Sample records for lagrangian duality applied

  1. Level/rank duality and Chern-Simons-matter theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsin, Po-Shen; Seiberg, Nathan

    We discuss in detail level/rank duality in three-dimensional Chern-Simons theories and various related dualities in three-dimensional Chern-Simons-matter theories. We couple the dual Lagrangians to appropriate background fields (including gauge fields, spin c connections and the metric). The non-trivial maps between the currents and the line operators in the dual theories is accounted for by mixing of these fields. In order for the duality to be valid we must add finite counterterms depending on these background fields. This analysis allows us to resolve a number of puzzles with these dualities, to provide derivations of some of them, and to find newmore » consistency conditions and relations between them. In addition, we find new level/rank dualities of topological Chern-Simons theories and new dualities of Chern-Simons-matter theories, including new boson/boson and fermion/fermion dualities.« less

  2. Level/rank duality and Chern-Simons-matter theories

    DOE PAGES

    Hsin, Po-Shen; Seiberg, Nathan

    2016-09-16

    We discuss in detail level/rank duality in three-dimensional Chern-Simons theories and various related dualities in three-dimensional Chern-Simons-matter theories. We couple the dual Lagrangians to appropriate background fields (including gauge fields, spin c connections and the metric). The non-trivial maps between the currents and the line operators in the dual theories is accounted for by mixing of these fields. In order for the duality to be valid we must add finite counterterms depending on these background fields. This analysis allows us to resolve a number of puzzles with these dualities, to provide derivations of some of them, and to find newmore » consistency conditions and relations between them. In addition, we find new level/rank dualities of topological Chern-Simons theories and new dualities of Chern-Simons-matter theories, including new boson/boson and fermion/fermion dualities.« less

  3. Hairy black holes and duality in an extended supergravity model

    NASA Astrophysics Data System (ADS)

    Anabalón, Andrés; Astefanesei, Dumitru; Gallerati, Antonio; Trigiante, Mario

    2018-04-01

    We consider a D = 4, N=2 gauged supergravity with an electromagnetic Fayet-Iliopoulos term. We restrict to the uncharged, single dilaton consistent truncation and point out that the bulk Lagrangian is self-dual under electromagnetic duality. Within this truncation, we construct two families of exact hairy black hole solutions, which are asymptotically AdS 4. When a duality transformation is applied on these solutions, they are mapped to two other inequivalent families of hairy black hole solutions. The mixed boundary conditions of the scalar field correspond to adding a triple-trace operator to the dual field theory action. We also show that this truncation contains all the consistent single dilaton truncations of gauged N=8 supergravity with a possible ω-deformation.

  4. Non-linear duality invariant partially massless models?

    DOE PAGES

    Cherney, D.; Deser, S.; Waldron, A.; ...

    2015-12-15

    We present manifestly duality invariant, non-linear, equations of motion for maximal depth, partially massless higher spins. These are based on a first order, Maxwell-like formulation of the known partially massless systems. Lastly, our models mimic Dirac–Born–Infeld theory but it is unclear whether they are Lagrangian.

  5. Issues on 3D noncommutative electromagnetic duality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodrigues, Davi C.; Wotzasek, Clovis

    We extend the ordinary 3D electromagnetic duality to the noncommutative (NC) space-time through a Seiberg-Witten map to second order in the noncommutativity parameter {theta}, defining a new scalar field model. There are similarities with the 4D NC duality; these are exploited to clarify properties of both cases. Up to second order in {theta}, we find that duality interchanges the 2-form {theta} with its 1-form Hodge dual *{theta} times the gauge coupling constant, i.e., {theta}{yields}*{theta}g{sup 2} (similar to the 4D NC electromagnetic duality). We directly prove that this property is false in the third order expansion in both 3D and 4Dmore » space-times, unless the slowly varying fields limit is imposed. Outside this limit, starting from the third order expansion, {theta} cannot be rescaled to attain an S-duality. In addition to possible applications on effective models, the 3D space-time is useful for studying general properties of NC theories. In particular, in this dimension, we deduce an expression that significantly simplifies the Seiberg-Witten mapped Lagrangian to all orders in {theta}.« less

  6. Dualities and emergent gravity: Gauge/gravity duality

    NASA Astrophysics Data System (ADS)

    de Haro, Sebastian

    2017-08-01

    In this paper I develop a framework for relating dualities and emergence: two notions that are close to each other but also exclude one another. I adopt the conception of duality as 'isomorphism', from the physics literature, cashing it out in terms of three conditions. These three conditions prompt two conceptually different ways in which a duality can be modified to make room for emergence; and I argue that this exhausts the possibilities for combining dualities and emergence (via coarse-graining). I apply this framework to gauge/gravity dualities, considering in detail three examples: AdS/CFT, Verlinde's scheme, and black holes. My main point about gauge/gravity dualities is that the theories involved, qua theories of gravity, must be background-independent. I distinguish two senses of background-independence: (i) minimalistic and (ii) extended. I argue that the former is sufficiently strong to allow for a consistent theory of quantum gravity; and that AdS/CFT is background-independent on this account; while Verlinde's scheme best fits the extended sense of background-independence. I argue that this extended sense should be applied with some caution: on pain of throwing the baby (general relativity) out with the bath-water (extended background-independence). Nevertheless, it is an interesting and potentially fruitful heuristic principle for quantum gravity theory construction. It suggests some directions for possible generalisations of gauge/gravity dualities. The interpretation of dualities is discussed; and the so-called 'internal' vs. 'external' viewpoints are articulated in terms of: (i) epistemic and metaphysical commitments; (ii) parts vs. wholes. I then analyse the emergence of gravity in gauge/gravity dualities in terms of the two available conceptualisations of emergence; and I show how emergence in AdS/CFT and in Verlinde's scenario differ from each other. Finally, I give a novel derivation of the Bekenstein-Hawking black hole entropy formula based on

  7. String duality transformations in f(R) gravity from Noether symmetry approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Capozziello, Salvatore; Gionti, Gabriele S.J.; Vernieri, Daniele, E-mail: capozziello@na.inf.it, E-mail: ggionti@as.arizona.edu, E-mail: vernieri@iap.fr

    2016-01-01

    We select f(R) gravity models that undergo scale factor duality transformations. As a starting point, we consider the tree-level effective gravitational action of bosonic String Theory coupled with the dilaton field. This theory inherits the Busher's duality of its parent String Theory. Using conformal transformations of the metric tensor, it is possible to map the tree-level dilaton-graviton string effective action into f(R) gravity, relating the dilaton field to the Ricci scalar curvature. Furthermore, the duality can be framed under the standard of Noether symmetries and exact cosmological solutions are derived. Using suitable changes of variables, the string-based f(R) Lagrangians aremore » shown in cases where the duality transformation becomes a parity inversion.« less

  8. Lagrangians for generalized Argyres-Douglas theories

    NASA Astrophysics Data System (ADS)

    Benvenuti, Sergio; Giacomelli, Simone

    2017-10-01

    We continue the study of Lagrangian descriptions of N=2 Argyres-Douglas theories. We use our recent interpretation in terms of sequential confinement to guess the Lagrangians of all the Argyres-Douglas models with Abelian three dimensional mirror. We find classes of four dimensional N=1 quivers that flow in the infrared to generalized Argyres-Douglas theories, such as the ( A k , A kN + N -1) models. We study in detail how the N=1 chiral rings map to the Coulomb and Higgs Branches of the N=2 CFT's. The three dimensional mirror RG flows are shown to land on the N=4 complete graph quivers. We also compactify to three dimensions the gauge theory dual to ( A 1, D 4), and find the expected Abelianization duality with N=4 SQED with 3 flavors.

  9. From 3 d duality to 2 d duality

    NASA Astrophysics Data System (ADS)

    Aharony, Ofer; Razamat, Shlomo S.; Willett, Brian

    2017-11-01

    In this paper we discuss 3 d N = 2 supersymmetric gauge theories and their IR dualities when they are compactified on a circle of radius r, and when we take the 2 d limit in which r → 0. The 2 d limit depends on how the mass parameters are scaled as r → 0, and often vacua become infinitely distant in the 2 d limit, leading to a direct sum of different 2 d theories. For generic mass parameters, when we take the same limit on both sides of a duality, we obtain 2 d dualities (between gauge theories and/or Landau-Ginzburg theories) that pass all the usual tests. However, when there are non-compact branches the discussion is subtle because the metric on the moduli space, which is not controlled by supersymmetry, plays an important role in the low-energy dynamics after compactification. Generally speaking, for IR dualities of gauge theories, we conjecture that dualities involving non-compact Higgs branches survive. On the other hand when there is a non-compact Coulomb branch on at least one side of the duality, the duality fails already when the 3 d theories are compactified on a circle. Using the valid reductions we reproduce many known 2 d IR dualities, giving further evidence for their validity, and we also find new 2 d dualities.

  10. Non Abelian T-duality in Gauged Linear Sigma Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bizet, Nana Cabo; Martínez-Merino, Aldo; Zayas, Leopoldo A. Pando

    Abelian T-duality in Gauged Linear Sigma Models (GLSM) forms the basis of the physical understanding of Mirror Symmetry as presented by Hori and Vafa. We consider an alternative formulation of Abelian T-duality on GLSM’s as a gauging of a global U(1) symmetry with the addition of appropriate Lagrange multipliers. For GLSMs with Abelian gauge groups and without superpotential we reproduce the dual models introduced by Hori and Vafa. We extend the construction to formulate non-Abelian T-duality on GLSMs with global non-Abelian symmetries. The equations of motion that lead to the dual model are obtained for a general group, they dependmore » in general on semi-chiral superfields; for cases such as SU(2) they depend on twisted chiral superfields. We solve the equations of motion for an SU(2) gauged group with a choice of a particular Lie algebra direction of the vector superfield. This direction covers a non-Abelian sector that can be described by a family of Abelian dualities. The dual model Lagrangian depends on twisted chiral superfields and a twisted superpotential is generated. We explore some non-perturbative aspects by making an Ansatz for the instanton corrections in the dual theories. We verify that the effective potential for the U(1) field strength in a fixed configuration on the original theory matches the one of the dual theory. Imposing restrictions on the vector superfield, more general non-Abelian dual models are obtained. We analyze the dual models via the geometry of their susy vacua.« less

  11. Non Abelian T-duality in Gauged Linear Sigma Models

    NASA Astrophysics Data System (ADS)

    Bizet, Nana Cabo; Martínez-Merino, Aldo; Zayas, Leopoldo A. Pando; Santos-Silva, Roberto

    2018-04-01

    Abelian T-duality in Gauged Linear Sigma Models (GLSM) forms the basis of the physical understanding of Mirror Symmetry as presented by Hori and Vafa. We consider an alternative formulation of Abelian T-duality on GLSM's as a gauging of a global U(1) symmetry with the addition of appropriate Lagrange multipliers. For GLSMs with Abelian gauge groups and without superpotential we reproduce the dual models introduced by Hori and Vafa. We extend the construction to formulate non-Abelian T-duality on GLSMs with global non-Abelian symmetries. The equations of motion that lead to the dual model are obtained for a general group, they depend in general on semi-chiral superfields; for cases such as SU(2) they depend on twisted chiral superfields. We solve the equations of motion for an SU(2) gauged group with a choice of a particular Lie algebra direction of the vector superfield. This direction covers a non-Abelian sector that can be described by a family of Abelian dualities. The dual model Lagrangian depends on twisted chiral superfields and a twisted superpotential is generated. We explore some non-perturbative aspects by making an Ansatz for the instanton corrections in the dual theories. We verify that the effective potential for the U(1) field strength in a fixed configuration on the original theory matches the one of the dual theory. Imposing restrictions on the vector superfield, more general non-Abelian dual models are obtained. We analyze the dual models via the geometry of their susy vacua.

  12. Non Abelian T-duality in Gauged Linear Sigma Models

    DOE PAGES

    Bizet, Nana Cabo; Martínez-Merino, Aldo; Zayas, Leopoldo A. Pando; ...

    2018-04-01

    Abelian T-duality in Gauged Linear Sigma Models (GLSM) forms the basis of the physical understanding of Mirror Symmetry as presented by Hori and Vafa. We consider an alternative formulation of Abelian T-duality on GLSM’s as a gauging of a global U(1) symmetry with the addition of appropriate Lagrange multipliers. For GLSMs with Abelian gauge groups and without superpotential we reproduce the dual models introduced by Hori and Vafa. We extend the construction to formulate non-Abelian T-duality on GLSMs with global non-Abelian symmetries. The equations of motion that lead to the dual model are obtained for a general group, they dependmore » in general on semi-chiral superfields; for cases such as SU(2) they depend on twisted chiral superfields. We solve the equations of motion for an SU(2) gauged group with a choice of a particular Lie algebra direction of the vector superfield. This direction covers a non-Abelian sector that can be described by a family of Abelian dualities. The dual model Lagrangian depends on twisted chiral superfields and a twisted superpotential is generated. We explore some non-perturbative aspects by making an Ansatz for the instanton corrections in the dual theories. We verify that the effective potential for the U(1) field strength in a fixed configuration on the original theory matches the one of the dual theory. Imposing restrictions on the vector superfield, more general non-Abelian dual models are obtained. We analyze the dual models via the geometry of their susy vacua.« less

  13. Scalable Methods for Eulerian-Lagrangian Simulation Applied to Compressible Multiphase Flows

    NASA Astrophysics Data System (ADS)

    Zwick, David; Hackl, Jason; Balachandar, S.

    2017-11-01

    Multiphase flows can be found in countless areas of physics and engineering. Many of these flows can be classified as dispersed two-phase flows, meaning that there are solid particles dispersed in a continuous fluid phase. A common technique for simulating such flow is the Eulerian-Lagrangian method. While useful, this method can suffer from scaling issues on larger problem sizes that are typical of many realistic geometries. Here we present scalable techniques for Eulerian-Lagrangian simulations and apply it to the simulation of a particle bed subjected to expansion waves in a shock tube. The results show that the methods presented here are viable for simulation of larger problems on modern supercomputers. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1315138. This work was supported in part by the U.S. Department of Energy under Contract No. DE-NA0002378.

  14. N = 2 S-duality revisited

    NASA Astrophysics Data System (ADS)

    Buican, Matthew; Laczko, Zoltan; Nishinaka, Takahiro

    2017-09-01

    Using the chiral algebra bootstrap, we revisit the simplest Argyres-Douglas (AD) generalization of Argyres-Seiberg S-duality. We argue that the exotic AD superconformal field theory (SCFT), T_{3,3/2} , emerging in this duality splits into a free piece and an interacting piece, T_X , even though this factorization seems invisible in the Seiberg-Witten (SW) curve derived from the corresponding M5-brane construction. Without a Lagrangian, an associated topological field theory, a BPS spectrum, or even an SW curve, we nonetheless obtain exact information about T_X by bootstrapping its chiral algebra, {}_X(T_X) , and finding the corresponding vacuum character in terms of Affine Kac-Moody characters. By a standard 4D/2D correspondence, this result gives us the Schur index for T_X and, by studying this quantity in the limit of small S 1, we make contact with a proposed S 1 reduction. Along the way, we discuss various properties of T_X : as an N = 1 theory, it has flavor symmetry SU(3) × SU(2) × U(1), the central charge of {}_X(T_X) matches the central charge of the bc ghosts in bosonic string theory, and its global SU(2) symmetry has a Witten anomaly. This anomaly does not prevent us from building conformal manifolds out of arbitrary numbers of T_X theories (giving us a surprisingly close AD relative of Gaiotto's T N theories), but it does lead to some open questions in the context of the chiral algebra/4D N =2SCFT correspondence.

  15. A Lagrangian subgrid-scale model with dynamic estimation of Lagrangian time scale for large eddy simulation of complex flows

    NASA Astrophysics Data System (ADS)

    Verma, Aman; Mahesh, Krishnan

    2012-08-01

    The dynamic Lagrangian averaging approach for the dynamic Smagorinsky model for large eddy simulation is extended to an unstructured grid framework and applied to complex flows. The Lagrangian time scale is dynamically computed from the solution and does not need any adjustable parameter. The time scale used in the standard Lagrangian model contains an adjustable parameter θ. The dynamic time scale is computed based on a "surrogate-correlation" of the Germano-identity error (GIE). Also, a simple material derivative relation is used to approximate GIE at different events along a pathline instead of Lagrangian tracking or multi-linear interpolation. Previously, the time scale for homogeneous flows was computed by averaging along directions of homogeneity. The present work proposes modifications for inhomogeneous flows. This development allows the Lagrangian averaged dynamic model to be applied to inhomogeneous flows without any adjustable parameter. The proposed model is applied to LES of turbulent channel flow on unstructured zonal grids at various Reynolds numbers. Improvement is observed when compared to other averaging procedures for the dynamic Smagorinsky model, especially at coarse resolutions. The model is also applied to flow over a cylinder at two Reynolds numbers and good agreement with previous computations and experiments is obtained. Noticeable improvement is obtained using the proposed model over the standard Lagrangian model. The improvement is attributed to a physically consistent Lagrangian time scale. The model also shows good performance when applied to flow past a marine propeller in an off-design condition; it regularizes the eddy viscosity and adjusts locally to the dominant flow features.

  16. Learn the Lagrangian: A Vector-Valued RKHS Approach to Identifying Lagrangian Systems.

    PubMed

    Cheng, Ching-An; Huang, Han-Pang

    2016-12-01

    We study the modeling of Lagrangian systems with multiple degrees of freedom. Based on system dynamics, canonical parametric models require ad hoc derivations and sometimes simplification for a computable solution; on the other hand, due to the lack of prior knowledge in the system's structure, modern nonparametric models in machine learning face the curse of dimensionality, especially in learning large systems. In this paper, we bridge this gap by unifying the theories of Lagrangian systems and vector-valued reproducing kernel Hilbert space. We reformulate Lagrangian systems with kernels that embed the governing Euler-Lagrange equation-the Lagrangian kernels-and show that these kernels span a subspace capturing the Lagrangian's projection as inverse dynamics. By such property, our model uses only inputs and outputs as in machine learning and inherits the structured form as in system dynamics, thereby removing the need for the mundane derivations for new systems as well as the generalization problem in learning from scratches. In effect, it learns the system's Lagrangian, a simpler task than directly learning the dynamics. To demonstrate, we applied the proposed kernel to identify the robot inverse dynamics in simulations and experiments. Our results present a competitive novel approach to identifying Lagrangian systems, despite using only inputs and outputs.

  17. A Lagrangian meshfree method applied to linear and nonlinear elasticity.

    PubMed

    Walker, Wade A

    2017-01-01

    The repeated replacement method (RRM) is a Lagrangian meshfree method which we have previously applied to the Euler equations for compressible fluid flow. In this paper we present new enhancements to RRM, and we apply the enhanced method to both linear and nonlinear elasticity. We compare the results of ten test problems to those of analytic solvers, to demonstrate that RRM can successfully simulate these elastic systems without many of the requirements of traditional numerical methods such as numerical derivatives, equation system solvers, or Riemann solvers. We also show the relationship between error and computational effort for RRM on these systems, and compare RRM to other methods to highlight its strengths and weaknesses. And to further explain the two elastic equations used in the paper, we demonstrate the mathematical procedure used to create Riemann and Sedov-Taylor solvers for them, and detail the numerical techniques needed to embody those solvers in code.

  18. A Lagrangian meshfree method applied to linear and nonlinear elasticity

    PubMed Central

    2017-01-01

    The repeated replacement method (RRM) is a Lagrangian meshfree method which we have previously applied to the Euler equations for compressible fluid flow. In this paper we present new enhancements to RRM, and we apply the enhanced method to both linear and nonlinear elasticity. We compare the results of ten test problems to those of analytic solvers, to demonstrate that RRM can successfully simulate these elastic systems without many of the requirements of traditional numerical methods such as numerical derivatives, equation system solvers, or Riemann solvers. We also show the relationship between error and computational effort for RRM on these systems, and compare RRM to other methods to highlight its strengths and weaknesses. And to further explain the two elastic equations used in the paper, we demonstrate the mathematical procedure used to create Riemann and Sedov-Taylor solvers for them, and detail the numerical techniques needed to embody those solvers in code. PMID:29045443

  19. Dualities in String Cosmology

    NASA Astrophysics Data System (ADS)

    Meissner, K. A.

    We describe in this chapter a set of duality symmetries present in the string-inspired theory of gravity coupled to the dilaton. These dualities are the cornerstones of String Cosmology, which provides alternatives to the usual inflation scenario. The crucial role of Prof. Gabriele Veneziano in the discovery and the development of string dualities is described and emphasized.

  20. Meshless Lagrangian SPH method applied to isothermal lid-driven cavity flow at low-Re numbers

    NASA Astrophysics Data System (ADS)

    Fraga Filho, C. A. D.; Chacaltana, J. T. A.; Pinto, W. J. N.

    2018-01-01

    SPH is a recent particle method applied in the cavities study, without many results available in the literature. The lid-driven cavity flow is a classic problem of the fluid mechanics, extensively explored in the literature and presenting a considerable complexity. The aim of this paper is to present a solution from the Lagrangian viewpoint for this problem. The discretization of the continuum domain is performed using the Lagrangian particles. The physical laws of mass, momentum and energy conservation are presented by the Navier-Stokes equations. A serial numerical code, written in Fortran programming language, has been used to perform the numerical simulations. The application of the SPH and comparison with the literature (mesh methods and a meshless collocation method) have been done. The positions of the primary vortex centre and the non-dimensional velocity profiles passing through the geometric centre of the cavity have been analysed. The numerical Lagrangian results showed a good agreement when compared to the results found in the literature, specifically for { Re} < 100.00 . Suggestions for improvements in the SPH model presented are listed, in the search for better results for flows with higher Reynolds numbers.

  1. Aspects of String Dualities

    NASA Astrophysics Data System (ADS)

    Orgera, Jacopo

    In this thesis we investigate some aspects of String Dualities. In particular, in the context of Twistor-String/Field Theories duality, we present some partial results toward the understanding of Conformal Supergravity amplitudes. Also, in the context of AdS/CFT duality, we investigate: the role of Euclidean Wormholes in quantum de-coherence and the semiclassical decay of certain non-supersimmetric vacua.

  2. A master bosonization duality

    NASA Astrophysics Data System (ADS)

    Jensen, Kristan

    2018-01-01

    We conjecture a new sequence of dualities between Chern-Simons gauge theories simultaneously coupled to fundamental bosons and fermions. These dualities reduce to those proposed by Aharony when the number of bosons or fermions is zero. Our conjecture passes a number of consistency checks. These include the matching of global symmetries and consistency with level/rank duality in massive phases.

  3. Duality and 'particle' democracy

    NASA Astrophysics Data System (ADS)

    Castellani, Elena

    2017-08-01

    Weak/strong duality is usually accompanied by what seems a puzzling ontological feature: the fact that under this kind of duality what is viewed as 'elementary' in one description gets mapped to what is viewed as 'composite' in the dual description. This paper investigates the meaning of this apparent 'particle democracy', as it has been called, by adopting an historical approach. The aim is to clarify the nature of the correspondence between 'dual particles' in the light of a historical analysis of the developments of the idea of weak/strong duality, starting with Dirac's electric-magnetic duality and its successive generalizations in the context of (Abelian and non-Abelian) field theory, to arrive at its first extension to string theory. This analysis is then used as evidential basis for discussing the 'elementary/composite' divide and, after taking another historical detour by analyzing an instructive analogy case (DHS duality and related nuclear democracy), drawing some conclusions on the particle-democracy issue.

  4. Coherent Lagrangian swirls among submesoscale motions.

    PubMed

    Beron-Vera, F J; Hadjighasem, A; Xia, Q; Olascoaga, M J; Haller, G

    2018-03-05

    The emergence of coherent Lagrangian swirls (CLSs) among submesoscale motions in the ocean is illustrated. This is done by applying recent nonlinear dynamics tools for Lagrangian coherence detection on a surface flow realization produced by a data-assimilative submesoscale-permitting ocean general circulation model simulation of the Gulf of Mexico. Both mesoscale and submesoscale CLSs are extracted. These extractions prove the relevance of coherent Lagrangian eddies detected in satellite-altimetry-based geostrophic flow data for the arguably more realistic ageostrophic multiscale flow.

  5. Dualities and Curved Space Partition Functions of Supersymmetric Theories

    NASA Astrophysics Data System (ADS)

    Agarwal, Prarit

    In this dissertation we discuss some conjectured dualities in supersymmetric field theories and provide non-trivial checks for these conjectures. A quick review of supersymmetry and related topics is provided in chapter 1. In chapter 2, we develop a method to identify the so called BPS states in the Hilbert space of a supersymmetric field theory (that preserves at least two real supercharges) on a generic curved space. As an application we obtain the superconformal index (SCI) of 4d theories. The large N SCI of quiver gauge theories has been previously noticed to factorize over the set of extremal BPS mesonic operators. In chapter 3, we reformulate this factorization in terms of the zigzag paths in the dimer model associated to the quiver and extend the factorization theorem of the index to include theories obtained from D-branes probing orbifold singularities. In chapter 4, we consider the dualities in two classes of 3 dimensional theories. The first class consist of dualities of certain necklace type Chern-Simons (CS) quiver gauge theories. A non trivial check of these dualities is provided by matching their squashed sphere partition functions. The second class consists of theories whose duals are described by a collection of free fields. In such cases, due to mixing between the superconformal R-symmetry and accidental symmetries, the matching of electric and magnetic partition functions is not straightforward. We provide a prescription to rectify this mismatch. In chapter 5, we consider some the N = 1 4d theories with orthogonal and symplectic gauge groups, arising from N = 1 preserving reduction of 6d theories on a Riemann surface. This construction allows us to dual descriptions of 4d theories. Some of the dual frames have no known Lagrangian description. We check the dualities by computing the anomaly coefficients and the superconformal indices. We also give a prescription to write the index of the theory obtained by reduction of 6d theories on a three

  6. A duality web in condensed matter systems

    NASA Astrophysics Data System (ADS)

    Ma, Chen-Te

    2018-03-01

    We study various dualities in condensed matter systems. The dualities in three dimensions can be derived from a conjecture of a duality between a Dirac fermion theory and an interacting scalar field theory at a Wilson-Fisher fixed point and zero temperature in three dimensions. We show that the dualities are not affected by non-trivial holonomy, use a mean-field method to study the dualities, and discuss the dualities at a finite temperature. Finally, we combine a bulk theory, which is an Abelian p-form theory with a theta term in 2 p + 2 dimensions, and a boundary theory, which is a 2 p + 1 dimensional theory, to discuss constraints and difficulties of a 2 p + 1 dimensional duality web.

  7. Electromagnetic duality and entanglement anomalies

    NASA Astrophysics Data System (ADS)

    Donnelly, William; Michel, Ben; Wall, Aron C.

    2017-08-01

    Duality is an indispensable tool for describing the strong-coupling dynamics of gauge theories. However, its actual realization is often quite subtle: quantities such as the partition function can transform covariantly, with degrees of freedom rearranged in a nonlocal fashion. We study this phenomenon in the context of the electromagnetic duality of Abelian p -forms. A careful calculation of the duality anomaly on an arbitrary D -dimensional manifold shows that the effective actions agree exactly in odd D , while in even D they differ by a term proportional to the Euler number. Despite this anomaly, the trace of the stress tensor agrees between the dual theories. We also compute the change in the vacuum entanglement entropy under duality, relating this entanglement anomaly to the duality of an "edge mode" theory in two fewer dimensions. Previous work on this subject has led to conflicting results; we explain and resolve these discrepancies.

  8. Option volatility and the acceleration Lagrangian

    NASA Astrophysics Data System (ADS)

    Baaquie, Belal E.; Cao, Yang

    2014-01-01

    This paper develops a volatility formula for option on an asset from an acceleration Lagrangian model and the formula is calibrated with market data. The Black-Scholes model is a simpler case that has a velocity dependent Lagrangian. The acceleration Lagrangian is defined, and the classical solution of the system in Euclidean time is solved by choosing proper boundary conditions. The conditional probability distribution of final position given the initial position is obtained from the transition amplitude. The volatility is the standard deviation of the conditional probability distribution. Using the conditional probability and the path integral method, the martingale condition is applied, and one of the parameters in the Lagrangian is fixed. The call option price is obtained using the conditional probability and the path integral method.

  9. Mordell integrals and Giveon-Kutasov duality

    NASA Astrophysics Data System (ADS)

    Giasemidis, Georgios; Tierz, Miguel

    2016-01-01

    We solve, for finite N, the matrix model of supersymmetric U( N) Chern-Simons theory coupled to N f massive hypermultiplets of R-charge 1/2 , together with a Fayet-Iliopoulos term. We compute the partition function by identifying it with a determinant of a Hankel matrix, whose entries are parametric derivatives (of order N f - 1) of Mordell integrals. We obtain finite Gauss sums expressions for the partition functions. We also apply these results to obtain an exhaustive test of Giveon-Kutasov (GK) duality in the N=3 setting, by systematic computation of the matrix models involved. The phase factor that arises in the duality is then obtained explicitly. We give an expression characterized by modular arithmetic (mod 4) behavior that holds for all tested values of the parameters (checked up to N f = 12 flavours).

  10. Grothendieck-Verdier duality patterns in quantum algebra

    NASA Astrophysics Data System (ADS)

    Manin, Yu I.

    2017-08-01

    After a brief survey of the basic definitions of Grothendieck-Verdier categories and dualities, I consider in this context dualities introduced earlier in the categories of quadratic algebras and operads, largely motivated by the theory of quantum groups. Finally, I argue that Dubrovin's `almost duality' in the theory of Frobenius manifolds and quantum cohomology must also fit a (possibly extended) version of Grothendieck-Verdier duality.

  11. Confronting Seiberg's duality with r duality in N=1 supersymmetric QCD

    NASA Astrophysics Data System (ADS)

    Shifman, M.; Yung, A.

    2012-09-01

    Systematizing our results on r duality obtained previously we focus on comparing r duality with the generalized Seiberg duality in the r vacua of N=2 and N=1 super-Yang-Mills theories with the U(N) gauge group and Nf matter flavors (Nf>N). The number of condensed (s)quarks r is assumed to be in the interval (2)/(3)Nfdualities are demonstrated to coincide in the r=N vacua. In the (2)/(3)Nfdualities do not match. In this window Seiberg’s dual is at strong coupling while our r-dual model is at weak coupling. Thus, we can speak of triality. Seiberg’s dual solution at weak coupling reappears again at r

  12. Topological T-duality for torus bundles with monodromy

    NASA Astrophysics Data System (ADS)

    Baraglia, David

    2015-05-01

    We give a simplified definition of topological T-duality that applies to arbitrary torus bundles. The new definition does not involve Chern classes or spectral sequences, only gerbes and morphisms between them. All the familiar topological conditions for T-duals are shown to follow. We determine necessary and sufficient conditions for existence of a T-dual in the case of affine torus bundles. This is general enough to include all principal torus bundles as well as torus bundles with arbitrary monodromy representations. We show that isomorphisms in twisted cohomology, twisted K-theory and of Courant algebroids persist in this general setting. We also give an example where twisted K-theory groups can be computed by iterating T-duality.

  13. S -duality for holographic p -wave superconductors

    NASA Astrophysics Data System (ADS)

    Gorsky, Alexander; Gubankova, Elena; Meyer, René; Zayakin, Andrey

    2017-11-01

    We consider the generalization of the S -duality transformation previously investigated in the context of the fractional quantum Hall effect (FQHE) and s -wave superconductivity to p -wave superconductivity in 2 +1 dimensions in the framework of the AdS /CFT correspondence. The vector Cooper condensate transforms under the S -duality action to the pseudovector condensate at the dual side. The 3 +1 -dimensional Einstein-Yang-Mills theory, the holographic dual to p -wave superconductivity, is used to investigate the S -duality action via the AdS /CFT correspondence. It is shown that, in order to implement the duality transformation, chemical potentials on both the electric and magnetic sides of the duality have to be introduced. A relation for the product of the non-Abelian conductivities in the dual models is derived. We also conjecture a flavor S -duality transformation in the holographic dual to 3 +1 -dimensional QCD low-energy QCD with non-Abelian flavor gauge groups. The conjectured S -duality interchanges isospin and baryonic chemical potentials.

  14. E11, brane dynamics and duality symmetries

    NASA Astrophysics Data System (ADS)

    West, Peter

    2018-05-01

    Following arXiv:hep-th/0412336 we use the nonlinear realisation of the semi-direct product of E11 and its vector representation to construct brane dynamics. The brane moves through a space-time which arises in the nonlinear realisation from the vector representation and it contains the usual embedding coordinates as well as the worldvolume fields. The resulting equations of motion are first order in derivatives and can be thought of as duality relations. Each brane carries the full E11 symmetry and so the Cremmer-Julia duality symmetries. We apply this theory to find the dynamics of the IIA and IIB strings, the M2 and M5 branes, the IIB D3 brane as well as the one and two branes in seven dimensions.

  15. Particle-vortex duality from 3D bosonization

    DOE PAGES

    Karch, Andreas; Tong, David

    2016-09-19

    We show how particle-vortex duality in d = 2+1 dimensions arises as part of an intricate web of relationships between different field theories. The starting point is “bosonization,” a conjectured duality that uses flux attachment to transmute the statistics of relativistic particles. From this seed, we derive many old and new dualities. Finally, these include particle-vortex duality for bosons as well as the recently discovered counterpart for fermions.

  16. Fracton-Elasticity Duality

    NASA Astrophysics Data System (ADS)

    Pretko, Michael; Radzihovsky, Leo

    2018-05-01

    Motivated by recent studies of fractons, we demonstrate that elasticity theory of a two-dimensional quantum crystal is dual to a fracton tensor gauge theory, providing a concrete manifestation of the fracton phenomenon in an ordinary solid. The topological defects of elasticity theory map onto charges of the tensor gauge theory, with disclinations and dislocations corresponding to fractons and dipoles, respectively. The transverse and longitudinal phonons of crystals map onto the two gapless gauge modes of the gauge theory. The restricted dynamics of fractons matches with constraints on the mobility of lattice defects. The duality leads to numerous predictions for phases and phase transitions of the fracton system, such as the existence of gauge theory counterparts to the (commensurate) crystal, supersolid, hexatic, and isotropic fluid phases of elasticity theory. Extensions of this duality to generalized elasticity theories provide a route to the discovery of new fracton models. As a further consequence, the duality implies that fracton phases are relevant to the study of interacting topological crystalline insulators.

  17. Microscopic Lagrangian description of warm plasmas. IV - Macroscopic approximation

    NASA Technical Reports Server (NTRS)

    Kim, H.; Crawford, F. W.

    1983-01-01

    The averaged-Lagrangian method is applied to linear wave propagation and nonlinear three-wave interaction in a warm magnetoplasma, in the macroscopic approximation. The microscopic Lagrangian treated by Kim and Crawford (1977) and by Galloway and Crawford (1977) is first expanded to third order in perturbation. Velocity integration is then carried out, before applying Hamilton's principle to obtain a general description of wave propagation and coupling. The results are specialized to the case of interaction between two electron plasma waves and an Alfven wave. The method is shown to be more powerful than the alternative possibility of working from the beginning with a macroscopic Lagrangian density.

  18. Topological T-duality via Lie algebroids and Q-flux in Poisson-generalized geometry

    NASA Astrophysics Data System (ADS)

    Asakawa, Tsuguhiko; Muraki, Hisayoshi; Watamura, Satoshi

    2015-10-01

    It is known that the topological T-duality exchanges H- and F-fluxes. In this paper, we reformulate the topological T-duality as an exchange of two Lie algebroids in the generalized tangent bundle. Then, we apply the same formulation to the Poisson-generalized geometry, which is introduced [T. Asakawa, H. Muraki, S. Sasa and S. Watamura, Int. J. Mod. Phys. A 30, 1550097 (2015), arXiv:1408.2649 [hep-th

  19. Duality in non-linear programming

    NASA Astrophysics Data System (ADS)

    Jeyalakshmi, K.

    2018-04-01

    In this paper we consider duality and converse duality for a programming problem involving convex objective and constraint functions with finite dimensional range. We do not assume any constraint qualification. The dual is presented by reducing the problem to a standard Lagrange multiplier problem.

  20. Bayesian Nonlinear Assimilation of Eulerian and Lagrangian Coastal Flow Data

    DTIC Science & Technology

    2015-09-30

    Lagrangian Coastal Flow Data Dr. Pierre F.J. Lermusiaux Department of Mechanical Engineering Center for Ocean Science and Engineering Massachusetts...Develop and apply theory, schemes and computational systems for rigorous Bayesian nonlinear assimilation of Eulerian and Lagrangian coastal flow data...coastal ocean fields, both in Eulerian and Lagrangian forms. - Further develop and implement our GMM-DO schemes for robust Bayesian nonlinear estimation

  1. Shear and shearless Lagrangian structures in compound channels

    NASA Astrophysics Data System (ADS)

    Enrile, F.; Besio, G.; Stocchino, A.

    2018-03-01

    Transport processes in a physical model of a natural stream with a composite cross-section (compound channel) are investigated by means of a Lagrangian analysis based on nonlinear dynamical system theory. Two-dimensional free surface Eulerian experimental velocity fields of a uniform flow in a compound channel form the basis for the identification of the so-called Lagrangian Coherent Structures. Lagrangian structures are recognized as the key features that govern particle trajectories. We seek for two particular class of Lagrangian structures: Shear and shearless structures. The former are generated whenever the shear dominates the flow whereas the latter behave as jet-cores. These two type of structures are detected as ridges and trenches of the Finite-Time Lyapunov Exponents fields, respectively. Besides, shearlines computed applying the geodesic theory of transport barriers mark Shear Lagrangian Coherent Structures. So far, the detection of these structures in real experimental flows has not been deeply investigated. Indeed, the present results obtained in a wide range of the controlling parameters clearly show a different behaviour depending on the shallowness of the flow. Shear and Shearless Lagrangian Structures detected from laboratory experiments clearly appear as the flow develops in shallow conditions. The presence of these Lagrangian Structures tends to fade in deep flow conditions.

  2. 3d Abelian dualities with boundaries

    NASA Astrophysics Data System (ADS)

    Aitken, Kyle; Baumgartner, Andrew; Karch, Andreas; Robinson, Brandon

    2018-03-01

    We establish the action of three-dimensional bosonization and particle-vortex duality in the presence of a boundary, which supports a non-anomalous two-dimensional theory. We confirm our prescription using a microscopic realization of the duality in terms of a Euclidean lattice.

  3. Duality, marginal perturbations, and gauging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henningson, M.; Nappi, C.R.

    1993-07-15

    We study duality transformations for two-dimensional [sigma] models with Abelian chiral isometries and prove that generic such transformations are equivalent to integrated marginal perturbations by bilinears in the chiral currents, thus confirming a recent conjecture by Hassan and Sen formulated in the context of Wess-Zumino-Witten models. Specific duality transformations instead give rise to coset models plus free bosons.

  4. Deconfined Quantum Critical Points: Symmetries and Dualities

    DOE PAGES

    Wang, Chong; Nahum, Adam; Metlitski, Max A.; ...

    2017-09-22

    The deconfined quantum critical point (QCP), separating the Néel and valence bond solid phases in a 2D antiferromagnet, was proposed as an example of (2+1)D criticality fundamentally different from standard Landau-Ginzburg-Wilson-Fisher criticality. In this work, we present multiple equivalent descriptions of deconfined QCPs, and use these to address the possibility of enlarged emergent symmetries in the low-energy limit. The easy-plane deconfined QCP, besides its previously discussed self-duality, is dual to N f=2 fermionic quantum electrodynamics, which has its own self-duality and hence may have an O(4)×ZT2 symmetry. We propose several dualities for the deconfined QCP with SU(2) spin symmetry whichmore » together make natural the emergence of a previously suggested SO(5) symmetry rotating the Néel and valence bond solid orders. These emergent symmetries are implemented anomalously. The associated infrared theories can also be viewed as surface descriptions of (3+1) D topological paramagnets, giving further insight into the dualities. We describe a number of numerical tests of these dualities. We also discuss the possibility of “pseudocritical” behavior for deconfined critical points, and the meaning of the dualities and emergent symmetries in such a scenario.« less

  5. Duality quantum algorithm efficiently simulates open quantum systems

    PubMed Central

    Wei, Shi-Jie; Ruan, Dong; Long, Gui-Lu

    2016-01-01

    Because of inevitable coupling with the environment, nearly all practical quantum systems are open system, where the evolution is not necessarily unitary. In this paper, we propose a duality quantum algorithm for simulating Hamiltonian evolution of an open quantum system. In contrast to unitary evolution in a usual quantum computer, the evolution operator in a duality quantum computer is a linear combination of unitary operators. In this duality quantum algorithm, the time evolution of the open quantum system is realized by using Kraus operators which is naturally implemented in duality quantum computer. This duality quantum algorithm has two distinct advantages compared to existing quantum simulation algorithms with unitary evolution operations. Firstly, the query complexity of the algorithm is O(d3) in contrast to O(d4) in existing unitary simulation algorithm, where d is the dimension of the open quantum system. Secondly, By using a truncated Taylor series of the evolution operators, this duality quantum algorithm provides an exponential improvement in precision compared with previous unitary simulation algorithm. PMID:27464855

  6. A demonstration of particle duality of light

    NASA Astrophysics Data System (ADS)

    Jiang, Haili; Liu, Zhihai; Sun, Qiuhua; Zhao, Yancheng

    2017-08-01

    The need of understanding and teaching about wave-particle duality if light with gets more and more apparent in the background of the attention of modern physics. As early as the beginning of twentieth Century, Einstein dared to "deny" the development of a very perfect light electromagnetic theory, so that the quantum of light can be developed. In 1924, De Broglie put forward wave-particle duality if light to other micro particles and the concept of matter wave, pointed out that all micro particle has wave-particle duality. This is a very abstract concept for students, most college physics teaching all lack of demonstration about particle duality of light. The present article aims to contribute to demonstrate the wave-particle duality of light at the same time using a simple way based on fiber optical tweezers. It is hoped that useful lesson can be absorbed so that students can deepen the understanding of the particle and wave properties of light. To complement the demonstration experiment for this attribute light has momentum.

  7. Some Lagrangians for systems without a Lagrangian

    NASA Astrophysics Data System (ADS)

    Nucci, M. C.; Leach, P. G. L.

    2011-03-01

    We demonstrate how to construct many different Lagrangians for two famous examples that were deemed by Douglas (1941 Trans. Am. Math. Soc. 50 71-128) not to have a Lagrangian. Following Bateman's dictum (1931 Phys. Rev. 38 815-9), we determine different sets of equations that are compatible with those of Douglas and derivable from a variational principle.

  8. Managing Dualities in Planned Change Initiatives

    ERIC Educational Resources Information Center

    Barge, J. Kevin; Lee, Michael; Maddux, Kristy; Nabring, Richard; Townsend, Bryan

    2008-01-01

    Dualities play an important role in creating the conditions for change and managing planned change initiatives. Building on Seo, Putnam, and Bartunek's (2003) work, this study focuses on the dualities associated with managing change processes. A case study of a planned change process called the Circle of Prosperity Initiative, a multi-stakeholder…

  9. Quark Hadron Duality - Recent Jefferson Lab Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niculescu, Maria Ioana

    2016-08-01

    The duality between the partonic and hadronic descriptions of electron--nucleon scattering is a remarkable feature of nuclear interactions. When averaged over appropriate energy intervals the cross section at low energy which is dominated by nucleon resonances resembles the smooth behavior expected from perturbative QCD. Recent Jefferson Lab results indicate that quark-hadron duality is present in a variety of observables, not just the proton F2 structure function. An overview of recent results, especially local quark-hadron duality on the neutron, are presented here.

  10. Quark-hadron duality in lepton scattering off nucleons

    NASA Astrophysics Data System (ADS)

    Graczyk, Krzysztof M.

    2010-03-01

    Quark-hadron (QH) duality in lepton scattering off nucleons is studied with the resonance quark model. It is shown that in the case of neutrino scattering off an isoscalar target the duality is simultaneously observed for charged and neutral currents xF1νN, F2νN, and xF3νN weak structure functions. We demonstrate that the QH duality can be a useful property for modeling structure functions in the so-called resonance region. As an example it is shown that combining relativistic quark model predictions with duality arguments allows a construction of the inclusive resonance F2ep structure function.

  11. T-duality constraints on higher derivatives revisited

    NASA Astrophysics Data System (ADS)

    Hohm, Olaf; Zwiebach, Barton

    2016-04-01

    We ask to what extent are the higher-derivative corrections of string theory constrained by T-duality. The seminal early work by Meissner tests T-duality by reduction to one dimension using a distinguished choice of field variables in which the bosonic string action takes a Gauss-Bonnet-type form. By analyzing all field redefinitions that may or may not be duality covariant and may or may not be gauge covariant we extend the procedure to test T-duality starting from an action expressed in arbitrary field variables. We illustrate the method by showing that it determines uniquely the first-order α' corrections of the bosonic string, up to terms that vanish in one dimension. We also use the method to glean information about the O({α}^' 2}) corrections in the double field theory with Green-Schwarz deformation.

  12. Lagrangian methods of cosmic web classification

    NASA Astrophysics Data System (ADS)

    Fisher, J. D.; Faltenbacher, A.; Johnson, M. S. T.

    2016-05-01

    The cosmic web defines the large-scale distribution of matter we see in the Universe today. Classifying the cosmic web into voids, sheets, filaments and nodes allows one to explore structure formation and the role environmental factors have on halo and galaxy properties. While existing studies of cosmic web classification concentrate on grid-based methods, this work explores a Lagrangian approach where the V-web algorithm proposed by Hoffman et al. is implemented with techniques borrowed from smoothed particle hydrodynamics. The Lagrangian approach allows one to classify individual objects (e.g. particles or haloes) based on properties of their nearest neighbours in an adaptive manner. It can be applied directly to a halo sample which dramatically reduces computational cost and potentially allows an application of this classification scheme to observed galaxy samples. Finally, the Lagrangian nature admits a straightforward inclusion of the Hubble flow negating the necessity of a visually defined threshold value which is commonly employed by grid-based classification methods.

  13. Master 3d bosonization duality with boundaries

    NASA Astrophysics Data System (ADS)

    Aitken, Kyle; Karch, Andreas; Robinson, Brandon

    2018-05-01

    We establish the action of the three-dimensional non-Abelian bosonization dualities in the presence of a boundary, which supports a non-anomalous two-dimensional theory. In particular, we generalize a prescriptive method for assigning duality consistent boundary conditions used originally for Abelian dualities to dual non-Abelian Chern-Simons-matter theories with SU and U gauge groups and fundamental matter sectors. The cases of single species matter sectors and those with both scalars and fermions in the dual theories are considered. Generalization of our methods to SO and USp Chern-Simons theories is also discussed.

  14. (0,4) dualities

    DOE PAGES

    Putrov, Pavel; Song, Jaewon; Yan, Wenbin

    2016-03-29

    We study a class of two-dimensional N = (0; 4) quiver gauge theories that flow to superconformal field theories. We find dualities for the superconformal field theories similar to the 4d N = 2 theories of class S, labelled by a Riemann surface C. The dual descriptions arise from various pair-of-pants decompositions, that involve an analog of the T N theory. Especially, we find the superconformal indices of such theories can be written in terms of a topological field theory on C. In conclusion, we interpret this class of SCFTs as the ones coming from compactifying 6d N = (2;more » 0) theory on CP 1 x C. Moreover, some new dualities of (0; 2) and (2; 2) theories are also discussed.« less

  15. Topological T-duality, automorphisms and classifying spaces

    NASA Astrophysics Data System (ADS)

    Pande, Ashwin S.

    2014-08-01

    We extend the formalism of Topological T-duality to spaces which are the total space of a principal S1-bundle p:E→W with an H-flux in H3(E,Z) together with an automorphism of the continuous-trace algebra on E determined by H. The automorphism is a ‘topological approximation’ to a gerby gauge transformation of spacetime. We motivate this physically from Buscher’s Rules for T-duality. Using the Equivariant Brauer Group, we connect this problem to the C∗-algebraic formalism of Topological T-duality of Mathai and Rosenberg (2005). We show that the study of this problem leads to the study of a purely topological problem, namely, Topological T-duality of triples (p,b,H) consisting of isomorphism classes of a principal circle bundle p:X→B and classes b∈H2(X,Z) and H∈H3(X,Z). We construct a classifying space R for triples in a manner similar to the work of Bunke and Schick (2005). We characterize R up to homotopy and study some of its properties. We show that it possesses a natural self-map which induces T-duality for triples. We study some properties of this map.

  16. Lagrangian averages, averaged Lagrangians, and the mean effects of fluctuations in fluid dynamics.

    PubMed

    Holm, Darryl D.

    2002-06-01

    We begin by placing the generalized Lagrangian mean (GLM) equations for a compressible adiabatic fluid into the Euler-Poincare (EP) variational framework of fluid dynamics, for an averaged Lagrangian. This is the Lagrangian averaged Euler-Poincare (LAEP) theorem. Next, we derive a set of approximate small amplitude GLM equations (glm equations) at second order in the fluctuating displacement of a Lagrangian trajectory from its mean position. These equations express the linear and nonlinear back-reaction effects on the Eulerian mean fluid quantities by the fluctuating displacements of the Lagrangian trajectories in terms of their Eulerian second moments. The derivation of the glm equations uses the linearized relations between Eulerian and Lagrangian fluctuations, in the tradition of Lagrangian stability analysis for fluids. The glm derivation also uses the method of averaged Lagrangians, in the tradition of wave, mean flow interaction. Next, the new glm EP motion equations for incompressible ideal fluids are compared with the Euler-alpha turbulence closure equations. An alpha model is a GLM (or glm) fluid theory with a Taylor hypothesis closure. Such closures are based on the linearized fluctuation relations that determine the dynamics of the Lagrangian statistical quantities in the Euler-alpha equations. Thus, by using the LAEP theorem, we bridge between the GLM equations and the Euler-alpha closure equations, through the small-amplitude glm approximation in the EP variational framework. We conclude by highlighting a new application of the GLM, glm, and alpha-model results for Lagrangian averaged ideal magnetohydrodynamics. (c) 2002 American Institute of Physics.

  17. Heating up the Baryonic Branch with U-duality: a unified picture of conifold black holes

    NASA Astrophysics Data System (ADS)

    Cáceres, Elena; Núñez, Carlos; Pando Zayas, Leopoldo A.

    2011-03-01

    We study different aspects of a U-duality recently presented by Maldacena and Martelli and apply it to non-extremal backgrounds. In particular, starting from new non-extremal wrapped D5 branes we generate new non-extremal generalizations of the Baryonic Branch of the Klebanov-Strassler solution. We also elaborate on different conceptual aspects of these U-dualities, like its action on (extremal and non-extremal) Dp branes, dual models for Yang-Mills-like theories, generic asymptotics and decoupling limit of the generated solutions.

  18. S-duality constraint on higher-derivative couplings

    NASA Astrophysics Data System (ADS)

    Garousi, Mohammad R.

    2014-05-01

    The Riemann curvature correction to the type II supergravity at eightderivative level in string frame is given as . For constant dilaton, it has been extended in the literature to the S-duality invariant form by extending the dilaton factor in the Einstein frame to the non-holomorphic Eisenstein series. For non-constant dilaton, however, there are various couplings in the Einstein frame which are not consistent with the S-duality. By constructing the tensors t 2 n from Born-Infeld action, we include the appropriate Ricci and scalar curvatures as well as the dilaton couplings to make the above action to be consistent with the S-duality.

  19. Local Quark-Hadron Duality in Electron Scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wally Melnitchouk

    2007-09-10

    We present some recent developments in the study of quark-hadron duality in structure functions in the resonance region. To understand the workings of local duality we introduce the concept of truncated moments, which are used to describe the Q^2 dependence of specific resonance regions within a QCD framework.

  20. An online-coupled NWP/ACT model with conserved Lagrangian levels

    NASA Astrophysics Data System (ADS)

    Sørensen, B.; Kaas, E.; Lauritzen, P. H.

    2012-04-01

    Numerical weather and climate modelling is under constant development. Semi-implicit semi-Lagrangian (SISL) models have proven to be numerically efficient in both short-range weather forecasts and climate models, due to the ability to use long time steps. Chemical/aerosol feedback mechanism are becoming more and more relevant in NWP as well as climate models, since the biogenic and anthropogenic emissions can have a direct effect on the dynamics and radiative properties of the atmosphere. To include chemical feedback mechanisms in the NWP models, on-line coupling is crucial. In 3D semi-Lagrangian schemes with quasi-Lagrangian vertical coordinates the Lagrangian levels are remapped to Eulerian model levels each time step. This remapping introduces an undesirable tendency to smooth sharp gradients and creates unphysical numerical diffusion in the vertical distribution. A semi-Lagrangian advection method is introduced, it combines an inherently mass conserving 2D semi-Lagrangian scheme, with a SISL scheme employing both hybrid vertical coordinates and a fully Lagrangian vertical coordinate. This minimizes the vertical diffusion and thus potentially improves the simulation of the vertical profiles of moisture, clouds, and chemical constituents. Since the Lagrangian levels suffer from traditional Lagrangian limitations caused by the convergence and divergence of the flow, remappings to the Eulerian model levels are generally still required - but this need only be applied after a number of time steps - unless dynamic remapping methods are used. For this several different remapping methods has been implemented. The combined scheme is mass conserving, consistent, and multi-tracer efficient.

  1. Lagrangian description of warm plasmas

    NASA Technical Reports Server (NTRS)

    Kim, H.

    1970-01-01

    Efforts are described to extend the averaged Lagrangian method of describing small signal wave propagation and nonlinear wave interaction, developed by earlier workers for cold plasmas, to the more general conditions of warm collisionless plasmas, and to demonstrate particularly the effectiveness of the method in analyzing wave-wave interactions. The theory is developed for both the microscopic description and the hydrodynamic approximation to plasma behavior. First, a microscopic Lagrangian is formulated rigorously, and expanded in terms of perturbations about equilibrium. Two methods are then described for deriving a hydrodynamic Lagrangian. In the first of these, the Lagrangian is obtained by velocity integration of the exact microscopic Lagrangian. In the second, the expanded hydrodynamic Lagrangian is obtained directly from the expanded microscopic Lagrangian. As applications of the microscopic Lagrangian, the small-signal dispersion relations and the coupled mode equations are derived for all possible waves in a warm infinite, weakly inhomogeneous magnetoplasma, and their interactions are examined.

  2. T-duality of singular spacetime compactifications in an H-flux

    NASA Astrophysics Data System (ADS)

    Linshaw, Andrew; Mathai, Varghese

    2018-07-01

    We begin by presenting a symmetric version of the circle equivariant T-duality result in a joint work of the second author with Siye Wu, thereby generalizing the results there. We then initiate the study of twisted equivariant Courant algebroids and equivariant generalized geometry and apply it to our context. As before, T-duality exchanges type IIA and type IIB string theories. In our theory, both spacetime and the T-dual spacetime can be singular spaces when the fixed point set is non-empty; the singularities correspond to Kaluza-Klein monopoles. We propose that the Ramond-Ramond charges of type II string theories on the singular spaces are classified by twisted equivariant cohomology groups, consistent with the previous work of Mathai and Wu, and prove that they are naturally isomorphic. We also establish the corresponding isomorphism of twisted equivariant Courant algebroids.

  3. Killings, duality and characteristic polynomials

    NASA Astrophysics Data System (ADS)

    Álvarez, Enrique; Borlaf, Javier; León, José H.

    1998-03-01

    In this paper the complete geometrical setting of (lowest order) abelian T-duality is explored with the help of some new geometrical tools (the reduced formalism). In particular, all invariant polynomials (the integrands of the characteristic classes) can be explicitly computed for the dual model in terms of quantities pertaining to the original one and with the help of the canonical connection whose intrinsic characterization is given. Using our formalism the physically, and T-duality invariant, relevant result that top forms are zero when there is an isometry without fixed points is easily proved. © 1998

  4. Exact Boson-Fermion Duality on a 3D Euclidean Lattice

    DOE PAGES

    Chen, Jing-Yuan; Son, Jun Ho; Wang, Chao; ...

    2018-01-05

    The idea of statistical transmutation plays a crucial role in descriptions of the fractional quantum Hall effect. However, a recently conjectured duality between a critical boson and a massless two-component Dirac fermion extends this notion to gapless systems. This duality sheds light on highly nontrivial problems such as the half-filled Landau level, the superconductor-insulator transition, and surface states of strongly coupled topological insulators. Although this boson-fermion duality has undergone many consistency checks, it has remained unproven. Here, we describe the duality in a nonperturbative fashion using an exact UV mapping of partition functions on a 3D Euclidean lattice.

  5. Exact Boson-Fermion Duality on a 3D Euclidean Lattice.

    PubMed

    Chen, Jing-Yuan; Son, Jun Ho; Wang, Chao; Raghu, S

    2018-01-05

    The idea of statistical transmutation plays a crucial role in descriptions of the fractional quantum Hall effect. However, a recently conjectured duality between a critical boson and a massless two-component Dirac fermion extends this notion to gapless systems. This duality sheds light on highly nontrivial problems such as the half-filled Landau level, the superconductor-insulator transition, and surface states of strongly coupled topological insulators. Although this boson-fermion duality has undergone many consistency checks, it has remained unproven. We describe the duality in a nonperturbative fashion using an exact UV mapping of partition functions on a 3D Euclidean lattice.

  6. Exact Boson-Fermion Duality on a 3D Euclidean Lattice

    NASA Astrophysics Data System (ADS)

    Chen, Jing-Yuan; Son, Jun Ho; Wang, Chao; Raghu, S.

    2018-01-01

    The idea of statistical transmutation plays a crucial role in descriptions of the fractional quantum Hall effect. However, a recently conjectured duality between a critical boson and a massless two-component Dirac fermion extends this notion to gapless systems. This duality sheds light on highly nontrivial problems such as the half-filled Landau level, the superconductor-insulator transition, and surface states of strongly coupled topological insulators. Although this boson-fermion duality has undergone many consistency checks, it has remained unproven. We describe the duality in a nonperturbative fashion using an exact UV mapping of partition functions on a 3D Euclidean lattice.

  7. The S-Lagrangian and a theory of homeostasis in living systems

    NASA Astrophysics Data System (ADS)

    Sandler, U.; Tsitolovsky, L.

    2017-04-01

    A major paradox of living things is their ability to actively counteract degradation in a continuously changing environment or being injured through homeostatic protection. In this study, we propose a dynamic theory of homeostasis based on a generalized Lagrangian approach (S-Lagrangian), which can be equally applied to physical and nonphysical systems. Following discoverer of homeostasis Cannon (1935), we assume that homeostasis results from tendency of the organisms to decrease of the stress and avoid of death. We show that the universality of homeostasis is a consequence of analytical properties of the S-Lagrangian, while peculiarities of the biochemical and physiological mechanisms of homeostasis determine phenomenological parameters of the S-Lagrangian. Additionally, we reveal that plausible assumptions about S-Lagrangian features lead to good agreement between theoretical descriptions and observed homeostatic behavior. Here, we have focused on homeostasis of living systems, however, the proposed theory is also capable of being extended to social systems.

  8. Symmetries of SU(2) Skyrmion in Hamiltonian and Lagrangian Approaches

    NASA Astrophysics Data System (ADS)

    Hong, Soon-Tae; Kim, Yong-Wan; Park, Young-Jai

    We apply the Batalin-Fradkin-Tyutin (BFT) method to the SU(2) Skyrmion to study the full symmetry structure of the model at the first-class Hamiltonian level. On the other hand, we also analyze the symmetry structure of the action having the WZ term, which corresponds to this Hamiltonian, in the framework of the Lagrangian approach. Furthermore, following the BFV formalism we derive the BRST invariant gauge fixed Lagrangian from the above extended action.

  9. An Extended Lagrangian Method

    NASA Technical Reports Server (NTRS)

    Liou, Meng-Sing

    1995-01-01

    A unique formulation of describing fluid motion is presented. The method, referred to as 'extended Lagrangian method,' is interesting from both theoretical and numerical points of view. The formulation offers accuracy in numerical solution by avoiding numerical diffusion resulting from mixing of fluxes in the Eulerian description. The present method and the Arbitrary Lagrangian-Eulerian (ALE) method have a similarity in spirit-eliminating the cross-streamline numerical diffusion. For this purpose, we suggest a simple grid constraint condition and utilize an accurate discretization procedure. This grid constraint is only applied to the transverse cell face parallel to the local stream velocity, and hence our method for the steady state problems naturally reduces to the streamline-curvature method, without explicitly solving the steady stream-coordinate equations formulated a priori. Unlike the Lagrangian method proposed by Loh and Hui which is valid only for steady supersonic flows, the present method is general and capable of treating subsonic flows and supersonic flows as well as unsteady flows, simply by invoking in the same code an appropriate grid constraint suggested in this paper. The approach is found to be robust and stable. It automatically adapts to flow features without resorting to clustering, thereby maintaining rather uniform grid spacing throughout and large time step. Moreover, the method is shown to resolve multi-dimensional discontinuities with a high level of accuracy, similar to that found in one-dimensional problems.

  10. An uplifting discussion of T-duality

    NASA Astrophysics Data System (ADS)

    Harvey, Jeffrey A.; Moore, Gregory W.

    2018-05-01

    It is well known that string theory has a T-duality symmetry relating circle compactifications of large and small radius. This symmetry plays a foundational role in string theory. We note here that while T-duality is order two acting on the moduli space of compactifications, it is order four in its action on the conformal field theory state space. More generally, involutions in the Weyl group W ( G) which act at points of enhanced G symmetry have canonical lifts to order four elements of G, a phenomenon first investigated by J. Tits in the mathematical literature on Lie groups and generalized here to conformal field theory. This simple fact has a number of interesting consequences. One consequence is a reevaluation of a mod two condition appearing in asymmetric orbifold constructions. We also briefly discuss the implications for the idea that T-duality and its generalizations should be thought of as discrete gauge symmetries in spacetime.

  11. Patching DFT, T-duality and gerbes

    NASA Astrophysics Data System (ADS)

    Howe, P. S.; Papadopoulos, G.

    2017-04-01

    We clarify the role of the dual coordinates as described from the perspectives of the Buscher T-duality rules and Double Field Theory. We show that the T-duality angular dual coordinates cannot be identified with Double Field Theory dual coordinates in any of the proposals that have been made in the literature for patching the doubled spaces. In particular, we show with explicit examples that the T-duality angular dual coordinates can have non-trivial transition functions over a spacetime and that their identification with the Double Field Theory dual coordinates is in conflict with proposals in which the latter remain inert under the patching of the B-field. We then demonstrate that the Double Field Theory coordinates can be identified with some C-space coordinates and that the T-dual spaces of a spacetime are subspaces of the gerbe in C-space. The construction provides a description of both the local O( d, d) symmetry and the T-dual spaces of spacetime.

