Sample records for lagrange multiplier field

  1. 16QAM Blind Equalization via Maximum Entropy Density Approximation Technique and Nonlinear Lagrange Multipliers

    PubMed Central

    Mauda, R.; Pinchas, M.

    2014-01-01

    Recently a new blind equalization method was proposed for the 16QAM constellation input inspired by the maximum entropy density approximation technique with improved equalization performance compared to the maximum entropy approach, Godard's algorithm, and others. In addition, an approximated expression for the minimum mean square error (MSE) was obtained. The idea was to find those Lagrange multipliers that bring the approximated MSE to minimum. Since the derivation of the obtained MSE with respect to the Lagrange multipliers leads to a nonlinear equation for the Lagrange multipliers, the part in the MSE expression that caused the nonlinearity in the equation for the Lagrange multipliers was ignored. Thus, the obtained Lagrange multipliers were not those Lagrange multipliers that bring the approximated MSE to minimum. In this paper, we derive a new set of Lagrange multipliers based on the nonlinear expression for the Lagrange multipliers obtained from minimizing the approximated MSE with respect to the Lagrange multipliers. Simulation results indicate that for the high signal to noise ratio (SNR) case, a faster convergence rate is obtained for a channel causing a high initial intersymbol interference (ISI) while the same equalization performance is obtained for an easy channel (initial ISI low). PMID:24723813

  2. Projection-based stabilization of interface Lagrange multipliers in immersogeometric fluid-thin structure interaction analysis, with application to heart valve modeling.

    PubMed

    Kamensky, David; Evans, John A; Hsu, Ming-Chen; Bazilevs, Yuri

    2017-11-01

    This paper discusses a method of stabilizing Lagrange multiplier fields used to couple thin immersed shell structures and surrounding fluids. The method retains essential conservation properties by stabilizing only the portion of the constraint orthogonal to a coarse multiplier space. This stabilization can easily be applied within iterative methods or semi-implicit time integrators that avoid directly solving a saddle point problem for the Lagrange multiplier field. Heart valve simulations demonstrate applicability of the proposed method to 3D unsteady simulations. An appendix sketches the relation between the proposed method and a high-order-accurate approach for simpler model problems.

  3. Technique to eliminate computational instability in multibody simulations employing the Lagrange multiplier

    NASA Technical Reports Server (NTRS)

    Watts, G.

    1992-01-01

    A programming technique to eliminate computational instability in multibody simulations that use the Lagrange multiplier is presented. The computational instability occurs when the attached bodies drift apart and violate the constraints. The programming technique uses the constraint equation, instead of integration, to determine the coordinates that are not independent. Although the equations of motion are unchanged, a complete derivation of the incorporation of the Lagrange multiplier into the equation of motion for two bodies is presented. A listing of a digital computer program which uses the programming technique to eliminate computational instability is also presented. The computer program simulates a solid rocket booster and parachute connected by a frictionless swivel.

  4. A Lagrange multiplier and Hopfield-type barrier function method for the traveling salesman problem.

    PubMed

    Dang, Chuangyin; Xu, Lei

    2002-02-01

    A Lagrange multiplier and Hopfield-type barrier function method is proposed for approximating a solution of the traveling salesman problem. The method is derived from applications of Lagrange multipliers and a Hopfield-type barrier function and attempts to produce a solution of high quality by generating a minimum point of a barrier problem for a sequence of descending values of the barrier parameter. For any given value of the barrier parameter, the method searches for a minimum point of the barrier problem in a feasible descent direction, which has a desired property that lower and upper bounds on variables are always satisfied automatically if the step length is a number between zero and one. At each iteration, the feasible descent direction is found by updating Lagrange multipliers with a globally convergent iterative procedure. For any given value of the barrier parameter, the method converges to a stationary point of the barrier problem without any condition on the objective function. Theoretical and numerical results show that the method seems more effective and efficient than the softassign algorithm.

  5. Lagrange multiplier for perishable inventory model considering warehouse capacity planning

    NASA Astrophysics Data System (ADS)

    Amran, Tiena Gustina; Fatima, Zenny

    2017-06-01

    This paper presented Lagrange Muktiplier approach for solving perishable raw material inventory planning considering warehouse capacity. A food company faced an issue of managing perishable raw materials and marinades which have limited shelf life. Another constraint to be considered was the capacity of the warehouse. Therefore, an inventory model considering shelf life and raw material warehouse capacity are needed in order to minimize the company's inventory cost. The inventory model implemented in this study was the adapted economic order quantity (EOQ) model which is optimized using Lagrange multiplier. The model and solution approach were applied to solve a case industry in a food manufacturer. The result showed that the total inventory cost decreased 2.42% after applying the proposed approach.

  6. A Fluid Structure Algorithm with Lagrange Multipliers to Model Free Swimming

    NASA Astrophysics Data System (ADS)

    Sahin, Mehmet; Dilek, Ezgi

    2017-11-01

    A new monolithic approach is prosed to solve the fluid-structure interaction (FSI) problem with Lagrange multipliers in order to model free swimming/flying. In the present approach, the fluid domain is modeled by the incompressible Navier-Stokes equations and discretized using an Arbitrary Lagrangian-Eulerian (ALE) formulation based on the stable side-centered unstructured finite volume method. The solid domain is modeled by the constitutive laws for the nonlinear Saint Venant-Kirchhoff material and the classical Galerkin finite element method is used to discretize the governing equations in a Lagrangian frame. In order to impose the body motion/deformation, the distance between the constraint pair nodes is imposed using the Lagrange multipliers, which is independent from the frame of reference. The resulting algebraic linear equations are solved in a fully coupled manner using a dual approach (null space method). The present numerical algorithm is initially validated for the classical FSI benchmark problems and then applied to the free swimming of three linked ellipses. The authors are grateful for the use of the computing resources provided by the National Center for High Performance Computing (UYBHM) under Grant Number 10752009 and the computing facilities at TUBITAK-ULAKBIM, High Performance and Grid Computing Center.

  7. Three dimensional elements with Lagrange multipliers for the modified couple stress theory

    NASA Astrophysics Data System (ADS)

    Kwon, Young-Rok; Lee, Byung-Chai

    2018-07-01

    Three dimensional mixed elements for the modified couple stress theory are proposed. The C1 continuity for the displacement field, which is required because of the curvature term in the variational form of the theory, is satisfied weakly by introducing a supplementary rotation as an independent variable and constraining the relation between the rotation and the displacement with a Lagrange multiplier vector. An additional constraint about the deviatoric curvature is also considered for three dimensional problems. Weak forms with one constraint and two constraints are derived, and four elements satisfying convergence criteria are developed by applying different approximations to each field of independent variables. The elements pass a [InlineEquation not available: see fulltext.] patch test for three dimensional problems. Numerical examples show that the additional constraint could be considered essential for the three dimensional elements, and one of the elements is recommended for practical applications via the comparison of the performances of the elements. In addition, all the proposed elements can represent the size effect well.

  8. Identifying fMRI Model Violations with Lagrange Multiplier Tests

    PubMed Central

    Cassidy, Ben; Long, Christopher J; Rae, Caroline; Solo, Victor

    2013-01-01

    The standard modeling framework in Functional Magnetic Resonance Imaging (fMRI) is predicated on assumptions of linearity, time invariance and stationarity. These assumptions are rarely checked because doing so requires specialised software, although failure to do so can lead to bias and mistaken inference. Identifying model violations is an essential but largely neglected step in standard fMRI data analysis. Using Lagrange Multiplier testing methods we have developed simple and efficient procedures for detecting model violations such as non-linearity, non-stationarity and validity of the common Double Gamma specification for hemodynamic response. These procedures are computationally cheap and can easily be added to a conventional analysis. The test statistic is calculated at each voxel and displayed as a spatial anomaly map which shows regions where a model is violated. The methodology is illustrated with a large number of real data examples. PMID:22542665

  9. Application of parallel distributed Lagrange multiplier technique to simulate coupled Fluid-Granular flows in pipes with varying Cross-Sectional area

    DOE PAGES

    Kanarska, Yuliya; Walton, Otis

    2015-11-30

    Fluid-granular flows are common phenomena in nature and industry. Here, an efficient computational technique based on the distributed Lagrange multiplier method is utilized to simulate complex fluid-granular flows. Each particle is explicitly resolved on an Eulerian grid as a separate domain, using solid volume fractions. The fluid equations are solved through the entire computational domain, however, Lagrange multiplier constrains are applied inside the particle domain such that the fluid within any volume associated with a solid particle moves as an incompressible rigid body. The particle–particle interactions are implemented using explicit force-displacement interactions for frictional inelastic particles similar to the DEMmore » method with some modifications using the volume of an overlapping region as an input to the contact forces. Here, a parallel implementation of the method is based on the SAMRAI (Structured Adaptive Mesh Refinement Application Infrastructure) library.« less

  10. The Relation Among the Likelihood Ratio-, Wald-, and Lagrange Multiplier Tests and Their Applicability to Small Samples,

    DTIC Science & Technology

    1982-04-01

    S. (1979), "Conflict Among Criteria for Testing Hypothesis: Extension and Comments," Econometrica, 47, 203-207 Breusch , T. S. and Pagan , A. R. (1980...Savin, N. E. (1977), "Conflict Among Criteria for Testing Hypothesis in the Multivariate Linear Regression Model," Econometrica, 45, 1263-1278 Breusch , T...VNCLASSIFIED RAND//-6756NL U l~ I- THE RELATION AMONG THE LIKELIHOOD RATIO-, WALD-, AND LAGRANGE MULTIPLIER TESTS AND THEIR APPLICABILITY TO SMALL SAMPLES

  11. A composite experimental dynamic substructuring method based on partitioned algorithms and localized Lagrange multipliers

    NASA Astrophysics Data System (ADS)

    Abbiati, Giuseppe; La Salandra, Vincenzo; Bursi, Oreste S.; Caracoglia, Luca

    2018-02-01

    Successful online hybrid (numerical/physical) dynamic substructuring simulations have shown their potential in enabling realistic dynamic analysis of almost any type of non-linear structural system (e.g., an as-built/isolated viaduct, a petrochemical piping system subjected to non-stationary seismic loading, etc.). Moreover, owing to faster and more accurate testing equipment, a number of different offline experimental substructuring methods, operating both in time (e.g. the impulse-based substructuring) and frequency domains (i.e. the Lagrange multiplier frequency-based substructuring), have been employed in mechanical engineering to examine dynamic substructure coupling. Numerous studies have dealt with the above-mentioned methods and with consequent uncertainty propagation issues, either associated with experimental errors or modelling assumptions. Nonetheless, a limited number of publications have systematically cross-examined the performance of the various Experimental Dynamic Substructuring (EDS) methods and the possibility of their exploitation in a complementary way to expedite a hybrid experiment/numerical simulation. From this perspective, this paper performs a comparative uncertainty propagation analysis of three EDS algorithms for coupling physical and numerical subdomains with a dual assembly approach based on localized Lagrange multipliers. The main results and comparisons are based on a series of Monte Carlo simulations carried out on a five-DoF linear/non-linear chain-like systems that include typical aleatoric uncertainties emerging from measurement errors and excitation loads. In addition, we propose a new Composite-EDS (C-EDS) method to fuse both online and offline algorithms into a unique simulator. Capitalizing from the results of a more complex case study composed of a coupled isolated tank-piping system, we provide a feasible way to employ the C-EDS method when nonlinearities and multi-point constraints are present in the emulated system.

  12. Distributed-Lagrange-Multiplier-based computational method for particulate flow with collisions

    NASA Astrophysics Data System (ADS)

    Ardekani, Arezoo; Rangel, Roger

    2006-11-01

    A Distributed-Lagrange-Multiplier-based computational method is developed for colliding particles in a solid-fluid system. A numerical simulation is conducted in two dimensions using the finite volume method. The entire domain is treated as a fluid but the fluid in the particle domains satisfies a rigidity constraint. We present an efficient method for predicting the collision between particles. In earlier methods, a repulsive force was applied to the particles when their distance was less than a critical value. In this method, an impulsive force is computed. During the frictionless collision process between two particles, linear momentum is conserved while the tangential forces are zero. Thus, instead of satisfying a condition of rigid body motion for each particle separately, as done when particles are not in contact, both particles are rigidified together along their line of centers. Particles separate from each other when the impulsive force is less than zero and after this time, a rigidity constraint is satisfied for each particle separately. Grid independency is implemented to ensure the accuracy of the numerical simulation. A comparison between this method and previous collision strategies is presented and discussed.

  13. Testing of Lagrange multiplier damped least-squares control algorithm for woofer-tweeter adaptive optics

    PubMed Central

    Zou, Weiyao; Burns, Stephen A.

    2012-01-01

    A Lagrange multiplier-based damped least-squares control algorithm for woofer-tweeter (W-T) dual deformable-mirror (DM) adaptive optics (AO) is tested with a breadboard system. We show that the algorithm can complementarily command the two DMs to correct wavefront aberrations within a single optimization process: the woofer DM correcting the high-stroke, low-order aberrations, and the tweeter DM correcting the low-stroke, high-order aberrations. The optimal damping factor for a DM is found to be the median of the eigenvalue spectrum of the influence matrix of that DM. Wavefront control accuracy is maximized with the optimized control parameters. For the breadboard system, the residual wavefront error can be controlled to the precision of 0.03 μm in root mean square. The W-T dual-DM AO has applications in both ophthalmology and astronomy. PMID:22441462

  14. Testing of Lagrange multiplier damped least-squares control algorithm for woofer-tweeter adaptive optics.

    PubMed

    Zou, Weiyao; Burns, Stephen A

    2012-03-20

    A Lagrange multiplier-based damped least-squares control algorithm for woofer-tweeter (W-T) dual deformable-mirror (DM) adaptive optics (AO) is tested with a breadboard system. We show that the algorithm can complementarily command the two DMs to correct wavefront aberrations within a single optimization process: the woofer DM correcting the high-stroke, low-order aberrations, and the tweeter DM correcting the low-stroke, high-order aberrations. The optimal damping factor for a DM is found to be the median of the eigenvalue spectrum of the influence matrix of that DM. Wavefront control accuracy is maximized with the optimized control parameters. For the breadboard system, the residual wavefront error can be controlled to the precision of 0.03 μm in root mean square. The W-T dual-DM AO has applications in both ophthalmology and astronomy. © 2012 Optical Society of America

  15. Predicting the safe load on backpacker's arm using Lagrange multipliers method

    NASA Astrophysics Data System (ADS)

    Abdalla, Faisal Saleh; Rambely, Azmin Sham

    2014-09-01

    In this study, a technique has been suggested to reduce a backpack load by transmitting determined loads to the children arm. The purpose of this paper is to estimate school children arm muscles while load carriage as well as to determine the safe load can be carried at wrist while walking with backpack. A mathematical model, as three DOFs model, was investigated in the sagittal plane and Lagrange multipliers method (LMM) was utilized to minimize a quadratic objective function of muscle forces. The muscle forces were minimized with three different load conditions which are termed as 0-L=0 N, 1-L=21.95 N, and 2-L=43.9 N. The investigated muscles were estimated and compared to their maximum forces throughout the load conditions. Flexor and extensor muscles were estimated and the results showed that flexor muscles were active while extensor muscles showed inactivity. The estimated muscle forces were didn't exceed their maximum forces with 0-L and 1-L conditions whereas biceps and FCR muscles exceeded their maximum forces with 2-L condition. Consequently, 1-L condition is quiet safe to be carried by hand whereas 2-L condition is not. Thus to reduce the load in the backpack the transmitted load shouldn't exceed 1-L condition.

  16. Woofer-tweeter adaptive optics scanning laser ophthalmoscopic imaging based on Lagrange-multiplier damped least-squares algorithm.

    PubMed

    Zou, Weiyao; Qi, Xiaofeng; Burns, Stephen A

    2011-07-01

    We implemented a Lagrange-multiplier (LM)-based damped least-squares (DLS) control algorithm in a woofer-tweeter dual deformable-mirror (DM) adaptive optics scanning laser ophthalmoscope (AOSLO). The algorithm uses data from a single Shack-Hartmann wavefront sensor to simultaneously correct large-amplitude low-order aberrations by a woofer DM and small-amplitude higher-order aberrations by a tweeter DM. We measured the in vivo performance of high resolution retinal imaging with the dual DM AOSLO. We compared the simultaneous LM-based DLS dual DM controller with both single DM controller, and a successive dual DM controller. We evaluated performance using both wavefront (RMS) and image quality metrics including brightness and power spectrum. The simultaneous LM-based dual DM AO can consistently provide near diffraction-limited in vivo routine imaging of human retina.

  17. Analysis of complex elastic structures by a Rayleigh-Ritz component modes method using Lagrange multipliers. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Klein, L. R.

    1974-01-01

    The free vibrations of elastic structures of arbitrary complexity were analyzed in terms of their component modes. The method was based upon the use of the normal unconstrained modes of the components in a Rayleigh-Ritz analysis. The continuity conditions were enforced by means of Lagrange Multipliers. Examples of the structures considered are: (1) beams with nonuniform properties; (2) airplane structures with high or low aspect ratio lifting surface components; (3) the oblique wing airplane; and (4) plate structures. The method was also applied to the analysis of modal damping of linear elastic structures. Convergence of the method versus the number of modes per component and/or the number of components is discussed and compared to more conventional approaches, ad-hoc methods, and experimental results.

  18. A globally convergent Lagrange and barrier function iterative algorithm for the traveling salesman problem.

    PubMed

    Dang, C; Xu, L

    2001-03-01

    In this paper a globally convergent Lagrange and barrier function iterative algorithm is proposed for approximating a solution of the traveling salesman problem. The algorithm employs an entropy-type barrier function to deal with nonnegativity constraints and Lagrange multipliers to handle linear equality constraints, and attempts to produce a solution of high quality by generating a minimum point of a barrier problem for a sequence of descending values of the barrier parameter. For any given value of the barrier parameter, the algorithm searches for a minimum point of the barrier problem in a feasible descent direction, which has a desired property that the nonnegativity constraints are always satisfied automatically if the step length is a number between zero and one. At each iteration the feasible descent direction is found by updating Lagrange multipliers with a globally convergent iterative procedure. For any given value of the barrier parameter, the algorithm converges to a stationary point of the barrier problem without any condition on the objective function. Theoretical and numerical results show that the algorithm seems more effective and efficient than the softassign algorithm.

  19. A Node Localization Algorithm Based on Multi-Granularity Regional Division and the Lagrange Multiplier Method in Wireless Sensor Networks.

    PubMed

    Shang, Fengjun; Jiang, Yi; Xiong, Anping; Su, Wen; He, Li

    2016-11-18

    With the integrated development of the Internet, wireless sensor technology, cloud computing, and mobile Internet, there has been a lot of attention given to research about and applications of the Internet of Things. A Wireless Sensor Network (WSN) is one of the important information technologies in the Internet of Things; it integrates multi-technology to detect and gather information in a network environment by mutual cooperation, using a variety of methods to process and analyze data, implement awareness, and perform tests. This paper mainly researches the localization algorithm of sensor nodes in a wireless sensor network. Firstly, a multi-granularity region partition is proposed to divide the location region. In the range-based method, the RSSI (Received Signal Strength indicator, RSSI) is used to estimate distance. The optimal RSSI value is computed by the Gaussian fitting method. Furthermore, a Voronoi diagram is characterized by the use of dividing region. Rach anchor node is regarded as the center of each region; the whole position region is divided into several regions and the sub-region of neighboring nodes is combined into triangles while the unknown node is locked in the ultimate area. Secondly, the multi-granularity regional division and Lagrange multiplier method are used to calculate the final coordinates. Because nodes are influenced by many factors in the practical application, two kinds of positioning methods are designed. When the unknown node is inside positioning unit, we use the method of vector similarity. Moreover, we use the centroid algorithm to calculate the ultimate coordinates of unknown node. When the unknown node is outside positioning unit, we establish a Lagrange equation containing the constraint condition to calculate the first coordinates. Furthermore, we use the Taylor expansion formula to correct the coordinates of the unknown node. In addition, this localization method has been validated by establishing the real environment.

  20. Improved Algorithm For Finite-Field Normal-Basis Multipliers

    NASA Technical Reports Server (NTRS)

    Wang, C. C.

    1989-01-01

    Improved algorithm reduces complexity of calculations that must precede design of Massey-Omura finite-field normal-basis multipliers, used in error-correcting-code equipment and cryptographic devices. Algorithm represents an extension of development reported in "Algorithm To Design Finite-Field Normal-Basis Multipliers" (NPO-17109), NASA Tech Briefs, Vol. 12, No. 5, page 82.

  1. Retrieving Storm Electric Fields from Aircraft Field Mill Data. Part 1; Theory

    NASA Technical Reports Server (NTRS)

    Koshak, W. J.

    2006-01-01

    It is shown that the problem of retrieving storm electric fields from an aircraft instrumented with several electric field mill sensors can be expressed in terms of a standard Lagrange multiplier optimization problem. The method naturally removes aircraft charge from the retrieval process without having to use a high voltage stinger and linearly combined mill data values. It allows a variety of user-supplied physical constraints (the so-called side constraints in the theory of Lagrange multipliers) and also helps improve absolute calibration. Additionally, this paper introduces an alternate way of performing the absolute calibration of an aircraft that has some benefits over conventional analyses. It is accomplished by using the time derivatives of mill and pitch data for a pitch down maneuver performed at high (greater than 1 km) altitude. In Part II of this study, the above methods are tested and then applied to complete a full calibration of a Citation aircraft.

  2. Retrieving Storm Electric Fields From Aircraft Field Mill Data. Part I: Theory

    NASA Technical Reports Server (NTRS)

    Koshak, W. J.

    2005-01-01

    It is shown that the problem of retrieving storm electric fields from an aircraft instrumented with several electric field mill sensors can be expressed in terms of a standard Lagrange multiplier optimization problem. The method naturally removes aircraft charge from the retrieval process without having to use a high voltage stinger and linearly combined mill data values. It also allows a variety of user-supplied physical constraints (the so-called side constraints in the theory of Lagrange multipliers). Additionally, this paper introduces a novel way of performing the absolute calibration of an aircraft that has several benefits over conventional analyses. In the new approach, absolute calibration is completed by inspecting the time derivatives of mill and pitch data for a pitch down maneuver performed at high (greater than 1 km) altitude. In Part II of this study, the above methods are tested and then applied to complete a full calibration of a Citation aircraft.

  3. Investigations on bending-torsional vibrations of rotor during rotor-stator rub using Lagrange multiplier method

    NASA Astrophysics Data System (ADS)

    Mokhtar, Md Asjad; Kamalakar Darpe, Ashish; Gupta, Kshitij

    2017-08-01

    The ever-increasing need of highly efficient rotating machinery causes reduction in the clearance between rotating and non-rotating parts and increase in the chances of interaction between these parts. The rotor-stator contact, known as rub, has always been recognized as one of the potential causes of rotor system malfunctions and a source of secondary failures. It is one of few causes that influence both lateral and torsional vibrations. In this paper, the rotor stator interaction phenomenon is investigated in the finite element framework using Lagrange multiplier based contact mechanics approach. The stator is modelled as a beam that can respond to axial penetration and lateral friction force during the contact with the rotor. It ensures dynamic stator contact boundary and more realistic contact conditions in contrast to most of the earlier approaches. The rotor bending-torsional mode coupling during contact is considered and the vibration response in bending and torsion are analysed. The effect of parameters such as clearance, friction coefficient and stator stiffness are studied at various operating speeds and it has been found that certain parameter values generate peculiar rub related features. Presence of sub-harmonics in the lateral vibration frequency spectra are prominently observed when the rotor operates near the integer multiple of its lateral critical speed. The spectrum cascade of torsional vibration shows the presence of bending critical speed along with the larger amplitudes of frequencies close to torsional natural frequency of the rotor. When m × 1/n X frequency component of rotational frequency comes closer to the torsional natural frequency, stronger torsional vibration amplitude is noticed in the spectrum cascade. The combined information from the stator vibration and rotor lateral-torsional vibration spectral features is proposed for robust rub identification.

  4. The general ventilation multipliers calculated by using a standard Near-Field/Far-Field model.

    PubMed

    Koivisto, Antti J; Jensen, Alexander C Ø; Koponen, Ismo K

    2018-05-01

    In conceptual exposure models, the transmission of pollutants in an imperfectly mixed room is usually described with general ventilation multipliers. This is the approach used in the Advanced REACH Tool (ART) and Stoffenmanager® exposure assessment tools. The multipliers used in these tools were reported by Cherrie (1999; http://dx.doi.org/10.1080/104732299302530 ) and Cherrie et al. (2011; http://dx.doi.org/10.1093/annhyg/mer092 ) who developed them by positing input values for a standard Near-Field/Far-Field (NF/FF) model and then calculating concentration ratios between NF and FF concentrations. This study revisited the calculations that produce the multipliers used in ART and Stoffenmanager and found that the recalculated general ventilation multipliers were up to 2.8 times (280%) higher than the values reported by Cherrie (1999) and the recalculated NF and FF multipliers for 1-hr exposure were up to 1.2 times (17%) smaller and for 8-hr exposure up to 1.7 times (41%) smaller than the values reported by Cherrie et al. (2011). Considering that Stoffenmanager and the ART are classified as higher-tier regulatory exposure assessment tools, the errors is general ventilation multipliers should not be ignored. We recommend revising the general ventilation multipliers. A better solution is to integrate the NF/FF model to Stoffenmanager and the ART.

  5. Retrieving Storm Electric Fields from Aircrfaft Field Mill Data: Part II: Applications

    NASA Technical Reports Server (NTRS)

    Koshak, William; Mach, D. M.; Christian H. J.; Stewart, M. F.; Bateman M. G.

    2006-01-01

    The Lagrange multiplier theory developed in Part I of this study is applied to complete a relative calibration of a Citation aircraft that is instrumented with six field mill sensors. When side constraints related to average fields are used, the Lagrange multiplier method performs well in computer simulations. For mill measurement errors of 1 V m(sup -1) and a 5 V m(sup -1) error in the mean fair-weather field function, the 3D storm electric field is retrieved to within an error of about 12%. A side constraint that involves estimating the detailed structure of the fair-weather field was also tested using computer simulations. For mill measurement errors of 1 V m(sup -l), the method retrieves the 3D storm field to within an error of about 8% if the fair-weather field estimate is typically within 1 V m(sup -1) of the true fair-weather field. Using this type of side constraint and data from fair-weather field maneuvers taken on 29 June 2001, the Citation aircraft was calibrated. Absolute calibration was completed using the pitch down method developed in Part I, and conventional analyses. The resulting calibration matrices were then used to retrieve storm electric fields during a Citation flight on 2 June 2001. The storm field results are encouraging and agree favorably in many respects with results derived from earlier (iterative) techniques of calibration.

  6. A generalized algorithm to design finite field normal basis multipliers

    NASA Technical Reports Server (NTRS)

    Wang, C. C.

    1986-01-01

    Finite field arithmetic logic is central in the implementation of some error-correcting coders and some cryptographic devices. There is a need for good multiplication algorithms which can be easily realized. Massey and Omura recently developed a new multiplication algorithm for finite fields based on a normal basis representation. Using the normal basis representation, the design of the finite field multiplier is simple and regular. The fundamental design of the Massey-Omura multiplier is based on a design of a product function. In this article, a generalized algorithm to locate a normal basis in a field is first presented. Using this normal basis, an algorithm to construct the product function is then developed. This design does not depend on particular characteristics of the generator polynomial of the field.

  7. DNA-Cryptography-Based Obfuscated Systolic Finite Field Multiplier for Secure Cryptosystem in Smart Grid

    NASA Astrophysics Data System (ADS)

    Chen, Shaobo; Chen, Pingxiuqi; Shao, Qiliang; Basha Shaik, Nazeem; Xie, Jiafeng

    2017-05-01

    The elliptic curve cryptography (ECC) provides much stronger security per bits compared to the traditional cryptosystem, and hence it is an ideal role in secure communication in smart grid. On the other side, secure implementation of finite field multiplication over GF(2 m ) is considered as the bottle neck of ECC. In this paper, we present a novel obfuscation strategy for secure implementation of systolic field multiplier for ECC in smart grid. First, for the first time, we propose a novel obfuscation technique to derive a novel obfuscated systolic finite field multiplier for ECC implementation. Then, we employ the DNA cryptography coding strategy to obfuscate the field multiplier further. Finally, we obtain the area-time-power complexity of the proposed field multiplier to confirm the efficiency of the proposed design. The proposed design is highly obfuscated with low overhead, suitable for secure cryptosystem in smart grid.

  8. A comparison of VLSI architecture of finite field multipliers using dual, normal or standard basis

    NASA Technical Reports Server (NTRS)

    Hsu, I. S.; Truong, T. K.; Shao, H. M.; Deutsch, L. J.; Reed, I. S.

    1987-01-01

    Three different finite field multipliers are presented: (1) a dual basis multiplier due to Berlekamp; (2) a Massy-Omura normal basis multiplier; and (3) the Scott-Tavares-Peppard standard basis multiplier. These algorithms are chosen because each has its own distinct features which apply most suitably in different areas. Finally, they are implemented on silicon chips with nitride metal oxide semiconductor technology so that the multiplier most desirable for very large scale integration implementations can readily be ascertained.

  9. The Augmented Lagrange Multipliers Method for Matrix Completion from Corrupted Samplings with Application to Mixed Gaussian-Impulse Noise Removal

    PubMed Central

    Meng, Fan; Yang, Xiaomei; Zhou, Chenghu

    2014-01-01

    This paper studies the problem of the restoration of images corrupted by mixed Gaussian-impulse noise. In recent years, low-rank matrix reconstruction has become a research hotspot in many scientific and engineering domains such as machine learning, image processing, computer vision and bioinformatics, which mainly involves the problem of matrix completion and robust principal component analysis, namely recovering a low-rank matrix from an incomplete but accurate sampling subset of its entries and from an observed data matrix with an unknown fraction of its entries being arbitrarily corrupted, respectively. Inspired by these ideas, we consider the problem of recovering a low-rank matrix from an incomplete sampling subset of its entries with an unknown fraction of the samplings contaminated by arbitrary errors, which is defined as the problem of matrix completion from corrupted samplings and modeled as a convex optimization problem that minimizes a combination of the nuclear norm and the -norm in this paper. Meanwhile, we put forward a novel and effective algorithm called augmented Lagrange multipliers to exactly solve the problem. For mixed Gaussian-impulse noise removal, we regard it as the problem of matrix completion from corrupted samplings, and restore the noisy image following an impulse-detecting procedure. Compared with some existing methods for mixed noise removal, the recovery quality performance of our method is dominant if images possess low-rank features such as geometrically regular textures and similar structured contents; especially when the density of impulse noise is relatively high and the variance of Gaussian noise is small, our method can outperform the traditional methods significantly not only in the simultaneous removal of Gaussian noise and impulse noise, and the restoration ability for a low-rank image matrix, but also in the preservation of textures and details in the image. PMID:25248103

  10. Lagrange constraint neural network for audio varying BSS

    NASA Astrophysics Data System (ADS)

    Szu, Harold H.; Hsu, Charles C.

    2002-03-01

    Lagrange Constraint Neural Network (LCNN) is a statistical-mechanical ab-initio model without assuming the artificial neural network (ANN) model at all but derived it from the first principle of Hamilton and Lagrange Methodology: H(S,A)= f(S)- (lambda) C(s,A(x,t)) that incorporates measurement constraint C(S,A(x,t))= (lambda) ([A]S-X)+((lambda) 0-1)((Sigma) isi -1) using the vector Lagrange multiplier-(lambda) and a- priori Shannon Entropy f(S) = -(Sigma) i si log si as the Contrast function of unknown number of independent sources si. Szu et al. have first solved in 1997 the general Blind Source Separation (BSS) problem for spatial-temporal varying mixing matrix for the real world remote sensing where a large pixel footprint implies the mixing matrix [A(x,t)] necessarily fill with diurnal and seasonal variations. Because the ground truth is difficult to be ascertained in the remote sensing, we have thus illustrated in this paper, each step of the LCNN algorithm for the simulated spatial-temporal varying BSS in speech, music audio mixing. We review and compare LCNN with other popular a-posteriori Maximum Entropy methodologies defined by ANN weight matrix-[W] sigmoid-(sigma) post processing H(Y=(sigma) ([W]X)) by Bell-Sejnowski, Amari and Oja (BSAO) called Independent Component Analysis (ICA). Both are mirror symmetric of the MaxEnt methodologies and work for a constant unknown mixing matrix [A], but the major difference is whether the ensemble average is taken at neighborhood pixel data X's in BASO or at the a priori sources S variables in LCNN that dictates which method works for spatial-temporal varying [A(x,t)] that would not allow the neighborhood pixel average. We expected the success of sharper de-mixing by the LCNN method in terms of a controlled ground truth experiment in the simulation of variant mixture of two music of similar Kurtosis (15 seconds composed of Saint-Saens Swan and Rachmaninov cello concerto).

  11. Preconditioned alternating direction method of multipliers for inverse problems with constraints

    NASA Astrophysics Data System (ADS)

    Jiao, Yuling; Jin, Qinian; Lu, Xiliang; Wang, Weijie

    2017-02-01

    We propose a preconditioned alternating direction method of multipliers (ADMM) to solve linear inverse problems in Hilbert spaces with constraints, where the feature of the sought solution under a linear transformation is captured by a possibly non-smooth convex function. During each iteration step, our method avoids solving large linear systems by choosing a suitable preconditioning operator. In case the data is given exactly, we prove the convergence of our preconditioned ADMM without assuming the existence of a Lagrange multiplier. In case the data is corrupted by noise, we propose a stopping rule using information on noise level and show that our preconditioned ADMM is a regularization method; we also propose a heuristic rule when the information on noise level is unavailable or unreliable and give its detailed analysis. Numerical examples are presented to test the performance of the proposed method.

  12. Design space exploration of high throughput finite field multipliers for channel coding on Xilinx FPGAs

    NASA Astrophysics Data System (ADS)

    de Schryver, C.; Weithoffer, S.; Wasenmüller, U.; Wehn, N.

    2012-09-01

    Channel coding is a standard technique in all wireless communication systems. In addition to the typically employed methods like convolutional coding, turbo coding or low density parity check (LDPC) coding, algebraic codes are used in many cases. For example, outer BCH coding is applied in the DVB-S2 standard for satellite TV broadcasting. A key operation for BCH and the related Reed-Solomon codes are multiplications in finite fields (Galois Fields), where extension fields of prime fields are used. A lot of architectures for multiplications in finite fields have been published over the last decades. This paper examines four different multiplier architectures in detail that offer the potential for very high throughputs. We investigate the implementation performance of these multipliers on FPGA technology in the context of channel coding. We study the efficiency of the multipliers with respect to area, frequency and throughput, as well as configurability and scalability. The implementation data of the fully verified circuits are provided for a Xilinx Virtex-4 device after place and route.

  13. Analysis of magnetic fields using variational principles and CELAS2 elements

    NASA Technical Reports Server (NTRS)

    Frye, J. W.; Kasper, R. G.

    1977-01-01

    Prospective techniques for analyzing magnetic fields using NASTRAN are reviewed. A variational principle utilizing a vector potential function is presented which has as its Euler equations, the required field equations and boundary conditions for static magnetic fields including current sources. The need for an addition to this variational principle of a constraint condition is discussed. Some results using the Lagrange multiplier method to apply the constraint and CELAS2 elements to simulate the matrices are given. Practical considerations of using large numbers of CELAS2 elements are discussed.

  14. Effect of magnetic field configuration on the multiply charged ion and plume characteristics in Hall thruster plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Holak; Lim, Youbong; Choe, Wonho, E-mail: wchoe@kaist.ac.kr

    2015-04-13

    Multiply charged ions and plume characteristics in Hall thruster plasmas are investigated with regard to magnetic field configuration. Differences in the plume shape and the fraction of ions with different charge states are demonstrated by the counter-current and co-current magnetic field configurations, respectively. The significantly larger number of multiply charged and higher charge state ions including Xe{sup 4+} are observed in the co-current configuration than in the counter-current configuration. The large fraction of multiply charged ions and high ion currents in this experiment may be related to the strong electron confinement, which is due to the strong magnetic mirror effectmore » in the co-current magnetic field configuration.« less

  15. Multiplier Architecture for Coding Circuits

    NASA Technical Reports Server (NTRS)

    Wang, C. C.; Truong, T. K.; Shao, H. M.; Deutsch, L. J.

    1986-01-01

    Multipliers based on new algorithm for Galois-field (GF) arithmetic regular and expandable. Pipeline structures used for computing both multiplications and inverses. Designs suitable for implementation in very-large-scale integrated (VLSI) circuits. This general type of inverter and multiplier architecture especially useful in performing finite-field arithmetic of Reed-Solomon error-correcting codes and of some cryptographic algorithms.

  16. Accuracy of Lagrange-sinc functions as a basis set for electronic structure calculations of atoms and molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Sunghwan; Hong, Kwangwoo; Kim, Jaewook

    2015-03-07

    We developed a self-consistent field program based on Kohn-Sham density functional theory using Lagrange-sinc functions as a basis set and examined its numerical accuracy for atoms and molecules through comparison with the results of Gaussian basis sets. The result of the Kohn-Sham inversion formula from the Lagrange-sinc basis set manifests that the pseudopotential method is essential for cost-effective calculations. The Lagrange-sinc basis set shows faster convergence of the kinetic and correlation energies of benzene as its size increases than the finite difference method does, though both share the same uniform grid. Using a scaling factor smaller than or equal tomore » 0.226 bohr and pseudopotentials with nonlinear core correction, its accuracy for the atomization energies of the G2-1 set is comparable to all-electron complete basis set limits (mean absolute deviation ≤1 kcal/mol). The same basis set also shows small mean absolute deviations in the ionization energies, electron affinities, and static polarizabilities of atoms in the G2-1 set. In particular, the Lagrange-sinc basis set shows high accuracy with rapid convergence in describing density or orbital changes by an external electric field. Moreover, the Lagrange-sinc basis set can readily improve its accuracy toward a complete basis set limit by simply decreasing the scaling factor regardless of systems.« less

  17. How to use the Sun-Earth Lagrange points for fundamental physics and navigation

    NASA Astrophysics Data System (ADS)

    Tartaglia, A.; Lorenzini, E. C.; Lucchesi, D.; Pucacco, G.; Ruggiero, M. L.; Valko, P.

    2018-01-01

    We illustrate the proposal, nicknamed LAGRANGE, to use spacecraft, located at the Sun-Earth Lagrange points, as a physical reference frame. Performing time of flight measurements of electromagnetic signals traveling on closed paths between the points, we show that it would be possible: (a) to refine gravitational time delay knowledge due both to the Sun and the Earth; (b) to detect the gravito-magnetic frame dragging of the Sun, so deducing information about the interior of the star; (c) to check the possible existence of a galactic gravitomagnetic field, which would imply a revision of the properties of a dark matter halo; (d) to set up a relativistic positioning and navigation system at the scale of the inner solar system. The paper presents estimated values for the relevant quantities and discusses the feasibility of the project analyzing the behavior of the space devices close to the Lagrange points.

  18. The Lagrange Points

    ERIC Educational Resources Information Center

    Lovell, M.S.

    2007-01-01

    This paper presents a derivation of all five Lagrange points by methods accessible to sixth-form students, and provides a further opportunity to match Newtonian gravity with centripetal force. The predictive powers of good scientific theories are also discussed with regard to the philosophy of science. Methods for calculating the positions of the…

  19. Variational Integrators for Interconnected Lagrange-Dirac Systems

    NASA Astrophysics Data System (ADS)

    Parks, Helen; Leok, Melvin

    2017-10-01

    Interconnected systems are an important class of mathematical models, as they allow for the construction of complex, hierarchical, multiphysics, and multiscale models by the interconnection of simpler subsystems. Lagrange-Dirac mechanical systems provide a broad category of mathematical models that are closed under interconnection, and in this paper, we develop a framework for the interconnection of discrete Lagrange-Dirac mechanical systems, with a view toward constructing geometric structure-preserving discretizations of interconnected systems. This work builds on previous work on the interconnection of continuous Lagrange-Dirac systems (Jacobs and Yoshimura in J Geom Mech 6(1):67-98, 2014) and discrete Dirac variational integrators (Leok and Ohsawa in Found Comput Math 11(5), 529-562, 2011). We test our results by simulating some of the continuous examples given in Jacobs and Yoshimura (2014).

  20. A positivity preserving and conservative variational scheme for phase-field modeling of two-phase flows

    NASA Astrophysics Data System (ADS)

    Joshi, Vaibhav; Jaiman, Rajeev K.

    2018-05-01

    We present a positivity preserving variational scheme for the phase-field modeling of incompressible two-phase flows with high density ratio. The variational finite element technique relies on the Allen-Cahn phase-field equation for capturing the phase interface on a fixed Eulerian mesh with mass conservative and energy-stable discretization. The mass conservation is achieved by enforcing a Lagrange multiplier which has both temporal and spatial dependence on the underlying solution of the phase-field equation. To make the scheme energy-stable in a variational sense, we discretize the spatial part of the Lagrange multiplier in the phase-field equation by the mid-point approximation. The proposed variational technique is designed to reduce the spurious and unphysical oscillations in the solution while maintaining the second-order accuracy of both spatial and temporal discretizations. We integrate the Allen-Cahn phase-field equation with the incompressible Navier-Stokes equations for modeling a broad range of two-phase flow and fluid-fluid interface problems. The coupling of the implicit discretizations corresponding to the phase-field and the incompressible flow equations is achieved via nonlinear partitioned iterative procedure. Comparison of results between the standard linear stabilized finite element method and the present variational formulation shows a remarkable reduction of oscillations in the solution while retaining the boundedness of the phase-indicator field. We perform a standalone test to verify the accuracy and stability of the Allen-Cahn two-phase solver. We examine the convergence and accuracy properties of the coupled phase-field solver through the standard benchmarks of the Laplace-Young law and a sloshing tank problem. Two- and three-dimensional dam break problems are simulated to assess the capability of the phase-field solver for complex air-water interfaces involving topological changes on unstructured meshes. Finally, we demonstrate the phase-field

  1. Monte Carlo Simulation of THz Multipliers

    NASA Technical Reports Server (NTRS)

    East, J.; Blakey, P.

    1997-01-01

    Schottky Barrier diode frequency multipliers are critical components in submillimeter and Thz space based earth observation systems. As the operating frequency of these multipliers has increased, the agreement between design predictions and experimental results has become poorer. The multiplier design is usually based on a nonlinear model using a form of harmonic balance and a model for the Schottky barrier diode. Conventional voltage dependent lumped element models do a poor job of predicting THz frequency performance. This paper will describe a large signal Monte Carlo simulation of Schottky barrier multipliers. The simulation is a time dependent particle field Monte Carlo simulation with ohmic and Schottky barrier boundary conditions included that has been combined with a fixed point solution for the nonlinear circuit interaction. The results in the paper will point out some important time constants in varactor operation and will describe the effects of current saturation and nonlinear resistances on multiplier operation.

  2. ELECTRONIC MULTIPLIER CIRCUIT

    DOEpatents

    Thomas, R.E.

    1959-08-25

    An electronic multiplier circuit is described in which an output voltage having an amplitude proportional to the product or quotient of the input signals is accomplished in a novel manner which facilitates simplicity of circuit construction and a high degree of accuracy in accomplishing the multiplying and dividing function. The circuit broadly comprises a multiplier tube in which the plate current is proportional to the voltage applied to a first control grid multiplied by the difference between voltage applied to a second control grid and the voltage applied to the first control grid. Means are provided to apply a first signal to be multiplied to the first control grid together with means for applying the sum of the first signal to be multiplied and a second signal to be multiplied to the second control grid whereby the plate current of the multiplier tube is proportional to the product of the first and second signals to be multiplied.

  3. Retrieving Storm Electric Fields From Aircraft Field Mill Data. Part 2; Applications

    NASA Technical Reports Server (NTRS)

    Koshak, W. J.; Mach, D. M.; Christian, H. J.; Stewart, M. F.; Bateman, M. G.

    2005-01-01

    The Lagrange multiplier theory and "pitch down method" developed in Part I of this study are applied to complete the calibration of a Citation aircraft that is instrumented with six field mill sensors. When side constraints related to average fields are used, the method performs well in computer simulations. For mill measurement errors of 1 V/m and a 5 V/m error in the mean fair weather field function, the 3-D storm electric field is retrieved to within an error of about 12%. A side constraint that involves estimating the detailed structure of the fair weather field was also tested using computer simulations. For mill measurement errors of 1 V/m, the method retrieves the 3-D storm field to within an error of about 8% if the fair weather field estimate is typically within 1 V/m of the true fair weather field. Using this side constraint and data from fair weather field maneuvers taken on 29 June 2001, the Citation aircraft was calibrated. The resulting calibration matrix was then used to retrieve storm electric fields during a Citation flight on 2 June 2001. The storm field results are encouraging and agree favorably with the results obtained from earlier calibration analyses that were based on iterative techniques.

  4. Investigating Trojan Asteroids at the L4/L5 Sun-Earth Lagrange Points

    NASA Technical Reports Server (NTRS)

    John, K. K.; Graham, L. D.; Abell, P. A.

    2015-01-01

    Investigations of Earth's Trojan asteroids will have benefits for science, exploration, and resource utilization. By sending a small spacecraft to the Sun-Earth L4 or L5 Lagrange points to investigate near-Earth objects, Earth's Trojan population can be better understood. This could lead to future missions for larger precursor spacecraft as well as human missions. The presence of objects in the Sun-Earth L4 and L5 Lagrange points has long been suspected, and in 2010 NASA's Wide-field Infrared Survey Explorer (WISE) detected a 300 m object. To investigate these Earth Trojan asteroid objects, it is both essential and feasible to send spacecraft to these regions. By exploring a wide field area, a small spacecraft equipped with an IR camera could hunt for Trojan asteroids and other Earth co-orbiting objects at the L4 or L5 Lagrange points in the near-term. By surveying the region, a zeroth-order approximation of the number of objects could be obtained with some rough constraints on their diameters, which may lead to the identification of potential candidates for further study. This would serve as a precursor for additional future robotic and human exploration targets. Depending on the inclination of these potential objects, they could be used as proving areas for future missions in the sense that the delta-V's to get to these targets are relatively low as compared to other rendezvous missions. They can serve as platforms for extended operations in deep space while interacting with a natural object in microgravity. Theoretically, such low inclination Earth Trojan asteroids exist. By sending a spacecraft to L4 or L5, these likely and potentially accessible targets could be identified.

  5. What Did We Think Could Be Learned About Earth From Lagrange Point Observations?

    NASA Technical Reports Server (NTRS)

    Wiscombe, Warren

    2011-01-01

    The scientific excitement surrounding the NASA Lagrange point mission Triana, now called DSCOVR, tended to be forgotten in the brouhaha over other aspects of the mission. Yet a small band of scientists in 1998 got very excited about the possibilities offered by the Lagrange-point perspective on our planet. As one of the original co-investigators on the Triana mission, I witnessed that scientific excitement firsthand. I will bring to life the early period, circa 1998 to 2000, and share the reasons that we thought the Lagrange-point perspective on Earth would be scientifically revolutionary.

  6. Temperature Effects in Varactors and Multipliers

    NASA Technical Reports Server (NTRS)

    East, J.; Mehdi, Imran

    2001-01-01

    Varactor diode multipliers are a critical part of many THz measurement systems. The power and efficiencies of these devices limit the available power for THz sources. Varactor operation is determined by the physics of the varactor device and a careful doping profile design is needed to optimize the performance. Higher doped devices are limited by junction breakdown and lower doped structures are limited by current saturation. Higher doped structures typically have higher efficiencies and lower doped structures typically have higher powers at the same operating frequency and impedance level. However, the device material properties are also a function of the operating temperature. Recent experimental evidence has shown that the power output of a multiplier can be improved by cooling the device. We have used a particle Monte Carlo simulation to investigate the temperature dependent velocity vs. electric field in GaAs. This information was then included in a nonlinear device circuit simulator to predict multiplier performance for various temperatures and device designs. This paper will describe the results of this analysis of temperature dependent multiplier operation.

  7. PID position regulation in one-degree-of-freedom Euler-Lagrange systems actuated by a PMSM

    NASA Astrophysics Data System (ADS)

    Verastegui-Galván, J.; Hernández-Guzmán, V. M.; Orrante-Sakanassi, J.

    2018-02-01

    This paper is concerned with position regulation in one-degree-of-freedom Euler-Lagrange Systems. We consider that the mechanical subsystem is actuated by a permanent magnet synchronous motor (PMSM). Our proposal consists of a Proportional-Integral-Derivative (PID) controller for the mechanical subsystem and a slight variation of field oriented control for the PMSM. We take into account the motor electric dynamics during the stability analysis. We present, for the first time, a global asymptotic stability proof for such a control scheme without requiring the mechanical subsystem to naturally possess viscous friction. Finally, as a corollary of our main result we prove global asymptotic stability for output feedback PID regulation of one-degree-of-freedom Euler-Lagrange systems when generated torque is considered as the system input, i.e. when the electric dynamics of PMSM's is not taken into account.

  8. Using Redundancy To Reduce Errors in Magnetometer Readings

    NASA Technical Reports Server (NTRS)

    Kulikov, Igor; Zak, Michail

    2004-01-01

    A method of reducing errors in noisy magnetic-field measurements involves exploitation of redundancy in the readings of multiple magnetometers in a cluster. By "redundancy"is meant that the readings are not entirely independent of each other because the relationships among the magnetic-field components that one seeks to measure are governed by the fundamental laws of electromagnetism as expressed by Maxwell's equations. Assuming that the magnetometers are located outside a magnetic material, that the magnetic field is steady or quasi-steady, and that there are no electric currents flowing in or near the magnetometers, the applicable Maxwell 's equations are delta x B = 0 and delta(raised dot) B = 0, where B is the magnetic-flux-density vector. By suitable algebraic manipulation, these equations can be shown to impose three independent constraints on the values of the components of B at the various magnetometer positions. In general, the problem of reducing the errors in noisy measurements is one of finding a set of corrected values that minimize an error function. In the present method, the error function is formulated as (1) the sum of squares of the differences between the corrected and noisy measurement values plus (2) a sum of three terms, each comprising the product of a Lagrange multiplier and one of the three constraints. The partial derivatives of the error function with respect to the corrected magnetic-field component values and the Lagrange multipliers are set equal to zero, leading to a set of equations that can be put into matrix.vector form. The matrix can be inverted to solve for a vector that comprises the corrected magnetic-field component values and the Lagrange multipliers.

  9. MULTIPLIER CIRCUIT

    DOEpatents

    Chase, R.L.

    1963-05-01

    An electronic fast multiplier circuit utilizing a transistor controlled voltage divider network is presented. The multiplier includes a stepped potentiometer in which solid state or transistor switches are substituted for mechanical wipers in order to obtain electronic switching that is extremely fast as compared to the usual servo-driven mechanical wipers. While this multiplier circuit operates as an approximation and in steps to obtain a voltage that is the product of two input voltages, any desired degree of accuracy can be obtained with the proper number of increments and adjustment of parameters. (AEC)

  10. Cavallo's multiplier for in situ generation of high voltage

    NASA Astrophysics Data System (ADS)

    Clayton, S. M.; Ito, T. M.; Ramsey, J. C.; Wei, W.; Blatnik, M. A.; Filippone, B. W.; Seidel, G. M.

    2018-05-01

    A classic electrostatic induction machine, Cavallo's multiplier, is suggested for in situ production of very high voltage in cryogenic environments. The device is suitable for generating a large electrostatic field under conditions of very small load current. Operation of the Cavallo multiplier is analyzed, with quantitative description in terms of mutual capacitances between electrodes in the system. A demonstration apparatus was constructed, and measured voltages are compared to predictions based on measured capacitances in the system. The simplicity of the Cavallo multiplier makes it amenable to electrostatic analysis using finite element software, and electrode shapes can be optimized to take advantage of a high dielectric strength medium such as liquid helium. A design study is presented for a Cavallo multiplier in a large-scale, cryogenic experiment to measure the neutron electric dipole moment.

  11. Hardware multiplier processor

    DOEpatents

    Pierce, Paul E.

    1986-01-01

    A hardware processor is disclosed which in the described embodiment is a memory mapped multiplier processor that can operate in parallel with a 16 bit microcomputer. The multiplier processor decodes the address bus to receive specific instructions so that in one access it can write and automatically perform single or double precision multiplication involving a number written to it with or without addition or subtraction with a previously stored number. It can also, on a single read command automatically round and scale a previously stored number. The multiplier processor includes two concatenated 16 bit multiplier registers, two 16 bit concatenated 16 bit multipliers, and four 16 bit product registers connected to an internal 16 bit data bus. A high level address decoder determines when the multiplier processor is being addressed and first and second low level address decoders generate control signals. In addition, certain low order address lines are used to carry uncoded control signals. First and second control circuits coupled to the decoders generate further control signals and generate a plurality of clocking pulse trains in response to the decoded and address control signals.

  12. Hardware multiplier processor

    DOEpatents

    Pierce, P.E.

    A hardware processor is disclosed which in the described embodiment is a memory mapped multiplier processor that can operate in parallel with a 16 bit microcomputer. The multiplier processor decodes the address bus to receive specific instructions so that in one access it can write and automatically perform single or double precision multiplication involving a number written to it with or without addition or subtraction with a previously stored number. It can also, on a single read command automatically round and scale a previously stored number. The multiplier processor includes two concatenated 16 bit multiplier registers, two 16 bit concatenated 16 bit multipliers, and four 16 bit product registers connected to an internal 16 bit data bus. A high level address decoder determines when the multiplier processor is being addressed and first and second low level address decoders generate control signals. In addition, certain low order address lines are used to carry uncoded control signals. First and second control circuits coupled to the decoders generate further control signals and generate a plurality of clocking pulse trains in response to the decoded and address control signals.

  13. A structural analysis of small vapor-deposited 'multiply twinned' gold particles

    NASA Technical Reports Server (NTRS)

    Yang, C. Y.; Heinemann, K.; Yacaman, M. J.; Poppa, H.

    1979-01-01

    High resolution selected zone dark field, Bragg reflection imaging and weak beam dark field techniques of transmission electron microscopy were used to determine the structure of small gold particles vapor deposited on NaCl substrates. Attention was focused on the analysis of those particles in the 50-150 A range that have pentagonal or hexagonal bright field profiles. These particles have been previously described as multiply twinned crystallites composed of face-centered cubic tetrahedra. The experimental evidence of the present studies can be interpreted on the assumption that the particle structure is a regular icosahedron or decahedron for the hexagonal or the pentagonal particles respectively. The icosahedron is a multiply twinned rhombohedral crystal and the decahedron is a multiply twinned body-centered orthorhombic crystal, each of which constitutes a slight distortion from the face-centered cubic structure.

  14. Integración automatizada de las ecuaciones de Lagrange en el movimiento orbital.

    NASA Astrophysics Data System (ADS)

    Abad, A.; San Juan, J. F.

    The new techniques of algebraic manipulation, especially the Poisson Series Processor, permit the analytical integration of the more and more complex problems of celestial mechanics. The authors are developing a new Poisson Series Processor, PSPC, and they use it to solve the Lagrange equation of the orbital motion. They integrate the Lagrange equation by using the stroboscopic method, and apply it to the main problem of the artificial satellite theory.

  15. Efficient and stable exponential time differencing Runge-Kutta methods for phase field elastic bending energy models

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoqiang; Ju, Lili; Du, Qiang

    2016-07-01

    The Willmore flow formulated by phase field dynamics based on the elastic bending energy model has been widely used to describe the shape transformation of biological lipid vesicles. In this paper, we develop and investigate some efficient and stable numerical methods for simulating the unconstrained phase field Willmore dynamics and the phase field Willmore dynamics with fixed volume and surface area constraints. The proposed methods can be high-order accurate and are completely explicit in nature, by combining exponential time differencing Runge-Kutta approximations for time integration with spectral discretizations for spatial operators on regular meshes. We also incorporate novel linear operator splitting techniques into the numerical schemes to improve the discrete energy stability. In order to avoid extra numerical instability brought by use of large penalty parameters in solving the constrained phase field Willmore dynamics problem, a modified augmented Lagrange multiplier approach is proposed and adopted. Various numerical experiments are performed to demonstrate accuracy and stability of the proposed methods.

  16. Modeling the Global Coronal Field with Simulated Synoptic Magnetograms from Earth and the Lagrange Points L3, L4, and L5

    NASA Astrophysics Data System (ADS)

    Petrie, Gordon; Pevtsov, Alexei; Schwarz, Andrew; DeRosa, Marc

    2018-06-01

    The solar photospheric magnetic flux distribution is key to structuring the global solar corona and heliosphere. Regular full-disk photospheric magnetogram data are therefore essential to our ability to model and forecast heliospheric phenomena such as space weather. However, our spatio-temporal coverage of the photospheric field is currently limited by our single vantage point at/near Earth. In particular, the polar fields play a leading role in structuring the large-scale corona and heliosphere, but each pole is unobservable for {>} 6 months per year. Here we model the possible effect of full-disk magnetogram data from the Lagrange points L4 and L5, each extending longitude coverage by 60°. Adding data also from the more distant point L3 extends the longitudinal coverage much further. The additional vantage points also improve the visibility of the globally influential polar fields. Using a flux-transport model for the solar photospheric field, we model full-disk observations from Earth/L1, L3, L4, and L5 over a solar cycle, construct synoptic maps using a novel weighting scheme adapted for merging magnetogram data from multiple viewpoints, and compute potential-field models for the global coronal field. Each additional viewpoint brings the maps and models into closer agreement with the reference field from the flux-transport simulation, with particular improvement at polar latitudes, the main source of the fast solar wind.

  17. Symplectic Quantization of a Reducible Theory

    NASA Astrophysics Data System (ADS)

    Barcelos-Neto, J.; Silva, M. B. D.

    We use the symplectic formalism to quantize the Abelian antisymmetric tensor gauge field. It is related to a reducible theory in the sense that all of its constraints are not independent. A procedure like ghost-of-ghost of the BFV method has to be used, but in terms of Lagrange multipliers.

  18. Mixed formulation for frictionless contact problems

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.; Kim, Kyun O.

    1989-01-01

    Simple mixed finite element models and a computational precedure are presented for the solution of frictionless contact problems. The analytical formulation is based on a form of Reissner's large rotation theory of the structure with the effects of transverse shear deformation included. The contact conditions are incorporated into the formulation by using a perturbed Lagrangian approach with the fundamental unknowns consisting of the internal forces (stress resultants), the generalized displacements, and the Lagrange multipliers associated with the contact conditions. The element characteristic array are obtained by using a modified form of the two-field Hellinger-Reissner mixed variational principle. The internal forces and the Lagrange multipliers are allowed to be discontinuous at interelement boundaries. The Newton-Raphson iterative scheme is used for the solution of the nonlinear algebraic equations, and the determination of the contact area and the contact pressures.

  19. Rate-independent dissipation in phase-field modelling of displacive transformations

    NASA Astrophysics Data System (ADS)

    Tůma, K.; Stupkiewicz, S.; Petryk, H.

