetesimal collisions. In conclusion, the core dynamo on the angrite parent body did not initiate until about 4 to 11 million years after solar system formation.« less

  12. Accuracy of vertical radial plume mapping technique in measuring lagoon gas emissions.

    PubMed

    Viguria, Maialen; Ro, Kyoung S; Stone, Kenneth C; Johnson, Melvin H

    2015-04-01

    Recently, the U.S. Environmental Protection Agency (EPA) posted a ground-based optical remote sensing method on its Web site called Other Test Method (OTM) 10 for measuring fugitive gas emission flux from area sources such as closed landfills. The OTM 10 utilizes the vertical radial plume mapping (VRPM) technique to calculate fugitive gas emission mass rates based on measured wind speed profiles and path-integrated gas concentrations (PICs). This study evaluates the accuracy of the VRPM technique in measuring gas emission from animal waste treatment lagoons. A field trial was designed to evaluate the accuracy of the VRPM technique. Control releases of methane (CH4) were made from a 45 m×45 m floating perforated pipe network located on an irrigation pond that resembled typical treatment lagoon environments. The accuracy of the VRPM technique was expressed by the ratio of the calculated emission rates (QVRPM) to actual emission rates (Q). Under an ideal condition of having mean wind directions mostly normal to a downwind vertical plane, the average VRPM accuracy was 0.77±0.32. However, when mean wind direction was mostly not normal to the downwind vertical plane, the emission plume was not adequately captured resulting in lower accuracies. The accuracies of these nonideal wind conditions could be significantly improved if we relaxed the VRPM wind direction criteria and combined the emission rates determined from two adjacent downwind vertical planes surrounding the lagoon. With this modification, the VRPM accuracy improved to 0.97±0.44, whereas the number of valid data sets also increased from 113 to 186. The need for developing accurate and feasible measuring techniques for fugitive gas emission from animal waste lagoons is vital for livestock gas inventories and implementation of mitigation strategies. This field lagoon gas emission study demonstrated that the EPA's vertical radial plume mapping (VRPM) technique can be used to accurately measure lagoon gas

  13. The fine nebula dust component: A key to chondrule formation by lightning

    NASA Technical Reports Server (NTRS)

    Wasson, J. T.; Rasmussen, K. L.

    1994-01-01

    Our assessment indicates that chondrule formation by lightning is indeed possible in the solar nebula. Previously the overriding objection to the lightning process of chondrule formation has been that low nebula pressures prevented the buildup of large potential differences. The breakdown potential is controlled by the mean free live distance of an electron. We calculate the mean free live distance in pure H2 gas at 2 AU to be approximately 500 m. A fine dust load constituting 4 wt% of the dust in the dusty midplane region leads to a reduced mean free live distance of only 7 m. Very conservatively we estimate the breakdown potential to be at least 10, 1.8, and 0.7 V/cm at 1, 2, and 3 AU respectively. We set the radius of the lightning bolt equal to the kinetic mean free path of the gas. Our calculations based on electron drift velocities in a fully ionized H2 gas show that first strike durations are 0.96, 3.4, and 7.0 ms at 1, 2, and 3 AU respectively, in much better accordance with the meteoritic evidence than previous estimates of 10-100 s.

  14. Microbial community analysis of swine wastewater anaerobic lagoons by next-generation DNA sequencing.

    PubMed

    Ducey, Thomas F; Hunt, Patrick G

    2013-06-01

    Anaerobic lagoons are a standard practice for the treatment of swine wastewater. This practice relies heavily on microbiological processes to reduce concentrated organic material and nutrients. Despite this reliance on microbiological processes, research has only recently begun to identify and enumerate the myriad and complex interactions that occur in this microbial ecosystem. To further this line of study, we utilized a next-generation sequencing (NGS) technology to gain a deeper insight into the microbial communities along the water column of four anaerobic swine wastewater lagoons. Analysis of roughly one million 16S rDNA sequences revealed a predominance of operational taxonomic units (OTUs) classified as belonging to the phyla Firmicutes (54.1%) and Proteobacteria (15.8%). At the family level, 33 bacterial families were found in all 12 lagoon sites and accounted for between 30% and 50% of each lagoon's OTUs. Analysis by nonmetric multidimensional scaling (NMS) revealed that TKN, COD, ORP, TSS, and DO were the major environmental variables in affecting microbial community structure. Overall, 839 individual genera were classified, with 223 found in all four lagoons. An additional 321 genera were identified in sole lagoons. The top 25 genera accounted for approximately 20% of the OTUs identified in the study, and the low abundances of most of the genera suggests that most OTUs are present at low levels. Overall, these results demonstrate that anaerobic lagoons have distinct microbial communities which are strongly controlled by the environmental conditions present in each individual lagoon. Published by Elsevier Ltd.

  15. Salinity Drives the Virioplankton Abundance but Not Production in Tropical Coastal Lagoons.

    PubMed

    Junger, Pedro C; Amado, André M; Paranhos, Rodolfo; Cabral, Anderson S; Jacques, Saulo M S; Farjalla, Vinicius F

    2018-01-01

    Viruses are the most abundant components of microbial food webs and play important ecological and biogeochemical roles in aquatic ecosystems. Virioplankton is regulated by several environmental factors, such as salinity, turbidity, and humic substances. However, most of the studies aimed to investigate virioplankton regulation were conducted in temperate systems combining a limited range of environmental variables. In this study, virus abundance and production were determined and their relation to bacterial and limnological variables was assessed in 20 neighboring shallow tropical coastal lagoons that present wide environmental gradients of turbidity (2.32-571 NTU), water color (1.82-92.49 m -1 ), dissolved organic carbon (0.71-16.7 mM), salinity (0.13-332.1‰), and chlorophyll-a (0.28 to 134.5 μg L -1 ). Virus abundance varied from 0.37 × 10 8 to 117 × 10 8 virus-like-particle (VLP) mL -1 , with the highest values observed in highly salty aquatic systems. Salinity and heterotrophic bacterial abundance were the main variables positively driving viral abundances in these lagoons. We suggest that, with increased salinity, there is a decrease in the protozoan control on bacterial populations and lower bacterial diversity (higher encounter rates with virus specific hosts), both factors positively affecting virus abundance. Virus production varied from 0.68 × 10 7 to 56.5 × 10 7 VLP mL -1 h -1 and was regulated by bacterial production and total phosphorus, but it was not directly affected by salinity. The uncoupling between virus abundance and virus production supports that the hypothesis that the lack of grazing pressure on viral and bacterial populations is an important mechanism causing virus abundance to escalate with increasing salt concentrations.

  16. Discovery of a parsec-scale bipolar nebula around MWC 349A

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.; Menten, K. M.

    2012-05-01

    We report the discovery of a bipolar nebula around the peculiar emission-line star MWC 349A using archival Spitzer Space Telescope 24 μm data. The nebula extends over several arcminutes (up to 5 pc) and has the same orientation and geometry as the well-known subarcsecond-scale (~400 times smaller) bipolar radio nebula associated with this star. We discuss the physical relationship between MWC 349A and the nearby B0 III star MWC 349B and propose that both stars were members of a hierarchical triple system, which was ejected from the core of the Cyg OB2 association several Myr ago and recently was dissolved into a binary system (now MWC 349A) and a single unbound star (MWC 349B). Our proposal implies that MWC 349A is an evolved massive star (likely a luminous blue variable) in a binary system with a low-mass star. A possible origin of the bipolar nebula around MWC 349A is discussed.

  17. Experimental simulations of sulfide formation in the solar nebula.

    PubMed

    Lauretta, D S; Lodders, K; Fegley, B

    1997-07-18

    Sulfurization of meteoritic metal in H2S-H2 gas produced three different sulfides: monosulfide solid solution [(Fe,Ni)1-xS], pentlandite [(Fe,Ni)9-xS8], and a phosphorus-rich sulfide. The composition of the remnant metal was unchanged. These results are contrary to theoretical predictions that sulfide formation in the solar nebula produced troilite (FeS) and enriched the remaining metal in nickel. The experimental sulfides are chemically and morphologically similar to sulfide grains in the matrix of the Alais (class CI) carbonaceous chondrite, suggesting that these meteoritic sulfides may be condensates from the solar nebula.

  18. 'Peony Nebula' Star Settles for Silver Medal

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Poster Version Movie

    If our galaxy, the Milky Way, were to host its own version of the Olympics, the title for the brightest known star would go to a massive star called Eta Carina. However, a new runner-up now the second-brightest star in our galaxy has been discovered in the galaxy's dusty and frenzied interior. This image from NASA's Spitzer Space Telescope shows the new silver medalist, circled in the inset above, in the central region of our Milky Way.

    Dubbed the 'Peony nebula' star, this blazing ball of gas shines with the equivalent light of 3.2 million suns. The reigning champ, Eta Carina, produces the equivalent of 4.7 million suns worth of light though astronomers say these estimates are uncertain, and it's possible that the Peony nebula star could be even brighter than Eta Carina.

    If the Peony star is so bright, why doesn't it stand out more in this view? The answer is dust. This star is located in a very dusty region jam packed with stars. In fact, there could be other super bright stars still hidden deep in the stellar crowd. Spitzer's infrared eyes allowed it to pierce the dust and assess the Peony nebula star's true brightness. Likewise, infrared data from the European Southern Observatory's New Technology Telescope in Chile were integral in calculating the Peony nebula star's luminosity.

    The Peony nebula, which surrounds the Peony nebular star, is the reddish cloud of dust in and around the white circle.

    The movie begins by showing a stretch of the dusty and frenzied central region of our Milky Way galaxy. It then zooms in to reveal the 'Peony nebula' star the new second-brightest star in the Milky Way, discovered in part by NASA's Spitzer Space Telescope.

    This is a three-color composite showing infrared observations from two Spitzer instruments. Blue represents 3.6-micron light and green shows light of 8 microns, both

  19. Rossby Waves in the Protoplanetary Nebula

    NASA Technical Reports Server (NTRS)

    Sheehan, Daniel P.

    1998-01-01

    Fluid waves and instabilities are considered critical to the evolution of protoplanetary nebulae, particularly for their roles in mass, angular momentum, and energy transport. A number have been identified, however, notably absent, is an influential wave commonly found in planetary atmospheres and oceans: the planetary Rossby wave (PRW). Since, in the Earth's atmosphere, the PRW is of primary importance in shaping large-scale meteorological phenomena, it is reasonable to consider whether it might have similar importance in the protoplanetary nebula. The thrust of the research project this summer (1998) was to determine whether a nebular analog to the PRW is viable, a so-called nebular Rossby wave (NRW), and if so, to explore possible ramifications of this wave to the evolution of the nebula. This work was carried out primarily by S. Davis, J. Cuzzi and me, with significant discussions with P. Cassen. We believe we have established a good case for the NRW and as a result believe we have opened up a new and possibly interesting line of research in regard to the nebular development, in particular with regard to zonal jet formation, a potent accretion mechanism, and possible ties to vortex formation. The standard model of the protoplanetary nebula consists of a large disk of gas with about 1% entrained dust gravitationally bound to a large central mass, m(sub c) i.e., the protostar. The planet-forming region of the disk extends to roughly 100 A.U. in radius. Disk thickness, H, is believed to be on the order of 10-100 times less than disk radius. Disk lifetime is on the order of a million years.

  20. NASA Explores the Carina Nebula by Touch

    NASA Image and Video Library

    2017-12-08

    Release Date March 30, 2010 The raised arcs, lines, dots, and other markings in this 17-by-11-inch Hubble Space Telescope image of the Carina Nebula highlight important features in the giant gas cloud, allowing visually impaired people to feel what they cannot see and form a picture of the nebula in their minds. To read more abou this image go to: www.nasa.gov/mission_pages/hubble/science/carina-touch.html Credit: NASA, ESA, and M. Mutchler (STScI/AURA) and N. Grice (You Can Do Astronomy LLC) NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.

  1. Imaging the Elusive H-poor Gas in the High adf Planetary Nebula NGC 6778

    NASA Astrophysics Data System (ADS)

    García-Rojas, Jorge; Corradi, Romano L. M.; Monteiro, Hektor; Jones, David; Rodríguez-Gil, Pablo; Cabrera-Lavers, Antonio

    2016-06-01

    We present the first direct image of the high-metallicity gas component in a planetary nebula (NGC 6778), taken with the OSIRIS Blue Tunable Filter centered on the O II λ4649+50 Å optical recombination lines (ORLs) at the 10.4 m Gran Telescopio Canarias. We show that the emission of these faint O II ORLs is concentrated in the central parts of the planetary nebula and is not spatially coincident either with emission coming from the bright [O III] λ5007 Å collisionally excited line (CEL) or the bright Hα recombination line. From monochromatic emission line maps taken with VIMOS at the 8.2 m Very Large Telescope, we find that the spatial distribution of the emission from the auroral [O III] λ4363 line resembles that of the O II ORLs but differs from nebular [O III] λ5007 CEL distribution, implying a temperature gradient inside the planetary nebula. The centrally peaked distribution of the O II emission and the differences with the [O III] and H I emission profiles are consistent with the presence of an H-poor gas whose origin may be linked to the binarity of the central star. However, determination of the spatial distribution of the ORLs and CELs in other PNe and a comparison of their dynamics are needed to further constrain the geometry and ejection mechanism of the metal-rich (H-poor) component and hence, understand the origin of the abundance discrepancy problem in PNe.

  2. A nitrogen-rich nebula

    NASA Image and Video Library

    2015-06-29

    This NASA/ESA Hubble Space Telescope image shows a planetary nebula named NGC 6153, located about 4000 light-years away in the southern constellation of Scorpius (The Scorpion). The faint blue haze across the frame shows what remains of a star like the Sun after it has depleted most of its fuel. When this happens, the outer layers of the star are ejected, and get excited and ionised by the energetic ultraviolet light emitted by the bright hot core of the star, forming the nebula. NGC 6153 is a planetary nebula that is elliptical in shape, with an extremely rich network of loops and filaments, shown clearly in this Hubble image. However, this is not what makes this planetary nebula so interesting for astronomers. Measurements show that NGC 6153 contains large amounts of neon, argon, oxygen, carbon and chlorine — up to three times more than can be found in the Solar System. The nebula contains a whopping five times more nitrogen than the Sun! Although it may be that the star developed higher levels of these elements as it grew and evolved, it is more likely that the star originally formed from a cloud of material that already contained lots more of these elements. A version of this image was entered into the Hubble’s Hidden Treasures image processing competition by contestant Matej Novak. Links Matej Novak’s image on Flickr

  3. WISE Spies the Tarantula Nebula

    NASA Image and Video Library

    2010-07-06

    Sending chills down the spine of all arachnophobes is the Tarantula nebula, seen in this image from NASA Wide-field Infrared Survey Explorer; the nebula is the largest star-forming region known in our entire Local Group of galaxies.

  4. Where Do Messy Planetary Nebulae Come From?

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-03-01

    If you examined images of planetary nebulae, you would find that many of them have an appearance that is too messy to be accounted for in the standard model of how planetary nebulae form. So what causes these structures?Examples of planetary nebulae that have a low probability of having beenshaped by a triple stellar system. They are mostly symmetric, with only slight departures (labeled) that can be explained by instabilities, interactions with the interstellar medium, etc. [Bear and Soker 2017]A Range of LooksAt the end of a stars lifetime, in the red-giant phase, strong stellar winds can expel the outer layers of the star. The hot, luminous core then radiates in ultraviolet, ionizing the gas of the ejected stellar layers and causing them to shine as a brightly colored planetary nebula for a few tens of thousands of years.Planetary nebulae come in a wide variety of morphologies. Some are approximately spherical, but others can be elliptical, bipolar, quadrupolar, or even more complex.Its been suggested that non-spherical planetary nebulae might be shaped by the presence of a second star in a binary system with the source of the nebula but even this scenario should still produce a structure with axial or mirror symmetry.A pair of scientists from Technion Israel Institute of Technology, Ealeal Bear and Noam Soker, argue that planetary nebulae with especially messy morphologies those without clear axial or point symmetries may have been shaped by an interacting triple stellar system instead.Examples of planetary nebulae that might have been shaped by a triple stellar system. They have some deviations from symmetry but also show signs of interacting with the interstellar medium. [Bear and Soker 2017]Departures from SymmetryTo examine this possibility more closely, Bear and Soker look at a sample of thousands planetary nebulae and qualitatively classify each of them into one of four categories, based on the degree to which they show signs of having been shaped by a

  5. The surface brightness of reflection nebulae. Ph.D. Thesis, Dec. 1972

    NASA Technical Reports Server (NTRS)

    Rush, W. F.

    1974-01-01

    Hubble's equation relating the maximum apparent angular extent of a reflection nebula to the apparent magnitude of the illuminating star has been reconsidered under a set of less restrictive assumptions. A computational technique is developed which permits the use of fits to observed m, log a values to determine the albedo of the particles composing reflection nebulae, providing only that one assumes a particular phase function. Despite the fact that all orders of scattering, anisotropic phase functions, and illumination by the general stellar field are considered, the albedo which is determined for reflection nebulae by this method appears larger than that for interstellar particles in general. The possibility that the higher surface brightness might be due to a continuous fluorescence mechanism is considered both theoretically and observationally.

  6. Ant nebula

    NASA Technical Reports Server (NTRS)

    1999-01-01

    A new Hubble Space Telescope image of a celestial object called the Ant Nebula may shed new light on the future demise of our Sun. The image is available at http://www.jpl.nasa.gov/pictures/wfpc .

    The nebula, imaged on July 20, 1997, and June 30, 1998, by Hubble's Wide Field and Planetary Camera 2, was observed by Drs. Raghvendra Sahai and John Trauger of NASA's Jet Propulsion Laboratory, Pasadena, Calif.; Bruce Balick of the University of Washington in Seattle; and Vincent Icke of Leiden University in the Netherlands. JPL designed and built the camera.

    The Ant Nebula, whose technical name is Mz3, resembles the head and thorax of an ant when observed with ground-based telescopes. The new Hubble image, with 10 times the resolution revealing 100 times more detail, shows the 'ant's' body as a pair of fiery lobes protruding from a dying, Sun- like star. The Ant Nebula is located between 3,000 and 6,000 light years from Earth in the southern constellation Norma.

    The image challenges old ideas about what happens to dying stars. This observation, along with other pictures of various remnants of dying stars called planetary nebulae, shows that our Sun's fate will probably be much more interesting, complex and dramatic than astronomers previously believed.

    Although the ejection of gas from the dying star in the Ant Nebula is violent, it does not show the chaos one might expect from an ordinary explosion, but instead shows symmetrical patterns. One possibility is that the central star has a closely orbiting companion whose gravitational tidal forces shape the outflowing gas. A second possibility is that as the dying star spins, its strong magnetic fields are wound up into complex shapes like spaghetti in an eggbeater. Electrically charged winds, much like those in our Sun's solar wind but millions of times denser and moving at speeds up to 1,000 kilometers per second (more than 600 miles per second) from the star, follow the twisted field lines on their way

  7. Discovery of a [WO] central star in the planetary nebula Th 2-A

    NASA Astrophysics Data System (ADS)

    Weidmann, W. A.; Gamen, R.; Díaz, R. J.; Niemela, V. S.

    2008-09-01

    Context: About 2500 planetary nebulae are known in our Galaxy but only 224 have central stars with reported spectral types in the Strasbourg-ESO Catalogue of Galactic Planetary Nebulae (Acker et al. 1992; Acker et al. 1996). Aims: We have started an observational program aiming to increase the number of PN central stars with spectral classification. Methods: By means of spectroscopy and high resolution imaging, we identify the position and true nature of the central star. We carried out low resolution spectroscopic observations at CASLEO telescope, complemented with medium resolution spectroscopy performed at Gemini South and Magellan telescopes. Results: As a first outcome of this survey, we present for the first time the spectra of the central star of the PN Th 2-A. These spectra show emission lines of ionized C and O, typical in Wolf-Rayet stars. Conclusions: We identify the position of that central star, which is not the brightest one of the visual central pair. We classify it as of type [WO 3]pec, which is consistent with the high excitation and dynamical age of the nebula. Based on data collected at (i) the Complejo Astronómico El Leoncito (CASLEO), which is operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina y Universidades Nacionales de La Plata, Córdoba y San Juan, Argentina; (ii) the 6.5 m Magellan Telescopes at Las Campanas Observatory, Chile; (iii) the 8 m Gemini South Telescope, Chile.

  8. Rapid gamma-ray flux variability during the 2013 March Crab Nebula flare

    DOE PAGES

    Mayer, Michael; Buehler, Rolf; Hays, Elizabeth; ...

    2013-09-11

    Here, we report on a bright flare in the Crab Nebula detected by the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope. The period of significantly increased luminosity occurred in 2013 March and lasted for approximately two weeks. During this period, we observed flux variability on timescales of approximately 5 hr. The combined photon flux above 100 MeV from the pulsar and its nebula reached a peak value of (12.5 ± 0.8) • 10 –6 cm –2 s –1 on 2013 March 6. This value exceeds the average flux by almost a factor of six and impliesmore » a ~20 times higher flux for the synchrotron component of the nebula alone. This is the second brightest flare observed from this source. Spectral and temporal analysis of the LAT data collected during the outburst reveal a rapidly varying synchrotron component of the Crab Nebula while the pulsar emission remains constant in time.« less

  9. The distribution of salinity and main forcing effects in the Berre lagoon

    NASA Astrophysics Data System (ADS)

    Roux, Bernard; Alekseenko, Elena; Chen, Paul Gang; Kharif, Christian; Kotarba, Richard; Fougere, Dominique

    2014-05-01

    Berre lagoon by destroying rapidly (in a few hours) the vertical stratification, thereby reducing the risk of anoxia. The results from these model scenarios are useful to further understand the ecosystem of the Berre lagoon and to help the designers of seagrass restoration program. References Delpy F., Pagano M., Blanchot J., Carlotti F., Thibault-Botha D. : Man-induced hydrological changes, metazooplankton communities and invasive species in the Berre Lagoon (Mediterranean Sea, France). Mar. Pollut. Bull. 64 (9) : 1921-32, 2012. Lirman D., Serafy J.E. : Documenting Everglades restoration impacts on Biscayne Bay's shallowest benthic habitats. First Annual Report. CERP Monitoring and Assessment Plan Component : Activity Number 3.2.3.3. Miami, FL, 2008. Smith N.P. : Water, salt and heat balance of coastal lagoons. In B. Kjerfve (ed.), Coastal Lagoon Processes. (pp. 69-101). Amsterdam : Elsevier, 1994.

  10. The Gum Nebula.

    NASA Technical Reports Server (NTRS)

    Maran, S. P.

    1971-01-01

    A historical review of observations on the Gum Nebula is given together with a survey of knowledge on its size, emission features, and dynamics of expansion. The ultraviolet spectrum of Zeta Puppis is examined in terms of features caused by various absorption lines, and radio emission from Vela X is analyzed, together with the effects of nebular plasma on the propagation of radio pulses from pulsars in the Nebula. The density distribution and the possibility of being produced by the Vela X supernova are discussed.

  11. THE REMARKABLE MOLECULAR CONTENT OF THE RED SPIDER NEBULA (NGC 6537)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edwards, J. L.; Ziurys, L. M., E-mail: lziurys@email.arizona.edu

    2013-06-10

    Millimeter and sub-millimeter molecular-line observations of planetary nebula (PN) NGC 6537 (Red Spider) have been carried out using the Sub-Millimeter Telescope and the 12 m antenna of the Arizona Radio Observatory in the frequency range 86-692 GHz. CN, HCN, HNC, CCH, CS, SO, H{sub 2}CO, HCO{sup +} and N{sub 2}H{sup +}, along with the J = 3 {yields} 2 and 6 {yields} 5 lines of CO and those of several isotopologues, were detected toward the Red Spider, estimated to be {approx}1600 yr old. This extremely high excitation PN evidently fosters a rich molecular environment. The presence of CS and SOmore » suggest that sulfur may be sequestered in molecular form in such nebulae. A radiative transfer analysis of the CO and CS spectra indicate a kinetic temperature of T{sub K} {approx} 60-80 K and gas densities of n(H{sub 2}) {approx} 1-8 Multiplication-Sign 10{sup 5} cm{sup -3} in NGC 6537. Column densities of the molecules in the nebula and their fractional abundances relative to H{sub 2} ranged from N{sub tot} {approx} 10{sup 16} cm{sup -2} and f {approx} 10{sup -4} for CO, to {approx}7 Multiplication-Sign 10{sup 11} cm{sup -2} and f {approx} 8 Multiplication-Sign 10{sup -9} for the least abundant species, N{sub 2}H{sup +}. For SO and CS, N{sub tot} {approx} 2 Multiplication-Sign 10{sup 12} cm{sup -2} and 10{sup 13} cm{sup -2}, respectively, with f {approx} 10{sup -7} and 2 Multiplication-Sign 10{sup -8}. It was also found that HCN/HNC Almost-Equal-To 2. A low {sup 12}C/{sup 13}C ratio of {approx}4 was measured, indicative of hot-bottom burning. These results, coupled with past observations, suggest that molecular abundances in PNe are governed principally by the physical and chemical properties of the individual object and its progenitor star, rather than nebular age.« less

  12. Inverse-dispersion technique for assessing lagoon gas emissions

    USDA-ARS?s Scientific Manuscript database

    Measuring gas emissions from treatment lagoons and storage ponds poses challenging conditions for existing micrometeorological techniques because of non-ideal wind conditions, such as those induced by trees and crops surrounding the lagoons, and lagoons with dimensions too small to establish equilib...

  13. Hydrology and Salt Balance in a Large, Hypersaline Coastal Lagoon: Lagoa de Araruama, Brazil

    NASA Astrophysics Data System (ADS)

    Kjerfve, Björn; Schettini, C. A. F.; Knoppers, Bastiaan; Lessa, Guilherme; Ferreira, H. O.

    1996-06-01

    Lagoa de Araruama in the state of Rio de Janeiro, Brazil, is a hypersaline coastal lagoon as a result of semi-arid climate conditions, a small drainage basin and a choked entrance channel. The lagoon has been continuously hypersaline for at least 4·5 centuries, but the mean salinity has varied substantially. It has recently decreased from 57 to 52 as indicated by density (salinity) measurements between 1965 and 1990. Analysis of more than 20 years of salinity time series data, in addition to monthly lagoon cruises to measure the spatial salinity distribution, indicate that the lagoon salinity largely fluctuates in response to the difference between evaporation and precipitation. The major factor explaining the long-term trend of decreasing salinity in the lagoon is the constant pumping of 1 m 3s -1of freshwater to the communities surrounding the lagoon from an adjacent watershed, and subsequent discharge of this water into Lagoa de Araruama. The net salt budget is primarily a balance between the advective import of salt from the coastal ocean and eddy diffusive export of salt to the ocean, although the extensive mining of salt from the lagoon during past decades is also a small but significant contribution to the salt budget. The flushing half-life is proposed as a useful time scale of water exchange, is calculated based on a combination of hydrological and tidal processes, and is excellent for comparison of lagoons and assessing water quality changes. The flushing half-life measures 83·5 days for Lagoa de Araruama, considerably longer than for most other coastal lagoons. The proposed dredging of a second ocean channel to Lagoa de Araruama is probably not a good idea. It is likely to accelerate the decrease of lagoon salinity and somewhat improve the lagoon water exchange. At the same time, this will eliminate the apparent buffering capacity provided by the hypersaline environment, and thus may potentially cause water quality problems.

  14. NGC 7293, the Helix Nebula

    NASA Image and Video Library

    2012-05-16

    NGC 7293, better known as the Helix nebula, displays its ultraviolet glow courtesy of NASA GALEX. The Helix is the nearest example of a planetary nebula, which is the eventual fate of a star, like our own Sun, as it approaches the end of its life.

  15. Tidal dynamics of the Terminos Lagoon, Mexico: observations and 3D numerical modelling

    NASA Astrophysics Data System (ADS)

    Contreras Ruiz Esparza, Adolfo; Douillet, Pascal; Zavala-Hidalgo, Jorge

    2014-09-01

    The tidal circulation patterns in the Terminos Lagoon were studied based on the analysis of 1 year of measurements and numerical simulations using a baroclinic 3D hydrodynamic model, the MARS3D. A gauging network was installed consisting of six self-recording pressure-temperature sensors, a tide gauge station and two current profilers, with pressure and temperature sensors moored in the main lagoon inlets. Model simulations were validated against current and sea level observations and were used to analyse the circulation patterns caused by the tidal forcing. The numerical model was forced with eight harmonic components, four diurnal ( K 1, O 1, P 1, Q 1) and four semi-diurnal ( M 2, S 2, N 2, K 2), extracted from the TPX0.7 database. The tidal patterns in the study area vary from mixed, mainly diurnal in the two main inlets of the lagoon, to diurnal in its interior. The tidal residual circulation inside the lagoon is dominated by a cyclonic gyre. The results indicate a net flux from the southwest Ciudad del Carmen inlet (CdC) towards the northeast Puerto Real inlet (PtR) along the southern side of the lagoon and the opposite in the northern side. The results indicate two areas of strong currents in the vicinity of the inlets and weak currents inside the lagoon. The area of strong currents in the vicinity of the CdC inlet is larger than that observed in the PtR inlet. Nevertheless, the current analysis indicates that the highest current speeds, which can reach a magnitude of 1.9 m s-1, occurred in PtR. A further analysis of the tide distortion in the inlets revealed that both passages are ebb dominated.

  16. Chemical Abundances of Planetary Nebulae in the Substructures of M31

    NASA Astrophysics Data System (ADS)

    Fang, Xuan; García-Benito, Rubén; Guerrero, Martín A.; Liu, Xiaowei; Yuan, Haibo; Zhang, Yong; Zhang, Bing

    2015-12-01

    We present deep spectroscopy of planetary nebulae (PNe) that are associated with the substructures of the Andromeda Galaxy (M31). The spectra were obtained with the Optical System for Imaging and low-intermediate-Resolution Integrated Spectroscopy spectrograph on the 10.4 m Gran Telescopio Canarias. Seven targets were selected for the observations, three in the Northern Spur and four associated with the Giant Stream. The most distant target in our sample, with a rectified galactocentric distance ≥slant 100 kpc, was the first PN discovered in the outer streams of M31. The [O iii] λ4363 auroral line is well detected in the spectra of all targets, enabling electron temperature determination. Ionic abundances are derived based on the [O iii] temperatures, and elemental abundances of helium, nitrogen, oxygen, neon, sulfur, and argon are estimated. The relatively low N/O and He/H ratios, as well as abundance ratios of α-elements, indicate that our target PNe might belong to populations as old as ∼2 Gyr. Our PN sample, including the current seven and the previous three observed by Fang et al., have rather homogeneous oxygen abundances. The study of abundances and the spatial and kinematical properties of our sample leads to the tempting conclusion that their progenitors might belong to the same stellar population, which hints at a possibility that the Northern Spur and the Giant Stream have the same origin. This may be explained by the stellar orbit proposed by Merrett et al. Judging from the position and kinematics, we emphasize that M32 might be responsible for the two substructures. Deep spectroscopy of PNe in M32 will help to assess this hypothesis. Based on observations made with the Gran Telescopio Canarias, installed at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias, in the island of La Palma. These observations are associated with program No. GTC55-14B.

  17. Observation of the 63 micron (0 1) emission line in the Orion and Omega Nebulae

    NASA Technical Reports Server (NTRS)

    Melnick, G.; Gull, G. E.; Harwit, M.

    1978-01-01

    The 63 micron fine structure transition P4 : 3Pl yields 3P2 for neutral atomic oxygen was obtained during a series of flights at an altitude of approximately 13.7 km. In the Orion Nebula (M42), the observed line strength was 8 x 10 to the minus 15 power watt cm/2 which is estimated to be approximately 0.3 o/o of the energy radiated at all wavelengths. For the Omega Nebulae (M17), the line strength was 2.4 x 10 to the minus 15 power watt cm/2, and the fraction of the total radiated power was slightly higher. These figures refer to a 4' x 6' field of view centered on the peak for infrared emission from each source. The uncertainty in the line strength is approximately 50% and is caused by variable water vapor absorption along the flight path of the airplane. The line position estimate is 63.2 micron (+0.1, -0.2) micron. The prime uncertainty is due to the uncertain position of the (0 I) emitting regions in the field of view.

  18. Occurrence and Diversity of Tetracycline Resistance Genes in Lagoons and Groundwater Underlying Two Swine Production Facilities

    USGS Publications Warehouse

    Chee-Sanford, J. C.; Aminov, R.I.; Krapac, I.J.; Garrigues-Jeanjean, N.; Mackie, R.I.

    2001-01-01

    In this study, we used PCR typing methods to assess the presence of tetracycline resistance determinants conferring ribosomal protection in waste lagoons and in groundwater underlying two swine farms. All eight classes of genes encoding this mechanism of resistance [tet(O), tet(Q), tet(W), tet(M), tetB(P), tet(S), tet(T), and otrA] were found in total DNA extracted from water of two lagoons. These determinants were found to be seeping into the underlying groundwater and could be detected as far as 250 m downstream from the lagoons. The identities and origin of these genes in groundwater were confirmed by PCR-denaturing gradient gel electrophoresis and sequence analyses. Tetracycline-resistant bacterial isolates from groundwater harbored the tet(M) gene, which was not predominant in the environmental samples and was identical to tet(M) from the lagoons. The presence of this gene in some typical soil inhabitants suggests that the vector of antibiotic resistance gene dissemination is not limited to strains of gastrointestinal origin carrying the gene but can be mobilized into the indigenous soil microbiota. This study demonstrated that tet genes occur in the environment as a direct result of agriculture and suggested that groundwater may be a potential source of antibiotic resistance in the food chain.

  19. The Ultraviolet Emission Spectra of AN HII Region

    NASA Astrophysics Data System (ADS)

    Cox, Nancy

    1991-07-01

    ONE OF THE ADVANTAGES OF THE NEW INSTRUMENTS SUCH AS THE HUBBLE SPACE TELESCOPE IS TO BE ABLE TO STUDY THE UNIVERSE AT WAVELENGTHS PREVIOUSLY UNOBSERVABLE FROM UNDER THE EARTH'S ATMOSPHERE. ONE THE THESE IS THE UV REGION OF THE STECTRUM. USING HST'S FOS, I WOULD LIKE TO TAKE A UV SPETRUM OF AN HII REGION, M8, THE LAGOON NEBULA (HOURGLASS REGION). HII REGIONS ARE AREAS OF STARBIRTH AND ARE SAMPLES OF THE INTERSTELLAR MATTER OUT OF WHICH STARS ARE BEING BORN. HOT, YOUNG O STARS WHICH RADIATE STRONGLY IN THE UV ARE EMBEDDED IN M8. MANY EMSSION LINES ARE EXPECTED BETWEEN 912-3300 ANGTROMS. USING WF/PC, AN IMAGE OF THE HOURGALSS WILL BE TAKEN LOOKING FOR FILIMENTARY STRUCTURE AND NEW BORN STARS.

  20. SPREADING LAGOONED SEWAGE SLUDGE ON FARMLAND: A CASE HISTORY

    EPA Science Inventory

    This project demonstrated that land application is feasible and practical for a metropolitan treatment plant for disposal of a large volume (265,000 cu m) of stabilized, liquid sewage sludge stored in lagoons. The project involved transportation of sludge by semi-trailer tankers ...

  1. Discovery of a Pulsar Wind Nebula Candidate in the Cygnus Loop

    NASA Technical Reports Server (NTRS)

    Katsuda, Satoru; Tsunemi, Hiroshi; Mori, Koji; Uchida, Hiroyuki; Petre, Robert; Yamada, Shin'ya; Tamagawa, Toru

    2012-01-01

    We report on a discovery of a diffuse nebula containing a point-like source in the southern blowout region of the Cygnus Loop supernova remnant, based on Suzaku and XMM-Newton observations. The X-ray spectra from the nebula and the point-like source are well represented by an absorbed power-law model with photon indices of 2.2+/-0.1 and 1.6+/-0.2, respectively. The photon indices as well as the flux ratio of F(sub nebula)/F(sub point-like) approx. 4 lead us to propose that the system is a pulsar wind nebula, although pulsations have not yet been detected. If we attribute its origin to the Cygnus Loop supernova, then the 0.5-8 keV luminosity of the nebula is computed to be 2.1x10(exp 31)(d/540pc)(exp 2)ergss/2, where d is the distance to the Loop. This implies a spin-down loss-energy E approx. 2.6x10(exp 35)(d/540pc)(exp 2)ergs/s. The location of the neutron star candidate, approx.2deg away from the geometric center of the Loop, implies a high transverse velocity of approx.1850(theta/2deg)(d/540pc)(t/10kyr)/k/s assuming the currently accepted age of the Cygnus Loop.

  2. The evolved central star of the planetary nebula ESO 166-PN 21.

    NASA Astrophysics Data System (ADS)

    Pena, M.; Ruiz, M. T.; Bergeron, P.; Torres-Peimbert, S.; Heathcote, S.

    1997-02-01

    Optical and UV spectrophotometric data of the nebula and the central star of the planetary nebula ESO 166-PN 21 are presented. The analysis of the nebular lines confirms that it is a He- and N-rich PN, with He/H=0.138+/-0.005 and N/O=0.58+/-0.08. The oxygen abundance is 12+logO/H=8.60+/-0.10. A distance of 1.2+/-0.2 kpc is derived for the nebula. The central star is very faint and blue, with an apparent magnitude V=17.94+/-0.03mag and a dereddened color index (B-V)_0_=-0.38mag. It shows faint wide H and He absorption lines typical of a DAO star. By modeling the line profiles we derived T_eff_=69200+/-8700K, logg=7.14+/-0.39 and logHe/H=-1.50+/-0.49 for the star. The position of the star in a HR diagram compared with evolutionary tracks indicates a stellar mass of ~0.55Msun_. The bolometric correction derived from the model atmosphere is -5.6mag which, combined with the mass, yields an absolute visual magnitude M_V_=6.95, a luminosity of 22Lsun_ and a distance of 1185+/-700pc, in good agreement with the nebular distance. Therefore, ESO 166-PN 21 central star is among the hottest and most helium-rich DAO stars and it is one of the most evolved PN nuclei known, similar to the central stars of S216 and NGC7293. A kinematical age of 16100yr is deduced for the nebula which is lower by about two orders of magnitude than the age of the central star. The possibility that this object is a member of a close binary system is suggested.

  3. Acid Tar Lagoons: Management and Recovery

    NASA Astrophysics Data System (ADS)

    Bohers, Anna; Hroncová, Emília; Ladomerský, Juraj

    2017-04-01

    This contribution presents the issue with possibility of definitive removal of dangerous environmental burden in Slovakia - serious historical problem of two acid tar lagoons. In relation to their removal, no technology has been found so far - technologically and economically suitable, what caused problems with its management. Locality Predajná is well known in Slovakia by its character of contrasts: it is situated in the picturesque landscape of National Park buffer zone of Nízke Tatry, on the other site it is contaminated by 229 211m3 of acid tar with its characteristics of toxicity, carcinogenicity, teratogenicity, mutagenicity and toxicity especially for animals and plants. Acid tar in two landfills with depth of 1m in case of the first lagoon and 9,5m in case of the second lagoon is a waste product derived from operation of Petrochema Dubová - refinery and petrochemical plant whose activity was to process the crude oil through processes of sulfonation and adsorption technology for producing lubricating and special oils, synthetic detergents and special white oils for cosmetic and medical purposes. A part of acid tar was incinerated in two incineration plats. Concentration of SO2 in combustion gases was too high and it was not possible to decrease it under the value of 2000 mg.mn-3 [LADOMERSKÝ, J. - SAMEŠOVÁ, D.: Reduction in sulfur dioxide emissions waste gases of incineration plant. Acta facultatis ecologiae. 1999, p. 217-223]. That is why it was necessary to put them out of operation. Later, because of public opposition it was not possible to build a new incineration plat corresponding to the state of the art. Even though actual Slovak and European legislative for protection of environment against such impacts, neither of tried methods - bio or non-biologic treatment methods - was proved as suitable for processing or for recovery in the reason of different factors admission: i.e. strong aggressivity, difficulty with handling because of its sludgy and

  4. Preferrential Concentration of Particles in Protoplanetary Nebula Turbulence

    NASA Technical Reports Server (NTRS)

    Hartlep, Thomas; Cuzzi, Jeffrey N.

    2015-01-01

    Preferential concentration in turbulence is a process that causes inertial particles to cluster in regions of high strain (in-between high vorticity regions), with specifics depending on their stopping time or Stokes number. This process is thought to be of importance in various problems including cloud droplet formation and aerosol transport in the atmosphere, sprays, and also in the formation of asteroids and comets in protoplanetary nebulae. In protoplanetary nebulae, the initial accretion of primitive bodies from freely-floating particles remains a problematic subject. Traditional growth-by-sticking models encounter a formidable "meter-size barrier" [1] in turbulent nebulae. One scenario that can lead directly from independent nebula particulates to large objects, avoiding the problematic m-km size range, involves formation of dense clumps of aerodynamically selected, typically mm-size particles in protoplanetary turbulence. There is evidence that at least the ordinary chondrite parent bodies were initially composed entirely of a homogeneous mix of such particles generally known as "chondrules" [2]. Thus, while it is arcane, turbulent preferential concentration acting directly on chondrule size particles are worthy of deeper study. Here, we present the statistical determination of particle multiplier distributions from numerical simulations of particle-laden isotopic turbulence, and a cascade model for modeling turbulent concentration at lengthscales and Reynolds numbers not accessible by numerical simulations. We find that the multiplier distributions are scale dependent at the very largest scales but have scale-invariant properties under a particular variable normalization at smaller scales.

  5. Nutrient budgets and trophic state in a hypersaline coastal lagoon: Lagoa de Araruama, Brazil

    NASA Astrophysics Data System (ADS)

    Souza, Marcelo F. L.; Kjerfve, Björn; Knoppers, Bastiaan; Landim de Souza, Weber F.; Damasceno, Raimundo N.

    2003-08-01

    Lagoa de Araruama in the state of Rio de Janeiro, Brazil, is a hypersaline lagoon with salinity varying spatially from 45 to 56. We collected water samples during monthly cruises throughout the lagoon, and along the streams feeding the system, from April 1991 to March 1992. Nutrients and other water quality parameters exhibited great spatial and temporal variations. Mass balance calculations indicate large amounts of anthropogenic nutrient inputs. The data indicate that the lagoon currently is oligotrophic but is in a state of transition to become a mesotrophic system. Molar dissolved inorganic nitrogen:dissolved inorganic phosphorus (DIN/DIP) varied between 2.2:1 and 659:1 with a volume-weighted average of 22:1. The high DIN/DIP ratio contrasts with that found in nearby lagoons, suggesting that phytoplankton primary production is limited by phosphorus in Lagoa de Araruama. The major loss of DIP is apparently driven by biological assimilation and diagenic reactions in the sediments. Calculations indicate that the lagoon is slightly net autotrophic at +0.9 mol C m -2 yr -1. This suggests that the biomass of the primary producers is restricted by phosphorus availability. Phosphorus retention in the sediment and the hypersaline state of the lagoon prevent changes in autotrophic communities and the formation of eutrophic conditions.

  6. A Smoking Gun in the Carina Nebula

    NASA Technical Reports Server (NTRS)

    Hamaguchi, Kenji; Corcoran, Michael F.; Ezoe, Yuichiro; Townsley, Leisa; Broos, Patrick; Gruendl, Robert; Vaidya, Kaushar; White, Stephen M.; Petre, Rob; Chu, You-Hua

    2009-01-01

    The Carina Nebula is one of thc youngest, most active sites of massive star formation in our Galaxy. In this nebula, we have discovered a bright X-ray source that has persisted for approx.30 years. The soft X-ray spectrum. consistent with kT approx.130 eV blackbody radiation with mild extinction, and no counterpart in the near- and mid-infrared wavelengths indicate that it is a, approx. 10(exp 6)-year-old neutron star housed in the Carina Nebula. Current star formation theory does not suggest that the progenitor of the neutron star and massive stars in the Carina Nebula, in particular (eta)Car, are coeval. This result demonstrates that the Carina Nebula experienced at least two major episodes of massive star formation. The neutron star would be responsible for remnants of high energy activity seen in multiple wavelengths.

  7. NGC 6334 V revisited: The complex nature of the infrared nebula

    NASA Astrophysics Data System (ADS)

    Tapia, M.; Persi, P.; Roth, M.

    2017-07-01

    A comprehensive analysis is presented of the most recent infrared observations of the small, very young and enigmatic infrared nebula associated with NGC 6334-V. We re-analized images from the Spitzer/IRAC (3.6 a 8 μm), Herschel/SPIRE/PACS (70 a 500 μm), VISTA (1.2 a 2.2 μm), VLT/VISIR (11.3 a 18.7 μm) and HST/NICMOS (2.0 μm) archives. The very high spatial resolution from the latter two sets, combined with very recent sub-millimetre maps, allow us to suggest several possible star-formation scenarios that explain the observed infrared and radio properties of the region. Evidence is provided of the presence of a small population of low and medium-mass young stars embedded in the infrared reflection nebulosity NGC 6334 V that coexist with the nearby much younger Class 0 protostars.

  8. Facultative Lagoons. Student Manual. Biological Treatment Process Control.

    ERIC Educational Resources Information Center

    Andersen, Lorri

    The textual material for a unit on facultative lagoons is presented in this student manual. Topic areas discussed include: (1) loading; (2) microbial theory; (3) structure and design; (4) process control; (5) lagoon start-up; (6) data handling and analysis; (7) lagoon maintenance (considering visual observations, pond structure, safety, odor,…

  9. A high-resolution image of the inner shell of the P Cygni nebula in the infrared [Fe II] line

    NASA Astrophysics Data System (ADS)

    Arcidiacono, C.; Ragazzoni, R.; Morossi, C.; Franchini, M.; di Marcantonio, P.; Kulesa, C.; McCarthy, D.; Briguglio, R.; Xompero, M.; Busoni, L.; Quirós-Pacheco, F.; Pinna, E.; Boutsia, K.; Paris, D.

    2014-09-01

    Using the adaptive optics system of the Large Binocular Telescope, we have obtained near-infrared camera PISCES images of the inner shell of the nebula around the luminous blue variable star P Cygni in the [Fe II] emission line at 1.6435 μm. We have combined the images in order to cover a field of view of about 20 arcsec around P Cygni, thus providing the high-resolution (0.08 arcsec) two-dimensional spatial distribution of the inner shell of the P Cygni nebula in [Fe II]. We have identified several nebular emission regions that are characterized by a signal-to-noise ratio > 3. A comparison of our results with those available in the literature shows full consistency with the findings of Smith & Hartigan, which are based on radial velocity measurements, and relatively good agreement with the extension of emission nebula in [N II] λ6584 found by Barlow et al. We have clearly also detected extended emission inside the radial distance R = 7.8 arcsec and outside R = 9.7 arcsec, which are the nebular boundaries proposed by Smith & Hartigan. New complementary spectroscopic observations are planned in order to measure radial velocities and to derive the three-dimensional distribution of the P Cygni nebula.

  10. A Century of changes for Razelm-Sinoe Lagoon System

    NASA Astrophysics Data System (ADS)

    Scrieciu, Marian-Albert; Stanica, Adrian

    2014-05-01

    A Century of changes for Razelm-Sinoe Lagoon System Marian-Albert Scrieciu (a), Adrian Stanica (a) (a) National Institute of Marine Geology and Geoecology e GeoEcoMar, Str. Dimitrie Onciul 23e25, Sector 2, 024053 Bucharest, Romania Razelm-Sinoe Lagoon System, situated in the NW part of the Black Sea, in tight connection with the Danube Delta, has been subject to major changes due to human interventions in the past century. These changes have resulted into a complete change of the Lagoon specific ecosystems compared to its pristine state. In its natural state, as brackish - transitional environment, Antipa (1894) mentions Razelm Lagoon as one of the places with the greatest fisheries around the Black Sea coast (about 1879 - 1884, there were approximately 10,000 fishermen, all working on the Razelm Sinoe Lagoon System). Starting with the end of the XIXth Century, new canals were dug and existing channels were dredged in order to develop tighter connections with the Danube River. The natural inlet of Portita was blocked four decades ago and connections between the various parts of the lagoon system were controlled by the building of locks and sluices. The 2 inlets of Sinoe Lagoon were also controlled during early 1980s. Under these conditions, the lagoon ecosystem changed from brackish towards freshwater, with major effects on the existing flora and fauna. The period of brutal interventions ended in 1989 and the Razelm-Sinoe Lagoon System became part of the Danube Delta Biosphere Reserve in 1991, with a strict policy of nature protection and restoration. Spatial planning has been the major management option for the entire reserve, lagoon system included. Plans for sustainable development of the Razelm-Sinoe Lagoon System have been built in a participative manner, involving the local stakeholders, as part of FP7 ARCH project. Special attention has been given to impacts of climate change. The study presents the vision for the development Razelm-Sinoe Lagoon System over

  11. IMAGING THE ELUSIVE H-POOR GAS IN THE HIGH adf PLANETARY NEBULA NGC 6778

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    García-Rojas, Jorge; Corradi, Romano L. M.; Jones, David

    We present the first direct image of the high-metallicity gas component in a planetary nebula (NGC 6778), taken with the OSIRIS Blue Tunable Filter centered on the O ii λ 4649+50 Å optical recombination lines (ORLs) at the 10.4 m Gran Telescopio Canarias. We show that the emission of these faint O ii ORLs is concentrated in the central parts of the planetary nebula and is not spatially coincident either with emission coming from the bright [O iii] λ 5007 Å collisionally excited line (CEL) or the bright H α recombination line. From monochromatic emission line maps taken with VIMOSmore » at the 8.2 m Very Large Telescope, we find that the spatial distribution of the emission from the auroral [O iii] λ 4363 line resembles that of the O ii ORLs but differs from nebular [O iii] λ 5007 CEL distribution, implying a temperature gradient inside the planetary nebula. The centrally peaked distribution of the O ii emission and the differences with the [O iii] and H i emission profiles are consistent with the presence of an H-poor gas whose origin may be linked to the binarity of the central star. However, determination of the spatial distribution of the ORLs and CELs in other PNe and a comparison of their dynamics are needed to further constrain the geometry and ejection mechanism of the metal-rich (H-poor) component and hence, understand the origin of the abundance discrepancy problem in PNe.« less

  12. The structure and productivity of the Thalassia testudinum community in Bon Accord Lagoon, Tobago.

    PubMed

    Juman, Rahanna A

    2005-05-01

    The Thalassia testudinum dominated seagrass community in the Buccoo Reef/ Bon Accord Lagoon Marine Park, measures 0.5 km(2) and is part of a contiguous coral reef, seagrass bed and mangrove swamp system in southwest Tobago. 7 testudinum coverage, productivity and percent turnover rates were measured from February 1998 to February 1999 at four sample locations, while total T. testudinum biomass was measured at two locations in the lagoon from 1992-2002. Productivity and turnover rates varied spatially and seasonally. They were higher in the back-reef area than in the mangrove-fringed lagoon, and were lowest at locations near to a sewage outfall. 7 testudinum coverage ranged from 6.6% in the lagoon to 68.5% in the back-reef area while productivity ranged from 3.9 to 4.9 g dry wt m(-2) d(-1) . Productivity and percentage turnover rates were higher in the dry season (January-June) than in the wet season (July-December). Productivity ranged from 3.0 in the wet season to 5.0 g dry wt m2 d-' in the dry season while percentage turnover rates ranged from 4.2% to 5.6%. Total Thalassia biomass and productivity in Bon Accord Lagoon were compared to six similar sites in the Caribbean that also participate in the Caribbean Coastal Marine Productivity Program (CARICOMP). This seagrass community is being negatively impacted by nutrient-enriched conditions.

  13. Santa Margarita Lagoon Water Quality Monitoring Data

    DTIC Science & Technology

    2012-08-01

    sits entirely within the boundaries of Marine Corps Base Camp Pendleton. It forms up where the Santa Margarita River meets the Pacific Ocean just north...of Oceanside, California. The western boundary of the lagoon is the beach berm that borders the ocean . The estuarine lagoon is usually open to the... ocean through a limited section of berm, although there are occasions when the lagoon is effectively closed to exchange with the ocean . The eastern

  14. Trigonometric Parallaxes of Central Stars of Planetary Nebulae

    DTIC Science & Technology

    2007-02-01

    is a large nebula with a larger outer halo (Hewett et al. 2003; Rauch et al. 2004). Frew& Parker (2006) find that the nebula may be ionized ISM. 3...TRIGONOMETRIC PARALLAXES OF CENTRAL STARS OF PLANETARY NEBULAE Hugh C. Harris,1 Conard C. Dahn, Blaise Canzian, Harry H. Guetter, S. K. Leggett,2...parallaxes of 16 nearby planetary nebulae are presented, including reduced errors for seven objects with previous initial results and results for six new

  15. Hierarchies of Models: Toward Understanding Planetary Nebulae

    NASA Technical Reports Server (NTRS)

    Knuth, Kevin H.; Hajian, Arsen R.; Clancy, Daniel (Technical Monitor)

    2003-01-01

    Stars like our sun (initial masses between 0.8 to 8 solar masses) end their lives as swollen red giants surrounded by cool extended atmospheres. The nuclear reactions in their cores create carbon, nitrogen and oxygen, which are transported by convection to the outer envelope of the stellar atmosphere. As the star finally collapses to become a white dwarf, this envelope is expelled from the star to form a planetary nebula (PN) rich in organic molecules. The physics, dynamics, and chemistry of these nebulae are poorly understood and have implications not only for our understanding of the stellar life cycle but also for organic astrochemistry and the creation of prebiotic molecules in interstellar space. We are working toward generating three-dimensional models of planetary nebulae (PNe), which include the size, orientation, shape, expansion rate and mass distribution of the nebula. Such a reconstruction of a PN is a challenging problem for several reasons. First, the data consist of images obtained over time from the Hubble Space Telescope (HST) and spectra obtained from Kitt Peak National Observatory (KPNO) and Cerro Tololo Inter-American Observatory (CTIO). These images are of course taken from a single viewpoint in space, which amounts to a very challenging tomographic reconstruction. Second, the fact that we have two disparate and orthogonal data types requires that we utilize a method that allows these data to be used together to obtain a solution. To address these first two challenges we employ Bayesian model estimation using a parameterized physical model that incorporates much prior information about the known physics of the PN. In our previous works we have found that the forward problem of the comprehensive model is extremely time consuming. To address this challenge, we explore the use of a set of hierarchical models, which allow us to estimate increasingly more detailed sets of model parameters. These hierarchical models of increasing complexity are akin

  16. Hierarchies of Models: Toward Understanding Planetary Nebulae

    NASA Technical Reports Server (NTRS)

    Knuth, Kevin H.; Hajian, Arsen R.; Clancy, Daniel (Technical Monitor)

    2002-01-01

    Stars like our sun (initial masses between 0.8 to 8 solar masses) end their lives as swollen red giants surrounded by cool extended atmospheres. The nuclear reactions in their cores create carbon, nitrogen and oxygen, which are transported by convection to the outer envelope of the stellar atmosphere. As the star finally collapses to become a white dwarf, this envelope is expelled from the star to form a planetary nebula (PN) rich in organic molecules. The physics, dynamics, and chemistry of these nebulae are poorly understood and have implications not only for our understanding of the stellar life cycle but also for organic astrochemistry and the creation of prebiotic molecules in interstellar space. We are working toward generating three-dimensional models of planetary nebulae (PNe), which include the size, orientation, shape, expansion rate and mass distribution of the nebula. Such a reconstruction of a PN is a challenging problem for several reasons. First, the data consist of images obtained over time from the Hubble Space Telescope (HST) and spectra obtained from Kitt Peak National Observatory (KPNO) and Cerro Tololo Inter-American Observatory (CTIO). These images are of course taken from a single viewpoint in space, which amounts to a very challenging tomographic reconstruction. Second, the fact that we have two disparate and orthogonal data types requires that we utilize a method that allows these data to be used together to obtain a solution. To address these first two challenges we employ Bayesian model estimation using a parameterized physical model that incorporates much prior information about the known physics of the PN. In our previous works we have found that the forward problem of the comprehensive model is extremely time consuming. To address this challenge, we explore the use of a set of hierarchical models, which allow us to estimate increasingly more detailed sets of model parameters. These hierarchical models of increasing complexity are akin

  17. Water Hyacinths for Upgrading Sewage Lagoons to Meet Advanced Wastewater Treatment Standards, Part 1

    NASA Technical Reports Server (NTRS)

    Wolverton, B. C.; Mcdonald, R. C.