  12. Argyres-Douglas theories and S-duality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buican, Matthew; Giacomelli, Simone; Nishinaka, Takahiro

    We generalize S-duality to N=2 superconformal field theories (SCFTs) with Coulomb branch operators of non-integer scaling dimension. As simple examples, we find minimal generalizations of the S-dualities discovered in SU(2) gauge theory with four fundamental flavors by Seiberg and Witten and in SU(3) gauge theory with six fundamental flavors by Argyres and Seiberg. Our constructions start by weakly gauging diagonal SU(2) and SU(3) flavor symmetry subgroups of two copies of a particular rank-one Argyres-Douglas theory (along with sufficient numbers of hypermultiplets to guarantee conformality of the gauging). Here, as we explore the resulting conformal manifold of the SU(2) SCFT, wemore » find an action of S-duality on the parameters of the theory that is reminiscent of Spin(8) triality. On the other hand, as we explore the conformal manifold of the SU(3) theory, we find that an exotic rank-two SCFT emerges in a dual SU(2) description.« less

  13. On tide-induced Lagrangian residual current and residual transport: 1. Lagrangian residual current

    USGS Publications Warehouse

    Feng, Shizuo; Cheng, Ralph T.; Pangen, Xi

    1986-01-01

    Residual currents in tidal estuaries and coastal embayments have been recognized as fundamental factors which affect the long-term transport processes. It has been pointed out by previous studies that it is more relevant to use a Lagrangian mean velocity than an Eulerian mean velocity to determine the movements of water masses. Under weakly nonlinear approximation, the parameter k, which is the ratio of the net displacement of a labeled water mass in one tidal cycle to the tidal excursion, is assumed to be small. Solutions for tides, tidal current, and residual current have been considered for two-dimensional, barotropic estuaries and coastal seas. Particular attention has been paid to the distinction between the Lagrangian and Eulerian residual currents. When k is small, the first-order Lagrangian residual is shown to be the sum of the Eulerian residual current and the Stokes drift. The Lagrangian residual drift velocity or the second-order Lagrangian residual current has been shown to be dependent on the phase of tidal current. The Lagrangian drift velocity is induced by nonlinear interactions between tides, tidal currents, and the first-order residual currents, and it takes the form of an ellipse on a hodograph plane. Several examples are given to further demonstrate the unique properties of the Lagrangian residual current.

  14. Mean-Lagrangian formalism and covariance of fluid turbulence.

    PubMed

    Ariki, Taketo

    2017-05-01

    Mean-field-based Lagrangian framework is developed for the fluid turbulence theory, which enables physically objective discussions, especially, of the history effect. Mean flow serves as a purely geometrical object of Lie group theory, providing useful operations to measure the objective rate and history integration of the general tensor field. The proposed framework is applied, on the one hand, to one-point closure model, yielding an objective expression of the turbulence viscoelastic effect. Application to two-point closure, on the other hand, is also discussed, where natural extension of known Lagrangian correlation is discovered on the basis of an extended covariance group.

  15. About non standard Lagrangians in cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dimitrijevic, Dragoljub D.; Milosevic, Milan

    A review of non standard Lagrangians present in modern cosmological models will be considered. Well known example of non standard Lagrangian is Dirac-Born-Infeld (DBI) type Lagrangian for tachyon field. Another type of non standard Lagrangian under consideration contains scalar field which describes open p-adic string tachyon and is called p-adic string theory Lagrangian. We will investigate homogenous cases of both DBI and p-adic fields and obtain Lagrangians of the standard type which have the same equations of motions as aforementioned non standard one.

  16. Towards Reconciliation of Several Dualities in Physician Leadership

    PubMed Central

    Walker, Keith; Kraines, Gerry

    2015-01-01

    Leadership has a renewed focus in healthcare, and physicians are being increasingly involved in a range of leadership roles. The aim of this paper is to discuss several dualities that exert tensions at the systems and individual levels. Although oppositional, the common dualities of physician leadership are not mutually exclusive but represent a complex, dynamic and interdependent relationship, often coexisting with each other and exerting tensions in multiple dimensions. The authors contend that a dialectic understanding – instead of either/or or finding a middle ground – of the opposite poles of these dualities allows for generating meaningful leadership perspectives and choices. PMID:25947031

  17. Higher T-duality in M-theory via local supersymmetry

    NASA Astrophysics Data System (ADS)

    Sati, Hisham; Schreiber, Urs

    2018-06-01

    By analyzing super-torsion and brane super-cocycles, we derive a new duality in M-theory, which takes the form of a higher version of T-duality in string theory. This involves a new topology change mechanism abelianizing the 3-sphere associated with the C-field topology to the 517-torus associated with exceptional-generalized super-geometry. Finally we explain parity symmetry in M-theory within exceptional-generalized super-spacetime at the same level of spherical T-duality, namely as an isomorphism on 7-twisted cohomology.

  18. Chern-Simons-matter dualities with SO and USp gauge groups

    DOE PAGES

    Aharony, Ofer; Benini, Francesco; Hsin, Po -Shen; ...

    2017-02-14

    In the last few years several dualities were found between the low-energy behaviors of Chern-Simons-matter theories with unitary gauge groups coupled to scalars, and similar theories coupled to fermions. In this paper we generalize those dualities to orthogonal and symplectic gauge groups. In particular, we conjecture dualities between SO(N) k Chern-Simons theories coupled to N f real scalars in the fundamental representation, and SO(k)- N+N f /2 coupled to N f real (Majorana) fermions in the fundamental. For N f = 0 these are just level-rank dualities of pure Chern-Simons theories, whose precise form we clarify. They lead us tomore » propose new gapped boundary states of topological insulators and superconductors. As a result, for k = 1 we get an interesting low-energy duality between N f free Majorana fermions and an SO( N) 1 Chern-Simons theory coupled to N f scalar fields (with N f ≤ N-2).« less

  19. Evaluation of wastewater contaminant transport in surface waters using verified Lagrangian sampling.

    PubMed

    Antweiler, Ronald C; Writer, Jeffrey H; Murphy, Sheila F

    2014-02-01

    Contaminants released from wastewater treatment plants can persist in surface waters for substantial distances. Much research has gone into evaluating the fate and transport of these contaminants, but this work has often assumed constant flow from wastewater treatment plants. However, effluent discharge commonly varies widely over a 24-hour period, and this variation controls contaminant loading and can profoundly influence interpretations of environmental data. We show that methodologies relying on the normalization of downstream data to conservative elements can give spurious results, and should not be used unless it can be verified that the same parcel of water was sampled. Lagrangian sampling, which in theory samples the same water parcel as it moves downstream (the Lagrangian parcel), links hydrologic and chemical transformation processes so that the in-stream fate of wastewater contaminants can be quantitatively evaluated. However, precise Lagrangian sampling is difficult, and small deviations - such as missing the Lagrangian parcel by less than 1h - can cause large differences in measured concentrations of all dissolved compounds at downstream sites, leading to erroneous conclusions regarding in-stream processes controlling the fate and transport of wastewater contaminants. Therefore, we have developed a method termed "verified Lagrangian" sampling, which can be used to determine if the Lagrangian parcel was actually sampled, and if it was not, a means for correcting the data to reflect the concentrations which would have been obtained had the Lagrangian parcel been sampled. To apply the method, it is necessary to have concentration data for a number of conservative constituents from the upstream, effluent, and downstream sites, along with upstream and effluent concentrations that are constant over the short-term (typically 2-4h). These corrections can subsequently be applied to all data, including non-conservative constituents. Finally, we show how data

  20. Duality linking standard and tachyon scalar field cosmologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avelino, P. P.; Bazeia, D.; Losano, L.

    2010-09-15

    In this work we investigate the duality linking standard and tachyon scalar field homogeneous and isotropic cosmologies in N+1 dimensions. We determine the transformation between standard and tachyon scalar fields and between their associated potentials, corresponding to the same background evolution. We show that, in general, the duality is broken at a perturbative level, when deviations from a homogeneous and isotropic background are taken into account. However, we find that for slow-rolling fields the duality is still preserved at a linear level. We illustrate our results with specific examples of cosmological relevance, where the correspondence between scalar and tachyon scalarmore » field models can be calculated explicitly.« less

  1. Hyperasymptotics and quark-hadron duality violations in QCD

    NASA Astrophysics Data System (ADS)

    Boito, Diogo; Caprini, Irinel; Golterman, Maarten; Maltman, Kim; Peris, Santiago

    2018-03-01

    We investigate the origin of the quark-hadron duality-violating terms in the expansion of the QCD two-point vector correlation function at large energies in the complex q2 plane. Starting from the dispersive representation for the associated polarization, the analytic continuation of the operator product expansion from the Euclidean to the Minkowski region is performed by means of a generalized Borel-Laplace transform, borrowing techniques from hyperasymptotics. We establish a connection between singularities in the Borel plane and quark-hadron duality-violating contributions. Starting with the assumption that for QCD at Nc=∞ the spectrum approaches a Regge trajectory at large energy, we obtain an expression for quark-hadron duality violations at large, but finite Nc.

  2. On the universe's cybernetics duality behavior

    NASA Astrophysics Data System (ADS)

    Feria, Erlan H.

    2015-05-01

    Universal cybernetics is the study of control and communications in living and non-living systems. In this paper the universal cybernetics duality principle (UCDP), first identified in control theory in 1978 and expressing a cybernetic duality behavior for our universe, is reviewed. The review is given on the heels of major prizes given to physicists for their use of mathematical dualities in solving intractable problems in physics such as those of cosmology's `dark energy', an area that according to a recent New York Times article has become "a cottage industry in physics today". These dualities are not unlike those of our UCDP that are further enhanced with physical dualities. For instance, in 2008 the UCDP guided us to the derivation of the laws of retention in physics as the space-penalty dual of the laws of motion in physics, including the dark energy thought responsible for the observed increase of the volume of our Universe as it ages. The UCDP has also guided us to the discovery of significant results in other fields such as: 1) in matched processors for quantized control with applications in the modeling of central nervous system (CNS) control mechanisms; 2) in radar designs where the discovery of latency theory, the time-penalty dual of information-theory, has led us to high-performance radar solutions that evade the use of `big data' in the form of SAR imagery of the earth; and 3) in unveiling biological lifespan bounds where the life-expectancy of an organism is sensibly predicted through lingerdynamics, the identified time-penalty dual of thermodynamics, which relates its adult lifespan to either: a. the ratio of its body size to its nutritional consumption rate; or b. its specific heat-capacity; or c. the ratio of its nutritional consumption rate energy to its entropic volume energy, a type of dark energy that is consistent with the observed decrease in the mass density of the organism as it ages.

  3. Lagrangian condensation microphysics with Twomey CCN activation

    NASA Astrophysics Data System (ADS)

    Grabowski, Wojciech W.; Dziekan, Piotr; Pawlowska, Hanna

    2018-01-01

    We report the development of a novel Lagrangian microphysics methodology for simulations of warm ice-free clouds. The approach applies the traditional Eulerian method for the momentum and continuous thermodynamic fields such as the temperature and water vapor mixing ratio, and uses Lagrangian super-droplets to represent condensed phase such as cloud droplets and drizzle or rain drops. In other applications of the Lagrangian warm-rain microphysics, the super-droplets outside clouds represent unactivated cloud condensation nuclei (CCN) that become activated upon entering a cloud and can further grow through diffusional and collisional processes. The original methodology allows for the detailed study of not only effects of CCN on cloud microphysics and dynamics, but also CCN processing by a cloud. However, when cloud processing is not of interest, a simpler and computationally more efficient approach can be used with super-droplets forming only when CCN is activated and no super-droplet existing outside a cloud. This is possible by applying the Twomey activation scheme where the local supersaturation dictates the concentration of cloud droplets that need to be present inside a cloudy volume, as typically used in Eulerian bin microphysics schemes. Since a cloud volume is a small fraction of the computational domain volume, the Twomey super-droplets provide significant computational advantage when compared to the original super-droplet methodology. Additional advantage comes from significantly longer time steps that can be used when modeling of CCN deliquescence is avoided. Moreover, other formulation of the droplet activation can be applied in case of low vertical resolution of the host model, for instance, linking the concentration of activated cloud droplets to the local updraft speed. This paper discusses the development and testing of the Twomey super-droplet methodology, focusing on the activation and diffusional growth. Details of the activation

  4. A rational explanation of wave-particle duality of light

    NASA Astrophysics Data System (ADS)

    Rashkovskiy, S. A.

    2013-10-01

    The wave-particle duality is a fundamental property of the nature. At the same time, it is one of the greatest mysteries of modern physics. This gave rise to a whole direction in quantum physics - the interpretation of quantum mechanics. The Wiener experiments demonstrating the wave-particle duality of light are discussed. It is shown that almost all interpretations of quantum mechanics allow explaining the double-slit experiments, but are powerless to explain the Wiener experiments. The reason of the paradox, associated with the wave-particle duality is analyzed. The quantum theory consists of two independent parts: (i) the dynamic equations describing the behavior of a quantum object (for example, the Schrodinger or Maxwell equations), and (ii) the Born's rule, the relation between the wave function and the probability of finding the particle at a given point. It is shown that precisely the Born's rule results in paradox in explaining the wave-particle duality. In order to eliminate this paradox, we propose a new rational interpretation of the wave-particle duality and associated new rule, connecting the corpuscular and wave properties of quantum objects. It is shown that this new rational interpretation of the wave-particle duality allows using the classic images of particle and wave in explaining the quantum mechanical and optical phenomena, does not result in paradox in explaining the doubleslit experiments and Wiener experiments, and does not contradict to the modern quantum mechanical concepts. It is shown that the Born's rule follows immediately from proposed new rules as an approximation.

  5. Stringy horizons and generalized FZZ duality in perturbation theory

    NASA Astrophysics Data System (ADS)

    Giribet, Gaston

    2017-02-01

    We study scattering amplitudes in two-dimensional string theory on a black hole bakground. We start with a simple derivation of the Fateev-Zamolodchikov-Zamolodchikov (FZZ) duality, which associates correlation functions of the sine-Liouville integrable model on the Riemann sphere to tree-level string amplitudes on the Euclidean two-dimensional black hole. This derivation of FZZ duality is based on perturbation theory, and it relies on a trick originally due to Fateev, which involves duality relations between different Selberg type integrals. This enables us to rewrite the correlation functions of sine-Liouville theory in terms of a special set of correlators in the gauged Wess-Zumino-Witten (WZW) theory, and use this to perform further consistency checks of the recently conjectured Generalized FZZ (GFZZ) duality. In particular, we prove that n-point correlation functions in sine-Liouville theory involving n - 2 winding modes actually coincide with the correlation functions in the SL(2,R)/U(1) gauged WZW model that include n - 2 oscillator operators of the type described by Giveon, Itzhaki and Kutasov in reference [1]. This proves the GFZZ duality for the case of tree level maximally winding violating n-point amplitudes with arbitrary n. We also comment on the connection between GFZZ and other marginal deformations previously considered in the literature.

  6. Cosmic distance duality and cosmic transparency

    NASA Astrophysics Data System (ADS)

    Nair, Remya; Jhingan, Sanjay; Jain, Deepak

    2012-12-01

    We compare distance measurements obtained from two distance indicators, Supernovae observations (standard candles) and Baryon acoustic oscillation data (standard rulers). The Union2 sample of supernovae with BAO data from SDSS, 6dFGS and the latest BOSS and WiggleZ surveys is used in search for deviations from the distance duality relation. We find that the supernovae are brighter than expected from BAO measurements. The luminosity distances tend to be smaller then expected from angular diameter distance estimates as also found in earlier works on distance duality, but the trend is not statistically significant. This further constrains the cosmic transparency.

  7. Macroscopic Lagrangian description of warm plasmas. II Nonlinear wave interactions

    NASA Technical Reports Server (NTRS)

    Kim, H.; Crawford, F. W.

    1983-01-01

    A macroscopic Lagrangian is simplified to the adiabatic limit and expanded about equilibrium, to third order in perturbation, for three illustrative cases: one-dimensional compression parallel to the static magnetic field, two-dimensional compression perpendicular to the static magnetic field, and three-dimensional compression. As examples of the averaged-Lagrangian method applied to nonlinear wave interactions, coupling coefficients are derived for interactions between two electron plasma waves and an ion acoustic wave, and between an ordinary wave, an electron plasma wave, and an ion acoustic wave.

  8. Users manual for a one-dimensional Lagrangian transport model

    USGS Publications Warehouse

    Schoellhamer, D.H.; Jobson, H.E.

    1986-01-01

    A Users Manual for the Lagrangian Transport Model (LTM) is presented. The LTM uses Lagrangian calculations that are based on a reference frame moving with the river flow. The Lagrangian reference frame eliminates the need to numerically solve the convective term of the convection-diffusion equation and provides significant numerical advantages over the more commonly used Eulerian reference frame. When properly applied, the LTM can simulate riverine transport and decay processes within the accuracy required by most water quality studies. The LTM is applicable to steady or unsteady one-dimensional unidirectional flows in fixed channels with tributary and lateral inflows. Application of the LTM is relatively simple and optional capabilities improve the model 's convenience. Appendices give file formats and three example LTM applications that include the incorporation of the QUAL II water quality model 's reaction kinetics into the LTM. (Author 's abstract)

  9. Effects of Helicity on Lagrangian and Eulerian Time Correlations in Turbulence

    NASA Technical Reports Server (NTRS)

    Rubinstein, Robert; Zhou, Ye

    1998-01-01

    Taylor series expansions of turbulent time correlation functions are applied to show that helicity influences Eulerian time correlations more strongly than Lagrangian time correlations: to second order in time, the helicity effect on Lagrangian time correlations vanishes, but the helicity effect on Eulerian time correlations is nonzero. Fourier analysis shows that the helicity effect on Eulerian time correlations is confined to the largest inertial range scales. Some implications for sound radiation by swirling flows are discussed.

  10. Insights into the three-dimensional Lagrangian geometry of the Antarctic polar vortex

    NASA Astrophysics Data System (ADS)

    Curbelo, Jezabel; José García-Garrido, Víctor; Mechoso, Carlos Roberto; Mancho, Ana Maria; Wiggins, Stephen; Niang, Coumba

    2017-07-01

    In this paper we study the three-dimensional (3-D) Lagrangian structures in the stratospheric polar vortex (SPV) above Antarctica. We analyse and visualize these structures using Lagrangian descriptor function M. The procedure for calculation with reanalysis data is explained. Benchmarks are computed and analysed that allow us to compare 2-D and 3-D aspects of Lagrangian transport. Dynamical systems concepts appropriate to 3-D, such as normally hyperbolic invariant curves, are discussed and applied. In order to illustrate our approach we select an interval of time in which the SPV is relatively undisturbed (August 1979) and an interval of rapid SPV changes (October 1979). Our results provide new insights into the Lagrangian structure of the vertical extension of the stratospheric polar vortex and its evolution. Our results also show complex Lagrangian patterns indicative of strong mixing processes in the upper troposphere and lower stratosphere. Finally, during the transition to summer in the late spring, we illustrate the vertical structure of two counterrotating vortices, one the polar and the other an emerging one, and the invariant separatrix that divides them.

  11. Form of the manifestly covariant Lagrangian

    NASA Astrophysics Data System (ADS)

    Johns, Oliver Davis

    1985-10-01

    The preferred form for the manifestly covariant Lagrangian function of a single, charged particle in a given electromagnetic field is the subject of some disagreement in the textbooks. Some authors use a ``homogeneous'' Lagrangian and others use a ``modified'' form in which the covariant Hamiltonian function is made to be nonzero. We argue in favor of the ``homogeneous'' form. We show that the covariant Lagrangian theories can be understood only if one is careful to distinguish quantities evaluated on the varied (in the sense of the calculus of variations) world lines from quantities evaluated on the unvaried world lines. By making this distinction, we are able to derive the Hamilton-Jacobi and Klein-Gordon equations from the ``homogeneous'' Lagrangian, even though the covariant Hamiltonian function is identically zero on all world lines. The derivation of the Klein-Gordon equation in particular gives Lagrangian theoretical support to the derivations found in standard quantum texts, and is also shown to be consistent with the Feynman path-integral method. We conclude that the ``homogeneous'' Lagrangian is a completely adequate basis for covariant Lagrangian theory both in classical and quantum mechanics. The article also explores the analogy with the Fermat theorem of optics, and illustrates a simple invariant notation for the Lagrangian and other four-vector equations.

  12. Arctic sea-ice diffusion from observed and simulated Lagrangian trajectories

    NASA Astrophysics Data System (ADS)

    Rampal, Pierre; Bouillon, Sylvain; Bergh, Jon; Ólason, Einar

    2016-07-01

    We characterize sea-ice drift by applying a Lagrangian diffusion analysis to buoy trajectories from the International Arctic Buoy Programme (IABP) dataset and from two different models: the standalone Lagrangian sea-ice model neXtSIM and the Eulerian coupled ice-ocean model used for the TOPAZ reanalysis. By applying the diffusion analysis to the IABP buoy trajectories over the period 1979-2011, we confirm that sea-ice diffusion follows two distinct regimes (ballistic and Brownian) and we provide accurate values for the diffusivity and integral timescale that could be used in Eulerian or Lagrangian passive tracers models to simulate the transport and diffusion of particles moving with the ice. We discuss how these values are linked to the evolution of the fluctuating displacements variance and how this information could be used to define the size of the search area around the position predicted by the mean drift. By comparing observed and simulated sea-ice trajectories for three consecutive winter seasons (2007-2011), we show how the characteristics of the simulated motion may differ from or agree well with observations. This comparison illustrates the usefulness of first applying a diffusion analysis to evaluate the output of modeling systems that include a sea-ice model before using these in, e.g., oil spill trajectory models or, more generally, to simulate the transport of passive tracers in sea ice.

  13. Evaluation of wastewater contaminant transport in surface waters using verified Lagrangian sampling

    USGS Publications Warehouse

    Antweiler, Ronald C.; Writer, Jeffrey H.; Murphy, Sheila F.

    2014-01-01

    Contaminants released from wastewater treatment plants can persist in surface waters for substantial distances. Much research has gone into evaluating the fate and transport of these contaminants, but this work has often assumed constant flow from wastewater treatment plants. However, effluent discharge commonly varies widely over a 24-hour period, and this variation controls contaminant loading and can profoundly influence interpretations of environmental data. We show that methodologies relying on the normalization of downstream data to conservative elements can give spurious results, and should not be used unless it can be verified that the same parcel of water was sampled. Lagrangian sampling, which in theory samples the same water parcel as it moves downstream (the Lagrangian parcel), links hydrologic and chemical transformation processes so that the in-stream fate of wastewater contaminants can be quantitatively evaluated. However, precise Lagrangian sampling is difficult, and small deviations – such as missing the Lagrangian parcel by less than 1 h – can cause large differences in measured concentrations of all dissolved compounds at downstream sites, leading to erroneous conclusions regarding in-stream processes controlling the fate and transport of wastewater contaminants. Therefore, we have developed a method termed “verified Lagrangian” sampling, which can be used to determine if the Lagrangian parcel was actually sampled, and if it was not, a means for correcting the data to reflect the concentrations which would have been obtained had the Lagrangian parcel been sampled. To apply the method, it is necessary to have concentration data for a number of conservative constituents from the upstream, effluent, and downstream sites, along with upstream and effluent concentrations that are constant over the short-term (typically 2–4 h). These corrections can subsequently be applied to all data, including non-conservative constituents. Finally, we

  14. Mathematical Theory of Generalized Duality Quantum Computers Acting on Vector-States

    NASA Astrophysics Data System (ADS)

    Cao, Huai-Xin; Long, Gui-Lu; Guo, Zhi-Hua; Chen, Zheng-Li

    2013-06-01

    Following the idea of duality quantum computation, a generalized duality quantum computer (GDQC) acting on vector-states is defined as a tuple consisting of a generalized quantum wave divider (GQWD) and a finite number of unitary operators as well as a generalized quantum wave combiner (GQWC). It is proved that the GQWD and GQWC of a GDQC are an isometry and a co-isometry, respectively, and mutually dual. It is also proved that every GDQC gives a contraction, called a generalized duality quantum gate (GDQG). A classification of GDQCs is given and the properties of GDQGs are discussed. Some applications are obtained, including two orthogonal duality quantum computer algorithms for unsorted database search and an understanding of the Mach-Zehnder interferometer.

  15. Hidden isometry of "T-duality without isometry"

    NASA Astrophysics Data System (ADS)

    Bouwknegt, Peter; Bugden, Mark; Klimčík, Ctirad; Wright, Kyle

    2017-08-01

    We study the T-dualisability criteria of Chatzistavrakidis, Deser and Jonke [3] who recently used Lie algebroid gauge theories to obtain sigma models exhibiting a "Tduality without isometry". We point out that those T-dualisability criteria are not written invariantly in [3] and depend on the choice of the algebroid framing. We then show that there always exists an isometric framing for which the Lie algebroid gauging boils down to standard Yang-Mills gauging. The "T-duality without isometry" of [3] is therefore nothing but traditional isometric non-Abelian T-duality in disguise.

  16. Three-dimensional dualities with bosons and fermions

    NASA Astrophysics Data System (ADS)

    Benini, Francesco

    2018-02-01

    We propose new infinite families of non-supersymmetric IR dualities in three space-time dimensions, between Chern-Simons gauge theories (with classical gauge groups) with both scalars and fermions in the fundamental representation. In all cases we study the phase diagram as we vary two relevant couplings, finding interesting lines of phase transitions. In various cases the dualities lead to predictions about multi-critical fixed points and the emergence of IR quantum symmetries. For unitary groups we also discuss the coupling to background gauge fields and the map of simple monopole operators.

  17. Implications of Lagrangian transport for coupled chemistry-climate simulations

    NASA Astrophysics Data System (ADS)

    Stenke, A.; Dameris, M.; Grewe, V.; Garny, H.

    2008-10-01

    For the first time a purely Lagrangian transport algorithm is applied in a fully coupled chemistry-climate model (CCM). We use the Lagrangian scheme ATTILA for the transport of water vapour, cloud water and chemical trace species in the ECHAM4.L39(DLR)/CHEM (E39C) CCM. The advantage of the Lagrangian approach is that it is numerically non-diffusive and therefore maintains steeper and more realistic gradients than the operational semi-Lagrangian transport scheme. In case of radiatively active species changes in the simulated distributions feed back to model dynamics which in turn affect the modelled transport. The implications of the Lagrangian transport scheme for stratospheric model dynamics and tracer distributions in the upgraded model version E39C-ATTILA (E39C-A) are evaluated by comparison with observations and results of the E39C model with the operational semi-Lagrangian advection scheme. We find that several deficiencies in stratospheric dynamics in E39C seem to originate from a pronounced modelled wet bias and an associated cold bias in the extra-tropical lowermost stratosphere. The reduction of the simulated moisture and temperature bias in E39C-A leads to a significant advancement of stratospheric dynamics in terms of the mean state as well as annual and interannual variability. As a consequence of the favourable numerical characteristics of the Lagrangian transport scheme and the improved model dynamics, E39C-A generally shows more realistic stratospheric tracer distributions: Compared to E39C high stratospheric chlorine (Cly) concentrations extend further downward and agree now well with analyses derived from observations. Therefore E39C-A realistically covers the altitude of maximum ozone depletion in the stratosphere. The location of the ozonopause, i.e. the transition from low tropospheric to high stratospheric ozone values, is also clearly improved in E39C-A. Furthermore, the simulated temporal evolution of stratospheric Cly in the past is

  18. The exceptional sigma model

    NASA Astrophysics Data System (ADS)

    Arvanitakis, Alex S.; Blair, Chris D. A.

    2018-04-01

    We detail the construction of the exceptional sigma model, which describes a string propagating in the "extended spacetime" of exceptional field theory. This is to U-duality as the doubled sigma model is to T-duality. Symmetry specifies the Weylinvariant Lagrangian uniquely and we show how it reduces to the correct 10-dimensional string Lagrangians. We also consider the inclusion of a Fradkin-Tseytlin (or generalised dilaton) coupling as well as a reformulation with dynamical tension.

  19. Core-Shell Particles as Building Blocks for Systems with High Duality Symmetry

    NASA Astrophysics Data System (ADS)

    Rahimzadegan, Aso; Rockstuhl, Carsten; Fernandez-Corbaton, Ivan

    2018-05-01

    Material electromagnetic duality symmetry requires a system to have equal electric and magnetic responses. Intrinsically dual materials that meet the duality conditions at the level of the constitutive relations do not exist in many frequency bands. Nevertheless, discrete objects like metallic helices and homogeneous dielectric spheres can be engineered to approximate the dual behavior. We exploit the extra degrees of freedom of a core-shell dielectric sphere in a particle optimization procedure. The duality symmetry of the resulting particle is more than 1 order of magnitude better than previously reported nonmagnetic objects. We use T -matrix-based multiscattering techniques to show that the improvement is transferred onto the duality symmetry of composite objects when the core-shell particle is used as a building block instead of homogeneous spheres. These results are relevant for the fashioning of systems with high duality symmetry, which are required for some technologically important effects.

  20. Extreme Lagrangian acceleration in confined turbulent flow.

    PubMed

    Kadoch, Benjamin; Bos, Wouter J T; Schneider, Kai

    2008-05-09

    A Lagrangian study of two-dimensional turbulence for two different geometries, a periodic and a confined circular geometry, is presented to investigate the influence of solid boundaries on the Lagrangian dynamics. It is found that the Lagrangian acceleration is even more intermittent in the confined domain than in the periodic domain. The flatness of the Lagrangian acceleration as a function of the radius shows that the influence of the wall on the Lagrangian dynamics becomes negligible in the center of the domain, and it also reveals that the wall is responsible for the increased intermittency. The transition in the Lagrangian statistics between this region, not directly influenced by the walls, and a critical radius which defines a Lagrangian boundary layer is shown to be very sharp with a sudden increase of the acceleration flatness from about 5 to about 20.

  1. "Lagrangian" for a Non-Lagrangian Field Theory with N=2 Supersymmetry.

    PubMed

    Gadde, Abhijit; Razamat, Shlomo S; Willett, Brian

    2015-10-23

    We suggest that at least some of the strongly coupled N=2 quantum field theories in 4D can have a nonconformal N=1 Lagrangian description flowing to them at low energies. In particular, we construct such a description for the N=2 rank one superconformal field theory with E(6) flavor symmetry, for which a Lagrangian description was previously unavailable. We utilize this description to compute several supersymmetric partition functions.

  2. A non-conventional discontinuous Lagrangian for viscous flow

    PubMed Central

    Marner, F.

    2017-01-01

    Drawing an analogy with quantum mechanics, a new Lagrangian is proposed for a variational formulation of the Navier–Stokes equations which to-date has remained elusive. A key feature is that the resulting Lagrangian is discontinuous in nature, posing additional challenges apropos the mathematical treatment of the related variational problem, all of which are resolvable. In addition to extending Lagrange's formalism to problems involving discontinuous behaviour, it is demonstrated that the associated equations of motion can self-consistently be interpreted within the framework of thermodynamics beyond local equilibrium, with the limiting case recovering the classical Navier–Stokes equations. Perspectives for applying the new formalism to discontinuous physical phenomena such as phase and grain boundaries, shock waves and flame fronts are provided. PMID:28386415

  3. A non-conventional discontinuous Lagrangian for viscous flow.

    PubMed

    Scholle, M; Marner, F

    2017-02-01

    Drawing an analogy with quantum mechanics, a new Lagrangian is proposed for a variational formulation of the Navier-Stokes equations which to-date has remained elusive. A key feature is that the resulting Lagrangian is discontinuous in nature, posing additional challenges apropos the mathematical treatment of the related variational problem, all of which are resolvable. In addition to extending Lagrange's formalism to problems involving discontinuous behaviour, it is demonstrated that the associated equations of motion can self-consistently be interpreted within the framework of thermodynamics beyond local equilibrium, with the limiting case recovering the classical Navier-Stokes equations. Perspectives for applying the new formalism to discontinuous physical phenomena such as phase and grain boundaries, shock waves and flame fronts are provided.

  4. A new method to calibrate Lagrangian model with ASAR images for oil slick trajectory.

    PubMed

    Tian, Siyu; Huang, Xiaoxia; Li, Hongga

    2017-03-15

    Since Lagrangian model coefficients vary with different conditions, it is necessary to calibrate the model to obtain optimal coefficient combination for special oil spill accident. This paper focuses on proposing a new method to calibrate Lagrangian model with time series of Envisat ASAR images. Oil slicks extracted from time series images form a detected trajectory of special oil slick. Lagrangian model is calibrated by minimizing the difference between simulated trajectory and detected trajectory. mean center position distance difference (MCPD) and rotation difference (RD) of Oil slicks' or particles' standard deviational ellipses (SDEs) are calculated as two evaluations. The two parameters are taken to evaluate the performance of Lagrangian transport model with different coefficient combinations. This method is applied to Penglai 19-3 oil spill accident. The simulation result with calibrated model agrees well with related satellite observations. It is suggested the new method is effective to calibrate Lagrangian model. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Self-duality and phase structure of the 4D random-plaquette Z2 gauge model

    NASA Astrophysics Data System (ADS)

    Arakawa, Gaku; Ichinose, Ikuo; Matsui, Tetsuo; Takeda, Koujin

    2005-03-01

    In the present paper, we shall study the 4-dimensional Z lattice gauge model with a random gauge coupling; the random-plaquette gauge model (RPGM). The random gauge coupling at each plaquette takes the value J with the probability 1-p and - J with p. This model exhibits a confinement-Higgs phase transition. We numerically obtain a phase boundary curve in the (p-T)-plane where T is the "temperature" measured in unit of J/k. This model plays an important role in estimating the accuracy threshold of a quantum memory of a toric code. In this paper, we are mainly interested in its "self-duality" aspect, and the relationship with the random-bond Ising model (RBIM) in 2-dimensions. The "self-duality" argument can be applied both for RPGM and RBIM, giving the same duality equations, hence predicting the same phase boundary. The phase boundary curve obtained by our numerical simulation almost coincides with this predicted phase boundary at the high-temperature region. The phase transition is of first order for relatively small values of p<0.08, but becomes of second order for larger p. The value of p at the intersection of the phase boundary curve and the Nishimori line is regarded as the accuracy threshold of errors in a toric quantum memory. It is estimated as p=0.110±0.002, which is very close to the value conjectured by Takeda and Nishimori through the "self-duality" argument.

  6. Compact, singular G 2-holonomy manifolds and M/heterotic/F-theory duality

    NASA Astrophysics Data System (ADS)

    Braun, Andreas P.; Schäfer-Nameki, Sakura

    2018-04-01

    We study the duality between M-theory on compact holonomy G 2-manifolds and the heterotic string on Calabi-Yau three-folds. The duality is studied for K3-fibered G 2-manifolds, called twisted connected sums, which lend themselves to an application of fiber-wise M-theory/Heterotic Duality. For a large class of such G 2-manifolds we are able to identify the dual heterotic as well as F-theory realizations. First we establish this chain of dualities for smooth G 2-manifolds. This has a natural generalization to situations with non-abelian gauge groups, which correspond to singular G 2-manifolds, where each of the K3-fibers degenerates. We argue for their existence through the chain of dualities, supported by non-trivial checks of the spectra. The corresponding 4d gauge groups can be both Higgsable and non-Higgsable, and we provide several explicit examples of the general construction.

  7. Challenges in assessing college students' conception of duality: the case of infinity

    NASA Astrophysics Data System (ADS)

    Babarinsa-Ochiedike, Grace Olutayo

    Interpreting students' views of infinity posits a challenge for researchers due to the dynamic nature of the conception. There is diversity and variation among students' process-object perceptions. The fluctuations between students' views however reveal an undeveloped duality conception. This study examined college students' conception of duality in understanding and representing infinity with the intent to design strategies that could guide researchers in categorizing students' views of infinity into different levels. Data for the study were collected from N=238 college students enrolled in Calculus sequence courses (Pre-Calculus, Calculus I through Calculus III) at one of the southwestern universities in the U.S. using self-report questionnaires and semi-structured individual task-based interviews. Data was triangulated using multiple measures analyzed by three independent experts using self-designed coding sheets to assess students' externalization of the duality conception of infinity. Results of this study reveal that college students' experiences in traditional Calculus sequence courses are not supportive of the development of duality conception. On the contrary, it strengthens the singularity perspective on fundamental ideas of mathematics such as infinity. The study also found that coding and assessing college students' conception of duality is a challenging and complex process due to the dynamic nature of the conception that is task-dependent and context-dependent. Practical significance of the study is that it helps to recognize misconceptions and starts addressing them so students will have a more comprehensive view of fundamental mathematical ideas as they progress through the Calculus coursework sequence. The developed duality concept development framework called Action-Process-Object-Duality (APOD) adapted from the APOS theory could guide educators and researchers as they engage in assessing students' conception of duality. The results of this study

  8. Holographic duality: Stealing dimensions from metals

    NASA Astrophysics Data System (ADS)

    Zaanen, Jan

    2013-10-01

    Although electrically charged black holes seem remote from superconductors and strange metals in the laboratory, they might be intimately related by the holographic dualities discovered in string theory.

  9. Applying Boundary Conditions Using a Time-Dependent Lagrangian for Modeling Laser-Plasma Interactions

    NASA Astrophysics Data System (ADS)

    Reyes, Jonathan; Shadwick, B. A.

    2016-10-01

    Modeling the evolution of a short, intense laser pulse propagating through an underdense plasma is of particular interest in the physics of laser-plasma interactions. Numerical models are typically created by first discretizing the equations of motion and then imposing boundary conditions. Using the variational principle of Chen and Sudan, we spatially discretize the Lagrangian density to obtain discrete equations of motion and a discrete energy conservation law which is exactly satisfied regardless of the spatial grid resolution. Modifying the derived equations of motion (e.g., enforcing boundary conditions) generally ruins energy conservation. However, time-dependent terms can be added to the Lagrangian which force the equations of motion to have the desired boundary conditions. Although some foresight is needed to choose these time-dependent terms, this approach provides a mechanism for energy to exit the closed system while allowing the conservation law to account for the loss. An appropriate time discretization scheme is selected based on stability analysis and resolution requirements. We present results using this variational approach in a co-moving coordinate system and compare such results to those using traditional second-order methods. This work was supported by the U. S. Department of Energy under Contract No. DE-SC0008382 and by the National Science Foundation under Contract No. PHY- 1104683.

  10. Lagrangian transport properties of pulmonary interfacial flows

    PubMed Central

    Smith, Bradford J.; Lukens, Sarah; Yamaguchi, Eiichiro; Gaver, Donald P.

    2012-01-01

    Disease states characterized by airway fluid occlusion and pulmonary surfactant insufficiency, such as respiratory distress syndrome, have a high mortality rate. Understanding the mechanics of airway reopening, particularly involving surfactant transport, may provide an avenue to increase patient survival via optimized mechanical ventilation waveforms. We model the occluded airway as a liquid-filled rigid tube with the fluid phase displaced by a finger of air that propagates with both mean and sinusoidal velocity components. Finite-time Lyapunov exponent (FTLE) fields are employed to analyse the convective transport characteristics, taking note of Lagrangian coherent structures (LCSs) and their effects on transport. The Lagrangian perspective of these techniques reveals flow characteristics that are not readily apparent by observing Eulerian measures. These analysis techniques are applied to surfactant-free velocity fields determined computationally, with the boundary element method, and measured experimentally with micro particle image velocimetry (μ-PIV). We find that the LCS divides the fluid into two regimes, one advected upstream (into the thin residual film) and the other downstream ahead of the advancing bubble. At higher oscillatory frequencies particles originating immediately inside the LCS experience long residence times at the air–liquid interface, which may be conducive to surfactant transport. At high frequencies a well-mixed attractor region is identified; this volume of fluid cyclically travels along the interface and into the bulk fluid. The Lagrangian analysis is applied to velocity data measured with 0.01 mg ml−1 of the clinical pulmonary surfactant Infasurf in the bulk fluid, demonstrating flow field modifications with respect to the surfactant-free system that were not visible in the Eulerian frame. PMID:23049141

  11. Lagrangian averaging with geodesic mean

    NASA Astrophysics Data System (ADS)

    Oliver, Marcel

    2017-11-01

    This paper revisits the derivation of the Lagrangian averaged Euler (LAE), or Euler-α equations in the light of an intrinsic definition of the averaged flow map as the geodesic mean on the volume-preserving diffeomorphism group. Under the additional assumption that first-order fluctuations are statistically isotropic and transported by the mean flow as a vector field, averaging of the kinetic energy Lagrangian of an ideal fluid yields the LAE Lagrangian. The derivation presented here assumes a Euclidean spatial domain without boundaries.

  12. Lagrangian averaging with geodesic mean.

    PubMed

    Oliver, Marcel

    2017-11-01

    This paper revisits the derivation of the Lagrangian averaged Euler (LAE), or Euler- α equations in the light of an intrinsic definition of the averaged flow map as the geodesic mean on the volume-preserving diffeomorphism group. Under the additional assumption that first-order fluctuations are statistically isotropic and transported by the mean flow as a vector field, averaging of the kinetic energy Lagrangian of an ideal fluid yields the LAE Lagrangian. The derivation presented here assumes a Euclidean spatial domain without boundaries.

  13. Supersymmetry: Compactification, flavor, and dualities

    NASA Astrophysics Data System (ADS)

    Heidenreich, Benjamin Jones

    N = 1 gauge theory dualities relating different world-volume gauge theories of D3 branes probing an orientifold singularity. We argue that these dualities originate from the S-duality of type IIB string theory, much like electromagnetic dualities of N = 4 gauge theories.

  14. Lagrangian methods in the analysis of nonlinear wave interactions in plasma

    NASA Technical Reports Server (NTRS)

    Galloway, J. J.

    1972-01-01

    An averaged-Lagrangian method is developed for obtaining the equations which describe the nonlinear interactions of the wave (oscillatory) and background (nonoscillatory) components which comprise a continuous medium. The method applies to monochromatic waves in any continuous medium that can be described by a Lagrangian density, but is demonstrated in the context of plasma physics. The theory is presented in a more general and unified form by way of a new averaged-Lagrangian formalism which simplifies the perturbation ordering procedure. Earlier theory is extended to deal with a medium distributed in velocity space and to account for the interaction of the background with the waves. The analytic steps are systematized, so as to maximize calculational efficiency. An assessment of the applicability and limitations of the method shows that it has some definite advantages over other approaches in efficiency and versatility.

  15. Dual formulation of covariant nonlinear duality-symmetric action of kappa-symmetric D3-brane

    NASA Astrophysics Data System (ADS)

    Vanichchapongjaroen, Pichet

    2018-02-01

    We study the construction of covariant nonlinear duality-symmetric actions in dual formulation. Essentially, the construction is the PST-covariantisation and nonlinearisation of Zwanziger action. The covariantisation made use of three auxiliary scalar fields. Apart from these, the construction proceed in a similar way to that of the standard formulation. For example, the theories can be extended to include interactions with external fields, and that the theories possess two local PST symmetries. We then explicitly demonstrate the construction of covariant nonlinear duality-symmetric actions in dual formulation of DBI theory, and D3-brane. For each of these theories, the twisted selfduality condition obtained from duality-symmetric actions are explicitly shown to match with the duality relation between field strength and its dual from the one-potential actions. Their on-shell actions between the duality-symmetric and the one-potential versions are also shown to match. We also explicitly prove kappa-symmetry of the covariant nonlinear duality-symmetric D3-brane action in dual formulation.

  16. Reduction of numerical diffusion in three-dimensional vortical flows using a coupled Eulerian/Lagrangian solution procedure

    NASA Technical Reports Server (NTRS)

    Felici, Helene M.; Drela, Mark

    1993-01-01

    A new approach based on the coupling of an Eulerian and a Lagrangian solver, aimed at reducing the numerical diffusion errors of standard Eulerian time-marching finite-volume solvers, is presented. The approach is applied to the computation of the secondary flow in two bent pipes and the flow around a 3D wing. Using convective point markers the Lagrangian approach provides a correction of the basic Eulerian solution. The Eulerian flow in turn integrates in time the Lagrangian state-vector. A comparison of coarse and fine grid Eulerian solutions makes it possible to identify numerical diffusion. It is shown that the Eulerian/Lagrangian approach is an effective method for reducing numerical diffusion errors.

  17. New localization mechanism and Hodge duality for q -form field

    NASA Astrophysics Data System (ADS)

    Fu, Chun-E.; Liu, Yu-Xiao; Guo, Heng; Zhang, Sheng-Li

    2016-03-01

    In this paper, we investigate the problem of localization and the Hodge duality for a q -form field on a p -brane with codimension one. By a general Kaluza-Klein (KK) decomposition without gauge fixing, we obtain two Schrödinger-like equations for two types of KK modes of the bulk q -form field, which determine the localization and mass spectra of these KK modes. It is found that there are two types of zero modes (the 0-level modes): a q -form zero mode and a (q -1 )-form one, which cannot be localized on the brane at the same time. For the n -level KK modes, there are two interacting KK modes, a massive q -form KK mode and a massless (q -1 )-form one. By analyzing gauge invariance of the effective action and choosing a gauge condition, the n -level massive q -form KK mode decouples from the n -level massless (q -1 )-form one. It is also found that the Hodge duality in the bulk naturally becomes two dualities on the brane. The first one is the Hodge duality between a q -form zero mode and a (p -q -1 )-form one, or between a (q -1 )-form zero mode and a (p -q )-form one. The second duality is between two group KK modes: one is an n -level massive q -form KK mode with mass mn and an n -level massless (q -1 )-form mode; another is an n -level (p -q )-form one with the same mass mn and an n -level massless (p -q -1 )-form mode. Because of the dualities, the effective field theories on the brane for the KK modes of the two dual bulk form fields are physically equivalent.

  18. Two-component duality and flavoring in the P+f model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dash, J.W.; Jones, S.T.; Martin, A.

    We show that modern Regge fits to rising ..pi..N total cross sections sigma/sub piN/ using the Harari-Freund P+f model of diffraction are not consistent with two-component duality. If a conventional Pomeron is chosen (dominant j-plane pole plus weak cuts), the resulting f is ''dual'' to the resonances plus one-half the background. Conversely, constraining the f-pole amplitude by duality does not allow a reasonable fit to sigma/sub piN/. In contrast, the P-f identity model of diffraction is shown to satisfy a modified form of two-component duality. We show that by incorporating flavoring renormalization, the P+f picture can be made consistent withmore » duality. The unflavored P intercept is 0.91 and the flavored P intercept is 1.1. Significant absorptive j-plane cuts are also required, though these are small enough to be consistent with dominant short-range order. Thus flavoring, which is so essential in P-f identity phenomenology, seems to play a positive role in diffraction scattering generally.« less

  19. Conditions for duality between fluxes and concentrations in biochemical networks

    PubMed Central

    Fleming, Ronan M.T.; Vlassis, Nikos; Thiele, Ines; Saunders, Michael A.

    2016-01-01

    Mathematical and computational modelling of biochemical networks is often done in terms of either the concentrations of molecular species or the fluxes of biochemical reactions. When is mathematical modelling from either perspective equivalent to the other? Mathematical duality translates concepts, theorems or mathematical structures into other concepts, theorems or structures, in a one-to-one manner. We present a novel stoichiometric condition that is necessary and sufficient for duality between unidirectional fluxes and concentrations. Our numerical experiments, with computational models derived from a range of genome-scale biochemical networks, suggest that this flux-concentration duality is a pervasive property of biochemical networks. We also provide a combinatorial characterisation that is sufficient to ensure flux-concentration duality. The condition prescribes that, for every two disjoint sets of molecular species, there is at least one reaction complex that involves species from only one of the two sets. When unidirectional fluxes and molecular species concentrations are dual vectors, this implies that the behaviour of the corresponding biochemical network can be described entirely in terms of either concentrations or unidirectional fluxes. PMID:27345817

  20. Conditions for duality between fluxes and concentrations in biochemical networks

    DOE PAGES

    Fleming, Ronan M. T.; Vlassis, Nikos; Thiele, Ines; ...

    2016-06-23

    Mathematical and computational modelling of biochemical networks is often done in terms of either the concentrations of molecular species or the fluxes of biochemical reactions. When is mathematical modelling from either perspective equivalent to the other? Mathematical duality translates concepts, theorems or mathematical structures into other concepts, theorems or structures, in a one-to-one manner. We present a novel stoichiometric condition that is necessary and sufficient for duality between unidirectional fluxes and concentrations. Our numerical experiments, with computational models derived from a range of genome-scale biochemical networks, suggest that this flux-concentration duality is a pervasive property of biochemical networks. We alsomore » provide a combinatorial characterisation that is sufficient to ensure flux-concentration duality.The condition prescribes that, for every two disjoint sets of molecular species, there is at least one reaction complex that involves species from only one of the two sets. When unidirectional fluxes and molecular species concentrations are dual vectors, this implies that the behaviour of the corresponding biochemical network can be described entirely in terms of either concentrations or unidirectional fluxes« less

  1. Conditions for duality between fluxes and concentrations in biochemical networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fleming, Ronan M. T.; Vlassis, Nikos; Thiele, Ines

    Mathematical and computational modelling of biochemical networks is often done in terms of either the concentrations of molecular species or the fluxes of biochemical reactions. When is mathematical modelling from either perspective equivalent to the other? Mathematical duality translates concepts, theorems or mathematical structures into other concepts, theorems or structures, in a one-to-one manner. We present a novel stoichiometric condition that is necessary and sufficient for duality between unidirectional fluxes and concentrations. Our numerical experiments, with computational models derived from a range of genome-scale biochemical networks, suggest that this flux-concentration duality is a pervasive property of biochemical networks. We alsomore » provide a combinatorial characterisation that is sufficient to ensure flux-concentration duality.The condition prescribes that, for every two disjoint sets of molecular species, there is at least one reaction complex that involves species from only one of the two sets. When unidirectional fluxes and molecular species concentrations are dual vectors, this implies that the behaviour of the corresponding biochemical network can be described entirely in terms of either concentrations or unidirectional fluxes« less

  2. Real weights, bound states and duality orbits

    NASA Astrophysics Data System (ADS)

    Marrani, Alessio; Riccioni, Fabio; Romano, Luca

    2016-01-01

    We show that the duality orbits of extremal black holes in supergravity theories with symmetric scalar manifolds can be derived by studying the stabilizing subalgebras of suitable representatives, realized as bound states of specific weight vectors of the corresponding representation of the duality symmetry group. The weight vectors always correspond to weights that are real, where the reality properties are derived from the Tits-Satake diagram that identifies the real form of the Lie algebra of the duality symmetry group. Both 𝒩 = 2 magic Maxwell-Einstein supergravities and the semisimple infinite sequences of 𝒩 = 2 and 𝒩 = 4 theories in D = 4 and 5 are considered, and various results, obtained over the years in the literature using different methods, are retrieved. In particular, we show that the stratification of the orbits of these theories occurs because of very specific properties of the representations: in the case of the theory based on the real numbers, whose symmetry group is maximally noncompact and therefore all the weights are real, the stratification is due to the presence of weights of different lengths, while in the other cases it is due to the presence of complex weights.

  3. Holographic dark energy from fluid/gravity duality constraint by cosmological observations

    NASA Astrophysics Data System (ADS)

    Pourhassan, Behnam; Bonilla, Alexander; Faizal, Mir; Abreu, Everton M. C.

    2018-06-01

    In this paper, we obtain a holographic model of dark energy using the fluid/gravity duality. This model will be dual to a higher dimensional Schwarzschild black hole, and we would use fluid/gravity duality to relate to the parameters of this black hole to such a cosmological model. We will also analyze the thermodynamics of such a solution, and discuss the stability model. Finally, we use cosmological data to constraint the parametric space of this dark energy model. Thus, we will use observational data to perform cosmography for this holographic model based on fluid/gravity duality.

  4. Power centroid radar and its rise from the universal cybernetics duality

    NASA Astrophysics Data System (ADS)

    Feria, Erlan H.

    2014-05-01

    Power centroid radar (PC-Radar) is a fast and powerful adaptive radar scheme that naturally surfaced from the recent discovery of the time-dual for information theory which has been named "latency theory." Latency theory itself was born from the universal cybernetics duality (UC-Duality), first identified in the late 1970s, that has also delivered a time dual for thermodynamics that has been named "lingerdynamics" and anchors an emerging lifespan theory for biological systems. In this paper the rise of PC-Radar from the UC-Duality is described. The development of PC-Radar, US patented, started with Defense Advanced Research Projects Agency (DARPA) funded research on knowledge-aided (KA) adaptive radar of the last decade. The outstanding signal to interference plus noise ratio (SINR) performance of PC-Radar under severely taxing environmental disturbances will be established. More specifically, it will be seen that the SINR performance of PC-Radar, either KA or knowledgeunaided (KU), approximates that of an optimum KA radar scheme. The explanation for this remarkable result is that PC-Radar inherently arises from the UC-Duality, which advances a "first principles" duality guidance theory for the derivation of synergistic storage-space/computational-time compression solutions. Real-world synthetic aperture radar (SAR) images will be used as prior-knowledge to illustrate these results.

  5. Quantitative Boltzmann-Gibbs Principles via Orthogonal Polynomial Duality

    NASA Astrophysics Data System (ADS)

    Ayala, Mario; Carinci, Gioia; Redig, Frank

    2018-06-01

    We study fluctuation fields of orthogonal polynomials in the context of particle systems with duality. We thereby obtain a systematic orthogonal decomposition of the fluctuation fields of local functions, where the order of every term can be quantified. This implies a quantitative generalization of the Boltzmann-Gibbs principle. In the context of independent random walkers, we complete this program, including also fluctuation fields in non-stationary context (local equilibrium). For other interacting particle systems with duality such as the symmetric exclusion process, similar results can be obtained, under precise conditions on the n particle dynamics.

  6. Metaphorical Duality: High School Subject Departments as Both Communities and Organizations

    ERIC Educational Resources Information Center

    Melville, Wayne; Wallace, John

    2007-01-01

    This article investigates the metaphorical duality that exists when school subject departments are concurrently conceptualized as both communities and organizations. Employing a narrative methodology, we use the metaphorical duality to examine the manner in which science teachers negotiate two key aspects of their work; professional learning and…

  7. Supersymmetric black holes and Freudenthal duality

    NASA Astrophysics Data System (ADS)

    Marrani, Alessio; Mandal, Taniya; Tripathy, Prasanta K.

    2017-07-01

    We study the effect of Freudenthal duality on supersymmetric extremal black hole attractors in 𝒩 = 2, D = 4 ungauged supergravity. Freudenthal duality acts on the dyonic black hole charges as an anti-involution which keeps the black hole entropy and the critical points of the effective black hole potential invariant. We analyze its effect on the recently discovered distinct, mutually exclusive phases of axionic supersymmetric black holes, related to the existence of nontrivial involutory constant matrices. In particular, we consider a supersymmetric D0 - D4 - D6 black hole and we explicitly Freudenthal-map it to a supersymmetric D0 - D2 - D4 - D6 black hole. We thus show that the charge representation space of a supersymmetric D0 - D2 - D4 - D6 black hole also contains mutually exclusive domains.

  8. SL(2,R) duality-symmetric action for electromagnetic theory with electric and magnetic sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Choonkyu, E-mail: cklee@phya.snu.ac.kr; School of Physics, Korea Institute for Advanced Study, Seoul 130-722; Min, Hyunsoo, E-mail: hsmin@dirac.uos.ac.kr

    2013-12-15

    For the SL(2,R) duality-invariant generalization of Maxwell electrodynamics in the presence of both electric and magnetic sources, we formulate a local, manifestly duality-symmetric, Zwanziger-type action by introducing a pair of four-potentials A{sup μ} and B{sup μ} in a judicious way. On the two potentials A{sup μ} and B{sup μ} the SL(2,R) duality transformation acts in a simple linear manner. In quantum theory including charged source fields, this action can be recast as a SL(2,Z)-invariant action. Also given is a Zwanziger-type action for SL(2,R) duality-invariant Born–Infeld electrodynamics which can be important for D-brane dynamics in string theory. -- Highlights: •We formulatemore » a local, manifestly duality-symmetric, Zwanziger-type action. •Maxwell electrodynamics is generalized to include dilaton and axion fields. •SL(2,R) symmetry is manifest. •We formulate a local, manifestly duality-symmetric, nonlinear Born–Infeld action with SL(2,R) symmetry.« less

  9. Identifying Lagrangian fronts with favourable fishery conditions

    NASA Astrophysics Data System (ADS)

    Prants, S. V.; Budyansky, M. V.; Uleysky, M. Yu.

    2014-08-01

    Lagrangian fronts (LFs) in the ocean are defined as boundaries between surface waters with strongly different Lagrangian properties. They can be accurately detected in a given velocity field by computing synoptic maps for displacements of synthetic tracers and other Lagrangian indicators. We use Pacific saury catch and location data for a number of commercial fishery seasons in the region of the northwest Pacific with one of the richest fishery in the world. It is shown statistically that the saury fishing grounds with maximal catches are not randomly distributed over the region but located mainly along the sharp LFs where productive cold waters of the Oyashio Current, warmer waters of the southern branch of the Soya Current, and waters of warm-core Kuroshio rings converge. Computation of those fronts in altimetric geostrophic velocity fields both in the years with the First and Second Oyashio Intrusions shows that in spite of different oceanographic conditions LF locations may serve as good indicators of potential fishing grounds. Possible biophysical reasons for saury aggregation near sharp LFs are discussed. We propose a mechanism for effective export of nutrient rich waters based on stretching of material lines in the vicinity of hyperbolic objects in the ocean. The developed method, based on identifying LFs in any velocity fields, is quite general and may be applied to find potential fishing grounds for the other pelagic fish.

  10. Lagrangian postprocessing of computational hemodynamics.

    PubMed

    Shadden, Shawn C; Arzani, Amirhossein

    2015-01-01

    Recent advances in imaging, modeling, and computing have rapidly expanded our capabilities to model hemodynamics in the large vessels (heart, arteries, and veins). This data encodes a wealth of information that is often under-utilized. Modeling (and measuring) blood flow in the large vessels typically amounts to solving for the time-varying velocity field in a region of interest. Flow in the heart and larger arteries is often complex, and velocity field data provides a starting point for investigating the hemodynamics. This data can be used to perform Lagrangian particle tracking, and other Lagrangian-based postprocessing. As described herein, Lagrangian methods are necessary to understand inherently transient hemodynamic conditions from the fluid mechanics perspective, and to properly understand the biomechanical factors that lead to acute and gradual changes of vascular function and health. The goal of the present paper is to review Lagrangian methods that have been used in post-processing velocity data of cardiovascular flows.

  11. Lagrangian postprocessing of computational hemodynamics

    PubMed Central

    Shadden, Shawn C.; Arzani, Amirhossein

    2014-01-01

    Recent advances in imaging, modeling and computing have rapidly expanded our capabilities to model hemodynamics in the large vessels (heart, arteries and veins). This data encodes a wealth of information that is often under-utilized. Modeling (and measuring) blood flow in the large vessels typically amounts to solving for the time-varying velocity field in a region of interest. Flow in the heart and larger arteries is often complex, and velocity field data provides a starting point for investigating the hemodynamics. This data can be used to perform Lagrangian particle tracking, and other Lagrangian-based postprocessing. As described herein, Lagrangian methods are necessary to understand inherently transient hemodynamic conditions from the fluid mechanics perspective, and to properly understand the biomechanical factors that lead to acute and gradual changes of vascular function and health. The goal of the present paper is to review Lagrangian methods that have been used in post-processing velocity data of cardiovascular flows. PMID:25059889

  12. Forecasting Future Sea Ice Conditions: A Lagrangian Approach

    DTIC Science & Technology

    2015-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Forecasting Future Sea Ice Conditions: A Lagrangian ...GCMs participating in IPCC AR5 agree with observed source region patterns from the satellite- derived dataset. 4- Compare Lagrangian ice... Lagrangian sea-ice back trajectories to estimate thermodynamic and dynamic (advection) ice loss. APPROACH We use a Lagrangian trajectory model to

  13. Duality between a dark state and a quasi-dark state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirokawa, Masao, E-mail: hirokawa@amath.hiroshima-u.ac.jp

    We study a physical system coupled with two one-mode Bose fields. The physical system is a two-level system or a harmonic oscillator. We prove that each dark and quasi-dark state appears under a proper condition, and then, we derive a duality between the dark state and the quasi-dark state. This duality induces the switch between the dark state and the quasi-dark state.

  14. Chern-Simons theory and S-duality

    NASA Astrophysics Data System (ADS)

    Dimofte, Tudor; Gukov, Sergei

    2013-05-01

    We study S-dualities in analytically continued SL(2) Chern-Simons theory on a 3-manifold M. By realizing Chern-Simons theory via a compactification of a 6d five-brane theory on M, various objects and symmetries in Chern-Simons theory become related to objects and operations in dual 2d, 3d, and 4d theories. For example, the space of flat SL(2 , {C} ) connections on M is identified with the space of supersymmetric vacua in a dual 3d gauge theory. The hidden symmetry [InlineMediaObject not available: see fulltext.] of SL(2) Chern-Simons theory can be identified as the S-duality transformation of {N}=4 super-Yang-Mills theory (obtained by compactifying the five-brane theory on a torus); whereas the mapping class group action in Chern-Simons theory on a three-manifold M with boundary C is realized as S-duality in 4d {N}=2 super-Yang-Mills theory associated with the Riemann surface C. We illustrate these symmetries by considering simple examples of 3-manifolds that include knot complements and punctured torus bundles, on the one hand, and mapping cylinders associated with mapping class group transformations, on the other. A generalization of mapping class group actions further allows us to study the transformations between several distinguished coordinate systems on the phase space of Chern-Simons theory, the SL(2) Hitchin moduli space.

  15. Stochastic modeling of Lagrangian accelerations

    NASA Astrophysics Data System (ADS)

    Reynolds, Andy

    2002-11-01

    It is shown how Sawford's second-order Lagrangian stochastic model (Phys. Fluids A 3, 1577-1586, 1991) for fluid-particle accelerations can be combined with a model for the evolution of the dissipation rate (Pope and Chen, Phys. Fluids A 2, 1437-1449, 1990) to produce a Lagrangian stochastic model that is consistent with both the measured distribution of Lagrangian accelerations (La Porta et al., Nature 409, 1017-1019, 2001) and Kolmogorov's similarity theory. The later condition is found not to be satisfied when a constant dissipation rate is employed and consistency with prescribed acceleration statistics is enforced through fulfilment of a well-mixed condition.

  16. S-Lagrangian dynamics of many-body systems and behavior of social groups: Dominance and hierarchy formation

    NASA Astrophysics Data System (ADS)

    Sandler, U.

    2017-11-01

    In this paper, we extend our generalized Lagrangian dynamics (i.e., S-Lagrangian dynamics, which can be applied equally to physical and non-physical systems as per Sandler (2014)) to many-body systems. Unlike common Lagrangian dynamics, this is not a trivial task. For many-body systems with S-dependent Lagrangians, the Lagrangian and the corresponding Hamiltonian or energy become vector functions, conjugated momenta become second-order tensors, and the system inevitably develops a hierarchical structure, even if all bodies initially have similar status and Lagrangians. As an application of our theory, we consider dominance and hierarchy formation, which is present in almost all communities of living species. As a biological basis for this application, we assume that the primary motivation of a groups activity is to attempt to cope with stress arising as pressure from the environment and from intrinsic unmet needs of individuals. It has been shown that the S-Lagrangian approach to a group's evolution naturally leads to formation of linear or despotic dominance hierarchies, depending on differences between individuals in coping with stress. That is, individuals that cope more readily with stress take leadership roles during the evolution. Experimental results in animal groups which support our assumption and findings are considered.

  17. Alternative kinetic energy metrics for Lagrangian systems

    NASA Astrophysics Data System (ADS)

    Sarlet, W.; Prince, G.

    2010-11-01

    We examine Lagrangian systems on \\ {R}^n with standard kinetic energy terms for the possibility of additional, alternative Lagrangians with kinetic energy metrics different to the Euclidean one. Using the techniques of the inverse problem in the calculus of variations we find necessary and sufficient conditions for the existence of such Lagrangians. We illustrate the problem in two and three dimensions with quadratic and cubic potentials. As an aside we show that the well-known anomalous Lagrangians for the Coulomb problem can be removed by switching on a magnetic field, providing an appealing resolution of the ambiguous quantizations of the hydrogen atom.