    2018-05-01

    In this paper, rate-independent dissipation is introduced into the phase-field framework for modelling of displacive transformations, such as martensitic phase transformation and twinning. The finite-strain phase-field model developed recently by the present authors is here extended beyond the limitations of purely viscous dissipation. The variational formulation, in which the evolution problem is formulated as a constrained minimization problem for a global rate-potential, is enhanced by including a mixed-type dissipation potential that combines viscous and rate-independent contributions. Effective computational treatment of the resulting incremental problem of non-smooth optimization is developed by employing the augmented Lagrangian method. It is demonstrated that a single Lagrange multiplier field suffices to handle the dissipation potential vertex and simultaneously to enforce physical constraints on the order parameter. In this way, the initially non-smooth problem of evolution is converted into a smooth stationarity problem. The model is implemented in a finite-element code and applied to solve two- and three-dimensional boundary value problems representative for shape memory alloys.

  20. Prediction of a Densely Loaded Particle-Laden Jet using a Euler-Lagrange Dense Spray Model

    NASA Astrophysics Data System (ADS)

    Pakseresht, Pedram; Apte, Sourabh V.

    2017-11-01

    Modeling of a dense spray regime using an Euler-Lagrange discrete-element approach is challenging because of local high volume loading. A subgrid cluster of droplets can lead to locally high void fractions for the disperse phase. Under these conditions, spatio-temporal changes in the carrier phase volume fractions, which are commonly neglected in spray simulations in an Euler-Lagrange two-way coupling model, could become important. Accounting for the carrier phase volume fraction variations, leads to zero-Mach number, variable density governing equations. Using pressure-based solvers, this gives rise to a source term in the pressure Poisson equation and a non-divergence free velocity field. To test the validity and predictive capability of such an approach, a round jet laden with solid particles is investigated using Direct Numerical Simulation and compared with available experimental data for different loadings. Various volume fractions spanning from dilute to dense regimes are investigated with and without taking into account the volume displacement effects. The predictions of the two approaches are compared and analyzed to investigate the effectiveness of the dense spray model. Financial support was provided by National Aeronautics and Space Administration (NASA).

  1. Task-space separation principle: a force-field approach to motion planning for redundant manipulators.

    PubMed

    Tommasino, Paolo; Campolo, Domenico

    2017-02-03

    In this work, we address human-like motor planning in redundant manipulators. Specifically, we want to capture postural synergies such as Donders' law, experimentally observed in humans during kinematically redundant tasks, and infer a minimal set of parameters to implement similar postural synergies in a kinematic model. For the model itself, although the focus of this paper is to solve redundancy by implementing postural strategies derived from experimental data, we also want to ensure that such postural control strategies do not interfere with other possible forms of motion control (in the task-space), i.e. solving the posture/movement problem. The redundancy problem is framed as a constrained optimization problem, traditionally solved via the method of Lagrange multipliers. The posture/movement problem can be tackled via the separation principle which, derived from experimental evidence, posits that the brain processes static torques (i.e. posture-dependent, such as gravitational torques) separately from dynamic torques (i.e. velocity-dependent). The separation principle has traditionally been applied at a joint torque level. Our main contribution is to apply the separation principle to Lagrange multipliers, which act as task-space force fields, leading to a task-space separation principle. In this way, we can separate postural control (implementing Donders' law) from various types of tasks-space movement planners. As an example, the proposed framework is applied to the (redundant) task of pointing with the human wrist. Nonlinear inverse optimization (NIO) is used to fit the model parameters and to capture motor strategies displayed by six human subjects during pointing tasks. The novelty of our NIO approach is that (i) the fitted motor strategy, rather than raw data, is used to filter and down-sample human behaviours; (ii) our framework is used to efficiently simulate model behaviour iteratively, until it converges towards the experimental human strategies.

  2. UWB delay and multiply receiver

    DOEpatents

    Dallum, Gregory E.; Pratt, Garth C.; Haugen, Peter C.; Romero, Carlos E.

    2013-09-10

    An ultra-wideband (UWB) delay and multiply receiver is formed of a receive antenna; a variable gain attenuator connected to the receive antenna; a signal splitter connected to the variable gain attenuator; a multiplier having one input connected to an undelayed signal from the signal splitter and another input connected to a delayed signal from the signal splitter, the delay between the splitter signals being equal to the spacing between pulses from a transmitter whose pulses are being received by the receive antenna; a peak detection circuit connected to the output of the multiplier and connected to the variable gain attenuator to control the variable gain attenuator to maintain a constant amplitude output from the multiplier; and a digital output circuit connected to the output of the multiplier.

  3. Low-voltage harmonic multiplying gyrotron traveling-wave amplifier in G band

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yeh, Y. S.; Guo, Y. W.; Kao, B. H.

    Harmonic multiplying operation in a gyrotron traveling-wave amplifier (gyro-TWA) permits for magnetic field reduction and frequency multiplication. Lowering a beam voltage is an important step toward miniaturization of a harmonic multiplying gyro-TWA. However, the additional degree of freedom that is provided by the multitude cyclotron harmonics in a low-voltage harmonic multiplying gyro-TWA still easily generates various competing modes. An improved mode-selective circuit, using circular waveguides with various radii, can provide the rejection points within the frequency range to suppress competing modes. Simulated results reveal that the mode-selective circuit can provide an attenuation of more than 14 dB to suppress the competingmore » modes. Furthermore, the performance of the gyro-TWA is analyzed for studying the sensitivity of the saturated output power and full width at half maximum bandwidth of the gyro-TWA to the beam voltage and the magnetic field. A stable low-voltage harmonic multiplying gyro-TWA with the mode-selective circuit is predicted to yield a peak output power of 24 kW at 200.4 GHz, corresponding to a saturated gain of 56 dB at an interaction efficiency of 20%. The full width at half maximum bandwidth is 3.0 GHz.« less

  4. Anderson transition in a multiply-twisted helix.

    PubMed

    Ugajin, R

    2001-06-01

    We investigated the Anderson transition in a multiply-twisted helix in which a helical chain of components, i.e., atoms or nanoclusters, is twisted to produce a doubly-twisted helix, which itself can be twisted to produce a triply-twisted helix, and so on, in which there are couplings between adjacent rounds of helices. As the strength of the on-site random potentials increases, an Anderson transition occurs, suggesting that the number of dimensions is 3 for electrons running along the multiply-twisted helix when the couplings between adjacent rounds are strong enough. If the couplings are weakened, the dimensionality becomes less, resulting in localization of electrons. The effect of random connections between adjacent rounds of helices and random magnetic fields that thread the structure is analyzed using the spectral statistics of a quantum particle.

  5. Ceramic Electron Multiplier

    DOE PAGES

    Comby, G.

    1996-10-01

    The Ceramic Electron Multipliers (CEM) is a compact, robust, linear and fast multi-channel electron multiplier. The Multi Layer Ceramic Technique (MLCT) allows to build metallic dynodes inside a compact ceramic block. The activation of the metallic dynodes enhances their secondary electron emission (SEE). The CEM can be used in multi-channel photomultipliers, multi-channel light intensifiers, ion detection, spectroscopy, analysis of time of flight events, particle detection or Cherenkov imaging detectors. (auth)

  6. NULL Convention Floating Point Multiplier

    PubMed Central

    Ramachandran, Seshasayanan

    2015-01-01

    Floating point multiplication is a critical part in high dynamic range and computational intensive digital signal processing applications which require high precision and low power. This paper presents the design of an IEEE 754 single precision floating point multiplier using asynchronous NULL convention logic paradigm. Rounding has not been implemented to suit high precision applications. The novelty of the research is that it is the first ever NULL convention logic multiplier, designed to perform floating point multiplication. The proposed multiplier offers substantial decrease in power consumption when compared with its synchronous version. Performance attributes of the NULL convention logic floating point multiplier, obtained from Xilinx simulation and Cadence, are compared with its equivalent synchronous implementation. PMID:25879069

  7. NULL convention floating point multiplier.

    PubMed

    Albert, Anitha Juliette; Ramachandran, Seshasayanan

    2015-01-01

    Floating point multiplication is a critical part in high dynamic range and computational intensive digital signal processing applications which require high precision and low power. This paper presents the design of an IEEE 754 single precision floating point multiplier using asynchronous NULL convention logic paradigm. Rounding has not been implemented to suit high precision applications. The novelty of the research is that it is the first ever NULL convention logic multiplier, designed to perform floating point multiplication. The proposed multiplier offers substantial decrease in power consumption when compared with its synchronous version. Performance attributes of the NULL convention logic floating point multiplier, obtained from Xilinx simulation and Cadence, are compared with its equivalent synchronous implementation.

  8. Unsteady combustion of solid propellants

    NASA Astrophysics Data System (ADS)

    Chung, T. J.; Kim, P. K.

    The oscillatory motions of all field variables (pressure, temperature, velocity, density, and fuel fractions) in the flame zone of solid propellant rocket motors are calculated using the finite element method. The Arrhenius law with a single step forward chemical reaction is used. Effects of radiative heat transfer, impressed arbitrary acoustic wave incidence, and idealized mean flow velocities are also investigated. Boundary conditions are derived at the solid-gas interfaces and at the flame edges which are implemented via Lagrange multipliers. Perturbation expansions of all governing conservation equations up to and including the second order are carried out so that nonlinear oscillations may be accommodated. All excited frequencies are calculated by means of eigenvalue analyses, and the combustion response functions corresponding to these frequencies are determined. It is shown that the use of isoparametric finite elements, Gaussian quadrature integration, and the Lagrange multiplier boundary matrix scheme offers a convenient approach to two-dimensional calculations.

  9. MULTIPLIER CIRCUIT

    DOEpatents

    Thomas, R.E.

    1959-01-20

    An electronic circuit is presented for automatically computing the product of two selected variables by multiplying the voltage pulses proportional to the variables. The multiplier circuit has a plurality of parallel resistors of predetermined values connected through separate gate circults between a first input and the output terminal. One voltage pulse is applied to thc flrst input while the second voltage pulse is applied to control circuitry for the respective gate circuits. Thc magnitude of the second voltage pulse selects the resistors upon which the first voltage pulse is imprcssed, whereby the resultant output voltage is proportional to the product of the input voltage pulses

  10. Size effects in non-linear heat conduction with flux-limited behaviors

    NASA Astrophysics Data System (ADS)

    Li, Shu-Nan; Cao, Bing-Yang

    2017-11-01

    Size effects are discussed for several non-linear heat conduction models with flux-limited behaviors, including the phonon hydrodynamic, Lagrange multiplier, hierarchy moment, nonlinear phonon hydrodynamic, tempered diffusion, thermon gas and generalized nonlinear models. For the phonon hydrodynamic, Lagrange multiplier and tempered diffusion models, heat flux will not exist in problems with sufficiently small scale. The existence of heat flux needs the sizes of heat conduction larger than their corresponding critical sizes, which are determined by the physical properties and boundary temperatures. The critical sizes can be regarded as the theoretical limits of the applicable ranges for these non-linear heat conduction models with flux-limited behaviors. For sufficiently small scale heat conduction, the phonon hydrodynamic and Lagrange multiplier models can also predict the theoretical possibility of violating the second law and multiplicity. Comparisons are also made between these non-Fourier models and non-linear Fourier heat conduction in the type of fast diffusion, which can also predict flux-limited behaviors.

  11. Compressible cavitation with stochastic field method

    NASA Astrophysics Data System (ADS)

    Class, Andreas; Dumond, Julien

    2012-11-01

    Non-linear phenomena can often be well described using probability density functions (pdf) and pdf transport models. Traditionally the simulation of pdf transport requires Monte-Carlo codes based on Lagrange particles or prescribed pdf assumptions including binning techniques. Recently, in the field of combustion, a novel formulation called the stochastic field method solving pdf transport based on Euler fields has been proposed which eliminates the necessity to mix Euler and Lagrange techniques or prescribed pdf assumptions. In the present work, part of the PhD Design and analysis of a Passive Outflow Reducer relying on cavitation, a first application of the stochastic field method to multi-phase flow and in particular to cavitating flow is presented. The application considered is a nozzle subjected to high velocity flow so that sheet cavitation is observed near the nozzle surface in the divergent section. It is demonstrated that the stochastic field formulation captures the wide range of pdf shapes present at different locations. The method is compatible with finite-volume codes where all existing physical models available for Lagrange techniques, presumed pdf or binning methods can be easily extended to the stochastic field formulation.

  12. Visualizing and Understanding the Components of Lagrange and Newton Interpolation

    ERIC Educational Resources Information Center

    Yang, Yajun; Gordon, Sheldon P.

    2016-01-01

    This article takes a close look at Lagrange and Newton interpolation by graphically examining the component functions of each of these formulas. Although interpolation methods are often considered simply to be computational procedures, we demonstrate how the components of the polynomial terms in these formulas provide insight into where these…

  13. Scale-Limited Lagrange Stability and Finite-Time Synchronization for Memristive Recurrent Neural Networks on Time Scales.

    PubMed

    Xiao, Qiang; Zeng, Zhigang

    2017-10-01

    The existed results of Lagrange stability and finite-time synchronization for memristive recurrent neural networks (MRNNs) are scale-free on time evolvement, and some restrictions appear naturally. In this paper, two novel scale-limited comparison principles are established by means of inequality techniques and induction principle on time scales. Then the results concerning Lagrange stability and global finite-time synchronization of MRNNs on time scales are obtained. Scaled-limited Lagrange stability criteria are derived, in detail, via nonsmooth analysis and theory of time scales. Moreover, novel criteria for achieving the global finite-time synchronization are acquired. In addition, the derived method can also be used to study global finite-time stabilization. The proposed results extend or improve the existed ones in the literatures. Two numerical examples are chosen to show the effectiveness of the obtained results.

  14. An inverse problem strategy based on forward model evaluations: Gradient-based optimization without adjoint solves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aguilo Valentin, Miguel Alejandro

    2016-07-01

    This study presents a new nonlinear programming formulation for the solution of inverse problems. First, a general inverse problem formulation based on the compliance error functional is presented. The proposed error functional enables the computation of the Lagrange multipliers, and thus the first order derivative information, at the expense of just one model evaluation. Therefore, the calculation of the Lagrange multipliers does not require the solution of the computationally intensive adjoint problem. This leads to significant speedups for large-scale, gradient-based inverse problems.

  15. Modified Lagrange invariants and their role in determining transverse and axial imaging resolutions of self-interference incoherent holographic systems.

    PubMed

    Rosen, Joseph; Kelner, Roy

    2014-11-17

    The Lagrange invariant is a well-known law for optical imaging systems formulated in the frame of ray optics. In this study, we reformulate this law in terms of wave optics and relate it to the resolution limits of various imaging systems. Furthermore, this modified Lagrange invariant is generalized for imaging along the z axis, resulting with the axial Lagrange invariant which can be used to analyze the axial resolution of various imaging systems. To demonstrate the effectiveness of the theory, analysis of the lateral and the axial imaging resolutions is provided for Fresnel incoherent correlation holography (FINCH) systems.

  16. A novel iterative scheme and its application to differential equations.

    PubMed

    Khan, Yasir; Naeem, F; Šmarda, Zdeněk

    2014-01-01

    The purpose of this paper is to employ an alternative approach to reconstruct the standard variational iteration algorithm II proposed by He, including Lagrange multiplier, and to give a simpler formulation of Adomian decomposition and modified Adomian decomposition method in terms of newly proposed variational iteration method-II (VIM). Through careful investigation of the earlier variational iteration algorithm and Adomian decomposition method, we find unnecessary calculations for Lagrange multiplier and also repeated calculations involved in each iteration, respectively. Several examples are given to verify the reliability and efficiency of the method.

  17. Symplectic Quantization of a Vector-Tensor Gauge Theory with Topological Coupling

    NASA Astrophysics Data System (ADS)

    Barcelos-Neto, J.; Silva, M. B. D.

    We use the symplectic formalism to quantize a gauge theory where vectors and tensors fields are coupled in a topological way. This is an example of reducible theory and a procedure like of ghosts-of-ghosts of the BFV method is applied but in terms of Lagrange multipliers. Our final results are in agreement with the ones found in the literature by using the Dirac method.

  18. Planar diode multiplier chains for THz spectroscopy

    NASA Technical Reports Server (NTRS)

    Maiwald, Frank W.; Drouin, Brian J.; Pearson, John C.; Mehdi, Imran; Lewena, Frank; Endres, Christian; Winnewisser, Gisbert

    2005-01-01

    High-resolution laboratory spectroscopy is utilized as a diagnostic tool to determine noise and harmonic content of balanced [9]-[11] and unbalanced [12]-[14] multiplier designs. Balanced multiplier designs suppress unintended harmonics more than -20dB. Much smaller values were measured on unbalanced multipliers.

  19. Pipeline active filter utilizing a booth type multiplier

    NASA Technical Reports Server (NTRS)

    Nathan, Robert (Inventor)

    1987-01-01

    Multiplier units of the modified Booth decoder and carry-save adder/full adder combination are used to implement a pipeline active filter wherein pixel data is processed sequentially, and each pixel need only be accessed once and multiplied by a predetermined number of weights simultaneously, one multiplier unit for each weight. Each multiplier unit uses only one row of carry-save adders, and the results are shifted to less significant multiplier positions and one row of full adders to add the carry to the sum in order to provide the correct binary number for the product Wp. The full adder is also used to add this product Wp to the sum of products .SIGMA.Wp from preceding multiply units. If m.times.m multiplier units are pipelined, the system would be capable of processing a kernel array of m.times.m weighting factors.

  20. Selective Dirac voltage engineering of individual graphene field-effect transistors for digital inverter and frequency multiplier integrations

    NASA Astrophysics Data System (ADS)

    Sul, Onejae; Kim, Kyumin; Jung, Yungwoo; Choi, Eunsuk; Lee, Seung-Beck

    2017-09-01

    The ambipolar band structure of graphene presents unique opportunities for novel electronic device applications. A cycle of gate voltage sweep in a conventional graphene transistor produces a frequency-doubled output current. To increase the frequency further, we used various graphene doping control techniques to produce Dirac voltage engineered graphene channels. The various surface treatments and substrate conditions produced differently doped graphene channels that were integrated on a single substrate and multiple Dirac voltages were observed by applying a single gate voltage sweep. We applied the Dirac voltage engineering techniques to graphene field-effect transistors on a single chip for the fabrication of a frequency multiplier and a logic inverter demonstrating analog and digital circuit application possibilities.

  1. Selective Dirac voltage engineering of individual graphene field-effect transistors for digital inverter and frequency multiplier integrations.

    PubMed

    Sul, Onejae; Kim, Kyumin; Jung, Yungwoo; Choi, Eunsuk; Lee, Seung-Beck

    2017-09-15

    The ambipolar band structure of graphene presents unique opportunities for novel electronic device applications. A cycle of gate voltage sweep in a conventional graphene transistor produces a frequency-doubled output current. To increase the frequency further, we used various graphene doping control techniques to produce Dirac voltage engineered graphene channels. The various surface treatments and substrate conditions produced differently doped graphene channels that were integrated on a single substrate and multiple Dirac voltages were observed by applying a single gate voltage sweep. We applied the Dirac voltage engineering techniques to graphene field-effect transistors on a single chip for the fabrication of a frequency multiplier and a logic inverter demonstrating analog and digital circuit application possibilities.

  2. Euler-Lagrange formulas for pseudo-Kähler manifolds

    NASA Astrophysics Data System (ADS)

    Park, JeongHyeong

    2016-01-01

    Let c be a characteristic form of degree k which is defined on a Kähler manifold of real dimension m > 2 k. Taking the inner product with the Kähler form Ωk gives a scalar invariant which can be considered as a generalized Lovelock functional. The associated Euler-Lagrange equations are a generalized Einstein-Gauss-Bonnet gravity theory; this theory restricts to the canonical formalism if c =c2 is the second Chern form. We extend previous work studying these equations from the Kähler to the pseudo-Kähler setting.

  3. 3D Bragg coherent diffractive imaging of five-fold multiply twinned gold nanoparticle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jong Woo; Ulvestad, Andrew; Manna, Sohini

    The formation mechanism of five-fold multiply twinned nanoparticles has been a long-term topic because of their geometrical incompatibility. So, various models have been proposed to explain how the internal structure of the multiply twinned nanoparticles accommodates the constraints of the solid-angle deficiency. Here, we investigate the internal structure, strain field and strain energy density of 600 nm sized five-fold multiply twinned gold nanoparticles quantitatively using Bragg coherent diffractive imaging, which is suitable for the study of buried defects and three-dimensional strain distribution with great precision. Our study reveals that the strain energy density in five-fold multiply twinned gold nanoparticles ismore » an order of magnitude higher than that of the single nanocrystals such as an octahedron and triangular plate synthesized under the same conditions. This result indicates that the strain developed while accommodating an angular misfit, although partially released through the introduction of structural defects, is still large throughout the crystal.« less

  4. 3D Bragg coherent diffractive imaging of five-fold multiply twinned gold nanoparticle

    DOE PAGES

    Kim, Jong Woo; Ulvestad, Andrew; Manna, Sohini; ...

    2017-08-11

    The formation mechanism of five-fold multiply twinned nanoparticles has been a long-term topic because of their geometrical incompatibility. So, various models have been proposed to explain how the internal structure of the multiply twinned nanoparticles accommodates the constraints of the solid-angle deficiency. Here, we investigate the internal structure, strain field and strain energy density of 600 nm sized five-fold multiply twinned gold nanoparticles quantitatively using Bragg coherent diffractive imaging, which is suitable for the study of buried defects and three-dimensional strain distribution with great precision. Our study reveals that the strain energy density in five-fold multiply twinned gold nanoparticles ismore » an order of magnitude higher than that of the single nanocrystals such as an octahedron and triangular plate synthesized under the same conditions. This result indicates that the strain developed while accommodating an angular misfit, although partially released through the introduction of structural defects, is still large throughout the crystal.« less

  5. Statistics of multiply scattered broadband terahertz pulses.

    PubMed

    Pearce, Jeremy; Jian, Zhongping; Mittleman, Daniel M

    2003-07-25

    We describe the first measurements of the diffusion of broadband single-cycle optical pulses through a highly scattering medium. Using terahertz time-domain spectroscopy, we measure the electric field of a multiply scattered wave with a time resolution shorter than one optical cycle. This time-domain measurement provides information on the statistics of both the amplitude and phase distributions of the diffusive wave. We develop a theoretical description, suitable for broadband radiation, which adequately describes the experimental results.

  6. Coherent Raman scattering with incoherent light for a multiply resonant mixture: Theory

    NASA Astrophysics Data System (ADS)

    Kirkwood, Jason C.; Ulness, Darin J.; Stimson, Michael J.; Albrecht, A. C.

    1998-02-01

    The theory for coherent Raman scattering (CRS) with broadband incoherent light is presented for a multiply resonant, multicomponent mixture of molecules that exhibits simultaneous multiple resonances with the frequencies of the driving fields. All possible pairwise hyperpolarizability contributions to the signal intensity are included in the theoretical treatment-(resonant-resonant, resonant-nonresonant, and nonresonant-nonresonant correlations between chromophores) and it is shown how the different types of correlations manifest themselves as differently behaved components of the signal intensity. The Raman resonances are modeled as Lorentzians in the frequency domain, as is the spectral density of the incoherent light. The analytic results for this multiply resonant mixture are presented and applied to a specific binary mixture. These analytic results will be used to recover frequencies and dephasing times in a series of experiments on multiply resonant mixtures.

  7. Terahertz Schottky Multiplier Sources

    NASA Technical Reports Server (NTRS)

    Schlecht, Erich T.

    2007-01-01

    This viewgraph presentation reviews the multiplier source technologies and the status/Performance of THz multiplier sources. An example of a THz application is imaging radar. The presentation reviews areas of requirements for THz sources: (1) Figures of merit, (i.e., Frequency Terahertz for high resolution Bandwidth of at least 15 GHz for high range resolution Efficiency (i.e., minimize power supply requirements) (2) Output power: (i.e., Milliwatts below 800 GHz, 10s of microwatts above 1 THz, 1-2 microwatts near 2 THz (3) Mechanical--stability, compact, low mass (4) Environmental -- radiation, vibration, thermal. Several sources for 0.3 - 2 THz are reviewed: FIR lasers, quantum cascade lasers (QCL), backward-wave oscillator (BWO), and Multiplier sources. The current state of the art (SoA) is shown as Substrateless Technology. It also shows where the SoA is for devices beyond 1 THz. The presentation concludes by reviewing the options for future development, and 2 technology roadmaps

  8. Augmented Lagrange Hopfield network for solving economic dispatch problem in competitive environment

    NASA Astrophysics Data System (ADS)

    Vo, Dieu Ngoc; Ongsakul, Weerakorn; Nguyen, Khai Phuc

    2012-11-01

    This paper proposes an augmented Lagrange Hopfield network (ALHN) for solving economic dispatch (ED) problem in the competitive environment. The proposed ALHN is a continuous Hopfield network with its energy function based on augmented Lagrange function for efficiently dealing with constrained optimization problems. The ALHN method can overcome the drawbacks of the conventional Hopfield network such as local optimum, long computational time, and linear constraints. The proposed method is used for solving the ED problem with two revenue models of revenue based on payment for power delivered and payment for reserve allocated. The proposed ALHN has been tested on two systems of 3 units and 10 units for the two considered revenue models. The obtained results from the proposed methods are compared to those from differential evolution (DE) and particle swarm optimization (PSO) methods. The result comparison has indicated that the proposed method is very efficient for solving the problem. Therefore, the proposed ALHN could be a favorable tool for ED problem in the competitive environment.

  9. LAGRANGE: LAser GRavitational-wave ANtenna in GEodetic Orbit

    NASA Astrophysics Data System (ADS)

    Buchman, S.; Conklin, J. W.; Balakrishnan, K.; Aguero, V.; Alfauwaz, A.; Aljadaan, A.; Almajed, M.; Altwaijry, H.; Saud, T. A.; Byer, R. L.; Bower, K.; Costello, B.; Cutler, G. D.; DeBra, D. B.; Faied, D. M.; Foster, C.; Genova, A. L.; Hanson, J.; Hooper, K.; Hultgren, E.; Klavins, A.; Lantz, B.; Lipa, J. A.; Palmer, A.; Plante, B.; Sanchez, H. S.; Saraf, S.; Schaechter, D.; Shu, K.; Smith, E.; Tenerelli, D.; Vanbezooijen, R.; Vasudevan, G.; Williams, S. D.; Worden, S. P.; Zhou, J.; Zoellner, A.

    2013-01-01

    We describe a new space gravitational wave observatory design called LAG-RANGE that maintains all important LISA science at about half the cost and with reduced technical risk. It consists of three drag-free spacecraft in a geocentric formation. Fixed antennas allow continuous contact with the Earth, solving the problem of communications bandwidth and latency. A 70 mm diameter sphere with a 35 mm gap to its enclosure serves as the single inertial reference per spacecraft, operating in “true” drag-free mode (no test mass forcing). Other advantages are: a simple caging design based on the DISCOS 1972 drag-free mission, an all optical read-out with pm fine and nm coarse sensors, and the extensive technology heritage from the Honeywell gyroscopes, and the DISCOS and Gravity Probe B drag-free sensors. An Interferometric Measurement System, designed with reflective optics and a highly stabilized frequency standard, performs the ranging between test masses and requires a single optical bench with one laser per spacecraft. Two 20 cm diameter telescopes per spacecraft, each with infield pointing, incorporate novel technology developed for advanced optical systems by Lockheed Martin, who also designed the spacecraft based on a multi-flight proven bus structure. Additional technological advancements include updated drag-free propulsion, thermal control, charge management systems, and materials. LAGRANGE subsystems are designed to be scalable and modular, making them interchangeable with those of LISA or other gravitational science missions. We plan to space qualify critical technologies on small and nano satellite flights, with the first launch (UV-LED Sat) in 2013.

  10. Necessary conditions for weighted mean convergence of Lagrange interpolation for exponential weights

    NASA Astrophysics Data System (ADS)

    Damelin, S. B.; Jung, H. S.; Kwon, K. H.

    2001-07-01

    Given a continuous real-valued function f which vanishes outside a fixed finite interval, we establish necessary conditions for weighted mean convergence of Lagrange interpolation for a general class of even weights w which are of exponential decay on the real line or at the endpoints of (-1,1).

  11. A Person Fit Test for IRT Models for Polytomous Items

    ERIC Educational Resources Information Center

    Glas, C. A. W.; Dagohoy, Anna Villa T.

    2007-01-01

    A person fit test based on the Lagrange multiplier test is presented for three item response theory models for polytomous items: the generalized partial credit model, the sequential model, and the graded response model. The test can also be used in the framework of multidimensional ability parameters. It is shown that the Lagrange multiplier…

  12. Identification of multiply charged proteins and amino acid clusters by liquid nitrogen assisted spray ionization mass spectrometry.

    PubMed

    Kumar Kailasa, Suresh; Hasan, Nazim; Wu, Hui-Fen

    2012-08-15

    The development of liquid nitrogen assisted spray ionization mass spectrometry (LNASI MS) for the analysis of multiply charged proteins (insulin, ubiquitin, cytochrome c, α-lactalbumin, myoglobin and BSA), peptides (glutathione, HW6, angiotensin-II and valinomycin) and amino acid (arginine) clusters is described. The charged droplets are formed by liquid nitrogen assisted sample spray through a stainless steel nebulizer and transported into mass analyzer for the identification of multiply charged protein ions. The effects of acids and modifier volumes for the efficient ionization of the above analytes in LNASI MS were carefully investigated. Multiply charged proteins and amino acid clusters were effectively identified by LNASI MS. The present approach can effectively detect the multiply charged states of cytochrome c at 400 nM. A comparison between LNASI and ESI, CSI, SSI and V-EASI methods on instrumental conditions, applied temperature and observed charge states for the multiply charged proteins, shows that the LNASI method produces the good quality spectra of amino acid clusters at ambient conditions without applied any electric field and heat. To date, we believe that the LNASI method is the most simple, low cost and provided an alternative paradigm for production of multiply charged ions by LNASI MS, just as ESI-like ions yet no need for applying any electrical field and it could be operated at low temperature for generation of highly charged protein/peptide ions. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Faster Double-Size Bipartite Multiplication out of Montgomery Multipliers

    NASA Astrophysics Data System (ADS)

    Yoshino, Masayuki; Okeya, Katsuyuki; Vuillaume, Camille

    This paper proposes novel algorithms for computing double-size modular multiplications with few modulus-dependent precomputations. Low-end devices such as smartcards are usually equipped with hardware Montgomery multipliers. However, due to progresses of mathematical attacks, security institutions such as NIST have steadily demanded longer bit-lengths for public-key cryptography, making the multipliers quickly obsolete. In an attempt to extend the lifespan of such multipliers, double-size techniques compute modular multiplications with twice the bit-length of the multipliers. Techniques are known for extending the bit-length of classical Euclidean multipliers, of Montgomery multipliers and the combination thereof, namely bipartite multipliers. However, unlike classical and bipartite multiplications, Montgomery multiplications involve modulus-dependent precomputations, which amount to a large part of an RSA encryption or signature verification. The proposed double-size technique simulates double-size multiplications based on single-size Montgomery multipliers, and yet precomputations are essentially free: in an 2048-bit RSA encryption or signature verification with public exponent e=216+1, the proposal with a 1024-bit Montgomery multiplier is at least 1.5 times faster than previous double-size Montgomery multiplications.

  14. Analytic first derivatives for a spin-adapted open-shell coupled cluster theory: Evaluation of first-order electrical properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Datta, Dipayan, E-mail: datta@uni-mainz.de; Gauss, Jürgen, E-mail: gauss@uni-mainz.de

    2014-09-14

    An analytic scheme is presented for the evaluation of first derivatives of the energy for a unitary group based spin-adapted coupled cluster (CC) theory, namely, the combinatoric open-shell CC (COSCC) approach within the singles and doubles approximation. The widely used Lagrange multiplier approach is employed for the derivation of an analytical expression for the first derivative of the energy, which in combination with the well-established density-matrix formulation, is used for the computation of first-order electrical properties. Derivations of the spin-adapted lambda equations for determining the Lagrange multipliers and the expressions for the spin-free effective density matrices for the COSCC approachmore » are presented. Orbital-relaxation effects due to the electric-field perturbation are treated via the Z-vector technique. We present calculations of the dipole moments for a number of doublet radicals in their ground states using restricted open-shell Hartree-Fock (ROHF) and quasi-restricted HF (QRHF) orbitals in order to demonstrate the applicability of our analytic scheme for computing energy derivatives. We also report calculations of the chlorine electric-field gradients and nuclear quadrupole-coupling constants for the CCl, CH{sub 2}Cl, ClO{sub 2}, and SiCl radicals.« less

  15. Pointwise convergence of derivatives of Lagrange interpolation polynomials for exponential weights

    NASA Astrophysics Data System (ADS)

    Damelin, S. B.; Jung, H. S.

    2005-01-01

    For a general class of exponential weights on the line and on (-1,1), we study pointwise convergence of the derivatives of Lagrange interpolation. Our weights include even weights of smooth polynomial decay near +/-[infinity] (Freud weights), even weights of faster than smooth polynomial decay near +/-[infinity] (Erdos weights) and even weights which vanish strongly near +/-1, for example Pollaczek type weights.

  16. On the commutator of C^{\\infty}} -symmetries and the reduction of Euler-Lagrange equations

    NASA Astrophysics Data System (ADS)

    Ruiz, A.; Muriel, C.; Olver, P. J.

    2018-04-01

    A novel procedure to reduce by four the order of Euler-Lagrange equations associated to nth order variational problems involving single variable integrals is presented. In preparation, a new formula for the commutator of two \

  17. Effective switching frequency multiplier inverter

    DOEpatents

    Su, Gui-Jia [Oak Ridge, TN; Peng, Fang Z [Okemos, MI

    2007-08-07

    A switching frequency multiplier inverter for low inductance machines that uses parallel connection of switches and each switch is independently controlled according to a pulse width modulation scheme. The effective switching frequency is multiplied by the number of switches connected in parallel while each individual switch operates within its limit of switching frequency. This technique can also be used for other power converters such as DC/DC, AC/DC converters.

  18. Serial multiplier arrays for parallel computation

    NASA Technical Reports Server (NTRS)

    Winters, Kel

    1990-01-01

    Arrays of systolic serial-parallel multiplier elements are proposed as an alternative to conventional SIMD mesh serial adder arrays for applications that are multiplication intensive and require few stored operands. The design and operation of a number of multiplier and array configurations featuring locality of connection, modularity, and regularity of structure are discussed. A design methodology combining top-down and bottom-up techniques is described to facilitate development of custom high-performance CMOS multiplier element arrays as well as rapid synthesis of simulation models and semicustom prototype CMOS components. Finally, a differential version of NORA dynamic circuits requiring a single-phase uncomplemented clock signal introduced for this application.

  19. Keynesian multiplier versus velocity of money

    NASA Astrophysics Data System (ADS)

    Wang, Yougui; Xu, Yan; Liu, Li

    2010-08-01

    In this paper we present the relation between Keynesian multiplier and the velocity of money circulation in a money exchange model. For this purpose we modify the original exchange model by constructing the interrelation between income and expenditure. The random exchange yields an agent's income, which along with the amount of money he processed determines his expenditure. In this interactive process, both the circulation of money and Keynesian multiplier effect can be formulated. The equilibrium values of Keynesian multiplier are demonstrated to be closely related to the velocity of money. Thus the impacts of macroeconomic policies on aggregate income can be understood by concentrating solely on the variations of money circulation.

  20. Lower-Order Compensation Chain Threshold-Reduction Technique for Multi-Stage Voltage Multipliers.

    PubMed

    Dell' Anna, Francesco; Dong, Tao; Li, Ping; Wen, Yumei; Azadmehr, Mehdi; Casu, Mario; Berg, Yngvar

    2018-04-17

    This paper presents a novel threshold-compensation technique for multi-stage voltage multipliers employed in low power applications such as passive and autonomous wireless sensing nodes (WSNs) powered by energy harvesters. The proposed threshold-reduction technique enables a topological design methodology which, through an optimum control of the trade-off among transistor conductivity and leakage losses, is aimed at maximizing the voltage conversion efficiency (VCE) for a given ac input signal and physical chip area occupation. The conducted simulations positively assert the validity of the proposed design methodology, emphasizing the exploitable design space yielded by the transistor connection scheme in the voltage multiplier chain. An experimental validation and comparison of threshold-compensation techniques was performed, adopting 2N5247 N-channel junction field effect transistors (JFETs) for the realization of the voltage multiplier prototypes. The attained measurements clearly support the effectiveness of the proposed threshold-reduction approach, which can significantly reduce the chip area occupation for a given target output performance and ac input signal.

  1. Dynamics and Control of Constrained Multibody Systems modeled with Maggi's equation: Application to Differential Mobile Robots Part I

    NASA Astrophysics Data System (ADS)

    Amengonu, Yawo H.; Kakad, Yogendra P.

    2014-07-01

    Quasivelocity techniques such as Maggi's and Boltzmann-Hamel's equations eliminate Lagrange multipliers from the beginning as opposed to the Euler-Lagrange method where one has to solve for the n configuration variables and the multipliers as functions of time when there are m nonholonomic constraints. Maggi's equation produces n second-order differential equations of which (n-m) are derived using (n-m) independent quasivelocities and the time derivative of the m kinematic constraints which add the remaining m second order differential equations. This technique is applied to derive the dynamics of a differential mobile robot and a controller which takes into account these dynamics is developed.

  2. An Euler-Lagrange method considering bubble radial dynamics for modeling sonochemical reactors.

    PubMed

    Jamshidi, Rashid; Brenner, Gunther

    2014-01-01

    Unsteady numerical computations are performed to investigate the flow field, wave propagation and the structure of bubbles in sonochemical reactors. The turbulent flow field is simulated using a two-equation Reynolds-Averaged Navier-Stokes (RANS) model. The distribution of the acoustic pressure is solved based on the Helmholtz equation using a finite volume method (FVM). The radial dynamics of a single bubble are considered by applying the Keller-Miksis equation to consider the compressibility of the liquid to the first order of acoustical Mach number. To investigate the structure of bubbles, a one-way coupling Euler-Lagrange approach is used to simulate the bulk medium and the bubbles as the dispersed phase. Drag, gravity, buoyancy, added mass, volume change and first Bjerknes forces are considered and their orders of magnitude are compared. To verify the implemented numerical algorithms, results for one- and two-dimensional simplified test cases are compared with analytical solutions. The results show good agreement with experimental results for the relationship between the acoustic pressure amplitude and the volume fraction of the bubbles. The two-dimensional axi-symmetric results are in good agreement with experimentally observed structure of bubbles close to sonotrode. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Automobile Industry Retail Price Equivalent and Indirect Cost Multipliers

    EPA Science Inventory

    This report develops a modified multiplier, referred to as an indirect cost (IC) multiplier, which specifically evaluates the components of indirect costs that are likely to be affected by vehicle modifications associated with environmental regulation. A range of IC multipliers a...

  4. Centrifuge Rotor Models: A Comparison of the Euler-Lagrange and the Bond Graph Modeling Approach

    NASA Technical Reports Server (NTRS)

    Granda, Jose J.; Ramakrishnan, Jayant; Nguyen, Louis H.

    2006-01-01

    A viewgraph presentation on centrifuge rotor models with a comparison using Euler-Lagrange and bond graph methods is shown. The topics include: 1) Objectives; 2) MOdeling Approach Comparisons; 3) Model Structures; and 4) Application.

  5. Computational Methods for Frictional Contact With Applications to the Space Shuttle Orbiter Nose-Gear Tire

    NASA Technical Reports Server (NTRS)

    Tanner, John A.

    1996-01-01

    A computational procedure is presented for the solution of frictional contact problems for aircraft tires. A Space Shuttle nose-gear tire is modeled using a two-dimensional laminated anisotropic shell theory which includes the effects of variations in material and geometric parameters, transverse-shear deformation, and geometric nonlinearities. Contact conditions are incorporated into the formulation by using a perturbed Lagrangian approach with the fundamental unknowns consisting of the stress resultants, the generalized displacements, and the Lagrange multipliers associated with both contact and friction conditions. The contact-friction algorithm is based on a modified Coulomb friction law. A modified two-field, mixed-variational principle is used to obtain elemental arrays. This modification consists of augmenting the functional of that principle by two terms: the Lagrange multiplier vector associated with normal and tangential node contact-load intensities and a regularization term that is quadratic in the Lagrange multiplier vector. These capabilities and computational features are incorporated into an in-house computer code. Experimental measurements were taken to define the response of the Space Shuttle nose-gear tire to inflation-pressure loads and to inflation-pressure loads combined with normal static loads against a rigid flat plate. These experimental results describe the meridional growth of the tire cross section caused by inflation loading, the static load-deflection characteristics of the tire, the geometry of the tire footprint under static loading conditions, and the normal and tangential load-intensity distributions in the tire footprint for the various static vertical loading conditions. Numerical results were obtained for the Space Shuttle nose-gear tire subjected to inflation pressure loads and combined inflation pressure and contact loads against a rigid flat plate. The experimental measurements and the numerical results are compared.

  6. Computational methods for frictional contact with applications to the Space Shuttle orbiter nose-gear tire: Comparisons of experimental measurements and analytical predictions

    NASA Technical Reports Server (NTRS)

    Tanner, John A.

    1996-01-01

    A computational procedure is presented for the solution of frictional contact problems for aircraft tires. A Space Shuttle nose-gear tire is modeled using a two-dimensional laminated anisotropic shell theory which includes the effects of variations in material and geometric parameters, transverse-shear deformation, and geometric nonlinearities. Contact conditions are incorporated into the formulation by using a perturbed Lagrangian approach with the fundamental unknowns consisting of the stress resultants, the generalized displacements, and the Lagrange multipliers associated with both contact and friction conditions. The contact-friction algorithm is based on a modified Coulomb friction law. A modified two-field, mixed-variational principle is used to obtain elemental arrays. This modification consists of augmenting the functional of that principle by two terms: the Lagrange multiplier vector associated with normal and tangential node contact-load intensities and a regularization term that is quadratic in the Lagrange multiplier vector. These capabilities and computational features are incorporated into an in-house computer code. Experimental measurements were taken to define the response of the Space Shuttle nose-gear tire to inflation-pressure loads and to inflation-pressure loads combined with normal static loads against a rigid flat plate. These experimental results describe the meridional growth of the tire cross section caused by inflation loading, the static load-deflection characteristics of the tire, the geometry of the tire footprint under static loading conditions, and the normal and tangential load-intensity distributions in the tire footprint for the various static vertical-loading conditions. Numerical results were obtained for the Space Shuttle nose-gear tire subjected to inflation pressure loads and combined inflation pressure and contact loads against a rigid flat plate. The experimental measurements and the numerical results are compared.

  7. Uses and abuses of multipliers in the stand prognosis model

    Treesearch

    David A. Hamilton

    1994-01-01

    Users of the Stand Prognosis Model may have difficulties in selecting the proper set of multipliers to simulate a desired effect or in determining the appropriate value to assign to selected multipliers. A series of examples describe impact of multipliers on simulated stand development. Guidelines for the proper use of multipliers are presented....

  8. Nanosecond pulsed electric fields (nsPEFs) low cost generator design using power MOSFET and Cockcroft-Walton multiplier circuit as high voltage DC source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sulaeman, M. Y.; Widita, R.

    2014-09-30

    Purpose: Non-ionizing radiation therapy for cancer using pulsed electric field with high intensity field has become an interesting field new research topic. A new method using nanosecond pulsed electric fields (nsPEFs) offers a novel means to treat cancer. Not like the conventional electroporation, nsPEFs able to create nanopores in all membranes of the cell, including membrane in cell organelles, like mitochondria and nucleus. NsPEFs will promote cell death in several cell types, including cancer cell by apoptosis mechanism. NsPEFs will use pulse with intensity of electric field higher than conventional electroporation, between 20–100 kV/cm and with shorter duration of pulsemore » than conventional electroporation. NsPEFs requires a generator to produce high voltage pulse and to achieve high intensity electric field with proper pulse width. However, manufacturing cost for creating generator that generates a high voltage with short duration for nsPEFs purposes is highly expensive. Hence, the aim of this research is to obtain the low cost generator design that is able to produce a high voltage pulse with nanosecond width and will be used for nsPEFs purposes. Method: Cockcroft-Walton multiplier circuit will boost the input of 220 volt AC into high voltage DC around 1500 volt and it will be combined by a series of power MOSFET as a fast switch to obtain a high voltage with nanosecond pulse width. The motivation using Cockcroft-Walton multiplier is to acquire a low-cost high voltage DC generator; it will use capacitors and diodes arranged like a step. Power MOSFET connected in series is used as voltage divider to share the high voltage in order not to damage them. Results: This design is expected to acquire a low-cost generator that can achieve the high voltage pulse in amount of −1.5 kV with falltime 3 ns and risetime 15 ns into a 50Ω load that will be used for nsPEFs purposes. Further detailed on the circuit design will be explained at presentation.« less

  9. FORCE MULTIPLIER FOR USE WITH MASTER SLAVES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miles, L.E.; Parsons, T.C.; Howe, P.W.

    1961-06-01

    A force multiplier was designed. This piece of equipment was made to increase the gripping force presently available in the Model 8 master slave. The force multiplier described incorporates a clamp which can be quickly attached to and detached from the master slave hand. (auth)

  10. Comments on "The multisynapse neural network and its application to fuzzy clustering".

    PubMed

    Yu, Jian; Hao, Pengwei

    2005-05-01

    In the above-mentioned paper, Wei and Fahn proposed a neural architecture, the multisynapse neural network, to solve constrained optimization problems including high-order, logarithmic, and sinusoidal forms, etc. As one of its main applications, a fuzzy bidirectional associative clustering network (FBACN) was proposed for fuzzy-partition clustering according to the objective-functional method. The connection between the objective-functional-based fuzzy c-partition algorithms and FBACN is the Lagrange multiplier approach. Unfortunately, the Lagrange multiplier approach was incorrectly applied so that FBACN does not equivalently minimize its corresponding constrained objective-function. Additionally, Wei and Fahn adopted traditional definition of fuzzy c-partition, which is not satisfied by FBACN. Therefore, FBACN can not solve constrained optimization problems, either.

  11. A domain decomposition approach to implementing fault slip in finite-element models of quasi-static and dynamic crustal deformation

    USGS Publications Warehouse

    Aagaard, Brad T.; Knepley, M.G.; Williams, C.A.

    2013-01-01

    We employ a domain decomposition approach with Lagrange multipliers to implement fault slip in a finite-element code, PyLith, for use in both quasi-static and dynamic crustal deformation applications. This integrated approach to solving both quasi-static and dynamic simulations leverages common finite-element data structures and implementations of various boundary conditions, discretization schemes, and bulk and fault rheologies. We have developed a custom preconditioner for the Lagrange multiplier portion of the system of equations that provides excellent scalability with problem size compared to conventional additive Schwarz methods. We demonstrate application of this approach using benchmarks for both quasi-static viscoelastic deformation and dynamic spontaneous rupture propagation that verify the numerical implementation in PyLith.

  12. Distributed Fault-Tolerant Control of Networked Uncertain Euler-Lagrange Systems Under Actuator Faults.

    PubMed

    Chen, Gang; Song, Yongduan; Lewis, Frank L

    2016-05-03

    This paper investigates the distributed fault-tolerant control problem of networked Euler-Lagrange systems with actuator and communication link faults. An adaptive fault-tolerant cooperative control scheme is proposed to achieve the coordinated tracking control of networked uncertain Lagrange systems on a general directed communication topology, which contains a spanning tree with the root node being the active target system. The proposed algorithm is capable of compensating for the actuator bias fault, the partial loss of effectiveness actuation fault, the communication link fault, the model uncertainty, and the external disturbance simultaneously. The control scheme does not use any fault detection and isolation mechanism to detect, separate, and identify the actuator faults online, which largely reduces the online computation and expedites the responsiveness of the controller. To validate the effectiveness of the proposed method, a test-bed of multiple robot-arm cooperative control system is developed for real-time verification. Experiments on the networked robot-arms are conduced and the results confirm the benefits and the effectiveness of the proposed distributed fault-tolerant control algorithms.

  13. Spontaneous Lorentz and diffeomorphism violation, massive modes, and gravity

    NASA Astrophysics Data System (ADS)

    Bluhm, Robert; Fung, Shu-Hong; Kostelecký, V. Alan

    2008-03-01

    Theories with spontaneous local Lorentz and diffeomorphism violation contain massless Nambu-Goldstone modes, which arise as field excitations in the minimum of the symmetry-breaking potential. If the shape of the potential also allows excitations above the minimum, then an alternative gravitational Higgs mechanism can occur in which massive modes involving the metric appear. The origin and basic properties of the massive modes are addressed in the general context involving an arbitrary tensor vacuum value. Special attention is given to the case of bumblebee models, which are gravitationally coupled vector theories with spontaneous local Lorentz and diffeomorphism violation. Mode expansions are presented in both local and spacetime frames, revealing the Nambu-Goldstone and massive modes via decomposition of the metric and bumblebee fields, and the associated symmetry properties and gauge fixing are discussed. The class of bumblebee models with kinetic terms of the Maxwell form is used as a focus for more detailed study. The nature of the associated conservation laws and the interpretation as a candidate alternative to Einstein-Maxwell theory are investigated. Explicit examples involving smooth and Lagrange-multiplier potentials are studied to illustrate features of the massive modes, including their origin, nature, dispersion laws, and effects on gravitational interactions. In the weak static limit, the massive mode and Lagrange-multiplier fields are found to modify the Newton and Coulomb potentials. The nature and implications of these modifications are examined.

  14. Hardware Design and Implementation of Fixed-Width Standard and Truncated 4×4, 6×6, 8×8 and 12×12-BIT Multipliers Using Fpga

    NASA Astrophysics Data System (ADS)

    Rais, Muhammad H.

    2010-06-01

    This paper presents Field Programmable Gate Array (FPGA) implementation of standard and truncated multipliers using Very High Speed Integrated Circuit Hardware Description Language (VHDL). Truncated multiplier is a good candidate for digital signal processing (DSP) applications such as finite impulse response (FIR) and discrete cosine transform (DCT). Remarkable reduction in FPGA resources, delay, and power can be achieved using truncated multipliers instead of standard parallel multipliers when the full precision of the standard multiplier is not required. The truncated multipliers show significant improvement as compared to standard multipliers. Results show that the anomaly in Spartan-3 AN average connection and maximum pin delay have been efficiently reduced in Virtex-4 device.

  15. Silicon Photo-Multiplier Readouts for Scintillators in High-Energy Astronomy

    NASA Technical Reports Server (NTRS)

    Bloser, Peter F.; Legere, Jason S.; Bancroft, Christopher M.; McConnell, Mark L.; Ryan, James M.

    2008-01-01

    New scintillator materials have recently been shown to hold great potential for low-cost, reliable gamma-ray detectors in high-energy astronomy. New devices for the detection of scintillation light promise to make scintillator-based instruments even more attractive by reducing mass and power requirements,in particular, silicon photo-multipliers (SiPMs) are starting to become commercially available that offer gains and quantum efficiencies similar to those of photo-multiplier tubes (PMTs), but with greatly reduced mass, high ruggedness, low voltage requirements, and no sensitivity to magnetic fields. We have conducted laboratory tests of a sample of commercially available SiPMs coupled to LaBr3;Ce, a scintillator of relevance to to future high-energy astrophysics missions. We present results for gamma-ray spectroscopy. compare the SiPM performance to that of a PMT, and discuss the extent to which SiPMs offer significant advantages for scintillator-based space missions.

  16. ELECTRONIC MULTIPLIER

    DOEpatents

    Collier, D.M.; Meeks, L.A.; Palmer, J.P.

    1961-01-31

    S>An electronic multiplier is described for use in analog computers. Two electrical input signals are received; one controls the slope of a saw-tooth voltage wave while the other controls the time duration of the wave. A condenser and diode clamps are provided to sustain the crest voltage reached by the wave, and for storing that voltage to provide an output signal which is a steady d-c voltage.

  17. Modified Interior Distance Functions (Theory and Methods)

    NASA Technical Reports Server (NTRS)

    Polyak, Roman A.

    1995-01-01

    In this paper we introduced and developed the theory of Modified Interior Distance Functions (MIDF's). The MIDF is a Classical Lagrangian (CL) for a constrained optimization problem which is equivalent to the initial one and can be obtained from the latter by monotone transformation both the objective function and constraints. In contrast to the Interior Distance Functions (IDF's), which played a fundamental role in Interior Point Methods (IPM's), the MIDF's are defined on an extended feasible set and along with center, have two extra tools, which control the computational process: the barrier parameter and the vector of Lagrange multipliers. The extra tools allow to attach to the MEDF's very important properties of Augmented Lagrangeans. One can consider the MIDFs as Interior Augmented Lagrangeans. It makes MIDF's similar in spirit to Modified Barrier Functions (MBF's), although there is a fundamental difference between them both in theory and methods. Based on MIDF's theory, Modified Center Methods (MCM's) have been developed and analyzed. The MCM's find an unconstrained minimizer in primal space and update the Lagrange multipliers, while both the center and the barrier parameter can be fixed or updated at each step. The MCM's convergence was investigated, and their rate of convergence was estimated. The extension of the feasible set and the special role of the Lagrange multipliers allow to develop MCM's, which produce, in case of nondegenerate constrained optimization, a primal and dual sequences that converge to the primal-dual solutions with linear rate, even when both the center and the barrier parameter are fixed. Moreover, every Lagrange multipliers update shrinks the distance to the primal dual solution by a factor 0 less than gamma less than 1 which can be made as small as one wants by choosing a fixed interior point as a 'center' and a fixed but large enough barrier parameter. The numericai realization of MCM leads to the Newton MCM (NMCM). The

  18. Adapting the Euler-Lagrange equation to study one-dimensional motions under the action of a constant force

    NASA Astrophysics Data System (ADS)

    Dias, Clenilda F.; Araújo, Maria A. S.; Carvalho-Santos, Vagson L.

    2018-01-01

    The Euler-Lagrange equations (ELE) are very important in the theoretical description of several physical systems. In this work we have used a simplified form of ELE to study one-dimensional motions under the action of a constant force. From the use of the definition of partial derivative, we have proposed two operators, here called mean delta operators, which may be used to solve the ELE in a simplest way. We have applied this simplification to solve three simple mechanical problems in which the particle is under the action of the gravitational field: a free fall body, the Atwood’s machine and the inclined plan. The proposed simplification can be used to introduce the lagrangian formalism in teaching classical mechanics in introductory physics courses.

  19. Sociophysics of sexism: normal and anomalous petrie multipliers

    NASA Astrophysics Data System (ADS)

    Eliazar, Iddo

    2015-07-01

    A recent mathematical model by Karen Petrie explains how sexism towards women can arise in organizations where male and female are equally sexist. Indeed, the Petrie model predicts that such sexism will emerge whenever there is a male majority, and quantifies this majority bias by the ‘Petrie multiplier’: the square of the male/female ratio. In this paper—emulating the shift from ‘normal’ to ‘anomalous’ diffusion—we generalize the Petrie model to a stochastic Poisson model that accommodates heterogeneously sexist men and woman, and that extends the ‘normal’ quadratic Petrie multiplier to ‘anomalous’ non-quadratic multipliers. The Petrie multipliers span a full spectrum of behaviors which we classify into four universal types. A variation of the stochastic Poisson model and its Petrie multipliers is further applied to the context of cyber warfare.

  20. Tables of compound-discount interest rate multipliers for evaluating forestry investments.

    Treesearch

    Allen L. Lundgren

    1971-01-01

    Tables, prepared by computer, are presented for 10 selected compound-discount interest rate multipliers commonly used in financial analyses of forestry investments. Two set of tables are given for each of the 10 multipliers. The first set gives multipliers for each year from 1 to 40 years; the second set gives multipliers at 5-year intervals from 5 to 160 years....

  1. G-band harmonic multiplying gyrotron traveling-wave amplifier with a mode-selective circuit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yeh, Y. S.; Chen, Chang-Hong; Wang, Z. W.

    Harmonic multiplying gyrotron traveling-wave amplifiers (gyro-TWAs) permit for magnetic field reduction and frequency multiplication. A high-order-mode harmonic multiplying gyro-TWA with large circuit dimensions and low ohmic loss can achieve a high average power. By amplifying a fundamental harmonic TE{sub 01} drive wave, the second harmonic component of the beam current initiates a TE{sub 02} wave to be amplified. Wall losses can suppress some competing modes because they act as an effective sink of the energy of the modes. However, such wall losses do not suppress all competing modes as the fields are contracted in the copper section in the gyro-TWA.more » An improved mode-selective circuit, using circular waveguides with the specified radii, can provide the rejection points within the frequency range to suppress the competing modes. The simulated results reveal that the mode-selective circuit can provide an attenuation of more than 10 dB to suppress the competing modes (TE{sub 21}, TE{sub 51}, TE{sub 22}, and TE{sub 03}). A G-band second harmonic multiplying gyro-TWA with the mode-selective circuit is predicted to yield a peak output power of 50 kW at 198.8 GHz, corresponding to a saturated gain of 55 dB at an interaction efficiency of 10%. The full width at half maximum bandwidth is 5 GHz.« less

  2. Four-Quadrant Analog Multipliers Using G4-FETs

    NASA Technical Reports Server (NTRS)

    Mojarradi, Mohammad; Blalock, Benjamin; Christoloveanu, Sorin; Chen, Suheng; Akarvardar, Kerem

    2006-01-01

    Theoretical analysis and some experiments have shown that the silicon-on-insulator (SOI) 4-gate transistors known as G4-FETs can be used as building blocks of four-quadrant analog voltage multiplier circuits. Whereas a typical prior analog voltage multiplier contains between six and 10 transistors, it is possible to construct a superior voltage multiplier using only four G4-FETs. A G4-FET is a combination of a junction field-effect transistor (JFET) and a metal oxide/semiconductor field-effect transistor (MOSFET). It can be regarded as a single transistor having four gates, which are parts of a structure that affords high functionality by enabling the utilization of independently biased multiple inputs. The structure of a G4-FET of the type of interest here (see Figure 1) is that of a partially-depleted SOI MOSFET with two independent body contacts, one on each side of the channel. The drain current comprises of majority charge carriers flowing from one body contact to the other that is, what would otherwise be the side body contacts of the SOI MOSFET are used here as the end contacts [the drain (D) and the source (S)] of the G4-FET. What would otherwise be the source and drain of the SOI MOSFET serve, in the G4-FET, as two junction-based extra gates (JG1 and JG2), which are used to squeeze the channel via reverse-biased junctions as in a JFET. The G4-FET also includes a polysilicon top gate (G1), which plays the same role as does the gate in an accumulation-mode MOSFET. The substrate emulates a fourth MOS gate (G2). By making proper choices of G4-FET device parameters in conjunction with bias voltages and currents, one can design a circuit in which two input gate voltages (Vin1,Vin2) control the conduction characteristics of G4-FETs such that the output voltage (Vout) closely approximates a value proportional to the product of the input voltages. Figure 2 depicts two such analog multiplier circuits. In each circuit, there is the following: The input and output

  3. An Early Childhood Curriculum for Multiply Handicapped Children.

    ERIC Educational Resources Information Center

    Schattner, Regina

    The guide for understanding the multidimensional educational problems of multiply handicapped children and for developing an appropriate curriculum and setting is addressed to teachers. Methods, materials, and a curriculum for working with young (ages 4-9 years) multiply handicapped children are presented. The program includes an enriched language…

  4. Representation of the inverse of a frame multiplier.

    PubMed

    Balazs, P; Stoeva, D T

    2015-02-15

    Certain mathematical objects appear in a lot of scientific disciplines, like physics, signal processing and, naturally, mathematics. In a general setting they can be described as frame multipliers, consisting of analysis, multiplication by a fixed sequence (called the symbol), and synthesis. In this paper we show a surprising result about the inverse of such operators, if any, as well as new results about a core concept of frame theory, dual frames. We show that for semi-normalized symbols, the inverse of any invertible frame multiplier can always be represented as a frame multiplier with the reciprocal symbol and dual frames of the given ones. Furthermore, one of those dual frames is uniquely determined and the other one can be arbitrarily chosen. We investigate sufficient conditions for the special case, when both dual frames can be chosen to be the canonical duals. In connection to the above, we show that the set of dual frames determines a frame uniquely. Furthermore, for a given frame, the union of all coefficients of its dual frames is dense in [Formula: see text]. We also introduce a class of frames (called pseudo-coherent frames), which includes Gabor frames and coherent frames, and investigate invertible pseudo-coherent frame multipliers, allowing a classification for frame-type operators for these frames. Finally, we give a numerical example for the invertibility of multipliers in the Gabor case.

