Sample records for lagrange explicit finite

  1. Simulating Underbelly Blast Events using Abaqus/Explicit - CEL

    DTIC Science & Technology

    2013-01-15

    describe the material. As a result, a Langragian treatment of the structure is preferred. Therefore, a finite element solver with the capability of...algorithm is a two part process in which all material is deformed with a Lagrange treatment in a given time increment. This is followed by a remapping...accurately describe the material response of geological materials subjected to high impulse loading (i.e. shock events). The hydrostatic behavior of

  2. Finite Nilpotent BRST Transformations in Hamiltonian Formulation

    NASA Astrophysics Data System (ADS)

    Rai, Sumit Kumar; Mandal, Bhabani Prasad

    2013-10-01

    We consider the finite field dependent BRST (FFBRST) transformations in the context of Hamiltonian formulation using Batalin-Fradkin-Vilkovisky method. The non-trivial Jacobian of such transformations is calculated in extended phase space. The contribution from Jacobian can be written as exponential of some local functional of fields which can be added to the effective Hamiltonian of the system. Thus, FFBRST in Hamiltonian formulation with extended phase space also connects different effective theories. We establish this result with the help of two explicit examples. We also show that the FFBRST transformations is similar to the canonical transformations in the sector of Lagrange multiplier and its corresponding momenta.

  3. Scale-Limited Lagrange Stability and Finite-Time Synchronization for Memristive Recurrent Neural Networks on Time Scales.

    PubMed

    Xiao, Qiang; Zeng, Zhigang

    2017-10-01

    The existed results of Lagrange stability and finite-time synchronization for memristive recurrent neural networks (MRNNs) are scale-free on time evolvement, and some restrictions appear naturally. In this paper, two novel scale-limited comparison principles are established by means of inequality techniques and induction principle on time scales. Then the results concerning Lagrange stability and global finite-time synchronization of MRNNs on time scales are obtained. Scaled-limited Lagrange stability criteria are derived, in detail, via nonsmooth analysis and theory of time scales. Moreover, novel criteria for achieving the global finite-time synchronization are acquired. In addition, the derived method can also be used to study global finite-time stabilization. The proposed results extend or improve the existed ones in the literatures. Two numerical examples are chosen to show the effectiveness of the obtained results.

  4. Reprint of Solution of Ambrosio-Tortorelli model for image segmentation by generalized relaxation method

    NASA Astrophysics Data System (ADS)

    D'Ambra, Pasqua; Tartaglione, Gaetano

    2015-04-01

    Image segmentation addresses the problem to partition a given image into its constituent objects and then to identify the boundaries of the objects. This problem can be formulated in terms of a variational model aimed to find optimal approximations of a bounded function by piecewise-smooth functions, minimizing a given functional. The corresponding Euler-Lagrange equations are a set of two coupled elliptic partial differential equations with varying coefficients. Numerical solution of the above system often relies on alternating minimization techniques involving descent methods coupled with explicit or semi-implicit finite-difference discretization schemes, which are slowly convergent and poorly scalable with respect to image size. In this work we focus on generalized relaxation methods also coupled with multigrid linear solvers, when a finite-difference discretization is applied to the Euler-Lagrange equations of Ambrosio-Tortorelli model. We show that non-linear Gauss-Seidel, accelerated by inner linear iterations, is an effective method for large-scale image analysis as those arising from high-throughput screening platforms for stem cells targeted differentiation, where one of the main goal is segmentation of thousand of images to analyze cell colonies morphology.

  5. Solution of Ambrosio-Tortorelli model for image segmentation by generalized relaxation method

    NASA Astrophysics Data System (ADS)

    D'Ambra, Pasqua; Tartaglione, Gaetano

    2015-03-01

    Image segmentation addresses the problem to partition a given image into its constituent objects and then to identify the boundaries of the objects. This problem can be formulated in terms of a variational model aimed to find optimal approximations of a bounded function by piecewise-smooth functions, minimizing a given functional. The corresponding Euler-Lagrange equations are a set of two coupled elliptic partial differential equations with varying coefficients. Numerical solution of the above system often relies on alternating minimization techniques involving descent methods coupled with explicit or semi-implicit finite-difference discretization schemes, which are slowly convergent and poorly scalable with respect to image size. In this work we focus on generalized relaxation methods also coupled with multigrid linear solvers, when a finite-difference discretization is applied to the Euler-Lagrange equations of Ambrosio-Tortorelli model. We show that non-linear Gauss-Seidel, accelerated by inner linear iterations, is an effective method for large-scale image analysis as those arising from high-throughput screening platforms for stem cells targeted differentiation, where one of the main goal is segmentation of thousand of images to analyze cell colonies morphology.

  6. Application of parallel distributed Lagrange multiplier technique to simulate coupled Fluid-Granular flows in pipes with varying Cross-Sectional area

    DOE PAGES

    Kanarska, Yuliya; Walton, Otis

    2015-11-30

    Fluid-granular flows are common phenomena in nature and industry. Here, an efficient computational technique based on the distributed Lagrange multiplier method is utilized to simulate complex fluid-granular flows. Each particle is explicitly resolved on an Eulerian grid as a separate domain, using solid volume fractions. The fluid equations are solved through the entire computational domain, however, Lagrange multiplier constrains are applied inside the particle domain such that the fluid within any volume associated with a solid particle moves as an incompressible rigid body. The particle–particle interactions are implemented using explicit force-displacement interactions for frictional inelastic particles similar to the DEMmore » method with some modifications using the volume of an overlapping region as an input to the contact forces. Here, a parallel implementation of the method is based on the SAMRAI (Structured Adaptive Mesh Refinement Application Infrastructure) library.« less

  7. Domain decomposition methods for nonconforming finite element spaces of Lagrange-type

    NASA Technical Reports Server (NTRS)

    Cowsar, Lawrence C.

    1993-01-01

    In this article, we consider the application of three popular domain decomposition methods to Lagrange-type nonconforming finite element discretizations of scalar, self-adjoint, second order elliptic equations. The additive Schwarz method of Dryja and Widlund, the vertex space method of Smith, and the balancing method of Mandel applied to nonconforming elements are shown to converge at a rate no worse than their applications to the standard conforming piecewise linear Galerkin discretization. Essentially, the theory for the nonconforming elements is inherited from the existing theory for the conforming elements with only modest modification by constructing an isomorphism between the nonconforming finite element space and a space of continuous piecewise linear functions.

  8. Necessary conditions for weighted mean convergence of Lagrange interpolation for exponential weights

    NASA Astrophysics Data System (ADS)

    Damelin, S. B.; Jung, H. S.; Kwon, K. H.

    2001-07-01

    Given a continuous real-valued function f which vanishes outside a fixed finite interval, we establish necessary conditions for weighted mean convergence of Lagrange interpolation for a general class of even weights w which are of exponential decay on the real line or at the endpoints of (-1,1).

  9. Benchmarking Defmod, an open source FEM code for modeling episodic fault rupture

    NASA Astrophysics Data System (ADS)

    Meng, Chunfang

    2017-03-01

    We present Defmod, an open source (linear) finite element code that enables us to efficiently model the crustal deformation due to (quasi-)static and dynamic loadings, poroelastic flow, viscoelastic flow and frictional fault slip. Ali (2015) provides the original code introducing an implicit solver for (quasi-)static problem, and an explicit solver for dynamic problem. The fault constraint is implemented via Lagrange Multiplier. Meng (2015) combines these two solvers into a hybrid solver that uses failure criteria and friction laws to adaptively switch between the (quasi-)static state and dynamic state. The code is capable of modeling episodic fault rupture driven by quasi-static loadings, e.g. due to reservoir fluid withdraw or injection. Here, we focus on benchmarking the Defmod results against some establish results.

  10. A domain decomposition approach to implementing fault slip in finite-element models of quasi-static and dynamic crustal deformation

    USGS Publications Warehouse

    Aagaard, Brad T.; Knepley, M.G.; Williams, C.A.

    2013-01-01

    We employ a domain decomposition approach with Lagrange multipliers to implement fault slip in a finite-element code, PyLith, for use in both quasi-static and dynamic crustal deformation applications. This integrated approach to solving both quasi-static and dynamic simulations leverages common finite-element data structures and implementations of various boundary conditions, discretization schemes, and bulk and fault rheologies. We have developed a custom preconditioner for the Lagrange multiplier portion of the system of equations that provides excellent scalability with problem size compared to conventional additive Schwarz methods. We demonstrate application of this approach using benchmarks for both quasi-static viscoelastic deformation and dynamic spontaneous rupture propagation that verify the numerical implementation in PyLith.

  11. A fictitious domain approach for the Stokes problem based on the extended finite element method

    NASA Astrophysics Data System (ADS)

    Court, Sébastien; Fournié, Michel; Lozinski, Alexei

    2014-01-01

    In the present work, we propose to extend to the Stokes problem a fictitious domain approach inspired by eXtended Finite Element Method and studied for Poisson problem in [Renard]. The method allows computations in domains whose boundaries do not match. A mixed finite element method is used for fluid flow. The interface between the fluid and the structure is localized by a level-set function. Dirichlet boundary conditions are taken into account using Lagrange multiplier. A stabilization term is introduced to improve the approximation of the normal trace of the Cauchy stress tensor at the interface and avoid the inf-sup condition between the spaces for velocity and the Lagrange multiplier. Convergence analysis is given and several numerical tests are performed to illustrate the capabilities of the method.

  12. A hybridized formulation for the weak Galerkin mixed finite element method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mu, Lin; Wang, Junping; Ye, Xiu

    This paper presents a hybridized formulation for the weak Galerkin mixed finite element method (WG-MFEM) which was introduced and analyzed in Wang and Ye (2014) for second order elliptic equations. The WG-MFEM method was designed by using discontinuous piecewise polynomials on finite element partitions consisting of polygonal or polyhedral elements of arbitrary shape. The key to WG-MFEM is the use of a discrete weak divergence operator which is defined and computed by solving inexpensive problems locally on each element. The hybridized formulation of this paper leads to a significantly reduced system of linear equations involving only the unknowns arising frommore » the Lagrange multiplier in hybridization. Optimal-order error estimates are derived for the hybridized WG-MFEM approximations. In conclusion, some numerical results are reported to confirm the theory and a superconvergence for the Lagrange multiplier.« less

  13. A hybridized formulation for the weak Galerkin mixed finite element method

    DOE PAGES

    Mu, Lin; Wang, Junping; Ye, Xiu

    2016-01-14

    This paper presents a hybridized formulation for the weak Galerkin mixed finite element method (WG-MFEM) which was introduced and analyzed in Wang and Ye (2014) for second order elliptic equations. The WG-MFEM method was designed by using discontinuous piecewise polynomials on finite element partitions consisting of polygonal or polyhedral elements of arbitrary shape. The key to WG-MFEM is the use of a discrete weak divergence operator which is defined and computed by solving inexpensive problems locally on each element. The hybridized formulation of this paper leads to a significantly reduced system of linear equations involving only the unknowns arising frommore » the Lagrange multiplier in hybridization. Optimal-order error estimates are derived for the hybridized WG-MFEM approximations. In conclusion, some numerical results are reported to confirm the theory and a superconvergence for the Lagrange multiplier.« less

  14. Recursive thoughts on the simulation of the flexible multibody dynamics of slender offshore structures

    NASA Astrophysics Data System (ADS)

    Schilder, J.; Ellenbroek, M.; de Boer, A.

    2017-12-01

    In this work, the floating frame of reference formulation is used to create a flexible multibody model of slender offshore structures such as pipelines and risers. It is shown that due to the chain-like topology of the considered structures, the equation of motion can be expressed in terms of absolute interface coordinates. In the presented form, kinematic constraint equations are satisfied explicitly and the Lagrange multipliers are eliminated from the equations. Hence, the structures can be conveniently coupled to finite element or multibody models of for example seabed and vessel. The chain-like topology enables the efficient use of recursive solution procedures for both transient dynamic analysis and equilibrium analysis. For this, the transfer matrix method is used. In order to improve the convergence of the equilibrium analysis, the analytical solution of an ideal catenary is used as an initial configuration, reducing the number of required iterations.

  15. Solution procedure of dynamical contact problems with friction

    NASA Astrophysics Data System (ADS)

    Abdelhakim, Lotfi

    2017-07-01

    Dynamical contact is one of the common research topics because of its wide applications in the engineering field. The main goal of this work is to develop a time-stepping algorithm for dynamic contact problems. We propose a finite element approach for elastodynamics contact problems [1]. Sticking, sliding and frictional contact can be taken into account. Lagrange multipliers are used to enforce non-penetration condition. For the time discretization, we propose a scheme equivalent to the explicit Newmark scheme. Each time step requires solving a nonlinear problem similar to a static friction problem. The nonlinearity of the system of equation needs an iterative solution procedure based on Uzawa's algorithm [2][3]. The applicability of the algorithm is illustrated by selected sample numerical solutions to static and dynamic contact problems. Results obtained with the model have been compared and verified with results from an independent numerical method.

  16. Regularization destriping of remote sensing imagery

    NASA Astrophysics Data System (ADS)

    Basnayake, Ranil; Bollt, Erik; Tufillaro, Nicholas; Sun, Jie; Gierach, Michelle

    2017-07-01

    We illustrate the utility of variational destriping for ocean color images from both multispectral and hyperspectral sensors. In particular, we examine data from a filter spectrometer, the Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi National Polar Partnership (NPP) orbiter, and an airborne grating spectrometer, the Jet Population Laboratory's (JPL) hyperspectral Portable Remote Imaging Spectrometer (PRISM) sensor. We solve the destriping problem using a variational regularization method by giving weights spatially to preserve the other features of the image during the destriping process. The target functional penalizes the neighborhood of stripes (strictly, directionally uniform features) while promoting data fidelity, and the functional is minimized by solving the Euler-Lagrange equations with an explicit finite-difference scheme. We show the accuracy of our method from a benchmark data set which represents the sea surface temperature off the coast of Oregon, USA. Technical details, such as how to impose continuity across data gaps using inpainting, are also described.

  17. Analytical Dynamics and Nonrigid Spacecraft Simulation

    NASA Technical Reports Server (NTRS)

    Likins, P. W.

    1974-01-01

    Application to the simulation of idealized spacecraft are considered both for multiple-rigid-body models and for models consisting of combination of rigid bodies and elastic bodies, with the elastic bodies being defined either as continua, as finite-element systems, or as a collection of given modal data. Several specific examples are developed in detail by alternative methods of analytical mechanics, and results are compared to a Newton-Euler formulation. The following methods are developed from d'Alembert's principle in vector form: (1) Lagrange's form of d'Alembert's principle for independent generalized coordinates; (2) Lagrange's form of d'Alembert's principle for simply constrained systems; (3) Kane's quasi-coordinate formulation of D'Alembert's principle; (4) Lagrange's equations for independent generalized coordinates; (5) Lagrange's equations for simply constrained systems; (6) Lagrangian quasi-coordinate equations (or the Boltzmann-Hamel equations); (7) Hamilton's equations for simply constrained systems; and (8) Hamilton's equations for independent generalized coordinates.

  18. A Fluid Structure Algorithm with Lagrange Multipliers to Model Free Swimming

    NASA Astrophysics Data System (ADS)

    Sahin, Mehmet; Dilek, Ezgi

    2017-11-01

    A new monolithic approach is prosed to solve the fluid-structure interaction (FSI) problem with Lagrange multipliers in order to model free swimming/flying. In the present approach, the fluid domain is modeled by the incompressible Navier-Stokes equations and discretized using an Arbitrary Lagrangian-Eulerian (ALE) formulation based on the stable side-centered unstructured finite volume method. The solid domain is modeled by the constitutive laws for the nonlinear Saint Venant-Kirchhoff material and the classical Galerkin finite element method is used to discretize the governing equations in a Lagrangian frame. In order to impose the body motion/deformation, the distance between the constraint pair nodes is imposed using the Lagrange multipliers, which is independent from the frame of reference. The resulting algebraic linear equations are solved in a fully coupled manner using a dual approach (null space method). The present numerical algorithm is initially validated for the classical FSI benchmark problems and then applied to the free swimming of three linked ellipses. The authors are grateful for the use of the computing resources provided by the National Center for High Performance Computing (UYBHM) under Grant Number 10752009 and the computing facilities at TUBITAK-ULAKBIM, High Performance and Grid Computing Center.

  19. A Posteriori Bounds for Linear-Functional Outputs of Crouzeix-Raviart Finite Element Discretizations of the Incompressible Stokes Problem

    NASA Technical Reports Server (NTRS)

    Patera, Anthony T.; Paraschivoiu, Marius

    1998-01-01

    We present a finite element technique for the efficient generation of lower and upper bounds to outputs which are linear functionals of the solutions to the incompressible Stokes equations in two space dimensions; the finite element discretization is effected by Crouzeix-Raviart elements, the discontinuous pressure approximation of which is central to our approach. The bounds are based upon the construction of an augmented Lagrangian: the objective is a quadratic "energy" reformulation of the desired output; the constraints are the finite element equilibrium equations (including the incompressibility constraint), and the intersubdomain continuity conditions on velocity. Appeal to the dual max-min problem for appropriately chosen candidate Lagrange multipliers then yields inexpensive bounds for the output associated with a fine-mesh discretization; the Lagrange multipliers are generated by exploiting an associated coarse-mesh approximation. In addition to the requisite coarse-mesh calculations, the bound technique requires solution only of local subdomain Stokes problems on the fine-mesh. The method is illustrated for the Stokes equations, in which the outputs of interest are the flowrate past, and the lift force on, a body immersed in a channel.

  20. Accuracy of Lagrange-sinc functions as a basis set for electronic structure calculations of atoms and molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Sunghwan; Hong, Kwangwoo; Kim, Jaewook

    2015-03-07

    We developed a self-consistent field program based on Kohn-Sham density functional theory using Lagrange-sinc functions as a basis set and examined its numerical accuracy for atoms and molecules through comparison with the results of Gaussian basis sets. The result of the Kohn-Sham inversion formula from the Lagrange-sinc basis set manifests that the pseudopotential method is essential for cost-effective calculations. The Lagrange-sinc basis set shows faster convergence of the kinetic and correlation energies of benzene as its size increases than the finite difference method does, though both share the same uniform grid. Using a scaling factor smaller than or equal tomore » 0.226 bohr and pseudopotentials with nonlinear core correction, its accuracy for the atomization energies of the G2-1 set is comparable to all-electron complete basis set limits (mean absolute deviation ≤1 kcal/mol). The same basis set also shows small mean absolute deviations in the ionization energies, electron affinities, and static polarizabilities of atoms in the G2-1 set. In particular, the Lagrange-sinc basis set shows high accuracy with rapid convergence in describing density or orbital changes by an external electric field. Moreover, the Lagrange-sinc basis set can readily improve its accuracy toward a complete basis set limit by simply decreasing the scaling factor regardless of systems.« less

  1. Unsteady combustion of solid propellants

    NASA Astrophysics Data System (ADS)

    Chung, T. J.; Kim, P. K.

    The oscillatory motions of all field variables (pressure, temperature, velocity, density, and fuel fractions) in the flame zone of solid propellant rocket motors are calculated using the finite element method. The Arrhenius law with a single step forward chemical reaction is used. Effects of radiative heat transfer, impressed arbitrary acoustic wave incidence, and idealized mean flow velocities are also investigated. Boundary conditions are derived at the solid-gas interfaces and at the flame edges which are implemented via Lagrange multipliers. Perturbation expansions of all governing conservation equations up to and including the second order are carried out so that nonlinear oscillations may be accommodated. All excited frequencies are calculated by means of eigenvalue analyses, and the combustion response functions corresponding to these frequencies are determined. It is shown that the use of isoparametric finite elements, Gaussian quadrature integration, and the Lagrange multiplier boundary matrix scheme offers a convenient approach to two-dimensional calculations.

  2. Explicitly computing geodetic coordinates from Cartesian coordinates

    NASA Astrophysics Data System (ADS)

    Zeng, Huaien

    2013-04-01

    This paper presents a new form of quartic equation based on Lagrange's extremum law and a Groebner basis under the constraint that the geodetic height is the shortest distance between a given point and the reference ellipsoid. A very explicit and concise formulae of the quartic equation by Ferrari's line is found, which avoids the need of a good starting guess for iterative methods. A new explicit algorithm is then proposed to compute geodetic coordinates from Cartesian coordinates. The convergence region of the algorithm is investigated and the corresponding correct solution is given. Lastly, the algorithm is validated with numerical experiments.

  3. Duality in non-linear programming

    NASA Astrophysics Data System (ADS)

    Jeyalakshmi, K.

    2018-04-01

    In this paper we consider duality and converse duality for a programming problem involving convex objective and constraint functions with finite dimensional range. We do not assume any constraint qualification. The dual is presented by reducing the problem to a standard Lagrange multiplier problem.

  4. Finite element approximation of an optimal control problem for the von Karman equations

    NASA Technical Reports Server (NTRS)

    Hou, L. Steven; Turner, James C.

    1994-01-01

    This paper is concerned with optimal control problems for the von Karman equations with distributed controls. We first show that optimal solutions exist. We then show that Lagrange multipliers may be used to enforce the constraints and derive an optimality system from which optimal states and controls may be deduced. Finally we define finite element approximations of solutions for the optimality system and derive error estimates for the approximations.

  5. A gauged finite-element potential formulation for accurate inductive and galvanic modelling of 3-D electromagnetic problems

    NASA Astrophysics Data System (ADS)

    Ansari, S. M.; Farquharson, C. G.; MacLachlan, S. P.

    2017-07-01

    In this paper, a new finite-element solution to the potential formulation of the geophysical electromagnetic (EM) problem that explicitly implements the Coulomb gauge, and that accurately computes the potentials and hence inductive and galvanic components, is proposed. The modelling scheme is based on using unstructured tetrahedral meshes for domain subdivision, which enables both realistic Earth models of complex geometries to be considered and efficient spatially variable refinement of the mesh to be done. For the finite-element discretization edge and nodal elements are used for approximating the vector and scalar potentials respectively. The issue of non-unique, incorrect potentials from the numerical solution of the usual incomplete-gauged potential system is demonstrated for a benchmark model from the literature that uses an electric-type EM source, through investigating the interface continuity conditions for both the normal and tangential components of the potential vectors, and by showing inconsistent results obtained from iterative and direct linear equation solvers. By explicitly introducing the Coulomb gauge condition as an extra equation, and by augmenting the Helmholtz equation with the gradient of a Lagrange multiplier, an explicitly gauged system for the potential formulation is formed. The solution to the discretized form of this system is validated for the above-mentioned example and for another classic example that uses a magnetic EM source. In order to stabilize the iterative solution of the gauged system, a block diagonal pre-conditioning scheme that is based upon the Schur complement of the potential system is used. For all examples, both the iterative and direct solvers produce the same responses for the potentials, demonstrating the uniqueness of the numerical solution for the potentials and fixing the problems with the interface conditions between cells observed for the incomplete-gauged system. These solutions of the gauged system also produce the physically anticipated behaviours for the inductive and galvanic components of the electric field. For a realistic geophysical scenario, the gauged scheme is also used to synthesize the magnetic field response of a model of the Ovoid ore deposit at Voisey's Bay, Labrador, Canada. The results are in good agreement with the helicopter-borne EM data from the real survey, and the inductive and galvanic parts of the current density show expected behaviours.

  6. An Exposition on the Nonlinear Kinematics of Shells, Including Transverse Shearing Deformations

    NASA Technical Reports Server (NTRS)

    Nemeth, Michael P.

    2013-01-01

    An in-depth exposition on the nonlinear deformations of shells with "small" initial geometric imperfections, is presented without the use of tensors. First, the mathematical descriptions of an undeformed-shell reference surface, and its deformed image, are given in general nonorthogonal coordinates. The two-dimensional Green-Lagrange strains of the reference surface derived and simplified for the case of "small" strains. Linearized reference-surface strains, rotations, curvatures, and torsions are then derived and used to obtain the "small" Green-Lagrange strains in terms of linear deformation measures. Next, the geometry of the deformed shell is described mathematically and the "small" three-dimensional Green-Lagrange strains are given. The deformations of the shell and its reference surface are related by introducing a kinematic hypothesis that includes transverse shearing deformations and contains the classical Love-Kirchhoff kinematic hypothesis as a proper, explicit subset. Lastly, summaries of the essential equations are given for general nonorthogonal and orthogonal coordinates, and the basis for further simplification of the equations is discussed.

  7. Efficient Development of High Fidelity Structured Volume Grids for Hypersonic Flow Simulations

    NASA Technical Reports Server (NTRS)

    Alter, Stephen J.

    2003-01-01

    A new technique for the control of grid line spacing and intersection angles of a structured volume grid, using elliptic partial differential equations (PDEs) is presented. Existing structured grid generation algorithms make use of source term hybridization to provide control of grid lines, imposing orthogonality implicitly at the boundary and explicitly on the interior of the domain. A bridging function between the two types of grid line control is typically used to blend the different orthogonality formulations. It is shown that utilizing such a bridging function with source term hybridization can result in the excessive use of computational resources and diminishes robustness. A new approach, Anisotropic Lagrange Based Trans-Finite Interpolation (ALBTFI), is offered as a replacement to source term hybridization. The ALBTFI technique captures the essence of the desired grid controls while improving the convergence rate of the elliptic PDEs when compared with source term hybridization. Grid generation on a blunt cone and a Shuttle Orbiter is used to demonstrate and assess the ALBTFI technique, which is shown to be as much as 50% faster, more robust, and produces higher quality grids than source term hybridization.

  8. Motions about a fixed point by hypergeometric functions: new non-complex analytical solutions and integration of the herpolhode

    NASA Astrophysics Data System (ADS)

    Mingari Scarpello, Giovanni; Ritelli, Daniele

    2018-06-01

    The present study highlights the dynamics of a body moving about a fixed point and provides analytical closed form solutions. Firstly, for the symmetrical heavy body, that is the Lagrange-Poisson case, we compute the second (precession, ψ ) and third (spin, φ) Euler angles in explicit and real form by means of multiple hypergeometric (Lauricella) functions. Secondly, releasing the weight assumption but adding the complication of the asymmetry, by means of elliptic integrals of third kind, we provide the precession angle ψ completing the treatment of the Euler-Poinsot case. Thirdly, by integrating the relevant differential equation, we reach the finite polar equation of a special motion trajectory named the herpolhode. Finally, we keep the symmetry of the first problem, but without weight, and take into account a viscous dissipation. The use of motion first integrals—adopted for the first two problems—is no longer practicable in this situation; therefore, the Euler equations, faced directly, are driving to particular occurrences of Bessel functions of order - 1/2.

  9. Examination of ductile spall failure through direct numerical simulation

    NASA Astrophysics Data System (ADS)

    Becker, Richard

    2017-06-01

    Direct numerical simulation is used to examine the growth and coalescence of a random population of voids leading to spall failure. Void nucleating particles are explicitly represented in the initial geometry, and the arbitrary Lagrange-Eulerian finite element code tracks the void evolution to create the spall surface. The flow fields capture strain localization associated with void interaction at low porosities and ligament necking at final coalescence. Simulations are run to assess the influence of material strain hardening and strain rate sensitivity on void growth and coalescence. These analyses also provide the evolution of longitudinal stress and the energy dissipated, and they reveal a length scale associated with the spall. Additional calculations are performed to examine the influence of loading pulse shape on spall behavior for triangular shaped pressure loading. A dependence of spall scab thickness on pulse shape is determined. These results show localization delayed until porosities reach a few percent and they demonstrate a consistent stress versus porosity relation. The simulations also provide a direct correlation between the spall stress history and the free surface velocity, which can aid in understanding stress corrections applied to experimental data.

  10. Proceedings of the Scientific Conference on Obscuration and Aerosol Research Held in Aberdeen Maryland on 27-30 June 1989

    DTIC Science & Technology

    1990-08-01

    corneal structure for both normal and swollen corneas. Other problems of future interest are the understanding of the structure of scarred and dystrophied ...METHOD AND RESULTS The system of equations is solved numerically on a Cray X-MP by a finite element method with 9-node Lagrange quadrilaterals ( Becker ...Appl. Math., 42, 430. Becker , E. B., G. F. Carey, and J. T. Oden, 1981. Finite Elements: An Introduction (Vol. 1), Prentice- Hall, Englewood Cliffs, New

  11. Plasmonic Roche lobe in metal-dielectric-metal structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shiu, Ruei-Cheng; Lan, Yung-Chiang

    2013-07-15

    This study investigates a plasmonic Roche lobe that is based on a metal-dielectric-metal (MDM) structure using finite-difference time-domain simulations and theoretical analyses. The effective refractive index of the MDM structure has two centers and is inversely proportional to the distance from the position of interest to the centers, in a manner that is analogous to the gravitational potential in a two-star system. The motion of surface plasmons (SPs) strongly depends on the ratio of permittivities at the two centers. The Lagrange point is an unstable equilibrium point for SPs that propagate in the system. After the SPs have passed throughmore » the Lagrange point, their spread drastically increases.« less

  12. An efficient, explicit finite-rate algorithm to compute flows in chemical nonequilibrium

    NASA Technical Reports Server (NTRS)

    Palmer, Grant

    1989-01-01

    An explicit finite-rate code was developed to compute hypersonic viscous chemically reacting flows about three-dimensional bodies. Equations describing the finite-rate chemical reactions were fully coupled to the gas dynamic equations using a new coupling technique. The new technique maintains stability in the explicit finite-rate formulation while permitting relatively large global time steps.

  13. The Numerical Simulation of the Shock Wave of Coal Gas Explosions in Gas Pipe*

    NASA Astrophysics Data System (ADS)

    Chen, Zhenxing; Hou, Kepeng; Chen, Longwei

    2018-03-01

    For the problem of large deformation and vortex, the method of Euler and Lagrange has both advantage and disadvantage. In this paper we adopt special fuzzy interface method(volume of fluid). Gas satisfies the conditions of conservation equations of mass, momentum, and energy. Based on explosion and three-dimension fluid dynamics theory, using unsteady, compressible, inviscid hydrodynamic equations and state equations, this paper considers pressure gradient’s effects to velocity, mass and energy in Lagrange steps by the finite difference method. To minimize transport errors of material, energy and volume in Finite Difference mesh, it also considers material transport in Euler steps. Programmed with Fortran PowerStation 4.0 and visualized with the software designed independently, we design the numerical simulation of gas explosion with specific pipeline structure, check the key points of the pressure change in the flow field, reproduce the gas explosion in pipeline of shock wave propagation, from the initial development, flame and accelerate the process of shock wave. This offers beneficial reference and experience to coal gas explosion accidents or safety precautions.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brizard, Alain J.; Tronci, Cesare

    The variational formulations of guiding-center Vlasov-Maxwell theory based on Lagrange, Euler, and Euler-Poincaré variational principles are presented. Each variational principle yields a different approach to deriving guiding-center polarization and magnetization effects into the guiding-center Maxwell equations. The conservation laws of energy, momentum, and angular momentum are also derived by Noether method, where the guiding-center stress tensor is now shown to be explicitly symmetric.

  15. Compressible cavitation with stochastic field method

    NASA Astrophysics Data System (ADS)

    Class, Andreas; Dumond, Julien

    2012-11-01

    Non-linear phenomena can often be well described using probability density functions (pdf) and pdf transport models. Traditionally the simulation of pdf transport requires Monte-Carlo codes based on Lagrange particles or prescribed pdf assumptions including binning techniques. Recently, in the field of combustion, a novel formulation called the stochastic field method solving pdf transport based on Euler fields has been proposed which eliminates the necessity to mix Euler and Lagrange techniques or prescribed pdf assumptions. In the present work, part of the PhD Design and analysis of a Passive Outflow Reducer relying on cavitation, a first application of the stochastic field method to multi-phase flow and in particular to cavitating flow is presented. The application considered is a nozzle subjected to high velocity flow so that sheet cavitation is observed near the nozzle surface in the divergent section. It is demonstrated that the stochastic field formulation captures the wide range of pdf shapes present at different locations. The method is compatible with finite-volume codes where all existing physical models available for Lagrange techniques, presumed pdf or binning methods can be easily extended to the stochastic field formulation.

  16. Effect of Finite Particle Size on Convergence of Point Particle Models in Euler-Lagrange Multiphase Dispersed Flow

    NASA Astrophysics Data System (ADS)

    Nili, Samaun; Park, Chanyoung; Haftka, Raphael T.; Kim, Nam H.; Balachandar, S.

    2017-11-01

    Point particle methods are extensively used in simulating Euler-Lagrange multiphase dispersed flow. When particles are much smaller than the Eulerian grid the point particle model is on firm theoretical ground. However, this standard approach of evaluating the gas-particle coupling at the particle center fails to converge as the Eulerian grid is reduced below particle size. We present an approach to model the interaction between particles and fluid for finite size particles that permits convergence. We use the generalized Faxen form to compute the force on a particle and compare the results against traditional point particle method. We apportion the different force components on the particle to fluid cells based on the fraction of particle volume or surface in the cell. The application is to a one-dimensional model of shock propagation through a particle-laden field at moderate volume fraction, where the convergence is achieved for a well-formulated force model and back coupling for finite size particles. Comparison with 3D direct fully resolved numerical simulations will be used to check if the approach also improves accuracy compared to the point particle model. Work supported by the U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science Academic Alliance Program, under Contract No. DE-NA0002378.

  17. Variational finite-difference methods in linear and nonlinear problems of the deformation of metallic and composite shells (review)

    NASA Astrophysics Data System (ADS)

    Maksimyuk, V. A.; Storozhuk, E. A.; Chernyshenko, I. S.

    2012-11-01

    Variational finite-difference methods of solving linear and nonlinear problems for thin and nonthin shells (plates) made of homogeneous isotropic (metallic) and orthotropic (composite) materials are analyzed and their classification principles and structure are discussed. Scalar and vector variational finite-difference methods that implement the Kirchhoff-Love hypotheses analytically or algorithmically using Lagrange multipliers are outlined. The Timoshenko hypotheses are implemented in a traditional way, i.e., analytically. The stress-strain state of metallic and composite shells of complex geometry is analyzed numerically. The numerical results are presented in the form of graphs and tables and used to assess the efficiency of using the variational finite-difference methods to solve linear and nonlinear problems of the statics of shells (plates)

  18. Efficient Numerical Methods for Nonlinear-Facilitated Transport and Exchange in a Blood-Tissue Exchange Unit

    PubMed Central

    Poulain, Christophe A.; Finlayson, Bruce A.; Bassingthwaighte, James B.

    2010-01-01

    The analysis of experimental data obtained by the multiple-indicator method requires complex mathematical models for which capillary blood-tissue exchange (BTEX) units are the building blocks. This study presents a new, nonlinear, two-region, axially distributed, single capillary, BTEX model. A facilitated transporter model is used to describe mass transfer between plasma and intracellular spaces. To provide fast and accurate solutions, numerical techniques suited to nonlinear convection-dominated problems are implemented. These techniques are the random choice method, an explicit Euler-Lagrange scheme, and the MacCormack method with and without flux correction. The accuracy of the numerical techniques is demonstrated, and their efficiencies are compared. The random choice, Euler-Lagrange and plain MacCormack method are the best numerical techniques for BTEX modeling. However, the random choice and Euler-Lagrange methods are preferred over the MacCormack method because they allow for the derivation of a heuristic criterion that makes the numerical methods stable without degrading their efficiency. Numerical solutions are also used to illustrate some nonlinear behaviors of the model and to show how the new BTEX model can be used to estimate parameters from experimental data. PMID:9146808

  19. Robust adaptive uniform exact tracking control for uncertain Euler-Lagrange system

    NASA Astrophysics Data System (ADS)

    Yang, Yana; Hua, Changchun; Li, Junpeng; Guan, Xinping

    2017-12-01

    This paper offers a solution to the robust adaptive uniform exact tracking control for uncertain nonlinear Euler-Lagrange (EL) system. An adaptive finite-time tracking control algorithm is designed by proposing a novel nonsingular integral terminal sliding-mode surface. Moreover, a new adaptive parameter tuning law is also developed by making good use of the system tracking errors and the adaptive parameter estimation errors. Thus, both the trajectory tracking and the parameter estimation can be achieved in a guaranteed time adjusted arbitrarily based on practical demands, simultaneously. Additionally, the control result for the EL system proposed in this paper can be extended to high-order nonlinear systems easily. Finally, a test-bed 2-DOF robot arm is set-up to demonstrate the performance of the new control algorithm.

  20. Frequency-domain beamformers using conjugate gradient techniques for speech enhancement.

    PubMed

    Zhao, Shengkui; Jones, Douglas L; Khoo, Suiyang; Man, Zhihong

    2014-09-01

    A multiple-iteration constrained conjugate gradient (MICCG) algorithm and a single-iteration constrained conjugate gradient (SICCG) algorithm are proposed to realize the widely used frequency-domain minimum-variance-distortionless-response (MVDR) beamformers and the resulting algorithms are applied to speech enhancement. The algorithms are derived based on the Lagrange method and the conjugate gradient techniques. The implementations of the algorithms avoid any form of explicit or implicit autocorrelation matrix inversion. Theoretical analysis establishes formal convergence of the algorithms. Specifically, the MICCG algorithm is developed based on a block adaptation approach and it generates a finite sequence of estimates that converge to the MVDR solution. For limited data records, the estimates of the MICCG algorithm are better than the conventional estimators and equivalent to the auxiliary vector algorithms. The SICCG algorithm is developed based on a continuous adaptation approach with a sample-by-sample updating procedure and the estimates asymptotically converge to the MVDR solution. An illustrative example using synthetic data from a uniform linear array is studied and an evaluation on real data recorded by an acoustic vector sensor array is demonstrated. Performance of the MICCG algorithm and the SICCG algorithm are compared with the state-of-the-art approaches.

  1. Open Group Transformations Within the Sp(2)-Formalism

    NASA Astrophysics Data System (ADS)

    Batalin, Igor; Marnelius, Robert

    Previously we have shown that open groups whose generators are in arbitrary involutions may be quantized within a ghost extended framework in terms of the nilpotent BFV-BRST charge operator. Here we show that they may also be quantized within an Sp(2)-frame in which there are two odd anticommuting operators called Sp(2)-charges. Previous results for finite open group transformations are generalized to the Sp(2)-formalism. We show that in order to define open group transformations on the whole ghost extended space we need Sp(2)-charges in the nonminimal sector which contains dynamical Lagrange multipliers. We give an Sp(2)-version of the quantum master equation with extended Sp(2)-charges and a master charge of a more involved form, which is proposed to represent the integrability conditions of defining operators of connection operators and which therefore should encode the generalized quantum Maurer-Cartan equations for arbitrary open groups. General solutions of this master equation are given in explicit form. A further extended Sp(2)-formalism is proposed in which the group parameters are quadrupled to a supersymmetric set and from which all results may be derived.

  2. Implicit Geometry Meshing for the simulation of Rotary Friction Welding

    NASA Astrophysics Data System (ADS)

    Schmicker, D.; Persson, P.-O.; Strackeljan, J.

    2014-08-01

    The simulation of Rotary Friction Welding (RFW) is a challenging task, since it states a coupled problem of phenomena like large plastic deformations, heat flux, contact and friction. In particular the mesh generation and its restoration when using a Lagrangian description of motion is of significant severity. In this regard Implicit Geometry Meshing (IGM) algorithms are promising alternatives to the more conventional explicit methods. Because of the implicit description of the geometry during remeshing, the IGM procedure turns out to be highly robust and generates spatial discretizations of high quality regardless of the complexity of the flash shape and its inclusions. A model for efficient RFW simulation is presented, which is based on a Carreau fluid law, an Augmented Lagrange approach in mapping the incompressible deformations, a penalty contact approach, a fully regularized Coulomb-/fluid friction law and a hybrid time integration strategy. The implementation of the IGM algorithm using 6-node triangular finite elements is described in detail. The techniques are demonstrated on a fairly complex friction welding problem, demonstrating the performance and the potentials of the proposed method. The techniques are general and straight-forward to implement, and offer the potential of successful adoption to a wide range of other engineering problems.

  3. Analysis and computation of a least-squares method for consistent mesh tying

    DOE PAGES

    Day, David; Bochev, Pavel

    2007-07-10

    We report in the finite element method, a standard approach to mesh tying is to apply Lagrange multipliers. If the interface is curved, however, discretization generally leads to adjoining surfaces that do not coincide spatially. Straightforward Lagrange multiplier methods lead to discrete formulations failing a first-order patch test [T.A. Laursen, M.W. Heinstein, Consistent mesh-tying methods for topologically distinct discretized surfaces in non-linear solid mechanics, Internat. J. Numer. Methods Eng. 57 (2003) 1197–1242]. This paper presents a theoretical and computational study of a least-squares method for mesh tying [P. Bochev, D.M. Day, A least-squares method for consistent mesh tying, Internat. J.more » Numer. Anal. Modeling 4 (2007) 342–352], applied to the partial differential equation -∇ 2φ+αφ=f. We prove optimal convergence rates for domains represented as overlapping subdomains and show that the least-squares method passes a patch test of the order of the finite element space by construction. To apply the method to subdomain configurations with gaps and overlaps we use interface perturbations to eliminate the gaps. Finally, theoretical error estimates are illustrated by numerical experiments.« less

  4. Finite element model for brittle fracture and fragmentation

    DOE PAGES

    Li, Wei; Delaney, Tristan J.; Jiao, Xiangmin; ...

    2016-06-01

    A new computational model for brittle fracture and fragmentation has been developed based on finite element analysis of non-linear elasticity equations. The proposed model propagates the cracks by splitting the mesh nodes alongside the most over-strained edges based on the principal direction of strain tensor. To prevent elements from overlapping and folding under large deformations, robust geometrical constraints using the method of Lagrange multipliers have been incorporated. In conclusion, the model has been applied to 2D simulations of the formation and propagation of cracks in brittle materials, and the fracture and fragmentation of stretched and compressed materials.

  5. Finite element model for brittle fracture and fragmentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Wei; Delaney, Tristan J.; Jiao, Xiangmin

    A new computational model for brittle fracture and fragmentation has been developed based on finite element analysis of non-linear elasticity equations. The proposed model propagates the cracks by splitting the mesh nodes alongside the most over-strained edges based on the principal direction of strain tensor. To prevent elements from overlapping and folding under large deformations, robust geometrical constraints using the method of Lagrange multipliers have been incorporated. In conclusion, the model has been applied to 2D simulations of the formation and propagation of cracks in brittle materials, and the fracture and fragmentation of stretched and compressed materials.

  6. Mixed formulation for frictionless contact problems

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.; Kim, Kyun O.

    1989-01-01

    Simple mixed finite element models and a computational precedure are presented for the solution of frictionless contact problems. The analytical formulation is based on a form of Reissner's large rotation theory of the structure with the effects of transverse shear deformation included. The contact conditions are incorporated into the formulation by using a perturbed Lagrangian approach with the fundamental unknowns consisting of the internal forces (stress resultants), the generalized displacements, and the Lagrange multipliers associated with the contact conditions. The element characteristic array are obtained by using a modified form of the two-field Hellinger-Reissner mixed variational principle. The internal forces and the Lagrange multipliers are allowed to be discontinuous at interelement boundaries. The Newton-Raphson iterative scheme is used for the solution of the nonlinear algebraic equations, and the determination of the contact area and the contact pressures.

  7. On the Hamilton approach of the dissipative systems

    NASA Astrophysics Data System (ADS)

    Zimin, B. A.; Zorin, I. S.; Sventitskaya, V. E.

    2018-05-01

    In this paper we consider the problem of constructing equations describing the states of dissipative dynamical systems (media with absorption or damping). The approaches of Lagrange and Hamilton are discussed. A non-symplectic extension of the Poisson brackets is formulated. The application of the Hamiltonian formalism here makes it possible to obtain explicit equations for the dynamics of a nonlinear elastic system with damping and a one-dimensional continuous medium with internal friction.

  8. A survey of parametrized variational principles and applications to computational mechanics

    NASA Technical Reports Server (NTRS)

    Felippa, Carlos A.

    1993-01-01

    This survey paper describes recent developments in the area of parametrized variational principles (PVP's) and selected applications to finite-element computational mechanics. A PVP is a variational principle containing free parameters that have no effect on the Euler-Lagrange equations. The theory of single-field PVP's based on gauge functions (also known as null Lagrangians) is a subset of the inverse problem of variational calculus that has limited value. On the other hand, multifield PVP's are more interesting from theoretical and practical standpoints. Following a tutorial introduction, the paper describes the recent construction of multifield PVP's in several areas of elasticity and electromagnetics. It then discusses three applications to finite-element computational mechanics: the derivation of high-performance finite elements, the development of element-level error indicators, and the constructions of finite element templates. The paper concludes with an overview of open research areas.

  9. A Kernel-Free Particle-Finite Element Method for Hypervelocity Impact Simulation. Chapter 4

    NASA Technical Reports Server (NTRS)

    Park, Young-Keun; Fahrenthold, Eric P.

    2004-01-01

    An improved hybrid particle-finite element method has been developed for the simulation of hypervelocity impact problems. Unlike alternative methods, the revised formulation computes the density without reference to any kernel or interpolation functions, for either the density or the rate of dilatation. This simplifies the state space model and leads to a significant reduction in computational cost. The improved method introduces internal energy variables as generalized coordinates in a new formulation of the thermomechanical Lagrange equations. Example problems show good agreement with exact solutions in one dimension and good agreement with experimental data in a three dimensional simulation.

  10. Application of shifted Jacobi pseudospectral method for solving (in)finite-horizon min-max optimal control problems with uncertainty

    NASA Astrophysics Data System (ADS)

    Nikooeinejad, Z.; Delavarkhalafi, A.; Heydari, M.

    2018-03-01

    The difficulty of solving the min-max optimal control problems (M-MOCPs) with uncertainty using generalised Euler-Lagrange equations is caused by the combination of split boundary conditions, nonlinear differential equations and the manner in which the final time is treated. In this investigation, the shifted Jacobi pseudospectral method (SJPM) as a numerical technique for solving two-point boundary value problems (TPBVPs) in M-MOCPs for several boundary states is proposed. At first, a novel framework of approximate solutions which satisfied the split boundary conditions automatically for various boundary states is presented. Then, by applying the generalised Euler-Lagrange equations and expanding the required approximate solutions as elements of shifted Jacobi polynomials, finding a solution of TPBVPs in nonlinear M-MOCPs with uncertainty is reduced to the solution of a system of algebraic equations. Moreover, the Jacobi polynomials are particularly useful for boundary value problems in unbounded domain, which allow us to solve infinite- as well as finite and free final time problems by domain truncation method. Some numerical examples are given to demonstrate the accuracy and efficiency of the proposed method. A comparative study between the proposed method and other existing methods shows that the SJPM is simple and accurate.

  11. Implicit-Explicit Formulations of a Three-Dimensional Nonhydrostatic Unified Model of the Atmosphere (NUMA)

    DTIC Science & Technology

    2013-01-01

    Gravity Wave. A slice of the potential temperature perturbation (at y=50 km) after 700 s for 30× 30× 5 elements with 4th-order polynomials . The contour...CONSTANTINESCU ‡ Key words. cloud-resolving model; compressible flow; element-based Galerkin methods; Euler; global model; IMEX; Lagrange; Legendre ...methods in terms of accuracy and efficiency for two types of geophysical fluid dynamics problems: buoyant convection and inertia- gravity waves. These

  12. Finite elements based on consistently assumed stresses and displacements

    NASA Technical Reports Server (NTRS)

    Pian, T. H. H.

    1985-01-01

    Finite element stiffness matrices are derived using an extended Hellinger-Reissner principle in which internal displacements are added to serve as Lagrange multipliers to introduce the equilibrium constraint in each element. In a consistent formulation the assumed stresses are initially unconstrained and complete polynomials and the total displacements are also complete such that the corresponding strains are complete in the same order as the stresses. Several examples indicate that resulting properties for elements constructed by this consistent formulation are ideal and are less sensitive to distortions of element geometries. The method has been used to find the optimal stress terms for plane elements, 3-D solids, axisymmetric solids, and plate bending elements.

  13. Regularity of Solutions of the Nonlinear Sigma Model with Gravitino

    NASA Astrophysics Data System (ADS)

    Jost, Jürgen; Keßler, Enno; Tolksdorf, Jürgen; Wu, Ruijun; Zhu, Miaomiao

    2018-02-01

    We propose a geometric setup to study analytic aspects of a variant of the super symmetric two-dimensional nonlinear sigma model. This functional extends the functional of Dirac-harmonic maps by gravitino fields. The system of Euler-Lagrange equations of the two-dimensional nonlinear sigma model with gravitino is calculated explicitly. The gravitino terms pose additional analytic difficulties to show smoothness of its weak solutions which are overcome using Rivière's regularity theory and Riesz potential theory.

  14. Variational estimate method for solving autonomous ordinary differential equations

    NASA Astrophysics Data System (ADS)

    Mungkasi, Sudi

    2018-04-01

    In this paper, we propose a method for solving first-order autonomous ordinary differential equation problems using a variational estimate formulation. The variational estimate is constructed with a Lagrange multiplier which is chosen optimally, so that the formulation leads to an accurate solution to the problem. The variational estimate is an integral form, which can be computed using a computer software. As the variational estimate is an explicit formula, the solution is easy to compute. This is a great advantage of the variational estimate formulation.

  15. Analytical Energy Gradients for Excited-State Coupled-Cluster Methods

    NASA Astrophysics Data System (ADS)

    Wladyslawski, Mark; Nooijen, Marcel

    The equation-of-motion coupled-cluster (EOM-CC) and similarity transformed equation-of-motion coupled-cluster (STEOM-CC) methods have been firmly established as accurate and routinely applicable extensions of single-reference coupled-cluster theory to describe electronically excited states. An overview of these methods is provided, with emphasis on the many-body similarity transform concept that is the key to a rationalization of their accuracy. The main topic of the paper is the derivation of analytical energy gradients for such non-variational electronic structure approaches, with an ultimate focus on obtaining their detailed algebraic working equations. A general theoretical framework using Lagrange's method of undetermined multipliers is presented, and the method is applied to formulate the EOM-CC and STEOM-CC gradients in abstract operator terms, following the previous work in [P.G. Szalay, Int. J. Quantum Chem. 55 (1995) 151] and [S.R. Gwaltney, R.J. Bartlett, M. Nooijen, J. Chem. Phys. 111 (1999) 58]. Moreover, the systematics of the Lagrange multiplier approach is suitable for automation by computer, enabling the derivation of the detailed derivative equations through a standardized and direct procedure. To this end, we have developed the SMART (Symbolic Manipulation and Regrouping of Tensors) package of automated symbolic algebra routines, written in the Mathematica programming language. The SMART toolkit provides the means to expand, differentiate, and simplify equations by manipulation of the detailed algebraic tensor expressions directly. The Lagrangian multiplier formulation establishes a uniform strategy to perform the automated derivation in a standardized manner: A Lagrange multiplier functional is constructed from the explicit algebraic equations that define the energy in the electronic method; the energy functional is then made fully variational with respect to all of its parameters, and the symbolic differentiations directly yield the explicit equations for the wavefunction amplitudes, the Lagrange multipliers, and the analytical gradient via the perturbation-independent generalized Hellmann-Feynman effective density matrix. This systematic automated derivation procedure is applied to obtain the detailed gradient equations for the excitation energy (EE-), double ionization potential (DIP-), and double electron affinity (DEA-) similarity transformed equation-of-motion coupled-cluster singles-and-doubles (STEOM-CCSD) methods. In addition, the derivatives of the closed-shell-reference excitation energy (EE-), ionization potential (IP-), and electron affinity (EA-) equation-of-motion coupled-cluster singles-and-doubles (EOM-CCSD) methods are derived. Furthermore, the perturbative EOM-PT and STEOM-PT gradients are obtained. The algebraic derivative expressions for these dozen methods are all derived here uniformly through the automated Lagrange multiplier process and are expressed compactly in a chain-rule/intermediate-density formulation, which facilitates a unified modular implementation of analytic energy gradients for CCSD/PT-based electronic methods. The working equations for these analytical gradients are presented in full detail, and their factorization and implementation into an efficient computer code are discussed.

  16. Minimal measures for Euler-Lagrange flows on finite covering spaces

    NASA Astrophysics Data System (ADS)

    Wang, Fang; Xia, Zhihong

    2016-12-01

    In this paper we study the minimal measures for positive definite Lagrangian systems on compact manifolds. We are particularly interested in manifolds with more complicated fundamental groups. Mather’s theory classifies the minimal or action-minimizing measures according to the first (co-)homology group of a given manifold. We extend Mather’s notion of minimal measures to a larger class for compact manifolds with non-commutative fundamental groups, and use finite coverings to study the structure of these extended minimal measures. We also define action-minimizers and minimal measures in the homotopical sense. Our program is to study the structure of homotopical minimal measures by considering Mather’s minimal measures on finite covering spaces. Our goal is to show that, in general, manifolds with a non-commutative fundamental group have a richer set of minimal measures, hence a richer dynamical structure. As an example, we study the geodesic flow on surfaces of higher genus. Indeed, by going to the finite covering spaces, the set of minimal measures is much larger and more interesting.

  17. Algorithm for quantum-mechanical finite-nuclear-mass variational calculations of atoms with two p electrons using all-electron explicitly correlated Gaussian basis functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharkey, Keeper L.; Pavanello, Michele; Bubin, Sergiy

    2009-12-15

    A new algorithm for calculating the Hamiltonian matrix elements with all-electron explicitly correlated Gaussian functions for quantum-mechanical calculations of atoms with two p electrons or a single d electron have been derived and implemented. The Hamiltonian used in the approach was obtained by rigorously separating the center-of-mass motion and it explicitly depends on the finite mass of the nucleus. The approach was employed to perform test calculations on the isotopes of the carbon atom in their ground electronic states and to determine the finite-nuclear-mass corrections for these states.

  18. Fiber-reinforced materials: finite elements for the treatment of the inextensibility constraint

    NASA Astrophysics Data System (ADS)

    Auricchio, Ferdinando; Scalet, Giulia; Wriggers, Peter

    2017-12-01

    The present paper proposes a numerical framework for the analysis of problems involving fiber-reinforced anisotropic materials. Specifically, isotropic linear elastic solids, reinforced by a single family of inextensible fibers, are considered. The kinematic constraint equation of inextensibility in the fiber direction leads to the presence of an undetermined fiber stress in the constitutive equations. To avoid locking-phenomena in the numerical solution due to the presence of the constraint, mixed finite elements based on the Lagrange multiplier, perturbed Lagrangian, and penalty method are proposed. Several boundary-value problems under plane strain conditions are solved and numerical results are compared to analytical solutions, whenever the derivation is possible. The performed simulations allow to assess the performance of the proposed finite elements and to discuss several features of the developed formulations concerning the effective approximation for the displacement and fiber stress fields, mesh convergence, and sensitivity to penalty parameters.

  19. A Novel Arterial Constitutive Model in a Commercial Finite Element Package: Application to Balloon Angioplasty

    PubMed Central

    Zhao, Xuefeng; Liu, Yi; Zhang, Wei; Wang, Cong; Kassab, Ghassan S.

    2011-01-01

    Recently, a novel linearized constitutive model with a new strain measure that absorbs the material nonlinearity was validated for arteries. In this study, the linearized arterial stress-strain relationship is implemented into a finite element method package ANSYS, via the user subroutine USERMAT. The reference configuration is chosen to be the closed cylindrical tube (no-load state) rather than the open sector (zero-stress state). The residual strain is taken into account by analytic calculation and the incompressibility condition is enforced with Lagrange penalty method. Axisymmetric finite element analyses are conducted to demonstrate potential applications of this approach in a complex boundary value problem where angioplasty balloon interacts with the vessel wall. The model predictions of transmural circumferential and compressive radial stress distributions were also validated against an exponential-type Fung model, and the mean error was found to be within 6%. PMID:21689665

  20. Solution of the Average-Passage Equations for the Incompressible Flow through Multiple-Blade-Row Turbomachinery

    DTIC Science & Technology

    1994-02-01

    numerical treatment. An explicit numerical procedure based on Runqe-Kutta time stepping for cell-centered, hexahedral finite volumes is...An explicit numerical procedure based on Runge-Kutta time stepping for cell-centered, hexahedral finite volumes is outlined for the approximate...Discretization 16 3.1 Cell-Centered Finite -Volume Discretization in Space 16 3.2 Artificial Dissipation 17 3.3 Time Integration 21 3.4 Convergence

  1. Functional Data Approximation on Bounded Domains using Polygonal Finite Elements.

    PubMed

    Cao, Juan; Xiao, Yanyang; Chen, Zhonggui; Wang, Wenping; Bajaj, Chandrajit

    2018-07-01

    We construct and analyze piecewise approximations of functional data on arbitrary 2D bounded domains using generalized barycentric finite elements, and particularly quadratic serendipity elements for planar polygons. We compare approximation qualities (precision/convergence) of these partition-of-unity finite elements through numerical experiments, using Wachspress coordinates, natural neighbor coordinates, Poisson coordinates, mean value coordinates, and quadratic serendipity bases over polygonal meshes on the domain. For a convex n -sided polygon, the quadratic serendipity elements have 2 n basis functions, associated in a Lagrange-like fashion to each vertex and each edge midpoint, rather than the usual n ( n + 1)/2 basis functions to achieve quadratic convergence. Two greedy algorithms are proposed to generate Voronoi meshes for adaptive functional/scattered data approximations. Experimental results show space/accuracy advantages for these quadratic serendipity finite elements on polygonal domains versus traditional finite elements over simplicial meshes. Polygonal meshes and parameter coefficients of the quadratic serendipity finite elements obtained by our greedy algorithms can be further refined using an L 2 -optimization to improve the piecewise functional approximation. We conduct several experiments to demonstrate the efficacy of our algorithm for modeling features/discontinuities in functional data/image approximation.

  2. Multiscale Capability in Rattlesnake using Contiguous Discontinuous Discretization of Self-Adjoint Angular Flux Equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Weixiong; Wang, Yaqi; DeHart, Mark D.

    2016-09-01

    In this report, we present a new upwinding scheme for the multiscale capability in Rattlesnake, the MOOSE based radiation transport application. Comparing with the initial implementation of multiscale utilizing Lagrange multipliers to impose strong continuity of angular flux on interface of in-between subdomains, this scheme does not require the particular domain partitioning. This upwinding scheme introduces discontinuity of angular flux and resembles the classic upwinding technique developed for solving first order transport equation using discontinuous finite element method (DFEM) on the subdomain interfaces. Because this scheme restores the causality of radiation streaming on the interfaces, significant accuracy improvement can bemore » observed with moderate increase of the degrees of freedom comparing with the continuous method over the entire solution domain. Hybrid SN-PN is implemented and tested with this upwinding scheme. Numerical results show that the angular smoothing required by Lagrange multiplier method is not necessary for the upwinding scheme.« less

  3. An analysis of general chain systems

    NASA Technical Reports Server (NTRS)

    Passerello, C. E.; Huston, R. L.

    1972-01-01

    A general analysis of dynamic systems consisting of connected rigid bodies is presented. The number of bodies and their manner of connection is arbitrary so long as no closed loops are formed. The analysis represents a dynamic finite element method, which is computer-oriented and designed so that nonworking, interval constraint forces are automatically eliminated. The method is based upon Lagrange's form of d'Alembert's principle. Shifter matrix transformations are used with the geometrical aspects of the analysis. The method is illustrated with a space manipulator.

  4. Comparison of Damage Path Predictions for Composite Laminates by Explicit and Standard Finite Element Analysis Tools

    NASA Technical Reports Server (NTRS)

    Bogert, Philip B.; Satyanarayana, Arunkumar; Chunchu, Prasad B.

    2006-01-01

    Splitting, ultimate failure load and the damage path in center notched composite specimens subjected to in-plane tension loading are predicted using progressive failure analysis methodology. A 2-D Hashin-Rotem failure criterion is used in determining intra-laminar fiber and matrix failures. This progressive failure methodology has been implemented in the Abaqus/Explicit and Abaqus/Standard finite element codes through user written subroutines "VUMAT" and "USDFLD" respectively. A 2-D finite element model is used for predicting the intra-laminar damages. Analysis results obtained from the Abaqus/Explicit and Abaqus/Standard code show good agreement with experimental results. The importance of modeling delamination in progressive failure analysis methodology is recognized for future studies. The use of an explicit integration dynamics code for simple specimen geometry and static loading establishes a foundation for future analyses where complex loading and nonlinear dynamic interactions of damage and structure will necessitate it.

  5. Unified cosmic history in modified gravity: From F(R) theory to Lorentz non-invariant models

    NASA Astrophysics Data System (ADS)

    Nojiri, Shin'Ichi; Odintsov, Sergei D.