    1975-01-01

    Water hyacinths, Eichhornia crassipes Mart. Solms, have demonstrated the ability to function as an efficient and inexpensive final filtration system in a secondary domestic sewage lagoon during a three month test period. These plants reduced the suspended solids, biochemical oxygen demanding substances, and other chemical parameters to levels below the standards set by the state pollution control agency. The water hyacinth-covered secondary lagoon utilized in this experiment had a surface area of 0.28 hectare (0.70 acre) with a total capacity of 6.8 million liters (1.5 million gallons), receiving an inflow of 522,100 liters (115,000 gallons) per day from a 1.1 hectare (3.8 acre) aerated primary sewage lagoon. These conditions allowed a retention time of 14 to 21 days depending on the water hyacinth evapotranspiration rates. The desired purity of final sewage effluent can be controlled by the water hyacinth surface area, harvest rate, and the retention time.

  18. Millimeter-wave Molecular Line Observations of the Tornado Nebula

    NASA Astrophysics Data System (ADS)

    Sakai, D.; Oka, T.; Tanaka, K.; Matsumura, S.; Miura, K.; Takekawa, S.

    2014-08-01

    We report the results of millimeter-wave molecular line observations of the Tornado Nebula (G357.7-0.1), which is a bright radio source behind the Galactic center region. A 15' × 15' area was mapped in the J = 1-0 lines of CO, 13CO, and HCO+ with the Nobeyama Radio Observatory 45 m telescope. The Very Large Array archival data of OH at 1720 MHz were also reanalyzed. We found two molecular clouds with separate velocities, V LSR = -14 km s-1 and +5 km s-1. These clouds show rough spatial anti-correlation. Both clouds are associated with OH 1720 MHz emissions in the area overlapping with the Tornado Nebula. The spatial and velocity coincidence indicates violent interaction between the clouds and the Tornado Nebula. Modestly excited gas prefers the position of the Tornado "head" in the -14 km s-1 cloud, also suggesting the interaction. Virial analysis shows that the +5 km s-1 cloud is more tightly bound by self-gravity than the -14 km s-1 cloud. We propose a formation scenario for the Tornado Nebula; the +5 km s-1 cloud collided into the -14 km s-1 cloud, generating a high-density layer behind the shock front, which activates a putative compact object by Bondi-Hoyle-Lyttleton accretion to eject a pair of bipolar jets.

  19. RAPID GAMMA-RAY FLUX VARIABILITY DURING THE 2013 MARCH CRAB NEBULA FLARE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayer, M.; Buehler, R.; Hays, E.

    2013-10-01

    We report on a bright flare in the Crab Nebula detected by the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope. The period of significantly increased luminosity occurred in 2013 March and lasted for approximately two weeks. During this period, we observed flux variability on timescales of approximately 5 hr. The combined photon flux above 100 MeV from the pulsar and its nebula reached a peak value of (12.5 ± 0.8) · 10{sup –6} cm{sup –2} s{sup –1} on 2013 March 6. This value exceeds the average flux by almost a factor of six and implies amore » ∼20 times higher flux for the synchrotron component of the nebula alone. This is the second brightest flare observed from this source. Spectral and temporal analysis of the LAT data collected during the outburst reveal a rapidly varying synchrotron component of the Crab Nebula while the pulsar emission remains constant in time.« less

  20. The SPM Kinematic Catalogue of Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    López, J. A.; Richer, M. G.; Riesgo, H.; Steffen, W.; García-Segura, G.; Meaburn, J.; Bryce, M.

    The San Pedro Mártir Kinematic Catalogue of Planetary Nebulae aims at providing detailed kinematic information for galactic planetary nebulae (PNe) and bright PNe in the Local Group. The database provides long-slit, Echelle spectra and images where the location of the slits on the nebula are indicated. As a tool to help interpret the 2D line profiles or position-velocity data, an atlas of synthetic emission line spectra accompanies the Catalogue. The atlas has been produced with the code SHAPE and contains synthetic spectra for all the main morphological groups for a wide range of spatial orientations and slit locations over the nebula.

  1. High Temperature Planetary Nebulae in the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Maran, Stephen P.

    Following up on our recent discovery that a very hot planetary in the Small Magellanic Cloud has an extraordinary underabundance of carbon, we propose to observe two similar hot planetaries in the Clouds with IUE as part of an optical/UV investigation. The objectives are (1) to test the suggestion that high nebular electron temperatures can result from a strong deficiency of carbon that deprives the nebula of an important cooling channel; and (2) to determine accurate chemical abundances to constrain limits on the efficiency of "hot bottom burning" in massive progenitors of planetary nebulae. The targets are SMC 25 (Te = 34,000 K) and LMC 88 (= 25,500 K). These UV observations of targets not previously observed with IUE will be combined, for analysis, with visible wavelength spectra of both targets from the Anglo-Australian Telescope and the 2-3-m Siding Spring reflector. The objects will also be compared in the analysis stage with previous IUE observations (and consequent modeling) of type I planetaries in the Clouds. Model nebulae will be calculated, and physical parameters of the central stars will be inferred.

  2. Water hyacinths for upgrading sewage lagoons to meet advanced wastewater treatment standards, part 2

    NASA Technical Reports Server (NTRS)

    Wolverton, B. C.; Mcdonald, R. C.

    1976-01-01

    Field tests using water hyacinths as biological filtration agents were conducted in the Mississippi gulf coast region. The plants were installed in one single cell and one multiple cell sewage lagoon systems. Water hyacinths demonstrated the ability to maintain BOD5 and total suspended solid (TSS) levels within the Environmental Protection Agency's prescribed limits of 30 mg/lBOD5 and 30 mg/l TSS. A multiple cell sewage lagoon system consisting of two aerated and one water hyacinth covered cell connected in series demonstrated the ability to maintain BOD5 and TSS levels below 30 mg/l year-round. A water hyacinth covered lagoon with a surface area of 0.28 hectare containing a total volume of 6.8 million liters demonstrated the capacity to treat 437,000 to 1,893,000 liters of sewage influent from 2.65 hectares of aerated lagoons daily and produce an effluent that met or exceeded standards year-round.

  3. Weighing in on the Dumbbell Nebula

    NASA Image and Video Library

    2011-08-10

    The Dumbbell nebula, also known as Messier 27, pumps out infrared light in this image from NASA Spitzer Space Telescope. Planetary nebulae are now known to be the remains of stars that once looked a lot like our sun.

  4. Iridescent Glory of Nearby Helix Nebula

    NASA Image and Video Library

    2014-04-04

    This composite picture is a seamless blend of ultra-sharp NASA Hubble Space Telescope (HST) images combined with the wide view of the Mosaic Camera on the National Science Foundation's 0.9-meter telescope at Kitt Peak National Observatory, part of the National Optical Astronomy Observatory, near Tucson, Ariz. Astronomers at the Space Telescope Science Institute assembled these images into a mosaic. The mosaic was then blended with a wider photograph taken by the Mosaic Camera. The image shows a fine web of filamentary "bicycle-spoke" features embedded in the colorful red and blue gas ring, which is one of the nearest planetary nebulae to Earth. Because the nebula is nearby, it appears as nearly one-half the diameter of the full Moon. This required HST astronomers to take several exposures with the Advanced Camera for Surveys to capture most of the Helix. HST views were then blended with a wider photo taken by the Mosaic Camera. The portrait offers a dizzying look down what is actually a trillion-mile-long tunnel of glowing gases. The fluorescing tube is pointed nearly directly at Earth, so it looks more like a bubble than a cylinder. A forest of thousands of comet-like filaments, embedded along the inner rim of the nebula, points back toward the central star, which is a small, super-hot white dwarf. The tentacles formed when a hot "stellar wind" of gas plowed into colder shells of dust and gas ejected previously by the doomed star. Ground-based telescopes have seen these comet-like filaments for decades, but never before in such detail. The filaments may actually lie in a disk encircling the hot star, like a collar. The radiant tie-die colors correspond to glowing oxygen (blue) and hydrogen and nitrogen (red). Valuable Hubble observing time became available during the November 2002 Leonid meteor storm. To protect the spacecraft, including HST's precise mirror, controllers turned the aft end into the direction of the meteor stream for about half a day. Fortunately

  5. An Environmental Survey of Canton Atoll Lagoon, 1973

    DTIC Science & Technology

    1976-06-01

    isolated /’e)ll~opora heads. Observation track perpendicular to shoreline. Numnerous sea 4 ~ urchins (L~Ivnomo’ra sp.) in surf zone. 200 m - ,-observation...narrowest and shallowest point Is approximately 150 m wide and 5 m deep. In his original field notes, E. H -. Bryan. Jr. I(notes at Whitney South Sea ...a height ot over 5 in1 above sea leyel. 1’ho turning basin wits cleared and the deep channel was prouhubly dredged front the lagoon side, Later, the

  6. a Question of Mass : Accounting for all the Dust in the Crab Nebula with the Deepest Far Infrared Maps

    NASA Astrophysics Data System (ADS)

    Matar, J.; Nehmé, C.; Sauvage, M.

    2017-12-01

    Supernovae represent significant sources of dust in the interstellar medium. In this work, deep far-infrared (FIR) observations of the Crab Nebula are studied to provide a new and reliable constraint on the amount of dust present in this supernova remnant. Deep exposures between 70 and 500 μm taken by PACS and SPIRE instruments on-board the Herschel Space Telescope, compiling all observations of the nebula including PACS observing mode calibration, are refined using advanced processing techniques, thus providing the most accurate data ever generated by Herschel on the object. We carefully find the intrinsic flux of each image by masking the source and creating a 2D polynomial fit to deduce the background emission. After subtracting the estimated non-thermal synchrotron component, two modified blackbodies were found to best fit the remaining infrared continuum, the cold component with T_c = 8.3 ± 3.0 K and M_d = 0.27 ± 0.05 M_{⊙} and the warmer component with T_w = 27.2 ± 1.3 K and M_d = (1.3 ± 0.4) ×10^{-3} M_{⊙}.

  7. Flushing of a polluted lagoon in Canc'un, using a SIBEO wave-driven seawater pump

    NASA Astrophysics Data System (ADS)

    Czitrom, Steven; Carbajal, Noel

    2006-11-01

    The coastal lagoon which adorns the seaside resort at Canc'un, Mexico, is heavily polluted as a result of decades of intense tourist activity development and overwhelmed inadequate planning. The natural flushing time of the lagoon, estimated at 2 to 4 years, is insufficient to cope with the waste that is being dumped and a thick layer of organic matter has accumulated on the lagoon bed. Appropriate legal and sewage treatment measures are imperative to curb further dumping and thus attack the root cause of the problem. This aside, however, the existing situation requires additional technical solutions to restore the ecosystem to a less altered state. A wave and tide driven seawater pump, invented and developed at the National University of Mexico, has been proposed to flush the lagoon with an average 0.2 m^3/s of clean and oxygen rich seawater from the neighboring ocean. This flow would reduce the residence time of the lagoon to around 6 months, promoting long term recovery of the ecosystem. The effect and distribution of the pumped water is being studied using a wind and tide driven 3D numerical model of the lagoon hydrodynamics. Some results from this study are presented here.

  8. Scottish saline lagoons: Impacts and challenges of climate change

    NASA Astrophysics Data System (ADS)

    Angus, Stewart

    2017-11-01

    The majority of Scotland's saline lagoons are located on the low-lying coastlines of the Western Isles and the northern archipelagos of Orkney and Shetland, where recorded annual relative sea level rise rates are among the highest in Scotland. The sediment-impounded lagoons of Orkney and Shetland will either lose their impoundment and become incorporated in marine coastal waters, or become increasingly saline, as relative sea levels rise. The rock-basin lagoons of the Western Isles will retain their restricted exchange with the sea but will also become more saline with rising sea level. Specialist lagoonal organisms tend to have wide salinity tolerances but may succumb to competition from marine counterparts. In all areas, there are sufficient fresh-water inland water bodies with potential to be captured as lagoons to compensate for loss of extent and number, but the specialist lagoon biota tend to have limited dispersal powers. It is thus possible that they will be unable to transfer to their analogue sites before existing lagoons become fully marine, giving conservation managers the problem of deciding on management options: leave natural processes to operate without interference, manage the saline inflow to maintain the current salinity regime, or translocate lagoon organisms perceived as threatened by rising salinities. Timing of conversion and capture is unpredictable due to local topography and complications caused by variable stratification.

  9. The effect of lagoons on Adriatic Sea tidal dynamics

    NASA Astrophysics Data System (ADS)

    Ferrarin, Christian; Maicu, Francesco; Umgiesser, Georg

    2017-11-01

    In this study the effects that lagoons exert on the barotropic tidal dynamics of a regional sea, the Adriatic Sea, were numerically explored. This semi-enclosed basin is one of the places with the highest tidal range in the Mediterranean Sea and is characterised by the presence of several lagoons in its northern part. The tidal dynamics of a system comprising the whole Adriatic Sea and the lagoons of Venice, Marano-Grado and Po Delta were investigated using an unstructured hydrodynamic model. Numerical experiments with and without lagoons reveal that even if the considered shallow water bodies represent only the 0.5 and 0.002% of the Adriatic Sea surface and volume, respectively, they significantly affect the entire Northern Adriatic Sea tidal dynamics by enhancing tidal range (by 5%) and currents (by 10%). The inclusion of lagoons in the computation improved the model performance by 25% in reproducing tidal constituents in the Adriatic Sea. The back-effect of the lagoons on the open-sea tide is due to the waves radiating from the co-oscillating lagoons into the adjacent sea. This is the first time these processes are shown to be relevant for the Adriatic Sea, thus enhancing the understanding of the tidal dynamics in this regional sea. These findings may also apply to other coastal seas with connections to lagoons, bays and estuaries.

  10. The M 16 molecular complex under the influence of NGC 6611. Herschel's perspective of the heating effect on the Eagle Nebula

    NASA Astrophysics Data System (ADS)

    Hill, T.; Motte, F.; Didelon, P.; White, G. J.; Marston, A. P.; Nguyên Luong, Q.; Bontemps, S.; André, Ph.; Schneider, N.; Hennemann, M.; Sauvage, M.; Di Francesco, J.; Minier, V.; Anderson, L. D.; Bernard, J. P.; Elia, D.; Griffin, M. J.; Li, J. Z.; Peretto, N.; Pezzuto, S.; Polychroni, D.; Roussel, H.; Rygl, K. L. J.; Schisano, E.; Sousbie, T.; Testi, L.; Thompson, D. Ward; Zavagno, A.

    2012-06-01

    We present Herschel images from the HOBYS key program of the Eagle Nebula (M 16) in the far-infrared and sub-millimetre, using the PACS and SPIRE cameras at 70 μm, 160 μm, 250 μm, 350 μm, 500 μm. M 16, home to the Pillars of Creation, is largely under the influence of the nearby NGC 6611 high-mass star cluster. The Herschel images reveal a clear dust temperature gradient running away from the centre of the cavity carved by the OB cluster. We investigate the heating effect of NGC 6611 on the entire M 16 star-forming complex seen by Herschel including the diffuse cloud environment and the dense filamentary structures identified in this region. In addition, we interpret the three-dimensional geometry of M 16 with respect to the nebula, its surrounding environment, and the NGC 6611 cavity. The dust temperature and column density maps reveal a prominent eastern filament running north-south and away from the high-mass star-forming central region and the NGC 6611 cluster, as well as a northern filament which extends around and away from the cluster. The dust temperature in each of these filaments decreases with increasing distance from the NGC 6611 cluster, indicating a heating penetration depth of ~10 pc in each direction in 3-6 × 1022 cm-2 column density filaments. We show that in high-mass star-forming regions OB clusters impact the temperature of future star-forming sites, modifying the initialconditions for collapse and effecting the evolutionary criteria of protostars developed from spectral energy distributions. Possible scenarios for the origin of the morphology seen in this region are discussed, including a western equivalent to the eastern filament, which was destroyed by the creation of the OB cluster and its subsequent winds and radiation. Herschel is a ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.Appendices are available in electronic form at http://www.aanda.org

  11. The VISTA Carina Nebula Survey . I. Introduction and source catalog

    NASA Astrophysics Data System (ADS)

    Preibisch, T.; Zeidler, P.; Ratzka, T.; Roccatagliata, V.; Petr-Gotzens, M. G.

    2014-12-01

    Context. The Carina Nebula is one of the most massive and active star-forming regions in our Galaxy and has been studied with numerous multiwavelength observations in the past five years. However, most of these studies were restricted to the inner parts (≲1 square-degree) of the nebula, and thus covered only a small fraction of the whole cloud complex. Aims: Our aim was to conduct a near-infrared survey that covers the full spatial extent (~5 square-degrees) of the Carina Nebula complex and is sensitive enough to detect all associated young stars through extinctions of up to AV ≈ 6 mag. Methods: We used the 4m Visible and Infrared Survey Telescope for Astronomy (VISTA) of ESO to map an area of 6.7 square-degrees around the Carina Nebula in the near-infrared J-, H-, Ks-bands. Results: The analysis of our VISTA data revealed 4 840 807 individual near-infrared sources, 3 951 580 of which are detected in at least two bands. The faintest S/N ≥ 3 detections have magnitudes of J ≈ 21.2, H ≈ 19.9, and Ks ≈ 19.3. For objects at the distance of the Carina Nebula (2.3 kpc), our catalog is estimated to be complete down to stellar masses of ≈0.1 M⊙ for young stars with extinctions of AV ≈ 5 mag; for regions in the brightest parts of the central nebula with particularly strong diffuse emission, the completeness limit is at slightly higher stellar masses. We describe the photometric calibration, the characteristics, and the quality of these data. VISTA images of several newly detected or yet rarely studied clusters in the outer parts of the Carina Nebula complex are presented. Finally, a list of stars with high proper motions that were discovered in our analysis is provided in an appendix. Conclusions: Our catalog represents by far the most comprehensive deep near-infrared catalog of the Carina Nebula complex. It provides a new basis for spatially complete investigations of the young stellar population in this important star-forming complex. Based on

  12. A Renewed Look at the Planetary Nebula Luminosity Function: Circumstellar Extinction and Contamination From Compact Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Davis, Brian; Ciardullo, Robin; Feldmeier, John; Jacoby, George H.; McCarron, Adam; Herrmann, Kimberly

    2018-01-01

    The planetary nebula luminosity function (PNLF) has been used as an extragalactic distance indicator since 1988, but there are still unsolved problems associated with its use. The two most serious involve PNLF distances beyond ~ 10 Mpc, which tend to be slightly smaller than those of other methods, and the lack of a theoretical explanation for the technique. We investigate these questions using a combination of narrow-band imaging data from the KPNO 4-m telescope, and recent LRS2 spectroscopy from the Hobby-Eberly Telescope.For the first project, we consider the implications of spectroscopic investigations by Kreckel et al. (2017), who found that in M74, several of the brightest planetary nebula (PN) candidates found by Herrmann et al. (2008) are actually compact supernova remnants (SNRs). First, we measure the [O III] and H-alpha fluxes of all the known SNRs in M31 and M33, and test whether those objects could be misidentified as bright PNe at distances beyond ~ 8 Mpc. We also obtain spectroscopy of bright PN candidates in the Fireworks Galaxy, NGC 6946, to test for PN/SNR confusion via the strengths of the [N II] and [S II] emission lines. Both experiments suggest that compact supernova remnants are not an important source of contamination in photometric surveys for extragalactic PNe.For the second project, we, for the first time, determine the de-reddened PNLF of an old stellar population. By performing spectroscopy of the brightest PN in M31’s bulge and measuring the objects’ Balmer decrements, we remove the effects of circumstellar extinction and derive the true location of the PNLF’s bright-end cutoff. In future studies, these data can be used to directly test the latest PNLF models, which combine modern post-AGB stellar evolutionary tracks with the physics of expanding nebulae.

  13. Is the Eagle Nebula powered by a hidden supernova remnant ?

    NASA Astrophysics Data System (ADS)

    Boulanger, Francois

    2008-10-01

    Spitzer observations of the Eagle nebula (M16) reveal the presence of a large (8 pc diameter) shell of dust heated to anomalously high temperatures. Modeling of dust excitation shows that the shell emission cannot be powered by the cluster UV radiation but that it can be accounted for by collisionally heated dust in a young (a few 1000 yrs) supernova remnant. We have re-analyzed deep Chandra observations that show diffuse emission consistent with this hypothesis, but also with galactic ridge emission. We propose a 50 ksec XMM observation to probe the spatial extent of the diffuse X-ray emission beyond the Spitzer shell. Absence of emission outside of this shell will strongly support the supernova remnant interpretation

  14. Spatially resolved spectroscopy of WR ring nebulae. I - NGC 2359 and RCW 78

    NASA Astrophysics Data System (ADS)

    Esteban, C.; Vilchez, J. M.; Manchado, A.; Edmunds, M. G.

    1990-01-01

    We report detailed spatially resolved spectroscopy of the WR nebulae NGC 2359 and RCW 78 surrounding the WN 5 HD 56925 and WN 8 HD 117688 stars. The aim of this work has been to study possible abundance inhomogeneities and the ionization structure of the nebulae, as well as to derive reliable values for the degree of self-enrichment. In NGC 2359 the derived ratio O2+/O+ shows localized variations resulting from the compression of the gas in the filaments with respect to the shell gas. Effective temperatures for the central stars of both nebulae have been estimated on the basis of the ionization structure; the values found appear appropriate for their spectral types. Abundances of O/H, NIH, Ne/H, and He/H have been determined in twelve different positions in NGC 2359, covering its different morphological zones. No significant differences in the N/H and O/H abundances across the nebula have been found, although He/H shows marginal evidence for localized enhancements. In the case of RCW 78 the derived value of O/H is roughly solar, but He/H and NIH may be slightly overabundant. The results suggest that the amount of chemical self-enrichment of these WR nebulae is, at most, small.

  15. Interstellar gas in the Gum Nebula

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallerstein, G.; Silk, J.; Jenkins, E.B.

    1980-09-15

    We have surveyed the interstellar gas in and around the Gum Nebula by optically observing 67 stars at Ca II, 42 stars at Na I, and 14 stars in the ultraviolet with the Copernicus satellite. Velocity dispersions for gas in the Gum Nebula, excluding the region of Vela remnant filaments, are not significantly larger than in the general interstellar medium. The ionization structure is predominantly that of an H II region with moderately high ionization, i.e., strong Si III and S III, in clouds with Vertical BarV/sub LSR/Vertical Bar> or approx. =10 km s/sup -1/. Furthermore, we find an increasemore » in fine-structure excitation with increasing component LSR velocity, suggestive of ram-pressure confinement for the intermediate-velocity clouds. These denser, more highly ionized clouds appear to be concentrated toward the inner Gum Nebula, where a somewhat higher velocity dispersion is found than in the outer regions. Clouds in the Gum Nebula do not show the anomalously high ionization seen in the Vela remnant clouds. The observational data are generally consistent with a model of the Gum Nebula as an H II region ionized by OB stars and stirred up by multiple stellar winds.« less

  16. A Photometrically and Morphologically Variable Infrared Nebula IN L483

    NASA Astrophysics Data System (ADS)

    Connelley, Michael S.; Hodapp, Klaus W.; Fuller, Gary A.

    2009-03-01

    We present narrow and broad K-band observations of the Class 0/I source IRAS 18148-0440 that span 17 years. The infrared nebula associated with this protostar in the L483 dark cloud is both morphologically and photometrically variable on a timescale of only a few months. This nebula appears to be an infrared analog to other well known optically visible variable nebulae associated with young stars, such as Hubble's Variable Nebula. Along with Cepheus A, this is one of the first large variable nebulae to be found that is only visible in the infrared. The variability of this nebula is most likely due to changing illumination of the cloud rather than any motion of the structure in the nebula. Both morphological and photometric changes are observed on a timescale only a few times longer than the light crossing time of the nebula, suggesting very rapid intrinsic changes in the illumination of the nebula. Our narrowband observations also found that H2 knots are found nearly twice as far to the east of the source as to its west, and that H2 emission extends farther east of the source than the previously known CO outflow.

  17. Nutrient-Chlorophyll Relationships in the Indian River Lagoon, Florida

    EPA Science Inventory

    The Indian River Lagoon is a highly diverse estuary located along Florida’s Atlantic coast. The system is made up of the main stem and two side-lagoons: the Banana River and Mosquito Lagoon. We segmented the main stem into three sections based on spatial trends in water quality ...

  18. Unusually high (210)Po activities in the surface water of the Zhubi Coral Reef Lagoon in the South China Sea.

    PubMed

    Yang, Weifeng; Huang, Yipu; Chen, Min; Qiu, Yusheng; Li, Hongbin; Zhang, Lei

    2011-10-01

    Recent researches revealed the exciting application of (210)Po in tracing carbon and nitrogen cycling in the coral reef system. In order to quantify the recycling of particulate organic nitrogen (PON), both (210)Po and (210)Pb were examined at both high and low tides in the Zhubi Coral Reef lagoon, the South China Sea. Unusually, much higher (210)Po activities and (210)Po/(210)Pb ratios, in comparison with those found in the open seawater and the lagoon subsurface water, showed additional input of (210)Po besides production from in situ(210)Pb in the lagoon surface water. Statistical analysis identified that the reef flat seawater was the additional (210)Po source. Based on a mass balance model, the input rates of (210)Po varied from 0.04 Bq m(-3)year(-1) to 8.41 Bq m(-3)year(-1). On average, the additional (210)Po contributed more than 60% of the total (210)Po. The particulate (210)Po significantly correlated with the concentrations of PON, indicating that diffusion of (210)Po from sediment could be used to quantify the recycling of nitrogen. The average input rate of nitrogen was 16 mmol m(-3)year(-1), which can support up to 11% of the primary production rate. These results suggested that the unusual behavior of (210)Po could provide new insight into the nitrogen recycling in the coral reef system. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. A New Look at the Molecular Gas in M42 and M43: Possible Evidence for Cloud–Cloud Collision that Triggered Formation of the OB Stars in the Orion Nebula Cluster

    NASA Astrophysics Data System (ADS)

    Fukui, Yasuo; Torii, Kazufumi; Hattori, Yusuke; Nishimura, Atsushi; Ohama, Akio; Shimajiri, Yoshito; Shima, Kazuhiro; Habe, Asao; Sano, Hidetoshi; Kohno, Mikito; Yamamoto, Hiroaki; Tachihara, Kengo; Onishi, Toshikazu

    2018-06-01

    The Orion Nebula Cluster toward the H II region M42 is the most outstanding young cluster at the smallest distance (410 pc) among the rich high-mass stellar clusters. By newly analyzing the archival molecular data of the 12CO(J = 1–0) emission at 21″ resolution, we identified at least three pairs of complementary distributions between two velocity components at 8 and 13 km s‑1. We present a hypothesis that the two clouds collided with each other and triggered formation of the high-mass stars, mainly toward two regions including the nearly 10 O stars in M42 and the B star, NU Ori, in M43. The timescale of the collision is estimated to be ∼0.1 Myr by a ratio of the cloud size and velocity corrected for projection, which is consistent with the age of the youngest cluster members less than 0.1 Myr. The majority of the low-mass cluster members were formed prior to the collision in the last Myr. We discuss the implications of the present hypothesis and the scenario of high-mass star formation by comparing with the other eight cases of triggered O-star formation via cloud–cloud collision.

  20. Use of Shallow Lagoon Habitats by Nekton of the Northeastern Gulf of Mexico

    EPA Science Inventory

    We compared nekton use of prominent habitat types within a lagoonal system of the northeastern Gulf of Mexico (GoM). These habitat types were defined by combinations of structure (cover type) and location (distance from shore) as: Spartina edge (<1m from shore), Spartina 3 m from...

  1. Radio astronomy Explorer-1 observations of the Gum nebula

    NASA Technical Reports Server (NTRS)

    Alexander, J. K.

    1971-01-01

    Complicating factors in the spectrum analysis of the Gum nebula are discussed. These include accounting for the spectrum of supernova remnants in the direction of the nebula, the different absorption laws for radiation from beyond and within the nebula, and the Razin effect. This last results in a low frequency cutoff to the spectrum of synchrotron radiation by particles in a thermal plasma. These factors cause the observer to overestimate the amount of absorption occurring in the nebula. Data from the Explorer 38 satellite are presented for 3.93 and 6.55 MHz. Average optical depth for the nebula at 4 MHz was calculated.

  2. Quantifying groundwater exchange rates in a beach barrier lagoon using a radioisotopic tracer and geophysical methods: Younger Lagoon, Santa Cruz, CA

    NASA Astrophysics Data System (ADS)

    Richardson, C. M.; Swarzenski, P. W.; Johnson, C.

    2013-12-01

    influence the magnitude and direction of seepage fluxes. Hydraulic gradients created focused discharge regions towards the seepage faces with average flow rates of up to 0.67 m3/day that were tidally influenced. Thermally-derived vertical groundwater flow rates ranged from -0.59 m3/day to -1.0 m3/day showing no correlation to tide. Radon-222 was used as a complimentary tracer and multi-channel resistivity surveys confirmed the presence of a freshwater conduit. Our time-series analyses of groundwater fluxes into and out of the lagoon demonstrate the importance of monitoring these dynamic systems for longer time periods with a multi-scale approach. Slomp, C. P., & Van Cappellen, P. (2004). Nutrient inputs to the coastal ocean through submarine groundwater discharge: controls and potential impact. Journal of Hydrology, 295(1), 64-86. Taniguchi, M., Burnett, W. C., Cable, J. E., & Turner, J. V. (2002). Investigation of submarine groundwater discharge. Hydrological Processes, 16(11), 2115-2129.

  3. Pulsar wind nebulae created by fast-moving pulsars

    NASA Astrophysics Data System (ADS)

    Kargaltsev, O.; Pavlov, G. G.; Klingler, N.; Rangelov, B.

    2017-10-01

    We review multiwavelength properties of pulsar wind nebulae created by supersonically moving pulsars and the effects of pulsar motion on the pulsar wind nebulae morphologies and the ambient medium. Supersonic pulsar wind nebulae are characterized by bow-shaped shocks around the pulsar and/or cometary tails filled with the shocked pulsar wind. In the past several years significant advances in supersonic pulsar wind nebula studies have been made in deep observations with the Chandra and XMM-Newton X-ray observatories and the Hubble Space Telescope. In particular, these observations have revealed very diverse supersonic pulsar wind nebula morphologies in the pulsar vicinity, different spectral behaviours of long pulsar tails, the presence of puzzling outflows misaligned with the pulsar velocity and far-UV bow shocks. Here we review the current observational status focusing on recent developments and their implications.

  4. Monitoring and Source Tracking of Tetracycline Resistance Genes in Lagoons and Groundwater Adjacent to Swine Production Facilities over a 3-Year Period▿

    PubMed Central

    Koike, S.; Krapac, I. G.; Oliver, H. D.; Yannarell, A. C.; Chee-Sanford, J. C.; Aminov, R. I.; Mackie, R. I.

    2007-01-01

    To monitor the dissemination of resistance genes into the environment, we determined the occurrence of tetracycline resistance (Tcr) genes in groundwater underlying two swine confinement operations. Monitoring well networks (16 wells at site A and 6 wells at site C) were established around the lagoons at each facility. Groundwater (n = 124) and lagoon (n = 12) samples were collected from the two sites at six sampling times from 2000 through 2003. Total DNA was extracted, and PCR was used to detect seven Tcr genes [tet(M), tet(O), tet(Q), tet(W), tet(C), tet(H), and tet(Z)]. The concentration of Tcr genes was quantified by real-time quantitative PCR. To confirm the Tcr gene source in groundwater, comparative analysis of tet(W) gene sequences was performed on groundwater and lagoon samples. All seven Tcr genes were continually detected in groundwater during the 3-year monitoring period at both sites. At site A, elevated detection frequency and concentration of Tcr genes were observed in the wells located down-gradient of the lagoon. Comparative analysis of tet(W) sequences revealed that the impacted groundwater contained gene sequences almost identical (99.8% identity) to those in the lagoon, but these genes were not found in background libraries. Novel sequence clusters and unique indigenous resistance gene pools were also found in the groundwater. Thus, antibiotic resistance genes in groundwater are affected by swine manure, but they are also part of the indigenous gene pool. PMID:17545324

  5. Benthic ecology of tropical coastal lagoons: Environmental changes over the last decades in the Términos Lagoon, Mexico

    NASA Astrophysics Data System (ADS)

    Grenz, Christian; Fichez, Renaud; Silva, Carlos Álvarez; Benítez, Laura Calva; Conan, Pascal; Esparza, Adolfo Contreras Ruiz; Denis, Lionel; Ruiz, Silvia Díaz; Douillet, Pascal; Martinez, Margarita E. Gallegos; Ghiglione, Jean-François; Mendieta, Francisco José Gutiérrez; Origel-Moreno, Montserrat; Garcia, Antonio Zoilo Marquez; Caravaca, Alain Muñoz; Pujo-Pay, Mireille; Alvarado, Rocío Torres; Zavala-Hidalgo, Jorge

    2017-10-01

    The Términos Lagoon is a 2000-km2 wide coastal lagoon linked to the largest river catchment in Mesoamerica. Economic development, together with its ecological importance, led the Mexican government to pronounce the Términos Lagoon and its surrounding wetlands as a Federal protected area for flora and fauna in 1994. It is characterized by small temperature fluctuations, but with two distinct seasons (wet and dry) that control the biological, geochemical, and physical processes and components. This paper presents a review of the available information about the Términos Lagoon. The review shows that the diversity of benthic communities is structured by the balance between marine and riverine inputs and that this structuration strongly influences the benthic metabolism and its coupling with the biogeochemistry of the water column. The paper also presents many specific drivers and recommendations for a long-term environmental survey strategy in the context of the expected Global Change in the Central American region.

  6. Investigation of residence time and groundwater flux in Venice Lagoon: comparing radium isotope and hydrodynamic models.

    PubMed

    Rapaglia, John; Ferrarin, Christian; Zaggia, Luca; Moore, Willard S; Umgiesser, Georg; Garcia-Solsona, Ester; Garcia-Orellana, Jordi; Masqué, Pere

    2010-07-01

    The four naturally-occurring isotopes of radium were coupled with a previously evaluated hydrodynamic model to determine the apparent age of surface waters and to quantify submarine groundwater discharge (SGD) into the Venice Lagoon, Italy. Mean apparent age of water in the Venice Lagoon was calculated using the ratio of 224Ra to 228Ra determined from 30 monitoring stations and a mean pore water end member. Average apparent age was calculated to be 6.0 d using Ra ratios. This calculated age was very similar to average residence time calculated for the same period using a hydrodynamic model (5.8 d). A mass balance of Ra was accomplished by quantifying each of the sources and sinks of Ra in the lagoon, with the unknown variable being attributed to SGD. Total SGD were calculated to be 4.1 +/- 1.5, 3.8 +/- 0.7, 3.0 +/- 1.3, and 3.5 +/- 1.0 x 10(10) L d(-1) for (223,224,226, 228)Ra, respectively, which are an order of magnitude larger than total mean fluvial discharge into the Venice Lagoon (3.1 x 10(9) L d(-1)). The SGD as a source of nutrients in the Venice Lagoon is also discussed and, though significant to the nutrient budget, is likely to be less important as the dominant control on SGD is recirculated seawater rather than freshwater. 2009 Elsevier Ltd. All rights reserved.

  7. Both riverine detritus and dissolved nutrients drive lagoon fisheries

    NASA Astrophysics Data System (ADS)

    Bonthu, Subbareddy; Ganguly, Dipnarayan; Ramachandran, Purvaja; Ramachandran, Ramesh; Pattnaik, Ajit K.; Wolanski, Eric

    2016-12-01

    The net ecosystem metabolism in lagoons has often been estimated from the net budget of dissolved nutrients. Such is the case of the LOICZ estuarine biogeochemistry nutrient budget model that considers riverine dissolved nutrients, but not riverine detritus. However the neglect of detritus can lead to inconsistencies; for instance, it results in an estimate of 5-10 times more seaward export of nutrients than there is import from rivers in Chilika Lagoon, India. To resolve that discrepancy the UNESCO estuarine ecohydrology model, that considers both dissolved nutrients and detritus, was used and, for Chilika Lagoon, it reproduced successfully the spatial distribution of salinity, dissolved nutrients, phytoplankton and zooplankton as well as the fish yield data. Thus the model suggests that the riverine input of both detritus and dissolved nutrients supports the pelagic food web. The model also reproduces well the observation of decreased fish yield when the mouth of the lagoon was choked in the 1990s, demonstrating the importance of the physics that determine the flushing rate of waterborne matter. Thus, both farming in the watershed by driving the nutrient and detritus inputs to the lagoon, and dredging and engineering management of the mouth by controlling the flushing rate of the lagoon, have a major influence on fish stocks in the lagoon.

  8. NASA Satellites Find High-Energy Surprises in 'Constant' Crab Nebula

    NASA Image and Video Library

    2011-01-12

    NASA image release January 12, 2010 NASA's Chandra X-ray Observatory reveals the complex X-ray-emitting central region of the Crab Nebula. This image is 9.8 light-years across. Chandra observations were not compatible with the study of the nebula's X-ray variations. To read more go to: geeked.gsfc.nasa.gov/?p=4945 Credit: NASA/CXC/SAO/F. Seward et al. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook

  9. Assessing pollution in a Mediterranean lagoon using acid volatile sulfides and estimations of simultaneously extracted metals.

    PubMed

    Zaaboub, Noureddine; Helali, Mohamed Amine; Martins, Maria Virgínia Alves; Ennouri, Rym; Béjaoui, Béchir; da Silva, Eduardo Ferreira; El Bour, Monia; Aleya, Lotfi

    2016-11-01

    Bizerte Lagoon is a southern Mediterranean semi-enclosed lagoon with a maximum depth of 12 m. After assessing sediment quality, the authors report on the physicochemical characteristics of the lagoon's surface sediment using SEM (simultaneously extracted metals) and AVS (acid volatile sulfides) as proxies. Biogeochemical tools are used to investigate the environmental disturbance at the water-sediment interface by means of SEM and AVS to seek conclusions concerning the study area's pollution status. Results confirm accumulation of trace elements in sediment. The use of the SEM-AVS model with organic matter in sediment (ƒOC) confirms possible bioavailability of accumulated trace elements, especially Zn, in the southern part of the lagoon, with organic matter playing an important role in SEM excess correction to affirm a nontoxic total metal sediment state. Individual trace element toxicity is dependent on the bioavailable fraction of SEM Metal on sediment, as is the influence of lagoon inflow from southern water sources on element bioavailability. Appropriate management strategies are highly recommended to mitigate any potential harmful effects on health from this heavy-metal-based pollution.

  10. Interstellar gas in the Gum Nebula

    NASA Technical Reports Server (NTRS)

    Wallerstein, G.; Jenkins, E. B.; Silk, J.

    1980-01-01

    A survey of the interstellar gas near the Gum Nebula by optical observation of 67 stars at Ca II, 42 stars at Na I, and 14 stars in the UV with the Copernicus satellite provided radial velocities and column densities for all resolved absorption components. Velocity dispersions for gas in the Gum Nebula are not significantly larger than in the general interstellar medium; the ionization structure is predominantly that of an H II region with moderately high ionization. Denser, more highly ionized clouds are concentrated toward the Gum Nebula; these clouds do not show the anomalously high ionization observed in the Vela remnant clouds.

  11. The ecological status of Karavasta Lagoon (Albania): Closing the stable door before the horse has bolted?

    PubMed

    Munari, Cristina; Tessari, Umberto; Rossi, Remigio; Mistri, Michele

    2010-02-01

    Karavasta is the widest and most important lagoon in Albania. This study aimed to assess the ecological quality status of the lagoon, acquire knowledge of a natural environment which might be exploited for aquaculture, and give management hints on the basis of anthropogenic impact and ecological conditions. A sampling campaign was carried out in 2008: at six stations, benthic fauna, water, and sediment parameters were considered. Statistical analyses were carried out through multivariate procedures (PCA, classification-clustering, SIMPER, RDA, DISTLM, PERMANOVA). Ecological quality was assessed through the AZTI Marine Biotic Index (AMBI), the multivariate AMBI (M-AMBI) and the Benthic Index based on Taxonomic Sufficiency (BITS). Sediment characteristics (percent organic matter, %OM; redox potential discontinuity layer depth, RPDL; particle size composition) and salinity represented contributory influences on lagoon communities. It was possible to distinguish and characterise a confined area, and benthic communities, from a marine-influenced area and its biota. The number of species was quite low when compared with other open Adriatic lagoons. The M-AMBI and BITS classifications gave quite similar results, which seemed consistent with the ecological conditions of the lagoon, that is a distinction in the ecological quality between the seaward and landward stations, with higher ecological quality (EcoQ) at the seaward stations. Given the pressures and the ecological condition of Karavasta, an intensification of aquaculture activities must be considered with caution, since the lagoon seems at significant risk of serious hypereutrophication. This situation is made worse by the limited water exchange with the marine environment due to the irregular dredging of the communication channels. 2009 Elsevier Ltd. All rights reserved.

  12. Horsehead Nebula

    NASA Image and Video Library

    1999-12-01

    Rising from a sea of dust and gas like a giant seahorse, the Horsehead nebula is one of the most photographed objects in the sky. NASA Hubble Space Telescope took a close-up look at this heavenly icon, revealing the cloud intricate structure.

  13. Late Holocene sedimentation in a high Arctic coastal setting: Simpson Lagoon and Colville Delta, Alaska

    NASA Astrophysics Data System (ADS)

    Hanna, Andrea J. M.; Allison, Mead A.; Bianchi, Thomas S.; Marcantonio, Franco; Goff, John A.

    2014-02-01

    Arctic coastal environments near major river outfalls, like Simpson Lagoon, Alaska and the adjacent Colville River Delta, potentially contain high-resolution sediment records useful in elucidating late Holocene Arctic sediment transport pathways and coupled terrestrial-ocean evidence of paleoclimate variability. This study utilizes a multi-tracer geochronology approach (137Cs, 239,240Pu, and 14C) tailored for high-latitude environments to determine the age models for cores collected from Simpson Lagoon, and to date seismic boundaries in shallow acoustic reflection data (CHIRP) to examine late Holocene infill patterns. Modern (~100 y) sediment accumulation rates range from <0.02 to 0.46±0.04 cm y-1, with a primary depocenter in western Simpson Lagoon adjacent to the Colville Delta and a secondary depocenter in eastern Simpson Lagoon. CHIRP reflectors, age-constrained by 14C analysis, reveal rapid late Holocene (0-3500 y BP) transgression consistent with high modern shoreline retreat rates. The western depocenter contains >5 m of late Holocene interbedded sediments, likely derived primarily from the Colville River, with onset of accumulation occurring prior to ~3500 y BP. A paleo-high in central Simpson Lagoon, separating the two depocenters, was subaerially exposed prior to ~600 y BP. The millimeters-per-year sedimentation rates across the lagoon, coupled with the undisturbed, interbedded sediment record, indicate that these settings hold great potential to develop new Arctic paleoenvironmental records.

  14. Hubble sniffs out a brilliant star death in a “rotten egg” nebula

    NASA Image and Video Library

    2017-12-08

    The Calabash Nebula, pictured here — which has the technical name OH 231.8+04.2 — is a spectacular example of the death of a low-mass star like the sun. This image taken by the NASA/ESA Hubble Space Telescope shows the star going through a rapid transformation from a red giant to a planetary nebula, during which it blows its outer layers of gas and dust out into the surrounding space. The recently ejected material is spat out in opposite directions with immense speed — the gas shown in yellow is moving close to one million kilometers per hour (621,371 miles per hour). Astronomers rarely capture a star in this phase of its evolution because it occurs within the blink of an eye — in astronomical terms. Over the next thousand years the nebula is expected to evolve into a fully-fledged planetary nebula. The nebula is also known as the Rotten Egg Nebula because it contains a lot of sulphur, an element that, when combined with other elements, smells like a rotten egg — but luckily, it resides over 5,000 light-years away in the constellation of Puppis. Credit: ESA/Hubble & NASA, Acknowledgement: Judy Schmidt NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  15. Models of the Mass-ejection Histories of Pre-planetary Nebulae. II. The Formation of Minkowski’s Butterfly and its Proboscis in M2–9

    NASA Astrophysics Data System (ADS)

    Balick, Bruce; Frank, Adam; Liu, Baowei; Corradi, Romano

    2018-02-01

    M2–9, or the “Minkowski’s Butterfly,” is one of the most iconic outflow sources from an evolved star. In this paper we present a hydrodynamic model of M2–9 in which the nebula is formed and shaped by a steady, low-density (“light”), mildly collimated “spray” of gas injected at 200 km s‑1 that interacts with a far denser, intrinsically simple pre-existing AGB wind that has slowly formed all of the complex features within M2–9’s lobes (including the knot pairs N3/S3 and N4/S4 at their respective leading edges, and the radial gradient of Doppler shifts within 20″ of the nucleus). We emphasize that the knot pairs are not ejected from the star but formed in situ. In addition, the observed radial speed of the knots is only indirectly related to the speed of the gas injected by the star. The model allows us to probe the early history of the wind geometry and lobe formation. We also formulate a new estimate of the nebular distance D = 1.3 kpc. The physical mechanism that accounts for the linear radial speed gradient in M2–9 applies generally to many other pre-planetary nebulae whose hollow lobes exhibit similar gradients along their edges.

  16. Nutrient removal from swine lagoon effluent by duckweed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bergmann, B.A.; Cheng, J.; Classen, J.

    2000-04-01

    Three duckweed geographic isolates were grown on varying concentrations of swine lagoon effluent in a greenhouse to determine their ability to remove nutrients from the effluent. Duckweed biomass was harvested every other day over a 12-day period. Duckweed biomass production, nutrient loss from the swine lagoon effluent, and nutrient content of duckweed biomass were used to identify effluent concentrations/geographic isolate combinations that are effective in terms of nutrient utilization from swine lagoon effluent and production of healthy duckweed biomass. When Lemna minor geographic isolate 8627 was grown on 50% swine lagoon effluent, respective losses of TKN, NH{sub 3}-N, TP, OPO{submore » 4}-P, TOC, K, Cu, and Zn were 83, 100, 49, 31, 68, 21, 28 and 67%.« less

  17. Accuracy of lagoon gas emissions using an inverse dispersion method

    USDA-ARS?s Scientific Manuscript database

    Measuring gas emissions from treatment lagoons and storage ponds poses challenging conditions for existing micrometeorological techniques because of non-ideal wind conditions. These include those induced by trees and crops surrounding the lagoons, and lagoons with dimensions too small to establish ...

  18. Mosquito Lagoon environmental resources inventory

    NASA Technical Reports Server (NTRS)

    Provancha, Jane A.; Hall, Carlton R.; Oddy, Donna M.

    1992-01-01

    This document provides a synopsis of biotic and abiotic data collected in the Mosquito Lagoon area in relation to water quality. A holistic ecological approach was used in this review to allow for summaries of climate, land use, vegetation, geohydrology, water quality, fishes, sea turtles, wading birds, marine mammals, invertebrates, shellfish, and mosquito control. The document includes a bibliographic database list of 157 citations that have references to the Mosquito Lagoon, many of which were utilized in development of the text.

  19. Metagenomes of Mediterranean Coastal Lagoons

    PubMed Central

    Ghai, Rohit; Hernandez, Claudia Mella; Picazo, Antonio; Mizuno, Carolina Megumi; Ininbergs, Karolina; Díez, Beatriz; Valas, Ruben; DuPont, Christopher L.; McMahon, Katherine D.; Camacho, Antonio; Rodriguez-Valera, Francisco

    2012-01-01

    Coastal lagoons, both hypersaline and freshwater, are common, but still understudied ecosystems. We describe, for the first time, using high throughput sequencing, the extant microbiota of two large and representative Mediterranean coastal lagoons, the hypersaline Mar Menor, and the freshwater Albufera de Valencia, both located on the south eastern coast of Spain. We show there are considerable differences in the microbiota of both lagoons, in comparison to other marine and freshwater habitats. Importantly, a novel uncultured sulfur oxidizing Alphaproteobacteria was found to dominate bacterioplankton in the hypersaline Mar Menor. Also, in the latter prokaryotic cyanobacteria were almost exclusively comprised by Synechococcus and no Prochlorococcus was found. Remarkably, the microbial community in the freshwaters of the hypertrophic Albufera was completely in contrast to known freshwater systems, in that there was a near absence of well known and cosmopolitan groups of ultramicrobacteria namely Low GC Actinobacteria and the LD12 lineage of Alphaproteobacteria. PMID:22778901

  20. Benthic Primary Production Budget of a Caribbean Reef Lagoon (Puerto Morelos, Mexico)

    PubMed Central

    Naumann, Malik S.; Jantzen, Carin; Haas, Andreas F.; Iglesias-Prieto, Roberto; Wild, Christian

    2013-01-01

    High photosynthetic benthic primary production (P) represents a key ecosystem service provided by tropical coral reef systems. However, benthic P budgets of specific ecosystem compartments such as macrophyte-dominated reef lagoons are still scarce. To address this, we quantified individual and lagoon-wide net (Pn) and gross (Pg) primary production by all dominant functional groups of benthic primary producers in a typical macrophyte-dominated Caribbean reef lagoon near Puerto Morelos (Mexico) via measurement of O2 fluxes in incubation experiments. The photosynthetically active 3D lagoon surface area was quantified using conversion factors to allow extrapolation to lagoon-wide P budgets. Findings revealed that lagoon 2D benthic cover was primarily composed of sand-associated microphytobenthos (40%), seagrasses (29%) and macroalgae (27%), while seagrasses dominated the lagoon 3D surface area (84%). Individual Pg was highest for macroalgae and scleractinian corals (87 and 86 mmol O2 m−2 specimen area d−1, respectively), however seagrasses contributed highest (59%) to the lagoon-wide Pg. Macroalgae exhibited highest individual Pn rates, but seagrasses generated the largest fraction (51%) of lagoon-wide Pn. Individual R was highest for scleractinian corals and macroalgae, whereas seagrasses again provided the major lagoon-wide share (68%). These findings characterise the investigated lagoon as a net autotrophic coral reef ecosystem compartment revealing similar P compared to other macrophyte-dominated coastal environments such as seagrass meadows and macroalgae beds. Further, high lagoon-wide P (Pg: 488 and Pn: 181 mmol O2 m−2 lagoon area d−1) and overall Pg:R (1.6) indicate substantial benthic excess production within the Puerto Morelos reef lagoon and suggest the export of newly synthesised organic matter to surrounding ecosystems. PMID:24367570

  1. Millennial-scale record of overwash deposits preserved within lagoon sediments from the Arabian Peninsula

    NASA Astrophysics Data System (ADS)

    Griffis, A. M.; Jessica, P.; Reinhardt, E. G.; Kosciuch, T. J.; Kovacs, S. E.; Hoffmann, G.

    2017-12-01

    Coastlines along the Arabian Sea are susceptible to tsunami-related inundation due to their proximity to the Makran Subduction Zone (MSZ). This subduction zone has seen decades of low intensity events, but has historically produced large tsunamigenic-earthquakes that have impacted the 100 million people living along the Arabian Sea. One major problem in assessing the seismic risk of the MSZ is that the historical record of events are spatially and temporally limited and rely heavily on eye witness accounts. This hinders our ability to forecast the potential magnitude and recurrence intervals of earthquakes and tsunamis that can be expected in the future. Sediments deposited by paleotsunamis are useful as they expand the decadal record of events to include millennial timescales that more accurately capture the full range of magnitudes and recurrence intervals. On November 28, 1945 a 8.1 Mw earthquake originating from the MSZ generated a tsunami inundating coastlines along the Arabian Sea with wave heights up to 13m. At Sur, a small village on the northeastern coastline of Oman, the tsunami deposited a laterally continuous shell-rich layer within a 12 km2 lagoon. This layer contained distinctive taphonomic assemblages of foraminifera and bivalves. Below the 1945 shelly deposit at Sur Lagoon, seven anomalous sand layers were found preserved within fine-grained lagoonal sediment. These layers of medium-coarse sands range in thickness from 5 to 35 cm and are separated by sandy-mud sediment. Grain size analysis shows that these anomalously coarse layers are followed by an abrupt return to lagoonal mud. The sand layers have features consistent with the 1945 tsunami deposit such as fining upward trends, sharp basal contact, and marine foraminifera (e.g., Amphistegina sp., planktics). In contrast, the surrounding lagoon deposits are generally massive, finer in grain size, and contain foraminiferal species typically found in shallow quiescent coastal environments (e

  2. Carbon and Nitrogen Enrichment Patterns in Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    Dufour, Reginald

    2011-10-01

    The goal of this project is to assess the role played in carbon production by low and intermediate mass stars {LIMS}, i.e. the progenitors of planetary nebulae {PNe}. One of the most pressing problems in galactic chemical evolution today is understanding the relative roles of LIMS {1-8 M_sun} versus massive stars {8-120 M_sun} in affecting the cosmic level of the element C. We are launching a fresh, ambitious project whose purpose is to employ STIS to obtain UV spectra of unprecedented-quality of 10 carefully chosen, bright solar metallicity PNe spanning a broad range in progenitor mass. Line strength measurements of important emission lines of C, N, and O such as OIII] 1660-6, NIII] 1747-54, CIII] 1907-9, and {when He++ is strong} CIV] 1550 and OIV] 1400 in each object will be used along with our own in-house abundance software to determine ion and element abundances for these three species. In turn, these results will be used to assess stellar yields {productivity rates} available in the literature. Favored yield sets will be used to calculate our own chemical evolution models in order to assess directly the importance of intermediate-mass stars in the cosmic evolution of C.