  5. Analytical Energy Gradients for Excited-State Coupled-Cluster Methods

    NASA Astrophysics Data System (ADS)

    Wladyslawski, Mark; Nooijen, Marcel

    The equation-of-motion coupled-cluster (EOM-CC) and similarity transformed equation-of-motion coupled-cluster (STEOM-CC) methods have been firmly established as accurate and routinely applicable extensions of single-reference coupled-cluster theory to describe electronically excited states. An overview of these methods is provided, with emphasis on the many-body similarity transform concept that is the key to a rationalization of their accuracy. The main topic of the paper is the derivation of analytical energy gradients for such non-variational electronic structure approaches, with an ultimate focus on obtaining their detailed algebraic working equations. A general theoretical framework using Lagrange's method of undetermined multipliers is presented, and the method is applied to formulate the EOM-CC and STEOM-CC gradients in abstract operator terms, following the previous work in [P.G. Szalay, Int. J. Quantum Chem. 55 (1995) 151] and [S.R. Gwaltney, R.J. Bartlett, M. Nooijen, J. Chem. Phys. 111 (1999) 58]. Moreover, the systematics of the Lagrange multiplier approach is suitable for automation by computer, enabling the derivation of the detailed derivative equations through a standardized and direct procedure. To this end, we have developed the SMART (Symbolic Manipulation and Regrouping of Tensors) package of automated symbolic algebra routines, written in the Mathematica programming language. The SMART toolkit provides the means to expand, differentiate, and simplify equations by manipulation of the detailed algebraic tensor expressions directly. The Lagrangian multiplier formulation establishes a uniform strategy to perform the automated derivation in a standardized manner: A Lagrange multiplier functional is constructed from the explicit algebraic equations that define the energy in the electronic method; the energy functional is then made fully variational with respect to all of its parameters, and the symbolic differentiations directly yield the explicit

  6. Multiplier Accounting of Indian Mining Industry: The Application

    NASA Astrophysics Data System (ADS)

    Hussain, Azhar; Karmakar, Netai Chandra

    2017-10-01

    In the previous paper (Hussain and Karmakar in Inst Eng India Ser, 2014. doi: 10.1007/s40033-014-0058-0), the concepts of input-output transaction matrix and multiplier were explained in detail. Input-output multipliers are indicators used for predicting the total impact on an economy due to changes in its industrial demand and output which is calculated using transaction matrix. The aim of this paper is to present an application of the concepts with respect to the mining industry, showing progress in different sectors of mining with time and explaining different outcomes from the results obtained. The analysis shows that a few mineral industries saw a significant growth in their multiplier values over the years.

  7. The Development of Programmed Instruction in Orientation and Mobility for Multiply Handicapped Blind Children.

    ERIC Educational Resources Information Center

    Wood, Thomas A.

    Described are the development and field testing of programed instruction in orientation and mobility for 41 multiply handicapped blind students. Based on initial assessment on the Peabody Mobility Scale, it is explained that the students were prescribed individualized tasks in the areas of motor development, sensory skills, concept development and…

  8. A fictitious domain approach for the Stokes problem based on the extended finite element method

    NASA Astrophysics Data System (ADS)

    Court, Sébastien; Fournié, Michel; Lozinski, Alexei

    2014-01-01

    In the present work, we propose to extend to the Stokes problem a fictitious domain approach inspired by eXtended Finite Element Method and studied for Poisson problem in [Renard]. The method allows computations in domains whose boundaries do not match. A mixed finite element method is used for fluid flow. The interface between the fluid and the structure is localized by a level-set function. Dirichlet boundary conditions are taken into account using Lagrange multiplier. A stabilization term is introduced to improve the approximation of the normal trace of the Cauchy stress tensor at the interface and avoid the inf-sup condition between the spaces for velocity and the Lagrange multiplier. Convergence analysis is given and several numerical tests are performed to illustrate the capabilities of the method.

  9. The Multiply Handicapped Child.

    ERIC Educational Resources Information Center

    Wolf, James M., Ed.; Anderson, Robert M., Ed.

    Articles presented in the area of the medical and educational challenge of the multiply handicapped child are an overview of the problem, the increasing challenge, congenital malformations, children whose mothers had rubella, prematurity and deafness, the epidemiology of reproductive casualty, and new education for old problems. Discussions of…

  10. Free-Lagrange methods for compressible hydrodynamics in two space dimensions

    NASA Astrophysics Data System (ADS)

    Crowley, W. E.

    1985-03-01

    Since 1970 a research and development program in Free-Lagrange methods has been active at Livermore. The initial steps were taken with incompressible flows for simplicity. Since then the effort has been concentrated on compressible flows with shocks in two space dimensions and time. In general, the line integral method has been used to evaluate derivatives and the artificial viscosity method has been used to deal with shocks. Basically, two Free-Lagrange formulations for compressible flows in two space dimensions and time have been tested and both will be described. In method one, all prognostic quantities were node centered and staggered in time. The artificial viscosity was zone centered. One mesh reconnection philosphy was that the mesh should be optimized so that nearest neighbors were connected together. Another was that vertex angles should tend toward equality. In method one, all mesh elements were triangles. In method two, both quadrilateral and triangular mesh elements are permitted. The mesh variables are staggered in space and time as suggested originally by Richtmyer and von Neumann. The mesh reconnection strategy is entirely different in method two. In contrast to the global strategy of nearest neighbors, we now have a more local strategy that reconnects in order to keep the integration time step above a user chosen threshold. An additional strategy reconnects in the vicinity of large relative fluid motions. Mesh reconnection consists of two parts: (1) the tools that permits nodes to be merged and quads to be split into triangles etc. and; (2) the strategy that dictates how and when to use the tools. Both tools and strategies change with time in a continuing effort to expand the capabilities of the method. New ideas are continually being tried and evaluated.

  11. Integrated optic vector-matrix multiplier

    DOEpatents

    Watts, Michael R [Albuquerque, NM

    2011-09-27

    A vector-matrix multiplier is disclosed which uses N different wavelengths of light that are modulated with amplitudes representing elements of an N.times.1 vector and combined to form an input wavelength-division multiplexed (WDM) light stream. The input WDM light stream is split into N streamlets from which each wavelength of the light is individually coupled out and modulated for a second time using an input signal representing elements of an M.times.N matrix, and is then coupled into an output waveguide for each streamlet to form an output WDM light stream which is detected to generate a product of the vector and matrix. The vector-matrix multiplier can be formed as an integrated optical circuit using either waveguide amplitude modulators or ring resonator amplitude modulators.

  12. Finite Nilpotent BRST Transformations in Hamiltonian Formulation

    NASA Astrophysics Data System (ADS)

    Rai, Sumit Kumar; Mandal, Bhabani Prasad

    2013-10-01

    We consider the finite field dependent BRST (FFBRST) transformations in the context of Hamiltonian formulation using Batalin-Fradkin-Vilkovisky method. The non-trivial Jacobian of such transformations is calculated in extended phase space. The contribution from Jacobian can be written as exponential of some local functional of fields which can be added to the effective Hamiltonian of the system. Thus, FFBRST in Hamiltonian formulation with extended phase space also connects different effective theories. We establish this result with the help of two explicit examples. We also show that the FFBRST transformations is similar to the canonical transformations in the sector of Lagrange multiplier and its corresponding momenta.

  13. Modeling of Mixing Behavior in a Combined Blowing Steelmaking Converter with a Filter-Based Euler-Lagrange Model

    NASA Astrophysics Data System (ADS)

    Li, Mingming; Li, Lin; Li, Qiang; Zou, Zongshu

    2018-05-01

    A filter-based Euler-Lagrange multiphase flow model is used to study the mixing behavior in a combined blowing steelmaking converter. The Euler-based volume of fluid approach is employed to simulate the top blowing, while the Lagrange-based discrete phase model that embeds the local volume change of rising bubbles for the bottom blowing. A filter-based turbulence method based on the local meshing resolution is proposed aiming to improve the modeling of turbulent eddy viscosities. The model validity is verified through comparison with physical experiments in terms of mixing curves and mixing times. The effects of the bottom gas flow rate on bath flow and mixing behavior are investigated and the inherent reasons for the mixing result are clarified in terms of the characteristics of bottom-blowing plumes, the interaction between plumes and top-blowing jets, and the change of bath flow structure.

  14. Multiplier less high-speed squaring circuit for binary numbers

    NASA Astrophysics Data System (ADS)

    Sethi, Kabiraj; Panda, Rutuparna

    2015-03-01

    The squaring operation is important in many applications in signal processing, cryptography etc. In general, squaring circuits reported in the literature use fast multipliers. A novel idea of a squaring circuit without using multipliers is proposed in this paper. Ancient Indian method used for squaring decimal numbers is extended here for binary numbers. The key to our success is that no multiplier is used. Instead, one squaring circuit is used. The hardware architecture of the proposed squaring circuit is presented. The design is coded in VHDL and synthesised and simulated in Xilinx ISE Design Suite 10.1 (Xilinx Inc., San Jose, CA, USA). It is implemented in Xilinx Vertex 4vls15sf363-12 device (Xilinx Inc.). The results in terms of time delay and area is compared with both modified Booth's algorithm and squaring circuit using Vedic multipliers. Our proposed squaring circuit seems to have better performance in terms of both speed and area.

  15. Phase-field modeling of isothermal quasi-incompressible multicomponent liquids

    NASA Astrophysics Data System (ADS)

    Tóth, Gyula I.

    2016-09-01

    In this paper general dynamic equations describing the time evolution of isothermal quasi-incompressible multicomponent liquids are derived in the framework of the classical Ginzburg-Landau theory of first order phase transformations. Based on the fundamental equations of continuum mechanics, a general convection-diffusion dynamics is set up first for compressible liquids. The constitutive relations for the diffusion fluxes and the capillary stress are determined in the framework of gradient theories. Next the general definition of incompressibility is given, which is taken into account in the derivation by using the Lagrange multiplier method. To validate the theory, the dynamic equations are solved numerically for the quaternary quasi-incompressible Cahn-Hilliard system. It is demonstrated that variable density (i) has no effect on equilibrium (in case of a suitably constructed free energy functional) and (ii) can influence nonequilibrium pattern formation significantly.

  16. Proof of feasibility of the Vacuum Silicon PhotoMultiplier Tube (VSiPMT)

    NASA Astrophysics Data System (ADS)

    Barbarino, G.; Campajola, L.; de Asmundis, R.; De Rosa, G.; Fiorillo, G.; Migliozzi, P.; Barbato, F. C. T.; Mollo, C. M.; Russo, A.; Vivolo, D.

    2013-04-01

    The Vacuum Silicon PhotoMultiplier Tube (VSiPMT) is an innovative design we propose for a modern hybrid photodetector based on the combination of a Silicon PhotoMultiplier (SiPM) with a hemispherical vacuum glass PMT standard envelope. The basic idea is to replace the classical dynode chain of a PMT with a SiPM, which acts as an electron multiplying detector. Such a solution will match the goal of a large photocathode sensitive area with the performances of a SiPM. This will lead to many advantages such as lower power consumption, mild sensitivity to magnetic fields and high quantum efficiency. The feasibility of this idea has been throughly studied both from a theoretical and experimental point of view. As a first step we performed the full characterization of a special non-windowed Hamamatsu MPPC with a laser source. The response of the SiPM to an electron beam was studied as a function of the energy and of the incident angle by means of a Geant4-based simulation. In this paper we present the preliminary results of the characterization of the SiPM with an electron source and we discuss how the development of next generation SiPMs will overcome the main weaknesses of VSiPMT, such as relatively low PDE and high photocathode voltage.

  17. Open-loop digital frequency multiplier

    NASA Technical Reports Server (NTRS)

    Moore, R. C.

    1977-01-01

    Monostable multivibrator is implemented by using digital integrated circuits where multiplier constant is too large for conventional phase-locked-loop integrated circuit. A 400 Hz clock is generated by divide-by-N counter from 1 Hz timing reference.

  18. Parallel processing a three-dimensional free-lagrange code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mandell, D.A.; Trease, H.E.

    1989-01-01

    A three-dimensional, time-dependent free-Lagrange hydrodynamics code has been multitasked and autotasked on a CRAY X-MP/416. The multitasking was done by using the Los Alamos Multitasking Control Library, which is a superset of the CRAY multitasking library. Autotasking is done by using constructs which are only comment cards if the source code is not run through a preprocessor. The three-dimensional algorithm has presented a number of problems that simpler algorithms, such as those for one-dimensional hydrodynamics, did not exhibit. Problems in converting the serial code, originally written for a CRAY-1, to a multitasking code are discussed. Autotasking of a rewritten versionmore » of the code is discussed. Timing results for subroutines and hot spots in the serial code are presented and suggestions for additional tools and debugging aids are given. Theoretical speedup results obtained from Amdahl's law and actual speedup results obtained on a dedicated machine are presented. Suggestions for designing large parallel codes are given.« less

  19. Voidage correction algorithm for unresolved Euler-Lagrange simulations

    NASA Astrophysics Data System (ADS)

    Askarishahi, Maryam; Salehi, Mohammad-Sadegh; Radl, Stefan

    2018-04-01

    The effect of grid coarsening on the predicted total drag force and heat exchange rate in dense gas-particle flows is investigated using Euler-Lagrange (EL) approach. We demonstrate that grid coarsening may reduce the predicted total drag force and exchange rate. Surprisingly, exchange coefficients predicted by the EL approach deviate more significantly from the exact value compared to results of Euler-Euler (EE)-based calculations. The voidage gradient is identified as the root cause of this peculiar behavior. Consequently, we propose a correction algorithm based on a sigmoidal function to predict the voidage experienced by individual particles. Our correction algorithm can significantly improve the prediction of exchange coefficients in EL models, which is tested for simulations involving Euler grid cell sizes between 2d_p and 12d_p . It is most relevant in simulations of dense polydisperse particle suspensions featuring steep voidage profiles. For these suspensions, classical approaches may result in an error of the total exchange rate of up to 30%.

  20. VLSI Implementation of Fault Tolerance Multiplier based on Reversible Logic Gate

    NASA Astrophysics Data System (ADS)

    Ahmad, Nabihah; Hakimi Mokhtar, Ahmad; Othman, Nurmiza binti; Fhong Soon, Chin; Rahman, Ab Al Hadi Ab

    2017-08-01

    Multiplier is one of the essential component in the digital world such as in digital signal processing, microprocessor, quantum computing and widely used in arithmetic unit. Due to the complexity of the multiplier, tendency of errors are very high. This paper aimed to design a 2×2 bit Fault Tolerance Multiplier based on Reversible logic gate with low power consumption and high performance. This design have been implemented using 90nm Complemetary Metal Oxide Semiconductor (CMOS) technology in Synopsys Electronic Design Automation (EDA) Tools. Implementation of the multiplier architecture is by using the reversible logic gates. The fault tolerance multiplier used the combination of three reversible logic gate which are Double Feynman gate (F2G), New Fault Tolerance (NFT) gate and Islam Gate (IG) with the area of 160μm x 420.3μm (67.25 mm2). This design achieved a low power consumption of 122.85μW and propagation delay of 16.99ns. The fault tolerance multiplier proposed achieved a low power consumption and high performance which suitable for application of modern computing as it has a fault tolerance capabilities.

  1. The Lagrange Points in a Binary Black Hole System: Applications to Electromagnetic Signatures

    NASA Technical Reports Server (NTRS)

    Schnittman, Jeremy

    2010-01-01

    We study the stability and evolution of the Lagrange points L_4 and L-5 in a black hole (BH) binary system, including gravitational radiation. We find that gas and stars can be shepherded in with the BH system until the final moments before merger, providing the fuel for a bright electromagnetic counterpart to a gravitational wave signal. Other astrophysical signatures include the ejection of hyper-velocity stars, gravitational collapse of globular clusters, and the periodic shift of narrow emission lines in AGN.

  2. Lagrange formula for differential operators on a tree-graph and the resolvents of well-posed restrictions of operator

    NASA Astrophysics Data System (ADS)

    Koshkarbayev, Nurbol; Kanguzhin, Baltabek

    2017-09-01

    In this paper we study the question on the full description of well-posed restrictions of given maximal differential operator on a tree-graph. Lagrange formula for differential operator on a tree with Kirchhoff conditions at its internal vertices is presented.

  3. Error estimates of Lagrange interpolation and orthonormal expansions for Freud weights

    NASA Astrophysics Data System (ADS)

    Kwon, K. H.; Lee, D. W.

    2001-08-01

    Let Sn[f] be the nth partial sum of the orthonormal polynomials expansion with respect to a Freud weight. Then we obtain sufficient conditions for the boundedness of Sn[f] and discuss the speed of the convergence of Sn[f] in weighted Lp space. We also find sufficient conditions for the boundedness of the Lagrange interpolation polynomial Ln[f], whose nodal points are the zeros of orthonormal polynomials with respect to a Freud weight. In particular, if W(x)=e-(1/2)x2 is the Hermite weight function, then we obtain sufficient conditions for the inequalities to hold:andwhere and k=0,1,2...,r.

  4. Domain decomposition methods for nonconforming finite element spaces of Lagrange-type

    NASA Technical Reports Server (NTRS)

    Cowsar, Lawrence C.

    1993-01-01

    In this article, we consider the application of three popular domain decomposition methods to Lagrange-type nonconforming finite element discretizations of scalar, self-adjoint, second order elliptic equations. The additive Schwarz method of Dryja and Widlund, the vertex space method of Smith, and the balancing method of Mandel applied to nonconforming elements are shown to converge at a rate no worse than their applications to the standard conforming piecewise linear Galerkin discretization. Essentially, the theory for the nonconforming elements is inherited from the existing theory for the conforming elements with only modest modification by constructing an isomorphism between the nonconforming finite element space and a space of continuous piecewise linear functions.

  5. A hybridized formulation for the weak Galerkin mixed finite element method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mu, Lin; Wang, Junping; Ye, Xiu

    This paper presents a hybridized formulation for the weak Galerkin mixed finite element method (WG-MFEM) which was introduced and analyzed in Wang and Ye (2014) for second order elliptic equations. The WG-MFEM method was designed by using discontinuous piecewise polynomials on finite element partitions consisting of polygonal or polyhedral elements of arbitrary shape. The key to WG-MFEM is the use of a discrete weak divergence operator which is defined and computed by solving inexpensive problems locally on each element. The hybridized formulation of this paper leads to a significantly reduced system of linear equations involving only the unknowns arising frommore » the Lagrange multiplier in hybridization. Optimal-order error estimates are derived for the hybridized WG-MFEM approximations. In conclusion, some numerical results are reported to confirm the theory and a superconvergence for the Lagrange multiplier.« less

  6. A hybridized formulation for the weak Galerkin mixed finite element method

    DOE PAGES

    Mu, Lin; Wang, Junping; Ye, Xiu

    2016-01-14

    This paper presents a hybridized formulation for the weak Galerkin mixed finite element method (WG-MFEM) which was introduced and analyzed in Wang and Ye (2014) for second order elliptic equations. The WG-MFEM method was designed by using discontinuous piecewise polynomials on finite element partitions consisting of polygonal or polyhedral elements of arbitrary shape. The key to WG-MFEM is the use of a discrete weak divergence operator which is defined and computed by solving inexpensive problems locally on each element. The hybridized formulation of this paper leads to a significantly reduced system of linear equations involving only the unknowns arising frommore » the Lagrange multiplier in hybridization. Optimal-order error estimates are derived for the hybridized WG-MFEM approximations. In conclusion, some numerical results are reported to confirm the theory and a superconvergence for the Lagrange multiplier.« less

  7. Generalized Lagrange Jacobi Gauss-Lobatto (GLJGL) Collocation Method for Solving Linear and Nonlinear Fokker-Planck Equations

    NASA Astrophysics Data System (ADS)

    Parand, K.; Latifi, S.; Moayeri, M. M.; Delkhosh, M.

    2018-05-01

    In this study, we have constructed a new numerical approach for solving the time-dependent linear and nonlinear Fokker-Planck equations. In fact, we have discretized the time variable with Crank-Nicolson method and for the space variable, a numerical method based on Generalized Lagrange Jacobi Gauss-Lobatto (GLJGL) collocation method is applied. It leads to in solving the equation in a series of time steps and at each time step, the problem is reduced to a problem consisting of a system of algebraic equations that greatly simplifies the problem. One can observe that the proposed method is simple and accurate. Indeed, one of its merits is that it is derivative-free and by proposing a formula for derivative matrices, the difficulty aroused in calculation is overcome, along with that it does not need to calculate the General Lagrange basis and matrices; they have Kronecker property. Linear and nonlinear Fokker-Planck equations are given as examples and the results amply demonstrate that the presented method is very valid, effective, reliable and does not require any restrictive assumptions for nonlinear terms.

  8. Lagrange Multipliers, Adjoint Equations, the Pontryagin Maximum Principle and Heuristic Proofs

    ERIC Educational Resources Information Center

    Ollerton, Richard L.

    2013-01-01

    Deeper understanding of important mathematical concepts by students may be promoted through the (initial) use of heuristic proofs, especially when the concepts are also related back to previously encountered mathematical ideas or tools. The approach is illustrated by use of the Pontryagin maximum principle which is then illuminated by reference to…

  9. A Numerical Scheme for the Solution of the Space Charge Problem on a Multiply Connected Region

    NASA Astrophysics Data System (ADS)

    Budd, C. J.; Wheeler, A. A.

    1991-11-01

    In this paper we extend the work of Budd and Wheeler ( Proc. R. Soc. London A, 417, 389, 1988) , who described a new numerical scheme for the solution of the space charge equation on a simple connected domain, to multiply connected regions. The space charge equation, ▿ · ( Δ overlineϕ ▽ overlineϕ) = 0 , is a third-order nonlinear partial differential equation for the electric potential overlineϕ which models the electric field in the vicinity of a coronating conductor. Budd and Wheeler described a new way of analysing this equation by constructing an orthogonal coordinate system ( overlineϕ, overlineψ) and recasting the equation in terms of x, y, and ▽ overlineϕ as functions of ( overlineϕ, overlineψ). This transformation is singular on multiply connected regions and in this paper we show how this may be overcome to provide an efficient numerical scheme for the solution of the space charge equation. This scheme also provides a new method for the solution of Laplaces equation and the calculation of orthogonal meshes on multiply connected regions.

  10. Mean-Field Description of Ionic Size Effects with Non-Uniform Ionic Sizes: A Numerical Approach

    PubMed Central

    Zhou, Shenggao; Wang, Zhongming; Li, Bo

    2013-01-01

    Ionic size effects are significant in many biological systems. Mean-field descriptions of such effects can be efficient but also challenging. When ionic sizes are different, explicit formulas in such descriptions are not available for the dependence of the ionic concentrations on the electrostatic potential, i.e., there is no explicit, Boltzmann type distributions. This work begins with a variational formulation of the continuum electrostatics of an ionic solution with such non-uniform ionic sizes as well as multiple ionic valences. An augmented Lagrange multiplier method is then developed and implemented to numerically solve the underlying constrained optimization problem. The method is shown to be accurate and efficient, and is applied to ionic systems with non-uniform ionic sizes such as the sodium chloride solution. Extensive numerical tests demonstrate that the mean-field model and numerical method capture qualitatively some significant ionic size effects, particularly those for multivalent ionic solutions, such as the stratification of multivalent counterions near a charged surface. The ionic valence-to-volume ratio is found to be the key physical parameter in the stratification of concentrations. All these are not well described by the classical Poisson–Boltzmann theory, or the generalized Poisson–Boltzmann theory that treats uniform ionic sizes. Finally, various issues such as the close packing, limitation of the continuum model, and generalization of this work to molecular solvation are discussed. PMID:21929014

  11. MULTIPLY: Development of a European HSRL Airborne Facility

    NASA Astrophysics Data System (ADS)

    Binietoglou, Ioannis; Serikov, Ilya; Nicolae, Doina; Amiridis, Vassillis; Belegante, Livio; Boscornea, Andrea; Brugmann, Bjorn; Costa Suros, Montserrat; Hellmann, David; Kokkalis, Panagiotis; Linne, Holger; Stachlewska, Iwona; Vajaiac, Sorin-Nicolae

    2016-08-01

    MULTIPLY is a novel airborne high spectral resolution lidar (HSRL) currently under development by a consortium of European institutions from Romania, Germany, Greece, and Poland. Its aim is to contribute to calibration and validations activities of the upcoming ESA aerosol sensing missions like ADM-Aeolus, EarthCARE and the Sentinel-3/-4/-5/-5p which include products related to atmospheric aerosols. The effectiveness of these missions depends on independent airborne measurements to develop and test the retrieval methods, and validate mission products following launch. The aim of ESA's MULTIPLY project is to design, develop, and test a multi-wavelength depolarization HSRL for airborne applications. The MULTIPLY lidar will deliver the aerosol extinction and backscatter coefficient profiles at three wavelengths (355nm, 532nm, 1064nm), as well as profiles of aerosol intensive parameters (Ångström exponents, extinction- to-backscatter ratios, and linear particle depolarization ratios).

  12. Correlation transfer and diffusion of ultrasound-modulated multiply scattered light.

    PubMed

    Sakadzić, Sava; Wang, Lihong V

    2006-04-28

    We develop a temporal correlation transfer equation (CTE) and a temporal correlation diffusion equation (CDE) for ultrasound-modulated multiply scattered light. These equations can be applied to an optically scattering medium with embedded optically scattering and absorbing objects to calculate the power spectrum of light modulated by a nonuniform ultrasound field. We present an analytical solution based on the CDE and Monte Carlo simulation results for light modulated by a cylinder of ultrasound in an optically scattering slab. We further validate with experimental measurements the numerical calculations for an actual ultrasound field. The CTE and CDE are valid for moderate ultrasound pressures and on a length scale comparable with the optical transport mean-free path. These equations should be applicable to a wide spectrum of conditions for ultrasound-modulated optical tomography of soft biological tissues.

  13. Why Multiply by "g"?

    ERIC Educational Resources Information Center

    Nelson, Jane Bray

    2012-01-01

    As a new physics teacher, I was explaining how to find the weight of an object sitting on a table near the surface of the Earth. It bothered me when a student asked, "The object is not accelerating so why do you multiply the mass of the object by the acceleration due to gravity?" I answered something like, "That's true, but if the table were not…

  14. A Highly Linear and Wide Input Range Four-Quadrant CMOS Analog Multiplier Using Active Feedback

    NASA Astrophysics Data System (ADS)

    Huang, Zhangcai; Jiang, Minglu; Inoue, Yasuaki

    Analog multipliers are one of the most important building blocks in analog signal processing circuits. The performance with high linearity and wide input range is usually required for analog four-quadrant multipliers in most applications. Therefore, a highly linear and wide input range four-quadrant CMOS analog multiplier using active feedback is proposed in this paper. Firstly, a novel configuration of four-quadrant multiplier cell is presented. Its input dynamic range and linearity are improved significantly by adding two resistors compared with the conventional structure. Then based on the proposed multiplier cell configuration, a four-quadrant CMOS analog multiplier with active feedback technique is implemented by two operational amplifiers. Because of both the proposed multiplier cell and active feedback technique, the proposed multiplier achieves a much wider input range with higher linearity than conventional structures. The proposed multiplier was fabricated by a 0.6µm CMOS process. Experimental results show that the input range of the proposed multiplier can be up to 5.6Vpp with 0.159% linearity error on VX and 4.8Vpp with 0.51% linearity error on VY for ±2.5V power supply voltages, respectively.

  15. On a Lagrange-Hamilton formalism describing position and momentum uncertainties

    NASA Technical Reports Server (NTRS)

    Schuch, Dieter

    1993-01-01

    According to Heisenberg's uncertainty relation, in quantum mechanics it is not possible to determine, simultaneously, exact values for the position and the momentum of a material system. Calculating the mean value of the Hamiltonian operator with the aid of exact analytic Gaussian wave packet solutions, these uncertainties cause an energy contribution additional to the classical energy of the system. For the harmonic oscillator, e.g., this nonclassical energy represents the ground state energy. It will be shown that this additional energy contribution can be considered as a Hamiltonian function, if it is written in appropriate variables. With the help of the usual Lagrange-Hamilton formalism known from classical particle mechanics, but now considering this new Hamiltonian function, it is possible to obtain the equations of motion for position and momentum uncertainties.

  16. Shape Analysis of Planar Multiply-Connected Objects Using Conformal Welding.

    PubMed

    Lok Ming Lui; Wei Zeng; Shing-Tung Yau; Xianfeng Gu

    2014-07-01

    Shape analysis is a central problem in the field of computer vision. In 2D shape analysis, classification and recognition of objects from their observed silhouettes are extremely crucial but difficult. It usually involves an efficient representation of 2D shape space with a metric, so that its mathematical structure can be used for further analysis. Although the study of 2D simply-connected shapes has been subject to a corpus of literatures, the analysis of multiply-connected shapes is comparatively less studied. In this work, we propose a representation for general 2D multiply-connected domains with arbitrary topologies using conformal welding. A metric can be defined on the proposed representation space, which gives a metric to measure dissimilarities between objects. The main idea is to map the exterior and interior of the domain conformally to unit disks and circle domains (unit disk with several inner disks removed), using holomorphic 1-forms. A set of diffeomorphisms of the unit circle S(1) can be obtained, which together with the conformal modules are used to define the shape signature. A shape distance between shape signatures can be defined to measure dissimilarities between shapes. We prove theoretically that the proposed shape signature uniquely determines the multiply-connected objects under suitable normalization. We also introduce a reconstruction algorithm to obtain shapes from their signatures. This completes our framework and allows us to move back and forth between shapes and signatures. With that, a morphing algorithm between shapes can be developed through the interpolation of the Beltrami coefficients associated with the signatures. Experiments have been carried out on shapes extracted from real images. Results demonstrate the efficacy of our proposed algorithm as a stable shape representation scheme.

  17. Modelling of charged satellite motion in Earth's gravitational and magnetic fields

    NASA Astrophysics Data System (ADS)

    Abd El-Bar, S. E.; Abd El-Salam, F. A.

    2018-05-01

    In this work Lagrange's planetary equations for a charged satellite subjected to the Earth's gravitational and magnetic force fields are solved. The Earth's gravity, and magnetic and electric force components are obtained and expressed in terms of orbital elements. The variational equations of orbit with the considered model in Keplerian elements are derived. The solution of the problem in a fully analytical way is obtained. The temporal rate of changes of the orbital elements of the spacecraft are integrated via Lagrange's planetary equations and integrals of the normalized Keplerian motion obtained by Ahmed (Astron. J. 107(5):1900, 1994).

  18. WIDE BAND REGENERATIVE FREQUENCY DIVIDER AND MULTIPLIER

    DOEpatents

    Laine, E.F.

    1959-11-17

    A regenerative frequency divider and multiplier having wide band input characteristics is presented. The circuit produces output oscillations having frequencies related by a fixed ratio to input oscillations over a wide band of frequencies. In accomplishing this end, the divider-multiplier includes a wide band input circuit coupled by mixer means to a wide band output circuit having a pass band related by a fixed ratio to that of the input circuit. A regenerative feedback circuit derives a fixed frequency ratio feedback signal from the output circuit and applies same to the mixer means in proper phase relation to sustain fixed frequency ratio oscillations in the output circuit.

  19. Alternative to the Palatini method: A new variational principle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goenner, Hubert

    2010-06-15

    A variational principle is suggested within Riemannian geometry, in which an auxiliary metric and the Levi Civita connection are varied independently. The auxiliary metric plays the role of a Lagrange multiplier and introduces nonminimal coupling of matter to the curvature scalar. The field equations are 2nd order PDEs and easier to handle than those following from the so-called Palatini method. Moreover, in contrast to the latter method, no gradients of the matter variables appear. In cosmological modeling, the physics resulting from the alternative variational principle will differ from the modeling using the standard Palatini method.

  20. The Phase Rule in a System Subject to a Pressure Gradient

    NASA Astrophysics Data System (ADS)

    Podladchikov, Yuri; Connolly, James; Powell, Roger; Aardvark, Alberto

    2015-04-01

    It can be shown by diligent application of Lagrange's method of undetermined multipliers that the phase rule in a system subject to a pressure gradient is: � + 赑 ≥ ρ. We explore the consequence of this important relationship for natural systems.

  1. A trust region-based approach to optimize triple response systems

    NASA Astrophysics Data System (ADS)

    Fan, Shu-Kai S.; Fan, Chihhao; Huang, Chia-Fen

    2014-05-01

    This article presents a new computing procedure for the global optimization of the triple response system (TRS) where the response functions are non-convex quadratics and the input factors satisfy a radial constrained region of interest. The TRS arising from response surface modelling can be approximated using a nonlinear mathematical program that considers one primary objective function and two secondary constraint functions. An optimization algorithm named the triple response surface algorithm (TRSALG) is proposed to determine the global optimum for the non-degenerate TRS. In TRSALG, the Lagrange multipliers of the secondary functions are determined using the Hooke-Jeeves search method and the Lagrange multiplier of the radial constraint is located using the trust region method within the global optimality space. The proposed algorithm is illustrated in terms of three examples appearing in the quality-control literature. The results of TRSALG compared to a gradient-based method are also presented.

  2. De Sitter and scaling solutions in a higher-order modified teleparallel theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paliathanasis, Andronikos, E-mail: anpaliat@phys.uoa.gr

    The existence and the stability conditions for some exact relativistic solutions of special interest are studied in a higher-order modified teleparallel gravitational theory. The theory with the use of a Lagrange multiplier is equivalent with that of General Relativity with a minimally coupled noncanonical field. The conditions for the existence of de Sitter solutions and ideal gas solutions in the case of vacuum are studied as also the stability criteria. Furthermore, in the presence of matter the behaviour of scaling solutions is given. Finally, we discuss the degrees of freedom of the field equations and we reduce the field equationsmore » in an algebraic equation, where in order to demonstrate our result we show how this noncanonical scalar field can reproduce the Hubble function of Λ-cosmology.« less

  3. On-Chip Power-Combining for High-Power Schottky Diode Based Frequency Multipliers

    NASA Technical Reports Server (NTRS)

    Siles Perez, Jose Vicente (Inventor); Chattopadhyay, Goutam (Inventor); Lee, Choonsup (Inventor); Schlecht, Erich T. (Inventor); Jung-Kubiak, Cecile D. (Inventor); Mehdi, Imran (Inventor)

    2015-01-01

    A novel MMIC on-chip power-combined frequency multiplier device and a method of fabricating the same, comprising two or more multiplying structures integrated on a single chip, wherein each of the integrated multiplying structures are electrically identical and each of the multiplying structures include one input antenna (E-probe) for receiving an input signal in the millimeter-wave, submillimeter-wave or terahertz frequency range inputted on the chip, a stripline based input matching network electrically connecting the input antennas to two or more Schottky diodes in a balanced configuration, two or more Schottky diodes that are used as nonlinear semiconductor devices to generate harmonics out of the input signal and produce the multiplied output signal, stripline based output matching networks for transmitting the output signal from the Schottky diodes to an output antenna, and an output antenna (E-probe) for transmitting the output signal off the chip into the output waveguide transmission line.

  4. Gain degradation and efficiencies of spiral electron multipliers

    NASA Technical Reports Server (NTRS)

    Judge, R. J. R.; Palmer, D. A.

    1973-01-01

    The characteristics of spiral electron multipliers as functions of accumulated counts were investigated. The mean gain of the multipliers showed a steady decline from about 100 million when new, to about one million after 100 billion events when biased in a saturation mode. For prolonged use in a space environment, improved life expectancy might be obtained with a varying bias voltage adjusted to maintain the gain comfortably above a given discrimination level. Pulse-height distributions at various stages of the lifetime and variations of efficiency with energy of detected electrons are presented.

  5. Development of Resistive Electrode Gas Electron Multiplier (RE-GEM)

    NASA Technical Reports Server (NTRS)

    Yoshikawa, A.; Tamagawa, T.; Iwahashi, T.; Asami, F.; Takeuchi, Y.; Hayato, A.; Hamagaki, H.; Gunji, T.; Akimoto, R.; Nukariya, A.; hide

    2012-01-01

    We successfully produced Resistive-Electrode Gas Electron Multiplier (RE-GEM) which has resistive electrodes instead of the metal ones which are employed for the standard GEM foils. RE-GEM has a resistive electrode of 25 micron-thick and an insulator layer of 100 micron-thick. The hole structure of RE-GEM is a single conical with the wider and narrower hole diameters of 80 micron and 60 micron, respectively. A hole pitch of RE-GEM is 140 micron. We obtained the maximum gain of about 600 and the typical energy resolution of about 20% (FWHM) at an applied voltage between the resistive electrodes of 620 V, using a collimated 8 keV X-rays from a generator in a gas mixture of 70% Ar and 30% CO2 by volume at the atmospheric pressure. We measured the effective gain as a function of the electric field of the drift region and obtained the maximum gain at an drift field of 0.5 kV/cm.

  6. The geometrical theory of constraints applied to the dynamics of vakonomic mechanical systems: The vakonomic bracket

    NASA Astrophysics Data System (ADS)

    Martínez, Sonia; Cortés, Jorge; de León, Manuel

    2000-04-01

    A vakonomic mechanical system can be alternatively described by an extended Lagrangian using the Lagrange multipliers as new variables. Since this extended Lagrangian is singular, the constraint algorithm can be applied and a Dirac bracket giving the evolution of the observables can be constructed.

  7. Duality in non-linear programming

    NASA Astrophysics Data System (ADS)

    Jeyalakshmi, K.

    2018-04-01

    In this paper we consider duality and converse duality for a programming problem involving convex objective and constraint functions with finite dimensional range. We do not assume any constraint qualification. The dual is presented by reducing the problem to a standard Lagrange multiplier problem.

  8. An Example of Branching in a Variational Problem.

    ERIC Educational Resources Information Center

    Darbro, Wesley

    1978-01-01

    Investigates the shape a liquid takes, due to its surface tension while suspended upon a wire frame in zero-g, using Lagrange multipliers. Shows how the configuration of soap films so bounded are dependent upon the volume of liquid trapped in the films. (Author/GA)

  9. Electron multiplier-ion detector system

    DOEpatents

    Dietz, L.A.

    1975-08-01

    This patent relates to an improved ion detector for use in mass spectrometers for pulse counting signal ions which may have a positive or a negative charge. The invention combines a novel electron multiplier with a scintillator type of ion detector. It is a high vacuum, high voltage device intended for use in ion microprobe mass spectrometers. (auth)

  10. Metrology and Transport of Multiply Charged Ions

    NASA Astrophysics Data System (ADS)

    Kulkarni, Dhruva

    The transport and interaction of singly- and multiply-charged ions with matter has been studied. The experiments were performed in an ultra-high vacuum environment. The low- and hyperthermal-energy ion beamline was used as a source of singly charged ions, while the CUEBIT facility was used as a source of multiply charged ions. The kinetic energy of the ion beam obtained from the CUEBIT is offset from the nominal value expected from the applied electrostatic potentials. These offsets were studied by measuring the kinetic energy of the beam using a retarding field analyzer (RFA). The offset was attributed to the space charge of the electron beam that is used to create the multiply charged ions. The charge density of the electron beam was varied by changing operational parameters of the electron beam, namely the electron beam current and the energy of the electron beam. Ion beams of Ar4+ and Ar8+ were extracted from the source and the offsets observed in the kinetic energy were related to the variation in the space charge potential of the electron beam. Measurements of these offsets, ranging from 100 eV/Q to 300 eV/Q, are significant and important for experiments that aim to utilize the potential energy of slow multiply charged ions. The transport of ions using capillaries has been studied to investigate the viability of ion-guiding as a means for a novel ion delivery mechanism. Results on transport through large bore capillaries (macrocapillaries) that probe both the geometric and ionguided mechanisms are presented. The angle- and position-dependent transport properties were found to depend on the material of the capillary (specifically, whether metal or insulator) and the geometry of the capillary. Rb+ ions at a kinetic energy of 1 keV were transmitted through metal and glass capillaries that were a few centimeters in length and a few millimeters in diameter. Oscillations were observed in the capillaries made of glass which were absent in the metal capillaries

  11. Non-cross talk multi-channel photomultiplier using guided electron multipliers

    DOEpatents

    Gomez, J.; Majewski, S.; Weisenberger, A.G.

    1995-09-26

    An improved multi-channel electron multiplier is provided that exhibits zero cross-talk and high rate operation. Resistive material input and output masks are employed to control divergence of electrons. Electron multiplication takes place in closed channels. Several embodiments are provided for these channels including a continuous resistive emissive multiplier and a discrete resistive multiplier with discrete dynode chains interspaced with resistive layers-masks. Both basic embodiments provide high gain multiplication of electrons without accumulating surface charges while containing electrons to their proper channels to eliminate cross-talk. The invention can be for example applied to improve the performance of ion mass spectrometers, positron emission tomography devices, in DNA sequencing and other beta radiography applications and in many applications in particle physics. 28 figs.

  12. Non cross talk multi-channel photomultiplier using guided electron multipliers

    DOEpatents

    Gomez, Javier; Majewski, Stanislaw; Weisenberger, Andrew G.

    1995-01-01

    An improved multi-channel electron multiplier is provided that exhibits zero cross-talk and high rate operation. Resistive material input and output masks are employed to control divergence of electrons. Electron multiplication takes place in closed channels. Several embodiments are provided for these channels including a continuous resistive emissive multiplier and a discrete resistive multiplier with discrete dynode chains interspaced with resistive layers-masks. Both basic embodiments provide high gain multiplication of electrons without accumulating surface charges while containing electrons to their proper channels to eliminate cross-talk. The invention can be for example applied to improve the performance of ion mass spectrometers, positron emission tomography devices, in DNA sequencing and other beta radiography applications and in many applications in particle physics.

  13. Automated Testability Decision Tool

    DTIC Science & Technology

    1991-09-01

    Vol. 16,1968, pp. 538-558. Bertsekas, D. P., "Constraints Optimization and Lagrange Multiplier Methods," Academic Press, New York. McLeavey , D.W... McLeavey , J.A., "Parallel Optimization Methods in Standby Reliability, " University of Connecticut, School of Business Administration, Bureau of Business

  14. Modelling Truck Camper Production

    ERIC Educational Resources Information Center

    Kramlich, G. R., II; Kobylski, G.; Ahner, D.

    2008-01-01

    This note describes an interdisciplinary project designed to enhance students' knowledge of the basic techniques taught in a multivariable calculus course. The note discusses the four main requirements of the project and then the solutions for each requirement. Concepts covered include differentials, gradients, Lagrange multipliers, constrained…

  15. An étude on global vacuum energy sequester

    DOE PAGES

    D’Amico, Guido; Kaloper, Nemanja; Padilla, Antonio; ...

    2017-09-18

    Recently two of the authors proposed a mechanism of vacuum energy sequester as a means of protecting the observable cosmological constant from quantum radiative corrections. The original proposal was based on using global Lagrange multipliers, but later a local formulation was provided. Subsequently other interesting claims of a different non-local approach to the cosmological constant problem were made, based again on global Lagrange multipliers. We examine some of these proposals and find their mutual relationship. We explain that the proposals which do not treat the cosmological constant counterterm as a dynamical variable require fine tunings to have acceptable solutions. Furthermore,more » the counterterm often needs to be retuned at every order in the loop expansion to cancel the radiative corrections to the cosmological constant, just like in standard GR. These observations are an important reminder of just how the proposal of vacuum energy sequester avoids such problems.« less

  16. Multiscale Capability in Rattlesnake using Contiguous Discontinuous Discretization of Self-Adjoint Angular Flux Equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Weixiong; Wang, Yaqi; DeHart, Mark D.

    2016-09-01

    In this report, we present a new upwinding scheme for the multiscale capability in Rattlesnake, the MOOSE based radiation transport application. Comparing with the initial implementation of multiscale utilizing Lagrange multipliers to impose strong continuity of angular flux on interface of in-between subdomains, this scheme does not require the particular domain partitioning. This upwinding scheme introduces discontinuity of angular flux and resembles the classic upwinding technique developed for solving first order transport equation using discontinuous finite element method (DFEM) on the subdomain interfaces. Because this scheme restores the causality of radiation streaming on the interfaces, significant accuracy improvement can bemore » observed with moderate increase of the degrees of freedom comparing with the continuous method over the entire solution domain. Hybrid SN-PN is implemented and tested with this upwinding scheme. Numerical results show that the angular smoothing required by Lagrange multiplier method is not necessary for the upwinding scheme.« less

  17. A Lattice Boltzmann Fictitious Domain Method for Modeling Red Blood Cell Deformation and Multiple-Cell Hydrodynamic Interactions in Flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Xing; Lin, Guang; Zou, Jianfeng

    To model red blood cell (RBC) deformation in flow, the recently developed LBM-DLM/FD method ([Shi and Lim, 2007)29], derived from the lattice Boltzmann method and the distributed Lagrange multiplier/fictitious domain methodthe fictitious domain method, is extended to employ the mesoscopic network model for simulations of red blood cell deformation. The flow is simulated by the lattice Boltzmann method with an external force, while the network model is used for modeling red blood cell deformation and the fluid-RBC interaction is enforced by the Lagrange multiplier. To validate parameters of the RBC network model, sThe stretching numerical tests on both coarse andmore » fine meshes are performed and compared with the corresponding experimental data to validate the parameters of the RBC network model. In addition, RBC deformation in pipe flow and in shear flow is simulated, revealing the capacity of the current method for modeling RBC deformation in various flows.« less

  18. An Application of Multiplier Analysis in Analyzing the Role of Mining Sectors on Indonesian National Economy

    NASA Astrophysics Data System (ADS)

    Subanti, S.; Hakim, A. R.; Hakim, I. M.

    2018-03-01

    This purpose of the current study aims is to analyze the multiplier analysis on mining sector in Indonesia. The mining sectors defined by coal and metal; crude oil, natural gas, and geothermal; and other mining and quarrying. The multiplier analysis based from input output analysis, this divided by income multiplier and output multiplier. This results show that (1) Indonesian mining sectors ranked 6th with contribute amount of 6.81% on national total output; (2) Based on total gross value added, this sector contribute amount of 12.13% or ranked 4th; (3) The value from income multiplier is 0.7062 and the value from output multiplier is 1.2426.

  19. Robust adaptive uniform exact tracking control for uncertain Euler-Lagrange system

    NASA Astrophysics Data System (ADS)

    Yang, Yana; Hua, Changchun; Li, Junpeng; Guan, Xinping

    2017-12-01

    This paper offers a solution to the robust adaptive uniform exact tracking control for uncertain nonlinear Euler-Lagrange (EL) system. An adaptive finite-time tracking control algorithm is designed by proposing a novel nonsingular integral terminal sliding-mode surface. Moreover, a new adaptive parameter tuning law is also developed by making good use of the system tracking errors and the adaptive parameter estimation errors. Thus, both the trajectory tracking and the parameter estimation can be achieved in a guaranteed time adjusted arbitrarily based on practical demands, simultaneously. Additionally, the control result for the EL system proposed in this paper can be extended to high-order nonlinear systems easily. Finally, a test-bed 2-DOF robot arm is set-up to demonstrate the performance of the new control algorithm.

  20. A Jacobian-free Newton Krylov method for mortar-discretized thermomechanical contact problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Glen, E-mail: Glen.Hansen@inl.gov

    2011-07-20

    Multibody contact problems are common within the field of multiphysics simulation. Applications involving thermomechanical contact scenarios are also quite prevalent. Such problems can be challenging to solve due to the likelihood of thermal expansion affecting contact geometry which, in turn, can change the thermal behavior of the components being analyzed. This paper explores a simple model of a light water reactor nuclear fuel rod, which consists of cylindrical pellets of uranium dioxide (UO{sub 2}) fuel sealed within a Zircalloy cladding tube. The tube is initially filled with helium gas, which fills the gap between the pellets and cladding tube. Themore » accurate modeling of heat transfer across the gap between fuel pellets and the protective cladding is essential to understanding fuel performance, including cladding stress and behavior under irradiated conditions, which are factors that affect the lifetime of the fuel. The thermomechanical contact approach developed here is based on the mortar finite element method, where Lagrange multipliers are used to enforce weak continuity constraints at participating interfaces. In this formulation, the heat equation couples to linear mechanics through a thermal expansion term. Lagrange multipliers are used to formulate the continuity constraints for both heat flux and interface traction at contact interfaces. The resulting system of nonlinear algebraic equations are cast in residual form for solution of the transient problem. A Jacobian-free Newton Krylov method is used to provide for fully-coupled solution of the coupled thermal contact and heat equations.« less

  1. A Jacobian-Free Newton Krylov Method for Mortar-Discretized Thermomechanical Contact Problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glen Hansen

    2011-07-01

    Multibody contact problems are common within the field of multiphysics simulation. Applications involving thermomechanical contact scenarios are also quite prevalent. Such problems can be challenging to solve due to the likelihood of thermal expansion affecting contact geometry which, in turn, can change the thermal behavior of the components being analyzed. This paper explores a simple model of a light water reactor nuclear reactor fuel rod, which consists of cylindrical pellets of uranium dioxide (UO2) fuel sealed within a Zircalloy cladding tube. The tube is initially filled with helium gas, which fills the gap between the pellets and cladding tube. Themore » accurate modeling of heat transfer across the gap between fuel pellets and the protective cladding is essential to understanding fuel performance, including cladding stress and behavior under irradiated conditions, which are factors that affect the lifetime of the fuel. The thermomechanical contact approach developed here is based on the mortar finite element method, where Lagrange multipliers are used to enforce weak continuity constraints at participating interfaces. In this formulation, the heat equation couples to linear mechanics through a thermal expansion term. Lagrange multipliers are used to formulate the continuity constraints for both heat flux and interface traction at contact interfaces. The resulting system of nonlinear algebraic equations are cast in residual form for solution of the transient problem. A Jacobian-free Newton Krylov method is used to provide for fully-coupled solution of the coupled thermal contact and heat equations.« less

  2. Augmented Lagrange Programming Neural Network for Localization Using Time-Difference-of-Arrival Measurements.

    PubMed

    Han, Zifa; Leung, Chi Sing; So, Hing Cheung; Constantinides, Anthony George

    2017-08-15

    A commonly used measurement model for locating a mobile source is time-difference-of-arrival (TDOA). As each TDOA measurement defines a hyperbola, it is not straightforward to compute the mobile source position due to the nonlinear relationship in the measurements. This brief exploits the Lagrange programming neural network (LPNN), which provides a general framework to solve nonlinear constrained optimization problems, for the TDOA-based localization. The local stability of the proposed LPNN solution is also analyzed. Simulation results are included to evaluate the localization accuracy of the LPNN scheme by comparing with the state-of-the-art methods and the optimality benchmark of Cramér-Rao lower bound.

  3. Spatial Dynamics and Determinants of County-Level Education Expenditure in China

    ERIC Educational Resources Information Center

    Gu, Jiafeng

    2012-01-01

    In this paper, a multivariate spatial autoregressive model of local public education expenditure determination with autoregressive disturbance is developed and estimated. The existence of spatial interdependence is tested using Moran's I statistic and Lagrange multiplier test statistics for both the spatial error and spatial lag models. The full…

  4. Portfolio Analysis for Vector Calculus

    ERIC Educational Resources Information Center

    Kaplan, Samuel R.

    2015-01-01

    Classic stock portfolio analysis provides an applied context for Lagrange multipliers that undergraduate students appreciate. Although modern methods of portfolio analysis are beyond the scope of vector calculus, classic methods reinforce the utility of this material. This paper discusses how to introduce classic stock portfolio analysis in a…

  5. Coupled structural, thermal, phase-change and electromagnetic analysis for superconductors, volume 2

    NASA Technical Reports Server (NTRS)

    Felippa, Carlos A.; Farhat, Charbel; Park, K. C.; Militello, Carmelo; Schuler, James J.

    1993-01-01

    Two families of parametrized mixed variational principles for linear electromagnetodynamics are constructed. The first family is applicable when the current density distribution is known a priori. Its six independent fields are magnetic intensity and flux density, magnetic potential, electric intensity and flux density and electric potential. Through appropriate specialization of parameters the first principle reduces to more conventional principles proposed in the literature. The second family is appropriate when the current density distribution and a conjugate Lagrange multiplier field are adjoined, giving a total of eight independently varied fields. In this case it is shown that a conventional variational principle exists only in the time-independent (static) case. Several static functionals with reduced number of varied fields are presented. The application of one of these principles to construct finite elements with current prediction capabilities is illustrated with a numerical example.

  6. Enhancing shelf life of minimally processed multiplier onion using silicone membrane.

    PubMed

    Naik, Ravindra; Ambrose, Dawn C P; Raghavan, G S Vijaya; Annamalai, S J K

    2014-12-01

    The aim of storage of minimal processed product is to increase the shelf life and thereby extend the period of availability of minimally processed produce. The silicone membrane makes use of the ability of polymer to permit selective passage of gases at different rates according to their physical and chemical properties. Here, the product stored maintains its own atmosphere by the combined effects of respiration process of the commodity and the diffusion rate through the membrane. A study was undertaken to enhance the shelf life of minimally processed multiplier onion with silicone membrane. The respiration activity was recorded at a temperature of 30 ± 2 °C (RH = 60 %) and 5 ± 1 °C (RH = 90 %). The respiration was found to be 23.4, 15.6, 10 mg CO2kg(-1)h(-1) at 5 ± 1 °C and 140, 110, 60 mg CO2kg(-1) h(-1) at 30 ± 2° for the peeled, sliced and diced multiplier onion, respectively. The respiration rate for the fresh multiplier onion was recorded to be 5, 10 mg CO2kg(-1) h(-1) at 5 ± 1 °C and 30 ± 1 ° C, respectively. Based on the shelf life studies and on the sensory evaluation, it was found that only the peeled multiplier onion could be stored. The sliced and diced multiplier onion did not have the required shelf life. The shelf life of the multiplier onion in the peel form could be increased from 4-5 days to 14 days by using the combined effect of silicone membrane (6 cm(2)/kg) and low temperature (5 ± 1 °C).

  7. Bandpass x-ray diode and x-ray multiplier detector

    DOEpatents

    Wang, C.L.

    1982-09-27

    An absorption-edge of an x-ray absorption filter and a quantum jump of a photocathode determine the bandpass characteristics of an x-ray diode detector. An anode, which collects the photoelectrons emitted by the photocathode, has enhanced amplification provided by photoelectron-multiplying means which include dynodes or a microchannel-plate electron-multiplier. Suppression of undesired high frequency response for a bandpass x-ray diode is provided by subtracting a signal representative of energies above the passband from a signal representative of the overall response of the bandpass diode.

  8. A method for calculating minimum biodiversity offset multipliers accounting for time discounting, additionality and permanence

    PubMed Central

    Laitila, Jussi; Moilanen, Atte; Pouzols, Federico M

    2014-01-01

    Biodiversity offsetting, which means compensation for ecological and environmental damage caused by development activity, has recently been gaining strong political support around the world. One common criticism levelled at offsets is that they exchange certain and almost immediate losses for uncertain future gains. In the case of restoration offsets, gains may be realized after a time delay of decades, and with considerable uncertainty. Here we focus on offset multipliers, which are ratios between damaged and compensated amounts (areas) of biodiversity. Multipliers have the attraction of being an easily understandable way of deciding the amount of offsetting needed. On the other hand, exact values of multipliers are very difficult to compute in practice if at all possible. We introduce a mathematical method for deriving minimum levels for offset multipliers under the assumption that offsetting gains must compensate for the losses (no net loss offsetting). We calculate absolute minimum multipliers that arise from time discounting and delayed emergence of offsetting gains for a one-dimensional measure of biodiversity. Despite the highly simplified model, we show that even the absolute minimum multipliers may easily be quite large, in the order of dozens, and theoretically arbitrarily large, contradicting the relatively low multipliers found in literature and in practice. While our results inform policy makers about realistic minimal offsetting requirements, they also challenge many current policies and show the importance of rigorous models for computing (minimum) offset multipliers. The strength of the presented method is that it requires minimal underlying information. We include a supplementary spreadsheet tool for calculating multipliers to facilitate application. PMID:25821578

  9. Contribution to the optimal shape design of two-dimensional internal flows with embedded shocks

    NASA Technical Reports Server (NTRS)

    Iollo, Angelo; Salas, Manuel D.

    1995-01-01

    We explore the practicability of optimal shape design for flows modeled by the Euler equations. We define a functional whose minimum represents the optimality condition. The gradient of the functional with respect to the geometry is calculated with the Lagrange multipliers, which are determined by solving a co-state equation. The optimization problem is then examined by comparing the performance of several gradient-based optimization algorithms. In this formulation, the flow field can be computed to an arbitrary order of accuracy. Finally, some results for internal flows with embedded shocks are presented, including a case for which the solution to the inverse problem does not belong to the design space.

  10. Monolithic THz Frequency Multipliers

    NASA Technical Reports Server (NTRS)

    Erickson, N. R.; Narayanan, G.; Grosslein, R. M.; Martin, S.; Mehdi, I.; Smith, P.; Coulomb, M.; DeMartinez, G.

    2001-01-01

    Frequency multipliers are required as local oscillator sources for frequencies up to 2.7 THz for FIRST and airborne applications. Multipliers at these frequencies have not previously been demonstrated, and the object of this work was to show whether such circuits are really practical. A practical circuit is one which not only performs as well as is required, but also can be replicated in a time that is feasible. As the frequency of circuits is increased, the difficulties in fabrication and assembly increase rapidly. Building all of the circuit on GaAs as a monolithic circuit is highly desirable to minimize the complexity of assembly, but at the highest frequencies, even a complete monolithic circuit is extremely small, and presents serious handling difficulty. This is compounded by the requirement for a very thin substrate. Assembly can become very difficult because of handling problems and critical placement. It is very desirable to make the chip big enough to that it can be seen without magnification, and strong enough that it may be picked up with tweezers. Machined blocks to house the chips present an additional challenge. Blocks with complex features are very expensive, and these also imply very critical assembly of the parts. It would be much better if the features in the block were as simple as possible and non-critical to the function of the chip. In particular, grounding and other electrical interfaces should be done in a manner that is highly reproducible.

  11. Tests of Measurement Invariance without Subgroups: A Generalization of Classical Methods

    ERIC Educational Resources Information Center

    Merkle, Edgar C.; Zeileis, Achim

    2013-01-01

    The issue of measurement invariance commonly arises in factor-analytic contexts, with methods for assessment including likelihood ratio tests, Lagrange multiplier tests, and Wald tests. These tests all require advance definition of the number of groups, group membership, and offending model parameters. In this paper, we study tests of measurement…

  12. Three-Dimensional Profiles Using a Spherical Cutting Bit: Problem Solving in Practice

    ERIC Educational Resources Information Center

    Ollerton, Richard L.; Iskov, Grant H.; Shannon, Anthony G.