    2011-08-01

    The classical generalization of general relativity is considered as the gravitational alternative for a unified description of the early-time inflation with late-time cosmic acceleration. The structure and cosmological properties of a number of modified theories, including traditional F(R) and Hořava-Lifshitz F(R) gravity, scalar-tensor theory, string-inspired and Gauss-Bonnet theory, non-local gravity, non-minimally coupled models, and power-counting renormalizable covariant gravity are discussed. Different representations of and relations between such theories are investigated. It is shown that some versions of the above theories may be consistent with local tests and may provide a qualitatively reasonable unified description of inflation with the dark energy epoch. The cosmological reconstruction of different modified gravities is provided in great detail. It is demonstrated that eventually any given universe evolution may be reconstructed for the theories under consideration, and the explicit reconstruction is applied to an accelerating spatially flat Friedmann-Robertson-Walker (FRW) universe. Special attention is paid to Lagrange multiplier constrained and conventional F(R) gravities, for latter F(R) theory, the effective ΛCDM era and phantom divide crossing acceleration are obtained. The occurrences of the Big Rip and other finite-time future singularities in modified gravity are reviewed along with their solutions via the addition of higher-derivative gravitational invariants.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liao, Haitao, E-mail: liaoht@cae.ac.cn

    The direct differentiation and improved least squares shadowing methods are both developed for accurately and efficiently calculating the sensitivity coefficients of time averaged quantities for chaotic dynamical systems. The key idea is to recast the time averaged integration term in the form of differential equation before applying the sensitivity analysis method. An additional constraint-based equation which forms the augmented equations of motion is proposed to calculate the time averaged integration variable and the sensitivity coefficients are obtained as a result of solving the augmented differential equations. The application of the least squares shadowing formulation to the augmented equations results inmore » an explicit expression for the sensitivity coefficient which is dependent on the final state of the Lagrange multipliers. The LU factorization technique to calculate the Lagrange multipliers leads to a better performance for the convergence problem and the computational expense. Numerical experiments on a set of problems selected from the literature are presented to illustrate the developed methods. The numerical results demonstrate the correctness and effectiveness of the present approaches and some short impulsive sensitivity coefficients are observed by using the direct differentiation sensitivity analysis method.« less

  7. Efficient sensitivity analysis method for chaotic dynamical systems

    NASA Astrophysics Data System (ADS)

    Liao, Haitao

    2016-05-01

    The direct differentiation and improved least squares shadowing methods are both developed for accurately and efficiently calculating the sensitivity coefficients of time averaged quantities for chaotic dynamical systems. The key idea is to recast the time averaged integration term in the form of differential equation before applying the sensitivity analysis method. An additional constraint-based equation which forms the augmented equations of motion is proposed to calculate the time averaged integration variable and the sensitivity coefficients are obtained as a result of solving the augmented differential equations. The application of the least squares shadowing formulation to the augmented equations results in an explicit expression for the sensitivity coefficient which is dependent on the final state of the Lagrange multipliers. The LU factorization technique to calculate the Lagrange multipliers leads to a better performance for the convergence problem and the computational expense. Numerical experiments on a set of problems selected from the literature are presented to illustrate the developed methods. The numerical results demonstrate the correctness and effectiveness of the present approaches and some short impulsive sensitivity coefficients are observed by using the direct differentiation sensitivity analysis method.

  8. Experiments with explicit filtering for LES using a finite-difference method

    NASA Technical Reports Server (NTRS)

    Lund, T. S.; Kaltenbach, H. J.

    1995-01-01

    The equations for large-eddy simulation (LES) are derived formally by applying a spatial filter to the Navier-Stokes equations. The filter width as well as the details of the filter shape are free parameters in LES, and these can be used both to control the effective resolution of the simulation and to establish the relative importance of different portions of the resolved spectrum. An analogous, but less well justified, approach to filtering is more or less universally used in conjunction with LES using finite-difference methods. In this approach, the finite support provided by the computational mesh as well as the wavenumber-dependent truncation errors associated with the finite-difference operators are assumed to define the filter operation. This approach has the advantage that it is also 'automatic' in the sense that no explicit filtering: operations need to be performed. While it is certainly convenient to avoid the explicit filtering operation, there are some practical considerations associated with finite-difference methods that favor the use of an explicit filter. Foremost among these considerations is the issue of truncation error. All finite-difference approximations have an associated truncation error that increases with increasing wavenumber. These errors can be quite severe for the smallest resolved scales, and these errors will interfere with the dynamics of the small eddies if no corrective action is taken. Years of experience at CTR with a second-order finite-difference scheme for high Reynolds number LES has repeatedly indicated that truncation errors must be minimized in order to obtain acceptable simulation results. While the potential advantages of explicit filtering are rather clear, there is a significant cost associated with its implementation. In particular, explicit filtering reduces the effective resolution of the simulation compared with that afforded by the mesh. The resolution requirements for LES are usually set by the need to capture most of the energy-containing eddies, and if explicit filtering is used, the mesh must be enlarged so that these motions are passed by the filter. Given the high cost of explicit filtering, the following interesting question arises. Since the mesh must be expanded in order to perform the explicit filter, might it be better to take advantage of the increased resolution and simply perform an unfiltered simulation on the larger mesh? The cost of the two approaches is roughly the same, but the philosophy is rather different. In the filtered simulation, resolution is sacrificed in order to minimize the various forms of numerical error. In the unfiltered simulation, the errors are left intact, but they are concentrated at very small scales that could be dynamically unimportant from a LES perspective. Very little is known about this tradeoff and the objective of this work is to study this relationship in high Reynolds number channel flow simulations using a second-order finite-difference method.

  9. The development of an explicit thermochemical nonequilibrium algorithm and its application to compute three dimensional AFE flowfields

    NASA Technical Reports Server (NTRS)

    Palmer, Grant

    1989-01-01

    This study presents a three-dimensional explicit, finite-difference, shock-capturing numerical algorithm applied to viscous hypersonic flows in thermochemical nonequilibrium. The algorithm employs a two-temperature physical model. Equations governing the finite-rate chemical reactions are fully-coupled to the gas dynamic equations using a novel coupling technique. The new coupling method maintains stability in the explicit, finite-rate formulation while allowing relatively large global time steps. The code uses flux-vector accuracy. Comparisons with experimental data and other numerical computations verify the accuracy of the present method. The code is used to compute the three-dimensional flowfield over the Aeroassist Flight Experiment (AFE) vehicle at one of its trajectory points.

  10. Characterization of high order spatial discretizations and lumping techniques for discontinuous finite element SN transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maginot, P. G.; Ragusa, J. C.; Morel, J. E.

    2013-07-01

    We examine several possible methods of mass matrix lumping for discontinuous finite element discrete ordinates transport using a Lagrange interpolatory polynomial trial space. Though positive outflow angular flux is guaranteed with traditional mass matrix lumping in a purely absorbing 1-D slab cell for the linear discontinuous approximation, we show that when used with higher degree interpolatory polynomial trial spaces, traditional lumping does yield strictly positive outflows and does not increase in accuracy with an increase in trial space polynomial degree. As an alternative, we examine methods which are 'self-lumping'. Self-lumping methods yield diagonal mass matrices by using numerical quadrature restrictedmore » to the Lagrange interpolatory points. Using equally-spaced interpolatory points, self-lumping is achieved through the use of closed Newton-Cotes formulas, resulting in strictly positive outflows in pure absorbers for odd power polynomials in 1-D slab geometry. By changing interpolatory points from the traditional equally-spaced points to the quadrature points of the Gauss-Legendre or Lobatto-Gauss-Legendre quadratures, it is possible to generate solution representations with a diagonal mass matrix and a strictly positive outflow for any degree polynomial solution representation in a pure absorber medium in 1-D slab geometry. Further, there is no inherent limit to local truncation error order of accuracy when using interpolatory points that correspond to the quadrature points of high order accuracy numerical quadrature schemes. (authors)« less

  11. Nonlinear probabilistic finite element models of laminated composite shells

    NASA Technical Reports Server (NTRS)

    Engelstad, S. P.; Reddy, J. N.

    1993-01-01

    A probabilistic finite element analysis procedure for laminated composite shells has been developed. A total Lagrangian finite element formulation, employing a degenerated 3-D laminated composite shell with the full Green-Lagrange strains and first-order shear deformable kinematics, forms the modeling foundation. The first-order second-moment technique for probabilistic finite element analysis of random fields is employed and results are presented in the form of mean and variance of the structural response. The effects of material nonlinearity are included through the use of a rate-independent anisotropic plasticity formulation with the macroscopic point of view. Both ply-level and micromechanics-level random variables can be selected, the latter by means of the Aboudi micromechanics model. A number of sample problems are solved to verify the accuracy of the procedures developed and to quantify the variability of certain material type/structure combinations. Experimental data is compared in many cases, and the Monte Carlo simulation method is used to check the probabilistic results. In general, the procedure is quite effective in modeling the mean and variance response of the linear and nonlinear behavior of laminated composite shells.

  12. A new heterogeneous asynchronous explicit-implicit time integrator for nonsmooth dynamics

    NASA Astrophysics Data System (ADS)

    Fekak, Fatima-Ezzahra; Brun, Michael; Gravouil, Anthony; Depale, Bruno

    2017-07-01

    In computational structural dynamics, particularly in the presence of nonsmooth behavior, the choice of the time-step and the time integrator has a critical impact on the feasibility of the simulation. Furthermore, in some cases, as in the case of a bridge crane under seismic loading, multiple time-scales coexist in the same problem. In that case, the use of multi-time scale methods is suitable. Here, we propose a new explicit-implicit heterogeneous asynchronous time integrator (HATI) for nonsmooth transient dynamics with frictionless unilateral contacts and impacts. Furthermore, we present a new explicit time integrator for contact/impact problems where the contact constraints are enforced using a Lagrange multiplier method. In other words, the aim of this paper consists in using an explicit time integrator with a fine time scale in the contact area for reproducing high frequency phenomena, while an implicit time integrator is adopted in the other parts in order to reproduce much low frequency phenomena and to optimize the CPU time. In a first step, the explicit time integrator is tested on a one-dimensional example and compared to Moreau-Jean's event-capturing schemes. The explicit algorithm is found to be very accurate and the scheme has generally a higher order of convergence than Moreau-Jean's schemes and provides also an excellent energy behavior. Then, the two time scales explicit-implicit HATI is applied to the numerical example of a bridge crane under seismic loading. The results are validated in comparison to a fine scale full explicit computation. The energy dissipated in the implicit-explicit interface is well controlled and the computational time is lower than a full-explicit simulation.

  13. Explicit finite-difference simulation of optical integrated devices on massive parallel computers.

    PubMed

    Sterkenburgh, T; Michels, R M; Dress, P; Franke, H

    1997-02-20

    An explicit method for the numerical simulation of optical integrated circuits by means of the finite-difference time-domain (FDTD) method is presented. This method, based on an explicit solution of Maxwell's equations, is well established in microwave technology. Although the simulation areas are small, we verified the behavior of three interesting problems, especially nonparaxial problems, with typical aspects of integrated optical devices. Because numerical losses are within acceptable limits, we suggest the use of the FDTD method to achieve promising quantitative simulation results.

  14. The formulation of dynamical contact problems with friction in the case of systems of rigid bodies and general discrete mechanical systems—Painlevé and Kane paradoxes revisited

    NASA Astrophysics Data System (ADS)

    Charles, Alexandre; Ballard, Patrick

    2016-08-01

    The dynamics of mechanical systems with a finite number of degrees of freedom (discrete mechanical systems) is governed by the Lagrange equation which is a second-order differential equation on a Riemannian manifold (the configuration manifold). The handling of perfect (frictionless) unilateral constraints in this framework (that of Lagrange's analytical dynamics) was undertaken by Schatzman and Moreau at the beginning of the 1980s. A mathematically sound and consistent evolution problem was obtained, paving the road for many subsequent theoretical investigations. In this general evolution problem, the only reaction force which is involved is a generalized reaction force, consistently with the virtual power philosophy of Lagrange. Surprisingly, such a general formulation was never derived in the case of frictional unilateral multibody dynamics. Instead, the paradigm of the Coulomb law applying to reaction forces in the real world is generally invoked. So far, this paradigm has only enabled to obtain a consistent evolution problem in only some very few specific examples and to suggest numerical algorithms to produce computational examples (numerical modeling). In particular, it is not clear what is the evolution problem underlying the computational examples. Moreover, some of the few specific cases in which this paradigm enables to write down a precise evolution problem are known to show paradoxes: the Painlevé paradox (indeterminacy) and the Kane paradox (increase in kinetic energy due to friction). In this paper, we follow Lagrange's philosophy and formulate the frictional unilateral multibody dynamics in terms of the generalized reaction force and not in terms of the real-world reaction force. A general evolution problem that governs the dynamics is obtained for the first time. We prove that all the solutions are dissipative; that is, this new formulation is free of Kane paradox. We also prove that some indeterminacy of the Painlevé paradox is fixed in this formulation.

  15. Finite dimensional approximation of a class of constrained nonlinear optimal control problems

    NASA Technical Reports Server (NTRS)

    Gunzburger, Max D.; Hou, L. S.

    1994-01-01

    An abstract framework for the analysis and approximation of a class of nonlinear optimal control and optimization problems is constructed. Nonlinearities occur in both the objective functional and in the constraints. The framework includes an abstract nonlinear optimization problem posed on infinite dimensional spaces, and approximate problem posed on finite dimensional spaces, together with a number of hypotheses concerning the two problems. The framework is used to show that optimal solutions exist, to show that Lagrange multipliers may be used to enforce the constraints, to derive an optimality system from which optimal states and controls may be deduced, and to derive existence results and error estimates for solutions of the approximate problem. The abstract framework and the results derived from that framework are then applied to three concrete control or optimization problems and their approximation by finite element methods. The first involves the von Karman plate equations of nonlinear elasticity, the second, the Ginzburg-Landau equations of superconductivity, and the third, the Navier-Stokes equations for incompressible, viscous flows.

  16. Euler-Lagrange CFD modelling of unconfined gas mixing in anaerobic digestion.

    PubMed

    Dapelo, Davide; Alberini, Federico; Bridgeman, John

    2015-11-15

    A novel Euler-Lagrangian (EL) computational fluid dynamics (CFD) finite volume-based model to simulate the gas mixing of sludge for anaerobic digestion is developed and described. Fluid motion is driven by momentum transfer from bubbles to liquid. Model validation is undertaken by assessing the flow field in a labscale model with particle image velocimetry (PIV). Conclusions are drawn about the upscaling and applicability of the model to full-scale problems, and recommendations are given for optimum application. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. An Ellipsoidal Particle-Finite Element Method for Hypervelocity Impact Simulation. Chapter 1

    NASA Technical Reports Server (NTRS)

    Shivarama, Ravishankar; Fahrenthold, Eric P.

    2004-01-01

    A number of coupled particle-element and hybrid particle-element methods have been developed for the simulation of hypervelocity impact problems, to avoid certain disadvantages associated with the use of pure continuum based or pure particle based methods. To date these methods have employed spherical particles. In recent work a hybrid formulation has been extended to the ellipsoidal particle case. A model formulation approach based on Lagrange's equations, with particles entropies serving as generalized coordinates, avoids the angular momentum conservation problems which have been reported with ellipsoidal smooth particle hydrodynamics models.

  18. Axisymmetric solid elements by a rational hybrid stress method

    NASA Technical Reports Server (NTRS)

    Tian, Z.; Pian, T. H. H.

    1985-01-01

    Four-node axisymmetric solid elements are derived by a new version of hybrid method for which the assumed stresses are expressed in complete polynomials in natural coordinates. The stress equilibrium conditions are introduced through the use of additional displacements as Lagrange multipliers. A rational procedure is to choose the displacement terms such that the resulting strains are also of complete polynomials of the same order. Example problems all indicate that elements obtained by this procedure lead to better results in displacements and stresses than that by other finite elements.

  19. The domain interface method: a general-purpose non-intrusive technique for non-conforming domain decomposition problems

    NASA Astrophysics Data System (ADS)

    Cafiero, M.; Lloberas-Valls, O.; Cante, J.; Oliver, J.

    2016-04-01

    A domain decomposition technique is proposed which is capable of properly connecting arbitrary non-conforming interfaces. The strategy essentially consists in considering a fictitious zero-width interface between the non-matching meshes which is discretized using a Delaunay triangulation. Continuity is satisfied across domains through normal and tangential stresses provided by the discretized interface and inserted in the formulation in the form of Lagrange multipliers. The final structure of the global system of equations resembles the dual assembly of substructures where the Lagrange multipliers are employed to nullify the gap between domains. A new approach to handle floating subdomains is outlined which can be implemented without significantly altering the structure of standard industrial finite element codes. The effectiveness of the developed algorithm is demonstrated through a patch test example and a number of tests that highlight the accuracy of the methodology and independence of the results with respect to the framework parameters. Considering its high degree of flexibility and non-intrusive character, the proposed domain decomposition framework is regarded as an attractive alternative to other established techniques such as the mortar approach.

  20. A finite-temperature Hartree-Fock code for shell-model Hamiltonians

    NASA Astrophysics Data System (ADS)

    Bertsch, G. F.; Mehlhaff, J. M.

    2016-10-01

    The codes HFgradZ.py and HFgradT.py find axially symmetric minima of a Hartree-Fock energy functional for a Hamiltonian supplied in a shell model basis. The functional to be minimized is the Hartree-Fock energy for zero-temperature properties or the Hartree-Fock grand potential for finite-temperature properties (thermal energy, entropy). The minimization may be subjected to additional constraints besides axial symmetry and nucleon numbers. A single-particle operator can be used to constrain the minimization by adding it to the single-particle Hamiltonian with a Lagrange multiplier. One can also constrain its expectation value in the zero-temperature code. Also the orbital filling can be constrained in the zero-temperature code, fixing the number of nucleons having given Kπ quantum numbers. This is particularly useful to resolve near-degeneracies among distinct minima.

  1. A novel Lagrangian approach for the stable numerical simulation of fault and fracture mechanics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franceschini, Andrea; Ferronato, Massimiliano, E-mail: massimiliano.ferronato@unipd.it; Janna, Carlo

    The simulation of the mechanics of geological faults and fractures is of paramount importance in several applications, such as ensuring the safety of the underground storage of wastes and hydrocarbons or predicting the possible seismicity triggered by the production and injection of subsurface fluids. However, the stable numerical modeling of ground ruptures is still an open issue. The present work introduces a novel formulation based on the use of the Lagrange multipliers to prescribe the constraints on the contact surfaces. The variational formulation is modified in order to take into account the frictional work along the activated fault portion accordingmore » to the principle of maximum plastic dissipation. The numerical model, developed in the framework of the Finite Element method, provides stable solutions with a fast convergence of the non-linear problem. The stabilizing properties of the proposed model are emphasized with the aid of a realistic numerical example dealing with the generation of ground fractures due to groundwater withdrawal in arid regions. - Highlights: • A numerical model is developed for the simulation of fault and fracture mechanics. • The model is implemented in the framework of the Finite Element method and with the aid of Lagrange multipliers. • The proposed formulation introduces a new contribution due to the frictional work on the portion of activated fault. • The resulting algorithm is highly non-linear as the portion of activated fault is itself unknown. • The numerical solution is validated against analytical results and proves to be stable also in realistic applications.« less

  2. 16QAM Blind Equalization via Maximum Entropy Density Approximation Technique and Nonlinear Lagrange Multipliers

    PubMed Central

    Mauda, R.; Pinchas, M.

    2014-01-01

    Recently a new blind equalization method was proposed for the 16QAM constellation input inspired by the maximum entropy density approximation technique with improved equalization performance compared to the maximum entropy approach, Godard's algorithm, and others. In addition, an approximated expression for the minimum mean square error (MSE) was obtained. The idea was to find those Lagrange multipliers that bring the approximated MSE to minimum. Since the derivation of the obtained MSE with respect to the Lagrange multipliers leads to a nonlinear equation for the Lagrange multipliers, the part in the MSE expression that caused the nonlinearity in the equation for the Lagrange multipliers was ignored. Thus, the obtained Lagrange multipliers were not those Lagrange multipliers that bring the approximated MSE to minimum. In this paper, we derive a new set of Lagrange multipliers based on the nonlinear expression for the Lagrange multipliers obtained from minimizing the approximated MSE with respect to the Lagrange multipliers. Simulation results indicate that for the high signal to noise ratio (SNR) case, a faster convergence rate is obtained for a channel causing a high initial intersymbol interference (ISI) while the same equalization performance is obtained for an easy channel (initial ISI low). PMID:24723813

  3. A systematic study of finite BRST-BFV transformations in generalized Hamiltonian formalism

    NASA Astrophysics Data System (ADS)

    Batalin, Igor A.; Lavrov, Peter M.; Tyutin, Igor V.

    2014-09-01

    We study systematically finite BRST-BFV transformations in the generalized Hamiltonian formalism. We present explicitly their Jacobians and the form of a solution to the compensation equation determining the functional field dependence of finite Fermionic parameters, necessary to generate an arbitrary finite change of gauge-fixing functions in the path integral.

  4. A finite element method to compute three-dimensional equilibrium configurations of fluid membranes: Optimal parameterization, variational formulation and applications

    NASA Astrophysics Data System (ADS)

    Rangarajan, Ramsharan; Gao, Huajian

    2015-09-01

    We introduce a finite element method to compute equilibrium configurations of fluid membranes, identified as stationary points of a curvature-dependent bending energy functional under certain geometric constraints. The reparameterization symmetries in the problem pose a challenge in designing parametric finite element methods, and existing methods commonly resort to Lagrange multipliers or penalty parameters. In contrast, we exploit these symmetries by representing solution surfaces as normal offsets of given reference surfaces and entirely bypass the need for artificial constraints. We then resort to a Galerkin finite element method to compute discrete C1 approximations of the normal offset coordinate. The variational framework presented is suitable for computing deformations of three-dimensional membranes subject to a broad range of external interactions. We provide a systematic algorithm for computing large deformations, wherein solutions at subsequent load steps are identified as perturbations of previously computed ones. We discuss the numerical implementation of the method in detail and demonstrate its optimal convergence properties using examples. We discuss applications of the method to studying adhesive interactions of fluid membranes with rigid substrates and to investigate the influence of membrane tension in tether formation.

  5. Cubature versus Fekete-Gauss nodes for spectral element methods on simplicial meshes

    NASA Astrophysics Data System (ADS)

    Pasquetti, Richard; Rapetti, Francesca

    2017-10-01

    In a recent JCP paper [9], a higher order triangular spectral element method (TSEM) is proposed to address seismic wave field modeling. The main interest of this TSEM is that the mass matrix is diagonal, so that an explicit time marching becomes very cheap. This property results from the fact that, similarly to the usual SEM (say QSEM), the basis functions are Lagrange polynomials based on a set of points that shows both nice interpolation and quadrature properties. In the quadrangle, i.e. for the QSEM, the set of points is simply obtained by tensorial product of Gauss-Lobatto-Legendre (GLL) points. In the triangle, finding such an appropriate set of points is however not trivial. Thus, the work of [9] follows anterior works that started in 2000's [2,6,11] and now provides cubature nodes and weights up to N = 9, where N is the total degree of the polynomial approximation. Here we wish to evaluate the accuracy of this cubature nodes TSEM with respect to the Fekete-Gauss one, see e.g.[12], that makes use of two sets of points, namely the Fekete points and the Gauss points of the triangle for interpolation and quadrature, respectively. Because the Fekete-Gauss TSEM is in the spirit of any nodal hp-finite element methods, one may expect that the conclusions of this Note will remain relevant if using other sets of carefully defined interpolation points.

  6. THE PLUTO CODE FOR ADAPTIVE MESH COMPUTATIONS IN ASTROPHYSICAL FLUID DYNAMICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mignone, A.; Tzeferacos, P.; Zanni, C.

    We present a description of the adaptive mesh refinement (AMR) implementation of the PLUTO code for solving the equations of classical and special relativistic magnetohydrodynamics (MHD and RMHD). The current release exploits, in addition to the static grid version of the code, the distributed infrastructure of the CHOMBO library for multidimensional parallel computations over block-structured, adaptively refined grids. We employ a conservative finite-volume approach where primary flow quantities are discretized at the cell center in a dimensionally unsplit fashion using the Corner Transport Upwind method. Time stepping relies on a characteristic tracing step where piecewise parabolic method, weighted essentially non-oscillatory,more » or slope-limited linear interpolation schemes can be handily adopted. A characteristic decomposition-free version of the scheme is also illustrated. The solenoidal condition of the magnetic field is enforced by augmenting the equations with a generalized Lagrange multiplier providing propagation and damping of divergence errors through a mixed hyperbolic/parabolic explicit cleaning step. Among the novel features, we describe an extension of the scheme to include non-ideal dissipative processes, such as viscosity, resistivity, and anisotropic thermal conduction without operator splitting. Finally, we illustrate an efficient treatment of point-local, potentially stiff source terms over hierarchical nested grids by taking advantage of the adaptivity in time. Several multidimensional benchmarks and applications to problems of astrophysical relevance assess the potentiality of the AMR version of PLUTO in resolving flow features separated by large spatial and temporal disparities.« less

  7. A collocation--Galerkin finite element model of cardiac action potential propagation.

    PubMed

    Rogers, J M; McCulloch, A D

    1994-08-01

    A new computational method was developed for modeling the effects of the geometric complexity, nonuniform muscle fiber orientation, and material inhomogeneity of the ventricular wall on cardiac impulse propagation. The method was used to solve a modification to the FitzHugh-Nagumo system of equations. The geometry, local muscle fiber orientation, and material parameters of the domain were defined using linear Lagrange or cubic Hermite finite element interpolation. Spatial variations of time-dependent excitation and recovery variables were approximated using cubic Hermite finite element interpolation, and the governing finite element equations were assembled using the collocation method. To overcome the deficiencies of conventional collocation methods on irregular domains, Galerkin equations for the no-flux boundary conditions were used instead of collocation equations for the boundary degrees-of-freedom. The resulting system was evolved using an adaptive Runge-Kutta method. Converged two-dimensional simulations of normal propagation showed that this method requires less CPU time than a traditional finite difference discretization. The model also reproduced several other physiologic phenomena known to be important in arrhythmogenesis including: Wenckebach periodicity, slowed propagation and unidirectional block due to wavefront curvature, reentry around a fixed obstacle, and spiral wave reentry. In a new result, we observed wavespeed variations and block due to nonuniform muscle fiber orientation. The findings suggest that the finite element method is suitable for studying normal and pathological cardiac activation and has significant advantages over existing techniques.

  8. On the performance of explicit and implicit algorithms for transient thermal analysis

    NASA Astrophysics Data System (ADS)

    Adelman, H. M.; Haftka, R. T.

    1980-09-01

    The status of an effort to increase the efficiency of calculating transient temperature fields in complex aerospace vehicle structures is described. The advantages and disadvantages of explicit and implicit algorithms are discussed. A promising set of implicit algorithms, known as the GEAR package is described. Four test problems, used for evaluating and comparing various algorithms, have been selected and finite element models of the configurations are discribed. These problems include a space shuttle frame component, an insulated cylinder, a metallic panel for a thermal protection system and a model of the space shuttle orbiter wing. Calculations were carried out using the SPAR finite element program, the MITAS lumped parameter program and a special purpose finite element program incorporating the GEAR algorithms. Results generally indicate a preference for implicit over explicit algorithms for solution of transient structural heat transfer problems when the governing equations are stiff. Careful attention to modeling detail such as avoiding thin or short high-conducting elements can sometimes reduce the stiffness to the extent that explicit methods become advantageous.

  9. Variational Ridging in Sea Ice Models

    NASA Astrophysics Data System (ADS)

    Roberts, A.; Hunke, E. C.; Lipscomb, W. H.; Maslowski, W.; Kamal, S.

    2017-12-01

    This work presents the results of a new development to make basin-scale sea ice models aware of the shape, porosity and extent of individual ridges within the pack. We have derived an analytic solution for the Euler-Lagrange equation of individual ridges that accounts for non-conservative forces, and therefore the compressive strength of individual ridges. Because a region of the pack is simply a collection of paths of individual ridges, we are able to solve the Euler-Lagrange equation for a large-scale sea ice field also, and therefore the compressive strength of a region of the pack that explicitly accounts for the macro-porosity of ridged debris. We make a number of assumptions that have simplified the problem, such as treating sea ice as a granular material in ridges, and assuming that bending moments associated with ridging are perturbations around an isostatic state. Regardless of these simplifications, the ridge model is remarkably predictive of macro-porosity and ridge shape, and, because our equations are analytic, they do not require costly computations to solve the Euler-Lagrange equation of ridges on the large scale. The new ridge model is therefore applicable to large-scale sea ice models. We present results from this theoretical development, as well as plans to apply it to the Regional Arctic System Model and a community sea ice code. Most importantly, the new ridging model is particularly useful for pinpointing gaps in our observational record of sea ice ridges, and points to the need for improved measurements of the evolution of porosity of deformed ice in the Arctic and Antarctic. Such knowledge is not only useful for improving models, but also for improving estimates of sea ice volume derived from altimetric measurements of sea ice freeboard.

  10. Finite element solution for energy conservation using a highly stable explicit integration algorithm

    NASA Technical Reports Server (NTRS)

    Baker, A. J.; Manhardt, P. D.

    1972-01-01

    Theoretical derivation of a finite element solution algorithm for the transient energy conservation equation in multidimensional, stationary multi-media continua with irregular solution domain closure is considered. The complete finite element matrix forms for arbitrarily irregular discretizations are established, using natural coordinate function representations. The algorithm is embodied into a user-oriented computer program (COMOC) which obtains transient temperature distributions at the node points of the finite element discretization using a highly stable explicit integration procedure with automatic error control features. The finite element algorithm is shown to posses convergence with discretization for a transient sample problem. The condensed form for the specific heat element matrix is shown to be preferable to the consistent form. Computed results for diverse problems illustrate the versatility of COMOC, and easily prepared output subroutines are shown to allow quick engineering assessment of solution behavior.

  11. On the dynamics of chain systems. [applications in manipulator and human body models

    NASA Technical Reports Server (NTRS)

    Huston, R. L.; Passerello, C. E.

    1974-01-01

    A computer-oriented method for obtaining dynamical equations of motion for chain systems is presented. A chain system is defined as an arbitrarily assembled set of rigid bodies such that adjoining bodies have at least one common point and such that closed loops are not formed. The equations of motion are developed through the use of Lagrange's form of d'Alembert's principle. The method and procedure is illustrated with an elementary study of a tripod space manipulator. The method is designed for application with systems such as human body models, chains and cables, and dynamic finite-segment models.

  12. Hot forming of composite prepreg: Numerical analyses

    NASA Astrophysics Data System (ADS)

    Guzman-Maldonado, Eduardo; Hamila, Nahiène; Boisse, Philippe; El Azzouzi, Khalid; Tardif, Xavier; Moro, Tanguy; Chatel, Sylvain; Fideu, Paulin

    2017-10-01

    The work presented here is part of the "FORBANS" project about the Hot Drape Forming (HDF) process consisting of unidirectional prepregs laminates. To ensure a fine comprehension of this process a combination strategy between experiment and numerical analysis is adopted. This paper is focused on the numerical analysis using the finite element method (FEM) with a hyperelastic constitutive law. Each prepreg layer is modelled by shell elements. These elements consider the tension, in-plane shear and bending behaviour of the ply at different temperatures. The contact/friction during the forming process is taken into account using forward increment Lagrange multipliers.

  13. A systematic study of finite BRST-BFV transformations in Sp(2)-extended generalized Hamiltonian formalism

    NASA Astrophysics Data System (ADS)

    Batalin, Igor A.; Lavrov, Peter M.; Tyutin, Igor V.

    2014-09-01

    We study systematically finite BRST-BFV transformations in Sp(2)-extended generalized Hamiltonian formalism. We present explicitly their Jacobians and the form of a solution to the compensation equation determining the functional field dependence of finite Fermionic parameters, necessary to generate arbitrary finite change of gauge-fixing functions in the path integral.

  14. Dynamic mortar finite element method for modeling of shear rupture on frictional rough surfaces

    NASA Astrophysics Data System (ADS)

    Tal, Yuval; Hager, Bradford H.

    2017-09-01

    This paper presents a mortar-based finite element formulation for modeling the dynamics of shear rupture on rough interfaces governed by slip-weakening and rate and state (RS) friction laws, focusing on the dynamics of earthquakes. The method utilizes the dual Lagrange multipliers and the primal-dual active set strategy concepts, together with a consistent discretization and linearization of the contact forces and constraints, and the friction laws to obtain a semi-smooth Newton method. The discretization of the RS friction law involves a procedure to condense out the state variables, thus eliminating the addition of another set of unknowns into the system. Several numerical examples of shear rupture on frictional rough interfaces demonstrate the efficiency of the method and examine the effects of the different time discretization schemes on the convergence, energy conservation, and the time evolution of shear traction and slip rate.

  15. QUADRATIC SERENDIPITY FINITE ELEMENTS ON POLYGONS USING GENERALIZED BARYCENTRIC COORDINATES.

    PubMed

    Rand, Alexander; Gillette, Andrew; Bajaj, Chandrajit

    2014-01-01

    We introduce a finite element construction for use on the class of convex, planar polygons and show it obtains a quadratic error convergence estimate. On a convex n -gon, our construction produces 2 n basis functions, associated in a Lagrange-like fashion to each vertex and each edge midpoint, by transforming and combining a set of n ( n + 1)/2 basis functions known to obtain quadratic convergence. The technique broadens the scope of the so-called 'serendipity' elements, previously studied only for quadrilateral and regular hexahedral meshes, by employing the theory of generalized barycentric coordinates. Uniform a priori error estimates are established over the class of convex quadrilaterals with bounded aspect ratio as well as over the class of convex planar polygons satisfying additional shape regularity conditions to exclude large interior angles and short edges. Numerical evidence is provided on a trapezoidal quadrilateral mesh, previously not amenable to serendipity constructions, and applications to adaptive meshing are discussed.

  16. Solvability of some partial functional integrodifferential equations with finite delay and optimal controls in Banach spaces.

    PubMed

    Ezzinbi, Khalil; Ndambomve, Patrice

    2016-01-01

    In this work, we consider the control system governed by some partial functional integrodifferential equations with finite delay in Banach spaces. We assume that the undelayed part admits a resolvent operator in the sense of Grimmer. Firstly, some suitable conditions are established to guarantee the existence and uniqueness of mild solutions for a broad class of partial functional integrodifferential infinite dimensional control systems. Secondly, it is proved that, under generally mild conditions of cost functional, the associated Lagrange problem has an optimal solution, and that for each optimal solution there is a minimizing sequence of the problem that converges to the optimal solution with respect to the trajectory, the control, and the functional in appropriate topologies. Our results extend and complement many other important results in the literature. Finally, a concrete example of application is given to illustrate the effectiveness of our main results.

  17. Modeling nonlinear dynamic properties of dielectric elastomers with various crosslinks, entanglements, and finite deformations

    NASA Astrophysics Data System (ADS)

    Zhang, Junshi; Chen, Hualing; Li, Dichen

    2018-02-01

    Subject to an AC voltage, dielectric elastomers (DEs) behave as a nonlinear vibration, implying potential applications as soft dynamical actuators and robots. In this article, by utilizing the Lagrange's equation, a theoretical model is deduced to investigate the dynamic performances of DEs by considering three internal properties, including crosslinks, entanglements, and finite deformations of polymer chains. Numerical calculations are employed to describe the dynamic response, stability, periodicity, and resonance properties of DEs. It is observed that the frequency and nonlinearity of dynamic response are tuned by the internal properties of DEs. Phase paths and Poincaré maps are utilized to detect the stability and periodicity of the nonlinear vibrations of DEs, which demonstrate that transitions between aperiodic and quasi-periodic vibrations may occur when the three internal properties vary. The resonance of DEs involving the three internal properties of polymer chains is also investigated.

  18. Three-dimensional compact explicit-finite difference time domain scheme with density variation

    NASA Astrophysics Data System (ADS)

    Tsuchiya, Takao; Maruta, Naoki

    2018-07-01

    In this paper, the density variation is implemented in the three-dimensional compact-explicit finite-difference time-domain (CE-FDTD) method. The formulation is first developed based on the continuity equation and the equation of motion, which include the density. Some numerical demonstrations are performed for the three-dimensional sound wave propagation in a two density layered medium. The numerical results are compared with the theoretical results to verify the proposed formulation.

  19. A model for finite-deformation nonlinear thermomechanical response of single crystal copper under shock conditions

    NASA Astrophysics Data System (ADS)

    Luscher, Darby J.; Bronkhorst, Curt A.; Alleman, Coleman N.; Addessio, Francis L.

    2013-09-01

    A physically consistent framework for combining pressure-volume-temperature equations of state with crystal plasticity models is developed for the application of modeling the response of single and polycrystals under shock conditions. The particular model is developed for copper, thus the approach focuses on crystals of cubic symmetry although many of the concepts in the approach are applicable to crystals of lower symmetry. We employ a multiplicative decomposition of the deformation gradient into isochoric elastic, thermoelastic dilation, and plastic parts leading to a definition of isochoric elastic Green-Lagrange strain. This finite deformation kinematic decomposition enables a decomposition of Helmholtz free-energy into terms reflecting dilatational thermoelasticity, strain energy due to long-range isochoric elastic deformation of the lattice and a term reflecting energy stored in short range elastic lattice deformation due to evolving defect structures. A model for the single crystal response of copper is implemented consistent with the framework into a three-dimensional Lagrangian finite element code. Simulations exhibit favorable agreement with single and bicrystal experimental data for shock pressures ranging from 3 to 110 GPa.

  20. Distributed-Lagrange-Multiplier-based computational method for particulate flow with collisions

    NASA Astrophysics Data System (ADS)

    Ardekani, Arezoo; Rangel, Roger

    2006-11-01

    A Distributed-Lagrange-Multiplier-based computational method is developed for colliding particles in a solid-fluid system. A numerical simulation is conducted in two dimensions using the finite volume method. The entire domain is treated as a fluid but the fluid in the particle domains satisfies a rigidity constraint. We present an efficient method for predicting the collision between particles. In earlier methods, a repulsive force was applied to the particles when their distance was less than a critical value. In this method, an impulsive force is computed. During the frictionless collision process between two particles, linear momentum is conserved while the tangential forces are zero. Thus, instead of satisfying a condition of rigid body motion for each particle separately, as done when particles are not in contact, both particles are rigidified together along their line of centers. Particles separate from each other when the impulsive force is less than zero and after this time, a rigidity constraint is satisfied for each particle separately. Grid independency is implemented to ensure the accuracy of the numerical simulation. A comparison between this method and previous collision strategies is presented and discussed.

  1. An Euler-Lagrange method considering bubble radial dynamics for modeling sonochemical reactors.

    PubMed

    Jamshidi, Rashid; Brenner, Gunther

    2014-01-01

    Unsteady numerical computations are performed to investigate the flow field, wave propagation and the structure of bubbles in sonochemical reactors. The turbulent flow field is simulated using a two-equation Reynolds-Averaged Navier-Stokes (RANS) model. The distribution of the acoustic pressure is solved based on the Helmholtz equation using a finite volume method (FVM). The radial dynamics of a single bubble are considered by applying the Keller-Miksis equation to consider the compressibility of the liquid to the first order of acoustical Mach number. To investigate the structure of bubbles, a one-way coupling Euler-Lagrange approach is used to simulate the bulk medium and the bubbles as the dispersed phase. Drag, gravity, buoyancy, added mass, volume change and first Bjerknes forces are considered and their orders of magnitude are compared. To verify the implemented numerical algorithms, results for one- and two-dimensional simplified test cases are compared with analytical solutions. The results show good agreement with experimental results for the relationship between the acoustic pressure amplitude and the volume fraction of the bubbles. The two-dimensional axi-symmetric results are in good agreement with experimentally observed structure of bubbles close to sonotrode. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. A Family of Finite-Dimensional Representations of Generalized Double Affine Hecke Algebras of Higher Rank

    NASA Astrophysics Data System (ADS)

    Fu, Yuchen; Shelley-Abrahamson, Seth

    2016-06-01

    We give explicit constructions of some finite-dimensional representations of generalized double affine Hecke algebras (GDAHA) of higher rank using R-matrices for U_q(sl_N). Our construction is motivated by an analogous construction of Silvia Montarani in the rational case. Using the Drinfeld-Kohno theorem for Knizhnik-Zamolodchikov differential equations, we prove that the explicit representations we produce correspond to Montarani's representations under a monodromy functor introduced by Etingof, Gan, and Oblomkov.

  3. Explicit Finite Element Techniques Used to Characterize Splashdown of the Space Shuttle Solid Rocket Booster Aft Skirt

    NASA Technical Reports Server (NTRS)

    Melis, Matthew E.

    2003-01-01

    NASA Glenn Research Center s Structural Mechanics Branch has years of expertise in using explicit finite element methods to predict the outcome of ballistic impact events. Shuttle engineers from the NASA Marshall Space Flight Center and NASA Kennedy Space Flight Center required assistance in assessing the structural loads that a newly proposed thrust vector control system for the space shuttle solid rocket booster (SRB) aft skirt would expect to see during its recovery splashdown.

  4. Explicit finite difference predictor and convex corrector with applications to hyperbolic partial differential equations

    NASA Technical Reports Server (NTRS)

    Dey, C.; Dey, S. K.

    1983-01-01

    An explicit finite difference scheme consisting of a predictor and a corrector has been developed and applied to solve some hyperbolic partial differential equations (PDEs). The corrector is a convex-type function which is applied at each time level and at each mesh point. It consists of a parameter which may be estimated such that for larger time steps the algorithm should remain stable and generate a fast speed of convergence to the steady-state solution. Some examples have been given.

  5. An improved flux-split algorithm applied to hypersonic flows in chemical equilibrium

    NASA Technical Reports Server (NTRS)

    Palmer, Grant

    1988-01-01

    An explicit, finite-difference, shock-capturing numerical algorithm is presented and applied to hypersonic flows assumed to be in thermochemical equilibrium. Real-gas chemistry is either loosely coupled to the gasdynamics by way of a Gibbs free energy minimization package or fully coupled using species mass conservation equations with finite-rate chemical reactions. A scheme is developed that maintains stability in the explicit, finite-rate formulation while allowing relatively high time steps. The codes use flux vector splitting to difference the inviscid fluxes and employ real-gas corrections to viscosity and thermal conductivity. Numerical results are compared against existing ballistic range and flight data. Flows about complex geometries are also computed.

  6. Numerical stability of an explicit finite difference scheme for the solution of transient conduction in composite media

    NASA Technical Reports Server (NTRS)

    Campbell, W.

    1981-01-01

    A theoretical evaluation of the stability of an explicit finite difference solution of the transient temperature field in a composite medium is presented. The grid points of the field are assumed uniformly spaced, and media interfaces are either vertical or horizontal and pass through grid points. In addition, perfect contact between different media (infinite interfacial conductance) is assumed. A finite difference form of the conduction equation is not valid at media interfaces; therefore, heat balance forms are derived. These equations were subjected to stability analysis, and a computer graphics code was developed that permitted determination of a maximum time step for a given grid spacing.

  7. Time-Dependent Parabolic Finite Difference Formulation for Harmonic Sound Propagation in a Two-Dimensional Duct with Flow

    NASA Technical Reports Server (NTRS)

    Kreider, Kevin L.; Baumeister, Kenneth J.

    1996-01-01

    An explicit finite difference real time iteration scheme is developed to study harmonic sound propagation in aircraft engine nacelles. To reduce storage requirements for future large 3D problems, the time dependent potential form of the acoustic wave equation is used. To insure that the finite difference scheme is both explicit and stable for a harmonic monochromatic sound field, a parabolic (in time) approximation is introduced to reduce the order of the governing equation. The analysis begins with a harmonic sound source radiating into a quiescent duct. This fully explicit iteration method then calculates stepwise in time to obtain the 'steady state' harmonic solutions of the acoustic field. For stability, applications of conventional impedance boundary conditions requires coupling to explicit hyperbolic difference equations at the boundary. The introduction of the time parameter eliminates the large matrix storage requirements normally associated with frequency domain solutions, and time marching attains the steady-state quickly enough to make the method favorable when compared to frequency domain methods. For validation, this transient-frequency domain method is applied to sound propagation in a 2D hard wall duct with plug flow.

  8. An explicit predictor-corrector solver with applications to Burgers' equation

    NASA Technical Reports Server (NTRS)

    Dey, S. K.; Dey, C.

    1983-01-01

    Forward Euler's explicit, finite-difference formula of extrapolation, is used as a predictor and a convex formula as a corrector to integrate differential equations numerically. An application has been made to Burger's equation.

  9. Corruption of accuracy and efficiency of Markov chain Monte Carlo simulation by inaccurate numerical implementation of conceptual hydrologic models

    NASA Astrophysics Data System (ADS)

    Schoups, G.; Vrugt, J. A.; Fenicia, F.; van de Giesen, N. C.

    2010-10-01

    Conceptual rainfall-runoff models have traditionally been applied without paying much attention to numerical errors induced by temporal integration of water balance dynamics. Reliance on first-order, explicit, fixed-step integration methods leads to computationally cheap simulation models that are easy to implement. Computational speed is especially desirable for estimating parameter and predictive uncertainty using Markov chain Monte Carlo (MCMC) methods. Confirming earlier work of Kavetski et al. (2003), we show here that the computational speed of first-order, explicit, fixed-step integration methods comes at a cost: for a case study with a spatially lumped conceptual rainfall-runoff model, it introduces artificial bimodality in the marginal posterior parameter distributions, which is not present in numerically accurate implementations of the same model. The resulting effects on MCMC simulation include (1) inconsistent estimates of posterior parameter and predictive distributions, (2) poor performance and slow convergence of the MCMC algorithm, and (3) unreliable convergence diagnosis using the Gelman-Rubin statistic. We studied several alternative numerical implementations to remedy these problems, including various adaptive-step finite difference schemes and an operator splitting method. Our results show that adaptive-step, second-order methods, based on either explicit finite differencing or operator splitting with analytical integration, provide the best alternative for accurate and efficient MCMC simulation. Fixed-step or adaptive-step implicit methods may also be used for increased accuracy, but they cannot match the efficiency of adaptive-step explicit finite differencing or operator splitting. Of the latter two, explicit finite differencing is more generally applicable and is preferred if the individual hydrologic flux laws cannot be integrated analytically, as the splitting method then loses its advantage.

  10. A finite element-based algorithm for rubbing induced vibration prediction in rotors

    NASA Astrophysics Data System (ADS)

    Behzad, Mehdi; Alvandi, Mehdi; Mba, David; Jamali, Jalil

    2013-10-01

    In this paper, an algorithm is developed for more realistic investigation of rotor-to-stator rubbing vibration, based on finite element theory with unilateral contact and friction conditions. To model the rotor, cross sections are assumed to be radially rigid. A finite element discretization based on traditional beam theories which sufficiently accounts for axial and transversal flexibility of the rotor is used. A general finite element discretization model considering inertial and viscoelastic characteristics of the stator is used for modeling the stator. Therefore, for contact analysis, only the boundary of the stator is discretized. The contact problem is defined as the contact between the circular rigid cross section of the rotor and “nodes” of the stator only. Next, Gap function and contact conditions are described for the contact problem. Two finite element models of the rotor and the stator are coupled via the Lagrange multipliers method in order to obtain the constrained equation of motion. A case study of the partial rubbing is simulated using the algorithm. The synchronous and subsynchronous responses of the partial rubbing are obtained for different rotational speeds. In addition, a sensitivity analysis is carried out with respect to the initial clearance, the stator stiffness, the damping parameter, and the coefficient of friction. There is a good agreement between the result of this research and the experimental result in the literature.

  11. Verification of a non-hydrostatic dynamical core using horizontally spectral element vertically finite difference method: 2-D aspects

    NASA Astrophysics Data System (ADS)

    Choi, S.-J.; Giraldo, F. X.; Kim, J.; Shin, S.

    2014-06-01

    The non-hydrostatic (NH) compressible Euler equations of dry atmosphere are solved in a simplified two dimensional (2-D) slice framework employing a spectral element method (SEM) for the horizontal discretization and a finite difference method (FDM) for the vertical discretization. The SEM uses high-order nodal basis functions associated with Lagrange polynomials based on Gauss-Lobatto-Legendre (GLL) quadrature points. The FDM employs a third-order upwind biased scheme for the vertical flux terms and a centered finite difference scheme for the vertical derivative terms and quadrature. The Euler equations used here are in a flux form based on the hydrostatic pressure vertical coordinate, which are the same as those used in the Weather Research and Forecasting (WRF) model, but a hybrid sigma-pressure vertical coordinate is implemented in this model. We verified the model by conducting widely used standard benchmark tests: the inertia-gravity wave, rising thermal bubble, density current wave, and linear hydrostatic mountain wave. The results from those tests demonstrate that the horizontally spectral element vertically finite difference model is accurate and robust. By using the 2-D slice model, we effectively show that the combined spatial discretization method of the spectral element and finite difference method in the horizontal and vertical directions, respectively, offers a viable method for the development of a NH dynamical core.

  12. Comparison of three explicit multigrid methods for the Euler and Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Chima, Rodrick V.; Turkel, Eli; Schaffer, Steve

    1987-01-01

    Three explicit multigrid methods, Ni's method, Jameson's finite-volume method, and a finite-difference method based on Brandt's work, are described and compared for two model problems. All three methods use an explicit multistage Runge-Kutta scheme on the fine grid, and this scheme is also described. Convergence histories for inviscid flow over a bump in a channel for the fine-grid scheme alone show that convergence rate is proportional to Courant number and that implicit residual smoothing can significantly accelerate the scheme. Ni's method was slightly slower than the implicitly-smoothed scheme alone. Brandt's and Jameson's methods are shown to be equivalent in form but differ in their node versus cell-centered implementations. They are about 8.5 times faster than Ni's method in terms of CPU time. Results for an oblique shock/boundary layer interaction problem verify the accuracy of the finite-difference code. All methods slowed considerably on the stretched viscous grid but Brandt's method was still 2.1 times faster than Ni's method.

  13. Finite BRST-BFV transformations for dynamical systems with second-class constraints

    NASA Astrophysics Data System (ADS)

    Batalin, Igor A.; Lavrov, Peter M.; Tyutin, Igor V.

    2015-06-01

    We study finite field-dependent BRST-BFV transformations for dynamical systems with first- and second-class constraints within the generalized Hamiltonian formalism. We find explicitly their Jacobians and the form of a solution to the compensation equation necessary for generating an arbitrary finite change of gauge-fixing functionals in the path integral.

  14. An 8-node tetrahedral finite element suitable for explicit transient dynamic simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Key, S.W.; Heinstein, M.W.; Stone, C.M.

    1997-12-31

    Considerable effort has been expended in perfecting the algorithmic properties of 8-node hexahedral finite elements. Today the element is well understood and performs exceptionally well when used in modeling three-dimensional explicit transient dynamic events. However, the automatic generation of all-hexahedral meshes remains an elusive achievement. The alternative of automatic generation for all-tetrahedral finite element is a notoriously poor performer, and the 10-node quadratic tetrahedral finite element while a better performer numerically is computationally expensive. To use the all-tetrahedral mesh generation extant today, the authors have explored the creation of a quality 8-node tetrahedral finite element (a four-node tetrahedral finite elementmore » enriched with four midface nodal points). The derivation of the element`s gradient operator, studies in obtaining a suitable mass lumping and the element`s performance in applications are presented. In particular, they examine the 80node tetrahedral finite element`s behavior in longitudinal plane wave propagation, in transverse cylindrical wave propagation, and in simulating Taylor bar impacts. The element only samples constant strain states and, therefore, has 12 hourglass modes. In this regard, it bears similarities to the 8-node, mean-quadrature hexahedral finite element. Given automatic all-tetrahedral meshing, the 8-node, constant-strain tetrahedral finite element is a suitable replacement for the 8-node hexahedral finite element and handbuilt meshes.« less

  15. On the computer analysis of structures and mechanical systems

    NASA Technical Reports Server (NTRS)

    Bennett, B. E.

    1984-01-01

    The governing equations for the analysis of open branch-chain mechanical systems are developed in a form suitable for implementation in a general purpose finite element computer program. Lagrange's form of d'Alembert's principle is used to derive the system mass matrix and force vector. The generalized coordinates are selected as the unconstrained relative degrees of freedom giving the position and orientation of each slave link with respect to their master link. Each slave link may have from zero to six degrees of freedom relative to the reference frames of its master link. A strategy for automatic generation of the system mass matrix and force vector is described.

  16. Stability of a diffuse linear pinch with axial boundaries

    NASA Technical Reports Server (NTRS)

    Einaudi, G.; Van Hoven, G.

    1981-01-01

    A formulation of the stability behavior of a finite-length pinch is presented. A general initial perturbation is expressed as a uniformly convergent sum over a complete discrete k set. A variational calculation is then performed, based on the energy principle, in which the end-boundary conditions appear as constraints. The requisite Lagrange multipliers mutually couple the elemental periodic excitations. The resulting extended form of delta-W still admits a proper second-variation treatment so that the minimization and stability considerations of Newcomb remain applicable. Comparison theorems are discussed as is the relevance of this end-effect model to the stability of solar coronal loops.

  17. Sandia Higher Order Elements (SHOE) v 0.5 alpha

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2013-09-24

    SHOE is research code for characterizing and visualizing higher-order finite elements; it contains a framework for defining classes of interpolation techniques and element shapes; methods for interpolating triangular, quadrilateral, tetrahedral, and hexahedral cells using Lagrange and Legendre polynomial bases of arbitrary order; methods to decompose each element into domains of constant gradient flow (using a polynomial solver to identify critical points); and an isocontouring technique that uses this decomposition to guarantee topological correctness. Please note that this is an alpha release of research software and that some time has passed since it was actively developed; build- and run-time issues likelymore » exist.« less

  18. Optimization for minimum sensitivity to uncertain parameters

    NASA Technical Reports Server (NTRS)

    Pritchard, Jocelyn I.; Adelman, Howard M.; Sobieszczanski-Sobieski, Jaroslaw

    1994-01-01

    A procedure to design a structure for minimum sensitivity to uncertainties in problem parameters is described. The approach is to minimize directly the sensitivity derivatives of the optimum design with respect to fixed design parameters using a nested optimization procedure. The procedure is demonstrated for the design of a bimetallic beam for minimum weight with insensitivity to uncertainties in structural properties. The beam is modeled with finite elements based on two dimensional beam analysis. A sequential quadratic programming procedure used as the optimizer supplies the Lagrange multipliers that are used to calculate the optimum sensitivity derivatives. The method was perceived to be successful from comparisons of the optimization results with parametric studies.

  19. Compilation on the use of the stroboscopic method in orbital dynamics

    NASA Astrophysics Data System (ADS)

    Lecohier, G.

    In this paper, the application of the stroboscopic method to orbital dynamics is described. As opposed to averaging methods, the stroboscopic solutions of the perturbed Lagrangian system are derived explicitly in the osculating elements which eases greatly their utilization in practical cases. Using this semi-analytical method, the first order solutions of the Lagrange equations including the perturbations by central body gravity field, the third-bodies, the radiation pressure and by the air-drag are derived. In a next step, the accuracy of the first order solution derived for the classical and equinoctial elements is assessed for the long-term prediction of highly eccentric, low altitude, polar and geostationary orbits is estimated.

  20. Investigation of the feasibility of an analytical method of accounting for the effects of atmospheric drag on satellite motion

    NASA Technical Reports Server (NTRS)

    Bozeman, Robert E.

    1987-01-01

    An analytic technique for accounting for the joint effects of Earth oblateness and atmospheric drag on close-Earth satellites is investigated. The technique is analytic in the sense that explicit solutions to the Lagrange planetary equations are given; consequently, no numerical integrations are required in the solution process. The atmospheric density in the technique described is represented by a rotating spherical exponential model with superposed effects of the oblate atmosphere and the diurnal variations. A computer program implementing the process is discussed and sample output is compared with output from program NSEP (Numerical Satellite Ephemeris Program). NSEP uses a numerical integration technique to account for atmospheric drag effects.

  1. Nonlinear truncation error analysis of finite difference schemes for the Euler equations

    NASA Technical Reports Server (NTRS)

    Klopfer, G. H.; Mcrae, D. S.

    1983-01-01

    It is pointed out that, in general, dissipative finite difference integration schemes have been found to be quite robust when applied to the Euler equations of gas dynamics. The present investigation considers a modified equation analysis of both implicit and explicit finite difference techniques as applied to the Euler equations. The analysis is used to identify those error terms which contribute most to the observed solution errors. A technique for analytically removing the dominant error terms is demonstrated, resulting in a greatly improved solution for the explicit Lax-Wendroff schemes. It is shown that the nonlinear truncation errors are quite large and distributed quite differently for each of the three conservation equations as applied to a one-dimensional shock tube problem.

  2. A comparison of two central difference schemes for solving the Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Maksymiuk, C. M.; Swanson, R. C.; Pulliam, T. H.

    1990-01-01

    Five viscous transonic airfoil cases were computed by two significantly different computational fluid dynamics codes: An explicit finite-volume algorithm with multigrid, and an implicit finite-difference approximate-factorization method with Eigenvector diagonalization. Both methods are described in detail, and their performance on the test cases is compared. The codes utilized the same grids, turbulence model, and computer to provide the truest test of the algorithms. The two approaches produce very similar results, which, for attached flows, also agree well with experimental results; however, the explicit code is considerably faster.

  3. Large Eddy Simulation (LES) of Particle-Laden Temporal Mixing Layers

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Radhakrishnan, Senthilkumaran

    2012-01-01

    High-fidelity models of plume-regolith interaction are difficult to develop because of the widely disparate flow conditions that exist in this process. The gas in the core of a rocket plume can often be modeled as a time-dependent, high-temperature, turbulent, reacting continuum flow. However, due to the vacuum conditions on the lunar surface, the mean molecular path in the outer parts of the plume is too long for the continuum assumption to remain valid. Molecular methods are better suited to model this region of the flow. Finally, granular and multiphase flow models must be employed to describe the dust and debris that are displaced from the surface, as well as how a crater is formed in the regolith. At present, standard commercial CFD (computational fluid dynamics) software is not capable of coupling each of these flow regimes to provide an accurate representation of this flow process, necessitating the development of custom software. This software solves the fluid-flow-governing equations in an Eulerian framework, coupled with the particle transport equations that are solved in a Lagrangian framework. It uses a fourth-order explicit Runge-Kutta scheme for temporal integration, an eighth-order central finite differencing scheme for spatial discretization. The non-linear terms in the governing equations are recast in cubic skew symmetric form to reduce aliasing error. The second derivative viscous terms are computed using eighth-order narrow stencils that provide better diffusion for the highest resolved wave numbers. A fourth-order Lagrange interpolation procedure is used to obtain gas-phase variable values at the particle locations.

  4. Distributed Finite-Time Cooperative Control of Multiple High-Order Nonholonomic Mobile Robots.

    PubMed

    Du, Haibo; Wen, Guanghui; Cheng, Yingying; He, Yigang; Jia, Ruting

    2017-12-01

    The consensus problem of multiple nonholonomic mobile robots in the form of high-order chained structure is considered in this paper. Based on the model features and the finite-time control technique, a finite-time cooperative controller is explicitly constructed which guarantees that the states consensus is achieved in a finite time. As an application of the proposed results, finite-time formation control of multiple wheeled mobile robots is studied and a finite-time formation control algorithm is proposed. To show effectiveness of the proposed approach, a simulation example is given.

  5. On Finite Groups and Finite Fields.

    ERIC Educational Resources Information Center

    Reid, J. D.

    1991-01-01

    Given a multiplicative group of nonzero elements with order n, the explicit relationship between the number of cyclic subgroups of order d, which divides n, is used in the proof concerning the cyclic nature of that given multiplicative group. (JJK)

  6. Flux-corrected transport algorithms for continuous Galerkin methods based on high order Bernstein finite elements

    NASA Astrophysics Data System (ADS)

    Lohmann, Christoph; Kuzmin, Dmitri; Shadid, John N.; Mabuza, Sibusiso

    2017-09-01

    This work extends the flux-corrected transport (FCT) methodology to arbitrary order continuous finite element discretizations of scalar conservation laws on simplex meshes. Using Bernstein polynomials as local basis functions, we constrain the total variation of the numerical solution by imposing local discrete maximum principles on the Bézier net. The design of accuracy-preserving FCT schemes for high order Bernstein-Bézier finite elements requires the development of new algorithms and/or generalization of limiting techniques tailored for linear and multilinear Lagrange elements. In this paper, we propose (i) a new discrete upwinding strategy leading to local extremum bounded low order approximations with compact stencils, (ii) high order variational stabilization based on the difference between two gradient approximations, and (iii) new localized limiting techniques for antidiffusive element contributions. The optional use of a smoothness indicator, based on a second derivative test, makes it possible to potentially avoid unnecessary limiting at smooth extrema and achieve optimal convergence rates for problems with smooth solutions. The accuracy of the proposed schemes is assessed in numerical studies for the linear transport equation in 1D and 2D.

  7. A three-dimensional nonlinear Timoshenko beam based on the core-congruential formulation

    NASA Technical Reports Server (NTRS)

    Crivelli, Luis A.; Felippa, Carlos A.

    1992-01-01

    A three-dimensional, geometrically nonlinear two-node Timoshenkoo beam element based on the total Larangrian description is derived. The element behavior is assumed to be linear elastic, but no restrictions are placed on magnitude of finite rotations. The resulting element has twelve degrees of freedom: six translational components and six rotational-vector components. The formulation uses the Green-Lagrange strains and second Piola-Kirchhoff stresses as energy-conjugate variables and accounts for the bending-stretching and bending-torsional coupling effects without special provisions. The core-congruential formulation (CCF) is used to derived the discrete equations in a staged manner. Core equations involving the internal force vector and tangent stiffness matrix are developed at the particle level. A sequence of matrix transformations carries these equations to beam cross-sections and finally to the element nodal degrees of freedom. The choice of finite rotation measure is made in the next-to-last transformation stage, and the choice of over-the-element interpolation in the last one. The tangent stiffness matrix is found to retain symmetry if the rotational vector is chosen to measure finite rotations. An extensive set of numerical examples is presented to test and validate the present element.

  8. Multiscale Failure Analysis of Laminated Composite Panels Subjected to Blast Loading Using FEAMAC/Explicit

    NASA Technical Reports Server (NTRS)

    Pineda, Evan J.; Waas, Anthony M.; Berdnarcyk, Brett A.; Arnold, Steven M.; Collier, Craig S.