  18. Application of Lagrangian blending functions for grid generation around airplane geometries

    NASA Technical Reports Server (NTRS)

    Abolhassani, Jamshid S.; Sadrehaghighi, Ideen; Tiwari, Surendra N.

    1990-01-01

    A simple procedure was developed and applied for the grid generation around an airplane geometry. This approach is based on a transfinite interpolation with Lagrangian interpolation for the blending functions. A monotonic rational quadratic spline interpolation was employed for the grid distributions.

  19. Multi-Lagrangians for integrable systems

    NASA Astrophysics Data System (ADS)

    Nutku, Y.; Pavlov, M. V.

    2002-03-01

    We propose a general scheme to construct multiple Lagrangians for completely integrable nonlinear evolution equations that admit multi-Hamiltonian structure. The recursion operator plays a fundamental role in this construction. We use a conserved quantity higher/lower than the Hamiltonian in the potential part of the new Lagrangian and determine the corresponding kinetic terms by generating the appropriate momentum map. This leads to some remarkable new developments. We show that nonlinear evolutionary systems that admit N-fold first order local Hamiltonian structure can be cast into variational form with 2N-1 Lagrangians which will be local functionals of Clebsch potentials. This number increases to 3N-2 when the Miura transformation is invertible. Furthermore we construct a new Lagrangian for polytropic gas dynamics in 1+1 dimensions which is a free, local functional of the physical field variables, namely density and velocity, thus dispensing with the necessity of introducing Clebsch potentials entirely. This is a consequence of bi-Hamiltonian structure with a compatible pair of first and third order Hamiltonian operators derived from Sheftel's recursion operator.

  20. Hamiltonian vs Lagrangian Embedding of a Massive Spin-One Theory Involving Two-Form Field

    NASA Astrophysics Data System (ADS)

    Harikumar, E.; Sivakumar, M.

    We consider the Hamiltonian and Lagrangian embedding of a first-order, massive spin-one, gauge noninvariant theory involving antisymmetric tensor field. We apply the BFV-BRST generalized canonical approach to convert the model to a first class system and construct nilpotent BFV-BRST charge and a unitarizing Hamiltonian. The canonical analysis of the Stückelberg formulation of this model is presented. We bring out the contrasting feature in the constraint structure, specifically with respect to the reducibility aspect, of the Hamiltonian and the Lagrangian embedded model. We show that to obtain manifestly covariant Stückelberg Lagrangian from the BFV embedded Hamiltonian, phase space has to be further enlarged and show how the reducible gauge structure emerges in the embedded model.

  1. Self-duality in higher dimensions

    NASA Astrophysics Data System (ADS)

    Bilge, A. H.; Dereli, T.; Kocak, S.

    2017-01-01

    Let ω be a 2-form on a 2n dimensional manifold. In previous work, we called ω “strong self-dual, if the eigenvalues of its matrix with respect to an orthonormal frame are equal in absolute value. In a series of papers, we showed that strong self-duality agrees with previous definitions; in particular if ω is strong self-dual, then, in 2n dimensions, ωn is proportional to its Hodge dual ω and in 4n dimensions, ωn is Hodge self-dual. We also obtained a local expression of the Bonan 4-form on 8 manifolds with Spin 7 holonomy, as the sum of the squares of any orthonormal basis of a maximal linear subspace of strong self-dual 2-forms. In the present work we generalize the notion of strong self-duality to odd dimensional manifolds and we express the dual of the Fundamental 3-form 7 manifolds with G 2 holonomy, as a sum of the squares of an orthonormal basis of a maximal linear subspace of strong self-dual 2-forms.

  2. An extended Lagrangian method

    NASA Technical Reports Server (NTRS)

    Liou, Meng-Sing

    1992-01-01

    A unique formulation of describing fluid motion is presented. The method, referred to as 'extended Lagrangian method', is interesting from both theoretical and numerical points of view. The formulation offers accuracy in numerical solution by avoiding numerical diffusion resulting from mixing of fluxes in the Eulerian description. Meanwhile, it also avoids the inaccuracy incurred due to geometry and variable interpolations used by the previous Lagrangian methods. Unlike the Lagrangian method previously imposed which is valid only for supersonic flows, the present method is general and capable of treating subsonic flows as well as supersonic flows. The method proposed in this paper is robust and stable. It automatically adapts to flow features without resorting to clustering, thereby maintaining rather uniform grid spacing throughout and large time step. Moreover, the method is shown to resolve multi-dimensional discontinuities with a high level of accuracy, similar to that found in one-dimensional problems.

  3. Target Lagrangian kinematic simulation for particle-laden flows.

    PubMed

    Murray, S; Lightstone, M F; Tullis, S

    2016-09-01

    The target Lagrangian kinematic simulation method was motivated as a stochastic Lagrangian particle model that better synthesizes turbulence structure, relative to stochastic separated flow models. By this method, the trajectories of particles are constructed according to synthetic turbulent-like fields, which conform to a target Lagrangian integral timescale. In addition to recovering the expected Lagrangian properties of fluid tracers, this method is shown to reproduce the crossing trajectories and continuity effects, in agreement with an experimental benchmark.

  4. Applications of Lagrangian blending functions for grid generation around airplane geometries

    NASA Technical Reports Server (NTRS)

    Abolhassani, Jamshid S.; Sadrehaghighi, Ideen; Tiwari, Surendra N.; Smith, Robert E.

    1990-01-01

    A simple procedure has been developed and applied for the grid generation around an airplane geometry. This approach is based on a transfinite interpolation with Lagrangian interpolation for the blending functions. A monotonic rational quadratic spline interpolation has been employed for the grid distributions.

  5. A Theoretical Framework for Lagrangian Descriptors

    NASA Astrophysics Data System (ADS)

    Lopesino, C.; Balibrea-Iniesta, F.; García-Garrido, V. J.; Wiggins, S.; Mancho, A. M.

    This paper provides a theoretical background for Lagrangian Descriptors (LDs). The goal of achieving rigorous proofs that justify the ability of LDs to detect invariant manifolds is simplified by introducing an alternative definition for LDs. The definition is stated for n-dimensional systems with general time dependence, however we rigorously prove that this method reveals the stable and unstable manifolds of hyperbolic points in four particular 2D cases: a hyperbolic saddle point for linear autonomous systems, a hyperbolic saddle point for nonlinear autonomous systems, a hyperbolic saddle point for linear nonautonomous systems and a hyperbolic saddle point for nonlinear nonautonomous systems. We also discuss further rigorous results which show the ability of LDs to highlight additional invariants sets, such as n-tori. These results are just a simple extension of the ergodic partition theory which we illustrate by applying this methodology to well-known examples, such as the planar field of the harmonic oscillator and the 3D ABC flow. Finally, we provide a thorough discussion on the requirement of the objectivity (frame-invariance) property for tools designed to reveal phase space structures and their implications for Lagrangian descriptors.

  6. Sigma decomposition: the CP-odd Lagrangian

    NASA Astrophysics Data System (ADS)

    Hierro, I. M.; Merlo, L.; Rigolin, S.

    2016-04-01

    In Alonso et al., JHEP 12 (2014) 034, the CP-even sector of the effective chiral Lagrangian for a generic composite Higgs model with a symmetric coset has been constructed, up to four momenta. In this paper, the CP-odd couplings are studied within the same context. If only the Standard Model bosonic sources of custodial symmetry breaking are considered, then at most six independent operators form a basis. One of them is the weak- θ term linked to non-perturbative sources of CP violation, while the others describe CP-odd perturbative couplings between the Standard Model gauge bosons and an Higgs-like scalar belonging to the Goldstone boson sector. The procedure is then applied to three distinct exemplifying frameworks: the original SU(5)/SO(5) Georgi-Kaplan model, the minimal custodial-preserving SO(5)/SO(4) model and the minimal SU(3)/(SU(2) × U(1)) model, which intrinsically breaks custodial symmetry. Moreover, the projection of the high-energy electroweak effective theory to the low-energy chiral effective Lagrangian for a dynamical Higgs is performed, uncovering strong relations between the operator coefficients and pinpointing the differences with the elementary Higgs scenario.

  7. A Duality Theory for Non-convex Problems in the Calculus of Variations

    NASA Astrophysics Data System (ADS)

    Bouchitté, Guy; Fragalà, Ilaria

    2018-07-01

    We present a new duality theory for non-convex variational problems, under possibly mixed Dirichlet and Neumann boundary conditions. The dual problem reads nicely as a linear programming problem, and our main result states that there is no duality gap. Further, we provide necessary and sufficient optimality conditions, and we show that our duality principle can be reformulated as a min-max result which is quite useful for numerical implementations. As an example, we illustrate the application of our method to a celebrated free boundary problem. The results were announced in Bouchitté and Fragalà (C R Math Acad Sci Paris 353(4):375-379, 2015).

  8. A Duality Theory for Non-convex Problems in the Calculus of Variations

    NASA Astrophysics Data System (ADS)

    Bouchitté, Guy; Fragalà, Ilaria

    2018-02-01

    We present a new duality theory for non-convex variational problems, under possibly mixed Dirichlet and Neumann boundary conditions. The dual problem reads nicely as a linear programming problem, and our main result states that there is no duality gap. Further, we provide necessary and sufficient optimality conditions, and we show that our duality principle can be reformulated as a min-max result which is quite useful for numerical implementations. As an example, we illustrate the application of our method to a celebrated free boundary problem. The results were announced in Bouchitté and Fragalà (C R Math Acad Sci Paris 353(4):375-379, 2015).

  9. Communication: A simplified coupled-cluster Lagrangian for polarizable embedding.

    PubMed

    Krause, Katharina; Klopper, Wim

    2016-01-28

    A simplified coupled-cluster Lagrangian, which is linear in the Lagrangian multipliers, is proposed for the coupled-cluster treatment of a quantum mechanical system in a polarizable environment. In the simplified approach, the amplitude equations are decoupled from the Lagrangian multipliers and the energy obtained from the projected coupled-cluster equation corresponds to a stationary point of the Lagrangian.

  10. Communication: A simplified coupled-cluster Lagrangian for polarizable embedding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krause, Katharina; Klopper, Wim, E-mail: klopper@kit.edu

    A simplified coupled-cluster Lagrangian, which is linear in the Lagrangian multipliers, is proposed for the coupled-cluster treatment of a quantum mechanical system in a polarizable environment. In the simplified approach, the amplitude equations are decoupled from the Lagrangian multipliers and the energy obtained from the projected coupled-cluster equation corresponds to a stationary point of the Lagrangian.

  11. Aspects of some dualities in string theory

    NASA Astrophysics Data System (ADS)

    Kim, Bom Soo

    AdS/CFT correspondence in string theory has changed landscape of the theoretical physics. Through this celebrated duality between gravity theory and field theory, one can investigate analytically strongly coupled gauge theories such as Quantum Chromodynamics (QCD) in terms of weakly coupled string theory such as supergravity theory and vice versa. In the first part of this thesis we used this duality to construct a new type of nonlocal field theory, called Puff Field Theory, in terms of D3 branes in type IIB string theory with a geometric twist. In addition to the strong-weak duality of AdS/CFT, there also exists a weak-weak duality, called Twistor String Theory. Twistor technique is successfully used to calculate the SYM scattering amplitude in an elegant fashion. Yet, the progress in the string theory side was hindered by a non-unitary conformal gravity. We extend the Twistor string theory by introducing mass terms, in the second part of the thesis. A chiral mass term is identified as a vacuum expectation value of a conformal supergravity field and is tied with the breaking of the conformal symmetry of gravity. As a prime candidate for a quantum theory of gravity, string theory revealed many promising successes such as counting the number of microstates in supersymmetric Black Holes thermodynamics and resolution of timelike and null singularities, to name a few. Yet, the fundamental string and M-theroy formulations are not yet available. Various string theories without gravity, such as Non-Commutative Open String (NCOS) and Open Membrane (OM) theories, are very nice playground to investigate the fundamental structure of string and M-theory without the complication of gravity. In the last part of the thesis, simpler Non-Relativistic String Theories are constructed and investigated. One important motivation for those theories is related to the connection between Non-Relativistic String Theories and Non-critical String Theories through the bosonization of betagamma

  12. A Chiang-type lagrangian in CP^2

    NASA Astrophysics Data System (ADS)

    Cannas da Silva, Ana

    2018-03-01

    We analyse a monotone lagrangian in CP^2 that is hamiltonian isotopic to the standard lagrangian RP^2, yet exhibits a distinguishing behaviour under reduction by one of the toric circle actions, namely it intersects transversally the reduction level set and it projects one-to-one onto a great circle in CP^1. This lagrangian thus provides an example of embedded composition fitting work of Wehrheim-Woodward and Weinstein.

  13. Dualities in the analysis of phage DNA packaging motors

    PubMed Central

    Serwer, Philip; Jiang, Wen

    2012-01-01

    The DNA packaging motors of double-stranded DNA phages are models for analysis of all multi-molecular motors and for analysis of several fundamental aspects of biology, including early evolution, relationship of in vivo to in vitro biochemistry and targets for anti-virals. Work on phage DNA packaging motors both has produced and is producing dualities in the interpretation of data obtained by use of both traditional techniques and the more recently developed procedures of single-molecule analysis. The dualities include (1) reductive vs. accretive evolution, (2) rotation vs. stasis of sub-assemblies of the motor, (3) thermal ratcheting vs. power stroking in generating force, (4) complete motor vs. spark plug role for the packaging ATPase, (5) use of previously isolated vs. new intermediates for analysis of the intermediate states of the motor and (6) a motor with one cycle vs. a motor with two cycles. We provide background for these dualities, some of which are under-emphasized in the literature. We suggest directions for future research. PMID:23532204

  14. Dualities and Topological Field Theories from Twisted Geometries

    NASA Astrophysics Data System (ADS)

    Markov, Ruza

    I will present three studies of string theory on twisted geometries. In the first calculation included in this dissertation we use gauge/gravity duality to study the Coulomb branch of an unusual type of nonlocal field theory, called Puff Field Theory. On the gravity side, this theory is given in terms of D3-branes in type IIB string theory with a geometric twist. While the field theory description, available in the IR limit, is a deformation of Yang-Mills gauge theory by an order seven operator which we here compute. In the rest of this dissertation we explore N = 4 super Yang-Mills (SYM) theory compactied on a circle with S-duality and R-symmetry twists that preserve N = 6 supersymmetry in 2 + 1D. It was shown that abelian theory on a flat manifold gives Chern-Simons theory in the low-energy limit and here we are interested in the non-abelian counterpart. To that end, we introduce external static supersymmetric quark and anti-quark sources into the theory and calculate the Witten Index of the resulting Hilbert space of ground states on a two-torus. Using these results we compute the action of simple Wilson loops on the Hilbert space of ground states without sources. In some cases we find disagreement between our results for the Wilson loop eigenvalues and previous conjectures about a connection with Chern-Simons theory. The last result discussed in this dissertation demonstrates a connection between gravitational Chern-Simons theory and N = 4 four-dimensional SYM theory compactified on a circle twisted by S-duality where the remaining three-manifold is not flat starting with the explicit geometric realization of S-duality in terms of (2, 0) theory.

  15. Special Bohr-Sommerfeld Lagrangian submanifolds

    NASA Astrophysics Data System (ADS)

    Tyurin, N. A.

    2016-12-01

    We introduce a new notion in symplectic geometry, that of speciality for Lagrangian submanifolds satisfying the Bohr- Sommerfeld condition. We show that it enables one to construct finite-dimensional moduli spaces of special Bohr- Sommerfeld Lagrangian submanifolds with respect to any ample line bundle on an algebraic variety with a Hodge metric regarded as the symplectic form. This construction can be used to study mirror symmetry.

  16. Lagrangian single-particle turbulent statistics through the Hilbert-Huang transform.

    PubMed

    Huang, Yongxiang; Biferale, Luca; Calzavarini, Enrico; Sun, Chao; Toschi, Federico

    2013-04-01

    The Hilbert-Huang transform is applied to analyze single-particle Lagrangian velocity data from numerical simulations of hydrodynamic turbulence. The velocity trajectory is described in terms of a set of intrinsic mode functions C(i)(t) and of their instantaneous frequency ω(i)(t). On the basis of this decomposition we define the ω-conditioned statistical moments of the C(i) modes, named q-order Hilbert spectra (HS). We show that such quantities have enhanced scaling properties as compared to traditional Fourier transform- or correlation-based (structure functions) statistical indicators, thus providing better insights into the turbulent energy transfer process. We present clear empirical evidence that the energylike quantity, i.e., the second-order HS, displays a linear scaling in time in the inertial range, as expected from a dimensional analysis. We also measure high-order moment scaling exponents in a direct way, without resorting to the extended self-similarity procedure. This leads to an estimate of the Lagrangian structure function exponents which are consistent with the multifractal prediction in the Lagrangian frame as proposed by Biferale et al. [Phys. Rev. Lett. 93, 064502 (2004)].

  17. Computing eddy-driven effective diffusivity using Lagrangian particles

    DOE PAGES

    Wolfram, Phillip J.; Ringler, Todd D.

    2017-08-14

    A novel method to derive effective diffusivity from Lagrangian particle trajectory data sets is developed and then analyzed relative to particle-derived meridional diffusivity for eddy-driven mixing in an idealized circumpolar current. Quantitative standard dispersion- and transport-based mixing diagnostics are defined, compared and contrasted to motivate the computation and use of effective diffusivity derived from Lagrangian particles. We compute the effective diffusivity by first performing scalar transport on Lagrangian control areas using stored trajectories computed from online Lagrangian In-situ Global High-performance particle Tracking (LIGHT) using the Model for Prediction Across Scales Ocean (MPAS-O). Furthermore, the Lagrangian scalar transport scheme is comparedmore » against an Eulerian scalar transport scheme. Spatially-variable effective diffusivities are computed from resulting time-varying cumulative concentrations that vary as a function of cumulative area. The transport-based Eulerian and Lagrangian effective diffusivity diagnostics are found to be qualitatively consistent with the dispersion-based diffusivity. All diffusivity estimates show a region of increased subsurface diffusivity within the core of an idealized circumpolar current and results are within a factor of two of each other. The Eulerian and Lagrangian effective diffusivities are most similar; smaller and more spatially diffused values are obtained with the dispersion-based diffusivity computed with particle clusters.« less

  18. Computing eddy-driven effective diffusivity using Lagrangian particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolfram, Phillip J.; Ringler, Todd D.

    A novel method to derive effective diffusivity from Lagrangian particle trajectory data sets is developed and then analyzed relative to particle-derived meridional diffusivity for eddy-driven mixing in an idealized circumpolar current. Quantitative standard dispersion- and transport-based mixing diagnostics are defined, compared and contrasted to motivate the computation and use of effective diffusivity derived from Lagrangian particles. We compute the effective diffusivity by first performing scalar transport on Lagrangian control areas using stored trajectories computed from online Lagrangian In-situ Global High-performance particle Tracking (LIGHT) using the Model for Prediction Across Scales Ocean (MPAS-O). Furthermore, the Lagrangian scalar transport scheme is comparedmore » against an Eulerian scalar transport scheme. Spatially-variable effective diffusivities are computed from resulting time-varying cumulative concentrations that vary as a function of cumulative area. The transport-based Eulerian and Lagrangian effective diffusivity diagnostics are found to be qualitatively consistent with the dispersion-based diffusivity. All diffusivity estimates show a region of increased subsurface diffusivity within the core of an idealized circumpolar current and results are within a factor of two of each other. The Eulerian and Lagrangian effective diffusivities are most similar; smaller and more spatially diffused values are obtained with the dispersion-based diffusivity computed with particle clusters.« less

  19. Background Independence and Duality Invariance in String Theory.

    PubMed

    Hohm, Olaf

    2017-03-31

    Closed string theory exhibits an O(D,D) duality symmetry on tori, which in double field theory is manifest before compactification. I prove that to first order in α^{'} there is no manifestly background independent and duality invariant formulation of bosonic string theory in terms of a metric, b field, and dilaton. To this end I use O(D,D) invariant second order perturbation theory around flat space to show that the unique background independent candidate expression for the gauge algebra at order α^{'} is inconsistent with the Jacobi identity. A background independent formulation exists instead for frame variables subject to α^{'}-deformed frame transformations (generalized Green-Schwarz transformations). Potential applications for curved backgrounds, as in cosmology, are discussed.

  20. Duality and topology

    NASA Astrophysics Data System (ADS)

    Sacramento, P. D.; Vieira, V. R.

    2018-04-01

    Mappings between models may be obtained by unitary transformations with preservation of the spectra but in general a change in the states. Non-canonical transformations in general also change the statistics of the operators involved. In these cases one may expect a change of topological properties as a consequence of the mapping. Here we consider some dualities resulting from mappings, by systematically using a Majorana fermion representation of spin and fermionic problems. We focus on the change of topological invariants that results from unitary transformations taking as examples the mapping between a spin system and a topological superconductor, and between different fermionic systems.

  1. Extended Lagrangian Density Functional Tight-Binding Molecular Dynamics for Molecules and Solids.

    PubMed

    Aradi, Bálint; Niklasson, Anders M N; Frauenheim, Thomas

    2015-07-14

    A computationally fast quantum mechanical molecular dynamics scheme using an extended Lagrangian density functional tight-binding formulation has been developed and implemented in the DFTB+ electronic structure program package for simulations of solids and molecular systems. The scheme combines the computational speed of self-consistent density functional tight-binding theory with the efficiency and long-term accuracy of extended Lagrangian Born-Oppenheimer molecular dynamics. For systems without self-consistent charge instabilities, only a single diagonalization or construction of the single-particle density matrix is required in each time step. The molecular dynamics simulation scheme can be applied to a broad range of problems in materials science, chemistry, and biology.

  2. LAGRANGIAN MODELING OF A SUSPENDED-SEDIMENT PULSE.

    USGS Publications Warehouse

    Schoellhamer, David H.

    1987-01-01

    The one-dimensional Lagrangian Transport Model (LTM) has been applied in a quasi two-dimensional manner to simulate the transport of a slug injection of microbeads in steady experimental flows. A stationary bed segment was positioned below each parcel location to simulate temporary storage of beads on the bottom of the flume. Only one degree of freedom was available for all three bead simulations. The results show the versatility of the LTM and the ability of the LTM to accurately simulate transport of fine suspended sediment.

  3. Parallel computing using a Lagrangian formulation

    NASA Technical Reports Server (NTRS)

    Liou, May-Fun; Loh, Ching Yuen

    1991-01-01

    A new Lagrangian formulation of the Euler equation is adopted for the calculation of 2-D supersonic steady flow. The Lagrangian formulation represents the inherent parallelism of the flow field better than the common Eulerian formulation and offers a competitive alternative on parallel computers. The implementation of the Lagrangian formulation on the Thinking Machines Corporation CM-2 Computer is described. The program uses a finite volume, first-order Godunov scheme and exhibits high accuracy in dealing with multidimensional discontinuities (slip-line and shock). By using this formulation, a better than six times speed-up was achieved on a 8192-processor CM-2 over a single processor of a CRAY-2.

  4. Parallel computing using a Lagrangian formulation

    NASA Technical Reports Server (NTRS)

    Liou, May-Fun; Loh, Ching-Yuen

    1992-01-01

    This paper adopts a new Lagrangian formulation of the Euler equation for the calculation of two dimensional supersonic steady flow. The Lagrangian formulation represents the inherent parallelism of the flow field better than the common Eulerian formulation and offers a competitive alternative on parallel computers. The implementation of the Lagrangian formulation on the Thinking Machines Corporation CM-2 Computer is described. The program uses a finite volume, first-order Godunov scheme and exhibits high accuracy in dealing with multidimensional discontinuities (slip-line and shock). By using this formulation, we have achieved better than six times speed-up on a 8192-processor CM-2 over a single processor of a CRAY-2.

  5. Microscopic Lagrangian description of warm plasmas. I - Linear wave propagation. II - Nonlinear wave interactions

    NASA Technical Reports Server (NTRS)

    Kim, H.; Crawford, F. W.

    1977-01-01

    It is pointed out that the conventional iterative analysis of nonlinear plasma wave phenomena, which involves a direct use of Maxwell's equations and the equations describing the particle dynamics, leads to formidable theoretical and algebraic complexities, especially for warm plasmas. As an effective alternative, the Lagrangian method may be applied. It is shown how this method may be used in the microscopic description of small-signal wave propagation and in the study of nonlinear wave interactions. The linear theory is developed for an infinite, homogeneous, collisionless, warm magnetoplasma. A summary is presented of a perturbation expansion scheme described by Galloway and Kim (1971), and Lagrangians to third order in perturbation are considered. Attention is given to the averaged-Lagrangian density, the action-transfer and coupled-mode equations, and the general solution of the coupled-mode equations.

  6. Path integral formulation of the Hodge duality on the brane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hahn, Sang-Ok; Kiem, Youngjai; Kim, Yoonbai

    In the warped compactification with a single Randall-Sundrum brane, a puzzling claim has been made that scalar fields can be bound to the brane but their Hodge dual higher-rank antisymmetric tensors cannot. By explicitly requiring the Hodge duality, a prescription to resolve this puzzle was recently proposed by Duff and Liu. In this Brief Report, we implement the Hodge duality via the path integral formulation in the presence of the background gravity fields of warped compactifications. It is shown that the prescription of Duff and Liu can be naturally understood within this framework.

  7. Alternative Transfer to the Earth-Moon Lagrangian Points L4 and L5 Using Lunar Gravity assist

    NASA Astrophysics Data System (ADS)

    Salazar, Francisco; Winter, Othon; Macau, Elbert; Bertachini de Almeida Prado, Antonio Fernando

    2012-07-01

    Lagrangian points L4 and L5 lie at 60 degrees ahead of and behind Moon in its orbit with respect to the Earth. Each one of them is a third point of an equilateral triangle with the base of the line defined by those two bodies. These Lagrangian points are stable for the Earth-Moon mass ratio. Because of their distance electromagnetic radiations from the Earth arrive on them substantially attenuated. As so, these Lagrangian points represent remarkable positions to host astronomical observatories. However, this same distance characteristic may be a challenge for periodic servicing mission. This paper studies transfer orbits in the planar restricted three-body problem. To avoid solving a two-boundary problem, the patched-conic approximation is used to find initial conditions to transfer a spacecraft between an Earth circular parking orbit and the Lagrangian points L4, L5 (in the Earth-Moon system), such that a swing-by maneuver is applied using the lunar gravity. We also found orbits that can be used to make a tour to the Lagrangian points L4, L5 based on the theorem of image trajectories. Keywords: Stable Lagrangian points, L4, L5, Three-Body problem, Patched Conic, Swing-by

  8. Comparing High-latitude Ionospheric and Thermospheric Lagrangian Coherent Structures

    NASA Astrophysics Data System (ADS)

    Wang, N.; Ramirez, U.; Flores, F.; Okic, D.; Datta-Barua, S.

    2015-12-01

    Lagrangian Coherent Structures (LCSs) are invisible boundaries in time varying flow fields that may be subject to mixing and turbulence. The LCS is defined by the local maxima of the finite time Lyapunov exponent (FTLE), a scalar field quantifying the degree of stretching of fluid elements over the flow domain. Although the thermosphere is dominated by neutral wind processes and the ionosphere is governed by plasma electrodynamics, we can compare the LCS in the two modeled flow fields to yield insight into transport and interaction processes in the high-latitude IT system. For obtaining thermospheric LCS, we use the Horizontal Wind Model 2014 (HWM14) [1] at a single altitude to generate the two-dimensional velocity field. The FTLE computation is applied to study the flow field of the neutral wind, and to visualize the forward-time Lagrangian Coherent Structures in the flow domain. The time-varying structures indicate a possible thermospheric LCS ridge in the auroral oval area. The results of a two-day run during a geomagnetically quiet period show that the structures are diurnally quasi-periodic, thus that solar radiation influences the neutral wind flow field. To find the LCS in the high-latitude ionospheric drifts, the Weimer 2001 [2] polar electric potential model and the International Geomagnetic Reference Field 11 [3] are used to compute the ExB drift flow field in ionosphere. As with the neutral winds, the Lagrangian Coherent Structures are obtained by applying the FTLE computation. The relationship between the thermospheric and ionospheric LCS is analyzed by comparing overlapping FTLE maps. Both a publicly available FTLE solver [4] and a custom-built FTLE computation are used and compared for validation [5]. Comparing the modeled IT LCSs on a quiet day with the modeled IT LCSs on a storm day indicates important factors on the structure and time evolution of the LCS.

  9. A Theoretically Consistent Framework for Modelling Lagrangian Particle Deposition in Plant Canopies

    NASA Astrophysics Data System (ADS)

    Bailey, Brian N.; Stoll, Rob; Pardyjak, Eric R.

    2018-06-01

    We present a theoretically consistent framework for modelling Lagrangian particle deposition in plant canopies. The primary focus is on describing the probability of particles encountering canopy elements (i.e., potential deposition), and provides a consistent means for including the effects of imperfect deposition through any appropriate sub-model for deposition efficiency. Some aspects of the framework draw upon an analogy to radiation propagation through a turbid medium with which to develop model theory. The present method is compared against one of the most commonly used heuristic Lagrangian frameworks, namely that originally developed by Legg and Powell (Agricultural Meteorology, 1979, Vol. 20, 47-67), which is shown to be theoretically inconsistent. A recommendation is made to discontinue the use of this heuristic approach in favour of the theoretically consistent framework developed herein, which is no more difficult to apply under equivalent assumptions. The proposed framework has the additional advantage that it can be applied to arbitrary canopy geometries given readily measurable parameters describing vegetation structure.

  10. Extended Lagrangian Density Functional Tight-Binding Molecular Dynamics for Molecules and Solids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aradi, Bálint; Niklasson, Anders M. N.; Frauenheim, Thomas

    A computationally fast quantum mechanical molecular dynamics scheme using an extended Lagrangian density functional tight-binding formulation has been developed and implemented in the DFTB+ electronic structure program package for simulations of solids and molecular systems. The scheme combines the computational speed of self-consistent density functional tight-binding theory with the efficiency and long-term accuracy of extended Lagrangian Born–Oppenheimer molecular dynamics. Furthermore, for systems without self-consistent charge instabilities, only a single diagonalization or construction of the single-particle density matrix is required in each time step. The molecular dynamics simulation scheme can also be applied to a broad range of problems in materialsmore » science, chemistry, and biology.« less

  11. Extended Lagrangian Density Functional Tight-Binding Molecular Dynamics for Molecules and Solids

    DOE PAGES

    Aradi, Bálint; Niklasson, Anders M. N.; Frauenheim, Thomas

    2015-06-26

    A computationally fast quantum mechanical molecular dynamics scheme using an extended Lagrangian density functional tight-binding formulation has been developed and implemented in the DFTB+ electronic structure program package for simulations of solids and molecular systems. The scheme combines the computational speed of self-consistent density functional tight-binding theory with the efficiency and long-term accuracy of extended Lagrangian Born–Oppenheimer molecular dynamics. Furthermore, for systems without self-consistent charge instabilities, only a single diagonalization or construction of the single-particle density matrix is required in each time step. The molecular dynamics simulation scheme can also be applied to a broad range of problems in materialsmore » science, chemistry, and biology.« less

  12. Lagrangian Particle Tracking Simulation for Warm-Rain Processes in Quasi-One-Dimensional Domain

    NASA Astrophysics Data System (ADS)

    Kunishima, Y.; Onishi, R.

    2017-12-01

    Conventional cloud simulations are based on the Euler method and compute each microphysics process in a stochastic way assuming infinite numbers of particles within each numerical grid. They therefore cannot provide the Lagrangian statistics of individual particles in cloud microphysics (i.e., aerosol particles, cloud particles, and rain drops) nor discuss the statistical fluctuations due to finite number of particles. We here simulate the entire precipitation process of warm-rain, with tracking individual particles. We use the Lagrangian Cloud Simulator (LCS), which is based on the Euler-Lagrangian framework. In that framework, flow motion and scalar transportation are computed with the Euler method, and particle motion with the Lagrangian one. The LCS tracks particle motions and collision events individually with considering the hydrodynamic interaction between approaching particles with a superposition method, that is, it can directly represent the collisional growth of cloud particles. It is essential for trustworthy collision detection to take account of the hydrodynamic interaction. In this study, we newly developed a stochastic model based on the Twomey cloud condensation nuclei (CCN) activation for the Lagrangian tracking simulation and integrated it into the LCS. Coupling with the Euler computation for water vapour and temperature fields, the initiation and condensational growth of water droplets were computed in the Lagrangian way. We applied the integrated LCS for a kinematic simulation of warm-rain processes in a vertically-elongated domain of, at largest, 0.03×0.03×3000 (m3) with horizontal periodicity. Aerosol particles with a realistic number density, 5×107 (m3), were evenly distributed over the domain at the initial state. Prescribed updraft at the early stage initiated development of a precipitating cloud. We have confirmed that the obtained bulk statistics fairly agree with those from a conventional spectral-bin scheme for a vertical column

  13. A Lagrangian stochastic model for aerial spray transport above an oak forest

    USGS Publications Warehouse

    Wang, Yansen; Miller, David R.; Anderson, Dean E.; McManus, Michael L.

    1995-01-01

    An aerial spray droplets' transport model has been developed by applying recent advances in Lagrangian stochastic simulation of heavy particles. A two-dimensional Lagrangian stochastic model was adopted to simulate the spray droplet dispersion in atmospheric turbulence by adjusting the Lagrangian integral time scale along the drop trajectory. The other major physical processes affecting the transport of spray droplets above a forest canopy, the aircraft wingtip vortices and the droplet evaporation, were also included in each time step of the droplets' transport.The model was evaluated using data from an aerial spray field experiment. In generally neutral stability conditions, the accuracy of the model predictions varied from run-to-run as expected. The average root-mean-square error was 24.61 IU cm−2, and the average relative error was 15%. The model prediction was adequate in two-dimensional steady wind conditions, but was less accurate in variable wind condition. The results indicated that the model can simulate successfully the ensemble; average transport of aerial spray droplets under neutral, steady atmospheric wind conditions.

  14. A Vertically Lagrangian Finite-Volume Dynamical Core for Global Models

    NASA Technical Reports Server (NTRS)

    Lin, Shian-Jiann

    2003-01-01

    A finite-volume dynamical core with a terrain-following Lagrangian control-volume discretization is described. The vertically Lagrangian discretization reduces the dimensionality of the physical problem from three to two with the resulting dynamical system closely resembling that of the shallow water dynamical system. The 2D horizontal-to-Lagrangian-surface transport and dynamical processes are then discretized using the genuinely conservative flux-form semi-Lagrangian algorithm. Time marching is split- explicit, with large-time-step for scalar transport, and small fractional time step for the Lagrangian dynamics, which permits the accurate propagation of fast waves. A mass, momentum, and total energy conserving algorithm is developed for mapping the state variables periodically from the floating Lagrangian control-volume to an Eulerian terrain-following coordinate for dealing with physical parameterizations and to prevent severe distortion of the Lagrangian surfaces. Deterministic baroclinic wave growth tests and long-term integrations using the Held-Suarez forcing are presented. Impact of the monotonicity constraint is discussed.

  15. Nonequilibrium restoration of duality symmetry in the vicinity of the superconductor-to-insulator transition

    NASA Astrophysics Data System (ADS)

    Tamir, I.; Doron, A.; Levinson, T.; Gorniaczyk, F.; Tewari, G. C.; Shahar, D.

    2017-09-01

    The magnetic field driven superconductor-to-insulator transition in thin films is theoretically understood in terms of the notion of vortex-charge duality symmetry. The manifestation of such symmetry is the exchange of roles of current and voltage between the superconductor and the insulator. While experimental evidence obtained from amorphous indium oxide films supported such duality symmetry, it is shown to be broken, counterintuitively, at low temperatures where the insulating phase exhibits discontinuous current-voltage characteristics. Here, we demonstrate that it is possible to effectively restore duality symmetry by driving the system beyond the discontinuity into its high current, far from equilibrium, state.

  16. A duality principle for the multi-block entanglement entropy of free fermion systems.

    PubMed

    Carrasco, J A; Finkel, F; González-López, A; Tempesta, P

    2017-09-11

    The analysis of the entanglement entropy of a subsystem of a one-dimensional quantum system is a powerful tool for unravelling its critical nature. For instance, the scaling behaviour of the entanglement entropy determines the central charge of the associated Virasoro algebra. For a free fermion system, the entanglement entropy depends essentially on two sets, namely the set A of sites of the subsystem considered and the set K of excited momentum modes. In this work we make use of a general duality principle establishing the invariance of the entanglement entropy under exchange of the sets A and K to tackle complex problems by studying their dual counterparts. The duality principle is also a key ingredient in the formulation of a novel conjecture for the asymptotic behavior of the entanglement entropy of a free fermion system in the general case in which both sets A and K consist of an arbitrary number of blocks. We have verified that this conjecture reproduces the numerical results with excellent precision for all the configurations analyzed. We have also applied the conjecture to deduce several asymptotic formulas for the mutual and r-partite information generalizing the known ones for the single block case.

  17. Lagrangian motion, coherent structures, and lines of persistent material strain.

    PubMed

    Samelson, R M

    2013-01-01

    Lagrangian motion in geophysical fluids may be strongly influenced by coherent structures that support distinct regimes in a given flow. The problems of identifying and demarcating Lagrangian regime boundaries associated with dynamical coherent structures in a given velocity field can be studied using approaches originally developed in the context of the abstract geometric theory of ordinary differential equations. An essential insight is that when coherent structures exist in a flow, Lagrangian regime boundaries may often be indicated as material curves on which the Lagrangian-mean principal-axis strain is large. This insight is the foundation of many numerical techniques for identifying such features in complex observed or numerically simulated ocean flows. The basic theoretical ideas are illustrated with a simple, kinematic traveling-wave model. The corresponding numerical algorithms for identifying candidate Lagrangian regime boundaries and lines of principal Lagrangian strain (also called Lagrangian coherent structures) are divided into parcel and bundle schemes; the latter include the finite-time and finite-size Lyapunov exponent/Lagrangian strain (FTLE/FTLS and FSLE/FSLS) metrics. Some aspects and results of oceanographic studies based on these approaches are reviewed, and the results are discussed in the context of oceanographic observations of dynamical coherent structures.

  18. Uncovering the Geometry of Barrierless Reactions Using Lagrangian Descriptors.

    PubMed

    Junginger, Andrej; Hernandez, Rigoberto

    2016-03-03

    Transition-state theories describing barrierless chemical reactions, or more general activated problems, are often hampered by the lack of a saddle around which the dividing surface can be constructed. For example, the time-dependent transition-state trajectory uncovering the nonrecrossing dividing surface in thermal reactions in the framework of the Langevin equation has relied on perturbative approaches in the vicinity of the saddle. We recently obtained an alternative approach using Lagrangian descriptors to construct time-dependent and recrossing-free dividing surfaces. This is a nonperturbative approach making no reference to a putative saddle. Here we show how the Lagrangian descriptor can be used to obtain the transition-state geometry of a dissipated and thermalized reaction across barrierless potentials. We illustrate the method in the case of a 1D Brownian motion for both barrierless and step potentials; however, the method is not restricted and can be directly applied to different kinds of potentials and higher dimensional systems.

  19. Comparison of updated Lagrangian FEM with arbitrary Lagrangian Eulerian method for 3D thermo-mechanical extrusion of a tube profile

    NASA Astrophysics Data System (ADS)

    Kronsteiner, J.; Horwatitsch, D.; Zeman, K.

    2017-10-01

    Thermo-mechanical numerical modelling and simulation of extrusion processes faces several serious challenges. Large plastic deformations in combination with a strong coupling of thermal with mechanical effects leads to a high numerical demand for the solution as well as for the handling of mesh distortions. The two numerical methods presented in this paper also reflect two different ways to deal with mesh distortions. Lagrangian Finite Element Methods (FEM) tackle distorted elements by building a new mesh (called re-meshing) whereas Arbitrary Lagrangian Eulerian (ALE) methods use an "advection" step to remap the solution from the distorted to the undistorted mesh. Another difference between conventional Lagrangian and ALE methods is the separate treatment of material and mesh in ALE, allowing the definition of individual velocity fields. In theory, an ALE formulation contains the Eulerian formulation as a subset to the Lagrangian description of the material. The investigations presented in this paper were dealing with the direct extrusion of a tube profile using EN-AW 6082 aluminum alloy and a comparison of experimental with Lagrangian and ALE results. The numerical simulations cover the billet upsetting and last until one third of the billet length is extruded. A good qualitative correlation of experimental and numerical results could be found, however, major differences between Lagrangian and ALE methods concerning thermo-mechanical coupling lead to deviations in the thermal results.

  20. Cine phase contrast MRI to measure continuum Lagrangian finite strain fields in contracting skeletal muscle.

    PubMed

    Zhou, Hehe; Novotny, John E

    2007-01-01

    To measure the complex mechanics and Lagrangian finite strain of contracting human skeletal muscle in vivo with cine phase contrast MRI (CPC-MRI) applied to the human supraspinatus muscle of the shoulder. Processing techniques are applied to transform velocities from CPC-MRI images to displacements and planar Lagrangian finite strain. An interpolation method describing the continuity of the velocity field and forward-backward and Fourier transform methods were used to track the displacement of regions of interest during a cyclic abduction motion of a subject's arm. The components of the Lagrangian strain tensor were derived during the motion and principal and maximum in-plane shear strain fields calculated. Derived displacement and strain fields are shown that describe the contraction mechanics of the supraspinatus. Strains vary over time during the cyclic motion and are highly nonuniform throughout the muscle. This method presented overcomes the physical resolution of the MRI scanner, which is crucial for the detection of detailed information within muscles, such as the changes that might occur with partial tears of the supraspinatus. These can then be used as input or validation data for modeling human skeletal muscle.

  1. Gravity, Time, and Lagrangians

    NASA Astrophysics Data System (ADS)

    Huggins, Elisha

    2010-11-01

    Feynman mentioned to us that he understood a topic in physics if he could explain it to a college freshman, a high school student, or a dinner guest. Here we will discuss two topics that took us a while to get to that level. One is the relationship between gravity and time. The other is the minus sign that appears in the Lagrangian. (Why would one subtract potential energy from kinetic energy?) In this paper we discuss a thought experiment that relates gravity and time. Then we use a Feynman thought experiment to explain the minus sign in the Lagrangian. Our surprise was that these two topics are related.

  2. Dualities of fields and strings

    NASA Astrophysics Data System (ADS)

    Polchinski, Joseph

    2017-08-01

    Duality, the equivalence between seemingly distinct quantum systems, is a curious property that has been known for at least three quarters of a century. In the past two decades it has played a central role in mapping out the structure of theoretical physics. I discuss the unexpected connections that have been revealed among quantum field theories and string theories. Written for a special issue of Studies in History and Philosophy of Modern Physics.

  3. Spin waves, vortices, fermions, and duality in the Ising and Baxter models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogilvie, M.C.

    1981-10-15

    Field-theoretic methods are applied to a number of two-dimensional lattice models with Abelian symmetry groups. It is shown, using a vortex+spin-wave decomposition, that the Z/sub p/-Villain models are related to a class of continuum field theories with analogous duality properties. Fermion operators for these field theories are discussed. In the case of the Ising model, the vortices and spin-waves conspire to produce a free, massive Majorana field theory in the continuum limit. The continuum limit of the Baxter model is also studied, and the recent results of Kadanoff and Brown are rederived and extended.

  4. A semi-Lagrangian approach to the shallow water equation

    NASA Technical Reports Server (NTRS)

    Bates, J. R.; Mccormick, Stephen F.; Ruge, John; Sholl, David S.; Yavneh, Irad

    1993-01-01

    We present a formulation of the shallow water equations that emphasizes the conservation of potential vorticity. A locally conservative semi-Lagrangian time-stepping scheme is developed, which leads to a system of three coupled PDE's to be solved at each time level. We describe a smoothing analysis of these equations, on which an effective multigrid solver is constructed. Some results from applying this solver to the static version of these equations are presented.

  5. Lagrangian ocean analysis: Fundamentals and practices

    DOE PAGES

    van Sebille, Erik; Griffies, Stephen M.; Abernathey, Ryan; ...

    2017-11-24

    Lagrangian analysis is a powerful way to analyse the output of ocean circulation models and other ocean velocity data such as from altimetry. In the Lagrangian approach, large sets of virtual particles are integrated within the three-dimensional, time-evolving velocity fields. A variety of tools and methods for this purpose have emerged, over several decades. Here, we review the state of the art in the field of Lagrangian analysis of ocean velocity data, starting from a fundamental kinematic framework and with a focus on large-scale open ocean applications. Beyond the use of explicit velocity fields, we consider the influence of unresolvedmore » physics and dynamics on particle trajectories. We comprehensively list and discuss the tools currently available for tracking virtual particles. We then showcase some of the innovative applications of trajectory data, and conclude with some open questions and an outlook. Our overall goal of this review paper is to reconcile some of the different techniques and methods in Lagrangian ocean analysis, while recognising the rich diversity of codes that have and continue to emerge, and the challenges of the coming age of petascale computing.« less

  6. Lagrangian ocean analysis: Fundamentals and practices

    NASA Astrophysics Data System (ADS)

    van Sebille, Erik; Griffies, Stephen M.; Abernathey, Ryan; Adams, Thomas P.; Berloff, Pavel; Biastoch, Arne; Blanke, Bruno; Chassignet, Eric P.; Cheng, Yu; Cotter, Colin J.; Deleersnijder, Eric; Döös, Kristofer; Drake, Henri F.; Drijfhout, Sybren; Gary, Stefan F.; Heemink, Arnold W.; Kjellsson, Joakim; Koszalka, Inga Monika; Lange, Michael; Lique, Camille; MacGilchrist, Graeme A.; Marsh, Robert; Mayorga Adame, C. Gabriela; McAdam, Ronan; Nencioli, Francesco; Paris, Claire B.; Piggott, Matthew D.; Polton, Jeff A.; Rühs, Siren; Shah, Syed H. A. M.; Thomas, Matthew D.; Wang, Jinbo; Wolfram, Phillip J.; Zanna, Laure; Zika, Jan D.

    2018-01-01

    Lagrangian analysis is a powerful way to analyse the output of ocean circulation models and other ocean velocity data such as from altimetry. In the Lagrangian approach, large sets of virtual particles are integrated within the three-dimensional, time-evolving velocity fields. Over several decades, a variety of tools and methods for this purpose have emerged. Here, we review the state of the art in the field of Lagrangian analysis of ocean velocity data, starting from a fundamental kinematic framework and with a focus on large-scale open ocean applications. Beyond the use of explicit velocity fields, we consider the influence of unresolved physics and dynamics on particle trajectories. We comprehensively list and discuss the tools currently available for tracking virtual particles. We then showcase some of the innovative applications of trajectory data, and conclude with some open questions and an outlook. The overall goal of this review paper is to reconcile some of the different techniques and methods in Lagrangian ocean analysis, while recognising the rich diversity of codes that have and continue to emerge, and the challenges of the coming age of petascale computing.

  7. Lagrangian ocean analysis: Fundamentals and practices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    van Sebille, Erik; Griffies, Stephen M.; Abernathey, Ryan

    Lagrangian analysis is a powerful way to analyse the output of ocean circulation models and other ocean velocity data such as from altimetry. In the Lagrangian approach, large sets of virtual particles are integrated within the three-dimensional, time-evolving velocity fields. A variety of tools and methods for this purpose have emerged, over several decades. Here, we review the state of the art in the field of Lagrangian analysis of ocean velocity data, starting from a fundamental kinematic framework and with a focus on large-scale open ocean applications. Beyond the use of explicit velocity fields, we consider the influence of unresolvedmore » physics and dynamics on particle trajectories. We comprehensively list and discuss the tools currently available for tracking virtual particles. We then showcase some of the innovative applications of trajectory data, and conclude with some open questions and an outlook. Our overall goal of this review paper is to reconcile some of the different techniques and methods in Lagrangian ocean analysis, while recognising the rich diversity of codes that have and continue to emerge, and the challenges of the coming age of petascale computing.« less

  8. Duality between electric and magnetic black holes

    NASA Astrophysics Data System (ADS)

    Hawking, S. W.; Ross, Simon F.

    1995-11-01

    A number of attempts have recently been made to extend the conjectured S duality of Yang-Mills theory to gravity. Central to these speculations has been the belief that electrically and magnetically charged black holes, the solitons of quantum gravity, have identical quantum properties. This is not obvious, because, although duality is a symmetry of the classical equations of motion, it changes the sign of the Maxwell action. Nevertheless, we show that the chemical potential and charge projection that one has to introduce for electric but not magnetic black holes exactly compensate for the difference in action in the semiclassical approximation. In particular, we show that the pair production of electric black holes is not a runaway process, as one might think if one just went by the action of the relevant instanton. We also comment on the definition of the entropy in cosmological situations, and show that we need to be more careful when defining the entropy than we are in an asymptotically flat case.

  9. A kinematic wave model in Lagrangian coordinates incorporating capacity drop: Application to homogeneous road stretches and discontinuities

    NASA Astrophysics Data System (ADS)

    Yuan, Kai; Knoop, Victor L.; Hoogendoorn, Serge P.

    2017-01-01

    On freeways, congestion always leads to capacity drop. This means the queue discharge rate is lower than the pre-queue capacity. Our recent research findings indicate that the queue discharge rate increases with the speed in congestion, that is the capacity drop is strongly correlated with the congestion state. Incorporating this varying capacity drop into a kinematic wave model is essential for assessing consequences of control strategies. However, to the best of authors' knowledge, no such a model exists. This paper fills the research gap by presenting a Lagrangian kinematic wave model. "Lagrangian" denotes that the new model is solved in Lagrangian coordinates. The new model can give capacity drops accompanying both of stop-and-go waves (on homogeneous freeway section) and standing queues (at nodes) in a network. The new model can be applied in a network operation. In this Lagrangian kinematic wave model, the queue discharge rate (or the capacity drop) is a function of vehicular speed in traffic jams. Four case studies on links as well as at lane-drop and on-ramp nodes show that the Lagrangian kinematic wave model can give capacity drops well, consistent with empirical observations.

  10. Lagrangian continuum dynamics in ALEGRA.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, Michael K. W.; Love, Edward

    Alegra is an ALE (Arbitrary Lagrangian-Eulerian) multi-material finite element code that emphasizes large deformations and strong shock physics. The Lagrangian continuum dynamics package in Alegra uses a Galerkin finite element spatial discretization and an explicit central-difference stepping method in time. The goal of this report is to describe in detail the characteristics of this algorithm, including the conservation and stability properties. The details provided should help both researchers and analysts understand the underlying theory and numerical implementation of the Alegra continuum hydrodynamics algorithm.

  11. On non-abelian T-duality and deformations of supercoset string sigma-models

    NASA Astrophysics Data System (ADS)

    Borsato, Riccardo; Wulff, Linus

    2017-10-01

    We elaborate on the class of deformed T-dual (DTD) models obtained by first adding a topological term to the action of a supercoset sigma model and then performing (non-abelian) T-duality on a subalgebra \\tilde{g} of the superisometry algebra. These models inherit the classical integrability of the parent one, and they include as special cases the so-called homogeneous Yang-Baxter sigma models as well as their non-abelian T-duals. Many properties of DTD models have simple algebraic interpretations. For example we show that their (non-abelian) T-duals — including certain deformations — are again in the same class, where \\tilde{g} gets enlarged or shrinks by adding or removing generators corresponding to the dualised isometries. Moreover, we show that Weyl invariance of these models is equivalent to \\tilde{g} being unimodular; when this property is not satisfied one can always remove one generator to obtain a unimodular \\tilde{g} , which is equivalent to (formal) T-duality. We also work out the target space superfields and, as a by-product, we prove the conjectured transformation law for Ramond-Ramond (RR) fields under bosonic non-abelian T-duality of supercosets, generalising it to cases involving also fermionic T-dualities.

  12. Automated detection of Lagrangian eddies and coherent transport of heat and salinity in the Agulhas leakage

    NASA Astrophysics Data System (ADS)

    Huhn, Florian; Haller, George

    2014-05-01

    Haller and Beron-Vera(2013) have recently introduced a new objective method to detect coherent Lagrangian eddies in turbulence. They find that closed null-geodesics of a generalized Green-Lagrange strain tensor act as coherent Lagrangian eddy boundaries, showing near-zero and uniform material stretching. We make use of this method to develop an automated detection procedure for coherent Lagrangian eddies in large-scale ocean data. We apply our results to a recent 3D general circulation model, the Southern Ocean State Estimate (SOSE), with focus on the South Atlantic Ocean and the inter-ocean exchange between the Indian and Atlantic ocean. We detect a large number of coherent Lagrangian eddies and present statistics of their properties. The largest and most circular eddy boundaries represent Lagrangian Agulhas rings. Circular regions inside these rings with higher temperature and salinity than the surrounding waters can be explained by the coherent eddy boundaries that enclose and isolate the eddy interiors. We compare eddy boundaries at different depths with eddy boundaries obtained from geostrophic velocities derived from the model's sea surface height (SSH). The transport of mass, heat and salinity enclosed by coherent eddies through a section in the Cape basin is quantified and compared to the non-coherent transport by the background flow.

  13. Global-local duality in eternal inflation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bousso, Raphael; Yang, I-S.

    2009-12-15

    We prove that the light-cone time cutoff on the multiverse defines the same probabilities as a causal patch with initial conditions in the longest-lived metastable vacuum. This establishes the equivalence of two measures of eternal inflation which naively appear very different (though both are motivated by holography). The duality can be traced to an underlying geometric relation which we identify.

  14. Asymptotic M5-brane entropy from S-duality

    NASA Astrophysics Data System (ADS)

    Kim, Seok; Nahmgoong, June

    2017-12-01

    We study M5-branes compactified on S 1 from the D0-D4 Witten index in the Coulomb phase. We first show that the prepotential of this index is S-dual, up to a simple anomalous part. This is an extension of the well-known S-duality of the 4d N=4 theory to the 6d (2, 0) theory on finite T 2. Using this anomalous S-duality, we find that the asymptotic free energy scales like N 3 when various temperature-like parameters are large. This shows that the number of 5d Kaluza-Klein fields for light D0-brane bound states is proportional to N 3. We also compute some part of the asymptotic free energy from 6d chiral anomalies, which precisely agrees with our D0-D4 calculus.

  15. Two-dimensional Lagrangian simulation of suspended sediment

    USGS Publications Warehouse

    Schoellhamer, David H.

    1988-01-01

    A two-dimensional laterally averaged model for suspended sediment transport in steady gradually varied flow that is based on the Lagrangian reference frame is presented. The layered Lagrangian transport model (LLTM) for suspended sediment performs laterally averaged concentration. The elevations of nearly horizontal streamlines and the simulation time step are selected to optimize model stability and efficiency. The computational elements are parcels of water that are moved along the streamlines in the Lagrangian sense and are mixed with neighboring parcels. Three applications show that the LLTM can accurately simulate theoretical and empirical nonequilibrium suspended sediment distributions and slug injections of suspended sediment in a laboratory flume.

  16. Boundaries, mirror symmetry, and symplectic duality in 3d N = 4 gauge theory

    DOE PAGES

    Bullimore, Mathew; Dimofte, Tudor; Gaiotto, Davide; ...

    2016-10-20

    We introduce several families of N = (2, 2) UV boundary conditions in 3d N=4 gauge theories and study their IR images in sigma-models to the Higgs and Coulomb branches. In the presence of Omega deformations, a UV boundary condition defines a pair of modules for quantized algebras of chiral Higgs- and Coulomb-branch operators, respectively, whose structure we derive. In the case of abelian theories, we use the formalism of hyperplane arrangements to make our constructions very explicit, and construct a half-BPS interface that implements the action of 3d mirror symmetry on gauge theories and boundary conditions. Finally, by studyingmore » two-dimensional compactifications of 3d N = 4 gauge theories and their boundary conditions, we propose a physical origin for symplectic duality $-$ an equivalence of categories of modules associated to families of Higgs and Coulomb branches that has recently appeared in the mathematics literature, and generalizes classic results on Koszul duality in geometric representation theory. We make several predictions about the structure of symplectic duality, and identify Koszul duality as a special case of wall crossing.« less

  17. Microscopic Lagrangian description of warm plasmas. III - Nonlinear wave-particle interaction

    NASA Technical Reports Server (NTRS)

    Galloway, J. J.; Crawford, F. W.

    1977-01-01

    The averaged-Lagrangian method is applied to nonlinear wave-particle interactions in an infinite, homogeneous, magnetic-field-free plasma. The specific example of Langmuir waves is considered, and the combined effects of four-wave interactions and wave-particle interactions are treated. It is demonstrated how the latter lead to diffusion in velocity space, and the quasilinear diffusion equation is derived. The analysis is generalized to the random phase approximation. The paper concludes with a summary of the method as applied in Parts 1-3 of the paper.

  18. Duality invariance of s ≥ 3/2 fermions in AdS

    DOE PAGES

    Deser, S.; Seminara, D.

    2014-09-30

    The research show that in D = 4 AdS, s ≥ 3/2 partially massless (PM) fermions retain the duality invariances of their flat space massless counterparts. They have tuned ratios m 2/M 2 ≠ 0 that turn them into sums of effectively massless unconstrained helicity ±(s, ···, 3/2) excitations, shorn of the lowest (non-dual) helicity ±1/2-rung and — more generally — of succeeding higher rung as well. Each helicity mode is separately duality invariant, like its flat space counterpart.

  19. Lagrangian Perturbation Approach to the Formation of Large-scale Structure

    NASA Astrophysics Data System (ADS)

    Buchert, Thomas

    The present lecture notes address three columns on which the Lagrangian perturbation approach to cosmological dynamics is based: 1. the formulation of a Lagrangian theory of self-gravitating flows in which the dynamics is described in terms of a single field variable; 2. the procedure, how to obtain the dynamics of Eulerian fields from the Lagrangian picture, and 3. a precise definition of a Newtonian cosmology framework in which Lagrangian perturbation solutions can be studied. While the first is a discussion of the basic equations obtained by transforming the Eulerian evolution and field equations to the Lagrangian picture, the second exemplifies how the Lagrangian theory determines the evolution of Eulerian fields including kinematical variables like expansion, vorticity, as well as the shear and tidal tensors. The third column is based on a specification of initial and boundary conditions, and in particular on the identification of the average flow of an inhomogeneous cosmology with a `Hubble-flow'. Here, we also look at the limits of the Lagrangian perturbation approach as inferred from comparisons with N-body simulations and illustrate some striking properties of the solutions.

  20. Polemics in Public: Poncelet, Gergonne, Plücker, and the Duality Controversy.

    PubMed

    Lorenat, Jemma

    2015-12-01

    A plagiarism charge in 1827 sparked a public controversy centered between Jean-Victor Poncelet (1788-1867) and Joseph-Diez Gergonne (1771-1859) over the origin and applications of the principle of duality in geometry. Over the next three years and through the pages of various journals, monographs, letters, reviews, reports, and footnotes, vitriol between the antagonists increased as their potential publicity grew. While the historical literature offers valuable resources toward understanding the development, content, and applications of geometric duality, the hostile nature of the exchange seems to have deterred an in-depth textual study of the explicitly polemical writings. We argue that the necessary collective endeavor of beginning and ending this controversy constitutes a case study in the circulation of geometry. In particular, we consider how the duality controversy functioned as a medium of communicating new fundamental principles to a wider audience of practitioners.

  1. Evaluation of the HF-Radar network system around Taiwan using normalized cumulative Lagrangian separation.

    NASA Astrophysics Data System (ADS)

    Fredj, Erick; Kohut, Josh; Roarty, Hugh; Lai, Jian-Wu

    2017-04-01

    The Lagrangian separation distance between the endpoints of simulated and observed drifter trajectories is often used to assess the performance of numerical particle trajectory models. However, the separation distance fails to indicate relative model performance in weak and strong current regions, such as over continental shelves and the adjacent deep ocean. A skill score described in detail by (Lui et.al. 2011) was applied to estimate the cumulative Lagrangian separation distances normalized by the associated cumulative trajectory lengths. In contrast, the Lagrangian separation distance alone gives a misleading result. The proposed dimensionless skill score is particularly useful when the number of drifter trajectories is limited and neither a conventional Eulerian-based velocity nor a Lagrangian based probability density function may be estimated. The skill score assesses The Taiwan Ocean Radar Observing System (TOROS) performance. TOROS consists of 17 SeaSonde type radars around the Taiwan Island. The currents off Taiwan are significantly influenced by the nearby Kuroshio current. The main stream of the Kuroshio flows along the east coast of Taiwan to the north throughout the year. Sometimes its branch current also bypasses the south end of Taiwan and goes north along the west coast of Taiwan. The Kuroshio is also prone to seasonal change in its speed of flow, current capacity, distribution width, and depth. The evaluations of HF-Radar National Taiwanese network performance using Lagrangian drifter records demonstrated the high quality and robustness of TOROS HF-Radar data using a purely trajectory-based non-dimensional index. Yonggang Liu and Robert H. Weisberg, "Evaluation of trajectory modeling in different dynamic regions using normalized cumulative Lagrangian separation", Journal of Geophysical Research, Vol. 116, C09013, doi:10.1029/2010JC006837, 2011

  2. Preserving Lagrangian Structure in Nonlinear Model Reduction with Application to Structural Dynamics

    DOE PAGES

    Carlberg, Kevin; Tuminaro, Ray; Boggs, Paul

    2015-03-11

    Our work proposes a model-reduction methodology that preserves Lagrangian structure and achieves computational efficiency in the presence of high-order nonlinearities and arbitrary parameter dependence. As such, the resulting reduced-order model retains key properties such as energy conservation and symplectic time-evolution maps. We focus on parameterized simple mechanical systems subjected to Rayleigh damping and external forces, and consider an application to nonlinear structural dynamics. To preserve structure, the method first approximates the system's “Lagrangian ingredients''---the Riemannian metric, the potential-energy function, the dissipation function, and the external force---and subsequently derives reduced-order equations of motion by applying the (forced) Euler--Lagrange equation with thesemore » quantities. Moreover, from the algebraic perspective, key contributions include two efficient techniques for approximating parameterized reduced matrices while preserving symmetry and positive definiteness: matrix gappy proper orthogonal decomposition and reduced-basis sparsification. Our results for a parameterized truss-structure problem demonstrate the practical importance of preserving Lagrangian structure and illustrate the proposed method's merits: it reduces computation time while maintaining high accuracy and stability, in contrast to existing nonlinear model-reduction techniques that do not preserve structure.« less

  3. Preserving Lagrangian Structure in Nonlinear Model Reduction with Application to Structural Dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlberg, Kevin; Tuminaro, Ray; Boggs, Paul

    Our work proposes a model-reduction methodology that preserves Lagrangian structure and achieves computational efficiency in the presence of high-order nonlinearities and arbitrary parameter dependence. As such, the resulting reduced-order model retains key properties such as energy conservation and symplectic time-evolution maps. We focus on parameterized simple mechanical systems subjected to Rayleigh damping and external forces, and consider an application to nonlinear structural dynamics. To preserve structure, the method first approximates the system's “Lagrangian ingredients''---the Riemannian metric, the potential-energy function, the dissipation function, and the external force---and subsequently derives reduced-order equations of motion by applying the (forced) Euler--Lagrange equation with thesemore » quantities. Moreover, from the algebraic perspective, key contributions include two efficient techniques for approximating parameterized reduced matrices while preserving symmetry and positive definiteness: matrix gappy proper orthogonal decomposition and reduced-basis sparsification. Our results for a parameterized truss-structure problem demonstrate the practical importance of preserving Lagrangian structure and illustrate the proposed method's merits: it reduces computation time while maintaining high accuracy and stability, in contrast to existing nonlinear model-reduction techniques that do not preserve structure.« less

  4. Bayesian Lagrangian Data Assimilation and Drifter Deployment Strategies

    NASA Astrophysics Data System (ADS)

    Dutt, A.; Lermusiaux, P. F. J.