    2002-01-01

    An engineering problem concerned with relating the coordinates of the centre of a spherical cutting tool to the actual cutting surface leads to a potentially rich example of problem-solving techniques. Basic calculus, Lagrange multipliers and vector calculus techniques are employed to produce solutions that may be compared to better understand…

  13. Evaluating and Stimulating Vision in the Multiply Impaired.

    ERIC Educational Resources Information Center

    Jose, Randall T.; And Others

    1980-01-01

    Techniques for evaluating the multiply impaired child's functional level of vision are described and a sequence of visual stimulation instruction for children with visual impairments is presented. (PHR)

  14. Productivity cost calculations in health economic evaluations: correcting for compensation mechanisms and multiplier effects.

    PubMed

    Krol, Marieke; Brouwer, Werner B F; Severens, Johan L; Kaper, Janneke; Evers, Silvia M A A

    2012-12-01

    Productivity costs related to paid work are commonly calculated in economic evaluations of health technologies by multiplying the relevant number of work days lost with a wage rate estimate. It has been argued that actual productivity costs may either be lower or higher than current estimates due to compensation mechanisms and/or multiplier effects (related to team dependency and problems with finding good substitutes in cases of absenteeism). Empirical evidence on such mechanisms and their impact on productivity costs is scarce, however. This study aims to increase knowledge on how diminished productivity is compensated within firms. Moreover, it aims to explore how compensation and multiplier effects potentially affect productivity cost estimates. Absenteeism and compensation mechanisms were measured in a randomized trial among Dutch citizens examining the cost-effectiveness of reimbursement for smoking cessation treatment. Multiplier effects were extracted from published literature. Productivity costs were calculated applying the Friction Cost Approach. Regular estimates were subsequently adjusted for (i) compensation during regular working hours, (ii) job dependent multipliers and (iii) both compensation and multiplier effects. A total of 187 respondents included in the trial were useful for inclusion in this study, based on being in paid employment, having experienced absenteeism in the preceding six months and completing the questionnaire on absenteeism and compensation mechanisms. Over half of these respondents stated that their absenteeism was compensated during normal working hours by themselves or colleagues. Only counting productivity costs not compensated in regular working hours reduced the traditional estimate by 57%. Correcting for multiplier effects increased regular estimates by a quarter. Combining both impacts decreased traditional estimates by 29%. To conclude, large amounts of lost production are compensated in normal hours. Productivity costs

  15. Variational tricomplex of a local gauge system, Lagrange structure and weak Poisson bracket

    NASA Astrophysics Data System (ADS)

    Sharapov, A. A.

    2015-09-01

    We introduce the concept of a variational tricomplex, which is applicable both to variational and nonvariational gauge systems. Assigning this tricomplex with an appropriate symplectic structure and a Cauchy foliation, we establish a general correspondence between the Lagrangian and Hamiltonian pictures of one and the same (not necessarily variational) dynamics. In practical terms, this correspondence allows one to construct the generating functional of a weak Poisson structure starting from that of a Lagrange structure. As a byproduct, a covariant procedure is proposed for deriving the classical BRST charge of the BFV formalism by a given BV master action. The general approach is illustrated by the examples of Maxwell’s electrodynamics and chiral bosons in two dimensions.

  16. Perdurance of multiply connected de Sitter space

    NASA Astrophysics Data System (ADS)

    González-Díaz, Pedro F.

    1999-06-01

    This paper deals with a study of the effects that spherically symmetric first-order metric perturbations and vacuum quantum fluctuations have on the stability of the multiply connected de Sitter spacetime recently proposed by Gott and Li. It is the main conclusion of this study that although such a spacetime is stable to the classical metric perturbations for any size of the nonchronal region, it is only stable against the quantum fluctuations of vacuum if the size of the multiply connected region is of the order of the Planck scale. Therefore, boundary conditions for the state of the universe based on the notion that the universe created itself in a regime where closed timelike curves were active and stable still appear to be physically and philosophically well supported as are those boundary conditions relying on the notion that the universe was created out of nothing.

  17. DenInv3D: a geophysical software for three-dimensional density inversion of gravity field data

    NASA Astrophysics Data System (ADS)

    Tian, Yu; Ke, Xiaoping; Wang, Yong

    2018-04-01

    This paper presents a three-dimensional density inversion software called DenInv3D that operates on gravity and gravity gradient data. The software performs inversion modelling, kernel function calculation, and inversion calculations using the improved preconditioned conjugate gradient (PCG) algorithm. In the PCG algorithm, due to the uncertainty of empirical parameters, such as the Lagrange multiplier, we use the inflection point of the L-curve as the regularisation parameter. The software can construct unequally spaced grids and perform inversions using such grids, which enables changing the resolution of the inversion results at different depths. Through inversion of airborne gradiometry data on the Australian Kauring test site, we discovered that anomalous blocks of different sizes are present within the study area in addition to the central anomalies. The software of DenInv3D can be downloaded from http://159.226.162.30.

  18. Exploratory Analyses To Improve Model Fit: Errors Due to Misspecification and a Strategy To Reduce Their Occurrence.

    ERIC Educational Resources Information Center

    Green, Samuel B.; Thompson, Marilyn S.; Poirier, Jennifer

    1999-01-01

    The use of Lagrange multiplier (LM) tests in specification searches and the efforts that involve the addition of extraneous parameters to models are discussed. Presented are a rationale and strategy for conducting specification searches in two stages that involve adding parameters to LM tests to maximize fit and then deleting parameters not needed…

  19. EFFECTS OF LASER RADIATION ON MATTER. LASER PLASMA: Formation of a plasma jet of multiply charged ions in the interaction of a laser plasma with an external pulsed magnetic field

    NASA Astrophysics Data System (ADS)

    Dyakin, V. M.; Pikuz, T. A.; Skobelev, I. Yu; Faenov, A. Ya; Wolowski, J.; Karpinski, L.; Kasperczuk, A.; Pisarczyk, T.

    1994-12-01

    A dense jet of a plasma consisting of multiply charged ions was generated in the interaction of a laser plasma with a strong external axial magnetic field. Images were formed by spectral lines and the soft x-ray spectrum range of the plasma jet was obtained with a large-aperture spectrograph containing a mica crystal bent to form a spherical surface with a radius of R = 10 cm. A tenfold increase in the density of the He-like Mg XI plasma, compared with a freely expanding plasma, was observed at a distance of 5 mm from the target.

  20. The Model for Final Stage of Gravitational Collapse Massless Scalar Field

    NASA Astrophysics Data System (ADS)

    Gladush, V. D.; Mironin, D. V.

    It is known that in General relativity, for some spherically symmetric initial conditions, the massless scalar field (SF) experience the gravitational collapse (Choptuik, 1989), and arise a black hole (BH). According Bekenstein, a BH has no "hair scalar", so the SF is completely under the horizon. Thus, the study of the final stage for the gravitational collapse of a SF is reduced to the construction of a solution of Einstein's equations describing the evolution of a SF inside the BH. In this work, we build the Lagrangian for scalar and gravitationalfields in the spherically symmetric case, when the metric coefficients and SF depends only on the time. In this case, it is convenient to use the methods of classical mechanics. Since the metric allows an arbitrary transformation of time, then the corresponding field variable (g00) is included in the Lagrangian without time derivative. It is a non-dynamic variable, and is included in the Lagrangian as a Lagrange multiplier. A variation of the action on this variable gives the constraint. It turns out that Hamiltonian is proportional to the constraint, and so it is zero. The corresponding Hamilton-Jacobi equation easily integrated. Hence, we find the relation between the SF and the metric. To restore of time dependence we using an equation dL / dq' = dS / dq After using a gauge condition, it allows us to find solution. Thus, we find the evolution of the SF inside the BH, which describes the final stage of the gravitational collapse of a SF. It turns out that the mass BH associated with a scalar charge G of the corresponding SF inside the BH ratio M = G/(2√ κ).

  1. Inversion of geophysical potential field data using the finite element method

    NASA Astrophysics Data System (ADS)

    Lamichhane, Bishnu P.; Gross, Lutz

    2017-12-01

    The inversion of geophysical potential field data can be formulated as an optimization problem with a constraint in the form of a partial differential equation (PDE). It is common practice, if possible, to provide an analytical solution for the forward problem and to reduce the problem to a finite dimensional optimization problem. In an alternative approach the optimization is applied to the problem and the resulting continuous problem which is defined by a set of coupled PDEs is subsequently solved using a standard PDE discretization method, such as the finite element method (FEM). In this paper, we show that under very mild conditions on the data misfit functional and the forward problem in the three-dimensional space, the continuous optimization problem and its FEM discretization are well-posed including the existence and uniqueness of respective solutions. We provide error estimates for the FEM solution. A main result of the paper is that the FEM spaces used for the forward problem and the Lagrange multiplier need to be identical but can be chosen independently from the FEM space used to represent the unknown physical property. We will demonstrate the convergence of the solution approximations in a numerical example. The second numerical example which investigates the selection of FEM spaces, shows that from the perspective of computational efficiency one should use 2 to 4 times finer mesh for the forward problem in comparison to the mesh of the physical property.

  2. Extreme ultraviolet spectra of multiply charged tungsten ions

    NASA Astrophysics Data System (ADS)

    Mita, Momoe; Sakaue, Hiroyuki A.; Kato, Daiji; Murakami, Izumi; Nakamura, Nobuyuki

    2017-11-01

    We present extreme ultraviolet spectra of multiply charged tungsten ions observed with an electron beam ion trap. The observed spectra are compared with previous experimental results and theoretical spectra obtained with a collisional radiative model.

  3. Volatility in GARCH Models of Business Tendency Index

    NASA Astrophysics Data System (ADS)

    Wahyuni, Dwi A. S.; Wage, Sutarman; Hartono, Ateng

    2018-01-01

    This paper aims to obtain a model of business tendency index by considering volatility factor. Volatility factor detected by ARCH (Autoregressive Conditional Heteroscedasticity). The ARCH checking was performed using the Lagrange multiplier test. The modeling is Generalized Autoregressive Conditional Heteroscedasticity (GARCH) are able to overcome volatility problems by incorporating past residual elements and residual variants.

  4. A suggested trajectory for a Venus-sun, earth-sun Lagrange points mission, Vela

    NASA Technical Reports Server (NTRS)

    Bender, D. F.

    1979-01-01

    The possibility is suggested of investigating the existence of small, as-yet undiscovered, asteroids orbiting in the solar system near the earth-sun or Venus-sun stable Lagrange points by means of a spacecraft which traverses these regions. The type of trajectory suggested lies in the ecliptic plane and has a period of 5/6 years and a perihelion at the Venus orbital distance. The regions in which stable orbits associated with the earth and with Venus may lie are estimated to be a thin and tadpole-shaped area extending from 35 deg to 100 deg from the planet. Crossings of the regions by the trajectory are described, and the requirements for detecting the presence of 1 km sized asteroids are presented and shown to be attainable.

  5. The domain interface method: a general-purpose non-intrusive technique for non-conforming domain decomposition problems

    NASA Astrophysics Data System (ADS)

    Cafiero, M.; Lloberas-Valls, O.; Cante, J.; Oliver, J.

    2016-04-01

    A domain decomposition technique is proposed which is capable of properly connecting arbitrary non-conforming interfaces. The strategy essentially consists in considering a fictitious zero-width interface between the non-matching meshes which is discretized using a Delaunay triangulation. Continuity is satisfied across domains through normal and tangential stresses provided by the discretized interface and inserted in the formulation in the form of Lagrange multipliers. The final structure of the global system of equations resembles the dual assembly of substructures where the Lagrange multipliers are employed to nullify the gap between domains. A new approach to handle floating subdomains is outlined which can be implemented without significantly altering the structure of standard industrial finite element codes. The effectiveness of the developed algorithm is demonstrated through a patch test example and a number of tests that highlight the accuracy of the methodology and independence of the results with respect to the framework parameters. Considering its high degree of flexibility and non-intrusive character, the proposed domain decomposition framework is regarded as an attractive alternative to other established techniques such as the mortar approach.

  6. Optimization of constrained density functional theory

    NASA Astrophysics Data System (ADS)

    O'Regan, David D.; Teobaldi, Gilberto

    2016-07-01

    Constrained density functional theory (cDFT) is a versatile electronic structure method that enables ground-state calculations to be performed subject to physical constraints. It thereby broadens their applicability and utility. Automated Lagrange multiplier optimization is necessary for multiple constraints to be applied efficiently in cDFT, for it to be used in tandem with geometry optimization, or with molecular dynamics. In order to facilitate this, we comprehensively develop the connection between cDFT energy derivatives and response functions, providing a rigorous assessment of the uniqueness and character of cDFT stationary points while accounting for electronic interactions and screening. In particular, we provide a nonperturbative proof that stable stationary points of linear density constraints occur only at energy maxima with respect to their Lagrange multipliers. We show that multiple solutions, hysteresis, and energy discontinuities may occur in cDFT. Expressions are derived, in terms of convenient by-products of cDFT optimization, for quantities such as the dielectric function and a condition number quantifying ill definition in multiple constraint cDFT.

  7. Assessing Motor Skills in Multiply Handicapped Children.

    ERIC Educational Resources Information Center

    DuBose, Rebecca F.

    Examined are the effects of motor skill development and impairment on the infant's and young child's overall functioning, and suggested are guidelines for assessing motor skills in multiply handicapped children. It is explained that motor delays and deficits limit a child's learning during critical developmental periods. Examples of delayed motor…

  8. Data-Driven Modeling of Solar Corona by a New 3d Path-Conservative Osher-Solomon MHD Odel

    NASA Astrophysics Data System (ADS)

    Feng, X. S.; Li, C.

    2017-12-01

    A second-order path-conservative scheme with Godunov-type finite volume method (FVM) has been implemented to advance the equations of single-fluid solar wind plasma magnetohydrodynamics (MHD) in time. This code operates on the six-component composite grid system in 3D spherical coordinates with hexahedral cells of quadrilateral frustum type. The generalized Osher-Solomon Riemann solver is employed based on a numerical integration of the path-dependentdissipation matrix. For simplicity, the straight line segment path is used and the path-integral is evaluated in a fully numerical way by high-order numerical Gauss-Legendre quadrature. Besides its closest similarity to Godunov, the resulting scheme retains the attractive features of the original solver: it is nonlinear, free of entropy-fix, differentiable and complete in that each characteristic field results in a different numerical viscosity, due to the full use of the MHD eigenstructure. By using a minmod limiter for spatial oscillation control, the pathconservative scheme is realized for the generalized Lagrange multiplier (GLM) and the extended generalized Lagrange multiplier (EGLM) formulation of solar wind MHD systems. This new model of second-order in space and time is written in FORTRAN language with Message Passing Interface (MPI) parallelization, and validated in modeling time-dependent large-scale structure of solar corona, driven continuously by the Global Oscillation Network Group (GONG) data. To demonstrate the suitability of our code for the simulation of solar wind, we present selected results from October 9th, 2009 to December 29th, 2009 , & Year 2008 to show its capability of producing structured solar wind in agreement with the observations.

  9. Higher order sensitivity of solutions to convex programming problems without strict complementarity

    NASA Technical Reports Server (NTRS)

    Malanowski, Kazimierz

    1988-01-01

    Consideration is given to a family of convex programming problems which depend on a vector parameter. It is shown that the solutions of the problems and the associated Lagrange multipliers are arbitrarily many times directionally differentiable functions of the parameter, provided that the data of the problems are sufficiently regular. The characterizations of the respective derivatives are given.

  10. Diamond Heat-Spreader for Submillimeter-Wave Frequency Multipliers

    NASA Technical Reports Server (NTRS)

    Lin, Robert H.; Schlecht, Erich T.; Chattopadhyay, Goutam; Gill, John J.; Mehdi, Imran; Siegel, Peter H.; Ward, John S.; Lee, Choonsup; Thomas, Bertrand C.; Maestrini, Alain

    2010-01-01

    The planar GaAs Shottky diode frequency multiplier is a critical technology for the local oscillator (LO) for submillimeter- wave heterodyne receivers due to low mass, tenability, long lifetime, and room-temperature operation. The use of a W-band (75-100 GHz) power amplifier followed by a frequency multiplier is the most common for submillimeter-wave sources. Its greatest challenge is to provide enough input power to the LO for instruments onboard future planetary missions. Recently, JPL produced 800 mW at 92.5 GHz by combining four MMICs in parallel in a balanced configuration. As more power at W-band is available to the multipliers, their power-handling capability be comes more important. High operating temperatures can lead to degradation of conversion efficiency or catastrophic failure. The goal of this innovation is to reduce the thermal resistance by attaching diamond film as a heat-spreader on the backside of multipliers to improve their power-handling capability. Polycrystalline diamond is deposited by hot-filament chemical vapor deposition (CVD). This diamond film acts as a heat-spreader to both the existing 250- and 300-GHz triplers, and has a high thermal conductivity (1,000-1,200 W/mK). It is approximately 2.5 times greater than copper (401 W/mK) and 20 times greater than GaAs (46 W/mK). It is an electrical insulator (resistivity approx. equals 10(exp 15) Ohms-cm), and has a low relative dielectric constant of 5.7. Diamond heat-spreaders reduce by at least 200 C at 250 mW of input power, compared to the tripler without diamond, according to thermal simulation. This superior thermal management provides a 100-percent increase in power-handling capability. For example, with this innovation, 40-mW output power has been achieved from a 250-GHz tripler at 350-mW input power, while the previous triplers, without diamond, suffered catastrophic failures. This breakthrough provides a stepping-stone for frequency multipliers-based LO up to 3 THz. The future work

  11. A High-Speed Design of Montgomery Multiplier

    NASA Astrophysics Data System (ADS)

    Fan, Yibo; Ikenaga, Takeshi; Goto, Satoshi

    With the increase of key length used in public cryptographic algorithms such as RSA and ECC, the speed of Montgomery multiplication becomes a bottleneck. This paper proposes a high speed design of Montgomery multiplier. Firstly, a modified scalable high-radix Montgomery algorithm is proposed to reduce critical path. Secondly, a high-radix clock-saving dataflow is proposed to support high-radix operation and one clock cycle delay in dataflow. Finally, a hardware-reused architecture is proposed to reduce the hardware cost and a parallel radix-16 design of data path is proposed to accelerate the speed. By using HHNEC 0.25μm standard cell library, the implementation results show that the total cost of Montgomery multiplier is 130 KGates, the clock frequency is 180MHz and the throughput of 1024-bit RSA encryption is 352kbps. This design is suitable to be used in high speed RSA or ECC encryption/decryption. As a scalable design, it supports any key-length encryption/decryption up to the size of on-chip memory.

  12. Compliant displacement-multiplying apparatus for microelectromechanical systems

    DOEpatents

    Kota, Sridhar; Rodgers, M. Steven; Hetrick, Joel A.

    2001-01-01

    A pivotless compliant structure is disclosed that can be used to increase the geometric advantage or mechanical advantage of a microelectromechanical (MEM) actuator such as an electrostatic comb actuator, a capacitive-plate electrostatic actuator, or a thermal actuator. The compliant structure, based on a combination of interconnected flexible beams and cross-beams formed of one or more layers of polysilicon or silicon nitride, can provide a geometric advantage of from about 5:1 to about 60:1 to multiply a 0.25-3 .mu.m displacement provided by a short-stroke actuator so that such an actuator can be used to generate a displacement stroke of about 10-34 .mu.m to operate a ratchet-driven MEM device or a microengine. The compliant structure has less play than conventional displacement-multiplying devices based on lever arms and pivoting joints, and is expected to be more reliable than such devices. The compliant structure and an associated electrostatic or thermal actuator can be formed on a common substrate (e.g. silicon) using surface micromachining.

  13. Lagrange multiplier and Wess-Zumino variable as extra dimensions in the torus universe

    NASA Astrophysics Data System (ADS)

    Nejad, Salman Abarghouei; Dehghani, Mehdi; Monemzadeh, Majid

    2018-01-01

    We study the effect of the simplest geometry which is imposed via the topology of the universe by gauging non-relativistic particle model on torus and 3-torus with the help of symplectic formalism of constrained systems. Also, we obtain generators of gauge transformations for gauged models. Extracting corresponding Poisson structure of existed constraints, we show the effect of the shape of the universe on canonical structure of phase-spaces of models and suggest some phenomenology to prove the topology of the universe and probable non-commutative structure of the space. In addition, we show that the number of extra dimensions in the phase-spaces of gauged embedded models are exactly two. Moreover, in classical form, we talk over modification of Newton's second law in order to study the origin of the terms appeared in the gauged theory.

  14. An immersogeometric variational framework for fluid–structure interaction: application to bioprosthetic heart valves

    PubMed Central

    Kamensky, David; Hsu, Ming-Chen; Schillinger, Dominik; Evans, John A.; Aggarwal, Ankush; Bazilevs, Yuri; Sacks, Michael S.; Hughes, Thomas J. R.

    2014-01-01

    In this paper, we develop a geometrically flexible technique for computational fluid–structure interaction (FSI). The motivating application is the simulation of tri-leaflet bioprosthetic heart valve function over the complete cardiac cycle. Due to the complex motion of the heart valve leaflets, the fluid domain undergoes large deformations, including changes of topology. The proposed method directly analyzes a spline-based surface representation of the structure by immersing it into a non-boundary-fitted discretization of the surrounding fluid domain. This places our method within an emerging class of computational techniques that aim to capture geometry on non-boundary-fitted analysis meshes. We introduce the term “immersogeometric analysis” to identify this paradigm. The framework starts with an augmented Lagrangian formulation for FSI that enforces kinematic constraints with a combination of Lagrange multipliers and penalty forces. For immersed volumetric objects, we formally eliminate the multiplier field by substituting a fluid–structure interface traction, arriving at Nitsche’s method for enforcing Dirichlet boundary conditions on object surfaces. For immersed thin shell structures modeled geometrically as surfaces, the tractions from opposite sides cancel due to the continuity of the background fluid solution space, leaving a penalty method. Application to a bioprosthetic heart valve, where there is a large pressure jump across the leaflets, reveals shortcomings of the penalty approach. To counteract steep pressure gradients through the structure without the conditioning problems that accompany strong penalty forces, we resurrect the Lagrange multiplier field. Further, since the fluid discretization is not tailored to the structure geometry, there is a significant error in the approximation of pressure discontinuities across the shell. This error becomes especially troublesome in residual-based stabilized methods for incompressible flow, leading

  15. Multiply-Impaired Blind Children: A National Problem.

    ERIC Educational Resources Information Center

    Graham, Milton D.

    In 1966, a national survey reported on 8,887 multiply impaired (MI) blind children. About 56% were boys; 85% had been blind since before age 3, and half were totally blind. The principal causes of blindness were retrolental fibroplasia and congenital cataracts. Almost 63% had two or more additional disabilities (86.8% of those under age 6), such…

  16. FamNet: A Framework to Identify Multiplied Modules Driving Pathway Expansion in Plants1

    PubMed Central

    Tohge, Takayuki; Klie, Sebastian; Fernie, Alisdair R.

    2016-01-01

    Gene duplications generate new genes that can acquire similar but often diversified functions. Recent studies of gene coexpression networks have indicated that, not only genes, but also pathways can be multiplied and diversified to perform related functions in different parts of an organism. Identification of such diversified pathways, or modules, is needed to expand our knowledge of biological processes in plants and to understand how biological functions evolve. However, systematic explorations of modules remain scarce, and no user-friendly platform to identify them exists. We have established a statistical framework to identify modules and show that approximately one-third of the genes of a plant’s genome participate in hundreds of multiplied modules. Using this framework as a basis, we implemented a platform that can explore and visualize multiplied modules in coexpression networks of eight plant species. To validate the usefulness of the platform, we identified and functionally characterized pollen- and root-specific cell wall modules that multiplied to confer tip growth in pollen tubes and root hairs, respectively. Furthermore, we identified multiplied modules involved in secondary metabolite synthesis and corroborated them by metabolite profiling of tobacco (Nicotiana tabacum) tissues. The interactive platform, referred to as FamNet, is available at http://www.gene2function.de/famnet.html. PMID:26754669

  17. Auditing the multiply-related concepts within the UMLS

    PubMed Central

    Mougin, Fleur; Grabar, Natalia

    2014-01-01

    Objective This work focuses on multiply-related Unified Medical Language System (UMLS) concepts, that is, concepts associated through multiple relations. The relations involved in such situations are audited to determine whether they are provided by source vocabularies or result from the integration of these vocabularies within the UMLS. Methods We study the compatibility of the multiple relations which associate the concepts under investigation and try to explain the reason why they co-occur. Towards this end, we analyze the relations both at the concept and term levels. In addition, we randomly select 288 concepts associated through contradictory relations and manually analyze them. Results At the UMLS scale, only 0.7% of combinations of relations are contradictory, while homogeneous combinations are observed in one-third of situations. At the scale of source vocabularies, one-third do not contain more than one relation between the concepts under investigation. Among the remaining source vocabularies, seven of them mainly present multiple non-homogeneous relations between terms. Analysis at the term level also shows that only in a quarter of cases are the source vocabularies responsible for the presence of multiply-related concepts in the UMLS. These results are available at: http://www.isped.u-bordeaux2.fr/ArticleJAMIA/results_multiply_related_concepts.aspx. Discussion Manual analysis was useful to explain the conceptualization difference in relations between terms across source vocabularies. The exploitation of source relations was helpful for understanding why some source vocabularies describe multiple relations between a given pair of terms. PMID:24464853

  18. Evaluation of multiplier effect of housing investments in the city economy

    NASA Astrophysics Data System (ADS)

    Ovsiannikova, T.; Rabtsevich, O.; Yugova, I.

    2017-01-01

    The given study presents evaluation of the role and significance of housing investments providing stable social and economic development of a city. It also justifies multiplier impact of investments in housing construction on all the sectors of urban economy. Growth of housing investments generates multiplier effect triggering the development of other different interrelated sectors. The paper suggests approach developed by the authors to evaluate the level of city development. It involves defining gross city product on the basis of integral criterion of gross value added of types of economic activities in the city economy. The algorithm of gross value added generation in urban economy is presented as a result of multiplier effect of housing investments. The evaluation of the mentioned effect was shown on the case of the city of Tomsk (Russia). The study has revealed that multiplier effect allows obtaining four rubles of added value out of one ruble of housing investments in the city economy. Methods used in the present study include the ones of the System of National Accounts, as well as methods of statistical and structural analysis. It has been proved that priority investment in housing construction is considered to be the key factor for stable social and economic development of the city. Developed approach is intended for justification of priority directions in municipal and regional investment policy. City and regional governing bodies and potential investors are the ones to apply the given approach.

  19. High frequency capacitor-diode voltage multiplier dc-dc converter development

    NASA Technical Reports Server (NTRS)

    Kisch, J. J.; Martinelli, R. M.

    1977-01-01

    A power conditioner was developed which used a capacitor diode voltage multiplier to provide a high voltage without the use of a step-up transformer. The power conditioner delivered 1200 Vdc at 100 watts and was operated from a 120 Vdc line. The efficiency was in excess of 90 percent. The component weight was 197 grams. A modified boost-add circuit was used for the regulation. A short circuit protection circuit was used which turns off the drive circuit upon a fault condition, and recovers within 5 ms after removal of the short. High energy density polysulfone capacitors and high speed diodes were used in the multiplier circuit.

  20. Design Considerations for Heavily-Doped Cryogenic Schottky Diode Varactor Multipliers

    NASA Technical Reports Server (NTRS)

    Schlecht, E.; Maiwald, F.; Chattopadhyay, G.; Martin, S.; Mehdi, I.

    2001-01-01

    Diode modeling for Schottky varactor frequency multipliers above 500 GHz is presented with special emphasis placed on simple models and fitted equations for rapid circuit design. Temperature- and doping-dependent mobility, resistivity, and avalanche current multiplication and breakdown are presented. Next is a discussion of static junction current, including the effects of tunneling as well as thermionic emission. These results have been compared to detailed measurements made down to 80 K on diodes fabricated at JPL, followed by a discussion of the effect on multiplier efficiency. Finally, a simple model of current saturation in the undepleted active layer suitable for inclusion in harmonic balance simulators is derived.

  1. Dirichlet to Neumann operator for Abelian Yang-Mills gauge fields

    NASA Astrophysics Data System (ADS)

    Díaz-Marín, Homero G.

    We consider the Dirichlet to Neumann operator for Abelian Yang-Mills boundary conditions. The aim is constructing a complex structure for the symplectic space of boundary conditions of Euler-Lagrange solutions modulo gauge for space-time manifolds with smooth boundary. Thus we prepare a suitable scenario for geometric quantization within the reduced symplectic space of boundary conditions of Abelian gauge fields.

  2. Mass-dependent channel electron multiplier operation. [for ion detection

    NASA Technical Reports Server (NTRS)

    Fields, S. A.; Burch, J. L.; Oran, W. A.

    1977-01-01

    The absolute counting efficiency and pulse height distributions of a continuous-channel electron multiplier used in the detection of hydrogen, argon and xenon ions are assessed. The assessment technique, which involves the post-acceleration of 8-eV ion beams to energies from 100 to 4000 eV, provides information on counting efficiency versus post-acceleration voltage characteristics over a wide range of ion mass. The charge pulse height distributions for H2 (+), A (+) and Xe (+) were measured by operating the experimental apparatus in a marginally gain-saturated mode. It was found that gain saturation occurs at lower channel multiplier operating voltages for light ions such as H2 (+) than for the heavier ions A (+) and Xe (+), suggesting that the technique may be used to discriminate between these two classes of ions in electrostatic analyzers.

  3. Structural optimization of large structural systems by optimality criteria methods

    NASA Technical Reports Server (NTRS)

    Berke, Laszlo

    1992-01-01

    The fundamental concepts of the optimality criteria method of structural optimization are presented. The effect of the separability properties of the objective and constraint functions on the optimality criteria expressions is emphasized. The single constraint case is treated first, followed by the multiple constraint case with a more complex evaluation of the Lagrange multipliers. Examples illustrate the efficiency of the method.

  4. Auditing the multiply-related concepts within the UMLS.

    PubMed

    Mougin, Fleur; Grabar, Natalia

    2014-10-01

    This work focuses on multiply-related Unified Medical Language System (UMLS) concepts, that is, concepts associated through multiple relations. The relations involved in such situations are audited to determine whether they are provided by source vocabularies or result from the integration of these vocabularies within the UMLS. We study the compatibility of the multiple relations which associate the concepts under investigation and try to explain the reason why they co-occur. Towards this end, we analyze the relations both at the concept and term levels. In addition, we randomly select 288 concepts associated through contradictory relations and manually analyze them. At the UMLS scale, only 0.7% of combinations of relations are contradictory, while homogeneous combinations are observed in one-third of situations. At the scale of source vocabularies, one-third do not contain more than one relation between the concepts under investigation. Among the remaining source vocabularies, seven of them mainly present multiple non-homogeneous relations between terms. Analysis at the term level also shows that only in a quarter of cases are the source vocabularies responsible for the presence of multiply-related concepts in the UMLS. These results are available at: http://www.isped.u-bordeaux2.fr/ArticleJAMIA/results_multiply_related_concepts.aspx. Manual analysis was useful to explain the conceptualization difference in relations between terms across source vocabularies. The exploitation of source relations was helpful for understanding why some source vocabularies describe multiple relations between a given pair of terms. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  5. Stark problem in terms of the Stokes multipliers for the triconfluent Heun equation

    NASA Astrophysics Data System (ADS)

    Osherov, V. I.; Ushakov, V. G.

    2013-11-01

    The solution of the Stark problem is obtained in terms of the Stokes multipliers for the triconfluent Heun equation (the quartic oscillator equation). The Stokes multipliers are found in an analytical form at positive energies. For negative energies, the Stokes parameters are calculated in frames of a consistent asymptotic approach. The scattering phase, positions, and widths of the Stark resonances are determined as solutions of an implicit equation.

  6. Experimental demonstration of a 5th harmonic mm-wave frequency multiplying vacuum tube

    NASA Astrophysics Data System (ADS)

    Toufexis, Filippos; Tantawi, Sami G.; Jensen, Aaron; Dolgashev, Valery A.; Haase, Andrew; Fazio, Michael V.; Borchard, Philipp

    2017-06-01

    We report the experimental demonstration of a 5th harmonic mm-wave frequency multiplying vacuum electronic device, which uses an over-moded spherical sector output cavity. In this device, a pencil electron beam is helically deflected in a transverse deflecting cavity before entering the output cavity. No magnetic field is required to focus or guide the beam. We built and tested a proof-of-principle device with an output frequency of 57.12 GHz. The measured peak power was 52.67 W at the 5th harmonic of the drive frequency. Power at the 4th, 6th, and 7th harmonics was 33.28 dB lower than that at the 5th harmonic.

  7. Cooking Skills Instruction with Severely Multiply Handicapped Adolescents.

    ERIC Educational Resources Information Center

    Horsfall, Debbie; Maggs, Alex

    1986-01-01

    Examination of the acquisition, maintenance, and generalization of three cooking skills by three multiply and severely handicapped blind adolescents revealed that a "whole task" approach was successful in teaching the subjects to boil an egg, grill cheese, and cook a TV dinner. These skills also generalized to other cooking products. (Author/CB)

  8. Analysis and computation of a least-squares method for consistent mesh tying

    DOE PAGES

    Day, David; Bochev, Pavel

    2007-07-10

    We report in the finite element method, a standard approach to mesh tying is to apply Lagrange multipliers. If the interface is curved, however, discretization generally leads to adjoining surfaces that do not coincide spatially. Straightforward Lagrange multiplier methods lead to discrete formulations failing a first-order patch test [T.A. Laursen, M.W. Heinstein, Consistent mesh-tying methods for topologically distinct discretized surfaces in non-linear solid mechanics, Internat. J. Numer. Methods Eng. 57 (2003) 1197–1242]. This paper presents a theoretical and computational study of a least-squares method for mesh tying [P. Bochev, D.M. Day, A least-squares method for consistent mesh tying, Internat. J.more » Numer. Anal. Modeling 4 (2007) 342–352], applied to the partial differential equation -∇ 2φ+αφ=f. We prove optimal convergence rates for domains represented as overlapping subdomains and show that the least-squares method passes a patch test of the order of the finite element space by construction. To apply the method to subdomain configurations with gaps and overlaps we use interface perturbations to eliminate the gaps. Finally, theoretical error estimates are illustrated by numerical experiments.« less

  9. Contact solution algorithms

    NASA Technical Reports Server (NTRS)

    Tielking, John T.

    1989-01-01

    Two algorithms for obtaining static contact solutions are described in this presentation. Although they were derived for contact problems involving specific structures (a tire and a solid rubber cylinder), they are sufficiently general to be applied to other shell-of-revolution and solid-body contact problems. The shell-of-revolution contact algorithm is a method of obtaining a point load influence coefficient matrix for the portion of shell surface that is expected to carry a contact load. If the shell is sufficiently linear with respect to contact loading, a single influence coefficient matrix can be used to obtain a good approximation of the contact pressure distribution. Otherwise, the matrix will be updated to reflect nonlinear load-deflection behavior. The solid-body contact algorithm utilizes a Lagrange multiplier to include the contact constraint in a potential energy functional. The solution is found by applying the principle of minimum potential energy. The Lagrange multiplier is identified as the contact load resultant for a specific deflection. At present, only frictionless contact solutions have been obtained with these algorithms. A sliding tread element has been developed to calculate friction shear force in the contact region of the rolling shell-of-revolution tire model.

  10. A Posteriori Bounds for Linear-Functional Outputs of Crouzeix-Raviart Finite Element Discretizations of the Incompressible Stokes Problem

    NASA Technical Reports Server (NTRS)

    Patera, Anthony T.; Paraschivoiu, Marius

    1998-01-01

    We present a finite element technique for the efficient generation of lower and upper bounds to outputs which are linear functionals of the solutions to the incompressible Stokes equations in two space dimensions; the finite element discretization is effected by Crouzeix-Raviart elements, the discontinuous pressure approximation of which is central to our approach. The bounds are based upon the construction of an augmented Lagrangian: the objective is a quadratic "energy" reformulation of the desired output; the constraints are the finite element equilibrium equations (including the incompressibility constraint), and the intersubdomain continuity conditions on velocity. Appeal to the dual max-min problem for appropriately chosen candidate Lagrange multipliers then yields inexpensive bounds for the output associated with a fine-mesh discretization; the Lagrange multipliers are generated by exploiting an associated coarse-mesh approximation. In addition to the requisite coarse-mesh calculations, the bound technique requires solution only of local subdomain Stokes problems on the fine-mesh. The method is illustrated for the Stokes equations, in which the outputs of interest are the flowrate past, and the lift force on, a body immersed in a channel.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liao, Haitao, E-mail: liaoht@cae.ac.cn

    The direct differentiation and improved least squares shadowing methods are both developed for accurately and efficiently calculating the sensitivity coefficients of time averaged quantities for chaotic dynamical systems. The key idea is to recast the time averaged integration term in the form of differential equation before applying the sensitivity analysis method. An additional constraint-based equation which forms the augmented equations of motion is proposed to calculate the time averaged integration variable and the sensitivity coefficients are obtained as a result of solving the augmented differential equations. The application of the least squares shadowing formulation to the augmented equations results inmore » an explicit expression for the sensitivity coefficient which is dependent on the final state of the Lagrange multipliers. The LU factorization technique to calculate the Lagrange multipliers leads to a better performance for the convergence problem and the computational expense. Numerical experiments on a set of problems selected from the literature are presented to illustrate the developed methods. The numerical results demonstrate the correctness and effectiveness of the present approaches and some short impulsive sensitivity coefficients are observed by using the direct differentiation sensitivity analysis method.« less

  12. Modeling the Sedimentation of Red Blood Cells in Flow under Strong External Magnetic Body Force using a Lattice Boltzmann Fictitious Domain Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Xing; Lin, Guang

    To model the sedimentation of the red blood cell (RBC) in a square duct and a circular pipe, the recently developed technique derived from the lattice Boltzmann method and the distributed Lagrange multiplier/fictitious domain method (LBM-DLM/FD) is extended to employ the mesoscopic network model for simulations of the sedimentation of the RBC in flow. The flow is simulated by the lattice Boltzmann method with a strong magnetic body force, while the network model is used for modeling RBC deformation. The fluid-RBC interactions are enforced by the Lagrange multiplier. The sedimentation of the RBC in a square duct and a circularmore » pipe is simulated, revealing the capacity of the current method for modeling the sedimentation of RBC in various flows. Numerical results illustrate that that the terminal setting velocity increases with the increment of the exerted body force. The deformation of the RBC has significant effect on the terminal setting velocity due to the change of the frontal area. The larger the exerted force is, the smaller the frontal area and the larger deformation of the RBC are.« less

  13. Efficient sensitivity analysis method for chaotic dynamical systems

    NASA Astrophysics Data System (ADS)

    Liao, Haitao

    2016-05-01

    The direct differentiation and improved least squares shadowing methods are both developed for accurately and efficiently calculating the sensitivity coefficients of time averaged quantities for chaotic dynamical systems. The key idea is to recast the time averaged integration term in the form of differential equation before applying the sensitivity analysis method. An additional constraint-based equation which forms the augmented equations of motion is proposed to calculate the time averaged integration variable and the sensitivity coefficients are obtained as a result of solving the augmented differential equations. The application of the least squares shadowing formulation to the augmented equations results in an explicit expression for the sensitivity coefficient which is dependent on the final state of the Lagrange multipliers. The LU factorization technique to calculate the Lagrange multipliers leads to a better performance for the convergence problem and the computational expense. Numerical experiments on a set of problems selected from the literature are presented to illustrate the developed methods. The numerical results demonstrate the correctness and effectiveness of the present approaches and some short impulsive sensitivity coefficients are observed by using the direct differentiation sensitivity analysis method.

  14. Data-driven Modeling of the Solar Corona by a New Three-dimensional Path-conservative Osher-Solomon MHD Model

    NASA Astrophysics Data System (ADS)

    Feng, Xueshang; Li, Caixia; Xiang, Changqing; Zhang, Man; Li, HuiChao; Wei, Fengsi

    2017-11-01

    A second-order path-conservative scheme with a Godunov-type finite-volume method has been implemented to advance the equations of single-fluid solar wind plasma magnetohydrodynamics (MHD) in time. This code operates on the six-component composite grid system in three-dimensional spherical coordinates with hexahedral cells of quadrilateral frustum type. The generalized Osher-Solomon Riemann solver is employed based on a numerical integration of the path-dependent dissipation matrix. For simplicity, the straight line segment path is used, and the path integral is evaluated in a fully numerical way by a high-order numerical Gauss-Legendre quadrature. Besides its very close similarity to Godunov type, the resulting scheme retains the attractive features of the original solver: it is nonlinear, free of entropy-fix, differentiable, and complete, in that each characteristic field results in a different numerical viscosity, due to the full use of the MHD eigenstructure. By using a minmod limiter for spatial oscillation control, the path-conservative scheme is realized for the generalized Lagrange multiplier and the extended generalized Lagrange multiplier formulation of solar wind MHD systems. This new model that is second order in space and time is written in the FORTRAN language with Message Passing Interface parallelization and validated in modeling the time-dependent large-scale structure of the solar corona, driven continuously by Global Oscillation Network Group data. To demonstrate the suitability of our code for the simulation of solar wind, we present selected results from 2009 October 9 to 2009 December 29 show its capability of producing a structured solar corona in agreement with solar coronal observations.

  15. A high-order perturbation of surfaces method for scattering of linear waves by periodic multiply layered gratings in two and three dimensions

    NASA Astrophysics Data System (ADS)

    Hong, Youngjoon; Nicholls, David P.

    2017-09-01

    The capability to rapidly and robustly simulate the scattering of linear waves by periodic, multiply layered media in two and three dimensions is crucial in many engineering applications. In this regard, we present a High-Order Perturbation of Surfaces method for linear wave scattering in a multiply layered periodic medium to find an accurate numerical solution of the governing Helmholtz equations. For this we truncate the bi-infinite computational domain to a finite one with artificial boundaries, above and below the structure, and enforce transparent boundary conditions there via Dirichlet-Neumann Operators. This is followed by a Transformed Field Expansion resulting in a Fourier collocation, Legendre-Galerkin, Taylor series method for solving the problem in a transformed set of coordinates. Assorted numerical simulations display the spectral convergence of the proposed algorithm.

  16. A Penning discharge as a dc source for multiply ionized atoms.

    NASA Astrophysics Data System (ADS)

    Rainer, Kling; Manfred, Kock

    1997-10-01

    We report upon a specially designed Penning discharge which has been further developed from a source published by Finley et al.(Finley, D. S., Bowyer, S., Paresce, F., Malina, R. F.: Appl. Opt. 18) (1979) 649 towards a radiation standard for the XUV.(Heise, C., Hollandt, J., Kling, R., Kock, M., Kuehne, M.: Appl. Opt. 33) (1994) 5111 The discharge stands out for low buffer gas pressure, high electric power input and a strong superimposed magnetic field. That leads to intense sputtering of the cathodes which can be made of nearly any material. The efficient excitation and ionization of the sputtered atoms permit spectroscopy on multiply ionized spezies. W III and Fe III spectra will be given as examples. We also will present kinetic temperatures of the nonthermal plasma showing that the ionic component is decoupled from the cold neutral gas component.

  17. A 260-340 GHz Dual Chip Frequency Tripler for THz Frequency Multiplier Chains

    NASA Technical Reports Server (NTRS)

    Maestrini, Alain; Tripon-Canseliet, Charlotte; Ward, John S.; Gill, John J.; Mehdi, Imran

    2006-01-01

    We designed and fabricated a fix-tuned balanced frequency tripler working in the 260-340 GHz band to be the first stage of a x3x3x3 multiplier chain to 2.7 THz. The design of a dual-chip version of this multiplier featuring an input splitter / output combiner as part of the input / output matching networks of both chips - with no degradation of the expected bandwidth and efficiency- will be presented.

  18. Multiply scaled constrained nonlinear equation solvers. [for nonlinear heat conduction problems

    NASA Technical Reports Server (NTRS)

    Padovan, Joe; Krishna, Lala

    1986-01-01

    To improve the numerical stability of nonlinear equation solvers, a partitioned multiply scaled constraint scheme is developed. This scheme enables hierarchical levels of control for nonlinear equation solvers. To complement the procedure, partitioned convergence checks are established along with self-adaptive partitioning schemes. Overall, such procedures greatly enhance the numerical stability of the original solvers. To demonstrate and motivate the development of the scheme, the problem of nonlinear heat conduction is considered. In this context the main emphasis is given to successive substitution-type schemes. To verify the improved numerical characteristics associated with partitioned multiply scaled solvers, results are presented for several benchmark examples.

  19. Mixed Arlequin method for multiscale poromechanics problems: Mixed Arlequin method for multiscale poromechanics problems

    DOE PAGES

    Sun, WaiChing; Cai, Zhijun; Choo, Jinhyun

    2016-11-18

    An Arlequin poromechanics model is introduced to simulate the hydro-mechanical coupling effects of fluid-infiltrated porous media across different spatial scales within a concurrent computational framework. A two-field poromechanics problem is first recast as the twofold saddle point of an incremental energy functional. We then introduce Lagrange multipliers and compatibility energy functionals to enforce the weak compatibility of hydro-mechanical responses in the overlapped domain. Here, to examine the numerical stability of this hydro-mechanical Arlequin model, we derive a necessary condition for stability, the twofold inf–sup condition for multi-field problems, and establish a modified inf–sup test formulated in the product space ofmore » the solution field. We verify the implementation of the Arlequin poromechanics model through benchmark problems covering the entire range of drainage conditions. Finally, through these numerical examples, we demonstrate the performance, robustness, and numerical stability of the Arlequin poromechanics model.« less

  20. Cooperatively surrounding control for multiple Euler-Lagrange systems subjected to uncertain dynamics and input constraints

    NASA Astrophysics Data System (ADS)

    Chen, Liang-Ming; Lv, Yue-Yong; Li, Chuan-Jiang; Ma, Guang-Fu

    2016-12-01

    In this paper, we investigate cooperatively surrounding control (CSC) of multi-agent systems modeled by Euler-Lagrange (EL) equations under a directed graph. With the consideration of the uncertain dynamics in an EL system, a backstepping CSC algorithm combined with neural-networks is proposed first such that the agents can move cooperatively to surround the stationary target. Then, a command filtered backstepping CSC algorithm is further proposed to deal with the constraints on control input and the absence of neighbors’ velocity information. Numerical examples of eight satellites surrounding one space target illustrate the effectiveness of the theoretical results. Project supported by the National Basic Research Program of China (Grant No. 2012CB720000) and the National Natural Science Foundation of China (Grant Nos. 61304005 and 61403103).

  1. Troublesome aspects of the Renyi-MaxEnt treatment.

    PubMed

    Plastino, A; Rocca, M C; Pennini, F

    2016-07-01

    We study in great detail the possible existence of a Renyi-associated thermodynamics, with negative results. In particular, we uncover a hidden relation in Renyi's variational problem (MaxEnt). This relation connects the two associated Lagrange multipliers (canonical ensemble) with the mean energy 〈U〉 and the Renyi parameter α. As a consequence of such relation, we obtain anomalous Renyi-MaxEnt thermodynamic results.

  2. On redundant variables in Lagrangian mechanics, with applications to perturbation theory and KS regularization. [Kustaanheimo-Stiefel two body problem

    NASA Technical Reports Server (NTRS)

    Broucke, R.; Lass, H.

    1975-01-01

    It is shown that it is possible to make a change of variables in a Lagrangian in such a way that the number of variables is increased. The Euler-Lagrange equations in the redundant variables are obtained in the standard way (without the use of Lagrange multipliers). These equations are not independent but they are all valid and consistent. In some cases they are simpler than if the minimum number of variables are used. The redundant variables are supposed to be related to each other by several constraints (not necessarily holonomic), but these constraints are not used in the derivation of the equations of motion. The method is illustrated with the well known Kustaanheimo-Stiefel regularization. Some interesting applications to perturbation theory are also described.

  3. Design of multiplier-less sharp transition width non-uniform filter banks using gravitational search algorithm

    NASA Astrophysics Data System (ADS)

    Bindiya T., S.; Elias, Elizabeth

    2015-01-01

    In this paper, multiplier-less near-perfect reconstruction tree-structured filter banks are proposed. Filters with sharp transition width are preferred in filter banks in order to reduce the aliasing between adjacent channels. When sharp transition width filters are designed as conventional finite impulse response filters, the order of the filters will become very high leading to increased complexity. The frequency response masking (FRM) method is known to result in linear-phase sharp transition width filters with low complexity. It is found that the proposed design method, which is based on FRM, gives better results compared to the earlier reported results, in terms of the number of multipliers when sharp transition width filter banks are needed. To further reduce the complexity and power consumption, the tree-structured filter bank is made totally multiplier-less by converting the continuous filter bank coefficients to finite precision coefficients in the signed power of two space. This may lead to performance degradation and calls for the use of a suitable optimisation technique. In this paper, gravitational search algorithm is proposed to be used in the design of the multiplier-less tree-structured uniform as well as non-uniform filter banks. This design method results in uniform and non-uniform filter banks which are simple, alias-free, linear phase and multiplier-less and have sharp transition width.

  4. Gauge-invariant expectation values of the energy of a molecule in an electromagnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mandal, Anirban; Hunt, Katharine L. C.

    In this paper, we show that the full Hamiltonian for a molecule in an electromagnetic field can be separated into a molecular Hamiltonian and a field Hamiltonian, both with gauge-invariant expectation values. The expectation value of the molecular Hamiltonian gives physically meaningful results for the energy of a molecule in a time-dependent applied field. In contrast, the usual partitioning of the full Hamiltonian into molecular and field terms introduces an arbitrary gauge-dependent potential into the molecular Hamiltonian and leaves a gauge-dependent form of the Hamiltonian for the field. With the usual partitioning of the Hamiltonian, this same problem of gaugemore » dependence arises even in the absence of an applied field, as we show explicitly by considering a gauge transformation from zero applied field and zero external potentials to zero applied field, but non-zero external vector and scalar potentials. We resolve this problem and also remove the gauge dependence from the Hamiltonian for a molecule in a non-zero applied field and from the field Hamiltonian, by repartitioning the full Hamiltonian. It is possible to remove the gauge dependence because the interaction of the molecular charges with the gauge potential cancels identically with a gauge-dependent term in the usual form of the field Hamiltonian. We treat the electromagnetic field classically and treat the molecule quantum mechanically, but nonrelativistically. Our derivation starts from the Lagrangian for a set of charged particles and an electromagnetic field, with the particle coordinates, the vector potential, the scalar potential, and their time derivatives treated as the variables in the Lagrangian. We construct the full Hamiltonian using a Lagrange multiplier method originally suggested by Dirac, partition this Hamiltonian into a molecular term H{sub m} and a field term H{sub f}, and show that both H{sub m} and H{sub f} have gauge-independent expectation values. Any gauge may be chosen

  5. Magnetic Field Due to a Finite Length Current-Carrying Wire Using the Concept of Displacement Current

    ERIC Educational Resources Information Center

    Buschauer, Robert

    2014-01-01

    In undergraduate E&M courses the magnetic field due to a finite length, current-carrying wire can be calculated using the Biot-Savart law. However, to the author's knowledge, no textbook presents the calculation of this field using the Ampere-Maxwell law: ?B [multiplied by] dl = µ[subscript 0] (I + e[subscript 0] dF/dt) [multiplied by] 1

  6. Effect of Finite Particle Size on Convergence of Point Particle Models in Euler-Lagrange Multiphase Dispersed Flow

    NASA Astrophysics Data System (ADS)

    Nili, Samaun; Park, Chanyoung; Haftka, Raphael T.; Kim, Nam H.; Balachandar, S.

    2017-11-01

    Point particle methods are extensively used in simulating Euler-Lagrange multiphase dispersed flow. When particles are much smaller than the Eulerian grid the point particle model is on firm theoretical ground. However, this standard approach of evaluating the gas-particle coupling at the particle center fails to converge as the Eulerian grid is reduced below particle size. We present an approach to model the interaction between particles and fluid for finite size particles that permits convergence. We use the generalized Faxen form to compute the force on a particle and compare the results against traditional point particle method. We apportion the different force components on the particle to fluid cells based on the fraction of particle volume or surface in the cell. The application is to a one-dimensional model of shock propagation through a particle-laden field at moderate volume fraction, where the convergence is achieved for a well-formulated force model and back coupling for finite size particles. Comparison with 3D direct fully resolved numerical simulations will be used to check if the approach also improves accuracy compared to the point particle model. Work supported by the U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science Academic Alliance Program, under Contract No. DE-NA0002378.

  7. Multiplying Is More than Math--It's Also Good Management

    ERIC Educational Resources Information Center

    Foster, Elise; Wiseman, Liz

    2015-01-01

    Studying more than 400 educational leaders, the authors propose a new model for leadership and management rooted in the belief that there is latent intelligence inside schools and educational organizations. Their findings suggest two dramatically different types of leaders, Multipliers and Diminishers. The five disciplines that distinguish…

  8. Interatomic Coulombic decay cascades in multiply excited neon clusters

    PubMed Central

    Nagaya, K.; Iablonskyi, D.; Golubev, N. V.; Matsunami, K.; Fukuzawa, H.; Motomura, K.; Nishiyama, T.; Sakai, T.; Tachibana, T.; Mondal, S.; Wada, S.; Prince, K. C.; Callegari, C.; Miron, C.; Saito, N.; Yabashi, M.; Demekhin, Ph. V.; Cederbaum, L. S.; Kuleff, A. I.; Yao, M.; Ueda, K.

    2016-01-01

    In high-intensity laser light, matter can be ionized by direct multiphoton absorption even at photon energies below the ionization threshold. However on tuning the laser to the lowest resonant transition, the system becomes multiply excited, and more efficient, indirect ionization pathways become operative. These mechanisms are known as interatomic Coulombic decay (ICD), where one of the species de-excites to its ground state, transferring its energy to ionize another excited species. Here we show that on tuning to a higher resonant transition, a previously unknown type of interatomic Coulombic decay, intra-Rydberg ICD occurs. In it, de-excitation of an atom to a close-lying Rydberg state leads to electron emission from another neighbouring Rydberg atom. Moreover, systems multiply excited to higher Rydberg states will decay by a cascade of such processes, producing even more ions. The intra-Rydberg ICD and cascades are expected to be ubiquitous in weakly-bound systems exposed to high-intensity resonant radiation. PMID:27917867

  9. Hörmander multipliers on two-dimensional dyadic Hardy spaces

    NASA Astrophysics Data System (ADS)

    Daly, J.; Fridli, S.

    2008-12-01

    In this paper we are interested in conditions on the coefficients of a two-dimensional Walsh multiplier operator that imply the operator is bounded on certain of the Hardy type spaces Hp, 0multipliers of Fourier integrals, Dokl. Akad. Nauk SSSR 109 (1956) 701-703; S.G. Mihlin, Multidimensional Singular Integrals and Integral Equations, Pergamon Press, 1965]. In this paper we extend these results to the two-dimensional dyadic Hardy spaces.

  10. Experimental demonstration of a 5th harmonic mm-wave frequency multiplying vacuum tube

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toufexis, Filippos; Tantawi, Sami G.; Jensen, Aaron

    Here, we report the experimental demonstration of a 5th harmonic mm-wave frequency multiplying vacuum electronic device, which uses an over-moded spherical sector output cavity. In this device, a pencil electron beam is helically deflected in a transverse deflecting cavity before entering the output cavity. No magnetic field is required to focus or guide the beam. We built and tested a proof-of-principle device with an output frequency of 57.12 GHz. The measured peak power was 52.67 W at the 5th harmonic of the drive frequency. Power at the 4th, 6th, and 7th harmonics was 33.28 dB lower than that at themore » 5th harmonic.« less

  11. Experimental demonstration of a 5th harmonic mm-wave frequency multiplying vacuum tube

    DOE PAGES

    Toufexis, Filippos; Tantawi, Sami G.; Jensen, Aaron; ...

    2017-06-26

    Here, we report the experimental demonstration of a 5th harmonic mm-wave frequency multiplying vacuum electronic device, which uses an over-moded spherical sector output cavity. In this device, a pencil electron beam is helically deflected in a transverse deflecting cavity before entering the output cavity. No magnetic field is required to focus or guide the beam. We built and tested a proof-of-principle device with an output frequency of 57.12 GHz. The measured peak power was 52.67 W at the 5th harmonic of the drive frequency. Power at the 4th, 6th, and 7th harmonics was 33.28 dB lower than that at themore » 5th harmonic.« less

  12. Fold-change detection and scalar symmetry of sensory input fields.

    PubMed

    Shoval, Oren; Goentoro, Lea; Hart, Yuval; Mayo, Avi; Sontag, Eduardo; Alon, Uri

    2010-09-07

    Recent studies suggest that certain cellular sensory systems display fold-change detection (FCD): a response whose entire shape, including amplitude and duration, depends only on fold changes in input and not on absolute levels. Thus, a step change in input from, for example, level 1 to 2 gives precisely the same dynamical output as a step from level 2 to 4, because the steps have the same fold change. We ask what the benefit of FCD is and show that FCD is necessary and sufficient for sensory search to be independent of multiplying the input field by a scalar. Thus, the FCD search pattern depends only on the spatial profile of the input and not on its amplitude. Such scalar symmetry occurs in a wide range of sensory inputs, such as source strength multiplying diffusing/convecting chemical fields sensed in chemotaxis, ambient light multiplying the contrast field in vision, and protein concentrations multiplying the output in cellular signaling systems. Furthermore, we show that FCD entails two features found across sensory systems, exact adaptation and Weber's law, but that these two features are not sufficient for FCD. Finally, we present a wide class of mechanisms that have FCD, including certain nonlinear feedback and feed-forward loops. We find that bacterial chemotaxis displays feedback within the present class and hence, is expected to show FCD. This can explain experiments in which chemotaxis searches are insensitive to attractant source levels. This study, thus, suggests a connection between properties of biological sensory systems and scalar symmetry stemming from physical properties of their input fields.

  13. The formation of molecules in interstellar clouds from singly and multiply ionized atoms

    NASA Technical Reports Server (NTRS)

    Langer, W. D.

    1978-01-01

    The suggestion is considered that multiply ionized atoms produced by K- and L-shell X-ray ionization and cosmic-ray ionization can undergo ion-molecule reactions and also initiate molecule production. The role of X-rays in molecule production in general is discussed, and the contribution to molecule production of the C(+) radiative association with hydrogen is examined. Such gas-phase reactions of singly and multiply ionized atoms are used to calculate molecular abundances of carbon-, nitrogen-, and oxygen-bearing species. The column densities of the molecules are evaluated on the basis of a modified version of previously developed isobaric cloud models. It is found that reactions of multiply ionized carbon with H2 can contribute a significant fraction of the observed CH in diffuse interstellar clouds in the presence of diffuse X-ray structures or discrete X-ray sources and that substantial amounts of CH(+) can be produced under certain conditions.

  14. Effect of multiply charged ions on the performance and beam characteristics in annular and cylindrical type Hall thruster plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Holak; Lim, Youbong; Choe, Wonho, E-mail: wchoe@kaist.ac.kr

    2014-10-06

    Plasma plume and thruster performance characteristics associated with multiply charged ions in a cylindrical type Hall thruster (CHT) and an annular type Hall thruster are compared under identical conditions such as channel diameter, channel depth, propellant mass flow rate. A high propellant utilization in a CHT is caused by a high ionization rate, which brings about large multiply charged ions. Ion currents and utilizations are much different due to the presence of multiply charged ions. A high multiply charged ion fraction and a high ionization rate in the CHT result in a higher specific impulse, thrust, and discharge current.