    2009-01-01

    This preliminary report demonstrates the capabilities of the recently developed software implementation that links the Generalized Method of Cells to explicit finite element analysis by extending a previous development which tied the generalized method of cells to implicit finite elements. The multiscale framework, which uses explicit finite elements at the global-scale and the generalized method of cells at the microscale is detailed. This implementation is suitable for both dynamic mechanics problems and static problems exhibiting drastic and sudden changes in material properties, which often encounter convergence issues with commercial implicit solvers. Progressive failure analysis of stiffened and un-stiffened fiber-reinforced laminates subjected to normal blast pressure loads was performed and is used to demonstrate the capabilities of this framework. The focus of this report is to document the development of the software implementation; thus, no comparison between the results of the models and experimental data is drawn. However, the validity of the results are assessed qualitatively through the observation of failure paths, stress contours, and the distribution of system energies.

  9. A general-purpose approach to computer-aided dynamic analysis of a flexible helicopter

    NASA Technical Reports Server (NTRS)

    Agrawal, Om P.

    1988-01-01

    A general purpose mathematical formulation is described for dynamic analysis of a helicopter consisting of flexible and/or rigid bodies that undergo large translations and rotations. Rigid body and elastic sets of generalized coordinates are used. The rigid body coordinates define the location and the orientation of a body coordinate frame (global frame) with respect to an inertial frame. The elastic coordinates are introduced using a finite element approach in order to model flexible components. The compatibility conditions between two adjacent elements in a flexible body are imposed using a Boolean matrix, whereas the compatibility conditions between two adjacent bodies are imposed using the Lagrange multiplier approach. Since the form of the constraint equations depends upon the type of kinematic joint and involves only the generalized coordinates of the two participating elements, then a library of constraint elements can be developed to impose the kinematic constraint in an automated fashion. For the body constraints, the Lagrange multipliers yield the reaction forces and torques of the bodies at the joints. The virtual work approach is used to derive the equations of motion, which are a system of differential and algebraic equations that are highly nonlinear. The formulation presented is general and is compared with hard-wired formulations commonly used in helicopter analysis.

  10. Diffuse interface simulation of bubble rising process: a comparison of adaptive mesh refinement and arbitrary lagrange-euler methods

    NASA Astrophysics Data System (ADS)

    Wang, Ye; Cai, Jiejin; Li, Qiong; Yin, Huaqiang; Yang, Xingtuan

    2018-06-01

    Gas-liquid two phase flow exists in several industrial processes and light-water reactors (LWRs). A diffuse interface based finite element method with two different mesh generation methods namely, the Adaptive Mesh Refinement (AMR) and the Arbitrary Lagrange Euler (ALE) methods is used to model the shape and velocity changes in a rising bubble. Moreover, the calculating speed and mesh generation strategies of AMR and ALE are contrasted. The simulation results agree with the Bhagat's experiments, indicating that both mesh generation methods can simulate the characteristics of bubble accurately. We concluded that: the small bubble rises as elliptical with oscillation, whereas a larger bubble (11 mm > d > 7 mm) rises with a morphology between the elliptical and cap type with a larger oscillation. When the bubble is large (d > 11 mm), it rises up as a cap type, and the amplitude becomes smaller. Moreover, it takes longer to achieve the stable shape from the ellipsoid to the spherical cap type with the increase of the bubble diameter. The results also show that for smaller diameter case, the ALE method uses fewer grids and has a faster calculation speed, but the AMR method can solve the case of a large geometry deformation efficiently.

  11. Rate-independent dissipation in phase-field modelling of displacive transformations

    NASA Astrophysics Data System (ADS)

    Tůma, K.; Stupkiewicz, S.; Petryk, H.

    2018-05-01

    In this paper, rate-independent dissipation is introduced into the phase-field framework for modelling of displacive transformations, such as martensitic phase transformation and twinning. The finite-strain phase-field model developed recently by the present authors is here extended beyond the limitations of purely viscous dissipation. The variational formulation, in which the evolution problem is formulated as a constrained minimization problem for a global rate-potential, is enhanced by including a mixed-type dissipation potential that combines viscous and rate-independent contributions. Effective computational treatment of the resulting incremental problem of non-smooth optimization is developed by employing the augmented Lagrangian method. It is demonstrated that a single Lagrange multiplier field suffices to handle the dissipation potential vertex and simultaneously to enforce physical constraints on the order parameter. In this way, the initially non-smooth problem of evolution is converted into a smooth stationarity problem. The model is implemented in a finite-element code and applied to solve two- and three-dimensional boundary value problems representative for shape memory alloys.

  12. QUADRATIC SERENDIPITY FINITE ELEMENTS ON POLYGONS USING GENERALIZED BARYCENTRIC COORDINATES

    PubMed Central

    RAND, ALEXANDER; GILLETTE, ANDREW; BAJAJ, CHANDRAJIT

    2013-01-01

    We introduce a finite element construction for use on the class of convex, planar polygons and show it obtains a quadratic error convergence estimate. On a convex n-gon, our construction produces 2n basis functions, associated in a Lagrange-like fashion to each vertex and each edge midpoint, by transforming and combining a set of n(n + 1)/2 basis functions known to obtain quadratic convergence. The technique broadens the scope of the so-called ‘serendipity’ elements, previously studied only for quadrilateral and regular hexahedral meshes, by employing the theory of generalized barycentric coordinates. Uniform a priori error estimates are established over the class of convex quadrilaterals with bounded aspect ratio as well as over the class of convex planar polygons satisfying additional shape regularity conditions to exclude large interior angles and short edges. Numerical evidence is provided on a trapezoidal quadrilateral mesh, previously not amenable to serendipity constructions, and applications to adaptive meshing are discussed. PMID:25301974

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suryanarayana, Phanish, E-mail: phanish.suryanarayana@ce.gatech.edu; Phanish, Deepa

    We present an Augmented Lagrangian formulation and its real-space implementation for non-periodic Orbital-Free Density Functional Theory (OF-DFT) calculations. In particular, we rewrite the constrained minimization problem of OF-DFT as a sequence of minimization problems without any constraint, thereby making it amenable to powerful unconstrained optimization algorithms. Further, we develop a parallel implementation of this approach for the Thomas–Fermi–von Weizsacker (TFW) kinetic energy functional in the framework of higher-order finite-differences and the conjugate gradient method. With this implementation, we establish that the Augmented Lagrangian approach is highly competitive compared to the penalty and Lagrange multiplier methods. Additionally, we show that higher-ordermore » finite-differences represent a computationally efficient discretization for performing OF-DFT simulations. Overall, we demonstrate that the proposed formulation and implementation are both efficient and robust by studying selected examples, including systems consisting of thousands of atoms. We validate the accuracy of the computed energies and forces by comparing them with those obtained by existing plane-wave methods.« less

  14. Prototype Mixed Finite Element Hydrodynamics Capability in ARES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rieben, R N

    This document describes work on a prototype Mixed Finite Element Method (MFEM) hydrodynamics algorithm in the ARES code, and its application to a set of standard test problems. This work is motivated by the need for improvements to the algorithms used in the Lagrange hydrodynamics step to make them more robust. We begin by identifying the outstanding issues with traditional numerical hydrodynamics algorithms followed by a description of the proposed method and how it may address several of these longstanding issues. We give a theoretical overview of the proposed MFEM algorithm as well as a summary of the coding additionsmore » and modifications that were made to add this capability to the ARES code. We present results obtained with the new method on a set of canonical hydrodynamics test problems and demonstrate significant improvement in comparison to results obtained with traditional methods. We conclude with a summary of the issues still at hand and motivate the need for continued research to develop the proposed method into maturity.« less

  15. Higher Order Lagrange Finite Elements In M3D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. Chen; H.R. Strauss; S.C. Jardin

    The M3D code has been using linear finite elements to represent multilevel MHD on 2-D poloidal planes. Triangular higher order elements, up to third order, are constructed here in order to provide M3D the capability to solve highly anisotropic transport problems. It is found that higher order elements are essential to resolve the thin transition layer characteristic of the anisotropic transport equation, particularly when the strong anisotropic direction is not aligned with one of the Cartesian coordinates. The transition layer is measured by the profile width, which is zero for infinite anisotropy. It is shown that only higher order schemesmore » have the ability to make this layer converge towards zero when the anisotropy gets stronger and stronger. Two cases are considered. One has the strong transport direction partially aligned with one of the element edges, the other doesn't have any alignment. Both cases have the strong transport direction misaligned with the grid line by some angles.« less

  16. Construction of stable explicit finite-difference schemes for Schroedinger type differential equations

    NASA Technical Reports Server (NTRS)

    Mickens, Ronald E.

    1989-01-01

    A family of conditionally stable, forward Euler finite difference equations can be constructed for the simplest equation of Schroedinger type, namely u sub t - iu sub xx. Generalization of this result to physically realistic Schroedinger type equations is presented.

  17. A Non-Dissipative Staggered Fourth-Order Accurate Explicit Finite Difference Scheme for the Time-Domain Maxwell's Equations

    NASA Technical Reports Server (NTRS)

    Yefet, Amir; Petropoulos, Peter G.

    1999-01-01

    We consider a divergence-free non-dissipative fourth-order explicit staggered finite difference scheme for the hyperbolic Maxwell's equations. Special one-sided difference operators are derived in order to implement the scheme near metal boundaries and dielectric interfaces. Numerical results show the scheme is long-time stable, and is fourth-order convergent over complex domains that include dielectric interfaces and perfectly conducting surfaces. We also examine the scheme's behavior near metal surfaces that are not aligned with the grid axes, and compare its accuracy to that obtained by the Yee scheme.

  18. DISCOS- DYNAMIC INTERACTION SIMULATION OF CONTROLS AND STRUCTURES (DEC VAX VERSION)

    NASA Technical Reports Server (NTRS)

    Frisch, H. P.

    1994-01-01

    The Dynamic Interaction Simulation of Controls and Structure (DISCOS) program was developed for the dynamic simulation and stability analysis of passive and actively controlled spacecraft. In the use of DISCOS, the physical system undergoing analysis may be generally described as a cluster of contiguous flexible structures (bodies) that comprise a mechanical system, such as a spacecraft. The entire system (spacecraft) or portions thereof may be either spinning or nonspinning. Member bodies of the system may undergo large relative excursions, such as those of appendage deployment or rotor/ stator motion. The general system of bodies is, by its inherent nature, a feedback system in which inertial forces (such as those due to centrifugal and Coriolis acceleration) and the restoring and damping forces are motion-dependent. The system may possess a control system in which certain position and rate errors are actively controlled through the use of reaction control jets, servomotors, or momentum wheels. Bodies of the system may be interconnected by linear or nonlinear springs and dampers, by a gimbal and slider block mechanism, or by any combination of these. The DISCOS program can be used to obtain nonlinear and linearized time response of the system, interaction constant forces in the system, total system resonance properties, and frequency domain response and stability information for the system. DISCOS is probably the most powerful computational tool to date for the computer simulation of actively controlled coupled multi-flexible-body systems. The program is not easy to understand and effectively apply, but is not intended for simple problems. The DISCOS user is expected to have extensive working knowledge of rigid-body and flexible-body dynamics, finite-element techniques, numerical methods, and frequency-domain analysis. Various applications of DISCOS include simulation of the Shuttle payload deployment/retrieval mechanism, solar panel array deployment, antenna deployment, analysis of multispin satellites, and analysis of large, highly flexible satellites, including the design of attitude-control systems. The overall approach of DISCOS is unique in that any member body of the system may be flexible, and the system is not restricted to a topological tree configuration. The equations of motion are developed using the most general form of Lagrange's equations, including auxiliary nonholonomic rehenomic conditions of constraint. Lagrange multipliers are used as interaction forces/ torques to maintain prescribed constraints. Nonlinear flexible/rigid dynamic coupling effects are accounted for in unabridged fashion for individual bodies and for the total system. Elastic deformation can be represented by normal vibration modes or by any adequate series of Rayleigh functions, including 'quasi-static' displacement functions. To 'solve' Lagrange's equations of motion, the explicit form of the kinetic and potential energy functions, the dissipation function, and the form of the transformation relating ordinary Cartesian position coordinates to the generalized coordinates must be defined. The potential energy and dissipation functions for a structure are determined with standard finite-element techniques by the NASTRAN program. In order to use the computed functions, the Lagrange's equations and the system kinematic constraint equations are expressed in matrix format. These differential matrix equations are solved numerically by the DISCOS program. Provisions are included for environmental loading of the structure (spacecraft), including solar pressure, gravity gradient, and aerodynamic drag. Input to DISCOS includes topological and geometrical descriptions of the structure under analysis, initial conditions, control system descriptions, and NASTRAN-derived structural matrices. Specialized routines are supplied that read the input data and redimension the DISCOS programs to minimize core requirements. Output includes an extensive list of calculated parameters for each body of the structure, system state vector and its time derivatives, euler angles and position coordinates and their time derivatives, control system variables and their time derivatives, and various system parameters at a given simulation time. For linearized system analysis, output includes the various transfer matrices, eigenvectors, and calculated eigenvalues. The DISCOS program is available by license for a period of ten (10) years to approved licensees. The licensed program product delivered includes the source code and supporting documentation. Additional documentation may be purchased separately at any time. The IBM version of DISCOS is written in FORTRAN IV for batch execution and has been implemented on an IBM 360 series computer under OS with a central memory requirement of approximately 1,100K of 8 bit bytes. The DEC VAX version of DISCOS is written in FORTRAN for batch execution and has been implemented on a DEC VAX series computer under VMS. For plotted output a SC4020 plotting system is required. DISCOS was developed on the IBM in 1978 and was adapted (with enhancements) to the DEC VAX in 1982.

  19. DISCOS- DYNAMIC INTERACTION SIMULATION OF CONTROLS AND STRUCTURES (IBM VERSION)

    NASA Technical Reports Server (NTRS)

    Frisch, H. P.

    1994-01-01

    The Dynamic Interaction Simulation of Controls and Structure (DISCOS) program was developed for the dynamic simulation and stability analysis of passive and actively controlled spacecraft. In the use of DISCOS, the physical system undergoing analysis may be generally described as a cluster of contiguous flexible structures (bodies) that comprise a mechanical system, such as a spacecraft. The entire system (spacecraft) or portions thereof may be either spinning or nonspinning. Member bodies of the system may undergo large relative excursions, such as those of appendage deployment or rotor/ stator motion. The general system of bodies is, by its inherent nature, a feedback system in which inertial forces (such as those due to centrifugal and Coriolis acceleration) and the restoring and damping forces are motion-dependent. The system may possess a control system in which certain position and rate errors are actively controlled through the use of reaction control jets, servomotors, or momentum wheels. Bodies of the system may be interconnected by linear or nonlinear springs and dampers, by a gimbal and slider block mechanism, or by any combination of these. The DISCOS program can be used to obtain nonlinear and linearized time response of the system, interaction constant forces in the system, total system resonance properties, and frequency domain response and stability information for the system. DISCOS is probably the most powerful computational tool to date for the computer simulation of actively controlled coupled multi-flexible-body systems. The program is not easy to understand and effectively apply, but is not intended for simple problems. The DISCOS user is expected to have extensive working knowledge of rigid-body and flexible-body dynamics, finite-element techniques, numerical methods, and frequency-domain analysis. Various applications of DISCOS include simulation of the Shuttle payload deployment/retrieval mechanism, solar panel array deployment, antenna deployment, analysis of multispin satellites, and analysis of large, highly flexible satellites, including the design of attitude-control systems. The overall approach of DISCOS is unique in that any member body of the system may be flexible, and the system is not restricted to a topological tree configuration. The equations of motion are developed using the most general form of Lagrange's equations, including auxiliary nonholonomic rehenomic conditions of constraint. Lagrange multipliers are used as interaction forces/ torques to maintain prescribed constraints. Nonlinear flexible/rigid dynamic coupling effects are accounted for in unabridged fashion for individual bodies and for the total system. Elastic deformation can be represented by normal vibration modes or by any adequate series of Rayleigh functions, including 'quasi-static' displacement functions. To 'solve' Lagrange's equations of motion, the explicit form of the kinetic and potential energy functions, the dissipation function, and the form of the transformation relating ordinary Cartesian position coordinates to the generalized coordinates must be defined. The potential energy and dissipation functions for a structure are determined with standard finite-element techniques by the NASTRAN program. In order to use the computed functions, the Lagrange's equations and the system kinematic constraint equations are expressed in matrix format. These differential matrix equations are solved numerically by the DISCOS program. Provisions are included for environmental loading of the structure (spacecraft), including solar pressure, gravity gradient, and aerodynamic drag. Input to DISCOS includes topological and geometrical descriptions of the structure under analysis, initial conditions, control system descriptions, and NASTRAN-derived structural matrices. Specialized routines are supplied that read the input data and redimension the DISCOS programs to minimize core requirements. Output includes an extensive list of calculated parameters for each body of the structure, system state vector and its time derivatives, euler angles and position coordinates and their time derivatives, control system variables and their time derivatives, and various system parameters at a given simulation time. For linearized system analysis, output includes the various transfer matrices, eigenvectors, and calculated eigenvalues. The DISCOS program is available by license for a period of ten (10) years to approved licensees. The licensed program product delivered includes the source code and supporting documentation. Additional documentation may be purchased separately at any time. The IBM version of DISCOS is written in FORTRAN IV for batch execution and has been implemented on an IBM 360 series computer under OS with a central memory requirement of approximately 1,100K of 8 bit bytes. The DEC VAX version of DISCOS is written in FORTRAN for batch execution and has been implemented on a DEC VAX series computer under VMS. For plotted output a SC4020 plotting system is required. DISCOS was developed on the IBM in 1978 and was adapted (with enhancements) to the DEC VAX in 1982.

  20. Efficient dynamic modeling of manipulators containing closed kinematic loops

    NASA Astrophysics Data System (ADS)

    Ferretti, Gianni; Rocco, Paolo

    An approach to efficiently solve the forward dynamics problem for manipulators containing closed chains is proposed. The two main distinctive features of this approach are: the dynamics of the equivalent open loop tree structures (any closed loop can be in general modeled by imposing some additional kinematic constraints to a suitable tree structure) is computed through an efficient Newton Euler formulation; the constraint equations relative to the most commonly adopted closed chains in industrial manipulators are explicitly solved, thus, overcoming the redundancy of Lagrange's multipliers method while avoiding the inefficiency due to a numerical solution of the implicit constraint equations. The constraint equations considered for an explicit solution are those imposed by articulated gear mechanisms and planar closed chains (pantograph type structures). Articulated gear mechanisms are actually used in all industrial robots to transmit motion from actuators to links, while planar closed chains are usefully employed to increase the stiffness of the manipulators and their load capacity, as well to reduce the kinematic coupling of joint axes. The accuracy and the efficiency of the proposed approach are shown through a simulation test.

  1. A BRST formulation for the conic constrained particle

    NASA Astrophysics Data System (ADS)

    Barbosa, Gabriel D.; Thibes, Ronaldo

    2018-04-01

    We describe the gauge invariant BRST formulation of a particle constrained to move in a general conic. The model considered constitutes an explicit example of an originally second-class system which can be quantized within the BRST framework. We initially impose the conic constraint by means of a Lagrange multiplier leading to a consistent second-class system which generalizes previous models studied in the literature. After calculating the constraint structure and the corresponding Dirac brackets, we introduce a suitable first-order Lagrangian, the resulting modified system is then shown to be gauge invariant. We proceed to the extended phase space introducing fermionic ghost variables, exhibiting the BRST symmetry transformations and writing the Green’s function generating functional for the BRST quantized model.

  2. Spontaneous Lorentz and diffeomorphism violation, massive modes, and gravity

    NASA Astrophysics Data System (ADS)

    Bluhm, Robert; Fung, Shu-Hong; Kostelecký, V. Alan

    2008-03-01

    Theories with spontaneous local Lorentz and diffeomorphism violation contain massless Nambu-Goldstone modes, which arise as field excitations in the minimum of the symmetry-breaking potential. If the shape of the potential also allows excitations above the minimum, then an alternative gravitational Higgs mechanism can occur in which massive modes involving the metric appear. The origin and basic properties of the massive modes are addressed in the general context involving an arbitrary tensor vacuum value. Special attention is given to the case of bumblebee models, which are gravitationally coupled vector theories with spontaneous local Lorentz and diffeomorphism violation. Mode expansions are presented in both local and spacetime frames, revealing the Nambu-Goldstone and massive modes via decomposition of the metric and bumblebee fields, and the associated symmetry properties and gauge fixing are discussed. The class of bumblebee models with kinetic terms of the Maxwell form is used as a focus for more detailed study. The nature of the associated conservation laws and the interpretation as a candidate alternative to Einstein-Maxwell theory are investigated. Explicit examples involving smooth and Lagrange-multiplier potentials are studied to illustrate features of the massive modes, including their origin, nature, dispersion laws, and effects on gravitational interactions. In the weak static limit, the massive mode and Lagrange-multiplier fields are found to modify the Newton and Coulomb potentials. The nature and implications of these modifications are examined.

  3. A MULTIPLE GRID APPROACH FOR OPEN CHANNEL FLOWS WITH STRONG SHOCKS. (R825200)

    EPA Science Inventory

    Abstract

    Explicit finite difference schemes are being widely used for modeling open channel flows accompanied with shocks. A characteristic feature of explicit schemes is the small time step, which is limited by the CFL stability condition. To overcome this limitation,...

  4. Beta Regression Finite Mixture Models of Polarization and Priming

    ERIC Educational Resources Information Center

    Smithson, Michael; Merkle, Edgar C.; Verkuilen, Jay

    2011-01-01

    This paper describes the application of finite-mixture general linear models based on the beta distribution to modeling response styles, polarization, anchoring, and priming effects in probability judgments. These models, in turn, enhance our capacity for explicitly testing models and theories regarding the aforementioned phenomena. The mixture…

  5. Numerical solution of the unsteady diffusion-convection-reaction equation based on improved spectral Galerkin method

    NASA Astrophysics Data System (ADS)

    Zhong, Jiaqi; Zeng, Cheng; Yuan, Yupeng; Zhang, Yuzhe; Zhang, Ye

    2018-04-01

    The aim of this paper is to present an explicit numerical algorithm based on improved spectral Galerkin method for solving the unsteady diffusion-convection-reaction equation. The principal characteristics of this approach give the explicit eigenvalues and eigenvectors based on the time-space separation method and boundary condition analysis. With the help of Fourier series and Galerkin truncation, we can obtain the finite-dimensional ordinary differential equations which facilitate the system analysis and controller design. By comparing with the finite element method, the numerical solutions are demonstrated via two examples. It is shown that the proposed method is effective.

  6. A positivity preserving and conservative variational scheme for phase-field modeling of two-phase flows

    NASA Astrophysics Data System (ADS)

    Joshi, Vaibhav; Jaiman, Rajeev K.

    2018-05-01

    We present a positivity preserving variational scheme for the phase-field modeling of incompressible two-phase flows with high density ratio. The variational finite element technique relies on the Allen-Cahn phase-field equation for capturing the phase interface on a fixed Eulerian mesh with mass conservative and energy-stable discretization. The mass conservation is achieved by enforcing a Lagrange multiplier which has both temporal and spatial dependence on the underlying solution of the phase-field equation. To make the scheme energy-stable in a variational sense, we discretize the spatial part of the Lagrange multiplier in the phase-field equation by the mid-point approximation. The proposed variational technique is designed to reduce the spurious and unphysical oscillations in the solution while maintaining the second-order accuracy of both spatial and temporal discretizations. We integrate the Allen-Cahn phase-field equation with the incompressible Navier-Stokes equations for modeling a broad range of two-phase flow and fluid-fluid interface problems. The coupling of the implicit discretizations corresponding to the phase-field and the incompressible flow equations is achieved via nonlinear partitioned iterative procedure. Comparison of results between the standard linear stabilized finite element method and the present variational formulation shows a remarkable reduction of oscillations in the solution while retaining the boundedness of the phase-indicator field. We perform a standalone test to verify the accuracy and stability of the Allen-Cahn two-phase solver. We examine the convergence and accuracy properties of the coupled phase-field solver through the standard benchmarks of the Laplace-Young law and a sloshing tank problem. Two- and three-dimensional dam break problems are simulated to assess the capability of the phase-field solver for complex air-water interfaces involving topological changes on unstructured meshes. Finally, we demonstrate the phase-field solver for a practical offshore engineering application of wave-structure interaction.

  7. Automatic partitioning of unstructured meshes for the parallel solution of problems in computational mechanics

    NASA Technical Reports Server (NTRS)

    Farhat, Charbel; Lesoinne, Michel

    1993-01-01

    Most of the recently proposed computational methods for solving partial differential equations on multiprocessor architectures stem from the 'divide and conquer' paradigm and involve some form of domain decomposition. For those methods which also require grids of points or patches of elements, it is often necessary to explicitly partition the underlying mesh, especially when working with local memory parallel processors. In this paper, a family of cost-effective algorithms for the automatic partitioning of arbitrary two- and three-dimensional finite element and finite difference meshes is presented and discussed in view of a domain decomposed solution procedure and parallel processing. The influence of the algorithmic aspects of a solution method (implicit/explicit computations), and the architectural specifics of a multiprocessor (SIMD/MIMD, startup/transmission time), on the design of a mesh partitioning algorithm are discussed. The impact of the partitioning strategy on load balancing, operation count, operator conditioning, rate of convergence and processor mapping is also addressed. Finally, the proposed mesh decomposition algorithms are demonstrated with realistic examples of finite element, finite volume, and finite difference meshes associated with the parallel solution of solid and fluid mechanics problems on the iPSC/2 and iPSC/860 multiprocessors.

  8. What Did We Think Could Be Learned About Earth From Lagrange Point Observations?

    NASA Technical Reports Server (NTRS)

    Wiscombe, Warren

    2011-01-01

    The scientific excitement surrounding the NASA Lagrange point mission Triana, now called DSCOVR, tended to be forgotten in the brouhaha over other aspects of the mission. Yet a small band of scientists in 1998 got very excited about the possibilities offered by the Lagrange-point perspective on our planet. As one of the original co-investigators on the Triana mission, I witnessed that scientific excitement firsthand. I will bring to life the early period, circa 1998 to 2000, and share the reasons that we thought the Lagrange-point perspective on Earth would be scientifically revolutionary.

  9. Chebyshev collocation spectral method for one-dimensional radiative heat transfer in linearly anisotropic-scattering cylindrical medium

    NASA Astrophysics Data System (ADS)

    Zhou, Rui-Rui; Li, Ben-Wen

    2017-03-01

    In this study, the Chebyshev collocation spectral method (CCSM) is developed to solve the radiative integro-differential transfer equation (RIDTE) for one-dimensional absorbing, emitting and linearly anisotropic-scattering cylindrical medium. The general form of quadrature formulas for Chebyshev collocation points is deduced. These formulas are proved to have the same accuracy as the Gauss-Legendre quadrature formula (GLQF) for the F-function (geometric function) in the RIDTE. The explicit expressions of the Lagrange basis polynomials and the differentiation matrices for Chebyshev collocation points are also given. These expressions are necessary for solving an integro-differential equation by the CCSM. Since the integrand in the RIDTE is continuous but non-smooth, it is treated by the segments integration method (SIM). The derivative terms in the RIDTE are carried out to improve the accuracy near the origin. In this way, a fourth order accuracy is achieved by the CCSM for the RIDTE, whereas it's only a second order one by the finite difference method (FDM). Several benchmark problems (BPs) with various combinations of optical thickness, medium temperature distribution, degree of anisotropy, and scattering albedo are solved. The results show that present CCSM is efficient to obtain high accurate results, especially for the optically thin medium. The solutions rounded to seven significant digits are given in tabular form, and show excellent agreement with the published data. Finally, the solutions of RIDTE are used as benchmarks for the solution of radiative integral transfer equations (RITEs) presented by Sutton and Chen (JQSRT 84 (2004) 65-103). A non-uniform grid refined near the wall is advised to improve the accuracy of RITEs solutions.

  10. Full three-dimensional investigation of structural contact interactions in turbomachines

    NASA Astrophysics Data System (ADS)

    Legrand, Mathias; Batailly, Alain; Magnain, Benoît; Cartraud, Patrice; Pierre, Christophe

    2012-05-01

    Minimizing the operating clearance between rotating bladed-disks and stationary surrounding casings is a primary concern in the design of modern turbomachines since it may advantageously affect their energy efficiency. This technical choice possibly leads to interactions between elastic structural components through direct unilateral contact and dry friction, events which are now accepted as normal operating conditions. Subsequent nonlinear dynamical behaviors of such systems are commonly investigated with simplified academic models mainly due to theoretical difficulties and numerical challenges involved in non-smooth large-scale realistic models. In this context, the present paper introduces an adaptation of a full three-dimensional contact strategy for the prediction of potentially damaging motions that would imply highly demanding computational efforts for the targeted aerospace application in an industrial context. It combines a smoothing procedure including bicubic B-spline patches together with a Lagrange multiplier based contact strategy within an explicit time-marching integration procedure preferred for its versatility. The proposed algorithm is first compared on a benchmark configuration against the more elaborated bi-potential formulation and the commercial software Ansys. The consistency of the provided results and the low energy fluctuations of the introduced approach underlines its reliable numerical properties. A case study featuring blade-tip/casing contact on industrial finite element models is then proposed: it incorporates component mode synthesis and the developed three-dimensional contact algorithm for investigating structural interactions occurring within a turbomachine compressor stage. Both time results and frequency-domain analysis emphasize the practical use of such a numerical tool: detection of severe operating conditions and critical rotational velocities, time-dependent maps of stresses acting within the structures, parameter studies and blade design tests.

  11. A fast immersed boundary method for external incompressible viscous flows using lattice Green's functions

    NASA Astrophysics Data System (ADS)

    Liska, Sebastian; Colonius, Tim

    2017-02-01

    A new parallel, computationally efficient immersed boundary method for solving three-dimensional, viscous, incompressible flows on unbounded domains is presented. Immersed surfaces with prescribed motions are generated using the interpolation and regularization operators obtained from the discrete delta function approach of the original (Peskin's) immersed boundary method. Unlike Peskin's method, boundary forces are regarded as Lagrange multipliers that are used to satisfy the no-slip condition. The incompressible Navier-Stokes equations are discretized on an unbounded staggered Cartesian grid and are solved in a finite number of operations using lattice Green's function techniques. These techniques are used to automatically enforce the natural free-space boundary conditions and to implement a novel block-wise adaptive grid that significantly reduces the run-time cost of solutions by limiting operations to grid cells in the immediate vicinity and near-wake region of the immersed surface. These techniques also enable the construction of practical discrete viscous integrating factors that are used in combination with specialized half-explicit Runge-Kutta schemes to accurately and efficiently solve the differential algebraic equations describing the discrete momentum equation, incompressibility constraint, and no-slip constraint. Linear systems of equations resulting from the time integration scheme are efficiently solved using an approximation-free nested projection technique. The algebraic properties of the discrete operators are used to reduce projection steps to simple discrete elliptic problems, e.g. discrete Poisson problems, that are compatible with recent parallel fast multipole methods for difference equations. Numerical experiments on low-aspect-ratio flat plates and spheres at Reynolds numbers up to 3700 are used to verify the accuracy and physical fidelity of the formulation.

  12. A new approach to enforce element-wise mass/species balance using the augmented Lagrangian method

    NASA Astrophysics Data System (ADS)

    Chang, J.; Nakshatrala, K.

    2015-12-01

    The least-squares finite element method (LSFEM) is one of many ways in which one can discretize and express a set of first ordered partial differential equations as a mixed formulation. However, the standard LSFEM is not locally conservative by design. The absence of this physical property can have serious implications in the numerical simulation of subsurface flow and transport. Two commonly employed ways to circumvent this issue is through the Lagrange multiplier method, which explicitly satisfies the element-wise divergence by introducing new unknowns, or through appending a penalty factor to the continuity constraint, which reduces the violation in the mass balance. However, these methodologies have some well-known drawbacks. Herein, we propose a new approach to improve the local balance of species/mass balance. The approach augments constraints to a least-square function by a novel mathematical construction of the local species/mass balance, which is different from the conventional ways. The resulting constrained optimization problem is solved using the augmented Lagrangian, which corrects the balance errors in an iterative fashion. The advantages of this methodology are that the problem size is not increased (thus preserving the symmetry and positive definite-ness) and that one need not provide an accurate guess for the initial penalty to reach a prescribed mass balance tolerance. We derive the least-squares weighting needed to ensure accurate solutions. We also demonstrate the robustness of the weighted LSFEM coupled with the augmented Lagrangian by solving large-scale heterogenous and variably saturated flow through porous media problems. The performance of the iterative solvers with respect to various user-defined augmented Lagrangian parameters will be documented.

  13. Crashdynamics with DYNA3D: Capabilities and research directions

    NASA Technical Reports Server (NTRS)

    Whirley, Robert G.; Engelmann, Bruce E.

    1993-01-01

    The application of the explicit nonlinear finite element analysis code DYNA3D to crashworthiness problems is discussed. Emphasized in the first part of this work are the most important capabilities of an explicit code for crashworthiness analyses. The areas with significant research promise for the computational simulation of crash events are then addressed.

  14. Finite Element Analysis of Geodesically Stiffened Cylindrical Composite Shells Using a Layerwise Theory

    NASA Technical Reports Server (NTRS)

    Gerhard, Craig Steven; Gurdal, Zafer; Kapania, Rakesh K.

    1996-01-01

    Layerwise finite element analyses of geodesically stiffened cylindrical shells are presented. The layerwise laminate theory of Reddy (LWTR) is developed and adapted to circular cylindrical shells. The Ritz variational method is used to develop an analytical approach for studying the buckling of simply supported geodesically stiffened shells with discrete stiffeners. This method utilizes a Lagrange multiplier technique to attach the stiffeners to the shell. The development of the layerwise shells couples a one-dimensional finite element through the thickness with a Navier solution that satisfies the boundary conditions. The buckling results from the Ritz discrete analytical method are compared with smeared buckling results and with NASA Testbed finite element results. The development of layerwise shell and beam finite elements is presented and these elements are used to perform the displacement field, stress, and first-ply failure analyses. The layerwise shell elements are used to model the shell skin and the layerwise beam elements are used to model the stiffeners. This arrangement allows the beam stiffeners to be assembled directly into the global stiffness matrix. A series of analytical studies are made to compare the response of geodesically stiffened shells as a function of loading, shell geometry, shell radii, shell laminate thickness, stiffener height, and geometric nonlinearity. Comparisons of the structural response of geodesically stiffened shells, axial and ring stiffened shells, and unstiffened shells are provided. In addition, interlaminar stress results near the stiffener intersection are presented. First-ply failure analyses for geodesically stiffened shells utilizing the Tsai-Wu failure criterion are presented for a few selected cases.

  15. A new solution method for wheel/rail rolling contact.

    PubMed

    Yang, Jian; Song, Hua; Fu, Lihua; Wang, Meng; Li, Wei

    2016-01-01

    To solve the problem of wheel/rail rolling contact of nonlinear steady-state curving, a three-dimensional transient finite element (FE) model is developed by the explicit software ANSYS/LS-DYNA. To improve the solving speed and efficiency, an explicit-explicit order solution method is put forward based on analysis of the features of implicit and explicit algorithm. The solution method was first applied to calculate the pre-loading of wheel/rail rolling contact with explicit algorithm, and then the results became the initial conditions in solving the dynamic process of wheel/rail rolling contact with explicit algorithm as well. Simultaneously, the common implicit-explicit order solution method is used to solve the FE model. Results show that the explicit-explicit order solution method has faster operation speed and higher efficiency than the implicit-explicit order solution method while the solution accuracy is almost the same. Hence, the explicit-explicit order solution method is more suitable for the wheel/rail rolling contact model with large scale and high nonlinearity.

  16. Engine dynamic analysis with general nonlinear finite element codes. Part 2: Bearing element implementation overall numerical characteristics and benchmaking

    NASA Technical Reports Server (NTRS)

    Padovan, J.; Adams, M.; Fertis, J.; Zeid, I.; Lam, P.

    1982-01-01

    Finite element codes are used in modelling rotor-bearing-stator structure common to the turbine industry. Engine dynamic simulation is used by developing strategies which enable the use of available finite element codes. benchmarking the elements developed are benchmarked by incorporation into a general purpose code (ADINA); the numerical characteristics of finite element type rotor-bearing-stator simulations are evaluated through the use of various types of explicit/implicit numerical integration operators. Improving the overall numerical efficiency of the procedure is improved.

  17. A time-spectral approach to numerical weather prediction

    NASA Astrophysics Data System (ADS)

    Scheffel, Jan; Lindvall, Kristoffer; Yik, Hiu Fai

    2018-05-01

    Finite difference methods are traditionally used for modelling the time domain in numerical weather prediction (NWP). Time-spectral solution is an attractive alternative for reasons of accuracy and efficiency and because time step limitations associated with causal CFL-like criteria, typical for explicit finite difference methods, are avoided. In this work, the Lorenz 1984 chaotic equations are solved using the time-spectral algorithm GWRM (Generalized Weighted Residual Method). Comparisons of accuracy and efficiency are carried out for both explicit and implicit time-stepping algorithms. It is found that the efficiency of the GWRM compares well with these methods, in particular at high accuracy. For perturbative scenarios, the GWRM was found to be as much as four times faster than the finite difference methods. A primary reason is that the GWRM time intervals typically are two orders of magnitude larger than those of the finite difference methods. The GWRM has the additional advantage to produce analytical solutions in the form of Chebyshev series expansions. The results are encouraging for pursuing further studies, including spatial dependence, of the relevance of time-spectral methods for NWP modelling.

  18. Self-Learning Variable Structure Control for a Class of Sensor-Actuator Systems

    PubMed Central

    Chen, Sanfeng; Li, Shuai; Liu, Bo; Lou, Yuesheng; Liang, Yongsheng

    2012-01-01

    Variable structure strategy is widely used for the control of sensor-actuator systems modeled by Euler-Lagrange equations. However, accurate knowledge on the model structure and model parameters are often required for the control design. In this paper, we consider model-free variable structure control of a class of sensor-actuator systems, where only the online input and output of the system are available while the mathematic model of the system is unknown. The problem is formulated from an optimal control perspective and the implicit form of the control law are analytically obtained by using the principle of optimality. The control law and the optimal cost function are explicitly solved iteratively. Simulations demonstrate the effectiveness and the efficiency of the proposed method. PMID:22778633

  19. Modified Lagrange invariants and their role in determining transverse and axial imaging resolutions of self-interference incoherent holographic systems.

    PubMed

    Rosen, Joseph; Kelner, Roy

    2014-11-17

    The Lagrange invariant is a well-known law for optical imaging systems formulated in the frame of ray optics. In this study, we reformulate this law in terms of wave optics and relate it to the resolution limits of various imaging systems. Furthermore, this modified Lagrange invariant is generalized for imaging along the z axis, resulting with the axial Lagrange invariant which can be used to analyze the axial resolution of various imaging systems. To demonstrate the effectiveness of the theory, analysis of the lateral and the axial imaging resolutions is provided for Fresnel incoherent correlation holography (FINCH) systems.

  20. Modeling the behaviour of shape memory materials under large deformations

    NASA Astrophysics Data System (ADS)

    Rogovoy, A. A.; Stolbova, O. S.

    2017-06-01

    In this study, the models describing the behavior of shape memory alloys, ferromagnetic materials and polymers have been constructed, using a formalized approach to develop the constitutive equations for complex media under large deformations. The kinematic and constitutive equations, satisfying the principles of thermodynamics and objectivity, have been derived. The application of the Galerkin procedure to the systems of equations of solid mechanics allowed us to obtain the Lagrange variational equation and variational formulation of the magnetostatics problems. These relations have been tested in the context of the problems of finite deformation in shape memory alloys and ferromagnetic materials during forward and reverse martensitic transformations and in shape memory polymers during forward and reverse relaxation transitions from a highly elastic to a glassy state.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jimenez, Bienvenido; Novo, Vicente

    We provide second-order necessary and sufficient conditions for a point to be an efficient element of a set with respect to a cone in a normed space, so that there is only a small gap between necessary and sufficient conditions. To this aim, we use the common second-order tangent set and the asymptotic second-order cone utilized by Penot. As an application we establish second-order necessary conditions for a point to be a solution of a vector optimization problem with an arbitrary feasible set and a twice Frechet differentiable objective function between two normed spaces. We also establish second-order sufficient conditionsmore » when the initial space is finite-dimensional so that there is no gap with necessary conditions. Lagrange multiplier rules are also given.« less

  2. FV-MHMM: A Discussion on Weighting Schemes.

    NASA Astrophysics Data System (ADS)

    Franc, J.; Gerald, D.; Jeannin, L.; Egermann, P.; Masson, R.

    2016-12-01

    Upscaling or homogenization techniques consist in finding block-equivalentor equivalent upscaled properties on a coarse grid from heterogeneousproperties defined on an underlying fine grid. However, this couldbecome costly and resource consuming. Harder et al., 2013, have developeda Multiscale Hybrid-Mixed Method (MHMM) of upscaling to treat Darcytype equations on heterogeneous fields formulated using a finite elementmethod. Recently, Franc et al. 2016, has extended this method of upscalingto finite volume formulation (FV-MHMM). Although convergence refiningLagrange multipliers space has been observed, numerical artefactscan occur while trapping numerically the flow in regions of low permeability. This work will present the development of the method along with theresults obtained from its classical formulation. Then, two weightingschemes and their benefits on the FV-MHMM method will be presented insome simple random permeability cases. Next example will involve alarger heterogeneous 2D permeability field extracted from the 10thSPE test case. Eventually, multiphase flow will be addressed asan extension of this single phase flow method. An elliptic pressureequation solved on the coarse grid via FV-MHMM will be sequentiallycoupled with a hyperbolic saturation equation on the fine grid. Theimproved accuracy thanks to the weighting scheme will be measuredcompared to a finite volume fine grid solution. References: Harder, C., Paredes, D. and Valentin, F., A family of multiscalehybrid-mixed finite element methods for the Darcy equation with roughcoefficients, Journal of Computational Physics, 2013. Franc J., Debenest G., Jeannin L., Egermann P. and Masson R., FV-MHMMfor reservoir modelling ECMOR XV-15th European Conference on the Mathematicsof Oil Recovery, 2015.

  3. Efficiency Study of Implicit and Explicit Time Integration Operators for Finite Element Applications

    DTIC Science & Technology

    1977-07-01

    cffiAciency, wherein Beta =0 provides anl exp~licit algorithm, wvhile Beta &0 provides anl implicit algorithm. Both algorithmns arc used in the same...Hlueneme CA: CO, Code C44A Port j IHuenemne, CA NAVSEC Cod,. 6034 (Library), Washington DC NAVSI*CGRUAC’I’ PWO, ’rorri Sta, OkinawaI NAVSIIIPRBFTAC Library

  4. Local finite element enrichment strategies for 2D contact computations and a corresponding post-processing scheme

    NASA Astrophysics Data System (ADS)

    Sauer, Roger A.

    2013-08-01

    Recently an enriched contact finite element formulation has been developed that substantially increases the accuracy of contact computations while keeping the additional numerical effort at a minimum reported by Sauer (Int J Numer Meth Eng, 87: 593-616, 2011). Two enrich-ment strategies were proposed, one based on local p-refinement using Lagrange interpolation and one based on Hermite interpolation that produces C 1-smoothness on the contact surface. Both classes, which were initially considered for the frictionless Signorini problem, are extended here to friction and contact between deformable bodies. For this, a symmetric contact formulation is used that allows the unbiased treatment of both contact partners. This paper also proposes a post-processing scheme for contact quantities like the contact pressure. The scheme, which provides a more accurate representation than the raw data, is based on an averaging procedure that is inspired by mortar formulations. The properties of the enrichment strategies and the corresponding post-processing scheme are illustrated by several numerical examples considering sliding and peeling contact in the presence of large deformations.

  5. Design of an essentially non-oscillatory reconstruction procedure on finite-element type meshes

    NASA Technical Reports Server (NTRS)

    Abgrall, R.

    1991-01-01

    An essentially non-oscillatory reconstruction for functions defined on finite-element type meshes was designed. Two related problems are studied: the interpolation of possibly unsmooth multivariate functions on arbitrary meshes and the reconstruction of a function from its average in the control volumes surrounding the nodes of the mesh. Concerning the first problem, we have studied the behavior of the highest coefficients of the Lagrange interpolation function which may admit discontinuities of locally regular curves. This enables us to choose the best stencil for the interpolation. The choice of the smallest possible number of stencils is addressed. Concerning the reconstruction problem, because of the very nature of the mesh, the only method that may work is the so called reconstruction via deconvolution method. Unfortunately, it is well suited only for regular meshes as we show, but we also show how to overcome this difficulty. The global method has the expected order of accuracy but is conservative up to a high order quadrature formula only. Some numerical examples are given which demonstrate the efficiency of the method.

  6. Transient modeling/analysis of hyperbolic heat conduction problems employing mixed implicit-explicit alpha method

    NASA Technical Reports Server (NTRS)

    Tamma, Kumar K.; D'Costa, Joseph F.

    1991-01-01

    This paper describes the evaluation of mixed implicit-explicit finite element formulations for hyperbolic heat conduction problems involving non-Fourier effects. In particular, mixed implicit-explicit formulations employing the alpha method proposed by Hughes et al. (1987, 1990) are described for the numerical simulation of hyperbolic heat conduction models, which involves time-dependent relaxation effects. Existing analytical approaches for modeling/analysis of such models involve complex mathematical formulations for obtaining closed-form solutions, while in certain numerical formulations the difficulties include severe oscillatory solution behavior (which often disguises the true response) in the vicinity of the thermal disturbances, which propagate with finite velocities. In view of these factors, the alpha method is evaluated to assess the control of the amount of numerical dissipation for predicting the transient propagating thermal disturbances. Numerical test models are presented, and pertinent conclusions are drawn for the mixed-time integration simulation of hyperbolic heat conduction models involving non-Fourier effects.

  7. Integración automatizada de las ecuaciones de Lagrange en el movimiento orbital.

    NASA Astrophysics Data System (ADS)

    Abad, A.; San Juan, J. F.

    The new techniques of algebraic manipulation, especially the Poisson Series Processor, permit the analytical integration of the more and more complex problems of celestial mechanics. The authors are developing a new Poisson Series Processor, PSPC, and they use it to solve the Lagrange equation of the orbital motion. They integrate the Lagrange equation by using the stroboscopic method, and apply it to the main problem of the artificial satellite theory.

  8. A note on singularities of the 3-D Euler equation

    NASA Technical Reports Server (NTRS)

    Tanveer, S.

    1994-01-01

    In this paper, we consider analytic initial conditions with finite energy, whose complex spatial continuation is a superposition of a smooth background flow and a singular field. Through explicit calculation in the complex plane, we show that under some assumptions, the solution to the 3-D Euler equation ceases to be analytic in the real domain in finite time.

  9. Hamiltonian dynamics of extended objects

    NASA Astrophysics Data System (ADS)

    Capovilla, R.; Guven, J.; Rojas, E.

    2004-12-01

    We consider relativistic extended objects described by a reparametrization-invariant local action that depends on the extrinsic curvature of the worldvolume swept out by the object as it evolves. We provide a Hamiltonian formulation of the dynamics of such higher derivative models which is motivated by the ADM formulation of general relativity. The canonical momenta are identified by looking at boundary behaviour under small deformations of the action; the relationship between the momentum conjugate to the embedding functions and the conserved momentum density is established. The canonical Hamiltonian is constructed explicitly; the constraints on the phase space, both primary and secondary, are identified and the role they play in the theory is described. The multipliers implementing the primary constraints are identified in terms of the ADM lapse and shift variables and Hamilton's equations are shown to be consistent with the Euler Lagrange equations.

  10. Aeroelastic Studies of a Rectangular Wing with a Hole: Correlation of Theory and Experiment

    NASA Technical Reports Server (NTRS)

    Conyers, Howard J.; Dowell, Earl H.; Hall, Kenneth C.

    2010-01-01

    Two rectangular wing models with a hole have been designed and tested in the Duke University wind tunnel to better understand the effects of damage. A rectangular hole is used to simulate damage. The wing with a hole is modeled structurally as a thin elastic plate using the finite element method. The unsteady aerodynamics of the plate-like wing with a hole is modeled using the doublet lattice method. The aeroelastic equations of motion are derived using Lagrange's equation. The flutter boundary is found using the V-g method. The hole's location effects the wing's mass, stiffness, aerodynamics and therefore the aeroelastic behavior. Linear theoretical models were shown to be capable of predicting the critical flutter velocity and frequency as verified by wind tunnel tests.

  11. Explicit time integration of finite element models on a vectorized, concurrent computer with shared memory

    NASA Technical Reports Server (NTRS)

    Gilbertsen, Noreen D.; Belytschko, Ted

    1990-01-01

    The implementation of a nonlinear explicit program on a vectorized, concurrent computer with shared memory is described and studied. The conflict between vectorization and concurrency is described and some guidelines are given for optimal block sizes. Several example problems are summarized to illustrate the types of speed-ups which can be achieved by reprogramming as compared to compiler optimization.

  12. 1. EXTERIOR VIEW OF 209 WARE STREET LOOKING SOUTH. THIS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. EXTERIOR VIEW OF 209 WARE STREET LOOKING SOUTH. THIS STRUCTURE WAS ONE OF APPROXIMATELY SEVENTEEN DUPLEXES BUILT AS THE ORIGINAL WORKER HOUSING FOR THE LaGRANGE COTTON MILLS, LATER KNOWN AS CALUMET MILL. LaGRANGE MILLS (1888-89) WAS THE FIRST COTTON MILL IN LaGRANGE. NOTE THE GABLE-ON-HIP ROOF FORM AND TWO IDENTICAL STRUCTURES VISIBLE TO THE LEFT. - 209 Ware Street (House), 209 Ware Street, La Grange, Troup County, GA

  13. Upscaling of Mixed Finite Element Discretization Problems by the Spectral AMGe Method

    DOE PAGES

    Kalchev, Delyan Z.; Lee, C. S.; Villa, U.; ...

    2016-09-22

    Here, we propose two multilevel spectral techniques for constructing coarse discretization spaces for saddle-point problems corresponding to PDEs involving a divergence constraint, with a focus on mixed finite element discretizations of scalar self-adjoint second order elliptic equations on general unstructured grids. We use element agglomeration algebraic multigrid (AMGe), which employs coarse elements that can have nonstandard shape since they are agglomerates of fine-grid elements. The coarse basis associated with each agglomerated coarse element is constructed by solving local eigenvalue problems and local mixed finite element problems. This construction leads to stable upscaled coarse spaces and guarantees the inf-sup compatibility ofmore » the upscaled discretization. Also, the approximation properties of these upscaled spaces improve by adding more local eigenfunctions to the coarse spaces. The higher accuracy comes at the cost of additional computational effort, as the sparsity of the resulting upscaled coarse discretization (referred to as operator complexity) deteriorates when we introduce additional functions in the coarse space. We also provide an efficient solver for the coarse (upscaled) saddle-point system by employing hybridization, which leads to a symmetric positive definite (s.p.d.) reduced system for the Lagrange multipliers, and to solve the latter s.p.d. system, we use our previously developed spectral AMGe solver. Numerical experiments, in both two and three dimensions, are provided to illustrate the efficiency of the proposed upscaling technique.« less

  14. Upscaling of Mixed Finite Element Discretization Problems by the Spectral AMGe Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalchev, Delyan Z.; Lee, C. S.; Villa, U.

    Here, we propose two multilevel spectral techniques for constructing coarse discretization spaces for saddle-point problems corresponding to PDEs involving a divergence constraint, with a focus on mixed finite element discretizations of scalar self-adjoint second order elliptic equations on general unstructured grids. We use element agglomeration algebraic multigrid (AMGe), which employs coarse elements that can have nonstandard shape since they are agglomerates of fine-grid elements. The coarse basis associated with each agglomerated coarse element is constructed by solving local eigenvalue problems and local mixed finite element problems. This construction leads to stable upscaled coarse spaces and guarantees the inf-sup compatibility ofmore » the upscaled discretization. Also, the approximation properties of these upscaled spaces improve by adding more local eigenfunctions to the coarse spaces. The higher accuracy comes at the cost of additional computational effort, as the sparsity of the resulting upscaled coarse discretization (referred to as operator complexity) deteriorates when we introduce additional functions in the coarse space. We also provide an efficient solver for the coarse (upscaled) saddle-point system by employing hybridization, which leads to a symmetric positive definite (s.p.d.) reduced system for the Lagrange multipliers, and to solve the latter s.p.d. system, we use our previously developed spectral AMGe solver. Numerical experiments, in both two and three dimensions, are provided to illustrate the efficiency of the proposed upscaling technique.« less

  15. A Jacobian-free Newton Krylov method for mortar-discretized thermomechanical contact problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Glen, E-mail: Glen.Hansen@inl.gov

    2011-07-20

    Multibody contact problems are common within the field of multiphysics simulation. Applications involving thermomechanical contact scenarios are also quite prevalent. Such problems can be challenging to solve due to the likelihood of thermal expansion affecting contact geometry which, in turn, can change the thermal behavior of the components being analyzed. This paper explores a simple model of a light water reactor nuclear fuel rod, which consists of cylindrical pellets of uranium dioxide (UO{sub 2}) fuel sealed within a Zircalloy cladding tube. The tube is initially filled with helium gas, which fills the gap between the pellets and cladding tube. Themore » accurate modeling of heat transfer across the gap between fuel pellets and the protective cladding is essential to understanding fuel performance, including cladding stress and behavior under irradiated conditions, which are factors that affect the lifetime of the fuel. The thermomechanical contact approach developed here is based on the mortar finite element method, where Lagrange multipliers are used to enforce weak continuity constraints at participating interfaces. In this formulation, the heat equation couples to linear mechanics through a thermal expansion term. Lagrange multipliers are used to formulate the continuity constraints for both heat flux and interface traction at contact interfaces. The resulting system of nonlinear algebraic equations are cast in residual form for solution of the transient problem. A Jacobian-free Newton Krylov method is used to provide for fully-coupled solution of the coupled thermal contact and heat equations.« less

  16. A Jacobian-Free Newton Krylov Method for Mortar-Discretized Thermomechanical Contact Problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glen Hansen

    2011-07-01

    Multibody contact problems are common within the field of multiphysics simulation. Applications involving thermomechanical contact scenarios are also quite prevalent. Such problems can be challenging to solve due to the likelihood of thermal expansion affecting contact geometry which, in turn, can change the thermal behavior of the components being analyzed. This paper explores a simple model of a light water reactor nuclear reactor fuel rod, which consists of cylindrical pellets of uranium dioxide (UO2) fuel sealed within a Zircalloy cladding tube. The tube is initially filled with helium gas, which fills the gap between the pellets and cladding tube. Themore » accurate modeling of heat transfer across the gap between fuel pellets and the protective cladding is essential to understanding fuel performance, including cladding stress and behavior under irradiated conditions, which are factors that affect the lifetime of the fuel. The thermomechanical contact approach developed here is based on the mortar finite element method, where Lagrange multipliers are used to enforce weak continuity constraints at participating interfaces. In this formulation, the heat equation couples to linear mechanics through a thermal expansion term. Lagrange multipliers are used to formulate the continuity constraints for both heat flux and interface traction at contact interfaces. The resulting system of nonlinear algebraic equations are cast in residual form for solution of the transient problem. A Jacobian-free Newton Krylov method is used to provide for fully-coupled solution of the coupled thermal contact and heat equations.« less

  17. Variational Integrators for Interconnected Lagrange-Dirac Systems

    NASA Astrophysics Data System (ADS)

    Parks, Helen; Leok, Melvin

    2017-10-01

    Interconnected systems are an important class of mathematical models, as they allow for the construction of complex, hierarchical, multiphysics, and multiscale models by the interconnection of simpler subsystems. Lagrange-Dirac mechanical systems provide a broad category of mathematical models that are closed under interconnection, and in this paper, we develop a framework for the interconnection of discrete Lagrange-Dirac mechanical systems, with a view toward constructing geometric structure-preserving discretizations of interconnected systems. This work builds on previous work on the interconnection of continuous Lagrange-Dirac systems (Jacobs and Yoshimura in J Geom Mech 6(1):67-98, 2014) and discrete Dirac variational integrators (Leok and Ohsawa in Found Comput Math 11(5), 529-562, 2011). We test our results by simulating some of the continuous examples given in Jacobs and Yoshimura (2014).

  18. Analysis of composite ablators using massively parallel computation

    NASA Technical Reports Server (NTRS)

    Shia, David

    1995-01-01

    In this work, the feasibility of using massively parallel computation to study the response of ablative materials is investigated. Explicit and implicit finite difference methods are used on a massively parallel computer, the Thinking Machines CM-5. The governing equations are a set of nonlinear partial differential equations. The governing equations are developed for three sample problems: (1) transpiration cooling, (2) ablative composite plate, and (3) restrained thermal growth testing. The transpiration cooling problem is solved using a solution scheme based solely on the explicit finite difference method. The results are compared with available analytical steady-state through-thickness temperature and pressure distributions and good agreement between the numerical and analytical solutions is found. It is also found that a solution scheme based on the explicit finite difference method has the following advantages: incorporates complex physics easily, results in a simple algorithm, and is easily parallelizable. However, a solution scheme of this kind needs very small time steps to maintain stability. A solution scheme based on the implicit finite difference method has the advantage that it does not require very small times steps to maintain stability. However, this kind of solution scheme has the disadvantages that complex physics cannot be easily incorporated into the algorithm and that the solution scheme is difficult to parallelize. A hybrid solution scheme is then developed to combine the strengths of the explicit and implicit finite difference methods and minimize their weaknesses. This is achieved by identifying the critical time scale associated with the governing equations and applying the appropriate finite difference method according to this critical time scale. The hybrid solution scheme is then applied to the ablative composite plate and restrained thermal growth problems. The gas storage term is included in the explicit pressure calculation of both problems. Results from ablative composite plate problems are compared with previous numerical results which did not include the gas storage term. It is found that the through-thickness temperature distribution is not affected much by the gas storage term. However, the through-thickness pressure and stress distributions, and the extent of chemical reactions are different from the previous numerical results. Two types of chemical reaction models are used in the restrained thermal growth testing problem: (1) pressure-independent Arrhenius type rate equations and (2) pressure-dependent Arrhenius type rate equations. The numerical results are compared to experimental results and the pressure-dependent model is able to capture the trend better than the pressure-independent one. Finally, a performance study is done on the hybrid algorithm using the ablative composite plate problem. It is found that there is a good speedup of performance on the CM-5. For 32 CPU's, the speedup of performance is 20. The efficiency of the algorithm is found to be a function of the size and execution time of a given problem and the effective parallelization of the algorithm. It also seems that there is an optimum number of CPU's to use for a given problem.

  19. Positivity, discontinuity, finite resources, and nonzero error for arbitrarily varying quantum channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boche, H., E-mail: boche@tum.de, E-mail: janis.noetzel@tum.de; Nötzel, J., E-mail: boche@tum.de, E-mail: janis.noetzel@tum.de

    2014-12-15

    This work is motivated by a quite general question: Under which circumstances are the capacities of information transmission systems continuous? The research is explicitly carried out on finite arbitrarily varying quantum channels (AVQCs). We give an explicit example that answers the recent question whether the transmission of messages over AVQCs can benefit from assistance by distribution of randomness between the legitimate sender and receiver in the affirmative. The specific class of channels introduced in that example is then extended to show that the unassisted capacity does have discontinuity points, while it is known that the randomness-assisted capacity is always continuousmore » in the channel. We characterize the discontinuity points and prove that the unassisted capacity is always continuous around its positivity points. After having established shared randomness as an important resource, we quantify the interplay between the distribution of finite amounts of randomness between the legitimate sender and receiver, the (nonzero) probability of a decoding error with respect to the average error criterion and the number of messages that can be sent over a finite number of channel uses. We relate our results to the entanglement transmission capacities of finite AVQCs, where the role of shared randomness is not yet well understood, and give a new sufficient criterion for the entanglement transmission capacity with randomness assistance to vanish.« less

  20. Explicit formula of finite difference method to estimate human peripheral tissue temperatures during exposure to severe cold stress.

    PubMed

    Khanday, M A; Hussain, Fida

    2015-02-01

    During cold exposure, peripheral tissues undergo vasoconstriction to minimize heat loss to preserve the maintenance of a normal core temperature. However, vasoconstricted tissues exposed to cold temperatures are susceptible to freezing and frostbite-related tissue damage. Therefore, it is imperative to establish a mathematical model for the estimation of tissue necrosis due to cold stress. To this end, an explicit formula of finite difference method has been used to obtain the solution of Pennes' bio-heat equation with appropriate boundary conditions to estimate the temperature profiles of dermal and subdermal layers when exposed to severe cold temperatures. The discrete values of nodal temperature were calculated at the interfaces of skin and subcutaneous tissues with respect to the atmospheric temperatures of 25 °C, 20 °C, 15 °C, 5 °C, -5 °C and -10 °C. The results obtained were used to identify the scenarios under which various degrees of frostbite occur on the surface of skin as well as the dermal and subdermal areas. The explicit formula of finite difference method proposed in this model provides more accurate predictions as compared to other numerical methods. This model of predicting tissue temperatures provides researchers with a more accurate prediction of peripheral tissue temperature and, hence, the susceptibility to frostbite during severe cold exposure. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. 1. STREETSCAPE VIEW OF 208 VINE STREET (FIRST HOUSE ON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. STREETSCAPE VIEW OF 208 VINE STREET (FIRST HOUSE ON RIGHT) LOOKING WEST. THIS STRUCTURE WAS ONE OF APPROXIMATELY SEVENTEEN DUPLEXES BUILT AS THE ORIGINAL WORKER HOUSING FOR THE LaGRANGE COTTON MILLS, LATER KNOWN AS CALUMET MILL. LaGRANGE MILLS (1888-89) WAS THE FIRST COTTON MILL IN LaGRANGE. NOTE THE GABLE-ON-HIP ROOF FORM AND IDENTICAL STRUCTURES FACING EACH OTHER ALONG BOTH SIDES OF THE NARROW STREET. - 208 Vine Street (House), 208 Vine Street, La Grange, Troup County, GA

  2. Thermodynamic evaluation of transonic compressor rotors using the finite volume approach

    NASA Technical Reports Server (NTRS)

    Moore, John; Nicholson, Stephen; Moore, Joan G.

