Sample records for lagrangian dynamic model

  1. A Lagrangian dynamic subgrid-scale model turbulence

    NASA Technical Reports Server (NTRS)

    Meneveau, C.; Lund, T. S.; Cabot, W.

    1994-01-01

    A new formulation of the dynamic subgrid-scale model is tested in which the error associated with the Germano identity is minimized over flow pathlines rather than over directions of statistical homogeneity. This procedure allows the application of the dynamic model with averaging to flows in complex geometries that do not possess homogeneous directions. The characteristic Lagrangian time scale over which the averaging is performed is chosen such that the model is purely dissipative, guaranteeing numerical stability when coupled with the Smagorinsky model. The formulation is tested successfully in forced and decaying isotropic turbulence and in fully developed and transitional channel flow. In homogeneous flows, the results are similar to those of the volume-averaged dynamic model, while in channel flow, the predictions are superior to those of the plane-averaged dynamic model. The relationship between the averaged terms in the model and vortical structures (worms) that appear in the LES is investigated. Computational overhead is kept small (about 10 percent above the CPU requirements of the volume or plane-averaged dynamic model) by using an approximate scheme to advance the Lagrangian tracking through first-order Euler time integration and linear interpolation in space.

  2. A Lagrangian subgrid-scale model with dynamic estimation of Lagrangian time scale for large eddy simulation of complex flows

    NASA Astrophysics Data System (ADS)

    Verma, Aman; Mahesh, Krishnan

    2012-08-01

    The dynamic Lagrangian averaging approach for the dynamic Smagorinsky model for large eddy simulation is extended to an unstructured grid framework and applied to complex flows. The Lagrangian time scale is dynamically computed from the solution and does not need any adjustable parameter. The time scale used in the standard Lagrangian model contains an adjustable parameter θ. The dynamic time scale is computed based on a "surrogate-correlation" of the Germano-identity error (GIE). Also, a simple material derivative relation is used to approximate GIE at different events along a pathline instead of Lagrangian tracking or multi-linear interpolation. Previously, the time scale for homogeneous flows was computed by averaging along directions of homogeneity. The present work proposes modifications for inhomogeneous flows. This development allows the Lagrangian averaged dynamic model to be applied to inhomogeneous flows without any adjustable parameter. The proposed model is applied to LES of turbulent channel flow on unstructured zonal grids at various Reynolds numbers. Improvement is observed when compared to other averaging procedures for the dynamic Smagorinsky model, especially at coarse resolutions. The model is also applied to flow over a cylinder at two Reynolds numbers and good agreement with previous computations and experiments is obtained. Noticeable improvement is obtained using the proposed model over the standard Lagrangian model. The improvement is attributed to a physically consistent Lagrangian time scale. The model also shows good performance when applied to flow past a marine propeller in an off-design condition; it regularizes the eddy viscosity and adjusts locally to the dominant flow features.

  3. Fluid Dynamics Lagrangian Simulation Model

    NASA Astrophysics Data System (ADS)

    Hyman, Ellis

    1994-02-01

    The work performed by Science Applications International Corporation (SAIC) on this contract, Fluid Dynamics Lagrangian Simulation Model, Contract Number N00014-89-C-2106, SAIC Project Number 01-0157-03-0768, focused on a number of research topics in fluid dynamics. The work was in support of the programs of NRL's Laboratory for Computational Physics and Fluid Dynamics and covered the period from 10 September 1989 to 9 December 1993. In the following sections, we describe each of the efforts and the results obtained. Much of the research work has resulted in journal publications. These are included in Appendices of this report for which the reader is referred for complete details.

  4. A Vertically Lagrangian Finite-Volume Dynamical Core for Global Models

    NASA Technical Reports Server (NTRS)

    Lin, Shian-Jiann

    2003-01-01

    A finite-volume dynamical core with a terrain-following Lagrangian control-volume discretization is described. The vertically Lagrangian discretization reduces the dimensionality of the physical problem from three to two with the resulting dynamical system closely resembling that of the shallow water dynamical system. The 2D horizontal-to-Lagrangian-surface transport and dynamical processes are then discretized using the genuinely conservative flux-form semi-Lagrangian algorithm. Time marching is split- explicit, with large-time-step for scalar transport, and small fractional time step for the Lagrangian dynamics, which permits the accurate propagation of fast waves. A mass, momentum, and total energy conserving algorithm is developed for mapping the state variables periodically from the floating Lagrangian control-volume to an Eulerian terrain-following coordinate for dealing with physical parameterizations and to prevent severe distortion of the Lagrangian surfaces. Deterministic baroclinic wave growth tests and long-term integrations using the Held-Suarez forcing are presented. Impact of the monotonicity constraint is discussed.

  5. Lagrangian averages, averaged Lagrangians, and the mean effects of fluctuations in fluid dynamics.

    PubMed

    Holm, Darryl D.

    2002-06-01

    We begin by placing the generalized Lagrangian mean (GLM) equations for a compressible adiabatic fluid into the Euler-Poincare (EP) variational framework of fluid dynamics, for an averaged Lagrangian. This is the Lagrangian averaged Euler-Poincare (LAEP) theorem. Next, we derive a set of approximate small amplitude GLM equations (glm equations) at second order in the fluctuating displacement of a Lagrangian trajectory from its mean position. These equations express the linear and nonlinear back-reaction effects on the Eulerian mean fluid quantities by the fluctuating displacements of the Lagrangian trajectories in terms of their Eulerian second moments. The derivation of the glm equations uses the linearized relations between Eulerian and Lagrangian fluctuations, in the tradition of Lagrangian stability analysis for fluids. The glm derivation also uses the method of averaged Lagrangians, in the tradition of wave, mean flow interaction. Next, the new glm EP motion equations for incompressible ideal fluids are compared with the Euler-alpha turbulence closure equations. An alpha model is a GLM (or glm) fluid theory with a Taylor hypothesis closure. Such closures are based on the linearized fluctuation relations that determine the dynamics of the Lagrangian statistical quantities in the Euler-alpha equations. Thus, by using the LAEP theorem, we bridge between the GLM equations and the Euler-alpha closure equations, through the small-amplitude glm approximation in the EP variational framework. We conclude by highlighting a new application of the GLM, glm, and alpha-model results for Lagrangian averaged ideal magnetohydrodynamics. (c) 2002 American Institute of Physics.

  6. Tests of dynamic Lagrangian eddy viscosity models in Large Eddy Simulations of flow over three-dimensional bluff bodies

    NASA Astrophysics Data System (ADS)

    Tseng, Yu-Heng; Meneveau, Charles; Parlange, Marc B.

    2004-11-01

    Large Eddy Simulations (LES) of atmospheric boundary-layer air movement in urban environments are especially challenging due to complex ground topography. Typically in such applications, fairly coarse grids must be used where the subgrid-scale (SGS) model is expected to play a crucial role. A LES code using pseudo-spectral discretization in horizontal planes and second-order differencing in the vertical is implemented in conjunction with the immersed boundary method to incorporate complex ground topography, with the classic equilibrium log-law boundary condition in the new-wall region, and with several versions of the eddy-viscosity model: (1) the constant-coefficient Smagorinsky model, (2) the dynamic, scale-invariant Lagrangian model, and (3) the dynamic, scale-dependent Lagrangian model. Other planar-averaged type dynamic models are not suitable because spatial averaging is not possible without directions of statistical homogeneity. These SGS models are tested in LES of flow around a square cylinder and of flow over surface-mounted cubes. Effects on the mean flow are documented and found not to be major. Dynamic Lagrangian models give a physically more realistic SGS viscosity field, and in general, the scale-dependent Lagrangian model produces larger Smagorinsky coefficient than the scale-invariant one, leading to reduced distributions of resolved rms velocities especially in the boundary layers near the bluff bodies.

  7. Preserving Lagrangian Structure in Nonlinear Model Reduction with Application to Structural Dynamics

    DOE PAGES

    Carlberg, Kevin; Tuminaro, Ray; Boggs, Paul

    2015-03-11

    Our work proposes a model-reduction methodology that preserves Lagrangian structure and achieves computational efficiency in the presence of high-order nonlinearities and arbitrary parameter dependence. As such, the resulting reduced-order model retains key properties such as energy conservation and symplectic time-evolution maps. We focus on parameterized simple mechanical systems subjected to Rayleigh damping and external forces, and consider an application to nonlinear structural dynamics. To preserve structure, the method first approximates the system's “Lagrangian ingredients''---the Riemannian metric, the potential-energy function, the dissipation function, and the external force---and subsequently derives reduced-order equations of motion by applying the (forced) Euler--Lagrange equation with thesemore » quantities. Moreover, from the algebraic perspective, key contributions include two efficient techniques for approximating parameterized reduced matrices while preserving symmetry and positive definiteness: matrix gappy proper orthogonal decomposition and reduced-basis sparsification. Our results for a parameterized truss-structure problem demonstrate the practical importance of preserving Lagrangian structure and illustrate the proposed method's merits: it reduces computation time while maintaining high accuracy and stability, in contrast to existing nonlinear model-reduction techniques that do not preserve structure.« less

  8. Preserving Lagrangian Structure in Nonlinear Model Reduction with Application to Structural Dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlberg, Kevin; Tuminaro, Ray; Boggs, Paul

    Our work proposes a model-reduction methodology that preserves Lagrangian structure and achieves computational efficiency in the presence of high-order nonlinearities and arbitrary parameter dependence. As such, the resulting reduced-order model retains key properties such as energy conservation and symplectic time-evolution maps. We focus on parameterized simple mechanical systems subjected to Rayleigh damping and external forces, and consider an application to nonlinear structural dynamics. To preserve structure, the method first approximates the system's “Lagrangian ingredients''---the Riemannian metric, the potential-energy function, the dissipation function, and the external force---and subsequently derives reduced-order equations of motion by applying the (forced) Euler--Lagrange equation with thesemore » quantities. Moreover, from the algebraic perspective, key contributions include two efficient techniques for approximating parameterized reduced matrices while preserving symmetry and positive definiteness: matrix gappy proper orthogonal decomposition and reduced-basis sparsification. Our results for a parameterized truss-structure problem demonstrate the practical importance of preserving Lagrangian structure and illustrate the proposed method's merits: it reduces computation time while maintaining high accuracy and stability, in contrast to existing nonlinear model-reduction techniques that do not preserve structure.« less

  9. Extended Lagrangian Excited State Molecular Dynamics.

    PubMed

    Bjorgaard, J A; Sheppard, D; Tretiak, S; Niklasson, A M N

    2018-02-13

    An extended Lagrangian framework for excited state molecular dynamics (XL-ESMD) using time-dependent self-consistent field theory is proposed. The formulation is a generalization of the extended Lagrangian formulations for ground state Born-Oppenheimer molecular dynamics [Phys. Rev. Lett. 2008 100, 123004]. The theory is implemented, demonstrated, and evaluated using a time-dependent semiempirical model, though it should be generally applicable to ab initio theory. The simulations show enhanced energy stability and a significantly reduced computational cost associated with the iterative solutions of both the ground state and the electronically excited states. Relaxed convergence criteria can therefore be used both for the self-consistent ground state optimization and for the iterative subspace diagonalization of the random phase approximation matrix used to calculate the excited state transitions. The XL-ESMD approach is expected to enable numerically efficient excited state molecular dynamics for such methods as time-dependent Hartree-Fock (TD-HF), Configuration Interactions Singles (CIS), and time-dependent density functional theory (TD-DFT).

  10. An online-coupled NWP/ACT model with conserved Lagrangian levels

    NASA Astrophysics Data System (ADS)

    Sørensen, B.; Kaas, E.; Lauritzen, P. H.

    2012-04-01

    Numerical weather and climate modelling is under constant development. Semi-implicit semi-Lagrangian (SISL) models have proven to be numerically efficient in both short-range weather forecasts and climate models, due to the ability to use long time steps. Chemical/aerosol feedback mechanism are becoming more and more relevant in NWP as well as climate models, since the biogenic and anthropogenic emissions can have a direct effect on the dynamics and radiative properties of the atmosphere. To include chemical feedback mechanisms in the NWP models, on-line coupling is crucial. In 3D semi-Lagrangian schemes with quasi-Lagrangian vertical coordinates the Lagrangian levels are remapped to Eulerian model levels each time step. This remapping introduces an undesirable tendency to smooth sharp gradients and creates unphysical numerical diffusion in the vertical distribution. A semi-Lagrangian advection method is introduced, it combines an inherently mass conserving 2D semi-Lagrangian scheme, with a SISL scheme employing both hybrid vertical coordinates and a fully Lagrangian vertical coordinate. This minimizes the vertical diffusion and thus potentially improves the simulation of the vertical profiles of moisture, clouds, and chemical constituents. Since the Lagrangian levels suffer from traditional Lagrangian limitations caused by the convergence and divergence of the flow, remappings to the Eulerian model levels are generally still required - but this need only be applied after a number of time steps - unless dynamic remapping methods are used. For this several different remapping methods has been implemented. The combined scheme is mass conserving, consistent, and multi-tracer efficient.

  11. Learn the Lagrangian: A Vector-Valued RKHS Approach to Identifying Lagrangian Systems.

    PubMed

    Cheng, Ching-An; Huang, Han-Pang

    2016-12-01

    We study the modeling of Lagrangian systems with multiple degrees of freedom. Based on system dynamics, canonical parametric models require ad hoc derivations and sometimes simplification for a computable solution; on the other hand, due to the lack of prior knowledge in the system's structure, modern nonparametric models in machine learning face the curse of dimensionality, especially in learning large systems. In this paper, we bridge this gap by unifying the theories of Lagrangian systems and vector-valued reproducing kernel Hilbert space. We reformulate Lagrangian systems with kernels that embed the governing Euler-Lagrange equation-the Lagrangian kernels-and show that these kernels span a subspace capturing the Lagrangian's projection as inverse dynamics. By such property, our model uses only inputs and outputs as in machine learning and inherits the structured form as in system dynamics, thereby removing the need for the mundane derivations for new systems as well as the generalization problem in learning from scratches. In effect, it learns the system's Lagrangian, a simpler task than directly learning the dynamics. To demonstrate, we applied the proposed kernel to identify the robot inverse dynamics in simulations and experiments. Our results present a competitive novel approach to identifying Lagrangian systems, despite using only inputs and outputs.

  12. Extended Lagrangian Excited State Molecular Dynamics

    DOE PAGES

    Bjorgaard, Josiah August; Sheppard, Daniel Glen; Tretiak, Sergei; ...

    2018-01-09

    In this work, an extended Lagrangian framework for excited state molecular dynamics (XL-ESMD) using time-dependent self-consistent field theory is proposed. The formulation is a generalization of the extended Lagrangian formulations for ground state Born–Oppenheimer molecular dynamics [Phys. Rev. Lett. 2008 100, 123004]. The theory is implemented, demonstrated, and evaluated using a time-dependent semiempirical model, though it should be generally applicable to ab initio theory. The simulations show enhanced energy stability and a significantly reduced computational cost associated with the iterative solutions of both the ground state and the electronically excited states. Relaxed convergence criteria can therefore be used both formore » the self-consistent ground state optimization and for the iterative subspace diagonalization of the random phase approximation matrix used to calculate the excited state transitions. In conclusion, the XL-ESMD approach is expected to enable numerically efficient excited state molecular dynamics for such methods as time-dependent Hartree–Fock (TD-HF), Configuration Interactions Singles (CIS), and time-dependent density functional theory (TD-DFT).« less

  13. Extended Lagrangian Excited State Molecular Dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bjorgaard, Josiah August; Sheppard, Daniel Glen; Tretiak, Sergei

    In this work, an extended Lagrangian framework for excited state molecular dynamics (XL-ESMD) using time-dependent self-consistent field theory is proposed. The formulation is a generalization of the extended Lagrangian formulations for ground state Born–Oppenheimer molecular dynamics [Phys. Rev. Lett. 2008 100, 123004]. The theory is implemented, demonstrated, and evaluated using a time-dependent semiempirical model, though it should be generally applicable to ab initio theory. The simulations show enhanced energy stability and a significantly reduced computational cost associated with the iterative solutions of both the ground state and the electronically excited states. Relaxed convergence criteria can therefore be used both formore » the self-consistent ground state optimization and for the iterative subspace diagonalization of the random phase approximation matrix used to calculate the excited state transitions. In conclusion, the XL-ESMD approach is expected to enable numerically efficient excited state molecular dynamics for such methods as time-dependent Hartree–Fock (TD-HF), Configuration Interactions Singles (CIS), and time-dependent density functional theory (TD-DFT).« less

  14. Chaotic Lagrangian models for turbulent relative dispersion.

    PubMed

    Lacorata, Guglielmo; Vulpiani, Angelo

    2017-04-01

    A deterministic multiscale dynamical system is introduced and discussed as a prototype model for relative dispersion in stationary, homogeneous, and isotropic turbulence. Unlike stochastic diffusion models, here trajectory transport and mixing properties are entirely controlled by Lagrangian chaos. The anomalous "sweeping effect," a known drawback common to kinematic simulations, is removed through the use of quasi-Lagrangian coordinates. Lagrangian dispersion statistics of the model are accurately analyzed by computing the finite-scale Lyapunov exponent (FSLE), which is the optimal measure of the scaling properties of dispersion. FSLE scaling exponents provide a severe test to decide whether model simulations are in agreement with theoretical expectations and/or observation. The results of our numerical experiments cover a wide range of "Reynolds numbers" and show that chaotic deterministic flows can be very efficient, and numerically low-cost, models of turbulent trajectories in stationary, homogeneous, and isotropic conditions. The mathematics of the model is relatively simple, and, in a geophysical context, potential applications may regard small-scale parametrization issues in general circulation models, mixed layer, and/or boundary layer turbulence models as well as Lagrangian predictability studies.