  15. Familiar Sports and Activities Adapted for Multiply Impaired Persons.

    ERIC Educational Resources Information Center

    Schilling, Mary Lou, Ed.

    1984-01-01

    Means of adapting some familiar and popular physical activities for multiply impaired persons are described. Games reviewed are dice baseball, one base baseball, in-house bowling, wheelchair bowling, ramp bowling, swing-ball bowling, table tennis, shuffleboard, beanbag bingo and tic-tac-toe, balloon basketball, circle football, and wheelchair…

  16. Obtaining Predictions from Models Fit to Multiply Imputed Data

    ERIC Educational Resources Information Center

    Miles, Andrew

    2016-01-01

    Obtaining predictions from regression models fit to multiply imputed data can be challenging because treatments of multiple imputation seldom give clear guidance on how predictions can be calculated, and because available software often does not have built-in routines for performing the necessary calculations. This research note reviews how…

  17. Treatment of multiply controlled destructive behavior with food reinforcement.

    PubMed

    Adelinis, J D; Piazza, C C; Goh, H L

    2001-01-01

    We evaluated the extent to which the positive reinforcement of communication would reduce multiply controlled destructive behavior in the absence of relevant extinction components. When edible reinforcement for appropriate communication and nonfood reinforcers for problem behavior were available simultaneously, responding was allocated almost exclusively toward the behavior that produced edible reinforcement.

  18. A millimeter wave quasi-optical mixer and multiplier

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The results of an experimental study of a biconical quasi-optical Schottky barrier diode mount design which could be used for mixing and multiplying in the frequency range 200-1000 Ghz are reported. The biconical mount is described and characteristics measured at 185 Ghz are presented. The use of the mount for quasi-optical frequency doubling from 56 to 112 Ghz is described and efficiency estimates given.

  19. On the design of a radix-10 online floating-point multiplier

    NASA Astrophysics Data System (ADS)

    McIlhenny, Robert D.; Ercegovac, Milos D.

    2009-08-01

    This paper describes an approach to design and implement a radix-10 online floating-point multiplier. An online approach is considered because it offers computational flexibility not available with conventional arithmetic. The design was coded in VHDL and compiled, synthesized, and mapped onto a Virtex 5 FPGA to measure cost in terms of LUTs (look-up-tables) as well as the cycle time and total latency. The routing delay which was not optimized is the major component in the cycle time. For a rough estimate of the cost/latency characteristics, our design was compared to a standard radix-2 floating-point multiplier of equivalent precision. The results demonstrate that even an unoptimized radix-10 online design is an attractive implementation alternative for FPGA floating-point multiplication.

  20. New Forms of BRST Symmetry in Rigid Rotor

    NASA Astrophysics Data System (ADS)

    Rai, Sumit Kumar; Mandal, Bhabani Prasad

    We derive the different forms of BRST symmetry by using the Batalin-Fradkin-Vilkovisky formalism in a rigid rotor. The so-called "dual-BRST" symmetry is obtained from the usual BRST symmetry by making a canonical transformation in the ghost sector. On the other hand, a canonical transformation in the sector involving Lagrange multiplier and its corresponding momentum leads to a new form of BRST as well as dual-BRST symmetry.

  1. Towards Long-Time Simulation of Soft Tissue Simulant Penetration

    DTIC Science & Technology

    2008-12-01

    materials involved in testing. Experiments, for instance firing high speed bullets at steel plates of different thicknesses (see [2]), reveal large...L’ shaped beam against a rigid wall using AVI and the almost exact en- ergy conservation of the system . With traditional time integrators, the time...and avoiding ill-conditioning issues is often non trivial. Likewise, Lagrange multipliers have also been used to impose the contact con- straint at

  2. Finite element approximation of an optimal control problem for the von Karman equations

    NASA Technical Reports Server (NTRS)

    Hou, L. Steven; Turner, James C.

    1994-01-01

    This paper is concerned with optimal control problems for the von Karman equations with distributed controls. We first show that optimal solutions exist. We then show that Lagrange multipliers may be used to enforce the constraints and derive an optimality system from which optimal states and controls may be deduced. Finally we define finite element approximations of solutions for the optimality system and derive error estimates for the approximations.

  3. Maggi's equations of motion and the determination of constraint reactions

    NASA Astrophysics Data System (ADS)

    Papastavridis, John G.

    1990-04-01

    This paper presents a geometrical derivation of the constraint reaction-free equations of Maggi for mechanical systems subject to linear (first-order) nonholonomic and/or holonomic constraints. These results follow directly from the proper application of the concepts of virtual displacement and quasi-coordinates to the variational equation of motion, i.e., Lagrange's principle. The method also makes clear how to compute the constraint reactions (kinetostatics) without introducing Lagrangian multipliers.

  4. Effects of DoD Engagements in Collaborative Humanitarian Assistance

    DTIC Science & Technology

    2013-09-01

    Breusch - Pagan (BP) test , which tests for heteroscedasticity in panel data using Lagrange Multipliers. The null hypothesis for the BP test is that...Two Stage Least Squares AOR Area of Responsibility BP Breusch - Pagan COCOM Combatant Command COMPACT Compact of Free Association DoD...homoscedasticity is present ( Breusch & Pagan , 1979, p. 1288). Each fixed effect, “CountryName,” “FiscalYear,”and the combined effect of both variables, was

  5. Multiply-Constrained Semantic Search in the Remote Associates Test

    ERIC Educational Resources Information Center

    Smith, Kevin A.; Huber, David E.; Vul, Edward

    2013-01-01

    Many important problems require consideration of multiple constraints, such as choosing a job based on salary, location, and responsibilities. We used the Remote Associates Test to study how people solve such multiply-constrained problems by asking participants to make guesses as they came to mind. We evaluated how people generated these guesses…

  6. Optimization of Passive Voltage Multipliers for Fast Start-up and Multi-voltage Power Supplies in Electromagnetic Energy Harvesting Systems

    NASA Astrophysics Data System (ADS)

    Yang, G.; Stark, B. H.; Burrow, S. G.; Hollis, S. J.

    2014-11-01

    This paper demonstrates the use of passive voltage multipliers for rapid start-up of sub-milliwatt electromagnetic energy harvesting systems. The work describes circuit optimization to make as short as possible the transition from completely depleted energy storage to the first powering-up of an actively controlled switched-mode converter. The dependency of the start-up time on component parameters and topologies is derived by simulation and experimentation. The resulting optimized multiplier design reduces the start-up time from several minutes to 1 second. An additional improvement uses the inherent cascade structure of the voltage multiplier to power sub-systems at different voltages. This multi-rail start-up is shown to reduce the circuit losses of the active converter by 72% with respect to the optimized single-rail system. The experimental results provide insight into the multiplier's transient behaviour, including circuit interactions, in a complete harvesting system, and offer important information to optimize voltage multipliers for rapid start-up.

  7. Phase-field model of vapor-liquid-solid nanowire growth

    NASA Astrophysics Data System (ADS)

    Wang, Nan; Upmanyu, Moneesh; Karma, Alain

    2018-03-01

    We present a multiphase-field model to describe quantitatively nanowire growth by the vapor-liquid-solid (VLS) process. The free-energy functional of this model depends on three nonconserved order parameters that distinguish the vapor, liquid, and solid phases and describe the energetic properties of various interfaces, including arbitrary forms of anisotropic γ plots for the solid-vapor and solid-liquid interfaces. The evolution equations for those order parameters describe basic kinetic processes including the rapid (quasi-instantaneous) equilibration of the liquid catalyst to a droplet shape with constant mean curvature, the slow incorporation of growth atoms at the droplet surface, and crystallization within the droplet. The standard constraint that the sum of the phase fields equals unity and the conservation of the number of catalyst atoms, which relates the catalyst volume to the concentration of growth atoms inside the droplet, are handled via separate Lagrange multipliers. An analysis of the model is presented that rigorously maps the phase-field equations to a desired set of sharp-interface equations for the evolution of the phase boundaries under the constraint of force balance at three-phase junctions (triple points) given by the Young-Herring relation that includes torque term related to the anisotropy of the solid-liquid and solid-vapor interface excess free energies. Numerical examples of growth in two dimensions are presented for the simplest case of vanishing crystalline anisotropy and the more realistic case of a solid-liquid γ plot with cusped minima corresponding to two sets of (10 ) and (11 ) facets. The simulations reproduce many of the salient features of nanowire growth observed experimentally, including growth normal to the substrate with tapering of the side walls, transitions between different growth orientations, and crawling growth along the substrate. They also reproduce different observed relationships between the nanowire growth

  8. Low rank alternating direction method of multipliers reconstruction for MR fingerprinting.

    PubMed

    Assländer, Jakob; Cloos, Martijn A; Knoll, Florian; Sodickson, Daniel K; Hennig, Jürgen; Lattanzi, Riccardo

    2018-01-01

    The proposed reconstruction framework addresses the reconstruction accuracy, noise propagation and computation time for magnetic resonance fingerprinting. Based on a singular value decomposition of the signal evolution, magnetic resonance fingerprinting is formulated as a low rank (LR) inverse problem in which one image is reconstructed for each singular value under consideration. This LR approximation of the signal evolution reduces the computational burden by reducing the number of Fourier transformations. Also, the LR approximation improves the conditioning of the problem, which is further improved by extending the LR inverse problem to an augmented Lagrangian that is solved by the alternating direction method of multipliers. The root mean square error and the noise propagation are analyzed in simulations. For verification, in vivo examples are provided. The proposed LR alternating direction method of multipliers approach shows a reduced root mean square error compared to the original fingerprinting reconstruction, to a LR approximation alone and to an alternating direction method of multipliers approach without a LR approximation. Incorporating sensitivity encoding allows for further artifact reduction. The proposed reconstruction provides robust convergence, reduced computational burden and improved image quality compared to other magnetic resonance fingerprinting reconstruction approaches evaluated in this study. Magn Reson Med 79:83-96, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  9. Gilles de la Tourette Disease in Multiply Disabled Children.

    ERIC Educational Resources Information Center

    Kerbeshian, Jacob; And Others

    1985-01-01

    Giles de La Tourette disease (TD) is characterized by multiform changing vocal and motor tics with a wide range of accompanying behavioral symptoms. The range of tics and behavioral problems seen in TD is described along with a typcial case report in a multiply disabled child. Diagnostic criteria, and treatment recommendations are also given.…

  10. Gaseous Electron Multiplier (GEM) Detectors

    NASA Astrophysics Data System (ADS)

    Gnanvo, Kondo

    2017-09-01

    Gaseous detectors have played a pivotal role as tracking devices in the field of particle physics experiments for the last fifty years. Recent advances in photolithography and micro processing techniques have enabled the transition from Multi Wire Proportional Chambers (MWPCs) and Drift Chambers to a new family of gaseous detectors refer to as Micro Pattern Gaseous Detectors (MPGDs). MPGDs combine the basic gas amplification principle with micro-structure printed circuits to provide detectors with excellent spatial and time resolution, high rate capability, low material budget and high radiation tolerance. Gas Electron Multiplier (GEMs) is a well-established MPGD technology invented by F. Sauli at CERN in 1997 and deployed various high energy physics (HEP) and nuclear NP experiment for tracking systems of current and future NP experiments. GEM detector combines an exceptional high rate capability (1 MHz / mm2) and robustness against harsh radiation environment with excellent position and timing resolution performances. Recent breakthroughs over the past decade have allowed the possibility for large area GEMs, making them cost effective and high-performance detector candidates to play pivotal role in current and future particle physics experiments. After a brief introduction of the basic principle of GEM technology, I will give a brief overview of the GEM detectors used in particle physics experiments over the past decades and especially in the NP community at Thomas Jefferson National Laboratory (JLab) and Brookhaven National Laboratory (BNL). I will follow by a review of state of the art of the new GEM development for the next generation of colliders such as Electron Ion Collider (EIC) or High Luminosity LHC and future Nuclear Physics experiments. I will conclude with a presentation of the CERN-based RD51 collaboration established in 2008 and its major achievements regarding technological developments and applications of MPGDs.

  11. Does the Price Multiplier Effect also Hold for Stocks?

    NASA Astrophysics Data System (ADS)

    Maslov, Sergei; Roehner, Bertrand M.

    The price multiplier effect provides precious insight into the behavior of investors during episodes of speculative trading. It tells us that the higher the price of an asset (within a set of similar assets), the more its price is likely to increase during the upgoing phase of a speculative price peak. In short, instead of being risk averse, as is often assumed, investors rather seem to be "risk prone". While this effect is known to hold for several sorts of assets, it has not yet been possible to test it for stocks because the price of one share has no intrinsic significance, which means that one cannot say that stock A is more expensive than stock B on the basis of its price. In this paper we show that the price-dividend ratio gives a good basis for assessing the price of stocks in an intrinsic way. When this alternative measure is used instead, it turns out that the price multiplier effect also holds for stocks, at least if one concentrates on samples of companies which are sufficiently homogeneous.

  12. Thermodynamic and Optical Response of Multiply Shocked Liquid Nitromethane

    NASA Astrophysics Data System (ADS)

    Flanders, B. M.; Winey, J. M.; Gupta, Y. M.

    2015-06-01

    To investigate the thermodynamic and optical response of multiply shocked liquids, particle velocity profiles were measured for liquid nitromethane (NM) subjected to stepwise loading to a peak pressure of 10 GPa. Using a multi-point velocity interferometer (VISAR), wave profiles were obtained at both the front and rear interfaces of the thin (200 μm) liquid sample to obtain data regarding the thermodynamic response and the refractive index at the intermediate stepwise loading states, in addition to the peak state. Changes in the apparent velocity at the front sample interface were well accounted for by using a Gladstone-Dale relationship to describe the NM index of refraction. The thermodynamic states of multiply shocked NM were examined by comparing the measured wave profiles to those calculated using a published NM equation of state. Although the calculated and measured particle velocity states are in good overall agreement, comparison of the calculated shock wave reverberation times at the front and rear sample interfaces with the measured values suggests that the published NM equation of state can be improved. Work supported by DOE/NNSA.

  13. Basic Knowledge for Market Principle: Approaches to the Price Coordination Mechanism by Using Optimization Theory and Algorithm

    NASA Astrophysics Data System (ADS)

    Aiyoshi, Eitaro; Masuda, Kazuaki

    On the basis of market fundamentalism, new types of social systems with the market mechanism such as electricity trading markets and carbon dioxide (CO2) emission trading markets have been developed. However, there are few textbooks in science and technology which present the explanation that Lagrange multipliers can be interpreted as market prices. This tutorial paper explains that (1) the steepest descent method for dual problems in optimization, and (2) Gauss-Seidel method for solving the stationary conditions of Lagrange problems with market principles, can formulate the mechanism of market pricing, which works even in the information-oriented modern society. The authors expect readers to acquire basic knowledge on optimization theory and algorithms related to economics and to utilize them for designing the mechanism of more complicated markets.

  14. Multiplying Electrons With Diamond

    NASA Technical Reports Server (NTRS)

    2003-01-01

    As researchers in the Space Communications Division of NASA s Glenn Research Center in 1992, Dr. Gerald Mearini, Dr. Isay Krainsky, and Dr. James Dayton made a secondary electron emission discovery that became the foundation for Mearini s company, GENVAC AeroSpace Corporation. Even after Mearini departed Glenn, then known as Lewis Research Center, his contact with NASA remained strong as he was awarded Small Business Innovation Research (SBIR) contracts to further develop his work. Mearini s work for NASA began with the investigation of diamond as a material for the suppression of secondary electron emissions. The results of his research were the opposite of what was expected diamond proved to be an excellent emitter rather than absorber. Mearini, Krainsky, and Dayton discovered that laboratory-grown diamond films can produce up to 45 electrons from a single incident electron. Having built an electron multiplier prototype at NASA, Mearini decided to start his own company to develop diamond structures usable in electron beam devices.

  15. Diffuse interface models of locally inextensible vesicles in a viscous fluid

    PubMed Central

    Aland, Sebastian; Egerer, Sabine; Lowengrub, John; Voigt, Axel

    2014-01-01

    We present a new diffuse interface model for the dynamics of inextensible vesicles in a viscous fluid with inertial forces. A new feature of this work is the implementation of the local inextensibility condition in the diffuse interface context. Local inextensibility is enforced by using a local Lagrange multiplier, which provides the necessary tension force at the interface. We introduce a new equation for the local Lagrange multiplier whose solution essentially provides a harmonic extension of the multiplier off the interface while maintaining the local inextensibility constraint near the interface. We also develop a local relaxation scheme that dynamically corrects local stretching/compression errors thereby preventing their accumulation. Asymptotic analysis is presented that shows that our new system converges to a relaxed version of the inextensible sharp interface model. This is also verified numerically. To solve the equations, we use an adaptive finite element method with implicit coupling between the Navier-Stokes and the diffuse interface inextensibility equations. Numerical simulations of a single vesicle in a shear flow at different Reynolds numbers demonstrate that errors in enforcing local inextensibility may accumulate and lead to large differences in the dynamics in the tumbling regime and smaller differences in the inclination angle of vesicles in the tank-treading regime. The local relaxation algorithm is shown to prevent the accumulation of stretching and compression errors very effectively. Simulations of two vesicles in an extensional flow show that local inextensibility plays an important role when vesicles are in close proximity by inhibiting fluid drainage in the near contact region. PMID:25246712

  16. Multisymplectic Lagrangian and Hamiltonian Formalisms of Classical Field Theories

    NASA Astrophysics Data System (ADS)

    Román-Roy, Narciso

    2009-11-01

    This review paper is devoted to presenting the standard multisymplectic formulation for describing geometrically classical field theories, both the regular and singular cases. First, the main features of the Lagrangian formalism are revisited and, second, the Hamiltonian formalism is constructed using Hamiltonian sections. In both cases, the variational principles leading to the Euler-Lagrange and the Hamilton-De Donder-Weyl equations, respectively, are stated, and these field equations are given in different but equivalent geometrical ways in each formalism. Finally, both are unified in a new formulation (which has been developed in the last years), following the original ideas of Rusk and Skinner for mechanical systems.

  17. Dynamical computation of constrained flexible systems using a modal Udwadia-Kalaba formulation: Application to musical instruments.

    PubMed

    Antunes, J; Debut, V

    2017-02-01

    Most musical instruments consist of dynamical subsystems connected at a number of constraining points through which energy flows. For physical sound synthesis, one important difficulty deals with enforcing these coupling constraints. While standard techniques include the use of Lagrange multipliers or penalty methods, in this paper, a different approach is explored, the Udwadia-Kalaba (U-K) formulation, which is rooted on analytical dynamics but avoids the use of Lagrange multipliers. This general and elegant formulation has been nearly exclusively used for conceptual systems of discrete masses or articulated rigid bodies, namely, in robotics. However its natural extension to deal with continuous flexible systems is surprisingly absent from the literature. Here, such a modeling strategy is developed and the potential of combining the U-K equation for constrained systems with the modal description is shown, in particular, to simulate musical instruments. Objectives are twofold: (1) Develop the U-K equation for constrained flexible systems with subsystems modelled through unconstrained modes; and (2) apply this framework to compute string/body coupled dynamics. This example complements previous work [Debut, Antunes, Marques, and Carvalho, Appl. Acoust. 108, 3-18 (2016)] on guitar modeling using penalty methods. Simulations show that the proposed technique provides similar results with a significant improvement in computational efficiency.

  18. Statistical analogues of thermodynamic extremum principles

    NASA Astrophysics Data System (ADS)

    Ramshaw, John D.

    2018-05-01

    As shown by Jaynes, the canonical and grand canonical probability distributions of equilibrium statistical mechanics can be simply derived from the principle of maximum entropy, in which the statistical entropy S=- {k}{{B}}{\\sum }i{p}i{log}{p}i is maximised subject to constraints on the mean values of the energy E and/or number of particles N in a system of fixed volume V. The Lagrange multipliers associated with those constraints are then found to be simply related to the temperature T and chemical potential μ. Here we show that the constrained maximisation of S is equivalent to, and can therefore be replaced by, the essentially unconstrained minimisation of the obvious statistical analogues of the Helmholtz free energy F = E ‑ TS and the grand potential J = F ‑ μN. Those minimisations are more easily performed than the maximisation of S because they formally eliminate the constraints on the mean values of E and N and their associated Lagrange multipliers. This procedure significantly simplifies the derivation of the canonical and grand canonical probability distributions, and shows that the well known extremum principles for the various thermodynamic potentials possess natural statistical analogues which are equivalent to the constrained maximisation of S.

  19. A general-purpose approach to computer-aided dynamic analysis of a flexible helicopter

    NASA Technical Reports Server (NTRS)

    Agrawal, Om P.

    1988-01-01

    A general purpose mathematical formulation is described for dynamic analysis of a helicopter consisting of flexible and/or rigid bodies that undergo large translations and rotations. Rigid body and elastic sets of generalized coordinates are used. The rigid body coordinates define the location and the orientation of a body coordinate frame (global frame) with respect to an inertial frame. The elastic coordinates are introduced using a finite element approach in order to model flexible components. The compatibility conditions between two adjacent elements in a flexible body are imposed using a Boolean matrix, whereas the compatibility conditions between two adjacent bodies are imposed using the Lagrange multiplier approach. Since the form of the constraint equations depends upon the type of kinematic joint and involves only the generalized coordinates of the two participating elements, then a library of constraint elements can be developed to impose the kinematic constraint in an automated fashion. For the body constraints, the Lagrange multipliers yield the reaction forces and torques of the bodies at the joints. The virtual work approach is used to derive the equations of motion, which are a system of differential and algebraic equations that are highly nonlinear. The formulation presented is general and is compared with hard-wired formulations commonly used in helicopter analysis.

  20. Multi-MW K-Band Harmonic Multiplier: RF Source For High-Gradient Accelerator R & D

    NASA Astrophysics Data System (ADS)

    Solyak, N. A.; Yakovlev, V. P.; Kazakov, S. Yu.; Hirshfield, J. L.

    2009-01-01

    A preliminary design is presented for a two-cavity harmonic multiplier, intended as a high-power RF source for use in experiments aimed at developing high-gradient structures for a future collider. The harmonic multiplier is to produce power at selected frequencies in K-band (18-26.5 GHz) using as an RF driver an XK-5 S-band klystron (2.856 GHz). The device is to be built with a TE111 rotating mode input cavity and interchangeable output cavities running in the TEn11 rotating mode, with n = 7,8,9 at 19.992, 22.848, and 25.704 GHz. An example for a 7th harmonic multiplier is described, using a 250 kV, 20 A injected laminar electron beam; with 10 MW of S-band drive power, 4.7 MW of 20-GHz output power is predicted. Details are described of the magnetic circuit, cavities, and output coupler.

  1. General covariance, topological quantum field theories and fractional statistics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gamboa, J.

    1992-01-20

    Topological quantum field theories and fractional statistics are both defined in multiply connected manifolds. The authors study the relationship between both theories in 2 + 1 dimensions and the authors show that, due to the multiply-connected character of the manifold, the propagator for any quantum (field) theory always contains a first order pole that can be identified with a physical excitation with fractional spin. The article starts by reviewing the definition of general covariance in the Hamiltonian formalism, the gauge-fixing problem and the quantization following the lines of Batalin, Fradkin and Vilkovisky. The BRST-BFV quantization is reviewed in order tomore » understand the topological approach proposed here.« less

  2. Relativistic semiempirical-core-potential calculations in Ca+,Sr+ , and Ba+ ions on Lagrange meshes

    NASA Astrophysics Data System (ADS)

    Filippin, Livio; Schiffmann, Sacha; Dohet-Eraly, Jérémy; Baye, Daniel; Godefroid, Michel

    2018-01-01

    Relativistic atomic structure calculations are carried out in alkaline-earth-metal ions using a semiempirical-core-potential approach. The systems are partitioned into frozen-core electrons and an active valence electron. The core orbitals are defined by a Dirac-Hartree-Fock calculation using the grasp2k package. The valence electron is described by a Dirac-like Hamiltonian involving a core-polarization potential to simulate the core-valence electron correlation. The associated equation is solved with the Lagrange-mesh method, which is an approximate variational approach having the form of a mesh calculation because of the use of a Gauss quadrature to calculate matrix elements. Properties involving the low-lying metastable D 3 /2 ,5 /2 2 states of Ca+, Sr+, and Ba+ are studied, such as polarizabilities, one- and two-photon decay rates, and lifetimes. Good agreement is found with other theory and observation, which is promising for further applications in alkalilike systems.

  3. Mesh quality control for multiply-refined tetrahedral grids

    NASA Technical Reports Server (NTRS)

    Biswas, Rupak; Strawn, Roger

    1994-01-01

    A new algorithm for controlling the quality of multiply-refined tetrahedral meshes is presented in this paper. The basic dynamic mesh adaption procedure allows localized grid refinement and coarsening to efficiently capture aerodynamic flow features in computational fluid dynamics problems; however, repeated application of the procedure may significantly deteriorate the quality of the mesh. Results presented show the effectiveness of this mesh quality algorithm and its potential in the area of helicopter aerodynamics and acoustics.

  4. Stress Analysis of Composite Cylindrical Shells with an Elliptical Cutout

    NASA Technical Reports Server (NTRS)

    Oterkus, E.; Madenci, E.; Nemeth, M. P.

    2007-01-01

    A special-purpose, semi-analytical solution method for determining the stress and deformation fields in a thin laminated-composite cylindrical shell with an elliptical cutout is presented. The analysis includes the effects of cutout size, shape, and orientation; non-uniform wall thickness; oval-cross-section eccentricity; and loading conditions. The loading conditions include uniform tension, uniform torsion, and pure bending. The analysis approach is based on the principle of stationary potential energy and uses Lagrange multipliers to relax the kinematic admissibility requirements on the displacement representations through the use of idealized elastic edge restraints. Specifying appropriate stiffness values for the elastic extensional and rotational edge restraints (springs) allows the imposition of the kinematic boundary conditions in an indirect manner, which enables the use of a broader set of functions for representing the displacement fields. Selected results of parametric studies are presented for several geometric parameters that demonstrate that analysis approach is a powerful means for developing design criteria for laminated-composite shells.

  5. Stress Analysis of Composite Cylindrical Shells With an Elliptical Cutout

    NASA Technical Reports Server (NTRS)

    Nemeth, M. P.; Oterkus, E.; Madenci, E.

    2005-01-01

    A special-purpose, semi-analytical solution method for determining the stress and deformation fields in a thin laminated-composite cylindrical shell with an elliptical cutout is presented. The analysis includes the effects of cutout size, shape, and orientation; nonuniform wall thickness; oval-cross-section eccentricity; and loading conditions. The loading conditions include uniform tension, uniform torsion, and pure bending. The analysis approach is based on the principle of stationary potential energy and uses Lagrange multipliers to relax the kinematic admissibility requirements on the displacement representations through the use of idealized elastic edge restraints. Specifying appropriate stiffness values for the elastic extensional and rotational edge restraints (springs) allows the imposition of the kinematic boundary conditions in an indirect manner, which enables the use of a broader set of functions for representing the displacement fields. Selected results of parametric studies are presented for several geometric parameters that demonstrate that analysis approach is a powerful means for developing design criteria for laminated-composite shells.

  6. The curious case of large-N expansions on a (pseudo)sphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polyakov, Alexander M.; Saleem, Zain H.; Stokes, James

    We elucidate the large-N dynamics of one-dimensional sigma models with spherical and hyperbolic target spaces and find a duality between the Lagrange multiplier and the angular momentum. In the hyperbolic model we propose a new class of operators based on the irreducible representations of hyperbolic space. We also uncover unexpected zero modes which lead to the double scaling of the 1/N expansion and explore these modes using Gelfand-Dikiy equations.

  7. The curious case of large-N expansions on a (pseudo)sphere

    DOE PAGES

    Polyakov, Alexander M.; Saleem, Zain H.; Stokes, James

    2015-02-03

    We elucidate the large-N dynamics of one-dimensional sigma models with spherical and hyperbolic target spaces and find a duality between the Lagrange multiplier and the angular momentum. In the hyperbolic model we propose a new class of operators based on the irreducible representations of hyperbolic space. We also uncover unexpected zero modes which lead to the double scaling of the 1/N expansion and explore these modes using Gelfand-Dikiy equations.

  8. A New Approach for the Discovery of Antibiotics by Targeting Non-Multiplying Bacteria: A Novel Topical Antibiotic for Staphylococcal Infections

    PubMed Central

    Hu, Yanmin; Shamaei-Tousi, Alireza; Liu, Yingjun; Coates, Anthony

    2010-01-01

    In a clinical infection, multiplying and non-multiplying bacteria co-exist. Antibiotics kill multiplying bacteria, but they are very inefficient at killing non-multipliers which leads to slow or partial death of the total target population of microbes in an infected tissue. This prolongs the duration of therapy, increases the emergence of resistance and so contributes to the short life span of antibiotics after they reach the market. Targeting non-multiplying bacteria from the onset of an antibiotic development program is a new concept. This paper describes the proof of principle for this concept, which has resulted in the development of the first antibiotic using this approach. The antibiotic, called HT61, is a small quinolone-derived compound with a molecular mass of about 400 Daltons, and is active against non-multiplying bacteria, including methicillin sensitive and resistant, as well as Panton-Valentine leukocidin-carrying Staphylococcus aureus. It also kills mupirocin resistant MRSA. The mechanism of action of the drug is depolarisation of the cell membrane and destruction of the cell wall. The speed of kill is within two hours. In comparison to the conventional antibiotics, HT61 kills non-multiplying cells more effectively, 6 logs versus less than one log for major marketed antibiotics. HT61 kills methicillin sensitive and resistant S. aureus in the murine skin bacterial colonization and infection models. No resistant phenotype was produced during 50 serial cultures over a one year period. The antibiotic caused no adverse affects after application to the skin of minipigs. Targeting non-multiplying bacteria using this method should be able to yield many new classes of antibiotic. These antibiotics may be able to reduce the rate of emergence of resistance, shorten the duration of therapy, and reduce relapse rates. PMID:20676403

  9. Analysis of DE-1 PWI electric field data

    NASA Technical Reports Server (NTRS)

    Weimer, Daniel

    1994-01-01

    The measurement of low frequency electric field oscillations may be accomplished with the Plasma Wave Instrument (PWI) on DE 1. Oscillations at a frequency around 1 Hz are below the range of the conventional plasma wave receivers, but they can be detected by using a special processing of the quasi-static electric field data. With this processing it is also possible to determine if the electric field oscillations are predominately parallel or perpendicular to the ambient magnetic field. The quasi-static electric field in the DE 1 spin/orbit plane is measured with a long-wire 'double probe'. This antenna is perpendicular to the satellite spin axis, which in turn is approximately perpendicular to the geomagnetic field in the polar magnetosphere. The electric field data are digitally sampled at a frequency of 16 Hz. The measured electric field signal, which has had phase reversals introduced by the rotating antenna, is multiplied by the sine of the rotation angle between the antenna and the magnetic field. This is called the 'perpendicular' signal. The measured time series is also multiplied with the cosine of the angle to produce a separate 'parallel' signal. These two separate time series are then processed to determine the frequency power spectrum.

  10. On the origin of multiply-impulsive emission from solar flares. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Karpen, J. T.

    1980-01-01

    A set of solar hard X-ray bursts observed with the hard X-ray burst spectrometer on board the OSO-5 satellite was analyzed. The multiply-impulsive two stage events were selected on the basis of both morphological characteristics and association with appropriate phenomena at other wavelengths. Coincident radio, soft X-ray, H-alpha interplanetary particle, and magnetographic data were obtained from several observatories, to aid in developing a comprehensive picture of the physical processes underlying these complex bursts. Two classes of multiply impulsive bursts were identified: events whose components spikes apparently originate in one location, and events in which groups of spikes appear to come from separate regions which flare sequentially. The origin of multiplicity in the case of a single source region remains unidentified. Purely impulsive emissions show no sign of betatron acceleration, thus eliminating this mechanisn as a candidate for inducing multiply spiked structure. The majority of the two stage bursts, however, exhibited spectral behavior consistent with the betatron model, for the first few minutes of the second stage. Betatron acceleration thus has been identified as a common second stage phenomenon.

  11. Electron emission phenomena controlled by a transverse electric field in compound emitters

    NASA Astrophysics Data System (ADS)

    Olesik, Jadwiga; Calusinski, Bogdan; Olesik, Zygmunt

    1996-09-01

    Influence of an inner electric field on such emission phenomena like: secondary emission, photoemission and field emission has been investigated. The applied sample-emitter was a glass wafer (thickness 0.2 mm) covered on both sides by semiconducting films In2O3:Sn. A voltage (in the interval -2000V divided by 0V) generating transverse electric field was applied to one of the films. This film had a thickness of about 200 nm. The second film (emitting electrons) had a thickness 100 nm or 10 nm. The secondary emission measurements were made by the retarding field method using four grid retarding potential analyzer. It was found that the secondary emission coefficient changes non- monotonically with increasing field intensity. Electron emission measurements without using a primary electron beam were made with the electron multiplier cooperating with a multichannel pulse amplitude analyzer. The measurements were performed in the vacuum of about 2 multiplied by 10-6 Pa. Influence of film thickness on the intensity of field controlled emission and field controlled photoemission was also studied. It was also found that the frequency of counts (generated by electrons in the electron multiplier) depends on the polarizing voltage approximately in an exponential way. Some departures from this dependence can be observed at higher Upol voltages (above 1000 V). Thus, at an appropriate high voltage Upol conditions for a cascade emission are created. At lower voltages the conditions correspond to a semiconductor with a negative electron affinity.

  12. Fatal infection caused by a multiply resistant type 3 pneumococcus.

    PubMed Central

    Lawrenson, J B; Klugman, K P; Eidelman, J I; Wasas, A; Miller, S D; Lipman, J

    1988-01-01

    The most virulent pneumococcal serotype (type 3) has not to date been associated with multiple antimicrobial resistance. We report an unusual gastrointestinal presentation of fatal septicemia caused by a multiply resistant type 3 pneumococcus in a setting of increasing prevalence of multiple resistance, including resistance to erythromycin, clindamycin, and tetracycline. PMID:3170717

  13. Highly enriched multiply-labeled stable isotopic compounds as atmospheric tracers

    DOEpatents

    Goldblatt, M.; McInteer, B.B.

    1974-01-29

    Compounds multiply-labeled with stable isotopes and highly enriched in these isotopes are readily capable of detection in tracer experiments involving high dilutions. Thus, for example, /sup 13/C/sup 18/O/sub 2/ provides a useful tracer for following atmospheric pol lution produced as a result of fossil fuel burning. (Official Gazette)

  14. Application of preconditioned alternating direction method of multipliers in depth from focal stack

    NASA Astrophysics Data System (ADS)

    Javidnia, Hossein; Corcoran, Peter

    2018-03-01

    Postcapture refocusing effect in smartphone cameras is achievable using focal stacks. However, the accuracy of this effect is totally dependent on the combination of the depth layers in the stack. The accuracy of the extended depth of field effect in this application can be improved significantly by computing an accurate depth map, which has been an open issue for decades. To tackle this issue, a framework is proposed based on a preconditioned alternating direction method of multipliers for depth from the focal stack and synthetic defocus application. In addition to its ability to provide high structural accuracy, the optimization function of the proposed framework can, in fact, converge faster and better than state-of-the-art methods. The qualitative evaluation has been done on 21 sets of focal stacks and the optimization function has been compared against five other methods. Later, 10 light field image sets have been transformed into focal stacks for quantitative evaluation purposes. Preliminary results indicate that the proposed framework has a better performance in terms of structural accuracy and optimization in comparison to the current state-of-the-art methods.

  15. A general parallel sparse-blocked matrix multiply for linear scaling SCF theory

    NASA Astrophysics Data System (ADS)

    Challacombe, Matt

    2000-06-01

    A general approach to the parallel sparse-blocked matrix-matrix multiply is developed in the context of linear scaling self-consistent-field (SCF) theory. The data-parallel message passing method uses non-blocking communication to overlap computation and communication. The space filling curve heuristic is used to achieve data locality for sparse matrix elements that decay with “separation”. Load balance is achieved by solving the bin packing problem for blocks with variable size.With this new method as the kernel, parallel performance of the simplified density matrix minimization (SDMM) for solution of the SCF equations is investigated for RHF/6-31G ∗∗ water clusters and RHF/3-21G estane globules. Sustained rates above 5.7 GFLOPS for the SDMM have been achieved for (H 2 O) 200 with 95 Origin 2000 processors. Scalability is found to be limited by load imbalance, which increases with decreasing granularity, due primarily to the inhomogeneous distribution of variable block sizes.

  16. Enhanced fuel production in thorium/lithium hybrid blankets utilizing uranium multipliers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pitulski, R.H.

    1979-10-01

    A consistent neutronics analysis is performed to determine the effectiveness of uranium bearing neutron multiplier zones on increasing the production of U/sup 233/ in thorium/lithium blankets for use in a tokamak fusion-fission hybrid reactor. The nuclear performance of these blankets is evaluated as a function of zone thicknesses and exposure by using the coupled transport burnup code ANISN-CINDER-HIC. Various parameters such as U/sup 233/, Pu/sup 239/, and H/sup 3/ production rates, the blanket energy multiplication, isotopic composition of the fuels, and neutron leakages into the various zones are evaluated during a 5 year (6 MW.y.m/sup -2/) exposure period. Although themore » results of this study were obtained for a tokomak magnetic fusion device, the qualitative behavior associated with the use of the uranium bearing neutron multiplier should be applicable to all fusion-fission hybrids.« less

  17. Users manual: Dynamics of two bodies connected by an elastic tether, six degrees of freedom forebody and five degrees of freedom decelerator

    NASA Technical Reports Server (NTRS)

    Doyle, G. R., Jr.; Burbick, J. W.

    1974-01-01

    The equations of motion and a computer program for the dynamics of a six degree of freedom body joined to a five degree of freedom body by a quasilinear elastic tether are presented. The forebody is assumed to be a completely general rigid body with six degrees of freedom; the decelerator is also assumed to be rigid, but with only five degrees of freedom (symmetric about its longitudinal axis). The tether is represented by a spring and dashpot in parallel, where the spring constant is a function of tether elongation. Lagrange's equation is used to derive the equations of motion with the Lagrange multiplier technique used to express the constraint provided by the tether. A computer program is included which provides a time history of the dynamics of both bodies and the tension in the tether.

  18. Multiplier method may be unreliable to predict the timing of temporary hemiepiphysiodesis for coronal angular deformity.

    PubMed

    Wu, Zhenkai; Ding, Jing; Zhao, Dahang; Zhao, Li; Li, Hai; Liu, Jianlin

    2017-07-10

    The multiplier method was introduced by Paley to calculate the timing for temporary hemiepiphysiodesis. However, this method has not been verified in terms of clinical outcome measure. We aimed to (1) predict the rate of angular correction per year (ACPY) at the various corresponding ages by means of multiplier method and verify the reliability based on the data from the published studies and (2) screen out risk factors for deviation of prediction. A comprehensive search was performed in the following electronic databases: Cochrane, PubMed, and EMBASE™. A total of 22 studies met the inclusion criteria. If the actual value of ACPY from the collected date was located out of the range of the predicted value based on the multiplier method, it was considered as the deviation of prediction (DOP). The associations of patient characteristics with DOP were assessed with the use of univariate logistic regression. Only one article was evaluated as moderate evidence; the remaining articles were evaluated as poor quality. The rate of DOP was 31.82%. In the detailed individual data of included studies, the rate of DOP was 55.44%. The multiplier method is not reliable in predicting the timing for temporary hemiepiphysiodesis, even though it is prone to be more reliable for the younger patients with idiopathic genu coronal deformity.

  19. Unambiguous formalism for higher order Lagrangian field theories

    NASA Astrophysics Data System (ADS)

    Campos, Cédric M.; de León, Manuel; Martín de Diego, David; Vankerschaver, Joris

    2009-11-01

    The aim of this paper is to propose an unambiguous intrinsic formalism for higher order field theories which avoids the arbitrariness in the generalization of the conventional description of field theories, and implies the existence of different Cartan forms and Legendre transformations. We propose a differential-geometric setting for the dynamics of a higher order field theory, based on the Skinner and Rusk formalism for mechanics. This approach incorporates aspects of both the Lagrangian and the Hamiltonian description, since the field equations are formulated using the Lagrangian on a higher order jet bundle and the canonical multisymplectic form on its affine dual. As both of these objects are uniquely defined, the Skinner-Rusk approach has the advantage that it does not suffer from the arbitrariness in conventional descriptions. The result is that we obtain a unique and global intrinsic version of the Euler-Lagrange equations for higher order field theories. Several examples illustrate our construction.

  20. On continuous and discontinuous approaches for modeling groundwater flow in heterogeneous media using the Numerical Manifold Method: Model development and comparison

    NASA Astrophysics Data System (ADS)

    Hu, Mengsu; Wang, Yuan; Rutqvist, Jonny

    2015-06-01

    One major challenge in modeling groundwater flow within heterogeneous geological media is that of modeling arbitrarily oriented or intersected boundaries and inner material interfaces. The Numerical Manifold Method (NMM) has recently emerged as a promising method for such modeling, in its ability to handle boundaries, its flexibility in constructing physical cover functions (continuous or with gradient jump), its meshing efficiency with a fixed mathematical mesh (covers), its convenience for enhancing approximation precision, and its integration precision, achieved by simplex integration. In this paper, we report on developing and comparing two new approaches for boundary constraints using the NMM, namely a continuous approach with jump functions and a discontinuous approach with Lagrange multipliers. In the discontinuous Lagrange multiplier method (LMM), the material interfaces are regarded as discontinuities which divide mathematical covers into different physical covers. We define and derive stringent forms of Lagrange multipliers to link the divided physical covers, thus satisfying the continuity requirement of the refraction law. In the continuous Jump Function Method (JFM), the material interfaces are regarded as inner interfaces contained within physical covers. We briefly define jump terms to represent the discontinuity of the head gradient across an interface to satisfy the refraction law. We then make a theoretical comparison between the two approaches in terms of global degrees of freedom, treatment of multiple material interfaces, treatment of small area, treatment of moving interfaces, the feasibility of coupling with mechanical analysis and applicability to other numerical methods. The newly derived boundary-constraint approaches are coded into a NMM model for groundwater flow analysis, and tested for precision and efficiency on different simulation examples. We first test the LMM for a Dirichlet boundary and then test both LMM and JFM for an

  1. On-Chip Power-Combining for High-Power Schottky Diode-Based Frequency Multipliers

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Goutam; Mehdi, Imran; Schlecht, Erich T.; Lee, Choonsup; Siles, Jose V.; Maestrini, Alain E.; Thomas, Bertrand; Jung, Cecile D.

    2013-01-01

    A 1.6-THz power-combined Schottky frequency tripler was designed to handle approximately 30 mW input power. The design of Schottky-based triplers at this frequency range is mainly constrained by the shrinkage of the waveguide dimensions with frequency and the minimum diode mesa sizes, which limits the maximum number of diodes that can be placed on the chip to no more than two. Hence, multiple-chip power-combined schemes become necessary to increase the power-handling capabilities of high-frequency multipliers. The design presented here overcomes difficulties by performing the power-combining directly on-chip. Four E-probes are located at a single input waveguide in order to equally pump four multiplying structures (featuring two diodes each). The produced output power is then recombined at the output using the same concept.

  2. Four-gate transistor analog multiplier circuit

    NASA Technical Reports Server (NTRS)

    Mojarradi, Mohammad M. (Inventor); Blalock, Benjamin (Inventor); Cristoloveanu, Sorin (Inventor); Chen, Suheng (Inventor); Akarvardar, Kerem (Inventor)

    2011-01-01

    A differential output analog multiplier circuit utilizing four G.sup.4-FETs, each source connected to a current source. The four G.sup.4-FETs may be grouped into two pairs of two G.sup.4-FETs each, where one pair has its drains connected to a load, and the other par has its drains connected to another load. The differential output voltage is taken at the two loads. In one embodiment, for each G.sup.4-FET, the first and second junction gates are each connected together, where a first input voltage is applied to the front gates of each pair, and a second input voltage is applied to the first junction gates of each pair. Other embodiments are described and claimed.

  3. Optimization of investment portfolio weight of stocks affected by market index

    NASA Astrophysics Data System (ADS)

    Azizah, E.; Rusyaman, E.; Supian, S.

    2017-01-01

    Stock price assessment, selection of optimum combination, and measure the risk of a portfolio investment is one important issue for investors. In this paper single index model used for the assessment of the stock price, and formulation optimization model developed using Lagrange multiplier technique to determine the proportion of assets to be invested. The level of risk is estimated by using variance. These models are used to analyse the stock price data Lippo Bank and Bumi Putera.

  4. Community Water System Regionalization and Stakeholder Implications: Estimating Effects to Consumers and Purveyors (PREPRINT)

    DTIC Science & Technology

    2011-01-01

    gallon. The data are cross sectional and a Breusch - Pagan test finds that heteroscedasticity is a problem. To correct for it, the analysis re...heteroscedasticity after a fixed effect model uses a Breusch and Pagan Lagrange multiplier test (Baum, 2006a). After a random effects model the test is a...EFFECTS 17 The data originate from 33 CWSs over 13 years so the next step is to test for CWS specific effects. The FE model in the table presents

  5. Distributed adaptive asymptotically consensus tracking control of uncertain Euler-Lagrange systems under directed graph condition.

    PubMed

    Wang, Wei; Wen, Changyun; Huang, Jiangshuai; Fan, Huijin

    2017-11-01

    In this paper, a backstepping based distributed adaptive control scheme is proposed for multiple uncertain Euler-Lagrange systems under directed graph condition. The common desired trajectory is allowed totally unknown by part of the subsystems and the linearly parameterized trajectory model assumed in currently available results is no longer needed. To compensate the effects due to unknown trajectory information, a smooth function of consensus errors and certain positive integrable functions are introduced in designing virtual control inputs. Besides, to overcome the difficulty of completely counteracting the coupling terms of distributed consensus errors and parameter estimation errors in the presence of asymmetric Laplacian matrix, extra information transmission of local parameter estimates are introduced among linked subsystem and adaptive gain technique is adopted to generate distributed torque inputs. It is shown that with the proposed distributed adaptive control scheme, global uniform boundedness of all the closed-loop signals and asymptotically output consensus tracking can be achieved. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  6. Generalized concurrence measure for faithful quantification of multiparticle pure state entanglement using Lagrange's identity and wedge product

    NASA Astrophysics Data System (ADS)

    Bhaskara, Vineeth S.; Panigrahi, Prasanta K.

    2017-05-01

    Concurrence, introduced by Hill and Wootters (Phys Rev Lett 78:5022, 1997), provides an important measure of entanglement for a general pair of qubits that is faithful: strictly positive for entangled states and vanishing for all separable states. Such a measure captures the entire content of entanglement, providing necessary and sufficient conditions for separability. We present an extension of concurrence to multiparticle pure states in arbitrary dimensions by a new framework using the Lagrange's identity and wedge product representation of separability conditions, which coincides with the "I-concurrence" of Rungta et al. (Phys Rev A 64:042315, 2001) who proposed by extending Wootters's spin-flip operator to a so-called universal inverter superoperator. Our framework exposes an inherent geometry of entanglement and may be useful for the further extensions to mixed and continuous variable states.

  7. Transit detection of a `starshade' at the inner lagrange point of an exoplanet

    NASA Astrophysics Data System (ADS)

    Gaidos, E.

    2017-08-01

    All water-covered rocky planets in the inner habitable zones of solar-type stars will inevitably experience a catastrophic runaway climate due to increasing stellar luminosity and limits to outgoing infrared radiation from wet greenhouse atmospheres. Reflectors or scatterers placed near Earth's inner Lagrange point (L_1) have been proposed as a "geoengineering' solution to anthropogenic climate change and an advanced version of this could modulate incident irradiation over many Gyr or `rescue' a planet from the interior of the habitable zone. The distance of the starshade from the planet that minimizes its mass is 1.6 times the Earth-L_1 distance. Such a starshade would have to be similar in size to the planet and the mutual occultations during planetary transits could produce a characteristic maximum at mid-transit in the light curve. Because of a fortuitous ratio of densities, Earth-size planets around G dwarf stars present the best opportunity to detect such an artefact. The signal would be persistent and is potentially detectable by a future space photometry mission to characterize transiting planets. The signal could be distinguished from natural phenomenon, I.e. starspots or cometary dust clouds, by its shape, persistence and transmission spectrum.

  8. Noise limitations of multiplier phototubes in the radiation environment of space

    NASA Technical Reports Server (NTRS)

    Viehmann, W.; Eubanks, A. G.

    1976-01-01

    The contributions of Cerenkov emission, luminescence, secondary electron emission, and bremsstrahlung to radiation-induced data current and noise of multiplier phototubes were analyzed quantitatively. Fluorescence and Cerenkov emission in the tube window are the major contributors and can quantitatively account for dark count levels observed in orbit. Radiation-induced noise can be minimized by shielding, tube selection, and mode of operation. Optical decoupling of windows and cathode (side-window tubes) leads to further reduction of radiation-induced dark counts, as does reducing the window thickness and effective cathode area, and selection of window/cathode combinations of low fluorescence efficiency. In trapped radiation-free regions of near-earth orbits and in free space, Cerenkov emission by relativistic particles contributes predominantly to the photoelectron yield per event. Operating multiplier phototubes in the photon (pulse) counting mode will discriminate against these large pulses and substantially reduce the dark count and noise to levels determined by fluorescence.

  9. Enhanced ground bounce noise reduction in a low-leakage CMOS multiplier

    NASA Astrophysics Data System (ADS)

    Verma, Bipin Kumar; Akashe, Shyam; Sharma, Sanjay

    2015-09-01

    In this paper, various parameters are used to reduce leakage power, leakage current and noise margin of circuits to enhance their performance. A multiplier is proposed with low-leakage current and low ground bounce noise for the microprocessor, digital signal processors (DSP) and graphics engines. The ground bounce noise problem appears when a conventional power-gating circuit transits from sleep-to-active mode. This paper discusses a reduction in leakage current in the stacking power-gating technique by three modes - sleep, active and sleep-to-active. The simulation results are performed on a 4 × 4 carry-save multiplier for leakage current, active power, leakage power and ground bounce noise, and comparison made for different nanoscales. Ground bounce noise is limited to 90%. The leakage current of the circuit is decimated up to 80% and the active power is reduced to 31%. We performed simulations using cadence virtuoso 180 and 45 nm at room temperature at various supply voltages.

  10. Modeling Photo-multiplier Gain and Regenerating Pulse Height Data for Application Development

    NASA Astrophysics Data System (ADS)

    Aspinall, Michael D.; Jones, Ashley R.

    2018-01-01

    Systems that adopt organic scintillation detector arrays often require a calibration process prior to the intended measurement campaign to correct for significant performance variances between detectors within the array. These differences exist because of low tolerances associated with photo-multiplier tube technology and environmental influences. Differences in detector response can be corrected for by adjusting the supplied photo-multiplier tube voltage to control its gain and the effect that this has on the pulse height spectra from a gamma-only calibration source with a defined photo-peak. Automated methods that analyze these spectra and adjust the photo-multiplier tube bias accordingly are emerging for hardware that integrate acquisition electronics and high voltage control. However, development of such algorithms require access to the hardware, multiple detectors and calibration source for prolonged periods, all with associated constraints and risks. In this work, we report on a software function and related models developed to rescale and regenerate pulse height data acquired from a single scintillation detector. Such a function could be used to generate significant and varied pulse height data that can be used to integration-test algorithms that are capable of automatically response matching multiple detectors using pulse height spectra analysis. Furthermore, a function of this sort removes the dependence on multiple detectors, digital analyzers and calibration source. Results show a good match between the real and regenerated pulse height data. The function has also been used successfully to develop auto-calibration algorithms.

  11. Planar varactor frequency multiplier devices with blocking barrier

    NASA Technical Reports Server (NTRS)

    Lieneweg, Udo (Inventor); Frerking, Margaret A. (Inventor); Maserjian, Joseph (Inventor)

    1994-01-01

    The invention relates to planar varactor frequency multiplier devices with a heterojunction blocking barrier for near millimeter wave radiation of moderate power from a fundamental input wave. The space charge limitation of the submillimeter frequency multiplier devices of the BIN(sup +) type is overcome by a diode structure comprising an n(sup +) doped layer of semiconductor material functioning as a low resistance back contact, a layer of semiconductor material with n-type doping functioning as a drift region grown on the back contact layer, a delta doping sheet forming a positive charge at the interface of the drift region layer with a barrier layer, and a surface metal contact. The layers thus formed on an n(sup +) doped layer may be divided into two isolated back-to-back BNN(sup +) diodes by separately depositing two surface metal contacts. By repeating the sequence of the drift region layer and the barrier layer with the delta doping sheet at the interfaces between the drift and barrier layers, a plurality of stacked diodes is formed. The novelty of the invention resides in providing n-type semiconductor material for the drift region in a GaAs/AlGaAs structure, and in stacking a plurality of such BNN(sup +) diodes stacked for greater output power with and connected back-to-back with the n(sup +) GaAs layer as an internal back contact and separate metal contact over an AlGaAs barrier layer on top of each stack.

  12. Effective CPD on a Large Scale: Examining the Development of Multipliers

    ERIC Educational Resources Information Center

    Roesken-Winter, Bettina; Schüler, Sven; Stahnke, Rebekka; Blömeke, Sigrid

    2015-01-01

    Much research has been conducted on exploring teacher learning and constituting Continuous Professional Development (CPD) designs for teachers. Yet, little is known about appropriate design principles of CPD for teacher trainers/multipliers who in turn are supposed to provide CPD for teachers. The German Center for Mathematics Teacher Education…

  13. Evaluation of a transient, simultaneous, arbitrary Lagrange-Euler based multi-physics method for simulating the mitral heart valve.

    PubMed

    Espino, Daniel M; Shepherd, Duncan E T; Hukins, David W L

    2014-01-01

    A transient multi-physics model of the mitral heart valve has been developed, which allows simultaneous calculation of fluid flow and structural deformation. A recently developed contact method has been applied to enable simulation of systole (the stage when blood pressure is elevated within the heart to pump blood to the body). The geometry was simplified to represent the mitral valve within the heart walls in two dimensions. Only the mitral valve undergoes deformation. A moving arbitrary Lagrange-Euler mesh is used to allow true fluid-structure interaction (FSI). The FSI model requires blood flow to induce valve closure by inducing strains in the region of 10-20%. Model predictions were found to be consistent with existing literature and will undergo further development.

  14. High performance pipelined multiplier with fast carry-save adder

    NASA Technical Reports Server (NTRS)

    Wu, Angus

    1990-01-01

    A high-performance pipelined multiplier is described. Its high performance results from the fast carry-save adder basic cell which has a simple structure and is suitable for the Gate Forest semi-custom environment. The carry-save adder computes the sum and carry within two gate delay. Results show that the proposed adder can operate at 200 MHz for a 2-micron CMOS process; better performance is expected in a Gate Forest realization.

  15. Split-Waveguide Mounts For Submillimeter-Wave Multipliers And Harmonic Mixers

    NASA Technical Reports Server (NTRS)

    Raisanen, Antti; Choudhury, Debabani; Dengler, Robert J.; Oswald, John E.; Siegel, Peter H.

    1996-01-01

    Novel variation of split-waveguide mount for millimeter-and submillimeter-wavelength frequency multipliers and harmonic mixers developed. Designed to offer wide range of available matching impedances, while maintaining relatively simple fabrication sequence. Wide tuning range achieved with separate series and parallel elements, consisting of two pairs of noncontacting sliding backshorts, at fundamental and harmonic frequencies. Advantages include ease of fabrication, reliability, and tunability.

  16. The structure of Airy's stress function in multiply connected regions

    NASA Technical Reports Server (NTRS)

    Grioli, Giusippe

    1951-01-01

    In solving two-dimensional problems using Airy's stress function for multiply connected regions, the form of the function depends on the dislocations and boundary forces present. The structure of Airy's function is shown to consist of a part expressible in terms of boundary forces and a part expressible in the manner of Poincare. Meanings of the constants occurring in Poincare's expression are discussed.

  17. Arc lamp power supply using a voltage multiplier

    NASA Technical Reports Server (NTRS)

    Leighty, Bradley D.

    1988-01-01

    A power supply is provided for an arc discharge lamp which includes a relatively low voltage high current power supply section and a high voltage starter circuit. The low voltage section includes a transformer, rectifier, variable resistor and a bank of capacitors, while the starter circuit comprises several diodes and capacitors connected as a Cockcroft-Walton multiplier. The starting circuit is effectively bypassed when the lamp arc is established and serves to automatically provide a high starting voltage to re-strike the lamp arc if the arc is extinguished by a power interruption.

  18. Numerical study of magnetic nanofluids flow in the round channel located in the constant magnetic field

    NASA Astrophysics Data System (ADS)

    Pryazhnikov, Maxim; Guzei, Dmitriy; Minakov, Andrey; Rodionova, Tatyana

    2017-10-01

    In this paper, the study of ferromagnetic nanoparticles behaviour in the constant magnetic field is carried out. For numerical simulation we have used Euler-Lagrange two-component approach. Using numerical simulation we have studied the growth of deposition of nanoparticles on the channel walls depending on the Reynolds number and the position of the magnet. The flow pattern, the concentration field and the trajectory of nanoparticles as a function of the Reynolds number were obtained. The good qualitative and quantitative agreement between numerical simulation and experiments was shown.

  19. A new VLSI complex integer multiplier which uses a quadratic-polynomial residue system with Fermat numbers

    NASA Technical Reports Server (NTRS)

    Truong, T. K.; Hsu, I. S.; Chang, J. J.; Shyu, H. C.; Reed, I. S.

    1986-01-01

    A quadratic-polynomial Fermat residue number system (QFNS) has been used to compute complex integer multiplications. The advantage of such a QFNS is that a complex integer multiplication requires only two integer multiplications. In this article, a new type Fermat number multiplier is developed which eliminates the initialization condition of the previous method. It is shown that the new complex multiplier can be implemented on a single VLSI chip. Such a chip is designed and fabricated in CMOS-pw technology.

  20. A new VLSI complex integer multiplier which uses a quadratic-polynomial residue system with Fermat numbers

    NASA Technical Reports Server (NTRS)

    Shyu, H. C.; Reed, I. S.; Truong, T. K.; Hsu, I. S.; Chang, J. J.

    1987-01-01

    A quadratic-polynomial Fermat residue number system (QFNS) has been used to compute complex integer multiplications. The advantage of such a QFNS is that a complex integer multiplication requires only two integer multiplications. In this article, a new type Fermat number multiplier is developed which eliminates the initialization condition of the previous method. It is shown that the new complex multiplier can be implemented on a single VLSI chip. Such a chip is designed and fabricated in CMOS-Pw technology.

  1. Towards Highly Scalable Ab Initio Molecular Dynamics (AIMD) Simulations on the Intel Knights Landing Manycore Processor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacquelin, Mathias; De Jong, Wibe A.; Bylaska, Eric J.