    2017-12-01

    Ocean currents transport a variety of natural (e.g. water masses, phytoplankton, zooplankton, sediments, etc.) and man-made materials and other objects (e.g. pollutants, floating debris, search and rescue, etc.). Lagrangian Coherent Structures (LCSs) or the most influential/persistent material lines in a flow, provide a robust approach to characterize such Lagrangian transports and organize classic trajectories. Using the flow-map stochastic advection and a dynamically-orthogonal decomposition, we develop uncertainty prediction schemes for both Eulerian and Lagrangian variables. We then extend our Bayesian Gaussian Mixture Model (GMM)-DO filter to a joint Eulerian-Lagrangian Bayesian data assimilation scheme. The resulting nonlinear filter allows the simultaneous non-Gaussian estimation of Eulerian variables (e.g. velocity, temperature, salinity, etc.) and Lagrangian variables (e.g. drifter/float positions, trajectories, LCSs, etc.). Its results are showcased using a double-gyre flow with a random frequency, a stochastic flow past a cylinder, and realistic ocean examples. We further show how our Bayesian mutual information and adaptive sampling equations provide a rigorous efficient methodology to plan optimal drifter deployment strategies and predict the optimal times, locations, and types of measurements to be collected.

  5. Scale-by-scale contributions to Lagrangian particle acceleration

    NASA Astrophysics Data System (ADS)

    Lalescu, Cristian C.; Wilczek, Michael

    2017-11-01

    Fluctuations on a wide range of scales in both space and time are characteristic of turbulence. Lagrangian particles, advected by the flow, probe these fluctuations along their trajectories. In an effort to isolate the influence of the different scales on Lagrangian statistics, we employ direct numerical simulations (DNS) combined with a filtering approach. Specifically, we study the acceleration statistics of tracers advected in filtered fields to characterize the smallest temporal scales of the flow. Emphasis is put on the acceleration variance as a function of filter scale, along with the scaling properties of the relevant terms of the Navier-Stokes equations. We furthermore discuss scaling ranges for higher-order moments of the tracer acceleration, as well as the influence of the choice of filter on the results. Starting from the Lagrangian tracer acceleration as the short time limit of the Lagrangian velocity increment, we also quantify the influence of filtering on Lagrangian intermittency. Our work complements existing experimental results on intermittency and accelerations of finite-sized, neutrally-buoyant particles: for the passive tracers used in our DNS, feedback effects are neglected such that the spatial averaging effect is cleanly isolated.

  6. Chaotic Lagrangian models for turbulent relative dispersion.

    PubMed

    Lacorata, Guglielmo; Vulpiani, Angelo

    2017-04-01

    A deterministic multiscale dynamical system is introduced and discussed as a prototype model for relative dispersion in stationary, homogeneous, and isotropic turbulence. Unlike stochastic diffusion models, here trajectory transport and mixing properties are entirely controlled by Lagrangian chaos. The anomalous "sweeping effect," a known drawback common to kinematic simulations, is removed through the use of quasi-Lagrangian coordinates. Lagrangian dispersion statistics of the model are accurately analyzed by computing the finite-scale Lyapunov exponent (FSLE), which is the optimal measure of the scaling properties of dispersion. FSLE scaling exponents provide a severe test to decide whether model simulations are in agreement with theoretical expectations and/or observation. The results of our numerical experiments cover a wide range of "Reynolds numbers" and show that chaotic deterministic flows can be very efficient, and numerically low-cost, models of turbulent trajectories in stationary, homogeneous, and isotropic conditions. The mathematics of the model is relatively simple, and, in a geophysical context, potential applications may regard small-scale parametrization issues in general circulation models, mixed layer, and/or boundary layer turbulence models as well as Lagrangian predictability studies.

  7. Lagrangian statistics in compressible isotropic homogeneous turbulence

    NASA Astrophysics Data System (ADS)

    Yang, Yantao; Wang, Jianchun; Shi, Yipeng; Chen, Shiyi

    2011-11-01

    In this work we conducted the Direct Numerical Simulation (DNS) of a forced compressible isotropic homogeneous turbulence and investigated the flow statistics from the Lagrangian point of view, namely the statistics is computed following the passive tracers trajectories. The numerical method combined the Eulerian field solver which was developed by Wang et al. (2010, J. Comp. Phys., 229, 5257-5279), and a Lagrangian module for tracking the tracers and recording the data. The Lagrangian probability density functions (p.d.f.'s) have then been calculated for both kinetic and thermodynamic quantities. In order to isolate the shearing part from the compressing part of the flow, we employed the Helmholtz decomposition to decompose the flow field (mainly the velocity field) into the solenoidal and compressive parts. The solenoidal part was compared with the incompressible case, while the compressibility effect showed up in the compressive part. The Lagrangian structure functions and cross-correlation between various quantities will also be discussed. This work was supported in part by the China's Turbulence Program under Grant No.2009CB724101.

  8. Chaotic Lagrangian models for turbulent relative dispersion

    NASA Astrophysics Data System (ADS)

    Lacorata, Guglielmo; Vulpiani, Angelo

    2017-04-01

    A deterministic multiscale dynamical system is introduced and discussed as a prototype model for relative dispersion in stationary, homogeneous, and isotropic turbulence. Unlike stochastic diffusion models, here trajectory transport and mixing properties are entirely controlled by Lagrangian chaos. The anomalous "sweeping effect," a known drawback common to kinematic simulations, is removed through the use of quasi-Lagrangian coordinates. Lagrangian dispersion statistics of the model are accurately analyzed by computing the finite-scale Lyapunov exponent (FSLE), which is the optimal measure of the scaling properties of dispersion. FSLE scaling exponents provide a severe test to decide whether model simulations are in agreement with theoretical expectations and/or observation. The results of our numerical experiments cover a wide range of "Reynolds numbers" and show that chaotic deterministic flows can be very efficient, and numerically low-cost, models of turbulent trajectories in stationary, homogeneous, and isotropic conditions. The mathematics of the model is relatively simple, and, in a geophysical context, potential applications may regard small-scale parametrization issues in general circulation models, mixed layer, and/or boundary layer turbulence models as well as Lagrangian predictability studies.

  9. Computation of NLO processes involving heavy quarks using Loop-Tree Duality

    NASA Astrophysics Data System (ADS)

    Driencourt-Mangin, Félix

    2017-03-01

    We present a new method to compute higher-order corrections to physical cross-sections, at Next-to-Leading Order and beyond. This method, based on the Loop Tree Duality, leads to locally integrable expressions in four dimensions. By introducing a physically motivated momentum mapping between the momenta involved in the real and the virtual contributions, infrared singularities naturally cancel at integrand level, without the need to introduce subtraction counter-terms. Ultraviolet singularities are dealt with by using dual representations of suitable counter-terms, with some subtleties regarding the self-energy contributions. As an example, we apply this method to compute the 1 → 2 decay rate in the context of a scalar toy model with massive particles.

  10. Scattering amplitude and bosonization duality in general Chern-Simons vector models

    NASA Astrophysics Data System (ADS)

    Yokoyama, Shuichi

    2016-09-01

    We present the exact large N calculus of four point functions in general Chern-Simons bosonic and fermionic vector models. Applying the LSZ formula to the four point function we determine the two body scattering amplitudes in these theories taking a special care for a non-analytic term to achieve unitarity in the singlet channel. We show that the S-matrix enjoys the bosonization duality, an unusual crossing relation and a non-relativistic reduction to Aharonov-Bohm scattering. We also argue that the S-matrix develops a pole in a certain range of coupling constants, which disappears in the range where the theory reduces to the Chern-Simons theory interacting with free fermions.

  11. Lagrangian theory of structure formation in relativistic cosmology. IV. Lagrangian approach to gravitational waves

    NASA Astrophysics Data System (ADS)

    Al Roumi, Fosca; Buchert, Thomas; Wiegand, Alexander

    2017-12-01

    The relativistic generalization of the Newtonian Lagrangian perturbation theory is investigated. In previous works, the perturbation and solution schemes that are generated by the spatially projected gravitoelectric part of the Weyl tensor were given to any order of the perturbations, together with extensions and applications for accessing the nonperturbative regime. We here discuss more in detail the general first-order scheme within the Cartan formalism including and concentrating on the gravitational wave propagation in matter. We provide master equations for all parts of Lagrangian-linearized perturbations propagating in the perturbed spacetime, and we outline the solution procedure that allows one to find general solutions. Particular emphasis is given to global properties of the Lagrangian perturbation fields by employing results of Hodge-de Rham theory. We here discuss how the Hodge decomposition relates to the standard scalar-vector-tensor decomposition. Finally, we demonstrate that we obtain the known linear perturbation solutions of the standard relativistic perturbation scheme by performing two steps: first, by restricting our solutions to perturbations that propagate on a flat unperturbed background spacetime and, second, by transforming to Eulerian background coordinates with truncation of nonlinear terms.

  12. Imposing a Lagrangian Particle Framework on an Eulerian Hydrodynamics Infrastructure in Flash

    NASA Technical Reports Server (NTRS)

    Dubey, A.; Daley, C.; ZuHone, J.; Ricker, P. M.; Weide, K.; Graziani, C.

    2012-01-01

    In many astrophysical simulations, both Eulerian and Lagrangian quantities are of interest. For example, in a galaxy cluster merger simulation, the intracluster gas can have Eulerian discretization, while dark matter can be modeled using particles. FLASH, a component-based scientific simulation code, superimposes a Lagrangian framework atop an adaptive mesh refinement Eulerian framework to enable such simulations. The discretization of the field variables is Eulerian, while the Lagrangian entities occur in many different forms including tracer particles, massive particles, charged particles in particle-in-cell mode, and Lagrangian markers to model fluid structure interactions. These widely varying roles for Lagrangian entities are possible because of the highly modular, flexible, and extensible architecture of the Lagrangian framework. In this paper, we describe the Lagrangian framework in FLASH in the context of two very different applications, Type Ia supernovae and galaxy cluster mergers, which use the Lagrangian entities in fundamentally different ways.

  13. Imposing a Lagrangian Particle Framework on an Eulerian Hydrodynamics Infrastructure in FLASH

    NASA Astrophysics Data System (ADS)

    Dubey, A.; Daley, C.; ZuHone, J.; Ricker, P. M.; Weide, K.; Graziani, C.

    2012-08-01

    In many astrophysical simulations, both Eulerian and Lagrangian quantities are of interest. For example, in a galaxy cluster merger simulation, the intracluster gas can have Eulerian discretization, while dark matter can be modeled using particles. FLASH, a component-based scientific simulation code, superimposes a Lagrangian framework atop an adaptive mesh refinement Eulerian framework to enable such simulations. The discretization of the field variables is Eulerian, while the Lagrangian entities occur in many different forms including tracer particles, massive particles, charged particles in particle-in-cell mode, and Lagrangian markers to model fluid-structure interactions. These widely varying roles for Lagrangian entities are possible because of the highly modular, flexible, and extensible architecture of the Lagrangian framework. In this paper, we describe the Lagrangian framework in FLASH in the context of two very different applications, Type Ia supernovae and galaxy cluster mergers, which use the Lagrangian entities in fundamentally different ways.

  14. Trivial solutions of generalized supergravity vs non-abelian T-duality anomaly

    NASA Astrophysics Data System (ADS)

    Wulff, Linus

    2018-06-01

    The equations that follow from kappa symmetry of the type II Green-Schwarz string are a certain deformation, by a Killing vector field K, of the type II supergravity equations. We analyze under what conditions solutions of these 'generalized' supergravity equations are trivial in the sense that they solve also the standard supergravity equations. We argue that for this to happen K must be null and satisfy dK =iK H with H = dB the NSNS three-form field strength. Non-trivial examples are provided by symmetric pp-wave solutions. We then analyze the consequences for non-abelian T-duality and the closely related homogenous Yang-Baxter sigma models. When one performs non-abelian T-duality of a string sigma model on a non-unimodular (sub)algebra one generates a non-vanishing K proportional to the trace of the structure constants. This is expected to lead to an anomaly but we show that when K satisfies the same conditions the anomaly in fact goes away leading to more possibilities for non-anomalous non-abelian T-duality.

  15. Vorticity and symplecticity in multi-symplectic, Lagrangian gas dynamics

    NASA Astrophysics Data System (ADS)

    Webb, G. M.; Anco, S. C.

    2016-02-01

    The Lagrangian, multi-dimensional, ideal, compressible gas dynamic equations are written in a multi-symplectic form, in which the Lagrangian fluid labels, m i (the Lagrangian mass coordinates) and time t are the independent variables, and in which the Eulerian position of the fluid element {x}={x}({m},t) and the entropy S=S({m},t) are the dependent variables. Constraints in the variational principle are incorporated by means of Lagrange multipliers. The constraints are: the entropy advection equation S t = 0, the Lagrangian map equation {{x}}t={u} where {u} is the fluid velocity, and the mass continuity equation which has the form J=τ where J={det}({x}{ij}) is the Jacobian of the Lagrangian map in which {x}{ij}=\\partial {x}i/\\partial {m}j and τ =1/ρ is the specific volume of the gas. The internal energy per unit volume of the gas \\varepsilon =\\varepsilon (ρ ,S) corresponds to a non-barotropic gas. The Lagrangian is used to define multi-momenta, and to develop de Donder-Weyl Hamiltonian equations. The de Donder-Weyl equations are cast in a multi-symplectic form. The pullback conservation laws and the symplecticity conservation laws are obtained. One class of symplecticity conservation laws give rise to vorticity and potential vorticity type conservation laws, and another class of symplecticity laws are related to derivatives of the Lagrangian energy conservation law with respect to the Lagrangian mass coordinates m i . We show that the vorticity-symplecticity laws can be derived by a Lie dragging method, and also by using Noether’s second theorem and a fluid relabelling symmetry which is a divergence symmetry of the action. We obtain the Cartan-Poincaré form describing the equations and we discuss a set of differential forms representing the equation system.

  16. COLAcode: COmoving Lagrangian Acceleration code

    NASA Astrophysics Data System (ADS)

    Tassev, Svetlin V.

    2016-02-01

    COLAcode is a serial particle mesh-based N-body code illustrating the COLA (COmoving Lagrangian Acceleration) method; it solves for Large Scale Structure (LSS) in a frame that is comoving with observers following trajectories calculated in Lagrangian Perturbation Theory (LPT). It differs from standard N-body code by trading accuracy at small-scales to gain computational speed without sacrificing accuracy at large scales. This is useful for generating large ensembles of accurate mock halo catalogs required to study galaxy clustering and weak lensing; such catalogs are needed to perform detailed error analysis for ongoing and future surveys of LSS.

  17. Nonunitary Lagrangians and Unitary Non-Lagrangian Conformal Field Theories.

    PubMed

    Buican, Matthew; Laczko, Zoltan

    2018-02-23

    In various dimensions, we can sometimes compute observables of interacting conformal field theories (CFTs) that are connected to free theories via the renormalization group (RG) flow by computing protected quantities in the free theories. On the other hand, in two dimensions, it is often possible to algebraically construct observables of interacting CFTs using free fields without the need to explicitly construct an underlying RG flow. In this Letter, we begin to extend this idea to higher dimensions by showing that one can compute certain observables of an infinite set of unitary strongly interacting four-dimensional N=2 superconformal field theories (SCFTs) by performing simple calculations involving sets of nonunitary free four-dimensional hypermultiplets. These free fields are distant cousins of the Majorana fermion underlying the two-dimensional Ising model and are not obviously connected to our interacting theories via an RG flow. Rather surprisingly, this construction gives us Lagrangians for particular observables in certain subsectors of many "non-Lagrangian" SCFTs by sacrificing unitarity while preserving the full N=2 superconformal algebra. As a by-product, we find relations between characters in unitary and nonunitary affine Kac-Moody algebras. We conclude by commenting on possible generalizations of our construction.

  18. Nonunitary Lagrangians and Unitary Non-Lagrangian Conformal Field Theories

    NASA Astrophysics Data System (ADS)

    Buican, Matthew; Laczko, Zoltan

    2018-02-01

    In various dimensions, we can sometimes compute observables of interacting conformal field theories (CFTs) that are connected to free theories via the renormalization group (RG) flow by computing protected quantities in the free theories. On the other hand, in two dimensions, it is often possible to algebraically construct observables of interacting CFTs using free fields without the need to explicitly construct an underlying RG flow. In this Letter, we begin to extend this idea to higher dimensions by showing that one can compute certain observables of an infinite set of unitary strongly interacting four-dimensional N =2 superconformal field theories (SCFTs) by performing simple calculations involving sets of nonunitary free four-dimensional hypermultiplets. These free fields are distant cousins of the Majorana fermion underlying the two-dimensional Ising model and are not obviously connected to our interacting theories via an RG flow. Rather surprisingly, this construction gives us Lagrangians for particular observables in certain subsectors of many "non-Lagrangian" SCFTs by sacrificing unitarity while preserving the full N =2 superconformal algebra. As a by-product, we find relations between characters in unitary and nonunitary affine Kac-Moody algebras. We conclude by commenting on possible generalizations of our construction.

  19. Electric-magnetic dualities in non-abelian and non-commutative gauge theories

    NASA Astrophysics Data System (ADS)

    Ho, Jun-Kai; Ma, Chen-Te

    2016-08-01

    Electric-magnetic dualities are equivalence between strong and weak coupling constants. A standard example is the exchange of electric and magnetic fields in an abelian gauge theory. We show three methods to perform electric-magnetic dualities in the case of the non-commutative U (1) gauge theory. The first method is to use covariant field strengths to be the electric and magnetic fields. We find an invariant form of an equation of motion after performing the electric-magnetic duality. The second method is to use the Seiberg-Witten map to rewrite the non-commutative U (1) gauge theory in terms of abelian field strength. The third method is to use the large Neveu Schwarz-Neveu Schwarz (NS-NS) background limit (non-commutativity parameter only has one degree of freedom) to consider the non-commutative U (1) gauge theory or D3-brane. In this limit, we introduce or dualize a new one-form gauge potential to get a D3-brane in a large Ramond-Ramond (R-R) background via field redefinition. We also use perturbation to study the equivalence between two D3-brane theories. Comparison of these methods in the non-commutative U (1) gauge theory gives different physical implications. The comparison reflects the differences between the non-abelian and non-commutative gauge theories in the electric-magnetic dualities. For a complete study, we also extend our studies to the simplest abelian and non-abelian p-form gauge theories, and a non-commutative theory with the non-abelian structure.

  20. Scale factor duality for conformal cyclic cosmologies

    NASA Astrophysics Data System (ADS)

    Camara da Silva, U.; Alves Lima, A. L.; Sotkov, G. M.

    2016-11-01

    The scale factor duality is a symmetry of dilaton gravity which is known to lead to pre-big-bang cosmologies. A conformal time version of the scale factor duality (SFD) was recently implemented as a UV/IR symmetry between decelerated and accelerated phases of the post-big-bang evolution within Einstein gravity coupled to a scalar field. The problem investigated in the present paper concerns the employment of the conformal time SFD methods to the construction of pre-big-bang and cyclic extensions of these models. We demonstrate that each big-bang model gives rise to two qualitatively different pre-big-bang evolutions: a contraction/expansion SFD model and Penrose's Conformal Cyclic Cosmology (CCC). A few examples of SFD symmetric cyclic universes involving certain gauged Kähler sigma models minimally coupled to Einstein gravity are studied. We also describe the specific SFD features of the thermodynamics and the conditions for validity of the generalized second law in the case of Gauss-Bonnet (GB) extension of these selected CCC models.

  1. An adaptive reconstruction for Lagrangian, direct-forcing, immersed-boundary methods

    NASA Astrophysics Data System (ADS)

    Posa, Antonio; Vanella, Marcos; Balaras, Elias

    2017-12-01

    Lagrangian, direct-forcing, immersed boundary (IB) methods have been receiving increased attention due to their robustness in complex fluid-structure interaction problems. They are very sensitive, however, on the selection of the Lagrangian grid, which is typically used to define a solid or flexible body immersed in a fluid flow. In the present work we propose a cost-efficient solution to this problem without compromising accuracy. Central to our approach is the use of isoparametric mapping to bridge the relative resolution requirements of Lagrangian IB, and Eulerian grids. With this approach, the density of surface Lagrangian markers, which is essential to properly enforce boundary conditions, is adapted dynamically based on the characteristics of the underlying Eulerian grid. The markers are not stored and the Lagrangian data-structure is not modified. The proposed scheme is implemented in the framework of a moving least squares reconstruction formulation, but it can be adapted to any Lagrangian, direct-forcing formulation. The accuracy and robustness of the approach is demonstrated in a variety of test cases of increasing complexity.

  2. The Duality Principle in Teaching Arithmetic and Geometric Series

    ERIC Educational Resources Information Center

    Yeshurun, Shraga

    1978-01-01

    The author discusses the use of the duality principle in combination with the hierarchy of algebraic operations in helping students to retain and use definitions and rules for arithmetic and geometric sequences and series. (MN)

  3. Scalar curvature of Lagrangian Riemannian submersions and their harmonicity

    NASA Astrophysics Data System (ADS)

    Eken Meri˙ç, Şemsi; Kiliç, Erol; Sağiroğlu, Yasemi˙n

    In this paper, we consider a Lagrangian Riemannian submersion from a Hermitian manifold to a Riemannian manifold and establish some basic inequalities to obtain relationships between the intrinsic and extrinsic invariants for such a submersion. Indeed, using these inequalities, we provide necessary and sufficient conditions for which a Lagrangian Riemannian submersion π has totally geodesic or totally umbilical fibers. Moreover, we study the harmonicity of Lagrangian Riemannian submersions and obtain a characterization for such submersions to be harmonic.

  4. Fricke S-duality in CHL models

    DOE PAGES

    Persson, Daniel; Volpato, Roberto

    2015-12-23

    In this study, we consider four dimensional CHL models with sixteen spacetime supersymmetries obtained from orbifolds of type IIA superstring on K3×T 2 by a Z N symmetry acting (possibly) non-geometrically on K3. We show that most of these models (in particular, for geometric symmetries) are self-dual under a weak-strong duality acting on the heterotic axio-dilaton modulus S by a “Fricke involution” S → -1/NS. This is a novel symmetry of CHL models that lies outside of the standard SL(2,Z)-symmetry of the parent theory, heterotic strings on T 6. For self-dual models this implies that the lattice of purely electricmore » charges is N-modular, i.e. isometric to its dual up to a rescaling of its quadratic form by N. We verify this prediction by determining the lattices of electric and magnetic charges in all relevant examples. We also calculate certain BPS-saturated couplings and verify that they are invariant under the Fricke S-duality. For CHL models that are not self-dual, the strong coupling limit is dual to type IIA compactified on T 6/Z N, for some Z N-symmetry preserving half of the spacetime supersymmetries.« less

  5. A Lagrangian effective field theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vlah, Zvonimir; White, Martin; Aviles, Alejandro

    We have continued the development of Lagrangian, cosmological perturbation theory for the low-order correlators of the matter density field. We provide a new route to understanding how the effective field theory (EFT) of large-scale structure can be formulated in the Lagrandian framework and a new resummation scheme, comparing our results to earlier work and to a series of high-resolution N-body simulations in both Fourier and configuration space. The `new' terms arising from EFT serve to tame the dependence of perturbation theory on small-scale physics and improve agreement with simulations (though with an additional free parameter). We find that all ofmore » our models fare well on scales larger than about two to three times the non-linear scale, but fail as the non-linear scale is approached. This is slightly less reach than has been seen previously. At low redshift the Lagrangian model fares as well as EFT in its Eulerian formulation, but at higher z the Eulerian EFT fits the data to smaller scales than resummed, Lagrangian EFT. Furthermore, all the perturbative models fare better than linear theory.« less

  6. A Lagrangian effective field theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vlah, Zvonimir; White, Martin; Aviles, Alejandro, E-mail: zvlah@stanford.edu, E-mail: mwhite@berkeley.edu, E-mail: aviles@berkeley.edu

    We have continued the development of Lagrangian, cosmological perturbation theory for the low-order correlators of the matter density field. We provide a new route to understanding how the effective field theory (EFT) of large-scale structure can be formulated in the Lagrandian framework and a new resummation scheme, comparing our results to earlier work and to a series of high-resolution N-body simulations in both Fourier and configuration space. The 'new' terms arising from EFT serve to tame the dependence of perturbation theory on small-scale physics and improve agreement with simulations (though with an additional free parameter). We find that all ofmore » our models fare well on scales larger than about two to three times the non-linear scale, but fail as the non-linear scale is approached. This is slightly less reach than has been seen previously. At low redshift the Lagrangian model fares as well as EFT in its Eulerian formulation, but at higher z the Eulerian EFT fits the data to smaller scales than resummed, Lagrangian EFT. All the perturbative models fare better than linear theory.« less

  7. A Lagrangian effective field theory

    DOE PAGES

    Vlah, Zvonimir; White, Martin; Aviles, Alejandro

    2015-09-02

    We have continued the development of Lagrangian, cosmological perturbation theory for the low-order correlators of the matter density field. We provide a new route to understanding how the effective field theory (EFT) of large-scale structure can be formulated in the Lagrandian framework and a new resummation scheme, comparing our results to earlier work and to a series of high-resolution N-body simulations in both Fourier and configuration space. The `new' terms arising from EFT serve to tame the dependence of perturbation theory on small-scale physics and improve agreement with simulations (though with an additional free parameter). We find that all ofmore » our models fare well on scales larger than about two to three times the non-linear scale, but fail as the non-linear scale is approached. This is slightly less reach than has been seen previously. At low redshift the Lagrangian model fares as well as EFT in its Eulerian formulation, but at higher z the Eulerian EFT fits the data to smaller scales than resummed, Lagrangian EFT. Furthermore, all the perturbative models fare better than linear theory.« less

  8. Implications of Lagrangian Tracer Transport for Coupled Chemistry-Climate Simulations

    NASA Astrophysics Data System (ADS)

    Stenke, A.

    2009-05-01

    Today's coupled chemistry-climate models (CCM) consider a large number of trace species and feedback processes. Due to the radiative effect of some species, errors in simulated tracer distributions can feed back to model dynamics. Thus, shortcomings of the applied transport schemes can have severe implications for the overall model performance. Traditional Eulerian approaches show a satisfactory performance in case of homogeneously distributed trace species, but they can lead to severe problems when applied to highly inhomogeneous tracer distributions. In case of sharp gradients many schemes show a considerable numerical diffusion. Lagrangian approaches, on the other hand, combine a number of favourable numerical properties: They are strictly mass-conserving and do not suffer from numerical diffusion. Therefore they are able to maintain steeper gradients. A further advantage is that they allow the transport of a large number of tracers without being prohibitively expensive. A variety of benefits for stratospheric dynamics and chemistry resulting from a Lagrangian transport algorithm are demonstrated by the example of the CCM E39C. In an updated version of E39C, called E39C-A, the operational semi-Lagrangian advection scheme has been replaced with the purely Lagrangian scheme ATTILA. It will be shown that several model deficiencies can be cured by the choice of an appropriate transport algorithm. The most important advancement concerns the reduction of a pronounced wet bias in the extra- tropical lowermost stratosphere. In turn, the associated temperature error ("cold bias") is significantly reduced. Stratospheric wind variations are now in better agreement with observations, e.g. E39C-A is able to reproduce the stratospheric wind reversal in the Southern Hemisphere in summer which was not captured by the previous model version. Resulting changes in wave propagation and dissipation lead to a weakening of the simulated mean meridional circulation and therefore a more

  9. Bounded fractional diffusion in geological media: Definition and Lagrangian approximation

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Green, Christopher T.; LaBolle, Eric M.; Neupauer, Roseanna M.; Sun, HongGuang

    2016-11-01

    Spatiotemporal fractional-derivative models (FDMs) have been increasingly used to simulate non-Fickian diffusion, but methods have not been available to define boundary conditions for FDMs in bounded domains. This study defines boundary conditions and then develops a Lagrangian solver to approximate bounded, one-dimensional fractional diffusion. Both the zero-value and nonzero-value Dirichlet, Neumann, and mixed Robin boundary conditions are defined, where the sign of Riemann-Liouville fractional derivative (capturing nonzero-value spatial-nonlocal boundary conditions with directional superdiffusion) remains consistent with the sign of the fractional-diffusive flux term in the FDMs. New Lagrangian schemes are then proposed to track solute particles moving in bounded domains, where the solutions are checked against analytical or Eulerian solutions available for simplified FDMs. Numerical experiments show that the particle-tracking algorithm for non-Fickian diffusion differs from Fickian diffusion in relocating the particle position around the reflective boundary, likely due to the nonlocal and nonsymmetric fractional diffusion. For a nonzero-value Neumann or Robin boundary, a source cell with a reflective face can be applied to define the release rate of random-walking particles at the specified flux boundary. Mathematical definitions of physically meaningful nonlocal boundaries combined with bounded Lagrangian solvers in this study may provide the only viable techniques at present to quantify the impact of boundaries on anomalous diffusion, expanding the applicability of FDMs from infinite domains to those with any size and boundary conditions.

  10. Bounded fractional diffusion in geological media: Definition and Lagrangian approximation

    USGS Publications Warehouse

    Zhang, Yong; Green, Christopher T.; LaBolle, Eric M.; Neupauer, Roseanna M.; Sun, HongGuang

    2016-01-01

    Spatiotemporal Fractional-Derivative Models (FDMs) have been increasingly used to simulate non-Fickian diffusion, but methods have not been available to define boundary conditions for FDMs in bounded domains. This study defines boundary conditions and then develops a Lagrangian solver to approximate bounded, one-dimensional fractional diffusion. Both the zero-value and non-zero-value Dirichlet, Neumann, and mixed Robin boundary conditions are defined, where the sign of Riemann-Liouville fractional derivative (capturing non-zero-value spatial-nonlocal boundary conditions with directional super-diffusion) remains consistent with the sign of the fractional-diffusive flux term in the FDMs. New Lagrangian schemes are then proposed to track solute particles moving in bounded domains, where the solutions are checked against analytical or Eularian solutions available for simplified FDMs. Numerical experiments show that the particle-tracking algorithm for non-Fickian diffusion differs from Fickian diffusion in relocating the particle position around the reflective boundary, likely due to the non-local and non-symmetric fractional diffusion. For a non-zero-value Neumann or Robin boundary, a source cell with a reflective face can be applied to define the release rate of random-walking particles at the specified flux boundary. Mathematical definitions of physically meaningful nonlocal boundaries combined with bounded Lagrangian solvers in this study may provide the only viable techniques at present to quantify the impact of boundaries on anomalous diffusion, expanding the applicability of FDMs from infinite do mains to those with any size and boundary conditions.

  11. Euler-Lagrangian computation for estuarine hydrodynamics

    USGS Publications Warehouse

    Cheng, Ralph T.

    1983-01-01

    The transport of conservative and suspended matter in fluid flows is a phenomenon of Lagrangian nature because the process is usually convection dominant. Nearly all numerical investigations of such problems use an Eulerian formulation for the convenience that the computational grids are fixed in space and because the vast majority of field data are collected in an Eulerian reference frame. Several examples are given in this paper to illustrate a modeling approach which combines the advantages of both the Eulerian and Lagrangian computational techniques.

  12. Leadership of International Schools: Understanding and Managing Dualities

    ERIC Educational Resources Information Center

    Keller, Dan

    2015-01-01

    Leaders of international schools find themselves operating within a loosely defined, yet rapidly growing, specialty niche of education. The leadership context for these schools is often filled with ambiguity and complex tensions between opposing forces. This article proposes a two-stage framework for critically analyzing the dualities of…

  13. A Lagrangian particle method with remeshing for tracer transport on the sphere

    DOE PAGES

    Bosler, Peter Andrew; Kent, James; Krasny, Robert; ...

    2017-03-30

    A Lagrangian particle method (called LPM) based on the flow map is presented for tracer transport on the sphere. The particles carry tracer values and are located at the centers and vertices of triangular Lagrangian panels. Remeshing is applied to control particle disorder and two schemes are compared, one using direct tracer interpolation and another using inverse flow map interpolation with sampling of the initial tracer density. Test cases include a moving-vortices flow and reversing-deformational flow with both zero and nonzero divergence, as well as smooth and discontinuous tracers. We examine the accuracy of the computed tracer density and tracermore » integral, and preservation of nonlinear correlation in a pair of tracers. Here, we compare results obtained using LPM and the Lin–Rood finite-volume scheme. An adaptive particle/panel refinement scheme is demonstrated.« less

  14. A Lagrangian particle method with remeshing for tracer transport on the sphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bosler, Peter Andrew; Kent, James; Krasny, Robert

    A Lagrangian particle method (called LPM) based on the flow map is presented for tracer transport on the sphere. The particles carry tracer values and are located at the centers and vertices of triangular Lagrangian panels. Remeshing is applied to control particle disorder and two schemes are compared, one using direct tracer interpolation and another using inverse flow map interpolation with sampling of the initial tracer density. Test cases include a moving-vortices flow and reversing-deformational flow with both zero and nonzero divergence, as well as smooth and discontinuous tracers. We examine the accuracy of the computed tracer density and tracermore » integral, and preservation of nonlinear correlation in a pair of tracers. Here, we compare results obtained using LPM and the Lin–Rood finite-volume scheme. An adaptive particle/panel refinement scheme is demonstrated.« less

  15. An extended Lagrangian method

    NASA Technical Reports Server (NTRS)

    Liou, Meng-Sing

    1993-01-01

    A unique formulation of describing fluid motion is presented. The method, referred to as 'extended Lagrangian method', is interesting from both theoretical and numerical points of view. The formulation offers accuracy in numerical solution by avoiding numerical diffusion resulting from mixing of fluxes in the Eulerian description. Meanwhile, it also avoids the inaccuracy incurred due to geometry and variable interpolations used by the previous Lagrangian methods. The present method is general and capable of treating subsonic flows as well as supersonic flows. The method proposed in this paper is robust and stable. It automatically adapts to flow features without resorting to clustering, thereby maintaining rather uniform grid spacing throughout and large time step. Moreover, the method is shown to resolve multidimensional discontinuities with a high level of accuracy, similar to that found in 1D problems.

  16. Bukhvostov-Lipatov model and quantum-classical duality

    NASA Astrophysics Data System (ADS)

    Bazhanov, Vladimir V.; Lukyanov, Sergei L.; Runov, Boris A.

    2018-02-01

    The Bukhvostov-Lipatov model is an exactly soluble model of two interacting Dirac fermions in 1 + 1 dimensions. The model describes weakly interacting instantons and anti-instantons in the O (3) non-linear sigma model. In our previous work [arxiv:arXiv:1607.04839] we have proposed an exact formula for the vacuum energy of the Bukhvostov-Lipatov model in terms of special solutions of the classical sinh-Gordon equation, which can be viewed as an example of a remarkable duality between integrable quantum field theories and integrable classical field theories in two dimensions. Here we present a complete derivation of this duality based on the classical inverse scattering transform method, traditional Bethe ansatz techniques and analytic theory of ordinary differential equations. In particular, we show that the Bethe ansatz equations defining the vacuum state of the quantum theory also define connection coefficients of an auxiliary linear problem for the classical sinh-Gordon equation. Moreover, we also present details of the derivation of the non-linear integral equations determining the vacuum energy and other spectral characteristics of the model in the case when the vacuum state is filled by 2-string solutions of the Bethe ansatz equations.

  17. Lagrangian analysis of the laminar flat plate boundary layer

    NASA Astrophysics Data System (ADS)

    Gabr, Mohammad

    2016-10-01

    The flow properties at the leading edge of a flat plate represent a singularity to the Blasius laminar boundary layer equations; by applying the Lagrangian approach, the leading edge velocity profiles of the laminar boundary layer over a flat plate are studied. Experimental observations as well as the theoretical analysis show an exact Gaussian distribution curve as the original starting profile of the laminar flow. Comparisons between the Blasius solution and the Gaussian curve solution are carried out providing a new insight into the physics of the laminar flow.

  18. An Eulerian/Lagrangian coupling procedure for three-dimensional vortical flows

    NASA Technical Reports Server (NTRS)

    Felici, Helene M.; Drela, Mark

    1993-01-01

    A coupled Eulerian/Lagrangian method is presented for the reduction of numerical diffusion observed in solutions of 3D vortical flows using standard Eulerian finite-volume time-marching procedures. A Lagrangian particle tracking method, added to the Eulerian time-marching procedure, provides a correction of the Eulerian solution. In turn, the Eulerian solution is used to integrate the Lagrangian state-vector along the particles trajectories. While the Eulerian solution ensures the conservation of mass and sets the pressure field, the particle markers describe accurately the convection properties and enhance the vorticity and entropy capturing capabilities of the Eulerian solver. The Eulerian/Lagrangian coupling strategies are discussed and the combined scheme is tested on a constant stagnation pressure flow in a 90 deg bend and on a swirling pipe flow. As the numerical diffusion is reduced when using the Lagrangian correction, a vorticity gradient augmentation is identified as a basic problem of this inviscid calculation.

  19. Extended hamiltonian formalism and Lorentz-violating lagrangians

    NASA Astrophysics Data System (ADS)

    Colladay, Don

    2017-09-01

    A new perspective on the classical mechanical formulation of particle trajectories in Lorentz-violating theories is presented. Using the extended hamiltonian formalism, a Legendre Transformation between the associated covariant lagrangian and hamiltonian varieties is constructed. This approach enables calculation of trajectories using Hamilton's equations in momentum space and the Euler-Lagrange equations in velocity space away from certain singular points that arise in the theory. Singular points are naturally de-singularized by requiring the trajectories to be smooth functions of both velocity and momentum variables. In addition, it is possible to identify specific sheets of the dispersion relations that correspond to specific solutions for the lagrangian. Examples corresponding to bipartite Finsler functions are computed in detail. A direct connection between the lagrangians and the field-theoretic solutions to the Dirac equation is also established for a special case.

  20. Thermostating extended Lagrangian Born-Oppenheimer molecular dynamics.

    PubMed

    Martínez, Enrique; Cawkwell, Marc J; Voter, Arthur F; Niklasson, Anders M N

    2015-04-21

    Extended Lagrangian Born-Oppenheimer molecular dynamics is developed and analyzed for applications in canonical (NVT) simulations. Three different approaches are considered: the Nosé and Andersen thermostats and Langevin dynamics. We have tested the temperature distribution under different conditions of self-consistent field (SCF) convergence and time step and compared the results to analytical predictions. We find that the simulations based on the extended Lagrangian Born-Oppenheimer framework provide accurate canonical distributions even under approximate SCF convergence, often requiring only a single diagonalization per time step, whereas regular Born-Oppenheimer formulations exhibit unphysical fluctuations unless a sufficiently high degree of convergence is reached at each time step. The thermostated extended Lagrangian framework thus offers an accurate approach to sample processes in the canonical ensemble at a fraction of the computational cost of regular Born-Oppenheimer molecular dynamics simulations.

  1. Adaptive reconnection-based arbitrary Lagrangian Eulerian method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bo, Wurigen; Shashkov, Mikhail

    We present a new adaptive Arbitrary Lagrangian Eulerian (ALE) method. This method is based on the reconnection-based ALE (ReALE) methodology of Refs. [35], [34] and [6]. The main elements in a standard ReALE method are: an explicit Lagrangian phase on an arbitrary polygonal (in 2D) mesh in which the solution and positions of grid nodes are updated; a rezoning phase in which a new grid is defined by changing the connectivity (using Voronoi tessellation) but not the number of cells; and a remapping phase in which the Lagrangian solution is transferred onto the new grid. Furthermore, in the standard ReALEmore » method, the rezoned mesh is smoothed by using one or several steps toward centroidal Voronoi tessellation, but it is not adapted to the solution in any way.« less

  2. Adaptive reconnection-based arbitrary Lagrangian Eulerian method

    DOE PAGES

    Bo, Wurigen; Shashkov, Mikhail

    2015-07-21

    We present a new adaptive Arbitrary Lagrangian Eulerian (ALE) method. This method is based on the reconnection-based ALE (ReALE) methodology of Refs. [35], [34] and [6]. The main elements in a standard ReALE method are: an explicit Lagrangian phase on an arbitrary polygonal (in 2D) mesh in which the solution and positions of grid nodes are updated; a rezoning phase in which a new grid is defined by changing the connectivity (using Voronoi tessellation) but not the number of cells; and a remapping phase in which the Lagrangian solution is transferred onto the new grid. Furthermore, in the standard ReALEmore » method, the rezoned mesh is smoothed by using one or several steps toward centroidal Voronoi tessellation, but it is not adapted to the solution in any way.« less

  3. A majorized Newton-CG augmented Lagrangian-based finite element method for 3D restoration of geological models

    NASA Astrophysics Data System (ADS)

    Tang, Peipei; Wang, Chengjing; Dai, Xiaoxia

    2016-04-01

    In this paper, we propose a majorized Newton-CG augmented Lagrangian-based finite element method for 3D elastic frictionless contact problems. In this scheme, we discretize the restoration problem via the finite element method and reformulate it to a constrained optimization problem. Then we apply the majorized Newton-CG augmented Lagrangian method to solve the optimization problem, which is very suitable for the ill-conditioned case. Numerical results demonstrate that the proposed method is a very efficient algorithm for various large-scale 3D restorations of geological models, especially for the restoration of geological models with complicated faults.

  4. Quark-hadron duality constraints on $$\\gamma Z$$ box corrections to parity-violating elastic scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, Nathan L.; Blunden, Peter G.; Melnitchouk, Wally

    2015-12-08

    We examine the interference \\gamma Z box corrections to parity-violating elastic electron--proton scattering in the light of the recent observation of quark-hadron duality in parity-violating deep-inelastic scattering from the deuteron, and the approximate isospin independence of duality in the electromagnetic nucleon structure functions down to Q 2 \\approx 1 GeV 2. Assuming that a similar behavior also holds for the \\gamma Z proton structure functions, we find that duality constrains the γ Z box correction to the proton's weak charge to be Re V γ Z V = (5.4 \\pm 0.4) \\times 10 -3 at the kinematics of the Qmore » weak experiment. Within the same model we also provide estimates of the γ Z corrections for future parity-violating experiments, such as MOLLER at Jefferson Lab and MESA at Mainz.« less

  5. Wave particle duality, the observer and retrocausality

    NASA Astrophysics Data System (ADS)

    Narasimhan, Ashok; Kafatos, Menas C.

    2017-05-01

    We approach wave particle duality, the role of the observer and implications on Retrocausality, by starting with the results of a well verified quantum experiment. We analyze how some current theoretical approaches interpret these results. We then provide an alternative theoretical framework that is consistent with the observations and in many ways simpler than usual attempts to account for retrocausality, involving a non-local conscious Observer.

  6. Thermofield duality for higher spin Rindler Gravity

    DOE PAGES

    Jevicki, Antal; Suzuki, Kenta

    2016-02-15

    In this paper, we study the Thermo-field realization of the duality between the Rindler-AdS higher spin theory and O(N) vector theory. The CFT represents a decoupled pair of free O(N) vector field theories. It is shown how this decoupled domain CFT is capable of generating the connected Rindler-AdS background with the full set of Higher Spin fields.

  7. Extended Lagrangian formulation of charge-constrained tight-binding molecular dynamics.

    PubMed

    Cawkwell, M J; Coe, J D; Yadav, S K; Liu, X-Y; Niklasson, A M N

    2015-06-09

    The extended Lagrangian Born-Oppenheimer molecular dynamics formalism [Niklasson, Phys. Rev. Lett., 2008, 100, 123004] has been applied to a tight-binding model under the constraint of local charge neutrality to yield microcanonical trajectories with both precise, long-term energy conservation and a reduced number of self-consistent field optimizations at each time step. The extended Lagrangian molecular dynamics formalism restores time reversal symmetry in the propagation of the electronic degrees of freedom, and it enables the efficient and accurate self-consistent optimization of the chemical potential and atomwise potential energy shifts in the on-site elements of the tight-binding Hamiltonian that are required when enforcing local charge neutrality. These capabilities are illustrated with microcanonical molecular dynamics simulations of a small metallic cluster using an sd-valent tight-binding model for titanium. The effects of weak dissipation on the propagation of the auxiliary degrees of freedom for the chemical potential and on-site Hamiltonian matrix elements that is used to counteract the accumulation of numerical noise during trajectories was also investigated.

  8. Numerical considerations for Lagrangian stochastic dispersion models: Eliminating rogue trajectories, and the importance of numerical accuracy

    USDA-ARS?s Scientific Manuscript database

    When Lagrangian stochastic models for turbulent dispersion are applied to complex flows, some type of ad hoc intervention is almost always necessary to eliminate unphysical behavior in the numerical solution. This paper discusses numerical considerations when solving the Langevin-based particle velo...

  9. On Lagrangian residual currents with applications in south San Francisco Bay, California

    USGS Publications Warehouse

    Cheng, Ralph T.; Casulli, Vincenzo

    1982-01-01

    The Lagrangian residual circulation has often been introduced as the sum of the Eulerian residual circulation and the Stokes' drift. Unfortunately, this definition of the Lagrangian residual circulation is conceptually incorrect because both the Eulerian residual circulation and the Stokes' drift are Eulerian variables. In this paper a classification of various residual variables are reviewed and properly defined. The Lagrangian residual circulation is then studied by means of a two-stage formulation of a computer model. The tidal circulation is first computed in a conventional Eulerian way, and then the Lagrangian residual circulation is determined by a method patterned after the method of markers and cells. To demonstrate properties of the Lagrangian residual circulation, application of this approach in South San Francisco Bay, California, is considered. With the aid of the model results, properties of the Eulerian and Lagrangian residual circulation are examined. It can be concluded that estimation of the Lagrangian residual circulation from Eulerian data may lead to unacceptable error, particularly in a tidal estuary where the tidal excursion is of the same order of magnitude as the length scale of the basin. A direction calculation of the Lagrangian residual circulation must be made and has been shown to be feasible.

  10. The duality in using information and communication technology in elder care.

    PubMed

    Sävenstedt, Stefan; Sandman, P O; Zingmark, Karin

    2006-10-01

    The aim of this paper is to report a study illuminating values and perceptions held by professional carers of older people about the use of information and communication technology applications. Various information and communication technology applications have successfully been developed to help solve a variety of problems in elder care. Beside different technical barriers and the assumed negative attitudes among older people, staff values and attitudes have been found to be an important cause of resistance to change and slowness in introduction of information and communication technology in health care of older people. An interview study was conducted in 2004 with 10 healthcare personnel with 3-26 years experience of working in home care and nursing homes in Northern Sweden. Qualitative content analysis was used to identify recurring themes in the data. The interpretation of values and perceptions among carers revealed a duality where the carers perceived information and communication technology as a promoter of both inhumane and humane care, a duality that seemed to make them defensive and resistant to change. Within the overall duality, other dualities were embedded that described both perceptions about the care of older people and about being a carer. There was evidence of resistance among professional carers towards an introduction of information and communication technology applications in elder care. Carers considered that the same attributes of information and communication technology that could promote humane care could also lead to dehumanized care. There should be an ethical discussion when introducing information and communication technology applications in elder care. The best caring alternative for all those concerned should be considered. It should promote aspects of wellbeing and dignity for frail older people and fears of inhumane care among carers must be recognized and discussed.

  11. A purely Lagrangian method for simulating the shallow water equations on a sphere using smooth particle hydrodynamics

    NASA Astrophysics Data System (ADS)

    Capecelatro, Jesse

    2018-03-01

    It has long been suggested that a purely Lagrangian solution to global-scale atmospheric/oceanic flows can potentially outperform tradition Eulerian schemes. Meanwhile, a demonstration of a scalable and practical framework remains elusive. Motivated by recent progress in particle-based methods when applied to convection dominated flows, this work presents a fully Lagrangian method for solving the inviscid shallow water equations on a rotating sphere in a smooth particle hydrodynamics framework. To avoid singularities at the poles, the governing equations are solved in Cartesian coordinates, augmented with a Lagrange multiplier to ensure that fluid particles are constrained to the surface of the sphere. An underlying grid in spherical coordinates is used to facilitate efficient neighbor detection and parallelization. The method is applied to a suite of canonical test cases, and conservation, accuracy, and parallel performance are assessed.

  12. Parent formulation at the Lagrangian level

    NASA Astrophysics Data System (ADS)

    Grigoriev, Maxim

    2011-07-01

    The recently proposed first-order parent formalism at the level of equations of motion is specialized to the case of Lagrangian systems. It is shown that for diffeomorphism-invariant theories the parent formulation takes the form of an AKSZ-type sigma model. The proposed formulation can be also seen as a Lagrangian version of the BV-BRST extension of the Vasiliev unfolded approach. We also discuss its possible interpretation as a multidimensional generalization of the Hamiltonian BFV-BRST formalism. The general construction is illustrated by examples of (parametrized) mechanics, relativistic particle, Yang-Mills theory, and gravity.

  13. Thermostating extended Lagrangian Born-Oppenheimer molecular dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martínez, Enrique; Cawkwell, Marc J.; Voter, Arthur F.

    Here, Extended Lagrangian Born-Oppenheimer molecular dynamics is developed and analyzed for applications in canonical (NVT) simulations. Three different approaches are considered: the Nosé and Andersen thermostats and Langevin dynamics. We have tested the temperature distribution under different conditions of self-consistent field (SCF) convergence and time step and compared the results to analytical predictions. We find that the simulations based on the extended Lagrangian Born-Oppenheimer framework provide accurate canonical distributions even under approximate SCF convergence, often requiring only a single diagonalization per time step, whereas regular Born-Oppenheimer formulations exhibit unphysical fluctuations unless a sufficiently high degree of convergence is reached atmore » each time step. Lastly, the thermostated extended Lagrangian framework thus offers an accurate approach to sample processes in the canonical ensemble at a fraction of the computational cost of regular Born-Oppenheimer molecular dynamics simulations.« less

  14. Thermostating extended Lagrangian Born-Oppenheimer molecular dynamics

    DOE PAGES

    Martínez, Enrique; Cawkwell, Marc J.; Voter, Arthur F.; ...

    2015-04-21

    Here, Extended Lagrangian Born-Oppenheimer molecular dynamics is developed and analyzed for applications in canonical (NVT) simulations. Three different approaches are considered: the Nosé and Andersen thermostats and Langevin dynamics. We have tested the temperature distribution under different conditions of self-consistent field (SCF) convergence and time step and compared the results to analytical predictions. We find that the simulations based on the extended Lagrangian Born-Oppenheimer framework provide accurate canonical distributions even under approximate SCF convergence, often requiring only a single diagonalization per time step, whereas regular Born-Oppenheimer formulations exhibit unphysical fluctuations unless a sufficiently high degree of convergence is reached atmore » each time step. Lastly, the thermostated extended Lagrangian framework thus offers an accurate approach to sample processes in the canonical ensemble at a fraction of the computational cost of regular Born-Oppenheimer molecular dynamics simulations.« less

  15. Assimilating Eulerian and Lagrangian data in traffic-flow models

    NASA Astrophysics Data System (ADS)

    Xia, Chao; Cochrane, Courtney; DeGuire, Joseph; Fan, Gaoyang; Holmes, Emma; McGuirl, Melissa; Murphy, Patrick; Palmer, Jenna; Carter, Paul; Slivinski, Laura; Sandstede, Björn

    2017-05-01

    Data assimilation of traffic flow remains a challenging problem. One difficulty is that data come from different sources ranging from stationary sensors and camera data to GPS and cell phone data from moving cars. Sensors and cameras give information about traffic density, while GPS data provide information about the positions and velocities of individual cars. Previous methods for assimilating Lagrangian data collected from individual cars relied on specific properties of the underlying computational model or its reformulation in Lagrangian coordinates. These approaches make it hard to assimilate both Eulerian density and Lagrangian positional data simultaneously. In this paper, we propose an alternative approach that allows us to assimilate both Eulerian and Lagrangian data. We show that the proposed algorithm is accurate and works well in different traffic scenarios and regardless of whether ensemble Kalman or particle filters are used. We also show that the algorithm is capable of estimating parameters and assimilating real traffic observations and synthetic observations obtained from microscopic models.

  16. Lagrangian trajectories, residual currents and rectification process in the Northern Gulf of California

    NASA Astrophysics Data System (ADS)

    Rodríguez, Pablo Alonso; Carbajal, Noel; Rodríguez, Juan Heberto Gaviño

    2017-07-01

    Considering a semi-implicit approximation of the Coriolis terms, a numerical solution of the vertically integrated equations of motion is proposed. To test the two-dimensional numerical model, several experiments for the calculation of Euler, Stokes and Lagrange residual currents in the Gulf of California were carried out. To estimate the Lagrangian residual current, trajectories of particles were also simulated. The applied tidal constituents were M2, S2, K2, N2, K1, P1 and O1. At spring tides, strong tidal velocities occur in the northern half of the gulf. In this region of complex geometry, depths change from a few meter in the northern shelf zone to more than 3000 m in the southern part. In the archipelago region, the presence of islands alters amplitude and direction of tidal currents producing a rectification process which is reflected in a clockwise circulation around Tiburón Island in the Lagrangian residual current. The rectification process is explained by the superposition of the Euler and Stokes residual currents. Residual current patterns show several cyclonic and anticyclonic gyres in the Northern Gulf of California. Numerical experiments for individual and combinations of several tidal constituents revealed a large variability of Lagrangian trajectories.

  17. a Marker-Based Eulerian-Lagrangian Method for Multiphase Flow with Supersonic Combustion Applications

    NASA Astrophysics Data System (ADS)

    Fan, Xiaofeng; Wang, Jiangfeng

    2016-06-01

    The atomization of liquid fuel is a kind of intricate dynamic process from continuous phase to discrete phase. Procedures of fuel spray in supersonic flow are modeled with an Eulerian-Lagrangian computational fluid dynamics methodology. The method combines two distinct techniques and develops an integrated numerical simulation method to simulate the atomization processes. The traditional finite volume method based on stationary (Eulerian) Cartesian grid is used to resolve the flow field, and multi-component Navier-Stokes equations are adopted in present work, with accounting for the mass exchange and heat transfer occupied by vaporization process. The marker-based moving (Lagrangian) grid is utilized to depict the behavior of atomized liquid sprays injected into a gaseous environment, and discrete droplet model 13 is adopted. To verify the current approach, the proposed method is applied to simulate processes of liquid atomization in supersonic cross flow. Three classic breakup models, TAB model, wave model and K-H/R-T hybrid model, are discussed. The numerical results are compared with multiple perspectives quantitatively, including spray penetration height and droplet size distribution. In addition, the complex flow field structures induced by the presence of liquid spray are illustrated and discussed. It is validated that the maker-based Eulerian-Lagrangian method is effective and reliable.

  18. Dualities in CHL-models

    NASA Astrophysics Data System (ADS)

    Persson, Daniel; Volpato, Roberto

    2018-04-01

    We define a very general class of CHL-models associated with any string theory S (bosonic or supersymmetric) compactified on an internal CFT C× Td . We take the orbifold by a pair (g, δ) , where g is a (possibly non-geometric) symmetry of C and δ is a translation along T n . We analyze the T-dualities of these models and show that in general they contain Atkin–Lehner type symmetries. This generalizes our previous work on N=4 CHL-models based on heterotic string theory on T 6 or type II on K3× T2 , as well as the ‘monstrous’ CHL-models based on a compactification of heterotic string theory on the Frenkel–Lepowsky–Meurman CFT V\

  19. Duality-symmetric supersymmetric Yang-Mills theory in three dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishino, Hitoshi; Rajpoot, Subhash

    We formulate a duality-symmetric N=1 supersymmetric Yang-Mills theory in three dimensions. Our field content is (A{sub {mu}}{sup I},{lambda}{sup I},{phi}{sup I}), where the index I is for the adjoint representation of an arbitrary gauge group G. Our Hodge duality symmetry is F{sub {mu}{nu}}{sup I}=+{epsilon}{sub {mu}{nu}}{sup {rho}D}{sub {rho}{phi}}{sup I}. Because of this relationship, the presence of two physical fields A{sub {mu}}{sup I} and {phi}{sup I} within the same N=1 supermultiplet poses no problem. We can couple this multiplet to another vector multiplet (C{sub {mu}}{sup I},{chi}{sup I};B{sub {mu}{nu}}{sup I}) with 1+1 physical degrees of freedom modulo dim G. Thanks to peculiar couplings andmore » supersymmetry, the usual problem with an extra vector field in a nontrivial representation does not arise in our system.« less

  20. Duality based direct resolution of unique profiles using zero concentration region information.

    PubMed

    Tavakkoli, Elnaz; Rajkó, Róbert; Abdollahi, Hamid

    2018-07-01

    Self Modeling Curve Resolution (SMCR) is a class of techniques concerned with estimating pure profiles underlying a set of measurements on chemical systems. In general, the estimated profiles are ambiguous (non-unique) except if some special conditions fulfilled. Implementing the adequate information can reduce the so-called rotational ambiguity effectively, and in the most desirable cases lead to the unique solution. Therefore, studies on circumstances resulting in unique solution are of particular importance. The conditions of unique solution can particularly be studied based on duality principle. In bilinear chemical (e.g., spectroscopic) data matrix, there is a natural duality between its row and column vector spaces using minimal constraints (non-negativity of concentrations and absorbances). In this article, the conditions of the unique solution according to duality concept and using zero concentration region information is intended to show. A simulated dataset of three components and an experimental system with synthetic mixtures containing three amino acids tyrosine, phenylalanine and tryptophan are analyzed. It is shown that in the presence of sufficient information, the reliable unique solution is obtained that is valuable in analytical qualification and for quantitative verification analysis. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Hamiltonian stability for weighted measure and generalized Lagrangian mean curvature flow

    NASA Astrophysics Data System (ADS)

    Kajigaya, Toru; Kunikawa, Keita

    2018-06-01

    In this paper, we generalize several results for the Hamiltonian stability and the mean curvature flow of Lagrangian submanifolds in a Kähler-Einstein manifold to more general Kähler manifolds including a Fano manifold equipped with a Kähler form ω ∈ 2 πc1(M) by using the method proposed by Behrndt (2011). Namely, we first consider a weighted measure on a Lagrangian submanifold L in a Kähler manifold M and investigate the variational problem of L for the weighted volume functional. We call a stationary point of the weighted volume functional f-minimal, and define the notion of Hamiltonian f-stability as a local minimizer under Hamiltonian deformations. We show such examples naturally appear in a toric Fano manifold. Moreover, we consider the generalized Lagrangian mean curvature flow in a Fano manifold which is introduced by Behrndt and Smoczyk-Wang. We generalize the result of H. Li, and show that if the initial Lagrangian submanifold is a small Hamiltonian deformation of an f-minimal and Hamiltonian f-stable Lagrangian submanifold, then the generalized MCF converges exponentially fast to an f-minimal Lagrangian submanifold.

  2. Lagrangian descriptors in dissipative systems.

    PubMed

    Junginger, Andrej; Hernandez, Rigoberto

    2016-11-09

    The reaction dynamics of time-dependent systems can be resolved through a recrossing-free dividing surface associated with the transition state trajectory-that is, the unique trajectory which is bound to the barrier region for all time in response to a given time-dependent potential. A general procedure based on the minimization of Lagrangian descriptors has recently been developed by Craven and Hernandez [Phys. Rev. Lett., 2015, 115, 148301] to construct this particular trajectory without requiring perturbative expansions relative to the naive transition state point at the top of the barrier. The extension of the method to account for dissipation in the equations of motion requires additional considerations established in this paper because the calculation of the Lagrangian descriptor involves the integration of trajectories in forward and backward time. The two contributions are in general very different because the friction term can act as a source (in backward time) or sink (in forward time) of energy, leading to the possibility that information about the phase space structure may be lost due to the dominance of only one of the terms. To compensate for this effect, we introduce a weighting scheme within the Lagrangian descriptor and demonstrate that for thermal Langevin dynamics it preserves the essential phase space structures, while they are lost in the nonweighted case.

  3. A macroscopic plasma Lagrangian and its application to wave interactions and resonances

    NASA Technical Reports Server (NTRS)

    Peng, Y. K. M.

    1974-01-01

    The derivation of a macroscopic plasma Lagrangian is considered, along with its application to the description of nonlinear three-wave interaction in a homogeneous plasma and linear resonance oscillations in a inhomogeneous plasma. One approach to obtain the Lagrangian is via the inverse problem of the calculus of variations for arbitrary first and second order quasilinear partial differential systems. Necessary and sufficient conditions for the given equations to be Euler-Lagrange equations of a Lagrangian are obtained. These conditions are then used to determine the transformations that convert some classes of non-Euler-Lagrange equations to Euler-Lagrange equation form. The Lagrangians for a linear resistive transmission line and a linear warm collisional plasma are derived as examples. Using energy considerations, the correct macroscopic plasma Lagrangian is shown to differ from the velocity-integrated low Lagrangian by a macroscopic potential energy that equals twice the particle thermal kinetic energy plus the energy lost by heat conduction.

  4. Next generation extended Lagrangian first principles molecular dynamics

    NASA Astrophysics Data System (ADS)

    Niklasson, Anders M. N.

    2017-08-01

    Extended Lagrangian Born-Oppenheimer molecular dynamics [A. M. N. Niklasson, Phys. Rev. Lett. 100, 123004 (2008)] is formulated for general Hohenberg-Kohn density-functional theory and compared with the extended Lagrangian framework of first principles molecular dynamics by Car and Parrinello [Phys. Rev. Lett. 55, 2471 (1985)]. It is shown how extended Lagrangian Born-Oppenheimer molecular dynamics overcomes several shortcomings of regular, direct Born-Oppenheimer molecular dynamics, while improving or maintaining important features of Car-Parrinello simulations. The accuracy of the electronic degrees of freedom in extended Lagrangian Born-Oppenheimer molecular dynamics, with respect to the exact Born-Oppenheimer solution, is of second-order in the size of the integration time step and of fourth order in the potential energy surface. Improved stability over recent formulations of extended Lagrangian Born-Oppenheimer molecular dynamics is achieved by generalizing the theory to finite temperature ensembles, using fractional occupation numbers in the calculation of the inner-product kernel of the extended harmonic oscillator that appears as a preconditioner in the electronic equations of motion. Material systems that normally exhibit slow self-consistent field convergence can be simulated using integration time steps of the same order as in direct Born-Oppenheimer molecular dynamics, but without the requirement of an iterative, non-linear electronic ground-state optimization prior to the force evaluations and without a systematic drift in the total energy. In combination with proposed low-rank and on the fly updates of the kernel, this formulation provides an efficient and general framework for quantum-based Born-Oppenheimer molecular dynamics simulations.

  5. Next generation extended Lagrangian first principles molecular dynamics.

    PubMed

    Niklasson, Anders M N

    2017-08-07

    Extended Lagrangian Born-Oppenheimer molecular dynamics [A. M. N. Niklasson, Phys. Rev. Lett. 100, 123004 (2008)] is formulated for general Hohenberg-Kohn density-functional theory and compared with the extended Lagrangian framework of first principles molecular dynamics by Car and Parrinello [Phys. Rev. Lett. 55, 2471 (1985)]. It is shown how extended Lagrangian Born-Oppenheimer molecular dynamics overcomes several shortcomings of regular, direct Born-Oppenheimer molecular dynamics, while improving or maintaining important features of Car-Parrinello simulations. The accuracy of the electronic degrees of freedom in extended Lagrangian Born-Oppenheimer molecular dynamics, with respect to the exact Born-Oppenheimer solution, is of second-order in the size of the integration time step and of fourth order in the potential energy surface. Improved stability over recent formulations of extended Lagrangian Born-Oppenheimer molecular dynamics is achieved by generalizing the theory to finite temperature ensembles, using fractional occupation numbers in the calculation of the inner-product kernel of the extended harmonic oscillator that appears as a preconditioner in the electronic equations of motion. Material systems that normally exhibit slow self-consistent field convergence can be simulated using integration time steps of the same order as in direct Born-Oppenheimer molecular dynamics, but without the requirement of an iterative, non-linear electronic ground-state optimization prior to the force evaluations and without a systematic drift in the total energy. In combination with proposed low-rank and on the fly updates of the kernel, this formulation provides an efficient and general framework for quantum-based Born-Oppenheimer molecular dynamics simulations.