  15. Chaotic Lagrangian models for turbulent relative dispersion

    NASA Astrophysics Data System (ADS)

    Lacorata, Guglielmo; Vulpiani, Angelo

    2017-04-01

    A deterministic multiscale dynamical system is introduced and discussed as a prototype model for relative dispersion in stationary, homogeneous, and isotropic turbulence. Unlike stochastic diffusion models, here trajectory transport and mixing properties are entirely controlled by Lagrangian chaos. The anomalous "sweeping effect," a known drawback common to kinematic simulations, is removed through the use of quasi-Lagrangian coordinates. Lagrangian dispersion statistics of the model are accurately analyzed by computing the finite-scale Lyapunov exponent (FSLE), which is the optimal measure of the scaling properties of dispersion. FSLE scaling exponents provide a severe test to decide whether model simulations are in agreement with theoretical expectations and/or observation. The results of our numerical experiments cover a wide range of "Reynolds numbers" and show that chaotic deterministic flows can be very efficient, and numerically low-cost, models of turbulent trajectories in stationary, homogeneous, and isotropic conditions. The mathematics of the model is relatively simple, and, in a geophysical context, potential applications may regard small-scale parametrization issues in general circulation models, mixed layer, and/or boundary layer turbulence models as well as Lagrangian predictability studies.

  16. Next generation extended Lagrangian first principles molecular dynamics

    NASA Astrophysics Data System (ADS)

    Niklasson, Anders M. N.

    2017-08-01

    Extended Lagrangian Born-Oppenheimer molecular dynamics [A. M. N. Niklasson, Phys. Rev. Lett. 100, 123004 (2008)] is formulated for general Hohenberg-Kohn density-functional theory and compared with the extended Lagrangian framework of first principles molecular dynamics by Car and Parrinello [Phys. Rev. Lett. 55, 2471 (1985)]. It is shown how extended Lagrangian Born-Oppenheimer molecular dynamics overcomes several shortcomings of regular, direct Born-Oppenheimer molecular dynamics, while improving or maintaining important features of Car-Parrinello simulations. The accuracy of the electronic degrees of freedom in extended Lagrangian Born-Oppenheimer molecular dynamics, with respect to the exact Born-Oppenheimer solution, is of second-order in the size of the integration time step and of fourth order in the potential energy surface. Improved stability over recent formulations of extended Lagrangian Born-Oppenheimer molecular dynamics is achieved by generalizing the theory to finite temperature ensembles, using fractional occupation numbers in the calculation of the inner-product kernel of the extended harmonic oscillator that appears as a preconditioner in the electronic equations of motion. Material systems that normally exhibit slow self-consistent field convergence can be simulated using integration time steps of the same order as in direct Born-Oppenheimer molecular dynamics, but without the requirement of an iterative, non-linear electronic ground-state optimization prior to the force evaluations and without a systematic drift in the total energy. In combination with proposed low-rank and on the fly updates of the kernel, this formulation provides an efficient and general framework for quantum-based Born-Oppenheimer molecular dynamics simulations.

  17. Next generation extended Lagrangian first principles molecular dynamics.

    PubMed

    Niklasson, Anders M N

    2017-08-07

    Extended Lagrangian Born-Oppenheimer molecular dynamics [A. M. N. Niklasson, Phys. Rev. Lett. 100, 123004 (2008)] is formulated for general Hohenberg-Kohn density-functional theory and compared with the extended Lagrangian framework of first principles molecular dynamics by Car and Parrinello [Phys. Rev. Lett. 55, 2471 (1985)]. It is shown how extended Lagrangian Born-Oppenheimer molecular dynamics overcomes several shortcomings of regular, direct Born-Oppenheimer molecular dynamics, while improving or maintaining important features of Car-Parrinello simulations. The accuracy of the electronic degrees of freedom in extended Lagrangian Born-Oppenheimer molecular dynamics, with respect to the exact Born-Oppenheimer solution, is of second-order in the size of the integration time step and of fourth order in the potential energy surface. Improved stability over recent formulations of extended Lagrangian Born-Oppenheimer molecular dynamics is achieved by generalizing the theory to finite temperature ensembles, using fractional occupation numbers in the calculation of the inner-product kernel of the extended harmonic oscillator that appears as a preconditioner in the electronic equations of motion. Material systems that normally exhibit slow self-consistent field convergence can be simulated using integration time steps of the same order as in direct Born-Oppenheimer molecular dynamics, but without the requirement of an iterative, non-linear electronic ground-state optimization prior to the force evaluations and without a systematic drift in the total energy. In combination with proposed low-rank and on the fly updates of the kernel, this formulation provides an efficient and general framework for quantum-based Born-Oppenheimer molecular dynamics simulations.

  18. Lagrangian predictability characteristics of an Ocean Model

    NASA Astrophysics Data System (ADS)

    Lacorata, Guglielmo; Palatella, Luigi; Santoleri, Rosalia

    2014-11-01

    The Mediterranean Forecasting System (MFS) Ocean Model, provided by INGV, has been chosen as case study to analyze Lagrangian trajectory predictability by means of a dynamical systems approach. To this regard, numerical trajectories are tested against a large amount of Mediterranean drifter data, used as sample of the actual tracer dynamics across the sea. The separation rate of a trajectory pair is measured by computing the Finite-Scale Lyapunov Exponent (FSLE) of first and second kind. An additional kinematic Lagrangian model (KLM), suitably treated to avoid "sweeping"-related problems, has been nested into the MFS in order to recover, in a statistical sense, the velocity field contributions to pair particle dispersion, at mesoscale level, smoothed out by finite resolution effects. Some of the results emerging from this work are: (a) drifter pair dispersion displays Richardson's turbulent diffusion inside the [10-100] km range, while numerical simulations of MFS alone (i.e., without subgrid model) indicate exponential separation; (b) adding the subgrid model, model pair dispersion gets very close to observed data, indicating that KLM is effective in filling the energy "mesoscale gap" present in MFS velocity fields; (c) there exists a threshold size beyond which pair dispersion becomes weakly sensitive to the difference between model and "real" dynamics; (d) the whole methodology here presented can be used to quantify model errors and validate numerical current fields, as far as forecasts of Lagrangian dispersion are concerned.

  19. Thermostating extended Lagrangian Born-Oppenheimer molecular dynamics.

    PubMed

    Martínez, Enrique; Cawkwell, Marc J; Voter, Arthur F; Niklasson, Anders M N

    2015-04-21

    Extended Lagrangian Born-Oppenheimer molecular dynamics is developed and analyzed for applications in canonical (NVT) simulations. Three different approaches are considered: the Nosé and Andersen thermostats and Langevin dynamics. We have tested the temperature distribution under different conditions of self-consistent field (SCF) convergence and time step and compared the results to analytical predictions. We find that the simulations based on the extended Lagrangian Born-Oppenheimer framework provide accurate canonical distributions even under approximate SCF convergence, often requiring only a single diagonalization per time step, whereas regular Born-Oppenheimer formulations exhibit unphysical fluctuations unless a sufficiently high degree of convergence is reached at each time step. The thermostated extended Lagrangian framework thus offers an accurate approach to sample processes in the canonical ensemble at a fraction of the computational cost of regular Born-Oppenheimer molecular dynamics simulations.

  20. Thermostating extended Lagrangian Born-Oppenheimer molecular dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martínez, Enrique; Cawkwell, Marc J.; Voter, Arthur F.

    Here, Extended Lagrangian Born-Oppenheimer molecular dynamics is developed and analyzed for applications in canonical (NVT) simulations. Three different approaches are considered: the Nosé and Andersen thermostats and Langevin dynamics. We have tested the temperature distribution under different conditions of self-consistent field (SCF) convergence and time step and compared the results to analytical predictions. We find that the simulations based on the extended Lagrangian Born-Oppenheimer framework provide accurate canonical distributions even under approximate SCF convergence, often requiring only a single diagonalization per time step, whereas regular Born-Oppenheimer formulations exhibit unphysical fluctuations unless a sufficiently high degree of convergence is reached atmore » each time step. Lastly, the thermostated extended Lagrangian framework thus offers an accurate approach to sample processes in the canonical ensemble at a fraction of the computational cost of regular Born-Oppenheimer molecular dynamics simulations.« less

  1. Thermostating extended Lagrangian Born-Oppenheimer molecular dynamics

    DOE PAGES

    Martínez, Enrique; Cawkwell, Marc J.; Voter, Arthur F.; ...

    2015-04-21

    Here, Extended Lagrangian Born-Oppenheimer molecular dynamics is developed and analyzed for applications in canonical (NVT) simulations. Three different approaches are considered: the Nosé and Andersen thermostats and Langevin dynamics. We have tested the temperature distribution under different conditions of self-consistent field (SCF) convergence and time step and compared the results to analytical predictions. We find that the simulations based on the extended Lagrangian Born-Oppenheimer framework provide accurate canonical distributions even under approximate SCF convergence, often requiring only a single diagonalization per time step, whereas regular Born-Oppenheimer formulations exhibit unphysical fluctuations unless a sufficiently high degree of convergence is reached atmore » each time step. Lastly, the thermostated extended Lagrangian framework thus offers an accurate approach to sample processes in the canonical ensemble at a fraction of the computational cost of regular Born-Oppenheimer molecular dynamics simulations.« less

  2. Lagrangian continuum dynamics in ALEGRA.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, Michael K. W.; Love, Edward

    Alegra is an ALE (Arbitrary Lagrangian-Eulerian) multi-material finite element code that emphasizes large deformations and strong shock physics. The Lagrangian continuum dynamics package in Alegra uses a Galerkin finite element spatial discretization and an explicit central-difference stepping method in time. The goal of this report is to describe in detail the characteristics of this algorithm, including the conservation and stability properties. The details provided should help both researchers and analysts understand the underlying theory and numerical implementation of the Alegra continuum hydrodynamics algorithm.

  3. Dynamics of Multibody Systems Near Lagrangian Points

    NASA Astrophysics Data System (ADS)

    Wong, Brian

    This thesis examines the dynamics of a physically connected multi-spacecraft system in the vicinity of the Lagrangian points of a Circular Restricted Three-Body System. The spacecraft system is arranged in a wheel-spoke configuration with smaller and less massive satellites connected to a central hub using truss/beams or tether connectors. The kinematics of the system is first defined, and the kinetic, gravitational potential energy and elastic potential energy of the system are derived. The Assumed Modes Method is used to discretize the continuous variables of the system, and a general set of ordinary differential equations describing the dynamics of the connectors and the central hub are obtained using the Lagrangian method. The flexible body dynamics of the tethered and truss connected systems are examined using numerical simulations. The results show that these systems experienced only small elastic deflections when they are naturally librating or rotating at moderate angular velocities, and these deflections have relatively small effect on the attitude dynamics of the systems. Based on these results, it is determined that the connectors can be modeled as rigid when only the attitude dynamics of the system is of interest. The equations of motion of rigid satellites stationed at the Lagrangian points are linearized, and the stability conditions of the satellite are obtained from the linear equations. The required conditions are shown to be similar to those of geocentric satellites. Study of the linear equations also revealed the resonant conditions of rigid Lagrangian point satellites, when a librational natural frequency of the satellite matches the frequency of its station-keeping orbit leading to large attitude motions. For tethered satellites, the linear analysis shows that the tethers are in stable equilibrium when they lie along a line joining the two primary celestial bodies of the Three-Body System. Numerical simulations are used to study the long term

  4. Lagrangian-Hamiltonian unified formalism for autonomous higher order dynamical systems

    NASA Astrophysics Data System (ADS)

    Prieto-Martínez, Pedro Daniel; Román-Roy, Narciso

    2011-09-01

    The Lagrangian-Hamiltonian unified formalism of Skinner and Rusk was originally stated for autonomous dynamical systems in classical mechanics. It has been generalized for non-autonomous first-order mechanical systems, as well as for first-order and higher order field theories. However, a complete generalization to higher order mechanical systems is yet to be described. In this work, after reviewing the natural geometrical setting and the Lagrangian and Hamiltonian formalisms for higher order autonomous mechanical systems, we develop a complete generalization of the Lagrangian-Hamiltonian unified formalism for these kinds of systems, and we use it to analyze some physical models from this new point of view.

  5. Vorticity-divergence semi-Lagrangian global atmospheric model SL-AV20: dynamical core

    NASA Astrophysics Data System (ADS)

    Tolstykh, Mikhail; Shashkin, Vladimir; Fadeev, Rostislav; Goyman, Gordey

    2017-05-01

    SL-AV (semi-Lagrangian, based on the absolute vorticity equation) is a global hydrostatic atmospheric model. Its latest version, SL-AV20, provides global operational medium-range weather forecast with 20 km resolution over Russia. The lower-resolution configurations of SL-AV20 are being tested for seasonal prediction and climate modeling. The article presents the model dynamical core. Its main features are a vorticity-divergence formulation at the unstaggered grid, high-order finite-difference approximations, semi-Lagrangian semi-implicit discretization and the reduced latitude-longitude grid with variable resolution in latitude. The accuracy of SL-AV20 numerical solutions using a reduced lat-lon grid and the variable resolution in latitude is tested with two idealized test cases. Accuracy and stability of SL-AV20 in the presence of the orography forcing are tested using the mountain-induced Rossby wave test case. The results of all three tests are in good agreement with other published model solutions. It is shown that the use of the reduced grid does not significantly affect the accuracy up to the 25 % reduction in the number of grid points with respect to the regular grid. Variable resolution in latitude allows us to improve the accuracy of a solution in the region of interest.

  6. Symmetries in Lagrangian Dynamics

    ERIC Educational Resources Information Center

    Ferrario, Carlo; Passerini, Arianna

    2007-01-01

    In the framework of Noether's theorem, a distinction between Lagrangian and dynamical symmetries is made, in order to clarify some aspects neglected by textbooks. An intuitive setting of the concept of invariance of differential equations is presented. The analysis is completed by deriving the symmetry properties in the motion of a charged…

  7. Higher-Order Extended Lagrangian Born-Oppenheimer Molecular Dynamics for Classical Polarizable Models.

    PubMed

    Albaugh, Alex; Head-Gordon, Teresa; Niklasson, Anders M N

    2018-02-13

    Generalized extended Lagrangian Born-Oppenheimer molecular dynamics (XLBOMD) methods provide a framework for fast iteration-free simulations of models that normally require expensive electronic ground state optimizations prior to the force evaluations at every time step. XLBOMD uses dynamically driven auxiliary degrees of freedom that fluctuate about a variationally optimized ground state of an approximate "shadow" potential which approximates the true reference potential. While the requirements for such shadow potentials are well understood, constructing such potentials in practice has previously been ad hoc, and in this work, we present a systematic development of XLBOMD shadow potentials that match the reference potential to any order. We also introduce a framework for combining friction-like dissipation for the auxiliary degrees of freedom with general-order integration, a combination that was not previously possible. These developments are demonstrated with a simple fluctuating charge model and point induced dipole polarization models.

  8. Higher-Order Extended Lagrangian Born–Oppenheimer Molecular Dynamics for Classical Polarizable Models

    DOE PAGES

    Albaugh, Alex; Head-Gordon, Teresa; Niklasson, Anders M. N.