    1986-01-01

    The development of a computational capability to handle viscous flow with an explicit time-marching method based on the finite volume approach is summarized. Emphasis is placed on the extensions to the computational procedure which allow the handling of shock induced separation and large regions of strong backflow. Appendices contain abstracts of papers and whole reports generated during the contract period.

  3. Stability analysis of Eulerian-Lagrangian methods for the one-dimensional shallow-water equations

    USGS Publications Warehouse

    Casulli, V.; Cheng, R.T.

    1990-01-01

    In this paper stability and error analyses are discussed for some finite difference methods when applied to the one-dimensional shallow-water equations. Two finite difference formulations, which are based on a combined Eulerian-Lagrangian approach, are discussed. In the first part of this paper the results of numerical analyses for an explicit Eulerian-Lagrangian method (ELM) have shown that the method is unconditionally stable. This method, which is a generalized fixed grid method of characteristics, covers the Courant-Isaacson-Rees method as a special case. Some artificial viscosity is introduced by this scheme. However, because the method is unconditionally stable, the artificial viscosity can be brought under control either by reducing the spatial increment or by increasing the size of time step. The second part of the paper discusses a class of semi-implicit finite difference methods for the one-dimensional shallow-water equations. This method, when the Eulerian-Lagrangian approach is used for the convective terms, is also unconditionally stable and highly accurate for small space increments or large time steps. The semi-implicit methods seem to be more computationally efficient than the explicit ELM; at each time step a single tridiagonal system of linear equations is solved. The combined explicit and implicit ELM is best used in formulating a solution strategy for solving a network of interconnected channels. The explicit ELM is used at channel junctions for each time step. The semi-implicit method is then applied to the interior points in each channel segment. Following this solution strategy, the channel network problem can be reduced to a set of independent one-dimensional open-channel flow problems. Numerical results support properties given by the stability and error analyses. ?? 1990.

  4. Novel quadrilateral elements based on explicit Hermite polynomials for bending of Kirchhoff-Love plates

    NASA Astrophysics Data System (ADS)

    Beheshti, Alireza

    2018-03-01

    The contribution addresses the finite element analysis of bending of plates given the Kirchhoff-Love model. To analyze the static deformation of plates with different loadings and geometries, the principle of virtual work is used to extract the weak form. Following deriving the strain field, stresses and resultants may be obtained. For constructing four-node quadrilateral plate elements, the Hermite polynomials defined with respect to the variables in the parent space are applied explicitly. Based on the approximated field of displacement, the stiffness matrix and the load vector in the finite element method are obtained. To demonstrate the performance of the subparametric 4-node plate elements, some known, classical examples in structural mechanics are solved and there are comparisons with the analytical solutions available in the literature.

  5. Finite Element Modeling of Coupled Flexible Multibody Dynamics and Liquid Sloshing

    DTIC Science & Technology

    2006-09-01

    tanks is presented. The semi-discrete combined solid and fluid equations of motions are integrated using a time- accurate parallel explicit solver...Incompressible fluid flow in a moving/deforming container including accurate modeling of the free-surface, turbulence, and viscous effects ...paper, a single computational code which uses a time- accurate explicit solution procedure is used to solve both the solid and fluid equations of

  6. Non-material finite element modelling of large vibrations of axially moving strings and beams

    NASA Astrophysics Data System (ADS)

    Vetyukov, Yury

    2018-02-01

    We present a new mathematical model for the dynamics of a beam or a string, which moves in a given axial direction across a particular domain. Large in-plane vibrations are coupled with the gross axial motion, and a Lagrangian (material) form of the equations of structural mechanics becomes inefficient. The proposed mixed Eulerian-Lagrangian description features mechanical fields as functions of a spatial coordinate in the axial direction. The material travels across a finite element mesh, and the boundary conditions are applied in fixed nodes. Beginning with the variational equation of virtual work in its material form, we analytically derive the Lagrange's equations of motion of the second kind for the considered case of a discretized non-material control domain and for geometrically exact kinematics. The dynamic analysis is straightforward as soon as the strain and the kinetic energies of the control domain are available. In numerical simulations we demonstrate the rapid mesh convergence of the model, the effect of the bending stiffness and the dynamic instability when the axial velocity gets high. We also show correspondence to the results of fully Lagrangian benchmark solutions.

  7. Transient Finite Element Computations on a Variable Transputer System

    NASA Technical Reports Server (NTRS)

    Smolinski, Patrick J.; Lapczyk, Ireneusz

    1993-01-01

    A parallel program to analyze transient finite element problems was written and implemented on a system of transputer processors. The program uses the explicit time integration algorithm which eliminates the need for equation solving, making it more suitable for parallel computations. An interprocessor communication scheme was developed for arbitrary two dimensional grid processor configurations. Several 3-D problems were analyzed on a system with a small number of processors.

  8. Finite-difference model for 3-D flow in bays and estuaries

    USGS Publications Warehouse

    Smith, Peter E.; Larock, Bruce E.; ,

    1993-01-01

    This paper describes a semi-implicit finite-difference model for the numerical solution of three-dimensional flow in bays and estuaries. The model treats the gravity wave and vertical diffusion terms in the governing equations implicitly, and other terms explicitly. The model achieves essentially second-order accurate and stable solutions in strongly nonlinear problems by using a three-time-level leapfrog-trapezoidal scheme for the time integration.

  9. Slave finite elements: The temporal element approach to nonlinear analysis

    NASA Technical Reports Server (NTRS)

    Gellin, S.

    1984-01-01

    A formulation method for finite elements in space and time incorporating nonlinear geometric and material behavior is presented. The method uses interpolation polynomials for approximating the behavior of various quantities over the element domain, and only explicit integration over space and time. While applications are general, the plate and shell elements that are currently being programmed are appropriate to model turbine blades, vanes, and combustor liners.

  10. High speed inviscid compressible flow by the finite element method

    NASA Technical Reports Server (NTRS)

    Zienkiewicz, O. C.; Loehner, R.; Morgan, K.

    1984-01-01

    The finite element method and an explicit time stepping algorithm which is based on Taylor-Galerkin schemes with an appropriate artificial viscosity is combined with an automatic mesh refinement process which is designed to produce accurate steady state solutions to problems of inviscid compressible flow in two dimensions. The results of two test problems are included which demonstrate the excellent performance characteristics of the proposed procedures.

  11. Finite-size analysis of the detectability limit of the stochastic block model

    NASA Astrophysics Data System (ADS)

    Young, Jean-Gabriel; Desrosiers, Patrick; Hébert-Dufresne, Laurent; Laurence, Edward; Dubé, Louis J.

    2017-06-01

    It has been shown in recent years that the stochastic block model is sometimes undetectable in the sparse limit, i.e., that no algorithm can identify a partition correlated with the partition used to generate an instance, if the instance is sparse enough and infinitely large. In this contribution, we treat the finite case explicitly, using arguments drawn from information theory and statistics. We give a necessary condition for finite-size detectability in the general SBM. We then distinguish the concept of average detectability from the concept of instance-by-instance detectability and give explicit formulas for both definitions. Using these formulas, we prove that there exist large equivalence classes of parameters, where widely different network ensembles are equally detectable with respect to our definitions of detectability. In an extensive case study, we investigate the finite-size detectability of a simplified variant of the SBM, which encompasses a number of important models as special cases. These models include the symmetric SBM, the planted coloring model, and more exotic SBMs not previously studied. We conclude with three appendices, where we study the interplay of noise and detectability, establish a connection between our information-theoretic approach and random matrix theory, and provide proofs of some of the more technical results.

  12. Mean-field density functional theory of a nanoconfined classical, three-dimensional Heisenberg fluid. I. The role of molecular anchoring

    NASA Astrophysics Data System (ADS)

    Cattes, Stefanie M.; Gubbins, Keith E.; Schoen, Martin

    2016-05-01

    In this work, we employ classical density functional theory (DFT) to investigate for the first time equilibrium properties of a Heisenberg fluid confined to nanoscopic slit pores of variable width. Within DFT pair correlations are treated at modified mean-field level. We consider three types of walls: hard ones, where the fluid-wall potential becomes infinite upon molecular contact but vanishes otherwise, and hard walls with superimposed short-range attraction with and without explicit orientation dependence. To model the distance dependence of the attractions, we employ a Yukawa potential. The orientation dependence is realized through anchoring of molecules at the substrates, i.e., an energetic discrimination of specific molecular orientations. If the walls are hard or attractive without specific anchoring, the results are "quasi-bulk"-like in that they can be linked to a confinement-induced reduction of the bulk mean field. In these cases, the precise nature of the walls is completely irrelevant at coexistence. Only for specific anchoring nontrivial features arise, because then the fluid-wall interaction potential affects the orientation distribution function in a nontrivial way and thus appears explicitly in the Euler-Lagrange equations to be solved for minima of the grand potential of coexisting phases.

  13. A high-order Lagrangian-decoupling method for the incompressible Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Ho, Lee-Wing; Maday, Yvon; Patera, Anthony T.; Ronquist, Einar M.

    1989-01-01

    A high-order Lagrangian-decoupling method is presented for the unsteady convection-diffusion and incompressible Navier-Stokes equations. The method is based upon: (1) Lagrangian variational forms that reduce the convection-diffusion equation to a symmetric initial value problem; (2) implicit high-order backward-differentiation finite-difference schemes for integration along characteristics; (3) finite element or spectral element spatial discretizations; and (4) mesh-invariance procedures and high-order explicit time-stepping schemes for deducing function values at convected space-time points. The method improves upon previous finite element characteristic methods through the systematic and efficient extension to high order accuracy, and the introduction of a simple structure-preserving characteristic-foot calculation procedure which is readily implemented on modern architectures. The new method is significantly more efficient than explicit-convection schemes for the Navier-Stokes equations due to the decoupling of the convection and Stokes operators and the attendant increase in temporal stability. Numerous numerical examples are given for the convection-diffusion and Navier-Stokes equations for the particular case of a spectral element spatial discretization.

  14. A Review of High-Order and Optimized Finite-Difference Methods for Simulating Linear Wave Phenomena

    NASA Technical Reports Server (NTRS)

    Zingg, David W.

    1996-01-01

    This paper presents a review of high-order and optimized finite-difference methods for numerically simulating the propagation and scattering of linear waves, such as electromagnetic, acoustic, or elastic waves. The spatial operators reviewed include compact schemes, non-compact schemes, schemes on staggered grids, and schemes which are optimized to produce specific characteristics. The time-marching methods discussed include Runge-Kutta methods, Adams-Bashforth methods, and the leapfrog method. In addition, the following fourth-order fully-discrete finite-difference methods are considered: a one-step implicit scheme with a three-point spatial stencil, a one-step explicit scheme with a five-point spatial stencil, and a two-step explicit scheme with a five-point spatial stencil. For each method studied, the number of grid points per wavelength required for accurate simulation of wave propagation over large distances is presented. Recommendations are made with respect to the suitability of the methods for specific problems and practical aspects of their use, such as appropriate Courant numbers and grid densities. Avenues for future research are suggested.

  15. An Empirical Method for Determining the Lunar Gravity Field. Ph.D. Thesis - George Washington Univ.

    NASA Technical Reports Server (NTRS)

    Ferrari, A. J.

    1971-01-01

    A method has been devised to determine the spherical harmonic coefficients of the lunar gravity field. This method consists of a two-step data reduction and estimation process. In the first step, a weighted least-squares empirical orbit determination scheme is applied to Doppler tracking data from lunar orbits to estimate long-period Kepler elements and rates. Each of the Kepler elements is represented by an independent function of time. The long-period perturbing effects of the earth, sun, and solar radiation are explicitly modeled in this scheme. Kepler element variations estimated by this empirical processor are ascribed to the non-central lunar gravitation features. Doppler data are reduced in this manner for as many orbits as are available. In the second step, the Kepler element rates are used as input to a second least-squares processor that estimates lunar gravity coefficients using the long-period Lagrange perturbation equations.

  16. Pairwise Interaction Extended Point-Particle (PIEP) model for multiphase jets and sedimenting particles

    NASA Astrophysics Data System (ADS)

    Liu, Kai; Balachandar, S.

    2017-11-01

    We perform a series of Euler-Lagrange direct numerical simulations (DNS) for multiphase jets and sedimenting particles. The forces the flow exerts on the particles in these two-way coupled simulations are computed using the Basset-Bousinesq-Oseen (BBO) equations. These forces do not explicitly account for particle-particle interactions, even though such pairwise interactions induced by the perturbations from neighboring particles may be important especially when the particle volume fraction is high. Such effects have been largely unaddressed in the literature. Here, we implement the Pairwise Interaction Extended Point-Particle (PIEP) model to simulate the effect of neighboring particle pairs. A simple collision model is also applied to avoid unphysical overlapping of solid spherical particles. The simulation results indicate that the PIEP model provides a more elaborative and complicated movement of the dispersed phase (droplets and particles). Office of Naval Research (ONR) Multidisciplinary University Research Initiative (MURI) project N00014-16-1-2617.

  17. Analytic theory of orbit contraction

    NASA Technical Reports Server (NTRS)

    Vinh, N. X.; Longuski, J. M.; Busemann, A.; Culp, R. D.

    1977-01-01

    The motion of a satellite in orbit, subject to atmospheric force and the motion of a reentry vehicle are governed by gravitational and aerodynamic forces. This suggests the derivation of a uniform set of equations applicable to both cases. For the case of satellite motion, by a proper transformation and by the method of averaging, a technique appropriate for long duration flight, the classical nonlinear differential equation describing the contraction of the major axis is derived. A rigorous analytic solution is used to integrate this equation with a high degree of accuracy, using Poincare's method of small parameters and Lagrange's expansion to explicitly express the major axis as a function of the eccentricity. The solution is uniformly valid for moderate and small eccentricities. For highly eccentric orbits, the asymptotic equation is derived directly from the general equation. Numerical solutions were generated to display the accuracy of the analytic theory.

  18. How to use the Sun-Earth Lagrange points for fundamental physics and navigation

    NASA Astrophysics Data System (ADS)

    Tartaglia, A.; Lorenzini, E. C.; Lucchesi, D.; Pucacco, G.; Ruggiero, M. L.; Valko, P.

    2018-01-01

    We illustrate the proposal, nicknamed LAGRANGE, to use spacecraft, located at the Sun-Earth Lagrange points, as a physical reference frame. Performing time of flight measurements of electromagnetic signals traveling on closed paths between the points, we show that it would be possible: (a) to refine gravitational time delay knowledge due both to the Sun and the Earth; (b) to detect the gravito-magnetic frame dragging of the Sun, so deducing information about the interior of the star; (c) to check the possible existence of a galactic gravitomagnetic field, which would imply a revision of the properties of a dark matter halo; (d) to set up a relativistic positioning and navigation system at the scale of the inner solar system. The paper presents estimated values for the relevant quantities and discusses the feasibility of the project analyzing the behavior of the space devices close to the Lagrange points.

  19. Slip Continuity in Explicit Crystal Plasticity Simulations Using Nonlocal Continuum and Semi-discrete Approaches

    DTIC Science & Technology

    2013-01-01

    Based Micropolar Single Crystal Plasticity: Comparison of Multi - and Single Criterion Theories. J. Mech. Phys. Solids 2011, 59, 398–422. ALE3D ...element boundaries in a multi -step constitutive evaluation (Becker, 2011). The results showed the desired effects of smoothing the deformation field...Implementation The model was implemented in the large-scale parallel, explicit finite element code ALE3D (2012). The crystal plasticity

  20. Dynamic response of a monorail steel bridge under a moving train

    NASA Astrophysics Data System (ADS)

    Lee, C. H.; Kawatani, M.; Kim, C. W.; Nishimura, N.; Kobayashi, Y.

    2006-06-01

    This study proposes a dynamic response analysis procedure for traffic-induced vibration of a monorail bridge and train. Each car in the monorail train is idealized as a dynamic system of 15-degrees-of-freedom. The governing equations of motion for a three-dimensional monorail bridge-train interaction system are derived using Lagrange's formulation for monorail trains, and a finite-element method for modal analysis of monorail bridges. Analytical results on dynamic response of the monorail train and bridge are compared with field-test data in order to verify the validity of the proposed analysis procedure, and a positive correlation is found. An interesting feature of the monorail bridge response is that sway motion is caused by torsional behavior resulting from eccentricity between the shear center of the bridge section and the train load.

  1. New Variational Formulations of Hybrid Stress Elements

    NASA Technical Reports Server (NTRS)

    Pian, T. H. H.; Sumihara, K.; Kang, D.

    1984-01-01

    In the variational formulations of finite elements by the Hu-Washizu and Hellinger-Reissner principles the stress equilibrium condition is maintained by the inclusion of internal displacements which function as the Lagrange multipliers for the constraints. These versions permit the use of natural coordinates and the relaxation of the equilibrium conditions and render considerable improvements in the assumed stress hybrid elements. These include the derivation of invariant hybrid elements which possess the ideal qualities such as minimum sensitivity to geometric distortions, minimum number of independent stress parameters, rank sufficient, and ability to represent constant strain states and bending moments. Another application is the formulation of semiLoof thin shell elements which can yield excellent results for many severe test cases because the rigid body nodes, the momentless membrane strains, and the inextensional bending modes are all represented.

  2. Focal shift and the axial optical coordinate for high-aperture systems of finite Fresnel number.

    PubMed

    Sheppard, Colin J R; Török, Peter

    2003-11-01

    Analytic expressions are given for the on-axis intensity predicted by the Rayleigh-Sommerfeld and Kirchhoff diffraction integrals for a scalar optical system of high numerical aperture and finite value of Fresnel number. A definition of the axial optical coordinate is introduced that is valid for finite values of Fresnel number, for high-aperture systems, and for observation points distant from the focus. The focal shift effect is reexamined. For the case when the focal shift is small, explicit expressions are given for the focal shift and the axial peak in intensity.

  3. Finite element formulation with embedded weak discontinuities for strain localization under dynamic conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Tao; Mourad, Hashem M.; Bronkhorst, Curt A.

    Here, we present an explicit finite element formulation designed for the treatment of strain localization under highly dynamic conditions. We also used a material stability analysis to detect the onset of localization behavior. Finite elements with embedded weak discontinuities are employed with the aim of representing subsequent localized deformation accurately. The formulation and its algorithmic implementation are described in detail. Numerical results are presented to illustrate the usefulness of this computational framework in the treatment of strain localization under highly dynamic conditions, and to examine its performance characteristics in the context of two-dimensional plane-strain problems.

  4. Finite element formulation with embedded weak discontinuities for strain localization under dynamic conditions

    DOE PAGES

    Jin, Tao; Mourad, Hashem M.; Bronkhorst, Curt A.; ...

    2017-09-13

    Here, we present an explicit finite element formulation designed for the treatment of strain localization under highly dynamic conditions. We also used a material stability analysis to detect the onset of localization behavior. Finite elements with embedded weak discontinuities are employed with the aim of representing subsequent localized deformation accurately. The formulation and its algorithmic implementation are described in detail. Numerical results are presented to illustrate the usefulness of this computational framework in the treatment of strain localization under highly dynamic conditions, and to examine its performance characteristics in the context of two-dimensional plane-strain problems.

  5. A hybridized method for computing high-Reynolds-number hypersonic flow about blunt bodies

    NASA Technical Reports Server (NTRS)

    Weilmuenster, K. J.; Hamilton, H. H., II

    1979-01-01

    A hybridized method for computing the flow about blunt bodies is presented. In this method the flow field is split into its viscid and inviscid parts. The forebody flow field about a parabolic body is computed. For the viscous solution, the Navier-Stokes equations are solved on orthogonal parabolic coordinates using explicit finite differencing. The inviscid flow is determined by using a Moretti type scheme in which the Euler equations are solved, using explicit finite differences, on a nonorthogonal coordinate system which uses the bow shock as an outer boundary. The two solutions are coupled along a common data line and are marched together in time until a converged solution is obtained. Computed results, when compared with experimental and analytical results, indicate the method works well over a wide range of Reynolds numbers and Mach numbers.

  6. MSC products for the simulation of tire behavior

    NASA Technical Reports Server (NTRS)

    Muskivitch, John C.

    1995-01-01

    The modeling of tires and the simulation of tire behavior are complex problems. The MacNeal-Schwendler Corporation (MSC) has a number of finite element analysis products that can be used to address the complexities of tire modeling and simulation. While there are many similarities between the products, each product has a number of capabilities that uniquely enable it to be used for a specific aspect of tire behavior. This paper discusses the following programs: (1) MSC/NASTRAN - general purpose finite element program for linear and nonlinear static and dynamic analysis; (2) MSC/ADAQUS - nonlinear statics and dynamics finite element program; (3) MSC/PATRAN AFEA (Advanced Finite Element Analysis) - general purpose finite element program with a subset of linear and nonlinear static and dynamic analysis capabilities with an integrated version of MSC/PATRAN for pre- and post-processing; and (4) MSC/DYTRAN - nonlinear explicit transient dynamics finite element program.

  7. Singularity computations. [finite element methods for elastoplastic flow

    NASA Technical Reports Server (NTRS)

    Swedlow, J. L.

    1978-01-01

    Direct descriptions of the structure of a singularity would describe the radial and angular distributions of the field quantities as explicitly as practicable along with some measure of the intensity of the singularity. This paper discusses such an approach based on recent development of numerical methods for elastoplastic flow. Attention is restricted to problems where one variable or set of variables is finite at the origin of the singularity but a second set is not.

  8. A multidimensional finite element method for CFD

    NASA Technical Reports Server (NTRS)

    Pepper, Darrell W.; Humphrey, Joseph W.

    1991-01-01

    A finite element method is used to solve the equations of motion for 2- and 3-D fluid flow. The time-dependent equations are solved explicitly using quadrilateral (2-D) and hexahedral (3-D) elements, mass lumping, and reduced integration. A Petrov-Galerkin technique is applied to the advection terms. The method requires a minimum of computational storage, executes quickly, and is scalable for execution on computer systems ranging from PCs to supercomputers.

  9. A survey of the core-congruential formulation for geometrically nonlinear TL finite elements

    NASA Technical Reports Server (NTRS)

    Felippa, Carlos A.; Crivelli, Luis A.; Haugen, Bjorn

    1994-01-01

    This article presents a survey of the core-congruential formulation (CCF) for geometrically nonlinear mechanical finite elements based on the total Lagrangian (TL) kinematic description. Although the key ideas behind the CCF can be traced back to Rajasekaran and Murray in 1973, it has not subsequently received serious attention. The CCF is distinguished by a two-phase development of the finite element stiffness equations. The initial phase developed equations for individual particles. These equations are expressed in terms of displacement gradients as degrees of freedom. The second phase involves congruential-type transformations that eventually binds the element particles of an individual element in terms of its node-displacement degrees of freedom. Two versions of the CCF, labeled direct and generalized, are distinguished. The direct CCF (DCCF) is first described in general form and then applied to the derivation of geometrically nonlinear bar, and plane stress elements using the Green-Lagrange strain measure. The more complex generalized CCF (GCCF) is described and applied to the derivation of 2D and 3D Timoshenko beam elements. Several advantages of the CCF, notably the physically clean separation of material and geometric stiffnesses, and its independence with respect to the ultimate choice of shape functions and element degrees of freedom, are noted. Application examples involving very large motions solved with the 3D beam element display the range of applicability of this formulation, which transcends the kinematic limitations commonly attributed to the TL description.

  10. Inversion of geophysical potential field data using the finite element method

    NASA Astrophysics Data System (ADS)

    Lamichhane, Bishnu P.; Gross, Lutz

    2017-12-01

    The inversion of geophysical potential field data can be formulated as an optimization problem with a constraint in the form of a partial differential equation (PDE). It is common practice, if possible, to provide an analytical solution for the forward problem and to reduce the problem to a finite dimensional optimization problem. In an alternative approach the optimization is applied to the problem and the resulting continuous problem which is defined by a set of coupled PDEs is subsequently solved using a standard PDE discretization method, such as the finite element method (FEM). In this paper, we show that under very mild conditions on the data misfit functional and the forward problem in the three-dimensional space, the continuous optimization problem and its FEM discretization are well-posed including the existence and uniqueness of respective solutions. We provide error estimates for the FEM solution. A main result of the paper is that the FEM spaces used for the forward problem and the Lagrange multiplier need to be identical but can be chosen independently from the FEM space used to represent the unknown physical property. We will demonstrate the convergence of the solution approximations in a numerical example. The second numerical example which investigates the selection of FEM spaces, shows that from the perspective of computational efficiency one should use 2 to 4 times finer mesh for the forward problem in comparison to the mesh of the physical property.

  11. Centrifuge Rotor Models: A Comparison of the Euler-Lagrange and the Bond Graph Modeling Approach

    NASA Technical Reports Server (NTRS)

    Granda, Jose J.; Ramakrishnan, Jayant; Nguyen, Louis H.

    2006-01-01

    A viewgraph presentation on centrifuge rotor models with a comparison using Euler-Lagrange and bond graph methods is shown. The topics include: 1) Objectives; 2) MOdeling Approach Comparisons; 3) Model Structures; and 4) Application.

  12. On the commutator of C^{\\infty}} -symmetries and the reduction of Euler-Lagrange equations

    NASA Astrophysics Data System (ADS)

    Ruiz, A.; Muriel, C.; Olver, P. J.

    2018-04-01

    A novel procedure to reduce by four the order of Euler-Lagrange equations associated to nth order variational problems involving single variable integrals is presented. In preparation, a new formula for the commutator of two \

  13. Dirac structures in vakonomic mechanics

    NASA Astrophysics Data System (ADS)

    Jiménez, Fernando; Yoshimura, Hiroaki

    2015-08-01

    In this paper, we explore dynamics of the nonholonomic system called vakonomic mechanics in the context of Lagrange-Dirac dynamical systems using a Dirac structure and its associated Hamilton-Pontryagin variational principle. We first show the link between vakonomic mechanics and nonholonomic mechanics from the viewpoints of Dirac structures as well as Lagrangian submanifolds. Namely, we clarify that Lagrangian submanifold theory cannot represent nonholonomic mechanics properly, but vakonomic mechanics instead. Second, in order to represent vakonomic mechanics, we employ the space TQ ×V∗, where a vakonomic Lagrangian is defined from a given Lagrangian (possibly degenerate) subject to nonholonomic constraints. Then, we show how implicit vakonomic Euler-Lagrange equations can be formulated by the Hamilton-Pontryagin variational principle for the vakonomic Lagrangian on the extended Pontryagin bundle (TQ ⊕T∗ Q) ×V∗. Associated with this variational principle, we establish a Dirac structure on (TQ ⊕T∗ Q) ×V∗ in order to define an intrinsic vakonomic Lagrange-Dirac system. Furthermore, we also establish another construction for the vakonomic Lagrange-Dirac system using a Dirac structure on T∗ Q ×V∗, where we introduce a vakonomic Dirac differential. Finally, we illustrate our theory of vakonomic Lagrange-Dirac systems by some examples such as the vakonomic skate and the vertical rolling coin.

  14. Explicit least squares system parameter identification for exact differential input/output models

    NASA Technical Reports Server (NTRS)

    Pearson, A. E.

    1993-01-01

    The equation error for a class of systems modeled by input/output differential operator equations has the potential to be integrated exactly, given the input/output data on a finite time interval, thereby opening up the possibility of using an explicit least squares estimation technique for system parameter identification. The paper delineates the class of models for which this is possible and shows how the explicit least squares cost function can be obtained in a way that obviates dealing with unknown initial and boundary conditions. The approach is illustrated by two examples: a second order chemical kinetics model and a third order system of Lorenz equations.

  15. Diffuse interface models of locally inextensible vesicles in a viscous fluid

    PubMed Central

    Aland, Sebastian; Egerer, Sabine; Lowengrub, John; Voigt, Axel

    2014-01-01

    We present a new diffuse interface model for the dynamics of inextensible vesicles in a viscous fluid with inertial forces. A new feature of this work is the implementation of the local inextensibility condition in the diffuse interface context. Local inextensibility is enforced by using a local Lagrange multiplier, which provides the necessary tension force at the interface. We introduce a new equation for the local Lagrange multiplier whose solution essentially provides a harmonic extension of the multiplier off the interface while maintaining the local inextensibility constraint near the interface. We also develop a local relaxation scheme that dynamically corrects local stretching/compression errors thereby preventing their accumulation. Asymptotic analysis is presented that shows that our new system converges to a relaxed version of the inextensible sharp interface model. This is also verified numerically. To solve the equations, we use an adaptive finite element method with implicit coupling between the Navier-Stokes and the diffuse interface inextensibility equations. Numerical simulations of a single vesicle in a shear flow at different Reynolds numbers demonstrate that errors in enforcing local inextensibility may accumulate and lead to large differences in the dynamics in the tumbling regime and smaller differences in the inclination angle of vesicles in the tank-treading regime. The local relaxation algorithm is shown to prevent the accumulation of stretching and compression errors very effectively. Simulations of two vesicles in an extensional flow show that local inextensibility plays an important role when vesicles are in close proximity by inhibiting fluid drainage in the near contact region. PMID:25246712

  16. Linear dimension reduction and Bayes classification

    NASA Technical Reports Server (NTRS)

    Decell, H. P., Jr.; Odell, P. L.; Coberly, W. A.

    1978-01-01

    An explicit expression for a compression matrix T of smallest possible left dimension K consistent with preserving the n variate normal Bayes assignment of X to a given one of a finite number of populations and the K variate Bayes assignment of TX to that population was developed. The Bayes population assignment of X and TX were shown to be equivalent for a compression matrix T explicitly calculated as a function of the means and covariances of the given populations.

  17. Explicit and implicit springback simulation in sheet metal forming using fully coupled ductile damage and distortional hardening model

    NASA Astrophysics Data System (ADS)

    Yetna n'jock, M.; Houssem, B.; Labergere, C.; Saanouni, K.; Zhenming, Y.

    2018-05-01

    The springback is an important phenomenon which accompanies the forming of metallic sheets especially for high strength materials. A quantitative prediction of springback becomes very important for newly developed material with high mechanical characteristics. In this work, a numerical methodology is developed to quantify this undesirable phenomenon. This methodoly is based on the use of both explicit and implicit finite element solvers of Abaqus®. The most important ingredient of this methodology consists on the use of highly predictive mechanical model. A thermodynamically-consistent, non-associative and fully anisotropic elastoplastic constitutive model strongly coupled with isotropic ductile damage and accounting for distortional hardening is then used. An algorithm for local integration of the complete set of the constitutive equations is developed. This algorithm considers the rotated frame formulation (RFF) to ensure the incremental objectivity of the model in the framework of finite strains. This algorithm is implemented in both explicit (Abaqus/Explicit®) and implicit (Abaqus/Standard®) solvers of Abaqus® through the users routine VUMAT and UMAT respectively. The implicit solver of Abaqus® has been used to study spingback as it is generally a quasi-static unloading. In order to compare the methods `efficiency, the explicit method (Dynamic Relaxation Method) proposed by Rayleigh has been also used for springback prediction. The results obtained within U draw/bending benchmark are studied, discussed and compared with experimental results as reference. Finally, the purpose of this work is to evaluate the reliability of different methods predict efficiently springback in sheet metal forming.

  18. Nilpotent symmetries in supergroup field cosmology

    NASA Astrophysics Data System (ADS)

    Upadhyay, Sudhaker

    2015-06-01

    In this paper, we study the gauge invariance of the third quantized supergroup field cosmology which is a model for multiverse. Further, we propose both the infinitesimal (usual) as well as the finite superfield-dependent BRST symmetry transformations which leave the effective theory invariant. The effects of finite superfield-dependent BRST transformations on the path integral (so-called void functional in the case of third quantization) are implemented. Within the finite superfield-dependent BRST formulation, the finite superfield-dependent BRST transformations with specific parameter switch the void functional from one gauge to another. We establish this result for the most general gauge with the help of explicit calculations which holds for all possible sets of gauge choices at both the classical and the quantum levels.

  19. A finite state, finite memory minimum principle, part 2. [a discussion of game theory, signaling, stochastic processes, and control theory

    NASA Technical Reports Server (NTRS)

    Sandell, N. R., Jr.; Athans, M.

    1975-01-01

    The development of the theory of the finite - state, finite - memory (FSFM) stochastic control problem is discussed. The sufficiency of the FSFM minimum principle (which is in general only a necessary condition) was investigated. By introducing the notion of a signaling strategy as defined in the literature on games, conditions under which the FSFM minimum principle is sufficient were determined. This result explicitly interconnects the information structure of the FSFM problem with its optimality conditions. The min-H algorithm for the FSFM problem was studied. It is demonstrated that a version of the algorithm always converges to a particular type of local minimum termed a person - by - person extremal.

  20. 78 FR 43821 - Final Flood Elevation Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-22

    ............ +902 Unincorporated Areas of LaGrange County. Big Long Lake Entire shoreline......... +957 Unincorporated Areas of LaGrange County. Big Turkey Lake Entire shoreline within +932 Unincorporated Areas of... Vertical Datum. + North American Vertical Datum. Depth in feet above ground. [caret] Mean Sea Level...

  1. Riemann-Liouville Fractional Calculus of Certain Finite Class of Classical Orthogonal Polynomials

    NASA Astrophysics Data System (ADS)

    Malik, Pradeep; Swaminathan, A.

    2010-11-01

    In this work we consider certain class of classical orthogonal polynomials defined on the positive real line. These polynomials have their weight function related to the probability density function of F distribution and are finite in number up to orthogonality. We generalize these polynomials for fractional order by considering the Riemann-Liouville type operator on these polynomials. Various properties like explicit representation in terms of hypergeometric functions, differential equations, recurrence relations are derived.

  2. Note on use of slope diffraction coefficients for aperture antennas on finite ground planes

    NASA Technical Reports Server (NTRS)

    Cockrell, C. R.; Beck, F. B.

    1995-01-01

    The use of slope diffraction coefficients along with regular diffraction coefficients for calculating the radiation patterns of aperture antennas in a finite ground plane is investigated. Explicit expressions for regular diffraction coefficients and slope diffraction coefficients are presented. The expressions for the incident magnetic field in terms of the magnetic current in the aperture are given. The slope of the incident magnetic field is calculated and closed form expressions are presented.

  3. Accurate Finite Difference Algorithms

    NASA Technical Reports Server (NTRS)

    Goodrich, John W.

    1996-01-01

    Two families of finite difference algorithms for computational aeroacoustics are presented and compared. All of the algorithms are single step explicit methods, they have the same order of accuracy in both space and time, with examples up to eleventh order, and they have multidimensional extensions. One of the algorithm families has spectral like high resolution. Propagation with high order and high resolution algorithms can produce accurate results after O(10(exp 6)) periods of propagation with eight grid points per wavelength.

  4. Quantum canonical ensemble: A projection operator approach

    NASA Astrophysics Data System (ADS)

    Magnus, Wim; Lemmens, Lucien; Brosens, Fons

    2017-09-01

    Knowing the exact number of particles N, and taking this knowledge into account, the quantum canonical ensemble imposes a constraint on the occupation number operators. The constraint particularly hampers the systematic calculation of the partition function and any relevant thermodynamic expectation value for arbitrary but fixed N. On the other hand, fixing only the average number of particles, one may remove the above constraint and simply factorize the traces in Fock space into traces over single-particle states. As is well known, that would be the strategy of the grand-canonical ensemble which, however, comes with an additional Lagrange multiplier to impose the average number of particles. The appearance of this multiplier can be avoided by invoking a projection operator that enables a constraint-free computation of the partition function and its derived quantities in the canonical ensemble, at the price of an angular or contour integration. Introduced in the recent past to handle various issues related to particle-number projected statistics, the projection operator approach proves beneficial to a wide variety of problems in condensed matter physics for which the canonical ensemble offers a natural and appropriate environment. In this light, we present a systematic treatment of the canonical ensemble that embeds the projection operator into the formalism of second quantization while explicitly fixing N, the very number of particles rather than the average. Being applicable to both bosonic and fermionic systems in arbitrary dimensions, transparent integral representations are provided for the partition function ZN and the Helmholtz free energy FN as well as for two- and four-point correlation functions. The chemical potential is not a Lagrange multiplier regulating the average particle number but can be extracted from FN+1 -FN, as illustrated for a two-dimensional fermion gas.

  5. A review of hybrid implicit explicit finite difference time domain method

    NASA Astrophysics Data System (ADS)

    Chen, Juan

    2018-06-01

    The finite-difference time-domain (FDTD) method has been extensively used to simulate varieties of electromagnetic interaction problems. However, because of its Courant-Friedrich-Levy (CFL) condition, the maximum time step size of this method is limited by the minimum size of cell used in the computational domain. So the FDTD method is inefficient to simulate the electromagnetic problems which have very fine structures. To deal with this problem, the Hybrid Implicit Explicit (HIE)-FDTD method is developed. The HIE-FDTD method uses the hybrid implicit explicit difference in the direction with fine structures to avoid the confinement of the fine spatial mesh on the time step size. So this method has much higher computational efficiency than the FDTD method, and is extremely useful for the problems which have fine structures in one direction. In this paper, the basic formulations, time stability condition and dispersion error of the HIE-FDTD method are presented. The implementations of several boundary conditions, including the connect boundary, absorbing boundary and periodic boundary are described, then some applications and important developments of this method are provided. The goal of this paper is to provide an historical overview and future prospects of the HIE-FDTD method.

  6. Analytical validation of an explicit finite element model of a rolling element bearing with a localised line spall

    NASA Astrophysics Data System (ADS)

    Singh, Sarabjeet; Howard, Carl Q.; Hansen, Colin H.; Köpke, Uwe G.

    2018-03-01

    In this paper, numerically modelled vibration response of a rolling element bearing with a localised outer raceway line spall is presented. The results were obtained from a finite element (FE) model of the defective bearing solved using an explicit dynamics FE software package, LS-DYNA. Time domain vibration signals of the bearing obtained directly from the FE modelling were processed further to estimate time-frequency and frequency domain results, such as spectrogram and power spectrum, using standard signal processing techniques pertinent to the vibration-based monitoring of rolling element bearings. A logical approach to analyses of the numerically modelled results was developed with an aim to presenting the analytical validation of the modelled results. While the time and frequency domain analyses of the results show that the FE model generates accurate bearing kinematics and defect frequencies, the time-frequency analysis highlights the simulation of distinct low- and high-frequency characteristic vibration signals associated with the unloading and reloading of the rolling elements as they move in and out of the defect, respectively. Favourable agreement of the numerical and analytical results demonstrates the validation of the results from the explicit FE modelling of the bearing.

  7. Computational plasticity algorithm for particle dynamics simulations

    NASA Astrophysics Data System (ADS)

    Krabbenhoft, K.; Lyamin, A. V.; Vignes, C.

    2018-01-01

    The problem of particle dynamics simulation is interpreted in the framework of computational plasticity leading to an algorithm which is mathematically indistinguishable from the common implicit scheme widely used in the finite element analysis of elastoplastic boundary value problems. This algorithm provides somewhat of a unification of two particle methods, the discrete element method and the contact dynamics method, which usually are thought of as being quite disparate. In particular, it is shown that the former appears as the special case where the time stepping is explicit while the use of implicit time stepping leads to the kind of schemes usually labelled contact dynamics methods. The framing of particle dynamics simulation within computational plasticity paves the way for new approaches similar (or identical) to those frequently employed in nonlinear finite element analysis. These include mixed implicit-explicit time stepping, dynamic relaxation and domain decomposition schemes.

  8. Asymptotic charges cannot be measured in finite time

    DOE PAGES

    Bousso, Raphael; Chandrasekaran, Venkatesa; Halpern, Illan F.; ...

    2018-02-28

    To study quantum gravity in asymptotically flat spacetimes, one would like to understand the algebra of observables at null infinity. Here we show that the Bondi mass cannot be observed in finite retarded time, and so is not contained in the algebra on any finite portion of I +. This follows immediately from recently discovered asymptotic entropy bounds. We verify this explicitly, and we find that attempts to measure a conserved charge at arbitrarily large radius in fixed retarded time are thwarted by quantum fluctuations. We comment on the implications of our results to flat space holography and the BMSmore » charges at I +.« less

  9. The method of space-time and conservation element and solution element: A new approach for solving the Navier-Stokes and Euler equations

    NASA Technical Reports Server (NTRS)

    Chang, Sin-Chung

    1995-01-01

    A new numerical framework for solving conservation laws is being developed. This new framework differs substantially in both concept and methodology from the well-established methods, i.e., finite difference, finite volume, finite element, and spectral methods. It is conceptually simple and designed to overcome several key limitations of the above traditional methods. A two-level scheme for solving the convection-diffusion equation is constructed and used to illuminate the major differences between the present method and those previously mentioned. This explicit scheme, referred to as the a-mu scheme, has two independent marching variables.

  10. Asymptotic charges cannot be measured in finite time

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bousso, Raphael; Chandrasekaran, Venkatesa; Halpern, Illan F.

    To study quantum gravity in asymptotically flat spacetimes, one would like to understand the algebra of observables at null infinity. Here we show that the Bondi mass cannot be observed in finite retarded time, and so is not contained in the algebra on any finite portion of I +. This follows immediately from recently discovered asymptotic entropy bounds. We verify this explicitly, and we find that attempts to measure a conserved charge at arbitrarily large radius in fixed retarded time are thwarted by quantum fluctuations. We comment on the implications of our results to flat space holography and the BMSmore » charges at I +.« less

  11. Hyperbolic heat conduction problems involving non-Fourier effects - Numerical simulations via explicit Lax-Wendroff/Taylor-Galerkin finite element formulations

    NASA Technical Reports Server (NTRS)

    Tamma, Kumar K.; Namburu, Raju R.

    1989-01-01

    Numerical simulations are presented for hyperbolic heat-conduction problems that involve non-Fourier effects, using explicit, Lax-Wendroff/Taylor-Galerkin FEM formulations as the principal computational tool. Also employed are smoothing techniques which stabilize the numerical noise and accurately predict the propagating thermal disturbances. The accurate capture of propagating thermal disturbances at characteristic time-step values is achieved; numerical test cases are presented which validate the proposed hyperbolic heat-conduction problem concepts.

  12. Finite Difference Time Marching in the Frequency Domain: A Parabolic Formulation for the Convective Wave Equation

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.; Kreider, K. L.

    1996-01-01

    An explicit finite difference iteration scheme is developed to study harmonic sound propagation in ducts. To reduce storage requirements for large 3D problems, the time dependent potential form of the acoustic wave equation is used. To insure that the finite difference scheme is both explicit and stable, time is introduced into the Fourier transformed (steady-state) acoustic potential field as a parameter. Under a suitable transformation, the time dependent governing equation in frequency space is simplified to yield a parabolic partial differential equation, which is then marched through time to attain the steady-state solution. The input to the system is the amplitude of an incident harmonic sound source entering a quiescent duct at the input boundary, with standard impedance boundary conditions on the duct walls and duct exit. The introduction of the time parameter eliminates the large matrix storage requirements normally associated with frequency domain solutions, and time marching attains the steady-state quickly enough to make the method favorable when compared to frequency domain methods. For validation, this transient-frequency domain method is applied to sound propagation in a 2D hard wall duct with plug flow.

  13. Finite Difference Time Marching in the Frequency Domain: A Parabolic Formulation for Aircraft Acoustic Nacelle Design

    NASA Technical Reports Server (NTRS)

    Baumeister, Kenneth J.; Kreider, Kevin L.

    1996-01-01

    An explicit finite difference iteration scheme is developed to study harmonic sound propagation in aircraft engine nacelles. To reduce storage requirements for large 3D problems, the time dependent potential form of the acoustic wave equation is used. To insure that the finite difference scheme is both explicit and stable, time is introduced into the Fourier transformed (steady-state) acoustic potential field as a parameter. Under a suitable transformation, the time dependent governing equation in frequency space is simplified to yield a parabolic partial differential equation, which is then marched through time to attain the steady-state solution. The input to the system is the amplitude of an incident harmonic sound source entering a quiescent duct at the input boundary, with standard impedance boundary conditions on the duct walls and duct exit. The introduction of the time parameter eliminates the large matrix storage requirements normally associated with frequency domain solutions, and time marching attains the steady-state quickly enough to make the method favorable when compared to frequency domain methods. For validation, this transient-frequency domain method is applied to sound propagation in a 2D hard wall duct with plug flow.

  14. Worst case estimation of homology design by convex analysis

    NASA Technical Reports Server (NTRS)

    Yoshikawa, N.; Elishakoff, Isaac; Nakagiri, S.

    1998-01-01

    The methodology of homology design is investigated for optimum design of advanced structures. for which the achievement of delicate tasks by the aid of active control system is demanded. The proposed formulation of homology design, based on the finite element sensitivity analysis, necessarily requires the specification of external loadings. The formulation to evaluate the worst case for homology design caused by uncertain fluctuation of loadings is presented by means of the convex model of uncertainty, in which uncertainty variables are assigned to discretized nodal forces and are confined within a conceivable convex hull given as a hyperellipse. The worst case of the distortion from objective homologous deformation is estimated by the Lagrange multiplier method searching the point to maximize the error index on the boundary of the convex hull. The validity of the proposed method is demonstrated in a numerical example using the eleven-bar truss structure.

  15. Coupled structural, thermal, phase-change and electromagnetic analysis for superconductors, volume 2

    NASA Technical Reports Server (NTRS)

    Felippa, Carlos A.; Farhat, Charbel; Park, K. C.; Militello, Carmelo; Schuler, James J.

    1993-01-01

    Two families of parametrized mixed variational principles for linear electromagnetodynamics are constructed. The first family is applicable when the current density distribution is known a priori. Its six independent fields are magnetic intensity and flux density, magnetic potential, electric intensity and flux density and electric potential. Through appropriate specialization of parameters the first principle reduces to more conventional principles proposed in the literature. The second family is appropriate when the current density distribution and a conjugate Lagrange multiplier field are adjoined, giving a total of eight independently varied fields. In this case it is shown that a conventional variational principle exists only in the time-independent (static) case. Several static functionals with reduced number of varied fields are presented. The application of one of these principles to construct finite elements with current prediction capabilities is illustrated with a numerical example.

  16. Euler-euler anisotropic gaussian mesoscale simulation of homogeneous cluster-induced gas-particle turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kong, Bo; Fox, Rodney O.; Feng, Heng

    An Euler–Euler anisotropic Gaussian approach (EE-AG) for simulating gas–particle flows, in which particle velocities are assumed to follow a multivariate anisotropic Gaussian distribution, is used to perform mesoscale simulations of homogeneous cluster-induced turbulence (CIT). A three-dimensional Gauss–Hermite quadrature formulation is used to calculate the kinetic flux for 10 velocity moments in a finite-volume framework. The particle-phase volume-fraction and momentum equations are coupled with the Eulerian solver for the gas phase. This approach is implemented in an open-source CFD package, OpenFOAM, and detailed simulation results are compared with previous Euler–Lagrange simulations in a domain size study of CIT. Here, these resultsmore » demonstrate that the proposed EE-AG methodology is able to produce comparable results to EL simulations, and this moment-based methodology can be used to perform accurate mesoscale simulations of dilute gas–particle flows.« less

  17. Euler-euler anisotropic gaussian mesoscale simulation of homogeneous cluster-induced gas-particle turbulence

    DOE PAGES

    Kong, Bo; Fox, Rodney O.; Feng, Heng; ...

    2017-02-16

    An Euler–Euler anisotropic Gaussian approach (EE-AG) for simulating gas–particle flows, in which particle velocities are assumed to follow a multivariate anisotropic Gaussian distribution, is used to perform mesoscale simulations of homogeneous cluster-induced turbulence (CIT). A three-dimensional Gauss–Hermite quadrature formulation is used to calculate the kinetic flux for 10 velocity moments in a finite-volume framework. The particle-phase volume-fraction and momentum equations are coupled with the Eulerian solver for the gas phase. This approach is implemented in an open-source CFD package, OpenFOAM, and detailed simulation results are compared with previous Euler–Lagrange simulations in a domain size study of CIT. Here, these resultsmore » demonstrate that the proposed EE-AG methodology is able to produce comparable results to EL simulations, and this moment-based methodology can be used to perform accurate mesoscale simulations of dilute gas–particle flows.« less

  18. Classical Dynamics of Fullerenes

    NASA Astrophysics Data System (ADS)

    Sławianowski, Jan J.; Kotowski, Romuald K.

    2017-06-01

    The classical mechanics of large molecules and fullerenes is studied. The approach is based on the model of collective motion of these objects. The mixed Lagrangian (material) and Eulerian (space) description of motion is used. In particular, the Green and Cauchy deformation tensors are geometrically defined. The important issue is the group-theoretical approach to describing the affine deformations of the body. The Hamiltonian description of motion based on the Poisson brackets methodology is used. The Lagrange and Hamilton approaches allow us to formulate the mechanics in the canonical form. The method of discretization in analytical continuum theory and in classical dynamics of large molecules and fullerenes enable us to formulate their dynamics in terms of the polynomial expansions of configurations. Another approach is based on the theory of analytical functions and on their approximations by finite-order polynomials. We concentrate on the extremely simplified model of affine deformations or on their higher-order polynomial perturbations.

  19. Solar Corona Simulation Model With Positivity-preserving Property

    NASA Astrophysics Data System (ADS)

    Feng, X. S.

    2015-12-01

    Positivity-preserving is one of crucial problems in solar corona simulation. In such numerical simulation of low plasma β region, keeping density and pressure is a first of all matter to obtain physical sound solution. In the present paper, we utilize the maximum-principle-preserving flux limiting technique to develop a class of second order positivity-preserving Godunov finite volume HLL methods for the solar wind plasma MHD equations. Based on the underlying first order building block of positivity preserving Lax-Friedrichs, our schemes, under the constrained transport (CT) and generalized Lagrange multiplier (GLM) framework, can achieve high order accuracy, a discrete divergence-free condition and positivity of the numerical solution simultaneously without extra CFL constraints. Numerical results in four Carrington rotation during the declining, rising, minimum and maximum solar activity phases are provided to demonstrate the performance of modeling small plasma beta with positivity-preserving property of the proposed method.

  20. Lagrange formula for differential operators on a tree-graph and the resolvents of well-posed restrictions of operator

    NASA Astrophysics Data System (ADS)

    Koshkarbayev, Nurbol; Kanguzhin, Baltabek

    2017-09-01

    In this paper we study the question on the full description of well-posed restrictions of given maximal differential operator on a tree-graph. Lagrange formula for differential operator on a tree with Kirchhoff conditions at its internal vertices is presented.

  1. The Lagrange Points

    ERIC Educational Resources Information Center

    Lovell, M.S.

    2007-01-01

    This paper presents a derivation of all five Lagrange points by methods accessible to sixth-form students, and provides a further opportunity to match Newtonian gravity with centripetal force. The predictive powers of good scientific theories are also discussed with regard to the philosophy of science. Methods for calculating the positions of the…

  2. The dynamics of discrete-time computation, with application to recurrent neural networks and finite state machine extraction.

    PubMed

    Casey, M

    1996-08-15

    Recurrent neural networks (RNNs) can learn to perform finite state computations. It is shown that an RNN performing a finite state computation must organize its state space to mimic the states in the minimal deterministic finite state machine that can perform that computation, and a precise description of the attractor structure of such systems is given. This knowledge effectively predicts activation space dynamics, which allows one to understand RNN computation dynamics in spite of complexity in activation dynamics. This theory provides a theoretical framework for understanding finite state machine (FSM) extraction techniques and can be used to improve training methods for RNNs performing FSM computations. This provides an example of a successful approach to understanding a general class of complex systems that has not been explicitly designed, e.g., systems that have evolved or learned their internal structure.

  3. A Combined FEM/MoM/GTD Technique To Analyze Elliptically Polarized Cavity-Backed Antennas With Finite Ground Plane

    NASA Technical Reports Server (NTRS)

    Reddy, C. J.; Deshpande, M. D.; Fralick, D. T.; Cockrell, C. R.; Beck, F. B.

    1996-01-01

    Radiation pattern prediction analysis of elliptically polarized cavity-backed aperture antennas in a finite ground plane is performed using a combined Finite Element Method/Method of Moments/Geometrical Theory of Diffraction (FEM/MoM/GTD) technique. The magnetic current on the cavity-backed aperture in an infinite ground plane is calculated using the combined FEM/MoM analysis. GTD, including the slope diffraction contribution, is used to calculate the diffracted fields caused by both soft and hard polarizations at the edges of the finite ground plane. Explicit expressions for regular diffraction coefficients and slope diffraction coefficients are presented. The slope of the incident magnetic field at the diffraction points is derived and analytical expressions are presented. Numerical results for the radiation patterns of a cavity-backed circular spiral microstrip patch antenna excited by a coaxial probe in a finite rectangular ground plane are computed and compared with experimental results.

  4. Application of the Hughes-LIU algorithm to the 2-dimensional heat equation

    NASA Technical Reports Server (NTRS)

    Malkus, D. S.; Reichmann, P. I.; Haftka, R. T.

    1982-01-01

    An implicit explicit algorithm for the solution of transient problems in structural dynamics is described. The method involved dividing the finite elements into implicit and explicit groups while automatically satisfying the conditions. This algorithm is applied to the solution of the linear, transient, two dimensional heat equation subject to an initial condition derived from the soluton of a steady state problem over an L-shaped region made up of a good conductor and an insulating material. Using the IIT/PRIME computer with virtual memory, a FORTRAN computer program code was developed to make accuracy, stability, and cost comparisons among the fully explicit Euler, the Hughes-Liu, and the fully implicit Crank-Nicholson algorithms. The Hughes-Liu claim that the explicit group governs the stability of the entire region while maintaining the unconditional stability of the implicit group is illustrated.

  5. Asymmetric finite size of ions and orientational ordering of water in electric double layer theory within lattice model.

    PubMed

    Gongadze, Ekaterina; Kralj-Iglic, Veronika; Iglic, Ales

    2018-06-25

    In the present short communication, a brief historical survey of the mean-field theoretical description of electric double layer (EDL) is presented. A special attention is devoted to asymmetric finite size of ions and orientational ordering of water dipoles. A model of Wicke and Eigen, who were first to explicitly derive the ion distribution functions for finite size of ions, is discussed. Arguments are given in favour of changing the recently adopted name of the mean-field EDL model for finite size of ions from Bikerman model to Bikerman-Wicke-Eigen model. Theoretically predicted asymmetric and symmetric camel-like shape of the voltage dependence of the differential capacitance is also discussed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. High-order conservative finite difference GLM-MHD schemes for cell-centered MHD

    NASA Astrophysics Data System (ADS)

    Mignone, Andrea; Tzeferacos, Petros; Bodo, Gianluigi

    2010-08-01

    We present and compare third- as well as fifth-order accurate finite difference schemes for the numerical solution of the compressible ideal MHD equations in multiple spatial dimensions. The selected methods lean on four different reconstruction techniques based on recently improved versions of the weighted essentially non-oscillatory (WENO) schemes, monotonicity preserving (MP) schemes as well as slope-limited polynomial reconstruction. The proposed numerical methods are highly accurate in smooth regions of the flow, avoid loss of accuracy in proximity of smooth extrema and provide sharp non-oscillatory transitions at discontinuities. We suggest a numerical formulation based on a cell-centered approach where all of the primary flow variables are discretized at the zone center. The divergence-free condition is enforced by augmenting the MHD equations with a generalized Lagrange multiplier yielding a mixed hyperbolic/parabolic correction, as in Dedner et al. [J. Comput. Phys. 175 (2002) 645-673]. The resulting family of schemes is robust, cost-effective and straightforward to implement. Compared to previous existing approaches, it completely avoids the CPU intensive workload associated with an elliptic divergence cleaning step and the additional complexities required by staggered mesh algorithms. Extensive numerical testing demonstrate the robustness and reliability of the proposed framework for computations involving both smooth and discontinuous features.

  7. Biomechanical Analysis of Normal Brain Development during the First Year of Life Using Finite Strain Theory.

    PubMed

    Kim, Jeong Chul; Wang, Li; Shen, Dinggang; Lin, Weili

    2016-12-02

    The first year of life is the most critical time period for structural and functional development of the human brain. Combining longitudinal MR imaging and finite strain theory, this study aimed to provide new insights into normal brain development through a biomechanical framework. Thirty-three normal infants were longitudinally imaged using MRI from 2 weeks to 1 year of age. Voxel-wise Jacobian determinant was estimated to elucidate volumetric changes while Lagrange strains (both normal and shear strains) were measured to reveal directional growth information every 3 months during the first year of life. Directional normal strain maps revealed that, during the first 6 months, the growth pattern of gray matter is anisotropic and spatially inhomogeneous with higher left-right stretch around the temporal lobe and interhemispheric fissure, anterior-posterior stretch in the frontal and occipital lobes, and superior-inferior stretch in right inferior occipital and right inferior temporal gyri. In contrast, anterior lateral ventricles and insula showed an isotropic stretch pattern. Volumetric and directional growth rates were linearly decreased with age for most of the cortical regions. Our results revealed anisotropic and inhomogeneous brain growth patterns of the human brain during the first year of life using longitudinal MRI and a biomechanical framework.

  8. Design of an essentially non-oscillatory reconstruction procedure in finite-element type meshes

    NASA Technical Reports Server (NTRS)

    Abgrall, Remi

    1992-01-01

    An essentially non oscillatory reconstruction for functions defined on finite element type meshes is designed. Two related problems are studied: the interpolation of possibly unsmooth multivariate functions on arbitary meshes and the reconstruction of a function from its averages in the control volumes surrounding the nodes of the mesh. Concerning the first problem, the behavior of the highest coefficients of two polynomial interpolations of a function that may admit discontinuities of locally regular curves is studied: the Lagrange interpolation and an approximation such that the mean of the polynomial on any control volume is equal to that of the function to be approximated. This enables the best stencil for the approximation to be chosen. The choice of the smallest possible number of stencils is addressed. Concerning the reconstruction problem, two methods were studied: one based on an adaptation of the so called reconstruction via deconvolution method to irregular meshes and one that lies on the approximation on the mean as defined above. The first method is conservative up to a quadrature formula and the second one is exactly conservative. The two methods have the expected order of accuracy, but the second one is much less expensive than the first one. Some numerical examples are given which demonstrate the efficiency of the reconstruction.

  9. Existence and amplitude bounds for irrotational water waves in finite depth

    NASA Astrophysics Data System (ADS)

    Kogelbauer, Florian

    2017-12-01

    We prove the existence of solutions to the irrotational water-wave problem in finite depth and derive an explicit upper bound on the amplitude of the nonlinear solutions in terms of the wavenumber, the total hydraulic head, the wave speed and the relative mass flux. Our approach relies upon a reformulation of the water-wave problem as a one-dimensional pseudo-differential equation and the Newton-Kantorovich iteration for Banach spaces. This article is part of the theme issue 'Nonlinear water waves'.

  10. Kuhn-Tucker optimization based reliability analysis for probabilistic finite elements

    NASA Technical Reports Server (NTRS)

    Liu, W. K.; Besterfield, G.; Lawrence, M.; Belytschko, T.

    1988-01-01

    The fusion of probability finite element method (PFEM) and reliability analysis for fracture mechanics is considered. Reliability analysis with specific application to fracture mechanics is presented, and computational procedures are discussed. Explicit expressions for the optimization procedure with regard to fracture mechanics are given. The results show the PFEM is a very powerful tool in determining the second-moment statistics. The method can determine the probability of failure or fracture subject to randomness in load, material properties and crack length, orientation, and location.

  11. Finite stretching of an annular plate.

    NASA Technical Reports Server (NTRS)

    Biricikoglu, V.; Kalnins, A.

    1971-01-01

    The problem of the finite stretching of an annular plate which is bonded to a rigid inclusion at its inner edge is considered. The material is assumed to be isotropic and incompressible with a Mooney-type constitutive law. It is shown that the inclusion of the effect of the transverse normal strain leads to a rapid variation in thickness which is confined to a narrow edge zone. The explicit solutions to the boundary layer equations, which govern the behavior of the plate near the edges, are presented.

  12. Lagrangian continuum dynamics in ALEGRA.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, Michael K. W.; Love, Edward

    Alegra is an ALE (Arbitrary Lagrangian-Eulerian) multi-material finite element code that emphasizes large deformations and strong shock physics. The Lagrangian continuum dynamics package in Alegra uses a Galerkin finite element spatial discretization and an explicit central-difference stepping method in time. The goal of this report is to describe in detail the characteristics of this algorithm, including the conservation and stability properties. The details provided should help both researchers and analysts understand the underlying theory and numerical implementation of the Alegra continuum hydrodynamics algorithm.