  3. Millimeter-wave molecular line observations of the Tornado nebula

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakai, D.; Oka, T.; Tanaka, K.

    We report the results of millimeter-wave molecular line observations of the Tornado Nebula (G357.7-0.1), which is a bright radio source behind the Galactic center region. A 15' × 15' area was mapped in the J = 1-0 lines of CO, {sup 13}CO, and HCO{sup +} with the Nobeyama Radio Observatory 45 m telescope. The Very Large Array archival data of OH at 1720 MHz were also reanalyzed. We found two molecular clouds with separate velocities, V{sub LSR} = –14 km s{sup –1} and +5 km s{sup –1}. These clouds show rough spatial anti-correlation. Both clouds are associated with OH 1720more » MHz emissions in the area overlapping with the Tornado Nebula. The spatial and velocity coincidence indicates violent interaction between the clouds and the Tornado Nebula. Modestly excited gas prefers the position of the Tornado 'head' in the –14 km s{sup –1} cloud, also suggesting the interaction. Virial analysis shows that the +5 km s{sup –1} cloud is more tightly bound by self-gravity than the –14 km s{sup –1} cloud. We propose a formation scenario for the Tornado Nebula; the +5 km s{sup –1} cloud collided into the –14 km s{sup –1} cloud, generating a high-density layer behind the shock front, which activates a putative compact object by Bondi-Hoyle-Lyttleton accretion to eject a pair of bipolar jets.« less

  4. A New View of the Tarantula Nebula

    NASA Image and Video Library

    2012-04-17

    This composite of 30 Doradus, the Tarantula Nebula, contains data from Chandra blue, Hubble green, and Spitzer red. Located in the Large Magellanic Cloud, the Tarantula Nebula is one of the largest star-forming regions close to the Milky Way.

  5. Image of the Great Nebula in Andromeda, M31 Taken by the High Energy Astronomy Observatory (HEAO)-2

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Both of the High Energy Astronomy Observatory (HEAO) 2/Einstein Observatory imaging devices were used to observe the Great Nebula in Andromeda, M31. This image is a wide field x-ray view of the center region of M31 by the HEAO-2's Imaging Proportional Counter. The HEAO-2, the first imaging and largest x-ray telescope built to date, was capable of producing actual photographs of x-ray objects. Shortly after launch, the HEAO-2 was nicknamed the Einstein Observatory by its scientific experimenters in honor of the centernial of the birth of Albert Einstein, whose concepts of relativity and gravitation have influenced much of modern astrophysics, particularly x-ray astronomy. The HEAO-2, designed and developed by TRW, Inc. under the project management of the Marshall Space Flight Center, was launched aboard an Atlas/Centaur launch vehicle on November 13, 1978.

  6. Lockport Sewage Lagoon.

    ERIC Educational Resources Information Center

    Perry, John

    1995-01-01

    Describes a student initiated stewardship project that resulted in the transformation of a sewage lagoon near the school into a place to study nature. Contains a list of 20 things that discourage a successful stewardship project. (LZ)

  7. Revealing the velocity structure of the filamentary nebula in NGC 1275 in its entirety

    NASA Astrophysics Data System (ADS)

    Gendron-Marsolais, M.; Hlavacek-Larrondo, J.; Martin, T. B.; Drissen, L.; McDonald, M.; Fabian, A. C.; Edge, A. C.; Hamer, S. L.; McNamara, B.; Morrison, G.

    2018-05-01

    We have produced for the first time a detailed velocity map of the giant filamentary nebula surrounding NGC 1275, the Perseus cluster's brightest galaxy, and revealed a previously unknown rich velocity structure across the entire nebula. These new observations were obtained with the optical imaging Fourier transform spectrometer SITELLE at CFHT. With its wide field of view (˜11'×11'), SITELLE is the only integral field unit spectroscopy instrument able to cover the 80 kpc×55 kpc (3.8'×2.6') large nebula in NGC 1275. Our analysis of these observations shows a smooth radial gradient of the [N II]λ6583/Hα line ratio, suggesting a change in the ionization mechanism and source across the nebula. The velocity map shows no visible general trend or rotation, indicating that filaments are not falling uniformly onto the galaxy, nor being uniformly pulled out from it. Comparison between the physical properties of the filaments and Hitomi measurements of the X-ray gas dynamics in Perseus are also explored.

  8. An Introduction to Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    Nishiyama, Jason J.

    2018-05-01

    In this book we will look at what planetary nebulae are, where they come from and where they go. We will discuss what mechanisms cause these beautiful markers of stellar demise as well as what causes them to form their variety of shapes. How we measure various aspects of planetary nebulae such as what they are made of will also be explored. Though we will give some aspects of planetary nebulae mathematical treatment, the main points should be accessible to people with only a limited background in mathematics. A short glossary of some of the more arcane astronomical terms is at the end of the book to help in understanding. Included at the end of each chapter is an extensive bibliography to the peer reviewed research on these objects and I would encourage the reader interested in an even deeper understanding to read these articles.

  9. Constraining Engine Paradigms of Pre-Planetary Nebulae Using Kinematic Properties of their Outflows

    NASA Astrophysics Data System (ADS)

    Blackman, E.

    2014-04-01

    Binary interactions and accretion plausibly conspire to produce the ubiquitous collimated outflows from planetary nebulae (PN) and their presumed pre-planetary nebulae (PPN) progenitors. But which accretion engines are viable? The difficulty in observationally resolving the engines warrants indirect constraints. I discuss how momentum outflow data for PPN can be used to determine the minimum required accretion rate for presumed main sequence (MS) or white dwarf (WD) accretors by comparing to several example accretion rates inferred from published models. While the main goal is to show the method in anticipation of more data and better theoretical constraints, taking the present results at face value already rule out modes of accretion: Bondi-Hoyle Lyttleton (BHL) wind accretion and wind Roche lobe overflow (M-WRLOF, based on Mira parameters) are too feeble for all 19/19 objects for a MS accretor. For a WD accretor, BHL is ruled out for 18/19 objects and M-WRLOF for 15/19 objects. Roche lobe overflow from the primary can accommodate 7/19 objects but only common envelope evolution accretion modes seem to be able to accommodate all 19 objects. Sub-Eddington rates for a MS accretor are acceptable but 8/19 would require super-Eddington rates for a WD. I also briefly discuss a possible anti-correlation between age and maximum observed outflow speed, and the role of magnetic fields.

  10. The Challenge of High-resolution Mapping of Very Shallow Coastal Areas: Case Study of the Lagoon of Venice, Italy

    NASA Astrophysics Data System (ADS)

    Madricardo, F.; Foglini, F.; Kruss, A.; Bajo, M.; Campiani, E.; Ferrarin, C.; Fogarin, S.; Grande, V.; Janowski, L.; Keppel, E.; Leidi, E.; Lorenzetti, G.; Maicu, F.; Maselli, V.; Montereale Gavazzi, G.; Pellegrini, C.; Petrizzo, A.; Prampolini, M.; Remia, A.; Rizzetto, F.; Rovere, M.; Sarretta, A.; Sigovini, M.; Toso, C.; Zaggia, L.; Trincardi, F.

    2017-12-01

    Very shallow coastal environments are often highly urbanized with half of the world's population and 13 of the largest mega-cities located close to the coast. These environments undergo rapid morphological changes due to natural and anthropogenic pressure that will likely be enhanced in the near future by mean sea-level rise. Therefore, there is a strong need for high resolution seafloor mapping to monitor and protect shallow coastal areas. To date, only about 5% of their seafloor has been mapped: their shallowness has prevented so far the use of underwater acoustics to reveal their morphological features; their turbidity often hindered the efficient use of LIDAR technology, particularly in lagoons and estuaries. The recent technological development of multibeam echosounder systems, however, enables these instruments to achieve very high performances also in such shallow environments. In this work, we present the results of an extensive multibeam survey carried out in the Lagoon of Venice (Italy) in 2013. The Lagoon of Venice is the biggest lagoon in the Mediterranean Sea (surface area of about 550 km2, average depth of about 1 m) and it is a UNESCO World Cultural and Natural Heritage site together with the historical city of Venice which is currently endangered by relative sea-level rise. Major engineering works are ongoing at the lagoon inlets (MOSE project) to protect Venice from flood events. In the last century, the morphology and ecology of the lagoon changed dramatically: the extent of the salt marshes was reduced by 60% and some parts of the lagoon deepened by more than 1 m with a net sediment flux exiting from the inlets. To understand and monitor the future evolution of the Lagoon of Venice in view of the inlet modifications and mean sea-level rise, CNR-ISMAR within the project RITMARE (a National Research Programme funded by the Italian Ministry of University and Research) carried out an extensive survey, involving a team of more than 25 scientists, to

  11. Anomalous cosmic ray fluxes in diffusive shock acceleration processes in the heliosphere and in planetary and WR-nebulae

    NASA Astrophysics Data System (ADS)

    Yeghikyan, Ararat

    2018-04-01

    Based on the analogy between interacting stellar winds of planetary nebulae and WR-nebulae, on the one hand, and the heliosphere and the expanding envelopes of supernovae, on the other, an attempt is made to calculate the differential intensity of the energetic protons accelerated to energies of 100 MeV by the shock wave. The proposed one-parameter formula for estimating the intensity at 1-100 MeV, when applied to the heliosphere, shows good agreement with the Voyager-1 data, to within a factor of less than 2. The same estimate for planetary (and WR-) nebulae yields a value 7-8 (3-4) orders of magnitude higher than the mean galactic intensity value. The obtained estimate of the intensity of energetic protons in mentioned kinds of nebulae was used to estimate the doses of irradiation of certain substances, in order to show that such accelerated particles play an important role in radiation-chemical transformations in such nebulae.

  12. Hubble Space Telescope observations of Orion Nebula, Helix Nebula, and NGC 6822

    NASA Technical Reports Server (NTRS)

    Spitzer, Lyman; Fitzpatrick, Ed

    1999-01-01

    This grant covered the major part of the work of the Principal Investigator and his collaborators as a Guaranteed Time Observer on the Hubble Space Telescope. The work done naturally divided itself into two portions the first being study of nebular objects and the second investigation of the interstellar medium between stars. The latter investigation was pursued through a contract with Princeton University, with Professor Lyman Spitzer as the supervising astronomer, assisted by Dr. Ed Fitzpatrick. Following the abrupt death of Professor Spitzer, his responsibilities were shifted to Dr. Fitzpatrick. When Dr. Fitzpatrick relocated to Villanova University the concluding work on that portion of this grant was concluded under a direct service arrangement. This program has been highly successful and the resulting publications in scientific journals are listed below. To the scientist, this is the bottom line, so that I shall simply try to describe the general nature of what was accomplished. There were three nebular programs conducted, one on the Orion Nebula, the second on the Helix Nebula, and the third on NGC 6822. The largest program was that on the Orion Nebula. This involved both HST observations and supporting groundbased observations obtained with a variety of instruments, including the Coude Feed Telescope at the Kitt Peak National observatory in Arizona, the Cerro Tololo observatory in Chile, and the Keck Observatory on Mauna Kea, Hawaii. Moreover, considerable theoretical modeling was done and all of the data analysis was performed at the Rice University in Houston, except for the PI's period of sabbatical leave (6-96 through 7-97) when he was based at the Max Planck Institute for Astronomy in Heidelberg, Germany. The Orion Nebula program was the most productive part, resulting in numerous papers, but more important in the discovery of a new class of objects, for which we coined the name "proplyds". The proplyds are protoplanetary disks surrounding very young

  13. Nutrient-Chlorophyll Relationships in the Indian River Lagoon, Florida(SEERS)

    EPA Science Inventory

    The Indian River Lagoon is a highly diverse estuary located along Florida’s Atlantic coast. The system is made up of the main stem and two side-lagoons: the Banana River and Mosquito Lagoon. We segmented the main stem into three sections based on spatial trends in water quality ...

  14. Evaluation of some heavy metal loading in the Kpeshi lagoon, Ghana

    NASA Astrophysics Data System (ADS)

    Fianko, Joseph R.; Laar, Cynthia; Osei, Juilet; Anim, Alfred K.; Gibrilla, Abass; Adomako, Dickson

    2013-03-01

    A study was carried out on the Kpeshi lagoon to evaluate the relative contributions of some heavy metals (Na, k, Ca, K, Fe, Mn, Ni, Cr, Cd, Al, Pb) on the current state of the Kpeshi lagoon. The lagoon water was sampled along with some fish samples. Water pH, electrical conductivity and total dissolved salts were measured in situ whilst Na and K were measured using flame emission spectrometry. Heavy metals (iron, manganese, nickel, aluminium, chromium, lead and cadmium) in both water and fish samples were analyzed using atomic absorption spectrometry. Measured pH values ranged between 6.60 and 7.87, a mean conductivity and total dissolved salts of 87.31 ± 19.14 μS/cm and 38.4 ± 8.43 mg/L, respectively. Nutrient and organic matter were among the frequent source of pollution in the lagoon with mean sulphate, phosphate and nitrate concentrations of 190 ± 108.84, 1.62 ± 0.49 and 0.89 ± 0.26 mg/L, respectively. Iron and aluminium in the lagoon water measured the highest concentration of 13.2 ± 3.47 and 13.6 ± 4.29 mg/L, respectively. Fish samples however revealed very high concentrations of calcium and potassium measuring 15,709 ± 75.35 and 5,949.49 ± 87.30 mg/kg, respectively. Sodium and aluminium also revealed relatively high concentrations: 3,775.70 ± 24.80 and 708.47 ± 4.95 mg/kg, respectively. Notably, sites closer to settlement community (Teshie Township, e.g. S1, S2, S3 and S4) and the hospitality industries (i.e. dotted hotels, e.g. S7) appeared to be relatively more contaminated.

  15. Monitoring and source tracking of tetracycline resistance genes in lagoons and groundwater adjacent to swine production facilities over a 3-year period

    USGS Publications Warehouse

    Koike, S.; Krapac, I.G.; Oliver, H.D.; Yannarell, A.C.; Chee-Sanford, J. C.; Aminov, R.I.; Mackie, R.I.

    2007-01-01

    To monitor the dissemination of resistance genes into the environment, we determined the occurrence of tetracycline resistance (Tcr) genes in groundwater underlying two swine confinement operations. Monitoring well networks (16 wells at site A and 6 wells at site C) were established around the lagoons at each facility. Groundwater (n = 124) and lagoon (n = 12) samples were collected from the two sites at six sampling times from 2000 through 2003. Total DNA was extracted, and PCR was used to detect seven Tcr genes [tet(M), tet(O), tet(Q), tet(W), tet(C), tet(H), and tet(Z)]. The concentration of Tcr genes was quantified by real-time quantitative PCR. To confirm the Tcr gene source in groundwater, comparative analysis of tet(W) gene sequences was performed on groundwater and lagoon samples. All seven Tcr genes were continually detected in groundwater during the 3-year monitoring period at both sites. At site A, elevated detection frequency and concentration of Tcr genes were observed in the wells located down-gradient of the lagoon. Comparative analysis of tet(W) sequences revealed that the impacted groundwater contained gene sequences almost identical (99.8% identity) to those in the lagoon, but these genes were not found in background libraries. Novel sequence clusters and unique indigenous resistance gene pools were also found in the groundwater. Thus, antibiotic resistance genes in groundwater are affected by swine manure, but they are also part of the indigenous gene pool. Copyright ?? 2007, American Society for Microbiology. All Rights Reserved.

  16. Water-Quality Monitoring and Biological Integrity Assessment in the Indian River Lagoon, Florida: Status, Trends, and Loadings (1988-1994).

    PubMed

    Sigua; Steward; Tweedale

    2000-02-01

    / The Indian River Lagoon (IRL) system that extends from Ponce DeLeon Inlet to Jupiter Inlet is comprised of three interconnected estuarine lagoons: the Mosquito Lagoon (ML), the Banana River Lagoon (BRL), and the Indian River Lagoon (subdivided into North Indian River Lagoon, NIRL and the South Indian River Lagoon, SIRL). The declines in both the areal coverage and species diversity of seagrass communities within the IRL system are believed to be due in part to continued degradation of water quality. Large inflows of phosphorus (P) and nitrogen (N) -laden storm-water from urban areas and agricultural land have been correlated with higher chlorophyll a production in the central, south central, and the south segments of the lagoon. In a system as large and complex as the lagoon, N and P limitations are potentially subject to significant spatial and temporal variability. Total Kjeldahl nitrogen (TN) was higher in the north (1.25 mg/liter) and lower in the south (0.89 mg/liter). The reverse pattern was observed for total P (TP), i.e., lowest in the north (0.03 mg/liter) and highest at the south (0.14 mg/liter) ends of the IRL. This increased P concentration in the SIRL appears to have a significantly large effect on chlorophyll a production compared with the other segments, as indicated by stepwise regression statistics. This relationship can be expressed as follows: South IRL [chlorophyll a] = -8.52 + 162.41 [orthophosphate] + 7.86 [total nitrogen] + 0.38 [turbidity]; R(2) = 0.98**.

  17. Monitoring the Crab Nebula with LOFT

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.

    2012-01-01

    From 2008-2010, the Crab Nebula was found to decline by 7% in the 15-50 keV band, consistently in Fermi GBM, INTEGRAL IBIS, SPI, and JEMX, RXTE PCA, and Swift BAT. From 2001-2010, the 15-50 keV flux from the Crab Nebula typically varied by about 3.5% per year. Analysis of RXTE PCA data suggests possible spectral variations correlated with the flux variations. I will present estimates of the LOFT sensitivity to these variations. Prior to 2001 and since 2010, the observed flux variations have been much smaller. Monitoring the Crab with the LOFT WFM and LAD will provide precise measurements of flux variations in the Crab Nebula if it undergoes a similarly active episode.

  18. The Eighty Six Hα Spectra from the Orion Nebula (M42, Sh2-281) with DEFPOS

    NASA Astrophysics Data System (ADS)

    Sahan, M.; Yegingil, I.

    2017-12-01

    In this study, eighty six Hα (6563 Å) emission line spectra from the central region (˜ 40^' }× 40^' }) of the Orion Nebula (NGC1976, M42, Sh2-281) have been obtained using DEFPOS spectrometer with a circular field of view of 4^' } at TUBITAK National Observatory (TUG, Antalya, Turkey). Measurements provide information about the intensities, line widths, and radial velocities of the gas surrounding the Sh2-281 HII-region. The intensities, the radial velocities and the line widths of the Hα emission line were found in the range of from 319.85 R to 6009.08 R (mean 2006 ± 400 R), from -14.91 km s^{-1} to + 5.40 km s^{-1} (mean -4.51± 3.80 km s^{-1}), and from 27.83 km s^{-1} to 49.60 km s^{-1} (mean 41.09± 7.74 km s^{-1}), respectively. Moreover, the mean emission measure (EM) calculated from {I_{H{α }}} values was obtained as 4513.02 cm^{-6} pc. The mean LSR velocity of the nebula was found to be -4.51 km s^{-1} and was compared with some previous works. The intensity values of DEFPOS data were also compared with the data obtained from VTSS, SkyView, and SHASSA maps using APER and SKY codes. We found that our results were approximately the similar variation with VTSS (mean 2002.04 R), SkyView (mean 2680.05 R), and SHASSA (mean 2400.06 R) maps. We believe that DEFPOS spectrometer with a 4' diameter field of view is able to provide a powerful tool for the study of diffuse ionized gas and this new results may have significant contribution to the literature.

  19. The carbon budget in the outer solar nebula

    NASA Technical Reports Server (NTRS)

    Simonelli, Damon P.; Pollack, James B.; Mckay, Christopher P.; Reynolds, Ray T.; Summers, Audrey L.

    1989-01-01

    The compositional contrast between the giant-planet satellites and the significantly rockier Pluto/Charon system is indicative of different formation mechanisms; cosmic abundance calculations, in conjunction with an assumption of the Pluto/Charon system's direct formation from solar nebula condensates, strongly suggest that most of the carbon in the outer solar nebula was in CO form, in keeping with both the inheritance from the dense molecular clouds in the interstellar medium, and/or the Lewis and Prinn (1980) kinetic-inhibition model of solar nebula chemistry. Laboratory studies of carbonaceous chondrites and Comet Halley flyby studies suggest that condensed organic material, rather than elemental carbon, is the most likely candidate for the small percentage of the carbon-bearing solid in the outer solar nebula.

  20. Anatomy of the Holocene succession of the southern Venice lagoon revealed by very high-resolution seismic data

    NASA Astrophysics Data System (ADS)

    Zecchin, Massimo; Brancolini, Giuliano; Tosi, Luigi; Rizzetto, Federica; Caffau, Mauro; Baradello, Luca

    2009-05-01

    The southern portion of the Venice lagoon contains a relatively thick (up to 20 m) Holocene sedimentary body that represents a detailed record of the formation and evolution of the lagoon. New very high-resolution (VHR) seismic profiles provided a detailed investigation on depositional geometries, internal bounding surfaces and stratal relationships. These informations, combined with core analysis, allowed the identification of large- to medium-scale sedimentary structures (e.g. dunes, point bars), the corresponding sedimentary environment, and of retrogradational and progradational trends. In addition, the availability of dense seismic network produced a 3D reconstruction of the southern lagoon and the recognition of the along-strike and dip variability of the stratal architecture. Three main seismic units (H1-H3), separated by key stratal surfaces (S1-S3), form the Holocene succession in the southern Venice lagoon. This succession is bounded at the base by the Pleistocene/Holocene boundary (the surface S1), which consists of a surface of subaerial exposure locally subjected to river incision. The lower part of the Holocene succession (up to 13 m thick) consists of incised valley fills passing upward into lagoon and then shallow-marine sediments (Unit H1), and therefore shows a deepening-upward trend and a retrogradational stacking pattern. A prograding delta and adjacent shorelines, showing internal clinoforms downlapping onto the top of Unit H1 (the surface S2), form the middle part of the Holocene succession (Unit H2, up to 7.5 m thick). Unit H2 is interpreted as a result of a regressive phase started about 6 kyr BP and continued until recent time. The upper part of the Holocene succession (Unit H3) consists of lagoonal deposits, including tidal channel and tidal and subtidal flat sediments, that abruptly overlie Unit H2. Unit H3 is thought to represent a drowning of the area primarily due to human interventions that created rivers diversion and consequent

  1. Cat's Eye Nebula

    NASA Image and Video Library

    2017-12-08

    The Cat's Eye Nebula, one of the first planetary nebulae discovered, also has one of the most complex forms known to this kind of nebula. Eleven rings, or shells, of gas make up the Cat's Eye. The full beauty of the Cat's Eye Nebula is revealed in this detailed view from NASA's Hubble Space Telescope. The image from Hubble's Advanced Camera for Surveys (ACS) shows a bull's eye pattern of eleven or even more concentric rings, or shells, around the Cat's Eye. Each 'ring' is actually the edge of a spherical bubble seen projected onto the sky -- that's why it appears bright along its outer edge. Observations suggest the star ejected its mass in a series of pulses at 1,500-year intervals. These convulsions created dust shells, each of which contain as much mass as all of the planets in our solar system combined (still only one percent of the Sun's mass). These concentric shells make a layered, onion-skin structure around the dying star. The view from Hubble is like seeing an onion cut in half, where each skin layer is discernible. The bull's-eye patterns seen around planetary nebulae come as a surprise to astronomers because they had no expectation that episodes of mass loss at the end of stellar lives would repeat every 1,500 years. Several explanations have been proposed, including cycles of magnetic activity somewhat similar to our own Sun's sunspot cycle, the action of companion stars orbiting around the dying star, and stellar pulsations. Another school of thought is that the material is ejected smoothly from the star, and the rings are created later on due to formation of waves in the outflowing material. Credit: NASA, ESA, HEIC, and The Hubble Heritage Team (STScI/AURA) Acknowledgment: R. Corradi (Isaac Newton Group of Telescopes, Spain) and Z. Tsvetanov (NASA) The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA's Goddard Space Flight Center manages the telescope. The Space Telescope Science

  2. High-speed knots in the hourglass-shaped planetary nebula Hubble 12

    NASA Astrophysics Data System (ADS)

    Vaytet, N.; Rushton, A. P.; Lloyd, M.; Lopez, J. A.; Meaburn, J.; O'Brien, T. J.; Mitchell, D. L.; Pollacco, D.

    We present a detailed kinematical analysis of the young compact hourglass-shaped planetary nebula Hb 12. We performed optical imaging and longslit spectroscopy of Hb 12 using the Manchester echelle spectrometer with the 2.1-m San Pedro Martir telescope. We reveal, for the first time, the presence of end caps (or knots) aligned with the bipolar lobes of the planetary nebula shell in a deep [N ii] 6584 image of Hb 12. We measured from our spectroscopy radial velocities of about 120 km s-1 for these knots. We have derived the inclination angle of the hourglass shaped nebular shell to be 65° to the line of sight. It has been suggested that Hb 12's central star system is an eclipsing binary which would imply a binary inclination of at least 80°. However, if the central binary has been the major shaping influence on the nebula then both nebula and binary would be expected to share a common inclination angle. Finally, we report the discovery of high-velocity knots with Hubble-type velocities, close to the core of Hb 12, observed in HA and oriented in the same direction as the end caps. Very different velocities and kinematical ages were calculated for the outer and inner knots showing that they may originate from different outburst events.

  3. MCNeil's Nebula in Orion: The Outburst History

    NASA Astrophysics Data System (ADS)

    Briceño, C.; Vivas, A. K.; Hernández, J.; Calvet, N.; Hartmann, L.; Megeath, T.; Berlind, P.; Calkins, M.; Hoyer, S.

    2004-05-01

    We present a sequence of I-band images obtained at the Venezuela 1 m Schmidt telescope during the outburst of the nebula recently discovered by J. W. McNeil in the Orion L1630 molecular cloud. We derive photometry spanning the preoutburst state and the brightening itself, which is a unique record including 14 epochs and spanning a timescale of ~5 years. We constrain the beginning of the outburst at some time between 2003 October 28 and November 15. The light curve of the object at the vertex of the nebula, the likely exciting source of the outburst, reveals that it has brightened ~5 mag in about 4 months. The timescale for the nebula to develop is consistent with the light-travel time, indicating that we are observing light from the central source scattered by the ambient cloud into the line of sight. We also show recent FLWO optical spectroscopy of the exciting source and of the nearby HH 22. The spectrum of the source is highly reddened; in contrast, the spectrum of HH 22 shows a shock spectrum superposed on a continuum, most likely the result of reflected light from the exciting source reaching the HH object through a much less reddened path. The blue portion of this spectrum is consistent with an early B spectral type, similar to the early outburst spectrum of the FU Orionis variable star V1057 Cygni; we estimate a luminosity of L~219 Lsolar. The eruptive behavior of McNeil's Nebula, its spectroscopic characteristics and luminosity, suggest that we may be witnessing an FU Ori event on its way to maximum. By further monitoring this object, we will be able decide whether or not it qualifies as a member of this rare class of objects. Based on observations obtained at the Llano del Hato National Astronomical Observatory of Venezuela, operated by CIDA for the Ministerio de Ciencia y Tecnología, and at the Fred Lawrence Whipple Observatory (FLWO) of the Smithsonian Institution.

  4. Is the Venice Lagoon Noisy? First Passive Listening Monitoring of the Venice Lagoon: Possible Effects on the Typical Fish Community.

    PubMed

    Bolgan, Marta; Picciulin, Marta; Codarin, Antonio; Fiorin, Riccardo; Zucchetta, Matteo; Malavasi, Stefano

    2016-01-01

    Three passive listening surveys have been carried out in two of the three Venice lagoon tide inlets and inside the Venice island. The spectral content and the intensity level of the underwater noise as well as the presence or absence of Sciaena umbra and the distribution of its different sound patterns have been investigated in all the recording sites. The passive listening proved to be successful in detecting S. umbra drumming sounds in both Venice lagoon tide inlets. Our results indicate that the spectral content and the level of underwater noise pollution in the Venice lagoon could affect fish acoustic communication.

  5. The Orion Nebula: The Jewel in the Sword

    NASA Astrophysics Data System (ADS)

    2001-01-01

    -Res - JPEG: 2273 x 2784 pix - 976k] Caption : PR Photo 03d/01 shows a small section of the observational data (in one infrared spectral band only, here reproduced in B/W) on which PR Photo 03a/01 is based. The field is centred on one of the famous Orion silhouette disks (Orion 114-426) (it is located approximately halfway between the centre and the right edge of PR Photo 03c/01 ). The dusty disk itself is seen edge-on as a dark streak against the background emission of the Orion Nebula, while the bright fuzzy patches on either side betray the presence of the embedded parent star that illuminates tenuous collections of dust above its north and south poles to create these small reflection nebulae. Recent HST studies suggest that the very young Orion 114-426 disk - that is thirty times bigger than our present-day Solar System - may already be showing signs of forming its own proto-planetary system. Technical information about this photo is available below. It is even possible to see disks of dust and gas surrounding a few of the young stars, as silhouettes in projection against the bright background of the nebula. Many of these disks are very small and usually only seen on images obtained with the Hubble Space Telescope (HST) [2]. However, under the best seeing conditions on Paranal, the sharpness of VLT images at infrared wavelengths approaches that of the HST in this spectral band, revealing some of these disks, as shown in PR Photo 03d/01 . Indeed, the theoretical image sharpness of the 8.2-m VLT is more than three times better than that of the 2.4-m HST. Thus, the VLT will soon yield images of small regions with even higher resolution by means of the High-Resolution Near-Infrared Camera (CONICA) and the Nasmyth Adaptive Optics System (NAOS) that will compensate the smearing effect introduced by the turbulence in the atmosphere. Later on, extremely sharp images will be obtained when all four VLT telescopes are combined to form the Very Large Telescope Interferometer (VLTI

  6. DISCOVERY OF COLLIMATED BIPOLAR OUTFLOWS IN THE PLANETARY NEBULA TH 2-A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Danehkar, A., E-mail: ashkbiz.danehkar@cfa.harvard.edu

    We present a comprehensive set of spatially resolved, integral field spectroscopic mapping of the Wolf–Rayet planetary nebula Th 2-A, obtained using the Wide Field Spectrograph on the Australian National University 2.3-m telescope. Velocity-resolved Hα channel maps with a resolution of 20 km s{sup −1} allow us to identify different kinematic components within the nebula. This information is used to develop a three-dimensional morpho-kinematic model of the nebula using the interactive kinematic modeling tool shape. These results suggest that Th 2-A has a thick toroidal shell with an expansion velocity of 40 ± 10 km s{sup −1}, and a thin prolate ellipsoid withmore » collimated bipolar outflows toward its axis reaching velocities in the range of 70–110 km s{sup −1}, with respect to the central star. The relationship between its morpho-kinematic structure and peculiar [WO]-type stellar characteristics deserves further investigation.« less

  7. Large-Scale Structure of the Carina Nebula.

    PubMed

    Smith; Egan; Carey; Price; Morse; Price

    2000-04-01

    Observations obtained with the Midcourse Space Experiment (MSX) satellite reveal for the first time the complex mid-infrared morphology of the entire Carina Nebula (NGC 3372). On the largest size scale of approximately 100 pc, the thermal infrared emission from the giant H ii region delineates one coherent structure: a (somewhat distorted) bipolar nebula with the major axis perpendicular to the Galactic plane. The Carina Nebula is usually described as an evolved H ii region that is no longer actively forming stars, clearing away the last vestiges of its natal molecular cloud. However, the MSX observations presented here reveal numerous embedded infrared sources that are good candidates for sites of current star formation. Several compact infrared sources are located at the heads of dust pillars or in dark globules behind ionization fronts. Because their morphology suggests a strong interaction with the peculiar collection of massive stars in the nebula, we speculate that these new infrared sources may be sites of triggered star formation in NGC 3372.

  8. Tracing organic matter sources in a tropical lagoon of the Caribbean Sea

    NASA Astrophysics Data System (ADS)

    Alonso-Hernández, Carlos M.; Garcia-Moya, Alejandro; Tolosa, Imma; Diaz-Asencio, Misael; Corcho-Alvarado, Jose Antonio; Morera-Gomez, Yasser; Fanelli, Emanuela

    2017-09-01

    The natural protected lagoon of Guanaroca, located between Cienfuegos Bay and the Arimao River, Cuba, has been heavily impacted by human-induced environmental changes over the past century. Sources of organic matter in the Guanaroca lagoon and concentrations of radioisotopes (210Pb, 226Ra, 137Cs and 239,240Pu), as tracers of anthropogenic impacts, were investigated in a 78 cm sediment core. Variations in total organic carbon (TOC), total nitrogen (TN), stable isotopic composition (δ13C and δ15N) and ratio of total organic carbon to total nitrogen (C/N) were analysed. On such a basis, environmental changes in the lagoon were revealed. Down core variation patterns of the parameters representing sources of organic matter were predominantly related to the impacts of human activities. Up to the nineteenth century, the principal sources of organic matter to sediments (more than 80%) were a mixing of terrestrial vascular plants ( 48%) and freshwater phytoplankton ( 8%), with minimal contribution from the marine component ( 16%). In the period 1900-1980, due to the strong influence of human activities in the catchment area, the water exchange capacity of the lagoon declined substantially, as indicated by the relatively high proportion of organic matter originated from human activities (58%). Since 1980, as a result of management actions in the protected area, the lagoon has regained gradually its capability to exchange freshwater, showing sources of organic matter similar to the natural conditions recorded previous to 1900, although an indication of human impact (treated sewage contributed for 26% to the organic matter in sediments) was still observed and further management measures would be required.

  9. Unraveling the Helix Nebula: Its Structure and Knots

    NASA Astrophysics Data System (ADS)

    O'Dell, C. R.; McCullough, Peter R.; Meixner, Margaret

    2004-11-01

    Through Hubble Space Telescope (HST) imaging of the inner part of the main ring of the Helix Nebula, together with CTIO 4 m images of the fainter outer parts, we have a view of unprecedented quality of the nearest bright planetary nebula. These images have allowed us to determine that the main ring of the nebula is composed of an inner disk of about 499" diameter (0.52 pc) surrounded by an outer ring (in reality a torus) of 742" diameter (0.77 pc) whose plane is highly inclined to the plane of the disk. This outer ring is surrounded by an outermost ring of 1500" (1.76 pc) diameter, which is flattened on the side colliding with the ambient interstellar medium. The inner disk has an extended distribution of low-density gas along its rotational axis of symmetry, and the disk is optically thick to ionizing radiation, as is the outer ring. Published radial velocities of the knots provide support for the two-component structure of the main ring of the nebula and for the idea that the knots found there are expanding along with the nebular material from which they recently originated. These velocities indicate a spatial expansion velocity of the inner disk of 40 and 32 km s-1 for the outer ring, which yields expansion ages of 6560 and 12,100 yr, respectively. The outermost ring may be partially ionized through scattered recombination continuum from the inner parts of the nebula, but shocks certainly are occurring in it. This outermost ring probably represents a third period of mass loss by the central star. There is one compact, outer object that is unexplained, showing shock structures indicating a different orientation of the gas flow from that of the nebula. There is a change in the morphology of the knots as a function of the distance from the local ionization front. This supports a scenario in which the knots are formed in or near the ionization front and are then sculpted by the stellar radiation from the central star as the ionization front advances beyond them

  10. The effects of mass and metallicity upon planetary nebula formation

    NASA Astrophysics Data System (ADS)

    Papp, K. A.; Purton, C. R.; Kwok, S.

    1983-05-01

    A parameterized function is constructed which describes the possible dependence of planetary nebula formation upon metal abundance and stellar mass. Data on galaxies in the Local Group compared with predictions made from the parameterized function indicate that heavy element abundance is the principal agent influencing the formation of planetary nebulae; stars which are rich in heavy elements are the progenitors of planetary nebulae. This analysis, when compared with the observations, argues for a modest degree of pre-enrichment in a few of the sample galaxies. The heavy element dependence of planetary nebula formation also accounts for the deficit of planetary nebulae in the nuclei of NGC 221 and NGC 224, and in the bulge of our Galaxy.

  11. Dusty globules in the Crab Nebula

    NASA Astrophysics Data System (ADS)

    Grenman, T.; Gahm, G. F.; Elfgren, E.

    2017-03-01

    Context. Dust grains are widespread in the Crab Nebula. A number of small, dusty globules, are visible as dark spots against the background of continuous synchrotron emission in optical images. Aims: Our aim is to catalogue such dusty globules and investigate their properties. Methods: From existing broad-band images obtained with the Hubble Space Telescope, we located 92 globules, for which we derived positions, dimensions, orientations, extinctions, masses, proper motions, and their distributions. Results: The globules have mean radii ranging from 400 to 2000 AU and are not resolved in current infrared images of the nebula. The extinction law for dust grains in these globules matches a normal interstellar extinction law. Derived masses of dust range from 1 to 60 × 10-6M⊙, and the total mass contained in globules constitute a fraction of approximately 2% or less of the total dust content of the nebula. The globules are spread over the outer part of the nebula, and a fraction of them coincide in position with emission filaments, where we find elongated globules that are aligned with these filaments. Only 10% of the globules are coincident in position with the numerous H2-emitting knots found in previous studies. All globules move outwards from the centre with transversal velocities of 60 to 1600 km s-1, along with the general expansion of the remnant. We discuss various hypotheses for the formation of globules in the Crab Nebula. Based on observations collected with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute.

  12. The star fish twins: Two young planetary nebulae with extreme multipolar morphology

    NASA Technical Reports Server (NTRS)

    Sahai, R.

    2000-01-01

    We present alpha images of two objects, He 2-47 and M1-37, obtained during a Hubble Space Telescope imaging survey of young planetary nebulae (PNs) selected on the basis of their low-excitation characteristics.

  13. Hydrologic characteristics of lagoons at San Juan, Puerto Rico, during an October 1974 tidal cycle

    USGS Publications Warehouse

    Gómez-Gómez, Fernando; Ellis, S.R.

    1983-01-01

    Flow and water-quality changes were studied during a period of intense rainfall in the San Juan Lagoon system. The study covered a 25-hour period beginning 0900 hours 22 October, 1974. Precipitation during the study period averaged 70 millimeters. Sampling stations were located at Boca de Cangrejos, the main ocean outlet; Canal Pinones between Laguna de Pinones and Laguna La Torrecilla; Canal Suarez between Laguna San Jose, connects to Laguna La Torrecilla; and Cano de Martin Pena between Laguna San Jose and Bahia de San Juan. In addition water-elevation recording gages were installed at each lagoon. Water samples from the canal stations were analyzed for organic carbon, nitrogen and phosphorus species, and suspended sediment. Specific-conductance measurements were used with the chemical data to estimate the runoff contributions of nutrients. Runoff into the lagoon, system during the study period was about 2.8 million cubic meters, or about 70 percent of the average precipitation. The runoff contributed chemical loadings to the lagoons of 95,000 kilograms total-organic carbon; 2,700 kilograms of total phosphorus; and 10,000 kilograms of total Khjeldhal nitrogen. A comparison with a prior study during which there was no significant rain, show that dry-period loadings are less than 10 percent of the wet-period loadings. At the end of the study period the system had not reached equilibrium, and the lagoons retained 80 percent of the water inflows from 50 to 90 percent of the chemical loads. Nearly 95 percent of the water outflows occurred at the Boca de Cangrejos sea outlet. The three lagoons and interconnecting canals form a very complex hydraulic system that is difficult to study using traditional techniques. A model of the system will facilitate management to improve the quality of water in the lagoons.

  14. The appearance of the Gum nebula

    NASA Technical Reports Server (NTRS)

    Bok, B. J.

    1971-01-01

    The dimensions of the Gum nebula complex appear to be overestimated. The distance of 460 parsecs to the central pulsar is rather on the large side, and likely contributions from gamma Velorum and zeta Puppis were underestimated. The multiorigin character of the Gum nebula is reaffirmed. The parts produced by traditional ultraviolet thermal radiation and by processes directly related to the supernova outburst must be defined.

  15. Giant Hα Nebula Surrounding the Starburst Merger NGC 6240

    NASA Astrophysics Data System (ADS)

    Yoshida, Michitoshi; Yagi, Masafumi; Ohyama, Youichi; Komiyama, Yutaka; Kashikawa, Nobunari; Tanaka, Hisashi; Okamura, Sadanori

    2016-03-01

    We revealed the detailed structure of a vastly extended Hα-emitting nebula (“Hα nebula”) surrounding the starburst/merging galaxy NGC 6240 by deep narrow-band imaging observations with the Subaru Suprime-Cam. The extent of the nebula is ˜90 kpc in diameter and the total Hα luminosity amounts to LHα ≈ 1.6 × 1042 erg s-1. The volume filling factor and the mass of the warm ionized gas are ˜10-4-10-5 and ˜5 × 108 M⊙, respectively. The nebula has a complicated structure, which includes numerous filaments, loops, bubbles, and knots. We found that there is a tight spatial correlation between the Hα nebula and the extended soft-X-ray-emitting gas, both in large and small scales. The overall morphology of the nebula is dominated by filamentary structures radially extending from the center of the galaxy. A large-scale bipolar bubble extends along the minor axis of the main stellar disk. The morphology strongly suggests that the nebula was formed by intense outflows—superwinds—driven by starbursts. We also found three bright knots embedded in a looped filament of ionized gas that show head-tail morphologies in both emission-line and continuum, suggesting close interactions between the outflows and star-forming regions. Based on the morphology and surface brightness distribution of the Hα nebula, we propose the scenario that three major episodes of starburst/superwind activities, which were initiated ˜102 Myr ago, formed the extended ionized gas nebula of NGC 6240. Based on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.

  16. The carbon budget in the outer solar nebula.

    PubMed

    Simonelli, D P; Pollack, J B; McKay, C P; Reynolds, R T; Summers, A L

    1989-01-01

    Detailed models of the internal structures of Pluto and Charon, assuming rock and water ice as the only constituents, indicate that the mean silicate mass fraction of this two-body system is on the order of 0.7; thus the Pluto/Charon system is significantly "rockier" than the satellites of the giant planets (silicate mass fraction approximately 0.55). This compositional contrast reflects different formation mechanisms: it is likely that Pluto and Charon formed directly from the solar nebula, while the circumplanetary nebulae that produced the giant planet satellites were derived from envelopes that surrounded the forming giant planets (envelopes in which icy planetesimals dissolved more readily than rocky planetesimals). Simple cosmic abundance calculations, and the assumption that the Pluto/Charon system formed directly from solar nebula condensates, strongly suggest that the majority of the carbon in the outer solar nebula was in the form of carbon monoxide; these results are consistent with (1) inheritance from the dense molecular clouds in the interstellar medium (where CH4/CO < 10(-2) in the gas phase) and/or (2) of the Lewis and Prinn kinetic inhibition model of solar nebula chemistry. Theoretical predictions of the C/H enhancements in the atmospheres of the giant planets, when compared to the actual observed enhancements, suggest that 10%, or slightly more, of the carbon in the outer solar nebula was in the form of condensed materials (although the amount of condensed C may have dropped slightly with increasing heliocentric distance). Strict compositional limits computed for the Pluto/Charon system using the densities of CH4 and CO ices indicate that these pure ices are at best minor components in the interiors of these bodies, and imply that CH4 and CO ices were not the dominant C-bearing solids in the outer nebula. Clathrate-hydrates could not have appropriated enough CH4 or CO to be the major form of condensed carbon, although such clathrates may be

  17. Environmental enhancement of swine lagoons through influent treatment

    USDA-ARS?s Scientific Manuscript database

    Confined swine production generates large volumes of wastewater typically stored and treated in anaerobic lagoons. Failure of these lagoons during tropical storms in North Carolina along with major public environmental concerns led to a permanent state moratorium of construction of new anaerobic lag...

  18. Turbulent Concentration of mm-Size Particles in the Protoplanetary Nebula: Scale-Dependent Cascades

    NASA Technical Reports Server (NTRS)

    Cuzzi, J. N.; Hartlep, T.

    2015-01-01

    The initial accretion of primitive bodies (here, asteroids in particular) from freely-floating nebula particles remains problematic. Traditional growth-by-sticking models encounter a formidable "meter-size barrier" (or even a mm-to-cm-size barrier) in turbulent nebulae, making the preconditions for so-called "streaming instabilities" difficult to achieve even for so-called "lucky" particles. Even if growth by sticking could somehow breach the meter size barrier, turbulent nebulae present further obstacles through the 1-10km size range. On the other hand, nonturbulent nebulae form large asteroids too quickly to explain long spreads in formation times, or the dearth of melted asteroids. Theoretical understanding of nebula turbulence is itself in flux; recent models of MRI (magnetically-driven) turbulence favor low-or- no-turbulence environments, but purely hydrodynamic turbulence is making a comeback, with two recently discovered mechanisms generating robust turbulence which do not rely on magnetic fields at all. An important clue regarding planetesimal formation is an apparent 100km diameter peak in the pre-depletion, pre-erosion mass distribution of asteroids; scenarios leading directly from independent nebula particulates to large objects of this size, which avoid the problematic m-km size range, could be called "leapfrog" scenarios. The leapfrog scenario we have studied in detail involves formation of dense clumps of aerodynamically selected, typically mm-size particles in turbulence, which can under certain conditions shrink inexorably on 100-1000 orbit timescales and form 10-100km diameter sandpile planetesimals. There is evidence that at least the ordinary chondrite parent bodies were initially composed entirely of a homogeneous mix of such particles. Thus, while they are arcane, turbulent concentration models acting directly on chondrule size particles are worthy of deeper study. The typical sizes of planetesimals and the rate of their formation can be

  19. NICMOS PEELS AWAY LAYERS OF DUST TO SHOW INNER REGION OF DUSTY NEBULA

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The revived Near Infrared Camera and Multi-Object Spectrometer (NICMOS) aboard NASA's Hubble Space Telescope has penetrated layers of dust in a star-forming cloud to uncover a dense, craggy edifice of dust and gas . This region is called the Cone Nebula (NGC 2264), so named because, in ground-based images, it has a conical shape. NICMOS enables the Hubble telescope to see in near-infrared wavelengths of light, so that it can penetrate the dust that obscures the nebula's inner regions. But the Cone is so dense that even the near-infared 'eyes' of NICMOS can't penetrate all the way through it. The image shows the upper 0.5 light-years of the nebula. The entire nebula is 7 light-years long. The Cone resides in a turbulent star-forming region, located 2,500 light-years away in the constellation Monoceros. Radiation from hot, young stars [located beyond the top of the image] has slowly eroded the nebula over millions of years. Ultraviolet light heats the edges of the dark cloud, releasing gas into the relatively empty region of surrounding space. NICMOS has peeled away the outer layers of dust to reveal even denser dust. The denser regions give the nebula a more three-dimensional structure than can be seen in the visible-light picture at left, taken by the Advanced Camera for Surveys aboard the Hubble telescope. In peering through the dusty facade to the nebula's inner regions, NICMOS has unmasked several stars [yellow dots at upper right]. Astronomers don't know whether these stars are behind the dusty nebula or embedded in it. The four bright stars lined up on the left are in front of the nebula. The human eye cannot see infrared light, so colors have been assigned to correspond with near-infrared wavelengths. The blue light represents shorter near-infrared wavelengths and the red light corresponds to longer wavelengths. The NICMOS color composite image was made by combining photographs taken in J-band, H-band, and Paschen-alpha filters. The NICMOS images were taken

  20. Spring and Summer Proliferation of Floating Macroalgae in a Mediterranean Coastal Lagoon (Tancada Lagoon, Ebro Delta, NE Spain)

    NASA Astrophysics Data System (ADS)

    Menéndez, M.; Comín, F. A.

    2000-08-01

    During the last 10 years, a drastic change in the structure of the community of primary producers has been observed in Tancada Lagoon (Ebro Delta, NE Spain). This consisted of a decrease in the abundance of submerged rooted macrophyte cover and a spring and summer increase in floating macroalgae. Two spatial patterns have been observed. In the west part of the lagoon, Chaetomorpha linum Kützing, dominated during winter and decreased progressively in spring when Cladophora sp. reached its maximum development. In the east part of the lagoon, higher macroalgal diversity was observed, together with lower cover in winter and early spring. Cladophora sp., Gracilaria verrucosa Papenfuss and Chondria tenuissima Agardh, increased cover and biomass in summer. Maximum photosynthetic production was observed in spring for G. verrucosa (10·9 mg O 2 g -1 DW h -1) and C. tenuissima (19·0 mg O 2 g -1 DW h -1) in contrast with Cladophora sp. (15·9 mg O 2 g -1 DW h -1) and Chaetomorpha linum (7·2 mg O 2 g -1 DW h -1) which reached maximum production in summer. Increased conductivity from reduced freshwater inflow, and higher water temperatures during periods of lagoon isolation, mainly in summer, were the main physical factors associated with an increase in floating macroalgal biomass across the lagoon. Reduced nitrogen availability and temperature-related changes in carbon availability during summer were related to a decrease in abundance of C. linum and increases in G. verrucosa and Cladophora sp.

  1. The size and shape of Gum's nebula

    NASA Technical Reports Server (NTRS)

    Johnson, H. M.

    1971-01-01

    The ionizing light of the supernova which produced the Gum nebula is now fossilized in the still live, though failing, H II region. The main body of the nebula suggests a hollow center or shell form, with a characteristic radius of about half the distance to the outlying fragments. The edges of the main body patches are typically sharp and often bright. The structure of the Gum nebula appears to be dependent on the event of ionization and possibly on the details of heating. It is not now an unstructured ambient medium, as it may have been before the recent ionization. Several hypotheses are presented for a structured ambient medium.

  2. Nutrient dynamics in tropical rivers, estuarine-lagoons, and coastal ecosystems along the eastern Hainan Island

    NASA Astrophysics Data System (ADS)

    Li, R. H.; Liu, S. M.; Li, Y. W.; Zhang, G. L.; Ren, J. L.; Zhang, J.

    2013-06-01

    Nutrient dynamics were studied along the eastern Hainan Island based on field observations during 2006-2009, to understand nutrient biogeochemical processes and to have an overview of human perturbations on coastal ecosystems in this tropical region. The concentrations of nutrients in the rivers had seasonal variations enriched with dissolved inorganic nitrogen (DIN). High riverine concentrations of nitrate were mainly originated from agricultural fertilizer input. The ratios of DIN : PO43- ranged from 37 to 1063, suggesting preferential PO43- relative to nitrogen in the rivers. The areal yields of dissolved silicate (DSi) varied from 76 to 448 × 103 mol km-2 yr-1 due to erosion over the drainage area, inducing high levels of DSi among worldwide tropical systems. Aquaculture ponds contained high concentrations of NH4+ (up to 157 μM) and DON (up to 130 μM). Particulate phosphorus concentrations (0.5 ∼1.4 μM) were in lower level comparied with estuaries around the world. Particulate silicate levels in rivers and lagoons were lower than global average level. Nutrient biogeochemistry in coastal areas were affected by human activities (e.g. aquaculture, agriculture), as well as natural events such as typhoon. Nutrient concentrations were low because open sea water dispersed land-derived nutrients. Nutrient budgets were built based on a steady-state box model, which showed that riverine fluxes would be magnified by estuarine processes (e.g. regeneration, desorption) in the Wenchanghe/Wenjiaohe Estuary, Wanquan River estuary, and the Laoyehai Lagoon except in the Xiaohai Lagoon. Riverine and groundwater input were the major sources of nutrients to the Xiaohai Lagoon and the Laiyehai Lagoon, respectively. Riverine input and aquaculture effluent were the major sources of nutrients to the eastern coastal of Hainan Island. Nutrient inputs to the coastal ecosystem can be increased by typhoon-induced runoff of rainwater, and phytoplankton bloom in the sea would be

  3. Biodiversity patterns of macrophyte and macroinvertebrate communities in two lagoons of Western Greece.

    NASA Astrophysics Data System (ADS)

    Fyttis, G.; Reizopoulou, S.; Papastergiadou, E.

    2012-04-01

    Aquatic macrophytes and benthic macroinvertebrates were studied seasonally (Spring, Autumn, Summer) between the years 2009 - 2011 in two coastal lagoons (Kotychi and Prokopos) located in Peloponnese, Greece, in order to investigate spatial and temporal biodiversity trends related to hydrological processes (degree of confinement, nitrates, phosphates, chl-a, total suspended materials, light irradiance, pH, salinity, temperature and dissolved oxygen). Kotychi lagoon presents a better communication with the sea, while Prokopos has a high degree of confinement. Both ecosystems seasonally receive freshwater input from streams. The submerged aquatic macrophytes constituted a major component of the ecosystems studied. In total, 22 taxa of aquatic macrophytes (angiosperms and macroalgae), 16 taxa for Kotychi (2 Rhodophyta, 8 Chlorophyta, 5 Magnoliophyta, 1 Streptophyta) and 14 taxa for Prokopos (1 Rhodophyta, 5 Chlorophyta, 5 Magnoliophyta, 3 Streptophyta) were found. Ruppia cirrhosa, and Potamogeton pectinatus were dominant in both lagoons. Kotychi lagoon was also dominated by Zostera noltii and Prokopos by Zannichellia pallustris ssp. pedicellata, while the biomass of aquatic species peaked during the summer periods, in both lagoons. The total number of macroinvertebrates found in the lagoons was 28 taxa for Kotychi and 19 for Prokopos. Chironomidae were dominant in both lagoons, while Kotychi was also dominated by Lekanesphaera monodi and Monocorophium insidiosum, and Prokopos by Ostracoda and Lekanesphaera monodi. Benthic diversity ranged from 1.33 to 2.57 in Kotychi and from 0.67 to 2.48 in Prokopos. Species richness, diversity, and abundance of benthic macroinvertebrates were strongly related to aquatic vegetation and to the degree of communication with the marine environment. Moreover, species richness and abundance of both macrophytes and macroinvertebrates were mainly dependent on depth, temperature, pH and concentration of total suspended materials (TSM). Results

  4. Water-quality monitoring and biological integrity assessment in the Indian River Lagoon, Florida: Status, trends, and loadings (1988--1994)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sigua, G.C.; Steward, J.S.; Tweedale, W.A.