    2018-01-09

    Generalized extended Lagrangian Born−Oppenheimer molecular dynamics (XLBOMD) methods provide a framework for fast iteration-free simulations of models that normally require expensive electronic ground state optimizations prior to the force evaluations at every time step. XLBOMD uses dynamically driven auxiliary degrees of freedom that fluctuate about a variationally optimized ground state of an approximate “shadow” potential which approximates the true reference potential. While the requirements for such shadow potentials are well understood, constructing such potentials in practice has previously been ad hoc, and in this work, we present a systematic development of XLBOMD shadow potentials that match the reference potential tomore » any order. We also introduce a framework for combining friction-like dissipation for the auxiliary degrees of freedom with general-order integration, a combination that was not previously possible. These developments are demonstrated with a simple fluctuating charge model and point induced dipole polarization models.« less

  9. Higher-Order Extended Lagrangian Born–Oppenheimer Molecular Dynamics for Classical Polarizable Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albaugh, Alex; Head-Gordon, Teresa; Niklasson, Anders M. N.

    Generalized extended Lagrangian Born−Oppenheimer molecular dynamics (XLBOMD) methods provide a framework for fast iteration-free simulations of models that normally require expensive electronic ground state optimizations prior to the force evaluations at every time step. XLBOMD uses dynamically driven auxiliary degrees of freedom that fluctuate about a variationally optimized ground state of an approximate “shadow” potential which approximates the true reference potential. While the requirements for such shadow potentials are well understood, constructing such potentials in practice has previously been ad hoc, and in this work, we present a systematic development of XLBOMD shadow potentials that match the reference potential tomore » any order. We also introduce a framework for combining friction-like dissipation for the auxiliary degrees of freedom with general-order integration, a combination that was not previously possible. These developments are demonstrated with a simple fluctuating charge model and point induced dipole polarization models.« less

  10. Extended Lagrangian formulation of charge-constrained tight-binding molecular dynamics.

    PubMed

    Cawkwell, M J; Coe, J D; Yadav, S K; Liu, X-Y; Niklasson, A M N

    2015-06-09

    The extended Lagrangian Born-Oppenheimer molecular dynamics formalism [Niklasson, Phys. Rev. Lett., 2008, 100, 123004] has been applied to a tight-binding model under the constraint of local charge neutrality to yield microcanonical trajectories with both precise, long-term energy conservation and a reduced number of self-consistent field optimizations at each time step. The extended Lagrangian molecular dynamics formalism restores time reversal symmetry in the propagation of the electronic degrees of freedom, and it enables the efficient and accurate self-consistent optimization of the chemical potential and atomwise potential energy shifts in the on-site elements of the tight-binding Hamiltonian that are required when enforcing local charge neutrality. These capabilities are illustrated with microcanonical molecular dynamics simulations of a small metallic cluster using an sd-valent tight-binding model for titanium. The effects of weak dissipation on the propagation of the auxiliary degrees of freedom for the chemical potential and on-site Hamiltonian matrix elements that is used to counteract the accumulation of numerical noise during trajectories was also investigated.

  11. Vortex dynamics and Lagrangian statistics in a model for active turbulence.

    PubMed

    James, Martin; Wilczek, Michael

    2018-02-14

    Cellular suspensions such as dense bacterial flows exhibit a turbulence-like phase under certain conditions. We study this phenomenon of "active turbulence" statistically by using numerical tools. Following Wensink et al. (Proc. Natl. Acad. Sci. U.S.A. 109, 14308 (2012)), we model active turbulence by means of a generalized Navier-Stokes equation. Two-point velocity statistics of active turbulence, both in the Eulerian and the Lagrangian frame, is explored. We characterize the scale-dependent features of two-point statistics in this system. Furthermore, we extend this statistical study with measurements of vortex dynamics in this system. Our observations suggest that the large-scale statistics of active turbulence is close to Gaussian with sub-Gaussian tails.

  12. A Satellite-Based Lagrangian View on Phytoplankton Dynamics.

    PubMed

    Lehahn, Yoav; d'Ovidio, Francesco; Koren, Ilan

    2018-01-03

    The well-lit upper layer of the open ocean is a dynamical environment that hosts approximately half of global primary production. In the remote parts of this environment, distant from the coast and from the seabed, there is no obvious spatially fixed reference frame for describing the dynamics of the microscopic drifting organisms responsible for this immense production of organic matter-the phytoplankton. Thus, a natural perspective for studying phytoplankton dynamics is to follow the trajectories of water parcels in which the organisms are embedded. With the advent of satellite oceanography, this Lagrangian perspective has provided valuable information on different aspects of phytoplankton dynamics, including bloom initiation and termination, spatial distribution patterns, biodiversity, export of carbon to the deep ocean, and, more recently, bottom-up mechanisms that affect the distribution and behavior of higher-trophic-level organisms. Upcoming submesoscale-resolving satellite observations and swarms of autonomous platforms open the way to the integration of vertical dynamics into the Lagrangian view of phytoplankton dynamics.

  13. A Satellite-Based Lagrangian View on Phytoplankton Dynamics

    NASA Astrophysics Data System (ADS)

    Lehahn, Yoav; d'Ovidio, Francesco; Koren, Ilan

    2018-01-01

    The well-lit upper layer of the open ocean is a dynamical environment that hosts approximately half of global primary production. In the remote parts of this environment, distant from the coast and from the seabed, there is no obvious spatially fixed reference frame for describing the dynamics of the microscopic drifting organisms responsible for this immense production of organic matter—the phytoplankton. Thus, a natural perspective for studying phytoplankton dynamics is to follow the trajectories of water parcels in which the organisms are embedded. With the advent of satellite oceanography, this Lagrangian perspective has provided valuable information on different aspects of phytoplankton dynamics, including bloom initiation and termination, spatial distribution patterns, biodiversity, export of carbon to the deep ocean, and, more recently, bottom-up mechanisms that affect the distribution and behavior of higher-trophic-level organisms. Upcoming submesoscale-resolving satellite observations and swarms of autonomous platforms open the way to the integration of vertical dynamics into the Lagrangian view of phytoplankton dynamics.

  14. Next Generation Extended Lagrangian Quantum-based Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Negre, Christian

    2017-06-01

    A new framework for extended Lagrangian first-principles molecular dynamics simulations is presented, which overcomes shortcomings of regular, direct Born-Oppenheimer molecular dynamics, while maintaining important advantages of the unified extended Lagrangian formulation of density functional theory pioneered by Car and Parrinello three decades ago. The new framework allows, for the first time, energy conserving, linear-scaling Born-Oppenheimer molecular dynamics simulations, which is necessary to study larger and more realistic systems over longer simulation times than previously possible. Expensive, self-consinstent-field optimizations are avoided and normal integration time steps of regular, direct Born-Oppenheimer molecular dynamics can be used. Linear scaling electronic structure theory is presented using a graph-based approach that is ideal for parallel calculations on hybrid computer platforms. For the first time, quantum based Born-Oppenheimer molecular dynamics simulation is becoming a practically feasible approach in simulations of +100,000 atoms-representing a competitive alternative to classical polarizable force field methods. In collaboration with: Anders Niklasson, Los Alamos National Laboratory.

  15. A Lagrangian mixing frequency model for transported PDF modeling

    NASA Astrophysics Data System (ADS)

    Turkeri, Hasret; Zhao, Xinyu

    2017-11-01

    In this study, a Lagrangian mixing frequency model is proposed for molecular mixing models within the framework of transported probability density function (PDF) methods. The model is based on the dissipations of mixture fraction and progress variables obtained from Lagrangian particles in PDF methods. The new model is proposed as a remedy to the difficulty in choosing the optimal model constant parameters when using conventional mixing frequency models. The model is implemented in combination with the Interaction by exchange with the mean (IEM) mixing model. The performance of the new model is examined by performing simulations of Sandia Flame D and the turbulent premixed flame from the Cambridge stratified flame series. The simulations are performed using the pdfFOAM solver which is a LES/PDF solver developed entirely in OpenFOAM. A 16-species reduced mechanism is used to represent methane/air combustion, and in situ adaptive tabulation is employed to accelerate the finite-rate chemistry calculations. The results are compared with experimental measurements as well as with the results obtained using conventional mixing frequency models. Dynamic mixing frequencies are predicted using the new model without solving additional transport equations, and good agreement with experimental data is observed.

  16. Transport induced by mean-eddy interaction: I. Theory, and relation to Lagrangian lobe dynamics

    NASA Astrophysics Data System (ADS)

    Ide, Kayo; Wiggins, Stephen

    2015-02-01

    In this paper we develop a method for the estimation of Transport Induced by the Mean-Eddy interaction (TIME) in two-dimensional unsteady flows. The method is based on the dynamical systems approach to fluid transport and can be viewed as a hybrid combination of Lagrangian and Eulerian methods. The (Eulerian) boundaries across which we consider (Lagrangian) transport are kinematically defined by appropriately chosen streamlines of the mean flow. By evaluating the impact of the mean-eddy interaction on transport, the TIME method can be used as a diagnostic tool for transport processes that occur during a specified time interval along a specified boundary segment. We introduce two types of TIME functions: one that quantifies the accumulation of flow properties and another that measures the displacement of the transport geometry. The spatial geometry of transport is described by the so-called pseudo-lobes, and temporal evolution of transport by their dynamics. In the case where the TIME functions are evaluated along a separatrix, the pseudo-lobes have a relationship to the lobes of Lagrangian transport theory. In fact, one of the TIME functions is identical to the Melnikov function that is used to measure the distance, at leading order in a small parameter, between the two invariant manifolds that define the Lagrangian lobes. We contrast the similarities and differences between the TIME and Lagrangian lobe dynamics in detail. An application of the TIME method is carried out for inter-gyre transport in the wind-driven oceanic circulation model and a comparison with the Lagrangian transport theory is made.

  17. Stochastic modeling of Lagrangian accelerations

    NASA Astrophysics Data System (ADS)

    Reynolds, Andy

    2002-11-01

    It is shown how Sawford's second-order Lagrangian stochastic model (Phys. Fluids A 3, 1577-1586, 1991) for fluid-particle accelerations can be combined with a model for the evolution of the dissipation rate (Pope and Chen, Phys. Fluids A 2, 1437-1449, 1990) to produce a Lagrangian stochastic model that is consistent with both the measured distribution of Lagrangian accelerations (La Porta et al., Nature 409, 1017-1019, 2001) and Kolmogorov's similarity theory. The later condition is found not to be satisfied when a constant dissipation rate is employed and consistency with prescribed acceleration statistics is enforced through fulfilment of a well-mixed condition.

  18. Generalized extended Lagrangian Born-Oppenheimer molecular dynamics

    DOE PAGES

    Niklasson, Anders M. N.; Cawkwell, Marc J.

    2014-10-29

    Extended Lagrangian Born-Oppenheimer molecular dynamics based on Kohn-Sham density functional theory is generalized in the limit of vanishing self-consistent field optimization prior to the force evaluations. The equations of motion are derived directly from the extended Lagrangian under the condition of an adiabatic separation between the nuclear and the electronic degrees of freedom. We show how this separation is automatically fulfilled and system independent. The generalized equations of motion require only one diagonalization per time step and are applicable to a broader range of materials with improved accuracy and stability compared to previous formulations.

  19. Stochastic Lagrangian dynamics for charged flows in the E-F regions of ionosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang Wenbo; Mahalov, Alex

    2013-03-15

    We develop a three-dimensional numerical model for the E-F region ionosphere and study the Lagrangian dynamics for plasma flows in this region. Our interest rests on the charge-neutral interactions and the statistics associated with stochastic Lagrangian motion. In particular, we examine the organizing mixing patterns for plasma flows due to polarized gravity wave excitations in the neutral field, using Lagrangian coherent structures (LCS). LCS objectively depict the flow topology-the extracted attractors indicate generation of ionospheric density gradients, due to accumulation of plasma. Using Lagrangian measures such as the finite-time Lyapunov exponents, we locate the Lagrangian skeletons for mixing in plasma,more » hence where charged fronts are expected to appear. With polarized neutral wind, we find that the corresponding plasma velocity is also polarized. Moreover, the polarized velocity alone, coupled with stochastic Lagrangian motion, may give rise to polarized density fronts in plasma. Statistics of these trajectories indicate high level of non-Gaussianity. This includes clear signatures of variance, skewness, and kurtosis of displacements taking polarized structures aligned with the gravity waves, and being anisotropic.« less

  20. A Lagrangian model of Copepod dynamics in turbulent flows

    NASA Astrophysics Data System (ADS)

    Ardeshiri, Hamidreza; Benkeddad, Ibtissem; Schmitt, Francois G.; Souissi, Sami; Toschi, Federico; Calzavarini, Enrico

    2016-04-01

    Planktonic copepods are small crustaceans that have the ability to swim by quick powerful jumps. Such an aptness is used to escape from high shear regions, which may be caused either by flow perturbations, produced by a large predator such as fish larave, or by the inherent highly turbulent dynamics of the ocean. Through a combined experimental and numerical study, we investigate the impact of jumping behaviour on the small-scale patchiness of copepods in a turbulent environment. Recorded velocity tracks of copepods displaying escape response jumps in still water are used to define and tune a Lagrangian Copepod (LC) model. The model is further employed to simulate the behaviour of thousands of copepods in a fully developed hydrodynamic turbulent flow obtained by direct numerical simulation of the Navier-Stokes equations. First, we show that the LC velocity statistics is in qualitative agreement with available experimental observations of copepods in turbulence. Second, we quantify the clustering of LC, via the fractal dimension D2. We show that D2 can be as low as 2.3, corresponding to local sheetlike aggregates, and that it critically depends on the shear-rate sensitivity of the proposed LC model. We further investigate the effect of jump intensity, jump orientation and geometrical aspect ratio of the copepods on the small-scale spatial distribution. Possible ecological implications of the observed clustering on encounter rates and mating success are discussed.

  1. Sensitivity Analysis of a Lagrangian Sea Ice Model

    NASA Astrophysics Data System (ADS)

    Rabatel, Matthias; Rampal, Pierre; Bertino, Laurent; Carrassi, Alberto; Jones, Christopher K. R. T.

    2017-04-01

    Large changes in the Arctic sea ice have been observed in the last decades in terms of the ice thickness, extension and drift. Understanding the mechanisms behind these changes is of paramount importance to enhance our modeling and forecasting capabilities. For 40 years, models have been developed to describe the non-linear dynamical response of the sea ice to a number of external and internal factors. Nevertheless, there still exists large deviations between predictions and observations. There are related to incorrect descriptions of the sea ice response and/or to the uncertainties about the different sources of information: parameters, initial and boundary conditions and external forcing. Data assimilation (DA) methods are used to combine observations with models, and there is nowadays an increasing interest of DA for sea-ice models and observations. We consider here the state-of-the art sea-ice model, neXtSIM te{Rampal2016a}, which is based on a time-varying Lagrangian mesh and makes use of the Elasto-Brittle rheology. Our ultimate goal is designing appropriate DA scheme for such a modelling facility. This contribution reports about the first milestone along this line: a sensitivity analysis in order to quantify forecast error to guide model development and to set basis for further Lagrangian DA methods. Specific features of the sea-ice dynamics in relation to the wind are thus analysed. Virtual buoys are deployed across the Arctic domain and their trajectories of motion are analysed. The simulated trajectories are also compared to real buoys trajectories observed. The model response is also compared with that one from a model version not including internal forcing to highlight the role of the rheology. Conclusions and perspectives for the general DA implementation are also discussed. \\bibitem{Rampal2016a} P. Rampal, S. Bouillon, E. Ólason, and M. Morlighem. ne{X}t{SIM}: a new {L}agrangian sea ice model. The Cryosphere, 10 (3): 1055-1073, 2016.