  13. A fast Cauchy-Riemann solver. [differential equation solution for boundary conditions by finite difference approximation

    NASA Technical Reports Server (NTRS)

    Ghil, M.; Balgovind, R.

    1979-01-01

    The inhomogeneous Cauchy-Riemann equations in a rectangle are discretized by a finite difference approximation. Several different boundary conditions are treated explicitly, leading to algorithms which have overall second-order accuracy. All boundary conditions with either u or v prescribed along a side of the rectangle can be treated by similar methods. The algorithms presented here have nearly minimal time and storage requirements and seem suitable for development into a general-purpose direct Cauchy-Riemann solver for arbitrary boundary conditions.

  14. The MUSIC algorithm for impedance tomography of small inclusions from discrete data

    NASA Astrophysics Data System (ADS)

    Lechleiter, A.

    2015-09-01

    We consider a point-electrode model for electrical impedance tomography and show that current-to-voltage measurements from finitely many electrodes are sufficient to characterize the positions of a finite number of point-like inclusions. More precisely, we consider an asymptotic expansion with respect to the size of the small inclusions of the relative Neumann-to-Dirichlet operator in the framework of the point electrode model. This operator is naturally finite-dimensional and models difference measurements by finitely many small electrodes of the electric potential with and without the small inclusions. Moreover, its leading-order term explicitly characterizes the centers of the small inclusions if the (finite) number of point electrodes is large enough. This characterization is based on finite-dimensional test vectors and leads naturally to a MUSIC algorithm for imaging the inclusion centers. We show both the feasibility and limitations of this imaging technique via two-dimensional numerical experiments, considering in particular the influence of the number of point electrodes on the algorithm’s images.

  15. Efficient algorithms and implementations of entropy-based moment closures for rarefied gases

    NASA Astrophysics Data System (ADS)

    Schaerer, Roman Pascal; Bansal, Pratyuksh; Torrilhon, Manuel

    2017-07-01

    We present efficient algorithms and implementations of the 35-moment system equipped with the maximum-entropy closure in the context of rarefied gases. While closures based on the principle of entropy maximization have been shown to yield very promising results for moderately rarefied gas flows, the computational cost of these closures is in general much higher than for closure theories with explicit closed-form expressions of the closing fluxes, such as Grad's classical closure. Following a similar approach as Garrett et al. (2015) [13], we investigate efficient implementations of the computationally expensive numerical quadrature method used for the moment evaluations of the maximum-entropy distribution by exploiting its inherent fine-grained parallelism with the parallelism offered by multi-core processors and graphics cards. We show that using a single graphics card as an accelerator allows speed-ups of two orders of magnitude when compared to a serial CPU implementation. To accelerate the time-to-solution for steady-state problems, we propose a new semi-implicit time discretization scheme. The resulting nonlinear system of equations is solved with a Newton type method in the Lagrange multipliers of the dual optimization problem in order to reduce the computational cost. Additionally, fully explicit time-stepping schemes of first and second order accuracy are presented. We investigate the accuracy and efficiency of the numerical schemes for several numerical test cases, including a steady-state shock-structure problem.

  16. Mean-Field Description of Ionic Size Effects with Non-Uniform Ionic Sizes: A Numerical Approach

    PubMed Central

    Zhou, Shenggao; Wang, Zhongming; Li, Bo

    2013-01-01

    Ionic size effects are significant in many biological systems. Mean-field descriptions of such effects can be efficient but also challenging. When ionic sizes are different, explicit formulas in such descriptions are not available for the dependence of the ionic concentrations on the electrostatic potential, i.e., there is no explicit, Boltzmann type distributions. This work begins with a variational formulation of the continuum electrostatics of an ionic solution with such non-uniform ionic sizes as well as multiple ionic valences. An augmented Lagrange multiplier method is then developed and implemented to numerically solve the underlying constrained optimization problem. The method is shown to be accurate and efficient, and is applied to ionic systems with non-uniform ionic sizes such as the sodium chloride solution. Extensive numerical tests demonstrate that the mean-field model and numerical method capture qualitatively some significant ionic size effects, particularly those for multivalent ionic solutions, such as the stratification of multivalent counterions near a charged surface. The ionic valence-to-volume ratio is found to be the key physical parameter in the stratification of concentrations. All these are not well described by the classical Poisson–Boltzmann theory, or the generalized Poisson–Boltzmann theory that treats uniform ionic sizes. Finally, various issues such as the close packing, limitation of the continuum model, and generalization of this work to molecular solvation are discussed. PMID:21929014

  17. Bounded state variables and the calculus of variations

    NASA Technical Reports Server (NTRS)

    Hanafy, L. M.

    1972-01-01

    An optimal control problem with bounded state variables is transformed into a Lagrange problem by means of differentiable mappings which take some Euclidean space onto the control and state regions. Whereas all such mappings lead to a Lagrange problem, it is shown that only those which are defined as acceptable pairs of transformations are suitable in the sense that solutions to the transformed Lagrange problem will lead to solutions to the original bounded state problem and vice versa. In particular, an acceptable pair of transformations is exhibited for the case when the control and state regions are right parallelepipeds. Finally, a description of the necessary conditions for the bounded state problem which were obtained by this method is given.

  18. Technique to eliminate computational instability in multibody simulations employing the Lagrange multiplier

    NASA Technical Reports Server (NTRS)

    Watts, G.

    1992-01-01

    A programming technique to eliminate computational instability in multibody simulations that use the Lagrange multiplier is presented. The computational instability occurs when the attached bodies drift apart and violate the constraints. The programming technique uses the constraint equation, instead of integration, to determine the coordinates that are not independent. Although the equations of motion are unchanged, a complete derivation of the incorporation of the Lagrange multiplier into the equation of motion for two bodies is presented. A listing of a digital computer program which uses the programming technique to eliminate computational instability is also presented. The computer program simulates a solid rocket booster and parachute connected by a frictionless swivel.

  19. Projection-based stabilization of interface Lagrange multipliers in immersogeometric fluid-thin structure interaction analysis, with application to heart valve modeling.

    PubMed

    Kamensky, David; Evans, John A; Hsu, Ming-Chen; Bazilevs, Yuri

    2017-11-01

    This paper discusses a method of stabilizing Lagrange multiplier fields used to couple thin immersed shell structures and surrounding fluids. The method retains essential conservation properties by stabilizing only the portion of the constraint orthogonal to a coarse multiplier space. This stabilization can easily be applied within iterative methods or semi-implicit time integrators that avoid directly solving a saddle point problem for the Lagrange multiplier field. Heart valve simulations demonstrate applicability of the proposed method to 3D unsteady simulations. An appendix sketches the relation between the proposed method and a high-order-accurate approach for simpler model problems.

  20. Computational aeroelastic analysis of aircraft wings including geometry nonlinearity

    NASA Astrophysics Data System (ADS)

    Tian, Binyu

    The objective of the present study is to show the ability of solving fluid structural interaction problems more realistically by including the geometric nonlinearity of the structure so that the aeroelastic analysis can be extended into the onset of flutter, or in the post flutter regime. A nonlinear Finite Element Analysis software is developed based on second Piola-Kirchhoff stress and Green-Lagrange strain. The second Piola-Kirchhoff stress and Green-Lagrange strain is a pair of energetically conjugated tensors that can accommodate arbitrary large structural deformations and deflection, to study the flutter phenomenon. Since both of these tensors are objective tensors, i.e., the rigid-body motion has no contribution to their components, the movement of the body, including maneuvers and deformation, can be included. The nonlinear Finite Element Analysis software developed in this study is verified with ANSYS, NASTRAN, ABAQUS, and IDEAS for the linear static, nonlinear static, linear dynamic and nonlinear dynamic structural solutions. To solve the flow problems by Euler/Navier equations, the current nonlinear structural software is then embedded into ENSAERO, which is an aeroelastic analysis software package developed at NASA Ames Research Center. The coupling of the two software, both nonlinear in their own field, is achieved by domain decomposition method first proposed by Guruswamy. A procedure has been set for the aeroelastic analysis process. The aeroelastic analysis results have been obtained for fight wing in the transonic regime for various cases. The influence dynamic pressure on flutter has been checked for a range of Mach number. Even though the current analysis matches the general aeroelastic characteristic, the numerical value not match very well with previous studies and needs farther investigations. The flutter aeroelastic analysis results have also been plotted at several time points. The influences of the deforming wing geometry can be well seen in those plots. The movement of shock changes the aerodynamic load distribution on the wing. The effect of viscous on aeroelastic analysis is also discussed. Also compared are the flutter solutions with, or without the structural nonlinearity. As can be seen, linear structural solution goes to infinite, which can not be true in reality. The nonlinear solution is more realistic and can be used to understand the fluid and structure interaction behavior, to control, or prevent disastrous events. (Abstract shortened by UMI.)

  1. Visualizing and Understanding the Components of Lagrange and Newton Interpolation

    ERIC Educational Resources Information Center

    Yang, Yajun; Gordon, Sheldon P.

    2016-01-01

    This article takes a close look at Lagrange and Newton interpolation by graphically examining the component functions of each of these formulas. Although interpolation methods are often considered simply to be computational procedures, we demonstrate how the components of the polynomial terms in these formulas provide insight into where these…

  2. A Lagrange multiplier and Hopfield-type barrier function method for the traveling salesman problem.

    PubMed

    Dang, Chuangyin; Xu, Lei

    2002-02-01

    A Lagrange multiplier and Hopfield-type barrier function method is proposed for approximating a solution of the traveling salesman problem. The method is derived from applications of Lagrange multipliers and a Hopfield-type barrier function and attempts to produce a solution of high quality by generating a minimum point of a barrier problem for a sequence of descending values of the barrier parameter. For any given value of the barrier parameter, the method searches for a minimum point of the barrier problem in a feasible descent direction, which has a desired property that lower and upper bounds on variables are always satisfied automatically if the step length is a number between zero and one. At each iteration, the feasible descent direction is found by updating Lagrange multipliers with a globally convergent iterative procedure. For any given value of the barrier parameter, the method converges to a stationary point of the barrier problem without any condition on the objective function. Theoretical and numerical results show that the method seems more effective and efficient than the softassign algorithm.

  3. A globally convergent Lagrange and barrier function iterative algorithm for the traveling salesman problem.

    PubMed

    Dang, C; Xu, L

    2001-03-01

    In this paper a globally convergent Lagrange and barrier function iterative algorithm is proposed for approximating a solution of the traveling salesman problem. The algorithm employs an entropy-type barrier function to deal with nonnegativity constraints and Lagrange multipliers to handle linear equality constraints, and attempts to produce a solution of high quality by generating a minimum point of a barrier problem for a sequence of descending values of the barrier parameter. For any given value of the barrier parameter, the algorithm searches for a minimum point of the barrier problem in a feasible descent direction, which has a desired property that the nonnegativity constraints are always satisfied automatically if the step length is a number between zero and one. At each iteration the feasible descent direction is found by updating Lagrange multipliers with a globally convergent iterative procedure. For any given value of the barrier parameter, the algorithm converges to a stationary point of the barrier problem without any condition on the objective function. Theoretical and numerical results show that the algorithm seems more effective and efficient than the softassign algorithm.

  4. A methodology for constraining power in finite element modeling of radiofrequency ablation.

    PubMed

    Jiang, Yansheng; Possebon, Ricardo; Mulier, Stefaan; Wang, Chong; Chen, Feng; Feng, Yuanbo; Xia, Qian; Liu, Yewei; Yin, Ting; Oyen, Raymond; Ni, Yicheng

    2017-07-01

    Radiofrequency ablation (RFA) is a minimally invasive thermal therapy for the treatment of cancer, hyperopia, and cardiac tachyarrhythmia. In RFA, the power delivered to the tissue is a key parameter. The objective of this study was to establish a methodology for the finite element modeling of RFA with constant power. Because of changes in the electric conductivity of tissue with temperature, a nonconventional boundary value problem arises in the mathematic modeling of RFA: neither the voltage (Dirichlet condition) nor the current (Neumann condition), but the power, that is, the product of voltage and current was prescribed on part of boundary. We solved the problem using Lagrange multiplier: the product of the voltage and current on the electrode surface is constrained to be equal to the Joule heating. We theoretically proved the equality between the product of the voltage and current on the surface of the electrode and the Joule heating in the domain. We also proved the well-posedness of the problem of solving the Laplace equation for the electric potential under a constant power constraint prescribed on the electrode surface. The Pennes bioheat transfer equation and the Laplace equation for electric potential augmented with the constraint of constant power were solved simultaneously using the Newton-Raphson algorithm. Three problems for validation were solved. Numerical results were compared either with an analytical solution deduced in this study or with results obtained by ANSYS or experiments. This work provides the finite element modeling of constant power RFA with a firm mathematical basis and opens pathway for achieving the optimal RFA power. Copyright © 2016 John Wiley & Sons, Ltd.

  5. Data-driven Modeling of the Solar Corona by a New Three-dimensional Path-conservative Osher-Solomon MHD Model

    NASA Astrophysics Data System (ADS)

    Feng, Xueshang; Li, Caixia; Xiang, Changqing; Zhang, Man; Li, HuiChao; Wei, Fengsi

    2017-11-01

    A second-order path-conservative scheme with a Godunov-type finite-volume method has been implemented to advance the equations of single-fluid solar wind plasma magnetohydrodynamics (MHD) in time. This code operates on the six-component composite grid system in three-dimensional spherical coordinates with hexahedral cells of quadrilateral frustum type. The generalized Osher-Solomon Riemann solver is employed based on a numerical integration of the path-dependent dissipation matrix. For simplicity, the straight line segment path is used, and the path integral is evaluated in a fully numerical way by a high-order numerical Gauss-Legendre quadrature. Besides its very close similarity to Godunov type, the resulting scheme retains the attractive features of the original solver: it is nonlinear, free of entropy-fix, differentiable, and complete, in that each characteristic field results in a different numerical viscosity, due to the full use of the MHD eigenstructure. By using a minmod limiter for spatial oscillation control, the path-conservative scheme is realized for the generalized Lagrange multiplier and the extended generalized Lagrange multiplier formulation of solar wind MHD systems. This new model that is second order in space and time is written in the FORTRAN language with Message Passing Interface parallelization and validated in modeling the time-dependent large-scale structure of the solar corona, driven continuously by Global Oscillation Network Group data. To demonstrate the suitability of our code for the simulation of solar wind, we present selected results from 2009 October 9 to 2009 December 29 show its capability of producing a structured solar corona in agreement with solar coronal observations.

  6. Data-Driven Modeling of Solar Corona by a New 3d Path-Conservative Osher-Solomon MHD Odel

    NASA Astrophysics Data System (ADS)

    Feng, X. S.; Li, C.

    2017-12-01

    A second-order path-conservative scheme with Godunov-type finite volume method (FVM) has been implemented to advance the equations of single-fluid solar wind plasma magnetohydrodynamics (MHD) in time. This code operates on the six-component composite grid system in 3D spherical coordinates with hexahedral cells of quadrilateral frustum type. The generalized Osher-Solomon Riemann solver is employed based on a numerical integration of the path-dependentdissipation matrix. For simplicity, the straight line segment path is used and the path-integral is evaluated in a fully numerical way by high-order numerical Gauss-Legendre quadrature. Besides its closest similarity to Godunov, the resulting scheme retains the attractive features of the original solver: it is nonlinear, free of entropy-fix, differentiable and complete in that each characteristic field results in a different numerical viscosity, due to the full use of the MHD eigenstructure. By using a minmod limiter for spatial oscillation control, the pathconservative scheme is realized for the generalized Lagrange multiplier (GLM) and the extended generalized Lagrange multiplier (EGLM) formulation of solar wind MHD systems. This new model of second-order in space and time is written in FORTRAN language with Message Passing Interface (MPI) parallelization, and validated in modeling time-dependent large-scale structure of solar corona, driven continuously by the Global Oscillation Network Group (GONG) data. To demonstrate the suitability of our code for the simulation of solar wind, we present selected results from October 9th, 2009 to December 29th, 2009 , & Year 2008 to show its capability of producing structured solar wind in agreement with the observations.

  7. Investigations on bending-torsional vibrations of rotor during rotor-stator rub using Lagrange multiplier method

    NASA Astrophysics Data System (ADS)

    Mokhtar, Md Asjad; Kamalakar Darpe, Ashish; Gupta, Kshitij

    2017-08-01

    The ever-increasing need of highly efficient rotating machinery causes reduction in the clearance between rotating and non-rotating parts and increase in the chances of interaction between these parts. The rotor-stator contact, known as rub, has always been recognized as one of the potential causes of rotor system malfunctions and a source of secondary failures. It is one of few causes that influence both lateral and torsional vibrations. In this paper, the rotor stator interaction phenomenon is investigated in the finite element framework using Lagrange multiplier based contact mechanics approach. The stator is modelled as a beam that can respond to axial penetration and lateral friction force during the contact with the rotor. It ensures dynamic stator contact boundary and more realistic contact conditions in contrast to most of the earlier approaches. The rotor bending-torsional mode coupling during contact is considered and the vibration response in bending and torsion are analysed. The effect of parameters such as clearance, friction coefficient and stator stiffness are studied at various operating speeds and it has been found that certain parameter values generate peculiar rub related features. Presence of sub-harmonics in the lateral vibration frequency spectra are prominently observed when the rotor operates near the integer multiple of its lateral critical speed. The spectrum cascade of torsional vibration shows the presence of bending critical speed along with the larger amplitudes of frequencies close to torsional natural frequency of the rotor. When m × 1/n X frequency component of rotational frequency comes closer to the torsional natural frequency, stronger torsional vibration amplitude is noticed in the spectrum cascade. The combined information from the stator vibration and rotor lateral-torsional vibration spectral features is proposed for robust rub identification.

  8. On accuracy of the wave finite element predictions of wavenumbers and power flow: A benchmark problem

    NASA Astrophysics Data System (ADS)

    Søe-Knudsen, Alf; Sorokin, Sergey

    2011-06-01

    This rapid communication is concerned with justification of the 'rule of thumb', which is well known to the community of users of the finite element (FE) method in dynamics, for the accuracy assessment of the wave finite element (WFE) method. An explicit formula linking the size of a window in the dispersion diagram, where the WFE method is trustworthy, with the coarseness of a FE mesh employed is derived. It is obtained by the comparison of the exact Pochhammer-Chree solution for an elastic rod having the circular cross-section with its WFE approximations. It is shown that the WFE power flow predictions are also valid within this window.

  9. Bell - Kochen - Specker theorem for any finite dimension ?

    NASA Astrophysics Data System (ADS)

    Cabello, Adán; García-Alcaine, Guillermo

    1996-03-01

    The Bell - Kochen - Specker theorem against non-contextual hidden variables can be proved by constructing a finite set of `totally non-colourable' directions, as Kochen and Specker did in a Hilbert space of dimension n = 3. We generalize Kochen and Specker's set to Hilbert spaces of any finite dimension 0305-4470/29/5/016/img2, in a three-step process that shows the relationship between different kinds of proofs (`continuum', `probabilistic', `state-specific' and `state-independent') of the Bell - Kochen - Specker theorem. At the same time, this construction of a totally non-colourable set of directions in any dimension explicitly solves the question raised by Zimba and Penrose about the existence of such a set for n = 5.

  10. Eshelby's problem of a spherical inclusion eccentrically embedded in a finite spherical body

    PubMed Central

    He, Q.-C.

    2017-01-01

    Resorting to the superposition principle, the solution of Eshelby's problem of a spherical inclusion located eccentrically inside a finite spherical domain is obtained in two steps: (i) the solution to the problem of a spherical inclusion in an infinite space; (ii) the solution to the auxiliary problem of the corresponding finite spherical domain subjected to appropriate boundary conditions. Moreover, a set of functions called the sectional and harmonic deviators are proposed and developed to work out the auxiliary solution in a series form, including the displacement and Eshelby tensor fields. The analytical solutions are explicitly obtained and illustrated when the geometric and physical parameters and the boundary condition are specified. PMID:28293141

  11. Accurate solutions for transonic viscous flow over finite wings

    NASA Technical Reports Server (NTRS)

    Vatsa, V. N.

    1986-01-01

    An explicit multistage Runge-Kutta type time-stepping scheme is used for solving the three-dimensional, compressible, thin-layer Navier-Stokes equations. A finite-volume formulation is employed to facilitate treatment of complex grid topologies encountered in three-dimensional calculations. Convergence to steady state is expedited through usage of acceleration techniques. Further numerical efficiency is achieved through vectorization of the computer code. The accuracy of the overall scheme is evaluated by comparing the computed solutions with the experimental data for a finite wing under different test conditions in the transonic regime. A grid refinement study ir conducted to estimate the grid requirements for adequate resolution of salient features of such flows.

  12. Modeling the Effect of Fluid-Structure Interaction on the Impact Dynamics of Pressurized Tank Cars

    DOT National Transportation Integrated Search

    2009-11-13

    This paper presents a computational framework that : analyzes the effect of fluid-structure interaction (FSI) on the : impact dynamics of pressurized commodity tank cars using the : nonlinear dynamic finite element code ABAQUS/Explicit. : There exist...

  13. The explicit computation of integration algorithms and first integrals for ordinary differential equations with polynomials coefficients using trees

    NASA Technical Reports Server (NTRS)

    Crouch, P. E.; Grossman, Robert

    1992-01-01

    This note is concerned with the explicit symbolic computation of expressions involving differential operators and their actions on functions. The derivation of specialized numerical algorithms, the explicit symbolic computation of integrals of motion, and the explicit computation of normal forms for nonlinear systems all require such computations. More precisely, if R = k(x(sub 1),...,x(sub N)), where k = R or C, F denotes a differential operator with coefficients from R, and g member of R, we describe data structures and algorithms for efficiently computing g. The basic idea is to impose a multiplicative structure on the vector space with basis the set of finite rooted trees and whose nodes are labeled with the coefficients of the differential operators. Cancellations of two trees with r + 1 nodes translates into cancellation of O(N(exp r)) expressions involving the coefficient functions and their derivatives.

  14. Application of an unstructured grid flow solver to planes, trains and automobiles

    NASA Technical Reports Server (NTRS)

    Spragle, Gregory S.; Smith, Wayne A.; Yadlin, Yoram

    1993-01-01

    Rampant, an unstructured flow solver developed at Fluent Inc., is used to compute three-dimensional, viscous, turbulent, compressible flow fields within complex solution domains. Rampant is an explicit, finite-volume flow solver capable of computing flow fields using either triangular (2d) or tetrahedral (3d) unstructured grids. Local time stepping, implicit residual smoothing, and multigrid techniques are used to accelerate the convergence of the explicit scheme. The paper describes the Rampant flow solver and presents flow field solutions about a plane, train, and automobile.

  15. Explicit Pore Pressure Material Model in Carbon-Cloth Phenolic

    NASA Technical Reports Server (NTRS)

    Gutierrez-Lemini, Danton; Ehle, Curt

    2003-01-01

    An explicit material model that uses predicted pressure in the pores of a carbon-cloth phenolic (CCP) composite has been developed. This model is intended to be used within a finite-element model to predict phenomena specific to CCP components of solid-fuel-rocket nozzles subjected to high operating temperatures and to mechanical stresses that can be great enough to cause structural failures. Phenomena that can be predicted with the help of this model include failures of specimens in restrained-thermal-growth (RTG) tests, pocketing erosion, and ply lifting

  16. An analysis of the nucleon spectrum from lattice partially-quenched QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    W. Armour; Allton, C. R.; Leinweber, Derek B.

    2010-09-01

    The chiral extrapolation of the nucleon mass, Mn, is investigated using data coming from 2-flavour partially-quenched lattice simulations. The leading one-loop corrections to the nucleon mass are derived for partially-quenched QCD. A large sample of lattice results from the CP-PACS Collaboration is analysed, with explicit corrections for finite lattice spacing artifacts. The extrapolation is studied using finite range regularised chiral perturbation theory. The analysis also provides a quantitative estimate of the leading finite volume corrections. It is found that the discretisation, finite-volume and partial quenching effects can all be very well described in this framework, producing an extrapolated value ofmore » Mn in agreement with experiment. This procedure is also compared with extrapolations based on polynomial forms, where the results are less encouraging.« less

  17. On finite element implementation and computational techniques for constitutive modeling of high temperature composites

    NASA Technical Reports Server (NTRS)

    Saleeb, A. F.; Chang, T. Y. P.; Wilt, T.; Iskovitz, I.

    1989-01-01

    The research work performed during the past year on finite element implementation and computational techniques pertaining to high temperature composites is outlined. In the present research, two main issues are addressed: efficient geometric modeling of composite structures and expedient numerical integration techniques dealing with constitutive rate equations. In the first issue, mixed finite elements for modeling laminated plates and shells were examined in terms of numerical accuracy, locking property and computational efficiency. Element applications include (currently available) linearly elastic analysis and future extension to material nonlinearity for damage predictions and large deformations. On the material level, various integration methods to integrate nonlinear constitutive rate equations for finite element implementation were studied. These include explicit, implicit and automatic subincrementing schemes. In all cases, examples are included to illustrate the numerical characteristics of various methods that were considered.

  18. Resolvent-Techniques for Multiple Exercise Problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christensen, Sören, E-mail: christensen@math.uni-kiel.de; Lempa, Jukka, E-mail: jukka.lempa@hioa.no

    2015-02-15

    We study optimal multiple stopping of strong Markov processes with random refraction periods. The refraction periods are assumed to be exponentially distributed with a common rate and independent of the underlying dynamics. Our main tool is using the resolvent operator. In the first part, we reduce infinite stopping problems to ordinary ones in a general strong Markov setting. This leads to explicit solutions for wide classes of such problems. Starting from this result, we analyze problems with finitely many exercise rights and explain solution methods for some classes of problems with underlying Lévy and diffusion processes, where the optimal characteristicsmore » of the problems can be identified more explicitly. We illustrate the main results with explicit examples.« less

  19. Modeling of fatigue crack induced nonlinear ultrasonics using a highly parallelized explicit local interaction simulation approach

    NASA Astrophysics Data System (ADS)

    Shen, Yanfeng; Cesnik, Carlos E. S.

    2016-04-01

    This paper presents a parallelized modeling technique for the efficient simulation of nonlinear ultrasonics introduced by the wave interaction with fatigue cracks. The elastodynamic wave equations with contact effects are formulated using an explicit Local Interaction Simulation Approach (LISA). The LISA formulation is extended to capture the contact-impact phenomena during the wave damage interaction based on the penalty method. A Coulomb friction model is integrated into the computation procedure to capture the stick-slip contact shear motion. The LISA procedure is coded using the Compute Unified Device Architecture (CUDA), which enables the highly parallelized supercomputing on powerful graphic cards. Both the explicit contact formulation and the parallel feature facilitates LISA's superb computational efficiency over the conventional finite element method (FEM). The theoretical formulations based on the penalty method is introduced and a guideline for the proper choice of the contact stiffness is given. The convergence behavior of the solution under various contact stiffness values is examined. A numerical benchmark problem is used to investigate the new LISA formulation and results are compared with a conventional contact finite element solution. Various nonlinear ultrasonic phenomena are successfully captured using this contact LISA formulation, including the generation of nonlinear higher harmonic responses. Nonlinear mode conversion of guided waves at fatigue cracks is also studied.

  20. Efficiency analysis of numerical integrations for finite element substructure in real-time hybrid simulation

    NASA Astrophysics Data System (ADS)

    Wang, Jinting; Lu, Liqiao; Zhu, Fei

    2018-01-01

    Finite element (FE) is a powerful tool and has been applied by investigators to real-time hybrid simulations (RTHSs). This study focuses on the computational efficiency, including the computational time and accuracy, of numerical integrations in solving FE numerical substructure in RTHSs. First, sparse matrix storage schemes are adopted to decrease the computational time of FE numerical substructure. In this way, the task execution time (TET) decreases such that the scale of the numerical substructure model increases. Subsequently, several commonly used explicit numerical integration algorithms, including the central difference method (CDM), the Newmark explicit method, the Chang method and the Gui-λ method, are comprehensively compared to evaluate their computational time in solving FE numerical substructure. CDM is better than the other explicit integration algorithms when the damping matrix is diagonal, while the Gui-λ (λ = 4) method is advantageous when the damping matrix is non-diagonal. Finally, the effect of time delay on the computational accuracy of RTHSs is investigated by simulating structure-foundation systems. Simulation results show that the influences of time delay on the displacement response become obvious with the mass ratio increasing, and delay compensation methods may reduce the relative error of the displacement peak value to less than 5% even under the large time-step and large time delay.

  1. Convergence to equilibrium of renormalised solutions to nonlinear chemical reaction–diffusion systems

    NASA Astrophysics Data System (ADS)

    Fellner, Klemens; Tang, Bao Quoc

    2018-06-01

    The convergence to equilibrium for renormalised solutions to nonlinear reaction-diffusion systems is studied. The considered reaction-diffusion systems arise from chemical reaction networks with mass action kinetics and satisfy the complex balanced condition. By applying the so-called entropy method, we show that if the system does not have boundary equilibria, i.e. equilibrium states lying on the boundary of R_+^N, then any renormalised solution converges exponentially to the complex balanced equilibrium with a rate, which can be computed explicitly up to a finite-dimensional inequality. This inequality is proven via a contradiction argument and thus not explicitly. An explicit method of proof, however, is provided for a specific application modelling a reversible enzyme reaction by exploiting the specific structure of the conservation laws. Our approach is also useful to study the trend to equilibrium for systems possessing boundary equilibria. More precisely, to show the convergence to equilibrium for systems with boundary equilibria, we establish a sufficient condition in terms of a modified finite-dimensional inequality along trajectories of the system. By assuming this condition, which roughly means that the system produces too much entropy to stay close to a boundary equilibrium for infinite time, the entropy method shows exponential convergence to equilibrium for renormalised solutions to complex balanced systems with boundary equilibria.

  2. Program manual for HILTOP, a heliocentric interplanetary low thrust trajectory optimization program. Part 1: User's guide

    NASA Technical Reports Server (NTRS)

    Mann, F. I.; Horsewood, J. L.

    1974-01-01

    A performance-analysis computer program, that was developed explicitly to generate optimum electric propulsion trajectory data for missions of interest in the exploration of the solar system is presented. The program was primarily designed to evaluate the performance capabilities of electric propulsion systems, and in the simulation of a wide variety of interplanetary missions. A numerical integration of the two-body, three-dimensional equations of motion and the Euler-Lagrange equations was used in the program. Transversality conditions which permit the rapid generation of converged maximum-payload trajectory data, and the optimization of numerous other performance indices for which no transversality conditions exist are included. The ability to simulate constrained optimum solutions, including trajectories having specified propulsion time and constant thrust cone angle, is also in the program. The program was designed to handle multiple-target missions with various types of encounters, such as rendezvous, stopover, orbital capture, and flyby. Performance requirements for a variety of launch vehicles can be determined.

  3. On the identifiability of inertia parameters of planar Multi-Body Space Systems

    NASA Astrophysics Data System (ADS)

    Nabavi-Chashmi, Seyed Yaser; Malaek, Seyed Mohammad-Bagher

    2018-04-01

    This work describes a new formulation to study the identifiability characteristics of Serially Linked Multi-body Space Systems (SLMBSS). The process exploits the so called "Lagrange Formulation" to develop a linear form of Equations of Motion w.r.t the system Inertia Parameters (IPs). Having developed a specific form of regressor matrix, we aim to expedite the identification process. The new approach allows analytical as well as numerical identification and identifiability analysis for different SLMBSSs' configurations. Moreover, the explicit forms of SLMBSSs identifiable parameters are derived by analyzing the identifiability characteristics of the robot. We further show that any SLMBSS designed with Variable Configurations Joint allows all IPs to be identifiable through comparing two successive identification outcomes. This feature paves the way to design new class of SLMBSS for which accurate identification of all IPs is at hand. Different case studies reveal that proposed formulation provides fast and accurate results, as required by the space applications. Further studies might be necessary for cases where planar-body assumption becomes inaccurate.

  4. Efficient and stable exponential time differencing Runge-Kutta methods for phase field elastic bending energy models

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoqiang; Ju, Lili; Du, Qiang

    2016-07-01

    The Willmore flow formulated by phase field dynamics based on the elastic bending energy model has been widely used to describe the shape transformation of biological lipid vesicles. In this paper, we develop and investigate some efficient and stable numerical methods for simulating the unconstrained phase field Willmore dynamics and the phase field Willmore dynamics with fixed volume and surface area constraints. The proposed methods can be high-order accurate and are completely explicit in nature, by combining exponential time differencing Runge-Kutta approximations for time integration with spectral discretizations for spatial operators on regular meshes. We also incorporate novel linear operator splitting techniques into the numerical schemes to improve the discrete energy stability. In order to avoid extra numerical instability brought by use of large penalty parameters in solving the constrained phase field Willmore dynamics problem, a modified augmented Lagrange multiplier approach is proposed and adopted. Various numerical experiments are performed to demonstrate accuracy and stability of the proposed methods.

  5. A Person Fit Test for IRT Models for Polytomous Items

    ERIC Educational Resources Information Center

    Glas, C. A. W.; Dagohoy, Anna Villa T.

    2007-01-01

    A person fit test based on the Lagrange multiplier test is presented for three item response theory models for polytomous items: the generalized partial credit model, the sequential model, and the graded response model. The test can also be used in the framework of multidimensional ability parameters. It is shown that the Lagrange multiplier…

  6. Lagrange multiplier for perishable inventory model considering warehouse capacity planning

    NASA Astrophysics Data System (ADS)

    Amran, Tiena Gustina; Fatima, Zenny

    2017-06-01

    This paper presented Lagrange Muktiplier approach for solving perishable raw material inventory planning considering warehouse capacity. A food company faced an issue of managing perishable raw materials and marinades which have limited shelf life. Another constraint to be considered was the capacity of the warehouse. Therefore, an inventory model considering shelf life and raw material warehouse capacity are needed in order to minimize the company's inventory cost. The inventory model implemented in this study was the adapted economic order quantity (EOQ) model which is optimized using Lagrange multiplier. The model and solution approach were applied to solve a case industry in a food manufacturer. The result showed that the total inventory cost decreased 2.42% after applying the proposed approach.

  7. Comparison of Numerical Modeling Methods for Soil Vibration Cutting

    NASA Astrophysics Data System (ADS)

    Jiang, Jiandong; Zhang, Enguang

    2018-01-01

    In this paper, we studied the appropriate numerical simulation method for vibration soil cutting. Three numerical simulation methods, commonly used for uniform speed soil cutting, Lagrange, ALE and DEM, are analyzed. Three models of vibration soil cutting simulation model are established by using ls-dyna.The applicability of the three methods to this problem is analyzed in combination with the model mechanism and simulation results. Both the Lagrange method and the DEM method can show the force oscillation of the tool and the large deformation of the soil in the vibration cutting. Lagrange method shows better effect of soil debris breaking. Because of the poor stability of ALE method, it is not suitable to use soil vibration cutting problem.

  8. Finite and spectral cell method for wave propagation in heterogeneous materials

    NASA Astrophysics Data System (ADS)

    Joulaian, Meysam; Duczek, Sascha; Gabbert, Ulrich; Düster, Alexander

    2014-09-01

    In the current paper we present a fast, reliable technique for simulating wave propagation in complex structures made of heterogeneous materials. The proposed approach, the spectral cell method, is a combination of the finite cell method and the spectral element method that significantly lowers preprocessing and computational expenditure. The spectral cell method takes advantage of explicit time-integration schemes coupled with a diagonal mass matrix to reduce the time spent on solving the equation system. By employing a fictitious domain approach, this method also helps to eliminate some of the difficulties associated with mesh generation. Besides introducing a proper, specific mass lumping technique, we also study the performance of the low-order and high-order versions of this approach based on several numerical examples. Our results show that the high-order version of the spectral cell method together requires less memory storage and less CPU time than other possible versions, when combined simultaneously with explicit time-integration algorithms. Moreover, as the implementation of the proposed method in available finite element programs is straightforward, these properties turn the method into a viable tool for practical applications such as structural health monitoring [1-3], quantitative ultrasound applications [4], or the active control of vibrations and noise [5, 6].

  9. Simulating Space Capsule Water Landing with Explicit Finite Element Method

    NASA Technical Reports Server (NTRS)

    Wang, John T.; Lyle, Karen H.

    2007-01-01

    A study of using an explicit nonlinear dynamic finite element code for simulating the water landing of a space capsule was performed. The finite element model contains Lagrangian shell elements for the space capsule and Eulerian solid elements for the water and air. An Arbitrary Lagrangian Eulerian (ALE) solver and a penalty coupling method were used for predicting the fluid and structure interaction forces. The space capsule was first assumed to be rigid, so the numerical results could be correlated with closed form solutions. The water and air meshes were continuously refined until the solution was converged. The converged maximum deceleration predicted is bounded by the classical von Karman and Wagner solutions and is considered to be an adequate solution. The refined water and air meshes were then used in the models for simulating the water landing of a capsule model that has a flexible bottom. For small pitch angle cases, the maximum deceleration from the flexible capsule model was found to be significantly greater than the maximum deceleration obtained from the corresponding rigid model. For large pitch angle cases, the difference between the maximum deceleration of the flexible model and that of its corresponding rigid model is smaller. Test data of Apollo space capsules with a flexible heat shield qualitatively support the findings presented in this paper.

  10. Development and Implementation of a Transport Method for the Transport and Reaction Simulation Engine (TaRSE) based on the Godunov-Mixed Finite Element Method

    USGS Publications Warehouse

    James, Andrew I.; Jawitz, James W.; Munoz-Carpena, Rafael

    2009-01-01

    A model to simulate transport of materials in surface water and ground water has been developed to numerically approximate solutions to the advection-dispersion equation. This model, known as the Transport and Reaction Simulation Engine (TaRSE), uses an algorithm that incorporates a time-splitting technique where the advective part of the equation is solved separately from the dispersive part. An explicit finite-volume Godunov method is used to approximate the advective part, while a mixed-finite element technique is used to approximate the dispersive part. The dispersive part uses an implicit discretization, which allows it to run stably with a larger time step than the explicit advective step. The potential exists to develop algorithms that run several advective steps, and then one dispersive step that encompasses the time interval of the advective steps. Because the dispersive step is computationally most expensive, schemes can be implemented that are more computationally efficient than non-time-split algorithms. This technique enables scientists to solve problems with high grid Peclet numbers, such as transport problems with sharp solute fronts, without spurious oscillations in the numerical approximation to the solution and with virtually no artificial diffusion.

  11. New developments in the method of space-time conservation element and solution element: Applications to the Euler and Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Chang, Sin-Chung

    1993-01-01

    A new numerical framework for solving conservation laws is being developed. This new approach differs substantially in both concept and methodology from the well-established methods--i.e., finite difference, finite volume, finite element, and spectral methods. It is conceptually simple and designed to avoid several key limitations to the above traditional methods. An explicit model scheme for solving a simple 1-D unsteady convection-diffusion equation is constructed and used to illuminate major differences between the current method and those mentioned above. Unexpectedly, its amplification factors for the pure convection and pure diffusion cases are identical to those of the Leapfrog and the DuFort-Frankel schemes, respectively. Also, this explicit scheme and its Navier-Stokes extension have the unusual property that their stabilities are limited only by the CFL condition. Moreover, despite the fact that it does not use any flux-limiter or slope-limiter, the Navier-Stokes solver is capable of generating highly accurate shock tube solutions with shock discontinuities being resolved within one mesh interval. An accurate Euler solver also is constructed through another extension. It has many unusual properties, e.g., numerical diffusion at all mesh points can be controlled by a set of local parameters.

  12. A parallel finite element procedure for contact-impact problems using edge-based smooth triangular element and GPU

    NASA Astrophysics Data System (ADS)

    Cai, Yong; Cui, Xiangyang; Li, Guangyao; Liu, Wenyang

    2018-04-01

    The edge-smooth finite element method (ES-FEM) can improve the computational accuracy of triangular shell elements and the mesh partition efficiency of complex models. In this paper, an approach is developed to perform explicit finite element simulations of contact-impact problems with a graphical processing unit (GPU) using a special edge-smooth triangular shell element based on ES-FEM. Of critical importance for this problem is achieving finer-grained parallelism to enable efficient data loading and to minimize communication between the device and host. Four kinds of parallel strategies are then developed to efficiently solve these ES-FEM based shell element formulas, and various optimization methods are adopted to ensure aligned memory access. Special focus is dedicated to developing an approach for the parallel construction of edge systems. A parallel hierarchy-territory contact-searching algorithm (HITA) and a parallel penalty function calculation method are embedded in this parallel explicit algorithm. Finally, the program flow is well designed, and a GPU-based simulation system is developed, using Nvidia's CUDA. Several numerical examples are presented to illustrate the high quality of the results obtained with the proposed methods. In addition, the GPU-based parallel computation is shown to significantly reduce the computing time.

  13. Detailed modeling of the train-to-train impact test : rail passenger equipment impact tests

    DOT National Transportation Integrated Search

    2007-07-01

    This report describes the results of a finite element-based analysis of the train-to-train impact test conducted at the Federal Railroad Administrations Transportation Technology Center in Pueblo, CO, on January 31, 2002. The ABAQUS/Explicit dynam...

  14. Total spectral distributions from Hawking radiation

    NASA Astrophysics Data System (ADS)

    Broda, Bogusław

    2017-11-01

    Taking into account the time dependence of the Hawking temperature and finite evaporation time of the black hole, the total spectral distributions of the radiant energy and of the number of particles have been explicitly calculated and compared to their temporary (initial) blackbody counterparts (spectral exitances).

  15. Finite Element Analysis of the Maximum Stress at the Joints of the Transmission Tower

    NASA Astrophysics Data System (ADS)

    Itam, Zarina; Beddu, Salmia; Liyana Mohd Kamal, Nur; Bamashmos, Khaled H.

    2016-03-01

    Transmission towers are tall structures, usually a steel lattice tower, used to support an overhead power line. Usually, transmission towers are analyzed as frame-truss systems and the members are assumed to be pin-connected without explicitly considering the effects of joints on the tower behavior. In this research, an engineering example of joint will be analyzed with the consideration of the joint detailing to investigate how it will affect the tower analysis. A static analysis using STAAD Pro was conducted to indicate the joint with the maximum stress. This joint will then be explicitly analyzed in ANSYS using the Finite Element Method. Three approaches were used in the software which are the simple plate model, bonded contact with no bolts, and beam element bolts. Results from the joint analysis show that stress values increased with joint details consideration. This proves that joints and connections play an important role in the distribution of stress within the transmission tower.

  16. Simple on-shell renormalization framework for the Cabibbo-Kobayashi-Maskawa matrix

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kniehl, Bernd A.; Sirlin, Alberto

    2006-12-01

    We present an explicit on-shell framework to renormalize the Cabibbo-Kobayashi-Maskawa (CKM) quark mixing matrix at the one-loop level. It is based on a novel procedure to separate the external-leg mixing corrections into gauge-independent self-mass (sm) and gauge-dependent wave-function renormalization contributions, and to adjust nondiagonal mass counterterm matrices to cancel all the divergent sm contributions, and also their finite parts subject to constraints imposed by the Hermiticity of the mass matrices. It is also shown that the proof of gauge independence and finiteness of the remaining one-loop corrections to W{yields}q{sub i}+q{sub j} reduces to that in the unmixed, single-generation case. Diagonalizationmore » of the complete mass matrices leads then to an explicit expression for the CKM counterterm matrix, which is gauge independent, preserves unitarity, and leads to renormalized amplitudes that are nonsingular in the limit in which any two fermions become mass degenerate.« less

  17. Dynamic analysis of lunar lander during soft landing using explicit finite element method

    NASA Astrophysics Data System (ADS)

    Zheng, Guang; Nie, Hong; Chen, Jinbao; Chen, Chuanzhi; Lee, Heow Pueh

    2018-07-01

    In this paper, the soft-landing analysis of a lunar lander spacecraft under three loading case was carried out in ABAQUS, using the Explicit Finite Element method. To ensure the simulation result's accuracy and reliability, the energy and mass balance criteria of the model was presented along with the theory and calculation method, and the results were benchmarked with other software (LS-DYNA) to get a validated model. The results from three loading case showed that the energy and mass of the models were conserved during soft landing, which satisfies the energy and mass balance criteria. The overloading response, structure steady state, and the crushing stroke of this lunar lander all met the design requirements of the lunar lander. The buffer energy-absorbing properties in this model have a good energy-absorbing capability, in which up to 84% of the initial energy could be dissipated. The design parameters of the model could guide the design of future manned landers or larger lunar landers.

  18. Experiences with explicit finite-difference schemes for complex fluid dynamics problems on STAR-100 and CYBER-203 computers

    NASA Technical Reports Server (NTRS)

    Kumar, A.; Rudy, D. H.; Drummond, J. P.; Harris, J. E.

    1982-01-01

    Several two- and three-dimensional external and internal flow problems solved on the STAR-100 and CYBER-203 vector processing computers are described. The flow field was described by the full Navier-Stokes equations which were then solved by explicit finite-difference algorithms. Problem results and computer system requirements are presented. Program organization and data base structure for three-dimensional computer codes which will eliminate or improve on page faulting, are discussed. Storage requirements for three-dimensional codes are reduced by calculating transformation metric data in each step. As a result, in-core grid points were increased in number by 50% to 150,000, with a 10% execution time increase. An assessment of current and future machine requirements shows that even on the CYBER-205 computer only a few problems can be solved realistically. Estimates reveal that the present situation is more storage limited than compute rate limited, but advancements in both storage and speed are essential to realistically calculate three-dimensional flow.

  19. Four-level conservative finite-difference schemes for Boussinesq paradigm equation

    NASA Astrophysics Data System (ADS)

    Kolkovska, N.

    2013-10-01

    In this paper a two-parametric family of four level conservative finite difference schemes is constructed for the multidimensional Boussinesq paradigm equation. The schemes are explicit in the sense that no inner iterations are needed for evaluation of the numerical solution. The preservation of the discrete energy with this method is proved. The schemes have been numerically tested on one soliton propagation model and two solitons interaction model. The numerical experiments demonstrate that the proposed family of schemes has second order of convergence in space and time steps in the discrete maximal norm.

  20. Global synchronization in finite time for fractional-order neural networks with discontinuous activations and time delays.

    PubMed

    Peng, Xiao; Wu, Huaiqin; Song, Ka; Shi, Jiaxin

    2017-10-01

    This paper is concerned with the global Mittag-Leffler synchronization and the synchronization in finite time for fractional-order neural networks (FNNs) with discontinuous activations and time delays. Firstly, the properties with respect to Mittag-Leffler convergence and convergence in finite time, which play a critical role in the investigation of the global synchronization of FNNs, are developed, respectively. Secondly, the novel state-feedback controller, which includes time delays and discontinuous factors, is designed to realize the synchronization goal. By applying the fractional differential inclusion theory, inequality analysis technique and the proposed convergence properties, the sufficient conditions to achieve the global Mittag-Leffler synchronization and the synchronization in finite time are addressed in terms of linear matrix inequalities (LMIs). In addition, the upper bound of the setting time of the global synchronization in finite time is explicitly evaluated. Finally, two examples are given to demonstrate the validity of the proposed design method and theoretical results. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. A Non-Perturbative, Finite Particle Number Approach to Relativistic Scattering Theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindesay, James V

    2001-05-11

    We present integral equations for the scattering amplitudes of three scalar particles, using the Faddeev channel decomposition, which can be readily extended to any finite number of particles of any helicity. The solution of these equations, which have been demonstrated to be calculable, provide a non-perturbative way of obtaining relativistic scattering amplitudes for any finite number of particles that are Lorentz invariant, unitary, cluster decomposable and reduce unambiguously in the non-relativistic limit to the non-relativistic Faddeev equations. The aim of this program is to develop equations which explicitly depend upon physically observable input variables, and do not require ''renormalization'' ormore » ''dressing'' of these parameters to connect them to the boundary states.« less

  2. Finite element dynamic analysis on CDC STAR-100 computer

    NASA Technical Reports Server (NTRS)

    Noor, A. K.; Lambiotte, J. J., Jr.

    1978-01-01

    Computational algorithms are presented for the finite element dynamic analysis of structures on the CDC STAR-100 computer. The spatial behavior is described using higher-order finite elements. The temporal behavior is approximated by using either the central difference explicit scheme or Newmark's implicit scheme. In each case the analysis is broken up into a number of basic macro-operations. Discussion is focused on the organization of the computation and the mode of storage of different arrays to take advantage of the STAR pipeline capability. The potential of the proposed algorithms is discussed and CPU times are given for performing the different macro-operations for a shell modeled by higher order composite shallow shell elements having 80 degrees of freedom.

  3. Weak Gravitational Lensing of Finite Beams.

    PubMed

    Fleury, Pierre; Larena, Julien; Uzan, Jean-Philippe

    2017-11-10

    The standard theory of weak gravitational lensing relies on the infinitesimal light beam approximation. In this context, images are distorted by convergence and shear, the respective sources of which unphysically depend on the resolution of the distribution of matter-the so-called Ricci-Weyl problem. In this Letter, we propose a strong-lensing-inspired formalism to describe the lensing of finite beams. We address the Ricci-Weyl problem by showing explicitly that convergence is caused by the matter enclosed by the beam, regardless of its distribution. Furthermore, shear turns out to be systematically enhanced by the finiteness of the beam. This implies, in particular, that the Kaiser-Squires relation between shear and convergence is violated, which could have profound consequences on the interpretation of weak-lensing surveys.

  4. General invertible transformation and physical degrees of freedom

    NASA Astrophysics Data System (ADS)

    Takahashi, Kazufumi; Motohashi, Hayato; Suyama, Teruaki; Kobayashi, Tsutomu

    2017-04-01

    An invertible field transformation is such that the old field variables correspond one-to-one to the new variables. As such, one may think that two systems that are related by an invertible transformation are physically equivalent. However, if the transformation depends on field derivatives, the equivalence between the two systems is nontrivial due to the appearance of higher derivative terms in the equations of motion. To address this problem, we prove the following theorem on the relation between an invertible transformation and Euler-Lagrange equations: If the field transformation is invertible, then any solution of the original set of Euler-Lagrange equations is mapped to a solution of the new set of Euler-Lagrange equations, and vice versa. We also present applications of the theorem to scalar-tensor theories.

  5. Second-order accurate nonoscillatory schemes for scalar conservation laws

    NASA Technical Reports Server (NTRS)

    Huynh, Hung T.

    1989-01-01

    Explicit finite difference schemes for the computation of weak solutions of nonlinear scalar conservation laws is presented and analyzed. These schemes are uniformly second-order accurate and nonoscillatory in the sense that the number of extrema of the discrete solution is not increasing in time.

  6. A Truncated Cauchy Distribution

    ERIC Educational Resources Information Center

    Nadarajah, Saralees; Kotz, Samuel

    2006-01-01

    A truncated version of the Cauchy distribution is introduced. Unlike the Cauchy distribution, this possesses finite moments of all orders and could therefore be a better model for certain practical situations. One such situation in finance is discussed. Explicit expressions for the moments of the truncated distribution are also derived.

  7. An Optimal Order Nonnested Mixed Multigrid Method for Generalized Stokes Problems

    NASA Technical Reports Server (NTRS)

    Deng, Qingping

    1996-01-01

    A multigrid algorithm is developed and analyzed for generalized Stokes problems discretized by various nonnested mixed finite elements within a unified framework. It is abstractly proved by an element-independent analysis that the multigrid algorithm converges with an optimal order if there exists a 'good' prolongation operator. A technique to construct a 'good' prolongation operator for nonnested multilevel finite element spaces is proposed. Its basic idea is to introduce a sequence of auxiliary nested multilevel finite element spaces and define a prolongation operator as a composite operator of two single grid level operators. This makes not only the construction of a prolongation operator much easier (the final explicit forms of such prolongation operators are fairly simple), but the verification of the approximate properties for prolongation operators is also simplified. Finally, as an application, the framework and technique is applied to seven typical nonnested mixed finite elements.

  8. A Floating Node Method for the Modelling of Discontinuities Within a Finite Element

    NASA Technical Reports Server (NTRS)

    Pinho, Silvestre T.; Chen, B. Y.; DeCarvalho, Nelson V.; Baiz, P. M.; Tay, T. E.

    2013-01-01

    This paper focuses on the accurate numerical representation of complex networks of evolving discontinuities in solids, with particular emphasis on cracks. The limitation of the standard finite element method (FEM) in approximating discontinuous solutions has motivated the development of re-meshing, smeared crack models, the eXtended Finite Element Method (XFEM) and the Phantom Node Method (PNM). We propose a new method which has some similarities to the PNM, but crucially: (i) does not introduce an error on the crack geometry when mapping to natural coordinates; (ii) does not require numerical integration over only part of a domain; (iii) can incorporate weak discontinuities and cohesive cracks more readily; (iv) is ideally suited for the representation of multiple and complex networks of (weak, strong and cohesive) discontinuities; (v) leads to the same solution as a finite element mesh where the discontinuity is represented explicitly; and (vi) is conceptually simpler than the PNM.

  9. Particle Swarm Optimization of Low-Thrust, Geocentric-to-Halo-Orbit Transfers

    NASA Astrophysics Data System (ADS)

    Abraham, Andrew J.

    Missions to Lagrange points are becoming increasingly popular amongst spacecraft mission planners. Lagrange points are locations in space where the gravity force from two bodies, and the centrifugal force acting on a third body, cancel. To date, all spacecraft that have visited a Lagrange point have done so using high-thrust, chemical propulsion. Due to the increasing availability of low-thrust (high efficiency) propulsive devices, and their increasing capability in terms of fuel efficiency and instantaneous thrust, it has now become possible for a spacecraft to reach a Lagrange point orbit without the aid of chemical propellant. While at any given time there are many paths for a low-thrust trajectory to take, only one is optimal. The traditional approach to spacecraft trajectory optimization utilizes some form of gradient-based algorithm. While these algorithms offer numerous advantages, they also have a few significant shortcomings. The three most significant shortcomings are: (1) the fact that an initial guess solution is required to initialize the algorithm, (2) the radius of convergence can be quite small and can allow the algorithm to become trapped in local minima, and (3) gradient information is not always assessable nor always trustworthy for a given problem. To avoid these problems, this dissertation is focused on optimizing a low-thrust transfer trajectory from a geocentric orbit to an Earth-Moon, L1, Lagrange point orbit using the method of Particle Swarm Optimization (PSO). The PSO method is an evolutionary heuristic that was originally written to model birds swarming to locate hidden food sources. This PSO method will enable the exploration of the invariant stable manifold of the target Lagrange point orbit in an effort to optimize the spacecraft's low-thrust trajectory. Examples of these optimized trajectories are presented and contrasted with those found using traditional, gradient-based approaches. In summary, the results of this dissertation find that the PSO method does, indeed, successfully optimize the low-thrust trajectory transfer problem without the need for initial guessing. Furthermore, a two-degree-of-freedom PSO problem formulation significantly outperformed a one-degree-of-freedom formulation by at least an order of magnitude, in terms of CPU time. Finally, the PSO method is also used to solve a traditional, two-burn, impulsive transfer to a Lagrange point orbit using a hybrid optimization algorithm that incorporates a gradient-based shooting algorithm as a pre-optimizer. Surprisingly, the results of this study show that "fast" transfers outperform "slow" transfers in terms of both Deltav and time of flight.

  10. A Dynamic Finite Element Analysis of Human Foot Complex in the Sagittal Plane during Level Walking

    PubMed Central

    Qian, Zhihui; Ren, Lei; Ding, Yun; Hutchinson, John R.; Ren, Luquan

    2013-01-01

    The objective of this study is to develop a computational framework for investigating the dynamic behavior and the internal loading conditions of the human foot complex during locomotion. A subject-specific dynamic finite element model in the sagittal plane was constructed based on anatomical structures segmented from medical CT scan images. Three-dimensional gait measurements were conducted to support and validate the model. Ankle joint forces and moment derived from gait measurements were used to drive the model. Explicit finite element simulations were conducted, covering the entire stance phase from heel-strike impact to toe-off. The predicted ground reaction forces, center of pressure, foot bone motions and plantar surface pressure showed reasonably good agreement with the gait measurement data over most of the stance phase. The prediction discrepancies can be explained by the assumptions and limitations of the model. Our analysis showed that a dynamic FE simulation can improve the prediction accuracy in the peak plantar pressures at some parts of the foot complex by 10%–33% compared to a quasi-static FE simulation. However, to simplify the costly explicit FE simulation, the proposed model is confined only to the sagittal plane and has a simplified representation of foot structure. The dynamic finite element foot model proposed in this study would provide a useful tool for future extension to a fully muscle-driven dynamic three-dimensional model with detailed representation of all major anatomical structures, in order to investigate the structural dynamics of the human foot musculoskeletal system during normal or even pathological functioning. PMID:24244500

  11. A dynamic finite element analysis of human foot complex in the sagittal plane during level walking.

    PubMed

    Qian, Zhihui; Ren, Lei; Ding, Yun; Hutchinson, John R; Ren, Luquan

    2013-01-01

    The objective of this study is to develop a computational framework for investigating the dynamic behavior and the internal loading conditions of the human foot complex during locomotion. A subject-specific dynamic finite element model in the sagittal plane was constructed based on anatomical structures segmented from medical CT scan images. Three-dimensional gait measurements were conducted to support and validate the model. Ankle joint forces and moment derived from gait measurements were used to drive the model. Explicit finite element simulations were conducted, covering the entire stance phase from heel-strike impact to toe-off. The predicted ground reaction forces, center of pressure, foot bone motions and plantar surface pressure showed reasonably good agreement with the gait measurement data over most of the stance phase. The prediction discrepancies can be explained by the assumptions and limitations of the model. Our analysis showed that a dynamic FE simulation can improve the prediction accuracy in the peak plantar pressures at some parts of the foot complex by 10%-33% compared to a quasi-static FE simulation. However, to simplify the costly explicit FE simulation, the proposed model is confined only to the sagittal plane and has a simplified representation of foot structure. The dynamic finite element foot model proposed in this study would provide a useful tool for future extension to a fully muscle-driven dynamic three-dimensional model with detailed representation of all major anatomical structures, in order to investigate the structural dynamics of the human foot musculoskeletal system during normal or even pathological functioning.

  12. Pointwise convergence of derivatives of Lagrange interpolation polynomials for exponential weights

    NASA Astrophysics Data System (ADS)

    Damelin, S. B.; Jung, H. S.

    2005-01-01

    For a general class of exponential weights on the line and on (-1,1), we study pointwise convergence of the derivatives of Lagrange interpolation. Our weights include even weights of smooth polynomial decay near +/-[infinity] (Freud weights), even weights of faster than smooth polynomial decay near +/-[infinity] (Erdos weights) and even weights which vanish strongly near +/-1, for example Pollaczek type weights.

  13. State Machine Modeling of the Space Launch System Solid Rocket Boosters

    NASA Technical Reports Server (NTRS)

    Harris, Joshua A.; Patterson-Hine, Ann

    2013-01-01

    The Space Launch System is a Shuttle-derived heavy-lift vehicle currently in development to serve as NASA's premiere launch vehicle for space exploration. The Space Launch System is a multistage rocket with two Solid Rocket Boosters and multiple payloads, including the Multi-Purpose Crew Vehicle. Planned Space Launch System destinations include near-Earth asteroids, the Moon, Mars, and Lagrange points. The Space Launch System is a complex system with many subsystems, requiring considerable systems engineering and integration. To this end, state machine analysis offers a method to support engineering and operational e orts, identify and avert undesirable or potentially hazardous system states, and evaluate system requirements. Finite State Machines model a system as a finite number of states, with transitions between states controlled by state-based and event-based logic. State machines are a useful tool for understanding complex system behaviors and evaluating "what-if" scenarios. This work contributes to a state machine model of the Space Launch System developed at NASA Ames Research Center. The Space Launch System Solid Rocket Booster avionics and ignition subsystems are modeled using MATLAB/Stateflow software. This model is integrated into a larger model of Space Launch System avionics used for verification and validation of Space Launch System operating procedures and design requirements. This includes testing both nominal and o -nominal system states and command sequences.

  14. Adaptive implicit-explicit and parallel element-by-element iteration schemes

    NASA Technical Reports Server (NTRS)

    Tezduyar, T. E.; Liou, J.; Nguyen, T.; Poole, S.

    1989-01-01

    Adaptive implicit-explicit (AIE) and grouped element-by-element (GEBE) iteration schemes are presented for the finite element solution of large-scale problems in computational mechanics and physics. The AIE approach is based on the dynamic arrangement of the elements into differently treated groups. The GEBE procedure, which is a way of rewriting the EBE formulation to make its parallel processing potential and implementation more clear, is based on the static arrangement of the elements into groups with no inter-element coupling within each group. Various numerical tests performed demonstrate the savings in the CPU time and memory.

  15. Beyond Euler's Method: Implicit Finite Differences in an Introductory ODE Course

    ERIC Educational Resources Information Center

    Kull, Trent C.

    2011-01-01

    A typical introductory course in ordinary differential equations (ODEs) exposes students to exact solution methods. However, many differential equations must be approximated with numerical methods. Textbooks commonly include explicit methods such as Euler's and Improved Euler's. Implicit methods are typically introduced in more advanced courses…

  16. A Spatially Explicit Method for Prioritizing AIS Surveillance Site Selection in the Laurentian Great Lakes

    EPA Science Inventory

    Choosing where to sample for aquatic invasive species (AIS) is a daunting challenge in the Laurentian Great Lakes. Management resources are finite hence it is important that monitoring efforts concentrate on those sites with the highest risk of introduction based on transparent c...