  6. Open/closed string duality and relativistic fluids

    NASA Astrophysics Data System (ADS)

    Niarchos, Vasilis

    2016-07-01

    We propose an open/closed string duality in general backgrounds extending previous ideas about open string completeness by Ashoke Sen. Our proposal sets up a general version of holography that works in gravity as a tomographic principle. We argue, in particular, that previous expectations of a supergravity/Dirac-Born-Infeld (DBI) correspondence are naturally embedded in this conjecture and can be tested in a well-defined manner. As an example, we consider the correspondence between open string field theories on extremal D-brane setups in flat space in the large-N , large 't Hooft limit, and asymptotically flat solutions in ten-dimensional type II supergravity. We focus on a convenient long-wavelength regime, where specific effects of higher-spin open string modes can be traced explicitly in the dual supergravity computation. For instance, in this regime we show how the full Abelian DBI action arises from supergravity as a straightforward reformulation of relativistic hydrodynamics. In the example of a (2 +1 )-dimensional open string theory this reformulation involves an Abelian Hodge duality. We also point out how different deformations of the DBI action, related to higher-derivative corrections and non-Abelian effects, can arise in this context as deformations in corresponding relativistic hydrodynamics.

  7. T-duality invariant effective actions at orders α', α'2

    NASA Astrophysics Data System (ADS)

    Razaghian, Hamid; Garousi, Mohammad R.

    2018-02-01

    We use compatibility of the D-dimensional effective actions for diagonal metric and for dilaton with the T-duality when theory is compactified on a circle, to find the D-dimensional couplings of curvatures and dilaton as well as the higher derivative corrections to the ( D - 1)-dimensional Buscher rules at orders α' and α'2. We observe that the T-duality constraint on the effective actions fixes the covariant effective actions at each order of α' up to field redefinitions and up to an overall factor. Inspired by these results, we speculate that the D-dimensional effective actions at any order of α' must be consistent with the standard Buscher rules provided that one uses covariant field redefinitions in the corresponding reduced ( D - 1)-dimensional effective actions. This constraint may be used to find effective actions at all higher orders of α'.

  8. Lagrangian acceleration statistics in a turbulent channel flow

    NASA Astrophysics Data System (ADS)

    Stelzenmuller, Nickolas; Polanco, Juan Ignacio; Vignal, Laure; Vinkovic, Ivana; Mordant, Nicolas

    2017-05-01

    Lagrangian acceleration statistics in a fully developed turbulent channel flow at Reτ=1440 are investigated, based on tracer particle tracking in experiments and direct numerical simulations. The evolution with wall distance of the Lagrangian velocity and acceleration time scales is analyzed. Dependency between acceleration components in the near-wall region is described using cross-correlations and joint probability density functions. The strong streamwise coherent vortices typical of wall-bounded turbulent flows are shown to have a significant impact on the dynamics. This results in a strong anisotropy at small scales in the near-wall region that remains present in most of the channel. Such statistical properties may be used as constraints in building advanced Lagrangian stochastic models to predict the dispersion and mixing of chemical components for combustion or environmental studies.

  9. Functional integral for non-Lagrangian systems

    NASA Astrophysics Data System (ADS)

    Kochan, Denis

    2010-02-01

    A functional integral formulation of quantum mechanics for non-Lagrangian systems is presented. The approach, which we call “stringy quantization,” is based solely on classical equations of motion and is free of any ambiguity arising from Lagrangian and/or Hamiltonian formulation of the theory. The functionality of the proposed method is demonstrated on several examples. Special attention is paid to the stringy quantization of systems with a general A-power friction force -κq˙A. Results for A=1 are compared with those obtained in the approaches by Caldirola-Kanai, Bateman, and Kostin. Relations to the Caldeira-Leggett model and to the Feynman-Vernon approach are discussed as well.

  10. Effective Lagrangian in de Sitter spacetime

    NASA Astrophysics Data System (ADS)

    Kitamoto, Hiroyuki; Kitazawa, Yoshihisa

    2017-01-01

    Scale invariant fluctuations of metric are a universal feature of quantum gravity in de Sitter spacetime. We construct an effective Lagrangian which summarizes their implications on local physics by integrating superhorizon metric fluctuations. It shows infrared quantum effects are local and render fundamental couplings time dependent. We impose Lorenz invariance on the effective Lagrangian as it is required by the principle of general covariance. We show that such a requirement leads to unique physical predictions by fixing the quantization ambiguities. We explain how the gauge parameter dependence of observables is canceled. In particular the relative evolution speed of the couplings are shown to be gauge invariant.

  11. Quantization of Non-Lagrangian Systems

    NASA Astrophysics Data System (ADS)

    Kochan, Denis

    A novel method for quantization of non-Lagrangian (open) systems is proposed. It is argued that the essential object, which provides both classical and quantum evolution, is a certain canonical two-form defined in extended velocity space. In this setting classical dynamics is recovered from the stringy-type variational principle, which employs umbilical surfaces instead of histories of the system. Quantization is then accomplished in accordance with the introduced variational principle. The path integral for the transition probability amplitude (propagator) is rearranged to a surface functional integral. In the standard case of closed (Lagrangian) systems the presented method reduces to the standard Feynman's approach. The inverse problem of the calculus of variation, the problem of quantization ambiguity and the quantum mechanics in the presence of friction are analyzed in detail.

  12. Combinatorial approach to the representation of the Schur-Weyl duality in one-dimensional spin systems

    NASA Astrophysics Data System (ADS)

    Jakubczyk, Dorota; Jakubczyk, Paweł

    2018-02-01

    We propose combinatorial approach to the representation of Schur-Weyl duality in physical systems on the example of one-dimensional spin chains. Exploiting the Robinson-Schensted-Knuth algorithm, we perform decomposition of the dual group representations into irreducible representations in a fully combinatorial way. As representation space, we choose the Hilbert space of the spin chains, but this approach can be easily generalized to an arbitrary physical system where the Schur-Weyl duality works.

  13. Forms of null Lagrangians in field theories of continuum mechanics

    NASA Astrophysics Data System (ADS)

    Kovalev, V. A.; Radaev, Yu. N.

    2012-02-01

    The divergence representation of a null Lagrangian that is regular in a star-shaped domain is used to obtain its general expression containing field gradients of order ≤ 1 in the case of spacetime of arbitrary dimension. It is shown that for a static three-component field in the three-dimensional space, a null Lagrangian can contain up to 15 independent elements in total. The general form of a null Lagrangian in the four-dimensional Minkowski spacetime is obtained (the number of physical field variables is assumed arbitrary). A complete theory of the null Lagrangian for the n-dimensional spacetime manifold (including the four-dimensional Minkowski spacetime as a special case) is given. Null Lagrangians are then used as a basis for solving an important variational problem of an integrating factor. This problem involves searching for factors that depend on the spacetime variables, field variables, and their gradients and, for a given system of partial differential equations, ensure the equality between the scalar product of a vector multiplier by the system vector and some divergence expression for arbitrary field variables and, hence, allow one to formulate a divergence conservation law on solutions to the system.

  14. Lagrangian Statistics and Intermittency in Gulf of Mexico.

    PubMed

    Lin, Liru; Zhuang, Wei; Huang, Yongxiang

    2017-12-12

    Due to the nonlinear interaction between different flow patterns, for instance, ocean current, meso-scale eddies, waves, etc, the movement of ocean is extremely complex, where a multiscale statistics is then relevant. In this work, a high time-resolution velocity with a time step 15 minutes obtained by the Lagrangian drifter deployed in the Gulf of Mexico (GoM) from July 2012 to October 2012 is considered. The measured Lagrangian velocity correlation function shows a strong daily cycle due to the diurnal tidal cycle. The estimated Fourier power spectrum E(f) implies a dual-power-law behavior which is separated by the daily cycle. The corresponding scaling exponents are close to -1.75 and -2.75 respectively for the time scale larger (resp. 0.1 ≤ f ≤ 0.4 day -1 ) and smaller (resp. 2 ≤ f ≤ 8 day -1 ) than 1 day. A Hilbert-based approach is then applied to this data set to identify the possible multifractal property of the cascade process. The results show an intermittent dynamics for the time scale larger than 1 day, while a less intermittent dynamics for the time scale smaller than 1 day. It is speculated that the energy is partially injected via the diurnal tidal movement and then transferred to larger and small scales through a complex cascade process, which needs more studies in the near future.

  15. A unifying framework for ghost-free Lorentz-invariant Lagrangian field theories

    NASA Astrophysics Data System (ADS)

    Li, Wenliang

    2018-04-01

    We propose a framework for Lorentz-invariant Lagrangian field theories where Ostrogradsky's scalar ghosts could be absent. A key ingredient is the generalized Kronecker delta. The general Lagrangians are reformulated in the language of differential forms. The absence of higher order equations of motion for the scalar modes stems from the basic fact that every exact form is closed. The well-established Lagrangian theories for spin-0, spin-1, p-form, spin-2 fields have natural formulations in this framework. We also propose novel building blocks for Lagrangian field theories. Some of them are novel nonlinear derivative terms for spin-2 fields. It is nontrivial that Ostrogradsky's scalar ghosts are absent in these fully nonlinear theories.

  16. Leading-order classical Lagrangians for the nonminimal standard-model extension

    NASA Astrophysics Data System (ADS)

    Reis, J. A. A. S.; Schreck, M.

    2018-03-01

    In this paper, we derive the general leading-order classical Lagrangian covering all fermion operators of the nonminimal standard-model extension (SME). Such a Lagrangian is considered to be the point-particle analog of the effective field theory description of Lorentz violation that is provided by the SME. At leading order in Lorentz violation, the Lagrangian obtained satisfies the set of five nonlinear equations that govern the map from the field theory to the classical description. This result can be of use for phenomenological studies of classical bodies in gravitational fields.

  17. Lagrangian methods in nonlinear plasma wave interaction

    NASA Technical Reports Server (NTRS)

    Crawford, F. W.

    1980-01-01

    Analysis of nonlinear plasma wave interactions is usually very complicated, and simplifying mathematical approaches are highly desirable. The application of averaged-Lagrangian methods offers a considerable reduction in effort, with improved insight into synchronism and conservation (Manley-Rowe) relations. This chapter indicates how suitable Lagrangian densities have been defined, expanded, and manipulated to describe nonlinear wave-wave and wave-particle interactions in the microscopic, macroscopic and cold plasma models. Recently, further simplifications have been introduced by the use of techniques derived from Lie algebra. These and likely future developments are reviewed briefly.

  18. Using Lagrangian Coherent Structures to understand coastal water quality

    NASA Astrophysics Data System (ADS)

    Fiorentino, L. A.; Olascoaga, M. J.; Reniers, A.; Feng, Z.; Beron-Vera, F. J.; MacMahan, J. H.

    2012-09-01

    The accumulation of pollutants near the shoreline can result in low quality coastal water with negative effects on human health. To understand the role of mixing by tidal flows in coastal water quality we study the nearshore Lagrangian circulation. Specifically, we reveal Lagrangian Coherent Structures (LCSs), i.e., distinguished material curves which shape global mixing patterns and thus act as skeletons of the Lagrangian circulation. This is done using the recently developed geodesic theory of transport barriers. Particular focus is placed on Hobie Beach, a recreational subtropical marine beach located in Virginia Key, Miami, Florida. According to studies of water quality, Hobie Beach is characterized by high microbial levels. Possible sources of pollution in Hobie Beach include human bather shedding, dog fecal matter, runoff, and sand efflux at high tides. Consistent with the patterns formed by satellite-tracked drifter trajectories, the LCSs extracted from simulated currents reveal a Lagrangian circulation favoring the retention near the shoreline of pollutants released along the shoreline, which can help explain the low quality water registered at Hobie Beach.

  19. Integration over families of Lagrangian submanifolds in BV formalism

    NASA Astrophysics Data System (ADS)

    Mikhailov, Andrei

    2018-03-01

    Gauge fixing is interpreted in BV formalism as a choice of Lagrangian submanifold in an odd symplectic manifold (the BV phase space). A natural construction defines an integration procedure on families of Lagrangian submanifolds. In string perturbation theory, the moduli space integrals of higher genus amplitudes can be interpreted in this way. We discuss the role of gauge symmetries in this construction. We derive the conditions which should be imposed on gauge symmetries for the consistency of our integration procedure. We explain how these conditions behave under the deformations of the worldsheet theory. In particular, we show that integrated vertex operator is actually an inhomogeneous differential form on the space of Lagrangian submanifolds.

  20. An updated Lagrangian particle hydrodynamics (ULPH) for Newtonian fluids

    NASA Astrophysics Data System (ADS)

    Tu, Qingsong; Li, Shaofan

    2017-11-01

    In this work, we have developed an updated Lagrangian particle hydrodynamics (ULPH) for Newtonian fluid. Unlike the smoothed particle hydrodynamics, the non-local particle hydrodynamics formulation proposed here is consistent and convergence. Unlike the state-based peridynamics, the discrete particle dynamics proposed here has no internal material bond between particles, and it is not formulated with respect to initial or a fixed referential configuration. In specific, we have shown that (1) the non-local update Lagrangian particle hydrodynamics formulation converges to the conventional local fluid mechanics formulation; (2) the non-local updated Lagrangian particle hydrodynamics can capture arbitrary flow discontinuities without any changes in the formulation, and (3) the proposed non-local particle hydrodynamics is computationally efficient and robust.

  1. Symmetries in Lagrangian Dynamics

    ERIC Educational Resources Information Center

    Ferrario, Carlo; Passerini, Arianna

    2007-01-01

    In the framework of Noether's theorem, a distinction between Lagrangian and dynamical symmetries is made, in order to clarify some aspects neglected by textbooks. An intuitive setting of the concept of invariance of differential equations is presented. The analysis is completed by deriving the symmetry properties in the motion of a charged…

  2. N-person differential games. Part 1: Duality-finite element methods

    NASA Technical Reports Server (NTRS)

    Chen, G.; Zheng, Q.

    1983-01-01

    The duality approach, which is motivated by computational needs and is done by introducing N + 1 Language multipliers is addressed. For N-person linear quadratic games, the primal min-max problem is shown to be equivalent to the dual min-max problem.

  3. New dualities and misleading anomaly matchings from outer-automorphism twists

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pal, Sridip; Song, Jaewon

    We study four-dimensional N=1, 2 superconformal theories in class S obtained by compactifying the 6d N=(2, 0) theory on a Riemann surface C with outer-automorphism twist lines. From the pair-of-pants decompositions of C, we find various dual descriptions for the same theory having distinct gauge groups. We show that the various configurations of the twist line give rise to dual descriptions for the identical theory. We compute the ’t Hooft anomaly coefficients and the superconformal indices to test dualities. Surprisingly, we find that the class S theories with twist lines wrapping 1-cycles of C have the identical ’t Hooft anomaliesmore » as the ones without the twist line, whereas the superconformal indices differ. As a result, this provides a large set of examples where the anomaly matching is insufficient to test dualities.« less

  4. New dualities and misleading anomaly matchings from outer-automorphism twists

    DOE PAGES

    Pal, Sridip; Song, Jaewon

    2017-03-29

    We study four-dimensional N=1, 2 superconformal theories in class S obtained by compactifying the 6d N=(2, 0) theory on a Riemann surface C with outer-automorphism twist lines. From the pair-of-pants decompositions of C, we find various dual descriptions for the same theory having distinct gauge groups. We show that the various configurations of the twist line give rise to dual descriptions for the identical theory. We compute the ’t Hooft anomaly coefficients and the superconformal indices to test dualities. Surprisingly, we find that the class S theories with twist lines wrapping 1-cycles of C have the identical ’t Hooft anomaliesmore » as the ones without the twist line, whereas the superconformal indices differ. As a result, this provides a large set of examples where the anomaly matching is insufficient to test dualities.« less

  5. Null hypersurface quantization, electromagnetic duality and asympotic symmetries of Maxwell theory

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Arpan; Hung, Ling-Yan; Jiang, Yikun

    2018-03-01

    In this paper we consider introducing careful regularization at the quantization of Maxwell theory in the asymptotic null infinity. This allows systematic discussions of the commutators in various boundary conditions, and application of Dirac brackets accordingly in a controlled manner. This method is most useful when we consider asymptotic charges that are not localized at the boundary u → ±∞ like large gauge transformations. We show that our method reproduces the operator algebra in known cases, and it can be applied to other space-time symmetry charges such as the BMS transformations. We also obtain the asymptotic form of the U(1) charge following from the electromagnetic duality in an explicitly EM symmetric Schwarz-Sen type action. Using our regularization method, we demonstrate that the charge generates the expected transformation of a helicity operator. Our method promises applications in more generic theories.

  6. Predictability of the Lagrangian Motion in the Upper Ocean

    NASA Astrophysics Data System (ADS)

    Piterbarg, L. I.; Griffa, A.; Griffa, A.; Mariano, A. J.; Ozgokmen, T. M.; Ryan, E. H.

    2001-12-01

    The complex non-linear dynamics of the upper ocean leads to chaotic behavior of drifter trajectories in the ocean. Our study is focused on estimating the predictability limit for the position of an individual Lagrangian particle or a particle cluster based on the knowledge of mean currents and observations of nearby particles (predictors). The Lagrangian prediction problem, besides being a fundamental scientific problem, is also of great importance for practical applications such as search and rescue operations and for modeling the spread of fish larvae. A stochastic multi-particle model for the Lagrangian motion has been rigorously formulated and is a generalization of the well known "random flight" model for a single particle. Our model is mathematically consistent and includes a few easily interpreted parameters, such as the Lagrangian velocity decorrelation time scale, the turbulent velocity variance, and the velocity decorrelation radius, that can be estimated from data. The top Lyapunov exponent for an isotropic version of the model is explicitly expressed as a function of these parameters enabling us to approximate the predictability limit to first order. Lagrangian prediction errors for two new prediction algorithms are evaluated against simple algorithms and each other and are used to test the predictability limits of the stochastic model for isotropic turbulence. The first algorithm is based on a Kalman filter and uses the developed stochastic model. Its implementation for drifter clusters in both the Tropical Pacific and Adriatic Sea, showed good prediction skill over a period of 1-2 weeks. The prediction error is primarily a function of the data density, defined as the number of predictors within a velocity decorrelation spatial scale from the particle to be predicted. The second algorithm is model independent and is based on spatial regression considerations. Preliminary results, based on simulated, as well as, real data, indicate that it performs

  7. Three dimensional Lagrangian structures in the Antarctic Polar Vortex.

    NASA Astrophysics Data System (ADS)

    Mancho, Ana M.; Garcia-Garrido, Victor J.; Curbelo, Jezabel; Niang, Coumba; Mechoso, Carlos R.; Wiggins, Stephen

    2017-04-01

    Dynamical systems theory has supported the description of transport processes in fluid dynamics. For understanding trajectory patterns in chaotic advection the geometrical approach by Poincaré seeks for spatial structures that separate regions corresponding to qualitatively different types of trajectories. These structures have been referred to as Lagrangian Coherent Structures (LCS), which typically in geophysical flows are well described under the approach of incompressible 2D flows. Different tools have been used to visualize LCS. In this presentation we use Lagrangian Descriptors [1,2,3,4] (function M) for visualizing 3D Lagrangian structures in the atmosphere, in particular in the Antarctic Polar Vortex. The function M is computed in a fully 3D incompressible flow obtained from data provided by the European Centre for Medium-Range Weather Forecast and it is represented in 2D surfaces. We discuss the findings during the final warming that took place in the spring of 1979 [5]. This research is supported by MINECO grant MTM2014-56392-R. Support is acknowledged also from CSIC grant COOPB20265, U.S. NSF grant AGS-1245069 and ONR grant No. N00014- 01-1-0769. C. Niang acknowledges Fundacion Mujeres por Africa and ICMAT Severo Ochoa project SEV-2011-0087 for financial support. [1] C. Mendoza, A. M. Mancho. The hidden geometry of ocean flows. Physical Review Letters 105 (2010), 3, 038501-1-038501-4. [2] A. M. Mancho, S. Wiggins, J. Curbelo, C. Mendoza. Lagrangian Descriptors: A Method for Revealing Phase Space Structures of General Time Dependent Dynamical Systems. Communications in Nonlinear Science and Numerical Simulation. 18 (2013) 3530-3557. [3] C. Lopesino, F. Balibrea-Iniesta, S. Wiggins and A. M. Mancho. Lagrangian descriptors for two dimensional, area preserving autonomous and nonautonomous maps. Communications in Nonlinear Science and Numerical Simulations, 27 (2015) (1-3), 40-51. [4] C. Lopesino, F. Balibrea-Iniesta, V. J. García-Garrido, S. Wiggins, and A

  8. Stability analysis of Eulerian-Lagrangian methods for the one-dimensional shallow-water equations

    USGS Publications Warehouse

    Casulli, V.; Cheng, R.T.

    1990-01-01

    In this paper stability and error analyses are discussed for some finite difference methods when applied to the one-dimensional shallow-water equations. Two finite difference formulations, which are based on a combined Eulerian-Lagrangian approach, are discussed. In the first part of this paper the results of numerical analyses for an explicit Eulerian-Lagrangian method (ELM) have shown that the method is unconditionally stable. This method, which is a generalized fixed grid method of characteristics, covers the Courant-Isaacson-Rees method as a special case. Some artificial viscosity is introduced by this scheme. However, because the method is unconditionally stable, the artificial viscosity can be brought under control either by reducing the spatial increment or by increasing the size of time step. The second part of the paper discusses a class of semi-implicit finite difference methods for the one-dimensional shallow-water equations. This method, when the Eulerian-Lagrangian approach is used for the convective terms, is also unconditionally stable and highly accurate for small space increments or large time steps. The semi-implicit methods seem to be more computationally efficient than the explicit ELM; at each time step a single tridiagonal system of linear equations is solved. The combined explicit and implicit ELM is best used in formulating a solution strategy for solving a network of interconnected channels. The explicit ELM is used at channel junctions for each time step. The semi-implicit method is then applied to the interior points in each channel segment. Following this solution strategy, the channel network problem can be reduced to a set of independent one-dimensional open-channel flow problems. Numerical results support properties given by the stability and error analyses. ?? 1990.

  9. Acoustic streaming: an arbitrary Lagrangian-Eulerian perspective.

    PubMed

    Nama, Nitesh; Huang, Tony Jun; Costanzo, Francesco

    2017-08-25

    We analyse acoustic streaming flows using an arbitrary Lagrangian Eulerian (ALE) perspective. The formulation stems from an explicit separation of time scales resulting in two subproblems: a first-order problem, formulated in terms of the fluid displacement at the fast scale, and a second-order problem, formulated in terms of the Lagrangian flow velocity at the slow time scale. Following a rigorous time-averaging procedure, the second-order problem is shown to be intrinsically steady, and with exact boundary conditions at the oscillating walls. Also, as the second-order problem is solved directly for the Lagrangian velocity, the formulation does not need to employ the notion of Stokes drift, or any associated post-processing, thus facilitating a direct comparison with experiments. Because the first-order problem is formulated in terms of the displacement field, our formulation is directly applicable to more complex fluid-structure interaction problems in microacoustofluidic devices. After the formulation's exposition, we present numerical results that illustrate the advantages of the formulation with respect to current approaches.

  10. Generalized Lagrangian coherent structures

    NASA Astrophysics Data System (ADS)

    Balasuriya, Sanjeeva; Ouellette, Nicholas T.; Rypina, Irina I.

    2018-06-01

    The notion of a Lagrangian Coherent Structure (LCS) is by now well established as a way to capture transient coherent transport dynamics in unsteady and aperiodic fluid flows that are known over finite time. We show that the concept of an LCS can be generalized to capture coherence in other quantities of interest that are transported by, but not fully locked to, the fluid. Such quantities include those with dynamic, biological, chemical, or thermodynamic relevance, such as temperature, pollutant concentration, vorticity, kinetic energy, plankton density, and so on. We provide a conceptual framework for identifying the Generalized Lagrangian Coherent Structures (GLCSs) associated with such evolving quantities. We show how LCSs can be seen as a special case within this framework, and provide an overarching discussion of various methods for identifying LCSs. The utility of this more general viewpoint is highlighted through a variety of examples. We also show that although LCSs approximate GLCSs in certain limiting situations under restrictive assumptions on how the velocity field affects the additional quantities of interest, LCSs are not in general sufficient to describe their coherent transport.

  11. Quark-hadron duality and parity violating asymmetry of electroweak reactions in the {delta} region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsui, K.; Sato, T.; Lee, T.-S.H.

    2005-08-01

    A dynamical model [T. Sato and T.-S. H. Lee, Phys. Rev. C 54, 2660 (1996); 63, 055201 (2001); T. Sato, D. Uno, and T.-S. H. Lee, ibid. 67, 065201 (2003)] of electroweak pion production reactions in the {delta}(1232) region has been extended to include the neutral current contributions for examining the local quark-hadron duality in neutrino-induced reactions and for investigating how the axial N-{delta} form factor can be determined by the parity violating asymmetry of N(e{sup {yields}},e{sup '}) reactions. We first show that the recent data of (e,e{sup '}) structure functions F{sub 1} and F{sub 2}, which exhibit the quark-hadronmore » duality, are in good agreement with our predictions. For possible future experimental tests, we then predict that the structure functions F{sub 1},F{sub 2}, and F{sub 3} for ({nu},e) and ({nu},{nu}{sup '}) processes also show the similar quark-hadron duality. The spin-dependent structure functions g{sub 1} and g{sub 2} of (e,e{sup '}) have also been calculated from our model. It is found that the local quark-hadron duality is not seen in the calculated g{sub 1} and g{sub 2}, while our results for g{sub 1} and some polarization observables associated with the exclusive p(e{sup {yields}},e{sup '}{pi}) and p{sup {yields}}(e{sup {yields}},e{sup '}{pi}) reactions are in reasonably good agreement with the recent data. In the study of parity violating asymmetry A of N(e{sup {yields}},e{sup '}) reactions, the relative importance between the nonresonant mechanisms and the {delta} excitation is investigated by taking into account the unitarity condition. Predictions are made for using the data of A to test the axial N-{delta} form factors determined previously in the studies of N({nu}{sub {mu}},{mu}{sup -}{pi}) reactions. The predicted asymmetry A are also compared with the parton model predictions for future experimental investigations of quark-hadron duality.« less

  12. K-theoretic aspects of string theory dualities

    NASA Astrophysics Data System (ADS)

    Mendez-Diez, Stefan Milo

    String theory is a a physical field theory in which point particles are replaced by 1-manifolds propagating in time, called strings. The 2-manifold representing the time evolution of a string is called the string worldsheet. Strings can be either closed (meaning their worldsheets are closed surfaces) or open (meaning their worldsheets have boundary). A D-brane is a submanifold of the spacetime manifold on which string endpoints are constrained to lie. There are five different string theories that have supersymmetry, and they are all related by various dualities. This dissertation will review how D-branes are classified by K-theory. We will then explore the K-theoretic aspects of a hypothesized duality between the type I theory compactified on a 4-torus and the type IIA theory compactified on a K3 surface, by looking at a certain blow down of the singular limit of K3. This dissertation concludes by classifying D-branes on the type II orientifold Tn/Z2 when the Z2 action is multiplication by -1 and the H-flux is trivial. We find that classifying D-branes on the singular limit of K3, T4/Z2 by equivariant K-theory agrees with the classification of D-branes on a smooth K3 surface by ordinary K-theory.

  13. Serre duality, Abel's theorem, and Jacobi inversion for supercurves over a thick superpoint

    NASA Astrophysics Data System (ADS)

    Rothstein, Mitchell J.; Rabin, Jeffrey M.

    2015-04-01

    The principal aim of this paper is to extend Abel's theorem to the setting of complex supermanifolds of dimension 1 | q over a finite-dimensional local supercommutative C-algebra. The theorem is proved by establishing a compatibility of Serre duality for the supercurve with Poincaré duality on the reduced curve. We include an elementary algebraic proof of the requisite form of Serre duality, closely based on the account of the reduced case given by Serre in Algebraic groups and class fields, combined with an invariance result for the topology on the dual of the space of répartitions. Our Abel map, taking Cartier divisors of degree zero to the dual of the space of sections of the Berezinian sheaf, modulo periods, is defined via Penkov's characterization of the Berezinian sheaf as the cohomology of the de Rham complex of the sheaf D of differential operators. We discuss the Jacobi inversion problem for the Abel map and give an example demonstrating that if n is an integer sufficiently large that the generic divisor of degree n is linearly equivalent to an effective divisor, this need not be the case for all divisors of degree n.

  14. Influence of compressibility on the Lagrangian statistics of vorticity-strain-rate interactions.

    PubMed

    Danish, Mohammad; Sinha, Sawan Suman; Srinivasan, Balaji

    2016-07-01

    The objective of this study is to investigate the influence of compressibility on Lagrangian statistics of vorticity and strain-rate interactions. The Lagrangian statistics are extracted from "almost" time-continuous data sets of direct numerical simulations of compressible decaying isotropic turbulence by employing a cubic spline-based Lagrangian particle tracker. We study the influence of compressibility on Lagrangian statistics of alignment in terms of compressibility parameters-turbulent Mach number, normalized dilatation-rate, and flow topology. In comparison to incompressible turbulence, we observe that the presence of compressibility in a flow field weakens the alignment tendency of vorticity toward the largest strain-rate eigenvector. Based on the Lagrangian statistics of alignment conditioned on dilatation and topology, we find that the weakened tendency of alignment observed in compressible turbulence is because of a special group of fluid particles that have an initially negligible dilatation-rate and are associated with stable-focus-stretching topology.

  15. Alternative transfer to the Earth-Moon Lagrangian points L4 and L5 using lunar gravity assist

    NASA Astrophysics Data System (ADS)

    Salazar, F. J. T.; Macau, E. E. N.; Winter, O. C.

    2014-02-01

    Lagrangian points L4 and L5 lie at 60° ahead of and behind the Moon in its orbit with respect to the Earth. Each one of them is a third point of an equilateral triangle with the base of the line defined by those two bodies. These Lagrangian points are stable for the Earth-Moon mass ratio. As so, these Lagrangian points represent remarkable positions to host astronomical observatories or space stations. However, this same distance characteristic may be a challenge for periodic servicing mission. This paper studies elliptic trajectories from an Earth circular parking orbit to reach the Moon's sphere of influence and apply a swing-by maneuver in order to re-direct the path of a spacecraft to a vicinity of the Lagrangian points L4 and L5. Once the geocentric transfer orbit and the initial impulsive thrust have been determined, the goal is to establish the angle at which the geocentric trajectory crosses the lunar sphere of influence in such a way that when the spacecraft leaves the Moon's gravitational field, its trajectory and velocity with respect to the Earth change in order to the spacecraft arrives at L4 and L5. In this work, the planar Circular Restricted Three Body Problem approximation is used and in order to avoid solving a two boundary problem, the patched-conic approximation is considered.

  16. Generalized extended Lagrangian Born-Oppenheimer molecular dynamics

    DOE PAGES

    Niklasson, Anders M. N.; Cawkwell, Marc J.

    2014-10-29

    Extended Lagrangian Born-Oppenheimer molecular dynamics based on Kohn-Sham density functional theory is generalized in the limit of vanishing self-consistent field optimization prior to the force evaluations. The equations of motion are derived directly from the extended Lagrangian under the condition of an adiabatic separation between the nuclear and the electronic degrees of freedom. We show how this separation is automatically fulfilled and system independent. The generalized equations of motion require only one diagonalization per time step and are applicable to a broader range of materials with improved accuracy and stability compared to previous formulations.

  17. Lagrangian solution of supersonic real gas flows

    NASA Technical Reports Server (NTRS)

    Loh, Ching-Yuen; Liou, Meng-Sing

    1993-01-01

    The present extention of a Lagrangian approach of the Riemann solution procedure, which was originally proposed for perfect gases, to real gases, is nontrivial and requires the development of an exact real-gas Riemann solver for the Lagrangian form of the conservation laws. Calculations including complex wave interactions of various types were conducted to test the accuracy and robustness of the approach. Attention is given to the case of 2D oblique waves' capture, where a slip line is clearly in evidence; the real gas effect is demonstrated in the case of a generic engine nozzle.

  18. Intermittent Lagrangian velocities and accelerations in three-dimensional porous medium flow.

    PubMed

    Holzner, M; Morales, V L; Willmann, M; Dentz, M

    2015-07-01

    Intermittency of Lagrangian velocity and acceleration is a key to understanding transport in complex systems ranging from fluid turbulence to flow in porous media. High-resolution optical particle tracking in a three-dimensional (3D) porous medium provides detailed 3D information on Lagrangian velocities and accelerations. We find sharp transitions close to pore throats, and low flow variability in the pore bodies, which gives rise to stretched exponential Lagrangian velocity and acceleration distributions characterized by a sharp peak at low velocity, superlinear evolution of particle dispersion, and double-peak behavior in the propagators. The velocity distribution is quantified in terms of pore geometry and flow connectivity, which forms the basis for a continuous-time random-walk model that sheds light on the observed Lagrangian flow and transport behaviors.

  19. Lagrangian Approach to Study Catalytic Fluidized Bed Reactors

    NASA Astrophysics Data System (ADS)

    Madi, Hossein; Hossein Madi Team; Marcelo Kaufman Rechulski Collaboration; Christian Ludwig Collaboration; Tilman Schildhauer Collaboration

    2013-03-01

    Lagrangian approach of fluidized bed reactors is a method, which simulates the movement of catalyst particles (caused by the fluidization) by changing the gas composition around them. Application of such an investigation is in the analysis of the state of catalysts and surface reactions under quasi-operando conditions. The hydrodynamics of catalyst particles within a fluidized bed reactor was studied to improve a Lagrangian approach. A fluidized bed methanation employed in the production of Synthetic Natural Gas from wood was chosen as the case study. The Lagrangian perspective was modified and improved to include different particle circulation patterns, which were investigated through this study. Experiments were designed to evaluate the concepts of the model. The results indicate that the setup is able to perform the designed experiments and a good agreement between the simulation and the experimental results were observed. It has been shown that fluidized bed reactors, as opposed to fixed beds, can be used to avoid the deactivation of the methanation catalyst due to carbon deposits. Carbon deposition on the catalysts tested with the Lagrangian approach was investigated by temperature programmed oxidation (TPO) analysis of ex-situ catalyst samples. This investigation was done to identify the effects of particles velocity and their circulation patterns on the amount and type of deposited carbon on the catalyst surface. Ecole Polytechnique Federale de Lausanne(EPFL), Paul Scherrer Institute (PSI)

  20. Diffractive Scattering and Gauge/String Duality

    ScienceCinema

    Tan, Chung-I

    2018-05-11

    High-energy diffractive scattering will be discussed based on Gauge/String duality. As shown by Brower, Polchinski, Strassler and Tan, the ubiquitous Pomeron emerges naturally in gauge theories with string-theoretical descriptions. Its existence is intimately tied to gluons, and also to the energy-momentum tensor. With a confining dual background metric, the Pomeron can be interpreted as a 'massive graviton'. In a single unified step, both its infrared and ultraviolet properties are dealt with, reflecting confinement and conformal symmetry respectively. An effective field theory for high-energy scattering can be constructed. Applications based on this approach will also be described.

  1. Lagrangian statistics and flow topology in forced two-dimensional turbulence.

    PubMed

    Kadoch, B; Del-Castillo-Negrete, D; Bos, W J T; Schneider, K

    2011-03-01

    A study of the relationship between Lagrangian statistics and flow topology in fluid turbulence is presented. The topology is characterized using the Weiss criterion, which provides a conceptually simple tool to partition the flow into topologically different regions: elliptic (vortex dominated), hyperbolic (deformation dominated), and intermediate (turbulent background). The flow corresponds to forced two-dimensional Navier-Stokes turbulence in doubly periodic and circular bounded domains, the latter with no-slip boundary conditions. In the double periodic domain, the probability density function (pdf) of the Weiss field exhibits a negative skewness consistent with the fact that in periodic domains the flow is dominated by coherent vortex structures. On the other hand, in the circular domain, the elliptic and hyperbolic regions seem to be statistically similar. We follow a Lagrangian approach and obtain the statistics by tracking large ensembles of passively advected tracers. The pdfs of residence time in the topologically different regions are computed introducing the Lagrangian Weiss field, i.e., the Weiss field computed along the particles' trajectories. In elliptic and hyperbolic regions, the pdfs of the residence time have self-similar algebraic decaying tails. In contrast, in the intermediate regions the pdf has exponential decaying tails. The conditional pdfs (with respect to the flow topology) of the Lagrangian velocity exhibit Gaussian-like behavior in the periodic and in the bounded domains. In contrast to the freely decaying turbulence case, the conditional pdfs of the Lagrangian acceleration in forced turbulence show a comparable level of intermittency in both the periodic and the bounded domains. The conditional pdfs of the Lagrangian curvature are characterized, in all cases, by self-similar power-law behavior with a decay exponent of order -2.

  2. T-Duality in an H-Flux: Exchange of Momentum and Winding

    NASA Astrophysics Data System (ADS)

    Han, Fei; Mathai, Varghese

    2018-02-01

    Using our earlier proposal for Ramond-Ramond fields in an H-flux on loop space (Han et al. in Commun Math Phys 337(1):127-150, 2015. arXiv:1405.1320), we extend the Hori isomorphism in Bouwknegt et al. (Commun Math Phys 249:383-415, 2004. arXiv:hep-th/0306062; Phys Rev Lett 92:181601, 2004. arXiv:hep-th/0312052) from invariant differential forms, to invariant exotic differential forms such that the momentum and winding numbers are exchanged, filling in a gap in the literature. We also extend the compatibility of the action of invariant exact Courant algebroids on the T-duality isomorphism in Cavalcanti and Gualtieri (in: CRM proceedings of lecture notes, vol 50, pp 341-365, American Mathematical Society, Providence, 2010 ), to the T-duality isomorphism on exotic invariant differential forms.

  3. M2-brane surface operators and gauge theory dualities in Toda

    NASA Astrophysics Data System (ADS)

    Gomis, Jaume; Le Floch, Bruno

    2016-04-01

    We give a microscopic two dimensional {N} = (2, 2) gauge theory description of arbitrary M2-branes ending on N f M5-branes wrapping a punctured Riemann surface. These realize surface operators in four dimensional {N} = 2 field theories. We show that the expectation value of these surface operators on the sphere is captured by a Toda CFT correlation function in the presence of an additional degenerate vertex operator labelled by a representation {R} of SU( N f ), which also labels M2-branes ending on M5-branes. We prove that symmetries of Toda CFT correlators provide a geometric realization of dualities between two dimensional gauge theories, including {N} = (2, 2) analogues of Seiberg and Kutasov-Schwimmer dualities. As a bonus, we find new explicit conformal blocks, braiding matrices, and fusion rules in Toda CFT.

  4. Quasi-local holographic dualities in non-perturbative 3D quantum gravity

    NASA Astrophysics Data System (ADS)

    Dittrich, Bianca; Goeller, Christophe; Livine, Etera R.; Riello, Aldo

    2018-07-01

    We present a line of research aimed at investigating holographic dualities in the context of three dimensional quantum gravity within finite bounded regions. The bulk quantum geometrodynamics is provided by the Ponzano–Regge state-sum model, which defines 3D quantum gravity as a discrete topological quantum field theory (TQFT). This formulation provides an explicit and detailed definition of the quantum boundary states, which allows a rich correspondence between quantum boundary conditions and boundary theories, thereby leading to holographic dualities between 3D quantum gravity and 2D statistical models as used in condensed matter. After presenting the general framework, we focus on the concrete example of the coherent twisted torus boundary, which allows for a direct comparison with other approaches to 3D/2D holography at asymptotic infinity. We conclude with the most interesting questions to pursue in this framework.

  5. The Lagrangian-Hamiltonian formalism for higher order field theories

    NASA Astrophysics Data System (ADS)

    Vitagliano, Luca

    2010-06-01

    We generalize the Lagrangian-Hamiltonian formalism of Skinner and Rusk to higher order field theories on fiber bundles. As a byproduct we solve the long standing problem of defining, in a coordinate free manner, a Hamiltonian formalism for higher order Lagrangian field theories. Namely, our formalism does only depend on the action functional and, therefore, unlike previously proposed ones, is free from any relevant ambiguity.

  6. Lagrangian-Hamiltonian unified formalism for autonomous higher order dynamical systems

    NASA Astrophysics Data System (ADS)

    Prieto-Martínez, Pedro Daniel; Román-Roy, Narciso

    2011-09-01

    The Lagrangian-Hamiltonian unified formalism of Skinner and Rusk was originally stated for autonomous dynamical systems in classical mechanics. It has been generalized for non-autonomous first-order mechanical systems, as well as for first-order and higher order field theories. However, a complete generalization to higher order mechanical systems is yet to be described. In this work, after reviewing the natural geometrical setting and the Lagrangian and Hamiltonian formalisms for higher order autonomous mechanical systems, we develop a complete generalization of the Lagrangian-Hamiltonian unified formalism for these kinds of systems, and we use it to analyze some physical models from this new point of view.

  7. Near-Surface Monsoonal Circulation of the Vietnam East Sea from Lagrangian Drifters

    DTIC Science & Technology

    2015-09-30

    Sea from Lagrangian Drifters Luca Centurioni Scripps Institution of Oceanography 9500 Gilman Drive Mail Code 0213 La Jolla, California 92103...Contribute to the study of coastal and open ocean current systems in sparsely sampled regions such us the South China Sea (SCS), using a Lagrangian ...We intend to make new Lagrangian and Eulerian observations to measure the seasonal circulation 1) in the coastal waters of Vietnam and 2) in the SCS

  8. A Eulerian-Lagrangian Model to Simulate Two-Phase/Particulate Flows

    NASA Technical Reports Server (NTRS)

    Apte, S. V.; Mahesh, K.; Lundgren, T.

    2003-01-01

    Figure 1 shows a snapshot of liquid fuel spray coming out of an injector nozzle in a realistic gas-turbine combustor. Here the spray atomization was simulated using a stochastic secondary breakup model (Apte et al. 2003a) with point-particle approximation for the droplets. Very close to the injector, it is observed that the spray density is large and the droplets cannot be treated as point-particles. The volume displaced by the liquid in this region is significant and can alter the gas-phase ow and spray evolution. In order to address this issue, one can compute the dense spray regime by an Eulerian-Lagrangian technique using advanced interface tracking/level-set methods (Sussman et al. 1994; Tryggvason et al. 2001; Herrmann 2003). This, however, is computationally intensive and may not be viable in realistic complex configurations. We therefore plan to develop a methodology based on Eulerian-Lagrangian technique which will allow us to capture the essential features of primary atomization using models to capture interactions between the fluid and droplets and which can be directly applied to the standard atomization models used in practice. The numerical scheme for unstructured grids developed by Mahesh et al. (2003) for incompressible flows is modified to take into account the droplet volume fraction. The numerical framework is directly applicable to realistic combustor geometries. Our main objectives in this work are: Develop a numerical formulation based on Eulerian-Lagrangian techniques with models for interaction terms between the fluid and particles to capture the Kelvin- Helmholtz type instabilities observed during primary atomization. Validate this technique for various two-phase and particulate flows. Assess its applicability to capture primary atomization of liquid jets in conjunction with secondary atomization models.

  9. Lagrangian and Hamiltonian constraints for guiding-center Hamiltonian theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tronko, Natalia; Brizard, Alain J.

    A consistent guiding-center Hamiltonian theory is derived by Lie-transform perturbation method, with terms up to second order in magnetic-field nonuniformity. Consistency is demonstrated by showing that the guiding-center transformation presented here satisfies separate Jacobian and Lagrangian constraints that have not been explored before. A new first-order term appearing in the guiding-center phase-space Lagrangian is identified through a calculation of the guiding-center polarization. It is shown that this new polarization term also yields a simpler expression of the guiding-center toroidal canonical momentum, which satisfies an exact conservation law in axisymmetric magnetic geometries. Finally, an application of the guiding-center Lagrangian constraint onmore » the guiding-center Hamiltonian yields a natural interpretation for its higher-order corrections.« less

  10. Dissipative inertial transport patterns near coherent Lagrangian eddies in the ocean.

    PubMed

    Beron-Vera, Francisco J; Olascoaga, María J; Haller, George; Farazmand, Mohammad; Triñanes, Joaquín; Wang, Yan

    2015-08-01

    Recent developments in dynamical systems theory have revealed long-lived and coherent Lagrangian (i.e., material) eddies in incompressible, satellite-derived surface ocean velocity fields. Paradoxically, observed drifting buoys and floating matter tend to create dissipative-looking patterns near oceanic eddies, which appear to be inconsistent with the conservative fluid particle patterns created by coherent Lagrangian eddies. Here, we show that inclusion of inertial effects (i.e., those produced by the buoyancy and size finiteness of an object) in a rotating two-dimensional incompressible flow context resolves this paradox. Specifically, we obtain that anticyclonic coherent Lagrangian eddies attract (repel) negatively (positively) buoyant finite-size particles, while cyclonic coherent Lagrangian eddies attract (repel) positively (negatively) buoyant finite-size particles. We show how these results explain dissipative-looking satellite-tracked surface drifter and subsurface float trajectories, as well as satellite-derived Sargassum distributions.

  11. Lagrangian Observations and Modeling of Marine Larvae

    NASA Astrophysics Data System (ADS)

    Paris, Claire B.; Irisson, Jean-Olivier

    2017-04-01

    Just within the past two decades, studies on the early-life history stages of marine organisms have led to new paradigms in population dynamics. Unlike passive plant seeds that are transported by the wind or by animals, marine larvae have motor and sensory capabilities. As a result, marine larvae have a tremendous capacity to actively influence their dispersal. This is continuously revealed as we develop new techniques to observe larvae in their natural environment and begin to understand their ability to detect cues throughout ontogeny, process the information, and use it to ride ocean currents and navigate their way back home, or to a place like home. We present innovative in situ and numerical modeling approaches developed to understand the underlying mechanisms of larval transport in the ocean. We describe a novel concept of a Lagrangian platform, the Drifting In Situ Chamber (DISC), designed to observe and quantify complex larval behaviors and their interactions with the pelagic environment. We give a brief history of larval ecology research with the DISC, showing that swimming is directional in most species, guided by cues as diverse as the position of the sun or the underwater soundscape, and even that (unlike humans!) larvae orient better and swim faster when moving as a group. The observed Lagrangian behavior of individual larvae are directly implemented in the Connectivity Modeling System (CMS), an open source Lagrangian tracking application. Simulations help demonstrate the impact that larval behavior has compared to passive Lagrangian trajectories. These methodologies are already the base of exciting findings and are promising tools for documenting and simulating the behavior of other small pelagic organisms, forecasting their migration in a changing ocean.

  12. Evidence for charge-vortex duality at the LaAlO3/SrTiO3 interface.

    PubMed

    Mehta, M M; Dikin, D A; Bark, C W; Ryu, S; Folkman, C M; Eom, C B; Chandrasekhar, V

    2012-07-17

    The concept of duality has proved extremely powerful in extending our understanding in many areas of physics. Charge-vortex duality has been proposed as a model to understand the superconductor to insulator transition in disordered thin films and Josephson junction arrays. In this model, on the superconducting side, one has delocalized Cooper pairs but localized vortices; while on the insulating side, one has localized Cooper pairs but mobile vortices. Here we show a new experimental manifestation of this duality in the electron gas that forms at the interface between LaAlO(3) and SrTiO(3). The effect is due to the motion of vortices generated by the magnetization dynamics of the ferromagnet that also forms at the same interface, which results in an increase in resistance on the superconducting side of the transition, but an increase in conductance on the insulating side.

  13. Toroidal regularization of the guiding center Lagrangian

    DOE PAGES

    Burby, J. W.; Ellison, C. L.

    2017-11-22

    In the Lagrangian theory of guiding center motion, an effective magnetic field B* = B+ (m/e)v ∥∇ x b appears prominently in the equations of motion. Because the parallel component of this field can vanish, there is a range of parallel velocities where the Lagrangian guiding center equations of motion are either ill-defined or very badly behaved. Moreover, the velocity dependence of B* greatly complicates the identification of canonical variables and therefore the formulation of symplectic integrators for guiding center dynamics. Here, this letter introduces a simple coordinate transformation that alleviates both these problems simultaneously. In the new coordinates, themore » Liouville volume element is equal to the toroidal contravariant component of the magnetic field. Consequently, the large-velocity singularity is completely eliminated. Moreover, passing from the new coordinate system to canonical coordinates is extremely simple, even if the magnetic field is devoid of flux surfaces. We demonstrate the utility of this approach in regularizing the guiding center Lagrangian by presenting a new and stable one-step variational integrator for guiding centers moving in arbitrary time-dependent electromagnetic fields.« less

  14. Toroidal regularization of the guiding center Lagrangian

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burby, J. W.; Ellison, C. L.

    In the Lagrangian theory of guiding center motion, an effective magnetic field B* = B+ (m/e)v ∥∇ x b appears prominently in the equations of motion. Because the parallel component of this field can vanish, there is a range of parallel velocities where the Lagrangian guiding center equations of motion are either ill-defined or very badly behaved. Moreover, the velocity dependence of B* greatly complicates the identification of canonical variables and therefore the formulation of symplectic integrators for guiding center dynamics. Here, this letter introduces a simple coordinate transformation that alleviates both these problems simultaneously. In the new coordinates, themore » Liouville volume element is equal to the toroidal contravariant component of the magnetic field. Consequently, the large-velocity singularity is completely eliminated. Moreover, passing from the new coordinate system to canonical coordinates is extremely simple, even if the magnetic field is devoid of flux surfaces. We demonstrate the utility of this approach in regularizing the guiding center Lagrangian by presenting a new and stable one-step variational integrator for guiding centers moving in arbitrary time-dependent electromagnetic fields.« less

  15. Atomization simulations using an Eulerian-VOF-Lagrangian method

    NASA Technical Reports Server (NTRS)

    Chen, Yen-Sen; Shang, Huan-Min; Liaw, Paul; Chen, C. P.

    1994-01-01

    This paper summarizes the technical development and validation of a multiphase computational fluid dynamics (CFD) numerical method using the volume-of-fluid (VOF) model and a Lagrangian tracking model which can be employed to analyze general multiphase flow problems with free surface mechanism. The gas-liquid interface mass, momentum and energy conservations are modeled by continuum surface mechanisms. A new solution method is developed such that the present VOF model can be applied for all-speed flow regimes. The objectives of the present study are to develop and verify the fractional volume-of-fluid cell partitioning approach into a predictor-corrector algorithm and to demonstrate the effectiveness of the present innovative approach by simulating benchmark problems including the coaxial jet atomization.

  16. Spectral-clustering approach to Lagrangian vortex detection.

    PubMed

    Hadjighasem, Alireza; Karrasch, Daniel; Teramoto, Hiroshi; Haller, George

    2016-06-01

    One of the ubiquitous features of real-life turbulent flows is the existence and persistence of coherent vortices. Here we show that such coherent vortices can be extracted as clusters of Lagrangian trajectories. We carry out the clustering on a weighted graph, with the weights measuring pairwise distances of fluid trajectories in the extended phase space of positions and time. We then extract coherent vortices from the graph using tools from spectral graph theory. Our method locates all coherent vortices in the flow simultaneously, thereby showing high potential for automated vortex tracking. We illustrate the performance of this technique by identifying coherent Lagrangian vortices in several two- and three-dimensional flows.

  17. Modeling NIF experimental designs with adaptive mesh refinement and Lagrangian hydrodynamics

    NASA Astrophysics Data System (ADS)

    Koniges, A. E.; Anderson, R. W.; Wang, P.; Gunney, B. T. N.; Becker, R.; Eder, D. C.; MacGowan, B. J.; Schneider, M. B.

    2006-06-01

    Incorporation of adaptive mesh refinement (AMR) into Lagrangian hydrodynamics algorithms allows for the creation of a highly powerful simulation tool effective for complex target designs with three-dimensional structure. We are developing an advanced modeling tool that includes AMR and traditional arbitrary Lagrangian-Eulerian (ALE) techniques. Our goal is the accurate prediction of vaporization, disintegration and fragmentation in National Ignition Facility (NIF) experimental target elements. Although our focus is on minimizing the generation of shrapnel in target designs and protecting the optics, the general techniques are applicable to modern advanced targets that include three-dimensional effects such as those associated with capsule fill tubes. Several essential computations in ordinary radiation hydrodynamics need to be redesigned in order to allow for AMR to work well with ALE, including algorithms associated with radiation transport. Additionally, for our goal of predicting fragmentation, we include elastic/plastic flow into our computations. We discuss the integration of these effects into a new ALE-AMR simulation code. Applications of this newly developed modeling tool as well as traditional ALE simulations in two and three dimensions are applied to NIF early-light target designs.

  18. Self-duality in superconductor-insulator quantum phase transitions

    PubMed

    Schakel

    2000-10-30

    It is argued that close to a Coulomb interacting quantum critical point the interaction between two vortices in a disordered superconducting thin film separated by a distance r changes from logarithmic in the mean-field region to 1/r in the region dominated by quantum critical fluctuations. This gives support to the charge-vortex duality picture of the observed reflection symmetry in the current-voltage characteristics on both sides of the transition.

  19. 2d affine XY-spin model/4d gauge theory duality and deconfinement

    NASA Astrophysics Data System (ADS)

    Anber, Mohamed M.; Poppitz, Erich; Ünsal, Mithat

    2012-04-01

    We introduce a duality between two-dimensional XY-spin models with symmetry-breaking perturbations and certain four-dimensional SU(2) and SU(2)/ {{Z}_2} gauge theories, compactified on a small spatial circle {{R}^{{^{{{1},{2}}}}}} × {{S}^{{^{{1}}}}} , and considered at temperatures near the deconfinement transition. In a Euclidean set up, the theory is defined on {{R}^{{^{{2}}}}} × {{T}^{{^{{2}}}}} . Similarly, thermal gauge theories of higher rank are dual to new families of "affine" XY-spin models with perturbations. For rank two, these are related to models used to describe the melting of a 2d crystal with a triangular lattice. The connection is made through a multi-component electric-magnetic Coulomb gas representation for both systems. Perturbations in the spin system map to topological defects in the gauge theory, such as monopole-instantons or magnetic bions, and the vortices in the spin system map to the electrically charged W-bosons in field theory (or vice versa, depending on the duality frame). The duality permits one to use the two-dimensional technology of spin systems to study the thermal deconfinement and discrete chiral transitions in four-dimensional SU( N c ) gauge theories with n f ≥1 adjoint Weyl fermions.

  20. Lagrangian Assimilation of Satellite Data for Climate Studies in the Arctic

    NASA Technical Reports Server (NTRS)

    Lindsay, Ronald W.; Zhang, Jin-Lun; Stern, Harry

    2004-01-01

    Under this grant we have developed and tested a new Lagrangian model of sea ice. A Lagrangian model keeps track of material parcels as they drift in the model domain. Besides providing a natural framework for the assimilation of Lagrangian data, it has other advantages: 1) a model that follows material elements is well suited for a medium such as sea ice in which an element retains its identity for a long period of time; 2) model cells can be added or dropped as needed, allowing the spatial resolution to be increased in areas of high variability or dense observations; 3) ice from particular regions, such as the marginal seas, can be marked and traced for a long time; and 4) slip lines in the ice motion are accommodated more naturally because there is no internal grid. Our work makes use of these strengths of the Lagrangian formulation.

  1. Gravity, Time, and Lagrangians

    ERIC Educational Resources Information Center

    Huggins, Elisha

    2010-01-01

    Feynman mentioned to us that he understood a topic in physics if he could explain it to a college freshman, a high school student, or a dinner guest. Here we will discuss two topics that took us a while to get to that level. One is the relationship between gravity and time. The other is the minus sign that appears in the Lagrangian. (Why would one…

  2. Duality and symmetry lost in solid mechanics

    NASA Astrophysics Data System (ADS)

    Bui, Huy Duong

    2008-01-01

    Some conservation laws in Solids and Fracture Mechanics present a lack of symmetry between kinematic and dynamic variables. It is shown that Duality is the right tool to re-establish the symmetry between equations and variables and to provide conservation laws of the pure divergence type which provide true path independent integrals. The loss of symmetry of some energetic expressions is exploited to derive a new method for solving some inverse problems. In particular, the earthquake inverse problem is solved analytically. To cite this article: H.D. Bui, C. R. Mecanique 336 (2008).

  3. Stochastic Lagrangian dynamics for charged flows in the E-F regions of ionosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang Wenbo; Mahalov, Alex

    2013-03-15

    We develop a three-dimensional numerical model for the E-F region ionosphere and study the Lagrangian dynamics for plasma flows in this region. Our interest rests on the charge-neutral interactions and the statistics associated with stochastic Lagrangian motion. In particular, we examine the organizing mixing patterns for plasma flows due to polarized gravity wave excitations in the neutral field, using Lagrangian coherent structures (LCS). LCS objectively depict the flow topology-the extracted attractors indicate generation of ionospheric density gradients, due to accumulation of plasma. Using Lagrangian measures such as the finite-time Lyapunov exponents, we locate the Lagrangian skeletons for mixing in plasma,more » hence where charged fronts are expected to appear. With polarized neutral wind, we find that the corresponding plasma velocity is also polarized. Moreover, the polarized velocity alone, coupled with stochastic Lagrangian motion, may give rise to polarized density fronts in plasma. Statistics of these trajectories indicate high level of non-Gaussianity. This includes clear signatures of variance, skewness, and kurtosis of displacements taking polarized structures aligned with the gravity waves, and being anisotropic.« less

  4. Orbital Maneuvers for Spacecrafts Travelling to/from the Lagrangian Points

    NASA Astrophysics Data System (ADS)

    Bertachini, A.

    The well-known Lagrangian points that appear in the planar restricted three-body problem (Szebehely, 1967) are very important for astronautical applications. They are five points of equilibrium in the equations of motion, what means that a particle located at one of those points with zero velocity will remain there indefinitely. The collinear points (L1, L2 and L3) are always unstable and the triangular points (L4 and L5) are stable in the present case studied (Sun-Earth system). They are all very good points to locate a space-station, since they require a small amount of V (and fuel), the control to be used for station-keeping. The triangular points are specially good for this purpose, since they are stable equilibrium points. In this paper, the planar restricted three-body problem is regularized (using Lemaître regularization) and combined with numerical integration and gradient methods to solve the two point boundary value problem (the Lambert's three-body problem). This combination is applied to the search of families of transfer orbits between the Lagrangian points and the Earth, in the Sun-Earth system, with the minimum possible cost of the control used. So, the final goal of this paper is to find the magnitude and direction of the two impulses to be applied in the spacecraft to complete the transfer: the first one when leaving/arriving at the Lagrangian point and the second one when arriving/living at the Earth. This paper is a continuation of two previous papers that studied transfers in the Earth-Moon system: Broucke (1979), that studied transfer orbits between the Lagrangian points and the Moon and Prado (1996), that studied transfer orbits between the Lagrangian points and the Earth. So, the equations of motion are: whereis the pseudo-potential given by: To solve the TPBVP in the regularized variables the following steps are used: i) Guess a initial velocity Vi, so together with the initial prescribed position ri the complete initial state is known; ii

  5. Different Levels of the Meaning of Wave-Particle Duality and a Suspensive Perspective on the Interpretation of Quantum Theory

    ERIC Educational Resources Information Center

    Cheong, Yong Wook; Song, Jinwoong

    2014-01-01

    There is no consensus on the genuine meaning of wave-particle duality and the interpretation of quantum theory. How can we teach duality and quantum theory despite this lack of consensus? This study attempts to answer this question. This research argues that reality issues are at the core of both the endless debates concerning the interpretation…

  6. The geometrical theory of constraints applied to the dynamics of vakonomic mechanical systems: The vakonomic bracket

    NASA Astrophysics Data System (ADS)

    Martínez, Sonia; Cortés, Jorge; de León, Manuel

    2000-04-01

    A vakonomic mechanical system can be alternatively described by an extended Lagrangian using the Lagrange multipliers as new variables. Since this extended Lagrangian is singular, the constraint algorithm can be applied and a Dirac bracket giving the evolution of the observables can be constructed.

  7. Rowlands' Duality Principle: A Generalization of Noether's Theorem?

    NASA Astrophysics Data System (ADS)

    Karam, Sabah E.

    This paper will examine a physical principle that has been used in making valid predictions and generalizes established conservation laws. In a previous paper it was shown how Rowlands' zero-totality condition could be viewed as a generalization of Newton's third law of motion. In this paper it will be argued that Rowlands' Duality Principle is a generalization of Noether's Theorem and that the two principles taken together are truly foundational principles that have tamed Metaphysics.

  8. Duality in an asset exchange model for wealth distribution

    NASA Astrophysics Data System (ADS)

    Li, Jie; Boghosian, Bruce M.

    2018-05-01

    Asset exchange models are agent-based economic models with binary transactions. Previous investigations have augmented these models with mechanisms for wealth redistribution, quantified by a parameter χ, and for trading bias favoring wealthier agents, quantified by a parameter ζ. By deriving and analyzing a Fokker-Planck equation for a particular asset exchange model thus augmented, it has been shown that it exhibits a second-order phase transition at ζ / χ = 1, between regimes with and without partial wealth condensation. In the "subcritical" regime with ζ / χ < 1, all of the wealth is classically distributed; in the "supercritical" regime with ζ / χ > 1, a fraction 1 - χ / ζ of the wealth is condensed. Intuitively, one may associate the supercritical, wealth-condensed regime as reflecting the presence of "oligarchy," by which we mean that an infinitesimal fraction of the total agents hold a finite fraction of the total wealth in the continuum limit. In this paper, we further elucidate the phase behavior of this model - and hence of the generalized solutions of the Fokker-Planck equation that describes it - by demonstrating the existence of a remarkable symmetry between its supercritical and subcritical regimes in the steady-state. Noting that the replacement { ζ → χ , χ → ζ } , which clearly has the effect of inverting the order parameter ζ / χ, provides a one-to-one correspondence between the subcritical and supercritical states, we demonstrate that the wealth distribution of the subcritical state is identical to that of the corresponding supercritical state when the oligarchy is removed from the latter. We demonstrate this result analytically, both from the microscopic agent-level model and from its macroscopic Fokker-Planck description, as well as numerically. We argue that this symmetry is a kind of duality, analogous to the famous Kramers-Wannier duality between the subcritical and supercritical states of the Ising model, and to the

  9. Notes on integral identities for 3d supersymmetric dualities

    NASA Astrophysics Data System (ADS)

    Aghaei, Nezhla; Amariti, Antonio; Sekiguchi, Yuta

    2018-04-01

    Four dimensional N=2 Argyres-Douglas theories have been recently conjectured to be described by N=1 Lagrangian theories. Such models, once reduced to 3d, should be mirror dual to Lagrangian N=4 theories. This has been numerically checked through the matching of the partition functions on the three sphere. In this article, we provide an analytic derivation for this result in the A 2 n-1 case via hyperbolic hypergeometric integrals. We study the D 4 case as well, commenting on some open questions and possible resolutions. In the second part of the paper we discuss other integral identities leading to the matching of the partition functions in 3d dual pairs involving higher monopole superpotentials.