  2. Lagrangian fluid description with simple applications in compressible plasma and gas dynamics

    NASA Astrophysics Data System (ADS)

    Schamel, Hans

    2004-03-01

    The Lagrangian fluid description, in which the dynamics of fluids is formulated in terms of trajectories of fluid elements, not only presents an alternative to the more common Eulerian description but has its own merits and advantages. This aspect, which seems to be not fully explored yet, is getting increasing attention in fluid dynamics and related areas as Lagrangian codes and experimental techniques are developed utilizing the Lagrangian point of view with the ultimate goal of a deeper understanding of flow dynamics. In this tutorial review we report on recent progress made in the analysis of compressible, more or less perfect flows such as plasmas and dilute gases. The equations of motion are exploited to get further insight into the formation and evolution of coherent structures, which often exhibit a singular or collapse type behavior occurring in finite time. It is argued that this technique of solution has a broad applicability due to the simplicity and generality of equations used. The focus is on four different topics, the physics of which being governed by simple fluid equations subject to initial and/or boundary conditions. Whenever possible also experimental results are mentioned. In the expansion of a semi-infinite plasma into a vacuum the energetic ion peak propagating supersonically towards the vacuum-as seen in laboratory experiments-is interpreted by means of the Lagrangian fluid description as a relic of a wave breaking scenario of the corresponding inviscid ion dynamics. The inclusion of viscosity is shown numerically to stabilize the associated density collapse giving rise to a well defined fast ion peak reminiscent of adhesive matter. In purely convection driven flows the Lagrangian flow velocity is given by its initial value and hence the Lagrangian velocity gradient tensor can be evaluated accurately to find out the appearance of singularities in density and vorticity and the emergence of new structures such as wavelets in one-dimension (1D

  3. Lagrangian Observations and Modeling of Marine Larvae

    NASA Astrophysics Data System (ADS)

    Paris, Claire B.; Irisson, Jean-Olivier

    2017-04-01

    Just within the past two decades, studies on the early-life history stages of marine organisms have led to new paradigms in population dynamics. Unlike passive plant seeds that are transported by the wind or by animals, marine larvae have motor and sensory capabilities. As a result, marine larvae have a tremendous capacity to actively influence their dispersal. This is continuously revealed as we develop new techniques to observe larvae in their natural environment and begin to understand their ability to detect cues throughout ontogeny, process the information, and use it to ride ocean currents and navigate their way back home, or to a place like home. We present innovative in situ and numerical modeling approaches developed to understand the underlying mechanisms of larval transport in the ocean. We describe a novel concept of a Lagrangian platform, the Drifting In Situ Chamber (DISC), designed to observe and quantify complex larval behaviors and their interactions with the pelagic environment. We give a brief history of larval ecology research with the DISC, showing that swimming is directional in most species, guided by cues as diverse as the position of the sun or the underwater soundscape, and even that (unlike humans!) larvae orient better and swim faster when moving as a group. The observed Lagrangian behavior of individual larvae are directly implemented in the Connectivity Modeling System (CMS), an open source Lagrangian tracking application. Simulations help demonstrate the impact that larval behavior has compared to passive Lagrangian trajectories. These methodologies are already the base of exciting findings and are promising tools for documenting and simulating the behavior of other small pelagic organisms, forecasting their migration in a changing ocean.

  4. Forecasting Future Sea Ice Conditions: A Lagrangian Approach

    DTIC Science & Technology

    2015-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Forecasting Future Sea Ice Conditions: A Lagrangian ...GCMs participating in IPCC AR5 agree with observed source region patterns from the satellite- derived dataset. 4- Compare Lagrangian ice... Lagrangian sea-ice back trajectories to estimate thermodynamic and dynamic (advection) ice loss. APPROACH We use a Lagrangian trajectory model to

  5. Vorticity and symplecticity in multi-symplectic, Lagrangian gas dynamics

    NASA Astrophysics Data System (ADS)

    Webb, G. M.; Anco, S. C.

    2016-02-01

    The Lagrangian, multi-dimensional, ideal, compressible gas dynamic equations are written in a multi-symplectic form, in which the Lagrangian fluid labels, m i (the Lagrangian mass coordinates) and time t are the independent variables, and in which the Eulerian position of the fluid element {x}={x}({m},t) and the entropy S=S({m},t) are the dependent variables. Constraints in the variational principle are incorporated by means of Lagrange multipliers. The constraints are: the entropy advection equation S t = 0, the Lagrangian map equation {{x}}t={u} where {u} is the fluid velocity, and the mass continuity equation which has the form J=τ where J={det}({x}{ij}) is the Jacobian of the Lagrangian map in which {x}{ij}=\\partial {x}i/\\partial {m}j and τ =1/ρ is the specific volume of the gas. The internal energy per unit volume of the gas \\varepsilon =\\varepsilon (ρ ,S) corresponds to a non-barotropic gas. The Lagrangian is used to define multi-momenta, and to develop de Donder-Weyl Hamiltonian equations. The de Donder-Weyl equations are cast in a multi-symplectic form. The pullback conservation laws and the symplecticity conservation laws are obtained. One class of symplecticity conservation laws give rise to vorticity and potential vorticity type conservation laws, and another class of symplecticity laws are related to derivatives of the Lagrangian energy conservation law with respect to the Lagrangian mass coordinates m i . We show that the vorticity-symplecticity laws can be derived by a Lie dragging method, and also by using Noether’s second theorem and a fluid relabelling symmetry which is a divergence symmetry of the action. We obtain the Cartan-Poincaré form describing the equations and we discuss a set of differential forms representing the equation system.

  6. Implications of Lagrangian transport for coupled chemistry-climate simulations

    NASA Astrophysics Data System (ADS)

    Stenke, A.; Dameris, M.; Grewe, V.; Garny, H.

    2008-10-01

    For the first time a purely Lagrangian transport algorithm is applied in a fully coupled chemistry-climate model (CCM). We use the Lagrangian scheme ATTILA for the transport of water vapour, cloud water and chemical trace species in the ECHAM4.L39(DLR)/CHEM (E39C) CCM. The advantage of the Lagrangian approach is that it is numerically non-diffusive and therefore maintains steeper and more realistic gradients than the operational semi-Lagrangian transport scheme. In case of radiatively active species changes in the simulated distributions feed back to model dynamics which in turn affect the modelled transport. The implications of the Lagrangian transport scheme for stratospheric model dynamics and tracer distributions in the upgraded model version E39C-ATTILA (E39C-A) are evaluated by comparison with observations and results of the E39C model with the operational semi-Lagrangian advection scheme. We find that several deficiencies in stratospheric dynamics in E39C seem to originate from a pronounced modelled wet bias and an associated cold bias in the extra-tropical lowermost stratosphere. The reduction of the simulated moisture and temperature bias in E39C-A leads to a significant advancement of stratospheric dynamics in terms of the mean state as well as annual and interannual variability. As a consequence of the favourable numerical characteristics of the Lagrangian transport scheme and the improved model dynamics, E39C-A generally shows more realistic stratospheric tracer distributions: Compared to E39C high stratospheric chlorine (Cly) concentrations extend further downward and agree now well with analyses derived from observations. Therefore E39C-A realistically covers the altitude of maximum ozone depletion in the stratosphere. The location of the ozonopause, i.e. the transition from low tropospheric to high stratospheric ozone values, is also clearly improved in E39C-A. Furthermore, the simulated temporal evolution of stratospheric Cly in the past is

  7. Constrained optimization framework for interface-aware sub-scale dynamics models for voids closure in Lagrangian hydrodynamics

    DOE PAGES

    Barlow, Andrew; Klima, Matej; Shashkov, Mikhail

    2018-04-02

    In hydrocodes, voids are used to represent vacuum and model free boundaries between vacuum and real materials. We give a systematic description of a new treatment of void closure in the framework of the multimaterial arbitrary Lagrangian–Eulerian (ALE) methods. This includes a new formulation of the interface-aware sub-scale-dynamics (IA-SSD) closure model for multimaterial cells with voids, which is used in the Lagrangian stage of our indirect ALE scheme. The results of the comprehensive testing of the new model are presented for one- and two-dimensional multimaterial calculations in the presence of voids. Finally, we also present a sneak peek of amore » realistic shaped charge calculation in the presence of voids and solids.« less

  8. Constrained optimization framework for interface-aware sub-scale dynamics models for voids closure in Lagrangian hydrodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barlow, Andrew; Klima, Matej; Shashkov, Mikhail

    In hydrocodes, voids are used to represent vacuum and model free boundaries between vacuum and real materials. We give a systematic description of a new treatment of void closure in the framework of the multimaterial arbitrary Lagrangian–Eulerian (ALE) methods. This includes a new formulation of the interface-aware sub-scale-dynamics (IA-SSD) closure model for multimaterial cells with voids, which is used in the Lagrangian stage of our indirect ALE scheme. The results of the comprehensive testing of the new model are presented for one- and two-dimensional multimaterial calculations in the presence of voids. Finally, we also present a sneak peek of amore » realistic shaped charge calculation in the presence of voids and solids.« less

  9. A LES-based Eulerian-Lagrangian approach to predict the dynamics of bubble plumes

    NASA Astrophysics Data System (ADS)

    Fraga, Bruño; Stoesser, Thorsten; Lai, Chris C. K.; Socolofsky, Scott A.

    2016-01-01

    An approach for Eulerian-Lagrangian large-eddy simulation of bubble plume dynamics is presented and its performance evaluated. The main numerical novelties consist in defining the gas-liquid coupling based on the bubble size to mesh resolution ratio (Dp/Δx) and the interpolation between Eulerian and Lagrangian frameworks through the use of delta functions. The model's performance is thoroughly validated for a bubble plume in a cubic tank in initially quiescent water using experimental data obtained from high-resolution ADV and PIV measurements. The predicted time-averaged velocities and second-order statistics show good agreement with the measurements, including the reproduction of the anisotropic nature of the plume's turbulence. Further, the predicted Eulerian and Lagrangian velocity fields, second-order turbulence statistics and interfacial gas-liquid forces are quantified and discussed as well as the visualization of the time-averaged primary and secondary flow structure in the tank.

  10. Extended Lagrangian Density Functional Tight-Binding Molecular Dynamics for Molecules and Solids.

    PubMed

    Aradi, Bálint; Niklasson, Anders M N; Frauenheim, Thomas

    2015-07-14

    A computationally fast quantum mechanical molecular dynamics scheme using an extended Lagrangian density functional tight-binding formulation has been developed and implemented in the DFTB+ electronic structure program package for simulations of solids and molecular systems. The scheme combines the computational speed of self-consistent density functional tight-binding theory with the efficiency and long-term accuracy of extended Lagrangian Born-Oppenheimer molecular dynamics. For systems without self-consistent charge instabilities, only a single diagonalization or construction of the single-particle density matrix is required in each time step. The molecular dynamics simulation scheme can be applied to a broad range of problems in materials science, chemistry, and biology.

  11. S-Lagrangian dynamics of many-body systems and behavior of social groups: Dominance and hierarchy formation

    NASA Astrophysics Data System (ADS)

    Sandler, U.

    2017-11-01

    In this paper, we extend our generalized Lagrangian dynamics (i.e., S-Lagrangian dynamics, which can be applied equally to physical and non-physical systems as per Sandler (2014)) to many-body systems. Unlike common Lagrangian dynamics, this is not a trivial task. For many-body systems with S-dependent Lagrangians, the Lagrangian and the corresponding Hamiltonian or energy become vector functions, conjugated momenta become second-order tensors, and the system inevitably develops a hierarchical structure, even if all bodies initially have similar status and Lagrangians. As an application of our theory, we consider dominance and hierarchy formation, which is present in almost all communities of living species. As a biological basis for this application, we assume that the primary motivation of a groups activity is to attempt to cope with stress arising as pressure from the environment and from intrinsic unmet needs of individuals. It has been shown that the S-Lagrangian approach to a group's evolution naturally leads to formation of linear or despotic dominance hierarchies, depending on differences between individuals in coping with stress. That is, individuals that cope more readily with stress take leadership roles during the evolution. Experimental results in animal groups which support our assumption and findings are considered.

  12. Coherent Lagrangian swirls among submesoscale motions.

    PubMed

    Beron-Vera, F J; Hadjighasem, A; Xia, Q; Olascoaga, M J; Haller, G

    2018-03-05

    The emergence of coherent Lagrangian swirls (CLSs) among submesoscale motions in the ocean is illustrated. This is done by applying recent nonlinear dynamics tools for Lagrangian coherence detection on a surface flow realization produced by a data-assimilative submesoscale-permitting ocean general circulation model simulation of the Gulf of Mexico. Both mesoscale and submesoscale CLSs are extracted. These extractions prove the relevance of coherent Lagrangian eddies detected in satellite-altimetry-based geostrophic flow data for the arguably more realistic ageostrophic multiscale flow.

  13. Extended Lagrangian Density Functional Tight-Binding Molecular Dynamics for Molecules and Solids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aradi, Bálint; Niklasson, Anders M. N.; Frauenheim, Thomas

    A computationally fast quantum mechanical molecular dynamics scheme using an extended Lagrangian density functional tight-binding formulation has been developed and implemented in the DFTB+ electronic structure program package for simulations of solids and molecular systems. The scheme combines the computational speed of self-consistent density functional tight-binding theory with the efficiency and long-term accuracy of extended Lagrangian Born–Oppenheimer molecular dynamics. Furthermore, for systems without self-consistent charge instabilities, only a single diagonalization or construction of the single-particle density matrix is required in each time step. The molecular dynamics simulation scheme can also be applied to a broad range of problems in materialsmore » science, chemistry, and biology.« less

  14. Extended Lagrangian Density Functional Tight-Binding Molecular Dynamics for Molecules and Solids

    DOE PAGES

    Aradi, Bálint; Niklasson, Anders M. N.; Frauenheim, Thomas

    2015-06-26

    A computationally fast quantum mechanical molecular dynamics scheme using an extended Lagrangian density functional tight-binding formulation has been developed and implemented in the DFTB+ electronic structure program package for simulations of solids and molecular systems. The scheme combines the computational speed of self-consistent density functional tight-binding theory with the efficiency and long-term accuracy of extended Lagrangian Born–Oppenheimer molecular dynamics. Furthermore, for systems without self-consistent charge instabilities, only a single diagonalization or construction of the single-particle density matrix is required in each time step. The molecular dynamics simulation scheme can also be applied to a broad range of problems in materialsmore » science, chemistry, and biology.« less

  15. Testing higher-order Lagrangian perturbation theory against numerical simulations. 2: Hierarchical models

    NASA Technical Reports Server (NTRS)

    Melott, A. L.; Buchert, T.; Weib, A. G.

    1995-01-01

    We present results showing an improvement of the accuracy of perturbation theory as applied to cosmological structure formation for a useful range of scales. The Lagrangian theory of gravitational instability of Friedmann-Lemaitre cosmogonies is compared with numerical simulations. We study the dynamics of hierarchical models as a second step. In the first step we analyzed the performance of the Lagrangian schemes for pancake models, the difference being that in the latter models the initial power spectrum is truncated. This work probed the quasi-linear and weakly non-linear regimes. We here explore whether the results found for pancake models carry over to hierarchical models which are evolved deeply into the non-linear regime. We smooth the initial data by using a variety of filter types and filter scales in order to determine the optimal performance of the analytical models, as has been done for the 'Zel'dovich-approximation' - hereafter TZA - in previous work. We find that for spectra with negative power-index the second-order scheme performs considerably better than TZA in terms of statistics which probe the dynamics, and slightly better in terms of low-order statistics like the power-spectrum. However, in contrast to the results found for pancake models, where the higher-order schemes get worse than TZA at late non-linear stages and on small scales, we here find that the second-order model is as robust as TZA, retaining the improvement at later stages and on smaller scales. In view of these results we expect that the second-order truncated Lagrangian model is especially useful for the modelling of standard dark matter models such as Hot-, Cold-, and Mixed-Dark-Matter.

  16. Stochastic partial differential fluid equations as a diffusive limit of deterministic Lagrangian multi-time dynamics.

    PubMed

    Cotter, C J; Gottwald, G A; Holm, D D

    2017-09-01

    In Holm (Holm 2015 Proc. R. Soc. A 471 , 20140963. (doi:10.1098/rspa.2014.0963)), stochastic fluid equations were derived by employing a variational principle with an assumed stochastic Lagrangian particle dynamics. Here we show that the same stochastic Lagrangian dynamics naturally arises in a multi-scale decomposition of the deterministic Lagrangian flow map into a slow large-scale mean and a rapidly fluctuating small-scale map. We employ homogenization theory to derive effective slow stochastic particle dynamics for the resolved mean part, thereby obtaining stochastic fluid partial equations in the Eulerian formulation. To justify the application of rigorous homogenization theory, we assume mildly chaotic fast small-scale dynamics, as well as a centring condition. The latter requires that the mean of the fluctuating deviations is small, when pulled back to the mean flow.