  17. A MULTIPLE GRID ALGORITHM FOR ONE-DIMENSIONAL TRANSIENT OPEN CHANNEL FLOWS. (R825200)

    EPA Science Inventory

    Numerical modeling of open channel flows with shocks using explicit finite difference schemes is constrained by the choice of time step, which is limited by the CFL stability criteria. To overcome this limitation, in this work we introduce the application of a multiple grid al...

  18. Efficient algorithms and implementations of entropy-based moment closures for rarefied gases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaerer, Roman Pascal, E-mail: schaerer@mathcces.rwth-aachen.de; Bansal, Pratyuksh; Torrilhon, Manuel

    We present efficient algorithms and implementations of the 35-moment system equipped with the maximum-entropy closure in the context of rarefied gases. While closures based on the principle of entropy maximization have been shown to yield very promising results for moderately rarefied gas flows, the computational cost of these closures is in general much higher than for closure theories with explicit closed-form expressions of the closing fluxes, such as Grad's classical closure. Following a similar approach as Garrett et al. (2015) , we investigate efficient implementations of the computationally expensive numerical quadrature method used for the moment evaluations of the maximum-entropymore » distribution by exploiting its inherent fine-grained parallelism with the parallelism offered by multi-core processors and graphics cards. We show that using a single graphics card as an accelerator allows speed-ups of two orders of magnitude when compared to a serial CPU implementation. To accelerate the time-to-solution for steady-state problems, we propose a new semi-implicit time discretization scheme. The resulting nonlinear system of equations is solved with a Newton type method in the Lagrange multipliers of the dual optimization problem in order to reduce the computational cost. Additionally, fully explicit time-stepping schemes of first and second order accuracy are presented. We investigate the accuracy and efficiency of the numerical schemes for several numerical test cases, including a steady-state shock-structure problem.« less

  19. Two charges on a plane in a magnetic field: hidden algebra, (particular) integrability, polynomial eigenfunctions

    NASA Astrophysics Data System (ADS)

    Turbiner, A. V.; Escobar-Ruiz, M. A.

    2013-07-01

    The quantum mechanics of two Coulomb charges on a plane (e1, m1) and (e2, m2) subject to a constant magnetic field B perpendicular to the plane is considered. Four integrals of motion are explicitly indicated. It is shown that for two physically important particular cases, namely that of two particles of equal Larmor frequencies, {e_c} \\propto \\frac{e_1}{m_1}-\\frac{e_2}{m_2}=0 (e.g. two electrons) and one of a neutral system (e.g. the electron-positron pair, hydrogen atom) at rest (the center-of-mass momentum is zero) some outstanding properties occur. They are the most visible in double polar coordinates in CMS (R, ϕ) and relative (ρ, φ) coordinate systems: (i) eigenfunctions are factorizable, all factors except one with the explicit ρ-dependence are found analytically, they have definite relative angular momentum, (ii) dynamics in the ρ-direction is the same for both systems, it corresponds to a funnel-type potential and it has hidden sl(2) algebra, at some discrete values of dimensionless magnetic fields b ⩽ 1, (iii) particular integral(s) occur, (iv) the hidden sl(2) algebra emerges in finite-dimensional representation, thus, the system becomes quasi-exactly-solvable and (v) a finite number of polynomial eigenfunctions in ρ appear. Nine families of eigenfunctions are presented explicitly.

  20. Goal-oriented explicit residual-type error estimates in XFEM

    NASA Astrophysics Data System (ADS)

    Rüter, Marcus; Gerasimov, Tymofiy; Stein, Erwin

    2013-08-01

    A goal-oriented a posteriori error estimator is derived to control the error obtained while approximately evaluating a quantity of engineering interest, represented in terms of a given linear or nonlinear functional, using extended finite elements of Q1 type. The same approximation method is used to solve the dual problem as required for the a posteriori error analysis. It is shown that for both problems to be solved numerically the same singular enrichment functions can be used. The goal-oriented error estimator presented can be classified as explicit residual type, i.e. the residuals of the approximations are used directly to compute upper bounds on the error of the quantity of interest. This approach therefore extends the explicit residual-type error estimator for classical energy norm error control as recently presented in Gerasimov et al. (Int J Numer Meth Eng 90:1118-1155, 2012a). Without loss of generality, the a posteriori error estimator is applied to the model problem of linear elastic fracture mechanics. Thus, emphasis is placed on the fracture criterion, here the J-integral, as the chosen quantity of interest. Finally, various illustrative numerical examples are presented where, on the one hand, the error estimator is compared to its finite element counterpart and, on the other hand, improved enrichment functions, as introduced in Gerasimov et al. (2012b), are discussed.

  1. Comparison of explicit finite element and mechanical simulation of the proximal femur during dynamic drop-tower testing.

    PubMed

    Ariza, O; Gilchrist, S; Widmer, R P; Guy, P; Ferguson, S J; Cripton, P A; Helgason, B

    2015-01-21

    Current screening techniques based on areal bone mineral density (aBMD) measurements are unable to identify the majority of people who sustain hip fractures. Biomechanical examination of such events may help determine what predisposes a hip to be susceptible to fracture. Recently, drop-tower simulations of in-vitro sideways falls have allowed the study of the mechanical response of the proximal human femur at realistic impact speeds. This technique has created an opportunity to validate explicit finite element (FE) models against dynamic test data. This study compared the outcomes of 15 human femoral specimens fractured using a drop tower with complementary specimen-specific explicit FE analysis. Correlation coefficient and root mean square error (RMSE) were found to be moderate for whole bone stiffness comparison (R(2)=0.3476 and 22.85% respectively). No correlation was found between experimentally and computationally predicted peak force, however, energy absorption comparison produced moderate correlation and RMSE (R(2)=0.4781 and 29.14% respectively). By comparing predicted strain maps to high speed video data we demonstrated the ability of the FE models to detect vulnerable portions of the bones. Based on our observations, we conclude that there exists a need to extend the current apparent level material models for bone to cover higher strain rates than previously tested experimentally. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. GPGPU-based explicit finite element computations for applications in biomechanics: the performance of material models, element technologies, and hardware generations.

    PubMed

    Strbac, V; Pierce, D M; Vander Sloten, J; Famaey, N

    2017-12-01

    Finite element (FE) simulations are increasingly valuable in assessing and improving the performance of biomedical devices and procedures. Due to high computational demands such simulations may become difficult or even infeasible, especially when considering nearly incompressible and anisotropic material models prevalent in analyses of soft tissues. Implementations of GPGPU-based explicit FEs predominantly cover isotropic materials, e.g. the neo-Hookean model. To elucidate the computational expense of anisotropic materials, we implement the Gasser-Ogden-Holzapfel dispersed, fiber-reinforced model and compare solution times against the neo-Hookean model. Implementations of GPGPU-based explicit FEs conventionally rely on single-point (under) integration. To elucidate the expense of full and selective-reduced integration (more reliable) we implement both and compare corresponding solution times against those generated using underintegration. To better understand the advancement of hardware, we compare results generated using representative Nvidia GPGPUs from three recent generations: Fermi (C2075), Kepler (K20c), and Maxwell (GTX980). We explore scaling by solving the same boundary value problem (an extension-inflation test on a segment of human aorta) with progressively larger FE meshes. Our results demonstrate substantial improvements in simulation speeds relative to two benchmark FE codes (up to 300[Formula: see text] while maintaining accuracy), and thus open many avenues to novel applications in biomechanics and medicine.

  3. Wave Propagation Analysis of Edge Cracked Circular Beams under Impact Force

    PubMed Central

    Akbaş, Şeref Doğuşcan

    2014-01-01

    This paper presents responses of an edge circular cantilever beam under the effect of an impact force. The beam is excited by a transverse triangular force impulse modulated by a harmonic motion. The Kelvin–Voigt model for the material of the beam is used. The cracked beam is modelled as an assembly of two sub-beams connected through a massless elastic rotational spring. The considered problem is investigated within the Bernoulli-Euler beam theory by using energy based finite element method. The system of equations of motion is derived by using Lagrange's equations. The obtained system of linear differential equations is reduced to a linear algebraic equation system and solved in the time domain by using Newmark average acceleration method. In the study, the effects of the location of crack, the depth of the crack, on the characteristics of the reflected waves are investigated in detail. Also, the positions of the cracks are calculated by using reflected waves. PMID:24972050

  4. A Moving Mesh Finite Element Algorithm for Singular Problems in Two and Three Space Dimensions

    NASA Astrophysics Data System (ADS)

    Li, Ruo; Tang, Tao; Zhang, Pingwen

    2002-04-01

    A framework for adaptive meshes based on the Hamilton-Schoen-Yau theory was proposed by Dvinsky. In a recent work (2001, J. Comput. Phys.170, 562-588), we extended Dvinsky's method to provide an efficient moving mesh algorithm which compared favorably with the previously proposed schemes in terms of simplicity and reliability. In this work, we will further extend the moving mesh methods based on harmonic maps to deal with mesh adaptation in three space dimensions. In obtaining the variational mesh, we will solve an optimization problem with some appropriate constraints, which is in contrast to the traditional method of solving the Euler-Lagrange equation directly. The key idea of this approach is to update the interior and boundary grids simultaneously, rather than considering them separately. Application of the proposed moving mesh scheme is illustrated with some two- and three-dimensional problems with large solution gradients. The numerical experiments show that our methods can accurately resolve detail features of singular problems in 3D.

  5. Geometric constrained variational calculus I: Piecewise smooth extremals

    NASA Astrophysics Data System (ADS)

    Massa, Enrico; Bruno, Danilo; Luria, Gianvittorio; Pagani, Enrico

    2015-05-01

    A geometric setup for constrained variational calculus is presented. The analysis deals with the study of the extremals of an action functional defined on piecewise differentiable curves, subject to differentiable, non-holonomic constraints. Special attention is paid to the tensorial aspects of the theory. As far as the kinematical foundations are concerned, a fully covariant scheme is developed through the introduction of the concept of infinitesimal control. The standard classification of the extremals into normal and abnormal ones is discussed, pointing out the existence of an algebraic algorithm assigning to each admissible curve a corresponding abnormality index, related to the co-rank of a suitable linear map. Attention is then shifted to the study of the first variation of the action functional. The analysis includes a revisitation of Pontryagin's equations and of the Lagrange multipliers method, as well as a reformulation of Pontryagin's algorithm in Hamiltonian terms. The analysis is completed by a general result, concerning the existence of finite deformations with fixed endpoints.

  6. A novel Lagrangian approach for the stable numerical simulation of fault and fracture mechanics

    NASA Astrophysics Data System (ADS)

    Franceschini, Andrea; Ferronato, Massimiliano; Janna, Carlo; Teatini, Pietro

    2016-06-01

    The simulation of the mechanics of geological faults and fractures is of paramount importance in several applications, such as ensuring the safety of the underground storage of wastes and hydrocarbons or predicting the possible seismicity triggered by the production and injection of subsurface fluids. However, the stable numerical modeling of ground ruptures is still an open issue. The present work introduces a novel formulation based on the use of the Lagrange multipliers to prescribe the constraints on the contact surfaces. The variational formulation is modified in order to take into account the frictional work along the activated fault portion according to the principle of maximum plastic dissipation. The numerical model, developed in the framework of the Finite Element method, provides stable solutions with a fast convergence of the non-linear problem. The stabilizing properties of the proposed model are emphasized with the aid of a realistic numerical example dealing with the generation of ground fractures due to groundwater withdrawal in arid regions.

  7. Space Instrument Optimization by Implementing of Generic Three Bodies Circular Restricted Problem

    NASA Astrophysics Data System (ADS)

    Nejat, Cyrus

    2011-01-01

    In this study, the main discussion emphasizes on the spacecraft operation with a concentration on stationary points in space. To achieve these objectives, the circular restricted problem was solved for selected approaches. The equations of motion of three body restricted problem was demonstrated to apply in cases other than Lagrange's (1736-1813 A.D.) achievements, by means of the purposed CN (Cyrus Nejat) theorem along with appropriate comments. In addition to five Lagrange, two other points, CN1 and CN2 were found to be in unstable equilibrium points in a very large distance respect to Lagrange points, but stable at infinity. A very interesting simulation of Milky Way Galaxy and Andromeda Galaxy were created to find the Lagrange points, CN points (Cyrus Nejat Points), and CN lines (Cyrus Nejat Lines). The equations of motion were rearranged such a way that the transfer trajectory would be conical, by means of decoupling concept. The main objective was to make a halo orbit transfer about CN lines. The author purposes therefore that all of the corresponding sizing design that they must be developed by optimization techniques would be considered in future approaches. The optimization techniques are sufficient procedures to search for the most ideal response of a system.

  8. On the explicit construction of Parisi landscapes in finite dimensional Euclidean spaces

    NASA Astrophysics Data System (ADS)

    Fyodorov, Y. V.; Bouchaud, J.-P.

    2007-12-01

    An N-dimensional Gaussian landscape with multiscale translation-invariant logarithmic correlations has been constructed, and the statistical mechanics of a single particle in this environment has been investigated. In the limit of a high dimensional N → ∞, the free energy of the system in the thermodynamic limit coincides with the most general version of Derrida’s generalized random energy model. The low-temperature behavior depends essentially on the spectrum of length scales involved in the construction of the landscape. The construction is argued to be valid in any finite spatial dimensions N ≥1.

  9. Seakeeping with the semi-Lagrangian particle finite element method

    NASA Astrophysics Data System (ADS)

    Nadukandi, Prashanth; Servan-Camas, Borja; Becker, Pablo Agustín; Garcia-Espinosa, Julio

    2017-07-01

    The application of the semi-Lagrangian particle finite element method (SL-PFEM) for the seakeeping simulation of the wave adaptive modular vehicle under spray generating conditions is presented. The time integration of the Lagrangian advection is done using the explicit integration of the velocity and acceleration along the streamlines (X-IVAS). Despite the suitability of the SL-PFEM for the considered seakeeping application, small time steps were needed in the X-IVAS scheme to control the solution accuracy. A preliminary proposal to overcome this limitation of the X-IVAS scheme for seakeeping simulations is presented.

  10. Time-stable boundary conditions for finite-difference schemes solving hyperbolic systems: Methodology and application to high-order compact schemes

    NASA Technical Reports Server (NTRS)

    Carpenter, Mark H.; Gottlieb, David; Abarbanel, Saul

    1993-01-01

    We present a systematic method for constructing boundary conditions (numerical and physical) of the required accuracy, for compact (Pade-like) high-order finite-difference schemes for hyperbolic systems. First, a roper summation-by-parts formula is found for the approximate derivative. A 'simultaneous approximation term' (SAT) is then introduced to treat the boundary conditions. This procedure leads to time-stable schemes even in the system case. An explicit construction of the fourth-order compact case is given. Numerical studies are presented to verify the efficacy of the approach.

  11. Current capabilities for simulating the extreme distortion of thin structures subjected to severe impacts

    NASA Technical Reports Server (NTRS)

    Key, Samuel W.

    1993-01-01

    The explicit transient dynamics technology in use today for simulating the impact and subsequent transient dynamic response of a structure has its origins in the 'hydrocodes' dating back to the late 1940's. The growth in capability in explicit transient dynamics technology parallels the growth in speed and size of digital computers. Computer software for simulating the explicit transient dynamic response of a structure is characterized by algorithms that use a large number of small steps. In explicit transient dynamics software there is a significant emphasis on speed and simplicity. The finite element technology used to generate the spatial discretization of a structure is based on a compromise between completeness of the representation for the physical processes modelled and speed in execution. That is, since it is expected in every calculation that the deformation will be finite and the material will be strained beyond the elastic range, the geometry and the associated gradient operators must be reconstructed, as well as complex stress-strain models evaluated at every time step. As a result, finite elements derived for explicit transient dynamics software use the simplest and barest constructions possible for computational efficiency while retaining an essential representation of the physical behavior. The best example of this technology is the four-node bending quadrilateral derived by Belytschko, Lin and Tsay. Today, the speed, memory capacity and availability of computer hardware allows a number of the previously used algorithms to be 'improved.' That is, it is possible with today's computing hardware to modify many of the standard algorithms to improve their representation of the physical process at the expense of added complexity and computational effort. The purpose is to review a number of these algorithms and identify the improvements possible. In many instances, both the older, faster version of the algorithm and the improved and somewhat slower version of the algorithm are found implemented together in software. Specifically, the following seven algorithmic items are examined: the invariant time derivatives of stress used in material models expressed in rate form; incremental objectivity and strain used in the numerical integration of the material models; the use of one-point element integration versus mean quadrature; shell elements used to represent the behavior of thin structural components; beam elements based on stress-resultant plasticity versus cross-section integration; the fidelity of elastic-plastic material models in their representation of ductile metals; and the use of Courant subcycling to reduce computational effort.

  12. A family of four stages embedded explicit six-step methods with eliminated phase-lag and its derivatives for the numerical solution of the second order problems

    NASA Astrophysics Data System (ADS)

    Simos, T. E.

    2017-11-01

    A family of four stages high algebraic order embedded explicit six-step methods, for the numerical solution of second order initial or boundary-value problems with periodical and/or oscillating solutions, are studied in this paper. The free parameters of the new proposed methods are calculated solving the linear system of equations which is produced by requesting the vanishing of the phase-lag of the methods and the vanishing of the phase-lag's derivatives of the schemes. For the new obtained methods we investigate: • Its local truncation error (LTE) of the methods.• The asymptotic form of the LTE obtained using as model problem the radial Schrödinger equation.• The comparison of the asymptotic forms of LTEs for several methods of the same family. This comparison leads to conclusions on the efficiency of each method of the family.• The stability and the interval of periodicity of the obtained methods of the new family of embedded finite difference pairs.• The applications of the new obtained family of embedded finite difference pairs to the numerical solution of several second order problems like the radial Schrödinger equation, astronomical problems etc. The above applications lead to conclusion on the efficiency of the methods of the new family of embedded finite difference pairs.

  13. Reexamination of optimal quantum state estimation of pure states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayashi, A.; Hashimoto, T.; Horibe, M.

    2005-09-15

    A direct derivation is given for the optimal mean fidelity of quantum state estimation of a d-dimensional unknown pure state with its N copies given as input, which was first obtained by Hayashi in terms of an infinite set of covariant positive operator valued measures (POVM's) and by Bruss and Macchiavello establishing a connection to optimal quantum cloning. An explicit condition for POVM measurement operators for optimal estimators is obtained, by which we construct optimal estimators with finite POVMs using exact quadratures on a hypersphere. These finite optimal estimators are not generally universal, where universality means the fidelity is independentmore » of input states. However, any optimal estimator with finite POVM for M(>N) copies is universal if it is used for N copies as input.« less

  14. Radon transport model into a porous ground layer of finite capacity

    NASA Astrophysics Data System (ADS)

    Parovik, Roman

    2017-10-01

    The model of radon transfer is considered in a porous ground layer of finite power. With the help of the Laplace integral transformation, a numerical solution of this model is obtained which is based on the construction of a generalized quadrature formula of the highest degree of accuracy for the transition to the original - the function of solving this problem. The calculated curves are constructed and investigated depending on the diffusion and advection coefficients.The work was a mathematical model that describes the effect of the sliding attachment (stick-slip), taking into account hereditarity. This model can be regarded as a mechanical model of earthquake preparation. For such a model was proposed explicit finite- difference scheme, on which were built the waveform and phase trajectories hereditarity effect of stick-slip.

  15. An Efficient Algorithm for Perturbed Orbit Integration Combining Analytical Continuation and Modified Chebyshev Picard Iteration

    NASA Astrophysics Data System (ADS)

    Elgohary, T.; Kim, D.; Turner, J.; Junkins, J.

    2014-09-01

    Several methods exist for integrating the motion in high order gravity fields. Some recent methods use an approximate starting orbit, and an efficient method is needed for generating warm starts that account for specific low order gravity approximations. By introducing two scalar Lagrange-like invariants and employing Leibniz product rule, the perturbed motion is integrated by a novel recursive formulation. The Lagrange-like invariants allow exact arbitrary order time derivatives. Restricting attention to the perturbations due to the zonal harmonics J2 through J6, we illustrate an idea. The recursively generated vector-valued time derivatives for the trajectory are used to develop a continuation series-based solution for propagating position and velocity. Numerical comparisons indicate performance improvements of ~ 70X over existing explicit Runge-Kutta methods while maintaining mm accuracy for the orbit predictions. The Modified Chebyshev Picard Iteration (MCPI) is an iterative path approximation method to solve nonlinear ordinary differential equations. The MCPI utilizes Picard iteration with orthogonal Chebyshev polynomial basis functions to recursively update the states. The key advantages of the MCPI are as follows: 1) Large segments of a trajectory can be approximated by evaluating the forcing function at multiple nodes along the current approximation during each iteration. 2) It can readily handle general gravity perturbations as well as non-conservative forces. 3) Parallel applications are possible. The Picard sequence converges to the solution over large time intervals when the forces are continuous and differentiable. According to the accuracy of the starting solutions, however, the MCPI may require significant number of iterations and function evaluations compared to other integrators. In this work, we provide an efficient methodology to establish good starting solutions from the continuation series method; this warm start improves the performance of the MCPI significantly and will likely be useful for other applications where efficiently computed approximate orbit solutions are needed.

  16. A high-order spatial filter for a cubed-sphere spectral element model

    NASA Astrophysics Data System (ADS)

    Kang, Hyun-Gyu; Cheong, Hyeong-Bin

    2017-04-01

    A high-order spatial filter is developed for the spectral-element-method dynamical core on the cubed-sphere grid which employs the Gauss-Lobatto Lagrange interpolating polynomials (GLLIP) as orthogonal basis functions. The filter equation is the high-order Helmholtz equation which corresponds to the implicit time-differencing of a diffusion equation employing the high-order Laplacian. The Laplacian operator is discretized within a cell which is a building block of the cubed sphere grid and consists of the Gauss-Lobatto grid. When discretizing a high-order Laplacian, due to the requirement of C0 continuity along the cell boundaries the grid-points in neighboring cells should be used for the target cell: The number of neighboring cells is nearly quadratically proportional to the filter order. Discrete Helmholtz equation yields a huge-sized and highly sparse matrix equation whose size is N*N with N the number of total grid points on the globe. The number of nonzero entries is also almost in quadratic proportion to the filter order. Filtering is accomplished by solving the huge-matrix equation. While requiring a significant computing time, the solution of global matrix provides the filtered field free of discontinuity along the cell boundaries. To achieve the computational efficiency and the accuracy at the same time, the solution of the matrix equation was obtained by only accounting for the finite number of adjacent cells. This is called as a local-domain filter. It was shown that to remove the numerical noise near the grid-scale, inclusion of 5*5 cells for the local-domain filter was found sufficient, giving the same accuracy as that obtained by global domain solution while reducing the computing time to a considerably lower level. The high-order filter was evaluated using the standard test cases including the baroclinic instability of the zonal flow. Results indicated that the filter performs better on the removal of grid-scale numerical noises than the explicit high-order viscosity. It was also presented that the filter can be easily implemented on the distributed-memory parallel computers with a desirable scalability.

  17. Generic tripartite Bell nonlocality sudden death under local phase noise

    NASA Astrophysics Data System (ADS)

    Ann, Kevin; Jaeger, Gregg

    2008-11-01

    We definitively show, using an explicit and broadly applicable model, that local phase noise that is capable of eliminating state coherence only in the infinite-time limit is capable of eliminating nonlocality in finite time in three two-level systems prepared in the Bell-nonlocal tripartite states of the generic entanglement class.

  18. Teaching Proofs and Algorithms in Discrete Mathematics with Online Visual Logic Puzzles

    ERIC Educational Resources Information Center

    Cigas, John; Hsin, Wen-Jung

    2005-01-01

    Visual logic puzzles provide a fertile environment for teaching multiple topics in discrete mathematics. Many puzzles can be solved by the repeated application of a small, finite set of strategies. Explicitly reasoning from a strategy to a new puzzle state illustrates theorems, proofs, and logic principles. These provide valuable, concrete…

  19. Vibrational Responses Of Structures To Impulses

    NASA Technical Reports Server (NTRS)

    Zak, Michail A.

    1990-01-01

    Report discusses propagation of vibrations in structure in response to impulsive and/or concentrated loads. Effects of pulsed loads treated by analyzing propagation of characteristic vibrational waves explicitly through each member of structure. This wave-front analysis used in combination with usual finite-element modal analysis to obtain more accurate representation of overall vibrational behavior.

  20. Optimal implicit 2-D finite differences to model wave propagation in poroelastic media

    NASA Astrophysics Data System (ADS)

    Itzá, Reymundo; Iturrarán-Viveros, Ursula; Parra, Jorge O.

    2016-08-01

    Numerical modeling of seismic waves in heterogeneous porous reservoir rocks is an important tool for the interpretation of seismic surveys in reservoir engineering. We apply globally optimal implicit staggered-grid finite differences (FD) to model 2-D wave propagation in heterogeneous poroelastic media at a low-frequency range (<10 kHz). We validate the numerical solution by comparing it to an analytical-transient solution obtaining clear seismic wavefields including fast P and slow P and S waves (for a porous media saturated with fluid). The numerical dispersion and stability conditions are derived using von Neumann analysis, showing that over a wide range of porous materials the Courant condition governs the stability and this optimal implicit scheme improves the stability of explicit schemes. High-order explicit FD can be replaced by some lower order optimal implicit FD so computational cost will not be as expensive while maintaining the accuracy. Here, we compute weights for the optimal implicit FD scheme to attain an accuracy of γ = 10-8. The implicit spatial differentiation involves solving tridiagonal linear systems of equations through Thomas' algorithm.

  1. Comparison of AGE and Spectral Methods for the Simulation of Far-Wakes

    NASA Technical Reports Server (NTRS)

    Bisset, D. K.; Rogers, M. M.; Kega, Dennis (Technical Monitor)

    1999-01-01

    Turbulent flow simulation methods based on finite differences are attractive for their simplicity, flexibility and efficiency, but not always for accuracy or stability. This report demonstrates that a good compromise is possible with the Advected Grid Explicit (AGE) method. AGE has proven to be both efficient and accurate for simulating turbulent free-shear flows, including planar mixing layers and planar jets. Its efficiency results from its localized fully explicit finite difference formulation (Bisset 1998a,b) that is very straightforward to compute, outweighing the need for a fairly small timestep. Also, most of the successful simulations were slightly under-resolved, and therefore they were, in effect, large-eddy simulations (LES) without a sub-grid-scale (SGS) model, rather than direct numerical simulations (DNS). The principle is that the role of the smallest scales of turbulent motion (when the Reynolds number is not too low) is to dissipate turbulent energy, and therefore they do not have to be simulated when the numerical method is inherently dissipative at its resolution limits. Such simulations are termed 'auto-LES' (LES with automatic SGS modeling) in this report.

  2. Development and Evaluation of a Hydrostatic Dynamical Core Using the Spectral Element/Discontinuous Galerkin Methods

    DTIC Science & Technology

    2014-04-01

    The CG and DG horizontal discretization employs high-order nodal basis functions associated with Lagrange polynomials based on Gauss-Lobatto- Legendre ...and DG horizontal discretization employs high-order nodal basis functions 29 associated with Lagrange polynomials based on Gauss-Lobatto- Legendre ...Inside 235 each element we build ( 1)N + Gauss-Lobatto- Legendre (GLL) quadrature points, where N 236 indicate the polynomial order of the basis

  3. PID position regulation in one-degree-of-freedom Euler-Lagrange systems actuated by a PMSM

    NASA Astrophysics Data System (ADS)

    Verastegui-Galván, J.; Hernández-Guzmán, V. M.; Orrante-Sakanassi, J.

    2018-02-01

    This paper is concerned with position regulation in one-degree-of-freedom Euler-Lagrange Systems. We consider that the mechanical subsystem is actuated by a permanent magnet synchronous motor (PMSM). Our proposal consists of a Proportional-Integral-Derivative (PID) controller for the mechanical subsystem and a slight variation of field oriented control for the PMSM. We take into account the motor electric dynamics during the stability analysis. We present, for the first time, a global asymptotic stability proof for such a control scheme without requiring the mechanical subsystem to naturally possess viscous friction. Finally, as a corollary of our main result we prove global asymptotic stability for output feedback PID regulation of one-degree-of-freedom Euler-Lagrange systems when generated torque is considered as the system input, i.e. when the electric dynamics of PMSM's is not taken into account.

  4. Modeling of Mixing Behavior in a Combined Blowing Steelmaking Converter with a Filter-Based Euler-Lagrange Model

    NASA Astrophysics Data System (ADS)

    Li, Mingming; Li, Lin; Li, Qiang; Zou, Zongshu

    2018-05-01

    A filter-based Euler-Lagrange multiphase flow model is used to study the mixing behavior in a combined blowing steelmaking converter. The Euler-based volume of fluid approach is employed to simulate the top blowing, while the Lagrange-based discrete phase model that embeds the local volume change of rising bubbles for the bottom blowing. A filter-based turbulence method based on the local meshing resolution is proposed aiming to improve the modeling of turbulent eddy viscosities. The model validity is verified through comparison with physical experiments in terms of mixing curves and mixing times. The effects of the bottom gas flow rate on bath flow and mixing behavior are investigated and the inherent reasons for the mixing result are clarified in terms of the characteristics of bottom-blowing plumes, the interaction between plumes and top-blowing jets, and the change of bath flow structure.

  5. Computing an upper bound on contact stress with surrogate duality

    NASA Astrophysics Data System (ADS)

    Xuan, Zhaocheng; Papadopoulos, Panayiotis

    2016-07-01

    We present a method for computing an upper bound on the contact stress of elastic bodies. The continuum model of elastic bodies with contact is first modeled as a constrained optimization problem by using finite elements. An explicit formulation of the total contact force, a fraction function with the numerator as a linear function and the denominator as a quadratic convex function, is derived with only the normalized nodal contact forces as the constrained variables in a standard simplex. Then two bounds are obtained for the sum of the nodal contact forces. The first is an explicit formulation of matrices of the finite element model, derived by maximizing the fraction function under the constraint that the sum of the normalized nodal contact forces is one. The second bound is solved by first maximizing the fraction function subject to the standard simplex and then using Dinkelbach's algorithm for fractional programming to find the maximum—since the fraction function is pseudo concave in a neighborhood of the solution. These two bounds are solved with the problem dimensions being only the number of contact nodes or node pairs, which are much smaller than the dimension for the original problem, namely, the number of degrees of freedom. Next, a scheme for constructing an upper bound on the contact stress is proposed that uses the bounds on the sum of the nodal contact forces obtained on a fine finite element mesh and the nodal contact forces obtained on a coarse finite element mesh, which are problems that can be solved at a lower computational cost. Finally, the proposed method is verified through some examples concerning both frictionless and frictional contact to demonstrate the method's feasibility, efficiency, and robustness.

  6. Matrix elements for type 1 unitary irreducible representations of the Lie superalgebra gl(m|n)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gould, Mark D.; Isaac, Phillip S.; Werry, Jason L.

    Using our recent results on eigenvalues of invariants associated to the Lie superalgebra gl(m|n), we use characteristic identities to derive explicit matrix element formulae for all gl(m|n) generators, particularly non-elementary generators, on finite dimensional type 1 unitary irreducible representations. We compare our results with existing works that deal with only subsets of the class of type 1 unitary representations, all of which only present explicit matrix elements for elementary generators. Our work therefore provides an important extension to existing methods, and thus highlights the strength of our techniques which exploit the characteristic identities.

  7. Implicit schemes and parallel computing in unstructured grid CFD

    NASA Technical Reports Server (NTRS)

    Venkatakrishnam, V.

    1995-01-01

    The development of implicit schemes for obtaining steady state solutions to the Euler and Navier-Stokes equations on unstructured grids is outlined. Applications are presented that compare the convergence characteristics of various implicit methods. Next, the development of explicit and implicit schemes to compute unsteady flows on unstructured grids is discussed. Next, the issues involved in parallelizing finite volume schemes on unstructured meshes in an MIMD (multiple instruction/multiple data stream) fashion are outlined. Techniques for partitioning unstructured grids among processors and for extracting parallelism in explicit and implicit solvers are discussed. Finally, some dynamic load balancing ideas, which are useful in adaptive transient computations, are presented.

  8. Localisation of flow separation and transition over a pitching NACA0012 airfoil at transitional Reynolds number

    NASA Astrophysics Data System (ADS)

    Rudmin, Daniel

    Ionic polymer-metal composites (IPMCs) are some of the most well-known electro-active polymers. This is due to their large deformation provided a relatively low voltage source. IPMCs have been acknowledged as a potential candidate for biomedical applications such as cardiac catheters and surgical probes; however, there is still no existing mass manufacturing of IPMCs. This study intends to provide a theoretical framework which could be used to design practical purpose IPMCs depending on the end users interest. This study begins by investigating methodologies used to develop quantify the physical actuation of an IPMC in 3-dimensional space. This approach is taken in two separate means; however, both approaches utilize the finite element method. The first approach utilizes the finite element method in order to describe the dynamic response of a segmented IPMC actuator. The first approach manually constructs each element with a local coordinate system. Each system undergoes a rigid body motion along the element and deformation of the element is expressed in the local coordinate frame. The physical phenomenon in this system is simplified by utilizing a lumped RC model in order to simplify the electro-mechanical phenomena in the IPMC dynamics. The second study investigates 3D modeling of a rod shaped IPMC actuator by explicitly coupling electrostatics, transport phenomenon, and solid mechanics. This portion of the research will briefly discuss the mathematical background that more accurately quantifies the physical phenomena. Solving for the 3-dimensional actuation is explicitly carried out again by utilizing the finite element method. The numerical result is conducted in a software package known as COMSOL MULTIPHYSICS. This simulation allows for explicit geometric rendering as well as more explicit quantification of the physical quantities such as concentration, electric field, and deflection. The final study will conduct design optimization on the COMSOL simulation in order to provide conceptual motivation for future designs. Utilizing a multi-physics analysis approach on a three dimensional cylinder and tube type IPMC provides physically accurate results for time dependent end effector displacement given a voltage source. Simulations are conducted with the finite element method and are also validated with empirical evidences. Having an in-depth understanding of the physical coupling provides optimal design parameters that cannot be altered from a standard electro-mechanical coupling. These parameters are altered in order to determine optimal designs for end-effector displacement, maximum force, and improved mobility with limited voltage magnitude. Design alterations are conducted on the electrode patterns in order to provide greater mobility, electrode size for efficient bending, and Nafion diameter for improved force. The results of this study will provide optimal design parameters of the IPMC for different applications.

  9. Lagrange thermodynamic potential and intrinsic variables for He-3 He-4 dilute solutions

    NASA Technical Reports Server (NTRS)

    Jackson, H. W.

    1983-01-01

    For a two-fluid model of dilute solutions of He-3 in liquid He-4, a thermodynamic potential is constructed that provides a Lagrangian for deriving equations of motion by a variational procedure. This Lagrangian is defined for uniform velocity fields as a (negative) Legendre transform of total internal energy, and its primary independent variables, together with their thermodynamic conjugates, are identified. Here, similarities between relations in classical physics and quantum statistical mechanics serve as a guide for developing an alternate expression for this function that reveals its character as the difference between apparent kinetic energy and intrinsic internal energy. When the He-3 concentration in the mixtures tends to zero, this expression reduces to Zilsel's formula for the Lagrangian for pure liquid He-4. An investigation of properties of the intrinsic internal energy leads to the introduction of intrinsic chemical potentials along with other intrinsic variables for the mixtures. Explicit formulas for these variables are derived for a noninteracting elementary excitation model of the fluid. Using these formulas and others also derived from quantum statistical mechanics, another equivalent expression for the Lagrangian is generated.

  10. Barrier displacement on a neutral landscape: Towards a theory of continental biogeography

    USGS Publications Warehouse

    Albert, James S.; Schoolmaster, Donald; Tagliacollo, Victor; Duke-Sylvester, Scott M.

    2017-01-01

    Here we present SEAMLESS (Spatially-Explicit Area Model of Landscape Evolution by SimulationS) that generates clade diversification by moving geographic barriers on a continuous, neutral landscape. SEAMLESS is a neutral Landscape Evolution Model (LEM) that treats species and barriers as functionally equivalent with respect to model parameters. SEAMLESS differs from other model-based biogeographic methods (e.g. Lagrange, GeoSSE, BayArea, BioGeoBEARS) by modeling properties of dispersal barriers rather than areas, and by modeling the evolution of species lineages on a continuous landscape, rather than the evolution of geographic ranges along branches of a phylogeny. SEAMLESS shows how dispersal is required to maintain species richness and avoid clade-wide extinction, demonstrates that ancestral range size does not predict species richness, and provides a unified explanation for the suite of commonly observed biogeographic and phylogenetic patterns listed above. SEAMLESS explains how a simple barrier-displacement mechanism affects lineage diversification under neutral conditions, and is advanced here towards the formulation of a general theory of continental biogeography.                   

  11. A Novel Multi-Receiver Signcryption Scheme with Complete Anonymity.

    PubMed

    Pang, Liaojun; Yan, Xuxia; Zhao, Huiyang; Hu, Yufei; Li, Huixian

    2016-01-01

    Anonymity, which is more and more important to multi-receiver schemes, has been taken into consideration by many researchers recently. To protect the receiver anonymity, in 2010, the first multi-receiver scheme based on the Lagrange interpolating polynomial was proposed. To ensure the sender's anonymity, the concept of the ring signature was proposed in 2005, but afterwards, this scheme was proven to has some weakness and at the same time, a completely anonymous multi-receiver signcryption scheme is proposed. In this completely anonymous scheme, the sender anonymity is achieved by improving the ring signature, and the receiver anonymity is achieved by also using the Lagrange interpolating polynomial. Unfortunately, the Lagrange interpolation method was proven a failure to protect the anonymity of receivers, because each authorized receiver could judge whether anyone else is authorized or not. Therefore, the completely anonymous multi-receiver signcryption mentioned above can only protect the sender anonymity. In this paper, we propose a new completely anonymous multi-receiver signcryption scheme with a new polynomial technology used to replace the Lagrange interpolating polynomial, which can mix the identity information of receivers to save it as a ciphertext element and prevent the authorized receivers from verifying others. With the receiver anonymity, the proposed scheme also owns the anonymity of the sender at the same time. Meanwhile, the decryption fairness and public verification are also provided.

  12. Large-eddy simulation using the finite element method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCallen, R.C.; Gresho, P.M.; Leone, J.M. Jr.

    1993-10-01

    In a large-eddy simulation (LES) of turbulent flows, the large-scale motion is calculated explicitly (i.e., approximated with semi-empirical relations). Typically, finite difference or spectral numerical schemes are used to generate an LES; the use of finite element methods (FEM) has been far less prominent. In this study, we demonstrate that FEM in combination with LES provides a viable tool for the study of turbulent, separating channel flows, specifically the flow over a two-dimensional backward-facing step. The combination of these methodologies brings together the advantages of each: LES provides a high degree of accuracy with a minimum of empiricism for turbulencemore » modeling and FEM provides a robust way to simulate flow in very complex domains of practical interest. Such a combination should prove very valuable to the engineering community.« less

  13. An efficient nonlinear finite-difference approach in the computational modeling of the dynamics of a nonlinear diffusion-reaction equation in microbial ecology.

    PubMed

    Macías-Díaz, J E; Macías, Siegfried; Medina-Ramírez, I E

    2013-12-01

    In this manuscript, we present a computational model to approximate the solutions of a partial differential equation which describes the growth dynamics of microbial films. The numerical technique reported in this work is an explicit, nonlinear finite-difference methodology which is computationally implemented using Newton's method. Our scheme is compared numerically against an implicit, linear finite-difference discretization of the same partial differential equation, whose computer coding requires an implementation of the stabilized bi-conjugate gradient method. Our numerical results evince that the nonlinear approach results in a more efficient approximation to the solutions of the biofilm model considered, and demands less computer memory. Moreover, the positivity of initial profiles is preserved in the practice by the nonlinear scheme proposed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Optimal protocols for slowly driven quantum systems.

    PubMed

    Zulkowski, Patrick R; DeWeese, Michael R

    2015-09-01

    The design of efficient quantum information processing will rely on optimal nonequilibrium transitions of driven quantum systems. Building on a recently developed geometric framework for computing optimal protocols for classical systems driven in finite time, we construct a general framework for optimizing the average information entropy for driven quantum systems. Geodesics on the parameter manifold endowed with a positive semidefinite metric correspond to protocols that minimize the average information entropy production in finite time. We use this framework to explicitly compute the optimal entropy production for a simple two-state quantum system coupled to a heat bath of bosonic oscillators, which has applications to quantum annealing.

  15. Co-simulation coupling spectral/finite elements for 3D soil/structure interaction problems

    NASA Astrophysics Data System (ADS)

    Zuchowski, Loïc; Brun, Michael; De Martin, Florent

    2018-05-01

    The coupling between an implicit finite elements (FE) code and an explicit spectral elements (SE) code has been explored for solving the elastic wave propagation in the case of soil/structure interaction problem. The coupling approach is based on domain decomposition methods in transient dynamics. The spatial coupling at the interface is managed by a standard coupling mortar approach, whereas the time integration is dealt with an hybrid asynchronous time integrator. An external coupling software, handling the interface problem, has been set up in order to couple the FE software Code_Aster with the SE software EFISPEC3D.

  16. Parallel processors and nonlinear structural dynamics algorithms and software

    NASA Technical Reports Server (NTRS)

    Belytschko, Ted; Gilbertsen, Noreen D.; Neal, Mark O.; Plaskacz, Edward J.

    1989-01-01

    The adaptation of a finite element program with explicit time integration to a massively parallel SIMD (single instruction multiple data) computer, the CONNECTION Machine is described. The adaptation required the development of a new algorithm, called the exchange algorithm, in which all nodal variables are allocated to the element with an exchange of nodal forces at each time step. The architectural and C* programming language features of the CONNECTION Machine are also summarized. Various alternate data structures and associated algorithms for nonlinear finite element analysis are discussed and compared. Results are presented which demonstrate that the CONNECTION Machine is capable of outperforming the CRAY XMP/14.

  17. Asynchronous variational integration using continuous assumed gradient elements.

    PubMed

    Wolff, Sebastian; Bucher, Christian

    2013-03-01

    Asynchronous variational integration (AVI) is a tool which improves the numerical efficiency of explicit time stepping schemes when applied to finite element meshes with local spatial refinement. This is achieved by associating an individual time step length to each spatial domain. Furthermore, long-term stability is ensured by its variational structure. This article presents AVI in the context of finite elements based on a weakened weak form (W2) Liu (2009) [1], exemplified by continuous assumed gradient elements Wolff and Bucher (2011) [2]. The article presents the main ideas of the modified AVI, gives implementation notes and a recipe for estimating the critical time step.

  18. Development of solution techniques for nonlinear structural analysis

    NASA Technical Reports Server (NTRS)

    Vos, R. G.; Andrews, J. S.

    1974-01-01

    Nonlinear structural solution methods in the current research literature are classified according to order of the solution scheme, and it is shown that the analytical tools for these methods are uniformly derivable by perturbation techniques. A new perturbation formulation is developed for treating an arbitrary nonlinear material, in terms of a finite-difference generated stress-strain expansion. Nonlinear geometric effects are included in an explicit manner by appropriate definition of an applicable strain tensor. A new finite-element pilot computer program PANES (Program for Analysis of Nonlinear Equilibrium and Stability) is presented for treatment of problems involving material and geometric nonlinearities, as well as certain forms on nonconservative loading.

  19. Finite-element approach to Brownian dynamics of polymers.

    PubMed

    Cyron, Christian J; Wall, Wolfgang A

    2009-12-01

    In the last decades simulation tools for Brownian dynamics of polymers have attracted more and more interest. Such simulation tools have been applied to a large variety of problems and accelerated the scientific progress significantly. However, the currently most frequently used explicit bead models exhibit severe limitations, especially with respect to time step size, the necessity of artificial constraints and the lack of a sound mathematical foundation. Here we present a framework for simulations of Brownian polymer dynamics based on the finite-element method. This approach allows simulating a wide range of physical phenomena at a highly attractive computational cost on the basis of a far-developed mathematical background.

  20. Finite Element Simulation of the Shear Effect of Ultrasonic on Heat Exchanger Descaling

    NASA Astrophysics Data System (ADS)

    Lu, Shaolv; Wang, Zhihua; Wang, Hehui

    2018-03-01

    The shear effect on the interface of metal plate and its attached scale is an important mechanism of ultrasonic descaling, which is caused by the different propagation speed of ultrasonic wave in two different mediums. The propagating of ultrasonic wave on the shell is simulated based on the ANSYS/LS-DYNA explicit dynamic analysis. The distribution of shear stress in different paths under ultrasonic vibration is obtained through the finite element analysis and it reveals the main descaling mechanism of shear effect. The simulation result is helpful and enlightening to the reasonable design and the application of the ultrasonic scaling technology on heat exchanger.

  1. A Solution Adaptive Structured/Unstructured Overset Grid Flow Solver with Applications to Helicopter Rotor Flows

    NASA Technical Reports Server (NTRS)

    Duque, Earl P. N.; Biswas, Rupak; Strawn, Roger C.

    1995-01-01

    This paper summarizes a method that solves both the three dimensional thin-layer Navier-Stokes equations and the Euler equations using overset structured and solution adaptive unstructured grids with applications to helicopter rotor flowfields. The overset structured grids use an implicit finite-difference method to solve the thin-layer Navier-Stokes/Euler equations while the unstructured grid uses an explicit finite-volume method to solve the Euler equations. Solutions on a helicopter rotor in hover show the ability to accurately convect the rotor wake. However, isotropic subdivision of the tetrahedral mesh rapidly increases the overall problem size.

  2. The SPAR thermal analyzer: Present and future

    NASA Astrophysics Data System (ADS)

    Marlowe, M. B.; Whetstone, W. D.; Robinson, J. C.

    The SPAR thermal analyzer, a system of finite-element processors for performing steady-state and transient thermal analyses, is described. The processors communicate with each other through the SPAR random access data base. As each processor is executed, all pertinent source data is extracted from the data base and results are stored in the data base. Steady state temperature distributions are determined by a direct solution method for linear problems and a modified Newton-Raphson method for nonlinear problems. An explicit and several implicit methods are available for the solution of transient heat transfer problems. Finite element plotting capability is available for model checkout and verification.

  3. The SPAR thermal analyzer: Present and future

    NASA Technical Reports Server (NTRS)

    Marlowe, M. B.; Whetstone, W. D.; Robinson, J. C.

    1982-01-01

    The SPAR thermal analyzer, a system of finite-element processors for performing steady-state and transient thermal analyses, is described. The processors communicate with each other through the SPAR random access data base. As each processor is executed, all pertinent source data is extracted from the data base and results are stored in the data base. Steady state temperature distributions are determined by a direct solution method for linear problems and a modified Newton-Raphson method for nonlinear problems. An explicit and several implicit methods are available for the solution of transient heat transfer problems. Finite element plotting capability is available for model checkout and verification.

  4. Flux vector splitting of the inviscid equations with application to finite difference methods

    NASA Technical Reports Server (NTRS)

    Steger, J. L.; Warming, R. F.

    1979-01-01

    The conservation-law form of the inviscid gasdynamic equations has the remarkable property that the nonlinear flux vectors are homogeneous functions of degree one. This property readily permits the splitting of flux vectors into subvectors by similarity transformations so that each subvector has associated with it a specified eigenvalue spectrum. As a consequence of flux vector splitting, new explicit and implicit dissipative finite-difference schemes are developed for first-order hyperbolic systems of equations. Appropriate one-sided spatial differences for each split flux vector are used throughout the computational field even if the flow is locally subsonic. The results of some preliminary numerical computations are included.

  5. Layerwise Finite Elements for Smart Piezoceramic Composite Plates in Thermal Environments

    NASA Technical Reports Server (NTRS)

    Saravanos, Dimitris A.; Lee, Ho-Jun

    1996-01-01

    Analytical formulations are presented which account for the coupled mechanical, electrical, and thermal response of piezoelectric composite laminates and plate structures. A layerwise theory is formulated with the inherent capability to explicitly model the active and sensory response of piezoelectric composite plates having arbitrary laminate configurations in thermal environments. Finite element equations are derived and implemented for a bilinear 4-noded plate element. Application cases demonstrate the capability to manage thermally induced bending and twisting deformations in symmetric and antisymmetric composite plates with piezoelectric actuators, and show the corresponding electrical response of distributed piezoelectric sensors. Finally, the resultant stresses in the thermal piezoelectric composite laminates are investigated.

  6. Active invisibility cloaks in one dimension

    NASA Astrophysics Data System (ADS)

    Mostafazadeh, Ali

    2015-06-01

    We outline a general method of constructing finite-range cloaking potentials which render a given finite-range real or complex potential, v (x ) , unidirectionally reflectionless or invisible at a wave number, k0, of our choice. We give explicit analytic expressions for three classes of cloaking potentials which achieve this goal while preserving some or all of the other scattering properties of v (x ) . The cloaking potentials we construct are the sum of up to three constituent unidirectionally invisible potentials. We discuss their utility in making v (x ) bidirectionally invisible at k0 and demonstrate the application of our method to obtain antireflection and invisibility cloaks for a Bragg reflector.

  7. Sierra/Solid Mechanics 4.48 User's Guide.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merewether, Mark Thomas; Crane, Nathan K; de Frias, Gabriel Jose

    Sierra/SolidMechanics (Sierra/SM) is a Lagrangian, three-dimensional code for finite element analysis of solids and structures. It provides capabilities for explicit dynamic, implicit quasistatic and dynamic analyses. The explicit dynamics capabilities allow for the efficient and robust solution of models with extensive contact subjected to large, suddenly applied loads. For implicit problems, Sierra/SM uses a multi-level iterative solver, which enables it to effectively solve problems with large deformations, nonlinear material behavior, and contact. Sierra/SM has a versatile library of continuum and structural elements, and a large library of material models. The code is written for parallel computing environments enabling scalable solutionsmore » of extremely large problems for both implicit and explicit analyses. It is built on the SIERRA Framework, which facilitates coupling with other SIERRA mechanics codes. This document describes the functionality and input syntax for Sierra/SM.« less

  8. Incompressible spectral-element method: Derivation of equations

    NASA Technical Reports Server (NTRS)

    Deanna, Russell G.

    1993-01-01

    A fractional-step splitting scheme breaks the full Navier-Stokes equations into explicit and implicit portions amenable to the calculus of variations. Beginning with the functional forms of the Poisson and Helmholtz equations, we substitute finite expansion series for the dependent variables and derive the matrix equations for the unknown expansion coefficients. This method employs a new splitting scheme which differs from conventional three-step (nonlinear, pressure, viscous) schemes. The nonlinear step appears in the conventional, explicit manner, the difference occurs in the pressure step. Instead of solving for the pressure gradient using the nonlinear velocity, we add the viscous portion of the Navier-Stokes equation from the previous time step to the velocity before solving for the pressure gradient. By combining this 'predicted' pressure gradient with the nonlinear velocity in an explicit term, and the Crank-Nicholson method for the viscous terms, we develop a Helmholtz equation for the final velocity.

  9. Explicit Trace Inequalities for Isogeometric Analysis and Parametric Hexahedral Finite Elements

    DTIC Science & Technology

    2011-05-01

    Computational Mechanics, 43:3– 37, 2008. [6] Y Bazilevs, L Beirao da Veiga , J A Cottrell, T J R Hughes, and G Sangalli. Isoge- ometric analysis... Veiga , A Buffa, J Rivas, and G Sangalli. Some estimates for h − p − k refinement in isogeometric analysis. Numerische Mathematik, 118:271–305, 2011

  10. A Compact Formula for Rotations as Spin Matrix Polynomials

    DOE PAGES

    Curtright, Thomas L.; Fairlie, David B.; Zachos, Cosmas K.

    2014-08-12

    Group elements of SU(2) are expressed in closed form as finite polynomials of the Lie algebra generators, for all definite spin representations of the rotation group. Here, the simple explicit result exhibits connections between group theory, combinatorics, and Fourier analysis, especially in the large spin limit. Salient intuitive features of the formula are illustrated and discussed.

  11. Finite Element Method-Based Kinematics and Closed-Loop Control of Soft, Continuum Manipulators.

    PubMed

    Bieze, Thor Morales; Largilliere, Frederick; Kruszewski, Alexandre; Zhang, Zhongkai; Merzouki, Rochdi; Duriez, Christian

    2018-06-01

    This article presents a modeling methodology and experimental validation for soft manipulators to obtain forward kinematic model (FKM) and inverse kinematic model (IKM) under quasi-static conditions (in the literature, these manipulators are usually classified as continuum robots. However, their main characteristic of interest in this article is that they create motion by deformation, as opposed to the classical use of articulations). It offers a way to obtain the kinematic characteristics of this type of soft robots that is suitable for offline path planning and position control. The modeling methodology presented relies on continuum mechanics, which does not provide analytic solutions in the general case. Our approach proposes a real-time numerical integration strategy based on finite element method with a numerical optimization based on Lagrange multipliers to obtain FKM and IKM. To reduce the dimension of the problem, at each step, a projection of the model to the constraint space (gathering actuators, sensors, and end-effector) is performed to obtain the smallest number possible of mathematical equations to be solved. This methodology is applied to obtain the kinematics of two different manipulators with complex structural geometry. An experimental comparison is also performed in one of the robots, between two other geometric approaches and the approach that is showcased in this article. A closed-loop controller based on a state estimator is proposed. The controller is experimentally validated and its robustness is evaluated using Lypunov stability method.

  12. Effects of surface anchoring on the electric Frederiks transition in ferronematic systems

    NASA Astrophysics Data System (ADS)

    Farrokhbin, Mojtaba; Kadivar, Erfan

    2016-11-01

    The effects of anchoring phenomenon on the electric Frederiks transition threshold field in a nematic liquid crystal doped with ferroelectric nanoparticles are discussed. The polarizability of these nanoparticles in combination with confinement effects cause the drastic effects on the ferronematic systems. This study is based on Frank free energy and Rapini-Papoular surface energy for ferronematic liquid crystal having finite anchoring condition. In the case of different anchoring boundary conditions, the Euler-Lagrange equation of the total free energy is numerically solved by using the finite difference method together with the relaxation method and Maxwell construction to select the physical solutions and therefore investigate the effects of different anchoring strengths on the Frederiks transition threshold field. Maxwell construction method is employed to select three periodic solutions for nematic liquid crystal director at the interfaces of a slab. In the interval from zero to half- π, there is only one solution for the director orientation. In this way, NLC director rotates toward the normal to the surface as the applied electric field increases at the walls. Our numerical results illustrate that above Frederiks transition and in the intermediate anchoring strength, nematic molecules illustrate the different orientation at slab boundaries. We also study the effects of different anchoring strengths, nanoparticle volume fractions and polarizations on the Frederiks transition threshold field. We report that decreasing in the nanoparticle polarization results in the saturation Frederiks threshold. However, this situation does not happen for the nanoparticles volume fraction.

  13. The Relation Among the Likelihood Ratio-, Wald-, and Lagrange Multiplier Tests and Their Applicability to Small Samples,

    DTIC Science & Technology

    1982-04-01

    S. (1979), "Conflict Among Criteria for Testing Hypothesis: Extension and Comments," Econometrica, 47, 203-207 Breusch , T. S. and Pagan , A. R. (1980...Savin, N. E. (1977), "Conflict Among Criteria for Testing Hypothesis in the Multivariate Linear Regression Model," Econometrica, 45, 1263-1278 Breusch , T...VNCLASSIFIED RAND//-6756NL U l~ I- THE RELATION AMONG THE LIKELIHOOD RATIO-, WALD-, AND LAGRANGE MULTIPLIER TESTS AND THEIR APPLICABILITY TO SMALL SAMPLES

  14. Subscale Fast Cookoff Testing and Modeling for the Hazard Assessment of Large Rocket Motors

    DTIC Science & Technology

    2001-03-01

    41 LIST OF TABLES Table 1 Heats of Vaporization Parameter for Two-liner Phase Transformation - Complete Liner Sublimation and/or Combined Liner...One-dimensional 2-D Two-dimensional ALE3D Arbitrary-Lagrange-Eulerian (3-D) Computer Code ALEGRA 3-D Arbitrary-Lagrange-Eulerian Computer Code for...case-liner bond areas and in the grain inner bore to explore the pre-ignition and ignition phases , as well as burning evolution in rocket motor fast

  15. Rotational elasticity

    NASA Astrophysics Data System (ADS)

    Vassiliev, Dmitri

    2017-04-01

    We consider an infinite three-dimensional elastic continuum whose material points experience no displacements, only rotations. This framework is a special case of the Cosserat theory of elasticity. Rotations of material points are described mathematically by attaching to each geometric point an orthonormal basis that gives a field of orthonormal bases called the coframe. As the dynamical variables (unknowns) of our theory, we choose the coframe and a density. We write down the general dynamic variational functional for our rotational theory of elasticity, assuming our material to be physically linear but the kinematic model geometrically nonlinear. Allowing geometric nonlinearity is natural when dealing with rotations because rotations in dimension three are inherently nonlinear (rotations about different axes do not commute) and because there is no reason to exclude from our study large rotations such as full turns. The main result of the talk is an explicit construction of a class of time-dependent solutions that we call plane wave solutions; these are travelling waves of rotations. The existence of such explicit closed-form solutions is a non-trivial fact given that our system of Euler-Lagrange equations is highly nonlinear. We also consider a special case of our rotational theory of elasticity which in the stationary setting (harmonic time dependence and arbitrary dependence on spatial coordinates) turns out to be equivalent to a pair of massless Dirac equations. The talk is based on the paper [1]. [1] C.G.Boehmer, R.J.Downes and D.Vassiliev, Rotational elasticity, Quarterly Journal of Mechanics and Applied Mathematics, 2011, vol. 64, p. 415-439. The paper is a heavily revised version of preprint https://arxiv.org/abs/1008.3833

  16. Supercomputer implementation of finite element algorithms for high speed compressible flows

    NASA Technical Reports Server (NTRS)

    Thornton, E. A.; Ramakrishnan, R.

    1986-01-01

    Prediction of compressible flow phenomena using the finite element method is of recent origin and considerable interest. Two shock capturing finite element formulations for high speed compressible flows are described. A Taylor-Galerkin formulation uses a Taylor series expansion in time coupled with a Galerkin weighted residual statement. The Taylor-Galerkin algorithms use explicit artificial dissipation, and the performance of three dissipation models are compared. A Petrov-Galerkin algorithm has as its basis the concepts of streamline upwinding. Vectorization strategies are developed to implement the finite element formulations on the NASA Langley VPS-32. The vectorization scheme results in finite element programs that use vectors of length of the order of the number of nodes or elements. The use of the vectorization procedure speeds up processing rates by over two orders of magnitude. The Taylor-Galerkin and Petrov-Galerkin algorithms are evaluated for 2D inviscid flows on criteria such as solution accuracy, shock resolution, computational speed and storage requirements. The convergence rates for both algorithms are enhanced by local time-stepping schemes. Extension of the vectorization procedure for predicting 2D viscous and 3D inviscid flows are demonstrated. Conclusions are drawn regarding the applicability of the finite element procedures for realistic problems that require hundreds of thousands of nodes.

  17. The finite element method for micro-scale modeling of ultrasound propagation in cancellous bone.

    PubMed

    Vafaeian, B; El-Rich, M; El-Bialy, T; Adeeb, S

    2014-08-01

    Quantitative ultrasound for bone assessment is based on the correlations between ultrasonic parameters and the properties (mechanical and physical) of cancellous bone. To elucidate the correlations, understanding the physics of ultrasound in cancellous bone is demanded. Micro-scale modeling of ultrasound propagation in cancellous bone using the finite-difference time-domain (FDTD) method has been so far utilized as one of the approaches in this regard. However, the FDTD method accompanies two disadvantages: staircase sampling of cancellous bone by finite difference grids leads to generation of wave artifacts at the solid-fluid interface inside the bone; additionally, this method cannot explicitly satisfy the needed perfect-slip conditions at the interface. To overcome these disadvantages, the finite element method (FEM) is proposed in this study. Three-dimensional finite element models of six water-saturated cancellous bone samples with different bone volume were created. The values of speed of sound (SOS) and broadband ultrasound attenuation (BUA) were calculated through the finite element simulations of ultrasound propagation in each sample. Comparing the results with other experimental and simulation studies demonstrated the capabilities of the FEM for micro-scale modeling of ultrasound in water-saturated cancellous bone. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Augmented Lagrange Hopfield network for solving economic dispatch problem in competitive environment

    NASA Astrophysics Data System (ADS)

    Vo, Dieu Ngoc; Ongsakul, Weerakorn; Nguyen, Khai Phuc

    2012-11-01

    This paper proposes an augmented Lagrange Hopfield network (ALHN) for solving economic dispatch (ED) problem in the competitive environment. The proposed ALHN is a continuous Hopfield network with its energy function based on augmented Lagrange function for efficiently dealing with constrained optimization problems. The ALHN method can overcome the drawbacks of the conventional Hopfield network such as local optimum, long computational time, and linear constraints. The proposed method is used for solving the ED problem with two revenue models of revenue based on payment for power delivered and payment for reserve allocated. The proposed ALHN has been tested on two systems of 3 units and 10 units for the two considered revenue models. The obtained results from the proposed methods are compared to those from differential evolution (DE) and particle swarm optimization (PSO) methods. The result comparison has indicated that the proposed method is very efficient for solving the problem. Therefore, the proposed ALHN could be a favorable tool for ED problem in the competitive environment.