    2000-02-01

    The Indian River Lagoon (IRL) system that extends from Ponce DeLeon inlet to Jupiter inlet is comprised of three interconnected estuarine lagoons: The Mosquito Lagoon (ML), the Banana River Lagoon (BRL), and the Indian River Lagoon. The declines in both the aerial coverage and species diversity of seagrass communities within the IRL system are believed to be due in part to continued degradation of water quality. Large inflows of phosphorus (P) and nitrogen (N)-laden storm-water from urban areas an agricultural land have been correlated with higher chlorophyll a production in the central, south central, and the south segments of themore » lagoon. In a system as large and complex as the lagoon, N and P limitations are potentially subject to significant spatial and temporal variability. Total Kjeidahl nitrogen (TN) was higher in the north and lower in the south. The reverse pattern was observed for total P (TP), i.e., lowest in the north and highest at the south ends of the IRL. This increased P concentration in the SIRL appears to have a significantly large effect on chlorophyll a production compared with the other segments, as indicated by stepwise regression statistics. This relationship can be expressed as follows: South IRL [chlorophyll a] = {minus}8.52 + 162.41 [orthophosphate] + 7.86 [total nitrogen] + 0.38 [turbidity]; R{sup 2} = 0.98**.« less

  5. New portrait of Omega Nebula's glistening watercolours

    NASA Astrophysics Data System (ADS)

    2009-07-01

    The Omega Nebula, sometimes called the Swan Nebula, is a dazzling stellar nursery located about 5500 light-years away towards the constellation of Sagittarius (the Archer). An active star-forming region of gas and dust about 15 light-years across, the nebula has recently spawned a cluster of massive, hot stars. The intense light and strong winds from these hulking infants have carved remarkable filigree structures in the gas and dust. When seen through a small telescope the nebula has a shape that reminds some observers of the final letter of the Greek alphabet, omega, while others see a swan with its distinctive long, curved neck. Yet other nicknames for this evocative cosmic landmark include the Horseshoe and the Lobster Nebula. Swiss astronomer Jean-Philippe Loys de Chéseaux discovered the nebula around 1745. The French comet hunter Charles Messier independently rediscovered it about twenty years later and included it as number 17 in his famous catalogue. In a small telescope, the Omega Nebula appears as an enigmatic ghostly bar of light set against the star fields of the Milky Way. Early observers were unsure whether this curiosity was really a cloud of gas or a remote cluster of stars too faint to be resolved. In 1866, William Huggins settled the debate when he confirmed the Omega Nebula to be a cloud of glowing gas, through the use of a new instrument, the astronomical spectrograph. In recent years, astronomers have discovered that the Omega Nebula is one of the youngest and most massive star-forming regions in the Milky Way. Active star-birth started a few million years ago and continues through today. The brightly shining gas shown in this picture is just a blister erupting from the side of a much larger dark cloud of molecular gas. The dust that is so prominent in this picture comes from the remains of massive hot stars that have ended their brief lives and ejected material back into space, as well as the cosmic detritus from which future suns form. The

  6. VizieR Online Data Catalog: MYStIX: the Chandra X-ray sources (Kuhn+, 2013)

    NASA Astrophysics Data System (ADS)

    Kuhn, M. A.; Getman, K. V.; Broos, P. S.; Townsley, L. K.; Feigelson, E. D.

    2013-11-01

    X-ray observations were made with the imaging array on the Advanced CCD Imaging Spectrometer (ACIS-I) on board the Chandra X-Ray Observatory. This array of four CCD detectors subtends 17'x17' on the sky. Data were acquired from the Chandra Data Archive from 2001 Jan to Mar 2008 for 10 MYStIX fields (Flame Nebula, RCW 36, NGC 2264, Rosette Nebula, Lagoon Nebula, NGC 2362, DR 21, RCW 38, Trifid Nebula and NGC 1893); see table1. (2 data files).

  7. Crab Nebula from Five Observatories

    NASA Image and Video Library

    2017-05-10

    In the summer of the year 1054 AD, Chinese astronomers saw a new "guest star," that appeared six times brighter than Venus. So bright in fact, it could be seen during the daytime for several months. This "guest star" was forgotten about until 700 years later with the advent of telescopes. Astronomers saw a tentacle-like nebula in the place of the vanished star and called it the Crab Nebula. Today we know it as the expanding gaseous remnant from a star that self-detonated as a supernova, briefly shining as brightly as 400 million suns. The explosion took place 6,500 light-years away. If the blast had instead happened 50 light-years away it would have irradiated Earth, wiping out most life forms. In the late 1960s astronomers discovered the crushed heart of the doomed star, an ultra-dense neutron star that is a dynamo of intense magnetic field and radiation energizing the nebula. Astronomers therefore need to study the Crab Nebula across a broad range of electromagnetic radiation, from X-rays to radio waves. This image combines data from five different telescopes: the VLA (radio) in red; Spitzer Space Telescope (infrared) in yellow; Hubble Space Telescope (visible) in green; XMM-Newton (ultraviolet) in blue; and Chandra X-ray Observatory (X-ray) in purple. More images and an animation are available at https://photojournal.jpl.nasa.gov/catalog/PIA21474

  8. THE MID-INFRARED EXTINCTION LAW AND ITS VARIATION IN THE COALSACK NEBULA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Shu; Gao Jian; Jiang, B. W.

    In recent years, the wavelength dependence of interstellar extinction from the ultraviolet (UV) to the near- and mid-infrared (IR) has been studied extensively. Although it is well established that the UV/optical extinction law varies significantly among the different lines of sight, it is not clear how IR extinction varies among various environments. In this work, using the color-excess method and taking red giants as the extinction tracer, we determine interstellar extinction A{sub {lambda}} in the four Spitzer/IRAC bands in [3.6], [4.5], [5.8], [8.0] {mu}m (relative to A{sub K{sub s}}, extinction in the Two Micron All Sky Survey (2MASS) K{sub s}more » band at 2.16 {mu}m) of the Coalsack nebula, a nearby starless dark cloud, based on the data obtained from the 2MASS and Spitzer/GLIMPSE surveys. We select five individual regions across the nebula that span a wide variety of physical conditions ranging from diffuse and translucent to dense environments, as traced by the visual extinction, the Spitzer/MIPS 24 {mu}m emission, and CO emission. We find that A{sub {lambda}}/A{sub K{sub s}}, mid-IR extinction relative to A{sub K{sub s}}, decreases from diffuse to dense environments, which may be explained in terms of ineffective dust growth in dense regions. The mean extinction (relative to A{sub K{sub s}}) is calculated for the four IRAC bands as well and exhibits a flat mid-IR extinction law consistent with previous determinations for other regions. Extinction in the IRAC 4.5 {mu}m band is anomalously high, much higher than that of the other three IRAC bands, and cannot be explained in terms of CO and CO{sub 2} ice. Mid-IR extinction in the four IRAC bands has also been derived for four representative regions in the Coalsack Globule 2, which respectively exhibit strong ice absorption, moderate or weak ice absorption, and very weak or no ice absorption. The derived mid-IR extinction curves are all flat, with A{sub {lambda}}/A{sub K{sub s}} increasing with the decrease

  9. Hubble Images Searchlight Beams from a Preplanetary Nebula

    NASA Image and Video Library

    2017-12-08

    NASA image release April 27, 2012 The NASA/ESA Hubble Space Telescope has been at the cutting edge of research into what happens to stars like our sun at the ends of their lives. One stage that stars pass through as they run out of nuclear fuel is called the preplanetary or protoplanetary nebula stage. This Hubble image of the Egg Nebula shows one of the best views to date of this brief but dramatic phase in a star’s life. The preplanetary nebula phase is a short period in the cycle of stellar evolution, and has nothing to do with planets. Over a few thousand years, the hot remains of the aging star in the center of the nebula heat it up, excite the gas, and make it glow as a subsequent planetary nebula. The short lifespan of preplanetary nebulae means there are relatively few of them in existence at any one time. Moreover, they are very dim, requiring powerful telescopes to be seen. This combination of rarity and faintness means they were only discovered comparatively recently. The Egg Nebula, the first to be discovered, was first spotted less than 40 years ago, and many aspects of this class of object remain shrouded in mystery. At the center of this image, and hidden in a thick cloud of dust, is the nebula’s central star. While we can’t see the star directly, four searchlight beams of light coming from it shine out through the nebula. It is thought that ring-shaped holes in the thick cocoon of dust, carved by jets coming from the star, let the beams of light emerge through the otherwise opaque cloud. The precise mechanism by which stellar jets produce these holes is not known for certain, but one possible explanation is that a binary star system, rather than a single star, exists at the center of the nebula. The onion-like layered structure of the more diffuse cloud surrounding the central cocoon is caused by periodic bursts of material being ejected from the dying star. The bursts typically occur every few hundred years. The distance to the Egg Nebula is

  10. [Distribution of aquatic birds in oxidation lagoons of La Paz city in South Baja California, Mexico].

    PubMed

    Zamora-Orozco, Elvia Margarita; Carmona, Roberto; Brabata, Georgina

    2007-06-01

    Taxonomic composition, spatial and temporal distribution of aquatic birds in oxidation lagoons (LO) of La Paz city in south Baja California, Mexico, were determined during 24 censuses realized in two-week intervals (April/98-March/99). There are five lagoons of5 Ha each and 17 ha of terrains constantly flooded that serve as feeding areas for cattle and birds. One hundred twenty three species were observed, 75 of which were aquatic birds. A total of 46 041 observations were made (average 1 918 birds/census). Richness and abundance of aquatic birds were influenced mainly by migration of anatids and sandpipers. The first group had the greatest abundance due to its affinity towards fresh water bodies. The terrains were the favorite sites of dabbling ducks (Anas) and sandpipers. In contrast, two of the most abundant species (Oxyura jamaicensis, 12.5% of all species, and Fulica americana, 8.8 %) restricted their presence to the oxidation lagoons. LO presented a bird structure of its own and atypical, according to the dryness of the region.

  11. Zooplankton responses to sandbar opening in a tropical eutrophic coastal lagoon

    NASA Astrophysics Data System (ADS)

    Santangelo, Jayme M.; de M. Rocha, Adriana; Bozelli, Reinaldo L.; Carneiro, Luciana S.; de A. Esteves, Francisco

    2007-02-01

    The effects of a disturbance by sandbar opening on the zooplankton community were evaluated through a long-term study in an eutrophic and oligohaline system, Imboassica Lagoon, Rio de Janeiro, Brazil. Zooplankton samples and limnological data were collected monthly from March 2000 to February 2003. Before the sandbar was opened in February 2001, the lagoon showed eutrophic conditions, with high mean nutrient concentrations and low salinity (total nitrogen - TN = 190.28 μM, chlorophyll a content - Chl. a = 104.60 μg/L and salinity = 0.87'). During this period, the zooplankton species present, such as the rotifers Brachionus calyciflorus and Brachionus havanaensis, were typical of freshwater to oligohaline and eutrophic environments. After the sandbar opening, the lagoon changed to a lower trophic status and increased salinity (TN = 55.11 μM, Chl. a = 27.56 μg/L and salinity = 19.64'). As a result, the zooplankton community came to consist largely of the rotifer Brachionus plicatilis, marine copepods and meroplanktonic larvae, mainly Gastropoda. Salinity was the main force structuring the zooplankton community after the sandbar opening. Two years after this episode, the prior zooplankton community had not reestablished itself, indicating a low resilience to this disturbance. The conditions developed prior to a sandbar opening can be crucial to the community responses in the face of this disturbance and for the capacity of the original zooplankton community to re-establish itself.

  12. Hatching rhythms and dispersion of decapod crustacean larvae in a brackish coastal lagoon in Argentina

    NASA Astrophysics Data System (ADS)

    Anger, K.; Spivak, E.; Bas, C.; Ismael, D.; Luppi, T.

    1994-12-01

    Mar Chiquita, a brackish coastal lagoon in central Argentina, is inhabited by dense populations of two intertidal grapsid crab species, Cyrtograpsus angulatus and Chasmagnathus granulata. During a preliminary one-year study and a subsequent intensive sampling programme (November December 1992), the physical properties and the occurrence of decapod crustacean larvae in the surface water of the lagoon were investigated. The lagoon is characterized by highly variable physical conditions, with oligohaline waters frequently predominating over extended periods. The adjacent coastal waters show a complex pattern of semidiurnal tides that often do not influence the lagoon, due to the existence of a sandbar across its entrance. Besides frequently occurring larvae (exclusively freshly hatched zoeae and a few megalopae) of the two dominating crab species, those of three other brachyurans ( Plathyxanthus crenulatus, Uca uruguayensis, Pinnixa patagonica) and of one anomuran (the porcellanid Pachycheles haigae) were also found occasionally. Caridean shrimp ( Palaemonetes argentinus) larvae occurred in a moderate number of samples, with a maximum density of 800·m-3. The highest larval abundance was recorded in C. angulatus, with almost 8000°m-3. Significantly more C. angulatus and C. granulata zoeae occurred at night than during daylight conditions, and more larvae (statistically significant only in the former species) during ebb (outflowing) than during flood (inflowing) tides. In consequence, most crab zoeae were observed during nocturnal ebb, the least with diurnal flood tides. Our data suggest that crab larvae do not develop in the lagoon, where the adult populations live, but exhibit an export strategy, probably based upon exogenously coordinated egg hatching rhythms. Zoeal development must take place in coastal marine waters, from where the megalopa eventually returns for settlement and metamorphosis in the lagoon. Significantly higher larval frequency of C. granulata in

  13. Sources of fecal indicator bacteria to groundwater, Malibu Lagoon and the near-shore ocean, Malibu, California, USA

    USGS Publications Warehouse

    Izbicki, John A.; Swarzenski, Peter W.; Burton, Carmen A.; Van De Werfhorst, Laurie; Holden, Patricia A.; Dubinsky, Eric A.

    2012-01-01

    Onsite wastewater treatment systems (OWTS) used to treat residential and commercial sewage near Malibu, California have been implicated as a possible source of fecal indicator bacteria (FIB) to Malibu Lagoon and the near-shore ocean. For this to occur, treated wastewater must first move through groundwater before discharging to the Lagoon or ocean. In July 2009 and April 2010, δ18O and δD data showed that some samples from water-table wells contained as much as 70% wastewater; at that time FIB concentrations in those samples were generally less than the detection limit of 1 Most Probable Number (MPN) per 100 milliliters (mL). In contrast, Malibu Lagoon had total coliform, Escherichia coli, and enterococci concentrations as high as 650,000, 130,000, and 5,500 MPN per 100 mL, respectively, and as many as 12% of samples from nearby ocean beaches exceeded the U.S. Environmental Protection Agency single sample enterococci standard for marine recreational water of 104 MPN per 100 mL. Human-associated Bacteroidales, an indicator of human-fecal contamination, were not detected in water from wells, Malibu Lagoon, or the near-shore ocean. Similarly, microarray (PhyloChip) data show Bacteroidales and Fimicutes Operational Taxanomic Units (OTUs) present in OWTS were largely absent in groundwater; in contrast, 50% of Bacteroidales and Fimicutes OTUs present in the near-shore ocean were also present in gull feces. Terminal-Restriction Length Fragment Polymorphism (T-RFLP) and phospholipid fatty acid (PLFA) data showed that microbial communities in groundwater were different and less abundant than communities in OWTS, Malibu Lagoon, or the near-shore ocean. However, organic compounds indicative of wastewater (such as fecal sterols, bisphenol-A and cosmetics) were present in groundwater having a high percentage of wastewater and were present in groundwater discharging to the ocean. FIB in the near-shore ocean varied with tides, ocean swells, and waves. Movement of water from

  14. Evolutionary status of the Of?p star HD 148937 and of its surrounding nebula NGC 6164/5

    NASA Astrophysics Data System (ADS)

    Mahy, L.; Hutsemékers, D.; Nazé, Y.; Royer, P.; Lebouteiller, V.; Waelkens, C.

    2017-03-01

    Aims: The magnetic star HD 148937 is the only Galactic Of?p star surrounded by a nebula. The structure of this nebula is particularly complex and is composed, from the center out outwards, of a close bipolar ejecta nebula (NGC 6164/5), an ellipsoidal wind-blown shell, and a spherically symmetric Strömgren sphere. The exact formation process of this nebula and its precise relation to the star's evolution remain unknown. Methods: We analyzed infrared Spitzer IRS and far-infrared Herschel/PACS observations of the NGC 6164/5 nebula. The Herschel imaging allowed us to constrain the global morphology of the nebula. We also combined the infrared spectra with optical spectra of the central star to constrain its evolutionary status. We used these data to derive the abundances in the ejected material. To relate this information to the evolutionary status of the star, we also determined the fundamental parameters of HD 148937 using the CMFGEN atmosphere code. Results: The Hα image displays a bipolar or "8"-shaped ionized nebula, whilst the infrared images show dust to be more concentrated around the central object. We determine nebular abundance ratios of N/O = 1.06 close to the star, and N/O = 1.54 in the bright lobe constituting NGC 6164. Interestingly, the parts of the nebula located further from HD 148937 appear more enriched in stellar material than the part located closer to the star. Evolutionary tracks suggest that these ejecta have occured 1.2-1.3 and 0.6 Myr ago, respectively. In addition, we derive abundances of argon for the nebula compatible with the solar values and we find a depletion of neon and sulfur. The combined analyses of the known kinematics and of the new abundances of the nebula suggest either a helical morphology for the nebula, possibly linked to the magnetic geometry, or the occurrence of a binary merger. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important

  15. The Nature of the Stingray Nebula from Radio Observations

    NASA Astrophysics Data System (ADS)

    Harvey-Smith, Lisa; Hardwick, Jennifer A.; De Marco, Orsola; Parthasarathy, Mudumba; Gonidakis, Ioannis; Akhter, Shaila; Cunningham, Maria; Green, James A.

    2018-06-01

    We have analysed the full suite of Australia Telescope Compact Array data for the Stingray planetary nebula. Data were taken in the 4- to 23-GHz range of radio frequencies between 1991 and 2016. The radio flux density of the nebula generally declined during that period, but between 2013 and 2016 it shows signs of halting that decline. We produced the first spatially resolved radio images of the Stingray nebula from data taken in 2005. A ring structure, which appears to be associated with the ring seen in HST images, was visible. In addition, we found a narrow extension to the radio emission towards the eastern and western edges of the nebula. We derived the emission measure of the nebula - this decreased between 1992 and 2011, suggesting that the nebula is undergoing recombination. The radio spectral index is broadly consistent with a free-free emission mechanism, however a single data point hints that a steeper spectral index has possibly emerged since 2013, which could indicate the presence of synchrotron emission. If a non-thermal component component has emerged, such as one associated with a region that is launching a jet or outflow, we predict that it would intensify in the years to come.

  16. On the Lateral Retreat of Salt Marshes: Field Monitoring in the Venice Lagoon (Italy)

    NASA Astrophysics Data System (ADS)

    Solari, L.; Bendoni, M.; Mel, R.; Oumeraci, H.; Francalanci, S.; Lanzoni, S.

    2014-12-01

    Salt marshes are geomorphic structures located in ecotone environments such as lagoon and estuaries, providing lot of ecosystem services to local population. In the last decades they are disappearing due to several factors such as sea level rise, subsidence and edge erosion due to surface waves. The latter is likely the chief mechanism modeling marsh boundaries and leading to the loss of wide marsh areas. In the case of the Venice Lagoon, from the beginning of the last century, the whole salt marsh surface has more than halved and trends indicate that the salt marshes might completely disappear over the next 50 years. Here, we present a field monitoring activity that we are currently carrying out on a retreating salt marsh located in the north part of the Lagoon of Venice (Italy). The marsh is subject to North-East (Bora) wind. Marsh area loss during the last decades has been documented through the comparison of georeferenced aerial photographs showing a retreat rate of the order of 1 m/year. Field measurements started by the end of November 2013 and consist of: salt marsh bank geometry at different cross-sections and wave climate in the lagoon about 30 m in front of the salt marsh. Erosion data are obtained by means of erosion pins located horizontally on the marsh scarp; at higher banks (about 0.9 m), two pins are located along the same vertical direction, for lower banks (about 0.4m), only one pin is employed. Significant wave height has been measured during three storm surges by means of pressure transducers (Pts). The measured wave climate in front of the bank was then put into relationship with the offshore wave climate estimated using wind data (intensity and direction) and bathymetric data. Wind intensity and direction is measured hourly by several measurement stations located in the Lagoon of Venice. In this way, it is possible to extrapolate wave climate hourly at the monitored marsh and calculate the wave power that acted on the bank in a given time

  17. VizieR Online Data Catalog: MIPS 24um nebulae (Gvaramadze+, 2010)

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.; Kniazev, A. Y.; Fabrika, S.

    2011-03-01

    Massive evolved stars lose a large fraction of their mass via copious stellar wind or instant outbursts. During certain evolutionary phases, they can be identified by the presence of their circumstellar nebulae. In this paper, we present the results of a search for compact nebulae (reminiscent of circumstellar nebulae around evolved massive stars) using archival 24um data obtained with the Multiband Imaging Photometer for Spitzer. We have discovered 115 nebulae, most of which bear a striking resemblance to the circumstellar nebulae associated with luminous blue variables (LBVs) and late WN-type (WNL) Wolf-Rayet (WR) stars in the Milky Way and the Large Magellanic Cloud (LMC). (1 data file).

  18. Doradus Nebula

    NASA Image and Video Library

    1999-12-01

    A panoramic view of a vast, sculpted area of gas and dust where thousands of stars are being born has been captured by NASA's Hubble Space Telescope. The image, taken by Hubble's Wide Field and Planetary Camera 2, is online at http://hubblesite.org/newscenter/archive/releases/2001/21/image/a/. The camera was designed and built by NASA's Jet Propulsion Laboratory, Pasadena, Calif. The photo offers an unprecedented, detailed view of the entire inner region of the fertile, star-forming 30 Doradus Nebula. The mosaic picture shows that ultraviolet radiation and high-speed material unleashed by the stars in the cluster, called R136 (the large blue blob left of center), are weaving a tapestry of creation and destruction, triggering the collapse of looming gas and dust clouds and forming pillar-like structures that incubate newborn stars. The 30 Doradus Nebula is in the Large Magellanic Cloud, a satellite galaxy of the Milky Way located 170,000 light-years from Earth. Nebulas like 30 Doradus are signposts of recent star birth. High-energy ultraviolet radiation from young, hot, massive stars in R136 causes surrounding gaseous material to glow. Previous Hubble telescope observations showed that R136 contains several dozen of the most massive stars known, each about 100 times the mass of the Sun and about 10 times as hot. These stellar behemoths formed about 2 million years ago. The stars in R136 produce intense "stellar winds," streams of material traveling at several million miles an hour. These winds push the gas away from the cluster and compress the inner regions of the surrounding gas and dust clouds (seen in the image as the pinkish material). The intense pressure triggers the collapse of parts of the clouds, producing a new star formation around the central cluster. Most stars in the nursery are not visible because they are still encased in cocoons of gas and dust. This mosaic image of 30 Doradus consists of five overlapping pictures taken between January 1994 and

  19. Overview of ecotoxicological studies performed in the Venice Lagoon (Italy).

    PubMed

    Losso, C; Ghirardini, A Volpi

    2010-01-01

    This work reports on the state of the art of the bioindicators used to assess environmental quality (regarding chemical pollutant impacts) in the Venice lagoon. After a brief description of the roles, advantages and limitations of bioindicators in marine and transitional environments and a summary of the Venice lagoon characteristics, the ecotoxicological methods used during scientific studies and research projects in the Lagoon are reported. Since not all data are available and no database can be formulated, the main evidence from toxicity bioassays, biomarkers and bioaccumulation analyses since the end of the 1970s is spatially synthesized using maps and discussed according to the four Venice lagoon basins. The majority of indicators showed that the Lido basin (north-central lagoon), affected by the presence of the industrial area and the city of Venice, is the one most highly impacted (particularly in the sites located within or in front of the industrial area, which showed very high sediment toxicity and high levels of DNA damage). The Malamocco basin (south-central lagoon) seems to be the least problematic. The southern basin (Chioggia basin) was shown to be impacted by urban contaminants from the town of Chioggia. The northern basin (Treporti basin) presented both impacted sites (high toxicity and high bioaccumulation factor) and relatively unpolluted sites (absence of toxicity, absence of imposex and low levels of bioaccumulation). This review can serve as a basis on which to select pragmatic, cost-effective biomonitoring techniques for environmental effects in lagoon ecosystems.

  20. The Pacman Nebula

    NASA Image and Video Library

    2011-09-28

    This composite image of the star cluster NGC 28 contains X-ray data from Chandra, in purple, with infrared observations from Spitzer, in red, green, blue. NGC 281 is known informally as the Pacman Nebula because of its appearance in optical images.

  1. Ionization nebulae surrounding supersoft X-ray sources

    NASA Technical Reports Server (NTRS)

    Rappaport, S.; Chiang, E.; Kallman, T.; Malina, R.

    1994-01-01

    In this work we carry out a theoretical investigation of a new type of astrophysical gaseous nebula, viz., ionized regions surrounding supersoft X-ray sources. Supersoft X-ray sources, many of which have characteristic luminosities of approximately 10(exp 37)-(10(exp 38) ergs/s and effective temperatures of approximately 4 x 10(exp 5) K, were first discovered with the Einstein Observatory. These sources have now been shown to constitute a distinct class of X-ray source and are being found in substantial numbers with ROSAT. We predict that these sources should be surrounded by regions of ionized hydrogen and helium with properties that are distinct from other astrophysical gaseous nebulae. We present caluations of the ionization and temperature structure of these ionization nebulae, as well as the expected optical line fluxes. The ionization profiles for both hydrogen and helium exhibit substantially more gradual transitions from the ionized to the unionized state than is the case for conventional H II regions. The calculated optical line intensitites are presented as absolute fluxes from sources in the Large Magellanic Cloud and as fractions of the central source luminosity. We find, in particular, that (O III) lambda 5008 and He II lambda 4686 are especially prominent in these ionization nebulae as compared to other astrophysical nebulae. We propose that searches for supersoft X-rays via their characteristic optical lines may reveal sources in regions where the soft X-rays are nearly completely absorbed by the interstellar medium.

  2. The Eagle Nebula: a spectral template for star forming regions

    NASA Astrophysics Data System (ADS)

    Flagey, Nicolas; Boulanger, Francois; Carey, Sean; Compiegne, Mathieu; Dwek, Eli; Habart, Emilie; Indebetouw, Remy; Montmerle, Thierry; Noriega-Crespo, Alberto

    2008-03-01

    IRAC and MIPS have revealed spectacular images of massive star forming regions in the Galaxy. These vivid illustrations of the interaction between the stars, through their winds and radiation, and their environment, made of gas and dust, still needs to be explained. The large scale picture of layered shells of gas components, is affected by the small scale interaction of stars with the clumpy medium that surrounds them. To understand spatial variations of physical conditions and dust properties on small scales, spectroscopic imaging observations are required on a nearby object. The iconic Eagle Nebula (M16) is one of the nearest and most observed star forming region of our Galaxy and as such, is a well suited template to obtain this missing data set. We thus propose a complete spectral map of the Eagle Nebula (M16) with the IRS/Long Low module (15-38 microns) and MIPS/SED mode (55-95 microns). Analysis of the dust emission, spectral features and continuum, and of the H2 and fine-structure gas lines within our models will provide us with constraints on the physical conditions (gas ionization state, pressure, radiation field) and dust properties (temperature, size distribution) at each position within the nebula. Only such a spatially and spectrally complete map will allow us to characterize small scale structure and dust evolution within the global context and understand the impact of small scale structure on the evolution of dusty star forming regions. This project takes advantage of the unique ability of IRS at obtaining sensitive spectral maps covering large areas.

  3. Macroalgae, nutrient cycles, and pollutants in the lagoon of Venice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sfriso, A.; Pavoni, B.; Marcomini, A.

    1992-12-01

    The Lagoon of Venice is a wide, shallow coastal basin that extends for about 50 km along the northwest coast of the Adriatic Sea. The lagoon has been substantially modified through the actions of man over the last century through the artificial control of the hydraulic dynamics of the lagoon including the construction of channels to facilitate navigation. The lagoon is subjected to considerable pollutant loading through the drainage of land under cultivation, municipal sewage, and industrial effluents. In this paper are reported the results of observations designed to document recent changes in macroalgal species composition, seasonal cycles of primarymore » producers and nutrient levels, and the effects of the macroalgal community on concentrations of organic and inorganic pollutants. The dominant macroalgae in the lagoon was Ulva rigida, and the levels of plant nutrients and pollutants were influenced by the seasonal cycles of the macroalgal community. 44 refs., 11 figs., 2 tabs.« less

  4. Macrobenthic molluscs from a marine - lagoonal environmental transition in Lesvos Island (Greece).

    PubMed

    Evagelopoulos, Athanasios; Koutsoubas, Drosos; Gerovasileiou, Vasilis; Katsiaras, Nikolaos

    2016-01-01

    This paper describes an occurence dataset, also including numerical abundance and biomass data, pertaining to the macrobenthic molluscan assemblages from a marine - lagoonal environmental transition. The study system was the soft-substrate benthoscape of the area of the Kalloni solar saltworks (Lesvos Island, Greece). Specifically, the study area extended from the infralittoral zone of the inner Kalloni Gulf (marine habitat) to the bottoms of the first two evaporation ponds of the Kalloni solar saltworks (lagoonal habitat). Bottom sediment samples (3 replicates) were collected with a Van Veen grab sampler (0.1 m 2 ) at four sampling sites, along a 1.5 km long line transect that spanned the marine - lagoonal environmental transition. A total of four surveys were carried out seasonally in 2004.  A total of 39,345 molluscan individuals were sorted out of the sediment samples and were identified to 71 species, belonging to the Gastropoda (36), Bivalvia (34) and Scaphopoda (1) classes. Numerical abundance and wet biomass (with shells) data are included in the dataset. The dataset described in the present paper partially fills a significant gap in the scientific literature: Because ecological research of coastal lagoons has seldom explicitly considered the marine - lagoonal habitats interface, there are no openly accessible datasets pertaining to the particular structural component of the transitional waters benthoscapes of the Mediterranean Sea. Such datasets could prove valuable in the research of the structure and functioning of transitional waters benthoscapes. The present dataset is available as a supplementary file (Suppl. material 1) and can also be accessed at http://ipt.medobis.eu/resource?r=kalloni_saltworks_phd.

  5. Surface Water Quality Survey of Northern Indian River Lagoon from Sebastian Inlet to Mosquito Lagoon

    NASA Astrophysics Data System (ADS)

    Weaver, R. J.; Webb, B. M.

    2012-12-01

    Following news of an emerging brown tide algal bloom in the northern Indian River Lagoon (IRL), researchers sought to gain insight into the surface water quality in the IRL, as well as the extent of the algae coverage. A Portable SeaKeeper from YSI, mounted to a personal watercraft-based coastal profiling system, autonomously collected and analyzed the surface water. The system operates by recording sample data every 12 seconds while continuously underway at speeds up to and greater than 50 km/hr. The researchers covered a transect that started at Sebastian Inlet and followed a zig-zag path extending up through the Haulover Canal and into the Mosquito Lagoon. The survey path covered 166.7 km, and collected 2248 samples. Along the way stops were made at water quality stations used by the Saint John's River Water Management District, so that the data collected can be incorporated into ongoing monitoring efforts. The system analyzed the surface water for dissolved oxygen, pH, chlorophyll-a, salinity, temperature, turbidity, refined fuels, and CDOM. In the two days following the lagoon survey, the inlets at Port Canaveral and Sebastian were also surveyed for tidal currents and hydrography. The IRL transect survey data recorded evidence of the southern extent of the algae bloom in both chlorophyll-a and pH levels. Visual evidence of the bloom was striking as the water in the northern IRL turned a milk chocolaty brown color. Chlorophyll-a levels in the two inlets suggested bloom activity at these locations; however this bloom was different. This oceanic bloom was a result of a persistent upwelling event along the East Florida shelf, and the color was a paler green-yellow. The near-synoptic nature of the comprehensive lagoon survey, conducted in just over 7 hours, allows researchers to obtain a better understanding of water quality in coastal lagoons. Elevated levels of salinity, temperature, and refined fuels in the northern IRL indicate a low exchange rate and absence

  6. Metagenomic Survey of a Military-Impacted Lagoon in Puerto Rico

    NASA Astrophysics Data System (ADS)

    Davila-Santiago, L.; DeLeon-Rodriguez, N.; LaSanta-Pagan, K. Y.; Kurt, Z.; Padilla-Crespo, E.; Hatt, J.; Spain, J.; Konstantinidis, K.; Massol-Deya, A.

    2016-02-01

    Military practices have left a legacy of contamination worldwide. In Puerto Rico, the east part of the populated Vieques Island was used for over fifty years as a bombing range by the Navy. A year after the base was closed in 2003, the impacted area was designated as a Superfund site. Previous studies have shown elevated levels of heavy metals, explosives (e.g. RDX, TNT, HMX), and other toxic chemicals at the site. The Anones Lagoon, located in the middle of the bombing range is one of the most polluted spots within the site. Intermittently, the lagoon is connected through a channel to the Caribbean Sea. In order to describe the microbial diversity and its potential contribution to natural attenuation of explosives, sediment samples have been collected since 2005. Sediment from reference lagoons (San Juan and Cabo Rojo) have also been sampled and analyzed in parallel for comparisons. Total DNA was extracted and sequenced using Ilumina My-Seq platform. Results indicate that Gammaproteobacteria were abundant in all lagoons samples but the Vieques lagoon harbors overall different microbial taxa. Alpha diversity analysis showed that Anones was less diverse compared to the pristine Cabo Rojo lagoon. Importantly, a clear shift was seen in the Anones Lagoon in 2013 compared to 2005, were Halomonas spp. became dominant (up to 25%) while other groups like Marinobacter showed signs of enrichment as well. Interestingly, these groups have been shown to degrade explosive-related chemicals in tropical sediments. Functional gene annotation of the Anones metagenome showed the presence of RDX degradation genes such as cytochrome p450. This study is the first comparative metagenomic survey of lagoons in Puerto Rico that explored the microbial diversity and biodegradation potential at Vieques.

  7. Sludge Lagoons. Sludge Treatment and Disposal Course #166. Instructor's Guide [and] Student Workbook.

    ERIC Educational Resources Information Center

    Sharman, Ronald M.

    This lesson describes three different types of sludge lagoons: (1) drying lagoons; (2) facultative lagoons; and (3) anaerobic lagoons. Normal operating sequence and equipment are also described. The lesson is designed to be used in sequence with the complete Sludge Treatment and Disposal Course #166 or as an independent lesson. The instructor's…

  8. Lagoonal deposits in the Upper Cretaceous Rock Springs Formation (Mesaverde Group), southwest Wyoming

    USGS Publications Warehouse

    Kirschbaum, M.A.

    1989-01-01

    Most paleogeographic reconstructions of the Rock Springs Formation show shorelines having lobate to arcuate deltas. These shorelines are oriented NE-SW, with the sea to the southeast. Brackish-water bodies are usually shown in interdistributary areas or associated with abandoned delta lobes, and are open to the sea. In this study, a sedimentary sequence 30-50 m thick is interpreted as interdeltaic deposits. Brackish-water deposits within the sequence are interpreted as interdeltaic lagoons rather than interdistributary bays. Three facies associations (units) are recognized in nine measured sections of the study interval. Unit A consists of interbedded sandstone, mudrock and coal which occur in both fining- and coarsening-upward sequences less than 10 m thick. Fining-upward sequences decrease in thickness and frequency upwards in unit A and are interpreted as distributary channels. Coarsening-upward sequences associated with the channels are interpreted as crevasse splays that filled lakes or interdistributary bays. In the upper part of the unit where only minor channels are present, the coarsening-upward sequences are interpreted as bay deltas. Unit B consists of fossiliferous silty shale and bioturbated sandy siltstone. A low-diversity fauna of bivalves, gastropods, ostracods and foraminifers indicates that brackish-water conditions existed. Unit B intertongues with unit A to the northwest and with unit C to the southeast, and is interpreted as lagoonal deposits. Unit C consists of crossbedded and burrowed sandstone in beds 0.5-9 m thick. Sandstones are laterally continuous in the southeast but become tabular bodies enclosed within unit B to the northwest. Laterally continuous sandstones are interpreted as shoreface deposits on the basis of multidirectional crossbeds, marine trace fossils and continuity. Tabular sandstones are interpreted as flood-tidal deltas on the basis of NW-oriented crossbeds, pinchouts to the northwest and enclosure within unit B. Scoured

  9. Eddy Covariance Measurements of Methane Emissions from a Dairy Farm Waste Lagoon

    NASA Astrophysics Data System (ADS)

    Sokol, A. B.; Lauvaux, T.; Richardson, S.; Hlywiak, J.; Davis, K. J.; Hristov, A. N.

    2016-12-01

    Livestock manure management in dairy operations is a known source of methane (CH4), a potent greenhouse gas. Anaerobic waste lagoons are a common manure management technique; thus, their associated CH4 emissions are relevant to national greenhouse gas inventories and local air quality. Our objective was to characterize the variability of summertime CH4 emissions from a lagoon at a dairy facility in central Pennsylvania. Continuous flux measurements were taken over two weeks in July using the eddy covariance method, which uses high-frequency gas concentration and three-dimensional wind speed measurements to calculate turbulent fluxes from a source area. After data filtration based on turbulence characteristics and source area, the average CH4 flux density from the lagoon was estimated to be 99 μmol m-2 s-1. This implies daily lagoon emissions of 881 kg CH4, corresponding to an average emission rate of 340 g CH4 per cow per day. We observed no apparent relationship between emissions and air temperature or relative humidity, though an extended measurement period is needed to better quantify the relationship that is expected to exist between air and/or slurry temperature and CH4 flux. Our measured per-area emission rate is toward the high end of the range of estimates found in the literature. These results contribute to greenhouse gas inventory development and could have important implications for emission mitigation strategies.

  10. Toxic metals in Venics lagoon sediments: Model, observation, an possible removal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basu, A.; Molinaroli, E.

    1994-11-01

    We have modeled the distribution of nine toxic metals in the surface sediments from 163 stations in the Venice lagoon using published data. Three entrances from the Adriatic Sea control the circulation in the lagoon and divide it into three basins. We assume, for purposes of modeling, that Porto Marghera at the head of the Industrial Zone area is the single source of toxic metals in the Venice lagoon. In a standing body of lagoon water, concentration of pollutants at distance x from the source (C{sub 0}) may be given by C=C{sub 0}e{sup -kx} where k is the rate constantmore » of dispersal. We calculated k empirically using concentrations at the source, and those farthest from it, that is the end points of the lagoon. Average k values (ppm/km) in the lagoon are: Zn 0.165, Cd 0.116, Hg 0.110, Cu 0.105, Co 0.072, Pb 0.058, Ni 0.008, Cr (0.011) and Fe (0.018 percent/km), and they have complex distributions. Given the k values, concentration at source (C{sub 0}), and the distance x of any point in the lagoon from the source, we have calculated the model concentrations of the nine metals at each sampling station. Tides, currents, floor morphology, additional sources, and continued dumping perturb model distributions causing anomalies (observed minus model concentrations). Positive anomalies are found near the source, where continued dumping perturbs initial boundary conditions, and in areas of sluggish circulation. Negative anomalies are found in areas with strong currents that may flush sediments out of the lagoon. We have thus identified areas in the lagoon where higher rate of sediment removal and exchange may lesson pollution. 41 refs., 4 figs., 3 tabs.« less

  11. A census of the Carina Nebula - II. Energy budget and global properties of the nebulosity

    NASA Astrophysics Data System (ADS)

    Smith, Nathan; Brooks, Kate J.

    2007-08-01

    The first paper in this series took a direct census of energy input from the known OB stars in the Carina Nebula, and in this paper we study the global properties of the surrounding nebulosity. This detailed comparison may prove useful for interpreting observations of extragalactic giant HII regions and ultraluminous infrared (IR) galaxies. We find that the total IR luminosity of Carina is about 1.2 × 107Lsolar, accounting for only about 50-60 per cent of the known stellar luminosity from Paper I. Similarly, the ionizing photon luminosity derived from the integrated radio continuum is about 7 × 1050 s-1, accounting for ~75 per cent of the expected Lyman continuum from known OB stars. The total kinetic energy of the nebula is about 8 × 1051 erg, or ~30 per cent of the mechanical energy from stellar winds over the lifetime of the nebula, so there is no need to invoke a supernova (SN) explosion based on energetics. Warm dust grains residing in the HII region interior dominate emission at 10-30μm, but cooler grains at 30-40K dominate the IR luminosity and indicate a likely gas mass of ~106Msolar. We find an excellent correlation between the radio continuum and 20-25μm emission, consistent with the idea that the ~80-K grain population is heated by trapped Lyα photons. Similarly, we find a near perfect correlation between the far-IR optical depth map of cool grains and 8.6-μm hydrocarbon emission, indicating that most of the nebular mass resides as atomic gas in photodissociation regions and not in dense molecular clouds. Synchronized star formation around the periphery of Carina provides a strong case that star formation here was indeed triggered by stellar winds and ultraviolet radiation. This second generation appears to involve a cascade toward preferentially intermediate- and low-mass stars, but this may soon change when ηCarinae and its siblings explode. If the current reservoir of atomic and molecular gas can be tapped at that time, massive star formation

  12. Condensation Front Migration in a Protoplanetary Nebula

    NASA Technical Reports Server (NTRS)

    Davis, Sanford S.

    2004-01-01

    Condensation front dynamics are investigated in the mid-solar nebula region. A quasi-steady model of the evolving nebula is combined with equilibrium vapor pressure curves to determine evolutionary condensation fronts for selected species. These fronts are found to migrate inwards from the far-nebula to final positions during a period of 10(exp 7) years. The physical process governing this movement is a combination of local viscous heating and luminescent heating from the central star. Two luminescent heating models are used and their effects on the ultimate radial position of the condensation front are discussed. At first the fronts move much faster than the nebular accretion velocity, but after a time the accreting gas and dust overtakes the slowing condensation front.

  13. Featured Image: A Detailed Look at the Crab Nebula

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-07-01

    Planning on watching fireworks tomorrow? Heres an astronomical firework to help you start the celebrations! A new study has stunningly detailed the Crab Nebula (click for a closer look), a nebula 6,500 light-years away thought to have been formedby a supernova explosion and the subsequent ultrarelativistic wind emitted by the pulsar at its heart. Led by Gloria Dubner (University of Buenos Aires), the authors of this study obtained new observations of the Crab Nebula from five different telescopes. They compiled these observations to compare the details of the nebulas structure across different wavelengths, which allowedthem to learnabout the sources of various features within the nebula. In the images above, thetop left shows the 3 GHz data from the Very Large Array (radio). Moving clockise, the radio data (shown in red) is composited with: infrared data from Spitzer Space Telescope, optical continuum from Hubble Space Telescope, 500-nm optical datafrom Hubble, and ultraviolet data from XMM-Newton. The final two images are of the nebula center, and they are composites of the radio imagewith X-ray data from Chandra and near-infrared data from Hubble. To read more about what Dubner and collaborators learned (and to see more spectacular images!), check out the paper below.CitationG. Dubner et al 2017 ApJ 840 82. doi:10.3847/1538-4357/aa6983

  14. Carbon and nitrogen cycling in the Zhubi coral reef lagoon of the South China Sea as revealed by 210Po and 210Pb.

    PubMed

    Yang, W F; Huang, Y P; Chen, M; Qiu, Y S; Li, H B; Zhang, L

    2011-05-01

    The radionuclides (210)Po and (210)Pb were examined to trace the cycling of particulate organic carbon (POC) and particulate organic nitrogen (PON) in the Zhubi coral reef lagoon. The net export flux of POC to the open sea is 14 mg Cm(-2) d(-1). However, the net exchange of PON has not yet been observed. On average, the vertical export fluxes in the lagoon of POC and PON, as derived from (210)Po/(210)Pb disequilibria, are 43 mg Cm(-2) d(-1) and 13.8 mg Nm(-2) d(-1), respectively. The deficit of (210)Po relative to (210)Pb in particulate matter provides evidence for the degradation of particulate organic matter. According to the mass balance budgets, 310 mg Cm(-2) d(-1) and 121 mg Nm(-2) d(-1) were recycled into dissolved fractions. Based on a first-order kinetics model, the degradation rate constants of POC and PON are 0.28 and 0.30 m(-1), respectively. Thus, (210)Po and (210)Pb can quantify the cycling of carbon and nitrogen in this coral lagoon. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Solar nebula condensates and the composition of comets

    NASA Technical Reports Server (NTRS)

    Lunine, J. I.

    1989-01-01

    Interpretation of the volatile abundances in Halley's comet in terms of models for chemical and physical processes in the solar nebula are discussed. Key ratios of the oxidized and reduced species of nitrogen and carbon are identified which tell something of the chemical history of the environment in which cometary grains accreted to form the nucleus. Isotopic abundances are also applied to this problem. It will be shown that the abundances of methane and carbon monoxide are consistent both with models of solar nebula chemistry and chemical processing on grains in star-forming regions. Ultimately, limitations of the current data set on molecular abundances in comets and star-forming regions prevent a definitive choice between the two. Processes important to the composition of outer solar system bodies are: (1) gas phase chemistry in the solar nebula; (2) imperfect mixing in the solar nebula; (3) condensation; (4) clathration; (5) adsorption; and (6) processing of interstellar material.

  16. Silica in invasive wetland plant species of lagoons, Côte d'Ivoire: Spatio-temporal patterns

    NASA Astrophysics Data System (ADS)

    José-mathieu Koné, Yéfanlan; Schoelynck, Jonas

    2017-04-01

    Tropical wetlands are known to accumulate a large quantity of Biogenic Silica (BSi) produced by wetland plant species (Struyf et al., 2015), and approximately 70-80% of the total supply of Dissolved Si (DSi) to the coastal zone occurs in (sub) tropical river systems (Jennerjahn et al. 2006). However, the data at these latitudes are limited. Here, we present the BSi concentration from eleven invasive macrophyte species randomly collected in three small ( 800ha) lagoons of Côte d'Ivoire during 12 months. Our data showed a large spatio-temporal variability of BSi in the three lagoons with no consistent trends. In general, the BSi concentrations obtained were high and values ranged from 0 to 54 mg g-1 through the entire sampling period, with the highest values found in Acroceras zizaniodes (emergent species of Poaceae). In general, free floating species had significantly less BSi than emergent species (P<0.0001) which corroborates with the earlier findings of Schoelynck and Struyf (2016). However, the concentrations of BSi found in Salvinia molesta (a free floating species of fern, Salviniaceae) at the young stage were similar to those found in the emergent species. Based on yearly averages, highest BSi values were observed in Kodjoboué lagoon, and the lowest in the Ono lagoon that is 80% covered by macrophytes. Moreover, the dissolved silica (DSi) concentrations were systematically higher in Ono Lagoon than in Kodjoboué Lagoon. We conclude that in an eutrophic system Si accumulating in aquatic macrophytes is not related to Si availability but to other environmental factors. Jennerjahn, T.C., Knoppers, B.A., de Souze, W.F.L., Brunskill, G.J., Silva, E.I.L., Adi, S. et al., 2006. Factors controlling dissolved silica in tropical rivers. In: Ittekot, V. (ed) The silicon cycle. Island Press, Washington, D. C, pp 29-51 Schoelynck J and Struyf E, 2016. Silicon in aquatic vegetation. Functional Ecology. 30: 1323-1330. Struyf, E., Mosimane, K., Van Pelt, D., Murray

  17. Mud deposit formation on the open coast of the larger Patos Lagoon-Cassino Beach system

    NASA Astrophysics Data System (ADS)

    Vinzon, S. B.; Winterwerp, J. C.; Nogueira, R.; de Boer, G. J.

    2009-03-01

    This paper proposes an explanation of the mud deposits on the inner Shelf of Cassino Beach, South Brazil, by using computational modeling. These mud deposits are mainly formed by sediments delivered from Patos Lagoon, a coastal lagoon connected to the Shelf, next to Cassino Beach. The deposits are characterized by (soft) mud layers of about 1 m thick and are found between the -5 and -20 isobaths. Two hydrodynamic models of the larger Patos Lagoon-Cassino Beach system were calibrated against water elevation measured for a 5 months period, and against currents and salinity measured for a week period. The circulation patterns and water exchange through the mouth were analyzed as a function of local and remote wind effects, and river discharges. The remote wind effect mainly governs the quantity of water exchange with the Lagoon through its effect on mean sea level as a result of Ekman dynamics, while river discharges are important for the salinity of the exchanged water masses. Local winds augment the export-import rates by set-up and set-down within the Lagoon, but their effects are much smaller than those of the remote wind. Currents patterns on the inner Shelf during water outflow revealed a recirculation zone south of the Lagoon, induced by the local geometry and bathymetry of the system. This recirculation zone coincides with observed locations of mud deposition. Water, hence suspended sediment export occurs when remote and local winds are from the N-E, which explains why fine sediment deposits are mainly found south of the Lagoon's breakwater. A sensitivity analysis with the numerical model quantified the contribution of the various mechanisms driving the transport and fate of the fine suspended sediments, i.e. the effects of remote and local wind, of the astronomical tide, of river discharge and fresh-salt water-induced density currents, and of earth rotation. It is concluded that gravitational circulation and earth rotation affects the further dispersion of

  18. Solar nebula chemistry - Implications for volatiles in the solar system

    NASA Technical Reports Server (NTRS)

    Fegley, Bruce, Jr.; Prinn, Ronald G.

    1989-01-01

    Current theoretical models of solar nebula chemistry which take into account the interplay between chemistry and dynamics are presented for the abundant reactive volatile elements including hydrogen, carbon, nitrogen, oxygen, and sulfur. Results of these models indicate that, in the solar nebula, the dominant carbon and nitrogen gases were CO and NO, whereas, in giant planet subnebulae, the dominant carbon and nitrogen gases were CH4 and NH3; in the solar nebula, the Fe metal grains catalyzed the formation of organic compounds from CO and H2 via the Fischer-Tropsch-type reaction. It was also found that, in solar nebula, bulk FeS formation was kinetically favorable, while FeO incorporation into silicates and bulk Fe3O4 formation were kinetically inhibited. Furthermore, clathrate formation was kinetically inhibited in the solar nebula, while it was kinetically favorable in giant planet subnebulae.

  19. Medium-resolution échelle spectroscopy of the Red Square Nebula, MWC 922

    NASA Astrophysics Data System (ADS)

    Wehres, N.; Ochsendorf, B. B.; Tielens, A. G. G. M.; Cox, N. L. J.; Kaper, L.; Bally, J.; Snow, T. P.

    2017-05-01

    Context. Medium-resolution échelle spectra of the Red Square Nebula surrounding the star MWC 922 are presented. The spectra have been obtained in 2010 and 2012 using the X-shooter spectrograph mounted on the Very Large Telescope (VLT) in Paranal, Chile. The spectrum covers a wavelength range between 300 nm-2.5 μm and shows that the nebula is rich in emission lines. Aims: We aim to identify the emission lines and use them as a tool to determine the physical and chemical characteristics of the nebula. The emission lines are also used to put constraints on the structure of the nebula and on the nature of the central stars. Methods: We analyzed and identified emission lines that indicated that the Red Square Nebula consists of a low density bipolar outflow, eminent in the broad emission component seen in [Fe II], as well as in P Cygni line profiles indicative of fast outflowing material. The narrow component in the [Fe II] lines is most likely formed in the photosphere of a surrounding disk. Some of the emission lines show a pronounced double peaked profile, such as Ca II, indicating an accretion disk in Keplerian rotation around the central star. [O I] emission lines are formed in the neutral atomic zone separating the ionized disk photosphere from the molecular gas in the interior of the disk, which is prominent in molecular CO emission in the near-IR. [N II] and [S II] emission clearly originates in a low density but fairly hot (7 000-10 000 K) nebular environment. H I recombination lines trace the extended nebula as well as the photosphere of the disk. Results: These findings put constraints on the evolution of the central objects in MWC 922. The Red Square shows strong similarities to the Red Rectangle Nebula, both in morphology and in its mid-IR spectroscopic characteristics. As for the Red Rectangle, the observed morphology of the nebula reflects mass-loss in a binary system. Specifically, we attribute the biconical morphology and the associated rung

  20. Diazotroph community succession during the VAHINE mesocosms experiment (New Caledonia Lagoon)

    NASA Astrophysics Data System (ADS)

    Turk-Kubo, K. A.; Frank, I. E.; Hogan, M. E.; Desnues, A.; Bonnet, S.; Zehr, J. P.

    2015-06-01

    The VAHINE mesocosm experiment, conducted in the low-nutrient low-chlorophyll waters of the Noumea Lagoon (coastal New Caledonia) was designed to trace the incorporation of nitrogen (N) fixed by diazotrophs into the food web, using large volume (50 m3) mesocosms. This experiment provided a unique opportunity to study the succession of different N2-fixing microorganisms (diazotrophs) and calculate in situ net growth and loss rates in response to fertilization with dissolved inorganic phosphate (DIP) over a 23 day period, using quantitative polymerase chain reaction (qPCR) assays. Inside the mesocosms, the diazotroph community assemblage was dominated by the heterocyst-forming Richelia associated with Rhizosolenia (Het-1) in the first half of the experiment, and unicellularcyanobacterial Group C (UCYN-C) became the dominant diazotroph in the second half of the experiment. Decreasing DIP concentrations following the fertilization event and increasing temperatures were significantly correlated with increasing abundances of UCYN-C. Maximum net growth rates for UCYN-C were calculated to be between 1.23 ± 0.07 and 2.16 ± 0.07 d-1 which are among the highest growth rates reported for diazotrophs. Outside the mesocosms in the Noumea Lagoon, UCYN-C abundances remained low, despite increasing temperatures, suggesting that the microbial community response to the DIP fertilization created conditions favorable for UCYN-C growth inside the mesocosms. Maximum net growth and loss rates for nine diazotroph phylotypes throughout the 23 day experiment were variable between mesocosms, and repeated fluctuations between periods of net growth and loss were commonly observed. The field population of diazotrophs in the Noumea Lagoon, was dominated by Het-1 over the course of the study period. However, eight additional diazotroph phylotypes were present in the lagoon at lower abundances, indicating a diverse field population of diazotrophs. Two ecotypes of the Braarudosphaera bigelowii

  1. Generation of dynamo magnetic fields in the primordial solar nebula

    NASA Technical Reports Server (NTRS)

    Stepinski, Tomasz F.

    1992-01-01

    The present treatment of dynamo-generated magnetic fields in the primordial solar nebula proceeds in view of the ability of the combined action of Keplerian rotation and helical convention to generate, via alpha-omega dynamo, large-scale magnetic fields in those parts of the nebula with sufficiently high, gas-and magnetic field coupling electrical conductivity. Nebular gas electrical conductivity and the radial distribution of the local dynamo number are calculated for both a viscous-accretion disk model and the quiescent-minimum mass nebula. It is found that magnetic fields can be easily generated and maintained by alpha-omega dynamos occupying the inner and outer parts of the nebula.