  10. Hydrodynamics of strongly coupled non-conformal fluids from gauge/gravity duality

    NASA Astrophysics Data System (ADS)

    Springer, Todd

    2009-08-01

    The subject of relativistic hydrodynamics is explored using the tools of gauge/gravity duality. A brief literature review of AdS/CFT and gauge/gravity duality is presented first. This is followed by a pedagogical introduction to the use of these methods in determining hydrodynamic dispersion relations, w(q), of perturbations in a strongly coupled fluid. Shear and sound mode perturbations are examined in a special class of gravity duals: those where the matter supporting the metric is scalar in nature. Analytical solutions (to order q^4 and q^3 respectively) for the shear and sound mode dispersion relations are presented for a subset of these backgrounds. The work presented here is based on previous publications by the same author, though some previously unpublished results are also included. In particular, the subleading term in the shear mode dispersion relation is analyzed using the AdS/CFT correspondence without any reference to the black hole membrane paradigm.

  11. Lagrangian modeling of global atmospheric methane (1990-2012)

    NASA Astrophysics Data System (ADS)

    Arfeuille, Florian; Henne, Stephan; Brunner, Dominik

    2016-04-01

    In the MAIOLICA-II project, the lagrangian particle model FLEXPART is used to simulate the global atmospheric methane over the 1990-2012 period. In this lagrangian framework, 3 million particles are permanently transported based on winds from ERA-interim. The history of individual particles can be followed allowing for a comprehensive analysis of transport pathways and timescales. The link between sources (emissions) and receptors (measurement stations) is then established in a straightforward manner, a prerequisite for source inversion problems. FLEXPART was extended to incorporate the methane loss by reaction with OH, soil uptake and stratospheric loss reactions with prescribed Cl and O(1d) radicals. Sources are separated into 245 different tracers, depending on source origin (anthropogenic, wetlands, rice, biomass burning, termites, wild animals, oceans, volcanoes), region of emission, and time since emission (5 age classes). The inversion method applied is a fixed-lag Kalman smoother similar to that described in Bruhwiler et al. [2005]. Results from the FLEXPART global methane simulation and from the subsequent inversion will be presented. Results notably suggest: - A reduction in methane growth rates due to diminished wetland emissions and anthropogenic European emission in 1990-1993. - A second decrease in 1995-1996 is also mainly attributed to these two emission categories. - A reduced increase in Chinese anthropogenic emissions after 2003 compared to EDGAR inventories. - Large South American wetlands emissions during the entire period. Bruhwiler, L. M. P., Michalak, A. M., Peters, W., Baker, D. F. & Tans, P. 2005: An improved Kalman smoother fore atmospheric inversions, Atmos Chem Phys, 5, 2691-2702.

  12. A new Lagrangian random choice method for steady two-dimensional supersonic/hypersonic flow

    NASA Technical Reports Server (NTRS)

    Loh, C. Y.; Hui, W. H.

    1991-01-01

    Glimm's (1965) random choice method has been successfully applied to compute steady two-dimensional supersonic/hypersonic flow using a new Lagrangian formulation. The method is easy to program, fast to execute, yet it is very accurate and robust. It requires no grid generation, resolves slipline and shock discontinuities crisply, can handle boundary conditions most easily, and is applicable to hypersonic as well as supersonic flow. It represents an accurate and fast alternative to the existing Eulerian methods. Many computed examples are given.

  13. Lagrangian and Eulerian statistics obtained from direct numerical simulations of homogeneous turbulence

    NASA Technical Reports Server (NTRS)

    Squires, Kyle D.; Eaton, John K.

    1991-01-01

    Direct numerical simulation is used to study dispersion in decaying isotropic turbulence and homogeneous shear flow. Both Lagrangian and Eulerian data are presented allowing direct comparison, but at fairly low Reynolds number. The quantities presented include properties of the dispersion tensor, isoprobability contours of particle displacement, Lagrangian and Eulerian velocity autocorrelations and time scale ratios, and the eddy diffusivity tensor. The Lagrangian time microscale is found to be consistently larger than the Eulerian microscale, presumably due to the advection of the small scales by the large scales in the Eulerian reference frame.

  14. How to Teach Hicksian Compensation and Duality Using a Spreadsheet Optimizer

    ERIC Educational Resources Information Center

    Ghosh, Satyajit; Ghosh, Sarah

    2007-01-01

    Principle of duality and numerical calculation of income and substitution effects under Hicksian Compensation are often left out of intermediate microeconomics courses because they require a rigorous calculus based analysis. But these topics are critically important for understanding consumer behavior. In this paper we use excel solver--a…

  15. Integral group actions on symmetric spaces and discrete duality symmetries of supergravity theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carbone, Lisa; Murray, Scott H.; Sati, Hisham

    For G = G(ℝ), a split, simply connected, semisimple Lie group of rank n and K the maximal compact subgroup of G, we give a method for computing Iwasawa coordinates of K∖G using the Chevalley generators and the Steinberg presentation. When K∖G is a scalar coset for a supergravity theory in dimensions ≥3, we determine the action of the integral form G(ℤ) on K∖G. We give explicit results for the action of the discrete U-duality groups SL{sub 2}(ℤ) and E{sub 7}(ℤ) on the scalar cosets SO(2)∖SL{sub 2}(ℝ) and [SU(8)/( ± Id)]∖E{sub 7(+7)}(ℝ) for type IIB supergravity in ten dimensions andmore » 11-dimensional supergravity reduced to D = 4 dimensions, respectively. For the former, we use this to determine the discrete U-duality transformations on the scalar sector in the Borel gauge and we describe the discrete symmetries of the dyonic charge lattice. We determine the spectrum-generating symmetry group for fundamental BPS solitons of type IIB supergravity in D = 10 dimensions at the classical level and we propose an analog of this symmetry at the quantum level. We indicate how our methods can be used to study the orbits of discrete U-duality groups in general.« less

  16. Testing higher-order Lagrangian perturbation theory against numerical simulations. 2: Hierarchical models

    NASA Technical Reports Server (NTRS)

    Melott, A. L.; Buchert, T.; Weib, A. G.

    1995-01-01

    We present results showing an improvement of the accuracy of perturbation theory as applied to cosmological structure formation for a useful range of scales. The Lagrangian theory of gravitational instability of Friedmann-Lemaitre cosmogonies is compared with numerical simulations. We study the dynamics of hierarchical models as a second step. In the first step we analyzed the performance of the Lagrangian schemes for pancake models, the difference being that in the latter models the initial power spectrum is truncated. This work probed the quasi-linear and weakly non-linear regimes. We here explore whether the results found for pancake models carry over to hierarchical models which are evolved deeply into the non-linear regime. We smooth the initial data by using a variety of filter types and filter scales in order to determine the optimal performance of the analytical models, as has been done for the 'Zel'dovich-approximation' - hereafter TZA - in previous work. We find that for spectra with negative power-index the second-order scheme performs considerably better than TZA in terms of statistics which probe the dynamics, and slightly better in terms of low-order statistics like the power-spectrum. However, in contrast to the results found for pancake models, where the higher-order schemes get worse than TZA at late non-linear stages and on small scales, we here find that the second-order model is as robust as TZA, retaining the improvement at later stages and on smaller scales. In view of these results we expect that the second-order truncated Lagrangian model is especially useful for the modelling of standard dark matter models such as Hot-, Cold-, and Mixed-Dark-Matter.

  17. O(d,d)-duality in string theory

    NASA Astrophysics Data System (ADS)

    Rennecke, Felix

    2014-10-01

    A new method for obtaining dual string theory backgrounds is presented. Preservation of the Hamiltonian density and the energy momentum tensor induced by O( d, d)-transformations leads to a relation between dual sets of coordinate one-forms accompanied by a redefinition of the background fields and a shift of the dilaton. The necessity of isometric directions arises as integrability condition for this map. The isometry algebra is studied in detail using generalised geometry. In particular, non-abelian dualities and β-transformations are contained in this approach. The latter are exemplified by the construction of a new approximate non-geometric background.

  18. Incomplete augmented Lagrangian preconditioner for steady incompressible Navier-Stokes equations.

    PubMed

    Tan, Ning-Bo; Huang, Ting-Zhu; Hu, Ze-Jun

    2013-01-01

    An incomplete augmented Lagrangian preconditioner, for the steady incompressible Navier-Stokes equations discretized by stable finite elements, is proposed. The eigenvalues of the preconditioned matrix are analyzed. Numerical experiments show that the incomplete augmented Lagrangian-based preconditioner proposed is very robust and performs quite well by the Picard linearization or the Newton linearization over a wide range of values of the viscosity on both uniform and stretched grids.

  19. Incomplete Augmented Lagrangian Preconditioner for Steady Incompressible Navier-Stokes Equations

    PubMed Central

    Tan, Ning-Bo; Huang, Ting-Zhu; Hu, Ze-Jun

    2013-01-01

    An incomplete augmented Lagrangian preconditioner, for the steady incompressible Navier-Stokes equations discretized by stable finite elements, is proposed. The eigenvalues of the preconditioned matrix are analyzed. Numerical experiments show that the incomplete augmented Lagrangian-based preconditioner proposed is very robust and performs quite well by the Picard linearization or the Newton linearization over a wide range of values of the viscosity on both uniform and stretched grids. PMID:24235888

  20. Lagrangian analysis of premixed turbulent combustion in hydrogen-air flames

    NASA Astrophysics Data System (ADS)

    Darragh, Ryan; Poludnenko, Alexei; Hamlington, Peter

    2016-11-01

    Lagrangian analysis has long been a tool used to analyze non-reacting turbulent flows, and has recently gained attention in the reacting flow and combustion communities. The approach itself allows one to separate local molecular effects, such as those due to reactions or diffusion, from turbulent advective effects along fluid pathlines, or trajectories. Accurate calculation of these trajectories can, however, be rather difficult due to the chaotic nature of turbulent flows and the added complexity of reactions. In order to determine resolution requirements and verify the numerical algorithm, extensive tests are described in this talk for prescribed steady, unsteady, and chaotic flows, as well as for direct numerical simulations (DNS) of non-reacting homogeneous isotropic turbulence. The Lagrangian analysis is then applied to DNS of premixed hydrogen-air flames at two different turbulence intensities for both single- and multi-step chemical mechanisms. Non-monotonic temperature and fuel-mass fraction evolutions are found to exist along trajectories passing through the flame brush. Such non-monotonicity is shown to be due to molecular diffusion resulting from large spatial gradients created by turbulent advection. This work was supported by the Air Force Office of Scientific Research (AFOSR) under Award No. FA9550-14-1-0273, and the Department of Defense (DoD) High Performance Computing Modernization Program (HPCMP) under a Frontier project award.

  1. Programmers manual for a one-dimensional Lagrangian transport model

    USGS Publications Warehouse

    Schoellhamer, D.H.; Jobson, H.E.

    1986-01-01

    A one-dimensional Lagrangian transport model for simulating water-quality constituents such as temperature, dissolved oxygen , and suspended sediment in rivers is presented in this Programmers Manual. Lagrangian transport modeling techniques, the model 's subroutines, and the user-written decay-coefficient subroutine are discussed in detail. Appendices list the program codes. The Programmers Manual is intended for the model user who needs to modify code either to adapt the model to a particular need or to use reaction kinetics not provided with the model. (Author 's abstract)

  2. Lorentz Invariance of Gravitational Lagrangians in the Space of Reference Frames

    NASA Astrophysics Data System (ADS)

    Cognola, G.

    1980-06-01

    The recently proposed theories of gravitation in the space of reference frames S are based on a Lagrangian invariant with respect to the homogeneous Lorentz group. However, in theories of this kind, the Lorentz invariance is not a necessary consequence of some physical principles, as in the theories formulated in space-time, but rather a purely esthetic request. In the present paper, we give a systematic method for the construction of gravitational theories in the space S, without assuming a priori the Lorentz invariance of the Lagrangian. The Einstein-Cartan equations of gravitation are obtained requiring only that the Lagrangian is invariant under proper rotations and has particular transformation properties under space reflections and space-time dilatations

  3. Deconstructing field-induced ketene isomerization through Lagrangian descriptors.

    PubMed

    Craven, Galen T; Hernandez, Rigoberto

    2016-02-07

    The time-dependent geometrical separatrices governing state transitions in field-induced ketene isomerization are constructed using the method of Lagrangian descriptors. We obtain the stable and unstable manifolds of time-varying transition states as dynamic phase space objects governing configurational changes when the ketene molecule is subjected to an oscillating electric field. The dynamics of the isomerization reaction are modeled through classical trajectory studies on the Gezelter-Miller potential energy surface and an approximate dipole moment model which is coupled to a time-dependent electric field. We obtain a representation of the reaction geometry, over varying field strengths and oscillation frequencies, by partitioning an initial phase space into basins labeled according to which product state is reached at a given time. The borders between these basins are in agreement with those obtained using Lagrangian descriptors, even in regimes exhibiting chaotic dynamics. Major outcomes of this work are: validation and extension of a transition state theory framework built from Lagrangian descriptors, elaboration of the applicability for this theory to periodically- and aperiodically-driven molecular systems, and prediction of regimes in which isomerization of ketene and its derivatives may be controlled using an external field.

  4. A coupled Eulerian/Lagrangian method for the solution of three-dimensional vortical flows

    NASA Technical Reports Server (NTRS)

    Felici, Helene Marie

    1992-01-01

    A coupled Eulerian/Lagrangian method is presented for the reduction of numerical diffusion observed in solutions of three-dimensional rotational flows using standard Eulerian finite-volume time-marching procedures. A Lagrangian particle tracking method using particle markers is added to the Eulerian time-marching procedure and provides a correction of the Eulerian solution. In turn, the Eulerian solutions is used to integrate the Lagrangian state-vector along the particles trajectories. The Lagrangian correction technique does not require any a-priori information on the structure or position of the vortical regions. While the Eulerian solution ensures the conservation of mass and sets the pressure field, the particle markers, used as 'accuracy boosters,' take advantage of the accurate convection description of the Lagrangian solution and enhance the vorticity and entropy capturing capabilities of standard Eulerian finite-volume methods. The combined solution procedures is tested in several applications. The convection of a Lamb vortex in a straight channel is used as an unsteady compressible flow preservation test case. The other test cases concern steady incompressible flow calculations and include the preservation of turbulent inlet velocity profile, the swirling flow in a pipe, and the constant stagnation pressure flow and secondary flow calculations in bends. The last application deals with the external flow past a wing with emphasis on the trailing vortex solution. The improvement due to the addition of the Lagrangian correction technique is measured by comparison with analytical solutions when available or with Eulerian solutions on finer grids. The use of the combined Eulerian/Lagrangian scheme results in substantially lower grid resolution requirements than the standard Eulerian scheme for a given solution accuracy.

  5. Coupled Eulerian-Lagrangian transport of large debris by tsunamis

    NASA Astrophysics Data System (ADS)

    Conde, Daniel A. S.; Ferreira, Rui M. L.; Sousa Oliveira, Carlos

    2016-04-01

    Tsunamis are notorious for the large disruption they can cause on coastal environments, not only due to the imparted momentum of the incoming wave but also due to its capacity to transport large quantities of solid debris, either from natural or human-made sources, over great distances. A 2DH numerical model under development at CERIS-IST (Ferreira et al., 2009; Conde, 2013) - STAV2D - capable of simulating solid transport in both Eulerian and Lagrangian paradigms will be used to assess the relevance of Lagrangian-Eulerian coupling when modelling the transport of solid debris by tsunamis. The model has been previously validated and applied to tsunami scenarios (Conde, 2013), being well-suited for overland tsunami propagation and capable of handling morphodynamic changes in estuaries and seashores. The discretization scheme is an explicit Finite Volume technique employing flux-vector splitting and a reviewed Roe-Riemann solver. Source term formulations are employed in a semi-implicit way, including the two-way coupling of the Lagrangian and Eulerian solvers by means of conservative mass and momentum transfers between fluid and solid phases. The model was applied to Sines Port, a major commercial port in Portugal, where two tsunamigenic scenarios are considered: an 8.5 Mw scenario, consistent with the Great Lisbon Earthquake and Tsunami of the 1st November 1755 (Baptista, 2009), and an hypothetical 9.5 Mw worst-case scenario based on the same historical event. Open-ocean propagation of these scenarios were simulated with GeoClaw model from ClawPack (Leveque, 2011). Following previous efforts on the modelling of debris transport by tsunamis in seaports (Conde, 2015), this work discusses the sensitivity of the obtained results with respect to the phenomenological detail of the employed Eulerian-Lagrangian formulation and the resolution of the mesh used in the Eulerian solver. The results have shown that the fluid to debris mass ratio is the key parameter regarding the

  6. Seakeeping with the semi-Lagrangian particle finite element method

    NASA Astrophysics Data System (ADS)

    Nadukandi, Prashanth; Servan-Camas, Borja; Becker, Pablo Agustín; Garcia-Espinosa, Julio

    2017-07-01

    The application of the semi-Lagrangian particle finite element method (SL-PFEM) for the seakeeping simulation of the wave adaptive modular vehicle under spray generating conditions is presented. The time integration of the Lagrangian advection is done using the explicit integration of the velocity and acceleration along the streamlines (X-IVAS). Despite the suitability of the SL-PFEM for the considered seakeeping application, small time steps were needed in the X-IVAS scheme to control the solution accuracy. A preliminary proposal to overcome this limitation of the X-IVAS scheme for seakeeping simulations is presented.

  7. Spatio-temporal organization of dynamics in a two-dimensional periodically driven vortex flow: A Lagrangian flow network perspective.

    PubMed

    Lindner, Michael; Donner, Reik V

    2017-03-01

    We study the Lagrangian dynamics of passive tracers in a simple model of a driven two-dimensional vortex resembling real-world geophysical flow patterns. Using a discrete approximation of the system's transfer operator, we construct a directed network that describes the exchange of mass between distinct regions of the flow domain. By studying different measures characterizing flow network connectivity at different time-scales, we are able to identify the location of dynamically invariant structures and regions of maximum dispersion. Specifically, our approach allows us to delimit co-existing flow regimes with different dynamics. To validate our findings, we compare several network characteristics to the well-established finite-time Lyapunov exponents and apply a receiver operating characteristic analysis to identify network measures that are particularly useful for unveiling the skeleton of Lagrangian chaos.

  8. Extended Lagrangian Excited State Molecular Dynamics.

    PubMed

    Bjorgaard, J A; Sheppard, D; Tretiak, S; Niklasson, A M N

    2018-02-13

    An extended Lagrangian framework for excited state molecular dynamics (XL-ESMD) using time-dependent self-consistent field theory is proposed. The formulation is a generalization of the extended Lagrangian formulations for ground state Born-Oppenheimer molecular dynamics [Phys. Rev. Lett. 2008 100, 123004]. The theory is implemented, demonstrated, and evaluated using a time-dependent semiempirical model, though it should be generally applicable to ab initio theory. The simulations show enhanced energy stability and a significantly reduced computational cost associated with the iterative solutions of both the ground state and the electronically excited states. Relaxed convergence criteria can therefore be used both for the self-consistent ground state optimization and for the iterative subspace diagonalization of the random phase approximation matrix used to calculate the excited state transitions. The XL-ESMD approach is expected to enable numerically efficient excited state molecular dynamics for such methods as time-dependent Hartree-Fock (TD-HF), Configuration Interactions Singles (CIS), and time-dependent density functional theory (TD-DFT).

  9. Differential geometry based solvation model II: Lagrangian formulation.

    PubMed

    Chen, Zhan; Baker, Nathan A; Wei, G W

    2011-12-01

    Solvation is an elementary process in nature and is of paramount importance to more sophisticated chemical, biological and biomolecular processes. The understanding of solvation is an essential prerequisite for the quantitative description and analysis of biomolecular systems. This work presents a Lagrangian formulation of our differential geometry based solvation models. The Lagrangian representation of biomolecular surfaces has a few utilities/advantages. First, it provides an essential basis for biomolecular visualization, surface electrostatic potential map and visual perception of biomolecules. Additionally, it is consistent with the conventional setting of implicit solvent theories and thus, many existing theoretical algorithms and computational software packages can be directly employed. Finally, the Lagrangian representation does not need to resort to artificially enlarged van der Waals radii as often required by the Eulerian representation in solvation analysis. The main goal of the present work is to analyze the connection, similarity and difference between the Eulerian and Lagrangian formalisms of the solvation model. Such analysis is important to the understanding of the differential geometry based solvation model. The present model extends the scaled particle theory of nonpolar solvation model with a solvent-solute interaction potential. The nonpolar solvation model is completed with a Poisson-Boltzmann (PB) theory based polar solvation model. The differential geometry theory of surfaces is employed to provide a natural description of solvent-solute interfaces. The optimization of the total free energy functional, which encompasses the polar and nonpolar contributions, leads to coupled potential driven geometric flow and PB equations. Due to the development of singularities and nonsmooth manifolds in the Lagrangian representation, the resulting potential-driven geometric flow equation is embedded into the Eulerian representation for the purpose of

  10. Differential geometry based solvation model II: Lagrangian formulation

    PubMed Central

    Chen, Zhan; Baker, Nathan A.; Wei, G. W.

    2010-01-01

    Solvation is an elementary process in nature and is of paramount importance to more sophisticated chemical, biological and biomolecular processes. The understanding of solvation is an essential prerequisite for the quantitative description and analysis of biomolecular systems. This work presents a Lagrangian formulation of our differential geometry based solvation model. The Lagrangian representation of biomolecular surfaces has a few utilities/advantages. First, it provides an essential basis for biomolecular visualization, surface electrostatic potential map and visual perception of biomolecules. Additionally, it is consistent with the conventional setting of implicit solvent theories and thus, many existing theoretical algorithms and computational software packages can be directly employed. Finally, the Lagrangian representation does not need to resort to artificially enlarged van der Waals radii as often required by the Eulerian representation in solvation analysis. The main goal of the present work is to analyze the connection, similarity and difference between the Eulerian and Lagrangian formalisms of the solvation model. Such analysis is important to the understanding of the differential geometry based solvation model. The present model extends the scaled particle theory (SPT) of nonpolar solvation model with a solvent-solute interaction potential. The nonpolar solvation model is completed with a Poisson-Boltzmann (PB) theory based polar solvation model. The differential geometry theory of surfaces is employed to provide a natural description of solvent-solute interfaces. The minimization of the total free energy functional, which encompasses the polar and nonpolar contributions, leads to coupled potential driven geometric flow and Poisson-Boltzmann equations. Due to the development of singularities and nonsmooth manifolds in the Lagrangian representation, the resulting potential-driven geometric flow equation is embedded into the Eulerian representation for

  11. Lead halide perovskites: Crystal-liquid duality, phonon glass electron crystals, and large polaron formation

    PubMed Central

    Miyata, Kiyoshi; Atallah, Timothy L.; Zhu, X.-Y.

    2017-01-01

    Lead halide perovskites have been demonstrated as high performance materials in solar cells and light-emitting devices. These materials are characterized by coherent band transport expected from crystalline semiconductors, but dielectric responses and phonon dynamics typical of liquids. This “crystal-liquid” duality implies that lead halide perovskites belong to phonon glass electron crystals, a class of materials believed to make the most efficient thermoelectrics. We show that the crystal-liquid duality and the resulting dielectric response are responsible for large polaron formation and screening of charge carriers, leading to defect tolerance, moderate charge carrier mobility, and radiative recombination properties. Large polaron formation, along with the phonon glass character, may also explain the marked reduction in hot carrier cooling rates in these materials. PMID:29043296

  12. Hamiltonian analysis for linearly acceleration-dependent Lagrangians

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cruz, Miguel, E-mail: miguelcruz02@uv.mx, E-mail: roussjgc@gmail.com, E-mail: molgado@fc.uaslp.mx, E-mail: efrojas@uv.mx; Gómez-Cortés, Rosario, E-mail: miguelcruz02@uv.mx, E-mail: roussjgc@gmail.com, E-mail: molgado@fc.uaslp.mx, E-mail: efrojas@uv.mx; Rojas, Efraín, E-mail: miguelcruz02@uv.mx, E-mail: roussjgc@gmail.com, E-mail: molgado@fc.uaslp.mx, E-mail: efrojas@uv.mx

    2016-06-15

    We study the constrained Ostrogradski-Hamilton framework for the equations of motion provided by mechanical systems described by second-order derivative actions with a linear dependence in the accelerations. We stress out the peculiar features provided by the surface terms arising for this type of theories and we discuss some important properties for this kind of actions in order to pave the way for the construction of a well defined quantum counterpart by means of canonical methods. In particular, we analyse in detail the constraint structure for these theories and its relation to the inherent conserved quantities where the associated energies togethermore » with a Noether charge may be identified. The constraint structure is fully analyzed without the introduction of auxiliary variables, as proposed in recent works involving higher order Lagrangians. Finally, we also provide some examples where our approach is explicitly applied and emphasize the way in which our original arrangement results in propitious for the Hamiltonian formulation of covariant field theories.« less

  13. A Lagrangian model for the age of tracer in surface water

    NASA Astrophysics Data System (ADS)

    Ding, Yu; Liu, Haifei; Yi, Yujun

    The age of tracer is a spatio-temporal scale, indicating the transition time of solute particles, which is helpful to monitor and manage the pollutant leakage accidents. In this study, an effective Lagrangian model for the age of tracer is developed based on the lattice Boltzmann method in D2Q5 lattices. A tracer age problem in an asymmetrical circular reservoir is then employed as a benchmark test to verify this method. Then it is applied to computing the age of tracers under two different reservoir operation schemes in the Danjiangkou Reservoir, the drinking water source for the Middle Route of South-to-North Water Transfer Project.

  14. Orientifolds and duality cascades: confinement before the wall

    NASA Astrophysics Data System (ADS)

    Argurio, Riccardo; Bertolini, Matteo

    2018-02-01

    We consider D-branes at orientifold singularities and discuss two properties of the corresponding low energy four-dimensional effective theories which are not shared, generically, by other Calabi-Yau singularities. The first property is that duality cascades are finite and, unlike ordinary ones, do not require an infinite number of degrees of freedom to be UV-completed. The second is that orientifolds tend to stabilize runaway directions. These two properties can have interesting implications and widen in an intriguing way the variety of gauge theories one can describe using D-branes.

  15. Lagrangian formulation of the general relativistic Poynting-Robertson effect

    NASA Astrophysics Data System (ADS)

    De Falco, Vittorio; Battista, Emmanuele; Falanga, Maurizio

    2018-04-01

    We propose the Lagrangian formulation for describing the motion of a test particle in a general relativistic, stationary, and axially symmetric spacetime. The test particle is also affected by a radiation field, modeled as a coherent flux of photons traveling along the null geodesics of the background spacetime, including the general relativistic Poynting-Robertson effect. The innovative part of this work is to prove the existence of the potential linked to the dissipative action caused by the Poynting-Robertson effect in general relativity through the help of an integrating factor, depending on the energy of the system. Generally, such kinds of inverse problems involving dissipative effects might not admit a Lagrangian formulation; especially, in general relativity, there are no examples of such attempts in the literature so far. We reduce this general relativistic Lagrangian formulation to the classic case in the weak-field limit. This approach facilitates further studies in improving the treatment of the radiation field, and it contains, for example, some implications for a deeper comprehension of the gravitational waves.

  16. Lagrangian transport in a class of three-dimensional buoyancy-driven flows

    NASA Astrophysics Data System (ADS)

    Contreras, Sebastian; Speetjens, Michel; Clercx, Herman

    2017-11-01

    The study concerns the Lagrangian dynamics of three-dimensional (3D) buoyancy-driven cavity flows under steady and laminar conditions due to a global temperature gradient imposed via an opposite hot and cold sidewall. This serves as archetypal configuration for natural-convection flows in which gravity is perpendicular to the global temperature gradient. Limited insight into the Lagrangian properties of this class of flows motivates this study. The 3D Lagrangian dynamics are investigated in terms of the generic structure of the Lagrangian flow topology that is described in terms of the Grashof number (Gr) and the Prandtl number (Pr). Gr is the principal control parameter for the flow topology: vanishing Gr yields a state of closed streamlines (integrable state); increasing Gr causes the formation of toroidal coherent structures embedded in chaotic streamlines governed by Hamiltonian mechanisms. Fluid inertia prevails for ``smaller'' Gr. A buoyancy-induced bifurcation of the flow topology occurs for ``larger'' Gr and underlies the emergence of ``secondary rolls'' and secondary tori for ``larger'' Pr. Stagnation points and corresponding manifold interactions are key to the dynamics. S.C. acknowledges financial support from Consejo Nacional de Ciencia y Tecnología (CONACYT).

  17. Three-point functions in duality-invariant higher-derivative gravity

    DOE PAGES

    Naseer, Usman; Zwiebach, Barton

    2016-03-21

    Here, doubled α'-geometry is the simplest higher-derivative gravitational theory with exact global duality symmetry. We use the double metric formulation of this theory to compute on-shell three-point functions to all orders in α'. A simple pattern emerges when comparing with the analogous bosonic and heterotic three-point functions. As in these theories, the amplitudes factorize. The theory has no Gauss-Bonnet term, but contains a Riemann-cubed interaction to second order in α'.

  18. Interference and partial which-way information: A quantitative test of duality in two-atom resonance

    NASA Astrophysics Data System (ADS)

    Abranyos, Y.; Jakob, M.; Bergou, J.

    2000-01-01

    We propose for the experimental verification of an inequality concerning wave-particle duality by Englert [Phys. Rev. Lett. 77, 2154 (1996)] relating (or setting) an upper limit on distinguishability and visibility in a two-way interferometer. The inequality, quantifies the concept of wave-particle duality. The considered two-way interferometer is a Young's double-slit experiment involving two four-level atoms and is a slightly modified version of that of the recent experiment by Eichmann et al. [Phys. Rev. Lett. 70, 2359 (1993)]. The fringe visibility depends on the detected polarization direction of the scattered light and a read out of the internal state of one of the two atoms provides a partial which-way information.

  19. Variational Lagrangian data assimilation in open channel networks

    NASA Astrophysics Data System (ADS)

    Wu, Qingfang; Tinka, Andrew; Weekly, Kevin; Beard, Jonathan; Bayen, Alexandre M.

    2015-04-01

    This article presents a data assimilation method in a tidal system, where data from both Lagrangian drifters and Eulerian flow sensors were fused to estimate water velocity. The system is modeled by first-order, hyperbolic partial differential equations subject to periodic forcing. The estimation problem can then be formulated as the minimization of the difference between the observed variables and model outputs, and eventually provide the velocity and water stage of the hydrodynamic system. The governing equations are linearized and discretized using an implicit discretization scheme, resulting in linear equality constraints in the optimization program. Thus, the flow estimation can be formed as an optimization problem and efficiently solved. The effectiveness of the proposed method was substantiated by a large-scale field experiment in the Sacramento-San Joaquin River Delta in California. A fleet of 100 sensors developed at the University of California, Berkeley, were deployed in Walnut Grove, CA, to collect a set of Lagrangian data, a time series of positions as the sensors moved through the water. Measurements were also taken from Eulerian sensors in the region, provided by the United States Geological Survey. It is shown that the proposed method can effectively integrate Lagrangian and Eulerian measurement data, resulting in a suited estimation of the flow variables within the hydraulic system.

  20. Lagrangian predictability characteristics of an Ocean Model

    NASA Astrophysics Data System (ADS)

    Lacorata, Guglielmo; Palatella, Luigi; Santoleri, Rosalia

    2014-11-01

    The Mediterranean Forecasting System (MFS) Ocean Model, provided by INGV, has been chosen as case study to analyze Lagrangian trajectory predictability by means of a dynamical systems approach. To this regard, numerical trajectories are tested against a large amount of Mediterranean drifter data, used as sample of the actual tracer dynamics across the sea. The separation rate of a trajectory pair is measured by computing the Finite-Scale Lyapunov Exponent (FSLE) of first and second kind. An additional kinematic Lagrangian model (KLM), suitably treated to avoid "sweeping"-related problems, has been nested into the MFS in order to recover, in a statistical sense, the velocity field contributions to pair particle dispersion, at mesoscale level, smoothed out by finite resolution effects. Some of the results emerging from this work are: (a) drifter pair dispersion displays Richardson's turbulent diffusion inside the [10-100] km range, while numerical simulations of MFS alone (i.e., without subgrid model) indicate exponential separation; (b) adding the subgrid model, model pair dispersion gets very close to observed data, indicating that KLM is effective in filling the energy "mesoscale gap" present in MFS velocity fields; (c) there exists a threshold size beyond which pair dispersion becomes weakly sensitive to the difference between model and "real" dynamics; (d) the whole methodology here presented can be used to quantify model errors and validate numerical current fields, as far as forecasts of Lagrangian dispersion are concerned.

  1. T-duality and α'-corrections

    NASA Astrophysics Data System (ADS)

    Marqués, Diego; Nuñez, Carmen A.

    2015-10-01

    We construct an O( d, d) invariant universal formulation of the first-order α'-corrections of the string effective actions involving the dilaton, metric and two-form fields. Two free parameters interpolate between four-derivative terms that are even and odd with respect to a Z 2-parity transformation that changes the sign of the two-form field. The Z 2-symmetric model reproduces the closed bosonic string, and the heterotic string effective action is obtained through a Z 2-parity-breaking choice of parameters. The theory is an extension of the generalized frame formulation of Double Field Theory, in which the gauge transformations are deformed by a first-order generalized Green-Schwarz transformation. This deformation defines a duality covariant gauge principle that requires and fixes the four-derivative terms. We discuss the O( d, d) structure of the theory and the (non-)covariance of the required field redefinitions.

  2. Nonpolynomial Lagrangian approach to regular black holes

    NASA Astrophysics Data System (ADS)

    Colléaux, Aimeric; Chinaglia, Stefano; Zerbini, Sergio

    We present a review on Lagrangian models admitting spherically symmetric regular black holes (RBHs), and cosmological bounce solutions. Nonlinear electrodynamics, nonpolynomial gravity, and fluid approaches are explained in details. They consist respectively in a gauge invariant generalization of the Maxwell-Lagrangian, in modifications of the Einstein-Hilbert action via nonpolynomial curvature invariants, and finally in the reconstruction of density profiles able to cure the central singularity of black holes. The nonpolynomial gravity curvature invariants have the special property to be second-order and polynomial in the metric field, in spherically symmetric spacetimes. Along the way, other models and results are discussed, and some general properties that RBHs should satisfy are mentioned. A covariant Sakharov criterion for the absence of singularities in dynamical spherically symmetric spacetimes is also proposed and checked for some examples of such regular metric fields.

  3. The augmented Lagrangian method for parameter estimation in elliptic systems

    NASA Technical Reports Server (NTRS)

    Ito, Kazufumi; Kunisch, Karl

    1990-01-01

    In this paper a new technique for the estimation of parameters in elliptic partial differential equations is developed. It is a hybrid method combining the output-least-squares and the equation error method. The new method is realized by an augmented Lagrangian formulation, and convergence as well as rate of convergence proofs are provided. Technically the critical step is the verification of a coercivity estimate of an appropriately defined Lagrangian functional. To obtain this coercivity estimate a seminorm regularization technique is used.

  4. A purely Lagrangian method for computing linearly-perturbed flows in spherical geometry

    NASA Astrophysics Data System (ADS)

    Jaouen, Stéphane

    2007-07-01

    In many physical applications, one wishes to control the development of multi-dimensional instabilities around a one-dimensional (1D) complex flow. For predicting the growth rates of these perturbations, a general numerical approach is viable which consists in solving simultaneously the one-dimensional equations and their linearized form for three-dimensional perturbations. In Clarisse et al. [J.-M. Clarisse, S. Jaouen, P.-A. Raviart, A Godunov-type method in Lagrangian coordinates for computing linearly-perturbed planar-symmetric flows of gas dynamics, J. Comp. Phys. 198 (2004) 80-105], a class of Godunov-type schemes for planar-symmetric flows of gas dynamics has been proposed. Pursuing this effort, we extend these results to spherically symmetric flows. A new method to derive the Lagrangian perturbation equations, based on the canonical form of systems of conservation laws with zero entropy flux [B. Després, Lagrangian systems of conservation laws. Invariance properties of Lagrangian systems of conservation laws, approximate Riemann solvers and the entropy condition, Numer. Math. 89 (2001) 99-134; B. Després, C. Mazeran, Lagrangian gas dynamics in two dimensions and Lagrangian systems, Arch. Rational Mech. Anal. 178 (2005) 327-372] is also described. It leads to many advantages. First of all, many physical problems we are interested in enter this formalism (gas dynamics, two-temperature plasma equations, ideal magnetohydrodynamics, etc.) whatever is the geometry. Secondly, a class of numerical entropic schemes is available for the basic flow [11]. Last, linearizing and devising numerical schemes for the perturbed flow is straightforward. The numerical capabilities of these methods are illustrated on three test cases of increasing difficulties and we show that - due to its simplicity and its low computational cost - the Linear Perturbations Code (LPC) is a powerful tool to understand and predict the development of hydrodynamic instabilities in the linear regime.

  5. Uncertainty quantification in Eulerian-Lagrangian models for particle-laden flows

    NASA Astrophysics Data System (ADS)

    Fountoulakis, Vasileios; Jacobs, Gustaaf; Udaykumar, Hs

    2017-11-01

    A common approach to ameliorate the computational burden in simulations of particle-laden flows is to use a point-particle based Eulerian-Lagrangian model, which traces individual particles in their Lagrangian frame and models particles as mathematical points. The particle motion is determined by Stokes drag law, which is empirically corrected for Reynolds number, Mach number and other parameters. The empirical corrections are subject to uncertainty. Treating them as random variables renders the coupled system of PDEs and ODEs stochastic. An approach to quantify the propagation of this parametric uncertainty to the particle solution variables is proposed. The approach is based on averaging of the governing equations and allows for estimation of the first moments of the quantities of interest. We demonstrate the feasibility of our proposed methodology of uncertainty quantification of particle-laden flows on one-dimensional linear and nonlinear Eulerian-Lagrangian systems. This research is supported by AFOSR under Grant FA9550-16-1-0008.

  6. What Is Light?. Students' Reflections on the Wave-Particle Duality of Light and the Nature of Physics

    NASA Astrophysics Data System (ADS)

    Henriksen, Ellen Karoline; Angell, Carl; Vistnes, Arnt Inge; Bungum, Berit

    2018-03-01

    Quantum physics describes light as having both particle and wave properties; however, there is no consensus about how to interpret this duality on an ontological level. This article explores how pre-university physics students, while working with learning material focusing on historical-philosophical aspects of quantum physics, interpreted the wave-particle duality of light and which views they expressed on the nature of physics. A thematic analysis was performed on 133 written responses about the nature of light, given in the beginning of the teaching sequence, and 55 audio-recorded small-group discussions addressing the wave-particle duality, given later in the sequence. Most students initially expressed a wave and particle view of light, but some of these gave an "uncritical duality description", accepting without question the two ontologically different descriptions of light. In the small-group discussions, students expressed more nuanced views. Many tried to reconcile the two descriptions using semi-classical reasoning; others entered into philosophical discussions about the status of the current scientific description of light and expected science to come up with a better model. Some found the wave description of light particularly challenging and lacked a conception of "what is waving". Many seemed to implicitly take a realist view on the description of physical phenomena, contrary with the Copenhagen interpretation which is prevalent in textbooks. Results are discussed in light of different interpretations of quantum physics, and we conclude by arguing for a historical-philosophical perspective as an entry point for upper secondary physics students to explore the development and interpretation of quantum physical concepts.

  7. Identifying finite-time coherent sets from limited quantities of Lagrangian data.

    PubMed

    Williams, Matthew O; Rypina, Irina I; Rowley, Clarence W

    2015-08-01

    A data-driven procedure for identifying the dominant transport barriers in a time-varying flow from limited quantities of Lagrangian data is presented. Our approach partitions state space into coherent pairs, which are sets of initial conditions chosen to minimize the number of trajectories that "leak" from one set to the other under the influence of a stochastic flow field during a pre-specified interval in time. In practice, this partition is computed by solving an optimization problem to obtain a pair of functions whose signs determine set membership. From prior experience with synthetic, "data rich" test problems, and conceptually related methods based on approximations of the Perron-Frobenius operator, we observe that the functions of interest typically appear to be smooth. We exploit this property by using the basis sets associated with spectral or "mesh-free" methods, and as a result, our approach has the potential to more accurately approximate these functions given a fixed amount of data. In practice, this could enable better approximations of the coherent pairs in problems with relatively limited quantities of Lagrangian data, which is usually the case with experimental geophysical data. We apply this method to three examples of increasing complexity: The first is the double gyre, the second is the Bickley Jet, and the third is data from numerically simulated drifters in the Sulu Sea.

  8. Identifying finite-time coherent sets from limited quantities of Lagrangian data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Matthew O.; Rypina, Irina I.; Rowley, Clarence W.

    A data-driven procedure for identifying the dominant transport barriers in a time-varying flow from limited quantities of Lagrangian data is presented. Our approach partitions state space into coherent pairs, which are sets of initial conditions chosen to minimize the number of trajectories that “leak” from one set to the other under the influence of a stochastic flow field during a pre-specified interval in time. In practice, this partition is computed by solving an optimization problem to obtain a pair of functions whose signs determine set membership. From prior experience with synthetic, “data rich” test problems, and conceptually related methods basedmore » on approximations of the Perron-Frobenius operator, we observe that the functions of interest typically appear to be smooth. We exploit this property by using the basis sets associated with spectral or “mesh-free” methods, and as a result, our approach has the potential to more accurately approximate these functions given a fixed amount of data. In practice, this could enable better approximations of the coherent pairs in problems with relatively limited quantities of Lagrangian data, which is usually the case with experimental geophysical data. We apply this method to three examples of increasing complexity: The first is the double gyre, the second is the Bickley Jet, and the third is data from numerically simulated drifters in the Sulu Sea.« less

  9. Gluon scattering amplitudes from gauge/string duality and integrability

    NASA Astrophysics Data System (ADS)

    Satoh, Yuji

    2014-06-01

    We discuss the gluon scattering amplitudes of the four-dimensional maximally supersymmetric Yang-Mills theory. By the gauge/string duality, the amplitudes at strong coupling are given by the area of the minimal surfaces in anti-de Sitter space, which can be analyzed by a set of integral equations of the thermodynamic Bethe ansatz (TBA) type. By using the two-dimensional integrable models and conformal field theories underlying the TBA system, we derive analytic expansions of the amplitudes around certain kinematic configurations.

  10. Lagrangians and Systems They Describe-How Not to Treat Dissipation in Quantum Mechanics.

    ERIC Educational Resources Information Center

    Ray, John R.

    1979-01-01

    The author argues that a Lagrangian that yields equations of motion for a damped simple harmonic oscillator does not describe this system, but a completely different physical system, and constructs a physical system that the Lagrangian describes and derives some of its properties. (Author/GA)

  11. Dynamics of Multibody Systems Near Lagrangian Points

    NASA Astrophysics Data System (ADS)

    Wong, Brian

    This thesis examines the dynamics of a physically connected multi-spacecraft system in the vicinity of the Lagrangian points of a Circular Restricted Three-Body System. The spacecraft system is arranged in a wheel-spoke configuration with smaller and less massive satellites connected to a central hub using truss/beams or tether connectors. The kinematics of the system is first defined, and the kinetic, gravitational potential energy and elastic potential energy of the system are derived. The Assumed Modes Method is used to discretize the continuous variables of the system, and a general set of ordinary differential equations describing the dynamics of the connectors and the central hub are obtained using the Lagrangian method. The flexible body dynamics of the tethered and truss connected systems are examined using numerical simulations. The results show that these systems experienced only small elastic deflections when they are naturally librating or rotating at moderate angular velocities, and these deflections have relatively small effect on the attitude dynamics of the systems. Based on these results, it is determined that the connectors can be modeled as rigid when only the attitude dynamics of the system is of interest. The equations of motion of rigid satellites stationed at the Lagrangian points are linearized, and the stability conditions of the satellite are obtained from the linear equations. The required conditions are shown to be similar to those of geocentric satellites. Study of the linear equations also revealed the resonant conditions of rigid Lagrangian point satellites, when a librational natural frequency of the satellite matches the frequency of its station-keeping orbit leading to large attitude motions. For tethered satellites, the linear analysis shows that the tethers are in stable equilibrium when they lie along a line joining the two primary celestial bodies of the Three-Body System. Numerical simulations are used to study the long term

  12. Geometric Lagrangian approach to the physical degree of freedom count in field theory

    NASA Astrophysics Data System (ADS)

    Díaz, Bogar; Montesinos, Merced

    2018-05-01

    To circumvent some technical difficulties faced by the geometric Lagrangian approach to the physical degree of freedom count presented in the work of Díaz, Higuita, and Montesinos [J. Math. Phys. 55, 122901 (2014)] that prevent its direct implementation to field theory, in this paper, we slightly modify the geometric Lagrangian approach in such a way that its resulting version works perfectly for field theory (and for particle systems, of course). As in previous work, the current approach also allows us to directly get the Lagrangian constraints, a new Lagrangian formula for the counting of the number of physical degrees of freedom, the gauge transformations, and the number of first- and second-class constraints for any action principle based on a Lagrangian depending on the fields and their first derivatives without performing any Dirac's canonical analysis. An advantage of this approach over the previous work is that it also allows us to handle the reducibility of the constraints and to get the off-shell gauge transformations. The theoretical framework is illustrated in 3-dimensional generalized general relativity (Palatini and Witten's exotic actions), Chern-Simons theory, 4-dimensional BF theory, and 4-dimensional general relativity given by Palatini's action with a cosmological constant.

  13. Approaches to emergent spacetime in gauge/gravity duality

    NASA Astrophysics Data System (ADS)

    Sully, James Kenneth

    2013-08-01

    In this thesis we explore approaches to emergent local spacetime in gauge/gravity duality. We first conjecture that every CFT with a large-N type limit and a parametrically large gap in the spectrum of single-trace operators has a local bulk dual. We defend this conjecture by counting consistent solutions to the four-point function in simple scalar models and matching to the number of local interaction terms in the bulk. Next, we proceed to explicitly construct local bulk operators using smearing functions. We argue that this construction allows one to probe inside black hole horizons for only short times. We then suggest that the failure to construct bulk operators inside a black hole at late times is indicative of a break-down of local effective field theory at the black hole horizon. We argue that the postulates of black hole complementarity are inconsistent and cannot be realized within gauge/gravity duality. We argue that the most conservative solution is a firewall at the black hole horizon and we critically explore alternative resolutions. We then examine the CGHS model of two-dimensional gravity to look for dynamical formation of firewalls. We find that the CGHS model does not exhibit firewalls, but rather contains long-lived remnants. We argue that, while this is consistent for the CGHS model, it cannot be so in higher-dimensional theories of gravity. Lastly, we turn to F-theory, and detail local and global obstructions to writing elliptic fibrations in Tate form. We determine more general possible forms.

  14. Direct Lagrangian tracking simulations of particles in vertically-developing atmospheric clouds

    NASA Astrophysics Data System (ADS)

    Onishi, Ryo; Kunishima, Yuichi

    2017-11-01

    We have been developing the Lagrangian Cloud Simulator (LCS), which follows the so-called Euler-Lagrangian framework, where flow motion and scalar transportations (i.e., temperature and humidity) are computed with the Euler method and particle motion with the Lagrangian method. The LCS simulation considers the hydrodynamic interaction between approaching particles for robust collision detection. This leads to reliable simulations of collision growth of cloud droplets. Recently the activation process, in which aerosol particles become tiny liquid droplets, has been implemented in the LCS. The present LCS can therefore consider the whole warm-rain precipitation processes -activation, condensation, collision and drop precipitation. In this talk, after briefly introducing the LCS, we will show kinematic simulations using the LCS for quasi-one dimensional domain, i.e., vertically elongated 3D domain. They are compared with one-dimensional kinematic simulations using a spectral-bin cloud microphysics scheme, which is based on the Euler method. The comparisons show fairly good agreement with small discrepancies, the source of which will be presented. The Lagrangian statistics, obtained for the first time for the vertical domain, will be the center of discussion. This research was supported by MEXT as ``Exploratory Challenge on Post-K computer'' (Frontiers of Basic Science: Challenging the Limits).

  15. A Lagrangian discontinuous Galerkin hydrodynamic method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xiaodong; Morgan, Nathaniel Ray; Burton, Donald E.

    Here, we present a new Lagrangian discontinuous Galerkin (DG) hydrodynamic method for solving the two-dimensional gas dynamic equations on unstructured hybrid meshes. The physical conservation laws for the momentum and total energy are discretized using a DG method based on linear Taylor expansions. Three different approaches are investigated for calculating the density variation over the element. The first approach evolves a Taylor expansion of the specific volume field. The second approach follows certain finite element methods and uses the strong mass conservation to calculate the density field at a location inside the element or on the element surface. The thirdmore » approach evolves a Taylor expansion of the density field. The nodal velocity, and the corresponding forces, are explicitly calculated by solving a multidirectional approximate Riemann problem. An effective limiting strategy is presented that ensures monotonicity of the primitive variables. This new Lagrangian DG hydrodynamic method conserves mass, momentum, and total energy. Results from a suite of test problems are presented to demonstrate the robustness and expected second-order accuracy of this new method.« less

  16. Extended Lagrangian Excited State Molecular Dynamics

    DOE PAGES

    Bjorgaard, Josiah August; Sheppard, Daniel Glen; Tretiak, Sergei; ...

    2018-01-09

    In this work, an extended Lagrangian framework for excited state molecular dynamics (XL-ESMD) using time-dependent self-consistent field theory is proposed. The formulation is a generalization of the extended Lagrangian formulations for ground state Born–Oppenheimer molecular dynamics [Phys. Rev. Lett. 2008 100, 123004]. The theory is implemented, demonstrated, and evaluated using a time-dependent semiempirical model, though it should be generally applicable to ab initio theory. The simulations show enhanced energy stability and a significantly reduced computational cost associated with the iterative solutions of both the ground state and the electronically excited states. Relaxed convergence criteria can therefore be used both formore » the self-consistent ground state optimization and for the iterative subspace diagonalization of the random phase approximation matrix used to calculate the excited state transitions. In conclusion, the XL-ESMD approach is expected to enable numerically efficient excited state molecular dynamics for such methods as time-dependent Hartree–Fock (TD-HF), Configuration Interactions Singles (CIS), and time-dependent density functional theory (TD-DFT).« less

  17. Extended Lagrangian Excited State Molecular Dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bjorgaard, Josiah August; Sheppard, Daniel Glen; Tretiak, Sergei

    In this work, an extended Lagrangian framework for excited state molecular dynamics (XL-ESMD) using time-dependent self-consistent field theory is proposed. The formulation is a generalization of the extended Lagrangian formulations for ground state Born–Oppenheimer molecular dynamics [Phys. Rev. Lett. 2008 100, 123004]. The theory is implemented, demonstrated, and evaluated using a time-dependent semiempirical model, though it should be generally applicable to ab initio theory. The simulations show enhanced energy stability and a significantly reduced computational cost associated with the iterative solutions of both the ground state and the electronically excited states. Relaxed convergence criteria can therefore be used both formore » the self-consistent ground state optimization and for the iterative subspace diagonalization of the random phase approximation matrix used to calculate the excited state transitions. In conclusion, the XL-ESMD approach is expected to enable numerically efficient excited state molecular dynamics for such methods as time-dependent Hartree–Fock (TD-HF), Configuration Interactions Singles (CIS), and time-dependent density functional theory (TD-DFT).« less

  18. A Lagrangian discontinuous Galerkin hydrodynamic method

    DOE PAGES

    Liu, Xiaodong; Morgan, Nathaniel Ray; Burton, Donald E.

    2017-12-11

    Here, we present a new Lagrangian discontinuous Galerkin (DG) hydrodynamic method for solving the two-dimensional gas dynamic equations on unstructured hybrid meshes. The physical conservation laws for the momentum and total energy are discretized using a DG method based on linear Taylor expansions. Three different approaches are investigated for calculating the density variation over the element. The first approach evolves a Taylor expansion of the specific volume field. The second approach follows certain finite element methods and uses the strong mass conservation to calculate the density field at a location inside the element or on the element surface. The thirdmore » approach evolves a Taylor expansion of the density field. The nodal velocity, and the corresponding forces, are explicitly calculated by solving a multidirectional approximate Riemann problem. An effective limiting strategy is presented that ensures monotonicity of the primitive variables. This new Lagrangian DG hydrodynamic method conserves mass, momentum, and total energy. Results from a suite of test problems are presented to demonstrate the robustness and expected second-order accuracy of this new method.« less

  19. The origins of duality of patterning in artificial whistled languages

    PubMed Central

    Verhoef, Tessa

    2012-01-01

    In human speech, a finite set of basic sounds is combined into a (potentially) unlimited set of well-formed morphemes. Hockett (1960) placed this phenomenon under the term ‘duality of patterning’ and included it as one of the basic design features of human language. Of the thirteen basic design features Hockett proposed, duality of patterning is the least studied and it is still unclear how it evolved in language. Recent work shedding light on this is summarized in this paper and experimental data is presented. This data shows that combinatorial structure can emerge in an artificial whistled language through cultural transmission as an adaptation to human cognitive biases and learning. In this work the method of experimental iterated learning (Kirby et al. 2008) is used, in which a participant is trained on the reproductions of the utterances the previous participant learned. Participants learn and recall a system of sounds that are produced with a slide whistle. Transmission from participant to participant causes the whistle systems to change and become more learnable and more structured. These findings follow from qualitative observations, quantitative measures and a follow-up experiment that tests how well participants can learn the emerged whistled languages by generalizing from a few examples. PMID:23637710

  20. A Godunov-like point-centered essentially Lagrangian hydrodynamic approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgan, Nathaniel R.; Waltz, Jacob I.; Burton, Donald E.

    We present an essentially Lagrangian hydrodynamic scheme suitable for modeling complex compressible flows on tetrahedron meshes. The scheme reduces to a purely Lagrangian approach when the flow is linear or if the mesh size is equal to zero; as a result, we use the term essentially Lagrangian for the proposed approach. The motivation for developing a hydrodynamic method for tetrahedron meshes is because tetrahedron meshes have some advantages over other mesh topologies. Notable advantages include reduced complexity in generating conformal meshes, reduced complexity in mesh reconnection, and preserving tetrahedron cells with automatic mesh refinement. A challenge, however, is tetrahedron meshesmore » do not correctly deform with a lower order (i.e. piecewise constant) staggered-grid hydrodynamic scheme (SGH) or with a cell-centered hydrodynamic (CCH) scheme. The SGH and CCH approaches calculate the strain via the tetrahedron, which can cause artificial stiffness on large deformation problems. To resolve the stiffness problem, we adopt the point-centered hydrodynamic approach (PCH) and calculate the evolution of the flow via an integration path around the node. The PCH approach stores the conserved variables (mass, momentum, and total energy) at the node. The evolution equations for momentum and total energy are discretized using an edge-based finite element (FE) approach with linear basis functions. A multidirectional Riemann-like problem is introduced at the center of the tetrahedron to account for discontinuities in the flow such as a shock. Conservation is enforced at each tetrahedron center. The multidimensional Riemann-like problem used here is based on Lagrangian CCH work [8, 19, 37, 38, 44] and recent Lagrangian SGH work [33-35, 39, 45]. In addition, an approximate 1D Riemann problem is solved on each face of the nodal control volume to advect mass, momentum, and total energy. The 1D Riemann problem produces fluxes [18] that remove a volume error in the PCH

  1. A Godunov-like point-centered essentially Lagrangian hydrodynamic approach

    DOE PAGES

    Morgan, Nathaniel R.; Waltz, Jacob I.; Burton, Donald E.; ...

    2014-10-28

    We present an essentially Lagrangian hydrodynamic scheme suitable for modeling complex compressible flows on tetrahedron meshes. The scheme reduces to a purely Lagrangian approach when the flow is linear or if the mesh size is equal to zero; as a result, we use the term essentially Lagrangian for the proposed approach. The motivation for developing a hydrodynamic method for tetrahedron meshes is because tetrahedron meshes have some advantages over other mesh topologies. Notable advantages include reduced complexity in generating conformal meshes, reduced complexity in mesh reconnection, and preserving tetrahedron cells with automatic mesh refinement. A challenge, however, is tetrahedron meshesmore » do not correctly deform with a lower order (i.e. piecewise constant) staggered-grid hydrodynamic scheme (SGH) or with a cell-centered hydrodynamic (CCH) scheme. The SGH and CCH approaches calculate the strain via the tetrahedron, which can cause artificial stiffness on large deformation problems. To resolve the stiffness problem, we adopt the point-centered hydrodynamic approach (PCH) and calculate the evolution of the flow via an integration path around the node. The PCH approach stores the conserved variables (mass, momentum, and total energy) at the node. The evolution equations for momentum and total energy are discretized using an edge-based finite element (FE) approach with linear basis functions. A multidirectional Riemann-like problem is introduced at the center of the tetrahedron to account for discontinuities in the flow such as a shock. Conservation is enforced at each tetrahedron center. The multidimensional Riemann-like problem used here is based on Lagrangian CCH work [8, 19, 37, 38, 44] and recent Lagrangian SGH work [33-35, 39, 45]. In addition, an approximate 1D Riemann problem is solved on each face of the nodal control volume to advect mass, momentum, and total energy. The 1D Riemann problem produces fluxes [18] that remove a volume error in the PCH

  2. Lagrangian formulation of irreversible thermodynamics and the second law of thermodynamics.

    PubMed

    Glavatskiy, K S

    2015-05-28

    We show that the equations which describe irreversible evolution of a system can be derived from a variational principle. We suggest a Lagrangian, which depends on the properties of the normal and the so-called "mirror-image" system. The Lagrangian is symmetric in time and therefore compatible with microscopic reversibility. The evolution equations in the normal and mirror-imaged systems are decoupled and describe therefore independent irreversible evolution of each of the systems. The second law of thermodynamics follows from a symmetry of the Lagrangian. Entropy increase in the normal system is balanced by the entropy decrease in the mirror-image system, such that there exists an "integral of evolution" which is a constant. The derivation relies on the property of local equilibrium, which states that the local relations between the thermodynamic quantities in non-equilibrium are the same as in equilibrium.

  3. Lagrangian chaos in three- dimensional steady buoyancy-driven flows

    NASA Astrophysics Data System (ADS)

    Contreras, Sebastian; Speetjens, Michel; Clercx, Herman

    2016-11-01

    Natural convection plays a key role in fluid dynamics owing to its ubiquitous presence in nature and industry. Buoyancy-driven flows are prototypical systems in the study of thermal instabilities and pattern formation. The differentially heated cavity problem has been widely studied for the investigation of buoyancy-induced oscillatory flow. However, far less attention has been devoted to the three-dimensional Lagrangian transport properties in such flows. This study seeks to address this by investigating Lagrangian transport in the steady flow inside a cubic cavity differentially-heated from the side. The theoretical and numerical analysis expands on previously reported similarities between the current flow and lid-driven flows. The Lagrangian dynamics are controlled by the Péclet number (Pe) and the Prandtl number (Pr). Pe controls the behaviour qualitatively in that growing Pe progressively perturbs the integable state (Pe =0), thus paving the way to chaotic dynamics. Pr plays an entirely quantitative role in that Pr<1 and Pr>1 amplifies and diminishes, respectively, the perturbative effect of non-zero Pe. S.C. acknowledges financial support from Consejo Nacional de Ciencia y Tecnología (CONACYT).

  4. Getting Things Sorted With Lagrangian Coherent Structures

    NASA Astrophysics Data System (ADS)

    Atis, Severine; Peacock, Thomas; Environmental Dynamics Laboratory Team

    2014-11-01

    The dispersion of a tracer in a fluid flow is influenced by the Lagrangian motion of fluid elements. Even in laminar regimes, the irregular chaotic behavior of a fluid flow can lead to effective stirring that rapidly redistributes a tracer throughout the domain. For flows with arbitrary time-dependence, the modern approach of Lagrangian Coherent Structures (LCSs) provide a method for identifying the key material lines that organize flow transport. When the advected tracer particles possess a finite size and nontrivial shape, however, their dynamics can differ markedly from passive tracers, thus affecting the dispersion phenomena. We present details of numerical simulations and laboratory experiments that investigate the behavior of finite size particles in 2-dimensional chaotic flows. We show that the shape and the size of the particles alter the underlying LCSs, facilitating segregation between tracers of different shape in the same flow field.

  5. Atmospheric rivers moisture transport from a Lagrangian perspective

    NASA Astrophysics Data System (ADS)

    Ramos, A. M.; Nieto, R.; Tomé, R.; Gimeno, L.; Trigo, R. M.; Liberato, M. L. R.; Lavers, D. A.

    2015-12-01

    An automated atmospheric rivers (ARs) detection algorithm is used for the North Atlantic Ocean Basin allowing the identification of the major ARs that affected western European coasts between 1979 and 2014 over the winter half-year (October to March). The entire west coast of Europe was divided into five domains, namely, the Iberian Peninsula (9.75° W; 36-43.75° N), France (4.5° W; 43.75-50° N), UK (4.5° W; 50-59° N), southern Scandinavia and the Netherlands (5.25° E; 50-59° N), and northern Scandinavia (5.25° E; 59-70° N). Following the identification of the main ARs that made landfall in western Europe, a Lagrangian analysis was then applied in order to identify the main sources of moisture that reach each domain. The Lagrangian dataset used was obtained from the FLEXPART model global simulation from 1979 to 2012, where the atmosphere was divided into approximately 2.0 million parcels, and it was forced by ERA-Interim reanalysis on a 1° latitude-longitude grid. Results show that, in general, for all regions considered, the major climatological source of moisture extends along the subtropical North Atlantic, from the Florida Peninsula (northward of 20° N), to each sink region, with the nearest coast to each sink region always appearing as a local maximum of evaporation. In addition, during the AR events, the Atlantic subtropical source is reinforced and displaced, with a slight northward movement of the moisture sources is found when the sink region is positioned at higher latitudes. In conclusion, the results confirm the advection of moisture linked to ARs from subtropical ocean areas, but also the existence of a tropical one, and the mid-latitude sources further the analysed longitude along the North Atlantic is located eastward.

  6. S-duality in twistor space

    NASA Astrophysics Data System (ADS)

    Alexandrov, Sergei; Pioline, Boris

    2012-08-01

    In type IIB string compactifications on a Calabi-Yau threefold, the hypermultiplet moduli space {{M}_H} must carry an isometric action of the modular group SL(2 , {Z} ), inherited from the S-duality symmetry of type IIB string theory in ten dimensions. We investigate how this modular symmetry is realized at the level of the twistor space of {{M}_H} , and construct a general class of SL(2 , {Z} )-invariant quaternion-Kähler metrics with two commuting isometries, parametrized by a suitably covariant family of holomorphic transition functions. This family should include {{M}_H} corrected by D3-D1-D(-1)-instantons (with five-brane corrections ignored) and, after taking a suitable rigid limit, the Coulomb branch of five-dimensional {N} = {2} gauge theories compactified on a torus, including monopole string instantons. These results allow us to considerably simplify the derivation of the mirror map between type IIA and IIB fields in the sector where only D1-D(-1)-instantons are retained.