  19. Holonomicity analysis of electromechanical systems

    NASA Astrophysics Data System (ADS)

    Wcislik, Miroslaw; Suchenia, Karol

    2017-12-01

    Electromechanical systems are described using state variables that contain electrical and mechanical components. The equations of motion, both electrical and mechanical, describe the relationships between these components. These equations are obtained using Lagrange functions. On the basis of the function and Lagrange - d'Alembert equation the methodology of obtaining equations for electromechanical systems was presented, together with a discussion of the nonholonomicity of these systems. The electromechanical system in the form of a single-phase reluctance motor was used to verify the presented method. Mechanical system was built as a system, which can oscillate as the element of physical pendulum. On the base of the pendulum oscillation, parameters of the electromechanical system were defined. The identification of the motor electric parameters as a function of the rotation angle was carried out. In this paper the characteristics and motion equations parameters of the motor are presented. The parameters of the motion equations obtained from the experiment and from the second order Lagrange equations are compared.

  20. Size effects in non-linear heat conduction with flux-limited behaviors

    NASA Astrophysics Data System (ADS)

    Li, Shu-Nan; Cao, Bing-Yang

    2017-11-01

    Size effects are discussed for several non-linear heat conduction models with flux-limited behaviors, including the phonon hydrodynamic, Lagrange multiplier, hierarchy moment, nonlinear phonon hydrodynamic, tempered diffusion, thermon gas and generalized nonlinear models. For the phonon hydrodynamic, Lagrange multiplier and tempered diffusion models, heat flux will not exist in problems with sufficiently small scale. The existence of heat flux needs the sizes of heat conduction larger than their corresponding critical sizes, which are determined by the physical properties and boundary temperatures. The critical sizes can be regarded as the theoretical limits of the applicable ranges for these non-linear heat conduction models with flux-limited behaviors. For sufficiently small scale heat conduction, the phonon hydrodynamic and Lagrange multiplier models can also predict the theoretical possibility of violating the second law and multiplicity. Comparisons are also made between these non-Fourier models and non-linear Fourier heat conduction in the type of fast diffusion, which can also predict flux-limited behaviors.

  1. A macroscopic plasma Lagrangian and its application to wave interactions and resonances

    NASA Technical Reports Server (NTRS)

    Peng, Y. K. M.

    1974-01-01

    The derivation of a macroscopic plasma Lagrangian is considered, along with its application to the description of nonlinear three-wave interaction in a homogeneous plasma and linear resonance oscillations in a inhomogeneous plasma. One approach to obtain the Lagrangian is via the inverse problem of the calculus of variations for arbitrary first and second order quasilinear partial differential systems. Necessary and sufficient conditions for the given equations to be Euler-Lagrange equations of a Lagrangian are obtained. These conditions are then used to determine the transformations that convert some classes of non-Euler-Lagrange equations to Euler-Lagrange equation form. The Lagrangians for a linear resistive transmission line and a linear warm collisional plasma are derived as examples. Using energy considerations, the correct macroscopic plasma Lagrangian is shown to differ from the velocity-integrated low Lagrangian by a macroscopic potential energy that equals twice the particle thermal kinetic energy plus the energy lost by heat conduction.

  2. The Finite-Surface Method for incompressible flow: a step beyond staggered grid

    NASA Astrophysics Data System (ADS)

    Hokpunna, Arpiruk; Misaka, Takashi; Obayashi, Shigeru

    2017-11-01

    We present a newly developed higher-order finite surface method for the incompressible Navier-Stokes equations (NSE). This method defines the velocities as a surface-averaged value on the surfaces of the pressure cells. Consequently, the mass conservation on the pressure cells becomes an exact equation. The only things left to approximate is the momentum equation and the pressure at the new time step. At certain conditions, the exact mass conservation enables the explicit n-th order accurate NSE solver to be used with the pressure treatment that is two or four order less accurate without loosing the apparent convergence rate. This feature was not possible with finite volume of finite difference methods. We use Fourier analysis with a model spectrum to determine the condition and found that the range covers standard boundary layer flows. The formal convergence and the performance of the proposed scheme is compared with a sixth-order finite volume method. Finally, the accuracy and performance of the method is evaluated in turbulent channel flows. This work is partially funded by a research colloaboration from IFS, Tohoku university and ASEAN+3 funding scheme from CMUIC, Chiang Mai University.

  3. Nonuniform grid implicit spatial finite difference method for acoustic wave modeling in tilted transversely isotropic media

    NASA Astrophysics Data System (ADS)

    Chu, Chunlei; Stoffa, Paul L.

    2012-01-01

    Discrete earth models are commonly represented by uniform structured grids. In order to ensure accurate numerical description of all wave components propagating through these uniform grids, the grid size must be determined by the slowest velocity of the entire model. Consequently, high velocity areas are always oversampled, which inevitably increases the computational cost. A practical solution to this problem is to use nonuniform grids. We propose a nonuniform grid implicit spatial finite difference method which utilizes nonuniform grids to obtain high efficiency and relies on implicit operators to achieve high accuracy. We present a simple way of deriving implicit finite difference operators of arbitrary stencil widths on general nonuniform grids for the first and second derivatives and, as a demonstration example, apply these operators to the pseudo-acoustic wave equation in tilted transversely isotropic (TTI) media. We propose an efficient gridding algorithm that can be used to convert uniformly sampled models onto vertically nonuniform grids. We use a 2D TTI salt model to demonstrate its effectiveness and show that the nonuniform grid implicit spatial finite difference method can produce highly accurate seismic modeling results with enhanced efficiency, compared to uniform grid explicit finite difference implementations.

  4. Verification of a non-hydrostatic dynamical core using the horizontal spectral element method and vertical finite difference method: 2-D aspects

    NASA Astrophysics Data System (ADS)

    Choi, S.-J.; Giraldo, F. X.; Kim, J.; Shin, S.

    2014-11-01

    The non-hydrostatic (NH) compressible Euler equations for dry atmosphere were solved in a simplified two-dimensional (2-D) slice framework employing a spectral element method (SEM) for the horizontal discretization and a finite difference method (FDM) for the vertical discretization. By using horizontal SEM, which decomposes the physical domain into smaller pieces with a small communication stencil, a high level of scalability can be achieved. By using vertical FDM, an easy method for coupling the dynamics and existing physics packages can be provided. The SEM uses high-order nodal basis functions associated with Lagrange polynomials based on Gauss-Lobatto-Legendre (GLL) quadrature points. The FDM employs a third-order upwind-biased scheme for the vertical flux terms and a centered finite difference scheme for the vertical derivative and integral terms. For temporal integration, a time-split, third-order Runge-Kutta (RK3) integration technique was applied. The Euler equations that were used here are in flux form based on the hydrostatic pressure vertical coordinate. The equations are the same as those used in the Weather Research and Forecasting (WRF) model, but a hybrid sigma-pressure vertical coordinate was implemented in this model. We validated the model by conducting the widely used standard tests: linear hydrostatic mountain wave, tracer advection, and gravity wave over the Schär-type mountain, as well as density current, inertia-gravity wave, and rising thermal bubble. The results from these tests demonstrated that the model using the horizontal SEM and the vertical FDM is accurate and robust provided sufficient diffusion is applied. The results with various horizontal resolutions also showed convergence of second-order accuracy due to the accuracy of the time integration scheme and that of the vertical direction, although high-order basis functions were used in the horizontal. By using the 2-D slice model, we effectively showed that the combined spatial discretization method of the spectral element and finite difference methods in the horizontal and vertical directions, respectively, offers a viable method for development of an NH dynamical core.

  5. Numerical time-domain electromagnetics based on finite-difference and convolution

    NASA Astrophysics Data System (ADS)

    Lin, Yuanqu

    Time-domain methods posses a number of advantages over their frequency-domain counterparts for the solution of wideband, nonlinear, and time varying electromagnetic scattering and radiation phenomenon. Time domain integral equation (TDIE)-based methods, which incorporate the beneficial properties of integral equation method, are thus well suited for solving broadband scattering problems for homogeneous scatterers. Widespread adoption of TDIE solvers has been retarded relative to other techniques by their inefficiency, inaccuracy and instability. Moreover, two-dimensional (2D) problems are especially problematic, because 2D Green's functions have infinite temporal support, exacerbating these difficulties. This thesis proposes a finite difference delay modeling (FDDM) scheme for the solution of the integral equations of 2D transient electromagnetic scattering problems. The method discretizes the integral equations temporally using first- and second-order finite differences to map Laplace-domain equations into the Z domain before transforming to the discrete time domain. The resulting procedure is unconditionally stable because of the nature of the Laplace- to Z-domain mapping. The first FDDM method developed in this thesis uses second-order Lagrange basis functions with Galerkin's method for spatial discretization. The second application of the FDDM method discretizes the space using a locally-corrected Nystrom method, which accelerates the precomputation phase and achieves high order accuracy. The Fast Fourier Transform (FFT) is applied to accelerate the marching-on-time process in both methods. While FDDM methods demonstrate impressive accuracy and stability in solving wideband scattering problems for homogeneous scatterers, they still have limitations in analyzing interactions between several inhomogenous scatterers. Therefore, this thesis devises a multi-region finite-difference time-domain (MR-FDTD) scheme based on domain-optimal Green's functions for solving sparsely-populated problems. The scheme uses a discrete Green's function (DGF) on the FDTD lattice to truncate the local subregions, and thus reduces reflection error on the local boundary. A continuous Green's function (CGF) is implemented to pass the influence of external fields into each FDTD region which mitigates the numerical dispersion and anisotropy of standard FDTD. Numerical results will illustrate the accuracy and stability of the proposed techniques.

  6. A direct Arbitrary-Lagrangian-Eulerian ADER-WENO finite volume scheme on unstructured tetrahedral meshes for conservative and non-conservative hyperbolic systems in 3D

    NASA Astrophysics Data System (ADS)

    Boscheri, Walter; Dumbser, Michael

    2014-10-01

    In this paper we present a new family of high order accurate Arbitrary-Lagrangian-Eulerian (ALE) one-step ADER-WENO finite volume schemes for the solution of nonlinear systems of conservative and non-conservative hyperbolic partial differential equations with stiff source terms on moving tetrahedral meshes in three space dimensions. A WENO reconstruction technique is used to achieve high order of accuracy in space, while an element-local space-time Discontinuous Galerkin finite element predictor on moving curved meshes is used to obtain a high order accurate one-step time discretization. Within the space-time predictor the physical element is mapped onto a reference element using a high order isoparametric approach, where the space-time basis and test functions are given by the Lagrange interpolation polynomials passing through a predefined set of space-time nodes. Since our algorithm is cell-centered, the final mesh motion is computed by using a suitable node solver algorithm. A rezoning step as well as a flattener strategy are used in some of the test problems to avoid mesh tangling or excessive element deformations that may occur when the computation involves strong shocks or shear waves. The ALE algorithm presented in this article belongs to the so-called direct ALE methods because the final Lagrangian finite volume scheme is based directly on a space-time conservation formulation of the governing PDE system, with the rezoned geometry taken already into account during the computation of the fluxes. We apply our new high order unstructured ALE schemes to the 3D Euler equations of compressible gas dynamics, for which a set of classical numerical test problems has been solved and for which convergence rates up to sixth order of accuracy in space and time have been obtained. We furthermore consider the equations of classical ideal magnetohydrodynamics (MHD) as well as the non-conservative seven-equation Baer-Nunziato model of compressible multi-phase flows with stiff relaxation source terms.

  7. High-order finite-volume solutions of the steady-state advection-diffusion equation with nonlinear Robin boundary conditions

    NASA Astrophysics Data System (ADS)

    Lin, Zhi; Zhang, Qinghai

    2017-09-01

    We propose high-order finite-volume schemes for numerically solving the steady-state advection-diffusion equation with nonlinear Robin boundary conditions. Although the original motivation comes from a mathematical model of blood clotting, the nonlinear boundary conditions may also apply to other scientific problems. The main contribution of this work is a generic algorithm for generating third-order, fourth-order, and even higher-order explicit ghost-filling formulas to enforce nonlinear Robin boundary conditions in multiple dimensions. Under the framework of finite volume methods, this appears to be the first algorithm of its kind. Numerical experiments on boundary value problems show that the proposed fourth-order formula can be much more accurate and efficient than a simple second-order formula. Furthermore, the proposed ghost-filling formulas may also be useful for solving other partial differential equations.

  8. Hypervelocity Impact Behaviour of CFRP-A1/HC Sandwich Panel: Finite-Element Studies

    NASA Astrophysics Data System (ADS)

    Phadnis, Vaibhav A.; Roy, Anish; Silberschmidt, Vadim V.

    2014-06-01

    The mechanical response of CFRP-Al/HC (carbon fibre- reinforced/epoxy composite face sheets with Al honeycomb core) sandwich panels to hyper-velocity impact ( 1 km/s) is studied using a finite-element model developed in ABAQUS/Explicit. The intraply damage of CFRP face sheets is analysed by the means of a user-defined material model (VUMAT) employing a combination of Hashin and Puck criteria and delamination is modelled using cohesive-zone elements. The damage of Al/HC core is assessed on the basis of a Johnson-Cook dynamic failure model while its hydrodynamic response is captured using the Mie- Gruneisen equation of state. The results obtained with the developed finite-element model showed a reasonable correlation to experimental damage patterns. The surface peeling of both face sheets was evident, with a significant delamination around the impact location accompanied by crushing of HC core.

  9. Finite element analysis of hypervelocity impact behaviour of CFRP-Al/HC sandwich panel

    NASA Astrophysics Data System (ADS)

    Phadnis, Vaibhav A.; Silberschmidt, Vadim V.

    2015-09-01

    The mechanical response of CFRP-Al/HC (carbon fibre-reinforced/epoxy composite face sheets with Al honeycomb core) sandwich panels to hyper-velocity impact (up to 1 km/s) is studied using a finite-element model developed in ABAQUS/Explicit. The intraply damage of CFRP face sheets is analysed by mean of a user-defined material model (VUMAT) employing a combination of Hashin and Puck criteria, delamination modelled using cohesive-zone elements. The damaged Al/HC core is assessed on the basis of a Johnson Cook dynamic failure model while its hydrodynamic response is captured using the Mie-Gruneisen equation of state. The results obtained with the developed finite-element model showed a reasonable correlation to experimental damage patterns. The surface peeling of both face sheets was evident, with a significant delamination around the impact location accompanied by crushing HC core.

  10. 2D modeling of direct laser metal deposition process using a finite particle method

    NASA Astrophysics Data System (ADS)

    Anedaf, T.; Abbès, B.; Abbès, F.; Li, Y. M.

    2018-05-01

    Direct laser metal deposition is one of the material additive manufacturing processes used to produce complex metallic parts. A thorough understanding of the underlying physical phenomena is required to obtain a high-quality parts. In this work, a mathematical model is presented to simulate the coaxial laser direct deposition process tacking into account of mass addition, heat transfer, and fluid flow with free surface and melting. The fluid flow in the melt pool together with mass and energy balances are solved using the Computational Fluid Dynamics (CFD) software NOGRID-points, based on the meshless Finite Pointset Method (FPM). The basis of the computations is a point cloud, which represents the continuum fluid domain. Each finite point carries all fluid information (density, velocity, pressure and temperature). The dynamic shape of the molten zone is explicitly described by the point cloud. The proposed model is used to simulate a single layer cladding.

  11. Finite element modelling of crash response of composite aerospace sub-floor structures

    NASA Astrophysics Data System (ADS)

    McCarthy, M. A.; Harte, C. G.; Wiggenraad, J. F. M.; Michielsen, A. L. P. J.; Kohlgrüber, D.; Kamoulakos, A.

    Composite energy-absorbing structures for use in aircraft are being studied within a European Commission research programme (CRASURV - Design for Crash Survivability). One of the aims of the project is to evaluate the current capabilities of crashworthiness simulation codes for composites modelling. This paper focuses on the computational analysis using explicit finite element analysis, of a number of quasi-static and dynamic tests carried out within the programme. It describes the design of the structures, the analysis techniques used, and the results of the analyses in comparison to the experimental test results. It has been found that current multi-ply shell models are capable of modelling the main energy-absorbing processes at work in such structures. However some deficiencies exist, particularly in modelling fabric composites. Developments within the finite element code are taking place as a result of this work which will enable better representation of composite fabrics.

  12. A finite element solution algorithm for the Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Baker, A. J.

    1974-01-01

    A finite element solution algorithm is established for the two-dimensional Navier-Stokes equations governing the steady-state kinematics and thermodynamics of a variable viscosity, compressible multiple-species fluid. For an incompressible fluid, the motion may be transient as well. The primitive dependent variables are replaced by a vorticity-streamfunction description valid in domains spanned by rectangular, cylindrical and spherical coordinate systems. Use of derived variables provides a uniformly elliptic partial differential equation description for the Navier-Stokes system, and for which the finite element algorithm is established. Explicit non-linearity is accepted by the theory, since no psuedo-variational principles are employed, and there is no requirement for either computational mesh or solution domain closure regularity. Boundary condition constraints on the normal flux and tangential distribution of all computational variables, as well as velocity, are routinely piecewise enforceable on domain closure segments arbitrarily oriented with respect to a global reference frame.

  13. Numerical Simulation and Experimental Verification of Hollow and Foam-Filled Flax-Fabric-Reinforced Epoxy Tubular Energy Absorbers Subjected to Crashing

    NASA Astrophysics Data System (ADS)

    Sliseris, J.; Yan, L.; Kasal, B.

    2017-09-01

    Numerical methods for simulating hollow and foam-filled flax-fabric-reinforced epoxy tubular energy absorbers subjected to lateral crashing are presented. The crashing characteristics, such as the progressive failure, load-displacement response, absorbed energy, peak load, and failure modes, of the tubes were simulated and calculated numerically. A 3D nonlinear finite-element model that allows for the plasticity of materials using an isotropic hardening model with strain rate dependence and failure is proposed. An explicit finite-element solver is used to address the lateral crashing of the tubes considering large displacements and strains, plasticity, and damage. The experimental nonlinear crashing load vs. displacement data are successfully described by using the finite-element model proposed. The simulated peak loads and absorbed energy of the tubes are also in good agreement with experimental results.

  14. Finite difference methods for transient signal propagation in stratified dispersive media

    NASA Technical Reports Server (NTRS)

    Lam, D. H.

    1975-01-01

    Explicit difference equations are presented for the solution of a signal of arbitrary waveform propagating in an ohmic dielectric, a cold plasma, a Debye model dielectric, and a Lorentz model dielectric. These difference equations are derived from the governing time-dependent integro-differential equations for the electric fields by a finite difference method. A special difference equation is derived for the grid point at the boundary of two different media. Employing this difference equation, transient signal propagation in an inhomogeneous media can be solved provided that the medium is approximated in a step-wise fashion. The solutions are generated simply by marching on in time. It is concluded that while the classical transform methods will remain useful in certain cases, with the development of the finite difference methods described, an extensive class of problems of transient signal propagating in stratified dispersive media can be effectively solved by numerical methods.

  15. A comparison of the Method of Lines to finite difference techniques in solving time-dependent partial differential equations. [with applications to Burger equation and stream function-vorticity problem

    NASA Technical Reports Server (NTRS)

    Kurtz, L. A.; Smith, R. E.; Parks, C. L.; Boney, L. R.

    1978-01-01

    Steady state solutions to two time dependent partial differential systems have been obtained by the Method of Lines (MOL) and compared to those obtained by efficient standard finite difference methods: (1) Burger's equation over a finite space domain by a forward time central space explicit method, and (2) the stream function - vorticity form of viscous incompressible fluid flow in a square cavity by an alternating direction implicit (ADI) method. The standard techniques were far more computationally efficient when applicable. In the second example, converged solutions at very high Reynolds numbers were obtained by MOL, whereas solution by ADI was either unattainable or impractical. With regard to 'set up' time, solution by MOL is an attractive alternative to techniques with complicated algorithms, as much of the programming difficulty is eliminated.

  16. Finite-Temperature Hydrogen Adsorption/Desorption Thermodynamics Driven by Soft Vibration Modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woo, Sung-Jae; Lee, Eui-Sup; Yoon, Mina

    2013-01-01

    It is widely accepted that room-temperature hydrogen storage on nanostructured or porous materials requires enhanced dihydrogen adsorption. In this work we reveal that room-temperature hydrogen storage is possible not only by the enhanced adsorption, but also by making use of the vibrational free energy from soft vibration modes. These modes exist for example in the case of metallo-porphyrin-incorporated graphenes (M-PIGs) with out-of-plane ( buckled ) metal centers. There, the in-plane potential surfaces are flat because of multiple-orbital-coupling between hydrogen molecules and the buckled-metal centers. This study investigates the finite-temperature adsorption/desorption thermodynamics of hydrogen molecules adsorbed on M-PIGs by employing first-principlesmore » total energy and vibrational spectrum calculations. Our results suggest that the current design strategy for room-temperature hydrogen storage materials should be modified by explicitly taking finite-temperature vibration thermodynamics into account.« less

  17. A 2D Daubechies finite wavelet domain method for transient wave response analysis in shear deformable laminated composite plates

    NASA Astrophysics Data System (ADS)

    Nastos, C. V.; Theodosiou, T. C.; Rekatsinas, C. S.; Saravanos, D. A.

    2018-03-01

    An efficient numerical method is developed for the simulation of dynamic response and the prediction of the wave propagation in composite plate structures. The method is termed finite wavelet domain method and takes advantage of the outstanding properties of compactly supported 2D Daubechies wavelet scaling functions for the spatial interpolation of displacements in a finite domain of a plate structure. The development of the 2D wavelet element, based on the first order shear deformation laminated plate theory is described and equivalent stiffness, mass matrices and force vectors are calculated and synthesized in the wavelet domain. The transient response is predicted using the explicit central difference time integration scheme. Numerical results for the simulation of wave propagation in isotropic, quasi-isotropic and cross-ply laminated plates are presented and demonstrate the high spatial convergence and problem size reduction obtained by the present method.

  18. On the Equivalence of the Summation and Transfer-Matrix Methods in Wave Propagation through Multilayers of Lossless and Lossy Media

    ERIC Educational Resources Information Center

    Pereyra, Pedro; Robledo-Martinez, Arturo

    2009-01-01

    We explicitly show that the well-known transmission and reflection amplitudes of planar slabs, obtained via an algebraic summation of Fresnel amplitudes, are completely equivalent to those obtained from transfer matrices in the scattering approach. This equivalence makes the finite periodic systems theory a powerful alternative to the cumbersome…

  19. Numerical analysis of the dynamic interaction between wheel set and turnout crossing using the explicit finite element method

    NASA Astrophysics Data System (ADS)

    Xin, L.; Markine, V. L.; Shevtsov, I. Y.

    2016-03-01

    A three-dimensional (3-D) explicit dynamic finite element (FE) model is developed to simulate the impact of the wheel on the crossing nose. The model consists of a wheel set moving over the turnout crossing. Realistic wheel, wing rail and crossing geometries have been used in the model. Using this model the dynamic responses of the system such as the contact forces between the wheel and the crossing, crossing nose displacements and accelerations, stresses in rail material as well as in sleepers and ballast can be obtained. Detailed analysis of the wheel set and crossing interaction using the local contact stress state in the rail is possible as well, which provides a good basis for prediction of the long-term behaviour of the crossing (fatigue analysis). In order to tune and validate the FE model field measurements conducted on several turnouts in the railway network in the Netherlands are used here. The parametric study including variations of the crossing nose geometries performed here demonstrates the capabilities of the developed model. The results of the validation and parametric study are presented and discussed.

  20. Optimization of wood plastic composite decks

    NASA Astrophysics Data System (ADS)

    Ravivarman, S.; Venkatesh, G. S.; Karmarkar, A.; Shivkumar N., D.; Abhilash R., M.

    2018-04-01

    Wood Plastic Composite (WPC) is a new class of natural fibre based composite material that contains plastic matrix reinforced with wood fibres or wood flour. In the present work, Wood Plastic Composite was prepared with 70-wt% of wood flour reinforced in polypropylene matrix. Mechanical characterization of the composite was done by carrying out laboratory tests such as tensile test and flexural test as per the American Society for Testing and Materials (ASTM) standards. Computer Aided Design (CAD) model of the laboratory test specimen (tensile test) was created and explicit finite element analysis was carried out on the finite element model in non-linear Explicit FE code LS - DYNA. The piecewise linear plasticity (MAT 24) material model was identified as a suitable model in LS-DYNA material library, describing the material behavior of the developed composite. The composite structures for decking application in construction industry were then optimized for cross sectional area and distance between two successive supports (span length) by carrying out various numerical experiments in LS-DYNA. The optimized WPC deck (Elliptical channel-2 E10) has 45% reduced weight than the baseline model (solid cross-section) considered in this study with the load carrying capacity meeting acceptance criterion (allowable deflection & stress) for outdoor decking application.

  1. Finite element solution to passive scalar transport behind line sources under neutral and unstable stratification

    NASA Astrophysics Data System (ADS)

    Liu, Chun-Ho; Leung, Dennis Y. C.

    2006-02-01

    This study employed a direct numerical simulation (DNS) technique to contrast the plume behaviours and mixing of passive scalar emitted from line sources (aligned with the spanwise direction) in neutrally and unstably stratified open-channel flows. The DNS model was developed using the Galerkin finite element method (FEM) employing trilinear brick elements with equal-order interpolating polynomials that solved the momentum and continuity equations, together with conservation of energy and mass equations in incompressible flow. The second-order accurate fractional-step method was used to handle the implicit velocity-pressure coupling in incompressible flow. It also segregated the solution to the advection and diffusion terms, which were then integrated in time, respectively, by the explicit third-order accurate Runge-Kutta method and the implicit second-order accurate Crank-Nicolson method. The buoyancy term under unstable stratification was integrated in time explicitly by the first-order accurate Euler method. The DNS FEM model calculated the scalar-plume development and the mean plume path. In particular, it calculated the plume meandering in the wall-normal direction under unstable stratification that agreed well with the laboratory and field measurements, as well as previous modelling results available in literature.

  2. Explicit error bounds for the α-quasi-periodic Helmholtz problem.

    PubMed

    Lord, Natacha H; Mulholland, Anthony J

    2013-10-01

    This paper considers a finite element approach to modeling electromagnetic waves in a periodic diffraction grating. In particular, an a priori error estimate associated with the α-quasi-periodic transformation is derived. This involves the solution of the associated Helmholtz problem being written as a product of e(iαx) and an unknown function called the α-quasi-periodic solution. To begin with, the well-posedness of the continuous problem is examined using a variational formulation. The problem is then discretized, and a rigorous a priori error estimate, which guarantees the uniqueness of this approximate solution, is derived. In previous studies, the continuity of the Dirichlet-to-Neumann map has simply been assumed and the dependency of the regularity constant on the system parameters, such as the wavenumber, has not been shown. To address this deficiency, in this paper an explicit dependence on the wavenumber and the degree of the polynomial basis in the a priori error estimate is obtained. Since the finite element method is well known for dealing with any geometries, comparison of numerical results obtained using the α-quasi-periodic transformation with a lattice sum technique is then presented.

  3. Solvent Reaction Field Potential inside an Uncharged Globular Protein: A Bridge between Implicit and Explicit Solvent Models?

    PubMed Central

    Baker, Nathan A.; McCammon, J. Andrew

    2008-01-01

    The solvent reaction field potential of an uncharged protein immersed in Simple Point Charge/Extended (SPC/E) explicit solvent was computed over a series of molecular dynamics trajectories, intotal 1560 ns of simulation time. A finite, positive potential of 13 to 24 kbTec−1 (where T = 300K), dependent on the geometry of the solvent-accessible surface, was observed inside the biomolecule. The primary contribution to this potential arose from a layer of positive charge density 1.0 Å from the solute surface, on average 0.008 ec/Å3, which we found to be the product of a highly ordered first solvation shell. Significant second solvation shell effects, including additional layers of charge density and a slight decrease in the short-range solvent-solvent interaction strength, were also observed. The impact of these findings on implicit solvent models was assessed by running similar explicit-solvent simulations on the fully charged protein system. When the energy due to the solvent reaction field in the uncharged system is accounted for, correlation between per-atom electrostatic energies for the explicit solvent model and a simple implicit (Poisson) calculation is 0.97, and correlation between per-atom energies for the explicit solvent model and a previously published, optimized Poisson model is 0.99. PMID:17949217

  4. Studies of implicit and explicit solution techniques in transient thermal analysis of structures

    NASA Technical Reports Server (NTRS)

    Adelman, H. M.; Haftka, R. T.; Robinson, J. C.

    1982-01-01

    Studies aimed at an increase in the efficiency of calculating transient temperature fields in complex aerospace vehicle structures are reported. The advantages and disadvantages of explicit and implicit algorithms are discussed and a promising set of implicit algorithms with variable time steps, known as GEARIB, is described. Test problems, used for evaluating and comparing various algorithms, are discussed and finite element models of the configurations are described. These problems include a coarse model of the Space Shuttle wing, an insulated frame tst article, a metallic panel for a thermal protection system, and detailed models of sections of the Space Shuttle wing. Results generally indicate a preference for implicit over explicit algorithms for transient structural heat transfer problems when the governing equations are stiff (typical of many practical problems such as insulated metal structures). The effects on algorithm performance of different models of an insulated cylinder are demonstrated. The stiffness of the problem is highly sensitive to modeling details and careful modeling can reduce the stiffness of the equations to the extent that explicit methods may become the best choice. Preliminary applications of a mixed implicit-explicit algorithm and operator splitting techniques for speeding up the solution of the algebraic equations are also described.

  5. Solvent reaction field potential inside an uncharged globular protein: A bridge between implicit and explicit solvent models?

    NASA Astrophysics Data System (ADS)

    Cerutti, David S.; Baker, Nathan A.; McCammon, J. Andrew

    2007-10-01

    The solvent reaction field potential of an uncharged protein immersed in simple point charge/extended explicit solvent was computed over a series of molecular dynamics trajectories, in total 1560ns of simulation time. A finite, positive potential of 13-24 kbTec-1 (where T =300K), dependent on the geometry of the solvent-accessible surface, was observed inside the biomolecule. The primary contribution to this potential arose from a layer of positive charge density 1.0Å from the solute surface, on average 0.008ec/Å3, which we found to be the product of a highly ordered first solvation shell. Significant second solvation shell effects, including additional layers of charge density and a slight decrease in the short-range solvent-solvent interaction strength, were also observed. The impact of these findings on implicit solvent models was assessed by running similar explicit solvent simulations on the fully charged protein system. When the energy due to the solvent reaction field in the uncharged system is accounted for, correlation between per-atom electrostatic energies for the explicit solvent model and a simple implicit (Poisson) calculation is 0.97, and correlation between per-atom energies for the explicit solvent model and a previously published, optimized Poisson model is 0.99.

  6. Studies of implicit and explicit solution techniques in transient thermal analysis of structures

    NASA Astrophysics Data System (ADS)

    Adelman, H. M.; Haftka, R. T.; Robinson, J. C.

    1982-08-01

    Studies aimed at an increase in the efficiency of calculating transient temperature fields in complex aerospace vehicle structures are reported. The advantages and disadvantages of explicit and implicit algorithms are discussed and a promising set of implicit algorithms with variable time steps, known as GEARIB, is described. Test problems, used for evaluating and comparing various algorithms, are discussed and finite element models of the configurations are described. These problems include a coarse model of the Space Shuttle wing, an insulated frame tst article, a metallic panel for a thermal protection system, and detailed models of sections of the Space Shuttle wing. Results generally indicate a preference for implicit over explicit algorithms for transient structural heat transfer problems when the governing equations are stiff (typical of many practical problems such as insulated metal structures). The effects on algorithm performance of different models of an insulated cylinder are demonstrated. The stiffness of the problem is highly sensitive to modeling details and careful modeling can reduce the stiffness of the equations to the extent that explicit methods may become the best choice. Preliminary applications of a mixed implicit-explicit algorithm and operator splitting techniques for speeding up the solution of the algebraic equations are also described.

  7. Finite element simulations of the Portevin Le Chatelier effect in aluminium alloy

    NASA Astrophysics Data System (ADS)

    Hopperstad, O. S.; Børvik, T.; Berstad, T.; Benallal, A.

    2006-08-01

    Finite element simulations of the Portevin-Le Chatelier effect in aluminium alloy 5083-H116 are presented and evaluated against existing experimental results. The constitutive model of McCormick (1988) for materials exhibiting negative steady-state strain-rate sensitivity is incorporated into an elastic-viscoplastic model for large plastic deformations and implemented in LS-DYNA for use with the explicit or implicit solver. Axisymmetric tensile specimens loaded at different strain rates are studied numerically, and it is shown that the model predicts the experimental behaviour with reasonable accuracy; including serrated yielding and propagating bands of localized plastic deformation along the gauge length of the specimen at intermediate strain rates.

  8. A unified monolithic approach for multi-fluid flows and fluid-structure interaction using the Particle Finite Element Method with fixed mesh

    NASA Astrophysics Data System (ADS)

    Becker, P.; Idelsohn, S. R.; Oñate, E.

    2015-06-01

    This paper describes a strategy to solve multi-fluid and fluid-structure interaction (FSI) problems using Lagrangian particles combined with a fixed finite element (FE) mesh. Our approach is an extension of the fluid-only PFEM-2 (Idelsohn et al., Eng Comput 30(2):2-2, 2013; Idelsohn et al., J Numer Methods Fluids, 2014) which uses explicit integration over the streamlines to improve accuracy. As a result, the convective term does not appear in the set of equations solved on the fixed mesh. Enrichments in the pressure field are used to improve the description of the interface between phases.

  9. A posteriori error estimation for multi-stage Runge–Kutta IMEX schemes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chaudhry, Jehanzeb H.; Collins, J. B.; Shadid, John N.

    Implicit–Explicit (IMEX) schemes are widely used for time integration methods for approximating solutions to a large class of problems. In this work, we develop accurate a posteriori error estimates of a quantity-of-interest for approximations obtained from multi-stage IMEX schemes. This is done by first defining a finite element method that is nodally equivalent to an IMEX scheme, then using typical methods for adjoint-based error estimation. Furthermore, the use of a nodally equivalent finite element method allows a decomposition of the error into multiple components, each describing the effect of a different portion of the method on the total error inmore » a quantity-of-interest.« less

  10. Nonperturbative quark-gluon thermodynamics at finite density

    NASA Astrophysics Data System (ADS)

    Andreichikov, M. A.; Lukashov, M. S.; Simonov, Yu. A.

    2018-03-01

    Thermodynamics of the quark-gluon plasma at finite density is studied in the framework of the Field Correlator Method, where thermodynamical effects of Polyakov loops and color magnetic confinement are taken into account. Having found good agreement with numerical lattice data for zero density, we calculate pressure P(T,μ), for 0 < μ < 400 MeV and 150 < T < 1000 MeV. For the first time, the explicit integral form is found in this region, demonstrating analytic structure in the complex μ plane. The resulting multiple complex branch points are found at the Roberge-Weiss values of Imμ, with Reμ defined by the values of Polyakov lines and color magnetic confinement.

  11. A posteriori error estimation for multi-stage Runge–Kutta IMEX schemes

    DOE PAGES

    Chaudhry, Jehanzeb H.; Collins, J. B.; Shadid, John N.

    2017-02-05

    Implicit–Explicit (IMEX) schemes are widely used for time integration methods for approximating solutions to a large class of problems. In this work, we develop accurate a posteriori error estimates of a quantity-of-interest for approximations obtained from multi-stage IMEX schemes. This is done by first defining a finite element method that is nodally equivalent to an IMEX scheme, then using typical methods for adjoint-based error estimation. Furthermore, the use of a nodally equivalent finite element method allows a decomposition of the error into multiple components, each describing the effect of a different portion of the method on the total error inmore » a quantity-of-interest.« less

  12. The complexity of divisibility.

    PubMed

    Bausch, Johannes; Cubitt, Toby

    2016-09-01

    We address two sets of long-standing open questions in linear algebra and probability theory, from a computational complexity perspective: stochastic matrix divisibility, and divisibility and decomposability of probability distributions. We prove that finite divisibility of stochastic matrices is an NP-complete problem, and extend this result to nonnegative matrices, and completely-positive trace-preserving maps, i.e. the quantum analogue of stochastic matrices. We further prove a complexity hierarchy for the divisibility and decomposability of probability distributions, showing that finite distribution divisibility is in P, but decomposability is NP-hard. For the former, we give an explicit polynomial-time algorithm. All results on distributions extend to weak-membership formulations, proving that the complexity of these problems is robust to perturbations.

  13. A recursive approach to the equations of motion for the maneuvering and control of flexible multi-body systems

    NASA Technical Reports Server (NTRS)

    Kwak, Moon K.; Meirovitch, Leonard

    1991-01-01

    Interest lies in a mathematical formulation capable of accommodating the problem of maneuvering a space structure consisting of a chain of articulated flexible substructures. Simultaneously, any perturbations from the 'rigid body' maneuvering and any elastic vibration must be suppressed. The equations of motion for flexible bodies undergoing rigid body motions and elastic vibrations can be obtained conveniently by means of Lagrange's equations in terms of quasi-coordinates. The advantage of this approach is that it yields equations in terms of body axes, which are the same axes that are used to express the control forces and torques. The equations of motion are nonlinear hybrid differential quations. The partial differential equations can be discretized (in space) by means of the finite element method or the classical Rayleigh-Ritz method. The result is a set of nonlinear ordinary differential equations of high order. The nonlinearity can be traced to the rigid body motions and the high order to the elastic vibration. Elastic motions tend to be small when compared with rigid body motions.

  14. The Study the Vibration Condition of the Blade of the Gas Turbine Engine with an All-metal Wire Rope Damper in the Area Mount of the Blade to the Disk

    NASA Astrophysics Data System (ADS)

    Melentjev, Vladimir S.; Gvozdev, Alexander S.

    2018-01-01

    Improving the reliability of modern turbine engines is actual task. This is achieved due to prevent a vibration damage of the operating blades. On the department of structure and design of aircraft engines have accumulated a lot of experimental data on the protection of the blades of the gas turbine engine from a vibration. In this paper we proposed a method for calculating the characteristics of wire rope dampers in the root attachment of blade of a gas turbine engine. The method is based on the use of the finite element method and transient analysis. Contact interaction (Lagrange-Euler method) between the compressor blade and the disc of the rotor has been taken into account. Contribution of contact interaction between details in damping of the system was measured. The proposed method provides a convenient way for the iterative selection of the required parameters the wire rope elastic-damping element. This element is able to provide the necessary protection from the vibration for the blade of a gas turbine engine.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Jong-Kyu; Logan, Nikolas C.

    Toroidal torque is one of the most important consequences of non-axisymmetric fields in tokamaks. The well-known neoclassical toroidal viscosity (NTV) is due to the second-order toroidal force from anisotropic pressure tensor in the presence of these asymmetries. This work shows that the first-order toroidal force originating from the same anisotropic pressure tensor, despite having no flux surface average, can significantly modify the local perturbed force balance and thus must be included in perturbed equilibrium self-consistent with NTV. The force operator with an anisotropic pressure tensor is not self-adjoint when the NTV torque is finite and thus is solved directly formore » each component. This approach yields a modified, non-self-adjoint Euler-Lagrange equation that can be solved using a variety of common drift-kinetic models in generalized tokamak geometry. The resulting energy and torque integral provides a unique way to construct a torque response matrix, which contains all the information of self-consistent NTV torque profiles obtainable by applying non-axisymmetric fields to the plasma. This torque response matrix can then be used to systematically optimize non-axisymmetric field distributions for desired NTV profiles. Published by AIP Publishing.« less

  16. An Approach for Dynamic Grids

    NASA Technical Reports Server (NTRS)

    Slater, John W.; Liou, Meng-Sing; Hindman, Richard G.

    1994-01-01

    An approach is presented for the generation of two-dimensional, structured, dynamic grids. The grid motion may be due to the motion of the boundaries of the computational domain or to the adaptation of the grid to the transient, physical solution. A time-dependent grid is computed through the time integration of the grid speeds which are computed from a system of grid speed equations. The grid speed equations are derived from the time-differentiation of the grid equations so as to ensure that the dynamic grid maintains the desired qualities of the static grid. The grid equations are the Euler-Lagrange equations derived from a variational statement for the grid. The dynamic grid method is demonstrated for a model problem involving boundary motion, an inviscid flow in a converging-diverging nozzle during startup, and a viscous flow over a flat plate with an impinging shock wave. It is shown that the approach is more accurate for transient flows than an approach in which the grid speeds are computed using a finite difference with respect to time of the grid. However, the approach requires significantly more computational effort.

  17. Nonlinear guided wave propagation in prestressed plates.

    PubMed

    Pau, Annamaria; Lanza di Scalea, Francesco

    2015-03-01

    The measurement of stress in a structure presents considerable interest in many fields of engineering. In this paper, the diagnostic potential of nonlinear elastic guided waves in a prestressed plate is investigated. To do so, an analytical model is formulated accounting for different aspects involved in the phenomenon. The fact that the initial strains can be finite is considered using the Green Lagrange strain tensor, and initial and final configurations are not merged, as it would be assumed in the infinitesimal strain theory. Moreover, an appropriate third-order expression of the strain energy of the hyperelastic body is adopted to account for the material nonlinearities. The model obtained enables to investigate both the linearized case, which gives the variation of phase and group velocity as a function of the initial stress, and the nonlinear case, involving second-harmonic generation as a function of the initial state of stress. The analysis is limited to Rayleigh-Lamb waves propagating in a plate. Three cases of initial prestress are considered, including prestress in the direction of the wave propagation, prestress orthogonal to the direction of wave propagation, and plane isotropic stress.

  18. Upper Limits for Power Yield in Thermal, Chemical, and Electrochemical Systems

    NASA Astrophysics Data System (ADS)

    Sieniutycz, Stanislaw

    2010-03-01

    We consider modeling and power optimization of energy converters, such as thermal, solar and chemical engines and fuel cells. Thermodynamic principles lead to expressions for converter's efficiency and generated power. Efficiency equations serve to solve the problems of upgrading or downgrading a resource. Power yield is a cumulative effect in a system consisting of a resource, engines, and an infinite bath. While optimization of steady state systems requires using the differential calculus and Lagrange multipliers, dynamic optimization involves variational calculus and dynamic programming. The primary result of static optimization is the upper limit of power, whereas that of dynamic optimization is a finite-rate counterpart of classical reversible work (exergy). The latter quantity depends on the end state coordinates and a dissipation index, h, which is the Hamiltonian of the problem of minimum entropy production. In reacting systems, an active part of chemical affinity constitutes a major component of the overall efficiency. The theory is also applied to fuel cells regarded as electrochemical flow engines. Enhanced bounds on power yield follow, which are stronger than those predicted by the reversible work potential.

  19. Effects of turbulence modelling on prediction of flow characteristics in a bench-scale anaerobic gas-lift digester.

    PubMed

    Coughtrie, A R; Borman, D J; Sleigh, P A

    2013-06-01

    Flow in a gas-lift digester with a central draft-tube was investigated using computational fluid dynamics (CFD) and different turbulence closure models. The k-ω Shear-Stress-Transport (SST), Renormalization-Group (RNG) k-∊, Linear Reynolds-Stress-Model (RSM) and Transition-SST models were tested for a gas-lift loop reactor under Newtonian flow conditions validated against published experimental work. The results identify that flow predictions within the reactor (where flow is transitional) are particularly sensitive to the turbulence model implemented; the Transition-SST model was found to be the most robust for capturing mixing behaviour and predicting separation reliably. Therefore, Transition-SST is recommended over k-∊ models for use in comparable mixing problems. A comparison of results obtained using multiphase Euler-Lagrange and singlephase approaches are presented. The results support the validity of the singlephase modelling assumptions in obtaining reliable predictions of the reactor flow. Solver independence of results was verified by comparing two independent finite-volume solvers (Fluent-13.0sp2 and OpenFOAM-2.0.1). Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Simulation of Shallow Water Jets with a Unified Element-based Continuous/Discontinuous Galerkin Model with Grid Flexibility on the Sphere

    DTIC Science & Technology

    2013-01-01

    is the derivative of the N th-order Legendre polynomial . Given these definitions, the one-dimensional Lagrange polynomials hi(ξ) are hi(ξ) = − 1 N(N...2. Detail of one interface patch in the northern hemisphere. The high-order Legendre -Gauss-Lobatto (LGL) points are added to the linear grid by...smaller ones by a Lagrange polynomial of order nI . The number of quadrilateral elements and grid points of the final grid are then given by Np = 6(N

  1. Proceedings of the Annual Symposium on Frequency Control (33rd) Held in Atlantic City, New Jersey on 30 May-1 June 1979

    DTIC Science & Technology

    1979-01-01

    from the Bernoullis was Daniel Bernoulli’s n’est pas la meme dans tous les sens", Exercices addition of the acceleration term to the beam e- de Math...frequencies). improved during 1811-1816 by Germain and Lagrange and, finally, the correct derivation was produced 1852 G. Lame, "Leqons sur la ...de la re- tropic membranes and plates (low frequencies) sistance des solides et des solides d’egale by Euler, Jacques Bernoulli, Germin, Lagrange

  2. The Lagrange Points in a Binary Black Hole System: Applications to Electromagnetic Signatures

    NASA Technical Reports Server (NTRS)

    Schnittman, Jeremy

    2010-01-01

    We study the stability and evolution of the Lagrange points L_4 and L-5 in a black hole (BH) binary system, including gravitational radiation. We find that gas and stars can be shepherded in with the BH system until the final moments before merger, providing the fuel for a bright electromagnetic counterpart to a gravitational wave signal. Other astrophysical signatures include the ejection of hyper-velocity stars, gravitational collapse of globular clusters, and the periodic shift of narrow emission lines in AGN.

  3. A novel iterative scheme and its application to differential equations.

    PubMed

    Khan, Yasir; Naeem, F; Šmarda, Zdeněk

    2014-01-01

    The purpose of this paper is to employ an alternative approach to reconstruct the standard variational iteration algorithm II proposed by He, including Lagrange multiplier, and to give a simpler formulation of Adomian decomposition and modified Adomian decomposition method in terms of newly proposed variational iteration method-II (VIM). Through careful investigation of the earlier variational iteration algorithm and Adomian decomposition method, we find unnecessary calculations for Lagrange multiplier and also repeated calculations involved in each iteration, respectively. Several examples are given to verify the reliability and efficiency of the method.

  4. Euler-Lagrange formulas for pseudo-Kähler manifolds

    NASA Astrophysics Data System (ADS)

    Park, JeongHyeong

    2016-01-01

    Let c be a characteristic form of degree k which is defined on a Kähler manifold of real dimension m > 2 k. Taking the inner product with the Kähler form Ωk gives a scalar invariant which can be considered as a generalized Lovelock functional. The associated Euler-Lagrange equations are a generalized Einstein-Gauss-Bonnet gravity theory; this theory restricts to the canonical formalism if c =c2 is the second Chern form. We extend previous work studying these equations from the Kähler to the pseudo-Kähler setting.

  5. An inverse problem strategy based on forward model evaluations: Gradient-based optimization without adjoint solves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aguilo Valentin, Miguel Alejandro

    2016-07-01

    This study presents a new nonlinear programming formulation for the solution of inverse problems. First, a general inverse problem formulation based on the compliance error functional is presented. The proposed error functional enables the computation of the Lagrange multipliers, and thus the first order derivative information, at the expense of just one model evaluation. Therefore, the calculation of the Lagrange multipliers does not require the solution of the computationally intensive adjoint problem. This leads to significant speedups for large-scale, gradient-based inverse problems.

  6. Spacetime completeness of non-singular black holes in conformal gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bambi, Cosimo; Rachwał, Lesław; Modesto, Leonardo, E-mail: bambi@fudan.edu.cn, E-mail: lmodesto@sustc.edu.cn, E-mail: grzerach@gmail.com

    We explicitly prove that the Weyl conformal symmetry solves the black hole singularity problem, otherwise unavoidable in a generally covariant local or non-local gravitational theory. Moreover, we yield explicit examples of local and non-local theories enjoying Weyl and diffeomorphism symmetry (in short co-covariant theories). Following the seminal paper by Narlikar and Kembhavi, we provide an explicit construction of singularity-free spherically symmetric and axi-symmetric exact solutions for black hole spacetimes conformally equivalent to the Schwarzschild or the Kerr spacetime. We first check the absence of divergences in the Kretschmann invariant for the rescaled metrics. Afterwords, we show that the new typesmore » of black holes are geodesically complete and linked by a Newman-Janis transformation just as in standard general relativity (based on Einstein-Hilbert action). Furthermore, we argue that no massive or massless particles can reach the former Schwarzschild singularity or touch the former Kerr ring singularity in a finite amount of their proper time or of their affine parameter. Finally, we discuss the Raychaudhuri equation in a co-covariant theory and we show that the expansion parameter for congruences of both types of geodesics (for massless and massive particles) never reaches minus infinity. Actually, the null geodesics become parallel at the r =0 point in the Schwarzschild spacetime (the origin) and the focusing of geodesics is avoided. The arguments of regularity of curvature invariants, geodesic completeness, and finiteness of geodesics' expansion parameter ensure us that we are dealing with singularity-free and geodesically-complete black hole spacetimes.« less

  7. Finite burn maneuver modeling for a generalized spacecraft trajectory design and optimization system.

    PubMed

    Ocampo, Cesar

    2004-05-01

    The modeling, design, and optimization of finite burn maneuvers for a generalized trajectory design and optimization system is presented. A generalized trajectory design and optimization system is a system that uses a single unified framework that facilitates the modeling and optimization of complex spacecraft trajectories that may operate in complex gravitational force fields, use multiple propulsion systems, and involve multiple spacecraft. The modeling and optimization issues associated with the use of controlled engine burn maneuvers of finite thrust magnitude and duration are presented in the context of designing and optimizing a wide class of finite thrust trajectories. Optimal control theory is used examine the optimization of these maneuvers in arbitrary force fields that are generally position, velocity, mass, and are time dependent. The associated numerical methods used to obtain these solutions involve either, the solution to a system of nonlinear equations, an explicit parameter optimization method, or a hybrid parameter optimization that combines certain aspects of both. The theoretical and numerical methods presented here have been implemented in copernicus, a prototype trajectory design and optimization system under development at the University of Texas at Austin.

  8. A finite difference solution for the propagation of sound in near sonic flows

    NASA Technical Reports Server (NTRS)

    Hariharan, S. I.; Lester, H. C.

    1983-01-01

    An explicit time/space finite difference procedure is used to model the propagation of sound in a quasi one-dimensional duct containing high Mach number subsonic flow. Nonlinear acoustic equations are derived by perturbing the time-dependent Euler equations about a steady, compressible mean flow. The governing difference relations are based on a fourth-order, two-step (predictor-corrector) MacCormack scheme. The solution algorithm functions by switching on a time harmonic source and allowing the difference equations to iterate to a steady state. The principal effect of the non-linearities was to shift acoustical energy to higher harmonics. With increased source strengths, wave steepening was observed. This phenomenon suggests that the acoustical response may approach a shock behavior at at higher sound pressure level as the throat Mach number aproaches unity. On a peak level basis, good agreement between the nonlinear finite difference and linear finite element solutions was observed, even through a peak sound pressure level of about 150 dB occurred in the throat region. Nonlinear steady state waveform solutions are shown to be in excellent agreement with a nonlinear asymptotic theory.

  9. Well-Balanced Second-Order Approximation of the Shallow Water Equations With Friction via Continuous Galerkin Finite Elements

    NASA Astrophysics Data System (ADS)

    Quezada de Luna, M.; Farthing, M.; Guermond, J. L.; Kees, C. E.; Popov, B.

    2017-12-01

    The Shallow Water Equations (SWEs) are popular for modeling non-dispersive incompressible water waves where the horizontal wavelength is much larger than the vertical scales. They can be derived from the incompressible Navier-Stokes equations assuming a constant vertical velocity. The SWEs are important in Geophysical Fluid Dynamics for modeling surface gravity waves in shallow regimes; e.g., in the deep ocean. Some common geophysical applications are the evolution of tsunamis, river flooding and dam breaks, storm surge simulations, atmospheric flows and others. This work is concerned with the approximation of the time-dependent Shallow Water Equations with friction using explicit time stepping and continuous finite elements. The objective is to construct a method that is at least second-order accurate in space and third or higher-order accurate in time, positivity preserving, well-balanced with respect to rest states, well-balanced with respect to steady sliding solutions on inclined planes and robust with respect to dry states. Methods fulfilling the desired goals are common within the finite volume literature. However, to the best of our knowledge, schemes with the above properties are not well developed in the context of continuous finite elements. We start this work based on a finite element method that is second-order accurate in space, positivity preserving and well-balanced with respect to rest states. We extend it by: modifying the artificial viscosity (via the entropy viscosity method) to deal with issues of loss of accuracy around local extrema, considering a singular Manning friction term handled via an explicit discretization under the usual CFL condition, considering a water height regularization that depends on the mesh size and is consistent with the polynomial approximation, reducing dispersive errors introduced by lumping the mass matrix and others. After presenting the details of the method we show numerical tests that demonstrate the well-balanced nature of the scheme and its convergence properties. We conclude with well-known benchmark problems including the Malpasset dam break (see the attached figure). All numerical experiments are performed and available in the Proteus toolkit, which is an open source python package for modeling continuum mechanical processes and fluid flow.

  10. Finite-frequency sensitivity kernels for global seismic wave propagation based upon adjoint methods

    NASA Astrophysics Data System (ADS)

    Liu, Qinya; Tromp, Jeroen

    2008-07-01

    We determine adjoint equations and Fréchet kernels for global seismic wave propagation based upon a Lagrange multiplier method. We start from the equations of motion for a rotating, self-gravitating earth model initially in hydrostatic equilibrium, and derive the corresponding adjoint equations that involve motions on an earth model that rotates in the opposite direction. Variations in the misfit function χ then may be expressed as , where δlnm = δm/m denotes relative model perturbations in the volume V, δlnd denotes relative topographic variations on solid-solid or fluid-solid boundaries Σ, and ∇Σδlnd denotes surface gradients in relative topographic variations on fluid-solid boundaries ΣFS. The 3-D Fréchet kernel Km determines the sensitivity to model perturbations δlnm, and the 2-D kernels Kd and Kd determine the sensitivity to topographic variations δlnd. We demonstrate also how anelasticity may be incorporated within the framework of adjoint methods. Finite-frequency sensitivity kernels are calculated by simultaneously computing the adjoint wavefield forward in time and reconstructing the regular wavefield backward in time. Both the forward and adjoint simulations are based upon a spectral-element method. We apply the adjoint technique to generate finite-frequency traveltime kernels for global seismic phases (P, Pdiff, PKP, S, SKS, depth phases, surface-reflected phases, surface waves, etc.) in both 1-D and 3-D earth models. For 1-D models these adjoint-generated kernels generally agree well with results obtained from ray-based methods. However, adjoint methods do not have the same theoretical limitations as ray-based methods, and can produce sensitivity kernels for any given phase in any 3-D earth model. The Fréchet kernels presented in this paper illustrate the sensitivity of seismic observations to structural parameters and topography on internal discontinuities. These kernels form the basis of future 3-D tomographic inversions.

  11. Numerical solution of transport equation for applications in environmental hydraulics and hydrology

    NASA Astrophysics Data System (ADS)

    Rashidul Islam, M.; Hanif Chaudhry, M.

    1997-04-01

    The advective term in the one-dimensional transport equation, when numerically discretized, produces artificial diffusion. To minimize such artificial diffusion, which vanishes only for Courant number equal to unity, transport owing to advection has been modeled separately. The numerical solution of the advection equation for a Gaussian initial distribution is well established; however, large oscillations are observed when applied to an initial distribution with sleep gradients, such as trapezoidal distribution of a constituent or propagation of mass from a continuous input. In this study, the application of seven finite-difference schemes and one polynomial interpolation scheme is investigated to solve the transport equation for both Gaussian and non-Gaussian (trapezoidal) initial distributions. The results obtained from the numerical schemes are compared with the exact solutions. A constant advective velocity is assumed throughout the transport process. For a Gaussian distribution initial condition, all eight schemes give excellent results, except the Lax scheme which is diffusive. In application to the trapezoidal initial distribution, explicit finite-difference schemes prove to be superior to implicit finite-difference schemes because the latter produce large numerical oscillations near the steep gradients. The Warming-Kutler-Lomax (WKL) explicit scheme is found to be better among this group. The Hermite polynomial interpolation scheme yields the best result for a trapezoidal distribution among all eight schemes investigated. The second-order accurate schemes are sufficiently accurate for most practical problems, but the solution of unusual problems (concentration with steep gradient) requires the application of higher-order (e.g. third- and fourth-order) accurate schemes.

  12. Generalization of the Time-Energy Uncertainty Relation of Anandan-Aharonov Type

    NASA Technical Reports Server (NTRS)

    Hirayama, Minoru; Hamada, Takeshi; Chen, Jin

    1996-01-01

    A new type of time-energy uncertainty relation was proposed recently by Anandan and Aharonov. Their formula, to estimate the lower bound of time-integral of the energy-fluctuation in a quantum state is generalized to the one involving a set of quantum states. This is achieved by obtaining an explicit formula for the distance between two finitely separated points in the Grassman manifold.

  13. Compact Q-balls in the complex signum-Gordon model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arodz, H.; Lis, J.

    2008-05-15

    We discuss Q-balls in the complex signum-Gordon model in d-dimensional space for d=1, 2, 3. The Q-balls have strictly finite size. Their total energy is a powerlike function of the conserved U(1) charge with the exponent equal to (d+2)(d+3){sup -1}. In the cases d=1 and d=3 explicit analytic solutions are presented.

  14. Lattice Boltzmann model for the compressible Navier-Stokes equations with flexible specific-heat ratio.

    PubMed

    Kataoka, Takeshi; Tsutahara, Michihisa

    2004-03-01

    We have developed a lattice Boltzmann model for the compressible Navier-Stokes equations with a flexible specific-heat ratio. Several numerical results are presented, and they agree well with the corresponding solutions of the Navier-Stokes equations. In addition, an explicit finite-difference scheme is proposed for the numerical calculation that can make a stable calculation with a large Courant number.

  15. High-resolution schemes for hyperbolic conservation laws

    NASA Technical Reports Server (NTRS)

    Harten, A.

    1982-01-01

    A class of new explicit second order accurate finite difference schemes for the computation of weak solutions of hyperbolic conservation laws is presented. These highly nonlinear schemes are obtained by applying a nonoscillatory first order accurae scheme to an appropriately modified flux function. The so derived second order accurate schemes achieve high resolution while preserving the robustness of the original nonoscillatory first order accurate scheme.

  16. On the Poincare noninvariance of a recent alternative to the Dirac equation.

    NASA Technical Reports Server (NTRS)

    Madan, R. N.

    1972-01-01

    Explicit construction of the infinitesimal generators of the Poincare group, demonstrating that the algebra of commutators closes only for the case of zero mass. Hence, the so-called Stigma equation proposed by Biedenharn et al. (1971) as an alternative to the Dirac equation (1928) for spin one-half, finite mass particles is not Poincare invariant except when the leptonic mass is zero.

  17. Material Modeling for Terminal Ballistic Simulation

    DTIC Science & Technology

    1992-09-01

    DYNA-3D-a nonlinear, explicit, three-dimensional finite element code for solid and structural mechanics- user manual. Technical Report UCRL -MA...Rep. UCRL -50108, Rev. 1, Lawrence Livermore Laboratory, 1977. [34] S. P. Marsh. LASL Shock Hugoniot Data. University of California Press, Berkeley, CA...Steinberg. Equation of state and strength properties of selected ma- teriaJs. Tech. Rep. UCRL -MA-106439, Lawrence Livermore National Labo- ratory, 1991. [371

  18. FY07 NRL DoD High Performance Computing Modernization Program Annual Reports

    DTIC Science & Technology

    2008-09-05

    performed. Implicit and explicit solutions methods are used as appropriate. The primary finite element codes used are ABAQUS and ANSYS. User subroutines ...geometric complexities, loading path dependence, rate dependence, and interaction between loading types (electrical, thermal and mechanical). Work is not...are used for specialized material constitutive response. Coupled material responses, such as electrical- thermal for capacitor materials or electrical

  19. LAMPAT and LAMPATNL User’s Manual

    DTIC Science & Technology

    2012-09-01

    nonlinearity. These tools are implemented as subroutines in the finite element software ABAQUS . This user’s manual provides information on the proper...model either through the General tab of the Edit Job dialog box in Abaqus /CAE or the command line with user=( subroutine filename). Table 1...Selection of software product and subroutine . Static Analysis With Abaqus /Standard Dynamic Analysis With Abaqus /Explicit Linear, uncoupled

  20. Modelling of Jupiter's Innermost Radiation Belt

    NASA Technical Reports Server (NTRS)

    Mihalov, J. D.; DeVincenzi, Donald (Technical Monitor)

    1999-01-01

    In order to understand better source and loss processes for energetic trapped protons near Jupiter, a modification of de Pater and Goertz' finite difference diffusion calculations for Jovian equatorial energetic electrons is made to apply to the case of protons inside the orbit of Metis. Explicit account is taken of energy loss in the Jovian ring. Comparison of the results is made with Galileo Probe measurements.

  1. Adaptive Meshing of Ship Air-Wake Flowfields

    DTIC Science & Technology

    2014-10-21

    performs cut- cell operations at geometry boundaries. A second-order spatial finite-volume scheme has been incorporated with explicit first order...The cells intersected by the geometry are handled using the “cut- cell ” approach, which is basically creating arbitrary polyhedral elements with...appropriate surface boundary conditions. Any cells completely outside the computational domain are tagged external and not solved in the flow solution

  2. Simulation of Impact on a Ductile Polymer Plate

    NASA Technical Reports Server (NTRS)

    Cremona, Rebecca L.; Hinkley, Jeffrey A.