  17. Lagrangian coherent structures separate dynamically distinct regions in fluid flows.

    PubMed

    Kelley, Douglas H; Allshouse, Michael R; Ouellette, Nicholas T

    2013-07-01

    Using filter-space techniques, we study the scale-to-scale transport of energy in a quasi-two-dimensional, weakly turbulent fluid flow averaged along the trajectories of fluid elements. We find that although the spatial mean of this Lagrangian-averaged flux is nearly unchanged from its Eulerian counterpart, the spatial structure of the scale-to-scale energy flux changes significantly. In particular, its features appear to correlate with the positions of Lagrangian coherent structures (LCS's). We show that the LCS's tend to lie at zeros of the scale-to-scale flux, and therefore that the LCS's separate regions that have qualitatively different dynamics. Since LCS's are also known to be impenetrable barriers to advection and mixing, we therefore find that the fluid on either side of an LCS is both kinematically and dynamically distinct. Our results extend the utility of LCS's by making clear the role they play in the flow dynamics in addition to the kinematics.

  18. Lagrangian model of copepod dynamics: Clustering by escape jumps in turbulence

    NASA Astrophysics Data System (ADS)

    Ardeshiri, H.; Benkeddad, I.; Schmitt, F. G.; Souissi, S.; Toschi, F.; Calzavarini, E.

    2016-04-01

    Planktonic copepods are small crustaceans that have the ability to swim by quick powerful jumps. Such an aptness is used to escape from high shear regions, which may be caused either by flow perturbations, produced by a large predator (i.e., fish larvae), or by the inherent highly turbulent dynamics of the ocean. Through a combined experimental and numerical study, we investigate the impact of jumping behavior on the small-scale patchiness of copepods in a turbulent environment. Recorded velocity tracks of copepods displaying escape response jumps in still water are here used to define and tune a Lagrangian copepod (LC) model. The model is further employed to simulate the behavior of thousands of copepods in a fully developed hydrodynamic turbulent flow obtained by direct numerical simulation of the Navier-Stokes equations. First, we show that the LC velocity statistics is in qualitative agreement with available experimental observations of copepods in turbulence. Second, we quantify the clustering of LC, via the fractal dimension D2. We show that D2 can be as low as ˜2.3 and that it critically depends on the shear-rate sensitivity of the proposed LC model, in particular it exhibits a minimum in a narrow range of shear-rate values. We further investigate the effect of jump intensity, jump orientation, and geometrical aspect ratio of the copepods on the small-scale spatial distribution. At last, possible ecological implications of the observed clustering on encounter rates and mating success are discussed.

  19. Stochastic partial differential fluid equations as a diffusive limit of deterministic Lagrangian multi-time dynamics

    PubMed Central

    Cotter, C. J.

    2017-01-01

    In Holm (Holm 2015 Proc. R. Soc. A 471, 20140963. (doi:10.1098/rspa.2014.0963)), stochastic fluid equations were derived by employing a variational principle with an assumed stochastic Lagrangian particle dynamics. Here we show that the same stochastic Lagrangian dynamics naturally arises in a multi-scale decomposition of the deterministic Lagrangian flow map into a slow large-scale mean and a rapidly fluctuating small-scale map. We employ homogenization theory to derive effective slow stochastic particle dynamics for the resolved mean part, thereby obtaining stochastic fluid partial equations in the Eulerian formulation. To justify the application of rigorous homogenization theory, we assume mildly chaotic fast small-scale dynamics, as well as a centring condition. The latter requires that the mean of the fluctuating deviations is small, when pulled back to the mean flow. PMID:28989316

  20. Modeling of combustion processes of stick propellants via combined Eulerian-Lagrangian approach

    NASA Technical Reports Server (NTRS)

    Kuo, K. K.; Hsieh, K. C.; Athavale, M. M.

    1988-01-01

    This research is motivated by the improved ballistic performance of large-caliber guns using stick propellant charges. A comprehensive theoretical model for predicting the flame spreading, combustion, and grain deformation phenomena of long, unslotted stick propellants is presented. The formulation is based upon a combined Eulerian-Lagrangian approach to simulate special characteristics of the two phase combustion process in a cartridge loaded with a bundle of sticks. The model considers five separate regions consisting of the internal perforation, the solid phase, the external interstitial gas phase, and two lumped parameter regions at either end of the stick bundle. For the external gas phase region, a set of transient one-dimensional fluid-dynamic equations using the Eulerian approach is obtained; governing equations for the stick propellants are formulated using the Lagrangian approach. The motion of a representative stick is derived by considering the forces acting on the entire propellant stick. The instantaneous temperature and stress fields in the stick propellant are modeled by considering the transient axisymmetric heat conduction equation and dynamic structural analysis.

  1. V-ONSET: Introducing turbulent multiphase flow facility focusing on Lagrangian interfacial transfer dynamics

    NASA Astrophysics Data System (ADS)

    Salibindla, Ashwanth; Masuk, Ashik Ullah Mohammad; Ni, Rui

    2017-11-01

    We have designed and constructed a new vertical water tunnel, V-ONSET, to investigate interfacial mass, momentum and energy transfer between two phases in a Lagrangian frame. This system features an independent control of mean flow and turbulence level. The mean flow opposes the rising/falling velocity of the second phase, ``suspending'' the particles and increasing tracking time in the view area. Strong turbulence is generated by shooting 88 digitally-controlled water jets into the test section. The second phase, either bubbles or oil droplets, can be introduced into the test section through a capillary island. In addition to this flow control system, V-ONSET comes with a 3D two-phase visualization system, consisting of high-speed cameras, two-colored LED system, and in-house Lagrangian particle tracking algorithm. This enables us to acquire the Lagrangian evolution of both phases and the interfacial transfer dynamics in between, paving the way for new closure models for two-phase simulations. Financial support for this project was provided by National Science Foundation under Grant Number: 1653389 and 1705246.

  2. Implementation of extended Lagrangian dynamics in GROMACS for polarizable simulations using the classical Drude oscillator model.

    PubMed

    Lemkul, Justin A; Roux, Benoît; van der Spoel, David; MacKerell, Alexander D

    2015-07-15

    Explicit treatment of electronic polarization in empirical force fields used for molecular dynamics simulations represents an important advancement in simulation methodology. A straightforward means of treating electronic polarization in these simulations is the inclusion of Drude oscillators, which are auxiliary, charge-carrying particles bonded to the cores of atoms in the system. The additional degrees of freedom make these simulations more computationally expensive relative to simulations using traditional fixed-charge (additive) force fields. Thus, efficient tools are needed for conducting these simulations. Here, we present the implementation of highly scalable algorithms in the GROMACS simulation package that allow for the simulation of polarizable systems using extended Lagrangian dynamics with a dual Nosé-Hoover thermostat as well as simulations using a full self-consistent field treatment of polarization. The performance of systems of varying size is evaluated, showing that the present code parallelizes efficiently and is the fastest implementation of the extended Lagrangian methods currently available for simulations using the Drude polarizable force field. © 2015 Wiley Periodicals, Inc.

  3. Canonical-ensemble extended Lagrangian Born-Oppenheimer molecular dynamics for the linear scaling density functional theory.

    PubMed

    Hirakawa, Teruo; Suzuki, Teppei; Bowler, David R; Miyazaki, Tsuyoshi

    2017-10-11

    We discuss the development and implementation of a constant temperature (NVT) molecular dynamics scheme that combines the Nosé-Hoover chain thermostat with the extended Lagrangian Born-Oppenheimer molecular dynamics (BOMD) scheme, using a linear scaling density functional theory (DFT) approach. An integration scheme for this canonical-ensemble extended Lagrangian BOMD is developed and discussed in the context of the Liouville operator formulation. Linear scaling DFT canonical-ensemble extended Lagrangian BOMD simulations are tested on bulk silicon and silicon carbide systems to evaluate our integration scheme. The results show that the conserved quantity remains stable with no systematic drift even in the presence of the thermostat.

  4. Lagrangian formulation and symmetrical description of liquid dynamics.

    PubMed

    Trachenko, K

    2017-12-01

    Theoretical description of liquids has been primarily based on the hydrodynamic approach and its generalization to the solid-like regime. We show that the same liquid properties can be derived starting from solid-like equations and generalizing them to account for the hydrodynamic flow. Both approaches predict propagating shear waves with the notable gap in k-space. This gives an important symmetry of liquids regarding their description. We subsequently construct a two-field Lagrangian of liquid dynamics where the dissipative hydrodynamic and solid-like terms are treated on equal footing. The Lagrangian predicts two gapped waves propagating in opposite space-time directions. The dissipative and mass terms compete by promoting gaps in k-space and energy, respectively. When bare mass is close to the field hopping frequency, both gaps close and the dissipative term annihilates the bare mass.

  5. Lagrangian formulation and symmetrical description of liquid dynamics

    NASA Astrophysics Data System (ADS)

    Trachenko, K.

    2017-12-01

    Theoretical description of liquids has been primarily based on the hydrodynamic approach and its generalization to the solid-like regime. We show that the same liquid properties can be derived starting from solid-like equations and generalizing them to account for the hydrodynamic flow. Both approaches predict propagating shear waves with the notable gap in k -space. This gives an important symmetry of liquids regarding their description. We subsequently construct a two-field Lagrangian of liquid dynamics where the dissipative hydrodynamic and solid-like terms are treated on equal footing. The Lagrangian predicts two gapped waves propagating in opposite space-time directions. The dissipative and mass terms compete by promoting gaps in k -space and energy, respectively. When bare mass is close to the field hopping frequency, both gaps close and the dissipative term annihilates the bare mass.

  6. Spatio-temporal organization of dynamics in a two-dimensional periodically driven vortex flow: A Lagrangian flow network perspective.

    PubMed

    Lindner, Michael; Donner, Reik V

    2017-03-01

    We study the Lagrangian dynamics of passive tracers in a simple model of a driven two-dimensional vortex resembling real-world geophysical flow patterns. Using a discrete approximation of the system's transfer operator, we construct a directed network that describes the exchange of mass between distinct regions of the flow domain. By studying different measures characterizing flow network connectivity at different time-scales, we are able to identify the location of dynamically invariant structures and regions of maximum dispersion. Specifically, our approach allows us to delimit co-existing flow regimes with different dynamics. To validate our findings, we compare several network characteristics to the well-established finite-time Lyapunov exponents and apply a receiver operating characteristic analysis to identify network measures that are particularly useful for unveiling the skeleton of Lagrangian chaos.

  7. Dynamic isoperimetry and the geometry of Lagrangian coherent structures

    NASA Astrophysics Data System (ADS)

    Froyland, Gary

    2015-10-01

    The study of transport and mixing processes in dynamical systems is particularly important for the analysis of mathematical models of physical systems. We propose a novel, direct geometric method to identify subsets of phase space that remain strongly coherent over a finite time duration. This new method is based on a dynamic extension of classical (static) isoperimetric problems; the latter are concerned with identifying submanifolds with the smallest boundary size relative to their volume. The present work introduces dynamic isoperimetric problems; the study of sets with small boundary size relative to volume as they are evolved by a general dynamical system. We formulate and prove dynamic versions of the fundamental (static) isoperimetric (in)equalities; a dynamic Federer-Fleming theorem and a dynamic Cheeger inequality. We introduce a new dynamic Laplace operator and describe a computational method to identify coherent sets based on eigenfunctions of the dynamic Laplacian. Our results include formal mathematical statements concerning geometric properties of finite-time coherent sets, whose boundaries can be regarded as Lagrangian coherent structures. The computational advantages of our new approach are a well-separated spectrum for the dynamic Laplacian, and flexibility in appropriate numerical approximation methods. Finally, we demonstrate that the dynamic Laplace operator can be realised as a zero-diffusion limit of a newly advanced probabilistic transfer operator method [9] for finding coherent sets, which is based on small diffusion. Thus, the present approach sits naturally alongside the probabilistic approach [9], and adds a formal geometric interpretation.

  8. Lagrangian motion, coherent structures, and lines of persistent material strain.

    PubMed

    Samelson, R M

    2013-01-01

    Lagrangian motion in geophysical fluids may be strongly influenced by coherent structures that support distinct regimes in a given flow. The problems of identifying and demarcating Lagrangian regime boundaries associated with dynamical coherent structures in a given velocity field can be studied using approaches originally developed in the context of the abstract geometric theory of ordinary differential equations. An essential insight is that when coherent structures exist in a flow, Lagrangian regime boundaries may often be indicated as material curves on which the Lagrangian-mean principal-axis strain is large. This insight is the foundation of many numerical techniques for identifying such features in complex observed or numerically simulated ocean flows. The basic theoretical ideas are illustrated with a simple, kinematic traveling-wave model. The corresponding numerical algorithms for identifying candidate Lagrangian regime boundaries and lines of principal Lagrangian strain (also called Lagrangian coherent structures) are divided into parcel and bundle schemes; the latter include the finite-time and finite-size Lyapunov exponent/Lagrangian strain (FTLE/FTLS and FSLE/FSLS) metrics. Some aspects and results of oceanographic studies based on these approaches are reviewed, and the results are discussed in the context of oceanographic observations of dynamical coherent structures.

  9. Programmers manual for a one-dimensional Lagrangian transport model

    USGS Publications Warehouse

    Schoellhamer, D.H.; Jobson, H.E.

    1986-01-01

    A one-dimensional Lagrangian transport model for simulating water-quality constituents such as temperature, dissolved oxygen , and suspended sediment in rivers is presented in this Programmers Manual. Lagrangian transport modeling techniques, the model 's subroutines, and the user-written decay-coefficient subroutine are discussed in detail. Appendices list the program codes. The Programmers Manual is intended for the model user who needs to modify code either to adapt the model to a particular need or to use reaction kinetics not provided with the model. (Author 's abstract)

  10. Extreme Lagrangian acceleration in confined turbulent flow.

    PubMed

    Kadoch, Benjamin; Bos, Wouter J T; Schneider, Kai

    2008-05-09

    A Lagrangian study of two-dimensional turbulence for two different geometries, a periodic and a confined circular geometry, is presented to investigate the influence of solid boundaries on the Lagrangian dynamics. It is found that the Lagrangian acceleration is even more intermittent in the confined domain than in the periodic domain. The flatness of the Lagrangian acceleration as a function of the radius shows that the influence of the wall on the Lagrangian dynamics becomes negligible in the center of the domain, and it also reveals that the wall is responsible for the increased intermittency. The transition in the Lagrangian statistics between this region, not directly influenced by the walls, and a critical radius which defines a Lagrangian boundary layer is shown to be very sharp with a sudden increase of the acceleration flatness from about 5 to about 20.

  11. Quantitative flow analysis of swimming dynamics with coherent Lagrangian vortices.

    PubMed

    Huhn, F; van Rees, W M; Gazzola, M; Rossinelli, D; Haller, G; Koumoutsakos, P

    2015-08-01

    Undulatory swimmers flex their bodies to displace water, and in turn, the flow feeds back into the dynamics of the swimmer. At moderate Reynolds number, the resulting flow structures are characterized by unsteady separation and alternating vortices in the wake. We use the flow field from simulations of a two-dimensional, incompressible viscous flow of an undulatory, self-propelled swimmer and detect the coherent Lagrangian vortices in the wake to dissect the driving momentum transfer mechanisms. The detected material vortex boundary encloses a Lagrangian control volume that serves to track back the vortex fluid and record its circulation and momentum history. We consider two swimming modes: the C-start escape and steady anguilliform swimming. The backward advection of the coherent Lagrangian vortices elucidates the geometry of the vorticity field and allows for monitoring the gain and decay of circulation and momentum transfer in the flow field. For steady swimming, momentum oscillations of the fish can largely be attributed to the momentum exchange with the vortex fluid. For the C-start, an additionally defined jet fluid region turns out to balance the high momentum change of the fish during the rapid start.

  12. Deconstructing field-induced ketene isomerization through Lagrangian descriptors.

    PubMed

    Craven, Galen T; Hernandez, Rigoberto

    2016-02-07

    The time-dependent geometrical separatrices governing state transitions in field-induced ketene isomerization are constructed using the method of Lagrangian descriptors. We obtain the stable and unstable manifolds of time-varying transition states as dynamic phase space objects governing configurational changes when the ketene molecule is subjected to an oscillating electric field. The dynamics of the isomerization reaction are modeled through classical trajectory studies on the Gezelter-Miller potential energy surface and an approximate dipole moment model which is coupled to a time-dependent electric field. We obtain a representation of the reaction geometry, over varying field strengths and oscillation frequencies, by partitioning an initial phase space into basins labeled according to which product state is reached at a given time. The borders between these basins are in agreement with those obtained using Lagrangian descriptors, even in regimes exhibiting chaotic dynamics. Major outcomes of this work are: validation and extension of a transition state theory framework built from Lagrangian descriptors, elaboration of the applicability for this theory to periodically- and aperiodically-driven molecular systems, and prediction of regimes in which isomerization of ketene and its derivatives may be controlled using an external field.