    2017-07-03

    The Ab Initio Molecular Dynamics (AIMD) method allows scientists to treat the dynamics of molecular and condensed phase systems while retaining a first-principles-based description of their interactions. This extremely important method has tremendous computational requirements, because the electronic Schr¨odinger equation, approximated using Kohn-Sham Density Functional Theory (DFT), is solved at every time step. With the advent of manycore architectures, application developers have a significant amount of processing power within each compute node that can only be exploited through massive parallelism. A compute intensive application such as AIMD forms a good candidate to leverage this processing power. In this paper, wemore » focus on adding thread level parallelism to the plane wave DFT methodology implemented in NWChem. Through a careful optimization of tall-skinny matrix products, which are at the heart of the Lagrange multiplier and nonlocal pseudopotential kernels, as well as 3D FFTs, our OpenMP implementation delivers excellent strong scaling on the latest Intel Knights Landing (KNL) processor. We assess the efficiency of our Lagrange multiplier kernels by building a Roofline model of the platform, and verify that our implementation is close to the roofline for various problem sizes. Finally, we present strong scaling results on the complete AIMD simulation for a 64 water molecules test case, that scales up to all 68 cores of the Knights Landing processor.« less

  2. FFT applications to plane-polar near-field antenna measurements

    NASA Technical Reports Server (NTRS)

    Gatti, Mark S.; Rahmat-Samii, Yahya

    1988-01-01

    The four-point bivariate Lagrange interpolation algorithm was applied to near-field antenna data measured in a plane-polar facility. The results were sufficiently accurate to permit the use of the FFT (fast Fourier transform) algorithm to calculate the far-field patterns of the antenna. Good agreement was obtained between the far-field patterns as calculated by the Jacobi-Bessel and the FFT algorithms. The significant advantage in using the FFT is in the calculation of the principal plane cuts, which may be made very quickly. Also, the application of the FFT algorithm directly to the near-field data was used to perform surface holographic diagnosis of a reflector antenna. The effects due to the focusing of the emergent beam from the reflector, as well as the effects of the information in the wide-angle regions, are shown. The use of the plane-polar near-field antenna test range has therfore been expanded to include these useful FFT applications.

  3. Teaching Multiply Controlled Intraverbals to Children and Adolescents with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Kisamore, April N.; Karsten, Amanda M.; Mann, Charlotte C.

    2016-01-01

    Reciprocal conversations, instructional activities, and other social interactions are replete with multiply controlled intraverbals, examples of which have been conceptualized in terms of conditional discriminations. Although the acquisition of conditional discriminations has been examined extensively in the behavior-analytic literature, little…

  4. The electromagnetic pendulum in quickly changing magnetic field of constant intensity

    NASA Astrophysics Data System (ADS)

    Rodyukov, F. F.; Shepeljavyi, A. I.

    2018-05-01

    The Lagrange-Maxwell equations for the pendulum in the form of a conductive frame, which is suspended in a uniform sinusoidal electromagnetic field of constant intensity, are obtained. The procedure for obtaining simplified mathematical models by a traditional method of separating fast and slow motions with subsiquent averaging a fast time is used. It is shown that this traditional approach may lead to inappropriate mathematical models. Suggested ways on how this can be avoided for the case are considered. The main statements by numerical experiments are illustrated.

  5. In-situ and elementally resolved determination of the thickness uniformity of multi-ply films by confocal micro XRF.

    PubMed

    Peng, Song; Liu, Zhiguo; Sun, Tianxi; Wang, Guangfu; Ma, Yongzhong; Ding, Xunliang

    2014-08-01

    Confocal micro X-ray fluorescence (CM-XRF) with quasi-monochromatic excitation based on polycapillary X-ray optics was used to measure the thickness of multi-ply films. The relative errors of measuring an Fe film with a thickness of 16.3 μm and a Cu film with a thickness of 24.5 μm were 7.3% and 0.4%, respectively. The non-destructive and in-situ measurement of the thickness and uniformity of multi-ply films of Cu, Fe and Ni on a silicon surface was performed. CM-XRF was convenient in in-situ and elementally resolved analysis of the thickness of multi-ply films without a cumbersome theoretical correction model. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Cleaning and activation of beryllium-copper electron multiplier dynodes.

    NASA Technical Reports Server (NTRS)

    Pongratz, M. B.

    1972-01-01

    Description of a cleaning and activation procedure followed in preparing beryllium-copper dynodes for electron multipliers used in sounding-rocket experiments to detect auroral electrons. The initial degreasing step involved a 5-min bath in trichloroethylene in an ultrasonic cleaner. This was followed by an ultrasonic rinse in methanol and by a two-step acid pickling treatment to remove the oxides. Additional rinsing in water and methanol was followed by activation in a stainless-steel RF induction oven.

  7. Analytical Solution for the Free Vibration Analysis of Delaminated Timoshenko Beams

    PubMed Central

    Abedi, Maryam

    2014-01-01

    This work presents a method to find the exact solutions for the free vibration analysis of a delaminated beam based on the Timoshenko type with different boundary conditions. The solutions are obtained by the method of Lagrange multipliers in which the free vibration problem is posed as a constrained variational problem. The Legendre orthogonal polynomials are used as the beam eigenfunctions. Natural frequencies and mode shapes of various Timoshenko beams are presented to demonstrate the efficiency of the methodology. PMID:24574879

  8. An Exploration of Social Media Use among Multiply Minoritized LGBTQ Youth

    ERIC Educational Resources Information Center

    Lucero, Alfie Leanna

    2013-01-01

    This study responds to a need for research in a fast-growing and significant area of study, that of exploring, understanding, and documenting the numerous ways that multiply marginalized LGBTQ youth between the ages of 14 and 17 use social media. The primary research question examined whether social media provide safe spaces for multiply…

  9. A Classical Conditioning Procedure for the Hearing Assessment of Multiply Handicapped Persons.

    ERIC Educational Resources Information Center

    Lancioni, Giulio E.; And Others

    1989-01-01

    Hearing assessments of multiply handicapped children/adolescents were conducted using classical conditioning (with an air puff as unconditioned stimulus) and operant conditioning (with a modified visual reinforcement audiometry procedure or edible reinforcement). Findings indicate that classical conditioning was successful with 21 of the 23…

  10. Treatment of Multiply Controlled Problem Behavior with Procedural Variations of Differential Reinforcement

    ERIC Educational Resources Information Center

    Neidert, Pamela L.; Iwata, Brian A.; Dozier, Claudia L.

    2005-01-01

    We describe the assessment and treatment of 2 children with autism spectrum disorder whose problem behaviors (self-injury, aggression, and disruption) were multiply controlled. Results of functional analyses indicated that the children's problem behaviors were maintained by both positive reinforcement (attention) and negative reinforcement (escape…

  11. A low diffusive Lagrange-remap scheme for the simulation of violent air-water free-surface flows

    NASA Astrophysics Data System (ADS)

    Bernard-Champmartin, Aude; De Vuyst, Florian

    2014-10-01

    In 2002, Després and Lagoutière [17] proposed a low-diffusive advection scheme for pure transport equation problems, which is particularly accurate for step-shaped solutions, and thus suited for interface tracking procedure by a color function. This has been extended by Kokh and Lagoutière [28] in the context of compressible multifluid flows using a five-equation model. In this paper, we explore a simplified variant approach for gas-liquid three-equation models. The Eulerian numerical scheme has two ingredients: a robust remapped Lagrange solver for the solution of the volume-averaged equations, and a low diffusive compressive scheme for the advection of the gas mass fraction. Numerical experiments show the performance of the computational approach on various flow reference problems: dam break, sloshing of a tank filled with water, water-water impact and finally a case of Rayleigh-Taylor instability. One of the advantages of the present interface capturing solver is its natural implementation on parallel processors or computers.

  12. Sensory Reinforcement: Effects of Response-Contingent Vestibular Stimulation on Multiply Handicapped Children.

    ERIC Educational Resources Information Center

    Sandler, Allen G.; McLain, Susan C.

    1987-01-01

    Investigation of the reinforcing properties of vestibular stimulation with five multiply disabled severely retarded young children indicated that vestibular stimulation (10 seconds of swinging) was reinforcing to all subjects and was preferred (over food, praise, visual, and auditory stimulation) by four of the five children. (Author/DB)

  13. Fiber-reinforced materials: finite elements for the treatment of the inextensibility constraint

    NASA Astrophysics Data System (ADS)

    Auricchio, Ferdinando; Scalet, Giulia; Wriggers, Peter

    2017-12-01

    The present paper proposes a numerical framework for the analysis of problems involving fiber-reinforced anisotropic materials. Specifically, isotropic linear elastic solids, reinforced by a single family of inextensible fibers, are considered. The kinematic constraint equation of inextensibility in the fiber direction leads to the presence of an undetermined fiber stress in the constitutive equations. To avoid locking-phenomena in the numerical solution due to the presence of the constraint, mixed finite elements based on the Lagrange multiplier, perturbed Lagrangian, and penalty method are proposed. Several boundary-value problems under plane strain conditions are solved and numerical results are compared to analytical solutions, whenever the derivation is possible. The performed simulations allow to assess the performance of the proposed finite elements and to discuss several features of the developed formulations concerning the effective approximation for the displacement and fiber stress fields, mesh convergence, and sensitivity to penalty parameters.

  14. Airfoil Design and Optimization by the One-Shot Method

    NASA Technical Reports Server (NTRS)

    Kuruvila, G.; Taasan, Shlomo; Salas, M. D.

    1995-01-01

    An efficient numerical approach for the design of optimal aerodynamic shapes is presented in this paper. The objective of any optimization problem is to find the optimum of a cost function subject to a certain state equation (governing equation of the flow field) and certain side constraints. As in classical optimal control methods, the present approach introduces a costate variable (Lagrange multiplier) to evaluate the gradient of the cost function. High efficiency in reaching the optimum solution is achieved by using a multigrid technique and updating the shape in a hierarchical manner such that smooth (low-frequency) changes are done separately from high-frequency changes. Thus, the design variables are changed on a grid where their changes produce nonsmooth (high-frequency) perturbations that can be damped efficiently by the multigrid. The cost of solving the optimization problem is approximately two to three times the cost of the equivalent analysis problem.

  15. Solution procedure of dynamical contact problems with friction

    NASA Astrophysics Data System (ADS)

    Abdelhakim, Lotfi

    2017-07-01

    Dynamical contact is one of the common research topics because of its wide applications in the engineering field. The main goal of this work is to develop a time-stepping algorithm for dynamic contact problems. We propose a finite element approach for elastodynamics contact problems [1]. Sticking, sliding and frictional contact can be taken into account. Lagrange multipliers are used to enforce non-penetration condition. For the time discretization, we propose a scheme equivalent to the explicit Newmark scheme. Each time step requires solving a nonlinear problem similar to a static friction problem. The nonlinearity of the system of equation needs an iterative solution procedure based on Uzawa's algorithm [2][3]. The applicability of the algorithm is illustrated by selected sample numerical solutions to static and dynamic contact problems. Results obtained with the model have been compared and verified with results from an independent numerical method.

  16. Multiply charged ion generation according to magnetic field configurations in Hall thruster plasmas

    NASA Astrophysics Data System (ADS)

    Kim, Holak; Lee, Seunghun; Kim, Junbum; Lim, Youbong; Choe, Wonho; KIMS Collaboration

    2016-09-01

    Plasma propulsion is the most promising techniques to operate satellites for low earth orbit as well as deep space exploration. A typical plasma propulsion system is Hall thruster (HT) that uses crossed electromagnetic fields to ionize a propellant gas and to accelerate the ionized gas. In HT the tailoring of magnetic fields is significant due to that the electron confinement in the electromagnetic fields affects thruster performances such as thrust force, specific impulse, power efficiency, and life time. We designed an anode layer HT (TAL) with the magnetic field tailoring. The TAL is possible to keep discharge in 1 2 kilovolts, which voltage is useful to obtain high specific impulse The magnetic field tailoring is adapted to minimize undesirable heat dissipations and secondary electron emissions at a wall surrounding plasma In presentation, we will report TAL performances including thrust force, specific impulse, and anode efficiency measured by a pendulum thrust stand. This mechanical measurement will be compared to the plasma diagnostics conducted by angular Faraday probe, retarding potential analyzer, and ExB probe Grant No. 2014M1A3A3A02034510.

  17. Optical Sidebands Multiplier

    NASA Technical Reports Server (NTRS)

    Strekalov, Dmitry V.; Yu, Nan

    2010-01-01

    Optical sidebands have been generated with relative frequency tens to hundreds of GHz by using optical sidebands that are generated in a cascade process in high-quality optical resonators with Kerr nonlinearity, such as whispering gallery mode (WGM) resonators. For this purpose, the WGM resonator needs to be optically pumped at two frequencies matching its resonances. These two optical components can be one or several free spectral ranges (FSRs), equal to approximately 12 GHz, in this example, apart from each other, and can be easily derived from a monochromatic pump with an ordinary EOM (electro-optic modulation) operating at half the FSR frequency. With sufficient nonlinearity, an optical cascade process will convert the two pump frequencies into a comb-like structure extending many FSRs around the carrier frequency. This has a demonstratively efficient frequency conversion of this type with only a few milliwatt optical pump power. The concept of using Kerr nonlinearity in a resonator for non-degenerate wave mixing has been discussed before, but it was a common belief that this was a weak process requiring very high peak powers to be observable. It was not thought possible for this approach to compete with electro-optical modulators in CW applications, especially those at lower optical powers. By using the high-Q WGM resonators, the effective Kerr nonlinearity can be made so high that, using even weak seeding bands available from a conventional EOM, one can effectively multiply the optical sidebands, extending them into an otherwise inaccessible frequency range.

  18. Quantum canonical ensemble: A projection operator approach

    NASA Astrophysics Data System (ADS)

    Magnus, Wim; Lemmens, Lucien; Brosens, Fons

    2017-09-01

    Knowing the exact number of particles N, and taking this knowledge into account, the quantum canonical ensemble imposes a constraint on the occupation number operators. The constraint particularly hampers the systematic calculation of the partition function and any relevant thermodynamic expectation value for arbitrary but fixed N. On the other hand, fixing only the average number of particles, one may remove the above constraint and simply factorize the traces in Fock space into traces over single-particle states. As is well known, that would be the strategy of the grand-canonical ensemble which, however, comes with an additional Lagrange multiplier to impose the average number of particles. The appearance of this multiplier can be avoided by invoking a projection operator that enables a constraint-free computation of the partition function and its derived quantities in the canonical ensemble, at the price of an angular or contour integration. Introduced in the recent past to handle various issues related to particle-number projected statistics, the projection operator approach proves beneficial to a wide variety of problems in condensed matter physics for which the canonical ensemble offers a natural and appropriate environment. In this light, we present a systematic treatment of the canonical ensemble that embeds the projection operator into the formalism of second quantization while explicitly fixing N, the very number of particles rather than the average. Being applicable to both bosonic and fermionic systems in arbitrary dimensions, transparent integral representations are provided for the partition function ZN and the Helmholtz free energy FN as well as for two- and four-point correlation functions. The chemical potential is not a Lagrange multiplier regulating the average particle number but can be extracted from FN+1 -FN, as illustrated for a two-dimensional fermion gas.

  19. Training Pragmatic Language Skills through Alternate Strategies with a Blind Multiply Handicapped Child.

    ERIC Educational Resources Information Center

    Evans, C. J.; Johnson, C. J.

    1988-01-01

    A blind multiply handicapped preschooler was taught to respond appropriately to two adjacency pair types ("where question-answer" and "comment-acknowledgement"). The two alternative language acquisition strategies available to blind children were encouraged: echolalia to maintain communicative interactions and manual searching…

  20. Distortion of the convolution spectra of PSK signals in frequency multipliers

    NASA Astrophysics Data System (ADS)

    Viniarskii, V. F.; Marchenko, V. F.; Petrin, Iu. M.

    1983-09-01

    The influence of the input and output circuits of frequency multipliers on the convolution spectrum of binary and ternary PSK signals is examined. It is shown that transient processes caused by the phase switching of the input signal lead to the amplitude-phase modulation of the harmonic signal. Experimental results are presented on the balance circuits of MOS varactor doublers and triplers.

  1. Force Analysis and Energy Operation of Chaotic System of Permanent-Magnet Synchronous Motor

    NASA Astrophysics Data System (ADS)

    Qi, Guoyuan; Hu, Jianbing

    2017-12-01

    The disadvantage of a nondimensionalized model of a permanent-magnet synchronous Motor (PMSM) is identified. The original PMSM model is transformed into a Kolmogorov system to aid dynamic force analysis. The vector field of the PMSM is analogous to the force field including four types of torque — inertial, internal, dissipative, and generalized external. Using the feedback thought, the error torque between external torque and dissipative torque is identified. The pitchfork bifurcation of the PMSM is performed. Four forms of energy are identified for the system — kinetic, potential, dissipative, and supplied. The physical interpretations of the decomposition of force and energy exchange are given. Casimir energy is stored energy, and its rate of change is the error power between the dissipative energy and the energy supplied to the motor. Error torque and error power influence the different types of dynamic modes. The Hamiltonian energy and Casimir energy are compared to find the function of each in producing the dynamic modes. A supremum bound for the chaotic attractor is proposed using the error power and Lagrange multiplier.

  2. BCRMD Program for Multiply Handicapped Pupils: Evaluation Report. School Year 1975-1976.

    ERIC Educational Resources Information Center

    Echternacht, Gary

    Presented is an evaluation of a program which provided supplementary pre-reading and mathematics instruction to multiply handicapped children (physically and mentally handicapped) in six elementary and two intermediate schools. It is explained that students were individually instructed on objectives which they failed on the McGraw Hill Test of…

  3. Application of augmented-Lagrangian methods in meteorology: Comparison of different conjugate-gradient codes for large-scale minimization

    NASA Technical Reports Server (NTRS)

    Navon, I. M.

    1984-01-01

    A Lagrange multiplier method using techniques developed by Bertsekas (1982) was applied to solving the problem of enforcing simultaneous conservation of the nonlinear integral invariants of the shallow water equations on a limited area domain. This application of nonlinear constrained optimization is of the large dimensional type and the conjugate gradient method was found to be the only computationally viable method for the unconstrained minimization. Several conjugate-gradient codes were tested and compared for increasing accuracy requirements. Robustness and computational efficiency were the principal criteria.

  4. Various Forms of BRST Symmetry in Abelian 2-FORM Gauge Theory

    NASA Astrophysics Data System (ADS)

    Rai, Sumit Kumar; Mandal, Bhabani Prasad

    We derive the various forms of BRST symmetry using Batalin-Fradkin-Vilkovisky approach in the case of Abelian 2-form gauge theory. We show that the so-called dual BRST symmetry is not an independent symmetry but the generalization of BRST symmetry obtained from the canonical transformation in the bosonic and ghost sector. We further obtain the new forms of both BRST and dual-BRST symmetry by making a general transformation in the Lagrange multipliers of the bosonic and ghost sector of the theory.

  5. A general-purpose optimization program for engineering design

    NASA Technical Reports Server (NTRS)

    Vanderplaats, G. N.; Sugimoto, H.

    1986-01-01

    A new general-purpose optimization program for engineering design is described. ADS (Automated Design Synthesis) is a FORTRAN program for nonlinear constrained (or unconstrained) function minimization. The optimization process is segmented into three levels: Strategy, Optimizer, and One-dimensional search. At each level, several options are available so that a total of nearly 100 possible combinations can be created. An example of available combinations is the Augmented Lagrange Multiplier method, using the BFGS variable metric unconstrained minimization together with polynomial interpolation for the one-dimensional search.

  6. Consistency of the structure of Legendre transform in thermodynamics with the Kolmogorov-Nagumo average

    NASA Astrophysics Data System (ADS)

    Scarfone, A. M.; Matsuzoe, H.; Wada, T.

    2016-09-01

    We show the robustness of the structure of Legendre transform in thermodynamics against the replacement of the standard linear average with the Kolmogorov-Nagumo nonlinear average to evaluate the expectation values of the macroscopic physical observables. The consequence of this statement is twofold: 1) the relationships between the expectation values and the corresponding Lagrange multipliers still hold in the present formalism; 2) the universality of the Gibbs equation as well as other thermodynamic relations are unaffected by the structure of the average used in the theory.

  7. Integration of progressive hedging and dual decomposition in stochastic integer programs

    DOE PAGES

    Watson, Jean -Paul; Guo, Ge; Hackebeil, Gabriel; ...

    2015-04-07

    We present a method for integrating the Progressive Hedging (PH) algorithm and the Dual Decomposition (DD) algorithm of Carøe and Schultz for stochastic mixed-integer programs. Based on the correspondence between lower bounds obtained with PH and DD, a method to transform weights from PH to Lagrange multipliers in DD is found. Fast progress in early iterations of PH speeds up convergence of DD to an exact solution. As a result, we report computational results on server location and unit commitment instances.

  8. Variational estimate method for solving autonomous ordinary differential equations

    NASA Astrophysics Data System (ADS)

    Mungkasi, Sudi

    2018-04-01

    In this paper, we propose a method for solving first-order autonomous ordinary differential equation problems using a variational estimate formulation. The variational estimate is constructed with a Lagrange multiplier which is chosen optimally, so that the formulation leads to an accurate solution to the problem. The variational estimate is an integral form, which can be computed using a computer software. As the variational estimate is an explicit formula, the solution is easy to compute. This is a great advantage of the variational estimate formulation.

  9. TH-EF-207A-03: Photon Counting Implementation Challenges Using An Electron Multiplying Charged-Coupled Device Based Micro-CT System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Podgorsak, A; Bednarek, D; Rudin, S

    2016-06-15

    Purpose: To successfully implement and operate a photon counting scheme on an electron multiplying charged-coupled device (EMCCD) based micro-CT system. Methods: We built an EMCCD based micro-CT system and implemented a photon counting scheme. EMCCD detectors use avalanche transfer registries to multiply the input signal far above the readout noise floor. Due to intrinsic differences in the pixel array, using a global threshold for photon counting is not optimal. To address this shortcoming, we generated a threshold array based on sixty dark fields (no x-ray exposure). We calculated an average matrix and a variance matrix of the dark field sequence.more » The average matrix was used for the offset correction while the variance matrix was used to set individual pixel thresholds for the photon counting scheme. Three hundred photon counting frames were added for each projection and 360 projections were acquired for each object. The system was used to scan various objects followed by reconstruction using an FDK algorithm. Results: Examination of the projection images and reconstructed slices of the objects indicated clear interior detail free of beam hardening artifacts. This suggests successful implementation of the photon counting scheme on our EMCCD based micro-CT system. Conclusion: This work indicates that it is possible to implement and operate a photon counting scheme on an EMCCD based micro-CT system, suggesting that these devices might be able to operate at very low x-ray exposures in a photon counting mode. Such devices could have future implications in clinical CT protocols. NIH Grant R01EB002873; Toshiba Medical Systems Corp.« less

  10. Cross-gender Social Normative Effects for Violence in Middle School: Do Girls Carry a Social Multiplier Effect for At-risk Boys?

    PubMed Central

    Pasch, Keryn E.; Brown, H. Shelton; Perry, Cheryl L.; Komro, Kelli A.

    2014-01-01

    A social multiplier effect is a social interaction in which the behavior of a person in a social network varies with the normative behavior of others in the network, also known as an endogenous interaction. Policies and intervention efforts can harness social multiplier effects because, in theory, interventions on a subset of individuals will have “spillover effects” on other individuals in the network. This study investigates potential social multiplier effects for violence in middle schools, and whether there is evidence for a social multiplier effect transmitted from girls to boys. Three years of longitudinal data (2003–2005) from Project Northland Chicago (PNC) were used to investigate this question, with a sample consisting of youth in Grades 6 through 8 in 61 Chicago Public Schools (N = 4233 at Grade 6, N = 3771 at Grade 7, and N = 3793 at Grade 8). The sample was 49.3% female, and primarily African American (41.9%) and Latino/a (28.7%), with smaller proportions of whites (12.9%), Asians (5.2%) and other ethnicities. Results from two sets of regression models estimating the effects of 20th (low), 50th (average), and 80th (high) percentile scores for girls and boys on levels of violence in each gender group revealed evidence for social multiplier effects. Specifically, boys and girls were both influenced by social multiplier effects within their own gender group, and boys were also affected by normative violence scores among girls, typically those of the best-behaved (20th percentile) girls. The finding that girls may have positive social influence on boys’ levels of violent behavior extends prior findings of beneficial social effects of girls on boys in the domains of education and risky driving. Further, this social normative effect presents a potential opportunity to improve school-based intervention efforts for reducing violence among youth by leveraging girls as carriers of a social multiplier effect for reduced violence in the middle school

  11. Science Enabled by the Ares V: A Large Monolithic Telescope Placed at the Second Sun-Earth Lagrange Point

    NASA Technical Reports Server (NTRS)

    Hopkins, Randall C.; Stahl, H. Philip

    2007-01-01

    The payload mass and volume capabilities of the planned Ares V launch vehicle provide the science community with unprecedented opportunities to place large science payloads into low earth orbit and beyond. One example, the outcome of a recent study conducted at the NASA Marshall Space Flight Center, is a large, monolithic telescope with a primary mirror diameter of 6.2 meters placed into a halo orbit about the second Sun-Earth Lagrange point, or L2, approximately 1.5 million kin beyond Earth's orbit. Operating in the visible and ultraviolet regions of the electromagnetic spectrum, such a large telescope would allow astronomers to detect bio-signatures and characterize the atmospheres of transiting exoplanets, provide high resolution imaging three or more times better than the Hubble Space Telescope and the James Webb Space Telescope, and observe the ultraviolet light from warm baryonic matter.

  12. Harmonic balance optimization of terahertz Schottky diode multipliers using an advanced device model

    NASA Technical Reports Server (NTRS)

    Schlecht, E. T.; Chattopadhyay, G.; Maestrini, A.; Pukala, D.; Gill, J.; Mehdi, I.

    2002-01-01

    Substantial proress has been made recently in the advancement of solid state terahertz sources using chains of Schottky diode frequency multipliers. We have developed a harmonic balance simulator and corresponding diode model that incorporates many other factors participating in the diode behavior.

  13. An analog neural hardware implementation using charge-injection multipliers and neutron-specific gain control.

    PubMed

    Massengill, L W; Mundie, D B

    1992-01-01

    A neural network IC based on a dynamic charge injection is described. The hardware design is space and power efficient, and achieves massive parallelism of analog inner products via charge-based multipliers and spatially distributed summing buses. Basic synaptic cells are constructed of exponential pulse-decay modulation (EPDM) dynamic injection multipliers operating sequentially on propagating signal vectors and locally stored analog weights. Individually adjustable gain controls on each neutron reduce the effects of limited weight dynamic range. A hardware simulator/trainer has been developed which incorporates the physical (nonideal) characteristics of actual circuit components into the training process, thus absorbing nonlinearities and parametric deviations into the macroscopic performance of the network. Results show that charge-based techniques may achieve a high degree of neural density and throughput using standard CMOS processes.

  14. Connection forces in deformable multibody dynamics

    NASA Technical Reports Server (NTRS)

    Shabana, A. A.; Chang, C. W.

    1989-01-01

    In the dynamic formulation of holonomic and nonholonomic systems based on D'Alembert-Lagrange equation, the forces of constraints are maintained in the dynamic equations by introducing auxiliary variables, called Lagrange multipliers. This approach introduces a set of generalized reaction forces associated with the system generalized coordinates. Different sets of variables can be used as generalized coordinates and accordingly, the generalized reactions associated with these generalized coordinates may not be the actual reaction forces at the joints. In rigid body dynamics, the generalized reaction forces and the actual reaction forces at the joints represent equipollent systems of forces since they produce the same total forces and moments at and about any point on the rigid body. This is not, however, the case in deformable body analyses wherein the generalized reaction forces depend on the system generalized reference and elastic coordinates. In this paper, a method for determining the actual reaction forces at the joints from the generalized reaction forces in deformable multibody systems is presented.

  15. Canonical quantization of constrained systems and coadjoint orbits of Diff(S sup 1 )

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scherer, W.M.

    It is shown that Dirac's treatment of constrained Hamiltonian systems and Schwinger's action principle quantization lead to identical commutations relations. An explicit relation between the Lagrange multipliers in the action principle approach and the additional terms in the Dirac bracket is derived. The equivalence of the two methods is demonstrated in the case of the non-linear sigma model. Dirac's method is extended to superspace and this extension is applied to the chiral superfield. The Dirac brackets of the massive interacting chiral superfluid are derived and shown to give the correct commutation relations for the component fields. The Hamiltonian of themore » theory is given and the Hamiltonian equations of motion are computed. They agree with the component field results. An infinite sequence of differential operators which are covariant under the coadjoint action of Diff(S{sup 1}) and analogues to Hill's operator is constructed. They map conformal fields of negative integer and half-integer weight to their dual space. Some properties of these operators are derived and possible applications are discussed. The Korteweg-de Vries equation is formulated as a coadjoint orbit of Diff(S{sup 1}).« less

  16. Optimal Price Decision Problem for Simultaneous Multi-article Auction and Its Optimal Price Searching Method by Particle Swarm Optimization

    NASA Astrophysics Data System (ADS)

    Masuda, Kazuaki; Aiyoshi, Eitaro

    We propose a method for solving optimal price decision problems for simultaneous multi-article auctions. An auction problem, originally formulated as a combinatorial problem, determines both every seller's whether or not to sell his/her article and every buyer's which article(s) to buy, so that the total utility of buyers and sellers will be maximized. Due to the duality theory, we transform it equivalently into a dual problem in which Lagrange multipliers are interpreted as articles' transaction price. As the dual problem is a continuous optimization problem with respect to the multipliers (i.e., the transaction prices), we propose a numerical method to solve it by applying heuristic global search methods. In this paper, Particle Swarm Optimization (PSO) is used to solve the dual problem, and experimental results are presented to show the validity of the proposed method.

  17. Assessing marginal water values in multipurpose multireservoir systems via stochastic programming

    NASA Astrophysics Data System (ADS)

    Tilmant, A.; Pinte, D.; Goor, Q.

    2008-12-01

    The International Conference on Water and the Environment held in Dublin in 1992 emphasized the need to consider water as an economic good. Since water markets are usually absent or ineffective, the value of water cannot be directly derived from market activities but must rather be assessed through shadow prices. Economists have developed various valuation techniques to determine the economic value of water, especially to handle allocation issues involving environmental water uses. Most of the nonmarket valuation studies reported in the literature focus on long-run policy problems, such as permanent (re)allocations of water, and assume that the water availability is given. When dealing with short-run allocation problems, water managers are facing complex spatial and temporal trade-offs and must therefore be able to track site and time changes in water values across different hydrologic conditions, especially in arid and semiarid areas where the availability of water is a limiting and stochastic factor. This paper presents a stochastic programming approach for assessing the statistical distribution of marginal water values in multipurpose multireservoir systems where hydropower generation and irrigation crop production are the main economic activities depending on water. In the absence of a water market, the Lagrange multipliers correspond to shadow prices, and the marginal water values are the Lagrange multipliers associated with the mass balance equations of the reservoirs. The methodology is illustrated with a cascade of hydroelectric-irrigation reservoirs in the Euphrates river basin in Turkey and Syria.

  18. Complete Hamiltonian analysis of cosmological perturbations at all orders II: non-canonical scalar field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nandi, Debottam; Shankaranarayanan, S., E-mail: debottam@iisertvm.ac.in, E-mail: shanki@iisertvm.ac.in

    2016-10-01

    In this work, we present a consistent Hamiltonian analysis of cosmological perturbations for generalized non-canonical scalar fields. In order to do so, we introduce a new phase-space variable that is uniquely defined for different non-canonical scalar fields. We also show that this is the simplest and efficient way of expressing the Hamiltonian. We extend the Hamiltonian approach of [1] to non-canonical scalar field and obtain an unique expression of speed of sound in terms of phase-space variable. In order to invert generalized phase-space Hamilton's equations to Euler-Lagrange equations of motion, we prescribe a general inversion formulae and show that ourmore » approach for non-canonical scalar field is consistent. We also obtain the third and fourth order interaction Hamiltonian for generalized non-canonical scalar fields and briefly discuss the extension of our method to generalized Galilean scalar fields.« less

  19. Revisiting the Tale of Hercules: How Stars Orbiting the Lagrange Points Visit the Sun

    NASA Astrophysics Data System (ADS)

    Pérez-Villegas, Angeles; Portail, Matthieu; Wegg, Christopher; Gerhard, Ortwin

    2017-05-01

    We propose a novel explanation for the Hercules stream consistent with recent measurements of the extent and pattern speed of the Galactic bar. We have adapted a made-to-measure dynamical model tailored for the Milky Way to investigate the kinematics of the solar neighborhood (SNd). The model matches the 3D density of the red clump giant stars (RCGs) in the bulge and bar as well as stellar kinematics in the inner Galaxy, with a pattern speed of 39 km s-1 kpc-1. Cross-matching this model with the Gaia DR1 TGAS data combined with RAVE and LAMOST radial velocities, we find that the model naturally predicts a bimodality in the U-V-velocity distribution for nearby stars which is in good agreement with the Hercules stream. In the model, the Hercules stream is made of stars orbiting the Lagrange points of the bar which move outward from the bar’s corotation radius to visit the SNd. While the model is not yet a quantitative fit of the velocity distribution, the new picture naturally predicts that the Hercules stream is more prominent inward from the Sun and nearly absent only a few 100 pc outward of the Sun, and plausibly explains that Hercules is prominent in old and metal-rich stars.

  20. Axisymmetric solid elements by a rational hybrid stress method

    NASA Technical Reports Server (NTRS)

    Tian, Z.; Pian, T. H. H.

    1985-01-01

    Four-node axisymmetric solid elements are derived by a new version of hybrid method for which the assumed stresses are expressed in complete polynomials in natural coordinates. The stress equilibrium conditions are introduced through the use of additional displacements as Lagrange multipliers. A rational procedure is to choose the displacement terms such that the resulting strains are also of complete polynomials of the same order. Example problems all indicate that elements obtained by this procedure lead to better results in displacements and stresses than that by other finite elements.

  1. Dynamics of omnidirectional unmanned rescue vehicle with mecanum wheels

    NASA Astrophysics Data System (ADS)

    Typiak, Andrzej; Łopatka, Marian Janusz; Rykała, Łukasz; Kijek, Magdalena

    2018-01-01

    The work presents the dynamic equations of motion of a unmanned six-wheeled vehicle with mecanum wheels for rescue applications derived with the of Lagrange equations of the second kind with multipliers. Analysed vehicle through using mecanum wheels has three degrees of freedom and can move on a flat ground in any direction with any configuration of platform's frame. In order to derive dynamic equations of motion of mentioned object, kinetic potential of the system and generalized forces affecting the system are determined. The results of a solution of inverse dynamics problem are also published.

  2. A new operational approach for solving fractional variational problems depending on indefinite integrals

    NASA Astrophysics Data System (ADS)

    Ezz-Eldien, S. S.; Doha, E. H.; Bhrawy, A. H.; El-Kalaawy, A. A.; Machado, J. A. T.

    2018-04-01

    In this paper, we propose a new accurate and robust numerical technique to approximate the solutions of fractional variational problems (FVPs) depending on indefinite integrals with a type of fixed Riemann-Liouville fractional integral. The proposed technique is based on the shifted Chebyshev polynomials as basis functions for the fractional integral operational matrix (FIOM). Together with the Lagrange multiplier method, these problems are then reduced to a system of algebraic equations, which greatly simplifies the solution process. Numerical examples are carried out to confirm the accuracy, efficiency and applicability of the proposed algorithm

  3. Educational Resource Multipliers for Use in Local Public Finance: An Input-Output Approach.

    ERIC Educational Resources Information Center

    Boardman, A. E.; Schinnar, A. P.

    1982-01-01

    Develops an input-output model, with related multipliers, showing how changes in earmarked and discretionary educational funds (whether local, state, or federal) affect all of a state's districts and educational programs. Illustrates the model with Pennsylvania data and relates it to the usual educational finance approach, which uses demand…

  4. Improving land surface parameter retrieval by integrating plant traits priors in the MULTIPLY data assimilation platform

    NASA Astrophysics Data System (ADS)

    Corbin, A. E.; Timmermans, J.; Hauser, L.; Bodegom, P. V.; Soudzilovskaia, N. A.

    2017-12-01

    There is a growing demand for accurate land surface parameterization from remote sensing (RS) observations. This demand has not been satisfied, because most estimation schemes apply 1) a single-sensor single-scale approach, and 2) require specific key-variables to be `guessed'. This is because of the relevant observational information required to accurately retrieve parameters of interest. Consequently, many schemes assume specific variables to be constant or not present; subsequently leading to more uncertainty. In this aspect, the MULTIscale SENTINEL land surface information retrieval Platform (MULTIPLY) was created. MULTIPLY couples a variety of RS sources with Radiative Transfer Models (RTM) over varying spectral ranges using data-assimilation to estimate geophysical parameters. In addition, MULTIPLY also uses prior information about the land surface to constrain the retrieval problem. This research aims to improve the retrieval of plant biophysical parameters through the use of priors of biophysical parameters/plant traits. Of particular interest are traits (physical, morphological or chemical trait) affecting individual performance and fitness of species. Plant traits that are able to be retrieved via RS and with RTMs include traits such as leaf-pigments, leaf water, LAI, phenols, C/N, etc. In-situ data for plant traits that are retrievable via RS techniques were collected for a meta-analysis from databases such as TRY, Ecosis, and individual collaborators. Of particular interest are the following traits: chlorophyll, carotenoids, anthocyanins, phenols, leaf water, and LAI. ANOVA statistics were generated for each traits according to species, plant functional groups (such as evergreens, grasses, etc.), and the trait itself. Afterwards, traits were also compared using covariance matrices. Using these as priors, MULTIPLY was is used to retrieve several plant traits in two validation sites in the Netherlands (Speulderbos) and in Finland (Sodankylä). Initial

  5. General invertible transformation and physical degrees of freedom

    NASA Astrophysics Data System (ADS)

    Takahashi, Kazufumi; Motohashi, Hayato; Suyama, Teruaki; Kobayashi, Tsutomu

    2017-04-01

    An invertible field transformation is such that the old field variables correspond one-to-one to the new variables. As such, one may think that two systems that are related by an invertible transformation are physically equivalent. However, if the transformation depends on field derivatives, the equivalence between the two systems is nontrivial due to the appearance of higher derivative terms in the equations of motion. To address this problem, we prove the following theorem on the relation between an invertible transformation and Euler-Lagrange equations: If the field transformation is invertible, then any solution of the original set of Euler-Lagrange equations is mapped to a solution of the new set of Euler-Lagrange equations, and vice versa. We also present applications of the theorem to scalar-tensor theories.

  6. A Manual for Assessment and Training of Severely Multiply Handicapped Deaf-Blind Students.

    ERIC Educational Resources Information Center

    Burton, Rosemarie A.; And Others

    Intended for teacher use, the manual provides for the assessment and training of severely multiply handicapped deaf-blind students with sections on self help, motor development, and sensory stimulation training. Included for each skill are an individual rating scale for periodic assessments, a task analysis, and an actual teaching procedure. Found…

  7. A multivariate variational objective analysis-assimilation method. Part 1: Development of the basic model

    NASA Technical Reports Server (NTRS)

    Achtemeier, Gary L.; Ochs, Harry T., III

    1988-01-01

    The variational method of undetermined multipliers is used to derive a multivariate model for objective analysis. The model is intended for the assimilation of 3-D fields of rawinsonde height, temperature and wind, and mean level temperature observed by satellite into a dynamically consistent data set. Relative measurement errors are taken into account. The dynamic equations are the two nonlinear horizontal momentum equations, the hydrostatic equation, and an integrated continuity equation. The model Euler-Lagrange equations are eleven linear and/or nonlinear partial differential and/or algebraic equations. A cyclical solution sequence is described. Other model features include a nonlinear terrain-following vertical coordinate that eliminates truncation error in the pressure gradient terms of the horizontal momentum equations and easily accommodates satellite observed mean layer temperatures in the middle and upper troposphere. A projection of the pressure gradient onto equivalent pressure surfaces removes most of the adverse impacts of the lower coordinate surface on the variational adjustment.

  8. 2D data-space cross-gradient joint inversion of MT, gravity and magnetic data

    NASA Astrophysics Data System (ADS)

    Pak, Yong-Chol; Li, Tonglin; Kim, Gang-Sop

    2017-08-01

    We have developed a data-space multiple cross-gradient joint inversion algorithm, and validated it through synthetic tests and applied it to magnetotelluric (MT), gravity and magnetic datasets acquired along a 95 km profile in Benxi-Ji'an area of northeastern China. To begin, we discuss a generalized cross-gradient joint inversion for multiple datasets and model parameters sets, and formulate it in data space. The Lagrange multiplier required for the structural coupling in the data-space method is determined using an iterative solver to avoid calculation of the inverse matrix in solving the large system of equations. Next, using model-space and data-space methods, we inverted the synthetic data and field data. Based on our result, the joint inversion in data-space not only delineates geological bodies more clearly than the separate inversion, but also yields nearly equal results with the one in model-space while consuming much less memory.

  9. Structured approaches to large-scale systems: Variational integrators for interconnected Lagrange-Dirac systems and structured model reduction on Lie groups

    NASA Astrophysics Data System (ADS)

    Parks, Helen Frances

    This dissertation presents two projects related to the structured integration of large-scale mechanical systems. Structured integration uses the considerable differential geometric structure inherent in mechanical motion to inform the design of numerical integration schemes. This process improves the qualitative properties of simulations and becomes especially valuable as a measure of accuracy over long time simulations in which traditional Gronwall accuracy estimates lose their meaning. Often, structured integration schemes replicate continuous symmetries and their associated conservation laws at the discrete level. Such is the case for variational integrators, which discretely replicate the process of deriving equations of motion from variational principles. This results in the conservation of momenta associated to symmetries in the discrete system and conservation of a symplectic form when applicable. In the case of Lagrange-Dirac systems, variational integrators preserve a discrete analogue of the Dirac structure preserved in the continuous flow. In the first project of this thesis, we extend Dirac variational integrators to accommodate interconnected systems. We hope this work will find use in the fields of control, where a controlled system can be thought of as a "plant" system joined to its controller, and in the approach of very large systems, where modular modeling may prove easier than monolithically modeling the entire system. The second project of the thesis considers a different approach to large systems. Given a detailed model of the full system, can we reduce it to a more computationally efficient model without losing essential geometric structures in the system? Asked without the reference to structure, this is the essential question of the field of model reduction. The answer there has been a resounding yes, with Principal Orthogonal Decomposition (POD) with snapshots rising as one of the most successful methods. Our project builds on previous work

  10. Expressions for Fields in the ITER Tokamak

    NASA Astrophysics Data System (ADS)

    Sharma, Stephen

    2017-10-01

    The two most important problems to be solved in the development of working nuclear fusion power plants are: sustained partial ignition and turbulence. These two phenomenon are the subject of research and investigation through the development of analytic functions and computational models. Ansatz development through Gaussian wave-function approximations, dielectric quark models, field solutions using new elliptic functions, and better descriptions of the polynomials of the superconducting current loops are the critical theoretical developments that need to be improved. Euler-Lagrange equations of motion in addition to geodesic formulations generate the particle model which should correspond to the Dirac dispersive scattering coefficient calculations and the fluid plasma model. Feynman-Hellman formalism and Heaviside step functional forms are introduced to the fusion equations to produce simple expressions for the kinetic energy and loop currents. Conclusively, a polynomial description of the current loops, the Biot-Savart field, and the Lagrangian must be uncovered before there can be an adequate computational and iterative model of the thermonuclear plasma.

  11. Lagrange constraint neural networks for massive pixel parallel image demixing

    NASA Astrophysics Data System (ADS)

    Szu, Harold H.; Hsu, Charles C.

    2002-03-01

    We have shown that the remote sensing optical imaging to achieve detailed sub-pixel decomposition is a unique application of blind source separation (BSS) that is truly linear of far away weak signal, instantaneous speed of light without delay, and along the line of sight without multiple paths. In early papers, we have presented a direct application of statistical mechanical de-mixing method called Lagrange Constraint Neural Network (LCNN). While the BSAO algorithm (using a posteriori MaxEnt ANN and neighborhood pixel average) is not acceptable for remote sensing, a mirror symmetric LCNN approach is all right assuming a priori MaxEnt for unknown sources to be averaged over the source statistics (not neighborhood pixel data) in a pixel-by-pixel independent fashion. LCNN reduces the computation complexity, save a great number of memory devices, and cut the cost of implementation. The Landsat system is designed to measure the radiation to deduce surface conditions and materials. For any given material, the amount of emitted and reflected radiation varies by the wavelength. In practice, a single pixel of a Landsat image has seven channels receiving 0.1 to 12 microns of radiation from the ground within a 20x20 meter footprint containing a variety of radiation materials. A-priori LCNN algorithm provides the spatial-temporal variation of mixture that is hardly de-mixable by other a-posteriori BSS or ICA methods. We have already compared the Landsat remote sensing using both methods in WCCI 2002 Hawaii. Unfortunately the absolute benchmark is not possible because of lacking of the ground truth. We will arbitrarily mix two incoherent sampled images as the ground truth. However, the constant total probability of co-located sources within the pixel footprint is necessary for the remote sensing constraint (since on a clear day the total reflecting energy is constant in neighborhood receiving pixel sensors), we have to normalized two image pixel-by-pixel as well. Then, the

  12. Modelling of Dynamics of a Wheeled Mobile Robot with Mecanum Wheels with the use of Lagrange Equations of the Second Kind

    NASA Astrophysics Data System (ADS)

    Hendzel, Z.; Rykała, Ł.

    2017-02-01

    The work presents the dynamic equations of motion of a wheeled mobile robot with mecanum wheels derived with the use of Lagrange equations of the second kind. Mecanum wheels are a new type of wheels used in wheeled mobile robots and they consist of freely rotating rollers attached to the circumference of the wheels. In order to derive dynamic equations of motion of a wheeled mobile robot, the kinetic energy of the system is determined, as well as the generalised forces affecting the system. The resulting mathematical model of a wheeled mobile robot was generated with the use of Maple V software. The results of a solution of inverse and forward problems of dynamics of the discussed object are also published.

  13. Pilot Study of Cartilage Repair in the Knee Joint with Multiply Incised Chondral Allograft

    PubMed Central

    Vancsodi, Jozsef; Farkas, Boglarka; Fazekas, Adam; Nagy, Szilvia Anett; Bogner, Peter; Vermes, Csaba; Than, Peter

    2015-01-01

    Background Focal cartilage lesions in the knee joint have limited capacity to heal. Current animal experiments show that incisions of the deep zone of a cartilage allograft allow acceptable integration for the graft. Questions/Purposes We performed this clinical study to determine (1) if the multiply incised cartilage graft is surgically applicable for focal cartilage lesions, (2) whether this allograft has a potential to integrate to the repair site, and (3) if patients show clinical improvement. Patients and Methods Seven patients with 8 chondral lesions were enrolled into the study. Symptomatic lesions between 2 and 8 cm2 were accepted. Additional injuries were allowed but were addressed simultaneously. Grafts were tailored to match and the deep zone of the cartilage was multiply incised to augment the basal integration before securing in place. Rigorous postoperative physiotherapy followed. At 12 and 24 months the patients’ satisfaction were measured and serial magnetic resonance imaging (MRI) was performed in 6 patients. Results Following the implantations no adverse reaction occurred. MRI evaluation postoperatively showed the graft in place in 5 out of 6 patients. In 1 patient, MRI suggested partial delamination at 1 year and graft degeneration at 2 years. Short Form–36 health survey and the Lysholm knee score demonstrated a significant improvement in the first year; however, by 2 years there was a noticeable drop in the scores. Conclusions. Multiply incised pure chondral allograft used for cartilage repair appears to be a relatively safe method. Further studies are necessary to assess its potential in cartilage repair before its clinical use. PMID:26069710

  14. Now the Dark Electron Multiplier does Sense Direction of the Daemon Motion

    NASA Astrophysics Data System (ADS)

    Drobyshevski, E. M.; Drobyshevski, M. E.; Pikulin, V. A.

    Detection of the September maximum in the primary near-Earth daemon flux at high (~ 60°) Northern latitudes by our setup with a plane horizontal scintillator is plagued by purely geometric factors; indeed, because of the Earth's rotation axis being tilted, the daemons catching up with the Earth in outer Near-Earth, Almost Circular Heliocentric Orbits (NEACHOs) strike the Earth along close-to-horizontal paths. Nevertheless, application of only two oppositely oriented, specially designed "dark electron multipliers" of the type TEU-167d (only their ø125-mm front disc is coated on the inside by a thick, ~ 0.5 μm Al layer, which permits such multipliers to detect primarily daemons flying inside them from the base to the disc) has made it possible for us to detect in one experiment, at a confidence level of >3σ, a flux of daemons captured from NEACHOs into Geocentric Earth-Surface-Crossing Orbits, as well as to record a decrease in the velocity of these objects from ~ 10 to ~ 7 km/s in a characteristic time of ~ 1 month resulting from their being slowed down in transits through the Earth's body.

  15. Cross-talk free selective reconstruction of individual objects from multiplexed optical field data

    NASA Astrophysics Data System (ADS)

    Zea, Alejandro Velez; Barrera, John Fredy; Torroba, Roberto

    2018-01-01

    In this paper we present a data multiplexing method for simultaneous storage in a single package composed by several optical fields of tridimensional (3D) objects, and their individual cross-talk free retrieval. Optical field data are extracted from off axis Fourier holograms, and then sampled by multiplying them with random binary masks. The resulting sampled optical fields can be used to reconstruct the original objects. Sampling causes a loss of quality that can be controlled by the number of white pixels in the binary masks and by applying a padding procedure on the optical field data. This process can be performed using a different binary mask for each optical field, and then added to form a multiplexed package. With the adequate choice of sampling and padding, we can achieve a volume reduction in the multiplexed package over the addition of all individual optical fields. Moreover, the package can be multiplied by a binary mask to select a specific optical field, and after the reconstruction procedure, the corresponding 3D object is recovered without any cross-talk. We demonstrate the effectiveness of our proposal for data compression with a comparison with discrete cosine transform filtering. Experimental results confirm the validity of our proposal.

  16. Synoptic ozone, cloud reflectivity, and erythemal irradiance from sunrise to sunset for the whole earth as viewed by the DSCOVR spacecraft from the earth-sun Lagrange 1 orbit

    NASA Astrophysics Data System (ADS)

    Herman, Jay; Huang, Liang; McPeters, Richard; Ziemke, Jerry; Cede, Alexander; Blank, Karin

    2018-01-01

    EPIC (Earth Polychromatic Imaging Camera) on board the DSCOVR (Deep Space Climate Observatory) spacecraft is the first earth science instrument located near the earth-sun gravitational plus centrifugal force balance point, Lagrange 1. EPIC measures earth-reflected radiances in 10 wavelength channels ranging from 317.5 to 779.5 nm. Of these channels, four are in the UV range 317.5, 325, 340, and 388 nm, which are used to retrieve O3, 388 nm scene reflectivity (LER: Lambert equivalent reflectivity), SO2, and aerosol properties. These new synoptic quantities are retrieved for the entire sunlit globe from sunrise to sunset multiple times per day as the earth rotates in EPIC's field of view. Retrieved ozone amounts agree with ground-based measurements and satellite data to within 3 %. The ozone amounts and LER are combined to derive the erythemal irradiance for the earth's entire sunlit surface at a nadir resolution of 18 × 18 km2 using a computationally efficient approximation to a radiative transfer calculation of irradiance. The results show very high summertime values of the UV index (UVI) in the Andes and Himalayas (greater than 18), and high values of UVI near the Equator at equinox.

  17. The Ultraviolet Surprise. Efficient Soft X-Ray High Harmonic Generation in Multiply-Ionized Plasmas

    DOE PAGES

    Popmintchev, Dimitar; Hernandez-Garcia, Carlos; Dollar, Franklin; ...

    2015-12-04

    High-harmonic generation is a universal response of matter to strong femtosecond laser fields, coherently upconverting light to much shorter wavelengths. Optimizing the conversion of laser light into soft x-rays typically demands a trade-off between two competing factors. Reduced quantum diffusion of the radiating electron wave function results in emission from each species which is highest when a short-wavelength ultraviolet driving laser is used. But, phase matching—the constructive addition of x-ray waves from a large number of atoms—favors longer-wavelength mid-infrared lasers. We identified a regime of high-harmonic generation driven by 40-cycle ultraviolet lasers in waveguides that can generate bright beams inmore » the soft x-ray region of the spectrum, up to photon energies of 280 electron volts. Surprisingly, the high ultraviolet refractive indices of both neutral atoms and ions enabled effective phase matching, even in a multiply ionized plasma. We observed harmonics with very narrow linewidths, while calculations show that the x-rays emerge as nearly time-bandwidth–limited pulse trains of ~100 attoseconds.« less

  18. Calculation evaluation of multiplying properties of LWR with thorium fuel

    NASA Astrophysics Data System (ADS)

    Shamanin, I. V.; Grachev, V. M.; Knyshev, V. V.; Bedenko, S. V.; Novikova, N. G.

    2017-01-01

    The results of multiplying properties design research of the unit cell and LWR fuel assembly with the high temperature gas-cooled thorium reactor fuel pellet are presented in the work. The calculation evaluation showed the possibility of using thorium in LWR effectively. In this case the amount of fissile isotope is 2.45 times smaller in comparison with the standard loading of LWR. The research and numerical experiments were carried out using the verified accounting code of the program MCU5, modern libraries of evaluated nuclear data and multigroup approximations.

  19. Encoding Schemes For A Digital Optical Multiplier Using The Modified Signed-Digit Number Representation

    NASA Astrophysics Data System (ADS)

    Lasher, Mark E.; Henderson, Thomas B.; Drake, Barry L.; Bocker, Richard P.

    1986-09-01

    The modified signed-digit (MSD) number representation offers full parallel, carry-free addition. A MSD adder has been described by the authors. This paper describes how the adder can be used in a tree structure to implement an optical multiply algorithm. Three different optical schemes, involving position, polarization, and intensity encoding, are proposed for realizing the trinary logic system. When configured in the generic multiplier architecture, these schemes yield the combinatorial logic necessary to carry out the multiplication algorithm. The optical systems are essentially three dimensional arrangements composed of modular units. Of course, this modularity is important for design considerations, while the parallelism and noninterfering communication channels of optical systems are important from the standpoint of reduced complexity. The authors have also designed electronic hardware to demonstrate and model the combinatorial logic required to carry out the algorithm. The electronic and proposed optical systems will be compared in terms of complexity and speed.

  20. Ultraviolet surprise: Efficient soft x-ray high-harmonic generation in multiply ionized plasmas.

    PubMed

    Popmintchev, Dimitar; Hernández-García, Carlos; Dollar, Franklin; Mancuso, Christopher; Pérez-Hernández, Jose A; Chen, Ming-Chang; Hankla, Amelia; Gao, Xiaohui; Shim, Bonggu; Gaeta, Alexander L; Tarazkar, Maryam; Romanov, Dmitri A; Levis, Robert J; Gaffney, Jim A; Foord, Mark; Libby, Stephen B; Jaron-Becker, Agnieszka; Becker, Andreas; Plaja, Luis; Murnane, Margaret M; Kapteyn, Henry C; Popmintchev, Tenio

    2015-12-04

    High-harmonic generation is a universal response of matter to strong femtosecond laser fields, coherently upconverting light to much shorter wavelengths. Optimizing the conversion of laser light into soft x-rays typically demands a trade-off between two competing factors. Because of reduced quantum diffusion of the radiating electron wave function, the emission from each species is highest when a short-wavelength ultraviolet driving laser is used. However, phase matching--the constructive addition of x-ray waves from a large number of atoms--favors longer-wavelength mid-infrared lasers. We identified a regime of high-harmonic generation driven by 40-cycle ultraviolet lasers in waveguides that can generate bright beams in the soft x-ray region of the spectrum, up to photon energies of 280 electron volts. Surprisingly, the high ultraviolet refractive indices of both neutral atoms and ions enabled effective phase matching, even in a multiply ionized plasma. We observed harmonics with very narrow linewidths, while calculations show that the x-rays emerge as nearly time-bandwidth-limited pulse trains of ~100 attoseconds. Copyright © 2015, American Association for the Advancement of Science.

  1. Regulation of a lightweight high efficiency capacitator diode voltage multiplier dc-dc converter

    NASA Technical Reports Server (NTRS)

    Harrigill, W. T., Jr.; Myers, I. T.

    1976-01-01

    A method for the regulation of a capacitor diode voltage multiplier dc-dc converter has been developed which has only minor penalties in weight and efficiency. An auxiliary inductor is used, which only handles a fraction of the total power, to control the output voltage through a pulse width modulation method in a buck boost circuit.

  2. Aiding the search: Examining individual differences in multiply-constrained problem solving.

    PubMed

    Ellis, Derek M; Brewer, Gene A

    2018-07-01

    Understanding and resolving complex problems is of vital importance in daily life. Problems can be defined by the limitations they place on the problem solver. Multiply-constrained problems are traditionally examined with the compound remote associates task (CRAT). Performance on the CRAT is partially dependent on an individual's working memory capacity (WMC). These findings suggest that executive processes are critical for problem solving and that there are reliable individual differences in multiply-constrained problem solving abilities. The goals of the current study are to replicate and further elucidate the relation between WMC and CRAT performance. To achieve these goals, we manipulated preexposure to CRAT solutions and measured WMC with complex-span tasks. In Experiment 1, we report evidence that preexposure to CRAT solutions improved problem solving accuracy, WMC was correlated with problem solving accuracy, and that WMC did not moderate the effect of preexposure on problem solving accuracy. In Experiment 2, we preexposed participants to correct and incorrect solutions. We replicated Experiment 1 and found that WMC moderates the effect of exposure to CRAT solutions such that high WMC participants benefit more from preexposure to correct solutions than low WMC (although low WMC participants have preexposure benefits as well). Broadly, these results are consistent with theories of working memory and problem solving that suggest a mediating role of attention control processes. Published by Elsevier Inc.

  3. Coulomb fission in multiply charged molecular clusters: Experiment and theory

    NASA Astrophysics Data System (ADS)

    Harris, Christopher; Baptiste, Joshua; Lindgren, Eric B.; Besley, Elena; Stace, Anthony J.

    2017-04-01

    A series of three multiply charged molecular clusters, (C6H6)nz+ (benzene), (CH3CNnz) + (acetonitrile), and (C4H8O)nz+ (tetrahydrofuran), where the charge z is either 3 or 4, have been studied for the purpose of identifying the patterns of behaviour close to the charge instability limit. Experiments show that on a time scale of ˜10-4 s, ions close to the limit undergo Coulomb fission where the observed pathways exhibit considerable asymmetry in the sizes of the charged fragments and are all associated with kinetic (ejection) energies of between 1.4 and 2.2 eV. Accurate kinetic energies have been determined through a computer simulation of peak profiles recorded in the experiments and the results modelled using a theory formulated to describe how charged particles of dielectric materials interact with one another [E. Bichoutskaia et al., J. Chem. Phys. 133, 024105 (2010)]. The calculated electrostatic interaction energy between separating fragments gives an accurate account for the measured kinetic energies and also supports the conclusion that +4 ions fragment into +3 and +1 products as opposed to the alternative of two +2 fragments. This close match between the theory and experiment reinforces the assumption that a significant fraction of excess charge resides on the surfaces of the fragment ions. It is proposed that the high degree of asymmetry seen in the fragmentation patterns of the multiply charged clusters is due, in part, to limits imposed by the time window during which observations are made.

  4. Inference for multivariate regression model based on multiply imputed synthetic data generated via posterior predictive sampling

    NASA Astrophysics Data System (ADS)

    Moura, Ricardo; Sinha, Bimal; Coelho, Carlos A.