    2005-01-01

    Explicit finite element calculations were used to visualize the deformation and temperature rise in an elastic-plastic plate impacted by a rigid projectile. Results were compared to results of experiments involving ballistic penetration of a "self-healing" thermoplastic. The calculated temperature rise agreed well with the experimental observation, but the total energy absorbed in the penetration event was underestimated in the calculation, which neglected friction.

  3. Time and band limiting for matrix valued functions: an integral and a commuting differential operator

    NASA Astrophysics Data System (ADS)

    Grünbaum, F. A.; Pacharoni, I.; Zurrián, I.

    2017-02-01

    The problem of recovering a signal of finite duration from a piece of its Fourier transform was solved at Bell Labs in the 1960’s, by exploiting a ‘miracle’: a certain naturally appearing integral operator commutes with an explicit differential one. Here we show that this same miracle holds in a matrix valued version of the same problem.

  4. Flat bases of invariant polynomials and P-matrices of E{sub 7} and E{sub 8}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Talamini, Vittorino

    2010-02-15

    Let G be a compact group of linear transformations of a Euclidean space V. The G-invariant C{sup {infinity}} functions can be expressed as C{sup {infinity}} functions of a finite basic set of G-invariant homogeneous polynomials, sometimes called an integrity basis. The mathematical description of the orbit space V/G depends on the integrity basis too: it is realized through polynomial equations and inequalities expressing rank and positive semidefiniteness conditions of the P-matrix, a real symmetric matrix determined by the integrity basis. The choice of the basic set of G-invariant homogeneous polynomials forming an integrity basis is not unique, so it ismore » not unique the mathematical description of the orbit space too. If G is an irreducible finite reflection group, Saito et al. [Commun. Algebra 8, 373 (1980)] characterized some special basic sets of G-invariant homogeneous polynomials that they called flat. They also found explicitly the flat basic sets of invariant homogeneous polynomials of all the irreducible finite reflection groups except of the two largest groups E{sub 7} and E{sub 8}. In this paper the flat basic sets of invariant homogeneous polynomials of E{sub 7} and E{sub 8} and the corresponding P-matrices are determined explicitly. Using the results here reported one is able to determine easily the P-matrices corresponding to any other integrity basis of E{sub 7} or E{sub 8}. From the P-matrices one may then write down the equations and inequalities defining the orbit spaces of E{sub 7} and E{sub 8} relatively to a flat basis or to any other integrity basis. The results here obtained may be employed concretely to study analytically the symmetry breaking in all theories where the symmetry group is one of the finite reflection groups E{sub 7} and E{sub 8} or one of the Lie groups E{sub 7} and E{sub 8} in their adjoint representations.« less

  5. The nonlinear modified equation approach to analyzing finite difference schemes

    NASA Technical Reports Server (NTRS)

    Klopfer, G. H.; Mcrae, D. S.

    1981-01-01

    The nonlinear modified equation approach is taken in this paper to analyze the generalized Lax-Wendroff explicit scheme approximation to the unsteady one- and two-dimensional equations of gas dynamics. Three important applications of the method are demonstrated. The nonlinear modified equation analysis is used to (1) generate higher order accurate schemes, (2) obtain more accurate estimates of the discretization error for nonlinear systems of partial differential equations, and (3) generate an adaptive mesh procedure for the unsteady gas dynamic equations. Results are obtained for all three areas. For the adaptive mesh procedure, mesh point requirements for equal resolution of discontinuities were reduced by a factor of five for a 1-D shock tube problem solved by the explicit MacCormack scheme.

  6. Exact sum rules for inhomogeneous systems containing a zero mode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amore, Paolo, E-mail: paolo.amore@gmail.com

    2014-10-15

    We show that the formulas for the sum rules for the eigenvalues of inhomogeneous systems that we have obtained in two recent papers are incomplete when the system contains a zero mode. We prove that there are finite contributions of the zero mode to the sum rules and we explicitly calculate the expressions for the sum rules of order one and two. The previous results for systems that do not contain a zero mode are unaffected. - Highlights: • We discuss the sum rules of the eigenvalues of inhomogeneous systems containing a zero mode. • We derive the explicit expressionsmore » for sum rules of order one and two. • We perform accurate numerical tests of these results for three examples.« less

  7. Nonlinear core deflection in injection molding

    NASA Astrophysics Data System (ADS)

    Poungthong, P.; Giacomin, A. J.; Saengow, C.; Kolitawong, C.; Liao, H.-C.; Tseng, S.-C.

    2018-05-01

    Injection molding of thin slender parts is often complicated by core deflection. This deflection is caused by molten plastics race tracking through the slit between the core and the rigid cavity wall. The pressure of this liquid exerts a lateral force of the slender core causing the core to bend, and this bending is governed by a nonlinear fifth order ordinary differential equation for the deflection that is not directly in the position along the core. Here we subject this differential equation to 6 sets of boundary conditions, corresponding to 6 commercial core constraints. For each such set of boundary conditions, we develop an explicit approximate analytical solution, including both a linear term and a nonlinear term. By comparison with finite difference solutions, we find our new analytical solutions to be accurate. We then use these solutions to derive explicit analytical approximations for maximum deflections and for the core position of these maximum deflections. Our experiments on the base-gated free-tip boundary condition agree closely with our new explicit approximate analytical solution.

  8. Discrete ordinates solutions of nongray radiative transfer with diffusely reflecting walls

    NASA Technical Reports Server (NTRS)

    Menart, J. A.; Lee, Haeok S.; Kim, Tae-Kuk

    1993-01-01

    Nongray gas radiation in a plane parallel slab bounded by gray, diffusely reflecting walls is studied using the discrete ordinates method. The spectral equation of transfer is averaged over a narrow wavenumber interval preserving the spectral correlation effect. The governing equations are derived by considering the history of multiple reflections between two reflecting wails. A closure approximation is applied so that only a finite number of reflections have to be explicitly included. The closure solutions express the physics of the problem to a very high degree and show relatively little error. Numerical solutions are obtained by applying a statistical narrow-band model for gas properties and a discrete ordinates code. The net radiative wail heat fluxes and the radiative source distributions are obtained for different temperature profiles. A zeroth-degree formulation, where no wall reflection is handled explicitly, is sufficient to predict the radiative transfer accurately for most cases considered, when compared with increasingly accurate solutions based on explicitly tracing a larger number of wail reflections without any closure approximation applied.

  9. Generalized Lagrange Jacobi Gauss-Lobatto (GLJGL) Collocation Method for Solving Linear and Nonlinear Fokker-Planck Equations

    NASA Astrophysics Data System (ADS)

    Parand, K.; Latifi, S.; Moayeri, M. M.; Delkhosh, M.

    2018-05-01

    In this study, we have constructed a new numerical approach for solving the time-dependent linear and nonlinear Fokker-Planck equations. In fact, we have discretized the time variable with Crank-Nicolson method and for the space variable, a numerical method based on Generalized Lagrange Jacobi Gauss-Lobatto (GLJGL) collocation method is applied. It leads to in solving the equation in a series of time steps and at each time step, the problem is reduced to a problem consisting of a system of algebraic equations that greatly simplifies the problem. One can observe that the proposed method is simple and accurate. Indeed, one of its merits is that it is derivative-free and by proposing a formula for derivative matrices, the difficulty aroused in calculation is overcome, along with that it does not need to calculate the General Lagrange basis and matrices; they have Kronecker property. Linear and nonlinear Fokker-Planck equations are given as examples and the results amply demonstrate that the presented method is very valid, effective, reliable and does not require any restrictive assumptions for nonlinear terms.

  10. Distributed Fault-Tolerant Control of Networked Uncertain Euler-Lagrange Systems Under Actuator Faults.

    PubMed

    Chen, Gang; Song, Yongduan; Lewis, Frank L

    2016-05-03

    This paper investigates the distributed fault-tolerant control problem of networked Euler-Lagrange systems with actuator and communication link faults. An adaptive fault-tolerant cooperative control scheme is proposed to achieve the coordinated tracking control of networked uncertain Lagrange systems on a general directed communication topology, which contains a spanning tree with the root node being the active target system. The proposed algorithm is capable of compensating for the actuator bias fault, the partial loss of effectiveness actuation fault, the communication link fault, the model uncertainty, and the external disturbance simultaneously. The control scheme does not use any fault detection and isolation mechanism to detect, separate, and identify the actuator faults online, which largely reduces the online computation and expedites the responsiveness of the controller. To validate the effectiveness of the proposed method, a test-bed of multiple robot-arm cooperative control system is developed for real-time verification. Experiments on the networked robot-arms are conduced and the results confirm the benefits and the effectiveness of the proposed distributed fault-tolerant control algorithms.

  11. The Multiscale Robin Coupled Method for flows in porous media

    NASA Astrophysics Data System (ADS)

    Guiraldello, Rafael T.; Ausas, Roberto F.; Sousa, Fabricio S.; Pereira, Felipe; Buscaglia, Gustavo C.

    2018-02-01

    A multiscale mixed method aiming at the accurate approximation of velocity and pressure fields in heterogeneous porous media is proposed. The procedure is based on a new domain decomposition method in which the local problems are subject to Robin boundary conditions. The domain decomposition procedure is defined in terms of two independent spaces on the skeleton of the decomposition, corresponding to interface pressures and fluxes, that can be chosen with great flexibility to accommodate local features of the underlying permeability fields. The well-posedness of the new domain decomposition procedure is established and its connection with the method of Douglas et al. (1993) [12], is identified, also allowing us to reinterpret the known procedure as an optimized Schwarz (or Two-Lagrange-Multiplier) method. The multiscale property of the new domain decomposition method is indicated, and its relation with the Multiscale Mortar Mixed Finite Element Method (MMMFEM) and the Multiscale Hybrid-Mixed (MHM) Finite Element Method is discussed. Numerical simulations are presented aiming at illustrating several features of the new method. Initially we illustrate the possibility of switching from MMMFEM to MHM by suitably varying the Robin condition parameter in the new multiscale method. Then we turn our attention to realistic flows in high-contrast, channelized porous formations. We show that for a range of values of the Robin condition parameter our method provides better approximations for pressure and velocity than those computed with either the MMMFEM and the MHM. This is an indication that our method has the potential to produce more accurate velocity fields in the presence of rough, realistic permeability fields of petroleum reservoirs.

  12. A Stabilized Finite Element Method for Modified Poisson-Nernst-Planck Equations to Determine Ion Flow Through a Nanopore

    PubMed Central

    Chaudhry, Jehanzeb Hameed; Comer, Jeffrey; Aksimentiev, Aleksei; Olson, Luke N.

    2013-01-01

    The conventional Poisson-Nernst-Planck equations do not account for the finite size of ions explicitly. This leads to solutions featuring unrealistically high ionic concentrations in the regions subject to external potentials, in particular, near highly charged surfaces. A modified form of the Poisson-Nernst-Planck equations accounts for steric effects and results in solutions with finite ion concentrations. Here, we evaluate numerical methods for solving the modified Poisson-Nernst-Planck equations by modeling electric field-driven transport of ions through a nanopore. We describe a novel, robust finite element solver that combines the applications of the Newton's method to the nonlinear Galerkin form of the equations, augmented with stabilization terms to appropriately handle the drift-diffusion processes. To make direct comparison with particle-based simulations possible, our method is specifically designed to produce solutions under periodic boundary conditions and to conserve the number of ions in the solution domain. We test our finite element solver on a set of challenging numerical experiments that include calculations of the ion distribution in a volume confined between two charged plates, calculations of the ionic current though a nanopore subject to an external electric field, and modeling the effect of a DNA molecule on the ion concentration and nanopore current. PMID:24363784

  13. Stress Recovery and Error Estimation for 3-D Shell Structures

    NASA Technical Reports Server (NTRS)

    Riggs, H. R.

    2000-01-01

    The C1-continuous stress fields obtained from finite element analyses are in general lower- order accurate than are the corresponding displacement fields. Much effort has focussed on increasing their accuracy and/or their continuity, both for improved stress prediction and especially error estimation. A previous project developed a penalized, discrete least squares variational procedure that increases the accuracy and continuity of the stress field. The variational problem is solved by a post-processing, 'finite-element-type' analysis to recover a smooth, more accurate, C1-continuous stress field given the 'raw' finite element stresses. This analysis has been named the SEA/PDLS. The recovered stress field can be used in a posteriori error estimators, such as the Zienkiewicz-Zhu error estimator or equilibrium error estimators. The procedure was well-developed for the two-dimensional (plane) case involving low-order finite elements. It has been demonstrated that, if optimal finite element stresses are used for the post-processing, the recovered stress field is globally superconvergent. Extension of this work to three dimensional solids is straightforward. Attachment: Stress recovery and error estimation for shell structure (abstract only). A 4-node, shear-deformable flat shell element developed via explicit Kirchhoff constraints (abstract only). A novel four-node quadrilateral smoothing element for stress enhancement and error estimation (abstract only).

  14. Assessment of the performance of rigid pavement back-calculation through finite element modeling

    NASA Astrophysics Data System (ADS)

    Shoukry, Samir N.; William, Gergis W.; Martinelli, David R.

    1999-02-01

    This study focuses on examining the behavior of rigid pavement layers during the Falling Weight Deflectometer (FWD) test. Factors affecting the design of a concrete slab, such as whether the joints are doweled or undoweled and the spacing between the transverse joints, were considered in this study. Explicit finite element analysis was employed to investigate pavement layers' responses to the action of the impulse of the FWD test. Models of various dimensions were developed to satisfy the factors under consideration. The accuracy of the finite element models developed in this investigation was verified by comparing the finite element- generated deflection basin with that experimentally measured during an actual test. The results showed that the measured deflection basin can be reproduced through finite element modeling of the pavement structure. The resulting deflection basins from the use FE modeling was processed in order to backcalculate pavement layer moduli. This approach provides a method for the evaluation of the performance of existing backcalculation programs which are based on static elastic layer analysis. Based upon the previous studies conducted for the selection of software, three different backcalculation programs were chosen for the evaluation: MODULUS5.0, EVERCALC4.0, and MODCOMP3. The results indicate that ignoring the dynamic nature of the load may lead to crude results, especially during backcalculation procedures.

  15. Canonical quantization of constrained systems and coadjoint orbits of Diff(S sup 1 )

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scherer, W.M.

    It is shown that Dirac's treatment of constrained Hamiltonian systems and Schwinger's action principle quantization lead to identical commutations relations. An explicit relation between the Lagrange multipliers in the action principle approach and the additional terms in the Dirac bracket is derived. The equivalence of the two methods is demonstrated in the case of the non-linear sigma model. Dirac's method is extended to superspace and this extension is applied to the chiral superfield. The Dirac brackets of the massive interacting chiral superfluid are derived and shown to give the correct commutation relations for the component fields. The Hamiltonian of themore » theory is given and the Hamiltonian equations of motion are computed. They agree with the component field results. An infinite sequence of differential operators which are covariant under the coadjoint action of Diff(S{sup 1}) and analogues to Hill's operator is constructed. They map conformal fields of negative integer and half-integer weight to their dual space. Some properties of these operators are derived and possible applications are discussed. The Korteweg-de Vries equation is formulated as a coadjoint orbit of Diff(S{sup 1}).« less

  16. Combining the Vortex Particle-Mesh method with a Multi-Body System solver for the simulation of self-propelled articulated swimmers

    NASA Astrophysics Data System (ADS)

    Bernier, Caroline; Gazzola, Mattia; Ronsse, Renaud; Chatelain, Philippe

    2017-11-01

    We present a 2D fluid-structure interaction simulation method with a specific focus on articulated and actuated structures. The proposed algorithm combines a viscous Vortex Particle-Mesh (VPM) method based on a penalization technique and a Multi-Body System (MBS) solver. The hydrodynamic forces and moments acting on the structure parts are not computed explicitly from the surface stresses; they are rather recovered from the projection and penalization steps within the VPM method. The MBS solver accounts for the body dynamics via the Euler-Lagrange formalism. The deformations of the structure are dictated by the hydrodynamic efforts and actuation torques. Here, we focus on simplified swimming structures composed of neutrally buoyant ellipses connected by virtual joints. The joints are actuated through a simple controller in order to reproduce the swimming patterns of an eel-like swimmer. The method enables to recover the histories of torques applied on each hinge along the body. The method is verified on several benchmarks: an impulsively started elastically mounted cylinder and free swimming articulated fish-like structures. Validation will be performed by means of an experimental swimming robot that reproduces the 2D articulated ellipses.

  17. Modelling of charged satellite motion in Earth's gravitational and magnetic fields

    NASA Astrophysics Data System (ADS)

    Abd El-Bar, S. E.; Abd El-Salam, F. A.

    2018-05-01

    In this work Lagrange's planetary equations for a charged satellite subjected to the Earth's gravitational and magnetic force fields are solved. The Earth's gravity, and magnetic and electric force components are obtained and expressed in terms of orbital elements. The variational equations of orbit with the considered model in Keplerian elements are derived. The solution of the problem in a fully analytical way is obtained. The temporal rate of changes of the orbital elements of the spacecraft are integrated via Lagrange's planetary equations and integrals of the normalized Keplerian motion obtained by Ahmed (Astron. J. 107(5):1900, 1994).

  18. Thermo-optic characteristics and switching power limit of slow-light photonic crystal structures on a silicon-on-insulator platform.

    PubMed

    Chahal, Manjit; Celler, George K; Jaluria, Yogesh; Jiang, Wei

    2012-02-13

    Employing a semi-analytic approach, we study the influence of key structural and optical parameters on the thermo-optic characteristics of photonic crystal waveguide (PCW) structures on a silicon-on-insulator (SOI) platform. The power consumption and spatial temperature profile of such structures are given as explicit functions of various structural, thermal and optical parameters, offering physical insight not available in finite-element simulations. Agreement with finite-element simulations and experiments is demonstrated. Thermal enhancement of the air-bridge structure is analyzed. The practical limit of thermo-optic switching power in slow light PCWs is discussed, and the scaling with key parameters is analyzed. Optical switching with sub-milliwatt power is shown viable.

  19. High speed finite element simulations on the graphics card

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huthwaite, P.; Lowe, M. J. S.

    A software package is developed to perform explicit time domain finite element simulations of ultrasonic propagation on the graphical processing unit, using Nvidia’s CUDA. Of critical importance for this problem is the arrangement of nodes in memory, allowing data to be loaded efficiently and minimising communication between the independently executed blocks of threads. The initial stage of memory arrangement is partitioning the mesh; both a well established ‘greedy’ partitioner and a new, more efficient ‘aligned’ partitioner are investigated. A method is then developed to efficiently arrange the memory within each partition. The technique is compared to a commercial CPU equivalent,more » demonstrating an overall speedup of at least 100 for a non-destructive testing weld model.« less

  20. DYNA3D: A computer code for crashworthiness engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hallquist, J.O.; Benson, D.J.

    1986-09-01

    A finite element program with crashworthiness applications has been developed at LLNL. DYNA3D, an explicit, fully vectorized, finite deformation structural dynamics program, has four capabilities that are critical for the efficient and realistic modeling crash phenomena: (1) fully optimized nonlinear solid, shell, and beam elements for representing a structure; (2) a broad range of constitutive models for simulating material behavior; (3) sophisticated contact algorithms for impact interactions; (4) a rigid body capability to represent the bodies away from the impact region at a greatly reduced cost without sacrificing accuracy in the momentum calculations. Basic methodologies of the program are brieflymore » presented along with several crashworthiness calculations. Efficiencies of the Hughes-Liu and Belytschko-Tsay shell formulations are considered.« less

  1. BMS supertranslation symmetry implies Faddeev-Kulish amplitudes

    NASA Astrophysics Data System (ADS)

    Choi, Sangmin; Akhoury, Ratindranath

    2018-02-01

    We show explicitly that, among the scattering amplitudes constructed from eigenstates of the BMS supertranslation charge, the ones that conserve this charge, are equal to those constructed from Faddeev-Kulish states. Thus, Faddeev-Kulish states naturally arise as a consequence of the asymptotic symmetries of perturbative gravity and all charge conserving amplitudes are infrared finite. In the process we show an important feature of the Faddeev-Kulish clouds dressing the external hard particles: these clouds can be moved from the incoming states to the outgoing ones, and vice-versa, without changing the infrared finiteness properties of S matrix elements. We also apply our discussion to the problem of the decoherence of momentum configurations of hard particles due to soft boson effects.

  2. Moving magnets in a micromagnetic finite-difference framework

    NASA Astrophysics Data System (ADS)

    Rissanen, Ilari; Laurson, Lasse

    2018-05-01

    We present a method and an implementation for smooth linear motion in a finite-difference-based micromagnetic simulation code, to be used in simulating magnetic friction and other phenomena involving moving microscale magnets. Our aim is to accurately simulate the magnetization dynamics and relative motion of magnets while retaining high computational speed. To this end, we combine techniques for fast scalar potential calculation and cubic b-spline interpolation, parallelizing them on a graphics processing unit (GPU). The implementation also includes the possibility of explicitly simulating eddy currents in the case of conducting magnets. We test our implementation by providing numerical examples of stick-slip motion of thin films pulled by a spring and the effect of eddy currents on the switching time of magnetic nanocubes.

  3. A High Order Discontinuous Galerkin Method for 2D Incompressible Flows

    NASA Technical Reports Server (NTRS)

    Liu, Jia-Guo; Shu, Chi-Wang

    1999-01-01

    In this paper we introduce a high order discontinuous Galerkin method for two dimensional incompressible flow in vorticity streamfunction formulation. The momentum equation is treated explicitly, utilizing the efficiency of the discontinuous Galerkin method The streamfunction is obtained by a standard Poisson solver using continuous finite elements. There is a natural matching between these two finite element spaces, since the normal component of the velocity field is continuous across element boundaries. This allows for a correct upwinding gluing in the discontinuous Galerkin framework, while still maintaining total energy conservation with no numerical dissipation and total enstrophy stability The method is suitable for inviscid or high Reynolds number flows. Optimal error estimates are proven and verified by numerical experiments.

  4. Wang-Landau method for calculating Rényi entropies in finite-temperature quantum Monte Carlo simulations.

    PubMed

    Inglis, Stephen; Melko, Roger G

    2013-01-01

    We implement a Wang-Landau sampling technique in quantum Monte Carlo (QMC) simulations for the purpose of calculating the Rényi entanglement entropies and associated mutual information. The algorithm converges an estimate for an analog to the density of states for stochastic series expansion QMC, allowing a direct calculation of Rényi entropies without explicit thermodynamic integration. We benchmark results for the mutual information on two-dimensional (2D) isotropic and anisotropic Heisenberg models, a 2D transverse field Ising model, and a three-dimensional Heisenberg model, confirming a critical scaling of the mutual information in cases with a finite-temperature transition. We discuss the benefits and limitations of broad sampling techniques compared to standard importance sampling methods.

  5. A Revision on Classical Solutions to the Cauchy Boltzmann Problem for Soft Potentials

    NASA Astrophysics Data System (ADS)

    Alonso, Ricardo J.; Gamba, Irene M.

    2011-05-01

    This short note complements the recent paper of the authors (Alonso, Gamba in J. Stat. Phys. 137(5-6):1147-1165, 2009). We revisit the results on propagation of regularity and stability using L p estimates for the gain and loss collision operators which had the exponent range misstated for the loss operator. We show here the correct range of exponents. We require a Lebesgue's exponent α>1 in the angular part of the collision kernel in order to obtain finiteness in some constants involved in the regularity and stability estimates. As a consequence the L p regularity associated to the Cauchy problem of the space inhomogeneous Boltzmann equation holds for a finite range of p≥1 explicitly determined.

  6. Dynamical decoupling of unbounded Hamiltonians

    NASA Astrophysics Data System (ADS)

    Arenz, Christian; Burgarth, Daniel; Facchi, Paolo; Hillier, Robin

    2018-03-01

    We investigate the possibility to suppress interactions between a finite dimensional system and an infinite dimensional environment through a fast sequence of unitary kicks on the finite dimensional system. This method, called dynamical decoupling, is known to work for bounded interactions, but physical environments such as bosonic heat baths are usually modeled with unbounded interactions; hence, here, we initiate a systematic study of dynamical decoupling for unbounded operators. We develop a sufficient decoupling criterion for arbitrary Hamiltonians and a necessary decoupling criterion for semibounded Hamiltonians. We give examples for unbounded Hamiltonians where decoupling works and the limiting evolution as well as the convergence speed can be explicitly computed. We show that decoupling does not always work for unbounded interactions and we provide both physically and mathematically motivated examples.

  7. Computation of leaky guided waves dispersion spectrum using vibroacoustic analyses and the Matrix Pencil Method: a validation study for immersed rectangular waveguides.

    PubMed

    Mazzotti, M; Bartoli, I; Castellazzi, G; Marzani, A

    2014-09-01

    The paper aims at validating a recently proposed Semi Analytical Finite Element (SAFE) formulation coupled with a 2.5D Boundary Element Method (2.5D BEM) for the extraction of dispersion data in immersed waveguides of generic cross-section. To this end, three-dimensional vibroacoustic analyses are carried out on two waveguides of square and rectangular cross-section immersed in water using the commercial Finite Element software Abaqus/Explicit. Real wavenumber and attenuation dispersive data are extracted by means of a modified Matrix Pencil Method. It is demonstrated that the results obtained using the two techniques are in very good agreement. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Suggested notation conventions for rotational seismology

    USGS Publications Warehouse

    Evans, J.R.

    2009-01-01

    We note substantial inconsistency among authors discussing rotational motions observed with inertial seismic sensors (and much more so in the broader topic of rotational phenomena). Working from physics and other precedents, we propose standard terminology and a preferred reference frame for inertial sensors (Fig. 1) that may be consistently used in discussions of both finite and infinitesimal observed rotational and translational motions in seismology and earthquake engineering. The scope of this article is limited to observations because there are significant differences in the analysis of finite and infinitesimal rotations, though such discussions should remain compatible with those presented here where possible. We recommend the general use of the notation conventions presented in this tutorial, and we recommend that any deviations or alternatives be explicitly defined.

  9. Preconditioning for the Navier-Stokes equations with finite-rate chemistry

    NASA Technical Reports Server (NTRS)

    Godfrey, Andrew G.; Walters, Robert W.; Van Leer, Bram

    1993-01-01

    The preconditioning procedure for generalized finite-rate chemistry and the proper preconditioning for the one-dimensional Navier-Stokes equations are presented. Eigenvalue stiffness is resolved and convergence-rate acceleration is demonstrated over the entire Mach-number range from the incompressible to the hypersonic. Specific benefits are realized at low and transonic flow speeds. The extended preconditioning matrix accounts for thermal and chemical non-equilibrium and its implementation is explained for both explicit and implicit time marching. The effect of higher-order spatial accuracy and various flux splittings is investigated. Numerical analysis reveals the possible theoretical improvements from using proconditioning at all Mach numbers. Numerical results confirm the expectations from the numerical analysis. Representative test cases include flows with previously troublesome embedded high-condition-number regions.

  10. Stellar occultation of polarized light from circumstellar electrons. I - Flat envelopes viewed edge on

    NASA Technical Reports Server (NTRS)

    Brown, John C.; Fox, Geoffrey K.

    1989-01-01

    The depolarizing and occultation effects of a finite spherical light source on the polarization of light Thomson-scattered from a flat circumstellar envelope seen edge-on are analyzed. The analysis shows that neglect of the finite size of the light source leads to a gross overestimate of the polarization for a given disk geometry. By including occultation and depolarization, it is found that B-star envelopes are necessarily highly flattened disk-type structures. For a disk viewed edge-on, the effect of occultation reduces the polarization more than the inclusion of the depolarization factor alone. Analysis of a one-dimensional plume leads to a powerful technique that permits the electron density distribution to be explicitly obtained from the polarimetric data.

  11. Plasmon excitations with a semi-integer angular momentum.

    PubMed

    Mendonça, J T; Serbeto, A; Vieira, J

    2018-05-18

    We provide an explicit model for a spin-1/2 quasi-particle, based on the superposition of plasmon excitations in a quantum plasmas with intrinsic orbital angular momentum. Such quasi-particle solutions can show remarkable similarities with single electrons moving in vacuum: they have spin-1/2, a finite rest mass, and a quantum dispersion. We also show that these quasi-particle solutions satisfy a criterium of energy minimum.

  12. Stable SU(5) monopoles with higher magnetic charge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyamoto, S.; Sato, H.; Tomohiro, S.

    1985-09-15

    Taking into account the electroweak breaking effects, some multiply charged monopoles were shown to be stable by Gardner and Harvey. We give the explicit Ansa$uml: tze for finite-energy, nonsingular solutions of these stable higher-strength monopoles with eg = 1,(3/2),3. We also give the general stability conditions and the detailed behavior of the interaction potentials between two monopoles which produce the stable higher-strength monopoles.

  13. European Science Notes Information Bulletin Reports on Current European/ Middle Eastern Science

    DTIC Science & Technology

    1991-06-01

    particularly those that involve shock wave/boundary layer cell-centered, finite-volume, explicit, Runge-Kutta interactions , still prov;de considerble...aircraft configuration attributed to using an interactive vcual grid generation was provided by A. Bocci and A. Baxendale, the Aircraft system developed...the surface pressure the complex problem of wing/body/pylon/store distributions with and without the mass flow through the interaction . Reasonable

  14. Explicit Finite Element Method for Transparency Impact Analysis

    DTIC Science & Technology

    1991-06-01

    investigators have employed a similar concept for fiber-reinforced composite laminates (Chow 1971, 1975; Noor 1975, 1989; Chatterjee, 1979). Consider...Intense Impulsive Loads, It. J. Nuon. Meth. Engng. 14, 1865- 1871. Jones, R. M. (1975), Mechanics of Composite Materials, Scripta Book Co., Washington, D...Structural Dynamics, J. Eng. Mech. Div. 85, 67-94. Noor, A. K. (1975), Stability of Multilayered Composite Plates, Fibre Sci. Tech. 8, 81-89. Noor, A. K

  15. Representation of the Coulomb Matrix Elements by Means of Appell Hypergeometric Function F 2

    NASA Astrophysics Data System (ADS)

    Bentalha, Zine el abidine

    2018-06-01

    Exact analytical representation for the Coulomb matrix elements by means of Appell's double series F 2 is derived. The finite sum obtained for the Appell function F 2 allows us to evaluate explicitly the matrix elements of the two-body Coulomb interaction in the lowest Landau level. An application requiring the matrix elements of Coulomb potential in quantum Hall effect regime is presented.

  16. Numerical approach to optimal portfolio in a power utility regime-switching model

    NASA Astrophysics Data System (ADS)

    Gyulov, Tihomir B.; Koleva, Miglena N.; Vulkov, Lubin G.

    2017-12-01

    We consider a system of weakly coupled degenerate semi-linear parabolic equations of optimal portfolio in a regime-switching with power utility function, derived by A.R. Valdez and T. Vargiolu [14]. First, we discuss some basic properties of the solution of this system. Then, we develop and analyze implicit-explicit, flux limited finite difference schemes for the differential problem. Numerical experiments are discussed.

  17. Explicit Nonlinear Finite Element Geometric Analysis of Parabolic Leaf Springs under Various Loads

    PubMed Central

    Kong, Y. S.; Omar, M. Z.; Chua, L. B.; Abdullah, S.

    2013-01-01

    This study describes the effects of bounce, brake, and roll behavior of a bus toward its leaf spring suspension systems. Parabolic leaf springs are designed based on vertical deflection and stress; however, loads are practically derived from various modes especially under harsh road drives or emergency braking. Parabolic leaf springs must sustain these loads without failing to ensure bus and passenger safety. In this study, the explicit nonlinear dynamic finite element (FE) method is implemented because of the complexity of experimental testing A series of load cases; namely, vertical push, wind-up, and suspension roll are introduced for the simulations. The vertical stiffness of the parabolic leaf springs is related to the vehicle load-carrying capability, whereas the wind-up stiffness is associated with vehicle braking. The roll stiffness of the parabolic leaf springs is correlated with the vehicle roll stability. To obtain a better bus performance, two new parabolic leaf spring designs are proposed and simulated. The stress level during the loadings is observed and compared with its design limit. Results indicate that the newly designed high vertical stiffness parabolic spring provides the bus a greater roll stability and a lower stress value compared with the original design. Bus safety and stability is promoted, as well as the load carrying capability. PMID:24298209

  18. Unstructured Finite Elements and Dynamic Meshing for Explicit Phase Tracking in Multiphase Problems

    NASA Astrophysics Data System (ADS)

    Chandra, Anirban; Yang, Fan; Zhang, Yu; Shams, Ehsan; Sahni, Onkar; Oberai, Assad; Shephard, Mark

    2017-11-01

    Multi-phase processes involving phase change at interfaces, such as evaporation of a liquid or combustion of a solid, represent an interesting class of problems with varied applications. Large density ratio across phases, discontinuous fields at the interface and rapidly evolving geometries are some of the inherent challenges which influence the numerical modeling of multi-phase phase change problems. In this work, a mathematically consistent and robust computational approach to address these issues is presented. We use stabilized finite element methods on mixed topology unstructured grids for solving the compressible Navier-Stokes equations. Appropriate jump conditions derived from conservations laws across the interface are handled by using discontinuous interpolations, while the continuity of temperature and tangential velocity is enforced using a penalty parameter. The arbitrary Lagrangian-Eulerian (ALE) technique is utilized to explicitly track the interface motion. Mesh at the interface is constrained to move with the interface while elsewhere it is moved using the linear elasticity analogy. Repositioning is applied to the layered mesh that maintains its structure and normal resolution. In addition, mesh modification is used to preserve the quality of the volumetric mesh. This work is supported by the U.S. Army Grants W911NF1410301 and W911NF16C0117.

  19. Competing Grain Boundary and Interior Deformation Mechanisms with Varying Sizes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Wei; Gao, Yanfei; Nieh, T. G.

    In typical coarse-grained alloys, the dominant plastic deformations are dislocation gliding or climbing, and material strengths can be tuned by dislocation interactions with grain boundaries, precipitates, solid solutions, and other defects. With the reduction of grain size, the increase of material strengths follows the classic Hall-Petch relationship up to nano-grained materials. Even at room temperatures, nano-grained materials exhibit strength softening, or called the inverse Hall-Petch effect, as grain boundary processes take over as the dominant deformation mechanisms. On the other hand, at elevated temperatures, grain boundary processes compete with grain interior deformation mechanisms over a wide range of the appliedmore » stress and grain sizes. This book chapter reviews and compares the rate equation model and the microstructure-based finite element simulations. The latter explicitly accounts for the grain boundary sliding, grain boundary diffusion and migration, as well as the grain interior dislocation creep. Therefore the explicit finite element method has clear advantages in problems where microstructural heterogeneities play a critical role, such as in the gradient microstructure in shot peening or weldment. Furthermore, combined with the Hall-Petch effect and its breakdown, the above competing processes help construct deformation mechanism maps by extending from the classic Frost-Ashby type to the ones with the dependence of grain size.« less

  20. Explicit nonlinear finite element geometric analysis of parabolic leaf springs under various loads.

    PubMed

    Kong, Y S; Omar, M Z; Chua, L B; Abdullah, S

    2013-01-01

    This study describes the effects of bounce, brake, and roll behavior of a bus toward its leaf spring suspension systems. Parabolic leaf springs are designed based on vertical deflection and stress; however, loads are practically derived from various modes especially under harsh road drives or emergency braking. Parabolic leaf springs must sustain these loads without failing to ensure bus and passenger safety. In this study, the explicit nonlinear dynamic finite element (FE) method is implemented because of the complexity of experimental testing A series of load cases; namely, vertical push, wind-up, and suspension roll are introduced for the simulations. The vertical stiffness of the parabolic leaf springs is related to the vehicle load-carrying capability, whereas the wind-up stiffness is associated with vehicle braking. The roll stiffness of the parabolic leaf springs is correlated with the vehicle roll stability. To obtain a better bus performance, two new parabolic leaf spring designs are proposed and simulated. The stress level during the loadings is observed and compared with its design limit. Results indicate that the newly designed high vertical stiffness parabolic spring provides the bus a greater roll stability and a lower stress value compared with the original design. Bus safety and stability is promoted, as well as the load carrying capability.

  1. Fluctuating hydrodynamics for multiscale modeling and simulation: energy and heat transfer in molecular fluids.

    PubMed

    Shang, Barry Z; Voulgarakis, Nikolaos K; Chu, Jhih-Wei

    2012-07-28

    This work illustrates that fluctuating hydrodynamics (FHD) simulations can be used to capture the thermodynamic and hydrodynamic responses of molecular fluids at the nanoscale, including those associated with energy and heat transfer. Using all-atom molecular dynamics (MD) trajectories as the reference data, the atomistic coordinates of each snapshot are mapped onto mass, momentum, and energy density fields on Eulerian grids to generate a corresponding field trajectory. The molecular length-scale associated with finite molecule size is explicitly imposed during this coarse-graining by requiring that the variances of density fields scale inversely with the grid volume. From the fluctuations of field variables, the response functions and transport coefficients encoded in the all-atom MD trajectory are computed. By using the extracted fluid properties in FHD simulations, we show that the fluctuations and relaxation of hydrodynamic fields quantitatively match with those observed in the reference all-atom MD trajectory, hence establishing compatibility between the atomistic and field representations. We also show that inclusion of energy transfer in the FHD equations can more accurately capture the thermodynamic and hydrodynamic responses of molecular fluids. The results indicate that the proposed MD-to-FHD mapping with explicit consideration of finite molecule size provides a robust framework for coarse-graining the solution phase of complex molecular systems.

  2. Staggered solution procedures for multibody dynamics simulation

    NASA Technical Reports Server (NTRS)

    Park, K. C.; Chiou, J. C.; Downer, J. D.

    1990-01-01

    The numerical solution procedure for multibody dynamics (MBD) systems is termed a staggered MBD solution procedure that solves the generalized coordinates in a separate module from that for the constraint force. This requires a reformulation of the constraint conditions so that the constraint forces can also be integrated in time. A major advantage of such a partitioned solution procedure is that additional analysis capabilities such as active controller and design optimization modules can be easily interfaced without embedding them into a monolithic program. After introducing the basic equations of motion for MBD system in the second section, Section 3 briefly reviews some constraint handling techniques and introduces the staggered stabilized technique for the solution of the constraint forces as independent variables. The numerical direct time integration of the equations of motion is described in Section 4. As accurate damping treatment is important for the dynamics of space structures, we have employed the central difference method and the mid-point form of the trapezoidal rule since they engender no numerical damping. This is in contrast to the current practice in dynamic simulations of ground vehicles by employing a set of backward difference formulas. First, the equations of motion are partitioned according to the translational and the rotational coordinates. This sets the stage for an efficient treatment of the rotational motions via the singularity-free Euler parameters. The resulting partitioned equations of motion are then integrated via a two-stage explicit stabilized algorithm for updating both the translational coordinates and angular velocities. Once the angular velocities are obtained, the angular orientations are updated via the mid-point implicit formula employing the Euler parameters. When the two algorithms, namely, the two-stage explicit algorithm for the generalized coordinates and the implicit staggered procedure for the constraint Lagrange multipliers, are brought together in a staggered manner, they constitute a staggered explicit-implicit procedure which is summarized in Section 5. Section 6 presents some example problems and discussions concerning several salient features of the staggered MBD solution procedure are offered in Section 7.

  3. Helicopter time-domain electromagnetic numerical simulation based on Leapfrog ADI-FDTD

    NASA Astrophysics Data System (ADS)

    Guan, S.; Ji, Y.; Li, D.; Wu, Y.; Wang, A.

    2017-12-01

    We present a three-dimension (3D) Alternative Direction Implicit Finite-Difference Time-Domain (Leapfrog ADI-FDTD) method for the simulation of helicopter time-domain electromagnetic (HTEM) detection. This method is different from the traditional explicit FDTD, or ADI-FDTD. Comparing with the explicit FDTD, leapfrog ADI-FDTD algorithm is no longer limited by Courant-Friedrichs-Lewy(CFL) condition. Thus, the time step is longer. Comparing with the ADI-FDTD, we reduce the equations from 12 to 6 and .the Leapfrog ADI-FDTD method will be easier for the general simulation. First, we determine initial conditions which are adopted from the existing method presented by Wang and Tripp(1993). Second, we derive Maxwell equation using a new finite difference equation by Leapfrog ADI-FDTD method. The purpose is to eliminate sub-time step and retain unconditional stability characteristics. Third, we add the convolution perfectly matched layer (CPML) absorbing boundary condition into the leapfrog ADI-FDTD simulation and study the absorbing effect of different parameters. Different absorbing parameters will affect the absorbing ability. We find the suitable parameters after many numerical experiments. Fourth, We compare the response with the 1-Dnumerical result method for a homogeneous half-space to verify the correctness of our algorithm.When the model contains 107*107*53 grid points, the conductivity is 0.05S/m. The results show that Leapfrog ADI-FDTD need less simulation time and computer storage space, compared with ADI-FDTD. The calculation speed decreases nearly four times, memory occupation decreases about 32.53%. Thus, this algorithm is more efficient than the conventional ADI-FDTD method for HTEM detection, and is more precise than that of explicit FDTD in the late time.

  4. Static Buckling Model Tests and Elasto-plastic Finite Element Analysis of a Pile in Layers with Various Thicknesses

    NASA Astrophysics Data System (ADS)

    Okajima, Kenji; Imai, Junichi; Tanaka, Tadatsugu; Iida, Toshiaki

    Damage to piles in the liquefied ground is frequently reported. Buckling by the excess vertical load could be one of the causes of the pile damage, as well as the lateral flow of the ground and the lateral load at the pile head. The buckling mechanism is described as a complicated interaction between the pile deformation by the vertical load and the earth pressure change cased by the pile deformation. In this study, series of static buckling model tests of a pile were carried out in dried sand ground with various thickness of the layer. Finite element analysis was applied to the test results to verify the effectiveness of the elasto-plastic finite element analysis combining the implicit-explicit mixed type dynamic relaxation method with the return mapping method to the pile buckling problems. The test results and the analysis indicated the possibility that the buckling load of a pile decreases greatly where the thickness of the layer increases.

  5. Finite-size effects in simulations of electrolyte solutions under periodic boundary conditions

    NASA Astrophysics Data System (ADS)

    Thompson, Jeffrey; Sanchez, Isaac

    The equilibrium properties of charged systems with periodic boundary conditions may exhibit pronounced system-size dependence due to the long range of the Coulomb force. As shown by others, the leading-order finite-size correction to the Coulomb energy of a charged fluid confined to a periodic box of volume V may be derived from sum rules satisfied by the charge-charge correlations in the thermodynamic limit V -> ∞ . In classical systems, the relevant sum rule is the Stillinger-Lovett second-moment (or perfect screening) condition. This constraint implies that for large V, periodicity induces a negative bias of -kB T(2 V) - 1 in the total Coulomb energy density of a homogeneous classical charged fluid of given density and temperature. We present a careful study of the impact of such finite-size effects on the calculation of solute chemical potentials from explicit-solvent molecular simulations of aqueous electrolyte solutions. National Science Foundation Graduate Research Fellowship Program, Grant No. DGE-1610403.

  6. A Mixed Multi-Field Finite Element Formulation for Thermopiezoelectric Composite Shells

    NASA Technical Reports Server (NTRS)

    Lee, Ho-Jun; Saravanos, Dimitris A.

    1999-01-01

    Analytical formulations are presented which account for the coupled mechanical, electrical, and thermal response of piezoelectric composite shell structures. A new mixed multi-field laminate theory is developed which combines "single layer" assumptions for the displacements along with layerwise fields for the electric potential and temperature. This laminate theory is formulated using curvilinear coordinates and is based on the principles of linear thermopiezoelectricity. The mechanics have the inherent capability to explicitly model both the active and sensory responses of piezoelectric composite shells in thermal environment. Finite element equations are derived and implemented for an eight-noded shell element. Numerical studies are conducted to investigate both the sensory and active responses of piezoelectric composite shell structures subjected to thermal loads. Results for a cantilevered plate with an attached piezoelectric layer are com- pared with corresponding results from a commercial finite element code and a previously developed program. Additional studies are conducted on a cylindrical shell with an attached piezoelectric layer to demonstrate capabilities to achieve thermal shape control on curved piezoelectric structures.

  7. Finite-difference method Stokes solver (FDMSS) for 3D pore geometries: Software development, validation and case studies

    NASA Astrophysics Data System (ADS)

    Gerke, Kirill M.; Vasilyev, Roman V.; Khirevich, Siarhei; Collins, Daniel; Karsanina, Marina V.; Sizonenko, Timofey O.; Korost, Dmitry V.; Lamontagne, Sébastien; Mallants, Dirk

    2018-05-01

    Permeability is one of the fundamental properties of porous media and is required for large-scale Darcian fluid flow and mass transport models. Whilst permeability can be measured directly at a range of scales, there are increasing opportunities to evaluate permeability from pore-scale fluid flow simulations. We introduce the free software Finite-Difference Method Stokes Solver (FDMSS) that solves Stokes equation using a finite-difference method (FDM) directly on voxelized 3D pore geometries (i.e. without meshing). Based on explicit convergence studies, validation on sphere packings with analytically known permeabilities, and comparison against lattice-Boltzmann and other published FDM studies, we conclude that FDMSS provides a computationally efficient and accurate basis for single-phase pore-scale flow simulations. By implementing an efficient parallelization and code optimization scheme, permeability inferences can now be made from 3D images of up to 109 voxels using modern desktop computers. Case studies demonstrate the broad applicability of the FDMSS software for both natural and artificial porous media.

  8. Newmark local time stepping on high-performance computing architectures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rietmann, Max, E-mail: max.rietmann@erdw.ethz.ch; Institute of Geophysics, ETH Zurich; Grote, Marcus, E-mail: marcus.grote@unibas.ch

    In multi-scale complex media, finite element meshes often require areas of local refinement, creating small elements that can dramatically reduce the global time-step for wave-propagation problems due to the CFL condition. Local time stepping (LTS) algorithms allow an explicit time-stepping scheme to adapt the time-step to the element size, allowing near-optimal time-steps everywhere in the mesh. We develop an efficient multilevel LTS-Newmark scheme and implement it in a widely used continuous finite element seismic wave-propagation package. In particular, we extend the standard LTS formulation with adaptations to continuous finite element methods that can be implemented very efficiently with very strongmore » element-size contrasts (more than 100x). Capable of running on large CPU and GPU clusters, we present both synthetic validation examples and large scale, realistic application examples to demonstrate the performance and applicability of the method and implementation on thousands of CPU cores and hundreds of GPUs.« less

  9. Optimization of custom cementless stem using finite element analysis and elastic modulus distribution for reducing stress-shielding effect.

    PubMed

    Saravana Kumar, Gurunathan; George, Subin Philip

    2017-02-01

    This work proposes a methodology involving stiffness optimization for subject-specific cementless hip implant design based on finite element analysis for reducing stress-shielding effect. To assess the change in the stress-strain state of the femur and the resulting stress-shielding effect due to insertion of the implant, a finite element analysis of the resected femur with implant assembly is carried out for a clinically relevant loading condition. Selecting the von Mises stress as the criterion for discriminating regions for elastic modulus difference, a stiffness minimization method was employed by varying the elastic modulus distribution in custom implant stem. The stiffness minimization problem is formulated as material distribution problem without explicitly penalizing partial volume elements. This formulation enables designs that could be fabricated using additive manufacturing to make porous implant with varying levels of porosity. Stress-shielding effect, measured as difference between the von Mises stress in the intact and implanted femur, decreased as the elastic modulus distribution is optimized.

  10. Split Space-Marching Finite-Volume Method for Chemically Reacting Supersonic Flow

    NASA Technical Reports Server (NTRS)

    Rizzi, Arthur W.; Bailey, Harry E.

    1976-01-01

    A space-marching finite-volume method employing a nonorthogonal coordinate system and using a split differencing scheme for calculating steady supersonic flow over aerodynamic shapes is presented. It is a second-order-accurate mixed explicit-implicit procedure that solves the inviscid adiabatic and nondiffusive equations for chemically reacting flow in integral conservation-law form. The relationship between the finite-volume and differential forms of the equations is examined and the relative merits of each discussed. The method admits initial Cauchy data situated on any arbitrary surface and integrates them forward along a general curvilinear coordinate, distorting and deforming the surface as it advances. The chemical kinetics term is split from the convective terms which are themselves dimensionally split, thereby freeing the fluid operators from the restricted step size imposed by the chemical reactions and increasing the computational efficiency. The accuracy of this splitting technique is analyzed, a sufficient stability criterion is established, a representative flow computation is discussed, and some comparisons are made with another method.

  11. A time dependent difference theory for sound propagation in ducts with flow. [characteristic of inlet and exhaust ducts of turbofan engines

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.

    1979-01-01

    A time dependent numerical solution of the linearized continuity and momentum equation was developed for sound propagation in a two dimensional straight hard or soft wall duct with a sheared mean flow. The time dependent governing acoustic difference equations and boundary conditions were developed along with a numerical determination of the maximum stable time increments. A harmonic noise source radiating into a quiescent duct was analyzed. This explicit iteration method then calculated stepwise in real time to obtain the transient as well as the steady state solution of the acoustic field. Example calculations were presented for sound propagation in hard and soft wall ducts, with no flow and plug flow. Although the problem with sheared flow was formulated and programmed, sample calculations were not examined. The time dependent finite difference analysis was found to be superior to the steady state finite difference and finite element techniques because of shorter solution times and the elimination of large matrix storage requirements.

  12. Crash Simulation of a Boeing 737 Fuselage Section Vertical Drop Test

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin L.; Jackson, Karen E.; Jones, Yvonne T.; Frings, Gary; Vu, Tong

    2004-01-01

    A 30-ft/s vertical drop test of a fuselage section of a Boeing 737 aircraft was conducted in October of 1999 at the FAA Technical Center in Atlantic City, NJ. This test was performed to evaluate the structural integrity of a conformable auxiliary fuel tank mounted beneath the floor and to determine its effect on the impact response of the airframe structure and the occupants. The test data were used to compare with a finite element simulation of the fuselage structure and to gain a better understanding of the impact physics through analytical/experimental correlation. To perform this simulation, a full-scale 3-dimensional finite element model of the fuselage section was developed using the explicit, nonlinear transient-dynamic finite element code, MSC.Dytran. The emphasis of the simulation was to predict the structural deformation and floor-level acceleration responses obtained from the drop test of the B737 fuselage section with the auxiliary fuel tank.

  13. Investigating Trojan Asteroids at the L4/L5 Sun-Earth Lagrange Points

    NASA Technical Reports Server (NTRS)

    John, K. K.; Graham, L. D.; Abell, P. A.

    2015-01-01

    Investigations of Earth's Trojan asteroids will have benefits for science, exploration, and resource utilization. By sending a small spacecraft to the Sun-Earth L4 or L5 Lagrange points to investigate near-Earth objects, Earth's Trojan population can be better understood. This could lead to future missions for larger precursor spacecraft as well as human missions. The presence of objects in the Sun-Earth L4 and L5 Lagrange points has long been suspected, and in 2010 NASA's Wide-field Infrared Survey Explorer (WISE) detected a 300 m object. To investigate these Earth Trojan asteroid objects, it is both essential and feasible to send spacecraft to these regions. By exploring a wide field area, a small spacecraft equipped with an IR camera could hunt for Trojan asteroids and other Earth co-orbiting objects at the L4 or L5 Lagrange points in the near-term. By surveying the region, a zeroth-order approximation of the number of objects could be obtained with some rough constraints on their diameters, which may lead to the identification of potential candidates for further study. This would serve as a precursor for additional future robotic and human exploration targets. Depending on the inclination of these potential objects, they could be used as proving areas for future missions in the sense that the delta-V's to get to these targets are relatively low as compared to other rendezvous missions. They can serve as platforms for extended operations in deep space while interacting with a natural object in microgravity. Theoretically, such low inclination Earth Trojan asteroids exist. By sending a spacecraft to L4 or L5, these likely and potentially accessible targets could be identified.

  14. A finite element solver for 3-D compressible viscous flows

    NASA Technical Reports Server (NTRS)

    Reddy, K. C.; Reddy, J. N.; Nayani, S.

    1990-01-01

    Computation of the flow field inside a space shuttle main engine (SSME) requires the application of state of the art computational fluid dynamic (CFD) technology. Several computer codes are under development to solve 3-D flow through the hot gas manifold. Some algorithms were designed to solve the unsteady compressible Navier-Stokes equations, either by implicit or explicit factorization methods, using several hundred or thousands of time steps to reach a steady state solution. A new iterative algorithm is being developed for the solution of the implicit finite element equations without assembling global matrices. It is an efficient iteration scheme based on a modified nonlinear Gauss-Seidel iteration with symmetric sweeps. The algorithm is analyzed for a model equation and is shown to be unconditionally stable. Results from a series of test problems are presented. The finite element code was tested for couette flow, which is flow under a pressure gradient between two parallel plates in relative motion. Another problem that was solved is viscous laminar flow over a flat plate. The general 3-D finite element code was used to compute the flow in an axisymmetric turnaround duct at low Mach numbers.

  15. Some aspects of algorithm performance and modeling in transient analysis of structures

    NASA Technical Reports Server (NTRS)

    Adelman, H. M.; Haftka, R. T.; Robinson, J. C.

    1981-01-01

    The status of an effort to increase the efficiency of calculating transient temperature fields in complex aerospace vehicle structures is described. The advantages and disadvantages of explicit algorithms with variable time steps, known as the GEAR package, is described. Four test problems, used for evaluating and comparing various algorithms, were selected and finite-element models of the configurations are described. These problems include a space shuttle frame component, an insulated cylinder, a metallic panel for a thermal protection system, and a model of the wing of the space shuttle orbiter. Results generally indicate a preference for implicit over explicit algorithms for solution of transient structural heat transfer problems when the governing equations are stiff (typical of many practical problems such as insulated metal structures).

  16. Fast time- and frequency-domain finite-element methods for electromagnetic analysis

    NASA Astrophysics Data System (ADS)

    Lee, Woochan

    Fast electromagnetic analysis in time and frequency domain is of critical importance to the design of integrated circuits (IC) and other advanced engineering products and systems. Many IC structures constitute a very large scale problem in modeling and simulation, the size of which also continuously grows with the advancement of the processing technology. This results in numerical problems beyond the reach of existing most powerful computational resources. Different from many other engineering problems, the structure of most ICs is special in the sense that its geometry is of Manhattan type and its dielectrics are layered. Hence, it is important to develop structure-aware algorithms that take advantage of the structure specialties to speed up the computation. In addition, among existing time-domain methods, explicit methods can avoid solving a matrix equation. However, their time step is traditionally restricted by the space step for ensuring the stability of a time-domain simulation. Therefore, making explicit time-domain methods unconditionally stable is important to accelerate the computation. In addition to time-domain methods, frequency-domain methods have suffered from an indefinite system that makes an iterative solution difficult to converge fast. The first contribution of this work is a fast time-domain finite-element algorithm for the analysis and design of very large-scale on-chip circuits. The structure specialty of on-chip circuits such as Manhattan geometry and layered permittivity is preserved in the proposed algorithm. As a result, the large-scale matrix solution encountered in the 3-D circuit analysis is turned into a simple scaling of the solution of a small 1-D matrix, which can be obtained in linear (optimal) complexity with negligible cost. Furthermore, the time step size is not sacrificed, and the total number of time steps to be simulated is also significantly reduced, thus achieving a total cost reduction in CPU time. The second contribution is a new method for making an explicit time-domain finite-element method (TDFEM) unconditionally stable for general electromagnetic analysis. In this method, for a given time step, we find the unstable modes that are the root cause of instability, and deduct them directly from the system matrix resulting from a TDFEM based analysis. As a result, an explicit TDFEM simulation is made stable for an arbitrarily large time step irrespective of the space step. The third contribution is a new method for full-wave applications from low to very high frequencies in a TDFEM based on matrix exponential. In this method, we directly deduct the eigenmodes having large eigenvalues from the system matrix, thus achieving a significantly increased time step in the matrix exponential based TDFEM. The fourth contribution is a new method for transforming the indefinite system matrix of a frequency-domain FEM to a symmetric positive definite one. We deduct non-positive definite component directly from the system matrix resulting from a frequency-domain FEM-based analysis. The resulting new representation of the finite-element operator ensures an iterative solution to converge in a small number of iterations. We then add back the non-positive definite component to synthesize the original solution with negligible cost.

  17. [Building an effective nonlinear three-dimensional finite-element model of human thoracolumbar spine].

    PubMed

    Zeng, Zhi-Li; Cheng, Li-Ming; Zhu, Rui; Wang, Jian-Jie; Yu, Yan

    2011-08-23

    To build an effective nonlinear three-dimensional finite-element (FE) model of T(11)-L(3) segments for a further biomechanical study of thoracolumbar spine. The CT (computed tomography) scan images of healthy adult T(11)-L(3) segments were imported into software Simpleware 2.0 to generate a triangular mesh model. Using software Geomagic 8 for model repair and optimization, a solid model was generated into the finite element software Abaqus 6.9. The reasonable element C3D8 was selected for bone structures. Created between bony endplates, the intervertebral disc was subdivided into nucleus pulposus and annulus fibrosus (44% nucleus, 56% annulus). The nucleus was filled with 5 layers of 8-node solid elements and annulus reinforced by 8 crisscross collagenous fiber layers. The nucleus and annulus were meshed by C3D8RH while the collagen fibers meshed by two node-truss elements. The anterior (ALL) and posterior (PLL) longitudinal ligaments, flavum (FL), supraspinous (SSL), interspinous (ISL) and intertransverse (ITL) ligaments were modeled with S4R shell elements while capsular ligament (CL) was modeled with 3-node shell element. All surrounding ligaments were represented by envelope of 1 mm uniform thickness. The discs and bone structures were modeled with hyper-elastic and elasto-plastic material laws respectively while the ligaments governed by visco-elastic material law. The nonlinear three-dimensional finite-element model of T(11)-L(3) segments was generated and its efficacy verified through validating the geometric similarity and disc load-displacement and stress distribution under the impact of violence. Using ABAQUS/ EXPLICIT 6.9 the explicit dynamic finite element solver, the impact test was simulated in vitro. In this study, a 3-dimensional, nonlinear FE model including 5 vertebrae, 4 intervertebral discs and 7 ligaments consisted of 78 887 elements and 71 939 nodes. The model had good geometric similarity under the same conditions. The results of FEM intervertebral disc load-displacement curve were similar to those of in vitro test. The stress distribution results of vertebral cortical bone, posterior complex and cancellous bone were similar to those of other static experiments in a dynamic impact test under the observation of stress cloud. With the advantages of high geometric and mechanical similarity and complete thoracolumbar, hexahedral meshes, nonlinear finite element model may facilitate the impact loading test for a further dynamic analysis of injury mechanism for thoracolumbar burst fracture.

  18. Error estimates of Lagrange interpolation and orthonormal expansions for Freud weights

    NASA Astrophysics Data System (ADS)

    Kwon, K. H.; Lee, D. W.

    2001-08-01

    Let Sn[f] be the nth partial sum of the orthonormal polynomials expansion with respect to a Freud weight. Then we obtain sufficient conditions for the boundedness of Sn[f] and discuss the speed of the convergence of Sn[f] in weighted Lp space. We also find sufficient conditions for the boundedness of the Lagrange interpolation polynomial Ln[f], whose nodal points are the zeros of orthonormal polynomials with respect to a Freud weight. In particular, if W(x)=e-(1/2)x2 is the Hermite weight function, then we obtain sufficient conditions for the inequalities to hold:andwhere and k=0,1,2...,r.

  19. Using multi-dimensional Smolyak interpolation to make a sum-of-products potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avila, Gustavo, E-mail: Gustavo-Avila@telefonica.net; Carrington, Tucker, E-mail: Tucker.Carrington@queensu.ca

    2015-07-28

    We propose a new method for obtaining potential energy surfaces in sum-of-products (SOP) form. If the number of terms is small enough, a SOP potential surface significantly reduces the cost of quantum dynamics calculations by obviating the need to do multidimensional integrals by quadrature. The method is based on a Smolyak interpolation technique and uses polynomial-like or spectral basis functions and 1D Lagrange-type functions. When written in terms of the basis functions from which the Lagrange-type functions are built, the Smolyak interpolant has only a modest number of terms. The ideas are tested for HONO (nitrous acid)

  20. Prediction of a Densely Loaded Particle-Laden Jet using a Euler-Lagrange Dense Spray Model

    NASA Astrophysics Data System (ADS)

    Pakseresht, Pedram; Apte, Sourabh V.

    2017-11-01

    Modeling of a dense spray regime using an Euler-Lagrange discrete-element approach is challenging because of local high volume loading. A subgrid cluster of droplets can lead to locally high void fractions for the disperse phase. Under these conditions, spatio-temporal changes in the carrier phase volume fractions, which are commonly neglected in spray simulations in an Euler-Lagrange two-way coupling model, could become important. Accounting for the carrier phase volume fraction variations, leads to zero-Mach number, variable density governing equations. Using pressure-based solvers, this gives rise to a source term in the pressure Poisson equation and a non-divergence free velocity field. To test the validity and predictive capability of such an approach, a round jet laden with solid particles is investigated using Direct Numerical Simulation and compared with available experimental data for different loadings. Various volume fractions spanning from dilute to dense regimes are investigated with and without taking into account the volume displacement effects. The predictions of the two approaches are compared and analyzed to investigate the effectiveness of the dense spray model. Financial support was provided by National Aeronautics and Space Administration (NASA).

Top