  13. Assimilating Eulerian and Lagrangian data in traffic-flow models

    NASA Astrophysics Data System (ADS)

    Xia, Chao; Cochrane, Courtney; DeGuire, Joseph; Fan, Gaoyang; Holmes, Emma; McGuirl, Melissa; Murphy, Patrick; Palmer, Jenna; Carter, Paul; Slivinski, Laura; Sandstede, Björn

    2017-05-01

    Data assimilation of traffic flow remains a challenging problem. One difficulty is that data come from different sources ranging from stationary sensors and camera data to GPS and cell phone data from moving cars. Sensors and cameras give information about traffic density, while GPS data provide information about the positions and velocities of individual cars. Previous methods for assimilating Lagrangian data collected from individual cars relied on specific properties of the underlying computational model or its reformulation in Lagrangian coordinates. These approaches make it hard to assimilate both Eulerian density and Lagrangian positional data simultaneously. In this paper, we propose an alternative approach that allows us to assimilate both Eulerian and Lagrangian data. We show that the proposed algorithm is accurate and works well in different traffic scenarios and regardless of whether ensemble Kalman or particle filters are used. We also show that the algorithm is capable of estimating parameters and assimilating real traffic observations and synthetic observations obtained from microscopic models.

  14. Eulerian-Lagrangian CFD modelling of pesticide dust emissions from maize planters

    NASA Astrophysics Data System (ADS)

    Devarrewaere, Wouter; Foqué, Dieter; Nicolai, Bart; Nuyttens, David; Verboven, Pieter

    2018-07-01

    An Eulerian-Lagrangian 3D computational fluid dynamics (CFD) model of pesticide dust drift from precision vacuum planters in field conditions was developed. Tractor and planter models were positioned in an atmospheric computational domain, representing the field and its edges. Physicochemical properties of dust abraded from maize seeds (particle size, shape, porosity, density, a.i. content), dust emission rates and exhaust air velocity values at the planter fan outlets were measured experimentally and implemented in the model. The wind profile, the airflow pattern around the machines and the dust dispersion were computed. Various maize sowing scenarios with different wind conditions, dust properties, planter designs and vacuum pressures were simulated. Dust particle trajectories were calculated by means of Lagrangian particle tracking, considering nonspherical particle drag, gravity and turbulent dispersion. The dust dispersion model was previously validated with wind tunnel data. In this study, simulated pesticide concentrations in the air and on the soil in the different sowing scenarios were compared and discussed. The model predictions were similar to experimental literature data in terms of concentrations and drift distance. Pesticide exposure levels to bees during flight and foraging were estimated from the simulated concentrations. The proposed CFD model can be used in risk assessment studies and in the evaluation of dust drift mitigation measures.

  15. Markov Chain Monte Carlo from Lagrangian Dynamics.

    PubMed

    Lan, Shiwei; Stathopoulos, Vasileios; Shahbaba, Babak; Girolami, Mark

    2015-04-01

    Hamiltonian Monte Carlo (HMC) improves the computational e ciency of the Metropolis-Hastings algorithm by reducing its random walk behavior. Riemannian HMC (RHMC) further improves the performance of HMC by exploiting the geometric properties of the parameter space. However, the geometric integrator used for RHMC involves implicit equations that require fixed-point iterations. In some cases, the computational overhead for solving implicit equations undermines RHMC's benefits. In an attempt to circumvent this problem, we propose an explicit integrator that replaces the momentum variable in RHMC by velocity. We show that the resulting transformation is equivalent to transforming Riemannian Hamiltonian dynamics to Lagrangian dynamics. Experimental results suggests that our method improves RHMC's overall computational e ciency in the cases considered. All computer programs and data sets are available online (http://www.ics.uci.edu/~babaks/Site/Codes.html) in order to allow replication of the results reported in this paper.

  16. Users manual for a one-dimensional Lagrangian transport model

    USGS Publications Warehouse

    Schoellhamer, D.H.; Jobson, H.E.

    1986-01-01

    A Users Manual for the Lagrangian Transport Model (LTM) is presented. The LTM uses Lagrangian calculations that are based on a reference frame moving with the river flow. The Lagrangian reference frame eliminates the need to numerically solve the convective term of the convection-diffusion equation and provides significant numerical advantages over the more commonly used Eulerian reference frame. When properly applied, the LTM can simulate riverine transport and decay processes within the accuracy required by most water quality studies. The LTM is applicable to steady or unsteady one-dimensional unidirectional flows in fixed channels with tributary and lateral inflows. Application of the LTM is relatively simple and optional capabilities improve the model 's convenience. Appendices give file formats and three example LTM applications that include the incorporation of the QUAL II water quality model 's reaction kinetics into the LTM. (Author 's abstract)

  17. Differential geometry based solvation model II: Lagrangian formulation.

    PubMed

    Chen, Zhan; Baker, Nathan A; Wei, G W

    2011-12-01

    Solvation is an elementary process in nature and is of paramount importance to more sophisticated chemical, biological and biomolecular processes. The understanding of solvation is an essential prerequisite for the quantitative description and analysis of biomolecular systems. This work presents a Lagrangian formulation of our differential geometry based solvation models. The Lagrangian representation of biomolecular surfaces has a few utilities/advantages. First, it provides an essential basis for biomolecular visualization, surface electrostatic potential map and visual perception of biomolecules. Additionally, it is consistent with the conventional setting of implicit solvent theories and thus, many existing theoretical algorithms and computational software packages can be directly employed. Finally, the Lagrangian representation does not need to resort to artificially enlarged van der Waals radii as often required by the Eulerian representation in solvation analysis. The main goal of the present work is to analyze the connection, similarity and difference between the Eulerian and Lagrangian formalisms of the solvation model. Such analysis is important to the understanding of the differential geometry based solvation model. The present model extends the scaled particle theory of nonpolar solvation model with a solvent-solute interaction potential. The nonpolar solvation model is completed with a Poisson-Boltzmann (PB) theory based polar solvation model. The differential geometry theory of surfaces is employed to provide a natural description of solvent-solute interfaces. The optimization of the total free energy functional, which encompasses the polar and nonpolar contributions, leads to coupled potential driven geometric flow and PB equations. Due to the development of singularities and nonsmooth manifolds in the Lagrangian representation, the resulting potential-driven geometric flow equation is embedded into the Eulerian representation for the purpose of

  18. Differential geometry based solvation model II: Lagrangian formulation

    PubMed Central

    Chen, Zhan; Baker, Nathan A.; Wei, G. W.

    2010-01-01

    Solvation is an elementary process in nature and is of paramount importance to more sophisticated chemical, biological and biomolecular processes. The understanding of solvation is an essential prerequisite for the quantitative description and analysis of biomolecular systems. This work presents a Lagrangian formulation of our differential geometry based solvation model. The Lagrangian representation of biomolecular surfaces has a few utilities/advantages. First, it provides an essential basis for biomolecular visualization, surface electrostatic potential map and visual perception of biomolecules. Additionally, it is consistent with the conventional setting of implicit solvent theories and thus, many existing theoretical algorithms and computational software packages can be directly employed. Finally, the Lagrangian representation does not need to resort to artificially enlarged van der Waals radii as often required by the Eulerian representation in solvation analysis. The main goal of the present work is to analyze the connection, similarity and difference between the Eulerian and Lagrangian formalisms of the solvation model. Such analysis is important to the understanding of the differential geometry based solvation model. The present model extends the scaled particle theory (SPT) of nonpolar solvation model with a solvent-solute interaction potential. The nonpolar solvation model is completed with a Poisson-Boltzmann (PB) theory based polar solvation model. The differential geometry theory of surfaces is employed to provide a natural description of solvent-solute interfaces. The minimization of the total free energy functional, which encompasses the polar and nonpolar contributions, leads to coupled potential driven geometric flow and Poisson-Boltzmann equations. Due to the development of singularities and nonsmooth manifolds in the Lagrangian representation, the resulting potential-driven geometric flow equation is embedded into the Eulerian representation for

  19. Leading-order classical Lagrangians for the nonminimal standard-model extension

    NASA Astrophysics Data System (ADS)

    Reis, J. A. A. S.; Schreck, M.

    2018-03-01

    In this paper, we derive the general leading-order classical Lagrangian covering all fermion operators of the nonminimal standard-model extension (SME). Such a Lagrangian is considered to be the point-particle analog of the effective field theory description of Lorentz violation that is provided by the SME. At leading order in Lorentz violation, the Lagrangian obtained satisfies the set of five nonlinear equations that govern the map from the field theory to the classical description. This result can be of use for phenomenological studies of classical bodies in gravitational fields.

  20. A new method to calibrate Lagrangian model with ASAR images for oil slick trajectory.

    PubMed

    Tian, Siyu; Huang, Xiaoxia; Li, Hongga

    2017-03-15

    Since Lagrangian model coefficients vary with different conditions, it is necessary to calibrate the model to obtain optimal coefficient combination for special oil spill accident. This paper focuses on proposing a new method to calibrate Lagrangian model with time series of Envisat ASAR images. Oil slicks extracted from time series images form a detected trajectory of special oil slick. Lagrangian model is calibrated by minimizing the difference between simulated trajectory and detected trajectory. mean center position distance difference (MCPD) and rotation difference (RD) of Oil slicks' or particles' standard deviational ellipses (SDEs) are calculated as two evaluations. The two parameters are taken to evaluate the performance of Lagrangian transport model with different coefficient combinations. This method is applied to Penglai 19-3 oil spill accident. The simulation result with calibrated model agrees well with related satellite observations. It is suggested the new method is effective to calibrate Lagrangian model. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Sea Fog Forecasting with Lagrangian Models

    NASA Astrophysics Data System (ADS)

    Lewis, J. M.

    2014-12-01

    In 1913, G. I. Taylor introduced us to a Lagrangian view of sea fog formation. He conducted his study off the coast of Newfoundland in the aftermath of the Titanic disaster. We briefly review Taylor's classic work and then apply these same principles to a case of sea fog formation and dissipation off the coast of California. The resources used in this study consist of: 1) land-based surface and upper-air observations, 2) NDBC (National Data Buoy Center) observations from moored buoys equipped to measure dew point temperature as well as the standard surface observations at sea (wind, sea surface temperature, pressure, and air temperature), 3) satellite observations of cloud, and 4) a one-dimensional (vertically directed) boundary layer model that tracks with the surface air motion and makes use of sophisticated turbulence-radiation parameterizations. Results of the investigation indicate that delicate interplay and interaction between the radiation and turbulence processes makes accurate forecasts of sea fog onset unlikely in the near future. This pessimistic attitude stems from inadequacy of the existing network of observations and uncertainties in modeling dynamical processes within the boundary layer.

  2. Alignment dynamics of diffusive scalar gradient in a two-dimensional model flow

    NASA Astrophysics Data System (ADS)

    Gonzalez, M.

    2018-04-01

    The Lagrangian two-dimensional approach of scalar gradient kinematics is revisited accounting for molecular diffusion. Numerical simulations are performed in an analytic, parameterized model flow, which enables considering different regimes of scalar gradient dynamics. Attention is especially focused on the influence of molecular diffusion on Lagrangian statistical orientations and on the dynamics of scalar gradient alignment.

  3. Shear and shearless Lagrangian structures in compound channels

    NASA Astrophysics Data System (ADS)

    Enrile, F.; Besio, G.; Stocchino, A.

    2018-03-01

    Transport processes in a physical model of a natural stream with a composite cross-section (compound channel) are investigated by means of a Lagrangian analysis based on nonlinear dynamical system theory. Two-dimensional free surface Eulerian experimental velocity fields of a uniform flow in a compound channel form the basis for the identification of the so-called Lagrangian Coherent Structures. Lagrangian structures are recognized as the key features that govern particle trajectories. We seek for two particular class of Lagrangian structures: Shear and shearless structures. The former are generated whenever the shear dominates the flow whereas the latter behave as jet-cores. These two type of structures are detected as ridges and trenches of the Finite-Time Lyapunov Exponents fields, respectively. Besides, shearlines computed applying the geodesic theory of transport barriers mark Shear Lagrangian Coherent Structures. So far, the detection of these structures in real experimental flows has not been deeply investigated. Indeed, the present results obtained in a wide range of the controlling parameters clearly show a different behaviour depending on the shallowness of the flow. Shear and Shearless Lagrangian Structures detected from laboratory experiments clearly appear as the flow develops in shallow conditions. The presence of these Lagrangian Structures tends to fade in deep flow conditions.

  4. Mode decomposition and Lagrangian structures of the flow dynamics in orbitally shaken bioreactors

    NASA Astrophysics Data System (ADS)

    Weheliye, Weheliye Hashi; Cagney, Neil; Rodriguez, Gregorio; Micheletti, Martina; Ducci, Andrea

    2018-03-01

    In this study, two mode decomposition techniques were applied and compared to assess the flow dynamics in an orbital shaken bioreactor (OSB) of cylindrical geometry and flat bottom: proper orthogonal decomposition and dynamic mode decomposition. Particle Image Velocimetry (PIV) experiments were carried out for different operating conditions including fluid height, h, and shaker rotational speed, N. A detailed flow analysis is provided for conditions when the fluid and vessel motions are in-phase (Fr = 0.23) and out-of-phase (Fr = 0.47). PIV measurements in vertical and horizontal planes were combined to reconstruct low order models of the full 3D flow and to determine its Finite-Time Lyapunov Exponent (FTLE) within OSBs. The combined results from the mode decomposition and the FTLE fields provide a useful insight into the flow dynamics and Lagrangian coherent structures in OSBs and offer a valuable tool to optimise bioprocess design in terms of mixing and cell suspension.

  5. Lagrangian formulation of the 2(2S+1)-component model and its connection with the skew symmetric/tensor description

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dvoeglazov, V.V.

    1993-12-01

    In the framework of the 2(2S + 1)-component theory for massless particles, the dynamical invariants have been derived from the Lagrangian density which is considered to be a 4-vector. A la Majorana interpretation of the 6-component spinors, the field operators of S=1 particles, as the left- and right-circularly polarized radiation, leads the author to the conserved quantities which are analogous to ones obtained by Lipkin and Sudbery. The scalar Lagrangian of this model is shown to be equivalent to the Lagrangian of a free massless field, introduced by Hayashi. As a consequence of a new {open_quotes}gauge{close_quotes} invariance this skew-symmetric fieldmore » describes physical particles with the longitudinal components only.« less

  6. Lagrangian ocean analysis: Fundamentals and practices

    DOE PAGES

    van Sebille, Erik; Griffies, Stephen M.; Abernathey, Ryan; ...

    2017-11-24

    Lagrangian analysis is a powerful way to analyse the output of ocean circulation models and other ocean velocity data such as from altimetry. In the Lagrangian approach, large sets of virtual particles are integrated within the three-dimensional, time-evolving velocity fields. A variety of tools and methods for this purpose have emerged, over several decades. Here, we review the state of the art in the field of Lagrangian analysis of ocean velocity data, starting from a fundamental kinematic framework and with a focus on large-scale open ocean applications. Beyond the use of explicit velocity fields, we consider the influence of unresolvedmore » physics and dynamics on particle trajectories. We comprehensively list and discuss the tools currently available for tracking virtual particles. We then showcase some of the innovative applications of trajectory data, and conclude with some open questions and an outlook. Our overall goal of this review paper is to reconcile some of the different techniques and methods in Lagrangian ocean analysis, while recognising the rich diversity of codes that have and continue to emerge, and the challenges of the coming age of petascale computing.« less

  7. Lagrangian ocean analysis: Fundamentals and practices

    NASA Astrophysics Data System (ADS)

    van Sebille, Erik; Griffies, Stephen M.; Abernathey, Ryan; Adams, Thomas P.; Berloff, Pavel; Biastoch, Arne; Blanke, Bruno; Chassignet, Eric P.; Cheng, Yu; Cotter, Colin J.; Deleersnijder, Eric; Döös, Kristofer; Drake, Henri F.; Drijfhout, Sybren; Gary, Stefan F.; Heemink, Arnold W.; Kjellsson, Joakim; Koszalka, Inga Monika; Lange, Michael; Lique, Camille; MacGilchrist, Graeme A.; Marsh, Robert; Mayorga Adame, C. Gabriela; McAdam, Ronan; Nencioli, Francesco; Paris, Claire B.; Piggott, Matthew D.; Polton, Jeff A.; Rühs, Siren; Shah, Syed H. A. M.; Thomas, Matthew D.; Wang, Jinbo; Wolfram, Phillip J.; Zanna, Laure; Zika, Jan D.