    2017-06-01

    The recent popularity of the use of synthetic data as a Statistical Disclosure Control technique has enabled the development of several methods of generating and analyzing such data, but almost always relying in asymptotic distributions and in consequence being not adequate for small sample datasets. Thus, a likelihood-based exact inference procedure is derived for the matrix of regression coefficients of the multivariate regression model, for multiply imputed synthetic data generated via Posterior Predictive Sampling. Since it is based in exact distributions this procedure may even be used in small sample datasets. Simulation studies compare the results obtained from the proposed exact inferential procedure with the results obtained from an adaptation of Reiters combination rule to multiply imputed synthetic datasets and an application to the 2000 Current Population Survey is discussed.

  5. A novel Lagrangian approach for the stable numerical simulation of fault and fracture mechanics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franceschini, Andrea; Ferronato, Massimiliano, E-mail: massimiliano.ferronato@unipd.it; Janna, Carlo

    The simulation of the mechanics of geological faults and fractures is of paramount importance in several applications, such as ensuring the safety of the underground storage of wastes and hydrocarbons or predicting the possible seismicity triggered by the production and injection of subsurface fluids. However, the stable numerical modeling of ground ruptures is still an open issue. The present work introduces a novel formulation based on the use of the Lagrange multipliers to prescribe the constraints on the contact surfaces. The variational formulation is modified in order to take into account the frictional work along the activated fault portion accordingmore » to the principle of maximum plastic dissipation. The numerical model, developed in the framework of the Finite Element method, provides stable solutions with a fast convergence of the non-linear problem. The stabilizing properties of the proposed model are emphasized with the aid of a realistic numerical example dealing with the generation of ground fractures due to groundwater withdrawal in arid regions. - Highlights: • A numerical model is developed for the simulation of fault and fracture mechanics. • The model is implemented in the framework of the Finite Element method and with the aid of Lagrange multipliers. • The proposed formulation introduces a new contribution due to the frictional work on the portion of activated fault. • The resulting algorithm is highly non-linear as the portion of activated fault is itself unknown. • The numerical solution is validated against analytical results and proves to be stable also in realistic applications.« less

  6. A Proposal for a Subcritical Reactivity Meter based on Gandini and Salvatores' point kinetics equations for Multiplying Subcritical Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pinto, Leticia N.; Dos Santos, Adimir

    2015-07-01

    Multiplying Subcritical Systems were for a long time poorly studied and its theoretical description remains with plenty open questions. Great interest on such systems arose partly due to the improvement of hybrid concepts, such as the Accelerator-Driven Systems (ADS). Along with the need for new technologies to be developed, further study and understanding of subcritical systems are essential also in more practical situations, such as in the case of a PWR criticalization in their physical startup tests. Point kinetics equations are fundamental to continuously monitor the reactivity behavior to a possible variation of external sources intensity. In this case, quicklymore » and accurately predicting power transients and reactivity becomes crucial. It is known that conventional Reactivity Meters cannot operate in subcritical levels nor describe the dynamics of multiplying systems in these conditions, by the very structure of the classical kinetic equations. Several theoretical models have been proposed to characterize the kinetics of such systems with special regard to the reactivity, as the one developed by Gandini and Salvatores among others. This work presents a discussion about the derivation of point kinetics equations for subcritical systems and the importance of considering the external source. From the point of view of the Gandini and Salvatores' point kinetics model and based on the experimental results provided by Lee and dos Santos, it was possible to develop an innovative approach. This article proposes an algorithm that describes the subcritical reactivity with external source, contributing to the advancement of studies in the field. (authors)« less

  7. Recent progress of carbon nanotube field emitters and their application.

    PubMed

    Seelaboyina, Raghunandan; Choi, Wonbong

    2007-01-01

    The potential of utilizing carbon nanotube field emission properties is an attractive feature for future vacuum electronic devices including: high power microwave, miniature x-ray, backlight for liquid crystal displays and flat panel displays. Their high emission current, nano scale geometry, chemical inertness and low threshold voltage for emission are attractive features for the field emission applications. In this paper we review the recent developments of carbon nanotube field emitters and their device applications. We also discuss the latest results on field emission current amplification achieved with an electron multiplier microchannel plate, and emission performance of multistage field emitter based on oxide nanowire operated in poor vacuum.

  8. On the error propagation of semi-Lagrange and Fourier methods for advection problems☆

    PubMed Central

    Einkemmer, Lukas; Ostermann, Alexander

    2015-01-01

    In this paper we study the error propagation of numerical schemes for the advection equation in the case where high precision is desired. The numerical methods considered are based on the fast Fourier transform, polynomial interpolation (semi-Lagrangian methods using a Lagrange or spline interpolation), and a discontinuous Galerkin semi-Lagrangian approach (which is conservative and has to store more than a single value per cell). We demonstrate, by carrying out numerical experiments, that the worst case error estimates given in the literature provide a good explanation for the error propagation of the interpolation-based semi-Lagrangian methods. For the discontinuous Galerkin semi-Lagrangian method, however, we find that the characteristic property of semi-Lagrangian error estimates (namely the fact that the error increases proportionally to the number of time steps) is not observed. We provide an explanation for this behavior and conduct numerical simulations that corroborate the different qualitative features of the error in the two respective types of semi-Lagrangian methods. The method based on the fast Fourier transform is exact but, due to round-off errors, susceptible to a linear increase of the error in the number of time steps. We show how to modify the Cooley–Tukey algorithm in order to obtain an error growth that is proportional to the square root of the number of time steps. Finally, we show, for a simple model, that our conclusions hold true if the advection solver is used as part of a splitting scheme. PMID:25844018

  9. Global geometry of non-planar 3-body motions

    NASA Astrophysics Data System (ADS)

    Salehani, Mahdi Khajeh

    2011-12-01

    The aim of this paper is to study the global geometry of non-planar 3-body motions in the realms of equivariant Differential Geometry and Geometric Mechanics. This work was intended as an attempt at bringing together these two areas, in which geometric methods play the major role, in the study of the 3-body problem. It is shown that the Euler equations of a three-body system with non-planar motion introduce non-holonomic constraints into the Lagrangian formulation of mechanics. Applying the method of undetermined Lagrange multipliers to study the dynamics of three-body motions reduced to the level of moduli space {bar{M}} subject to the non-holonomic constraints yields the generalized Euler-Lagrange equations of non-planar three-body motions in {bar{M}} . As an application of the derived dynamical equations in the level of {bar{M}} , we completely settle the question posed by A. Wintner in his book [The analytical foundations of Celestial Mechanics, Sections 394-396, 435 and 436. Princeton University Press (1941)] on classifying the constant inclination solutions of the three-body problem.

  10. Individualized Levels System and Systematic Stimulus Pairing to Reduce Multiply Controlled Aggression of a Child With Autism Spectrum Disorder.

    PubMed

    Randall, Kayla R; Lambert, Joseph M; Matthews, Mary P; Houchins-Juarez, Nealetta J

    2018-05-01

    Research has shown that physical aggression is common in individuals with autism spectrum disorder (ASD). Interventions for multiply controlled aggression may be complex and difficult to implement with fidelity. As a result, the probability of treatment efficacy for this class of behavior may suffer. We designed an individualized levels system to reduce the physical aggression of an 11-year-old female with ASD. We then employed a systematic stimulus pairing procedure to facilitate generalization. Results suggest individualized levels systems can suppress multiply controlled aggression and that systematic stimulus pairing is an effective way to transfer treatment effects from trained therapists to caregivers.

  11. Multiple positive normalized solutions for nonlinear Schrödinger systems

    NASA Astrophysics Data System (ADS)

    Gou, Tianxiang; Jeanjean, Louis

    2018-05-01

    We consider the existence of multiple positive solutions to the nonlinear Schrödinger systems set on , under the constraint Here are prescribed, , and the frequencies are unknown and will appear as Lagrange multipliers. Two cases are studied, the first when , the second when In both cases, assuming that is sufficiently small, we prove the existence of two positive solutions. The first one is a local minimizer for which we establish the compactness of the minimizing sequences and also discuss the orbital stability of the associated standing waves. The second solution is obtained through a constrained mountain pass and a constrained linking respectively.

  12. Solving fractional optimal control problems within a Chebyshev-Legendre operational technique

    NASA Astrophysics Data System (ADS)

    Bhrawy, A. H.; Ezz-Eldien, S. S.; Doha, E. H.; Abdelkawy, M. A.; Baleanu, D.

    2017-06-01

    In this manuscript, we report a new operational technique for approximating the numerical solution of fractional optimal control (FOC) problems. The operational matrix of the Caputo fractional derivative of the orthonormal Chebyshev polynomial and the Legendre-Gauss quadrature formula are used, and then the Lagrange multiplier scheme is employed for reducing such problems into those consisting of systems of easily solvable algebraic equations. We compare the approximate solutions achieved using our approach with the exact solutions and with those presented in other techniques and we show the accuracy and applicability of the new numerical approach, through two numerical examples.

  13. Optimal Power Allocation for CC-HARQ-based Cognitive Radio with Statistical CSI in Nakagami Slow Fading Channels

    NASA Astrophysics Data System (ADS)

    Xu, Ding; Li, Qun

    2017-01-01

    This paper addresses the power allocation problem for cognitive radio (CR) based on hybrid-automatic-repeat-request (HARQ) with chase combining (CC) in Nakagamimslow fading channels. We assume that, instead of the perfect instantaneous channel state information (CSI), only the statistical CSI is available at the secondary user (SU) transmitter. The aim is to minimize the SU outage probability under the primary user (PU) interference outage constraint. Using the Lagrange multiplier method, an iterative and recursive algorithm is derived to obtain the optimal power allocation for each transmission round. Extensive numerical results are presented to illustrate the performance of the proposed algorithm.

  14. Finite element model for brittle fracture and fragmentation

    DOE PAGES

    Li, Wei; Delaney, Tristan J.; Jiao, Xiangmin; ...

    2016-06-01

    A new computational model for brittle fracture and fragmentation has been developed based on finite element analysis of non-linear elasticity equations. The proposed model propagates the cracks by splitting the mesh nodes alongside the most over-strained edges based on the principal direction of strain tensor. To prevent elements from overlapping and folding under large deformations, robust geometrical constraints using the method of Lagrange multipliers have been incorporated. In conclusion, the model has been applied to 2D simulations of the formation and propagation of cracks in brittle materials, and the fracture and fragmentation of stretched and compressed materials.

  15. Finite element model for brittle fracture and fragmentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Wei; Delaney, Tristan J.; Jiao, Xiangmin

    A new computational model for brittle fracture and fragmentation has been developed based on finite element analysis of non-linear elasticity equations. The proposed model propagates the cracks by splitting the mesh nodes alongside the most over-strained edges based on the principal direction of strain tensor. To prevent elements from overlapping and folding under large deformations, robust geometrical constraints using the method of Lagrange multipliers have been incorporated. In conclusion, the model has been applied to 2D simulations of the formation and propagation of cracks in brittle materials, and the fracture and fragmentation of stretched and compressed materials.

  16. Optimal control of a harmonic oscillator: Economic interpretations

    NASA Astrophysics Data System (ADS)

    Janová, Jitka; Hampel, David

    2013-10-01

    Optimal control is a popular technique for modelling and solving the dynamic decision problems in economics. A standard interpretation of the criteria function and Lagrange multipliers in the profit maximization problem is well known. On a particular example, we aim to a deeper understanding of the possible economic interpretations of further mathematical and solution features of the optimal control problem: we focus on the solution of the optimal control problem for harmonic oscillator serving as a model for Phillips business cycle. We discuss the economic interpretations of arising mathematical objects with respect to well known reasoning for these in other problems.

  17. Split-step eigenvector-following technique for exploring enthalpy landscapes at absolute zero.

    PubMed

    Mauro, John C; Loucks, Roger J; Balakrishnan, Jitendra

    2006-03-16

    The mapping of enthalpy landscapes is complicated by the coupling of particle position and volume coordinates. To address this issue, we have developed a new split-step eigenvector-following technique for locating minima and transition points in an enthalpy landscape at absolute zero. Each iteration is split into two steps in order to independently vary system volume and relative atomic coordinates. A separate Lagrange multiplier is used for each eigendirection in order to provide maximum flexibility in determining step sizes. This technique will be useful for mapping the enthalpy landscapes of bulk systems such as supercooled liquids and glasses.

  18. Hot forming of composite prepreg: Numerical analyses

    NASA Astrophysics Data System (ADS)

    Guzman-Maldonado, Eduardo; Hamila, Nahiène; Boisse, Philippe; El Azzouzi, Khalid; Tardif, Xavier; Moro, Tanguy; Chatel, Sylvain; Fideu, Paulin

    2017-10-01

    The work presented here is part of the "FORBANS" project about the Hot Drape Forming (HDF) process consisting of unidirectional prepregs laminates. To ensure a fine comprehension of this process a combination strategy between experiment and numerical analysis is adopted. This paper is focused on the numerical analysis using the finite element method (FEM) with a hyperelastic constitutive law. Each prepreg layer is modelled by shell elements. These elements consider the tension, in-plane shear and bending behaviour of the ply at different temperatures. The contact/friction during the forming process is taken into account using forward increment Lagrange multipliers.

  19. Secondary scintillation yield from GEM and THGEM gaseous electron multipliers for direct dark matter search

    NASA Astrophysics Data System (ADS)

    Monteiro, C. M. B.; Fernandes, L. M. P.; Veloso, J. F. C. A.; Oliveira, C. A. B.; dos Santos, J. M. F.

    2012-07-01

    The search for alternatives to PMTs as photosensors in optical TPCs for rare event detection has significantly increased in the last few years. In particular, in view of the next generation large volume detectors, the use of photosensors with lower natural radioactivity, such as large area APDs or GM-APDs, with the additional possibility of sparse surface coverage, triggered the intense study of secondary scintillation production in micropattern electron multipliers, such as GEMs and THGEMs, as alternatives to the commonly used uniform electric field region between two parallel meshes. The much higher scintillation output obtained from the electron avalanches in such microstructures presents an advantage in those situations. The accurate knowledge of the amount of such scintillation is important for correct detector simulation and optimization. It will also serve as a benchmark for software tools developed and/or under development for the calculation of the amount of such scintillation.The secondary scintillation yield, or electroluminescence yield, in the electron avalanches of GEMs and THGEMs operating in gaseous xenon and argon has been determined for different gas pressures. At 1 bar, THGEMs deliver electroluminescence yields that are more than one order of magnitude higher when compared to those achieved in GEMs and two orders of magnitude when compared to those achieved in a uniform field gap. The THGEM electroluminescence yield presents a faster decrease with pressure when comparing to the GEM electroluminescence yield, reaching similar values to what is achieved in GEMs for xenon pressures of 2.5 bar, but still one order of magnitude higher than that produced in a uniform field gap. Another exception is the GEM operating in argon, which presents an electroluminescence yield similar to that produced in a uniform electric field gap, while the THGEM achieves yields that are more than one order of magnitude higher.

  20. Survey of Multiply Handicapped, Visually Impaired Children in the Rocky Mountain/Great Plains Region.

    ERIC Educational Resources Information Center

    Gates, Carmella Ficociello

    1985-01-01

    A survey of visually impaired children (from birth to age 12) in the Rocky Mountain/Great Plains region indicated that the majority were multiply handicapped, and that within this group, the greatest number were in the mild to moderate range. Data are presented on age ranges, current service delivery options, vocational and alternative-living…

  1. A Novel Split-Waveguide Mount Design For MM and SubMM wave frequency multipliers and Harmonic Mixers

    NASA Technical Reports Server (NTRS)

    Raisanen, Anti V.; Choudhury, Debabani; Dengler, Robert J.; Oswald, John E.; Siegel, Peter H.

    1993-01-01

    A novel split-waveguide mount for millimeter and submillimeter wave frequency multipliers and harmonic mixers is presented. It consists of only two pieces, block halves, which are mirror images of each other.

  2. Efficiency and weight of voltage multiplier type ultra lightweight dc-dc converters

    NASA Technical Reports Server (NTRS)

    Harrigill, W. T., Jr.; Myers, I. T.

    1975-01-01

    An analytical and experimental study was made of a capacitor-diode voltage multiplier without a transformer which offers the possibility of high efficiency with light weight. The dc-dc conversion efficiencies of about 94 percent were achieved at output powers of 150 watts at 1000 volts using 8x multiplication. A detailed identification of losses was made, including forward drop losses in component, switching losses, reverse junction capacitance charging losses, and charging losses in the main ladder capacitors.

  3. The energy spectrum of a microchannel multiplier with two microchannel plates in the chevron assembly

    NASA Astrophysics Data System (ADS)

    Kosulya, A. V.; Verbitskii, V. G.

    2017-11-01

    A mathematical model of the response of a microchannel multiplier based on two microchannel plates in the chevron assembly has been considered. Analytical expressions relating the parameters of input and output signals have been obtained. The geometry of the chevron unit has been determined, and it has been optimized.

  4. A stochastic model for photon noise induced by charged particles in multiplier phototubes of the space telescope fine guidance sensors

    NASA Technical Reports Server (NTRS)

    Howell, L. W.; Kennel, H. F.

    1984-01-01

    The Space Telescope (ST) is subjected to charged particle strikes in its space environment. ST's onboard fine guidance sensors utilize multiplier phototubes (PMT) for attitude determination. These tubes, when subjected to charged particle strikes, generate spurious photons in the form of Cerenkov radiation and fluorescence which give rise to unwanted disturbances in the pointing of the telescope. A stochastic model for the number of these spurious photons which strike the photocathode of the multiplier phototube which in turn produce the unwanted photon noise are presented. The model is applicable to both galactic cosmic rays and charged particles trapped in the Earth's radiation belts. The model which was programmed allows for easy adaption to a wide range of particles and different parameters for the phototube of the multiplier. The probability density functions for photons noise caused by protons, alpha particles, and carbon nuclei were using thousands of simulated strikes. These distributions are used as part of an overall ST dynamics simulation. The sensitivity of the density function to changes in the window parameters was also investigated.

  5. Stochastic model for photon noise induced by charged particles in multiplier phototubes of the Hubble Space Telescope fine guidance sensors

    NASA Technical Reports Server (NTRS)

    Howell, L. W.; Kennel, H. F.

    1986-01-01

    The Space Telescope (ST) is subjected to charged particle strikes in its space environment. ST's onboard fine guidance sensors utilize multiplier phototubes (PMT) for attitude determination. These tubes, when subjected to charged particle strikes, generate spurious photons in the form of Cerenkov radiation and fluorescence which give rise to unwanted disturbances in the pointing of the telescope. A stochastic model for the number of these spurious photons which strike the photocathodes of the multiplier phototube which in turn produce the unwanted photon noise are presented. The model is applicable to both galactic cosmic rays and charged particles trapped in the earth's radiation belts. The model which was programmed allows for easy adaption to a wide range of particles and different parameters for the phototube of the multiplier. The probability density functions for photons noise caused by protons, alpha particles, and carbon nuclei were using thousands of simulated strikes. These distributions are used as part of an overall ST dynamics simulation. The sensitivity of the density function to changes in the window parameters was also investigated.

  6. Tobacco-free economy: A SAM-based multiplier model to quantify the impact of changes in tobacco demand in Bangladesh.

    PubMed

    Husain, Muhammad Jami; Khondker, Bazlul Haque

    2016-01-01

    In Bangladesh, where tobacco use is pervasive, reducing tobacco use is economically beneficial. This paper uses the latest Bangladesh social accounting matrix (SAM) multiplier model to quantify the economy-wide impact of demand-driven changes in tobacco cultivation, bidi industries, and cigarette industries. First, we compute various income multiplier values (i.e. backward linkages) for all production activities in the economy to quantify the impact of changes in demand for the corresponding products on gross output for 86 activities, demand for 86 commodities, returns to four factors of production, and income for eight household groups. Next, we rank tobacco production activities by income multiplier values relative to other sectors. Finally, we present three hypothetical 'tobacco-free economy' scenarios by diverting demand from tobacco products into other sectors of the economy and quantifying the economy-wide impact. The simulation exercises with three different tobacco-free scenarios show that, compared to the baseline values, total sectoral output increases by 0.92%, 1.3%, and 0.75%. The corresponding increases in the total factor returns (i.e. GDP) are 1.57%, 1.75%, and 1.75%. Similarly, total household income increases by 1.40%, 1.58%, and 1.55%.

  7. Tobacco-free economy: A SAM-based multiplier model to quantify the impact of changes in tobacco demand in Bangladesh

    PubMed Central

    Husain, Muhammad Jami; Khondker, Bazlul Haque

    2017-01-01

    In Bangladesh, where tobacco use is pervasive, reducing tobacco use is economically beneficial. This paper uses the latest Bangladesh social accounting matrix (SAM) multiplier model to quantify the economy-wide impact of demand-driven changes in tobacco cultivation, bidi industries, and cigarette industries. First, we compute various income multiplier values (i.e. backward linkages) for all production activities in the economy to quantify the impact of changes in demand for the corresponding products on gross output for 86 activities, demand for 86 commodities, returns to four factors of production, and income for eight household groups. Next, we rank tobacco production activities by income multiplier values relative to other sectors. Finally, we present three hypothetical ‘tobacco-free economy’ scenarios by diverting demand from tobacco products into other sectors of the economy and quantifying the economy-wide impact. The simulation exercises with three different tobacco-free scenarios show that, compared to the baseline values, total sectoral output increases by 0.92%, 1.3%, and 0.75%. The corresponding increases in the total factor returns (i.e. GDP) are 1.57%, 1.75%, and 1.75%. Similarly, total household income increases by 1.40%, 1.58%, and 1.55%. PMID:28845091

  8. Forced monogamy in a multiply mating species does not impede colonisation success.

    PubMed

    Deacon, Amy E; Barbosa, Miguel; Magurran, Anne E

    2014-06-12

    The guppy (Poecilia reticulata) is a successful invasive species. It is also a species that mates multiply; previous studies have demonstrated that this strategy carries fitness benefits. Guppies are routinely introduced to tanks and troughs in regions outside their native range for mosquito-control purposes, and often spread beyond these initial confines into natural water bodies with negative ecological consequences. Here, using a mesocosm set up that resembles the containers into which single guppies are typically introduced for mosquito control, we ask whether singly-mated females are at a disadvantage, relative to multiply-mated females, when it comes to founding a population. Treatments were monitored for one year. A key finding was that mating history did not predict establishment success, which was 88% in both treatments. Furthermore, analysis of behavioural traits revealed that the descendants of singly-mated females retained antipredator behaviours, and that adult males showed no decrease in courtship vigour. Also, we detected no differences in behavioural variability between treatments. These results suggest that even when denied the option of multiple mating, singly-mated female guppies can produce viable populations, at least at the founder stage. This may prove to be a critical advantage in typical introduction scenarios where few individuals are released into enclosed water bodies before finding their way into natural ecosystems.

  9. A symmetric version of the generalized alternating direction method of multipliers for two-block separable convex programming.

    PubMed

    Liu, Jing; Duan, Yongrui; Sun, Min

    2017-01-01

    This paper introduces a symmetric version of the generalized alternating direction method of multipliers for two-block separable convex programming with linear equality constraints, which inherits the superiorities of the classical alternating direction method of multipliers (ADMM), and which extends the feasible set of the relaxation factor α of the generalized ADMM to the infinite interval [Formula: see text]. Under the conditions that the objective function is convex and the solution set is nonempty, we establish the convergence results of the proposed method, including the global convergence, the worst-case [Formula: see text] convergence rate in both the ergodic and the non-ergodic senses, where k denotes the iteration counter. Numerical experiments to decode a sparse signal arising in compressed sensing are included to illustrate the efficiency of the new method.

  10. Proximity effects in cold gases of multiply charged atoms (Review)

    NASA Astrophysics Data System (ADS)

    Chikina, I.; Shikin, V.

    2016-07-01

    Possible proximity effects in gases of cold, multiply charged atoms are discussed. Here we deal with rarefied gases with densities nd of multiply charged (Z ≫ 1) atoms at low temperatures in the well-known Thomas-Fermi (TF) approximation, which can be used to evaluate the statistical properties of single atoms. In order to retain the advantages of the TF formalism, which is successful for symmetric problems, the external boundary conditions accounting for the finiteness of the density of atoms (donors), nd ≠ 0, are also symmetrized (using a spherical Wigner-Seitz cell) and formulated in a standard way that conserves the total charge within the cell. The model shows that at zero temperature in a rarefied gas of multiply charged atoms there is an effective long-range interaction Eproxi(nd), the sign of which depends on the properties of the outer shells of individual atoms. The long-range character of the interaction Eproxi is evaluated by comparing it with the properties of the well-known London dispersive attraction ELond(nd) < 0, which is regarded as a long-range interaction in gases. For the noble gases argon, krypton, and xenon Eproxi>0 and for the alkali and alkaline-earth elements Eproxi < 0. At finite temperatures, TF statistics manifests a new, anomalously large proximity effect, which reflects the tendency of electrons localized at Coulomb centers to escape into the continuum spectrum. The properties of thermal decay are interesting in themselves as they determine the important phenomenon of dissociation of neutral complexes into charged fragments. This phenomenon appears consistently in the TF theory through the temperature dependence of the different versions of Eproxi. The anomaly in the thermal proximity effect shows up in the following way: for T ≠ 0 there is no equilibrium solution of TS statistics for single multiply charged atoms in a vacuum when the effect is present. Instability is suppressed in a Wigner-Seitz model under the assumption that

  11. The quantum theory of free automorphic fields

    NASA Astrophysics Data System (ADS)

    Banach, R.

    1980-06-01

    Heuristic spectral theory is developed for a symmetric operator on the universal covering space of a multiply connected static spacetime and is used to construct the quantum field theory of a multiplet of scalar fields in the customary sum-over-modes fashion. The non-local symmetries necessary to the theory are explicitly constructed, as are the projection on the field operators. The non-existence of a standard charge conjugation for certain types of representation is noted. Gauge transformations are used to give a simple and complete classification of automorphic field theories. The relationship between the unprojected and projected field algebras is clarified, and the implications for Fock space (vacuum degeneracy, etc.) are discussed - earlier work being criticized. The analogy to black hole physics is pointed out, and the possible role of the Reeh-Schlieder theorems is speculated upon.

  12. A Sequence-Independent Strategy for Detection and Cloning of Circular DNA Virus Genomes by Using Multiply Primed Rolling-Circle Amplification

    PubMed Central

    Rector, Annabel; Tachezy, Ruth; Van Ranst, Marc

    2004-01-01

    The discovery of novel viruses has often been accomplished by using hybridization-based methods that necessitate the availability of a previously characterized virus genome probe or knowledge of the viral nucleotide sequence to construct consensus or degenerate PCR primers. In their natural replication cycle, certain viruses employ a rolling-circle mechanism to propagate their circular genomes, and multiply primed rolling-circle amplification (RCA) with φ29 DNA polymerase has recently been applied in the amplification of circular plasmid vectors used in cloning. We employed an isothermal RCA protocol that uses random hexamer primers to amplify the complete genomes of papillomaviruses without the need for prior knowledge of their DNA sequences. We optimized this RCA technique with extracted human papillomavirus type 16 (HPV-16) DNA from W12 cells, using a real-time quantitative PCR assay to determine amplification efficiency, and obtained a 2.4 × 104-fold increase in HPV-16 DNA concentration. We were able to clone the complete HPV-16 genome from this multiply primed RCA product. The optimized protocol was subsequently applied to a bovine fibropapillomatous wart tissue sample. Whereas no papillomavirus DNA could be detected by restriction enzyme digestion of the original sample, multiply primed RCA enabled us to obtain a sufficient amount of papillomavirus DNA for restriction enzyme analysis, cloning, and subsequent sequencing of a novel variant of bovine papillomavirus type 1. The multiply primed RCA method allows the discovery of previously unknown papillomaviruses, and possibly also other circular DNA viruses, without a priori sequence information. PMID:15113879

  13. Trainable Mentally Impaired/Severely Multiply Impaired/Autistic Impaired/Severely Mentally Impaired. Product Evaluation Report 1989-1990.

    ERIC Educational Resources Information Center

    Claus, Richard N.; And Others

    The evaluation report describes special education services provided to trainable mentally impaired (TMI), autistic impaired (AI), severely multiply impaired (SXI), and severely mentally impaired (SMI) students at and through the Melvin G. Millet Learning Center (Bridgeport, Michigan). The eight program components are described individually and…

  14. Developing the Polynomial Expressions for Fields in the ITER Tokamak

    NASA Astrophysics Data System (ADS)

    Sharma, Stephen

    2017-10-01

    The two most important problems to be solved in the development of working nuclear fusion power plants are: sustained partial ignition and turbulence. These two phenomena are the subject of research and investigation through the development of analytic functions and computational models. Ansatz development through Gaussian wave-function approximations, dielectric quark models, field solutions using new elliptic functions, and better descriptions of the polynomials of the superconducting current loops are the critical theoretical developments that need to be improved. Euler-Lagrange equations of motion in addition to geodesic formulations generate the particle model which should correspond to the Dirac dispersive scattering coefficient calculations and the fluid plasma model. Feynman-Hellman formalism and Heaviside step functional forms are introduced to the fusion equations to produce simple expressions for the kinetic energy and loop currents. Conclusively, a polynomial description of the current loops, the Biot-Savart field, and the Lagrangian must be uncovered before there can be an adequate computational and iterative model of the thermonuclear plasma.

  15. Evaluation of the Consistency among In Situ and Remote Sensing Measurements of CO2 over North America using the CarbonTracker-Lagrange Regional Inverse Modeling Framework

    NASA Astrophysics Data System (ADS)

    Andrews, A. E.; Trudeau, M.; Hu, L.; Thoning, K. W.; Shiga, Y. P.; Michalak, A. M.; Benmergui, J. S.; Mountain, M. E.; Nehrkorn, T.; O'Dell, C.; Jacobson, A. R.; Miller, J.; Sweeney, C.; Chen, H.; Ploeger, F.; Tans, P. P.

    2017-12-01

    CarbonTracker-Lagrange (CT-L) is a regional inverse modeling system for estimating CO2 fluxes with rigorous uncertainty quantification. CT-L uses footprints from the Stochastic Time-Inverted Lagrangian Transport (STILT) model driven by high-resolution (10 to 30 km) meteorological fields from the Weather Research and Forecasting (WRF) model. We have computed a library of footprints corresponding to in situ and remote sensing measurements of CO2 over North America for 2007-2015. GOSAT and OCO-2 XCO2 retrievals are simulated using a suite of CT-L terrestrial ecosystem flux estimates that have been optimized with respect to in situ atmospheric CO2 measurements along with fossil fuel fluxes from emissions inventories. A vertical profile of STILT-WRF footprints was constructed corresponding to each simulated satellite retrieval, and CO2 profiles are generated by convolving the footprints with fluxes and attaching initial values advected from the domain boundaries. The stratospheric contribution to XCO2 has been estimated using 4-dimensional CO2 fields from the NOAA CarbonTracker model (version CT2016) and from the Chemical Lagrangian Model of the Stratosphere (CLaMS), after scaling the model fields to match data from the NOAA AirCore surface-to-stratosphere air sampling system. Tropospheric lateral boundary conditions are from CT2016 and from an empirical boundary value product derived from aircraft and marine boundary layer data. The averaging kernel and a priori CO2 profile are taken into account for direct comparisons with retrievals. We have focused on North America due to the relatively dense in situ measurements available with the aim of developing strategies for combined assimilation of in situ and remote sensing data. We will consider the extent to which interannual variability in terrestrial fluxes is manifest in the real and simulated satellite retrievals, and we will investigate possible systematic biases in the satellite retrievals and in the model.

  16. Videocourses for Training Staff in Developing Countries: An Example with Severely Retarded and Multiply Handicapped Children.

    ERIC Educational Resources Information Center

    McConkey, Roy; Templer, Sally

    1987-01-01

    The paper describes the development, content, and evaluation of an indigeniously produced video training package in the developing country of Zimbabwe which is designed for local personnel (nurses, nurses' aides, trainee nurses, and teachers) working with severely retarded and multiply handicapped children and young adults. (DB)

  17. Comparison of Collisional and Electron-Based Dissociation Modes for Middle-Down Analysis of Multiply Glycosylated Peptides

    NASA Astrophysics Data System (ADS)

    Khatri, Kshitij; Pu, Yi; Klein, Joshua A.; Wei, Juan; Costello, Catherine E.; Lin, Cheng; Zaia, Joseph

    2018-04-01

    Analysis of singly glycosylated peptides has evolved to a point where large-scale LC-MS analyses can be performed at almost the same scale as proteomics experiments. While collisionally activated dissociation (CAD) remains the mainstay of bottom-up analyses, it performs poorly for the middle-down analysis of multiply glycosylated peptides. With improvements in instrumentation, electron-activated dissociation (ExD) modes are becoming increasingly prevalent for proteomics experiments and for the analysis of fragile modifications such as glycosylation. While these methods have been applied for glycopeptide analysis in isolated studies, an organized effort to compare their efficiencies, particularly for analysis of multiply glycosylated peptides (termed here middle-down glycoproteomics), has not been made. We therefore compared the performance of different ExD modes for middle-down glycopeptide analyses. We identified key features among the different dissociation modes and show that increased electron energy and supplemental activation provide the most useful data for middle-down glycopeptide analysis. [Figure not available: see fulltext.

  18. Psychological problems, protective factors and health-related quality of life in youth affected by violence: the burden of the multiply victimised.

    PubMed

    Schlack, Robert; Ravens-Sieberer, Ulrike; Petermann, Franz

    2013-06-01

    This study investigates self-rated mental health in terms of psychological problems, protective factors and health-related quality of life (HRQOL) in a nationally representative sample of adolescents (n=6813) aged 11-17 involved in violence with varying frequency. Using MANCOVA and ANCOVA, youth with single and multiple histories of violent victimisation and violence perpetration were contrasted with non-involved comparisons. The results show that even low levels of violence involvement were associated with more problems, fewer protective factors and impaired HRQOL. Multiply victimised youth - not perpetrating victims - stood out with internalising, peer and hyperactivity/inattention problems. Discriminant function analysis separated non-involved from violence-affected youth, and multiply victimised from not multiply victimised youth. Externalising behaviours, family issues, male sex and school functioning predicted group separation on the first function (proportion variance explained 80.0%), while internalising and peer issues were predictive for the second function (PVE 14.2%). Implications for prevention, intervention and research are discussed. Copyright © 2013 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.

  19. Total Transfer Capability Assessment Incorporating Corrective Controls for Transient Stability using TSCOPF

    NASA Astrophysics Data System (ADS)

    Hakim, Lukmanul; Kubokawa, Junji; Yorino, Naoto; Zoka, Yoshifumi; Sasaki, Yutaka

    Advancements have been made towards inclusion of both static and dynamic security into transfer capability calculation. However, to the authors' knowledge, work on considering corrective controls into the calculation has not been reported yet. Therefore, we propose a Total Transfer Capability (TTC) assessment considering transient stability corrective controls. The method is based on the Newton interior point method for nonlinear programming and transfer capability is approached as a maximization of power transfer with both static and transient stability constraints are incorporated into our Transient Stability Constrained Optimal Power Flow (TSCOPF) formulation. An interconnected power system is simulated to be subjected to a severe unbalanced 3-phase 4-line to ground fault and following the fault, generator and load are shed in a pre-defined sequence to mimic actual corrective controls. In a deregulated electricity market, both generator companies and large load customers are encouraged to actively participate in maintaining power system stability as corrective controls upon agreement of compensation for being shed following a disturbance. Implementation of this proposal on the actual power system operation should be carried out through combining it with the existing transient stabilization controller system. Utilization of these corrective controls results in increasing TTC as suggested in our numerical simulation. As Lagrange multipliers can also describe sensitivity of both inequality and equality constraints to the objective function, then selection of which generator or load to be shed can be carried out on the basis of values of Lagrange multipliers of its respective generator's rotor angle stability and active power balance equation. Hence, the proposal in this paper can be utilized by system operator to assess the maximum TTC for specific loads and network conditions.

  20. A Methodology for Examining Collateral Effects on Military Operations during a Chemical, Biological, Radiological, and/or Nuclear Attack - Operational Effectiveness Loss Multiplier (OELM)

    DTIC Science & Technology

    2015-04-01

    Operational Effectiveness Loss Multiplier (OELM) Deena S. Disraelly G. James Herrera Margaret H. Katz Jessica L. Knight Lucas A. LaViolet Terri J . Walsh...Multiplier (OELM) Deena S. Disraelly G. James Herrera Margaret H. Katz Jessica L. Knight Lucas A. LaViolet Terri J . Walsh Robert A. Zirkle I N...ELEMENT NO(S). 6. AUTHOR(S) 5d. PROJECT NO. Deena S. Disraelly, G. James Herrera, Margaret H. Katz, Jessica L. Knight, Lucas A. LaViolet, Terri J

  1. Group 1 Type: Unmanned Aerial Systems (UAS) as a Force Multiplier to the Fire Support Team

    DTIC Science & Technology

    2011-03-03

    2 History ........ : ............................................................. : ...................... 4 The...observer team will effectively put rounds on target with fewer adjustments and better accuracy for first round fire for effect in situations where the...Vision and Strategy 2025 publication,3 We will pursue developments with unmanned aircraft systems (UASs) to widen the force size multiplying

  2. North American CO2 fluxes for 2007-2015 from NOAA's CarbonTracker-Lagrange Regional Inverse Modeling Framework

    NASA Astrophysics Data System (ADS)

    Andrews, A. E.; Hu, L.; Thoning, K. W.; Nehrkorn, T.; Mountain, M. E.; Jacobson, A. R.; Michalak, A.; Dlugokencky, E. J.; Sweeney, C.; Worthy, D. E. J.; Miller, J. B.; Fischer, M. L.; Biraud, S.; van der Velde, I. R.; Basu, S.; Tans, P. P.

    2017-12-01

    CarbonTracker-Lagrange (CT-L) is a new high-resolution regional inverse modeling system for improved estimation of North American CO2 fluxes. CT-L uses footprints from the Stochastic Time-Inverted Lagrangian Transport (STILT) model driven by high-resolution (10 to 30 km) meteorological fields from the Weather Research and Forecasting (WRF) model. We performed a suite of synthetic-data experiments to evaluate a variety of inversion configurations, including (1) solving for scaling factors to an a priori flux versus additive corrections, (2) solving for fluxes at 3-hrly resolution versus at coarser temporal resolution, (3) solving for fluxes at 1o × 1o resolution versus at large eco-regional scales. Our framework explicitly and objectively solves for the optimal solution with a full error covariance matrix with maximum likelihood estimation, thereby enabling rigorous uncertainty estimates for the derived fluxes. In the synthetic-data inversions, we find that solving for weekly scaling factors of a priori Net Ecosystem Exchange (NEE) at 1o × 1o resolution with optimization of diurnal cycles of CO2 fluxes yields faithful retrieval of the specified "true" fluxes as those solved at 3-hrly resolution. In contrast, a scheme that does not allow for optimization of diurnal cycles of CO2 fluxes suffered from larger aggregation errors. We then applied the optimal inversion setup to estimate North American fluxes for 2007-2015 using real atmospheric CO2 observations, multiple prior estimates of NEE, and multiple boundary values estimated from the NOAA's global Eulerian CarbonTracker (CarbonTracker) and from an empirical approach. Our derived North American land CO2 fluxes show larger seasonal amplitude than those estimated from the CarbonTracker, removing seasonal biases in the CarbonTracker's simulated CO2 mole fractions. Independent evaluations using in-situ CO2 eddy covariance flux measurements and independent aircraft profiles also suggest an improved estimation on North

  3. Imaging Demonstration of a Glass Gas Electron Multiplier with Electronic Charge Readout

    NASA Astrophysics Data System (ADS)

    Mitsuya, Yuki; Thuiner, Patrik; Oliveri, Eraldo; Resnati, Filippo; Stenis, Miranda van; Fujiwara, Takeshi; Takahashi, Hiroyuki; Ropelewski, Leszek

    2018-02-01

    We have developed a Glass Gas Electron Multiplier (Glass GEM, G-GEM), which is composed of two copper electrodes separated by a photosensitive etchable glass substrate having holes arranged in a hexagonal pattern. In this paper, we report the result of imaging using a G-GEM combined with a 2D electronic charge readout. We used a crystallized photosensitive etchable glass as the G-GEM substrate. A precise X-ray image of a small mammal was successfully obtained with position resolutions of approximately 110 to 140 μm in RMS.

  4. The tip/tilt tracking sensor based on multi-anode photo-multiplier tube

    NASA Astrophysics Data System (ADS)

    Ma, Xiao-yu; Rao, Chang-hui; Tian, Yu; Wei, Kai

    2013-09-01

    Based on the demands of high sensitivity, precision and frame rate of tip/tilt tracking sensors in acquisition, tracking and pointing (ATP) systems for satellite-ground optical communications, this paper proposes to employ the multiple-anode photo-multiplier tubes (MAPMTs) in tip/tilt tracking sensors. Meanwhile, an array-type photon-counting system was designed to meet the requirements of the tip/tilt tracking sensors. The experiment results show that the tip/tilt tracking sensors based on MAPMTs can achieve photon sensitivity and high frame rate as well as low noise.

  5. Spacecraft Formation Flying near Sun-Earth L2 Lagrange Point: Trajectory Generation and Adaptive Full-State Feedback Control

    NASA Technical Reports Server (NTRS)

    Wong, Hong; Kapila, Vikram

    2004-01-01

    In this paper, we present a method for trajectory generation and adaptive full-state feedback control to facilitate spacecraft formation flying near the Sun-Earth L2 Lagrange point. Specifically, the dynamics of a spacecraft in the neighborhood of a Halo orbit reveals that there exist quasi-periodic orbits surrounding the Halo orbit. Thus, a spacecraft formation is created by placing a leader spacecraft on a desired Halo orbit and placing follower spacecraft on desired quasi-periodic orbits. To produce a formation maintenance controller, we first develop the nonlinear dynamics of a follower spacecraft relative to the leader spacecraft. We assume that the leader spacecraft is on a desired Halo orbit trajectory and the follower spacecraft is to track a desired quasi-periodic orbit surrounding the Halo orbit. Then, we design an adaptive, full-state feedback position tracking controller for the follower spacecraft providing an adaptive compensation for the unknown mass of the follower spacecraft. The proposed control law is simulated for the case of the leader and follower spacecraft pair and is shown to yield global, asymptotic convergence of the relative position tracking errors.

  6. Lagrangian Form of the Self-Dual Equations for SU(N) Gauge Fields on Four-Dimensional Euclidean Space

    NASA Astrophysics Data System (ADS)

    Hou, Boyu; Song, Xingchang

    1998-04-01

    By compactifying the four-dimensional Euclidean space into S2 × S2 manifold and introducing two topological relevant Wess-Zumino terms to Hn ≡ SL(n,c)/SU(n) nonlinear sigma model, we construct a Lagrangian form for SU(n) self-dual Yang-Mills field, from which the self-dual equations follow as the Euler-Lagrange equations. The project supported in part by the NSF Contract No. PHY-81-09110-A-01. One of the authors (X.C. SONG) was supported by a Fung King-Hey Fellowship through the Committee for Educational Exchange with China

  7. Stability of a diffuse linear pinch with axial boundaries

    NASA Technical Reports Server (NTRS)

    Einaudi, G.; Van Hoven, G.

    1981-01-01

    A formulation of the stability behavior of a finite-length pinch is presented. A general initial perturbation is expressed as a uniformly convergent sum over a complete discrete k set. A variational calculation is then performed, based on the energy principle, in which the end-boundary conditions appear as constraints. The requisite Lagrange multipliers mutually couple the elemental periodic excitations. The resulting extended form of delta-W still admits a proper second-variation treatment so that the minimization and stability considerations of Newcomb remain applicable. Comparison theorems are discussed as is the relevance of this end-effect model to the stability of solar coronal loops.

  8. Acoustic response of a rectangular levitator with orifices

    NASA Technical Reports Server (NTRS)

    El-Raheb, Michael; Wagner, Paul

    1990-01-01

    The acoustic response of a rectangular cavity to speaker-generated excitation through waveguides terminating at orifices in the cavity walls is analyzed. To find the effects of orifices, acoustic pressure is expressed by eigenfunctions satisfying Neumann boundary conditions as well as by those satisfying Dirichlet ones. Some of the excess unknowns can be eliminated by point constraints set over the boundary, by appeal to Lagrange undetermined multipliers. The resulting transfer matrix must be further reduced by partial condensation to the order of a matrix describing unmixed boundary conditions. If the cavity is subjected to an axial temperature dependence, the transfer matrix is determined numerically.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burke, J.V.

    The published work on exact penalization is indeed vast. Recently this work has indicated an intimate relationship between exact penalization, Lagrange multipliers, and problem stability or calmness. In the present work we chronicle this development within a simple idealized problem framework, wherein we unify, extend, and refine much of the known theory. In particular, most of the foundations for constrained optimization are developed with the aid of exact penalization techniques. Our approach is highly geometric and is based upon the elementary subdifferential theory for distance functions. It is assumed that the reader is familiar with the theory of convex setsmore » and functions. 54 refs.« less

  10. A Methodology for Examining Collateral Effects on Military Operations during a Chemical, Biological, Radiological, and/or Nuclear Attack-Operational Effectiveness Loss Multiplier (OELM)

    DTIC Science & Technology

    2015-04-01

    Operational Effectiveness Loss Multiplier (OELM) Deena S. Disraelly G. James Herrera Margaret H. Katz Jessica L. Knight Lucas A. LaViolet Terri J . Walsh...Multiplier (OELM) Deena S. Disraelly G. James Herrera Margaret H. Katz Jessica L. Knight Lucas A. LaViolet Terri J . Walsh Robert A. Zirkle I N...James Herrera, Margaret H. Katz, Jessica L. Knight, Lucas A. LaViolet, Terri J . Walsh, and Robert A. Zirkle 5e. TASK NO. DC-6-3250 5f. WORK UNIT

  11. Comparing young and older adults' perceptions of conflicting stereotypes and multiply-categorizable individuals.

    PubMed

    Kang, Sonia K; Chasteen, Alison L; Cadieux, Jonathan; Cary, Lindsey A; Syeda, Maisha

    2014-09-01

    Individuals can be simultaneously categorized into multiple social groups (e.g., racial, gender, age), and stereotypes about one social group may conflict with another. Two such conflicting stereotype sets are those associated with older adults (e.g., frail, kind) and with Black people (e.g., violent, hostile). Recent research shows that young adult perceivers evaluate elderly Black men more positively than young Black men, suggesting that components of the elderly stereotype moderate the influence of conflicting Black stereotypes (Kang & Chasteen, 2009). The current research begins to examine whether this pattern of perceiving multiply-categorizable individuals is maintained among older adults or altered, perhaps due to aging-related cognitive and motivational changes. In three studies using different targets and evaluative tasks, both young and older participants showed evidence of an interplay between Black and elderly stereotypes, such that they perceived elderly Black targets more positively than young Black targets. A similar pattern was observed when assessing emotion change (Study 1), making ratings of warmth and power in the past, present, and future (Study 2), and when directly comparing young and old Black and White targets on traits related to warmth and power (Study 3). The absence of age differences suggests that evaluation of multiply-categorizable targets follows comparable underlying patterns of stereotype activation and inhibition in younger and older adults. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  12. [Treatment management of a multiply injured patient with HIV infection].

    PubMed

    Mand, C; Giannadakis, K; Schnabel, M; Stiletto, R

    2007-11-01

    In orthopaedic surgery and emergency medicine, patients of the age groups with a HIV risk represent the largest part of the entire population. As necessary steps have to be taken immediately at the scene of an accident and in the emergency room, contact with HIV-positive blood is often unavoidable, so that there is an increased risk of transmission for doctors and personnel. Due to the immunological state, the HIV patient is exposed to considerable post-operative complications such as wound infection, pneumonia and even sepsis. With the case of a 35-year-old HIV-positive patient who was multiply injured in a traffic accident, we want to present an interesting example of the problems that occur in the treatment of this patient group.

  13. Numerical Analysis on Non-Equilibrium Mechanism of Laser-Supported Detonation Wave Using Multiply-Charged Ionization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shiraishi, Hiroyuki

    Laser-Supported Detonation (LSD), one type of Laser-Supported Plasma (LSP), is considered as the most important phenomena because it can generate high pressure and high temperature for laser absorption. In this study, I have numerically simulated the 1-D LSD waves propagating through a helium gas, in which Multiply-charged ionization model is considered for describing an accurate ionization process.

  14. Responses from the Field

    ERIC Educational Resources Information Center

    McGrath, Richard J.; Tulchinsky, Nan

    2007-01-01

    This paper presents responses from Richard J. McGrath, O.S.A., and Nan Tulchinsky to an article by John James entitled "How Much Does a Private School Student Count? A Critical Analysis of the Athletic Multiplier." McGrath shares that their principal heads the group of Catholic school leaders who fought the multiplier in Illinois by…

  15. Sample Size Calculations for Population Size Estimation Studies Using Multiplier Methods With Respondent-Driven Sampling Surveys.

    PubMed

    Fearon, Elizabeth; Chabata, Sungai T; Thompson, Jennifer A; Cowan, Frances M; Hargreaves, James R

    2017-09-14

    While guidance exists for obtaining population size estimates using multiplier methods with respondent-driven sampling surveys, we lack specific guidance for making sample size decisions. To guide the design of multiplier method population size estimation studies using respondent-driven sampling surveys to reduce the random error around the estimate obtained. The population size estimate is obtained by dividing the number of individuals receiving a service or the number of unique objects distributed (M) by the proportion of individuals in a representative survey who report receipt of the service or object (P). We have developed an approach to sample size calculation, interpreting methods to estimate the variance around estimates obtained using multiplier methods in conjunction with research into design effects and respondent-driven sampling. We describe an application to estimate the number of female sex workers in Harare, Zimbabwe. There is high variance in estimates. Random error around the size estimate reflects uncertainty from M and P, particularly when the estimate of P in the respondent-driven sampling survey is low. As expected, sample size requirements are higher when the design effect of the survey is assumed to be greater. We suggest a method for investigating the effects of sample size on the precision of a population size estimate obtained using multipler methods and respondent-driven sampling. Uncertainty in the size estimate is high, particularly when P is small, so balancing against other potential sources of bias, we advise researchers to consider longer service attendance reference periods and to distribute more unique objects, which is likely to result in a higher estimate of P in the respondent-driven sampling survey. ©Elizabeth Fearon, Sungai T Chabata, Jennifer A Thompson, Frances M Cowan, James R Hargreaves. Originally published in JMIR Public Health and Surveillance (http://publichealth.jmir.org), 14.09.2017.

  16. Evaluation of interventions to reduce multiply controlled vocal stereotypy.

    PubMed

    Scalzo, Rachel; Henry, Kelsey; Davis, Tonya N; Amos, Kally; Zoch, Tamara; Turchan, Sarah; Wagner, Tara

    2015-07-01

    This study examined four interventions targeted at decreasing multiply controlled vocal stereotypy for a 12-year-old boy diagnosed with autism spectrum disorder and a severe intellectual disability. These interventions included Noncontingent Music, Differential Reinforcement of Other Behaviors, Self-Recording, and Functional Communication Training (FCT). In addition to measuring vocal stereotypy during each condition, task engagement and challenging behavior were also monitored. Across conditions, vocal stereotypy did not vary significantly from baseline except in FCT, when it decreased significantly. Task engagement was higher in this condition as well. It is hypothesized that FCT provided an enriched environment by increasing social interaction and access to desired items as well as removal of less preferred activities. For these reasons, there was a decrease in the need for the participant to engage in vocal stereotypy and challenging behavior and increase in his ability to engage in a task. © The Author(s) 2015.

  17. Dual and mixed nonsymmetric stress-based variational formulations for coupled thermoelastodynamics with second sound effect

    NASA Astrophysics Data System (ADS)

    Tóth, Balázs

    2018-03-01

    Some new dual and mixed variational formulations based on a priori nonsymmetric stresses will be developed for linearly coupled irreversible thermoelastodynamic problems associated with second sound effect according to the Lord-Shulman theory. Having introduced the entropy flux vector instead of the entropy field and defining the dissipation and the relaxation potential as the function of the entropy flux, a seven-field dual and mixed variational formulation will be derived from the complementary Biot-Hamilton-type variational principle, using the Lagrange multiplier method. The momentum-, the displacement- and the infinitesimal rotation vector, and the a priori nonsymmetric stress tensor, the temperature change, the entropy field and its flux vector are considered as the independent field variables of this formulation. In order to handle appropriately the six different groups of temporal prescriptions in the relaxed- and/or the strong form, two variational integrals will be incorporated into the seven-field functional. Then, eliminating the entropy from this formulation through the strong fulfillment of the constitutive relation for the temperature change with the use of the Legendre transformation between the enthalpy and Gibbs potential, a six-field dual and mixed action functional is obtained. As a further development, the elimination of the momentum- and the velocity vector from the six-field principle through the a priori satisfaction of the kinematic equation and the constitutive relation for the momentum vector leads to a five-field variational formulation. These principles are suitable for the transient analyses of the structures exposed to a thermal shock of short temporal domain or a large heat flux.

  18. A feedforward artificial neural network based on quantum effect vector-matrix multipliers.

    PubMed

    Levy, H J; McGill, T C

    1993-01-01

    The vector-matrix multiplier is the engine of many artificial neural network implementations because it can simulate the way in which neurons collect weighted input signals from a dendritic arbor. A new technology for building analog weighting elements that is theoretically capable of densities and speeds far beyond anything that conventional VLSI in silicon could ever offer is presented. To illustrate the feasibility of such a technology, a small three-layer feedforward prototype network with five binary neurons and six tri-state synapses was built and used to perform all of the fundamental logic functions: XOR, AND, OR, and NOT.

  19. Bacillus subtilis Swarmer Cells Lead the Swarm, Multiply, and Generate a Trail of Quiescent Descendants.

    PubMed

    Hamouche, Lina; Laalami, Soumaya; Daerr, Adrian; Song, Solène; Holland, I Barry; Séror, Simone J; Hamze, Kassem; Putzer, Harald

    2017-02-07

    Bacteria adopt social behavior to expand into new territory, led by specialized swarmers, before forming a biofilm. Such mass migration of Bacillus subtilis on a synthetic medium produces hyperbranching dendrites that transiently (equivalent to 4 to 5 generations of growth) maintain a cellular monolayer over long distances, greatly facilitating single-cell gene expression analysis. Paradoxically, while cells in the dendrites (nonswarmers) might be expected to grow exponentially, the rate of swarm expansion is constant, suggesting that some cells are not multiplying. Little attention has been paid to which cells in a swarm are actually multiplying and contributing to the overall biomass. Here, we show in situ that DNA replication, protein translation and peptidoglycan synthesis are primarily restricted to the swarmer cells at dendrite tips. Thus, these specialized cells not only lead the population forward but are apparently the source of all cells in the stems of early dendrites. We developed a simple mathematical model that supports this conclusion. Swarming motility enables rapid coordinated surface translocation of a microbial community, preceding the formation of a biofilm. This movement occurs in thin films and involves specialized swarmer cells localized to a narrow zone at the extreme swarm edge. In the B. subtilis system, using a synthetic medium, the swarm front remains as a cellular monolayer for up to 1.5 cm. Swarmers display high-velocity whirls and vortexing and are often assumed to drive community expansion at the expense of cell growth. Surprisingly, little attention has been paid to which cells in a swarm are actually growing and contributing to the overall biomass. Here, we show that swarmers not only lead the population forward but continue to multiply as a source of all cells in the community. We present a model that explains how exponential growth of only a few cells is compatible with the linear expansion rate of the swarm. Copyright © 2017

  20. Design and Analysis of Broad-Band Fixed-Tuned Submillimeter-Waveguide Multipliers using MMIC Style Circuit Topology

    NASA Technical Reports Server (NTRS)

    Bruston, J.; Kim, M.; Martin, S. C.; Mehdi, I.; Smith, R. P.; Siegel, P. H.

    1996-01-01

    The design and analysis of varactor diode doubler, quadrupler and cascaded doubler circuits for 320 and 640 GHz have been completed. A new approach has been employed to produce a tunerless waveguide mount with a very flexible, frequency scaleable, MMIC style multiplier circuit. The concept, design, predicted performance and measurements on some of the constituent mount elements are presented.

  1. Optimal allocation of resources for suppressing epidemic spreading on networks

    NASA Astrophysics Data System (ADS)

    Chen, Hanshuang; Li, Guofeng; Zhang, Haifeng; Hou, Zhonghuai

    2017-07-01

    Efficient allocation of limited medical resources is crucial for controlling epidemic spreading on networks. Based on the susceptible-infected-susceptible model, we solve the optimization problem of how best to allocate the limited resources so as to minimize prevalence, providing that the curing rate of each node is positively correlated to its medical resource. By quenched mean-field theory and heterogeneous mean-field (HMF) theory, we prove that an epidemic outbreak will be suppressed to the greatest extent if the curing rate of each node is directly proportional to its degree, under which the effective infection rate λ has a maximal threshold λcopt=1 / , where is the average degree of the underlying network. For a weak infection region (λ ≳λcopt ), we combine perturbation theory with the Lagrange multiplier method (LMM) to derive the analytical expression of optimal allocation of the curing rates and the corresponding minimized prevalence. For a general infection region (λ >λcopt ), the high-dimensional optimization problem is converted into numerically solving low-dimensional nonlinear equations by the HMF theory and LMM. Counterintuitively, in the strong infection region the low-degree nodes should be allocated more medical resources than the high-degree nodes to minimize prevalence. Finally, we use simulated annealing to validate the theoretical results.

  2. Quantum control of coherent π -electron ring currents in polycyclic aromatic hydrocarbons

    NASA Astrophysics Data System (ADS)

    Mineo, Hirobumi; Fujimura, Yuichi

    2017-12-01

    We present results for quantum optimal control (QOC) of the coherent π electron ring currents in polycyclic aromatic hydrocarbons (PAHs). Since PAHs consist of a number of condensed benzene rings, in principle, there exist various coherent ring patterns. These include the ring current localized to a designated benzene ring, the perimeter ring current that flows along the edge of the PAH, and the middle ring current of PAHs having an odd number of benzene rings such as anthracene. In the present QOC treatment, the best target wavefunction for generation of the ring current through a designated path is determined by a Lagrange multiplier method. The target function is integrated into the ordinary QOC theory. To demonstrate the applicability of the QOC procedure, we took naphthalene and anthracene as the simplest examples of linear PAHs. The mechanisms of ring current generation were clarified by analyzing the temporal evolutions of the electronic excited states after coherent excitation by UV pulses or (UV+IR) pulses as well as those of electric fields of the optimal laser pulses. Time-dependent simulations of the perimeter ring current and middle ring current of anthracene, which are induced by analytical electric fields of UV pulsed lasers, were performed to reproduce the QOC results.

  3. Operating range of a gas electron multiplier for portal imaging

    NASA Astrophysics Data System (ADS)

    Wallmark, M.; Brahme, A.; Danielsson, M.; Fonte, P.; Iacobaeus, C.; Peskov, V.; Östling, J.

    2001-09-01

    At the Karolinska Institute in Stockholm, Sweden a new detector for portal imaging is under development, which could greatly improve the alignment of the radiation beam with respect to the tumor during radiation treatment. The detector is based on solid converters combined with gas electron multipliers (GEMs) as an amplification structure. The detector has a large area and will be operated in a very high rate environment in the presence of heavy ionizing particles. As was discovered recently high rates and alpha particles could cause discharges in GEM and discharge propagation from GEM to GEM and to the readout electronics. Since reliability is one of the main requirements for the portal imaging device, we performed systematic studies to find a safe operating range of the device, free from typical high rate problems, such as discharges.