  7. Power corrections to the HTL effective Lagrangian of QED

    NASA Astrophysics Data System (ADS)

    Carignano, Stefano; Manuel, Cristina; Soto, Joan

    2018-05-01

    We present compact expressions for the power corrections to the hard thermal loop (HTL) Lagrangian of QED in d space dimensions. These are corrections of order (L / T) 2, valid for momenta L ≪ T, where T is the temperature. In the limit d → 3 we achieve a consistent regularization of both infrared and ultraviolet divergences, which respects the gauge symmetry of the theory. Dimensional regularization also allows us to witness subtle cancellations of infrared divergences. We also discuss how to generalize our results in the presence of a chemical potential, so as to obtain the power corrections to the hard dense loop (HDL) Lagrangian.

  8. Effect of VSR invariant Chern-Simons Lagrangian on photon polarization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nayak, Alekha C.; Verma, Ravindra K.; Jain, Pankaj, E-mail: acnayak@iitk.ac.in, E-mail: ravindkv@iitk.ac.in, E-mail: pkjain@iitk.ac.in

    2015-07-01

    We propose a generalization of the Chern-Simons (CS) Lagrangian which is invariant under the SIM(2) transformations but not under the full Lorentz group. The generalized lagrangian is also invariant under a SIM(2) gauge transformation. We study the effect of such a term on radiation propagating over cosmological distances. We find that the dominant effect of this term is to produce circular polarization as radiation propagates through space. We use the circular polarization data from distant radio sources in order to impose a limit on this term.

  9. Effect of VSR invariant Chern-Simons Lagrangian on photon polarization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nayak, Alekha C.; Verma, Ravindra K.; Jain, Pankaj

    We propose a generalization of the Chern-Simons (CS) Lagrangian which is invariant under the SIM(2) transformations but not under the full Lorentz group. The generalized lagrangian is also invariant under a SIM(2) gauge transformation. We study the effect of such a term on radiation propagating over cosmological distances. We find that the dominant effect of this term is to produce circular polarization as radiation propagates through space. We use the circular polarization data from distant radio sources in order to impose a limit on this term.

  10. Reductions of topologically massive gravity I: Hamiltonian analysis of second order degenerate Lagrangians

    NASA Astrophysics Data System (ADS)

    Ćaǧatay Uçgun, Filiz; Esen, Oǧul; Gümral, Hasan

    2018-01-01

    We present Skinner-Rusk and Hamiltonian formalisms of second order degenerate Clément and Sarıoğlu-Tekin Lagrangians. The Dirac-Bergmann constraint algorithm is employed to obtain Hamiltonian realizations of Lagrangian theories. The Gotay-Nester-Hinds algorithm is used to investigate Skinner-Rusk formalisms of these systems.

  11. A Generalized Eulerian-Lagrangian Analysis, with Application to Liquid Flows with Vapor Bubbles

    NASA Technical Reports Server (NTRS)

    Dejong, Frederik J.; Meyyappan, Meyya

    1993-01-01

    Under a NASA MSFC SBIR Phase 2 effort an analysis has been developed for liquid flows with vapor bubbles such as those in liquid rocket engine components. The analysis is based on a combined Eulerian-Lagrangian technique, in which Eulerian conservation equations are solved for the liquid phase, while Lagrangian equations of motion are integrated in computational coordinates for the vapor phase. The novel aspect of the Lagrangian analysis developed under this effort is that it combines features of the so-called particle distribution approach with those of the so-called particle trajectory approach and can, in fact, be considered as a generalization of both of those traditional methods. The result of this generalization is a reduction in CPU time and memory requirements. Particle time step (stability) limitations have been eliminated by semi-implicit integration of the particle equations of motion (and, for certain applications, the particle temperature equation), although practical limitations remain in effect for reasons of accuracy. The analysis has been applied to the simulation of cavitating flow through a single-bladed section of a labyrinth seal. Models for the simulation of bubble formation and growth have been included, as well as models for bubble drag and heat transfer. The results indicate that bubble formation is more or less 'explosive'. for a given flow field, the number density of bubble nucleation sites is very sensitive to the vapor properties and the surface tension. The bubble motion, on the other hand, is much less sensitive to the properties, but is affected strongly by the local pressure gradients in the flow field. In situations where either the material properties or the flow field are not known with sufficient accuracy, parametric studies can be carried out rapidly to assess the effect of the important variables. Future work will include application of the analysis to cavitation in inducer flow fields.

  12. Lagrangian transport simulations of volcanic sulfur dioxide emissions: impact of meteorological data products

    NASA Astrophysics Data System (ADS)

    Hoffmann, Lars; Rößler, Thomas; Griessbach, Sabine; Heng, Yi; Stein, Olaf

    2017-04-01

    Sulfur dioxide (SO2) emissions from strong volcanic eruptions are an important natural cause for climate variations. We applied our new Lagrangian transport model Massive-Parallel Trajectory Calculations (MPTRAC) to perform simulations for three case studies of volcanic eruption events. The case studies cover the eruptions of Grímsvötn, Iceland, Puyehue-Cordón Caulle, Chile, and Nabro, Eritrea, in May and June 2011. We used SO2 observations of the Atmospheric Infrared Sounder (AIRS/Aqua) and a backward trajectory approach to initialize the simulations. Besides validation of the new model, the main goal of our study was a comparison of simulations with different meteorological data products. We considered three reanalyses (ERA-Interim, MERRA, and NCAR/NCEP) and the European Centre for Medium-Range Weather Forecasts (ECMWF) operational analysis. Qualitatively, the SO2 distributions from the simulations compare well with the AIRS data, but also with Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) aerosol observations. Transport deviations and the critical success index (CSI) are analyzed to evaluate the simulations quantitatively. During the first 5 or 10 days after the eruptions we found the best performance for the ECMWF analysis (CSI range of 0.25 - 0.31), followed by ERA-Interim (0.25 - 0.29), MERRA (0.23 - 0.27), and NCAR/NCEP (0.21 - 0.23). High temporal and spatial resolution of the meteorological data does lead to improved performance of Lagrangian transport simulations of volcanic emissions in the upper troposphere and lower stratosphere. Reference: Hoffmann L., Rößler, T., Griessbach, S., Heng, Y., and Stein, O., Lagrangian transport simulations of volcanic sulfur dioxide emissions: impact of meteorological data products, J. Geophys. Res., 121(9), 4651-4673, doi:10.1002/2015JD023749, 2016.

  13. An airborne perfluorocarbon tracer system and its first application for a Lagrangian experiment

    NASA Astrophysics Data System (ADS)

    Ren, Y.; Baumann, R.; Schlager, H.

    2015-01-01

    A perfluorocarbon tracer system (PERTRAS), specifically designed for Lagrangian aircraft experiments, has been developed by the Deutsches Zentrum für Luft- und Raumfahrt (German Aerospace Center, DLR). It consists of three main parts: a tracer release unit (RU), an adsorption tube sampler (ATS), and a tracer analytical system. The RU was designed for airborne tracer release experiments; meanwhile, it can be used on various platforms for different experimental purposes (here research vessel). PERTRAS was for the first time applied in the field campaign Stratospheric ozone: Halogen Impacts in a Varying Atmosphere (SHIVA) in November 2011. An amount of 8.8 kg perfluoromethylcyclopentane (PMCP) was released aboard the research vessel Sonne (RV Sonne) near the operational site of this campaign, Miri, Malaysia, on 21 November. The tracer samples collected using the ATS onboard the DLR research aircraft Falcon were analyzed in the laboratory using a thermal desorber-gas chromatography-mass spectrometry (TD-GC-MS) system. Guided by forecasts calculated with the Lagrangian model Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT), 64 tracer samples were collected onboard the Falcon approximately 5 and 25 h after the release, mostly with a time resolution of 1 min. Enhanced PMCP concentrations relative to ambient PMCP background values (mean: 6.62 fmol mol-1) were detected during three intersects of the fresh tracer plume (age 5 h), with a maximum value of 301.33 fmol mol-1. This indicates that the fresh tracer plume was successfully intercepted at the forecast position. During the second flight, 25 h after the release, the center of tracer plume was not detected by the sampling system due to a faster advection of the plume than forecast. The newly developed PERTRAS system has been successfully deployed for the first time. The instrumental setup and comparisons between the measurements and HYSPLIT simulations are presented in this study.

  14. An airborne perfluorocarbon tracer system and its first application for a Lagrangian experiment

    NASA Astrophysics Data System (ADS)

    Ren, Y.; Baumann, R.; Schlager, H.

    2014-07-01

    A perfluorocarbon tracer system (PERTRAS), specifically designed for Lagrangian aircraft experiments, has been developed by the Deutsches Zentrum für Luft- und Raumfahrt (German Aerospace Center, DLR). It consists of three main parts: a tracer release unit (RU), an adsorption tube sampler (ATS) and a tracer analytical system. The RU was designed for airborne tracer release experiments; meanwhile, it can be used on various platforms for different experimental purpose (here research vessel). PERTRAS was for the first time applied in the field campaign Stratospheric ozone: halogen Impacts in a Varying Atmosphere (SHIVA) in November 2011. An amount of 8.8 kg perfluoromethylcyclopentane (PMCP) was released aboard the research vessel Sonne (RV Sonne) near the operational site of this campaign, Miri, Malaysia, on 21 November. The tracer samples collected using the ATS on board the DLR research aircraft Falcon were analyzed in the laboratory using a thermal desorber/gas chromatography/mass spectrometry (TD/GC/MS) system. Guided by forecasts calculated with the Lagrangian model, Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT), 64 tracer samples were collected onboard the Falcon approximately 5 and 25 h after the release, respectively, mostly with a time resolution of 1 min. Enhanced PMCP concentrations relative to ambient PMCP background values (mean: 6.62 fmol mol-1) were detected during three intersects of the fresh tracer plume (age 5 h), with a maximum value of 301.33 fmol mol-1. This indicates that the fresh tracer plume was successfully intercepted at the forecasted position. During the second flight, 25 h after the release, the center of tracer plume was not detected by the sampling system due to a faster advection of the plume than forecasted. The newly developed PERTRAS system has been successfully deployed for the first time. The instrumental set-up and comparisons between the measurements and HYSPLIT simulations are presented in this study.

  15. Toward a proof of Montonen-Olive duality via multiple M2-branes

    NASA Astrophysics Data System (ADS)

    Hashimoto, Koji; Tai, Ta-Sheng; Terashima, Seiji

    2009-04-01

    We derive 4-dimensional Script N = 4 U(N) supersymmetric Yang-Mills theory from a 3-dimensional Chern-Simons-matter theory with product gauge group (U(N))2n. The latter describes M2-branes probing an orbifold where a torus emerges in a scaling limit. It is expected that the SL(2,Z) duality of the 4-dimensional Yang-Mills theory will be shown in M-theory point of view since it is trivially realized as modular transformations of the torus. Indeed, starting from one single Chern-Simons-matter theory, we find infinitely many equivalent 4-dimensional theories differing up to T-transformation of the SL(2,Z) redefinition of the gauge coupling τ = θ/2π + 4πi/g2 and a parity transformation in 4 dimensions. Although S-transformation can not be shown in our work, it is important that a part of the SL(2,Z) transformation is realized via the M2-brane action. Thus we think our work can be a step toward a proof of Montonen-Olive duality via M2-branes.

  16. Algebraic K-theory, K-regularity, and -duality of -stable C ∗-algebras

    NASA Astrophysics Data System (ADS)

    Mahanta, Snigdhayan

    2015-12-01

    We develop an algebraic formalism for topological -duality. More precisely, we show that topological -duality actually induces an isomorphism between noncommutative motives that in turn implements the well-known isomorphism between twisted K-theories (up to a shift). In order to establish this result we model topological K-theory by algebraic K-theory. We also construct an E ∞ -operad starting from any strongly self-absorbing C ∗-algebra . Then we show that there is a functorial topological K-theory symmetric spectrum construction on the category of separable C ∗-algebras, such that is an algebra over this operad; moreover, is a module over this algebra. Along the way we obtain a new symmetric spectra valued functorial model for the (connective) topological K-theory of C ∗-algebras. We also show that -stable C ∗-algebras are K-regular providing evidence for a conjecture of Rosenberg. We conclude with an explicit description of the algebraic K-theory of a x+ b-semigroup C ∗-algebras coming from number theory and that of -stabilized noncommutative tori.

  17. Exclusive QCD processes, quark-hadron duality, and the transition to perturbative QCD

    NASA Astrophysics Data System (ADS)

    Corianò, Claudio; Li, Hsiang-nan; Savkli, Cetin

    1998-07-01

    Experiments at CEBAF will scan the intermediate-energy region of the QCD dynamics for the nucleon form factors and for Compton Scattering. These experiments will definitely clarify the role of resummed perturbation theory and of quark-hadron duality (QCD sum rules) in this regime. With this perspective in mind, we review the factorization theorem of perturbative QCD for exclusive processes at intermediate energy scales, which embodies the transverse degrees of freedom of a parton and the Sudakov resummation of the corresponding large logarithms. We concentrate on the pion and proton electromagnetic form factors and on pion Compton scattering. New ingredients, such as the evolution of the pion wave function and the complete two-loop expression of the Sudakov factor, are included. The sensitivity of our predictions to the infrared cutoff for the Sudakov evolution is discussed. We also elaborate on QCD sum rule methods for Compton Scattering, which provide an alternative description of this process. We show that, by comparing the local duality analysis to resummed perturbation theory, it is possible to describe the transition of exclusive processes to perturbative QCD.

  18. Mean Lagrangian drift in continental shelf waves

    NASA Astrophysics Data System (ADS)

    Drivdal, M.; Weber, J. E. H.

    2012-04-01

    The time- and depth-averaged mean drift induced by barotropic continental shelf waves (CSW's) is studied theoretically for idealized shelf topography by calculating the mean volume fluxes to second order in wave amplitude. The waves suffer weak spatial damping due to bottom friction, which leads to radiation stress forcing of the mean fluxes. In terms of the total wave energy density E¯ over the shelf region, the radiation stress tensor component S¯11 for CSW's is found to be different from that of shallow water surface waves in a non-rotating ocean. For CSW's, the ratio ¯S11/¯E depends strongly on the wave number. The mean Lagrangian flow forced by the radiation stress can be subdivided into a Stokes drift and a mean Eulerian drift current. The magnitude of the latter depends on the ratio between the radiation stress and the bottom stress acting on the mean flow. When the effect of bottom friction acts equally strong on the waves and the mean current, calculations for short CSW's show that the Stokes drift and the friction-dependent wave-induced mean Eulerian current varies approximately in anti-phase over the shelf, and that the latter is numerically the largest. For long CSW's they are approximately in phase. In both cases the mean Lagrangian current, which is responsible for the net particle drift, has its largest numerical value at the coast on the shallow part of the shelf. Enhancing the effect of bottom friction on the Eulerian mean flow, results in a general current speed reduction, as well as a change in spatial structure for long waves. Applying realistic physical parameters for the continental shelf west of Norway, calculations yield along-shelf mean drift velocities for short CSW's that may be important for the transport of biological material, neutral tracers, and underwater plumes of dissolved oil from deep water drilling accidents.

  19. Sea Fog Forecasting with Lagrangian Models

    NASA Astrophysics Data System (ADS)

    Lewis, J. M.

    2014-12-01

    In 1913, G. I. Taylor introduced us to a Lagrangian view of sea fog formation. He conducted his study off the coast of Newfoundland in the aftermath of the Titanic disaster. We briefly review Taylor's classic work and then apply these same principles to a case of sea fog formation and dissipation off the coast of California. The resources used in this study consist of: 1) land-based surface and upper-air observations, 2) NDBC (National Data Buoy Center) observations from moored buoys equipped to measure dew point temperature as well as the standard surface observations at sea (wind, sea surface temperature, pressure, and air temperature), 3) satellite observations of cloud, and 4) a one-dimensional (vertically directed) boundary layer model that tracks with the surface air motion and makes use of sophisticated turbulence-radiation parameterizations. Results of the investigation indicate that delicate interplay and interaction between the radiation and turbulence processes makes accurate forecasts of sea fog onset unlikely in the near future. This pessimistic attitude stems from inadequacy of the existing network of observations and uncertainties in modeling dynamical processes within the boundary layer.

  20. Cooperative Convex Optimization in Networked Systems: Augmented Lagrangian Algorithms With Directed Gossip Communication

    NASA Astrophysics Data System (ADS)

    Jakovetic, Dusan; Xavier, João; Moura, José M. F.

    2011-08-01

    We study distributed optimization in networked systems, where nodes cooperate to find the optimal quantity of common interest, x=x^\\star. The objective function of the corresponding optimization problem is the sum of private (known only by a node,) convex, nodes' objectives and each node imposes a private convex constraint on the allowed values of x. We solve this problem for generic connected network topologies with asymmetric random link failures with a novel distributed, decentralized algorithm. We refer to this algorithm as AL-G (augmented Lagrangian gossiping,) and to its variants as AL-MG (augmented Lagrangian multi neighbor gossiping) and AL-BG (augmented Lagrangian broadcast gossiping.) The AL-G algorithm is based on the augmented Lagrangian dual function. Dual variables are updated by the standard method of multipliers, at a slow time scale. To update the primal variables, we propose a novel, Gauss-Seidel type, randomized algorithm, at a fast time scale. AL-G uses unidirectional gossip communication, only between immediate neighbors in the network and is resilient to random link failures. For networks with reliable communication (i.e., no failures,) the simplified, AL-BG (augmented Lagrangian broadcast gossiping) algorithm reduces communication, computation and data storage cost. We prove convergence for all proposed algorithms and demonstrate by simulations the effectiveness on two applications: l_1-regularized logistic regression for classification and cooperative spectrum sensing for cognitive radio networks.

  1. Lagrangian formulation of irreversible thermodynamics and the second law of thermodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glavatskiy, K. S.

    We show that the equations which describe irreversible evolution of a system can be derived from a variational principle. We suggest a Lagrangian, which depends on the properties of the normal and the so-called “mirror-image” system. The Lagrangian is symmetric in time and therefore compatible with microscopic reversibility. The evolution equations in the normal and mirror-imaged systems are decoupled and describe therefore independent irreversible evolution of each of the systems. The second law of thermodynamics follows from a symmetry of the Lagrangian. Entropy increase in the normal system is balanced by the entropy decrease in the mirror-image system, such thatmore » there exists an “integral of evolution” which is a constant. The derivation relies on the property of local equilibrium, which states that the local relations between the thermodynamic quantities in non-equilibrium are the same as in equilibrium.« less

  2. Lagrangian space consistency relation for large scale structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horn, Bart; Hui, Lam; Xiao, Xiao

    Consistency relations, which relate the squeezed limit of an (N+1)-point correlation function to an N-point function, are non-perturbative symmetry statements that hold even if the associated high momentum modes are deep in the nonlinear regime and astrophysically complex. Recently, Kehagias & Riotto and Peloso & Pietroni discovered a consistency relation applicable to large scale structure. We show that this can be recast into a simple physical statement in Lagrangian space: that the squeezed correlation function (suitably normalized) vanishes. This holds regardless of whether the correlation observables are at the same time or not, and regardless of whether multiple-streaming is present.more » Furthermore, the simplicity of this statement suggests that an analytic understanding of large scale structure in the nonlinear regime may be particularly promising in Lagrangian space.« less

  3. Lagrangian space consistency relation for large scale structure

    DOE PAGES

    Horn, Bart; Hui, Lam; Xiao, Xiao

    2015-09-29

    Consistency relations, which relate the squeezed limit of an (N+1)-point correlation function to an N-point function, are non-perturbative symmetry statements that hold even if the associated high momentum modes are deep in the nonlinear regime and astrophysically complex. Recently, Kehagias & Riotto and Peloso & Pietroni discovered a consistency relation applicable to large scale structure. We show that this can be recast into a simple physical statement in Lagrangian space: that the squeezed correlation function (suitably normalized) vanishes. This holds regardless of whether the correlation observables are at the same time or not, and regardless of whether multiple-streaming is present.more » Furthermore, the simplicity of this statement suggests that an analytic understanding of large scale structure in the nonlinear regime may be particularly promising in Lagrangian space.« less

  4. Non-Abelian Yang-Mills analogue of classical electromagnetic duality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, Hong-Mo; Faridani, J.; Tsun, T.S.

    The classic question of non-Abelian Yang-Mills analogue to electromagnetic duality is examined here in a minimalist fashion at the strictly four-dimensional, classical field, and point charge level. A generalization of the Abelian Hodge star duality is found which, though not yet known to give dual symmetry, reproduces analogues to many dual properties of the Abelian theory. For example, there is a dual potential, but it is a two-indexed tensor {ital T}{sub {mu}{nu}} of the Freedman-Townsend-type. Though not itself functioning as such, {ital T}{sub {mu}{nu}} gives rise to a dual parallel transport {ital {tilde A}}{sub {mu}} for the phase of themore » wave function of the color magnetic charge, this last being a monopole of the Yang-Mills field but a source of the dual field. The standard color (electric) charge itself is found to be a monpole of {ital {tilde A}}{sub {mu}}. At the same time, the gauge symmetry is found doubled from say SU({ital N}) to SU({ital N}){times}SU({ital N}). A novel feature is that all equations of motion, including the standard Yang-Mills and Wong equations, are here derived from a ``universal`` principle, namely, the Wu-Yang criterion for monpoles, where interactions arise purely as a consequence of the topological definition of the monopole charge. The technique used is the loop space formulation of Polyakov.« less

  5. Lagrangian flows within reflecting internal waves at a horizontal free-slip surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Qi, E-mail: q.zhou@damtp.cam.ac.uk; Diamessis, Peter J.

    In this paper sequel to Zhou and Diamessis [“Reflection of an internal gravity wave beam off a horizontal free-slip surface,” Phys. Fluids 25, 036601 (2013)], we consider Lagrangian flows within nonlinear internal waves (IWs) reflecting off a horizontal free-slip rigid lid, the latter being a model of the ocean surface. The problem is approached both analytically using small-amplitude approximations and numerically by tracking Lagrangian fluid particles in direct numerical simulation (DNS) datasets of the Eulerian flow. Inviscid small-amplitude analyses for both plane IWs and IW beams (IWBs) show that Eulerian mean flow due to wave-wave interaction and wave-induced Stokes driftmore » cancels each other out completely at the second order in wave steepness A, i.e., O(A{sup 2}), implying zero Lagrangian mean flow up to that order. However, high-accuracy particle tracking in finite-Reynolds-number fully nonlinear DNS datasets from the work of Zhou and Diamessis suggests that the Euler-Stokes cancelation on O(A{sup 2}) is not complete. This partial cancelation significantly weakens the mean Lagrangian flows but does not entirely eliminate them. As a result, reflecting nonlinear IWBs produce mean Lagrangian drifts on O(A{sup 2}) and thus particle dispersion on O(A{sup 4}). The above findings can be relevant to predicting IW-driven mass transport in the oceanic surface and subsurface region which bears important observational and environmental implications, under circumstances where the effect of Earth rotation can be ignored.« less

  6. A Combined Eulerian-Lagrangian Data Representation for Large-Scale Applications.

    PubMed

    Sauer, Franz; Xie, Jinrong; Ma, Kwan-Liu

    2017-10-01

    The Eulerian and Lagrangian reference frames each provide a unique perspective when studying and visualizing results from scientific systems. As a result, many large-scale simulations produce data in both formats, and analysis tasks that simultaneously utilize information from both representations are becoming increasingly popular. However, due to their fundamentally different nature, drawing correlations between these data formats is a computationally difficult task, especially in a large-scale setting. In this work, we present a new data representation which combines both reference frames into a joint Eulerian-Lagrangian format. By reorganizing Lagrangian information according to the Eulerian simulation grid into a "unit cell" based approach, we can provide an efficient out-of-core means of sampling, querying, and operating with both representations simultaneously. We also extend this design to generate multi-resolution subsets of the full data to suit the viewer's needs and provide a fast flow-aware trajectory construction scheme. We demonstrate the effectiveness of our method using three large-scale real world scientific datasets and provide insight into the types of performance gains that can be achieved.

  7. Lagrangian geometrical optics of nonadiabatic vector waves and spin particles

    DOE PAGES

    Ruiz, D. E.; Dodin, I. Y.

    2015-07-29

    Linear vector waves, both quantum and classical, experience polarization-driven bending of ray trajectories and polarization dynamics that can be interpreted as the precession of the "wave spin". Here, both phenomena are governed by an effective gauge Hamiltonian vanishing in leading-order geometrical optics. This gauge Hamiltonian can be recognized as a generalization of the Stern-Gerlach Hamiltonian that is commonly known for spin-1/2 quantum particles. The corresponding reduced Lagrangians for continuous nondissipative waves and their geometrical-optics rays are derived from the fundamental wave Lagrangian. The resulting Euler-Lagrange equations can describe simultaneous interactions of N resonant modes, where N is arbitrary, and leadmore » to equations for the wave spin, which happens to be an (N 2 - 1)-dimensional spin vector. As a special case, classical equations for a Dirac particle (N = 2) are deduced formally, without introducing additional postulates or interpretations, from the Dirac quantum Lagrangian with the Pauli term. The model reproduces the Bargmann-Michel-Telegdi equations with added Stern-Gerlach force.« less

  8. Examination of Eulerian and Lagrangian Coordinate Systems.

    ERIC Educational Resources Information Center

    Remillard, Wilfred J.

    1978-01-01

    Studies the relationship between Eulerian and Lagrangian coordinate systems with the help of computer plots of variables such as density and particle displacement. Gives examples which illustrate the differences in the shape of a traveling wave as seen by observers in the two systems. (Author/GA)

  9. Eulerian-Lagrangian Simulations of Transonic Flutter Instabilities

    NASA Technical Reports Server (NTRS)

    Bendiksen, Oddvar O.

    1994-01-01

    This paper presents an overview of recent applications of Eulerian-Lagrangian computational schemes in simulating transonic flutter instabilities. This approach, the fluid-structure system is treated as a single continuum dynamics problem, by switching from an Eulerian to a Lagrangian formulation at the fluid-structure boundary. This computational approach effectively eliminates the phase integration errors associated with previous methods, where the fluid and structure are integrated sequentially using different schemes. The formulation is based on Hamilton's Principle in mixed coordinates, and both finite volume and finite element discretization schemes are considered. Results from numerical simulations of transonic flutter instabilities are presented for isolated wings, thin panels, and turbomachinery blades. The results suggest that the method is capable of reproducing the energy exchange between the fluid and the structure with significantly less error than existing methods. Localized flutter modes and panel flutter modes involving traveling waves can also be simulated effectively with no a priori knowledge of the type of instability involved.

  10. Statistical scaling of pore-scale Lagrangian velocities in natural porous media.

    PubMed

    Siena, M; Guadagnini, A; Riva, M; Bijeljic, B; Pereira Nunes, J P; Blunt, M J

    2014-08-01

    We investigate the scaling behavior of sample statistics of pore-scale Lagrangian velocities in two different rock samples, Bentheimer sandstone and Estaillades limestone. The samples are imaged using x-ray computer tomography with micron-scale resolution. The scaling analysis relies on the study of the way qth-order sample structure functions (statistical moments of order q of absolute increments) of Lagrangian velocities depend on separation distances, or lags, traveled along the mean flow direction. In the sandstone block, sample structure functions of all orders exhibit a power-law scaling within a clearly identifiable intermediate range of lags. Sample structure functions associated with the limestone block display two diverse power-law regimes, which we infer to be related to two overlapping spatially correlated structures. In both rocks and for all orders q, we observe linear relationships between logarithmic structure functions of successive orders at all lags (a phenomenon that is typically known as extended power scaling, or extended self-similarity). The scaling behavior of Lagrangian velocities is compared with the one exhibited by porosity and specific surface area, which constitute two key pore-scale geometric observables. The statistical scaling of the local velocity field reflects the behavior of these geometric observables, with the occurrence of power-law-scaling regimes within the same range of lags for sample structure functions of Lagrangian velocity, porosity, and specific surface area.

  11. Transport induced by mean-eddy interaction: I. Theory, and relation to Lagrangian lobe dynamics

    NASA Astrophysics Data System (ADS)

    Ide, Kayo; Wiggins, Stephen

    2015-02-01

    In this paper we develop a method for the estimation of Transport Induced by the Mean-Eddy interaction (TIME) in two-dimensional unsteady flows. The method is based on the dynamical systems approach to fluid transport and can be viewed as a hybrid combination of Lagrangian and Eulerian methods. The (Eulerian) boundaries across which we consider (Lagrangian) transport are kinematically defined by appropriately chosen streamlines of the mean flow. By evaluating the impact of the mean-eddy interaction on transport, the TIME method can be used as a diagnostic tool for transport processes that occur during a specified time interval along a specified boundary segment. We introduce two types of TIME functions: one that quantifies the accumulation of flow properties and another that measures the displacement of the transport geometry. The spatial geometry of transport is described by the so-called pseudo-lobes, and temporal evolution of transport by their dynamics. In the case where the TIME functions are evaluated along a separatrix, the pseudo-lobes have a relationship to the lobes of Lagrangian transport theory. In fact, one of the TIME functions is identical to the Melnikov function that is used to measure the distance, at leading order in a small parameter, between the two invariant manifolds that define the Lagrangian lobes. We contrast the similarities and differences between the TIME and Lagrangian lobe dynamics in detail. An application of the TIME method is carried out for inter-gyre transport in the wind-driven oceanic circulation model and a comparison with the Lagrangian transport theory is made.

  12. Higher-Order Advection-Based Remap of Magnetic Fields in an Arbitrary Lagrangian-Eulerian Code

    NASA Astrophysics Data System (ADS)

    Cornille, Brian; White, Dan

    2017-10-01

    We will present methods formulated for the Eulerian advection stage of an arbitrary Lagrangian-Eulerian code for the new addition of magnetohydrodynamic (MHD) effects. The various physical fields are advanced in time using a Lagrangian formulation of the system. When this Lagrangian motion produces substantial distortion of the mesh, it can be difficult or impossible to progress the simulation forward. This is overcome by relaxation of the mesh while the physical fields are frozen. The code has already successfully been extended to include evolution of magnetic field diffusion during the Lagrangian motion stage. This magnetic field is discretized using an H(div) compatible finite element basis. The advantage of this basis is that the divergence-free constraint of magnetic fields is maintained exactly during the Lagrangian motion evolution. Our goal is to preserve this property during Eulerian advection as well. We will demonstrate this property and the importance of MHD effects in several numerical experiments. In pulsed-power experiments magnetic fields may be imposed or spontaneously generated. When these magnetic fields are present, the evolution of the experiment may differ from a comparable configuration without magnetic fields. Prepared by LLNL under Contract DE-AC52-07NA27344. Supported by DOE CSGF under Grant Number DE-FG02-97ER25308.

  13. Matter Lagrangian of particles and fluids

    NASA Astrophysics Data System (ADS)

    Avelino, P. P.; Sousa, L.

    2018-03-01

    We consider a model where particles are described as localized concentrations of energy, with fixed rest mass and structure, which are not significantly affected by their self-induced gravitational field. We show that the volume average of the on-shell matter Lagrangian Lm describing such particles, in the proper frame, is equal to the volume average of the trace T of the energy-momentum tensor in the same frame, independently of the particle's structure and constitution. Since both Lm and T are scalars, and thus independent of the reference frame, this result is also applicable to collections of moving particles and, in particular, to those which can be described by a perfect fluid. Our results are expected to be particularly relevant in the case of modified theories of gravity with nonminimal coupling to matter where the matter Lagrangian appears explicitly in the equations of motion of the gravitational and matter fields, such as f (R ,Lm) and f (R ,T ) gravity. In particular, they indicate that, in this context, f (R ,Lm) theories may be regarded as a subclass of f (R ,T ) gravity.

  14. Lagrangian statistics in weakly forced two-dimensional turbulence.

    PubMed

    Rivera, Michael K; Ecke, Robert E

    2016-01-01

    Measurements of Lagrangian single-point and multiple-point statistics in a quasi-two-dimensional stratified layer system are reported. The system consists of a layer of salt water over an immiscible layer of Fluorinert and is forced electromagnetically so that mean-squared vorticity is injected at a well-defined spatial scale ri. Simultaneous cascades develop in which enstrophy flows predominately to small scales whereas energy cascades, on average, to larger scales. Lagrangian correlations and one- and two-point displacements are measured for random initial conditions and for initial positions within topological centers and saddles. Some of the behavior of these quantities can be understood in terms of the trapping characteristics of long-lived centers, the slow motion near strong saddles, and the rapid fluctuations outside of either centers or saddles. We also present statistics of Lagrangian velocity fluctuations using energy spectra in frequency space and structure functions in real space. We compare with complementary Eulerian velocity statistics. We find that simultaneous inverse energy and enstrophy ranges present in spectra are not directly echoed in real-space moments of velocity difference. Nevertheless, the spectral ranges line up well with features of moment ratios, indicating that although the moments are not exhibiting unambiguous scaling, the behavior of the probability distribution functions is changing over short ranges of length scales. Implications for understanding weakly forced 2D turbulence with simultaneous inverse and direct cascades are discussed.

  15. Lagrangian statistics in weakly forced two-dimensional turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rivera, Michael K.; Ecke, Robert E.

    Measurements of Lagrangian single-point and multiple-point statistics in a quasi-two-dimensional stratified layer system are reported. The system consists of a layer of salt water over an immiscible layer of Fluorinert and is forced electromagnetically so that mean-squared vorticity is injected at a well-defined spatial scale r i. Simultaneous cascades develop in which enstrophy flows predominately to small scales whereas energy cascades, on average, to larger scales. Lagrangian correlations and one- and two-point displacements are measured for random initial conditions and for initial positions within topological centers and saddles. Some of the behavior of these quantities can be understood in termsmore » of the trapping characteristics of long-lived centers, the slow motion near strong saddles, and the rapid fluctuations outside of either centers or saddles. We also present statistics of Lagrangian velocity fluctuations using energy spectra in frequency space and structure functions in real space. We compare with complementary Eulerian velocity statistics. We find that simultaneous inverse energy and enstrophy ranges present in spectra are not directly echoed in real-space moments of velocity difference. Nevertheless, the spectral ranges line up well with features of moment ratios, indicating that although the moments are not exhibiting unambiguous scaling, the behavior of the probability distribution functions is changing over short ranges of length scales. Furthermore, implications for understanding weakly forced 2D turbulence with simultaneous inverse and direct cascades are discussed.« less

  16. Network-based study of Lagrangian transport and mixing

    NASA Astrophysics Data System (ADS)

    Padberg-Gehle, Kathrin; Schneide, Christiane

    2017-10-01

    Transport and mixing processes in fluid flows are crucially influenced by coherent structures and the characterization of these Lagrangian objects is a topic of intense current research. While established mathematical approaches such as variational methods or transfer-operator-based schemes require full knowledge of the flow field or at least high-resolution trajectory data, this information may not be available in applications. Recently, different computational methods have been proposed to identify coherent behavior in flows directly from Lagrangian trajectory data, that is, numerical or measured time series of particle positions in a fluid flow. In this context, spatio-temporal clustering algorithms have been proven to be very effective for the extraction of coherent sets from sparse and possibly incomplete trajectory data. Inspired by these recent approaches, we consider an unweighted, undirected network, where Lagrangian particle trajectories serve as network nodes. A link is established between two nodes if the respective trajectories come close to each other at least once in the course of time. Classical graph concepts are then employed to analyze the resulting network. In particular, local network measures such as the node degree, the average degree of neighboring nodes, and the clustering coefficient serve as indicators of highly mixing regions, whereas spectral graph partitioning schemes allow us to extract coherent sets. The proposed methodology is very fast to run and we demonstrate its applicability in two geophysical flows - the Bickley jet as well as the Antarctic stratospheric polar vortex.

  17. Lagrangian statistics in weakly forced two-dimensional turbulence

    DOE PAGES

    Rivera, Michael K.; Ecke, Robert E.

    2016-01-14

    Measurements of Lagrangian single-point and multiple-point statistics in a quasi-two-dimensional stratified layer system are reported. The system consists of a layer of salt water over an immiscible layer of Fluorinert and is forced electromagnetically so that mean-squared vorticity is injected at a well-defined spatial scale r i. Simultaneous cascades develop in which enstrophy flows predominately to small scales whereas energy cascades, on average, to larger scales. Lagrangian correlations and one- and two-point displacements are measured for random initial conditions and for initial positions within topological centers and saddles. Some of the behavior of these quantities can be understood in termsmore » of the trapping characteristics of long-lived centers, the slow motion near strong saddles, and the rapid fluctuations outside of either centers or saddles. We also present statistics of Lagrangian velocity fluctuations using energy spectra in frequency space and structure functions in real space. We compare with complementary Eulerian velocity statistics. We find that simultaneous inverse energy and enstrophy ranges present in spectra are not directly echoed in real-space moments of velocity difference. Nevertheless, the spectral ranges line up well with features of moment ratios, indicating that although the moments are not exhibiting unambiguous scaling, the behavior of the probability distribution functions is changing over short ranges of length scales. Furthermore, implications for understanding weakly forced 2D turbulence with simultaneous inverse and direct cascades are discussed.« less

  18. Infinitely many {N}=1 dualities from m + 1 - m = 1

    NASA Astrophysics Data System (ADS)

    Agarwal, Prarit; Intriligator, Kenneth; Song, Jaewon

    2015-10-01

    We discuss two infinite classes of 4d supersymmetric theories, T N ( m) and {U}_N^{(m)} , labelled by an arbitrary non-negative integer, m. The T N ( m) theory arises from the 6d, A N - 1 type N=(2,0) theory reduced on a 3-punctured sphere, with normal bundle given by line bundles of degree ( m + 1 , - m); the m = 0 case is the N=2 supersymmetric T N theory. The novelty is the negative-degree line bundle. The {U}_N^{(m)} theories likewise arise from the 6d N=(2,0) theory on a 4-punctured sphere, and can be regarded as gluing together two (partially Higgsed) T N ( m) theories. The T N ( m) and {U}_N^{(m)} theories can be represented, in various duality frames, as quiver gauge theories, built from T N components via gauging and nilpotent Higgsing. We analyze the RG flow of the {U}_N^{(m)} theories, and find that, for all integer m > 0, they end up at the same IR SCFT as SU( N) SQCD with 2 N flavors and quartic superpotential. The {U}_N^{(m)} theories can thus be regarded as an infinite set of UV completions, dual to SQCD with N f = 2 N c . The {U}_N^{(m)} duals have different duality frame quiver representations, with 2 m + 1 gauge nodes.

  19. Discrete symmetries in Heterotic/F-theory duality and mirror symmetry

    DOE PAGES

    Cvetič, Mirjam; Grassi, Antonella; Poretschkin, Maximilian

    2017-06-30

    We study aspects of Heterotic/F-theory duality for compacti cations with Abelian discrete gauge symmetries. We consider F-theory compacti cations on genus-one bered Calabi-Yau manifolds with n-sections, associated with the Tate-Shafarevich group Z n. Such models are obtained by studying rst a speci c toric set-up whose associated Heterotic vector bundle has structure group Z n. By employing a conjectured Heterotic/Ftheory mirror symmetry we construct dual geometries of these original toric models, where in the stable degeneration limit we obtain a discrete gauge symmetry of order two and three, for compacti cations to six dimensions. We provide explicit constructions of mirrorpairsmore » for symmetric examples with Z 2 and Z 3, in six dimensions. The Heterotic models with symmetric discrete symmetries are related in eld theory to a Higgsing of Heterotic models with two symmetric abelian U(1) gauge factors, where due to the Stuckelberg mechanism only a diagonal U(1) factor remains massless, and thus after Higgsing only a diagonal discrete symmetry of order n is present in the Heterotic models and detected via Heterotic/F-theory duality. These constructions also provide further evidence for the conjectured mirror symmetry in Heterotic/F-theory at the level of brations with torsional sections and those with multi-sections.« less

  20. Discrete symmetries in Heterotic/F-theory duality and mirror symmetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cvetič, Mirjam; Grassi, Antonella; Poretschkin, Maximilian

    We study aspects of Heterotic/F-theory duality for compacti cations with Abelian discrete gauge symmetries. We consider F-theory compacti cations on genus-one bered Calabi-Yau manifolds with n-sections, associated with the Tate-Shafarevich group Z n. Such models are obtained by studying rst a speci c toric set-up whose associated Heterotic vector bundle has structure group Z n. By employing a conjectured Heterotic/Ftheory mirror symmetry we construct dual geometries of these original toric models, where in the stable degeneration limit we obtain a discrete gauge symmetry of order two and three, for compacti cations to six dimensions. We provide explicit constructions of mirrorpairsmore » for symmetric examples with Z 2 and Z 3, in six dimensions. The Heterotic models with symmetric discrete symmetries are related in eld theory to a Higgsing of Heterotic models with two symmetric abelian U(1) gauge factors, where due to the Stuckelberg mechanism only a diagonal U(1) factor remains massless, and thus after Higgsing only a diagonal discrete symmetry of order n is present in the Heterotic models and detected via Heterotic/F-theory duality. These constructions also provide further evidence for the conjectured mirror symmetry in Heterotic/F-theory at the level of brations with torsional sections and those with multi-sections.« less

  1. An Algebraic Construction of Duality Functions for the Stochastic {U_q( A_n^{(1)})} Vertex Model and Its Degenerations

    NASA Astrophysics Data System (ADS)

    Kuan, Jeffrey

    2018-03-01

    A recent paper (Kuniba in Nucl Phys B 913:248-277, 2016) introduced the stochastic U}_q(A_n^{(1)})} vertex model. The stochastic S-matrix is related to the R-matrix of the quantum group {U_q(A_n^{(1)})} by a gauge transformation. We will show that a certain function {D^+_{m intertwines with the transfer matrix and its space reversal. When interpreting the transfer matrix as the transition matrix of a discrete-time totally asymmetric particle system on the one-dimensional lattice Z , the function {D^+m} becomes a Markov duality function {Dm} which only depends on q and the vertical spin parameters μ_x. By considering degenerations in the spectral parameter, the duality results also hold on a finite lattice with closed boundary conditions, and for a continuous-time degeneration. This duality function had previously appeared in a multi-species ASEP(q, j) process (Kuan in A multi-species ASEP(q, j) and q-TAZRP with stochastic duality, 2017). The proof here uses that the R-matrix intertwines with the co-product, but does not explicitly use the Yang-Baxter equation. It will also be shown that the stochastic U}_q(A_n^{(1)})} is a multi-species version of a stochastic vertex model studied in Borodin and Petrov (Higher spin six vertex model and symmetric rational functions, 2016) and Corwin and Petrov (Commun Math Phys 343:651-700, 2016). This will be done by generalizing the fusion process of Corwin and Petrov (2016) and showing that it matches the fusion of Kulish and yu (Lett Math Phys 5:393-403, 1981) up to the gauge transformation. We also show, by direct computation, that the multi-species q-Hahn Boson process (which arises at a special value of the spectral parameter) also satisfies duality with respect to D_∞, generalizing the single-species result of Corwin (Int Math Res Not 2015:5577-5603, 2015).

  2. Lagrangian formulation and symmetrical description of liquid dynamics.

    PubMed

    Trachenko, K

    2017-12-01

    Theoretical description of liquids has been primarily based on the hydrodynamic approach and its generalization to the solid-like regime. We show that the same liquid properties can be derived starting from solid-like equations and generalizing them to account for the hydrodynamic flow. Both approaches predict propagating shear waves with the notable gap in k-space. This gives an important symmetry of liquids regarding their description. We subsequently construct a two-field Lagrangian of liquid dynamics where the dissipative hydrodynamic and solid-like terms are treated on equal footing. The Lagrangian predicts two gapped waves propagating in opposite space-time directions. The dissipative and mass terms compete by promoting gaps in k-space and energy, respectively. When bare mass is close to the field hopping frequency, both gaps close and the dissipative term annihilates the bare mass.

  3. Lagrangian space consistency relation for large scale structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horn, Bart; Hui, Lam; Xiao, Xiao, E-mail: bh2478@columbia.edu, E-mail: lh399@columbia.edu, E-mail: xx2146@columbia.edu

    Consistency relations, which relate the squeezed limit of an (N+1)-point correlation function to an N-point function, are non-perturbative symmetry statements that hold even if the associated high momentum modes are deep in the nonlinear regime and astrophysically complex. Recently, Kehagias and Riotto and Peloso and Pietroni discovered a consistency relation applicable to large scale structure. We show that this can be recast into a simple physical statement in Lagrangian space: that the squeezed correlation function (suitably normalized) vanishes. This holds regardless of whether the correlation observables are at the same time or not, and regardless of whether multiple-streaming is present.more » The simplicity of this statement suggests that an analytic understanding of large scale structure in the nonlinear regime may be particularly promising in Lagrangian space.« less

  4. Lagrangian formulation and symmetrical description of liquid dynamics

    NASA Astrophysics Data System (ADS)

    Trachenko, K.

    2017-12-01

    Theoretical description of liquids has been primarily based on the hydrodynamic approach and its generalization to the solid-like regime. We show that the same liquid properties can be derived starting from solid-like equations and generalizing them to account for the hydrodynamic flow. Both approaches predict propagating shear waves with the notable gap in k -space. This gives an important symmetry of liquids regarding their description. We subsequently construct a two-field Lagrangian of liquid dynamics where the dissipative hydrodynamic and solid-like terms are treated on equal footing. The Lagrangian predicts two gapped waves propagating in opposite space-time directions. The dissipative and mass terms compete by promoting gaps in k -space and energy, respectively. When bare mass is close to the field hopping frequency, both gaps close and the dissipative term annihilates the bare mass.

  5. Symmetry and Degeneracy in Quantum Mechanics. Self-Duality in Finite Spin Systems

    ERIC Educational Resources Information Center

    Osacar, C.; Pacheco, A. F.

    2009-01-01

    The symmetry of self-duality (Savit 1980 "Rev. Mod. Phys. 52" 453) of some models of statistical mechanics and quantum field theory is discussed for finite spin blocks of the Ising chain in a transverse magnetic field. The existence of this symmetry in a specific type of these blocks, and not in others, is manifest by the degeneracy of their…

  6. Establishing Lagrangian Connections between Observations within Air Masses Crossing the Atlantic during the ICARTT Experiment

    NASA Technical Reports Server (NTRS)

    Methven, J.; Arnold, S. R.; Stohl, A.; Evans, M. J.; Avery, M.; Law, K.; Lewis, A. C.; Monks, P. S.; Parrish, D.; Reeves, C.; hide

    2006-01-01

    The International Consortium for Atmospheric Research on Transport and Transformation (ICARTT)-Lagrangian experiment was conceived with an aim to quantify the effects of photochemistry and mixing on the transformation of air masses in the free troposphere away from emissions. To this end attempts were made to intercept and sample air masses several times during their journey across the North Atlantic using four aircraft based in New Hampshire (USA), Faial (Azores) and Creil (France). This article begins by describing forecasts using two Lagrangian models that were used to direct the aircraft into target air masses. A novel technique is then used to identify Lagrangian matches between flight segments. Two independent searches are conducted: for Lagrangian model matches and for pairs of whole air samples with matching hydrocarbon fingerprints. The information is filtered further by searching for matching hydrocarbon samples that are linked by matching trajectories. The quality of these coincident matches is assessed using temperature, humidity and tracer observations. The technique pulls out five clear Lagrangian cases covering a variety of situations and these are examined in detail. The matching trajectories and hydrocarbon fingerprints are shown and the downwind minus upwind differences in tracers are discussed.

  7. Lagrangian fluid description with simple applications in compressible plasma and gas dynamics

    NASA Astrophysics Data System (ADS)

    Schamel, Hans

    2004-03-01

    The Lagrangian fluid description, in which the dynamics of fluids is formulated in terms of trajectories of fluid elements, not only presents an alternative to the more common Eulerian description but has its own merits and advantages. This aspect, which seems to be not fully explored yet, is getting increasing attention in fluid dynamics and related areas as Lagrangian codes and experimental techniques are developed utilizing the Lagrangian point of view with the ultimate goal of a deeper understanding of flow dynamics. In this tutorial review we report on recent progress made in the analysis of compressible, more or less perfect flows such as plasmas and dilute gases. The equations of motion are exploited to get further insight into the formation and evolution of coherent structures, which often exhibit a singular or collapse type behavior occurring in finite time. It is argued that this technique of solution has a broad applicability due to the simplicity and generality of equations used. The focus is on four different topics, the physics of which being governed by simple fluid equations subject to initial and/or boundary conditions. Whenever possible also experimental results are mentioned. In the expansion of a semi-infinite plasma into a vacuum the energetic ion peak propagating supersonically towards the vacuum-as seen in laboratory experiments-is interpreted by means of the Lagrangian fluid description as a relic of a wave breaking scenario of the corresponding inviscid ion dynamics. The inclusion of viscosity is shown numerically to stabilize the associated density collapse giving rise to a well defined fast ion peak reminiscent of adhesive matter. In purely convection driven flows the Lagrangian flow velocity is given by its initial value and hence the Lagrangian velocity gradient tensor can be evaluated accurately to find out the appearance of singularities in density and vorticity and the emergence of new structures such as wavelets in one-dimension (1D

  8. The duality of ocean acidification as a resource and a stressor.

    PubMed

    Connell, Sean D; Doubleday, Zoë A; Foster, Nicole R; Hamlyn, Sarah B; Harley, Christopher D G; Helmuth, Brian; Kelaher, Brendan P; Nagelkerken, Ivan; Rodgers, Kirsten L; Sarà, Gianluca; Russell, Bayden D

    2018-05-01

    Ecologically dominant species often define ecosystem states, but as human disturbances intensify, their subordinate counterparts increasingly displace them. We consider the duality of disturbance by examining how environmental drivers can simultaneously act as a stressor to dominant species and as a resource to subordinates. Using a model ecosystem, we demonstrate that CO 2 -driven interactions between species can account for such reversals in dominance; i.e., the displacement of dominants (kelp forests) by subordinates (turf algae). We established that CO 2 enrichment had a direct positive effect on productivity of turfs, but a negligible effect on kelp. CO 2 enrichment further suppressed the abundance and feeding rate of the primary grazer of turfs (sea urchins), but had an opposite effect on the minor grazer (gastropods). Thus, boosted production of subordinate producers, exacerbated by a net reduction in its consumption by primary grazers, accounts for community change (i.e., turf displacing kelp). Ecosystem collapse, therefore, is more likely when resource enrichment alters competitive dominance of producers, and consumers fail to compensate. By recognizing such duality in the responses of interacting species to disturbance, which may stabilize or exacerbate change, we can begin to understand how intensifying human disturbances determine whether or not ecosystems undergo phase shifts. © 2018 by the Ecological Society of America.

  9. Probing the cosmic distance duality relation using time delay lenses

    NASA Astrophysics Data System (ADS)

    Rana, Akshay; Jain, Deepak; Mahajan, Shobhit; Mukherjee, Amitabha; Holanda, R. F. L.

    2017-07-01

    The construction of the cosmic distance-duality relation (CDDR) has been widely studied. However, its consistency with various new observables remains a topic of interest. We present a new way to constrain the CDDR η(z) using different dynamic and geometric properties of strong gravitational lenses (SGL) along with SNe Ia observations. We use a sample of 102 SGL with the measurement of corresponding velocity dispersion σ0 and Einstein radius θE. In addition, we also use a dataset of 12 two image lensing systems containing the measure of time delay Δ t between source images. Jointly these two datasets give us the angular diameter distance DAol of the lens. Further, for luminosity distance, we use the 740 observations from JLA compilation of SNe Ia. To study the combined behavior of these datasets we use a model independent method, Gaussian Process (GP). We also check the efficiency of GP by applying it on simulated datasets, which are generated in a phenomenological way by using realistic cosmological error bars. Finally, we conclude that the combined bounds from the SGL and SNe Ia observation do not favor any deviation of CDDR and are in concordance with the standard value (η=1) within 2σ confidence region, which further strengthens the theoretical acceptance of CDDR.

  10. Quantitative flow analysis of swimming dynamics with coherent Lagrangian vortices.

    PubMed

    Huhn, F; van Rees, W M; Gazzola, M; Rossinelli, D; Haller, G; Koumoutsakos, P

    2015-08-01

    Undulatory swimmers flex their bodies to displace water, and in turn, the flow feeds back into the dynamics of the swimmer. At moderate Reynolds number, the resulting flow structures are characterized by unsteady separation and alternating vortices in the wake. We use the flow field from simulations of a two-dimensional, incompressible viscous flow of an undulatory, self-propelled swimmer and detect the coherent Lagrangian vortices in the wake to dissect the driving momentum transfer mechanisms. The detected material vortex boundary encloses a Lagrangian control volume that serves to track back the vortex fluid and record its circulation and momentum history. We consider two swimming modes: the C-start escape and steady anguilliform swimming. The backward advection of the coherent Lagrangian vortices elucidates the geometry of the vorticity field and allows for monitoring the gain and decay of circulation and momentum transfer in the flow field. For steady swimming, momentum oscillations of the fish can largely be attributed to the momentum exchange with the vortex fluid. For the C-start, an additionally defined jet fluid region turns out to balance the high momentum change of the fish during the rapid start.

  11. Extending geometrical optics: A Lagrangian theory for vector waves

    NASA Astrophysics Data System (ADS)

    Ruiz, D. E.

    2016-10-01

    Even diffraction aside, the commonly known equations of geometrical optics (GO) are not entirely accurate. GO considers wave rays as classical particles, which are completely described by their coordinates and momenta, but rays have another degree of freedom, namely, polarization. As a result, wave rays can behave as particles with spin. A well-known example of polarization dynamics is wave-mode conversion, which can be interpreted as rotation of the (classical) ``wave spin.'' However, there are other less-known manifestations of the wave spin, such as polarization precession and polarization-driven bending of ray trajectories. This talk presents recent advances in extending and reformulating GO as a first-principle Lagrangian theory, whose effective-gauge Hamiltonian governs both mentioned polarization phenomena simultaneously. Examples and numerical results are presented. When applied to classical waves, the theory correctly predicts the polarization-driven divergence of left- and right- polarized electromagnetic waves in isotropic media, such as dielectrics and nonmagnetized plasmas. In the case of particles with spin, the formalism also yields a point-particle Lagrangian model for the Dirac electron, i.e. the relativistic spin-1/2 electron, which includes both the Stern-Gerlach spin potential and the Bargmann-Michel-Telegdi spin precession. Additionally, the same theory contributes, perhaps unexpectedly, to the understanding of ponderomotive effects in both wave and particle dynamics; e.g., the formalism allows to obtain the ponderomotive Hamiltonian for a Dirac electron interacting with an arbitrarily large electromagnetic laser field with spin effects included. Supported by the NNSA SSAA Program through DOE Research Grant No. DE-NA0002948, by the U.S. DOE through Contract No. DE-AC02-09CH11466, and by the U.S. DOD NDSEG Fellowship through Contract No. 32-CFR-168a.

  12. Experimental design for drifting buoy Lagrangian test

    NASA Technical Reports Server (NTRS)

    Saunders, P. M.

    1975-01-01

    A test of instrumentation fabricated to measure the performance of a free drifting buoy as a (Lagrangian) current meter is described. Specifically it is proposed to distinguish between the trajectory of a drogued buoy and the trajectory of the water at the level of the drogue by measuring the flow relative to the drogue.

  13. Lagrangian particle method for compressible fluid dynamics

    NASA Astrophysics Data System (ADS)

    Samulyak, Roman; Wang, Xingyu; Chen, Hsin-Chiang

    2018-06-01

    A new Lagrangian particle method for solving Euler equations for compressible inviscid fluid or gas flows is proposed. Similar to smoothed particle hydrodynamics (SPH), the method represents fluid cells with Lagrangian particles and is suitable for the simulation of complex free surface/multiphase flows. The main contributions of our method, which is different from SPH in all other aspects, are (a) significant improvement of approximation of differential operators based on a polynomial fit via weighted least squares approximation and the convergence of prescribed order, (b) a second-order particle-based algorithm that reduces to the first-order upwind method at local extremal points, providing accuracy and long term stability, and (c) more accurate resolution of entropy discontinuities and states at free interfaces. While the method is consistent and convergent to a prescribed order, the conservation of momentum and energy is not exact and depends on the convergence order. The method is generalizable to coupled hyperbolic-elliptic systems. Numerical verification tests demonstrating the convergence order are presented as well as examples of complex multiphase flows.

  14. A duality theorem-based algorithm for inexact quadratic programming problems: Application to waste management under uncertainty

    NASA Astrophysics Data System (ADS)

    Kong, X. M.; Huang, G. H.; Fan, Y. R.; Li, Y. P.

    2016-04-01

    In this study, a duality theorem-based algorithm (DTA) for inexact quadratic programming (IQP) is developed for municipal solid waste (MSW) management under uncertainty. It improves upon the existing numerical solution method for IQP problems. The comparison between DTA and derivative algorithm (DAM) shows that the DTA method provides better solutions than DAM with lower computational complexity. It is not necessary to identify the uncertain relationship between the objective function and decision variables, which is required for the solution process of DAM. The developed method is applied to a case study of MSW management and planning. The results indicate that reasonable solutions have been generated for supporting long-term MSW management and planning. They could provide more information as well as enable managers to make better decisions to identify desired MSW management policies in association with minimized cost under uncertainty.

  15. Lagrangian Timescales of Southern Ocean Upwelling in a Hierarchy of Model Resolutions

    NASA Astrophysics Data System (ADS)

    Drake, Henri F.; Morrison, Adele K.; Griffies, Stephen M.; Sarmiento, Jorge L.; Weijer, Wilbert; Gray, Alison R.

    2018-01-01

    In this paper we study upwelling pathways and timescales of Circumpolar Deep Water (CDW) in a hierarchy of models using a Lagrangian particle tracking method. Lagrangian timescales of CDW upwelling decrease from 87 years to 31 years to 17 years as the ocean resolution is refined from 1° to 0.25° to 0.1°. We attribute some of the differences in timescale to the strength of the eddy fields, as demonstrated by temporally degrading high-resolution model velocity fields. Consistent with the timescale dependence, we find that an average Lagrangian particle completes 3.2 circumpolar loops in the 1° model in comparison to 0.9 loops in the 0.1° model. These differences suggest that advective timescales and thus interbasin merging of upwelling CDW may be overestimated by coarse-resolution models, potentially affecting the skill of centennial scale climate change projections.

  16. Renewable energy in electric utility capacity planning: a decomposition approach with application to a Mexican utility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Staschus, K.

    1985-01-01

    In this dissertation, efficient algorithms for electric-utility capacity expansion planning with renewable energy are developed. The algorithms include a deterministic phase that quickly finds a near-optimal expansion plan using derating and a linearized approximation to the time-dependent availability of nondispatchable energy sources. A probabilistic second phase needs comparatively few computer-time consuming probabilistic simulation iterations to modify this solution towards the optimal expansion plan. For the deterministic first phase, two algorithms, based on a Lagrangian Dual decomposition and a Generalized Benders Decomposition, are developed. The probabilistic second phase uses a Generalized Benders Decomposition approach. Extensive computational tests of the algorithms aremore » reported. Among the deterministic algorithms, the one based on Lagrangian Duality proves fastest. The two-phase approach is shown to save up to 80% in computing time as compared to a purely probabilistic algorithm. The algorithms are applied to determine the optimal expansion plan for the Tijuana-Mexicali subsystem of the Mexican electric utility system. A strong recommendation to push conservation programs in the desert city of Mexicali results from this implementation.« less

  17. Effective Lagrangians and Current Algebra in Three Dimensions

    NASA Astrophysics Data System (ADS)

    Ferretti, Gabriele

    In this thesis we study three dimensional field theories that arise as effective Lagrangians of quantum chromodynamics in Minkowski space with signature (2,1) (QCD3). In the first chapter, we explain the method of effective Langrangians and the relevance of current algebra techniques to field theory. We also provide the physical motivations for the study of QCD3 as a toy model for confinement and as a theory of quantum antiferromagnets (QAF). In chapter two, we derive the relevant effective Lagrangian by studying the low energy behavior of QCD3, paying particular attention to how the global symmetries are realized at the quantum level. In chapter three, we show how baryons arise as topological solitons of the effective Lagrangian and also show that their statistics depends on the number of colors as predicted by the quark model. We calculate mass splitting and magnetic moments of the soliton and find logarithmic corrections to the naive quark model predictions. In chapter four, we drive the current algebra of the theory. We find that the current algebra is a co -homologically non-trivial generalization of Kac-Moody algebras to three dimensions. This fact may provide a new, non -perturbative way to quantize the theory. In chapter five, we discuss the renormalizability of the model in the large-N expansion. We prove the validity of the non-renormalization theorem and compute the critical exponents in a specific limiting case, the CP^ {N-1} model with a Chern-Simons term. Finally, chapter six contains some brief concluding remarks.

  18. Structure of sheared and rotating turbulence: Multiscale statistics of Lagrangian and Eulerian accelerations and passive scalar dynamics.

    PubMed

    Jacobitz, Frank G; Schneider, Kai; Bos, Wouter J T; Farge, Marie

    2016-01-01

    The acceleration statistics of sheared and rotating homogeneous turbulence are studied using direct numerical simulation results. The statistical properties of Lagrangian and Eulerian accelerations are considered together with the influence of the rotation to shear ratio, as well as the scale dependence of their statistics. The probability density functions (pdfs) of both Lagrangian and Eulerian accelerations show a strong and similar dependence on the rotation to shear ratio. The variance and flatness of both accelerations are analyzed and the extreme values of the Eulerian acceleration are observed to be above those of the Lagrangian acceleration. For strong rotation it is observed that flatness yields values close to three, corresponding to Gaussian-like behavior, and for moderate and vanishing rotation the flatness increases. Furthermore, the Lagrangian and Eulerian accelerations are shown to be strongly correlated for strong rotation due to a reduced nonlinear term in this case. A wavelet-based scale-dependent analysis shows that the flatness of both Eulerian and Lagrangian accelerations increases as scale decreases, which provides evidence for intermittent behavior. For strong rotation the Eulerian acceleration is even more intermittent than the Lagrangian acceleration, while the opposite result is obtained for moderate rotation. Moreover, the dynamics of a passive scalar with gradient production in the direction of the mean velocity gradient is analyzed and the influence of the rotation to shear ratio is studied. Concerning the concentration of a passive scalar spread by the flow, the pdf of its Eulerian time rate of change presents higher extreme values than those of its Lagrangian time rate of change. This suggests that the Eulerian time rate of change of scalar concentration is mainly due to advection, while its Lagrangian counterpart is only due to gradient production and viscous dissipation.

  19. Renormalized Polyakov loop in the deconfined phase of SU(N) gauge theory and gauge-string duality.

    PubMed

    Andreev, Oleg

    2009-05-29

    We use gauge-string duality to analytically evaluate the renormalized Polyakov loop in pure Yang-Mills theories. For SU(3), the result is in quite good agreement with lattice simulations for a broad temperature range.

  20. Eulerian-Lagrangian solution of the convection-dispersion equation in natural coordinates

    USGS Publications Warehouse

    Cheng, Ralph T.; Casulli, Vincenzo; Milford, S. Nevil

    1984-01-01

    The vast majority of numerical investigations of transport phenomena use an Eulerian formulation for the convenience that the computational grids are fixed in space. An Eulerian-Lagrangian method (ELM) of solution for the convection-dispersion equation is discussed and analyzed. The ELM uses the Lagrangian concept in an Eulerian computational grid system. The values of the dependent variable off the grid are calculated by interpolation. When a linear interpolation is used, the method is a slight improvement over the upwind difference method. At this level of approximation both the ELM and the upwind difference method suffer from large numerical dispersion. However, if second-order Lagrangian polynomials are used in the interpolation, the ELM is proven to be free of artificial numerical dispersion for the convection-dispersion equation. The concept of the ELM is extended for treatment of anisotropic dispersion in natural coordinates. In this approach the anisotropic properties of dispersion can be conveniently related to the properties of the flow field. Several numerical examples are given to further substantiate the results of the present analysis.