    2018-01-01

    Lagrangian analysis is a powerful way to analyse the output of ocean circulation models and other ocean velocity data such as from altimetry. In the Lagrangian approach, large sets of virtual particles are integrated within the three-dimensional, time-evolving velocity fields. Over several decades, a variety of tools and methods for this purpose have emerged. Here, we review the state of the art in the field of Lagrangian analysis of ocean velocity data, starting from a fundamental kinematic framework and with a focus on large-scale open ocean applications. Beyond the use of explicit velocity fields, we consider the influence of unresolved physics and dynamics on particle trajectories. We comprehensively list and discuss the tools currently available for tracking virtual particles. We then showcase some of the innovative applications of trajectory data, and conclude with some open questions and an outlook. The overall goal of this review paper is to reconcile some of the different techniques and methods in Lagrangian ocean analysis, while recognising the rich diversity of codes that have and continue to emerge, and the challenges of the coming age of petascale computing.

  8. Lagrangian ocean analysis: Fundamentals and practices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    van Sebille, Erik; Griffies, Stephen M.; Abernathey, Ryan

    Lagrangian analysis is a powerful way to analyse the output of ocean circulation models and other ocean velocity data such as from altimetry. In the Lagrangian approach, large sets of virtual particles are integrated within the three-dimensional, time-evolving velocity fields. A variety of tools and methods for this purpose have emerged, over several decades. Here, we review the state of the art in the field of Lagrangian analysis of ocean velocity data, starting from a fundamental kinematic framework and with a focus on large-scale open ocean applications. Beyond the use of explicit velocity fields, we consider the influence of unresolvedmore » physics and dynamics on particle trajectories. We comprehensively list and discuss the tools currently available for tracking virtual particles. We then showcase some of the innovative applications of trajectory data, and conclude with some open questions and an outlook. Our overall goal of this review paper is to reconcile some of the different techniques and methods in Lagrangian ocean analysis, while recognising the rich diversity of codes that have and continue to emerge, and the challenges of the coming age of petascale computing.« less

  9. An updated Lagrangian discontinuous Galerkin hydrodynamic method for gas dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Tong; Shashkov, Mikhail Jurievich; Morgan, Nathaniel Ray

    Here, we present a new Lagrangian discontinuous Galerkin (DG) hydrodynamic method for gas dynamics. The new method evolves conserved unknowns in the current configuration, which obviates the Jacobi matrix that maps the element in a reference coordinate system or the initial coordinate system to the current configuration. The density, momentum, and total energy (ρ, ρu, E) are approximated with conservative higher-order Taylor expansions over the element and are limited toward a piecewise constant field near discontinuities using a limiter. Two new limiting methods are presented for enforcing the bounds on the primitive variables of density, velocity, and specific internal energymore » (ρ, u, e). The nodal velocity, and the corresponding forces, are calculated by solving an approximate Riemann problem at the element nodes. An explicit second-order method is used to temporally advance the solution. This new Lagrangian DG hydrodynamic method conserves mass, momentum, and total energy. 1D Cartesian coordinates test problem results are presented to demonstrate the accuracy and convergence order of the new DG method with the new limiters.« less

  10. An updated Lagrangian discontinuous Galerkin hydrodynamic method for gas dynamics

    DOE PAGES

    Wu, Tong; Shashkov, Mikhail Jurievich; Morgan, Nathaniel Ray; ...

    2018-04-09

    Here, we present a new Lagrangian discontinuous Galerkin (DG) hydrodynamic method for gas dynamics. The new method evolves conserved unknowns in the current configuration, which obviates the Jacobi matrix that maps the element in a reference coordinate system or the initial coordinate system to the current configuration. The density, momentum, and total energy (ρ, ρu, E) are approximated with conservative higher-order Taylor expansions over the element and are limited toward a piecewise constant field near discontinuities using a limiter. Two new limiting methods are presented for enforcing the bounds on the primitive variables of density, velocity, and specific internal energymore » (ρ, u, e). The nodal velocity, and the corresponding forces, are calculated by solving an approximate Riemann problem at the element nodes. An explicit second-order method is used to temporally advance the solution. This new Lagrangian DG hydrodynamic method conserves mass, momentum, and total energy. 1D Cartesian coordinates test problem results are presented to demonstrate the accuracy and convergence order of the new DG method with the new limiters.« less

  11. Overshooting thunderstorm cloud top dynamics as approximated by a linear Lagrangian parcel model with analytic exact solutions

    NASA Technical Reports Server (NTRS)

    Schlesinger, Robert E.

    1990-01-01

    Results are presented from a linear Lagrangian entraining parcel model of an overshooting thunderstorm cloud top. The model, which is similar to that of Adler and Mack (1986), gives analytic exact solutions for vertical velocity and temperature by representing mixing with Rayleigh damping instead of nonlinearly. Model results are presented for various combinations of stratospheric lapse rate, drag intensity, and mixing strength. The results are compared to those of Adler and Mack.

  12. Lagrangian acceleration statistics in a turbulent channel flow

    NASA Astrophysics Data System (ADS)

    Stelzenmuller, Nickolas; Polanco, Juan Ignacio; Vignal, Laure; Vinkovic, Ivana; Mordant, Nicolas

    2017-05-01

    Lagrangian acceleration statistics in a fully developed turbulent channel flow at Reτ=1440 are investigated, based on tracer particle tracking in experiments and direct numerical simulations. The evolution with wall distance of the Lagrangian velocity and acceleration time scales is analyzed. Dependency between acceleration components in the near-wall region is described using cross-correlations and joint probability density functions. The strong streamwise coherent vortices typical of wall-bounded turbulent flows are shown to have a significant impact on the dynamics. This results in a strong anisotropy at small scales in the near-wall region that remains present in most of the channel. Such statistical properties may be used as constraints in building advanced Lagrangian stochastic models to predict the dispersion and mixing of chemical components for combustion or environmental studies.

  13. Lagrangian Perturbation Approach to the Formation of Large-scale Structure

    NASA Astrophysics Data System (ADS)

    Buchert, Thomas

    The present lecture notes address three columns on which the Lagrangian perturbation approach to cosmological dynamics is based: 1. the formulation of a Lagrangian theory of self-gravitating flows in which the dynamics is described in terms of a single field variable; 2. the procedure, how to obtain the dynamics of Eulerian fields from the Lagrangian picture, and 3. a precise definition of a Newtonian cosmology framework in which Lagrangian perturbation solutions can be studied. While the first is a discussion of the basic equations obtained by transforming the Eulerian evolution and field equations to the Lagrangian picture, the second exemplifies how the Lagrangian theory determines the evolution of Eulerian fields including kinematical variables like expansion, vorticity, as well as the shear and tidal tensors. The third column is based on a specification of initial and boundary conditions, and in particular on the identification of the average flow of an inhomogeneous cosmology with a `Hubble-flow'. Here, we also look at the limits of the Lagrangian perturbation approach as inferred from comparisons with N-body simulations and illustrate some striking properties of the solutions.

  14. Bayesian Lagrangian Data Assimilation and Drifter Deployment Strategies

    NASA Astrophysics Data System (ADS)

    Dutt, A.; Lermusiaux, P. F. J.

    2017-12-01

    Ocean currents transport a variety of natural (e.g. water masses, phytoplankton, zooplankton, sediments, etc.) and man-made materials and other objects (e.g. pollutants, floating debris, search and rescue, etc.). Lagrangian Coherent Structures (LCSs) or the most influential/persistent material lines in a flow, provide a robust approach to characterize such Lagrangian transports and organize classic trajectories. Using the flow-map stochastic advection and a dynamically-orthogonal decomposition, we develop uncertainty prediction schemes for both Eulerian and Lagrangian variables. We then extend our Bayesian Gaussian Mixture Model (GMM)-DO filter to a joint Eulerian-Lagrangian Bayesian data assimilation scheme. The resulting nonlinear filter allows the simultaneous non-Gaussian estimation of Eulerian variables (e.g. velocity, temperature, salinity, etc.) and Lagrangian variables (e.g. drifter/float positions, trajectories, LCSs, etc.). Its results are showcased using a double-gyre flow with a random frequency, a stochastic flow past a cylinder, and realistic ocean examples. We further show how our Bayesian mutual information and adaptive sampling equations provide a rigorous efficient methodology to plan optimal drifter deployment strategies and predict the optimal times, locations, and types of measurements to be collected.

  15. Parallel Decomposition of the Fictitious Lagrangian Algorithm and its Accuracy for Molecular Dynamics Simulations of Semiconductors.

    NASA Astrophysics Data System (ADS)

    Yeh, Mei-Ling

    We have performed a parallel decomposition of the fictitious Lagrangian method for molecular dynamics with tight-binding total energy expression into the hypercube computer. This is the first time in literature that the dynamical simulation of semiconducting systems containing more than 512 silicon atoms has become possible with the electrons treated as quantum particles. With the utilization of the Intel Paragon system, our timing analysis predicts that our code is expected to perform realistic simulations on very large systems consisting of thousands of atoms with time requirements of the order of tens of hours. Timing results and performance analysis of our parallel code are presented in terms of calculation time, communication time, and setup time. The accuracy of the fictitious Lagrangian method in molecular dynamics simulation is also investigated, especially the energy conservation of the total energy of ions. We find that the accuracy of the fictitious Lagrangian scheme in small silicon cluster and very large silicon system simulations is good for as long as the simulations proceed, even though we quench the electronic coordinates to the Born-Oppenheimer surface only in the beginning of the run. The kinetic energy of electrons does not increase as time goes on, and the energy conservation of the ionic subsystem remains very good. This means that, as far as the ionic subsystem is concerned, the electrons are on the average in the true quantum ground states. We also tie up some odds and ends regarding a few remaining questions about the fictitious Lagrangian method, such as the difference between the results obtained from the Gram-Schmidt and SHAKE method of orthonormalization, and differences between simulations where the electrons are quenched to the Born -Oppenheimer surface only once compared with periodic quenching.

  16. Lagrangian Timescales of Southern Ocean Upwelling in a Hierarchy of Model Resolutions

    NASA Astrophysics Data System (ADS)

    Drake, Henri F.; Morrison, Adele K.; Griffies, Stephen M.; Sarmiento, Jorge L.; Weijer, Wilbert; Gray, Alison R.

    2018-01-01

    In this paper we study upwelling pathways and timescales of Circumpolar Deep Water (CDW) in a hierarchy of models using a Lagrangian particle tracking method. Lagrangian timescales of CDW upwelling decrease from 87 years to 31 years to 17 years as the ocean resolution is refined from 1° to 0.25° to 0.1°. We attribute some of the differences in timescale to the strength of the eddy fields, as demonstrated by temporally degrading high-resolution model velocity fields. Consistent with the timescale dependence, we find that an average Lagrangian particle completes 3.2 circumpolar loops in the 1° model in comparison to 0.9 loops in the 0.1° model. These differences suggest that advective timescales and thus interbasin merging of upwelling CDW may be overestimated by coarse-resolution models, potentially affecting the skill of centennial scale climate change projections.

  17. Uncertainty quantification in Eulerian-Lagrangian models for particle-laden flows

    NASA Astrophysics Data System (ADS)

    Fountoulakis, Vasileios; Jacobs, Gustaaf; Udaykumar, Hs

    2017-11-01

    A common approach to ameliorate the computational burden in simulations of particle-laden flows is to use a point-particle based Eulerian-Lagrangian model, which traces individual particles in their Lagrangian frame and models particles as mathematical points. The particle motion is determined by Stokes drag law, which is empirically corrected for Reynolds number, Mach number and other parameters. The empirical corrections are subject to uncertainty. Treating them as random variables renders the coupled system of PDEs and ODEs stochastic. An approach to quantify the propagation of this parametric uncertainty to the particle solution variables is proposed. The approach is based on averaging of the governing equations and allows for estimation of the first moments of the quantities of interest. We demonstrate the feasibility of our proposed methodology of uncertainty quantification of particle-laden flows on one-dimensional linear and nonlinear Eulerian-Lagrangian systems. This research is supported by AFOSR under Grant FA9550-16-1-0008.

  18. Predictability of the Lagrangian Motion in the Upper Ocean

    NASA Astrophysics Data System (ADS)

    Piterbarg, L. I.; Griffa, A.; Griffa, A.; Mariano, A. J.; Ozgokmen, T. M.; Ryan, E. H.

    2001-12-01

    The complex non-linear dynamics of the upper ocean leads to chaotic behavior of drifter trajectories in the ocean. Our study is focused on estimating the predictability limit for the position of an individual Lagrangian particle or a particle cluster based on the knowledge of mean currents and observations of nearby particles (predictors). The Lagrangian prediction problem, besides being a fundamental scientific problem, is also of great importance for practical applications such as search and rescue operations and for modeling the spread of fish larvae. A stochastic multi-particle model for the Lagrangian motion has been rigorously formulated and is a generalization of the well known "random flight" model for a single particle. Our model is mathematically consistent and includes a few easily interpreted parameters, such as the Lagrangian velocity decorrelation time scale, the turbulent velocity variance, and the velocity decorrelation radius, that can be estimated from data. The top Lyapunov exponent for an isotropic version of the model is explicitly expressed as a function of these parameters enabling us to approximate the predictability limit to first order. Lagrangian prediction errors for two new prediction algorithms are evaluated against simple algorithms and each other and are used to test the predictability limits of the stochastic model for isotropic turbulence. The first algorithm is based on a Kalman filter and uses the developed stochastic model. Its implementation for drifter clusters in both the Tropical Pacific and Adriatic Sea, showed good prediction skill over a period of 1-2 weeks. The prediction error is primarily a function of the data density, defined as the number of predictors within a velocity decorrelation spatial scale from the particle to be predicted. The second algorithm is model independent and is based on spatial regression considerations. Preliminary results, based on simulated, as well as, real data, indicate that it performs

  19. CELFE: Coupled Eulerian-Lagrangian Finite Element program for high velocity impact. Part 1: Theory and formulation. [hydroelasto-viscoplastic model

    NASA Technical Reports Server (NTRS)

    Lee, C. H.

    1978-01-01

    A 3-D finite element program capable of simulating the dynamic behavior in the vicinity of the impact point, together with predicting the dynamic response in the remaining part of the structural component subjected to high velocity impact is discussed. The finite algorithm is formulated in a general moving coordinate system. In the vicinity of the impact point contained by a moving failure front, the relative velocity of the coordinate system will approach the material particle velocity. The dynamic behavior inside the region is described by Eulerian formulation based on a hydroelasto-viscoplastic model. The failure front which can be regarded as the boundary of the impact zone is described by a transition layer. The layer changes the representation from the Eulerian mode to the Lagrangian mode outside the failure front by varying the relative velocity of the coordinate system to zero. The dynamic response in the remaining part of the structure described by the Lagrangian formulation is treated using advanced structural analysis. An interfacing algorithm for coupling CELFE with NASTRAN is constructed to provide computational capabilities for large structures.

  20. Lagrangian Descriptors: A Method for Revealing Phase Space Structures of General Time Dependent Dynamical Systems

    NASA Astrophysics Data System (ADS)

    Mancho, Ana M.; Wiggins, Stephen; Curbelo, Jezabel; Mendoza, Carolina

    2013-11-01

    Lagrangian descriptors are a recent technique which reveals geometrical structures in phase space and which are valid for aperiodically time dependent dynamical systems. We discuss a general methodology for constructing them and we discuss a ``heuristic argument'' that explains why this method is successful. We support this argument by explicit calculations on a benchmark problem. Several other benchmark examples are considered that allow us to assess the performance of Lagrangian descriptors with both finite time Lyapunov exponents (FTLEs) and finite time averages of certain components of the vector field (``time averages''). In all cases Lagrangian descriptors are shown to be both more accurate and computationally efficient than these methods. We thank CESGA for computing facilities. This research was supported by MINECO grants: MTM2011-26696, I-Math C3-0104, ICMAT Severo Ochoa project SEV-2011-0087, and CSIC grant OCEANTECH. SW acknowledges the support of the ONR (Grant No. N00014-01-1-0769).