  4. Gas electron multiplier (GEM) foil test, repair and effective gain calculation

    NASA Astrophysics Data System (ADS)

    Tahir, Muhammad; Zubair, Muhammad; Khan, Tufail A.; Khan, Ashfaq; Malook, Asad

    2018-06-01

    The focus of my research is based on the gas electron multiplier (GEM) foil test, repairing and effective gain calculation of GEM detector. During my research work define procedure of GEM foil testing short-circuit, detection short-circuits in the foil. Study different ways to remove the short circuits in the foils. Set and define the GEM foil testing procedures in the open air, and with nitrogen gas. Measure the leakage current of the foil and applying different voltages with specified step size. Define the Quality Control (QC) tests and different components of GEM detectors before assembly. Calculate the effective gain of GEM detectors using 109Cd and 55Fe radioactive source.

  5. Channel electron multiplier compatibility with Viton and Apiezon-L vacuum grease

    NASA Astrophysics Data System (ADS)

    McComas, D. J.; Baldonado, J. R.; Bame, S. J.; Barraclough, B. L.

    1987-12-01

    Clean Viton and Viton coated with Apiezon-L vacuum grease were tested for their noncontaminating compatibility with channel electron multipliers (CEMs). The test setup and procedure were the same as those used previously in conjunction with CEM compatibility tests of certain epoxies, solder, and fluorocarbon polymer materials useful for construction of spaceflight sensors. While some CEM gain degradation was noted during exposure to Viton and Apiezon-L, the present tests indicate that, at least over instrument lifetimes of about 2 x 10 to the 12th counts, these materials should be suitable for (1) preflight space sensor testing systems, (2) hermetic seals for CEM-based space sensors, and (3) terrestrial CEM-based instrumentation.

  6. Controlled nerve growth factor release from multi-ply alginate/chitosan-based nerve conduits.

    PubMed

    Pfister, Lukas A; Alther, Eva; Papaloïzos, Michaël; Merkle, Hans P; Gander, Bruno

    2008-06-01

    The delivery kinetics of growth factors has been suggested to play an important role in the regeneration of peripheral nerves following axotomy. In this context, we designed a nerve conduit (NC) with adjustable release kinetics of nerve growth factor (NGF). A multi-ply system was designed where NC consisting of a polyelectrolyte alginate/chitosan complex was coated with layers of poly(lactide-co-glycolide) (PLGA) to control the release of embedded NGF. Prior to assessing the in vitro NGF release from NC, various release test media, with and without stabilizers for NGF, were evaluated to ensure adequate quantification of NGF by ELISA. Citrate (pH 5.0) and acetate (pH 5.5) buffered saline solutions containing 0.05% Tween 20 yielded the most reliable results for ELISA active NGF. The in vitro release experiments revealed that the best results in terms of reproducibility and release control were achieved when the NGF was embedded between two PLGA layers and the ends of the NC tightly sealed by the PLGA coatings. The release kinetics could be efficiently adjusted by accommodating NGF at different radial locations within the NC. A sustained release of bioactive NGF in the low nanogram per day range was obtained for at least 15days. In conclusion, the developed multi-ply NGF loaded NC is considered a suitable candidate for future implantation studies to gain insight into the relationship between local growth factor availability and nerve regeneration.

  7. Cosmic Ray Tests of Gas Electron Multipliers

    NASA Astrophysics Data System (ADS)

    Harris, Letrell; Kohl, Michael; Super Bigbite Spectrometer Collaboration; MUSE Collaboration; Hampton University Collaboration; DarkLight Collaboration

    2017-09-01

    The Super Bigbite Spectrometer (SBS) collaboration at Jefferson Laboratory (Jlab) is conducting an experimental program to measure the elastic form factors of nucleons. In association with Jlab, SBS Gas Electron Multipliers (GEMs) have been constructed by the University of Virginia (back trackers) and INFN in Italy (front trackers). The SBS GEMs measuring 40 × 150 cm2 (front trackers) and 60 × 200 cm2 (back trackers) in surface area are in the process of being conditioned and analyzed for tracking efficiency using cosmic rays in a clean room test lab before further assembly in the fall. These GEMs will be used to track the path of particles scattered off nuclear targets. Scintillators are placed both above and below GEM stacks to trigger a readout. In addition, Hampton University has also constructed a set of 10 × 10 cm2 GEMs originally for the OLYMPUS experiment at DESY in Germany, which are now being used for both the MUSE experiment at Paul Scherrer Institute (PSI) in Switzerland and the DarkLight experiment at Jlab's Low Energy Recirculatory Facility (LERF), where they are in the process of being characterized with cosmic rays. Jefferson Laboratory. This work has been supported by Jefferson Laboratory.

  8. Microwave Frequency Multiplier

    NASA Astrophysics Data System (ADS)

    Velazco, J. E.

    2017-02-01

    High-power microwave radiation is used in the Deep Space Network (DSN) and Goldstone Solar System Radar (GSSR) for uplink communications with spacecraft and for monitoring asteroids and space debris, respectively. Intense X-band (7.1 to 8.6 GHz) microwave signals are produced for these applications via klystron and traveling-wave microwave vacuum tubes. In order to achieve higher data rate communications with spacecraft, the DSN is planning to gradually furnish several of its deep space stations with uplink systems that employ Ka-band (34-GHz) radiation. Also, the next generation of planetary radar, such as Ka-Band Objects Observation and Monitoring (KaBOOM), is considering frequencies in the Ka-band range (34 to 36 GHz) in order to achieve higher target resolution. Current commercial Ka-band sources are limited to power levels that range from hundreds of watts up to a kilowatt and, at the high-power end, tend to suffer from poor reliability. In either case, there is a clear need for stable Ka-band sources that can produce kilowatts of power with high reliability. In this article, we present a new concept for high-power, high-frequency generation (including Ka-band) that we refer to as the microwave frequency multiplier (MFM). The MFM is a two-cavity vacuum tube concept where low-frequency (2 to 8 GHz) power is fed into the input cavity to modulate and accelerate an electron beam. In the second cavity, the modulated electron beam excites and amplifies high-power microwaves at a frequency that is a multiple integer of the input cavity's frequency. Frequency multiplication factors in the 4 to 10 range are being considered for the current application, although higher multiplication factors are feasible. This novel beam-wave interaction allows the MFM to produce high-power, high-frequency radiation with high efficiency. A key feature of the MFM is that it uses significantly larger cavities than its klystron counterparts, thus greatly reducing power density and arcing

  9. Stochastic Averaging for Constrained Optimization With Application to Online Resource Allocation

    NASA Astrophysics Data System (ADS)

    Chen, Tianyi; Mokhtari, Aryan; Wang, Xin; Ribeiro, Alejandro; Giannakis, Georgios B.

    2017-06-01

    Existing approaches to resource allocation for nowadays stochastic networks are challenged to meet fast convergence and tolerable delay requirements. The present paper leverages online learning advances to facilitate stochastic resource allocation tasks. By recognizing the central role of Lagrange multipliers, the underlying constrained optimization problem is formulated as a machine learning task involving both training and operational modes, with the goal of learning the sought multipliers in a fast and efficient manner. To this end, an order-optimal offline learning approach is developed first for batch training, and it is then generalized to the online setting with a procedure termed learn-and-adapt. The novel resource allocation protocol permeates benefits of stochastic approximation and statistical learning to obtain low-complexity online updates with learning errors close to the statistical accuracy limits, while still preserving adaptation performance, which in the stochastic network optimization context guarantees queue stability. Analysis and simulated tests demonstrate that the proposed data-driven approach improves the delay and convergence performance of existing resource allocation schemes.

  10. International Space Station Centrifuge Rotor Models A Comparison of the Euler-Lagrange and the Bond Graph Modeling Approach

    NASA Technical Reports Server (NTRS)

    Nguyen, Louis H.; Ramakrishnan, Jayant; Granda, Jose J.

    2006-01-01

    The assembly and operation of the International Space Station (ISS) require extensive testing and engineering analysis to verify that the Space Station system of systems would work together without any adverse interactions. Since the dynamic behavior of an entire Space Station cannot be tested on earth, math models of the Space Station structures and mechanical systems have to be built and integrated in computer simulations and analysis tools to analyze and predict what will happen in space. The ISS Centrifuge Rotor (CR) is one of many mechanical systems that need to be modeled and analyzed to verify the ISS integrated system performance on-orbit. This study investigates using Bond Graph modeling techniques as quick and simplified ways to generate models of the ISS Centrifuge Rotor. This paper outlines the steps used to generate simple and more complex models of the CR using Bond Graph Computer Aided Modeling Program with Graphical Input (CAMP-G). Comparisons of the Bond Graph CR models with those derived from Euler-Lagrange equations in MATLAB and those developed using multibody dynamic simulation at the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) are presented to demonstrate the usefulness of the Bond Graph modeling approach for aeronautics and space applications.

  11. Diffuse interface simulation of bubble rising process: a comparison of adaptive mesh refinement and arbitrary lagrange-euler methods

    NASA Astrophysics Data System (ADS)

    Wang, Ye; Cai, Jiejin; Li, Qiong; Yin, Huaqiang; Yang, Xingtuan

    2018-06-01

    Gas-liquid two phase flow exists in several industrial processes and light-water reactors (LWRs). A diffuse interface based finite element method with two different mesh generation methods namely, the Adaptive Mesh Refinement (AMR) and the Arbitrary Lagrange Euler (ALE) methods is used to model the shape and velocity changes in a rising bubble. Moreover, the calculating speed and mesh generation strategies of AMR and ALE are contrasted. The simulation results agree with the Bhagat's experiments, indicating that both mesh generation methods can simulate the characteristics of bubble accurately. We concluded that: the small bubble rises as elliptical with oscillation, whereas a larger bubble (11 mm > d > 7 mm) rises with a morphology between the elliptical and cap type with a larger oscillation. When the bubble is large (d > 11 mm), it rises up as a cap type, and the amplitude becomes smaller. Moreover, it takes longer to achieve the stable shape from the ellipsoid to the spherical cap type with the increase of the bubble diameter. The results also show that for smaller diameter case, the ALE method uses fewer grids and has a faster calculation speed, but the AMR method can solve the case of a large geometry deformation efficiently.

  12. Meyer Children's Rehabilitation Institute Teaching Program for Young Children. [Prescriptive Teaching Program for Multiply Handicapped Nursery School Children].

    ERIC Educational Resources Information Center

    LaCrosse, Edward; And Others

    The prescriptive teaching program for multiply handicapped nursery school children is presented in three manuals: prescriptive teaching, integration of prescriptions into classroom activities; and equipment and materials. Given in the prescriptive teaching manual are directions for assessing a child's strengths and weaknesses in functioning on a…

  13. Comparison of Brachyspira hyodysenteriae Isolates Recovered from Pigs in Apparently Healthy Multiplier Herds with Isolates from Herds with Swine Dysentery

    PubMed Central

    La, Tom; Rohde, Judith; Phillips, Nyree Dale; Hampson, David J.

    2016-01-01

    Swine dysentery (SD) is a mucohaemorrhagic colitis of grower/finisher pigs classically resulting from infection by the anaerobic intestinal spirochaete Brachyspira hyodysenteriae. This study aimed to determine whether B. hyodysenteriae isolates from pigs in three healthy German multiplier herds supplying gilts to other farms differed from isolates from nine German production herds with SD. Isolates were subjected to whole genomic sequencing, and in silico multilocus sequence typing showed that those from the three multiplier herds were of previously undescribed sequence types (ST132, ST133 and ST134), with all isolates from the same herd having the same ST. All isolates were examined for the presence of 332 genes encoding predicted virulence or virulence lifestyle associated factors, and these were well conserved. Isolates from one multiplier herd were atypical in being weakly haemolytic: they had 10 amino acid substitutions in the haemolysin III protein and five in the haemolysin activation protein compared to reference strain WA1, and had a disruption in the promoter site of the hlyA gene. These changes likely contribute to the weakly haemolytic phenotype and putative lack of virulence. These same isolates also had nine base pair insertions in the iron metabolism genes bitB and bitC and lacked five of six plasmid genes that previously have been associated with colonisation. Other overall differences between isolates from the different herds were in genes from three of five outer membrane proteins, which were not found in all the isolates, and in members of a block of six plasmid genes. Isolates from three herds with SD had all six plasmid genes, while isolates lacking some of these genes were found in the three healthy herds—but also in isolates from six herds with SD. Other differences in genes of unknown function or in gene expression may contribute to variation in virulence; alternatively, superior husbandry and better general health may have made pigs in

  14. Comparison of Brachyspira hyodysenteriae Isolates Recovered from Pigs in Apparently Healthy Multiplier Herds with Isolates from Herds with Swine Dysentery.

    PubMed

    La, Tom; Rohde, Judith; Phillips, Nyree Dale; Hampson, David J

    2016-01-01

    Swine dysentery (SD) is a mucohaemorrhagic colitis of grower/finisher pigs classically resulting from infection by the anaerobic intestinal spirochaete Brachyspira hyodysenteriae. This study aimed to determine whether B. hyodysenteriae isolates from pigs in three healthy German multiplier herds supplying gilts to other farms differed from isolates from nine German production herds with SD. Isolates were subjected to whole genomic sequencing, and in silico multilocus sequence typing showed that those from the three multiplier herds were of previously undescribed sequence types (ST132, ST133 and ST134), with all isolates from the same herd having the same ST. All isolates were examined for the presence of 332 genes encoding predicted virulence or virulence lifestyle associated factors, and these were well conserved. Isolates from one multiplier herd were atypical in being weakly haemolytic: they had 10 amino acid substitutions in the haemolysin III protein and five in the haemolysin activation protein compared to reference strain WA1, and had a disruption in the promoter site of the hlyA gene. These changes likely contribute to the weakly haemolytic phenotype and putative lack of virulence. These same isolates also had nine base pair insertions in the iron metabolism genes bitB and bitC and lacked five of six plasmid genes that previously have been associated with colonisation. Other overall differences between isolates from the different herds were in genes from three of five outer membrane proteins, which were not found in all the isolates, and in members of a block of six plasmid genes. Isolates from three herds with SD had all six plasmid genes, while isolates lacking some of these genes were found in the three healthy herds-but also in isolates from six herds with SD. Other differences in genes of unknown function or in gene expression may contribute to variation in virulence; alternatively, superior husbandry and better general health may have made pigs in the

  15. Another Trypanosoma, distinct from T. cruzi, multiplies in the lumen of the anal glands of the opossum Didelphis marsupialis.

    PubMed

    Deane, M P; Jansen, A M

    1986-01-01

    Epimastigotes were found multiplying in the anal glands and in hemocultures of an opossum; rare metacyclics were seen in the cultures. The flagellate is possibly T. (Megatrypanum) freitasi Rego, Magalhães & Siqueira, 1957, but its final identification is still pending.

  16. DSCOVR/EPIC Images and Science: A New Way to View the Entire Sunlit Earth From A Sun-Earth Lagrange-1 Orbit

    NASA Astrophysics Data System (ADS)

    Herman, J. R.; Marshak, A.; Szabo, A.

    2015-12-01

    The DSCOVR mission was launched into a Sun-Earth Lagrange-1 orbit 1.5 million kilometers from earth in February 2015 onboard a SpaceX Falcon-9 rocket. The solar wind and earth science instruments were tested during the 4.5 month journey to L-1. The first data were obtained during the June-July commissioning phase, which included the first moderate resolution (10 km) color images of the entire sunlit earth, color images of the Moon, and scientific data from 10 narrow band filters (317.5, 325, 340, 388, 443, 551, 680, 687.75, 764, and 779.5 nm). Three of these filters were used to construct the color images (443, 551, 680 nm) based on the average eye response histogram of the sunlit earth. This talk will discuss some of the issues involved in deriving science quality data for global ozone, the aerosol index (dust, smoke, and volcanic ash), cloud amounts and reflectivity, and cloud height (measured from the O2 A- and B-bands). As with most new satellites, the science data are preliminary.

  17. Lagrange Point Missions: the Key to Next-Generation Integrated Earth Observations. DSCOVR Innovation

    NASA Astrophysics Data System (ADS)

    Valero, F. P. J.

    2016-12-01

    From L-1 DSCOVR is capable of new, unique observations potentially conducive to a deeper scientific understanding of the Earth sciences. At L-1 and L-2 the net gravitational pull of the Earth and Sun equals the centripetal force required to orbit the Sun with the same period as the Earth. Satellites at or near L-1 and L-2 keep the same position relative to the Sun and the Earth. DSCOVR does not orbit the Earth but the Sun in synchronism with Earth, acts like a planetoid (orbits the Sun in the ecliptic plane) while acquiring integrated plus spatially and time resolved scientific data as Earth rotates around its axis. Because of the planet's axial tilt relative to the ecliptic plane, the Polar Regions are visible during local summer from L-1 and local winter from L-2 (Fig. 1). DSCOVR's synoptic and continuous observations solve most of the temporal and spatial limitations associated with low Earth (LEO) and Geostationary (GEO) orbits. Two observatories, one at L-1 (daytime) and one at L-2 (nighttime), would acquire minute-by-minute climate quality data for essentially every point on Earth. The integration of L-1, L-2, LEO, and GEO satellites plus the Moon offers new scientific tools and enriched data sets for Earth sciences. Lagrange points observatories are key to next-generation integrated Earth observations. For example, DSCOVR at L-1 views the Earth plus the Moon (a reference) and simultaneously, at one time or another, all LEO and GEO satellites. The L-1 and L-2 satellites would be the link between the Moon, LEO and GEO satellites while providing the data needed to build an integrated Earth observational system. The above properties are the bases for DSCOVR's innovation and scientific approach that systematically observes climate drivers (radiation, aerosols, ozone, clouds, water vapor, vegetation) from L-1 in a way not possible but synergistic with other satellites. Next step: more capable L-1 plus L-2 satellites. The way of the future.

  18. Finite elements based on consistently assumed stresses and displacements

    NASA Technical Reports Server (NTRS)

    Pian, T. H. H.

    1985-01-01

    Finite element stiffness matrices are derived using an extended Hellinger-Reissner principle in which internal displacements are added to serve as Lagrange multipliers to introduce the equilibrium constraint in each element. In a consistent formulation the assumed stresses are initially unconstrained and complete polynomials and the total displacements are also complete such that the corresponding strains are complete in the same order as the stresses. Several examples indicate that resulting properties for elements constructed by this consistent formulation are ideal and are less sensitive to distortions of element geometries. The method has been used to find the optimal stress terms for plane elements, 3-D solids, axisymmetric solids, and plate bending elements.

  19. A sequential quadratic programming algorithm using an incomplete solution of the subproblem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murray, W.; Prieto, F.J.

    1993-05-01

    We analyze sequential quadratic programming (SQP) methods to solve nonlinear constrained optimization problems that are more flexible in their definition than standard SQP methods. The type of flexibility introduced is motivated by the necessity to deviate from the standard approach when solving large problems. Specifically we no longer require a minimizer of the QP subproblem to be determined or particular Lagrange multiplier estimates to be used. Our main focus is on an SQP algorithm that uses a particular augmented Lagrangian merit function. New results are derived for this algorithm under weaker conditions than previously assumed; in particular, it is notmore » assumed that the iterates lie on a compact set.« less

  20. Optimization for minimum sensitivity to uncertain parameters

    NASA Technical Reports Server (NTRS)

    Pritchard, Jocelyn I.; Adelman, Howard M.; Sobieszczanski-Sobieski, Jaroslaw

    1994-01-01

    A procedure to design a structure for minimum sensitivity to uncertainties in problem parameters is described. The approach is to minimize directly the sensitivity derivatives of the optimum design with respect to fixed design parameters using a nested optimization procedure. The procedure is demonstrated for the design of a bimetallic beam for minimum weight with insensitivity to uncertainties in structural properties. The beam is modeled with finite elements based on two dimensional beam analysis. A sequential quadratic programming procedure used as the optimizer supplies the Lagrange multipliers that are used to calculate the optimum sensitivity derivatives. The method was perceived to be successful from comparisons of the optimization results with parametric studies.

  1. Homogenous polynomially parameter-dependent H∞ filter designs of discrete-time fuzzy systems.

    PubMed

    Zhang, Huaguang; Xie, Xiangpeng; Tong, Shaocheng

    2011-10-01

    This paper proposes a novel H(∞) filtering technique for a class of discrete-time fuzzy systems. First, a novel kind of fuzzy H(∞) filter, which is homogenous polynomially parameter dependent on membership functions with an arbitrary degree, is developed to guarantee the asymptotic stability and a prescribed H(∞) performance of the filtering error system. Second, relaxed conditions for H(∞) performance analysis are proposed by using a new fuzzy Lyapunov function and the Finsler lemma with homogenous polynomial matrix Lagrange multipliers. Then, based on a new kind of slack variable technique, relaxed linear matrix inequality-based H(∞) filtering conditions are proposed. Finally, two numerical examples are provided to illustrate the effectiveness of the proposed approach.

  2. Random Matrix Approach for Primal-Dual Portfolio Optimization Problems

    NASA Astrophysics Data System (ADS)

    Tada, Daichi; Yamamoto, Hisashi; Shinzato, Takashi

    2017-12-01

    In this paper, we revisit the portfolio optimization problems of the minimization/maximization of investment risk under constraints of budget and investment concentration (primal problem) and the maximization/minimization of investment concentration under constraints of budget and investment risk (dual problem) for the case that the variances of the return rates of the assets are identical. We analyze both optimization problems by the Lagrange multiplier method and the random matrix approach. Thereafter, we compare the results obtained from our proposed approach with the results obtained in previous work. Moreover, we use numerical experiments to validate the results obtained from the replica approach and the random matrix approach as methods for analyzing both the primal and dual portfolio optimization problems.

  3. Generalized Gibbs distribution and energy localization in the semiclassical FPU problem

    NASA Astrophysics Data System (ADS)

    Hipolito, Rafael; Danshita, Ippei; Oganesyan, Vadim; Polkovnikov, Anatoli

    2011-03-01

    We investigate dynamics of the weakly interacting quantum mechanical Fermi-Pasta-Ulam (qFPU) model in the semiclassical limit below the stochasticity threshold. Within this limit we find that initial quantum fluctuations lead to the damping of FPU oscillations and relaxation of the system to a slowly evolving steady state with energy localized within few momentum modes. We find that in large systems this state can be described by the generalized Gibbs ensemble (GGE), with the Lagrange multipliers being very weak functions of time. This ensembles gives accurate description of the instantaneous correlation functions, both quadratic and quartic. Based on these results we conjecture that GGE generically appears as a prethermalized state in weakly non-integrable systems.

  4. Use of the Digamma Function in Statistical Astrophysics Distributions

    NASA Astrophysics Data System (ADS)

    Cahill, Michael

    2017-06-01

    Relaxed astrophysical statistical distributions may be constructed by using the inverse of a most probable energy distribution equation giving the energy ei of each particle in cell i in terms of the cell’s particle population Ni. The digamma mediated equation is A + Bei = Ψ(1+ Ni), where the constants A & B are Lagrange multipliers and Ψ is the digamma function given by Ψ(1+x) = dln(x!)/dx. Results are discussed for a Monatomic Ideal Gas, Atmospheres of Spherical Planets or Satellites and for Spherical Globular Clusters. These distributions are self-terminating even if other factors do not cause a cutoff. The examples are discussed classically but relativistic extensions are possible.

  5. A Generalization of the Karush-Kuhn-Tucker Theorem for Approximate Solutions of Mathematical Programming Problems Based on Quadratic Approximation

    NASA Astrophysics Data System (ADS)

    Voloshinov, V. V.

    2018-03-01

    In computations related to mathematical programming problems, one often has to consider approximate, rather than exact, solutions satisfying the constraints of the problem and the optimality criterion with a certain error. For determining stopping rules for iterative procedures, in the stability analysis of solutions with respect to errors in the initial data, etc., a justified characteristic of such solutions that is independent of the numerical method used to obtain them is needed. A necessary δ-optimality condition in the smooth mathematical programming problem that generalizes the Karush-Kuhn-Tucker theorem for the case of approximate solutions is obtained. The Lagrange multipliers corresponding to the approximate solution are determined by solving an approximating quadratic programming problem.

  6. Comparison of transform coding methods with an optimal predictor for the data compression of digital elevation models

    NASA Technical Reports Server (NTRS)

    Lewis, Michael

    1994-01-01

    Statistical encoding techniques enable the reduction of the number of bits required to encode a set of symbols, and are derived from their probabilities. Huffman encoding is an example of statistical encoding that has been used for error-free data compression. The degree of compression given by Huffman encoding in this application can be improved by the use of prediction methods. These replace the set of elevations by a set of corrections that have a more advantageous probability distribution. In particular, the method of Lagrange Multipliers for minimization of the mean square error has been applied to local geometrical predictors. Using this technique, an 8-point predictor achieved about a 7 percent improvement over an existing simple triangular predictor.

  7. The Chemistry of Multiply Deuterated Molecules in Protoplanetary Disks: I. The Outer Disk

    NASA Technical Reports Server (NTRS)

    Willacy, K.

    2007-01-01

    We present new models of the deuterium chemistry in protoplanetary disks, including, for the first time, multiply deuterated species. We use these models to explore whether observations in combination with models can give us clues as to which desorption processes occur in disks.We find, in common with other authors, that photodesorption can allow strongly bound molecules such as HDO to exist in the gas phase in a layer above the midplane. Models including this process give the best agreement with the observations. In the midplane, cosmic-ray heating can desorb weakly bound molecules such as CO and N2. We find the observations suggest that N2 is gaseous in this region, but that CO must be retained on the grains to account for the observed DCO+/HCO+. This could be achieved by CO having a higher binding energy than N2 (as may be the case when these molecules are accreted onto water ice) or by a smaller cosmic-ray desorption rate for CO than assumed here, as suggested by recent theoretical work. For gaseous molecules the calculated deuteration can be greatly changed by chemical processing in the disk from the input molecular cloud values. On the grains singly deuterated species tend to retain the D/H ratio set in the molecular cloud, whereas multiply deuterated species are more affected by the disk chemistry. Consequently, the D/H ratios observed in comets may be partly set in the parent cloud and partly in the disk, depending on the molecule.

  8. Evaluation of a Mobile Application for Multiplier Method Growth and Epiphysiodesis Timing Predictions.

    PubMed

    Wagner, Pablo; Standard, Shawn C; Herzenberg, John E

    The multiplier method (MM) is frequently used to predict limb-length discrepancy and timing of epiphysiodesis. The traditional MM uses complex formulae and requires a calculator. A mobile application was developed in an attempt to simplify and streamline these calculations. We compared the accuracy and speed of using the traditional pencil and paper technique with that using the Multiplier App (MA). After attending a training lecture and a hands-on workshop on the MM and MA, 30 resident surgeons were asked to apply the traditional MM and the MA at different weeks of their rotations. They were randomized as to the method they applied first. Subjects performed calculations for 5 clinical exercises that involved congenital and developmental limb-length discrepancies and timing of epiphysiodesis. The amount of time required to complete the exercises and the accuracy of the answers were evaluated for each subject. The test subjects answered 60% of the questions correctly using the traditional MM and 80% of the questions correctly using the MA (P=0.001). The average amount of time to complete the 5 exercises with the MM and MA was 22 and 8 minutes, respectively (P<0.0001). Several reports state that the traditional MM is quick and easy to use. Nevertheless, even in the most experienced hands, performing the calculations in clinical practice can be time-consuming. Errors may result from choosing the wrong formulae and from performing the calculations by hand. Our data show that the MA is simpler, more accurate, and faster than the traditional MM from a practical standpoint. Level II.

  9. Sample size requirements for estimating effective dose from computed tomography using solid-state metal-oxide-semiconductor field-effect transistor dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trattner, Sigal; Cheng, Bin; Pieniazek, Radoslaw L.

    2014-04-15

    Purpose: Effective dose (ED) is a widely used metric for comparing ionizing radiation burden between different imaging modalities, scanners, and scan protocols. In computed tomography (CT), ED can be estimated by performing scans on an anthropomorphic phantom in which metal-oxide-semiconductor field-effect transistor (MOSFET) solid-state dosimeters have been placed to enable organ dose measurements. Here a statistical framework is established to determine the sample size (number of scans) needed for estimating ED to a desired precision and confidence, for a particular scanner and scan protocol, subject to practical limitations. Methods: The statistical scheme involves solving equations which minimize the sample sizemore » required for estimating ED to desired precision and confidence. It is subject to a constrained variation of the estimated ED and solved using the Lagrange multiplier method. The scheme incorporates measurement variation introduced both by MOSFET calibration, and by variation in MOSFET readings between repeated CT scans. Sample size requirements are illustrated on cardiac, chest, and abdomen–pelvis CT scans performed on a 320-row scanner and chest CT performed on a 16-row scanner. Results: Sample sizes for estimating ED vary considerably between scanners and protocols. Sample size increases as the required precision or confidence is higher and also as the anticipated ED is lower. For example, for a helical chest protocol, for 95% confidence and 5% precision for the ED, 30 measurements are required on the 320-row scanner and 11 on the 16-row scanner when the anticipated ED is 4 mSv; these sample sizes are 5 and 2, respectively, when the anticipated ED is 10 mSv. Conclusions: Applying the suggested scheme, it was found that even at modest sample sizes, it is feasible to estimate ED with high precision and a high degree of confidence. As CT technology develops enabling ED to be lowered, more MOSFET measurements are needed to estimate ED with the

  10. Sample size requirements for estimating effective dose from computed tomography using solid-state metal-oxide-semiconductor field-effect transistor dosimetry

    PubMed Central

    Trattner, Sigal; Cheng, Bin; Pieniazek, Radoslaw L.; Hoffmann, Udo; Douglas, Pamela S.; Einstein, Andrew J.

    2014-01-01

    Purpose: Effective dose (ED) is a widely used metric for comparing ionizing radiation burden between different imaging modalities, scanners, and scan protocols. In computed tomography (CT), ED can be estimated by performing scans on an anthropomorphic phantom in which metal-oxide-semiconductor field-effect transistor (MOSFET) solid-state dosimeters have been placed to enable organ dose measurements. Here a statistical framework is established to determine the sample size (number of scans) needed for estimating ED to a desired precision and confidence, for a particular scanner and scan protocol, subject to practical limitations. Methods: The statistical scheme involves solving equations which minimize the sample size required for estimating ED to desired precision and confidence. It is subject to a constrained variation of the estimated ED and solved using the Lagrange multiplier method. The scheme incorporates measurement variation introduced both by MOSFET calibration, and by variation in MOSFET readings between repeated CT scans. Sample size requirements are illustrated on cardiac, chest, and abdomen–pelvis CT scans performed on a 320-row scanner and chest CT performed on a 16-row scanner. Results: Sample sizes for estimating ED vary considerably between scanners and protocols. Sample size increases as the required precision or confidence is higher and also as the anticipated ED is lower. For example, for a helical chest protocol, for 95% confidence and 5% precision for the ED, 30 measurements are required on the 320-row scanner and 11 on the 16-row scanner when the anticipated ED is 4 mSv; these sample sizes are 5 and 2, respectively, when the anticipated ED is 10 mSv. Conclusions: Applying the suggested scheme, it was found that even at modest sample sizes, it is feasible to estimate ED with high precision and a high degree of confidence. As CT technology develops enabling ED to be lowered, more MOSFET measurements are needed to estimate ED with the same

  11. Far-field mission planning for nap-of-the-earth flight

    NASA Technical Reports Server (NTRS)

    Deutsch, Owen L.; Desai, Mukund; Mcgee, Leonard A.

    1987-01-01

    In the face of numerically superior hostile forces, deployment of individual vehicles to the right place, at the right time, and the ability to plan missions with less conservatism, will become significant force multipliers. Far-field mission planning is one of the enabling technologies that will facilitate force coordination through management of mission timeline, vehicle survivability and fuel constraints. On-board replanning is required to deal responsively with departures from nominal plan execution that result from imperfect knowledge of and temporal variability in the mission environment. The far-field planning problem is posed as a constrained optimization problem and algorithms and structural organization are proposed for the solution.

  12. Negative probability of random multiplier in turbulence

    NASA Astrophysics Data System (ADS)

    Bai, Xuan; Su, Weidong

    2017-11-01

    The random multiplicative process (RMP), which has been proposed for over 50 years, is a convenient phenomenological ansatz of turbulence cascade. In the RMP, the fluctuation in a large scale is statistically mapped to the one in a small scale by the linear action of an independent random multiplier (RM). Simple as it is, the RMP is powerful enough since all of the known scaling laws can be included in this model. So far as we know, however, a direct extraction for the probability density function (PDF) of RM has been absent yet. The reason is the deconvolution during the process is ill-posed. Nevertheless, with the progress in the studies of inverse problems, the situation can be changed. By using some new regularization techniques, for the first time we recover the PDFs of the RMs in some turbulent flows. All the consistent results from various methods point to an amazing observation-the PDFs can attain negative values in some intervals; and this can also be justified by some properties of infinitely divisible distributions. Despite the conceptual unconventionality, the present study illustrates the implications of negative probability in turbulence in several aspects, with emphasis on its role in describing the interaction between fluctuations at different scales. This work is supported by the NSFC (No. 11221062 and No. 11521091).

  13. The influence of a magnetic field on the microhardness of K, Rb, Cs, NH{sub 4}, and Tl acid phthalate crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koldaeva, M. V., E-mail: mkoldaeva@ns.crys.ras.ru; Turskaya, T. N.; Zakalyukin, R. M.

    2009-11-15

    The influence of a magnetic field on the microhardness of potassium acid phthalate has been studied for different magnetic inductions, exposure times, sample orientations in a magnetic field, and impurity compositions of the crystals. It was shown that the magnetic field effect is multiply repeated on the (010) face after relaxation. The influence of magnetic treatment on ammonium, rubidium, thallium, and cesium acid phthalate crystals is analyzed. The reasons for the observed changes in the crystal microhardness in the magnetic field are discussed.

  14. Facilitating Small-Scale Implementation of Inquiry-Based Teaching: Encounters and Experiences of Experimento Multipliers in One South African Province

    ERIC Educational Resources Information Center

    Dudu, Washington Takawira

    2017-01-01

    This paper explores the experiences of 37 physical science high school teachers who participated in a professional development (PD) programme coordinated by three Experimento multipliers. The Experimento programme is a Siemens Stiftung international educational programme aimed at providing didactic and methodological approaches to classroom…

  15. Deterministic control of broadband light through a multiply scattering medium via the multispectral transmission matrix

    PubMed Central

    Andreoli, Daria; Volpe, Giorgio; Popoff, Sébastien; Katz, Ori; Grésillon, Samuel; Gigan, Sylvain

    2015-01-01

    We present a method to measure the spectrally-resolved transmission matrix of a multiply scattering medium, thus allowing for the deterministic spatiospectral control of a broadband light source by means of wavefront shaping. As a demonstration, we show how the medium can be used to selectively focus one or many spectral components of a femtosecond pulse, and how it can be turned into a controllable dispersive optical element to spatially separate different spectral components to arbitrary positions. PMID:25965944

  16. Relaxation times measurement in single and multiply excited xenon clusters

    NASA Astrophysics Data System (ADS)

    Serdobintsev, P. Yu.; Melnikov, A. S.; Pastor, A. A.; Timofeev, N. A.; Khodorkovskiy, M. A.

    2018-05-01

    Direct measurement of the rates of nonradiative relaxation processes in electronically excited xenon clusters was carried out. The clusters were created in a pulsed supersonic beam and two-photon excited by femtosecond laser pulses with a wavelength of 263 nm. The measurements were performed using the pump-probe method and electron spectroscopy. It is shown that relaxation of light clusters XeN (N < 15) predominantly occurs by desorption of excited xenon atoms with a characteristic time constant of 3 ps. Heavier electronically excited clusters (N > 10) vibrationally relax to the lowest electronically excited state at a rate of about 0.075 eV/ps. Multiply excited clusters are deactivated via energy exchange between excited centers with the ionization of one of them. The production of electrons in this process occurs with a delay of ˜4 ps from the pump pulse, and the process is completed in 10 ps.

  17. Formation of multiply charged ions from large molecules using massive-cluster impact.

    PubMed

    Mahoney, J F; Cornett, D S; Lee, T D

    1994-05-01

    Massive-cluster impact is demonstrated to be an effective ionization technique for the mass analysis of proteins as large as 17 kDa. The design of the cluster source permits coupling to both magnetic-sector and quadrupole mass spectrometers. Mass spectra are characterized by the almost total absence of chemical background and a predominance of multiply charged ions formed from 100% glycerol matrix. The number of charge states produced by the technique is observed to range from +3 to +9 for chicken egg lysozyme (14,310 Da). The lower m/z values provided by higher charge states increase the effective mass range of analyses performed with conventional ionization by fast-atom bombardment or liquid secondary ion mass spectrometry.

  18. Magnetic field configurations on thruster performance in accordance with ion beam characteristics in cylindrical Hall thruster plasmas

    NASA Astrophysics Data System (ADS)

    Kim, Holak; Choe, Wonho; Lim, Youbong; Lee, Seunghun; Park, Sanghoo

    2017-03-01

    Magnetic field configuration is critical in Hall thrusters for achieving high performance, particularly in thrust, specific impulse, efficiency, etc. Ion beam features are also significantly influenced by magnetic field configurations. In two typical magnetic field configurations (i.e., co-current and counter-current configurations) of a cylindrical Hall thruster, ion beam characteristics are compared in relation to multiply charged ions. Our study shows that the co-current configuration brings about high ion current (or low electron current), high ionization rate, and small plume angle that lead to high thruster performance.

  19. Pumping Liquid Oxygen by Use of Pulsed Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert; Lane, John; Immer, Christopher; Simpson, James

    2004-01-01

    An effort is underway to develop a method of pumping small amounts of liquid oxygen by use of pulsed magnetic fields. This development is motivated by a desire to reduce corrosion and hazards of explosion and combustion by eliminating all moving pump parts in contact with the pumped oxygen. The method exploits the known paramagnetism of liquid oxygen. Since they both behave similarly, the existing theory of ferrofluids (liquids with colloidally suspended magnetic particles) is directly applicable to paramagnetic liquid oxygen. In general, the force density of the paramagnetic interaction is proportional to the magnetic susceptibility multiplied by the gradient of the square of the magnitude of the magnetic field. The local force is in the direction of intensifying magnetic field. In the case of liquid oxygen, the magnetic susceptibility is large enough that a strong magnetic-field gradient can lift the liquid in normal Earth gravitation.

  20. DQM: Decentralized Quadratically Approximated Alternating Direction Method of Multipliers

    NASA Astrophysics Data System (ADS)

    Mokhtari, Aryan; Shi, Wei; Ling, Qing; Ribeiro, Alejandro

    2016-10-01

    This paper considers decentralized consensus optimization problems where nodes of a network have access to different summands of a global objective function. Nodes cooperate to minimize the global objective by exchanging information with neighbors only. A decentralized version of the alternating directions method of multipliers (DADMM) is a common method for solving this category of problems. DADMM exhibits linear convergence rate to the optimal objective but its implementation requires solving a convex optimization problem at each iteration. This can be computationally costly and may result in large overall convergence times. The decentralized quadratically approximated ADMM algorithm (DQM), which minimizes a quadratic approximation of the objective function that DADMM minimizes at each iteration, is proposed here. The consequent reduction in computational time is shown to have minimal effect on convergence properties. Convergence still proceeds at a linear rate with a guaranteed constant that is asymptotically equivalent to the DADMM linear convergence rate constant. Numerical results demonstrate advantages of DQM relative to DADMM and other alternatives in a logistic regression problem.

  1. Development of a multi-element microdosimetric detector based on a thick gas electron multiplier

    NASA Astrophysics Data System (ADS)

    Anjomani, Z.; Hanu, A. R.; Prestwich, W. V.; Byun, S. H.

    2017-03-01

    A prototype multi-element gaseous microdosimetric detector was developed using the Thick Gas Electron Multiplier (THGEM) technique. The detector aims at measuring neutron and gamma-ray dose rates for weak neutron-gamma radiation fields. The multi-element design was employed to increase the neutron detection efficiency. The prototype THGEM multi-element detector consists of three layers of tissue equivalent plastic hexagons and each layer houses a hexagonal array of seven cylindrical gas cavity elements with equal heights and diameters of 17 mm. The final detector structure incorporates 21 gaseous volumes. Owing to the absence of wire electrodes, the THGEM multi-element detector offers flexible and convenient fabrication. The detector responses to neutron and gamma-ray were investigated using the McMaster Tandetron 7Li(p,n) neutron source. The dosimetric performance of the detector is presented in contrast to the response of a commercial tissue equivalent proportional counter. Compared to the standard TEPC response, the detector gave a consistent microdosimetric response with an average discrepancy of 8 % in measured neutron absorbed dose. An improvement of a factor of 3.0 in neutron detection efficiency has been accomplished with only a small degradation in energy resolution. However, its low energy cut off is about 6 keV/μm, which is not sufficient to measure the gamma-ray dose. This problem will be addressed by increasing the electron multiplication gain using double THGEM layers.

  2. Hamilton's principle and normal mode coupling in an aspherical planet with a fluid core

    NASA Astrophysics Data System (ADS)

    Al-Attar, David; Crawford, Ophelia; Valentine, Andrew P.; Trampert, Jeannot

    2018-04-01

    We apply Hamilton's principle to obtain the exact equations of motion for an elastic planet that is rotating, self-gravitating, and comprises both fluid and solid regions. This variational problem is complicated by the occurrence of tangential slip at fluid-solid boundaries, but we show how this can be accommodated both directly and using the method of Lagrange multipliers. A novelty of our approach is that the planet's motion is described relative to an arbitrary reference configuration, with this generality offering advantages for numerical calculations. In particular, aspherical topography on the free surface or internal boundaries of the planet's equilibrium configuration can be converted exactly into effective volumetric heterogeneities within a geometrically spherical reference body by applying a suitable particle relabelling transformation. The theory is then specialised to consider the linearised motion of a planet about a steadily rotating equilibrium configuration, with these results having applications to normal mode coupling calculations used within studies of long period seismology, tidal deformation, and related fields. In particular, we explain how our new theory will, for the first time, allow aspherical boundary topography to be incorporated exactly within such coupling calculations.

  3. Some novel features in 2D non-Abelian theory: BRST approach

    NASA Astrophysics Data System (ADS)

    Srinivas, N.; Kumar, S.; Kureel, B. K.; Malik, R. P.

    2017-08-01

    Within the framework of Becchi-Rouet-Stora-Tyutin (BRST) formalism, we discuss some novel features of a two (1+1)-dimensional (2D) non-Abelian 1-form gauge theory (without any interaction with matter fields). Besides the usual off-shell nilpotent and absolutely anticommutating (anti-)BRST symmetry transformations, we discuss the off-shell nilpotent and absolutely anticommutating (anti-)co-BRST symmetry transformations. Particularly, we lay emphasis on the existence of the coupled (but equivalent) Lagrangian densities of the 2D non-Abelian theory in view of the presence of (anti-)co-BRST symmetry transformations where we pin-point some novel features associated with the Curci-Ferrari (CF-)type restrictions. We demonstrate that these CF-type restrictions can be incorporated into the (anti-)co-BRST invariant Lagrangian densities through the fermionic Lagrange multipliers which carry specific ghost numbers. The modified versions of the Lagrangian densities (where we get rid of the new CF-type restrictions) respect some precise symmetries as well as a couple of symmetries with CF-type constraints. These observations are completely novel as far as the BRST formalism, with proper (anti-)co-BRST symmetries, is concerned.

  4. A Statistical Study of Multiply Imaged Systems in the Lensing Cluster Abell 68

    NASA Astrophysics Data System (ADS)

    Richard, Johan; Kneib, Jean-Paul; Jullo, Eric; Covone, Giovanni; Limousin, Marceau; Ellis, Richard; Stark, Daniel; Bundy, Kevin; Czoske, Oliver; Ebeling, Harald; Soucail, Geneviève

    2007-06-01

    We have carried out an extensive spectroscopic survey with the Keck and VLT telescopes, targeting lensed galaxies in the background of the massive cluster Abell 68. Spectroscopic measurements are obtained for 26 lensed images, including a distant galaxy at z=5.4. Redshifts have been determined for 5 out of 7 multiple-image systems. Through a careful modeling of the mass distribution in the strongly lensed regime, we derive a mass estimate of 5.3×1014 Msolar within 500 kpc. Our mass model is then used to constrain the redshift distribution of the remaining multiply imaged and singly imaged sources. This enables us to examine the physical properties for a subsample of 7 Lyα emitters at 1.7<~z<~5.5, whose unlensed luminosities of ~=1041 ergs s-1 are fainter than similar objects found in blank fields. Of particular interest is an extended Lyα emission region surrounding a highly magnified source at z=2.6, detected in VIMOS integral field spectroscopy data. The physical scale of the most distant lensed source at z=5.4 is very small (<300 pc), similar to the lensed z~5.6 emitter reported by Ellis et al. in Abell 2218. New photometric data available for Abell 2218 allow for a direct comparison between these two unique objects. Our survey illustrates the practicality of using lensing clusters to probe the faint end of the z~2-5 Lyα luminosity function in a manner that is complementary to blank-field narrowband surveys. Data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. Also based on observations collected at the Very Large Telescope (Antu/UT1 and Melipal/UT3), European Southern Observatory, Paranal, Chile (ESO programs 070.A-0643 and 073.A-0774), the NASA/ESA Hubble Space Telescope

  5. Derivation of phase functions from multiply scattered sunlight transmitted through a hazy atmosphere

    NASA Technical Reports Server (NTRS)

    Weinman, J. A.; Twitty, J. T.; Browning, S. R.; Herman, B. M.

    1975-01-01

    The intensity of sunlight multiply scattered in model atmospheres is derived from the equation of radiative transfer by an analytical small-angle approximation. The approximate analytical solutions are compared to rigorous numerical solutions of the same problem. Results obtained from an aerosol-laden model atmosphere are presented. Agreement between the rigorous and the approximate solutions is found to be within a few per cent. The analytical solution to the problem which considers an aerosol-laden atmosphere is then inverted to yield a phase function which describes a single scattering event at small angles. The effect of noisy data on the derived phase function is discussed.

  6. Implementation of a fast digital optical matrix-vector multiplier using a holographic look-up table and residue arithmetic

    NASA Technical Reports Server (NTRS)

    Habiby, Sarry F.; Collins, Stuart A., Jr.

    1987-01-01

    The design and implementation of a digital (numerical) optical matrix-vector multiplier are presented. A Hughes liquid crystal light valve, the residue arithmetic representation, and a holographic optical memory are used to construct position coded optical look-up tables. All operations are performed in effectively one light valve response time with a potential for a high information density.

  7. Implementation of a fast digital optical matrix-vector multiplier using a holographic look-up table and residue arithmetic.

    PubMed

    Habiby, S F; Collins, S A

    1987-11-01

    The design and implementation of a digital (numerical) optical matrix-vector multiplier are presented. A Hughes liquid crystal light valve, the residue arithmetic representation, and a holographic optical memory are used to construct position coded optical look-up tables. All operations are performed in effectively one light valve response time with a potential for a high information density.

  8. Measurement Of Gas Electron Multiplier (GEM) Detector Characteristics

    NASA Astrophysics Data System (ADS)

    Park, Seongtae; Baldelomar, Edwin; Park, Kwangjune; Sosebee, Mark; White, Andy; Yu, Jaehoon

    2011-06-01

    The High Energy Physics group of the University of Texas at Arlington has been developing gas electron multiplier detectors to use them as sensitive gap detectors in digital hadron calorimeters for the International Linear Collider, a future high energy particle accelerator. For this purpose, we constructed numerous GEM detectors that employ double GEM layers. In this study, two kinds of prototype GEM detectors were tested; one with 28×28 cm2 active area double GEM structure with a 3 mm drift gap, a 1 mm transfer gap and a 1 mm induction gap and the other with two 3×3 cm2 GEM foils in the amplifier stage with a 5 mm drift gap, a 2 mm transfer gap and a 1 mm induction gap. The detectors' characteristics from exposure to high-energy charged particles and other radiations were measured using cosmic rays and 55Fe radioactive source. From the 55Fe tests, we observed two well separated characteristic X-ray emission peaks and confirmed the detectors' functionality. We also measured chamber gains to be over 6000 at a high voltage of 395 V across each GEM electrode. The responses to cosmic rays show the spectra that fit well to Landau distributions as expected from minimum ionizing particles.

  9. Survival Words and Phrases for Professionals Who Work with Students Who Are Bilingual and Severely/Multiply Handicapped, and with Their Families.

    ERIC Educational Resources Information Center

    Silberman, Rosanne K.; Correa, Vivian I.

    1989-01-01

    The paper offers a rationale for bilingual special education, provides suggestions for developing bilingual lessons for severely/multiply handicapped students, and includes a list of Spanish words and phrases used most frequently by students and their parents. (JDD)

  10. Generalization of the Schwarz-Christoffel mapping to multiply connected polygonal domains.

    PubMed

    Vasconcelos, Giovani L

    2014-06-08

    A generalization of the Schwarz-Christoffel mapping to multiply connected polygonal domains is obtained by making a combined use of two preimage domains, namely, a rectilinear slit domain and a bounded circular domain. The conformal mapping from the circular domain to the polygonal region is written as an indefinite integral whose integrand consists of a product of powers of the Schottky-Klein prime functions, which is the same irrespective of the preimage slit domain, and a prefactor function that depends on the choice of the rectilinear slit domain. A detailed derivation of the mapping formula is given for the case where the preimage slit domain is the upper half-plane with radial slits. Representation formulae for other canonical slit domains are also obtained but they are more cumbersome in that the prefactor function contains arbitrary parameters in the interior of the circular domain.

  11. Eddy interaction model for turbulent suspension in Reynolds-averaged Euler-Lagrange simulations of steady sheet flow

    NASA Astrophysics Data System (ADS)

    Cheng, Zhen; Chauchat, Julien; Hsu, Tian-Jian; Calantoni, Joseph

    2018-01-01

    A Reynolds-averaged Euler-Lagrange sediment transport model (CFDEM-EIM) was developed for steady sheet flow, where the inter-granular interactions were resolved and the flow turbulence was modeled with a low Reynolds number corrected k - ω turbulence closure modified for two-phase flows. To model the effect of turbulence on the sediment suspension, the interaction between the turbulent eddies and particles was simulated with an eddy interaction model (EIM). The EIM was first calibrated with measurements from dilute suspension experiments. We demonstrated that the eddy-interaction model was able to reproduce the well-known Rouse profile for suspended sediment concentration. The model results were found to be sensitive to the choice of the coefficient, C0, associated with the turbulence-sediment interaction time. A value C0 = 3 was suggested to match the measured concentration in the dilute suspension. The calibrated CFDEM-EIM was used to model a steady sheet flow experiment of lightweight coarse particles and yielded reasonable agreements with measured velocity, concentration and turbulence kinetic energy profiles. Further numerical experiments for sheet flow suggested that when C0 was decreased to C0 < 3, the simulation under-predicted the amount of suspended sediment in the dilute region and the Schmidt number is over-predicted (Sc > 1.0). Additional simulations for a range of Shields parameters between 0.3 and 1.2 confirmed that CFDEM-EIM was capable of predicting sediment transport rates similar to empirical formulations. Based on the analysis of sediment transport rate and transport layer thickness, the EIM and the resulting suspended load were shown to be important when the fall parameter is less than 1.25.

  12. Multiply controlled verbal operants: an analysis and extension to the picture exchange communication system.

    PubMed

    Bondy, Andy; Tincani, Matt; Frost, Lori

    2004-01-01

    This paper presents Skinner's (1957) analysis of verbal behavior as a framework for understanding language acquisition in children with autism. We describe Skinner's analysis of pure and impure verbal operants and illustrate how this analysis may be applied to the design of communication training programs. The picture exchange communication system (PECS) is a training program influenced by Skinner's framework. We describe the training sequence associated with PECS and illustrate how this sequence may establish multiply controlled verbal behavior in children with autism. We conclude with an examination of how Skinner's framework may apply to other communication modalities and training strategies.

  13. Order Reduction, Projectability and Constraints of Second-Order Field Theories and Higher-Order Mechanics

    NASA Astrophysics Data System (ADS)

    Gaset, Jordi; Román-Roy, Narciso

    2016-12-01

    The projectability of Poincaré-Cartan forms in a third-order jet bundle J3π onto a lower-order jet bundle is a consequence of the degenerate character of the corresponding Lagrangian. This fact is analyzed using the constraint algorithm for the associated Euler-Lagrange equations in J3π. The results are applied to study the Hilbert Lagrangian for the Einstein equations (in vacuum) from a multisymplectic point of view. Thus we show how these equations are a consequence of the application of the constraint algorithm to the geometric field equations, meanwhile the other constraints are related with the fact that this second-order theory is equivalent to a first-order theory. Furthermore, the case of higher-order mechanics is also studied as a particular situation.

  14. Characterization of Two Novel Polyomaviruses of Birds by Using Multiply Primed Rolling-Circle Amplification of Their Genomes

    PubMed Central

    Johne, Reimar; Wittig, Walter; Fernández-de-Luco, Daniel; Höfle, Ursula; Müller, Hermann

    2006-01-01

    Polyomaviruses are small nonenveloped particles with a circular double-stranded genome, approximately 5 kbp in size. The mammalian polyomaviruses mainly cause persistent subclinical infections in their natural nonimmunocompromised hosts. In contrast, the polyomaviruses of birds—avian polyomavirus (APV) and goose hemorrhagic polyomavirus (GHPV)—are the primary agents of acute and chronic disease with high mortality rates in young birds. Screening of field samples of diseased birds by consensus PCR revealed the presence of two novel polyomaviruses in the liver of an Eurasian bullfinch (Pyrrhula pyrrhula griseiventris) and in the spleen of a Eurasian jackdaw (Corvus monedula), tentatively designated as finch polyomavirus (FPyV) and crow polyomavirus (CPyV), respectively. The genomes of the viruses were amplified by using multiply primed rolling-circle amplification and cloned. Analysis of the FPyV and CPyV genome sequences revealed a close relationship to APV and GHPV, indicating the existence of a distinct avian group among the polyomaviruses. The main characteristics of this group are (i) involvement in fatal disease, (ii) the existence of an additional open reading frame in the 5′ region of the late mRNAs, and (iii) a different manner of DNA binding of the large tumor antigen compared to that of the mammalian polyomaviruses. PMID:16537620

  15. Optimizing low-light microscopy with back-illuminated electron multiplying charge-coupled device: enhanced sensitivity, speed, and resolution.

    PubMed

    Coates, Colin G; Denvir, Donal J; McHale, Noel G; Thornbury, Keith D; Hollywood, Mark A

    2004-01-01

    The back-illuminated electron multiplying charge-coupled device (EMCCD) camera is having a profound influence on the field of low-light dynamic cellular microscopy, combining highest possible photon collection efficiency with the ability to virtually eliminate the readout noise detection limit. We report here the use of this camera, in 512 x 512 frame-transfer chip format at 10-MHz pixel readout speed, in optimizing a demanding ultra-low-light intracellular calcium flux microscopy setup. The arrangement employed includes a spinning confocal Nipkow disk, which, while facilitating the need to both generate images at very rapid frame rates and minimize background photons, yields very weak signals. The challenge for the camera lies not just in detecting as many of these scarce photons as possible, but also in operating at a frame rate that meets the temporal resolution requirements of many low-light microscopy approaches, a particular demand of smooth muscle calcium flux microscopy. Results presented illustrate both the significant sensitivity improvement offered by this technology over the previous standard in ultra-low-light CCD detection, the GenIII+intensified charge-coupled device (ICCD), and also portray the advanced temporal and spatial resolution capabilities of the EMCCD. Copyright 2004 Society of Photo-Optical Instrumentation Engineers.

  16. Characterizing individual scattering events by measuring the amplitude and phase of the electric field diffusing through a random medium.

    PubMed

    Jian, Zhongping; Pearce, Jeremy; Mittleman, Daniel M

    2003-07-18

    We describe observations of the amplitude and phase of an electric field diffusing through a three-dimensional random medium, using terahertz time-domain spectroscopy. These measurements are spatially resolved with a resolution smaller than the speckle spot size and temporally resolved with a resolution better than one optical cycle. By computing correlation functions between fields measured at different positions and with different temporal delays, it is possible to obtain information about individual scattering events experienced by the diffusing field. This represents a new method for characterizing a multiply scattered wave.

  17. A BRST formulation for the conic constrained particle

    NASA Astrophysics Data System (ADS)

    Barbosa, Gabriel D.; Thibes, Ronaldo

    2018-04-01

    We describe the gauge invariant BRST formulation of a particle constrained to move in a general conic. The model considered constitutes an explicit example of an originally second-class system which can be quantized within the BRST framework. We initially impose the conic constraint by means of a Lagrange multiplier leading to a consistent second-class system which generalizes previous models studied in the literature. After calculating the constraint structure and the corresponding Dirac brackets, we introduce a suitable first-order Lagrangian, the resulting modified system is then shown to be gauge invariant. We proceed to the extended phase space introducing fermionic ghost variables, exhibiting the BRST symmetry transformations and writing the Green’s function generating functional for the BRST quantized model.

  18. Variational principles for dissipative (sub)systems, with applications to the theory of linear dispersion and geometrical optics

    DOE PAGES

    Dodin, I. Y.; Zhmoginov, A. I.; Ruiz, D. E.

    2017-02-24

    Applications of variational methods are typically restricted to conservative systems. Some extensions to dissipative systems have been reported too but require ad hoc techniques such as the artificial doubling of the dynamical variables. We propose a different approach. Here, we show that for a broad class of dissipative systems of practical interest, variational principles can be formulated using constant Lagrange multipliers and Lagrangians nonlocal in time, which allow treating reversible and irreversible dynamics on the same footing. A general variational theory of linear dispersion is formulated as an example. Particularly, we present a variational formulation for linear geometrical optics inmore » a general dissipative medium, which is allowed to be nonstationary, inhomogeneous, anisotropic, and exhibit both temporal and spatial dispersion simultaneously.« less

  19. Variational finite-difference methods in linear and nonlinear problems of the deformation of metallic and composite shells (review)

    NASA Astrophysics Data System (ADS)

    Maksimyuk, V. A.; Storozhuk, E. A.; Chernyshenko, I. S.

    2012-11-01

    Variational finite-difference methods of solving linear and nonlinear problems for thin and nonthin shells (plates) made of homogeneous isotropic (metallic) and orthotropic (composite) materials are analyzed and their classification principles and structure are discussed. Scalar and vector variational finite-difference methods that implement the Kirchhoff-Love hypotheses analytically or algorithmically using Lagrange multipliers are outlined. The Timoshenko hypotheses are implemented in a traditional way, i.e., analytically. The stress-strain state of metallic and composite shells of complex geometry is analyzed numerically. The numerical results are presented in the form of graphs and tables and used to assess the efficiency of using the variational finite-difference methods to solve linear and nonlinear problems of the statics of shells (plates)

  20. An example of branching in a variational problem. [shape of liquid suspended from wire in zero gravity

    NASA Technical Reports Server (NTRS)

    Darbro, W.

    1978-01-01

    In an experiment in space it was found that when a cubical frame was slowly withdrawn from a soap solution, the wire frame retained practically a full cube of liquid. Removed from the frame (by shaking), the faces of the cube became progressively more concave, until adjacent faces became tangential. In the present paper a mathematical model describing the shape a liquid takes due to its surface tension while suspended on a wire frame in zero-g is solved by use of Lagrange multipliers. It is shown how the configuration of soap films so bounded is dependent upon the volume of liquid trapped in the films. A special case of the solution is a soap film naturally formed on a cubical wire frame.