  2. First steps of ecological restoration in Mediterranean lagoons: Shifts in phytoplankton communities

    NASA Astrophysics Data System (ADS)

    Leruste, A.; Malet, N.; Munaron, D.; Derolez, V.; Hatey, E.; Collos, Y.; De Wit, R.; Bec, B.

    2016-10-01

    Along the French Mediterranean coast, a complex of eight lagoons underwent intensive eutrophication over four decades, mainly related to nutrient over-enrichment from continuous sewage discharges. The lagoon complex displayed a wide trophic gradient from mesotrophy to hypertrophy and primary production was dominated by phytoplankton communities. In 2005, the implementation of an 11 km offshore outfall system diverted the treated sewage effluents leading to a drastic reduction of anthropogenic inputs of nitrogen and phosphorus into the lagoons. Time series data have been examined from 2000 to 2013 for physical, chemical and biological (phytoplankton) variables of the water column during the summer period. Since 2006, total nitrogen and phosphorus concentrations as well as chlorophyll biomass strongly decreased revealing an improvement in lagoon water quality. In summertime, the decline in phytoplankton biomass was accompanied by shifts in community structure and composition that could be explained by adopting a functional approach by considering the common functional traits of the main algal groups. These phytoplankton communities were dominated by functional groups of small-sized and fast-growing algae (diatoms, cryptophytes and green algae). The trajectories of summer phytoplankton communities displayed a complex response to changing nutrient loads over time. While diatoms were the major group in 2006 in all the lagoons, the summer phytoplankton composition in hypertrophic lagoons has shifted towards green algae, which are particularly well adapted to summertime conditions. All lagoons showed increasing proportion and occurrence of peridinin-rich dinophytes over time, probably related to their capacity for mixotrophy. The diversity patterns were marked by a strong variability in eutrophic and hypertrophic lagoons whereas phytoplankton community structure reached the highest diversity and stability in mesotrophic lagoons. We observe that during the re

  3. The Virgo cD galaxy M87 and its environment as mapped by Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    Longobardi, Alessia

    2015-08-01

    Cosmological simulations predict the evolution of galaxy halos in cluster environments. Because of their low surface brightness, 1% of the night sky or lower, it is difficult to measure their spatial distribution and line-of-sight motions of the associated stars. Planetary nebulas (PNs) are very good tracers of their parent stellar populations, and we can use them to investigate these extended halos as consequence of their relatively strong [OIII] emission line. We have used PNs to study the outer halo of M87, the BCG at the center of the Virgo cluster. From the deepest and most extended narrow band survey done with Supruime Cam on Subaru, we carry out the spectroscopic follow up with FLMES at the VLT of more than 300 emission line objects in the halo of M87 out to ~150 kpc in radius. We confirm 254 PNs associated with the M87 halo and 44 with the intracluster light in the Virgo core. We show that the galaxy halo overlaps with the Virgo intracluster light (ICL) at all distance. Halo and ICL are dynamically distinct components, have different density profiles and parent stellar populations. The latter result shows that the halo of M87 is redder and more metal rich than the ICL population. Because of the excellent spectra resolution of our data, we identify a chevron structure in the projected phase space and identify the substructure in light associated to this dynamical sub-component. This accretion event account for a third of the light of the halo at 90 kpc distance from the center. It shows that at these distances the M87 halo is significantly lumpy and still growing by accretion of satellites.

  4. Family ties of WR to LBV nebulae yielding clues for stellar evolution

    NASA Astrophysics Data System (ADS)

    Weis, K.

    Luminous Blue Variables (LBVs) are stars is a transitional phase massive stars may enter while evolving from main-sequence to Wolf-Rayet stars. The to LBVs intrinsic photometric variability is based on the modulation of the stellar spectrum. Within a few years the spectrum shifts from OB to AF type and back. During their cool phase LBVs are close to the Humphreys-Davidson (equivalent to Eddington/Omega-Gamma) limit. LBVs have a rather high mass loss rate, with stellar winds that are fast in the hot and slower in the cool phase of an LBV. These alternating wind velocities lead to the formation of LBV nebulae by wind-wind interactions. A nebula can also be formed in a spontaneous giant eruption in which larger amounts of mass are ejected. LBV nebulae are generally small (< 5 pc) mainly gaseous circumstellar nebulae, with a rather large fraction of LBV nebulae being bipolar. After the LBV phase the star will turn into a Wolf-Rayet star, but note that not all WR stars need to have passed the LBV phase. Some follow from the RSG and the most massive directly from the MS phase. In general WRs have a large mass loss and really fast stellar winds. The WR wind may interact with winds of earlier phases (MS, RSG) to form WR nebulae. As for WR with LBV progenitors the scenario might be different, here no older wind is present but an LBV nebula! The nature of WR nebulae are therefore manifold and in particular the connection (or family ties) of WR to LBV nebulae is important to understand the transition between these two phases, the evolution of massive stars, their winds, wind-wind and wind-nebula interactions. Looking at the similarities and differences of LBV and WR nebula, figuring what is a genuine LBV and WR nebula are the basic question addressed in the analysis presented here.

  5. Rosette nebula globules: Seahorse giving birth to a star

    NASA Astrophysics Data System (ADS)

    Mäkelä, M. M.; Haikala, L. K.; Gahm, G. F.

    2017-09-01

    Context. The Rosette nebula is an H II region ionized mainly by the stellar cluster NGC 2244. Elephant trunks, globules, and globulettes are seen at the interface where the H II region and the surrounding molecular shell meet. Aims: We have observed a field in the northwestern part of the Rosette nebula where we study the small globules protruding from the shell. Our aim is to measure their properties and study their star-formation history in continuation of our earlier study of the features of the region. Methods: We imaged the region in broadband near-infrared (NIR) JsHKs filters and narrowband H2 1-0 S(1), Pβ, and continuum filters using the SOFI camera at the ESO/NTT. The imaging was used to study the stellar population and surface brightness, create visual extinction maps, and locate star formation. Mid-infrared (MIR) Spitzer IRAC and WISE and optical NOT images were used to further study the star formation and the structure of the globules. The NIR and MIR observations indicate an outflow, which is confirmed with CO observations made with APEX. Results: The globules have mean number densities of 4.6 × 104 cm-3. Pβ is seen in absorption in the cores of the globules where we measure visual extinctions of 11-16 mag. The shell and the globules have bright rims in the observed bands. In the Ks band 20 to 40% of the emission is due to fluorescent emission in the 2.12 μmH2 line similar to the tiny dense globulettes we studied earlier in a nearby region. We identify several stellar NIR excess candidates and four of them are also detected in the Spitzer IRAC 8.0 μm image and studied further. We find an outflow with a cavity wall bright in the 2.124 μmH2 line and at 8.0 μm in one of the globules. The outflow originates from a Class I young stellar object (YSO) embedded deep inside the globule. An Hα image suggests the YSO drives a possible parsec-scale outflow. Despite the morphology of the globule, the outflow does not seem to run inside the dusty fingers

  6. Hydrocarbon Chemistry in Planetary Nebulae: Observations of CCH and c-C3H2

    NASA Astrophysics Data System (ADS)

    Schmidt, Deborah Rose; Zack, Lindsay; Ziurys, Lucy M.

    2018-06-01

    In an effort to fully evaluate the molecular content of planetary nebulae (PNe), and the role of hydrocarbons, we have undertaken a search for CCH towards K4–47, K3–58, K3–17, M3–28, M4–14, Hb 5, K3-45, M1-7, M3-55, NGC 2440, NGC 6772, M1-12, and M1-20. These nebulae span a range of kinematic ages and morphologies. In addition, we observed CN, CCH, and c-C3H2 at eight positions sampling the Helix Nebula. Measurements at 3 mm of the N=1→0 transitions of CCH and CN and the J=21,2→10,1 of c-C3H2 were performed using the ALMA prototype 12-M antenna of the Arizona Radio Observatory (ARO), while the N=3→2 transition of CCH at 1 mm was observed using the ARO Sub-Millimeter Telescope. CCH was detected in 9 of the 13 survey PNe, while CCH, CN, and c-C3H2 were observed at all positions in the Helix, often with a complex velocity structure; c-C3H2 was also identified in K4-47. From radiative transfer modeling, column densities for CCH were found to range between Ntot(CCH) ~ 0.2-3.3 × 1015 cm-2 for the survey PNe, corresponding to fractional abundances with respect to H2 of f(CCH) ~ 0.2-47 × 10-7. The CN, CCH, and c-C3H2 column densities across the Helix were estimated to range between Ntot(CN) ~ 6.9-74 × 1011 cm-2, Ntot(CCH) ~ 3.2-28 × 1011 cm-2, and Ntot(c-C3H2) ~ 0.2-4.7 × 1011 cm-2, with fractional abundances of f(CN) ~ 0.9-9.8 × 10-7, f(CCH) ~ 0.4-3.7 × 10-7, and f(c-C3H2) ~ 0.3-6.5 × 10-8. Based on HCN measurements of the Helix by Schmidt & Ziurys (2017a), [CN]/[HCN] ratios are ~1-34, while [CCH]/[c-C3H2] ratios varied between ~3-46. The abundance of CCH in all observed PNe did not vary significantly across the nebular lifespan of ~10,000 years, in contrast to model predictions. These abundances are ~1-2 orders of magnitude greater than those measured in the diffuse ISM; moreover, the [CN]/[HCN] and [CCH]/[c-C3H2] ratios observed in the Helix are comparable to those in diffuse clouds, striking evidence that molecular material ejected from PNe

  7. Surface water-groundwater exchange in transitional coastal environments by airborne electromagnetics: The Venice Lagoon example

    NASA Astrophysics Data System (ADS)

    Viezzoli, A.; Tosi, L.; Teatini, P.; Silvestri, S.

    2010-01-01

    A comprehensive investigation of the mixing between salt/fresh surficial water and groundwater in transitional environments is an issue of paramount importance considering the ecological, cultural, and socio-economic relevance of coastal zones. Acquiring information, which can improve the process understanding, is often logistically challenging, and generally expensive and slow in these areas. Here we investigate the capability of airborne electromagnetics (AEM) at the margin of the Venice Lagoon, Italy. The quasi-3D interpretation of the AEM outcome by the spatially constrained inversion (SCI) methodology allows us to accurately distinguish several hydrogeological features down to a depth of about 200 m. For example, the extent of the saltwater intrusion in coastal aquifers and the transition between the upper salt saturated and the underlying fresher sediments below the lagoon bottom are detected. The research highlights the AEM capability to improve the hydrogeological characterization of subsurface processes in worldwide lagoons, wetlands, deltas.

  8. Oligotrophic lagoons of the South Pacific Ocean are home to a surprising number of novel eukaryotic microorganisms.

    PubMed

    Kim, Eunsoo; Sprung, Ben; Duhamel, Solange; Filardi, Christopher; Kyoon Shin, Mann

    2016-12-01

    The diversity of microbial eukaryotes was surveyed by environmental sequencing from tropical lagoon sites of the South Pacific, collected through the American Museum of Natural History (AMNH)'s Explore21 expedition to the Solomon Islands in September 2013. The sampled lagoons presented low nutrient concentrations typical of oligotrophic waters, but contained levels of chlorophyll a, a proxy for phytoplankton biomass, characteristic of meso- to eutrophic waters. Two 18S rDNA hypervariable sites, the V4 and V8-V9 regions, were amplified from the total of eight lagoon samples and sequenced on the MiSeq system. After assembly, clustering at 97% similarity, and removal of singletons and chimeras, a total of 2741 (V4) and 2606 (V8-V9) operational taxonomic units (OTUs) were identified. Taxonomic annotation of these reads, including phylogeny, was based on a combination of automated pipeline and manual inspection. About 18.4% (V4) and 13.8% (V8-V9) of the OTUs could not be assigned to any of the known eukaryotic groups. Of these, we focused on OTUs that were not divergent and possessed multiple sources of evidence for their existence. Phylogenetic analyses of these sequences revealed more than ten branches that might represent new deeply-branching lineages of microbial eukaryotes, currently without any cultured representatives or morphological information. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  9. N44C nebula

    NASA Image and Video Library

    1999-12-03

    Resembling the hair in Botticelli famous portrait of the birth of Venus, an image from NASA Hubble Space Telescope has captured softly glowing filaments streaming from hot young stars in a nearby nebula.

  10. Primary production of phytoplankton in the estuaries of different types (by the example of the Curonian and Vistula Lagoons of the Baltic Sea and the Volga delta)

    NASA Astrophysics Data System (ADS)

    Aleksandrov, Sergei; Gorbunova, Julia

    2016-04-01

    The aim was to analyze the long-term change of the primary production in large estuaries of different types (Volga delta, Curonian and Vistula Lagoons) under the impact of environmental factors (e.g. climate changes, algal blooms, invasion mollusk). The researches (primary production, chlorophyll, nutrients and others) were carried out monthly from March-April to November in the Vistula and Curonian Lagoons since 1991 to 2015, and in the Lower part of the Volga Delta and fore-delta since 1996 to 2007. The Volga River is the largest river in Europe that flows into the Caspian Sea and it forms a great delta. According to the analysis of long-term data (from the 1960s), the maximum eutrophication and primary production (85-100 gCṡm-2ṡyear-1) in the Volga Delta was observed in the 1980s. In the 1990s, fertilizers use and the input of nutrients into the Volga Delta decreased significantly. Due of the high-flow exchange in the delta, especially during high-water years, observed in the 1980s - early 2000s, this led to a significant decrease in the concentration of nutrients in the water in the Volga Delta. As a result, in the 1990-2000s, the primary production has decreased to the level of 1960s-1970s (40-60 gCṡm-2ṡyear-1) and the process of eutrophication was replaced by de-eutrophication. At present, the trophic status of the Volga delta assessed as mesotrophic. The future trend of phytoplankton primary production of the Volga delta will greatly depend on the scenario of nutrients loading and river runoff. The Curonian Lagoon and Vistula Lagoon are the largest coastal lagoons of the Baltic Sea, relating to the most highly productive water bodies of Europe. The Curonian Lagoon is choke mostly freshwater lagoon, while the Vistula Lagoon is restricted brackish water lagoon. In the last decades the nutrients loading changes, warming trend and biological invasions are observed. The Curonian Lagoon may be characterized as hypertrophic water body. The local climate

  11. Nitrogen enrichment and speciation in a coral reef lagoon driven by groundwater inputs of bird guano

    NASA Astrophysics Data System (ADS)

    McMahon, Ashly; Santos, Isaac R.

    2017-09-01

    While the influence of river inputs on coral reef biogeochemistry has been investigated, there is limited information on nutrient fluxes related to submarine groundwater discharge (SGD). Here, we investigate whether significant saline groundwater-derived nutrient inputs from bird guano drive coral reef photosynthesis and calcification off Heron Island (Great Barrier Reef, Australia). We used multiple experimental approaches including groundwater sampling, beach face transects, and detailed time series observations to assess the dynamics and speciation of groundwater nutrients as they travel across the island and discharge into the coral reef lagoon. Nitrogen speciation shifted from nitrate-dominated groundwater (>90% of total dissolved nitrogen) to a coral reef lagoon dominated by dissolved organic nitrogen (DON; ˜86%). There was a minimum input of nitrate of 2.1 mmol m-2 d-1 into the lagoon from tidally driven submarine groundwater discharge estimated from a radon mass balance model. An independent approach based on the enrichment of dissolved nutrients during isolation at low tide implied nitrate fluxes of 5.4 mmol m-2 d-1. A correlation was observed between nitrate and daytime net ecosystem production and calcification. We suggest that groundwater nutrients derived from bird guano may offer a significant addition to oligotrophic coral reef lagoons and fuel ecosystem productivity and the coastal carbon cycle near Heron Island. The large input of groundwater nutrients in Heron Island may serve as a natural ecological analogue to other coral reefs subject to large nutrient inputs from anthropogenic sources.

  12. Paleoenvironmental reconstruction of lagoonal strata from Sri Lanka using multiple physical properties proxies to assure stratigraphic continuity

    NASA Astrophysics Data System (ADS)

    Ranasinghage, P. N.; Ortiz, J. D.; Moore, A.; Siriwardana, C.

    2009-12-01

    Core collapsing is a common problem in studies of lagoonal sediment cores. Coring liquefied sediments below the water table can lead to collapse of material from upper core drives in to the hole. This can be prevented by casing the hole. But casing is not always possible due to practical issues such as coring device type, resources, or time constraints. In such cases identifying the collapsed material in each drive is necessary to ensure accurate results. Direct visual identification of collapsed portion is not always possible and may not be precise. This study successfully recognized collapsed material using a suite of physical properties measurements including: visible (VIS) reflectance spectroscopy, magnetic susceptibility and grain size spectra. This enables us to use the verified stratigraphically continuous records for paleo-environmental studies. Sediment cores were collected from three coastal lagoons and a swale along south eastern and eastern Sri Lanka. Cores were collected using a customized AMS soil coring device with a 1-m long sample barrel. The metal barrel of this instrument collects a 2.5 cm diameter sample in 1-m long plastic tubes. Coring was conducted to refusal, with a maximum depth of 5 m. Casing was not applied to the holes due to small core diameter and time constrains. Drill holes were placed at locations situated both below and above the water level of the lagoons. A total of 100 m of sediment core were obtained from these locations. After opening the cores, suspected collapsed material was initially identified by visual observation using a high power binocular microscope. Particle size, magnetic susceptibility, X-ray fluorescence (XRF) and Diffuse Spectral Reflectance (DSR) was then measured on all cores at 1-2 cm resolution to precisely define the repeated sediment intervals. Down core variation plots of magnetic susceptibility, CIE L* (lightness), a*(red/green difference), b* (blue and yellow difference) clearly record abrupt changes at

  13. Nebula--a web-server for advanced ChIP-seq data analysis.

    PubMed

    Boeva, Valentina; Lermine, Alban; Barette, Camille; Guillouf, Christel; Barillot, Emmanuel

    2012-10-01

    ChIP-seq consists of chromatin immunoprecipitation and deep sequencing of the extracted DNA fragments. It is the technique of choice for accurate characterization of the binding sites of transcription factors and other DNA-associated proteins. We present a web service, Nebula, which allows inexperienced users to perform a complete bioinformatics analysis of ChIP-seq data. Nebula was designed for both bioinformaticians and biologists. It is based on the Galaxy open source framework. Galaxy already includes a large number of functionalities for mapping reads and peak calling. We added the following to Galaxy: (i) peak calling with FindPeaks and a module for immunoprecipitation quality control, (ii) de novo motif discovery with ChIPMunk, (iii) calculation of the density and the cumulative distribution of peak locations relative to gene transcription start sites, (iv) annotation of peaks with genomic features and (v) annotation of genes with peak information. Nebula generates the graphs and the enrichment statistics at each step of the process. During Steps 3-5, Nebula optionally repeats the analysis on a control dataset and compares these results with those from the main dataset. Nebula can also incorporate gene expression (or gene modulation) data during these steps. In summary, Nebula is an innovative web service that provides an advanced ChIP-seq analysis pipeline providing ready-to-publish results. Nebula is available at http://nebula.curie.fr/ Supplementary data are available at Bioinformatics online.

  14. The Surface Density Distribution in the Solar Nebula

    NASA Technical Reports Server (NTRS)

    Davis, Sanford S.

    2004-01-01

    The commonly used minimum mass power law representation of the pre-solar nebula is reanalyzed using a new cumulative-mass-model. This model predicts a smoother surface density approximation compared with methods based on direct computation of surface density. The density is quantified using two independent analytical formulations. First, a best-fit transcendental function is applied directly to the basic planetary data. Next a solution to the time-dependent disk evolution equation is parametrically adapted to the solar nebula data. The latter model is shown to be a good approximation to the finite-size early Solar Nebula, and by extension to other extra solar protoplanetary disks.

  15. The ionization structure of planetary nebulae. IX - NGC 1535

    NASA Technical Reports Server (NTRS)

    Barker, Timothy

    1989-01-01

    The ionization structure of planetary nebula NGC 1535 was investigated using spectrophotometric observations of emission-line intensities over the spectral range 1400-7200 A, which were carried out in five positions in this nebula. The results obtained on the ionic abundances of He, O, N, Ne, C, and Ar in NGC 1535 suggest that it is a planetary nebula that formed initially in a somewhat metal-poor region and has undergone little or no enhancement of its original abundances by mixing with nuclear-processed material.

  16. DESIGN INFORMATION REPORT: PROTECTION OF WASTEWATER LAGOON INTERIOR SLOPES

    EPA Science Inventory

    A problem common to many wastewater treatment and storage lagoons is erosion of the interior slopes. Erosion may be caused by surface runoff and wind-induced wave action. The soils that compose the steep interior slopes of lagoons are especially susceptible to erosion and slumpin...

  17. Sediment characteristics and water quality in the two hyper-saline lagoons along the Red Sea coast of Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Rasul, Najeeb; Al-Farawati, Radwan; Al-Harbi, Omer; Naser Qutub, Abdul

    2013-04-01

    The two hyper-saline Shoaiba lagoons, Khawr ash Shaibah al Masdudah (northern lagoon) and Khawr ash Shaibah al Maftuhah (southern lagoon) have a unique environmental set-up because no rivers or wadis flow into the lagoons and therefore detrital material to the lagoons is lacking and most of the sediments are indigenous carbonates. The biogenic material is mostly derived from coral debris, coralline algae and molluscs abundant in gravel and sand size fractions. The evaporite deposits from the adjoining sabkhas are transported to the lagoon during tidal cycles. Carbonate is abundant in the form of aragonite and High Mg-calcite indicating carbonate to be recent and formed under shallow water conditions. In general, the sediments are the result of the mechanical breakdown of molluscs and coral reefs by either human activity or by coral boring marine organisms and physical processes such as tidal and wind generated currents. Strong currents dominate only the deeper part at the entrance of the lagoons that causes the winnowing of the finer sediments, and its transportation during flooding and ebbing. Shallow depths averaging 3 m, wind and tidal stirring are the main forces preventing the lagoons from developing stratification resulting in a well-mixed body of water. The shallow depth of the lagoons keep the turbidity levels higher, whereas salinity as high as 52 ‰ and water temperature as high as 38 °C helps in the formation of halite at the periphery. The cyclical inundation of sabkhas by a thin sheet of water during tidal cycles is important in understanding the ecological consequence. Mangrove stands in the lagoons act as a source of nutrients to the flora and fauna inhabiting the lagoons. The configurations of the mouth of the lagoons influence the tidal currents, including the sediment and water movement. The tidal current is enhanced as it enters the lagoons, in response to the funneling effect caused by the narrow channel. The current diffuses as the entrance

  18. Coastal Processes with Improved Tidal Opening in Chilika Lagoon (east Coast of India)

    NASA Astrophysics Data System (ADS)

    Jayaraman, Girija; Dube, Anumeha

    Chilika Lagoon (19°28-19°54¢N and 85°06-85°36¢E) is the largest brackish water lagoon with estuarine character. Interest in detailed analysis of the ecology of the lagoon and the various factors affecting it is due to the opening of the new mouth on September 23, 2000 to resolve the threat to its environment from various factors - Eutrophication, weed proliferation, siltation, industrial pollution, and depletion of bioresources. The opening of the new mouth has changed the lagoon environment significantly with better socio­economic implications. There is a serious concern if the significant improvement in the biological productivity of the lagoon post-mouth opening is indeed sustainable. The present study focuses on the changes in the coastal processes as a result of the additional opening of a new mouth. Our results based on mathematical modeling and numerical simulation compare the dynamics, nutrient, and plankton distribution before and after the new mouth opening. The model could confirm the significant increase (14-66% depending on the sector) in the salinity after the new mouth opening, the maximum change being observed in the channel which connects the lagoon to the sea. The constriction in the lagoon which blocks the tidal effects entering the lagoon must be responsible for maintaining the main body of the lagoon with low salinity. The ecological model is first tested for different sectors individually before a complete model, including the entire lagoon area, is included incorporating their distinct characteristics. The model is validated with available observations of plankton and nutrients made before the opening of the new mouth. It predicts the annual distribution of plankton in all the sectors of the lagoon for post-mouth opening which is to be verified when the data will be forthcoming.

  19. Coastal Processes with Improved Tidal Opening in Chilika Lagoon (east Coast of India)

    NASA Astrophysics Data System (ADS)

    Jayaraman, Girija; Dube, Anumeha

    Chilika Lagoon (19°28-19°54'N and 85°06-85°36'E) is the largest brackish water lagoon with estuarine character. Interest in detailed analysis of the ecology of the lagoon and the various factors affecting it is due to the opening of the new mouth on September 23, 2000 to resolve the threat to its environment from various factors — Eutrophication, weed proliferation, siltation, industrial pollution, and depletion of bioresources. The opening of the new mouth has changed the lagoon environment significantly with better socio-economic implications. There is a serious concern if the significant improvement in the biological productivity of the lagoon post-mouth opening is indeed sustainable. The present study focuses on the changes in the coastal processes as a result of the additional opening of a new mouth. Our results based on mathematical modeling and numerical simulation compare the dynamics, nutrient, and plankton distribution before and after the new mouth opening. The model could confirm the significant increase (14-66% depending on the sector) in the salinity after the new mouth opening, the maximum change being observed in the channel which connects the lagoon to the sea. The constriction in the lagoon which blocks the tidal effects entering the lagoon must be responsible for maintaining the main body of the lagoon with low salinity. The ecological model is first tested for different sectors individually before a complete model, including the entire lagoon area, is included incorporating their distinct characteristics. The model is validated with available observations of plankton and nutrients made before the opening of the new mouth. It predicts the annual distribution of plankton in all the sectors of the lagoon for post-mouth opening which is to be verified when the data will be forthcoming.

  20. Condensation Time of the Solar Nebula from Extinct 129I in Primitive Meteorites

    PubMed Central

    Lewis, Roy S.; Anders, Edward

    1975-01-01

    Mineral separates from five carbonaceous chondrites were dated by extinct 16 million year 129I, in an attempt to establish the condensation time of the solar nebula. Two Fe3O4 or Fe3O4-FeS samples from the Murchison and Orgueil meteorites are older than any other material dated thus far, and apparently formed within 2 × 105 years of each other. The great age, close isochronism, and primitive nature of the samples suggest that the event recorded was the condensation stage of the solar nebula. It provides a suitable zero point for the chronology of the early solar system. The 129I/127I ratio during condensation of the nebula was (1.46 ± 0.04) × 10-4. The recrystallized C4 chondrite Karoonda began to retain 129Xe 1.8 ± 0.5 million years after the above event. This short cooling time implies rapid aceretion (≤1 million years) and a shallow origin (≤10 km) below the surface of its parent body. Images PMID:16592213

  1. Evolution of the Solar Nebula. II. Thermal Structure during Nebula Formation

    NASA Astrophysics Data System (ADS)

    Boss, Alan P.

    1993-11-01

    " Keplerian disk, with surface density σ ∝ r-1/2, surrounded by a much lower density "halo" infalling onto the disk. This initial condition produced Mṡs → 0 and Mṡd ˜ 10-6 to 10-5 Msun yr-1, as desired. The resulting nebula temperature distributions show that midplane temperatures of at least 1000 K inside 2.5 AU, falling to around 100 K outside 5 AU, are to be expected during the formation phase of a minimum mass nebula containing ˜0.02 Msun within 10 AU. This steady state temperature distribution appears to be consistent with cosmochemical evidence which has been interpreted as implying a phase of relatively high temperatures in the inner nebula. The temperature distribution also implies that the nebula would be cool enough outside 5 AU to allow ices to accumulate into planetesimals even at this relatively early phase of nebula evolution.

  2. Identification of toxigenic Cyanobacteria of the genus Microcystis in the Curonian Lagoon (Baltic Sea)

    NASA Astrophysics Data System (ADS)

    Belykh, O. I.; Dmitrieva, O. A.; Gladkikh, A. S.; Sorokovikova, E. G.

    2013-02-01

    In 2002-2008, seasonal (April-November) monitoring of the phytoplankton in the Russian part of the Curonian Lagoon at five fixed sites was performed. A total of 91 Cyanobacteria, 100 Bacillariophyta, 280 Chlorophyta, 21 Cryptophyta, and 24 Dinophyta species were found. Six potentially toxic species of cyanobacteria: Aphanizomenon flos-aquae, Anabaena sp., Microcystis aeruginosa, M. viridis, M. wesenbergii, and Planktothrix agardhii dominated the phytoplankton biomass and caused water blooms. The seasonal average phytoplankton biomass ranged from 30 to 137 g/m3. The cyanobacteria's biomass varied from 10 to 113 g/m3 forming 30-82% of the total with a mean of 50%. With the aid of genetic markers (microcystin ( mcy) and nodularin synthetases), six variants of the microcystin-producing gene mcyE from the genus Microcystis were identified. Due to the intensive and lengthy blooms of potentially toxic and toxigenic cyanobacteria, the environmental conditions in the Curonian Lagoon appear unfavorable. The water should be monitored for cyanotoxins with analytical methods in order to determine if the area is safe for recreational use.

  3. The near-infrared continuum emission of visual reflection nebulae

    NASA Technical Reports Server (NTRS)

    Sellgren, K.

    1984-01-01

    In the past, reflection nebulae have provided an astrophysical laboratory well suited for the study of the reflection properties of interstellar dust grains at visual and ultraviolet wavelengths. The present investigation is concerned with observations which were begun with the objective to extend to near-infrared wavelengths the study of grains in reflection. Observations of three classical visual reflection nebulae were conducted in the wavelength range from 1.25 to 2.2 microns, taking into account NGC 7023, 2023, and 2068. All three nebulae were found to have similar near-infrared colors, despite widely different colors of their illuminating stars. The brightness level shown by two of the nebulae at 2.2 microns was too high to be easily accounted for on the basis of reflected light. Attention is given to a wide variety of possible emission mechanisms.

  4. Environmental Assessment of the Bolinas Lagoon: a study utilizing benthic foraminifera

    NASA Astrophysics Data System (ADS)

    Benton, L.; Espinoza Madrid, N.; Grande, C.

    2016-12-01

    Benthic foraminifera have long been recognized for their utility in environmental assessments. They are abundant, diverse, and found in all marine environments, but species distributions depend largely on local environmental conditions. This study analyses benthic foraminiferal assemblages from the Bolinas Lagoon, Marin County, California. The Careers in Science Intern Program collected 36 sediment samples from 13 sites within the Bolinas Lagoon. Foraminiferal assemblages for each site are reported, and species richness, relative abundance, and Shannon's diversity calculated. Results indicate that Shannon's diversity is low throughout the Bolinas Lagoon and stress tolerant taxa are abundant, which suggests that current conditions in the Bolinas Lagoon are sub optimal.

  5. Digging navigable waterways through lagoon tidal flats: which short and long-term impacts on groundwater dynamics and quality?

    NASA Astrophysics Data System (ADS)

    Teatini, Pietro; Isotton, Giovanni; Nardean, Stefano; Ferronato, Massimiliano; Tosi, Luigi; Da Lio, Cristina; Zaggia, Luca; Bellafiore, Debora; Zecchin, Massimo; Baradello, Luca; Corami, Fabiana; Libralato, Giovanni; Morabito, Elisa; Broglia, Riccardo; Zaghi, Stefano

    2017-04-01

    Coastal lagoons are highly valued ephemeral habitats that have experienced in many cases the pressure of human activities since the development of urbanisation and economic activities within or around their boundaries. One typical intervention is dredging of canals to increase the exchange of water with the sea or for navigation purposes. In order to divert the route of large cruise liners from the historic center of Venice, Italy, the Venice Port Authority has recently proposed a project for the dredging of a new 3-km long and 10-m deep navigation canal (called Marghera-Venice Canal, MVC, in the sequel) through the shallows of the Venice Lagoon. The MVC will connect the passenger terminal located in the southwestern part of the historic center to a main channel that reaches the industrial area on the western lagoon margin. Can the new MVC facilitate saltwater intrusion below the lagoon bottom? Can the release into the lagoon of the chemicals detected in the groundwater around the industrial site be favoured by the MVC excavation? Can the depression waves generated by the ship transit (known as ship-wakes) along the MVC affect the flow and contaminant exchange between the subsurface and surficial systems? A response to these questions has been provided by the use of uncoupled and coupled density-dependent groundwater flow and transport simulators. The hydrogeological modelling has been supported by an in-depth characterization of the Venice lagoon subsurface along the MVC. Geophysical surveys, laboratory analyses on groundwater and sediment samples, in-situ measurements through piezometers and pressure sensors, and the outcome of 3D hydrodynamic and computational fluid dynamic (CFD) models have been used to set-up and calibrate the subsurface multi-model approach. The modelling results can be summarized as follows: i) the MVC has a negligible effect in relation to the propagation of the tidal regime into the subsoil; ii) the depression caused by the ship transit

  6. Ghost Head Nebula

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Looking like a colorful holiday card, a new image from NASA's Hubble Space Telescope reveals a vibrant green and red nebula far from Earth.

    The image of NGC 2080, taken by Hubble's Wide Field and Planetary Camera 2, designed and built by NASA's Jet Propulsion Laboratory, Pasadena, Calif., is available online at http://www.jpl.nasa.gov/images/wfpc . Images like this help astronomers investigate star formation in nebulas.

    NGC 2080, nicknamed 'The Ghost Head Nebula,' is one of a chain of star-forming regions lying south of the 30 Doradus nebula in the Large Magellanic Cloud. 30 Doradus is the largest star-forming complex in the local group of galaxies. This 'enhanced color' picture is composed of three narrow-band-filter images obtained by Hubble on March 28, 2000.

    The red and blue light come from regions of hydrogen gas heated by nearby stars. The green light on the left comes from glowing oxygen. The energy to illuminate the green light is supplied by a powerful stellar wind, a stream of high-speed particles coming from a massive star just outside the image. The central white region is a combination of all three emissions and indicates a core of hot, massive stars in this star-formation region. Intense emission from these stars has carved a bowl-shaped cavity in surrounding gas.

    In the white region, the two bright areas (the 'eyes of the ghost') - named A1 (left) and A2 (right) -- are very hot, glowing 'blobs' of hydrogen and oxygen. The bubble in A1 is produced by the hot, intense radiation and powerful stellar wind from one massive star. A2 contains more dust and several hidden, massive stars. The massive stars in A1 and A2 must have formed within the last 10,000 years, since their natal gas shrouds are not yet disrupted by the powerful radiation of the newborn stars.

    The Space Telescope Science Institute is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract with the Goddard Space Flight Center

  7. Observations of the planetary nebula RWT 152 with OSIRIS/GTC

    NASA Astrophysics Data System (ADS)

    Aller, A.; Miranda, L. F.; Olguín, L.; Solano, E.; Ulla, A.

    2016-11-01

    RWT 152 is one of the few known planetary nebulae with an sdO central star. We present subarcsecond red tunable filter Hα imaging and intermediate-resolution, long-slit spectroscopy of RWT 152 obtained with OSIRIS/GTC (Optical System for Imaging and low-Intermediate-Resolution Integrated Spectroscopy/Gran Telescopio Canarias) with the goal of analysing its properties. The Hα image reveals a bipolar nebula with a bright equatorial region and multiple bubbles in the main lobes. A faint circular halo surrounds the main nebula. The nebular spectra reveal a very low excitation nebula with weak emission lines from H+, He+ and double-ionized metals, and absence of emission lines from neutral and single-ionized metals, except for an extremely faint [N II] λ6584 emission line. These spectra may be explained if RWT 152 is a density-bounded planetary nebula. Low nebular chemical abundances of S, O, Ar, N and Ne are obtained in RWT 152, which, together with the derived high peculiar velocity (˜ 92-131 km s-1), indicate that this object is a halo planetary nebula. The available data are consistent with RWT 152 evolving from a low-mass progenitor (˜1 M⊙) formed in a metal-poor environment.

  8. On the peculiar shapes of some pulsar bow-shock nebulae

    NASA Astrophysics Data System (ADS)

    Bandiera, Rino

    Pulsar bow-shock nebulae are pulsar-wind nebulae formed by the direct interaction of pulsar relativistic winds with the interstellar medium. The bow-shock morphology, well outlined in Hα for some objects, is an effect of the supersonic pulsar motion with respect to the ambient medium. However, in a considerable fraction of cases (e.g. the nebulae associated to PSR B2224+65, PSR B0740-28, PSR J2124-3358) clear deviations from the classical bow shock shape are observed. Such deviations are usually interpreted as due to ambient density gradients and/or to pulsar-wind anisotropies. Here I present a different interpretation, aiming at explaining deviations from the standard morphology as signs of the peculiar physical conditions present in these objects. Using dimensional arguments, I show that, unlike normal pulsar-wind nebulae, in pulsar bow-shock nebulae the mean free path of the highest-energy particles may be comparable with the bow-shock head. I then investigate whether this may affect the shape of the bow-shock; for instance, whether a conical bow shock (like that observed in the "Guitar", the nebula associated to PSR B2224+65) does really imply an ambient density gradient. Finally, I discuss some other possible signatures of these high-energy, long mean-free-path particles.

  9. Diuron tolerance and potential degradation by pelagic microbiomes in the Great Barrier Reef lagoon

    PubMed Central

    Pantos, Olga; Morgan, Thomas C.; Rich, Virginia; Tonin, Hemerson; Bourne, David G.; Mercurio, Philip; Negri, Andrew P.; Tyson, Gene W.

    2016-01-01

    Diuron is a herbicide commonly used in agricultural areas where excess application causes it to leach into rivers, reach sensitive marine environments like the Great Barrier Reef (GBR) lagoon and pose risks to marine life. To investigate the impact of diuron on whole prokaryotic communities that underpin the marine food web and are integral to coral reef health, GBR lagoon water was incubated with diuron at environmentally-relevant concentration (8 µg/L), and sequenced at specific time points over the following year. 16S rRNA gene amplicon profiling revealed no significant short- or long-term effect of diuron on microbiome structure. The relative abundance of prokaryotic phototrophs was not significantly altered by diuron, which suggests that they were largely tolerant at this concentration. Assembly of a metagenome derived from waters sampled at a similar location in the GBR lagoon did not reveal the presence of mutations in the cyanobacterial photosystem that could explain diuron tolerance. However, resident phages displayed several variants of this gene and could potentially play a role in tolerance acquisition. Slow biodegradation of diuron was reported in the incubation flasks, but no correlation with the relative abundance of heterotrophs was evident. Analysis of metagenomic reads supports the hypothesis that previously uncharacterized hydrolases carried by low-abundance species may mediate herbicide degradation in the GBR lagoon. Overall, this study offers evidence that pelagic phototrophs of the GBR lagoon may be more tolerant of diuron than other tropical organisms, and that heterotrophs in the microbial seed bank may have the potential to degrade diuron and alleviate local anthropogenic stresses to inshore GBR ecosystems. PMID:26989611

  10. The Gum nebula

    NASA Technical Reports Server (NTRS)

    Brandt, J. C.

    1972-01-01

    The distance from the sun to the center of the star, Gamma Velorium, is determined in an effort to draw a physical model and identify the ionized energy source of the Gum nebula. The distance is calculated from the local hydrogen density of radio astronomy studies and the hydrogen measure.

  11. Evaluation of short-rotation woody crops to stabilize a decommissioned swine lagoon

    Treesearch

    K.C. Dipesh; Rodney E. Will; Thomas C. Hennessey; Chad J. Penn

    2012-01-01

    Fast growing tree stands represent an environmentally friendly, less expensive method for stabilization of decommissioned animal production lagoons than traditional lagoon closure. We tested the feasibility of using short-rotation woody crops (SRWCs) in central Oklahoma to close a decommissioned swine lagoon by evaluating the growth performance and nutrient uptake of...

  12. The Extended Region Around the Planetary Nebula NGC 3242

    NASA Image and Video Library

    2009-04-03

    This ultraviolet image from NASA Galaxy Evolution Explorer shows NGC 3242, a planetary nebula frequently referred to as Jupiter Ghost. The small circular white and blue area at the center of the image is the well-known portion of the nebula.

  13. Explosives Washout Lagoons Soils Operable Unit Supplemental Investigation Technical and Environmental Management Support of Installation Restoration Technology Development Program Umatilla Depot Activity Hermiston, Oregon

    DTIC Science & Technology

    1992-04-15

    an ofcial endorsement or approval of the use of such commercial products. This report may not be cited for purposes of advertisement . "EngineersM M7...Logs Appendix C. Laboratory Results of Soil Samples Appendix D. Concentration of Contaminants vs . Depth in Soils Appendix E. Lithologic Profiles of...dramatic difference in concentrations of explosives in areas outside the lagoons vs . concentrations beneath the lagoons. The results confirm that ES-I

  14. The effect of floods on sediment contamination in a microtidal coastal lagoon: the lagoon of Lesina, Italy.

    PubMed

    D'Adamo, Raffaele; Specchiulli, Antonietta; Cassin, Daniele; Botter, Margherita; Zonta, Roberto; Fabbrocini, Adele

    2014-10-01

    The effects on the microtidal lagoon of Lesina of runoff and the discharge of water and material from agricultural activities were investigated combining chemical analyses of pollutants [11 metals and 16 priority polycyclic aromatic compounds (PAHs)], determination of organic matter and grain size, and performance of innovative ecotoxicological tests. For metals, enrichment factors >3 for arsenic, nickel, and copper (Cu) were observed in the eastern zone of the lagoon, which is affected by nearby urban activities with discharge of water and domestic waste and by agricultural input with waters rich in fertilizers. Cu was correlated with no other metal, and its high concentrations (≤77 µg g(-1)) may result from the use of Cu-based fungicides in vineyards. Total PAHs (2,230 ± 3,150 ng g(-1)) displayed a wide range of concentrations with hot spots near freshwater inputs from the part of the catchment area exploited for wheat crops. Pyrolitic contamination also emerged, with higher-mass PAH congeners, such as asphalt, bitumen or coal, usually present in higher fractions as the dominant components. Ecotoxicological evaluations recorded moderate to high toxicity levels; the innovative MOT test bioassay showed good discriminatory ability because it identified a lagoon area whose inputs mainly depend on agricultural activities and which is impacted by metals rather than PAHs. Floods during periods of heavy rain and the discharge of water and material from agricultural activities may impact vulnerable systems, such as the lagoon of Lesina, where the presence of hot spots with remarkably high pollution values was observed.

  15. Interaction of planetary nebulae with the interstellar medium

    NASA Technical Reports Server (NTRS)

    Borkowski, Kazimierz J.; Sarazin, Craig L.; Soker, Noam

    1990-01-01

    The interaction of a moving planetary nebula (PN) with the interstellar medium is considered. The PN shell is compressed first in the direction of the stellar motion. This produces a dipole asymmetry in the surface brightness of the nebula, typically at a nebular density of about 40/cu cm if the nebula is located in the Galactic plane. In the later stages of the interaction, this part of the shell is significantly decelerated with respect to the central star, and the PN becomes strongly asymmetric in shape. This distortion and the subsequent stripping of the nebular gas away from the central star typically occurs at a low nebular density of about 6/cu cm. The morphology of PNs with central stars whose proper motions exceed 0.015 arcsec/yr was examined, and it was found that many of the extended nebulae are interacting with the interstellar medium (ISM). The sample doubles the number of known PNs interacting with the ISM. The morphology of nearby PNs was examined, and a number of strongly asymmetric nebuale were found.

  16. Hubble View of a Nitrogen-Rich Nebula

    NASA Image and Video Library

    2015-06-26

    This NASA/ESA Hubble Space Telescope image shows a planetary nebula named NGC 6153, located about 4,000 light-years away in the southern constellation of Scorpius (The Scorpion). The faint blue haze across the frame shows what remains of a star like the sun after it has depleted most of its fuel. When this happens, the outer layers of the star are ejected, and get excited and ionized by the energetic ultraviolet light emitted by the bright hot core of the star, forming the nebula. NGC 6153 is a planetary nebula that is elliptical in shape, with an extremely rich network of loops and filaments, shown clearly in this Hubble image. However, this is not what makes this planetary nebula so interesting for astronomers. Measurements show that NGC 6153 contains large amounts of neon, argon, oxygen, carbon and chlorine — up to three times more than can be found in the solar system. The nebula contains a whopping five times more nitrogen than our sun! Although it may be that the star developed higher levels of these elements as it grew and evolved, it is more likely that the star originally formed from a cloud of material that already contained a lot more of these elements. Text credit: European Space Agency Image credit: ESA/Hubble & NASA, Acknowledgement: Matej Novak NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  17. INTERNAL PROPER MOTIONS IN THE ESKIMO NEBULA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    García-Díaz, Ma. T.; Gutiérrez, L.; Steffen, W.

    We present measurements of internal proper motions at more than 500 positions of NGC 2392, the Eskimo Nebula, based on images acquired with WFPC2 on board the Hubble Space Telescope at two epochs separated by 7.695 yr. Comparisons of the two observations clearly show the expansion of the nebula. We measured the amplitude and direction of the motion of local structures in the nebula by determining their relative shift during that interval. In order to assess the potential uncertainties in the determination of proper motions in this object, in general, the measurements were performed using two different methods, used previously in themore » literature. We compare the results from the two methods, and to perform the scientific analysis of the results we choose one, the cross-correlation method, because it is more reliable. We go on to perform a ''criss-cross'' mapping analysis on the proper motion vectors, which helps in the interpretation of the velocity pattern. By combining our results of the proper motions with radial velocity measurements obtained from high resolution spectroscopic observations, and employing an existing 3D model, we estimate the distance to the nebula to be 1.3 kpc.« less

  18. Induced massive star formation in the trifid nebula?

    PubMed

    Cernicharo; Lefloch; Cox; Cesarsky; Esteban; Yusef-Zadeh; Mendez; Acosta-Pulido; Garcia Lopez RJ; Heras

    1998-10-16

    The Trifid nebula is a young (10(5) years) galactic HII region where several protostellar sources have been detected with the infrared space observatory. The sources are massive (17 to 60 solar masses) and are associated with molecular gas condensations at the edges or inside the nebula. They appear to be in an early evolutionary stage and may represent the most recent generation of stars in the Trifid. These sources range from dense, apparently still inactive cores to more evolved sources, undergoing violent mass ejection episodes, including a source that powers an optical jet. These observations suggest that the protostellar sources may have evolved by induced star formation in the Trifid nebula.

  19. Sludge-Drying Lagoons: a Potential Significant Methane Source in Wastewater Treatment Plants.

    PubMed

    Pan, Yuting; Ye, Liu; van den Akker, Ben; Ganigué Pagès, Ramon; Musenze, Ronald S; Yuan, Zhiguo

    2016-02-02

    "Sludge-drying lagoons" are a preferred sludge treatment and drying method in tropical and subtropical areas due to the low construction and operational costs. However, this method may be a potential significant source of methane (CH4) because some of the organic matter would be microbially metabolized under anaerobic conditions in the lagoon. The quantification of CH4 emissions from lagoons is difficult due to the expected temporal and spatial variations over a lagoon maturing cycle of several years. Sporadic ebullition of CH4, which cannot be easily quantified by conventional methods such as floating hoods, is also expected. In this study, a novel method based on mass balances was developed to estimate the CH4 emissions and was applied to a full-scale sludge-drying lagoon over a three year operational cycle. The results revealed that processes in a sludge-drying lagoon would emit 6.5 kg CO2-e per megaliter of treated sewage. This would represent a quarter to two-thirds of the overall greenhouse gas (GHG) emissions from wastewater-treatment plants (WWTPs). This work highlights the fact that sludge-drying lagoons are a significant source of CH4 that adds substantially to the overall GHG footprint of WWTPs despite being recognized as a cheap and energy-efficient means of drying sludge.

  20. Facilitating NASA Earth Science Data Processing Using Nebula Cloud Computing

    NASA Astrophysics Data System (ADS)

    Chen, A.; Pham, L.; Kempler, S.; Theobald, M.; Esfandiari, A.; Campino, J.; Vollmer, B.; Lynnes, C.

    2011-12-01

    Cloud Computing technology has been used to offer high-performance and low-cost computing and storage resources for both scientific problems and business services. Several cloud computing services have been implemented in the commercial arena, e.g. Amazon's EC2 & S3, Microsoft's Azure, and Google App Engine. There are also some research and application programs being launched in academia and governments to utilize Cloud Computing. NASA launched the Nebula Cloud Computing platform in 2008, which is an Infrastructure as a Service (IaaS) to deliver on-demand distributed virtual computers. Nebula users can receive required computing resources as a fully outsourced service. NASA Goddard Earth Science Data and Information Service Center (GES DISC) migrated several GES DISC's applications to the Nebula as a proof of concept, including: a) The Simple, Scalable, Script-based Science Processor for Measurements (S4PM) for processing scientific data; b) the Atmospheric Infrared Sounder (AIRS) data process workflow for processing AIRS raw data; and c) the GES-DISC Interactive Online Visualization ANd aNalysis Infrastructure (GIOVANNI) for online access to, analysis, and visualization of Earth science data. This work aims to evaluate the practicability and adaptability of the Nebula. The initial work focused on the AIRS data process workflow to evaluate the Nebula. The AIRS data process workflow consists of a series of algorithms being used to process raw AIRS level 0 data and output AIRS level 2 geophysical retrievals. Migrating the entire workflow to the Nebula platform is challenging, but practicable. After installing several supporting libraries and the processing code itself, the workflow is able to process AIRS data in a similar fashion to its current (non-cloud) configuration. We compared the performance of processing 2 days of AIRS level 0 data through level 2 using a Nebula virtual computer and a local Linux computer. The result shows that Nebula has significantly

  1. Radio and near-infrared images of IRAS 21282+5050: A transitional planetary nebula

    NASA Astrophysics Data System (ADS)

    Likkel, L.; Morris, M.; Kastner, J. H.; Forveille, T.

    1994-02-01

    We present 2 and 6 cm Very Large Array (VLA) images of the young planetary nebula IRAS 21282+5050. The nebular dimensions at 2 and 6 cm are about 4 sec x 3 sec, and the total flux density is almost 7 mJy at each wavelength, suggesting a spectral index of approximately 0. The emission is not centrally peaked and appears to arise in a shell or torus. The relatively low flux for the angular size and assumed distance implies an average electron density of 2000-10000/cu cm, low for compact planetary nebulae. An image and a polarization map of IRAS 21282+5050 at 2.2 microns are also presented. At 2.2 microns (K-band), the nebula has a diameter of approximately 6 sec. The image is centrally peaked, in large part because the central star contributes significantly to the K magnitude of 9.46 (104 mJy). The 2.2 micron polarization map does not display a centrosymmetric pattern characteristic of scattering; within a 7 sec aperture, we find an upper limit of 1.1% for the polarization. These results indicate that there is not a large component of scattered light in the near-infrared. IRAS 21282+5050 has significantly more emission at 2 microns than is expected for free-free and free-bound emission, however. We suggest that this emission may arise from transiently heated dust.

  2. Hubble Finds an Hourglass Nebula around a Dying Star

    NASA Image and Video Library

    1996-01-16

    This Hubble telescope snapshot of MyCn18, a young planetary nebula, reveals that the object has an hourglass shape with an intricate pattern of etchings in its walls. A planetary nebula is the glowing relic of a dying, Sun-like star.

  3. Spatial variations in dietary organic matter sources modulate the size and condition of fish juveniles in temperate lagoon nursery sites

    NASA Astrophysics Data System (ADS)

    Escalas, Arthur; Ferraton, Franck; Paillon, Christelle; Vidy, Guy; Carcaillet, Frédérique; Salen-Picard, Chantal; Le Loc'h, François; Richard, Pierre; Darnaude, Audrey Michèle

    2015-01-01

    Effective conservation of marine fish stocks involves understanding the impact, on population dynamics, of intra-specific variation in nursery habitats use at the juvenile stage. In some regions, an important part of the catching effort is concentrated on a small number of marine species that colonize coastal lagoons during their first year of life. To determine the intra-specific variation in lagoon use by these fish and their potential demographic consequences, we studied diet spatiotemporal variations in the group 0 juveniles of a highly exploited sparid, the gilthead seabream (Sparus aurata L.), during their ∼6 months stay in a NW Mediterranean lagoon (N = 331, SL = 25-198 mm) and traced the origin of the organic matter in their food webs, at two lagoon sites with contrasted continental inputs. This showed that the origin (marine, lagoonal or continental) of the organic matter (OM) available in the water column and the sediment can vary substantially within the same lagoon, in line with local variations in the intensity of marine and continental inputs. The high trophic plasticity of S. aurata allows its juveniles to adapt to resulting differences in prey abundances at each site during their lagoon residency, thereby sustaining high growth irrespective of the area inhabited within the lagoon. However, continental POM incorporation by the juveniles through their diet (of 21-37% on average depending on the site) is proportional to its availability in the environment and could be responsible for the greater fish sizes (of 28 mm SL on average) and body weights (of 40.8 g on average) observed at the site under continental influence in the autumn, when the juveniles are ready to leave the lagoon. This suggests that continental inputs in particulate OM, when present, could significantly enhance fish growth within coastal lagoons, with important consequences on the local population dynamics of the fish species that use them as nurseries. As our results indicate that

  4. Redistribution of fallout radionuclides in Enewetak Atoll lagoon sediments by callianassid bioturbation.

    PubMed

    McMurtry, G M; Schneider, R C; Colin, P L; Buddemeier, R W; Suchanek, T H

    The lagoon sediments of Enewetak Atoll in the Marshall Islands contain a large selection of fallout radionuclides as a result of 43 nuclear weapon tests conducted there between 1948 and 1958. Studies of the burial of fallout radionuclides have been conducted on the islands and in several of the large craters, but studies of their vertical distribution have been limited to about the upper 20 cm of the lagoon sediments. We have found elevated fallout radionuclide concentrations buried more deeply in the lagoon sediments and evidence of burrowing into the sediment by several species of callianassid ghost shrimp (Crustacea: Thalassinidea) which has displaced highly radioactive sediment. The burrowing activities of callianassids, which are ubiquitous on the lagoon floor, facilitate radionuclide redistribution and complicate the fallout radionuclide inventory of the lagoon.