  1. The general form of the coupled Horndeski Lagrangian that allows cosmological scaling solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gomes, Adalto R.; Amendola, Luca, E-mail: argomes.ufma@gmail.com, E-mail: l.amendola@thphys.uni-heidelberg.de

    We consider the general scalar field Horndeski Lagrangian coupled to dark matter. Within this class of models, we present two results that are independent of the particular form of the model. First, we show that in a Friedmann-Robertson-Walker metric the Horndeski Lagrangian coincides with the pressure of the scalar field. Second, we employ the previous result to identify the most general form of the Lagrangian that allows for cosmological scaling solutions, i.e. solutions where the ratio of dark matter to field density and the equation of state remain constant. Scaling solutions of this kind may help solving the coincidence problemmore » since in this case the presently observed ratio of matter to dark energy does not depend on initial conditions, but rather on the theoretical parameters.« less

  2. Duality for massive spin two theories in arbitrary dimensions

    NASA Astrophysics Data System (ADS)

    González, B.; Khoudeir, A.; Montemayor, R.; Urrutia, L. F.

    2008-09-01

    Using the parent Lagrangian approach we construct a dual formulation, in the sense originally proposed by Curtright and Freund, of a massive spin two Fierz-Pauli theory in arbitrary dimensions D. This is achieved in terms of a mixed symmetry tensor TA[B1B2...BD-2], without the need of auxiliary fields. The relation of this method with an alternative formulation based on a gauge symmetry principle proposed by Zinoviev is elucidated. We show that the latter formulation in four dimensions, with a given gauge fixing together with a definite sequence of auxiliary fields elimination via their equations of motion, leads to the parent Lagrangian already considered by West completed by a Fierz-Pauli mass term, which in turns yields the Curtright-Freund action. This motivates our generalization to arbitrary dimensions leading to the corresponding extension of the four dimensional result. We identify the transverse true degrees of freedom of the dual theory and verify that their number is in accordance with those of the massive Fierz-Pauli field.

  3. Stanley Corrsin Award Lecture: Lagrangian Measurements in Turbulence: From Fundamentals to Applications

    NASA Astrophysics Data System (ADS)

    Bodenschatz, Eberhard

    2014-11-01

    In my talk I shall present results from particle tracking experiments in turbulence. After a short review of the history of the field, I shall summarize the most recent technological advances that range form low and high-density particle tracking to direct measurements of the Lagrangian evolution of vorticity. I shall embark on a journey that describes the discoveries made possible by this new technology in the last 15 years. I present results that challenge our understanding of turbulence and show how Lagrangian particle tracking can help us ask questions on turbulent flows that so far were hidden. I shall show how Lagrangian particle tracking may provide important insights into the reversibility of turbulent flows, on vorticity generation, the energy cascade and turbulent mixing. I shall describe the consequences of inertial particle transport on rain formation and end with an outlook on how Lagrangian particle tracking experiments on non-stationary flows in real-world situations may provide high quality data that can support real world engineering problems. I am very thankful for the support by Cornell University, the National Science Foundation, the Research Corporation, the Alfred P. Sloan Foundation, the Kavli Institute for Theoretical Physics, the German Research Foundation, the European Union and the Max Planck Society. I very gratefully acknowledge the excellent partnership with many colleagues in the field of fluid mechanics and turbulence.

  4. Second order upwind Lagrangian particle method for Euler equations

    DOE PAGES

    Samulyak, Roman; Chen, Hsin -Chiang; Yu, Kwangmin

    2016-06-01

    A new second order upwind Lagrangian particle method for solving Euler equations for compressible inviscid fluid or gas flows is proposed. Similar to smoothed particle hydrodynamics (SPH), the method represents fluid cells with Lagrangian particles and is suitable for the simulation of complex free surface / multiphase flows. The main contributions of our method, which is different from SPH in all other aspects, are (a) significant improvement of approximation of differential operators based on a polynomial fit via weighted least squares approximation and the convergence of prescribed order, (b) an upwind second-order particle-based algorithm with limiter, providing accuracy and longmore » term stability, and (c) accurate resolution of states at free interfaces. In conclusion, numerical verification tests demonstrating the convergence order for fixed domain and free surface problems are presented.« less

  5. Second order upwind Lagrangian particle method for Euler equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samulyak, Roman; Chen, Hsin -Chiang; Yu, Kwangmin

    A new second order upwind Lagrangian particle method for solving Euler equations for compressible inviscid fluid or gas flows is proposed. Similar to smoothed particle hydrodynamics (SPH), the method represents fluid cells with Lagrangian particles and is suitable for the simulation of complex free surface / multiphase flows. The main contributions of our method, which is different from SPH in all other aspects, are (a) significant improvement of approximation of differential operators based on a polynomial fit via weighted least squares approximation and the convergence of prescribed order, (b) an upwind second-order particle-based algorithm with limiter, providing accuracy and longmore » term stability, and (c) accurate resolution of states at free interfaces. In conclusion, numerical verification tests demonstrating the convergence order for fixed domain and free surface problems are presented.« less

  6. Bilinear covariants and spinor fields duality in quantum Clifford algebras

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abłamowicz, Rafał, E-mail: rablamowicz@tntech.edu; Gonçalves, Icaro, E-mail: icaro.goncalves@ufabc.edu.br; Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, 09210-170 Santo André, SP

    Classification of quantum spinor fields according to quantum bilinear covariants is introduced in a context of quantum Clifford algebras on Minkowski spacetime. Once the bilinear covariants are expressed in terms of algebraic spinor fields, the duality between spinor and quantum spinor fields can be discussed. Thus, by endowing the underlying spacetime with an arbitrary bilinear form with an antisymmetric part in addition to a symmetric spacetime metric, quantum algebraic spinor fields and deformed bilinear covariants can be constructed. They are thus compared to the classical (non quantum) ones. Classes of quantum spinor fields classes are introduced and compared with Lounesto'smore » spinor field classification. A physical interpretation of the deformed parts and the underlying Z-grading is proposed. The existence of an arbitrary bilinear form endowing the spacetime already has been explored in the literature in the context of quantum gravity [S. W. Hawking, “The unpredictability of quantum gravity,” Commun. Math. Phys. 87, 395 (1982)]. Here, it is shown further to play a prominent role in the structure of Dirac, Weyl, and Majorana spinor fields, besides the most general flagpoles and flag-dipoles. We introduce a new duality between the standard and the quantum spinor fields, by showing that when Clifford algebras over vector spaces endowed with an arbitrary bilinear form are taken into account, a mixture among the classes does occur. Consequently, novel features regarding the spinor fields can be derived.« less

  7. A new Lagrangian method for three-dimensional steady supersonic flows

    NASA Technical Reports Server (NTRS)

    Loh, Ching-Yuen; Liou, Meng-Sing

    1993-01-01

    In this report, the new Lagrangian method introduced by Loh and Hui is extended for three-dimensional, steady supersonic flow computation. The derivation of the conservation form and the solution of the local Riemann solver using the Godunov and the high-resolution TVD (total variation diminished) scheme is presented. This new approach is accurate and robust, capable of handling complicated geometry and interactions between discontinuous waves. Test problems show that the extended Lagrangian method retains all the advantages of the two-dimensional method (e.g., crisp resolution of a slip-surface (contact discontinuity) and automatic grid generation). In this report, we also suggest a novel three dimensional Riemann problem in which interesting and intricate flow features are present.

  8. Effective Lagrangian in nonlinear electrodynamics and its properties of causality and unitarity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shabad, Anatoly E.; Usov, Vladimir V.

    2011-05-15

    In nonlinear electrodynamics, by implementing the causality principle as the requirement that the group velocity of elementary excitations over a background field should not exceed the speed of light in the vacuum c=1, and the unitarity principle as the requirement that the residue of the propagator should be nonnegative, we establish the positive convexity of the effective Lagrangian on the class of constant fields, also the positivity of all characteristic dielectric and magnetic permittivity constants that are derivatives of the effective Lagrangian with respect to the field invariants. Violation of the general principles by the one-loop approximation in QED atmore » exponentially large magnetic field is analyzed, resulting in complex energy ghosts that signal the instability of the magnetized vacuum. Superluminal excitations (tachyons) appear, too, but for the magnetic field exceeding its instability threshold. Also other popular Lagrangians are tested to establish that the ones leading to spontaneous vacuum magnetization possess wrong convexity.« less

  9. Simulation of atmospheric dispersion of radionuclides using an Eulerian-Lagrangian modelling system.

    PubMed

    Basit, Abdul; Espinosa, Francisco; Avila, Ruben; Raza, S; Irfan, N

    2008-12-01

    In this paper we present an atmospheric dispersion scenario for a proposed nuclear power plant in Pakistan involving the hypothetical accidental release of radionuclides. For this, a concept involving a Lagrangian stochastic particle model (LSPM) coupled with an Eulerian regional atmospheric modelling system (RAMS) is used. The atmospheric turbulent dispersion of radionuclides (represented by non-buoyant particles/neutral traces) in the LSPM is modelled by applying non-homogeneous turbulence conditions. The mean wind velocities governed by the topography of the region and the surface fluxes of momentum and heat are calculated by the RAMS code. A moving least squares (MLS) technique is introduced to calculate the concentration of radionuclides at ground level. The numerically calculated vertical profiles of wind velocity and temperature are compared with observed data. The results obtained demonstrate that in regions of complex terrain it is not sufficient to model the atmospheric dispersion of particles using a straight-line Gaussian plume model, and that by utilising a Lagrangian stochastic particle model and regional atmospheric modelling system a much more realistic estimation of the dispersion in such a hypothetical scenario was ascertained. The particle dispersion results for a 12 h ground release show that a triangular area of about 400 km(2) situated in the north-west quadrant of release is under radiological threat. The particle distribution shows that the use of a Gaussian plume model (GPM) in such situations will yield quite misleading results.

  10. Coupling temporal and spatial gradient information in high-density unstructured Lagrangian measurements

    NASA Astrophysics Data System (ADS)

    Wong, Jaime G.; Rosi, Giuseppe A.; Rouhi, Amirreza; Rival, David E.

    2017-10-01

    Particle tracking velocimetry (PTV) produces high-quality temporal information that is often neglected when computing spatial gradients. A method is presented here to utilize this temporal information in order to improve the estimation of spatial gradients for spatially unstructured Lagrangian data sets. Starting with an initial guess, this method penalizes any gradient estimate where the substantial derivative of vorticity along a pathline is not equal to the local vortex stretching/tilting. Furthermore, given an initial guess, this method can proceed on an individual pathline without any further reference to neighbouring pathlines. The equivalence of the substantial derivative and vortex stretching/tilting is based on the vorticity transport equation, where viscous diffusion is neglected. By minimizing the residual of the vorticity-transport equation, the proposed method is first tested to reduce error and noise on a synthetic Taylor-Green vortex field dissipating in time. Furthermore, when the proposed method is applied to high-density experimental data collected with `Shake-the-Box' PTV, noise within the spatial gradients is significantly reduced. In the particular test case investigated here of an accelerating circular plate captured during a single run, the method acts to delineate the shear layer and vortex core, as well as resolve the Kelvin-Helmholtz instabilities, which were previously unidentifiable without the use of ensemble averaging. The proposed method shows promise for improving PTV measurements that require robust spatial gradients while retaining the unstructured Lagrangian perspective.

  11. Duality in a supersymmetric gauge theory from a perturbative viewpoint

    NASA Astrophysics Data System (ADS)

    Ryttov, Thomas A.; Shrock, Robert

    2018-03-01

    We study duality in N =1 supersymmetric QCD in the non-Abelian Coulomb phase, order-by-order in scheme-independent series expansions. Using exact results, we show how the dimensions of various fundamental and composite chiral superfields, and the quantities a , c , a /c , and b at superconformal fixed points of the renormalization group emerge in scheme-independent series expansions in the electric and magnetic theories. We further demonstrate that truncations of these series expansions to modest order yield very accurate approximations to these quantities and suggest possible implications for nonsupersymmetric theories.

  12. A Satellite-Based Lagrangian View on Phytoplankton Dynamics.

    PubMed

    Lehahn, Yoav; d'Ovidio, Francesco; Koren, Ilan

    2018-01-03

    The well-lit upper layer of the open ocean is a dynamical environment that hosts approximately half of global primary production. In the remote parts of this environment, distant from the coast and from the seabed, there is no obvious spatially fixed reference frame for describing the dynamics of the microscopic drifting organisms responsible for this immense production of organic matter-the phytoplankton. Thus, a natural perspective for studying phytoplankton dynamics is to follow the trajectories of water parcels in which the organisms are embedded. With the advent of satellite oceanography, this Lagrangian perspective has provided valuable information on different aspects of phytoplankton dynamics, including bloom initiation and termination, spatial distribution patterns, biodiversity, export of carbon to the deep ocean, and, more recently, bottom-up mechanisms that affect the distribution and behavior of higher-trophic-level organisms. Upcoming submesoscale-resolving satellite observations and swarms of autonomous platforms open the way to the integration of vertical dynamics into the Lagrangian view of phytoplankton dynamics.

  13. Multiphase Interface Tracking with Fast Semi-Lagrangian Contouring.

    PubMed

    Li, Xiaosheng; He, Xiaowei; Liu, Xuehui; Zhang, Jian J; Liu, Baoquan; Wu, Enhua

    2016-08-01

    We propose a semi-Lagrangian method for multiphase interface tracking. In contrast to previous methods, our method maintains an explicit polygonal mesh, which is reconstructed from an unsigned distance function and an indicator function, to track the interface of arbitrary number of phases. The surface mesh is reconstructed at each step using an efficient multiphase polygonization procedure with precomputed stencils while the distance and indicator function are updated with an accurate semi-Lagrangian path tracing from the meshes of the last step. Furthermore, we provide an adaptive data structure, multiphase distance tree, to accelerate the updating of both the distance function and the indicator function. In addition, the adaptive structure also enables us to contour the distance tree accurately with simple bisection techniques. The major advantage of our method is that it can easily handle topological changes without ambiguities and preserve both the sharp features and the volume well. We will evaluate its efficiency, accuracy and robustness in the results part with several examples.

  14. Next Generation Extended Lagrangian Quantum-based Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Negre, Christian

    2017-06-01

    A new framework for extended Lagrangian first-principles molecular dynamics simulations is presented, which overcomes shortcomings of regular, direct Born-Oppenheimer molecular dynamics, while maintaining important advantages of the unified extended Lagrangian formulation of density functional theory pioneered by Car and Parrinello three decades ago. The new framework allows, for the first time, energy conserving, linear-scaling Born-Oppenheimer molecular dynamics simulations, which is necessary to study larger and more realistic systems over longer simulation times than previously possible. Expensive, self-consinstent-field optimizations are avoided and normal integration time steps of regular, direct Born-Oppenheimer molecular dynamics can be used. Linear scaling electronic structure theory is presented using a graph-based approach that is ideal for parallel calculations on hybrid computer platforms. For the first time, quantum based Born-Oppenheimer molecular dynamics simulation is becoming a practically feasible approach in simulations of +100,000 atoms-representing a competitive alternative to classical polarizable force field methods. In collaboration with: Anders Niklasson, Los Alamos National Laboratory.

  15. Unambiguous formalism for higher order Lagrangian field theories

    NASA Astrophysics Data System (ADS)

    Campos, Cédric M.; de León, Manuel; Martín de Diego, David; Vankerschaver, Joris

    2009-11-01

    The aim of this paper is to propose an unambiguous intrinsic formalism for higher order field theories which avoids the arbitrariness in the generalization of the conventional description of field theories, and implies the existence of different Cartan forms and Legendre transformations. We propose a differential-geometric setting for the dynamics of a higher order field theory, based on the Skinner and Rusk formalism for mechanics. This approach incorporates aspects of both the Lagrangian and the Hamiltonian description, since the field equations are formulated using the Lagrangian on a higher order jet bundle and the canonical multisymplectic form on its affine dual. As both of these objects are uniquely defined, the Skinner-Rusk approach has the advantage that it does not suffer from the arbitrariness in conventional descriptions. The result is that we obtain a unique and global intrinsic version of the Euler-Lagrange equations for higher order field theories. Several examples illustrate our construction.

  16. A Satellite-Based Lagrangian View on Phytoplankton Dynamics

    NASA Astrophysics Data System (ADS)

    Lehahn, Yoav; d'Ovidio, Francesco; Koren, Ilan

    2018-01-01

    The well-lit upper layer of the open ocean is a dynamical environment that hosts approximately half of global primary production. In the remote parts of this environment, distant from the coast and from the seabed, there is no obvious spatially fixed reference frame for describing the dynamics of the microscopic drifting organisms responsible for this immense production of organic matter—the phytoplankton. Thus, a natural perspective for studying phytoplankton dynamics is to follow the trajectories of water parcels in which the organisms are embedded. With the advent of satellite oceanography, this Lagrangian perspective has provided valuable information on different aspects of phytoplankton dynamics, including bloom initiation and termination, spatial distribution patterns, biodiversity, export of carbon to the deep ocean, and, more recently, bottom-up mechanisms that affect the distribution and behavior of higher-trophic-level organisms. Upcoming submesoscale-resolving satellite observations and swarms of autonomous platforms open the way to the integration of vertical dynamics into the Lagrangian view of phytoplankton dynamics.

  17. Collaborative Visual Seafloor Imaging using a Photographic AUV and a Lagrangian Imaging Float

    NASA Astrophysics Data System (ADS)

    Friedman, A.; Pizarro, O.; Roman, C.; Toohey, L.; Snyder, W.; Johnson-Roberson, M.; Iscar, E.; Williams, S. B.

    2016-02-01

    High resolution seafloor imaging from mobile autonomous platforms has become a valuable tool for habitat classification, stock assessment and seafloor exploration. This abstract addresses the concept of joint seafloor survey planning using both navigable and drifting platforms, and presents results from an experiment using a bottom surveying AUV and a drifting Lagrangian camera float. We consider two classes of vehicles; one which is able to self propel and execute structured surveys, and one which is Lagrangian and moves only with the currents. The navigable vehicle is the more capable and the more expensives asset of the two. The Lagrangian platforms is a low cost imaging tool that can actively control its altitude above the seafloor to obtain high quality images but can not otherwise control its trajectory over the bottom. When used together the vehicles offer several scenarios for joint operations. When used in an exploratory manner the Lagrangian float is an inexpensive way to collect images from an unknown area. Depending on the collected images, a follow on structured survey with the navigable AUV can collect additional information if the cost is acceptable given the need and prior data. When used simultaneously the drifting float can guide the AUV trajectory over an area. When both platforms are equipped with acoustic tracking and communications the AUV trajectory can be automatically redirected to follow the Lagrangian float using one of many patterns. This capability allows for surveys that are potentially more representative of the near bottom oceanographic conditions at the desired location. Results will be presented from a cruise to Scott Reef, Australia, where both platforms were used as part of a coral habitat monitoring project.

  18. Lagrangian Hotspots of In-Use NOX Emissions from Transit Buses.

    PubMed

    Kotz, Andrew J; Kittelson, David B; Northrop, William F

    2016-06-07

    In-use, spatiotemporal NOX emissions were measured from a conventional powertrain transit bus and a series electric hybrid bus over gradients of route kinetic intensity and ambient temperature. This paper introduces a new method for identifying NOX emissions hotspots along a bus route using high fidelity Lagrangian vehicle data to explore spatial interactions that may influence emissions production. Our study shows that the studied transit buses emit higher than regulated emissions because on-route operation does not accurately represent the range of engine operation tested according to regulatory standards. Using the Lagrangian hotspot detection, we demonstrate that NOX hotspots occurred at bus stops, during cold starts, on inclines, and for accelerations. On the selected routes, bus stops resulted in 3.3 times the route averaged emissions factor in grams/km without significant dependence on bus type or climate. The buses also emitted 2.3 times the route averaged NOX emissions factor at the beginning of each route due to cold selective catalytic reduction aftertreatment temperature. The Lagrangian hotspot detection technique demonstrated here could be employed in future connected vehicles empowered by advances in computational power, data storage capability, and improved sensor technology to optimize emissions as a function of spatial location.

  19. Dry intrusions: Lagrangian climatology and impact on the boundary layer

    NASA Astrophysics Data System (ADS)

    Raveh-Rubin, Shira; Wernli, Heini

    2017-04-01

    Dry air intrusions (DIs) are large-scale descending airstreams. A DI is typically referred to as a coherent airstream in the cold sector of an extratropical cyclone. Emerging evidence suggests that DIs are linked to severe surface wind gusts. However, there is yet no strict Lagrangian definition of DIs, and so their climatological frequency, dynamical characteristics as well as their seasonal and spatial distributions are unknown. Furthermore, the dynamical interaction between DIs and the planetary boundary layer is not fully understood. Here, we suggest a Lagrangian definition for DI air parcels, namely a minimum pressure increase along a trajectory of 400 hPa in 48 hours. Based on this criterion, the open questions are addressed by: (i) a novel global Lagrangian climatology for the ECMWF ERA-Interim reanalysis dataset for the years 1979-2014; (ii) a case study illustrating the interaction between DIs and the boundary layer. We find that DIs occur predominantly in winter. DIs coherently descend from the upper troposphere (their stratospheric origin is small), to the mid- and low levels, where they mix with their environment and diverge. Different physical characteristics typify DIs in the different regions and seasons. Finally, we demonstrate the different mechanisms by which DIs can destabilize the boundary layer and facilitate the formation of strong surface winds.

  20. Sleep stage 2: an electroencephalographic, autonomic, and hormonal duality.

    PubMed

    Brandenberger, Gabrielle; Ehrhart, Jean; Buchheit, Martin

    2005-12-01

    It is generally thought that the electroencephalogram of sleep stage 2 is not uniform, depending on whether sleep stage 2 evolves toward slow-wave sleep (SWS) or toward rapid eye movement (REM) sleep. We provide here further evidence of the duality of sleep stage 2 on the basis of its autonomic and hormonal background. Fourteen healthy men (aged 21-29 years) underwent 1 experimental night. Sleep and cardiac recordings were taken from 11:00 PM to 7:00 AM. Blood was sampled continuously over 10-minute periods. Autonomic activity, as inferred from heart rate variability analysis and hormone profiles, were examined with regard to the normalized hypnograms. We found a dual activity of the autonomic nervous system during sleep stage 2, with a progressive decrease in heart rate variability sympathetic indexes during the transition toward SWS contrasting with high and rather stable levels during sleep stage 2 that evolve toward REM sleep. Also, different profiles were observed in 2 major hormone systems, the activating adrenocorticotropic system and the renin-angiotensin system. Cortisol, in its active period of circadian secretion, was stable during sleep stage 2 preceding SWS and increased significantly when sleep stage 2 preceded REM sleep. For plasma renin activity, sleep stage 2 played a transitional role, initiating increasing levels that peaked during SWS and decreasing levels that reached a nadir during REM sleep. These results indicate an autonomic and hormonal duality of sleep stage 2 that is characterized by a "quiet" period preparing SWS and an "active" period preceding REM sleep. These differences may confer a fundamental role on this sleep stage in ultradian sleep regulation.

  1. Direct Observation of Quark-Hadron Duality in the Free Neutron {ital F}{sub 2} Structure Function

    DOE PAGES

    Niculescu, I.; Niculescu, G.; Melnitchouk, W.; ...

    2015-05-21

    Using the recently published data from the BONuS(Barely Off-shell Nucleon Structure) experiment at Jefferson Lab, which utilized a spectator tagging technique to extract the inclusive electron-free neutron scattering cross section, we obtain the first direct observation of quark-hadron duality in the neutron F-2 structure function. The data are used to reconstruct the lowest few (N = 2, 4, and 6) moments of F-2 in the three prominent nucleon resonance regions, as well as the moments integrated over the entire resonance region. Comparison with moments computed from global parametrizations of parton distribution functions suggest that quark-hadron duality holds locally for themore » neutron in the second and third resonance regions down to Q(2) approximate to 1 GeV2, with violations possibly up to 20% observed in the first resonance region.« less

  2. Canonical-ensemble extended Lagrangian Born-Oppenheimer molecular dynamics for the linear scaling density functional theory.

    PubMed

    Hirakawa, Teruo; Suzuki, Teppei; Bowler, David R; Miyazaki, Tsuyoshi

    2017-10-11

    We discuss the development and implementation of a constant temperature (NVT) molecular dynamics scheme that combines the Nosé-Hoover chain thermostat with the extended Lagrangian Born-Oppenheimer molecular dynamics (BOMD) scheme, using a linear scaling density functional theory (DFT) approach. An integration scheme for this canonical-ensemble extended Lagrangian BOMD is developed and discussed in the context of the Liouville operator formulation. Linear scaling DFT canonical-ensemble extended Lagrangian BOMD simulations are tested on bulk silicon and silicon carbide systems to evaluate our integration scheme. The results show that the conserved quantity remains stable with no systematic drift even in the presence of the thermostat.

  3. Duality of force laws and conformal transformations

    NASA Astrophysics Data System (ADS)

    Kothawala, Dawood

    2011-06-01

    As was first noted by Isaac Newton, the two most famous ellipses of classical mechanics, arising from the force laws F ∝r and F ∝1/r2, can be mapped onto each other by changing the location of the center of force. Less well known is that this mapping can also be achieved by the complex transformation, z →z2. We derive this result and its generalization by writing the Gaussian curvature in its covariant form, and then changing the metric by a conformal transformation which mimics this mapping of the curves. We indicate how the conserved Laplace-Runge-Lenz vector for the 1/r2 force law transforms under this transformation, and compare it with the corresponding quantities for the linear force law. Our main aim is to present this duality by introducing concepts from differential geometry.

  4. A Lagrangian particle model to predict the airborne spread of foot-and-mouth disease virus

    NASA Astrophysics Data System (ADS)

    Mayer, D.; Reiczigel, J.; Rubel, F.

    Airborne spread of bioaerosols in the boundary layer over a complex terrain is simulated using a Lagrangian particle model, and applied to modelling the airborne spread of foot-and-mouth disease (FMD) virus. Two case studies are made with study domains located in a hilly region in the northwest of the Styrian capital Graz, the second largest town in Austria. Mountainous terrain as well as inhomogeneous and time varying meteorological conditions prevent from application of so far used Gaussian dispersion models, while the proposed model can handle these realistically. In the model, trajectories of several thousands of particles are computed and the distribution of virus concentration near the ground is calculated. This allows to assess risk of infection areas with respect to animal species of interest, such as cattle, swine or sheep. Meteorological input data like wind field and other variables necessary to compute turbulence were taken from the new pre-operational version of the non-hydrostatic numerical weather prediction model LMK ( Lokal-Modell-Kürzestfrist) running at the German weather service DWD ( Deutscher Wetterdienst). The LMK model provides meteorological parameters with a spatial resolution of about 2.8 km. To account for the spatial resolution of 400 m used by the Lagrangian particle model, the initial wind field is interpolated upon the finer grid by a mass consistent interpolation method. Case studies depict a significant influence of local wind systems on the spread of virus. Higher virus concentrations at the upwind side of the hills and marginal concentrations in the lee are well observable, as well as canalization effects by valleys. The study demonstrates that the Lagrangian particle model is an appropriate tool for risk assessment of airborne spread of virus by taking into account the realistic orographic and meteorological conditions.

  5. Causal hydrodynamics of gauge theory plasmas from AdS/CFT duality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Natsuume, Makoto; Okamura, Takashi; Department of Physics, Kwansei Gakuin University, Sanda, Hyogo, 669-1337

    2008-03-15

    We study causal hydrodynamics (Israel-Stewart theory) of gauge theory plasmas from the AdS/CFT duality. Causal hydrodynamics requires new transport coefficients (relaxation times) and we compute them for a number of supersymmetric gauge theories including the N=4 super Yang-Mills theory. However, the relaxation times obtained from the 'shear mode' do not agree with the ones from the 'sound mode', which implies that the Israel-Stewart theory is not a sufficient framework to describe the gauge theory plasmas.

  6. Duality Quantum Simulation of the Yang-Baxter Equation

    NASA Astrophysics Data System (ADS)

    Zheng, Chao; Wei, Shijie

    2018-04-01

    The Yang-Baxter equation has become a significant theoretical tool in a variety of areas of physics. It is desirable to investigate the quantum simulation of the Yang-Baxter equation itself, exploring the connections between quantum integrability and quantum information processing, in which the unity of both the Yang-Baxter equation system and its quantum entanglement should be kept as a whole. In this work, we propose a duality quantum simulation algorithm of the Yang-Baxter equation, which contains the Yang-Baxter system and an ancillary qubit. Contrasting to conventional methods in which the two hand sides of the equation are simulated separately, they are simulated simultaneously in this proposal. Consequently, it opens up a way to further investigate entanglements in a Yang-Baxter equation.

  7. T-Duality for Orientifolds and Twisted KR-Theory

    NASA Astrophysics Data System (ADS)

    Doran, Charles; Méndez-Diez, Stefan; Rosenberg, Jonathan

    2014-08-01

    D-brane charges in orientifold string theories are classified by the KR-theory of Atiyah. However, this is assuming that all O-planes have the same sign. When there are O-planes of different signs, physics demands a "KR-theory with a sign choice" which up until now has not been studied by mathematicians (with the unique exception of Moutuou, who did not have a specific application in mind). We give a definition of this theory and compute it for orientifold theories compactified on S 1 and T 2. We also explain how and why additional "twisting" is implemented. We show that our results satisfy all possible T-duality relationships for orientifold string theories on elliptic curves, which will be studied further in subsequent work.

  8. Duality Quantum Simulation of the Yang-Baxter Equation

    NASA Astrophysics Data System (ADS)

    Zheng, Chao; Wei, Shijie

    2018-07-01

    The Yang-Baxter equation has become a significant theoretical tool in a variety of areas of physics. It is desirable to investigate the quantum simulation of the Yang-Baxter equation itself, exploring the connections between quantum integrability and quantum information processing, in which the unity of both the Yang-Baxter equation system and its quantum entanglement should be kept as a whole. In this work, we propose a duality quantum simulation algorithm of the Yang-Baxter equation, which contains the Yang-Baxter system and an ancillary qubit. Contrasting to conventional methods in which the two hand sides of the equation are simulated separately, they are simulated simultaneously in this proposal. Consequently, it opens up a way to further investigate entanglements in a Yang-Baxter equation.

  9. Semiotic systems with duality of patterning and the issue of cultural replicators.

    PubMed

    Schaden, Gerhard; Patin, Cédric

    2017-11-14

    Two major works in recent evolutionary biology have in different ways touched upon the issue of cultural replicators in language, namely Dawkins' Selfish Gene and Maynard Smith and Szathmáry's Major Transitions in Evolution. In the latter, the emergence of language is referred to as the last major transition in evolution (for the time being), a claim we argue to be derived from a crucial property of language, called Duality of Patterning. Prima facie, this property makes natural language look like a structural equivalent to DNA, and its peer in terms of expressive power. We will argue that, if one takes seriously Maynard Smith and Szathmáry's outlook and examines what has been proposed as linguistic replicators, amongst others phonemes and words, the analogy meme-gene becomes problematic. A key issue is the fact that genes and memes are assumed to carry and transmit information, while what has been described as the best candidate for replicatorhood in language, i.e. the phoneme, does by definition not carry meaning. We will argue that semiotic systems with Duality of Pattering (like natural languages) force us to reconsider either the analogy between replicators in the biological and the cultural domain, or what it is to be a replicator in linguistics.

  10. Self-duality of the compactified Ruijsenaars-Schneider system from quasi-Hamiltonian reduction

    NASA Astrophysics Data System (ADS)

    Fehér, L.; Klimčík, C.

    2012-07-01

    The Delzant theorem of symplectic topology is used to derive the completely integrable compactified Ruijsenaars-Schneider IIIb system from a quasi-Hamiltonian reduction of the internally fused double SU(n)×SU(n). In particular, the reduced spectral functions depending respectively on the first and second SU(n) factor of the double engender two toric moment maps on the IIIb phase space CP(n-1) that play the roles of action-variables and particle-positions. A suitable central extension of the SL(2,Z) mapping class group of the torus with one boundary component is shown to act on the quasi-Hamiltonian double by automorphisms and, upon reduction, the standard generator S of the mapping class group is proved to descend to the Ruijsenaars self-duality symplectomorphism that exchanges the toric moment maps. We give also two new presentations of this duality map: one as the composition of two Delzant symplectomorphisms and the other as the composition of three Dehn twist symplectomorphisms realized by Goldman twist flows. Through the well-known relation between quasi-Hamiltonian manifolds and moduli spaces, our results rigorously establish the validity of the interpretation [going back to Gorsky and Nekrasov] of the IIIb system in terms of flat SU(n) connections on the one-holed torus.

  11. Lagrangian particle method for compressible fluid dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samulyak, Roman; Wang, Xingyu; Chen, Hsin -Chiang

    A new Lagrangian particle method for solving Euler equations for compressible inviscid fluid or gas flows is proposed. Similar to smoothed particle hydrodynamics (SPH), the method represents fluid cells with Lagrangian particles and is suitable for the simulation of complex free surface / multi-phase flows. The main contributions of our method, which is different from SPH in all other aspects, are (a) significant improvement of approximation of differential operators based on a polynomial fit via weighted least squares approximation and the convergence of prescribed order, (b) a second-order particle-based algorithm that reduces to the first-order upwind method at local extremalmore » points, providing accuracy and long term stability, and (c) more accurate resolution of entropy discontinuities and states at free inter-faces. While the method is consistent and convergent to a prescribed order, the conservation of momentum and energy is not exact and depends on the convergence order . The method is generalizable to coupled hyperbolic-elliptic systems. As a result, numerical verification tests demonstrating the convergence order are presented as well as examples of complex multiphase flows.« less

  12. Lagrangian descriptors of driven chemical reaction manifolds.

    PubMed

    Craven, Galen T; Junginger, Andrej; Hernandez, Rigoberto

    2017-08-01

    The persistence of a transition state structure in systems driven by time-dependent environments allows the application of modern reaction rate theories to solution-phase and nonequilibrium chemical reactions. However, identifying this structure is problematic in driven systems and has been limited by theories built on series expansion about a saddle point. Recently, it has been shown that to obtain formally exact rates for reactions in thermal environments, a transition state trajectory must be constructed. Here, using optimized Lagrangian descriptors [G. T. Craven and R. Hernandez, Phys. Rev. Lett. 115, 148301 (2015)PRLTAO0031-900710.1103/PhysRevLett.115.148301], we obtain this so-called distinguished trajectory and the associated moving reaction manifolds on model energy surfaces subject to various driving and dissipative conditions. In particular, we demonstrate that this is exact for harmonic barriers in one dimension and this verification gives impetus to the application of Lagrangian descriptor-based methods in diverse classes of chemical reactions. The development of these objects is paramount in the theory of reaction dynamics as the transition state structure and its underlying network of manifolds directly dictate reactivity and selectivity.

  13. A Lagrangian dynamic subgrid-scale model turbulence

    NASA Technical Reports Server (NTRS)

    Meneveau, C.; Lund, T. S.; Cabot, W.

    1994-01-01

    A new formulation of the dynamic subgrid-scale model is tested in which the error associated with the Germano identity is minimized over flow pathlines rather than over directions of statistical homogeneity. This procedure allows the application of the dynamic model with averaging to flows in complex geometries that do not possess homogeneous directions. The characteristic Lagrangian time scale over which the averaging is performed is chosen such that the model is purely dissipative, guaranteeing numerical stability when coupled with the Smagorinsky model. The formulation is tested successfully in forced and decaying isotropic turbulence and in fully developed and transitional channel flow. In homogeneous flows, the results are similar to those of the volume-averaged dynamic model, while in channel flow, the predictions are superior to those of the plane-averaged dynamic model. The relationship between the averaged terms in the model and vortical structures (worms) that appear in the LES is investigated. Computational overhead is kept small (about 10 percent above the CPU requirements of the volume or plane-averaged dynamic model) by using an approximate scheme to advance the Lagrangian tracking through first-order Euler time integration and linear interpolation in space.

  14. Lagrangian particle method for compressible fluid dynamics

    DOE PAGES

    Samulyak, Roman; Wang, Xingyu; Chen, Hsin -Chiang

    2018-02-09

    A new Lagrangian particle method for solving Euler equations for compressible inviscid fluid or gas flows is proposed. Similar to smoothed particle hydrodynamics (SPH), the method represents fluid cells with Lagrangian particles and is suitable for the simulation of complex free surface / multi-phase flows. The main contributions of our method, which is different from SPH in all other aspects, are (a) significant improvement of approximation of differential operators based on a polynomial fit via weighted least squares approximation and the convergence of prescribed order, (b) a second-order particle-based algorithm that reduces to the first-order upwind method at local extremalmore » points, providing accuracy and long term stability, and (c) more accurate resolution of entropy discontinuities and states at free inter-faces. While the method is consistent and convergent to a prescribed order, the conservation of momentum and energy is not exact and depends on the convergence order . The method is generalizable to coupled hyperbolic-elliptic systems. As a result, numerical verification tests demonstrating the convergence order are presented as well as examples of complex multiphase flows.« less

  15. Gravitational Lagrangians, Mach's Principle, and the Equivalence Principle in an Expanding Universe

    NASA Astrophysics Data System (ADS)

    Essén, Hanno

    2014-08-01

    Gravitational Lagrangians as derived by Fock for the Einstein-Infeld-Hoffmann approach, and by Kennedy assuming only a fourth rank tensor interaction, contain long range interactions. Here we investigate how these affect the local dynamics when integrated over an expanding universe out to the Hubble radius. Taking the cosmic expansion velocity into account in a heuristic manner it is found that these long range interactions imply Mach's principle, provided the universe has the critical density, and that mass is renormalized. Suitable higher order additions to the Lagrangians make the formalism consistent with the equivalence principle.

  16. A LES-based Eulerian-Lagrangian approach to predict the dynamics of bubble plumes

    NASA Astrophysics Data System (ADS)

    Fraga, Bruño; Stoesser, Thorsten; Lai, Chris C. K.; Socolofsky, Scott A.

    2016-01-01

    An approach for Eulerian-Lagrangian large-eddy simulation of bubble plume dynamics is presented and its performance evaluated. The main numerical novelties consist in defining the gas-liquid coupling based on the bubble size to mesh resolution ratio (Dp/Δx) and the interpolation between Eulerian and Lagrangian frameworks through the use of delta functions. The model's performance is thoroughly validated for a bubble plume in a cubic tank in initially quiescent water using experimental data obtained from high-resolution ADV and PIV measurements. The predicted time-averaged velocities and second-order statistics show good agreement with the measurements, including the reproduction of the anisotropic nature of the plume's turbulence. Further, the predicted Eulerian and Lagrangian velocity fields, second-order turbulence statistics and interfacial gas-liquid forces are quantified and discussed as well as the visualization of the time-averaged primary and secondary flow structure in the tank.

  17. Construction of Lagrangians and Hamiltonians from the Equation of Motion

    ERIC Educational Resources Information Center

    Yan, C. C.

    1978-01-01

    Demonstrates that infinitely many Lagrangians and Hamiltonians can be constructed from a given equation of motion. Points out the lack of an established criterion for making a proper selection. (Author/GA)

  18. A Skill Score of Trajectory Model Evaluation Using Reinitialized Series of Normalized Cumulative Lagrangian Separation

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Weisberg, R. H.

    2017-12-01

    The Lagrangian separation distance between the endpoints of simulated and observed drifter trajectories is often used to assess the performance of numerical particle trajectory models. However, the separation distance fails to indicate relative model performance in weak and strong current regions, such as a continental shelf and its adjacent deep ocean. A skill score is proposed based on the cumulative Lagrangian separation distances normalized by the associated cumulative trajectory lengths. The new metrics correctly indicates the relative performance of the Global HYCOM in simulating the strong currents of the Gulf of Mexico Loop Current and the weaker currents of the West Florida Shelf in the eastern Gulf of Mexico. In contrast, the Lagrangian separation distance alone gives a misleading result. Also, the observed drifter position series can be used to reinitialize the trajectory model and evaluate its performance along the observed trajectory, not just at the drifter end position. The proposed dimensionless skill score is particularly useful when the number of drifter trajectories is limited and neither a conventional Eulerian-based velocity nor a Lagrangian-based probability density function may be estimated.

  19. Movement and collision of Lagrangian particles in hydro-turbine intakes: a case study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romero-Gomez, Pedro; Richmond, Marshall C.

    Studies of the stress/survival of migratory fish during downstream passage through operating hydro-turbines are normally conducted to determine the fish-friendliness of units. One field approach consisting of recording extreme hydraulics with autonomous sensors is largely sensitive to the conditions of sensor release and the initial trajectories at the turbine intake. This study applies a modelling strategy based on flow simulations using computational fluid dynamics and Lagrangian particle tracking to represent the travel of live fish and autonomous sensor devices through hydro-turbine intakes. For the flow field calculation, the simulations were conducted with both a time-averaging turbulence model and an eddy-resolvingmore » technique. For the particle tracking calculation, different modelling assumptions for turbulence forcing, mass formulation, buoyancy, and release condition were tested. The modelling assumptions are evaluated with respect to data sets collected using a laboratory physical model and an autonomous sensor device deployed at Ice Harbor Dam (Snake River, State of Washington, U.S.A.) at the same discharge and release point as in the present computer simulations. We found an acceptable agreement between the simulated results and observed data and discuss relevant features of Lagrangian particle movement that are critical in turbine design and in the experimental design of field studies.« less

  20. General self-tuning solutions and no-go theorem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Förste, Stefan; Kim, Jihn E.; Lee, Hyun Min, E-mail: forste@th.physik.uni-bonn.de, E-mail: jihnekim@gmail.com, E-mail: hyun.min.lee@kias.re.kr

    2013-03-01

    We consider brane world models with one extra dimension. In the bulk there is in addition to gravity a three form gauge potential or equivalently a scalar (by generalisation of electric magnetic duality). We find classical solutions for which the 4d effective cosmological constant is adjusted by choice of integration constants. No go theorems for such self-tuning mechanism are circumvented by unorthodox Lagrangians for the three form respectively the scalar. It is argued that the corresponding effective 4d theory always includes tachyonic Kaluza-Klein excitations or ghosts. Known no go theorems are extended to a general class of models with unorthodoxmore » Lagrangians.« less

  1. Vocational Training in India and the Duality Principle: A Case for Evidence-Based Reform

    ERIC Educational Resources Information Center

    Mehrotra, Santosh; Kalaiyarasan, A.; Kumra, Neha; Ravi Raman, K.

    2015-01-01

    This article explores the notion of the duality principle, as embodied in the German dual system of Vocational Education and Training (VET), within the context of a field survey of skill shortages faced by German and Indian firms operating in India. The study finds that these firms experience problems with the quantity and quality of skills…

  2. Segmental Analysis of Cardiac Short-Axis Views Using Lagrangian Radial and Circumferential Strain.

    PubMed

    Ma, Chi; Wang, Xiao; Varghese, Tomy

    2016-11-01

    Accurate description of myocardial deformation in the left ventricle is a three-dimensional problem, requiring three normal strain components along its natural axis, that is, longitudinal, radial, and circumferential strains. Although longitudinal strains are best estimated from long-axis views, radial and circumferential strains are best depicted in short-axis views. An algorithm that utilizes a polar grid for short-axis views previously developed in our laboratory for a Lagrangian description of tissue deformation is utilized for radial and circumferential displacement and strain estimation. Deformation of the myocardial wall, utilizing numerical simulations with ANSYS, and a finite-element analysis-based canine heart model were adapted as the input to a frequency-domain ultrasound simulation program to generate radiofrequency echo signals. Clinical in vivo data were also acquired from a healthy volunteer. Local displacements estimated along and perpendicular to the ultrasound beam propagation direction are then transformed into radial and circumferential displacements and strains using the polar grid based on a pre-determined centroid location. Lagrangian strain variations demonstrate good agreement with the ideal strain when compared with Eulerian results. Lagrangian radial and circumferential strain estimation results are also demonstrated for experimental data on a healthy volunteer. Lagrangian radial and circumferential strain tracking provide accurate results with the assistance of the polar grid, as demonstrated using both numerical simulations and in vivo study. © The Author(s) 2015.

  3. Segmental Analysis of Cardiac Short-Axis Views Using Lagrangian Radial and Circumferential Strain

    PubMed Central

    Ma, Chi; Wang, Xiao; Varghese, Tomy

    2016-01-01

    Accurate description of myocardial deformation in the left ventricle is a three-dimensional problem, requiring three normal strain components along its natural axis, that is, longitudinal, radial, and circumferential strains. Although longitudinal strains are best estimated from long-axis views, radial and circumferential strains are best depicted in short-axis views. An algorithm that utilizes a polar grid for short-axis views previously developed in our laboratory for a Lagrangian description of tissue deformation is utilized for radial and circumferential displacement and strain estimation. Deformation of the myocardial wall, utilizing numerical simulations with ANSYS, and a finite-element analysis–based canine heart model were adapted as the input to a frequency-domain ultrasound simulation program to generate radiofrequency echo signals. Clinical in vivo data were also acquired from a healthy volunteer. Local displacements estimated along and perpendicular to the ultrasound beam propagation direction are then transformed into radial and circumferential displacements and strains using the polar grid based on a pre-determined centroid location. Lagrangian strain variations demonstrate good agreement with the ideal strain when compared with Eulerian results. Lagrangian radial and circumferential strain estimation results are also demonstrated for experimental data on a healthy volunteer. Lagrangian radial and circumferential strain tracking provide accurate results with the assistance of the polar grid, as demonstrated using both numerical simulations and in vivo study. PMID:26578642

  4. Perfect fluid Lagrangian and its cosmological implications in theories of gravity with nonminimally coupled matter fields

    NASA Astrophysics Data System (ADS)

    Avelino, P. P.; Azevedo, R. P. L.

    2018-03-01

    In this paper we show that the on-shell Lagrangian of a perfect fluid depends on microscopic properties of the fluid, giving specific examples of perfect fluids with different on-shell Lagrangians but with the same energy-momentum tensor. We demonstrate that if the fluid is constituted by localized concentrations of energy with fixed rest mass and structure (solitons) then the average on-shell Lagrangian of a perfect fluid is given by Lm=T , where T is the trace of the energy-momentum tensor. We show that our results have profound implications for theories of gravity where the matter Lagrangian appears explicitly in the equations of motion of the gravitational and matter fields, potentially leading to observable deviations from a nearly perfect cosmic microwave background black body spectrum: n -type spectral distortions, affecting the normalization of the spectral energy density. Finally, we put stringent constraints on f (R ,Lm) theories of gravity using the COBE-FIRAS measurement of the spectral radiance of the cosmic microwave background.

  5. Lagrangian particles with mixing. I. Simulating scalar transport

    NASA Astrophysics Data System (ADS)

    Klimenko, A. Y.

    2009-06-01

    The physical similarity and mathematical equivalence of continuous diffusion and particle random walk forms one of the cornerstones of modern physics and the theory of stochastic processes. The randomly walking particles do not need to posses any properties other than location in physical space. However, particles used in many models dealing with simulating turbulent transport and turbulent combustion do posses a set of scalar properties and mixing between particle properties is performed to reflect the dissipative nature of the diffusion processes. We show that the continuous scalar transport and diffusion can be accurately specified by means of localized mixing between randomly walking Lagrangian particles with scalar properties and assess errors associated with this scheme. Particles with scalar properties and localized mixing represent an alternative formulation for the process, which is selected to represent the continuous diffusion. Simulating diffusion by Lagrangian particles with mixing involves three main competing requirements: minimizing stochastic uncertainty, minimizing bias introduced by numerical diffusion, and preserving independence of particles. These requirements are analyzed for two limited cases of mixing between two particles and mixing between a large number of particles. The problem of possible dependences between particles is most complicated. This problem is analyzed using a coupled chain of equations that has similarities with Bogolubov-Born-Green-Kirkwood-Yvon chain in statistical physics. Dependences between particles can be significant in close proximity of the particles resulting in a reduced rate of mixing. This work develops further ideas introduced in the previously published letter [Phys. Fluids 19, 031702 (2007)]. Paper I of this work is followed by Paper II [Phys. Fluids 19, 065102 (2009)] where modeling of turbulent reacting flows by Lagrangian particles with localized mixing is specifically considered.

  6. Fingerprints of heavy scales in electroweak effective Lagrangians

    NASA Astrophysics Data System (ADS)

    Pich, Antonio; Rosell, Ignasi; Santos, Joaquín; Sanz-Cillero, Juan José

    2017-04-01

    The couplings of the electroweak effective theory contain information on the heavy-mass scales which are no-longer present in the low-energy Lagrangian. We build a general effective Lagrangian, implementing the electroweak chiral symmetry breaking SU(2) L ⊗ SU(2) R → SU(2) L+ R , which couples the known particle fields to heavier states with bosonic quantum numbers J P = 0± and 1±. We consider colour-singlet heavy fields that are in singlet or triplet representations of the electroweak group. Integrating out these heavy scales, we analyze the pattern of low-energy couplings among the light fields which are generated by the massive states. We adopt a generic non-linear realization of the electroweak symmetry breaking with a singlet Higgs, without making any assumption about its possible doublet structure. Special attention is given to the different possible descriptions of massive spin-1 fields and the differences arising from naive implementations of these formalisms, showing their full equivalence once a proper short-distance behaviour is required.

  7. Infinitely many $$ \\mathcal{N}=1 $$ dualities from m + 1 - m = 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agarwal, Prarit; Intriligator, Kenneth; Song, Jaewon

    2015-10-06

    We discuss two infinite classes of 4d supersymmetric theories, T N (m) and Umore » $$(m)\\atop{N}$$, labelled by an arbitrary non-negative integer, m. The T N (m) theory arises from the 6d, A N-1 type N=(2,0) theory reduced on a 3-punctured sphere, with normal bundle given by line bundles of degree (m + 1, -m); the m = 0 case is the N=2 supersymmetric T N theory. The novelty is the negative-degree line bundle. The U$$(m)\\atop{N}$$ theories likewise arise from the 6d N=(2,0) theory on a 4-punctured sphere, and can be regarded as gluing together two (partially Higgsed) T N (m) theories. The T N (m) and U$$(m)\\atop{N}$$ theories can be represented, in various duality frames, as quiver gauge theories, built from T N components via gauging and nilpotent Higgsing. We analyze the RG flow of the U($$(m)\\atop{N}$$ theories, and find that, for all integer m > 0, they end up at the same IR SCFT as SU(N) SQCD with 2N flavors and quartic superpotential. The U$$(m)\\atop{N}$$ theories can thus be regarded as an infinite set of UV completions, dual to SQCD with N f = 2N c. The U$$(m)\\atop{N}$$ duals have different duality frame quiver representations, with 2m + 1 gauge nodes.« less

  8. Gravitational Field as a Pressure Force from Logarithmic Lagrangians and Non-Standard Hamiltonians: The Case of Stellar Halo of Milky Way

    NASA Astrophysics Data System (ADS)

    El-Nabulsi, Rami Ahmad

    2018-03-01

    Recently, the notion of non-standard Lagrangians was discussed widely in literature in an attempt to explore the inverse variational problem of nonlinear differential equations. Different forms of non-standard Lagrangians were introduced in literature and have revealed nice mathematical and physical properties. One interesting form related to the inverse variational problem is the logarithmic Lagrangian, which has a number of motivating features related to the Liénard-type and Emden nonlinear differential equations. Such types of Lagrangians lead to nonlinear dynamics based on non-standard Hamiltonians. In this communication, we show that some new dynamical properties are obtained in stellar dynamics if standard Lagrangians are replaced by Logarithmic Lagrangians and their corresponding non-standard Hamiltonians. One interesting consequence concerns the emergence of an extra pressure term, which is related to the gravitational field suggesting that gravitation may act as a pressure in a strong gravitational field. The case of the stellar halo of the Milky Way is considered.

  9. Origin of Money: Dynamic Duality Between Necessity and Unnecessity

    NASA Astrophysics Data System (ADS)

    Tauchi, Yuka; Kamiura, Moto; Haruna, Taichi; Gunji, Yukio-Pegio

    2008-10-01

    We propose a mathematical model of economic agents to study origin of money. This multi-agent model is based on commodity theory of money, which says that a commodity used as money emerges from barter transaction. Each agent has a different value system which is given by a Heyting algebra, and exchanges one's commodities based on the value system. In each value system, necessity and unnecessity of commodities are expressed by some elements and their compliments on a Heyting Algebra. Moreover, the concept of the compliment is extended. Consequently, the duality of the necessity-unnecessity is weakened, and the exchanges of the commodities are promoted. The commodities which keeps being exchanged for a long time can correspond to money.

  10. T-duality simplifies bulk-boundary correspondence: the noncommutative case

    NASA Astrophysics Data System (ADS)

    Hannabuss, Keith C.; Mathai, Varghese; Thiang, Guo Chuan

    2018-05-01

    We state and prove a general result establishing that T-duality, or the Connes-Thom isomorphism, simplifies the bulk-boundary correspondence, given by a boundary map in K-theory, in the sense of converting it to a simple geometric restriction map. This settles in the affirmative several earlier conjectures of the authors and provides a clear geometric picture of the correspondence. In particular, our result holds in arbitrary spatial dimension, in both the real and complex cases, and also in the presence of disorder, magnetic fields, and H-flux. These special cases are relevant both to string theory and to the study of the quantum Hall effect and topological insulators with defects in condensed matter physics.

  11. Arbitrary Lagrangian-Eulerian Method with Local Structured Adaptive Mesh Refinement for Modeling Shock Hydrodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, R W; Pember, R B; Elliott, N S

    2001-10-22

    A new method that combines staggered grid Arbitrary Lagrangian-Eulerian (ALE) techniques with structured local adaptive mesh refinement (AMR) has been developed for solution of the Euler equations. This method facilitates the solution of problems currently at and beyond the boundary of soluble problems by traditional ALE methods by focusing computational resources where they are required through dynamic adaption. Many of the core issues involved in the development of the combined ALEAMR method hinge upon the integration of AMR with a staggered grid Lagrangian integration method. The novel components of the method are mainly driven by the need to reconcile traditionalmore » AMR techniques, which are typically employed on stationary meshes with cell-centered quantities, with the staggered grids and grid motion employed by Lagrangian methods. Numerical examples are presented which demonstrate the accuracy and efficiency of the method.« less

  12. Numerical Simulations of Homogeneous Turbulence Using Lagrangian-Averaged Navier-Stokes Equations

    NASA Technical Reports Server (NTRS)

    Mohseni, Kamran; Shkoller, Steve; Kosovic, Branko; Marsden, Jerrold E.; Carati, Daniele; Wray, Alan; Rogallo, Robert

    2000-01-01

    The Lagrangian-averaged Navier-Stokes (LANS) equations are numerically evaluated as a turbulence closure. They are derived from a novel Lagrangian averaging procedure on the space of all volume-preserving maps and can be viewed as a numerical algorithm which removes the energy content from the small scales (smaller than some a priori fixed spatial scale alpha) using a dispersive rather than dissipative mechanism, thus maintaining the crucial features of the large scale flow. We examine the modeling capabilities of the LANS equations for decaying homogeneous turbulence, ascertain their ability to track the energy spectrum of fully resolved direct numerical simulations (DNS), compare the relative energy decay rates, and compare LANS with well-accepted large eddy simulation (LES) models.

  13. On the Perturbative Equivalence Between the Hamiltonian and Lagrangian Quantizations

    NASA Astrophysics Data System (ADS)

    Batalin, I. A.; Tyutin, I. V.

    The Hamiltonian (BFV) and Lagrangian (BV) quantization schemes are proved to be perturbatively equivalent to each other. It is shown in particular that the quantum master equation being treated perturbatively possesses a local formal solution.

  14. Lagrangian statistics of mesoscale turbulence in a natural environment: The Agulhas return current.

    PubMed

    Carbone, Francesco; Gencarelli, Christian N; Hedgecock, Ian M

    2016-12-01

    The properties of mesoscale geophysical turbulence in an oceanic environment have been investigated through the Lagrangian statistics of sea surface temperature measured by a drifting buoy within the Agulhas return current, where strong temperature mixing produces locally sharp temperature gradients. By disentangling the large-scale forcing which affects the small-scale statistics, we found that the statistical properties of intermittency are identical to those obtained from the multifractal prediction in the Lagrangian frame for the velocity trajectory. The results suggest a possible universality of turbulence scaling.

  15. Analysis of Lagrangian stretching in turbulent channel flow using a database task-parallel particle tracking approach

    NASA Astrophysics Data System (ADS)

    Meneveau, Charles; Johnson, Perry; Hamilton, Stephen; Burns, Randal

    2016-11-01

    An intrinsic property of turbulent flows is the exponential deformation of fluid elements along Lagrangian paths. The production of enstrophy by vorticity stretching follows from a similar mechanism in the Lagrangian view, though the alignment statistics differ and viscosity prevents unbounded growth. In this paper, the stretching properties of fluid elements and vorticity along Lagrangian paths are studied in a channel flow at Reτ = 1000 and compared with prior, known results from isotropic turbulence. To track Lagrangian paths in a public database containing Direct Numerical Simulation (DNS) results, the task-parallel approach previously employed in the isotropic database is extended to the case of flow in a bounded domain. It is shown that above 100 viscous units from the wall, stretching statistics are equal to their isotropic values, in support of the local isotropy hypothesis. Normalized by dissipation rate, the stretching in the buffer layer and below is less efficient due to less favorable alignment statistics. The Cramér function characterizing cumulative Lagrangian stretching statistics shows that overall the channel flow has about half of the stretching per unit dissipation compared with isotropic turbulence. Supported by a National Science Foundation Graduate Research Fellowship Program under Grant No. DGE-1232825, and by National Science Foundation Grants CBET-1507469, ACI-1261715, OCI-1244820 and by JHU IDIES.

  16. Fluid Dynamics Lagrangian Simulation Model

    NASA Astrophysics Data System (ADS)

    Hyman, Ellis

    1994-02-01

    The work performed by Science Applications International Corporation (SAIC) on this contract, Fluid Dynamics Lagrangian Simulation Model, Contract Number N00014-89-C-2106, SAIC Project Number 01-0157-03-0768, focused on a number of research topics in fluid dynamics. The work was in support of the programs of NRL's Laboratory for Computational Physics and Fluid Dynamics and covered the period from 10 September 1989 to 9 December 1993. In the following sections, we describe each of the efforts and the results obtained. Much of the research work has resulted in journal publications. These are included in Appendices of this report for which the reader is referred for complete details.

  17. Extending geometrical optics: A Lagrangian theory for vector waves

    DOE PAGES

    Ruiz, D. E.; Dodin, I. Y.

    2017-03-16

    Even when neglecting diffraction effects, the well-known equations of geometrical optics (GO) are not entirely accurate. Traditional GO treats wave rays as classical particles, which are completely described by their coordinates and momenta, but vector-wave rays have another degree of freedom, namely, their polarization. The polarization degree of freedom manifests itself as an effective (classical) “wave spin” that can be assigned to rays and can affect the wave dynamics accordingly. A well-known manifestation of polarization dynamics is mode conversion, which is the linear exchange of quanta between different wave modes and can be interpreted as a rotation of the wavemore » spin. Another, less-known polarization effect is the polarization-driven bending of ray trajectories. Here, this work presents an extension and reformulation of GO as a first-principle Lagrangian theory, whose effective Hamiltonian governs the aforementioned polarization phenomena simultaneously. As an example, the theory is applied to describe the polarization-driven divergence of right-hand and left-hand circularly polarized electromagnetic waves in weakly magnetized plasma.« less

  18. Extending geometrical optics: A Lagrangian theory for vector waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruiz, D. E.; Dodin, I. Y.

    Even when neglecting diffraction effects, the well-known equations of geometrical optics (GO) are not entirely accurate. Traditional GO treats wave rays as classical particles, which are completely described by their coordinates and momenta, but vector-wave rays have another degree of freedom, namely, their polarization. The polarization degree of freedom manifests itself as an effective (classical) “wave spin” that can be assigned to rays and can affect the wave dynamics accordingly. A well-known manifestation of polarization dynamics is mode conversion, which is the linear exchange of quanta between different wave modes and can be interpreted as a rotation of the wavemore » spin. Another, less-known polarization effect is the polarization-driven bending of ray trajectories. Here, this work presents an extension and reformulation of GO as a first-principle Lagrangian theory, whose effective Hamiltonian governs the aforementioned polarization phenomena simultaneously. As an example, the theory is applied to describe the polarization-driven divergence of right-hand and left-hand circularly polarized electromagnetic waves in weakly magnetized plasma.« less

  19. Extracting quasi-steady Lagrangian transport patterns from the ocean circulation: An application to the Gulf of Mexico.

    PubMed

    Duran, R; Beron-Vera, F J; Olascoaga, M J

    2018-03-26

    We construct a climatology of Lagrangian coherent structures (LCSs)-the concealed skeleton that shapes transport-with a twelve-year-long data-assimilative simulation of the sea-surface circulation in the Gulf of Mexico (GoM). Computed as time-mean Cauchy-Green strain tensorlines of the climatological velocity, the climatological LCSs (cLCSs) unveil recurrent Lagrangian circulation patterns. The cLCSs strongly constrain the ensemble-mean Lagrangian circulation of the instantaneous model velocity, showing that a climatological velocity can preserve meaningful transport information. The quasi-steady transport patterns revealed by the cLCSs agree well with aspects of the GoM circulation described in several previous observational and numerical studies. For example, the cLCSs identify regions of persistent isolation, and suggest that coastal regions previously identified as high-risk for pollution impact are regions of maximal attraction. We also show that cLCSs are remarkably accurate at identifying transport patterns observed during the Deepwater Horizon and Ixtoc oil spills, and during the Grand LAgrangian Deployment (GLAD) experiment. Thus it is shown that computing cLCSs is an efficient and meaningful way of synthesizing vast amounts of Lagrangian information. The cLCS method confirms previous GoM studies, and contributes to our understanding by revealing the persistent nature of the dynamics and kinematics treated therein.

  20. A Constructive Approach to Regularity of Lagrangian Trajectories for Incompressible Euler Flow in a Bounded Domain

    NASA Astrophysics Data System (ADS)

    Besse, Nicolas; Frisch, Uriel

    2017-04-01

    The 3D incompressible Euler equations are an important research topic in the mathematical study of fluid dynamics. Not only is the global regularity for smooth initial data an open issue, but the behaviour may also depend on the presence or absence of boundaries. For a good understanding, it is crucial to carry out, besides mathematical studies, high-accuracy and well-resolved numerical exploration. Such studies can be very demanding in computational resources, but recently it has been shown that very substantial gains can be achieved first, by using Cauchy's Lagrangian formulation of the Euler equations and second, by taking advantage of analyticity results of the Lagrangian trajectories for flows whose initial vorticity is Hölder-continuous. The latter has been known for about 20 years (Serfati in J Math Pures Appl 74:95-104, 1995), but the combination of the two, which makes use of recursion relations among time-Taylor coefficients to obtain constructively the time-Taylor series of the Lagrangian map, has been achieved only recently (Frisch and Zheligovsky in Commun Math Phys 326:499-505, 2014; Podvigina et al. in J Comput Phys 306:320-342, 2016 and references therein). Here we extend this methodology to incompressible Euler flow in an impermeable bounded domain whose boundary may be either analytic or have a regularity between indefinite differentiability and analyticity. Non-constructive regularity results for these cases have already been obtained by Glass et al. (Ann Sci Éc Norm Sup 45:1-51, 2012). Using the invariance of the boundary under the Lagrangian flow, we establish novel recursion relations that include contributions from the boundary. This leads to a constructive proof of time-analyticity of the Lagrangian trajectories with analytic boundaries, which can then be used subsequently for the design of a very high-order Cauchy-Lagrangian method.