  5. A search for planetary Nebulae with the Sloan digital sky survey: the outer regions of M31

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kniazev, Alexei Y.; Grebel, Eva K.; Martínez-Delgado, David

    2014-01-01

    We have developed a method to identify planetary nebula (PN) candidates in imaging data of the Sloan Digital Sky Survey (SDSS). This method exploits the SDSS's five-band sampling of emission lines in PN spectra, which results in a color signature distinct from that of other sources. Selection criteria based on this signature can be applied to nearby galaxies in which PNe appear as point sources. We applied these criteria to the whole area of M31 as scanned by the SDSS, selecting 167 PN candidates that are located in the outer regions of M31. The spectra of 80 selected candidates weremore » then observed with the 2.2 m telescope at Calar Alto Observatory. These observations and cross-checks with literature data show that our method has a selection rate efficiency of about 90%, but the efficiency is different for the different groups of PN candidates. In the outer regions of M31, PNe trace different well-known morphological features like the Northern Spur, the NGC 205 Loop, the G1 Clump, etc. In general, the distribution of PNe in the outer region 8 < R < 20 kpc along the minor axis shows the {sup e}xtended disk{sup —}a rotationally supported low surface brightness structure with an exponential scale length of 3.21 ± 0.14 kpc and a total mass of ∼10{sup 10} M {sub ☉}, which is equivalent to the mass of M33. We report the discovery of three PN candidates with projected locations in the center of Andromeda NE, a very low surface brightness giant stellar structure in the outer halo of M31. Two of the PNe were spectroscopically confirmed as genuine PNe. These two PNe are located at projected distances along the major axis of ∼48 Kpc and ∼41 Kpc from the center of M31 and are the most distant PNe in M31 found up to now. With the new PN data at hand we see the obvious kinematic connection between the continuation of the Giant Stream and the Northern Spur. We suggest that 20%-30% of the stars in the Northern Spur area may belong to the Giant Stream. In our data

  6. Spatiotemporal variation of bacterial community composition and possible controlling factors in tropical shallow lagoons.

    PubMed

    Laque, Thaís; Farjalla, Vinicius F; Rosado, Alexandre S; Esteves, Francisco A

    2010-05-01

    Bacterial community composition (BCC) has been extensively related to specific environmental conditions. Tropical coastal lagoons present great temporal and spatial variation in their limnological conditions, which, in turn, should influence the BCC. Here, we sought for the limnological factors that influence, in space and time, the BCC in tropical coastal lagoons (Rio de Janeiro State, Brazil). The Visgueiro lagoon was sampled monthly for 1 year and eight lagoons were sampled once for temporal and spatial analysis, respectively. BCC was evaluated by bacteria-specific PCR-DGGE methods. Great variations were observed in limnological conditions and BCC on both temporal and spatial scales. Changes in the BCC of Visgueiro lagoon throughout the year were best related to salinity and concentrations of NO (3) (-) , dissolved phosphorus and chlorophyll-a, while changes in BCC between lagoons were best related to salinity and dissolved phosphorus concentration. Salinity has a direct impact on the integrity of the bacterial cell, and it was previously observed that phosphorus is the main limiting nutrient to bacterial growth in these lagoons. Therefore, we conclude that great variations in limnological conditions of coastal lagoons throughout time and space resulted in different BCCs and salinity and nutrient concentration, particularly dissolved phosphorus, are the main limnological factors influencing BCC in these tropical coastal lagoons.

  7. An integrated Pan-European perspective on coastal Lagoons management through a mosaic-DPSIR approach

    PubMed Central

    Dolbeth, Marina; Stålnacke, Per; Alves, Fátima L.; Sousa, Lisa P.; Gooch, Geoffrey D.; Khokhlov, Valeriy; Tuchkovenko, Yurii; Lloret, Javier; Bielecka, Małgorzata; Różyński, Grzegorz; Soares, João A.; Baggett, Susan; Margonski, Piotr; Chubarenko, Boris V.; Lillebø, Ana I.

    2016-01-01

    A decision support framework for the management of lagoon ecosystems was tested using four European Lagoons: Ria de Aveiro (Portugal), Mar Menor (Spain), Tyligulskyi Liman (Ukraine) and Vistula Lagoon (Poland/Russia). Our aim was to formulate integrated management recommendations for European lagoons. To achieve this we followed a DPSIR (Drivers-Pressures-State Change-Impacts-Responses) approach, with focus on integrating aspects of human wellbeing, welfare and ecosystem sustainability. The most important drivers in each lagoon were identified, based on information gathered from the lagoons’ stakeholders, complemented by scientific knowledge on each lagoon as seen from a land-sea perspective. The DPSIR cycles for each driver were combined into a mosaic-DPSIR conceptual model to examine the interdependency between the multiple and interacting uses of the lagoon. This framework emphasizes the common links, but also the specificities of responses to drivers and the ecosystem services provided. The information collected was used to formulate recommendations for the sustainable management of lagoons within a Pan-European context. Several common management recommendations were proposed, but specificities were also identified. The study synthesizes the present conditions for the management of lagoons, thus analysing and examining the activities that might be developed in different scenarios, scenarios which facilitate ecosystem protection without compromising future generations. PMID:26776151

  8. The Rapid Evolution of the Exciting Star of the Stingray Nebula

    NASA Technical Reports Server (NTRS)

    Reindl, N.; Rauch, T.; Parthasarathy, M.; Werner, K.; Kruk, J.W.; Hamann, W. R.; Sander, A.; Todt, H.

    2014-01-01

    Context: SAO244567, the exciting star of the Stingray nebula, is rapidly evolving. Previous analyses suggested that it has heated up from an effective temperature of about 21 kK in 1971 to over 50 kK in the 1990s. Canonical post-asymptotic giant branch evolution suggests a relatively high mass while previous analyses indicate a low-mass star. Aims: A comprehensive model-atmosphere analysis of UV and optical spectra taken during 1988-2006 should reveal the detailed temporal evolution of its atmospheric parameters and provide explanations for the unusually fast evolution. Methods: Fitting line profiles from static and expanding non-LTE model atmospheres to the observed spectra allowed us to study the temporal change of effective temperature, surface gravity, mass-loss rate, and terminal wind velocity. In addition, we determined the chemical composition of the atmosphere. Results: We find that the central star has steadily increased its effective temperature from 38 kK in 1988 to a peak value of 60 kK in 2002. During the same time, the star was contracting, as concluded from an increase in surface gravity from log g = 4.8 to 6.0 and a drop in luminosity. Simultaneously, the mass-loss rate declined from log(M/M (solar mass) yr (exp -1)) = -9.0 to -11.6 and the terminal wind velocity increased from v (infinity) = 1800 km s (exp -1) to 2800 km s (exp -1). Since around 2002, the star stopped heating and has cooled down again to 55 kK by 2006. It has a largely solar surface composition with the exception of slightly subsolar carbon, phosphorus, and sulfur. The results are discussed by considering different evolutionary scenarios. Conclusions: The position of SAO244567 in the log T (sub eff) -log g plane places the star in the region of sdO stars. By comparison with stellar-evolution calculations, we confirm that SAO244567 must be a low-mass star (M < 0.55 solar mass). However, the slow evolution of the respective stellar evolutionary models is in strong contrast to the

  9. Mechanism of nitrogen removal in wastewater lagoon: a case study.

    PubMed

    Vendramelli, Richard A; Vijay, Saloni; Yuan, Qiuyan

    2017-06-01

    Ammonia being a nutrient facilitates the growth of algae in wastewater and causes eutrophication. Nitrate poses health risk if it is present in drinking water. Hence, nitrogen removal from wastewater is required. Lagoon wastewater treatment systems have become common in Canada these days. The study was conducted to understand the nitrogen removal mechanisms from the existing wastewater treatment lagoon system in the town of Lorette, Manitoba. The lagoon system consists of two primary aerated cells and two secondary unaerated cells. Surface samples were collected periodically from lagoon cells and analysed from 5 May 2015 to 9 November 2015. The windward and leeward sides of the ponds were sampled and the results were averaged. It was found that the free ammonia volatilization to the atmosphere is responsible for most of the ammonia removal. Ammonia and nitrate assimilation into biomass and biological growth in the cells appears to be the other mechanisms of nitrogen removal over the monitoring period. Factors affecting the nitrogen removal efficiency were found to be pH, temperature and hydraulic residence time. Also, the ammonia concentration in the effluent from the wastewater treatment lagoon was compared with the regulatory standard.

  10. Radiochemical methodology for the determination of the mass balance of suspended particulate materials exchanged at the inlets of the Venice Lagoon

    NASA Astrophysics Data System (ADS)

    Degetto, S.; Cantaluppi, C.

    2004-11-01

    The Venice Lagoon is connected to the Adriatic Sea by three inlets, with an average daily water inflow of 345∗10 6 m 3. Due to the diversion of the major rivers out of the lagoon (done in the past centuries), the sediment supply from the drainage basin is now very low when compared to the amount of sediment exchanged at the inlets (<1%). The limited sediment supply and the combined action of natural and anthropic pressures (e.g. waves, ships, fishing activities, dredging for navigation purposes) have caused in the last few decades a significant erosion of mudflats and salt-marshes. In order to investigate the history and the characteristics of the above phenomenon, with particular regard to the most recent years and the future trend, a wide radiochemical survey has been carried out in the whole lagoon, including the characterisation of the suspended particulate matter entering and leaving the lagoon in different tidal and meteorological conditions, with the aim of obtaining an indirect estimate of the sediment mass balance of the lagoon. The proposed radiochemical methodology, which is based on concentration measurements of airborne radionuclides in suspended particulate matter, appears to be an useful alternative to direct methods (e.g. bathymetric campaigns in the lagoon or mass fluxes measurements of the suspended particulate materials exchanged at the inlets). The results obtained, which show a complex sedimentary situation, highlight the erosion acting in some central and southern lagoon areas but recognise also the present accumulation phase coming into view in the northern lagoon.

  11. Spatiotemporal shoreline dynamics of Namibian coastal lagoons derived by a dense remote sensing time series approach

    NASA Astrophysics Data System (ADS)

    Behling, Robert; Milewski, Robert; Chabrillat, Sabine

    2018-06-01

    This paper proposes the remote sensing time series approach WLMO (Water-Land MOnitor) to monitor spatiotemporal shoreline changes. The approach uses a hierarchical classification system based on temporal MNDWI-trajectories with the goal to accommodate typical uncertainties in remote sensing shoreline extraction techniques such as existence of clouds and geometric mismatches between images. Applied to a dense Landsat time series between 1984 and 2014 for the two Namibian coastal lagoons at Walvis Bay and Sandwich Harbour the WLMO was able to identify detailed accretion and erosion progressions at the sand spits forming these lagoons. For both lagoons a northward expansion of the sand spits of up to 1000 m was identified, which corresponds well with the prevailing northwards directed ocean current and wind processes that are responsible for the material transport along the shore. At Walvis Bay we could also show that in the 30 years of analysis the sand spit's width has decreased by more than a half from 750 m in 1984-360 m in 2014. This ongoing cross-shore erosion process is a severe risk for future sand spit breaching, which would expose parts of the lagoon and the city to the open ocean. One of the major advantages of WLMO is the opportunity to analyze detailed spatiotemporal shoreline changes. Thus, it could be shown that the observed long-term accretion and erosion processes underwent great variations over time and cannot a priori be assumed as linear processes. Such detailed spatiotemporal process patterns are a prerequisite to improve the understanding of the processes forming the Namibian shorelines. Moreover, the approach has also the potential to be used in other coastal areas, because the focus on MNDWI-trajectories allows the transfer to many multispectral satellite sensors (e.g. Sentinel-2, ASTER) available worldwide.

  12. Eutrophication increases methane emission to the atmosphere in tropical lagoons: insights from two Ivory Coast sites

    NASA Astrophysics Data System (ADS)

    José-mathieu Koné, Yéfanlan; Vieira Borges, Alberto

    2017-04-01

    Eutrophication increases methane emission to the atmosphere in tropical lagoons: insights from two Ivory Coast sites. Y J M Koné (1) & A.V. Borges (2) (1) Centre de recherches océanologiques (CRO) d'Abidjan, (Ivory Coast) (2) University of Liège, Chemical Oceanography Unit, Liège, Belgium (Belgium) Eutrophication is a worldwide environmental problem and a definitive solution is far from being achieved, despite the large number of studies documenting its causes. In small aquatic ecosystems, excessive growth of macrophytes is a well known undesirable consequence of eutrophication. When these plants die and sink to the bottom the decomposing biomass depletes oxygen content in the water column thus leading to anoxia promoting methane (CH4) production. Here, we reported the CH4 data obtained during six campaigns covering the annual cycle in two small lagoons of Ivory Coast (Ono, Kodjoboué) that are contrasted in the degree of eutrophication and the corresponding coverage of macrophytes (e.g. Echinochloa pyramidalis, Eichhornia crassipes, Hydrilla verticillata). Our data showed a high spatio-temporal variability of CH4 within the lagoons and between the two systems, with CH4 concentrations in surface waters ranging between 80 to 74,604 nmol L-1. The highest CH4 concentration values were observed in the eutrophic Ono lagoon that is covered by 80% of macrophytes, suggesting that lagoons dominated by macrophytes are significant sources of CH4 toward the atmosphere.

  13. Air--sea gaseous exchange of PCB at the Venice lagoon (Italy).

    PubMed

    Manodori, L; Gambaro, A; Moret, I; Capodaglio, G; Cescon, P

    2007-10-01

    Water bodies are important storage media for persistent organic pollutants (POPs) such as polychlorinated biphenyls (PCBs) and this function is increased in coastal regions because their inputs are higher than those to the open sea. The air-water interface is extensively involved with the global cycling of PCBs because it is the place where they accumulate due to depositional processes and where they may be emitted by gaseous exchange. In this work the parallel collection of air, microlayer and sub-superficial water samples was performed in July 2005 at a site in the Venice lagoon to evaluate the summer gaseous flux of PCBs. The total concentration of PCBs (sum of 118 congeners) in air varies from 87 to 273 pg m(-3), whereas in the operationally defined dissolved phase of microlayer and sub-superficial water samples it varies from 159 to 391 pg L(-1). No significant enrichment of dissolved PCB into the microlayer has been observed, although a preferential accumulation of most hydrophobic congeners occurs. Due to this behaviour, we believe that the modified two-layer model was the most suitable approach for the evaluation of the flux at the air-sea interface, because it takes into account the influence of the microlayer. From its application it appears that PCB volatilize from the lagoon waters with a net flux varying from 58 to 195 ng m(-2)d(-1) (uncertainty: +/-50-64%) due to the strong influence of wind speed. This flux is greater than those reported in the literature for the atmospheric deposition and rivers input and reveals that PCB are actively emitted from the Venice lagoon in summer months.

  14. Formation environment of cometary nuclei in the primordial solar nebula

    NASA Astrophysics Data System (ADS)

    Yamamoto, T.

    1985-01-01

    The formation environment of comets in the primordial solar nebula is investigated from the point of view of the chemical composition of the ices of cometary nuclei. A sublimation sequence for various species of possible constituents of the nuclear ice, which would have condensed on the grain surface in the parent interstellar cloud was obtained by calculating the temperature of grains in the solar nebula. On this basis, an allowed range of the nebular temperature in the formation region of cometary nuclei is obtained from a condition for retention of the ices of the nuclear composition. Combining this result with models of the solar nebula, the region for the formation of cometary nuclei in the solar nebula is discussed. It is shown that cometary nuclei formed at least beyond the region between the formation regions of Saturn and Uranus. Finally, an upper limit is estimated for the grain temperature in the region of comet formation at an earlier stage of the solar nebula. The grain temperature is shown to be less than 60 K at this stage.

  15. Environmental quality of transitional waters: the lagoon of Venice case study.

    PubMed

    Micheletti, C; Gottardo, S; Critto, A; Chiarato, S; Marcomini, A

    2011-01-01

    The health status of European aquatic environments, including transitional waters such as coastal lagoons, is regulated by the Water Framework Directive (WFD), which requires the classification of the water bodies' environmental quality and the achievement of a good ecological status by 2015. In the Venice lagoon, a transitional water body located in the northeastern part of Italy, the achievement of a good ecological status is hampered by several anthropogenic and natural pressures, such as sediment and water chemical contamination, and sediment erosion. In order to evaluate the lagoon's environmental quality according to the WFD (i.e. 5 quality classes, from High to Bad), an integrated Weight-of-Evidence methodology was developed and applied to classify the quality of the lagoon water bodies, integrating biological, physico-chemical, chemical, ecotoxicological, and hydromorphological data (i.e. Lines of Evidence, LOE). The quality assessment was carried out in two lagoon habitat typologies (previously defined on the basis of morphological, sediment, and hydrodynamic characteristics) which were selected taking into account the ecological gradient from sea to land, and the differences in anthropogenic pressure and contamination levels. The LOE classification was carried out by using indicators scored by comparing site specific conditions to reference conditions measured in lagoon reference sites, or provided by local, national or European regulations (e.g. Environmental Quality Standards, EQS, for chemicals). Finally, the overall quality status for each water body was calculated by a probabilistic approach, i.e. by reporting the final result as the frequency distribution of quality classes. The developed procedure was applied by using data and information concerning selected LOE and collected from monitoring programs and research studies carried out in the last 15 years in the lagoon of Venice. A set of sampling stations characterized by spatially and temporally

  16. A deep narrowband survey for planetary nebulae at the outskirts of M 33

    NASA Astrophysics Data System (ADS)

    Galera-Rosillo, R.; Corradi, R. L. M.; Mampaso, A.

    2018-04-01

    Context. Planetary nebulae (PNe) are excellent tracers of stellar populations with low surface brightness, and therefore provide a powerful method to detect and explore the rich system of substructures discovered around the main spiral galaxies of the local group. Aim. We searched the outskirts of the local group spiral galaxy M 33 (the Triangulum) for PNe to gain new insights into the extended stellar substructure on the northern side of the disc and to study the existence of a faint classical halo. Methods: The search is based on wide field imaging covering a 4.5 square degree area out to a maximum projected distance of about 40 kpc from the centre of the galaxy. The PN candidates are detected by the combination of images obtained in narrowband filters selecting the [OIII]λ5007 Å and Hα + [NII] nebular lines and in the continuum g' and r' broadband filters. Results: Inside the bright optical disc of M 33, eight new PN candidates were identified, three of which were spectroscopically confirmed. No PN candidates were found outside the limits of the disc. Fourteen additional sources showing [OIII] excess were also discovered. Conclusions: The absence of bright PN candidates in the area outside the galaxy disc covered by this survey sets an upper limit to the luminosity of the underlying population of 1.6 × 107 L⊙, suggesting the lack of a massive classical halo, which is in agreement with the results obtained using the red giant branch population. Based on observations made with the Isaac Newton Telescope and service observations made with the William Herschel Telescope operated on the island of La Palma by the Isaac Newton Group of Telescopes in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias.

  17. Identifying tsunami deposits using shell taphonomy: Sur lagoon, Oman

    NASA Astrophysics Data System (ADS)

    Donato, S.; Reinhardt, E.; Rothaus, R.; Boyce, J.

    2007-05-01

    On November 28th, 1945 an 8.1 magnitude earthquake focused in the eastern portion of the Makran subduction zone (Arabian Sea) generated a powerful tsunami that destroyed many coastal villages in Pakistan and India. Reports indicate that the tsunami also caused significant damage in Muscat, Oman, although its effects elsewhere in Oman are unknown. A thick bivalve dominated shell horizon was discovered inside the Sur lagoon, which is located on the eastern promontory of Oman (200 km south of Muscat). This shell deposit is significant because it is laterally extensive (> 1 km2), extends deep within the lagoon (>2 km), ranges in thickness from 5 - 25 cm at the sample localities, contains numerous subtidal and offshore bivalve species, and articulated subtidal and offshore bivalve species are abundant. Although there is an absence of typical tsunami indicators such as allochthonous sediment in and around the lagoon, verbal accounts, cultural evidence recovered during coring, and the absence of strong storms during the past 100 years indicates that this shell unit was caused by the 1945 tsunami. In this setting, it would be advantageous to have another proxy for tsunami detection and risk prediction. The use of shell taphonomy is one of the potential indicators and here we present new evidence of its utility. We sampled this unit in eight locations, and compared the shell taphonomy to surface shell samples collected from beach and reworked horizons in the lagoon, and to shell samples from a known tsunami and corresponding storm/ballast deposit in Israel (Reinhardt et al., 2006). Taphonomic analysis yielded promising results, as the two tsunami horizons shared excellent agreement between the amount of fragmented shells, and the percentage of shells displaying angular breaks. Both of these categories were significantly different from the percentage of fragments and angular fragments recovered from the reworked, beach, and storm/ballast deposits, indicating different

  18. Inside the Flame Nebula

    NASA Image and Video Library

    2014-05-07

    This composite image shows one of the clusters, NGC 2024, which is found in the center of the so-called Flame Nebula about 1,400 light years from Earth. Astronomers have studied two star clusters using NASA Chandra and infrared telescopes.

  19. Photometry and imaging of the peculiar planetary nebula IRAS 21282 + 5050

    NASA Technical Reports Server (NTRS)

    Kwok, Sun; Hrivnak, Bruce J.; Langill, Philip P.

    1993-01-01

    We report visible, near-infrared, and mid-infrared photometry of the IRAS planetary nebula 21282+ 5050. Narrow-band photometry at 10 microns confirms the presence of the 11.3-micron PAH feature. IRAS 21282+5050 belongs to a small group of planetary nebulae with WC11 nuclei and PAH emission. The spectral energy distribution shows that majority of the flux is emitted in the infrared, and the object has one of the highest infrared excesses among all planetary nebulae. Optical imaging (after subtraction of the central star) reveals a nebula of size of about 7 x 5 arcsec which is elongated along the N-S direction.

  20. Drivers of pCO2 dynamics in two contrasting coral reef lagoons: The influence of submarine groundwater discharge (Invited)

    NASA Astrophysics Data System (ADS)

    Cyronak, T.; Santos, I. R.; Erler, D.; Maher, D. T.; Eyre, B.

    2013-12-01

    The carbon chemistry of coral reef lagoons can be highly variable over short time scales. While much of the diel variability in seawater carbon chemistry is explained by biological processes, external sources such as river and groundwater seepage may deliver large amounts of organic and inorganic carbon to coral reefs and represent a poorly understood feedback to ocean acidification. Here, we assess the impact of submarine groundwater discharge (SGD) on pCO2 variability in two coral reef lagoons with distinct SGD driving mechanisms. Diel variability of pCO2 in the two ecosystems was explained by a combination of biological drivers and SGD inputs. In Rarotonga, a South Pacific volcanic island, SGD was driven primarily by a steep terrestrial hydraulic gradient, and the lagoon was influenced by the high pCO2 (5,501 μatm) of the fresh groundwater. In Heron Island, a Great Barrier Reef coral cay, SGD was dominated by seawater recirculation through sediments (i.e. tidal pumping) and pCO2 was mainly impacted through the stimulation of biological processes. The Rarotonga water column had a relatively higher average pCO2 (549 μatm) than Heron Island (471 μatm). However, pCO2 exhibited a greater diel range in Heron Island (778 μatm) than in Rarotonga (507 μatm). The Rarotonga lagoon received 31.2 mmol CO2 m-2 d-1 from SGD, while the Heron Island lagoon received 12.3 mmol CO2 m-2 d-1. Over the course of this study both systems were sources of CO2 to the atmosphere (3.00 to 9.67 mmol CO2 m-2 d-1), with SGD-derived CO2 contributing a large portion to the air-sea CO2 flux. The relationship between both water column pH and aragonite saturation state (ΩAr) and radon (222Rn) concentrations indicate that SGD may enhance the local acidification of some coral reef lagoons. Studies measuring the carbon chemistry of coral reefs (e.g. community metabolism, calcification rates) may need to consider SGD-derived CO2.

  1. ISO Spectroscopy of Proto-Planetary Nebulae

    NASA Technical Reports Server (NTRS)

    Hrivnak, Bruce J.

    2000-01-01

    features at 3.3, 6,2, 7.7, and 11.3 micron, which are commonly observed in planetary nebulae and HII regions, are also seen in these PPNs. However, their strengths relative to the continuum plateaus at 8 and 12 micron are weaker than in planetary nebulae. The 6.9 micron feature, seen almost exclusively in PPNs, is strong. The spectral energy distributions of these PPNs were fitted with a radiative-transfer model, taking into account the emission features at 21, 26, and 30 micron. A significant fraction of the total energy output is emitted in these features: as high as 20% in the 30 micron feature and 8% in the 21 micron feature. The fact that so much energy is carried in these features suggests that the material responsible for this feature must be made of abundant elements, and most likely involves carbon. The change in the in feature strengths from stronger aliphatic bonds in PPNs to stronger aromatic bonds in PNs suggests a chemical and physical evolution in the carbonaceous circumstellar dust during this transition time scale of a few thousand years.

  2. Human impact and the historical transformation of saltmarshes in the Marano and Grado Lagoon, northern Adriatic Sea

    NASA Astrophysics Data System (ADS)

    Fontolan, Giorgio; Pillon, Simone; Bezzi, Annelore; Villalta, Renato; Lipizer, Marco; Triches, Antonella; D'Aietti, Alessandro

    2012-11-01

    Historical transformations of the saltmarshes in the six sub-basins of the Marano and Grado Lagoon were analyzed using aerial photographs (1954, 1990, 2006), and the support of historical maps and topographic surveys. Analysis of the 2006 set of aerial photographs enabled the definition of the present extent and distribution of the saltmarshes inside the lagoon (760 ha), with a total reduction in saltmarsh area of 16% (144 ha) compared to 1954. Direct human actions played a significant role in the budget, since total loss due to land reclamation and dredging during this period amounted to 126 ha. After excluding the total loss due to direct human interventions, different erosional and depositional marsh types were recognized and associated with different forcing factors, based on morphological and geographical evidence. Over the 52-year period marshes were lost due to: (a) drowning - the combined effects of eustatism, regional subsidence and autocompaction (102 ha); (b) edge-retreat by wind wave attack (34 ha); (c) erosion by vessel-generated waves (37 ha); and (d) coastal dynamics and inlet migration (5.7 ha). Conversely, marshes gained in area due to: (a) fluvial input (63 ha); (b) tidal input (27 ha); (c) paralagoonal deposition (45 ha); (d) the re-opening of abandoned fish farms (18 ha); and (e) the dumping of dredged material (8 ha). Our analysis demonstrates that local and short-term forcing factors can obliterate or compensate the long-term ones, especially the relative sea-level rise. A test of the integrated sediment budget carried out on one third of the total lagoon, through a bathymetric comparison between datasets from 1964 to 2009, pointed out that conservation or slight expansion of the marshes inside these basins were linked to an overall positive sediment budget of 61,000 m3/y. Nevertheless, significant morphological changes occurred in the submerged basin, which is affected by sustained deposition along the inner margins due to sediment supplies

  3. Influence of the surface drag coefficient (young waves) on the current structure of the Berre lagoon

    NASA Astrophysics Data System (ADS)

    Alekseenko, Elena; Roux, Bernard; Kharif, Christian; Sukhinov, Alexander; Kotarba, Richard; Fougere, Dominique; Chen, Paul Gang

    2013-04-01

    water column is analyzed in the range 0.0016 - 0.0032. For the three main wind directions considered in this work, for a wind speed of 80 km/h, the complex current structure of the Berre lagoon is analysed. In the nearshore zones, strong alongshore downwind currents are generated, reaching values of the order of 1m/s (up to 1.5 m/s) at the free surface, and 0.5 - 0.6 m/s at the bottom. References Alekseenko E., B. Roux, A. Sukhinov, R. Kotarba, D. Fougere. Coastal hydrodynamics in a windy lagoon; submitted to Computers and Fluids, oct. 2012 Csanady G. T.: Large-scale motion in the Great Lakes, Journal of Geophysical Research, 72(16), 4151-4161, 1967. Csanady G. T. : Baroclinic boundary currents and long edge-waves in basins with sloping shores. J. Physical Oceanography 1(2):92-104, 1971. Hunter, J.R. and Hearn, C.J.: Lateral and vertical variations in the wind-driven circulations in long, shallow lakes, Journal of Geophysical Research, 92 (C12), 1987. Hearn, C.J. and Hunter, J.R.: A note on the equivalence of some two- and three-dimensional models of wind-driven barotropic flow in shallow seas, Applied Mathematical Modelling, 14, 553-556, 1990. Mathieu P.P., Deleersnijder E., Cushman-Roisin B., Beckers J.M. and Bolding K.: The role of topography in small well-mixed bays, with application to the lagoon of Mururoa. Continental Shelf research, 22(9), 1379-1395, 2002. A. Pérez-Ruzafa, C. Marcos, I.M. Pérez-Ruzafa (2011). Mediterranean coastal lagoons in an ecosystem and aquatic resources management context//Physics and Chemistry of the Earth, Parts A/B/C, Volume 36, Issues 5-6, 2011, Pages 160-166 Young I.R., Wind generated ocean waves. Ocean Engineering Series Editors. Elsevier, 1999, ISBN: 0-08-043317-0.

  4. Registration of H2O and SiO masers in the Calabash Nebula to confirm the planetary nebula paradigm

    NASA Astrophysics Data System (ADS)

    Dodson, R.; Rioja, M.; Bujarrabal, V.; Kim, J.; Cho, S. H.; Choi, Y. K.; Youngjoo, Y.

    2018-05-01

    We report on the astrometric registration of very long baseline interferometry images of the SiO and H2O masers in OH 231.8+4.2, the iconic proto-planetary nebula also known as the Calabash nebula, using the Korean VLBI Network and source frequency phase referencing. This, for the first time, robustly confirms the alignment of the SiO masers, close to the asymptotic giant branch star, driving the bilobe structure with the water masers in the outflow. We are able to trace the bulk motions for the H2O masers over the last few decades to be 19 km s-1 and deduce that the age of this expansion stage is 38 ± 2 yr. The combination of this result with the distance allows a full 3D reconstruction and confirms that the H2O masers lie on and expand along the known large-scale symmetry axis and that the outflow is only a few decades old, so mass loss is almost certainly ongoing. Therefore, we conclude that the SiO emission marks the stellar core of the nebular, the H2O emission traces the expansion, and there must be multiple epochs of ejection to drive the macro-scale structure.

  5. Turbulence in the ionized gas of the Orion nebula

    NASA Astrophysics Data System (ADS)

    Arthur, S. J.; Medina, S.-N. X.; Henney, W. J.

    2016-12-01

    In order to study the nature, origin, and impact of turbulent velocity fluctuations in the ionized gas of the Orion nebula, we apply a variety of statistical techniques to observed velocity cubes. The cubes are derived from high resolving power (R ≈ 40 000) longslit spectroscopy of optical emission lines that span a range of ionizations. From velocity channel analysis (VCA), we find that the slope of the velocity power spectrum is consistent with predictions of Kolmogorov theory between scales of 8 and 22 arcsec (0.02 to 0.05 pc). The outer scale, which is the dominant scale of density fluctuations in the nebula, approximately coincides with the autocorrelation length of the velocity fluctuations that we determine from the second-order velocity structure function. We propose that this is the principal driving scale of the turbulence, which originates in the autocorrelation length of dense cores in the Orion molecular filament. By combining analysis of the non-thermal linewidths with the systematic trends of velocity centroid versus ionization, we find that the global champagne flow and smaller scale turbulence each contribute in equal measure to the total velocity dispersion, with respective root-mean-square widths of 4-5 km s-1. The turbulence is subsonic and can account for only one half of the derived variance in ionized density, with the remaining variance provided by density gradients in photoevaporation flows from globules and filaments. Intercomparison with results from simulations implies that the ionized gas is confined to a thick shell and does not fill the interior of the nebula.

  6. Interannual and cyclone-driven variability in phytoplankton communities of a tropical coastal lagoon.

    PubMed

    Srichandan, Suchismita; Kim, Ji Yoon; Kumar, Abhishek; Mishra, Deepak R; Bhadury, Punyasloke; Muduli, Pradipta R; Pattnaik, Ajit K; Rastogi, Gurdeep

    2015-12-15

    One of the main challenges in phytoplankton ecology is to understand their variability at different spatiotemporal scales. We investigated the interannual and cyclone-derived variability in phytoplankton communities of Chilika, the largest tropical coastal lagoon in Asia and the underlying mechanisms in relation to environmental forcing. Between July 2012 and June 2013, Cyanophyta were most prolific in freshwater northern region of the lagoon. A category-5 very severe cyclonic storm (VSCS) Phailin struck the lagoon on 12th October 2013 and introduced additional variability into the hydrology and phytoplankton communities. Freshwater Cyanophyta further expanded their territory and occupied the northern as well as central region of the lagoon. Satellite remote sensing imagery revealed that the phytoplankton biomass did not change much due to high turbidity prevailing in the lagoon after Phailin. Modeling analysis of species-salinity relationship identified specific responses of phytoplankton taxa to the different salinity regime of lagoon. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Turbulent Magnetic Relaxation in Pulsar Wind Nebulae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zrake, Jonathan; Arons, Jonathan

    We present a model for magnetic energy dissipation in a pulsar wind nebula. A better understanding of this process is required to assess the likelihood that certain astrophysical transients may be powered by the spin-down of a “millisecond magnetar.” Examples include superluminous supernovae, gamma-ray bursts, and anticipated electromagnetic counterparts to gravitational wave detections of binary neutron star coalescence. Our model leverages recent progress in the theory of turbulent magnetic relaxation to specify a dissipative closure of the stationary magnetohydrodynamic (MHD) wind equations, yielding predictions of the magnetic energy dissipation rate throughout the nebula. Synchrotron losses are self-consistently treated. To demonstratemore » the model’s efficacy, we show that it can reproduce many features of the Crab Nebula, including its expansion speed, radiative efficiency, peak photon energy, and mean magnetic field strength. Unlike ideal MHD models of the Crab (which lead to the so-called σ -problem), our model accounts for the transition from ultra to weakly magnetized plasma flow and for the associated heating of relativistic electrons. We discuss how the predicted heating rates may be utilized to improve upon models of particle transport and acceleration in pulsar wind nebulae. We also discuss implications for the Crab Nebula’s γ -ray flares, and point out potential modifications to models of astrophysical transients invoking the spin-down of a millisecond magnetar.« less

  8. Turbulent Magnetic Relaxation in Pulsar Wind Nebulae

    NASA Astrophysics Data System (ADS)

    Zrake, Jonathan; Arons, Jonathan

    2017-09-01

    We present a model for magnetic energy dissipation in a pulsar wind nebula. A better understanding of this process is required to assess the likelihood that certain astrophysical transients may be powered by the spin-down of a “millisecond magnetar.” Examples include superluminous supernovae, gamma-ray bursts, and anticipated electromagnetic counterparts to gravitational wave detections of binary neutron star coalescence. Our model leverages recent progress in the theory of turbulent magnetic relaxation to specify a dissipative closure of the stationary magnetohydrodynamic (MHD) wind equations, yielding predictions of the magnetic energy dissipation rate throughout the nebula. Synchrotron losses are self-consistently treated. To demonstrate the model’s efficacy, we show that it can reproduce many features of the Crab Nebula, including its expansion speed, radiative efficiency, peak photon energy, and mean magnetic field strength. Unlike ideal MHD models of the Crab (which lead to the so-called σ-problem), our model accounts for the transition from ultra to weakly magnetized plasma flow and for the associated heating of relativistic electrons. We discuss how the predicted heating rates may be utilized to improve upon models of particle transport and acceleration in pulsar wind nebulae. We also discuss implications for the Crab Nebula’s γ-ray flares, and point out potential modifications to models of astrophysical transients invoking the spin-down of a millisecond magnetar.

  9. Hard X-ray Variations in the Crab Nebula

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.; Cherry, M. L.; Case, G. L.; Baumgartner, W. H.; Beklen, E.; Bhat, P. N.; Briggs, M. S.; Camero-Arranz, A.; Chaplin, V.; Connaughton, V.; hide

    2013-01-01

    In the first two years of science operations of the Fermi Gamma-ray Burst Monitor (GBM), August 2008 to August 2010, approximately 7% (70 mcrab) decline was discovered in the overall Crab Nebula flux in the 15 - 50 keV band, measured with the Earth occultation technique. This decline was independently confirmed with four other instruments: the RXTE/PCA, Swift/BAT, INTEGRAL/IBIS, and INTEGRAL/SPI. The pulsed flux measured with RXTE/PCA from 1999-2010 was consistent with the pulsar spin-down, indicating that the observed changes were nebular. From 2001 to 2010, the Crab nebula flux measured with RXTE/PCA was particularly variable, changing by up to approximately 3.5% per year in the 15-50 keV band. These variations were confirmed with INTEGRAL/SPI starting in 2003, Swift/BAT starting in 2005, and Fermi GBM starting in 2008. Before 2001 and since 2010, the Crab nebula flux has appeared more stable, varying by less than 2% per year. I will present updated light curves in multiple energy bands for the Crab nebula, including recent data from Fermi GBM, Swift/BAT, INTEGRAL and MAXI, and a 16-year long light curve from RXTE/PCA.

  10. Hard X-ray Variations in the Crab Nebula

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.; Cherry, M. L.; Case, G. L.; Baumgarter, W. H.; Beklen, E.; Bhat, P. N.; Briggs, M. S.; Camero-Arranz, A.; Chaplin, V.; Connaughton, V.; hide

    2012-01-01

    In the first two years of science operations of the Fermi Gamma-ray Burst Monitor (GBM), August 2008 to August 2010, a approx.7% (70 mcrab) decline was discovered in the overall Crab Nebula flux in the 15 - 50 keV band, measured with the Earth occultation technique. This decline was independently confirmed with four other instruments: the RXTE/PCA, Swift/BAT, INTEGRAL/IBIS, and INTEGRAL/SPI. The pulsed flux measured with RXTE/PCA from 1999-2010 was consistent with the pulsar spin-down, indicating that the observed changes were nebular. From 2001 to 2010, the Crab nebula flux measured with RXTE/PCA was particularly variable, changing by up to approx.3.5% per year in the 15-50 keV band. These variations were confirmed with INTEGRAL/SPI starting in 2003, Swift/BAT starting in 2005, and Fermi GBM starting in 2008. Before 2001 and since 2010, the Crab nebula flux has appeared more stable, varying by less than 2% per year. I will present updated light curves in multiple energy bands for the Crab nebula, including recent data from Fermi GBM, Swift/BAT, and MAXI, and a 16-year long light curve from RXTE/PCA.

  11. Hard X-ray Variations in the Crab Nebula

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.; Cherry, M. L.; Case, G. L.; Baumgartner, W. H.; Beklen, E.; Bhat, P. N.; Briggs, M. S.; Camero-Arranz, A.; Connaughton, V.; Finger, M. H.; hide

    2013-01-01

    In the first two years of science operations of the Fermi Gamma-ray Burst Monitor (GBM), August 2008 to August 2010, approximately 7% (70 mcrab) decline was discovered in the overall Crab Nebula flux in the 15 - 50 keV band, measured with the Earth occultation technique. This decline was independently confirmed with four other instruments: the RXTE/PCA, Swift/BAT, INTEGRAL/IBIS, and INTEGRAL/SPI. The pulsed flux measured with RXTE/PCA from 1999-2010 was consistent with the pulsar spin-down, indicating that the observed changes were nebular. From 2001 to 2010, the Crab nebula flux measured with RXTE/ PCA was particularly variable, changing by up to approximately 3.5% per year in the 15-50 keV band. These variations were confirmed with INTEGRAL/SPI starting in 2003, Swift/BAT starting in 2005, and Fermi GBM starting in 2008. Before 2001 and since 2010, the Crab nebula flux has appeared more stable, varying by less than 2% per year. I will present updated light curves in multiple energy bands for the Crab Nebula, including recent data from Fermi GBM, Swift/BAT, INTEGRAL and MAXI, and a 16-year long light curve from RXTE/PCA.

  12. Origin of diffuse C II 158 micron and Si II 35 micron emission in the Carina nebula

    NASA Astrophysics Data System (ADS)

    Mizutani, M.; Onaka, T.; Shibai, H.

    2004-08-01

    We present the results of mapping observations with ISO of [O I] 63 μm, 145 μm, [N II] 122 μm, [C II] 158 μm, [Si II] 35 μm, and H_2 9.66 μm line emissions for the Carina nebula, an active star-forming region in the Galactic plane. The observations were made for the central 40 arcmin × 20 arcmin area of the nebula, including the optically bright H II region and molecular cloud lying in front of the ionized gas. Around the center of the observed area is the interface between the H II region and the molecular cloud which creates a typical photodissociation region (PDR). The [C II] 158 μm emission shows a good correlation with the [O I] 63 μm emission and peaks around the H II-molecular region interface. The correlated component has the ratio of [C II] 158 μm to [O I] 63 μm of about 2.8. We estimate from the correlation that about 80% of [C II] emission comes from the PDR in the Carina nebula. The photoelectric heating efficiency estimated from the ratio of the ([C II] 158 μm + [O I] 63 μm) intensity to the total far-infrared intensity ranges from 0.06 to 1.2%. [O I] 145 μm is detected marginally at 10 positions. The average ratio of [O I] 145 μm to [O I] 63 μm of these positions is about 0.09 ± 0.01 and is larger than model predictions. The observed [C II] 158 μm to [O I] 63 μm ratio indicates a relatively low temperature ( <500 K) of the gas, while the large [O I] 145 μm to 63 μm ratio suggests a high temperature (˜ 1000 K). This discrepancy cannot be accounted for consistently by the latest PDR model with the efficient photoelectric heating via polycyclic aromatic hydrocarbons (PAHs) even if absorption of [O I] 63 μm by foreground cold gas is taken into account. We suggest that absorption of [C II] 158 μm together with [O I] 63 μm by overlapping PDRs, in which the heating via PAHs is suppressed due to the charge-up effect, may resolve the discrepancy. Quite strong [Si II] 35 μm emission has been detected over the observed area. It shows a

  13. Distinguishing between symbiotic stars and planetary nebulae

    NASA Astrophysics Data System (ADS)

    Iłkiewicz, K.; Mikołajewska, J.

    2017-10-01

    Context. The number of known symbiotic stars (SySt) is still significantly lower than their predicted population. One of the main problems in finding the total population of SySt is the fact that their spectrum can be confused with other objects, such as planetary nebulae (PNe) or dense H II regions. This problem is reinforced by the fact that in a significant fraction of established SySt the emission lines used to distinguish them from other objects are not present. Aims: We aim at finding new diagnostic diagrams that could help separate SySt from PNe. Additionally, we examine a known sample of extragalactic PNe for candidate SySt. Methods: We employed emission line fluxes of known SySt and PNe from the literature. Results: We found that among the forbidden lines in the optical region of spectrum, only the [O III] and [N II] lines can be used as a tool for distinguishing between SySt and PNe, which is consistent with the fact that they have the highest critical densities. The most useful diagnostic that we propose is based on He I lines, which are more common and stronger in SySt than forbidden lines. All these useful diagnostic diagrams are electron density indicators that better distinguish PNe and ionized symbiotic nebulae. Moreover, we found six new candidate SySt in the Large Magellanic Cloud and one in M 81. If confirmed, the candidate in M 81 would be the farthest known SySt thus far.

  14. ENDOCRINE MODULATING EFFECTS OF LAGOON WATER FROM CONFINED ANIMAL FEED OPERATIONS ON AMPHIBIANS

    EPA Science Inventory


    Endocrine Modulating Effects of Lagoon Water from Confined Animal Feed Operations on Amphibians. Weber, L.P.*1, Dumont, J.N.1, Selcer, K.W.2, Hutchins, S.R.3, and Janz, D.M.1 1Oklahoma State University, Stillwater, OK, 2Duquesne University, Pittsburgh, PA, 3U.S. Environmenta...

  15. Magnetic fields in central stars of planetary nebulae?

    NASA Astrophysics Data System (ADS)

    Jordan, S.; Bagnulo, S.; Werner, K.; O'Toole, S. J.

    2012-06-01

    Context. Most planetary nebulae have bipolar or other non-spherically symmetric shapes. Magnetic fields in the central star may be responsible for this lack of symmetry, but observational studies published to date have reported contradictory results. Aims: We search for correlations between a magnetic field and departures from the spherical geometry of the envelopes of planetary nebulae. Methods: We determine the magnetic fields from spectropolarimetric observations of ten central stars of planetary nebulae. The results of the analysis of the observations of four stars were previously presented and discussed in the literature, while the observations of six stars, plus additional measurements of a star previously observed, are presented here for the first time. Results: All our determinations of magnetic field in the central planetary nebulae are consistent with null results. Our field measurements have a typical error bar of 150-300 G. Previous spurious field detections using data acquired with FORS1 (FOcal Reducer and low dispersion Spectrograph) of the Unit Telescope 1 (UT1) of the Very Large Telescope (VLT) were probably due to the use of different wavelength calibration solutions for frames obtained at different position angles of the retarder waveplate. Conclusions: There is currently no observational evidence of magnetic fields with a strength of the order of hundreds Gauss or higher in the central stars of planetary nebulae. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile, under programme ID 072.D-0089 (PI = Jordan) and 075.D-0289 (PI = Jordan).

  16. POLYCYCLIC AROMATIC HYDROCARBONS WITH STRAIGHT EDGES AND THE 7.6/6.2 AND 8.6/6.2 INTENSITY RATIOS IN REFLECTION NEBULAE.

    PubMed

    Ricca, Alessandra; Bauschlicher, Charles W; Roser, Joseph E; Peeters, Els

    2018-01-01

    We have investigated the mid-infrared spectral characteristics of a series of polycyclic aromatic hydrocarbons (PAHs) with straight edges and containing an even or odd number of carbons using density functional theory (DFT). For several even and odd-carbon PAHs, the 8.6/6.2 and 7.6/6.2 intensity ratios computed in emission after the absorption of a 8 eV photon match the observed ratios obtained for three reflection nebulae (RNe), namely NGC 1333, NGC 7023, and NGC 2023. Odd-carbon PAHs are favored, particularly for NGC 1333. Both cations and anions are present with the cations being predominant. Relevant PAHs span sizes ranging from 46 to 103-113 carbons for NGC 7023 and NGC 2023 and from 38 to 127 carbons for NGC 1333 and have symmetries ranging from D 2 h to C s . Our work suggests that even and odd-carbon PAHs with straight edges are viable candidates for the PAH emission seen towards irradiated Photo-Dissociation Regions (PDRs).

  17. Polycyclic Aromatic Hydrocarbons with Straight Edges and the 7.6/6.2 and 8.6/6.2 Intensity Ratios in Reflection Nebulae

    NASA Astrophysics Data System (ADS)

    Ricca, Alessandra; Bauschlicher, Charles W., Jr.; Roser, Joseph E.; Peeters, Els

    2018-02-01

    Using density functional theory, we have investigated the mid-infrared spectral characteristics of a series of polycyclic aromatic hydrocarbons (PAHs) that have straight edges and that contain an even or odd number of carbons. For several even and odd-carbon PAHs, the 8.6/6.2 and 7.6/6.2 intensity ratios computed in emission after the absorption of a 8 eV photon match the observed ratios obtained for three reflection nebulae (RNe), namely NGC 1333, NGC 7023, and NGC 2023. Odd-carbon PAHs are favored, particularly for NGC 1333. Both cations and anions are present, with the cations being predominant. Relevant PAHs span sizes ranging from 46 to 113 carbons for NGC 7023 and NGC 2023 and from 38 to 127 carbons for NGC 1333, and have symmetries ranging from D2h to C s . Our work suggests that even- and odd-carbon PAHs with straight edges are viable candidates for the PAH emission seen toward irradiated photodissociation regions.

  18. Diazotroph community succession during the VAHINE mesocosm experiment (New Caledonia lagoon)

    NASA Astrophysics Data System (ADS)

    Turk-Kubo, K. A.; Frank, I. E.; Hogan, M. E.; Desnues, A.; Bonnet, S.; Zehr, J. P.

    2015-12-01

    The VAHINE mesocosm experiment, conducted in the low-nutrient low-chlorophyll waters of the Noumea lagoon (coastal New Caledonia) was designed to trace the incorporation of nitrogen (N) fixed by diazotrophs into the food web, using large volume (50 m3) mesocosms. This experiment provided a unique opportunity to study the succession of different N2-fixing microorganisms (diazotrophs) and calculate in situ net growth and mortality rates in response to fertilization with dissolved inorganic phosphate (DIP) over a 23-day period, using quantitative polymerase chain reaction (qPCR) assays targeting widely distributed marine diazotroph lineages. Inside the mesocosms, the most abundant diazotroph was the heterocyst-forming Richelia associated with Rhizosolenia (Het-1) in the first half of the experiment, while unicellular cyanobacterial Group C (UCYN-C) became abundant during the second half of the experiment. Decreasing DIP concentrations following the fertilization event and increasing temperatures were significantly correlated with increasing abundances of UCYN-C. Maximum net growth rates for UCYN-C were calculated to range between 1.23 ± 0.07 and 2.16 ± 0.07 d-1 in the mesocosms, which are among the highest growth rates reported for diazotrophs. Outside the mesocosms in the New Caledonia lagoon, UCYN-C abundances remained low, despite increasing temperatures, suggesting that the microbial community response to the DIP fertilization created conditions favorable for UCYN-C growth inside the mesocosms. Diazotroph community composition analysis using PCR targeting a component of the nitrogenase gene (nifH) verified that diazotrophs targeted in qPCR assays were collectively among the major lineages in the lagoon and mesocosm samples, with the exception of Crocosphaera-like phylotypes, where sequence types not typically seen in the oligotrophic ocean grew in the mesocosms. Maximum net growth and mortality rates for nine diazotroph phylotypes throughout the 23-day

  19. Reconstruction of historic sea ice conditions in a sub-Arctic lagoon

    USGS Publications Warehouse

    Petrich, Chris; Tivy, Adrienne C.; Ward, David H.

    2014-01-01

    Historical sea ice conditions were reconstructed for Izembek Lagoon, Bering Sea, Alaska. This lagoon is a crucial staging area during migration for numerous species of avian migrants and a major eelgrass (Zostera marina) area important to a variety of marine and terrestrial organisms, especially Pacific Flyway black brant geese (Branta bernicla nigricans). Ice cover is a common feature of the lagoon in winter, but appears to be declining, which has implications for eelgrass distribution and abundance, and its use by wildlife. We evaluated ice conditions from a model based on degree days, calibrated to satellite observations, to estimate distribution and long-term trends in ice conditions in Izembek Lagoon. Model results compared favorably with ground observations and 26 years of satellite data, allowing ice conditions to be reconstructed back to 1943. Specifically, periods of significant (limited access to eelgrass areas) and severe (almost complete ice coverage of the lagoon) ice conditions could be identified. The number of days of severe ice within a single season ranged from 0 (e.g., 2001) to ≥ 67 (e.g., 2000). We detected a slight long-term negative trend in ice conditions, superimposed on high inter-annual variability in seasonal aggregate ice conditions. Based on reconstructed ice conditions, the seasonally cumulative number of significant or severe ice days correlated linearly with mean air temperature from January until March. Further, air temperature at Izembek Lagoon was correlated with wind direction, suggesting that ice conditions in Izembek Lagoon were associated with synoptic-scale weather patterns. Methods employed in this analysis may be transferable to other coastal locations in the Arctic.

  20. Dynamics of copper and zinc sedimentation in a lagooning system receiving landfill leachate.

    PubMed

    Guigue, Julien; Mathieu, Olivier; Lévêque, Jean; Denimal, Sophie; Steinmann, Marc; Milloux, Marie-Jeanne; Grisey, Hervé

    2013-11-01

    This study characterises the sediment dredged from a lagooning system composed of a settling pond and three lagoons that receive leachates from a municipal solid waste (MSW) landfill in France. Organic carbon, carbonate, iron oxyhydroxides, copper (Cu) and zinc (Zn) concentrations were measured in the sediment collected from upstream to downstream in the lagooning system. In order to complete our investigation of sedimentation mechanisms, leachates were sampled in both dry (spring) and wet (winter) seasonal conditions. Precipitation of calcite and amorphous Fe-oxyhydroxides and sedimentation of organic matter occurred in the settling pond. Since different distributions of Zn and Cu concentrations are measured in sediment samples collected downstream in the lagooning system, it is suggested that these elements were not distributed in a similar way in the leachate fractions during the first stage of treatment in the settling pond, so that their sedimentation dynamics in the lagooning system differ. In the lagoons, it was found that organic carbon plays a major role in Cu and Zn mobility and trapping. The presence of macrophytes along the edges provided an input of organic matter that enhanced Cu and Zn scavenging. This edge effect resulted in a two-fold increase in Cu and Zn concentrations in the sediment deposited near the banks of the lagoons, thus confirming the importance of vegetation for the retention of Cu and Zn in lagooning systems. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. A ROTATIONALLY POWERED MAGNETAR NEBULA AROUND SWIFT J1834.9–0846

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torres, Diego F.

    A wind nebula generating extended X-ray emission was recently detected surrounding Swift J1834.9–0846. This is the first magnetar for which such a wind nebula was found. Here, we investigate whether there is a plausible scenario where the pulsar wind nebula (PWN) can be sustained without the need of advocating for additional sources of energy other than rotational. We do this by using a detailed radiative and dynamical code that studies the evolution of the nebula and its particle population in time. We find that such a scenario indeed exists: Swift J1834.9–0846's nebula can be explained as being rotationally powered, asmore » all other known PWNe are, if it is currently being compressed by the environment. The latter introduces several effects, the most important of which is the appearance of adiabatic heating, being increasingly dominant over the escape of particles as reverberation goes by. The need of reverberation naturally explains why this is the only magnetar nebula detected and provides estimates for Swift 1834.9–0846's age.« less

  2. Temporal stability of otolith elemental fingerprints discriminates among lagoon nursery habitats

    NASA Astrophysics Data System (ADS)

    Tournois, Jennifer; Ferraton, Franck; Velez, Laure; McKenzie, David J.; Aliaume, Catherine; Mercier, Lény; Darnaude, Audrey M.

    2013-10-01

    The chemical composition of fish otoliths reflects that of the water masses that they inhabit. Otolith elemental compositions can, therefore, be used as natural tags to discriminate among habitats. However, for retrospective habitat identification to be valid and reliable for any adult, irrespective of its age, significant differences in environmental conditions, and therefore otolith signatures, must be temporally stable within each habitat, otherwise connectivity studies have to be carried out by matching year-classes to the corresponding annual fingerprints. This study investigated how various different combinations of chemical elements in otoliths could distinguish, over three separate years, between four coastal lagoon habitats used annually as nurseries by gilthead sea bream (Sparus aurata L.) in the Gulf of Lions (NW Mediterranean). A series of nine elements were measured in otoliths of 301 S. aurata juveniles collected in the four lagoons in 2008, 2010 and 2011. Percentages of correct re-assignment of juveniles to their lagoon of origin were calculated with the Random Forest classification method, considering every possible combination of elements. This revealed both spatial and temporal variations in accuracy of habitat identification, with correct re-assignment to each lagoon ranging from 44 to 99% depending on the year and the lagoon. There were also annual differences in the combination of elements that provided the best discrimination among the lagoons. Despite this, when the data from the three years were pooled, a combination of eight elements (B, Ba, Cu, Li, Mg, Rb, Sr and Y) provided greater than 70% correct re-assignment to each single lagoon, with a multi-annual global accuracy of 79%. When considering the years separately, discrimination accuracy with these elemental fingerprints was above 90% for 2008 and 2010. It decreased to 61% in 2011, when unusually heavy rainfall occurred, which presumably reduced chemical differences among several of the

  3. New Radio and Optical Expansion Rate Measurements of the Crab Nebula

    NASA Astrophysics Data System (ADS)

    Bietenholz, M. F.; Nugent, R. L.

    2016-06-01

    We present new JVLA radio observations of the Crab nebula, which we use, along with older observations taken over a ~30 yr period, to determined the expansion rate of the synchrotron nebula. We find a convergence date for the radio synchrotron nebula of AD 1255 +/- 27. We also re-evaluated the expansion rate of the optical line emitting filaments, and we show that the traditional estimates of their convergence date are slightly biased. We find an un-biased convergence date of AD 1091 +/- 34, ~40 yr earlier than previous estimates. Our results show that both the synchrotron nebula and the optical line-emitting filaments have been accelerated since the explosion in AD 1054, but former more strongly than the latter. This finding supports the picture that the filaments are the result of the Rayleigh-Taylor instability at the interface between the pulsar-wind nebula and the surrounding freely-expanding supernova ejecta, and rules out models where the pulsar wind bubble is interacting directly with the pre-supernova wind of the Crab's progenitor. Our new observations were taken ~2 months after the gamma-ray flare of 2012 July, and also allow us to put a sensitive limit on any radio emission associated with the flare of <0.0002 times the radio luminosity that of the nebula.

  4. BY POPULAR DEMAND: HUBBLE OBSERVES THE HORSEHEAD NEBULA

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Rising from a sea of dust and gas like a giant seahorse, the Horsehead nebula is one of the most photographed objects in the sky. NASA's Hubble Space Telescope took a close-up look at this heavenly icon, revealing the cloud's intricate structure. This detailed view of the horse's head is being released to celebrate the orbiting observatory's eleventh anniversary. Produced by the Hubble Heritage Project, this picture is a testament to the Horsehead's popularity. Internet voters selected this object for the orbiting telescope to view. The Horsehead, also known as Barnard 33, is a cold, dark cloud of gas and dust, silhouetted against the bright nebula, IC 434. The bright area at the top left edge is a young star still embedded in its nursery of gas and dust. But radiation from this hot star is eroding the stellar nursery. The top of the nebula also is being sculpted by radiation from a massive star located out of Hubble's field of view. Only by chance does the nebula roughly resemble the head of a horse. Its unusual shape was first discovered on a photographic plate in the late 1800s. Located in the constellation Orion, the Horsehead is a cousin of the famous pillars of dust and gas known as the Eagle nebula. Both tower-like nebulas are cocoons of young stars. The Horsehead nebula lies just south of the bright star Zeta Orionis, which is easily visible to the unaided eye as the left-hand star in the line of three that form Orion's Belt. Amateur astronomers often use the Horsehead as a test of their observing skills; it is known as one of the more difficult objects to see visually in an amateur-sized telescope. The magnificent extent of the Horsehead is best appreciated in a new wide-field image of the nebula being released today by the National Optical Astronomy Observatory, taken by Travis Rector with the National Science Foundation's 0.9 meter telescope at Kitt Peak National Observatory near Tucson, AZ. This popular celestial target was the clear winner among more

  5. HUBBLE FINDS AN HOURGLASS NEBULA AROUND A DYING STAR

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This is an image of MyCn18, a young planetary nebula located about 8,000 light-years away, taken with the Wide Field and Planetary Camera 2 (WFPC2) aboard NASA's Hubble Space Telescope (HST). This Hubble image reveals the true shape of MyCn18 to be an hourglass with an intricate pattern of 'etchings' in its walls. This picture has been composed from three separate images taken in the light of ionized nitrogen (represented by red), hydrogen (green), and doubly-ionized oxygen (blue). The results are of great interest because they shed new light on the poorly understood ejection of stellar matter which accompanies the slow death of Sun-like stars. In previous ground-based images, MyCn18 appears to be a pair of large outer rings with a smaller central one, but the fine details cannot be seen. According to one theory for the formation of planetary nebulae, the hourglass shape is produced by the expansion of a fast stellar wind within a slowly expanding cloud which is more dense near its equator than near its poles. What appears as a bright elliptical ring in the center, and at first sight might be mistaken for an equatorially dense region, is seen on closer inspection to be a potato shaped structure with a symmetry axis dramatically different from that of the larger hourglass. The hot star which has been thought to eject and illuminate the nebula, and therefore expected to lie at its center of symmetry, is clearly off center. Hence MyCn18, as revealed by Hubble, does not fulfill some crucial theoretical expectations. Hubble has also revealed other features in MyCn18 which are completely new and unexpected. For example, there is a pair of intersecting elliptical rings in the central region which appear to be the rims of a smaller hourglass. There are the intricate patterns of the etchings on the hourglass walls. The arc-like etchings could be the remnants of discrete shells ejected from the star when it was younger (e.g. as seen in the Egg Nebula), flow instabilities, or

  6. Multiple outflows in the bipolar planetary nebula M1-16: A molecular line study

    NASA Astrophysics Data System (ADS)

    Sahai, Raghvendra; Wootten, Alwyn; Schwarz, Hugo E.; Wild, W.

    1994-06-01

    Extensive observations of the molecular gas in the young, compact planetary nebula M1-16 have been made, using the Swedish-ESO-Submillimeter Telescope. A map of the CO J = 2-1 emission shows that the molecular envelope contains both a slow and a fast outflow with expansion velocities of 19 km/s and greater than 34 km/s, respectively. The slow outflow is mildly elliptical, while the fast molecular outflow is bipolar. This fast outflow is roughly aligned with the very fast outflows recently found in the optical, while the long axis of the slow elliptical outflow is roughly orthogonal to the optical outflow axis. The kinematic timescales for the CO fast outflow and the optical very fast outflow agree closely, supporting the view that the former represents material in the slow outflow accelerated by the very fast outflow. The kinematic signature of a disk expanding with about 15.5 km/s can also be seen in the CO J = 2-1 data. The mass-loss rate (a) for the slow outflow is greater than or equal to 2.8 x 10-5 solar mass/yr and possibly as large as 9 x 10-5 solar mass/yr, (b) for the fast outflow is greater than or equal to 5 x 10-6 solar mass/yr, and (c) for the very fast optically visible outflow is approximately equal 5 x 10-7 solar mass/yr. The disk mass is approximately equal 6 x 10-3 solar mass. Grain photoelectric heating results in temperatures of 20-70 K in molecular gas of the slow outflow. The (13)C/(12)C abundance ratio in M1-16 is found to be 0.33, quite possibly the highest found for any evolved object. Upper limits for the (18)O/(16)O and (17)O/(16)O ratios were found to be consistent with the values found in AGB stars. A search for other molecular species in M1-16 resulted in the detection of the high-excitation species HCN, CN, (13)CN, HCO(+), and H(13)CO(+) and possibly N2H(+). Both the HCO(+)/HCN and CN/HCN line-intensity ratios are enhanced, the former by a very large factor, over the values found in the envelopes of AGB stars, probably as a result of

  7. Sedimentation rate and lateral migration of tidal channels in the Lagoon of Venice (Northern Italy)

    NASA Astrophysics Data System (ADS)

    Donnici, Sandra; Madricardo, Fantina; Serandrei-Barbero, Rossana

    2017-11-01

    Tidal channels are crucial for the functioning of highly valuable coastal environments, such as estuaries and lagoons. Their properties, however, are currently less understood than those of river systems. To elucidate their past behaviour, an extensive geophysical investigation was performed to reconstruct the evolution of channels and tidal surfaces in the central part of the Lagoon of Venice (Italy) over the past 5000 years. Comparing high-spatial-resolution acoustic data and sedimentary facies analyses of 41 cores, 29 of which were radiocarbon dated, revealed the sedimentation rates in different lagoonal environments and allowed the migration of two large meanders to be reconstructed. The average sedimentation rate of the study succession in the different sedimentary environments was 1.27 mm yr-1. The lateral migration rates were 13-23 m/century. This estimate is consistent with the lateral migration rates determined by comparing aerial photographs of recent channels. Comparing the buried channels with historical and current maps showed that, in general, the number of active channels is now reduced. Their morphology was sometimes simplified by artificial interventions. An understanding of the impact of the artificial interventions over time is useful for the management and conservation of tidal environments, particularly for the Lagoon of Venice, where management authorities are currently debating the possible deepening and rectification of large navigation channels.

  8. LANDSAT imagery of the Venetian Lagoon: A multitemporal analysis

    NASA Technical Reports Server (NTRS)

    Alberotanza, L.; Zandonella, A. (Principal Investigator)

    1980-01-01

    The use of LANDSAT multispectral scanner images from 1975 to 1979 to determine pollution dispersion in the central basin of the lagoon under varying tidal conditions is described. Images taken during the late spring and representing both short and long range tidal dynamics were processed for partial haze removal and removal of residual striping. Selected spectral bands were correlated to different types of turbid water. The multitemporal data was calibrated, classified considering sea truth data, and evaluated. The classification differentiated tide diffusion, algae belts, and industrial, agricultural, and urban turbidity distributions. Pollution concentration is derived during the short time interval between inflow and outflow and from the distance between the two lagoon inlets and the industrial zones. Increasing pollution of the lagoon is indicated.

  9. Masterplan to safeguard Venice and to restore the lagoon and conterminous areas

    NASA Astrophysics Data System (ADS)

    Bini, Claudio; Gallo, Alba; Nadimi-Goki, Mandana; Wahsha, Mohammad

    2015-04-01

    Venice and its lagoon constitute a complex system, well known all over the world for the peculiarity of the town and for the fragility of the lagoon ecosystem with its delicate equilibrium. The whole system has been, and is currently, affected by human activities (industry, agriculture, settlements, tourism) that impact severely the ecosystem. Discharge from the agricultural drainage basin affects particularly the area North of the city of Venice; the central and southern areas, instead, receive important pollutant inputs from the industrial zone of Porto Marghera since the early'50s. Additional sources of pollution are domestic sewage and waste disposal from the urban area, that is visited by more than 10M people every year. As a consequence of the increasing land contamination, significant amounts of contaminants (both organic and inorganic) are accumulated in soils of the borderline, in water and in lagoon sediments, which constitute a potential source of secondary pollution. Results of surveys carried out in recent years in the whole area show that contaminants concentration increased from the beginning of the industrial activities until the '90s, when Porto Marghera declined. Most of contaminants have concentrations above the background levels. The highest metal levels were found in an area between Porto Marghera and the city of Venice, where both industrial and urban sewage are discharged, provoking environmental and human health hazard. In order to safeguard the city of Venice, and to restore its lagoon and conterminous areas, a Master Plan of intervention has been developed since the early 2000s. The land currently interested by environmental analysis and/or restoration covers approximately 1350ha; 78% of these (1100ha) proved variously contaminated, with 85% of sites overcoming the National Reference Values. Contamination, besides being diffused, is quite complex, involving the co-existence of several contaminant families (PAH, PCB, dioxin, heavy metals

  10. On the X-ray temperature of hot gas in diffuse nebulae

    NASA Astrophysics Data System (ADS)

    Toalá, J. A.; Arthur, S. J.

    2018-05-01

    X-ray emitting diffuse nebulae around hot stars are observed to have soft-band temperatures in the narrow range [1-3]× 106 K, independent of the stellar wind parameters and the evolutionary stage of the central star. We discuss the origin of this X-ray temperature for planetary nebulae (PNe), Wolf-Rayet nebulae (WR) and interstellar wind bubbles around hot young stars in our Galaxy and the Magellanic Clouds. We calculate the differential emission measure (DEM) distributions as a function of temperature from previously published simulations and combine these with the X-ray emission coefficient for the 0.3-2.0 keV band to estimate the X-ray temperatures. We find that all simulated nebulae have DEM distributions with steep negative slopes, which is due to turbulent mixing at the interface between the hot shocked stellar wind and the warm photoionized gas. Sharply peaked emission coefficients act as temperature filters and emphasize the contribution of gas with temperatures close to the peak position, which coincides with the observed X-ray temperatures for the chemical abundance sets we consider. Higher metallicity nebulae have lower temperature and higher luminosity X-ray emission. We show that the second temperature component found from spectral fitting to X-ray observations of WR nebulae is due to a significant contribution from the hot shocked stellar wind, while the lower temperature principal component is dominated by nebular gas. We suggest that turbulent mixing layers are the origin of the soft X-ray emission in the majority of diffuse nebulae.

  11. On the X-ray temperature of hot gas in diffuse nebulae

    NASA Astrophysics Data System (ADS)

    Toalá, J. A.; Arthur, S. J.

    2018-07-01

    X-ray-emitting diffuse nebulae around hot stars are observed to have soft-band temperatures in the narrow range [1-3] × 106K, independent of the stellar wind parameters and the evolutionary stage of the central star. We discuss the origin of this X-ray temperature for planetary nebulae, Wolf-Rayet (WR) nebulae, and interstellar wind bubbles around hot young stars in our Galaxy and the Magellanic Clouds. We calculate the differential emission measure (DEM) distributions as a function of temperature from previously published simulations and combine these with the X-ray emission coefficient for the 0.3-2.0 keV band to estimate the X-ray temperatures. We find that all simulated nebulae have DEM distributions with steep negative slopes, which is due to turbulent mixing at the interface between the hot shocked stellar wind and the warm photoionized gas. Sharply peaked emission coefficients act as temperature filters and emphasize the contribution of gas with temperatures close to the peak position, which coincides with the observed X-ray temperatures for the chemical abundance sets we consider. Higher metallicity nebulae have lower temperature and higher luminosity X-ray emission. We show that the second temperature component found from spectral fitting to X-ray observations of WR nebulae is due to a significant contribution from the hot shocked stellar wind, while the lower temperature principal component is dominated by nebular gas. We suggest that turbulent mixing layers are the origin of the soft X-ray emission in the majority of diffuse nebulae.

  12. The Rings Around the Egg Nebula

    NASA Technical Reports Server (NTRS)

    Harpaz, Amos; Rappaport, Saul; Soker, Noam

    1997-01-01

    We present an eccentric binary model for the formation of the proto-planetary nebula CRL 2688 (the Egg Nebula) that exhibits multiple concentric shells. Given the apparent regularity of the structure in the Egg Nebula, we postulate that the shells are caused by the periodic passages of a companion star. Such an orbital period would have to lie in the range of 100-500 yr, the apparent time that corresponds to the spacing between the rings. We assume, in this model, that an asymptotic giant branch (AGB) star, which is the origin of the matter within the planetary nebula, loses mass in a spherically symmetric wind. We further suppose that the AGB star has an extended atmosphere (out to approximately 10 stellar radii) in which the outflow speed is less than the escape speed; still farther out, grains form and radiation pressure accelerates the grains along with the trapped gas to the escape speed. Once escape speed has been attained, the presence of a companion star will not significantly affect the trajectories of the matter leaving in the wind and the mass loss will be approximately spherically symmetric. On the other hand, if the companion star is sufficiently close that the Roche lobe of the AGB star moves inside the extended atmosphere, then the slowly moving material will be forced to flow approximately along the critical potential surface (i.e., the Roche lobe) until it flows into the potential lobe of the companion star. Therefore, in our model, the shells are caused by periodic cessations of the isotropic wind rather than by any periodic enhancement in the mass-loss process. We carry out detailed binary evolution calculations within the context of this scenario, taking into account the nuclear evolution and stellar wind losses of the giant as well as the effects of mass loss and mass transfer on the evolution of the eccentric binary orbit. From the initial binary parameters that we find are required to produce a multiple concentric shell nebula and the known

  13. Utilitarian models of the solar nebula

    NASA Technical Reports Server (NTRS)

    Cassen, Patrick

    1994-01-01

    Models of the primitive solar nebula based on a combination of theory, observations of T Tauri stars, and global conservation laws are presented. The models describe the motions of nebular gas, mixing of interstellar material during the formation of the nebula, and evolution of thermal structure in terms of several characteristic parameters. The parameters describe key aspects of the protosolar cloud (its rotation rate and collapse rate) and the nebula (its mass relative to the Sun, decay time, and density distribution). For most applications, the models are heuristic rather than predicted. Their purpose is to provide a realistic context for the interpretation of solar system data, and to distinquish those nebular characteristics that can be specified with confidence, independently of the assumtions of particular models, form those that are poorly constrained. It is demonstrated that nebular gas typically experienced large radial excursions during the evolution of the nebula and that both inward and outward mean radial velocities on the order of meters per second occured in the terrestrial planet region, with inward velocities predominant for most ofthe evolution. However, the time history of disk size, surface density, and radial velocities are sensitive to the total angular momentun of the protosolar cloud, which cannot be constrained by purely theoretical considerations.It is shown that a certain amount of 'formational' mixing of interstellar material was an inevitable consequenc of nebular mass and angular momentum transport during protostellar collapse, regardless of the specific transport mechanisms invloved. Even if the protosolar cloud was initially homogeneous, this mixing was important because it had the effect of mingling presolar material that had experienced different degrees of thermal processing during collapse and passage through the accertion shock. Nebular thermal structure is less sensitive to poorly constrained parameters than is dynamical

  14. Pre-main-sequence isochrones - II. Revising star and planet formation time-scales

    NASA Astrophysics Data System (ADS)

    Bell, Cameron P. M.; Naylor, Tim; Mayne, N. J.; Jeffries, R. D.; Littlefair, S. P.

    2013-09-01

    We have derived ages for 13 young (<30 Myr) star-forming regions and find that they are up to a factor of 2 older than the ages typically adopted in the literature. This result has wide-ranging implications, including that circumstellar discs survive longer (≃ 10-12 Myr) and that the average Class I lifetime is greater (≃1 Myr) than currently believed. For each star-forming region, we derived two ages from colour-magnitude diagrams. First, we fitted models of the evolution between the zero-age main sequence and terminal-age main sequence to derive a homogeneous set of main-sequence ages, distances and reddenings with statistically meaningful uncertainties. Our second age for each star-forming region was derived by fitting pre-main-sequence stars to new semi-empirical model isochrones. For the first time (for a set of clusters younger than 50 Myr), we find broad agreement between these two ages, and since these are derived from two distinct mass regimes that rely on different aspects of stellar physics, it gives us confidence in the new age scale. This agreement is largely due to our adoption of empirical colour-Teff relations and bolometric corrections for pre-main-sequence stars cooler than 4000 K. The revised ages for the star-forming regions in our sample are: ˜2 Myr for NGC 6611 (Eagle Nebula; M 16), IC 5146 (Cocoon Nebula), NGC 6530 (Lagoon Nebula; M 8) and NGC 2244 (Rosette Nebula); ˜6 Myr for σ Ori, Cep OB3b and IC 348; ≃10 Myr for λ Ori (Collinder 69); ≃11 Myr for NGC 2169; ≃12 Myr for NGC 2362; ≃13 Myr for NGC 7160; ≃14 Myr for χ Per (NGC 884); and ≃20 Myr for NGC 1960 (M 36).

  15. Revising Star and Planet Formation Timescales

    NASA Astrophysics Data System (ADS)

    Bell, Cameron P. M.; Naylor, Tim; Mayne, N. J.; Jeffries, R. D.; Littlefair, S. P.

    2013-07-01

    We have derived ages for 13 young (<30 Myr) star-forming regions and find that they are up to a factor of 2 older than the ages typically adopted in the literature. This result has wide-ranging implications, including that circumstellar discs survive longer (≃ 10-12 Myr) and that the average Class I lifetime is greater (≃1 Myr) than currently believed. For each star-forming region, we derived two ages from colour-magnitude diagrams. First, we fitted models of the evolution between the zero-age main sequence and terminal-age main sequence to derive a homogeneous set of main-sequence ages, distances and reddenings with statistically meaningful uncertainties. Our second age for each star-forming region was derived by fitting pre-main-sequence stars to new semi-empirical model isochrones. For the first time (for a set of clusters younger than 50 Myr), we find broad agreement between these two ages, and since these are derived from two distinct mass regimes that rely on different aspects of stellar physics, it gives us confidence in the new age scale. This agreement is largely due to our adoption of empirical colour-Teff relations and bolometric corrections for pre-main-sequence stars cooler than 4000 K. The revised ages for the star-forming regions in our sample are: 2 Myr for NGC 6611 (Eagle Nebula; M 16), IC 5146 (Cocoon Nebula), NGC 6530 (Lagoon Nebula; M 8) and NGC 2244 (Rosette Nebula); 6 Myr for σ Ori, Cep OB3b and IC 348; ≃10 Myr for λ Ori (Collinder 69); ≃11 Myr for NGC 2169; ≃12 Myr for NGC 2362; ≃13 Myr for NGC 7160; ≃14 Myr for χ Per (NGC 884); and ≃20 Myr for NGC 1960 (M 36).

  16. A Tale of Two Inlets: Tidal Currents at Two Adjacent Inlets in the Indian River Lagoon

    NASA Astrophysics Data System (ADS)

    Webb, B. M.; Weaver, R. J.

    2012-12-01

    The tidal currents and hydrography at two adjacent inlets of the Indian River Lagoon estuary (Florida) were recently measured using a personal watercraft-based coastal profiling system. Although the two inlets—Sebastian Inlet and Port Canaveral Inlet—are separated by only 60 km, their characteristics and dynamics are quite unique. While Sebastian Inlet is a shallow (~4 m), curved inlet with a free connection to the estuary, Port Canaveral Inlet is dominated by a deep (~13 m), straight ship channel and has limited connectivity to the Banana River through a sector gate lock. Underway measurements of tidal currents were obtained using a bottom tracking acoustic Doppler current profiler; vertical casts of hydrography were obtained with a conductivity-temperature-depth profiling instrument; and continuous underway measurements of surface water hydrography were made using a Portable SeaKeeper system. Survey transects were performed to elucidate the along-channel variability of tidal flows, which appears to be significant in the presence of channel curvature. Ebb and flood tidal currents in Sebastian Inlet routinely exceeded 2.5 m/s from the surface to the bed, and an appreciable phase lag exists between tidal stage and current magnitude. The tidal currents at Port Canaveral Inlet were much smaller (~0.2 m/s) and appeared to be sensitive to meteorological forcing during the study period. Although the lagoon has free connections to the ocean 145 km to the north and 45 km to the south, Sebastian Inlet likely drains much of the lagoon to its north, an area of ~550 sq. km.

  17. The nature of the ionised nebula surrounding the red supergiant W26

    NASA Astrophysics Data System (ADS)

    Wesson, Roger

    2015-08-01

    The red supergiant W26 in the massive star cluster Westerlund 1 is surrounded by a compact ionised nebula. This is unique among RSGs, and the excitation mechanism of the nebula is not yet known - it may be ionised by an unseen compact companion, or by a nearby blue supergiant. We present new observations of the nebula: high resolution spatially resolved spectra taken with FLAMES at the VLT show that the nebula is a ring, with velocities consistent with that expected for red supergiant ejecta, and ruling out the possibility of a Luminous Blue Variable-type eruption preceding the RSG phase as the origin of the nebula. A triangular patch of nebulosity outside the ring appears to be associated with W26, and may be material stripped from the expanding ring by the cumulative cluster wind and radiation field.

  18. Modelling jets, tori and flares in pulsar wind nebulae

    DOE PAGES

    Porth, Oliver; Buehler, Rolf; Olmi, Barbara; ...

    2017-03-22

    In this contribution we review the recent progress in the modelling of Pulsar Wind Nebulae (PWN). We start with a brief overview of the relevant physical processes in the magnetosphere, the wind-zone and the inflated nebula bubble. Radiative signatures and particle transport processes obtained from 3D simulations of PWN are discussed in the context of optical and X-ray observations. We then proceed to consider particle acceleration in PWN and elaborate on what can be learned about the particle acceleration from the dynamical structures called GwispsG observed in the Crab nebula. We also discuss recent observational and theoretical results of gamma-raymore » flares and the inner knot of the Crab nebula, which had been proposed as the emission site of the flares. Here, we extend the discussion to GeV flares from binary systems in which the pulsar wind interacts with the stellar wind from a companion star. The chapter concludes with a discussion of solved and unsolved problems posed by PWN.« less

  19. The planetary nebulae population in the nuclear regions of M31: the SAURON view

    NASA Astrophysics Data System (ADS)

    Pastorello, Nicola; Sarzi, Marc; Cappellari, Michele; Emsellem, Eric; Mamon, Gary A.; Bacon, Roland; Davies, Roger L.; de Zeeuw, P. Tim

    2013-04-01

    The study of extragalactic planetary nebulae (PNe) in the optical regions of galaxies, where the properties of their stellar population can be best characterized, is a promising ground to better understand the late evolution of stars across different galactic environments. Following a first study of the central regions of M32 that illustrated the power of integral field spectroscopy (IFS) in detecting and measuring the [O III] λ5007 emission of PNe against a strong stellar background, we turn to the very nuclear PN population of M31, within ˜80 pc of its centre. We show that PNe can also be found in the presence of emission from diffuse gas, as commonly observed in early-type galaxies and in the bulge of spirals, and further illustrate the excellent sensitivity of IFS in detecting extragalactic PNe through a comparison with narrow-band images obtained with the Hubble Space Telescope. Contrary to the case of the central regions of M32, the nuclear PNe population of M31 is only marginally consistent with the generally adopted form of the PNe luminosity function (PNLF). In particular, this is due to a lack of PNe with absolute magnitude M5007 brighter than -3, which would only result from a rather unfortunate draw from such a model PNLF. The nuclear stellar population of M31 is quite different from that of the central regions of M32, which is characterized in particular by a larger metallicity and a remarkable ultraviolet (UV) upturn. We suggest that the observed lack of bright PNe in the nuclear regions of M31 is due to a horizontal-branch population that is more tilted towards less massive and hotter He-burning stars, so that its progeny consists mostly of UV-bright stars that fail to climb back up the asymptotic giant branch (AGB) and only a few, if any, bright PNe powered by central post-AGB stars. These results are also consistent with recent reports on a dearth of bright post-AGB stars towards the nucleus of M31, and lend further support to the idea that the

  20. Consistency of temporal and habitat-related differences among assemblages of fish in coastal lagoons

    NASA Astrophysics Data System (ADS)

    Gray, Charles A.; Rotherham, Douglas; Johnson, Daniel D.

    2011-12-01

    The consistency of habitat-related differences in coastal lagoon fish assemblages was assessed across different spatial and temporal scales. Multimesh gillnets were used to sample assemblages of fish on a monthly basis for 1-year in three habitats (shallow seagrass, shallow bare and deep substrata) at two locations (>1 km apart), in each of two coastal lagoons (approximately 500 km apart), in southeastern Australia. A total of 48 species was sampled with 34 species occurring in both lagoons and in all three habitats; species caught in only one lagoon or habitat occurred in low numbers. Ten species dominated assemblages and accounted for more than 83% of all individuals sampled. In both lagoons, assemblages in the deep habitat consistently differed to those in the shallow strata (regardless of habitat). Several species were caught more frequently or in larger numbers in the deep habitat. Assemblages in the two shallow habitats did not differ consistently and were dominated by the same species and sizes of fish, possibly due to habitat heterogeneity and the scale and method of sampling. Within each lagoon, very few between location differences in assemblages within each habitat were observed. Consistent differences in assemblages were detected between lagoons for the shallow bare and deep habitats, indicating there were some intrinsic differences in ichthyofauna between lagoons. Assemblages in spring differed to those in summer, which differed to those in winter for the shallow bare habitat in both lagoons, and the deep habitat in only one lagoon. Fish-habitat relationships are complex and differences in the fish fauna between habitats were often temporally inconsistent. This study highlights the need for greater testing of habitat relationships in space and time to assess the generality of observations and to identify the processes responsible for structuring assemblages.

  1. The surprising Crab pulsar and its nebula: a review.

    PubMed

    Bühler, R; Blandford, R

    2014-06-01

    The Crab nebula and its pulsar (referred to together as 'the Crab') have historically played a central role in astrophysics. True to this legacy, several unique discoveries have been made recently. The Crab was found to emit gamma-ray pulsations up to energies of 400 GeV, beyond what was previously expected from pulsars. Strong gamma-ray flares, of durations of a few days, were discovered from within the nebula, while the source was previously expected to be stable in flux on these time scales. Here we review these intriguing and suggestive developments. In this context we give an overview of the observational properties of the Crab and our current understanding of pulsars and their nebulae.

  2. Menkhib and the California Nebula

    NASA Image and Video Library

    2010-05-07

    This infrared image from NASA Wide-field Infrared Survey Explorer features one of the bright stars in the constellation Perseus, named Menkhib, along with a large star forming cloud commonly called the California Nebula.

  3. Future evolution of a tidal inlet due to changes in wave climate, Sea level and lagoon morphology (Óbidos lagoon, Portugal)

    NASA Astrophysics Data System (ADS)

    Bruneau, Nicolas; Fortunato, André B.; Dodet, Guillaume; Freire, Paula; Oliveira, Anabela; Bertin, Xavier

    2011-11-01

    Tidal inlets are extremely dynamic, as a result of an often delicate balance between the effects of tides, waves and other forcings. Since the morphology of these inlets can affect navigation, water quality and ecosystem dynamics, there is a clear need to anticipate their evolution in order to promote adequate management decisions. Over decadal time scales, the position and size of tidal inlets are expected to evolve with the conditions that affect them, for instance as a result of climate change. A process-based morphodynamic modeling system is validated and used to analyze the effects of sea level rise, an expected shift in the wave direction and the reduction of the upper lagoon surface area by sedimentation on a small tidal inlet (Óbidos lagoon, Portugal). A new approach to define yearly wave regimes is first developed, which includes a seasonal behavior, random inter-annual variability and the possibility to extrapolate trends. Once validated, this approach is used to produce yearly time series of wave spectra for the present and for the end of the 21st century, considering the local rotation trends computed using hindcast results for the past 57 years. Predictions of the mean sea level for 2100 are based on previous studies, while the bathymetry of the upper lagoon for the same year is obtained by extrapolation of past trends. Results show, and data confirm, that the Óbidos lagoon inlet has three stable configurations, largely determined by the inter-annual variations in the wave characteristics. Both sea level rise and the reduction of the lagoon surface area will promote the accretion of the inlet. In contrast, the predicted rotation of the wave regime, within foreseeable limits, will have a negligible impact on the inlet morphology.

  4. 2-45 Micron Infrared Spectroscopy of Carbon-Rich Proto-Planetary Nebulae

    NASA Technical Reports Server (NTRS)

    Hrivnak, Bruce J.; Volk, Kevin; Kwok, Sun

    2000-01-01

    Infrared Space Observatory (ISO) 2-45 micron observations of seven proto-planetary nebulae (PPNs) and two other carbon-rich objects are presented. The unidentified emission features at 21 and 30 microns are detected in six sources, including four new detections of the 30 micron feature. This previously unresolved 30 micron feature is now resolved and found to consist of a broad feature peaking at 27.2 microns (the '30 micron' feature) and a narrower feature at 25.5 microns (the '26 micron' feature). This new 26 micron feature is detected in eight sources and is particularly strong in IRAS Z02229 + 6208 and 16594-4656. The unidentified infrared (UIR) emission features at 3.3, 6.2, 7.7, and 11.3 microns which are commonly observed in planetary nebulae and H II regions, are also seen in these PPNs. However, their strengths relative to the continuum plateaus at 8 and 12 microns are weaker than in planetary nebulae. The 6.9 micron feature, seen almost exclusively in PPNs, is strong. New millimeter CO and HCN observations were made; they support the carbon-rich nature of the objects and yield the expansion velocities of the gaseous envelopes. The spectral energy distributions of these PPNs were fitted with a radiative-transfer model, taking into account the emission features at 21, 26, and 30 microns. A significant fraction of the total energy output is emitted in these features: as high as 20% in the 30 micron feature and 8% in the 21 micron feature. The fact that so much energy is carried in these features suggests that the material responsible for these features must be made of abundant elements and most likely involves carbon. SiS, appears to be ruled out as the emitter of the 21 micron feature due to the absence of a predicted companion feature.

  5. Kinematics of the Huyghenian region of the Orion Nebula.

    NASA Technical Reports Server (NTRS)

    Fischel, D.; Feibelman, W. A.

    1973-01-01

    Palomar data published by Wilson et al. (1959) on Orion Nebula wavelength 3726 and 5007 forbidden OII and OIII emission lines have been used to construct a presented pair of contour maps of isovelocities in intervals of 2.5 km/sec. The space motions of theta-1 and theta-2 Ori stars and nebula measurements are discussed.

  6. New expansion rate measurements of the Crab nebula in radio and optical

    NASA Astrophysics Data System (ADS)

    Bietenholz, M. F.; Nugent, R. L.

    2015-12-01

    We present new radio measurements of the expansion rate of the Crab nebula's synchrotron nebula over a ˜30-yr period. We find a convergence date for the radio synchrotron nebula of CE 1255 ± 27. We also re-evaluated the expansion rate of the optical-line-emitting filaments, and we show that the traditional estimates of their convergence date are slightly biased. Using an unbiased Bayesian analysis, we find a convergence date for the filaments of CE 1091 ± 34 (˜40 yr earlier than previous estimates). Our results show that both the synchrotron nebula and the optical-line-emitting filaments have been accelerated since the explosion in CE 1054, but that the synchrotron nebula has been relatively strongly accelerated, while the optical filaments have been only slightly accelerated. The finding that the synchrotron emission expands more rapidly than the filaments supports the picture that the latter are the result of the Rayleigh-Taylor instability at the interface between the pulsar-wind nebula and the surrounding freely expanding supernova ejecta, and rules out models where the pulsar-wind bubble is interacting directly with the pre-supernova wind of the Crab's progenitor.

  7. Evolution of planetary nebulae. III. Position-velocity images of butterfly-type nebulae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Icke, V.; Preston, H.L.; Balick, B.

    1989-02-01

    Observations of the motions of the shells of the planetary nebulae NGC 2346, NGC 2371-2, NGC 2440, NGC 6058, NGC 6210, IC 1747, IC 5217, J-320, and M2-9 are presented. These are all 'butterfly' type PNs, and show evidence for bipolar shocks. The observations are interpreted in terms of a fast spherical wind, driven by the central star into a quasi-toroidal envelope deposited earlier by the star, during its slow-wind phase on the asymptotic giant branch. It is shown that this model, which is a straightforward extension of a mechanism previously invoked to account for elliptical PNs, reproduces the essentialmore » kinematic features of butterfly PNs. It is inferred that the envelopes of butterflies must have a considerable equator-to-pole density gradient, and it is suggested that the origin of this asphericity must be sought in an as yet unknown mechanism during the AGB, Mira, or OH/IR phases of late stellar evolution. 28 references.« less

  8. Chandra Confirmation of a Pulsar Wind Nebula in DA 495

    NASA Technical Reports Server (NTRS)

    Arzoumanian, Z.; Safi-Harb, S.; Landecker, T.L.; Kothes, R.; Camilo, F.

    2008-01-01

    As part of a multiwavelength study of the unusual radio supernova remnant DA 495, we present observations made with the Chandra X-ray Observatory. Imaging and spectroscopic analysis confirms the previously detected X-ray source at the heart of the annular radio nebula, establishing the radiative properties of two key emission components: a soft unresolved source with a blackbody temperature of 1 MK consistent with a neutron star, surrounded by a nontherma1 nebula 40" in diameter exhibiting a power-law spectrum with photon index Gamma = 1.63, typical of a pulsar wind nebula. Morphologically, the nebula appears to be slightly extended along a direction, in projection on the sky, previously demonstrated to be of significance in radio and ASCA observations; we argue that this represents the orientation of the pulsar spin axis. At smaller scales, a narrow X-ray feature is seen extending out 5" from the point source, but energetic arguments suggest that it is not the resolved termination shock of the pulsar wind against the ambient medium. Finally, we argue based on synchrotron lifetimes in the nebular magnetic field that DA 495 represents the first example of a pulsar wind nebula in which electromagnetic flux makes up a significant part, together with particle flux, of the neutron star's wind.

  9. Estimating Emissions of Ammonia and Methane from an Anaerobic Livestock Lagoon Using Micrometeorological Methods and Inverse Modeling

    NASA Astrophysics Data System (ADS)

    Shonkwiler, K. B.; Ham, J. M.; Williams, C.

    2012-12-01

    Evaluating the impact of increased carbon and nitrogen emissions on local air quality and regional bionetworks due to animal agricultural activity is of great interest to the public, political, economic and ecological welfare of areas within the scope of these practices. Globally, livestock operations account for 64% of annual anthropogenic emissions of ammonia (NH3) [1]. Concerning methane (CH4), anaerobic lagoons from commercial dairy operations contribute the second largest share of CH4 emissions from manure in the United States[1], and additionally are a local source of NH3 as well. Anaerobic lagoons are commonly used in commercial animal agriculture and as significant local sources of greenhouse gases (GHG), there is a strong need to quantify GHG emissions from these systems. In 2012 at a commercial dairy operation in Northern Colorado, USA, measurements of CH4 were made using eddy covariance (EC), while NH3 was estimated using a combination of real-time monitoring (cavity ring-down spectroscopy as well as time-integrated passive samplers). Methane emissions have been measured at this lagoon using EC since 2011, with fluxes ranging from 0.5 mg m-2 s-1 in early summer to >2 mg m-2 s-1 in late summer and early fall. Concentration data of both CH4 and NH3 were used to estimate emissions using a 2-dimensional inverse model based on solving the advection-diffusion equation[2]. In the case of the CH4-EC data, results from the inverse model were compared with the EC-derived flux estimates for enhanced parameterization of surface geometry within the lagoon environment. The model was then applied using measured NH3 concentrations to achieve emissions estimates. While NH3 fluxes from the lagoon tend to be much lower than those of CH4 by comparison, modeling emissions of NH3 from the simple geometry of a lagoon will assist in applying the model to more complex surfaces. [1] FAO, 2006. Livestock's long shadow: Environmental issues and options. Livestock, Environment, and

  10. Residence times in a hypersaline lagoon: Using salinity as a tracer

    NASA Astrophysics Data System (ADS)

    Mudge, Stephen M.; Icely, John D.; Newton, Alice

    2008-04-01

    Generally the waters of the Ria Formosa Lagoon, Portugal have a short residence time, in the order of 0.5 days (Tett, P., Gilpin, L., Svendsen, H., Erlandsson, C.P., Larsson, U., Kratzer, S., Fouilland, E., Janzen, C., Lee, J., Grenz, C., Newton, A., Ferreira, J.G., Fernandes, T., Scory, S., 2003. Eutrophication and some European waters of restricted exchange. Continental Shelf Research 23, 1635-1671). This estimation is based on the measurements of currents and the modelling of water exchange at the outlets to the ocean. However, observations of the temperature and salinity in the inner channels imply that residence time is greater in these regions of the lagoon. To resolve this apparent contradiction, spatial measurements of the temperature and salinity were made with a meter for conductivity, temperature and depth along the principal channels of the western portion of the lagoon, with a sampling frequency of two per second. Evaporation rates of 5.4 mm day -1 were measured in a salt extraction pond adjacent to the lagoon and used to determine the residence time through salinity differences with the incoming seawater. In June 2004, the water flooding in from the ocean had an average salinity of 36.07 which contrasted with a maximum of 37.82 at mid ebb on a spring tide, corresponding to a residence time of >7 days; the mean residence time was 2.4 days. As the tide flooded into the channels, the existing water was advected back into the lagoon. Although there was a small amount of mixing with water from another inlet, the water body from the inner lagoon essentially remained distinct with respect to temperature and salinity characteristics. The residence time of the water was further prolonged at the junction between the main channels, where distinct boundaries were observed between the different water masses. As the water ebbed out, the shallow Western Channel was essentially isolated from the rest of the outer lagoon, and the water from this channel was forced

  11. [Reproductive aspects of Pomacea flagellata (Mollusca: Ampullariidae) at Bacalar lagoon, Quintana Roo, México].

    PubMed

    Oliva-Rivera, José J; Ocaña, Frank A; Navarrete, Alberto de Jesús; Carrillo, Rosa M de Jesús; Vargas-Espósitos, Abel A

    2016-12-01

    The freshwater snail Pomacea flagellata is native from Southeastern Mexico. Studies about this species are scarce and none has treated their reproduction. This snail has been exploited at Bacalar lagoon for many years, leading to a significant decrease in their abundance and currently, a permanent ban was proposed by the government. This work aimed to assess the temporal variations of mating frequency and the abundance of egg clutches of P. flagellata at Bacalar lagoon, as well as their relation with snails density and environmental variables. Sampling was done during the three climatic seasons: Rainy (July, August and September/2012), North or Cold fronts (December/2012 and January and February/2013) and Dry (March, April and May/2013) in 12 sampling stations located along the Bacalar lagoon. On each station a transect of 100 m length was set parallel to the edge, and the number of fresh egg clutches (pink color) laid over vegetation, rocks or manmade structures, were counted. In the water, three 50 x 2 m transects were set and the number of snails were counted as well as the mating frequency. Density of snails varied significantly among seasons, decreasing from the rainy to the dry season. There were no significant differences of snail abundance among months, nested in climatic seasons (ANOVA, p>0.05). During the rainy season the mating frequency was significantly higher than in the Norths, meanwhile in the dry season no mating were registered (Kruskal-Wallis, p˂0.05). Eggs clutches appeared from July to March. Density of egg clutches presented no differences between the Rainy and the North seasons (2.72 and 2.93 clutches/m, respectively), nonetheless during the dry season abundance of egg masses was significantly lower (0.1 clutches/m) (H, p˂0.05). Mating frequency was related with snail abundance (rs= 0.26; p<0.05) and water temperature (rs= 0.34; p<0.05) and the abundance of egg masses is related with snail abundance (rs= 0.46; p<0.05). In general, we

  12. A study of the far infrared counterparts of new candidates for planetary nebulae

    NASA Astrophysics Data System (ADS)

    Iyengar, K. V. K.

    1986-05-01

    The IRAS Point Source Catalog was searched for infrared counterparts of the fourteen new candidates for planetary nebulae of low surface brightness detected by Hartl and Tritton (1985). Five of these candidates were identified with sources in the Catalog. All five nebulae are found in regions of high cirrus flux at 100 microns, and all have both point sources and small size extended sources with numbers varying from field to field. The infrared emission from these nebulae is connected with dust temperatures of about 100 K, characteristic of planetary nebulae.

  13. A new survey of nebulae around Galactic Wolf-Rayet stars in the northern sky

    NASA Technical Reports Server (NTRS)

    Miller, Grant J.; Chu, You-Hua

    1993-01-01

    Interference filter CCD images have been obtained in H-alpha and forbidden O III 5007 A for 62 Wolf-Rayet (W-R) stars, representing a complete survey of nebulae around Galactic W-R stars in the northern sky. We find probable new ring nebulae around W-R stars number 113, 116 and 132, and possible new ring nebulae around W-R stars number 133 and 153. All survey images showing nebulosities around W-R stars are presented in this paper. New physical information is derived from the improved images of known ring nebulae. The absence of ring nebulae around most W-R stars is discussed.

  14. The near-infrared structure and spectra of the bipolar nebulae M2-9 and AFGL 2688: The role of ultraviolet pumping and shocks in molecular hydrogen excitation

    NASA Technical Reports Server (NTRS)

    Hora, Joseph L.; Latter, William B.

    1994-01-01

    High-resolution near-infrared images and moderate resolution spectra were obtained of the bipolar nebulae M2-9 and AFGL 2688. The ability to spatially and spectrally resolve the various components of the nebulae has proved to be important in determining their physical structure and characteristics. In M2-9, the lobes are found to have a double-shell structure. The inner shell is dominated by emission from hydrogen recombination lines, and the outer shell is primarily emission from H2 lines in teh 2-2.5 micron region. Analysis of H2 line ratios indicates that the H2 emission is radiatively excited. A well-resolved photodissociation region is observed in the lobes. The spectrum of the central source is dominated by H recombination lines and a strong continuum rising toward longer wavelengths consistent with a T = 795 K blackbody. Also present are lines of He I and Fe II. In contrast, the N knot and E lobe of M2-9 show little continuum emission. The N knot spectrum consists of lines of (Fe II) and hydrogen recombination lines. In AGFL 2688, the emission from the bright lobes is mainly continuum reflected from the central star. Several molecular features from C2 and CN are present. In the extreme end of the N lobe and in the E equatorial region, the emission is dominated by lines of H2 in the 2-2.5 region. The observed H2 line ratios indicate that the emission is collisionally excited, with an excitation temperature T(sub ex) approixmately = 1600 +/- 100 K.

  15. Subtidal hydrodynamics in a tropical lagoon: A dimensionless numbers approach

    NASA Astrophysics Data System (ADS)

    Tenorio-Fernandez, L.; Valle-Levinson, A.; Gomez-Valdes, J.

    2018-01-01

    Observations in a tropical lagoon of the Yucatan peninsula motivated a non-dimensional number analysis to examine the relative influence of tidal stress, density gradients and wind stress on subtidal hydrodynamics. A two-month observation period in Chelem Lagoon covered the transition from the dry to the wet season. Chelem Lagoon is influenced by groundwater inputs and exhibits a main sub-basin (central sub-basin), a west sub-basin and an east sub-basin. Subtidal hydrodynamics were associated with horizontal density gradients that were modified seasonally by evaporation, precipitation, and groundwater discharge. A tidal Froude number (Fr0), a Wedderburn number (W), and a Stress ratio (S0) were used to diagnose the relative importance of dominant subtidal driving forces. The Froude number (Fr0) compares tidal forcing and baroclinic forcing through the ratio of tidal stress to longitudinal baroclinic pressure gradient. The Wedderburn number (W) relates wind stress to baroclinicity. The stress ratio (S0) sizes tidal stress and wind stress. S0 is a new diagnostic tool for systems influenced by tides and winds, and represents the main contribution of this research. Results show that spring-tide subtidal flows in the tropical lagoon had log(Fr0) ≫ 0 and log(S0) > 0 , i.e., driven mainly by tidal stresses (advective accelerations). Neap tides showed log(Fr0) ≪ 0 and log(S0) < 0) , i.e., flows driven by baroclinicity, especially at the lagoon heads of the east and west sub-basins. However, when the wind stress intensified over the lagoon, the relative importance of baroclinicity decreased and the wind stress controlled the dynamics (log(W) ≫ 0). Each sub-basin exhibited a different subtidal response, according to the dimensionless numbers. The response depended on the fortnightly tidal cycle, the location and magnitude of groundwater input, and the direction and magnitude of the wind stress.

  16. Discovery of powerful gamma-ray flares from the Crab Nebula.

    PubMed

    Tavani, M; Bulgarelli, A; Vittorini, V; Pellizzoni, A; Striani, E; Caraveo, P; Weisskopf, M C; Tennant, A; Pucella, G; Trois, A; Costa, E; Evangelista, Y; Pittori, C; Verrecchia, F; Del Monte, E; Campana, R; Pilia, M; De Luca, A; Donnarumma, I; Horns, D; Ferrigno, C; Heinke, C O; Trifoglio, M; Gianotti, F; Vercellone, S; Argan, A; Barbiellini, G; Cattaneo, P W; Chen, A W; Contessi, T; D'Ammando, F; DePris, G; Di Cocco, G; Di Persio, G; Feroci, M; Ferrari, A; Galli, M; Giuliani, A; Giusti, M; Labanti, C; Lapshov, I; Lazzarotto, F; Lipari, P; Longo, F; Fuschino, F; Marisaldi, M; Mereghetti, S; Morelli, E; Moretti, E; Morselli, A; Pacciani, L; Perotti, F; Piano, G; Picozza, P; Prest, M; Rapisarda, M; Rappoldi, A; Rubini, A; Sabatini, S; Soffitta, P; Vallazza, E; Zambra, A; Zanello, D; Lucarelli, F; Santolamazza, P; Giommi, P; Salotti, L; Bignami, G F

    2011-02-11

    The well-known Crab Nebula is at the center of the SN1054 supernova remnant. It consists of a rotationally powered pulsar interacting with a surrounding nebula through a relativistic particle wind. The emissions originating from the pulsar and nebula have been considered to be essentially stable. Here, we report the detection of strong gamma-ray (100 mega-electron volts to 10 giga-electron volts) flares observed by the AGILE satellite in September 2010 and October 2007. In both cases, the total gamma-ray flux increased by a factor of three compared with the non-flaring flux. The flare luminosity and short time scale favor an origin near the pulsar, and we discuss Chandra Observatory x-ray and Hubble Space Telescope optical follow-up observations of the nebula. Our observations challenge standard models of nebular emission and require power-law acceleration by shock-driven plasma wave turbulence within an approximately 1-day time scale.

  17. Distribution and stability of eelgrass beds at Izembek Lagoon, Alaska

    USGS Publications Warehouse

    Ward, David H.; Markon, Carl J.; Douglas, David C.

    1997-01-01

    Spatial change in eelgrass meadows, Zostera marina L., was assessed between 1978 and 1987 and between 1987 and 1995 at Izembek Lagoon, Alaska. Change in total extent was evaluated through a map to map comparison of data interpreted from a 1978 Landsat multi-spectral scanner image and 1987 black and white aerial photographs. A ground survey in 1995 was used to assess spatial change from 1987. Eelgrass beds were the predominant vegetation type in the lagoon, comprising 44-47% (15000-16000 ha) of the total area in 1978 and 1987. Izembek Lagoon contains the largest bed of seagrass along the Pacific Coast of North America and largest known single stand of eelgrass in the world. There was a high degree of overlap in the spatial distribution of eelgrass among years of change detection. The overall net change was a 6% gain between, 1978 and 1987 and a <1% gain between 1987 and 1995. The lack of significant change in eelgrass cover suggests that eelgrass meadows in Izembek Lagoon have been stable during the 17-year period of our study.

  18. The Pelican Nebula and its Vicinity: a New Look at Stellar Population in the Cloud and around It

    NASA Astrophysics Data System (ADS)

    Boyle, Richard P.; Janusz, R.; Vrba, F. J.; Straizys, V.; Laugalys, V.; Kazlauskas, A.; Stott, J.; Philip, A. G. D.

    2011-01-01

    A region of active star formation is located in the complex of dust and molecular clouds known as the Pelican Nebula and the dark cloud L935. In this paper we describe the results of our investigation in the area bounded by the coordinates (2000) RA 20h50m - 20h54m and DEC +44d20m - 44m55d. Our CCD photometry in the Vilnius seven-color system, obtained on the 1.8 m Vatican Advanced Technology Telescope, Mt. Graham, and the 1 m telescope of the USNO Flagstaff Station, is used to classify stars down to V = 17 mag in spectral and luminosity classes. The interstellar extinction values and distances to these stars are determined. Additionally, the data from the 2MASS, MegaCam, IPHAS and Spitzer surveys are analyzed. We present star population maps in the foreground and background of the complex and within it. The known and newly identified YSOs in the area are tabulated.

  19. Dying Star Shrouded by a Blanket of Hailstones Forms the Bug Nebula

    NASA Image and Video Library

    2017-12-08

    Release Date: May 3, 2004 A Dying Star Shrouded by a Blanket of Hailstones Forms the Bug Nebula (NGC 6302) The Bug Nebula, NGC 6302, is one of the brightest and most extreme planetary nebulae known. The fiery, dying star at its center is shrouded by a blanket of icy hailstones. This NASA Hubble Wide Field Plantery Camera 2 image shows impressive walls of compressed gas, laced with trailing strands and bubbling outflows. Object Names: NGC 6302, Bug Nebula Image Type: Astronomical Credit: NASA, ESA and A.Zijlstra (UMIST, Manchester, UK) To learn more about this image go to: hubblesite.org/gallery/album/nebula/pr2004046a/ NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  20. Nutrient flux estimates in a tidal basin: A case study of Magdalena lagoon, Mexican Pacific coast

    NASA Astrophysics Data System (ADS)

    Zaytsev, Oleg; Cervantes-Duarte, Rafael

    2018-07-01

    Bahia Magdalena (BM), known for its high primary productivity, is one of the largest tidal lagoons on the Mexican Pacific coast of the Baja California Peninsula. BM is located in an area of active coastal upwelling and significant tides with a maximum range of about 2.4 m. Dissolved inorganic nutrients upwelled from the depths are transported by tidal water exchange into the lagoon, contributing to its fertilisation. To estimate the magnitude and mechanisms driving the tidal exchange of water and nutrients, field observations of the nutrient content were made in the inlet area and on the adjacent shelf during March 2003, December 2004 and June, August and November 2005. In March 2003, the research vessel El Puma carried out a complete hydrological study of the area using Seabird-19 CTD profiler. At the same time, a current meter with a tide gauge was installed in the BM inlet, and multiple measurements of currents were made on a section across the inlet with a SonTek hull-mounted Acoustic Doppler Current Profiler (ADCP). Field studies were complemented by numerical experiments with the hydrodynamic model ECOM 3D. Analysis of the currents in the inlet area, deriving from both the ADCP data and the numerical simulation, indicates that the water volume transported during a semidiurnal tidal cycle through the inlet varied from 0.3 km3 for neap tide to 0.82 km3 for spring tide. Net nitrate mass intakes to the lagoon deriving from currents in the mouth can be estimated as 7.0 × 103 kg for neap tides and 20.0 × 103 kg for spring tides, and the maximum phosphate contribution was estimated at 2.5 × 103 kg and 8.5 × 103 kg, respectively. Taking into account that fluvial contribution in the lagoon is practically absent, unexpanded mangroves are distributed mainly at its northern part, and organic sediment decomposition is potentially evaluated as low, we can thus conclude that the coupled effect of upwelling and tidal currents play an important role in fertilising the BM

  1. Direct photography of the Gum Nebula

    NASA Technical Reports Server (NTRS)

    Brandt, J. C.; Roosen, R. G.; Thompson, J.; Ludden, D. J.

    1976-01-01

    The paper discusses a series of wide-angle photographs taken of the Gum Nebula in the traditional region including H-alpha with the aid of a 40-cm and an 80-cm lens in both the red and the green. The photographs support the large dimensions (75 deg in galactic longitude by 40 deg in galactic latitude) of the Gum Nebula suggested earlier, and the appearance is consistent with an origin due to photons from a supernova outburst. The relatively high-density gas has cooled and is visible on the red plates. The low-density gas has remained at a high temperature and may be visible as diffuse emission on the green plates.

  2. ALMA OBSERVATIONS OF THE COLDEST PLACE IN THE UNIVERSE: THE BOOMERANG NEBULA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sahai, R.; Vlemmings, W. H. T.; Huggins, P. J.

    The Boomerang Nebula is the coldest known object in the universe, and an extreme member of the class of pre-planetary nebulae, objects which represent a short-lived transitional phase between the asymptotic giant branch and planetary nebula evolutionary stages. Previous single-dish CO (J = 1-0) observations (with a 45'' beam) showed that the high-speed outflow in this object has cooled to a temperature significantly below the temperature of the cosmic background radiation. Here we report the first observations of the Boomerang Nebula with ALMA in the CO J = 2-1 and J = 1-0 lines to resolve the structure of thismore » ultra-cold nebula. We find a central hourglass-shaped nebula surrounded by a patchy, but roughly round, cold high-velocity outflow. We compare the ALMA data with visible-light images obtained with the Hubble Space Telescope and confirm that the limb-brightened bipolar lobes seen in these data represent hollow cavities with dense walls of molecular gas and dust producing both the molecular-emission-line and scattered-light structures seen at millimeter and visible wavelengths. The large diffuse biconical shape of the nebula seen in the visible wavelength range is likely due to preferential illumination of the cold, high-velocity outflow. We find a compact source of millimeter-wave continuum in the nebular waist—these data, together with sensitive upper limits on the radio continuum using observations with ATCA, indicate the presence of a substantial mass of very large (millimeter-sized) grains in the waist of the nebula. Another unanticipated result is the detection of CO emission regions beyond the ultra-cold region which indicate the re-warming of the cold gas, most likely due to photoelectric grain heating.« less

  3. ALMA Observations of the Coldest Place in the Universe: The Boomerang Nebula

    NASA Astrophysics Data System (ADS)

    Sahai, R.; Vlemmings, W. H. T.; Huggins, P. J.; Nyman, L.-Å.; Gonidakis, I.

    2013-11-01

    The Boomerang Nebula is the coldest known object in the universe, and an extreme member of the class of pre-planetary nebulae, objects which represent a short-lived transitional phase between the asymptotic giant branch and planetary nebula evolutionary stages. Previous single-dish CO (J = 1-0) observations (with a 45'' beam) showed that the high-speed outflow in this object has cooled to a temperature significantly below the temperature of the cosmic background radiation. Here we report the first observations of the Boomerang Nebula with ALMA in the CO J = 2-1 and J = 1-0 lines to resolve the structure of this ultra-cold nebula. We find a central hourglass-shaped nebula surrounded by a patchy, but roughly round, cold high-velocity outflow. We compare the ALMA data with visible-light images obtained with the Hubble Space Telescope and confirm that the limb-brightened bipolar lobes seen in these data represent hollow cavities with dense walls of molecular gas and dust producing both the molecular-emission-line and scattered-light structures seen at millimeter and visible wavelengths. The large diffuse biconical shape of the nebula seen in the visible wavelength range is likely due to preferential illumination of the cold, high-velocity outflow. We find a compact source of millimeter-wave continuum in the nebular waist—these data, together with sensitive upper limits on the radio continuum using observations with ATCA, indicate the presence of a substantial mass of very large (millimeter-sized) grains in the waist of the nebula. Another unanticipated result is the detection of CO emission regions beyond the ultra-cold region which indicate the re-warming of the cold gas, most likely due to photoelectric grain heating.

  4. The Influence of Wind and Tide on the Hydrodynamics of a Highly Frictional Coastal Lagoon System

    NASA Astrophysics Data System (ADS)

    Polanco-Arias, C.; Marino-Tapia, I.; Enriquez, C.

    2016-02-01

    This study is focused on the influence of wind and tide on the hydrodynamics of a tropical coastal lagoon in Telchac, Yucatan, Mexico. The system is very shallow (z < 1m) and covered with a rim of mangrove forests, both aspects that enhance its frictional characteristics. The lagoon is an important habitat for the exotic flamingo birds and several species of fish, but also is used for fishing and serves as a harbor for small boats. Water level and velocity data gathered during one month in the summer of 2009, shows the expected attenuation of the tidal signal in the head of the system, but during the final ten days of the campaign there is an unusual behavior where the water level in the lagoon head was between 16% and 33% bigger than in the lagoon mouth. Analysis of the data shows a high coherence between the sea level and the wind velocity, primarily at diurnal frequencies. This reinforces the hypothesis of a synchronization between strong sea breezes and the predominant diurnal tide in such a way that amplification of the diurnal signal can occur at the head. Numerical simulations using the Delft3D model are performed to confirm this hypothesis and to better understand the conditions under which such phenomenon can occur. The effects of basin orientation, shape and depth are investigated with the numerical model.

  5. Central Stars of Mid-Infrared Nebulae Discovered with Spitzer and WISE

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.; Kniazev, A. Y.

    2017-02-01

    Searches for compact mid-IR nebulae with the Spitzer Space Telescope and the Wide-field Infrared Survey Explorer (WISE), accompanied by spectroscopic observations of central stars of these nebulae led to the discovery of many dozens of massive stars at different evolutionary stages, of which the most numerous are candidate luminous blue variables (LBVs). In this paper, we give a census of candidate and confirmed Galactic LBVs revealed with Spitzer and WISE, and present some new results of spectroscopic observations of central stars of mid-IR nebulae.

  6. Pilot-scale field study for ammonia removal from lagoon biogas using an acid wet scrubber.

    PubMed

    Lin, Hongjian; Wu, Xiao; Miller, Curtis; Zhu, Jun; Hadlocon, Lara Jane; Manuzon, Roderick; Zhao, Lingying

    2014-01-01

    The anaerobic activities in swine slurry storage and treatment generate biogas containing gaseous ammonia component which is a chemical agent that can cause adverse environmental impacts when released to the atmosphere. The aim of this pilot plant study was to remove ammonia from biogas generated in a covered lagoon, using a sulfuric acid wet scrubber. The data showed that, on average, the biogas contained 43.7 ppm of ammonia and its concentration was found to be exponentially related to the air temperature inside the lagoon. When the air temperature rose to 35°C and the biogas ammonia concentration reached 90 ppm, the mass transfer of ammonia/ammonium from the deeper liquid body to the interface between the air and liquid became a limiting factor. The biogas velocity was critical in affecting ammonia removal efficiency of the wet scrubber. A biogas flow velocity of 8 to 12 mm s(-1) was recommended to achieve a removal efficiency of greater than 60%. Stepwise regression revealed that the biogas velocity and air temperature, not the inlet ammonia concentration in biogas, affected the ammonia removal efficiency. Overall, when 73 g L(-1) (or 0.75 M) sulfuric acid solution was used as the scrubber solution, removal efficiencies varied from 0% to 100% with an average of 55% over a 40-d measurement period. Mass balance calculation based on ammonium-nitrogen concentration in final scrubber liquid showed that about 21.3 g of ammonia was collected from a total volume of 1169 m(3) of biogas, while the scrubber solution should still maintain its ammonia absorbing ability until its concentration reaches up to 1 M. These results showed promising use of sulfuric acid wet scrubber for ammonia removal in the digester biogas.

  7. Exploring Infiniband Hardware Virtualization in OpenNebula towards Efficient High-Performance Computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pais Pitta de Lacerda Ruivo, Tiago; Bernabeu Altayo, Gerard; Garzoglio, Gabriele

    2014-11-11

    has been widely accepted that software virtualization has a big negative impact on high-performance computing (HPC) application performance. This work explores the potential use of Infiniband hardware virtualization in an OpenNebula cloud towards the efficient support of MPI-based workloads. We have implemented, deployed, and tested an Infiniband network on the FermiCloud private Infrastructure-as-a-Service (IaaS) cloud. To avoid software virtualization towards minimizing the virtualization overhead, we employed a technique called Single Root Input/Output Virtualization (SRIOV). Our solution spanned modifications to the Linux’s Hypervisor as well as the OpenNebula manager. We evaluated the performance of the hardware virtualization on up to 56more » virtual machines connected by up to 8 DDR Infiniband network links, with micro-benchmarks (latency and bandwidth) as well as w a MPI-intensive application (the HPL Linpack benchmark).« less

  8. Chandra X-ray observation of the young stellar cluster NGC 3293 in the Carina Nebula Complex

    NASA Astrophysics Data System (ADS)

    Preibisch, T.; Flaischlen, S.; Gaczkowski, B.; Townsley, L.; Broos, P.

    2017-09-01

    Context. NGC 3293 is a young stellar cluster at the northwestern periphery of the Carina Nebula Complex that has remained poorly explored until now. Aims: We characterize the stellar population of NGC 3293 in order to evaluate key parameters of the cluster population such as the age and the mass function, and to test claims of an abnormal IMF and a deficit of M ≤ 2.5 M⊙ stars. Methods: We performed a deep (70 ks) X-ray observation of NGC 3293 with Chandra and detected 1026 individual X-ray point sources. These X-ray data directly probe the low-mass (M ≤ 2 M⊙) stellar population by means of the strong X-ray emission of young low-mass stars. We identify counterparts for 74% of the X-ray sources in our deep near-infrared images. Results: Our data clearly show that NGC 3293 hosts a large population of ≈solar-mass stars, refuting claims of a lack of M ≤ 2.5 M⊙ stars. The analysis of the color magnitude diagram suggests an age of 8-10 Myr for the low-mass population of the cluster. There are at least 511 X-ray detected stars with color magnitude positions that are consistent with young stellar members within 7 arcmin of the cluster center. The number ratio of X-ray detected stars in the [1-2 ] M⊙ range versus the M ≥ 5 M⊙ stars (known from optical spectroscopy) is consistent with the expectation from a normal field initial mass function. Most of the early B-type stars and ≈20% of the later B-type stars are detected as X-ray sources. Conclusions: Our data shows that NGC 3293 is one of the most populous stellar clusters in the entire Carina Nebula Complex (very similar to Tr 16 and Tr 15; only Tr 14 is more populous). The cluster probably harbored several O-type stars, whose supernova explosions may have had an important impact on the early evolution of the Carina Nebula Complex. The Chandra data described in this paper have been obtained in the open time project with ObsID 16648 (PI: T. Preibisch) ivo://ADS/Sa.CXO#obs/16648.Tables 1-3 are only

  9. A Hyperspectral View of the Crab Nebula

    NASA Astrophysics Data System (ADS)

    Charlebois, M.; Drissen, L.; Bernier, A.-P.; Grandmont, F.; Binette, L.

    2010-05-01

    We have obtained spatially resolved spectra of the Crab nebula in the spectral ranges 450-520 nm and 650-680 nm, encompassing the Hβ, [O III] λ4959, λ5007, Hα, [N II] λ6548, λ6584, and [S II] λ6717, λ6731 emission lines, with the imaging Fourier transform spectrometer SpIOMM at the Observatoire du Mont-Mégantic's 1.6 m telescope. We first compare our data with published observations obtained either from a Fabry-Perot interferometer or from a long-slit spectrograph. Using a spectral deconvolution technique similar to the one developed by Čadež et al., we identify and resolve multiple emission lines separated by large Doppler shifts and contained within the rapidly expanding filamentary structure of the Crab. This allows us to measure important line ratios, such as [N II]/Hα, [S II]/Hα, and [S II] λ6717 /[S II] λ6731 of individual filaments, providing a new insight on the SE-NW asymmetry in the Crab. From our analysis of the spatial distribution of the electronic density and of the respective shocked versus photoionized gas components, we deduce that the skin-less NW region must have evolved faster than the rest of the nebula. Assuming a very simple expansion model for the ejecta material, our data provide us with a complete tridimensional view of the Crab.

  10. Flow and geochemistry of groundwater beneath a back-barrier lagoon: The subterranean estuary at Chincoteague Bay, Maryland, USA

    USGS Publications Warehouse

    Bratton, J.F.; Böhlke, J.K.; Krantz, D.E.; Tobias, C.R.

    2009-01-01

    To better understand large-scale interactions between fresh and saline groundwater beneath an Atlantic coastal estuary, an offshore drilling and sampling study was performed in a large barrier-bounded lagoon, Chincoteague Bay, Maryland, USA. Groundwater that was significantly fresher than overlying bay water was found in shallow plumes up to 8??m thick extending more than 1700??m offshore. Groundwater saltier than bay surface water was found locally beneath the lagoon and the barrier island, indicating recharge by saline water concentrated by evaporation prior to infiltration. Steep salinity and nutrient gradients occur within a few meters of the sediment surface in most locations studied, with buried peats and estuarine muds acting as confining units. Groundwater ages were generally more than 50??years in both fresh and brackish waters as deep as 23??m below the bay bottom. Water chemistry and isotopic data indicate that freshened plumes beneath the estuary are mixtures of water originally recharged on land and varying amounts of estuarine surface water that circulated through the bay floor, possibly at some distance from the sampling location. Ammonium is the dominant fixed nitrogen species in saline groundwater beneath the estuary at the locations sampled. Isotopic and dissolved-gas data from one location indicate that denitrification within the subsurface flow system removed terrestrial nitrate from fresh groundwater prior to discharge along the western side of the estuary. Similar situations, with one or more shallow semi-confined flow systems where groundwater geochemistry is strongly influenced by circulation of surface estuary water through organic-rich sediments, may be common on the Atlantic margin and elsewhere.

  11. Marshall Islands Fringing Reef and Atoll Lagoon Observations of the Tohoku Tsunami

    NASA Astrophysics Data System (ADS)

    Ford, Murray; Becker, Janet M.; Merrifield, Mark A.; Song, Y. Tony

    2014-12-01

    The magnitude 9.0 Tohoku earthquake on 11 March 2011 generated a tsunami which caused significant impacts throughout the Pacific Ocean. A description of the tsunami within the lagoons and on the surrounding fringing reefs of two mid-ocean atoll islands is presented using bottom pressure observations from the Majuro and Kwajalein atolls in the Marshall Islands, supplemented by tide gauge data in the lagoons and by numerical model simulations in the deep ocean. Although the initial wave arrival was not captured by the pressure sensors, subsequent oscillations on the reef face resemble the deep ocean tsunami signal simulated by two numerical models, suggesting that the tsunami amplitudes over the atoll outer reefs are similar to that in deep water. In contrast, tsunami oscillations in the lagoon are more energetic and long lasting than observed on the reefs or modelled in the deep ocean. The tsunami energy in the Majuro lagoon exhibits persistent peaks in the 30 and 60 min period bands that suggest the excitation of closed and open basin normal modes, while energy in the Kwajalein lagoon spans a broader range of frequencies with weaker, multiple peaks than observed at Majuro, which may be associated with the tsunami behavior within the more irregular geometry of the Kwajalein lagoon. The propagation of the tsunami across the reef flats is shown to be tidally dependent, with amplitudes increasing/decreasing shoreward at high/low tide. The impact of the tsunami on the Marshall Islands was reduced due to the coincidence of peak wave amplitudes with low tide; however, the observed wave amplitudes, particularly in the atoll lagoon, would have led to inundation at different tidal phases.

  12. Creation and Distribution of CAIs in the Protoplanetary Nebula

    NASA Technical Reports Server (NTRS)

    Cuzzi, J. N.; Davis, S. S.; Dobrovolskis, A. R.

    2003-01-01

    CaAl rich refractory mineral inclusions (CAIs) found at 1 - 10% mass fraction in primitive chondrites appear to be several million years older than the dominant (chondrule) components in the same parent bodies. A prevalent concern is that it is difficult to retain CAIs for this long against gas-drag-induced radial drift into the sun. We assess a hot inner (turbulent) nebula context for CAI formation, using analytical models of nebula evolution and particle diffusion. We show that outward radial diffusion in a weakly turbulent nebula can prevent significant numbers of CAI-size particles from being lost into the sun for times of 1 - 3 x 10(exp 6) years. To match the CAI abundances quantitatively, we advocate an enhancement of the inner hot nebula in silicate-forming material, due to rapid inward migration of very primitive, silicate and carbon rich, meter-sized objects. 'Combustion' of the carbon into CO would make the CAI formation environment more reduced than solar, as certain observations imply. Abundant CO might also play a role in mass-independent chemical fractionation of oxygen isotopes as seen in CAIs and associated primitive, high-temperature condensates.

  13. Polarization due to dust scattering in the planetary nebula Cn1-1

    NASA Technical Reports Server (NTRS)

    Bhatt, Harish C.

    1989-01-01

    The peculiar emission-line object Cn1-1 (=HDE330036=PK330+4 degrees 1), classified both as a symbiotic star and as a planetary nebula, was detected by the Infrared Astronomical Satellite (IRAS) as a strong source of far-infrared dust in the system. Bhatt and Mallik (1986) discussed the nature of the dust in Cn1-1 and argued that the object is a Type I protoplanetary nebula in a binary system. The argument presented here is that the polarization is intrinsic to Cn1-1 and is due to scattering by large (compared to interstellar) dust grains in the protoplanetary nebula that are asymmetrically distributed around the central star. The large degree of polarization (approximately 3 percent for the Cn1-1 distance of approximately 450 pc) with a large lambda(sub max) is naturally explained if it is caused by scattering by large dust grains in the Cn1-1 nebula. Since the H(sub alpha) line is also polarized at the same level and position angle as the continuum, the dust must be asymmetrically distributed around the central star. The morphology of the protoplanetary nebula in Cn1-1 may be bipolar. Thus, the polarization observations support the suggestion that Cn1-1 is a bipolar Type I planetary nebula.

  14. The (C III lambda 1909/Si III lambda 1892) ratio as a diagnostic for planetary nebulae and symbiotic stars

    NASA Technical Reports Server (NTRS)

    Feibelman, Walter A.; Aller, Lawrence H.

    1987-01-01

    Suitable IUE archival material on planetary nebulae has been examined to determine the log R /F(lambda 1909 C III)/F(lambda 1892 Si III)/ as a discriminant for distinguishing planetary nebulae from symbiotic stars and related objects. The mean value of log R for 73 galactic planetaries is 1.4, while that of extragalactic planetaries appears to be slightly lower, and that for symbiotics is 0.3. The lower value of log R for symbiotics is easily understood as a consequence of their higher densities. A plot of log R versus N-epsilon indicates that 80 percent of the planetaries fall into the range of log R between 1.2 and 1.8, but some of the 'peculiar' and bipolar nebulae fall below log R = 1.2. The corresponding N(C++)/N(Si++) ionic ratio varies over a large range.

  15. Modelling the ArH+ emission from the Crab nebula

    NASA Astrophysics Data System (ADS)

    Priestley, F. D.; Barlow, M. J.; Viti, S.

    2017-12-01

    We have performed combined photoionization and photodissociation region (PDR) modelling of a Crab nebula filament subjected to the synchrotron radiation from the central pulsar wind nebula, and to a high flux of charged particles; a greatly enhanced cosmic-ray ionization rate over the standard interstellar value, ζ0, is required to account for the lack of detected [C I] emission in published Herschel SPIRE FTS observations of the Crab nebula. The observed line surface brightness ratios of the OH+ and ArH+ transitions seen in the SPIRE FTS frequency range can only be explained with both a high cosmic-ray ionization rate and a reduced ArH+ dissociative recombination rate compared to that used by previous authors, although consistent with experimental upper limits. We find that the ArH+/OH+ line strengths and the observed H2 vibration-rotation emission can be reproduced by model filaments with nH = 2 × 104 cm-3, ζ = 107ζ0 and visual extinctions within the range found for dusty globules in the Crab nebula, although far-infrared emission from [O I] and [C II] is higher than the observational constraints. Models with nH = 1900 cm-3 underpredict the H2 surface brightness, but agree with the ArH+ and OH+ surface brightnesses and predict [O I] and [C II] line ratios consistent with observations. These models predict HeH+ rotational emission above detection thresholds, but consideration of the formation time-scale suggests that the abundance of this molecule in the Crab nebula should be lower than the equilibrium values obtained in our analysis.

  16. A TALE OF THREE MYSTERIOUS SPECTRAL FEATURES IN CARBON-RICH EVOLVED STARS: THE 21 μm, 30 μm, AND “UNIDENTIFIED INFRARED” EMISSION FEATURES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mishra, Ajay; Li, Aigen; Jiang, B. W., E-mail: amishra@mail.missouri.edu, E-mail: lia@missouri.edu, E-mail: bjiang@bnu.edu.cn

    2015-03-20

    The mysterious “21 μm” emission feature seen almost exclusively in the short-lived protoplanetary nebula (PPN) phase of stellar evolution remains unidentified since its discovery two decades ago. This feature is always accompanied by the equally mysterious, unidentified “30 μm” feature and the so-called “unidentified infrared” (UIR) features at 3.3, 6.2, 7.7, 8.6, and 11.3 μm which are generally attributed to polycyclic aromatic hydrocarbon (PAH) molecules. The 30 μm feature is commonly observed in all stages of stellar evolution from the asymptotic giant branch through PPN to the planetary nebula phase. We explore the interrelations among the mysterious 21, 30 μm,more » and UIR features of the 21 μm sources. We derive the fluxes emitted in the observed UIR, 21, and 30 μm features from published Infrared Space Observatory or Spitzer/IRS spectra. We find that none of these spectral features correlate with each other. This argues against a common carrier (e.g., thiourea) for both the 21 μm feature and the 30 μm feature. This also does not support large PAH clusters as a possible carrier for the 21 μm feature.« less

  17. EXTERNAL PHOTOEVAPORATION OF THE SOLAR NEBULA: JUPITER's NOBLE GAS ENRICHMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monga, Nikhil; Desch, Steven

    We present a model explaining the elemental enrichments in Jupiter's atmosphere, particularly the noble gases Ar, Kr, and Xe. While He, Ne, and O are depleted, seven other elements show similar enrichments (∼3 times solar, relative to H). Being volatile, Ar is difficult to fractionate from H{sub 2}. We argue that external photoevaporation by far-ultraviolet (FUV) radiation from nearby massive stars removed H{sub 2}, He, and Ne from the solar nebula, but Ar and other species were retained because photoevaporation occurred at large heliocentric distances where temperatures were cold enough (≲ 30 K) to trap them in amorphous water ice. Asmore » the solar nebula lost H, it became relatively and uniformly enriched in other species. Our model improves on the similar model of Guillot and Hueso. We recognize that cold temperatures alone do not trap volatiles; continuous water vapor production is also necessary. We demonstrate that FUV fluxes that photoevaporated the disk generated sufficient water vapor in regions ≲ 30 K to trap gas-phase species in amorphous water ice in solar proportions. We find more efficient chemical fractionation in the outer disk: whereas the model of Guillot and Hueso predicts a factor of three enrichment when only <2% of the disk mass remains, we find the same enrichments when 30% of the disk mass remains. Finally, we predict the presence of ∼0.1 M {sub ⊕} of water vapor in the outer solar nebula and protoplanetary disks in H II regions.« less

  18. Trace Elements in the Marine Sediments of the La Paz Lagoon, Baja California Peninsula, Mexico: Pollution Status in 2013.

    PubMed

    Pérez-Tribouillier, Habacuc; Shumilin, Evgueni; Rodríguez-Figueroa, Griselda Margarita

    2015-07-01

    To determine the actual concentrations of trace elements in surface sediments from the La Paz Lagoon, as well as their associations and possible origins, 91 sediment samples were analyzed for more than 50 elements using a combination of ICP-MS and ICP-AES. The results of a principal component analysis are used to distinguish four associative groups within the elements. Natural enrichment of As, Cd and U occurs due to the supply of weathered phosphorites from the El Cien formation located to the north-west of the lagoon. Sediment quality indices for potentially toxic trace elements do not show any probable impact on the biota of the lagoon. Only the concentrations of As in 30 % of the stations and Cu in 20 % of them exceed related effect range low levels. The highest concentration of Pb (36.8 mg kg(-1)) was measured in the sediments near the City of La Paz.

  19. Optical Observations of Psr J2021+3651 in the Dragonfly Nebula With the GTC

    NASA Astrophysics Data System (ADS)

    Kirichenko, Aida; Danilenko, Andrey; Shternin, Peter; Shibanov, Yuriy; Ryspaeva, Elizaveta; Zyuzin, Dima; Durant, Martin; Kargaltsev, Oleg; Pavlov, George; Cabrera-Lavers, Antonio

    2015-03-01

    PSR J2021+3651 is a 17 kyr old rotation powered pulsar detected in the radio, X-rays, and γ-rays. It powers a torus-like pulsar wind nebula with jets, dubbed the Dragonfly, which is very similar to that of the Vela pulsar. The Dragonfly is likely associated with the extended TeV source VER J2019+368 and extended radio emission. We conducted first deep optical observations with the Gran Telescopio Canarias in the Sloan r‧ band to search for optical counterparts of the pulsar and its nebula. No counterparts were detected down to r‧ ≳ 27.2 and ≳24.8 for the point-like pulsar and the compact X-ray nebula, respectively. We also reanalyzed Chandra archival X-ray data taking into account an interstellar extinction-distance relation, constructed by us for the Dragonfly line of sight using the red-clump stars as standard candles. This allowed us to constrain the distance to the pulsar, D=1.8-1.4+1.7 kpc at 90% confidence. It is much smaller than the dispersion measure distance of ˜12 kpc but compatible with a γ-ray “pseudo-distance” of 1 kpc. Based on that and the optical upper limits, we conclude that PSR J2021+3651, similar to the Vela pulsar, is a very inefficient nonthermal emitter in the optical and X-rays, while its γ-ray efficiency is consistent with an average efficiency for γ-pulsars of similar age. Our optical flux upper limit for the pulsar is consistent with the long-wavelength extrapolation of its X-ray spectrum while the nebula flux upper limit does not constrain the respective extrapolation. Based on observations made with the Gran Telescopio Canarias (GTC), instaled in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofsica de Canarias, in the island of La Palma, programme GTC3-11B.

  20. Doradus Nebula

    NASA Technical Reports Server (NTRS)

    1999-01-01

    A panoramic view of a vast, sculpted area of gas and dust where thousands of stars are being born has been captured by NASA's Hubble Space Telescope.

    The image, taken by Hubble's Wide Field and Planetary Camera 2, is online at http://oposite.stsci.edu/pubinfo/pr/2001/21 and http://www.jpl.nasa.gov/images/wfpc . The camera was designed and built by NASA's Jet Propulsion Laboratory, Pasadena, Calif.

    The photo offers an unprecedented, detailed view of the entire inner region of the fertile, star-forming 30 Doradus Nebula. The mosaic picture shows that ultraviolet radiation and high-speed material unleashed by the stars in the cluster, called R136 (the large blue blob left of center), are weaving a tapestry of creation and destruction, triggering the collapse of looming gas and dust clouds and forming pillar-like structures that incubate newborn stars.

    The 30 Doradus Nebula is in the Large Magellanic Cloud, a satellite galaxy of the Milky Way located 170,000 light-years from Earth. Nebulas like 30 Doradus are signposts of recent star birth. High-energy ultraviolet radiation from young, hot, massive stars in R136 causes surrounding gaseous material to glow. Previous Hubble telescope observations showed that R136 contains several dozen of the most massive stars known, each about 100 times the mass of the Sun and about 10 times as hot. These stellar behemoths formed about 2 million years ago.

    The stars in R136 produce intense 'stellar winds,' streams of material traveling at several million miles an hour. These winds push the gas away from the cluster and compress the inner regions of the surrounding gas and dust clouds (seen in the image as the pinkish material). The intense pressure triggers the collapse of parts of the clouds, producing a new star formation around the central cluster. Most stars in the nursery are not visible because they are still encased in cocoons of gas and dust.

    This mosaic image of 30 Doradus consists of five overlapping

  1. Detection of Polarized Infrared Emission by Polycyclic Aromatic Hydrocarbons in the MWC 1080 Nebula

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Han; Telesco, Charles M.; Pantin, Eric

    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous in astrophysical environments, as revealed by their pronounced emission features at 3.3, 6.2, 7.7, 8.6, 11.3, and 12.7 μ m commonly ascribed to the C–H and C–C vibrational modes. Although these features have long been predicted to be polarized, previous searches for PAH polarization led to null or, at best, tentative detections. Here we report the definite detection of polarized PAH emission at 11.3 μ m in the nebula associated with the Herbig Be star MWC 1080. We measure a polarization degree of 1.9% ± 0.2%, which is unexpectedly high compared to models. Thismore » poses a challenge in the current understanding of the alignment of PAHs, which is required to polarize the PAH emission but thought to be substantially suppressed. PAH alignment with a magnetic field via a resonance paramagnetic relaxation process may account for such a high level of polarization.« less

  2. Detection of Polarized Infrared Emission by Polycyclic Aromatic Hydrocarbons in the MWC 1080 Nebula

    NASA Astrophysics Data System (ADS)

    Zhang, Han; Telesco, Charles M.; Hoang, Thiem; Li, Aigen; Pantin, Eric; Wright, Christopher M.; Li, Dan; Barnes, Peter

    2017-07-01

    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous in astrophysical environments, as revealed by their pronounced emission features at 3.3, 6.2, 7.7, 8.6, 11.3, and 12.7 μm commonly ascribed to the C-H and C-C vibrational modes. Although these features have long been predicted to be polarized, previous searches for PAH polarization led to null or, at best, tentative detections. Here we report the definite detection of polarized PAH emission at 11.3 μm in the nebula associated with the Herbig Be star MWC 1080. We measure a polarization degree of 1.9% ± 0.2%, which is unexpectedly high compared to models. This poses a challenge in the current understanding of the alignment of PAHs, which is required to polarize the PAH emission but thought to be substantially suppressed. PAH alignment with a magnetic field via a resonance paramagnetic relaxation process may account for such a high level of polarization.

  3. Aghien lagoon: a sustainable resource of fresh water for the city of Abidjan (Ivory Coast)? Description of the project and preliminary results

    NASA Astrophysics Data System (ADS)

    Kamagaté, Bamory; Effebi, Rose K.; Goula Bi, Tié Albert; Lanciné Goné, Droh; Noufé, Djibril; Diallo, Seydou; Ehouman, Serge K.; Koffi, Thierry; Zamblé Trabi, Armand; Lazare, Kouakou; Paturel, Jean Emmanuel; Perrin, Jean-Louis; Salles, Christian; Seguis, Luc; Tournoud, Marie-George; Karoui, Hela

    2016-04-01

    channel and supply the Aghien lagoon. Discharge measurements have shown that over a period of 8 months Bete and Djibi Rivers renewed half of the total volume of the lagoon. The quantification of the Mé contribution is in progress. In agreement with its high rate of urbanization, Djibi River is highly contaminated. High levels of ammonium and total phosphorus have been observed during both low and high flow conditions. Physico-chemical surveys have shown also higher values of conductivity and lower values of dissolved oxygen in the Djibi River. Despite dilution effect due to the Mé river inflow, the Aghien lagoon is already hypertrophic. The lagoon presents a high biological activity characterized by high values of pH, phosphorus concentration but above all chlorophyll a. The research in the lagoon is going on to characterize the temporal variability and to quantify the impact of the major flood events on the water quality of the lagoon and its tributaries, urbanized or rural.

  4. Electrical discharge heating of chondrules in the solar nebula

    NASA Technical Reports Server (NTRS)

    Love, Stanley G.; Keil, Klaus; Scott, Edward R. D.

    1995-01-01

    We present a rudimentary theoretical assessment of electrical discharge heating as a candidate mechanism for the formation of chondrules in the solar nebula. The discharge model combines estimates of the properties of the nebula, a mechanism for terrestrial thunderstorm electrification, and some fundamental electrical properties of gases. Large uncertainties in the model inputs limit these calculations to order-or-magnitude accuracy. Despite the uncertainty, it is possible to estimate an upper limit to the efficiency of nebular discharges at melting millimeter-sized stony objects. We find that electrical arcs analogous to terrestrial lightning could have occurred in the nebula, but that under most conditions these discharges probably could not have melted chondrules. Despite our difficulties, we believe the topic worthy of further investigation and suggest some experiments which could improve our understanding of nebular discharges.

  5. The emerging planetary nebula CRL 618 and its unsettled central star(s)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balick, B.; Riera, A.; Raga, A.

    We report deep long-slit emission-line spectra, the line flux ratios, and Doppler profile shapes of various bright optical lines. The low-ionization lines (primarily [N I], [O I], [S II], and [N II]) originate in shocked knots, as reported by many previous observers. Dust-scattered lines of higher ionization are seen throughout the lobes but do not peak in the knots. Our analysis of these line profiles and the readily discernible stellar continuum shows that (1) the central star is an active symbiotic (whose spectrum resembles the central stars of highly bipolar and young planetary nebulae such as M2-9 and Hen2-437) whosemore » compact companion shows a WC8-type spectrum, (2) extended nebular lines of [O III] and He I originate in the heavily obscured nuclear H II region, and (3) the Balmer lines observed throughout the lobes are dominated by reflected Hα emission from the symbiotic star. Comparing our line ratios with those observed historically shows that (1) the [O III]/Hβ and He I/Hβ ratios have been steadily rising by large amounts throughout the nebula, (2) the Hα/Hβ ratio is steadily decreasing while Hγ/Hβ remains nearly constant, and (3) the low-ionization line ratios formed in the shocked knots have been in decline in different ways at various locations. We show that the first two of these results might be expected if the symbiotic central star has been active and if its bright Hα line has faded significantly in the past 20 years.« less

  6. Bacterioplankton diversity and community composition in the Southern Lagoon of Venice.

    PubMed

    Simonato, Francesca; Gómez-Pereira, Paola R; Fuchs, Bernhard M; Amann, Rudolf

    2010-04-01

    The Lagoon of Venice is a large water basin that exchanges water with the Northern Adriatic Sea through three large inlets. In this study, the 16S rRNA approach was used to investigate the bacterial diversity and community composition within the southern basin of the Lagoon of Venice and at one inlet in October 2007 and June 2008. Comparative sequence analysis of 645 mostly partial 16S rRNA gene sequences indicated high diversity and dominance of Alphaproteobacteria, Gammaproteobacteria and Bacteroidetes at the lagoon as well as at the inlet station, therefore pointing to significant mixing. Many of these sequences were close to the 16S rRNA of marine, often coastal, bacterioplankton, such as the Roseobacter clade, the family Vibrionaceae, and class Flavobacteria. Sequences of Actinobacteria were indicators of a freshwater input. The composition of the bacterioplankton was quantified by catalyzed reporter deposition fluorescence in situ hybridization (CARD-FISH) with a set of rRNA-targeted oligonucleotide probes. CARD-FISH counts corroborated the dominance of members of the phyla Alphaproteobacteria, Gammaproteobacteria and Bacteroidetes. When assessed by a probe set for the quantification of selected clades within Alphaproteobacteria and Gammaproteobacteria, bacterioplankton composition differed between October 2007 and June 2008, and also between the inlet and the lagoon. In particular, members of the readily culturable copiotrophic gammaproteobacterial genera Vibrio, Alteromonas and Pseudoalteromonas were enriched in the southern basin of the Lagoon of Venice. Interestingly, the alphaproteobacterial SAR11 clade and related clusters were also present in high abundances at the inlet and within the lagoon, which was indicative of inflow of water from the open sea.

  7. Evaluation of mercury biogeochemical cycling at the sediment-water interface in anthropogenically modified lagoon environments.

    PubMed

    Petranich, Elisa; Covelli, Stefano; Acquavita, Alessandro; Faganeli, Jadran; Horvat, Milena; Contin, Marco

    2018-06-01

    The Marano and Grado Lagoon is well known for being contaminated by mercury (Hg) from the Idrija mine (Slovenia) and the decommissioned chlor-alkali plant of Torviscosa (Italy). Experimental activities were conducted in a local fish farm to understand Hg cycling at the sediment-water interface. Both diffusive and benthic fluxes were estimated in terms of chemical and physical features. Mercury concentration in sediments (up to 6.81μg/g) showed a slight variability with depth, whereas the highest methylmercury (MeHg) values (up to 10ng/g) were detected in the first centimetres. MeHg seems to be produced and stored in the 2-3cm below the sediment-water interface, where sulphate reducing bacteria activity occurs and hypoxic-anoxic conditions become persistent for days. DMeHg in porewaters varied seasonally (from 0.1 and 17% of dissolved Hg (DHg)) with the highest concentrations in summer. DHg diffusive effluxes higher (up to 444ng/m 2 /day) than those reported in the open lagoon (~95ng/m 2 /day), whereas DMeHg showed influxes in the fish farm (up to -156ng/m 2 /day). The diurnal DHg and DMeHg benthic fluxes were found to be higher than the highest summer values previously reported for the natural lagoon environment. Bottom sediments, especially in anoxic conditions, seem to be a significant source of MeHg in the water column where it eventually accumulates. However, net fluxes considering the daily trend of DHg and DMeHg, indicated possible DMeHg degradation processes. Enhancing water dynamics in the fish farm could mitigate environmental conditions suitable for Hg methylation. Copyright © 2017. Published by Elsevier B.V.

  8. Copepod community succession during warm season in Lagoon Notoro-ko, northeastern Hokkaido, Japan

    NASA Astrophysics Data System (ADS)

    Nakagawa, Yoshizumi; Ichikawa, Hideaki; Kitamura, Mitsuaki; Nishino, Yasuto; Taniguchi, Akira

    2015-06-01

    Lagoon Notoro-ko, located on the northeastern coast of Hokkaido, Japan, and connected to the Okhotsk Sea by a human-made channel, is strongly influenced by local hydrography, as water masses in the lagoon are seasonally influenced by the Soya Warm Current and the East Sakhalin Current. We here report on the succession of copepod communities during the warm season in relation to water mass exchange. Copepods were categorized into four seasonal communities (spring/early-summer, mid-summer, late-summer/fall, and early-winter) via a cluster analysis based on Bray-Curtis similarities. Spring/early-summer and early-winter communities were characterized by the temperate-boreal calanoid Pseudocalanus newmani, comprising 34.9%-77.6% of the total abundance of copepods during times of low temperature/salinity, as influenced by the prevailing East Sakhalin Current. Late-summer/fall communities were characterized by the neritic warm-water calanoid Paracalanus parvus s.l., comprising 63.9%-96.3% of the total abundance, as influenced by the Soya Warm Current. Mid-summer communities comprised approximately equal abundances of P. parvus, Eurytemora herdmani, Scolecithricella minor, and Centropages abdominalis (12.8%-28.2%); this community is transitional between those of the spring/early-summer and late-summer/fall. Copepod community succession in Lagoon Notoro-ko can be largely explained by seasonal changes in water masses.

  9. Influence of salinity regime on the food-web structure and feeding ecology of fish species from Mediterranean coastal lagoons

    NASA Astrophysics Data System (ADS)

    Prado, Patricia; Vergara, Carolina; Caiola, Nuno; Ibáñez, Carles

    2014-02-01

    Dual δ15N and δ13C analyses and estimates of biomass were used to characterize the food webs of valuable fish species in three coastal lagoons of the Ebro Delta subjected to contrasting salinity regimes (polyhaline in the Tancada lagoon, mesohaline in the Encanyissada and oligohaline in the Clot lagoon). The δ13C signatures of the entire food-web including primary producers, sediment organic matter and consumers showed the most enriched values in the Tancada lagoon (from approx. -4.8‰ in sediments to -19.7‰ in fish) and the most depleted ones in the Clot lagoon (from approx. -11.4‰ in sediments to -25.4‰ in fish), consistent with dominant contributions from marine and continental sources, respectively. For δ15N, particularly high values were detected in the submersed vegetation (11.3 ± 0.3‰) together with more enriched sediment values at lower salinities (by approx. 2.5‰), suggesting that historical loadings of agricultural fertilizers are still retained by the systems and transmitted across trophic levels. Negative relationships between δ15N and salinity were also observed for the amphipod Gammarus aequicauda and the isopod Sphaeroma hookeri, suggesting some consumption of accumulated and resuspended detrital material. In contrast, δ15N signatures of fish showed lower values and inconsistent patterns, possibly because most species have a seasonal use of the lagoons. The biomass of fish species did not show a clear effect of the salinity regime (except for the mosquitofish Gambusia holbrookii), but results for mixing models suggest a diet shift from higher contribution of zooplankton size fractions in the Encanyissada (from 57 to 73%) to macrofauna at the other lagoons (from 40 to 67%). We suggest that alterations in salinity might modify the trophic dynamics of the systems from benthic to planktonic pathways, without large-scale differences in δ15N of fish suggestive of similar trophic levels.

  10. Chasing boundaries and cascade effects in a coupled barrier - marshes - lagoon system

    NASA Astrophysics Data System (ADS)

    Lorenzo Trueba, J.; Mariotti, G.

    2015-12-01

    Low-lying coasts are often characterized by barriers islands, shore-parallel stretches of sand separated from the mainland by marshes and lagoons. We built an exploratory numerical model to examine the morphological feedbacks within an idealized barrier - marshes -lagoon system and predict its evolution under projected rates of sea level rise and sediment supply to the backbarrier environment. Our starting point is a recently developed morphodynamic model, which couples shoreface evolution and overwash processes in a dynamic framework. As such, the model is able to capture dynamics not reproduced by morphokinematic models, which advect geometries without specific concern to processes. These dynamics include periodic barrier retreat due to time lags in the shoreface response to barrier overwash, height drowning due to insufficient overwash fluxes as sea level rises, and width drowning, which occurs when the shoreface response rate is insufficient to maintain the barrier geometry during overwash-driven landward migration. We extended the model by coupling the barrier model with a model for the evolution of the marsh platform and the boundary between the marsh and the adjacent lagoon. The coupled model explicitly describes marsh edge processes and accounts for the modification of the wave regime associated with lagoon width (fetch). Model results demonstrate that changes in factors that are not typically associated with the dynamics of coastal barriers, such as the lagoon width and the rate of export/import of sediments from and to the lagoon, can lead to previously unidentified complex responses of the coupled system. In particular, a wider lagoon in the backbarrier, and/or a reduction in the supply of muddy sediments to the backbarrier, can increase barrier retreat rates and even trigger barrier drowning. Overall, our findings highlight the importance of incorporating backbarrier dynamics in models that aim at predicting the response of barrier systems.

  11. Coastal Evolution in a Mediterranean Microtidal Zone: Mid to Late Holocene Natural Dynamics and Human Management of the Castelló Lagoon, NE Spain.

    PubMed

    Ejarque, Ana; Julià, Ramon; Reed, Jane M; Mesquita-Joanes, Francesc; Marco-Barba, Javier; Riera, Santiago

    2016-01-01

    We present a palaeoenvironmental study of the Castelló lagoon (NE Spain), an important archive for understanding long-term interactions between dynamic littoral ecosystems and human management. Combining geochemistry, mineralogy, ostracods, diatoms, pollen, non-pollen palynomorphs, charcoal and archaeo-historical datasets we reconstruct: 1) the transition of the lagoon from a marine to a marginal environment between ~3150 cal BC to the 17th century AD; 2) fluctuations in salinity; and 3) natural and anthropogenic forces contributing to these changes. From the Late Neolithic to the Medieval period the lagoon ecosystem was driven by changing marine influence and the land was mainly exploited for grazing, with little evidence for impact on the natural woodland. Land-use exploitation adapted to natural coastal dynamics, with maximum marine flooding hampering agropastoral activities between ~1550 and ~150 cal BC. In contrast, societies actively controlled the lagoon dynamics and become a major agent of landscape transformation after the Medieval period. The removal of littoral woodlands after the 8th century was followed by the expansion of agrarian and industrial activities. Regional mining and smelting activities polluted the lagoon with heavy metals from the ~11th century onwards. The expansion of the milling industry and of agricultural lands led to the channelization of the river Muga into the lagoon after ~1250 cal AD. This caused its transformation into a freshwater lake, increased nutrient load, and the infilling and drainage of a great part of the lagoon. By tracking the shift towards an anthropogenically-controlled system around ~750 yr ago, this study points out Mediterranean lagoons as ancient and heavily-modified systems, with anthropogenic impacts and controls covering multi-centennial and even millennial timescales. Finally, we contributed to the future construction of reliable seashell-based chronologies in NE Spain by calibrating the Banyuls-sur-Mer

  12. Coastal Evolution in a Mediterranean Microtidal Zone: Mid to Late Holocene Natural Dynamics and Human Management of the Castelló Lagoon, NE Spain

    PubMed Central

    Ejarque, Ana; Julià, Ramon; Reed, Jane M.; Mesquita-Joanes, Francesc; Marco-Barba, Javier; Riera, Santiago

    2016-01-01

    We present a palaeoenvironmental study of the Castelló lagoon (NE Spain), an important archive for understanding long-term interactions between dynamic littoral ecosystems and human management. Combining geochemistry, mineralogy, ostracods, diatoms, pollen, non-pollen palynomorphs, charcoal and archaeo-historical datasets we reconstruct: 1) the transition of the lagoon from a marine to a marginal environment between ~3150 cal BC to the 17th century AD; 2) fluctuations in salinity; and 3) natural and anthropogenic forces contributing to these changes. From the Late Neolithic to the Medieval period the lagoon ecosystem was driven by changing marine influence and the land was mainly exploited for grazing, with little evidence for impact on the natural woodland. Land-use exploitation adapted to natural coastal dynamics, with maximum marine flooding hampering agropastoral activities between ~1550 and ~150 cal BC. In contrast, societies actively controlled the lagoon dynamics and become a major agent of landscape transformation after the Medieval period. The removal of littoral woodlands after the 8th century was followed by the expansion of agrarian and industrial activities. Regional mining and smelting activities polluted the lagoon with heavy metals from the ~11th century onwards. The expansion of the milling industry and of agricultural lands led to the channelization of the river Muga into the lagoon after ~1250 cal AD. This caused its transformation into a freshwater lake, increased nutrient load, and the infilling and drainage of a great part of the lagoon. By tracking the shift towards an anthropogenically-controlled system around ~750 yr ago, this study points out Mediterranean lagoons as ancient and heavily-modified systems, with anthropogenic impacts and controls covering multi-centennial and even millennial timescales. Finally, we contributed to the future construction of reliable seashell-based chronologies in NE Spain by calibrating the Banyuls-sur-Mer

  13. Shell nebulae around luminous evolved stars

    NASA Technical Reports Server (NTRS)

    Dufour, Reginald J.

    1989-01-01

    Shell nebulae around luminous Population I Wolf-Rayet, Of, and P-Cygni stars are astrophysically interesting since they are indicators of pre-supernova mass loss and how such massive stars prepare their surrounding interstellar medium prior to explosion. Some twenty-odd such nebulae are known, for which detailed study of their morphological and spectroscopic characteristics have only begun in this decade. In this paper, some of these characteristics are reviewed in general, and new observations are reported. Emphasis has been placed on several 'prototype 'objects (NGC 7635, NGC 2359, NGC 6888, and the Eta Carinae condensations) to illustrate the varied massive-star mass-loss, the physics of their winds and shell ejecta, and related nucleosynthesis effects in the compositions of the winds and shells.

  14. The mysterious age invariance of the planetary nebula luminosity function bright cut-off

    NASA Astrophysics Data System (ADS)

    Gesicki, K.; Zijlstra, A. A.; Miller Bertolami, M. M.

    2018-05-01

    Planetary nebulae mark the end of the active life of 90% of all stars. They trace the transition from a red giant to a degenerate white dwarf. Stellar models1,2 predicted that only stars above approximately twice the solar mass could form a bright nebula. But the ubiquitous presence of bright planetary nebulae in old stellar populations, such as elliptical galaxies, contradicts this: such high-mass stars are not present in old systems. The planetary nebula luminosity function, and especially its bright cut-off, is almost invariant between young spiral galaxies, with high-mass stars, and old elliptical galaxies, with only low-mass stars. Here, we show that new evolutionary tracks of low-mass stars are capable of explaining in a simple manner this decades-old mystery. The agreement between the observed luminosity function and computed stellar evolution validates the latest theoretical modelling. With these models, the planetary nebula luminosity function provides a powerful diagnostic to derive star formation histories of intermediate-age stars. The new models predict that the Sun at the end of its life will also form a planetary nebula, but it will be faint.

  15. Why convective heat transport in the solar nebula was inefficient

    NASA Technical Reports Server (NTRS)

    Cassen, P.

    1993-01-01

    The radial distributions of the effective temperatures of circumstellar disks associated with pre-main sequence (T Tauri) stars are relatively well-constrained by ground-based and spacecraft infrared photometry and radio continuum observations. If the mechanisms by which energy is transported vertically in the disks are understood, these data can be used to constrain models of the thermal structure and evolution of solar nebula. Several studies of the evolution of the solar nebula have included the calculation of the vertical transport of heat by convection. Such calculations rely on a mixing length theory of transport and some assumption regarding the vertical distribution of internal dissipation. In all cases, the results of these calculations indicate that transport by radiation dominates that by convection, even when the nebula is convectively unstable. A simple argument that demonstrates the generality (and limits) of this result, regardless of the details of mixing length theory or the precise distribution of internal heating is presented. It is based on the idea that the radiative gradient in an optically thick nebula generally does not greatly exceed the adiabatic gradient.

  16. Catalogues of planetary nebulae.

    NASA Astrophysics Data System (ADS)

    Acker, A.

    Firstly, the general requirements concerning catalogues are studied for planetary nebulae, in particular concerning the objects to be included in a catalogue of PN, their denominations, followed by reflexions about the afterlife and comuterized versions of a catalogue. Then, the basic elements constituting a catalogue of PN are analyzed, and the available data are looked at each time.

  17. Impact of mussel bioengineering on fine-grained sediment dynamics in a coastal lagoon: A numerical modelling investigation

    NASA Astrophysics Data System (ADS)

    Forsberg, Pernille L.; Lumborg, Ulrik; Bundgaard, Klavs; Ernstsen, Verner B.

    2017-12-01

    Rødsand lagoon in southeast Denmark is a non-tidal coastal lagoon. It is home to a wide range of marine flora and fauna and part of the Natura 2000 network. An increase in turbidity through elevated levels of suspended sediment concentration (SSC) within the lagoon may affect the ecosystem health due to reduced light penetration. Increasing SSC levels within Rødsand lagoon could be caused by increasing storm intensity or by a sediment spill from dredging activities west of the lagoon in relation to the planned construction of the Fehmarnbelt fixed link between Denmark and Germany. The aim of the study was to investigate the impact of a mussel reef on sediment import and SSC in a semi-enclosed lagoon through the development of a bioengineering modelling application that makes it possible to include the filtrating effect of mussels in a numerical model of the lagoonal system. The numerical implementation of an exterior mussel reef generated a reduction in the SSC in the vicinity of the reef, through the adjacent inlet and in the western part of the lagoon. The mussel reef reduced the sediment import to Rødsand lagoon by 13-22% and reduced the SSC within Rødsand lagoon by 5-9% depending on the filtration rate and the reef length. The results suggest that the implementation of a mussel reef has the potential to relieve the pressure of increasing turbidity levels within a semi-enclosed lagoonal system. However, further assessment and development of the bioengineering application and resulting ecosystem impacts are necessary prior to actual implementation.

  18. Analysis of the unique geothermal microbial ecosystem of the Blue Lagoon.

    PubMed

    Petursdottir, Solveig K; Bjornsdottir, Snaedis H; Hreggvidsson, Gudmundur O; Hjorleifsdottir, Sigridur; Kristjansson, Jakob K

    2009-12-01

    Cultivation and culture-independent techniques were used to describe the geothermal ecosystem of the Blue Lagoon in Iceland. The lagoon contains both seawater and freshwater of geothermal origin and is extremely high in silica content. Water samples were collected repeatedly in summer and autumn in 2003 and 2005 and in winter 2006 were analyzed for species composition. The study revealed the typical traits of an extreme ecosystem characterized by dominating species and other species represented in low numbers. A total of 35 taxa were identified. The calculated biodiversity index of the samples was 2.1-2.5. The majority (83%) of analyzed taxa were closely related to bacteria of marine and geothermal origin reflecting a marine character of the ecosystem and the origin of the Blue Lagoon hydrothermal fluid. A high ratio (63%) of analyzed taxa represented putative novel bacterial species. The majority (71%) of analyzed clones were Alphaproteobacteria, of which 80% belonged to the Roseobacter lineage within the family of Rhodobacteraceae. Of seven cultivated species, the two most abundant ones belonged to this lineage. Silicibacter lacuscaerulensis was confirmed as a dominating species in the Blue Lagoon. One group of isolates represented a recently identified species within the genus of Nitratireductor within Rhizobiales. This study implies an annually stable and seasonally dynamic ecosystem in the Blue Lagoon.

  19. Nitrogen removal and recovery from lagoon-pretreated swine wastewater by constructed wetlands under sustainable plant harvesting management.

    PubMed

    Luo, Pei; Liu, Feng; Zhang, Shunan; Li, Hongfang; Yao, Ran; Jiang, Qianwen; Xiao, Runlin; Wu, Jinshui

    2018-06-01

    A series of three-stage pilot-scale surface flow constructed wetlands (CWs) planted with Myriophyllum aquaticum were fed with three strengths of lagoon-pretreated swine wastewater to study nitrogen (N) removal and recovery under sustainable plant harvesting management. The CWs had mean removal efficiency of 87.7-97.9% for NH 4 + -N and 85.4-96.1% for total N (TN). The recovered TN mass via multiple harvests of M. aquaticum was greatest (120-222 g N m -2  yr -1 ) when TN concentrations were 21.8-282 mg L -1 . The harvested TN mass accounted for 0.85-100% of the total removal in the different CW units. Based on mass balance estimation, plant uptake, sediment storage, and microbial removal accounted for 13.0-55.0%, 4.9-8.0%, and 33.0-67.5% of TN loading mass, respectively. The results of this study confirm that M. aquaticum is appropriate for the removal and recovery of nutrients in CW systems designed for treating swine wastewater in conjunction with sustainable plant harvesting strategies. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Water sources, mixing and evaporation in the Akyatan lagoon, Turkey

    NASA Astrophysics Data System (ADS)

    Lécuyer, C.; Bodergat, A.-M.; Martineau, F.; Fourel, F.; Gürbüz, K.; Nazik, A.

    2012-12-01

    Akyatan lagoon, located southeast of Turkey along the Mediterranean coast, is a choked and hypersaline lagoon, and hosts a large and specific biodiversity including endangered sea turtles and migrating birds. Physicochemical properties of this lagoon were investigated by measuring temperature, salinity, and hydrogen and oxygen isotope ratios of its waters at a seasonal scale during years 2006 and 2007. Winter and spring seasons were dominated by mixing processes between freshwaters and Mediterranean seawater. The majority of spring season waters are formed by evapoconcentration of brackish water at moderate temperatures of 22 ± 2 °C. During summer, hypersaline waters result from evaporation of seawater and brackish waters formed during spring. Evaporation over the Akyatan lagoon reaches up to 76 wt% based on salinity measurements and operated with a dry (relative humidity of 0.15-0.20) and hot (44 ± 6 °C) air. These residual waters were characterized by the maximal seasonal isotopic enrichment in both deuterium and 18O relative to VSMOW. During autumn, most lagoonal waters became hypersaline and were formed by evaporation of waters that had isotopic compositions and salinities close to that of seawater. These autumnal hypersaline waters result from an air humidity close to 0.45 and an atmospheric temperature of evaporation of 35 ± 5 °C, which are responsible for up to 71 wt% of evaporation, with restricted isotopic enrichments relative to VSMOW. During the warm seasons, the combination of air humidity, wind velocity and temperature were responsible for a large kinetic component in the total isotopic fractionation between water liquid and water vapour.