  1. A contemporary look at Hermann Hankel's 1861 pioneering work on Lagrangian fluid dynamics

    NASA Astrophysics Data System (ADS)

    Frisch, Uriel; Grimberg, Gérard; Villone, Barbara

    2017-12-01

    The present paper is a companion to the paper by Villone and Rampf (2017), titled "Hermann Hankel's On the general theory of motion of fluids, an essay including an English translation of the complete Preisschrift from 1861" together with connected documents [Eur. Phys. J. H 42, 557-609 (2017)]. Here we give a critical assessment of Hankel's work, which covers many important aspects of fluid dynamics considered from a Lagrangian-coordinates point of view: variational formulation in the spirit of Hamilton for elastic (barotropic) fluids, transport (we would now say Lie transport) of vorticity, the Lagrangian significance of Clebsch variables, etc. Hankel's work is also put in the perspective of previous and future work. Hence, the action spans about two centuries: from Lagrange's 1760-1761 Turin paper on variational approaches to mechanics and fluid mechanics problems to Arnold's 1966 founding paper on the geometrical/variational formulation of incompressible flow. The 22-year-old Hankel - who was to die 12 years later — emerges as a highly innovative master of mathematical fluid dynamics, fully deserving Riemann's assessment that his Preisschrift contains "all manner of good things."

  2. Nonpolynomial Lagrangian approach to regular black holes

    NASA Astrophysics Data System (ADS)

    Colléaux, Aimeric; Chinaglia, Stefano; Zerbini, Sergio

    We present a review on Lagrangian models admitting spherically symmetric regular black holes (RBHs), and cosmological bounce solutions. Nonlinear electrodynamics, nonpolynomial gravity, and fluid approaches are explained in details. They consist respectively in a gauge invariant generalization of the Maxwell-Lagrangian, in modifications of the Einstein-Hilbert action via nonpolynomial curvature invariants, and finally in the reconstruction of density profiles able to cure the central singularity of black holes. The nonpolynomial gravity curvature invariants have the special property to be second-order and polynomial in the metric field, in spherically symmetric spacetimes. Along the way, other models and results are discussed, and some general properties that RBHs should satisfy are mentioned. A covariant Sakharov criterion for the absence of singularities in dynamical spherically symmetric spacetimes is also proposed and checked for some examples of such regular metric fields.

  3. Sigma decomposition: the CP-odd Lagrangian

    NASA Astrophysics Data System (ADS)

    Hierro, I. M.; Merlo, L.; Rigolin, S.

    2016-04-01

    In Alonso et al., JHEP 12 (2014) 034, the CP-even sector of the effective chiral Lagrangian for a generic composite Higgs model with a symmetric coset has been constructed, up to four momenta. In this paper, the CP-odd couplings are studied within the same context. If only the Standard Model bosonic sources of custodial symmetry breaking are considered, then at most six independent operators form a basis. One of them is the weak- θ term linked to non-perturbative sources of CP violation, while the others describe CP-odd perturbative couplings between the Standard Model gauge bosons and an Higgs-like scalar belonging to the Goldstone boson sector. The procedure is then applied to three distinct exemplifying frameworks: the original SU(5)/SO(5) Georgi-Kaplan model, the minimal custodial-preserving SO(5)/SO(4) model and the minimal SU(3)/(SU(2) × U(1)) model, which intrinsically breaks custodial symmetry. Moreover, the projection of the high-energy electroweak effective theory to the low-energy chiral effective Lagrangian for a dynamical Higgs is performed, uncovering strong relations between the operator coefficients and pinpointing the differences with the elementary Higgs scenario.

  4. Structure of sheared and rotating turbulence: Multiscale statistics of Lagrangian and Eulerian accelerations and passive scalar dynamics.

    PubMed

    Jacobitz, Frank G; Schneider, Kai; Bos, Wouter J T; Farge, Marie

    2016-01-01

    The acceleration statistics of sheared and rotating homogeneous turbulence are studied using direct numerical simulation results. The statistical properties of Lagrangian and Eulerian accelerations are considered together with the influence of the rotation to shear ratio, as well as the scale dependence of their statistics. The probability density functions (pdfs) of both Lagrangian and Eulerian accelerations show a strong and similar dependence on the rotation to shear ratio. The variance and flatness of both accelerations are analyzed and the extreme values of the Eulerian acceleration are observed to be above those of the Lagrangian acceleration. For strong rotation it is observed that flatness yields values close to three, corresponding to Gaussian-like behavior, and for moderate and vanishing rotation the flatness increases. Furthermore, the Lagrangian and Eulerian accelerations are shown to be strongly correlated for strong rotation due to a reduced nonlinear term in this case. A wavelet-based scale-dependent analysis shows that the flatness of both Eulerian and Lagrangian accelerations increases as scale decreases, which provides evidence for intermittent behavior. For strong rotation the Eulerian acceleration is even more intermittent than the Lagrangian acceleration, while the opposite result is obtained for moderate rotation. Moreover, the dynamics of a passive scalar with gradient production in the direction of the mean velocity gradient is analyzed and the influence of the rotation to shear ratio is studied. Concerning the concentration of a passive scalar spread by the flow, the pdf of its Eulerian time rate of change presents higher extreme values than those of its Lagrangian time rate of change. This suggests that the Eulerian time rate of change of scalar concentration is mainly due to advection, while its Lagrangian counterpart is only due to gradient production and viscous dissipation.

  5. A Lagrangian stochastic model for aerial spray transport above an oak forest

    USGS Publications Warehouse

    Wang, Yansen; Miller, David R.; Anderson, Dean E.; McManus, Michael L.

    1995-01-01

    An aerial spray droplets' transport model has been developed by applying recent advances in Lagrangian stochastic simulation of heavy particles. A two-dimensional Lagrangian stochastic model was adopted to simulate the spray droplet dispersion in atmospheric turbulence by adjusting the Lagrangian integral time scale along the drop trajectory. The other major physical processes affecting the transport of spray droplets above a forest canopy, the aircraft wingtip vortices and the droplet evaporation, were also included in each time step of the droplets' transport.The model was evaluated using data from an aerial spray field experiment. In generally neutral stability conditions, the accuracy of the model predictions varied from run-to-run as expected. The average root-mean-square error was 24.61 IU cm−2, and the average relative error was 15%. The model prediction was adequate in two-dimensional steady wind conditions, but was less accurate in variable wind condition. The results indicated that the model can simulate successfully the ensemble; average transport of aerial spray droplets under neutral, steady atmospheric wind conditions.

  6. About non standard Lagrangians in cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dimitrijevic, Dragoljub D.; Milosevic, Milan

    A review of non standard Lagrangians present in modern cosmological models will be considered. Well known example of non standard Lagrangian is Dirac-Born-Infeld (DBI) type Lagrangian for tachyon field. Another type of non standard Lagrangian under consideration contains scalar field which describes open p-adic string tachyon and is called p-adic string theory Lagrangian. We will investigate homogenous cases of both DBI and p-adic fields and obtain Lagrangians of the standard type which have the same equations of motions as aforementioned non standard one.

  7. Direct reconstruction of pharmacokinetic parameters in dynamic fluorescence molecular tomography by the augmented Lagrangian method

    NASA Astrophysics Data System (ADS)

    Zhu, Dianwen; Zhang, Wei; Zhao, Yue; Li, Changqing

    2016-03-01

    Dynamic fluorescence molecular tomography (FMT) has the potential to quantify physiological or biochemical information, known as pharmacokinetic parameters, which are important for cancer detection, drug development and delivery etc. To image those parameters, there are indirect methods, which are easier to implement but tend to provide images with low signal-to-noise ratio, and direct methods, which model all the measurement noises together and are statistically more efficient. The direct reconstruction methods in dynamic FMT have attracted a lot of attention recently. However, the coupling of tomographic image reconstruction and nonlinearity of kinetic parameter estimation due to the compartment modeling has imposed a huge computational burden to the direct reconstruction of the kinetic parameters. In this paper, we propose to take advantage of both the direct and indirect reconstruction ideas through a variable splitting strategy under the augmented Lagrangian framework. Each iteration of the direct reconstruction is split into two steps: the dynamic FMT image reconstruction and the node-wise nonlinear least squares fitting of the pharmacokinetic parameter images. Through numerical simulation studies, we have found that the proposed algorithm can achieve good reconstruction results within a small amount of time. This will be the first step for a combined dynamic PET and FMT imaging in the future.

  8. a Marker-Based Eulerian-Lagrangian Method for Multiphase Flow with Supersonic Combustion Applications

    NASA Astrophysics Data System (ADS)

    Fan, Xiaofeng; Wang, Jiangfeng

    2016-06-01

    The atomization of liquid fuel is a kind of intricate dynamic process from continuous phase to discrete phase. Procedures of fuel spray in supersonic flow are modeled with an Eulerian-Lagrangian computational fluid dynamics methodology. The method combines two distinct techniques and develops an integrated numerical simulation method to simulate the atomization processes. The traditional finite volume method based on stationary (Eulerian) Cartesian grid is used to resolve the flow field, and multi-component Navier-Stokes equations are adopted in present work, with accounting for the mass exchange and heat transfer occupied by vaporization process. The marker-based moving (Lagrangian) grid is utilized to depict the behavior of atomized liquid sprays injected into a gaseous environment, and discrete droplet model 13 is adopted. To verify the current approach, the proposed method is applied to simulate processes of liquid atomization in supersonic cross flow. Three classic breakup models, TAB model, wave model and K-H/R-T hybrid model, are discussed. The numerical results are compared with multiple perspectives quantitatively, including spray penetration height and droplet size distribution. In addition, the complex flow field structures induced by the presence of liquid spray are illustrated and discussed. It is validated that the maker-based Eulerian-Lagrangian method is effective and reliable.

  9. Parallel implementation of a Lagrangian-based model on an adaptive mesh in C++: Application to sea-ice

    NASA Astrophysics Data System (ADS)

    Samaké, Abdoulaye; Rampal, Pierre; Bouillon, Sylvain; Ólason, Einar

    2017-12-01

    We present a parallel implementation framework for a new dynamic/thermodynamic sea-ice model, called neXtSIM, based on the Elasto-Brittle rheology and using an adaptive mesh. The spatial discretisation of the model is done using the finite-element method. The temporal discretisation is semi-implicit and the advection is achieved using either a pure Lagrangian scheme or an Arbitrary Lagrangian Eulerian scheme (ALE). The parallel implementation presented here focuses on the distributed-memory approach using the message-passing library MPI. The efficiency and the scalability of the parallel algorithms are illustrated by the numerical experiments performed using up to 500 processor cores of a cluster computing system. The performance obtained by the proposed parallel implementation of the neXtSIM code is shown being sufficient to perform simulations for state-of-the-art sea ice forecasting and geophysical process studies over geographical domain of several millions squared kilometers like the Arctic region.

  10. Arbitrary Lagrangian-Eulerian Method with Local Structured Adaptive Mesh Refinement for Modeling Shock Hydrodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, R W; Pember, R B; Elliott, N S

    2001-10-22

    A new method that combines staggered grid Arbitrary Lagrangian-Eulerian (ALE) techniques with structured local adaptive mesh refinement (AMR) has been developed for solution of the Euler equations. This method facilitates the solution of problems currently at and beyond the boundary of soluble problems by traditional ALE methods by focusing computational resources where they are required through dynamic adaption. Many of the core issues involved in the development of the combined ALEAMR method hinge upon the integration of AMR with a staggered grid Lagrangian integration method. The novel components of the method are mainly driven by the need to reconcile traditionalmore » AMR techniques, which are typically employed on stationary meshes with cell-centered quantities, with the staggered grids and grid motion employed by Lagrangian methods. Numerical examples are presented which demonstrate the accuracy and efficiency of the method.« less

  11. Lagrangian dynamics of the mistral during the HyMeX SOP2

    NASA Astrophysics Data System (ADS)

    Drobinski, P.; Alonzo, B.; Basdevant, C.; Cocquerez, P.; Doerenbecher, A.; Fourrié, N.; Nuret, M.

    2017-02-01

    The mistral refers to a severe wind blowing over the Gulf of Lions after being channeled in the Rhone valley. It influences the western Mediterranean climate as it brings cold and dry continental air over the warm western Mediterranean, generating intense air-sea heat exchanges and sea surface cooling, inducing the formation of the western Mediterranean deep water that moves into the Atlantic Ocean. The mistral is frequently observed to extend as far as a few hundred kilometers from the coast, and its fine-scale dynamics over the sea is still only partially understood as finely resolved observations in time and space are lacking. The boundary layer pressurized balloons (BLPB) developed by the Centre National d'Etudes Spatiales and deployed during HyMeX SOP2 allowed the Lagrangian documentation of the mistral events that occurred between beginning of February to mid-March 2013. Analyzed in synergy with the AROME-WMED weather forecast model, all the terms of the Lagrangian formulation of the momentum conservation equation could be quantified showing three different regions: (1) an injection zone where the mistral flow is directed toward the center of the Genoa cyclone due to a strong zonal pressure gradient, enhanced friction, and entrainment in the mountain wake; (2) an ejection zone where the flow is deflected outward of the cyclone due to either the nonnegligible inertia pseudoforce or an inertial oscillation caused by a sudden friction decrease; and (3) a region of geostrophic deceleration due to the weakening of the pressure gradient.

  12. Lagrangian dynamics of the mistral during the HyMeX SOP2

    NASA Astrophysics Data System (ADS)

    Drobinski, Philippe; Alonzo, Bastien; Basdevant, Claude; Cocquerez, Philippe; Fourrié, Nadia; Nuret, Mathieu

    2017-04-01

    The mistral refers to a severe wind blowing over the Gulf of Lions after being channeled in the Rhone valley. It influences the western Mediterranean climate as it brings cold and dry continental air over the warm western Mediterranean, generating intense air-sea heat exchanges and sea surface cooling, inducing the formation of the western Mediterranean deep water that moves into the Atlantic Ocean. The mistral is frequently observed to extend as far as a few hundred kilometers from the coast, and its fine-scale dynamics over the sea is still only partially understood as finely resolved observations in time and space are lacking. The boundary layer pressurized balloons (BLPB) developed by the Centre National d'Etudes Spatiales and deployed during HyMeX SOP2 allowed the Lagrangian documentation of the mistral events that occurred between beginning of February to mid-March 2013. Analyzed in synergy with the AROME-WMED weather forecast model, all the terms of the Lagrangian formulation of the momentum conservation equation could be quantified showing three different regions: (1) an injection zone where the mistral flow is directed toward the center of the Genoa cyclone due to a strong zonal pressure gradient, enhanced friction, and entrainment in the mountain wake; (2) an ejection zone where the flow is deflected outward of the cyclone due to either the nonnegligible inertia pseudoforce or an inertial oscillation caused by a sudden friction decrease; and (3) a region of geostrophic deceleration due to the weakening of the pressure gradient.

  13. ELF: An Extended-Lagrangian Free Energy Calculation Module for Multiple Molecular Dynamics Engines.

    PubMed

    Chen, Haochuan; Fu, Haohao; Shao, Xueguang; Chipot, Christophe; Cai, Wensheng

    2018-06-18

    Extended adaptive biasing force (eABF), a collective variable (CV)-based importance-sampling algorithm, has proven to be very robust and efficient compared with the original ABF algorithm. Its implementation in Colvars, a software addition to molecular dynamics (MD) engines, is, however, currently limited to NAMD and LAMMPS. To broaden the scope of eABF and its variants, like its generalized form (egABF), and make them available to other MD engines, e.g., GROMACS, AMBER, CP2K, and openMM, we present a PLUMED-based implementation, called extended-Lagrangian free energy calculation (ELF). This implementation can be used as a stand-alone gradient estimator for other CV-based sampling algorithms, such as temperature-accelerated MD (TAMD) and extended-Lagrangian metadynamics (MtD). ELF provides the end user with a convenient framework to help select the best-suited importance-sampling algorithm for a given application without any commitment to a particular MD engine.

  14. Comparing Lagrangian and Eulerian models for CO2 transport - a step towards Bayesian inverse modeling using WRF/STILT-VPRM

    NASA Astrophysics Data System (ADS)

    Pillai, D.; Gerbig, C.; Kretschmer, R.; Beck, V.; Karstens, U.; Neininger, B.; Heimann, M.

    2012-10-01

    We present simulations of atmospheric CO2 concentrations provided by two modeling systems, run at high spatial resolution: the Eulerian-based Weather Research Forecasting (WRF) model and the Lagrangian-based Stochastic Time-Inverted Lagrangian Transport (STILT) model, both of which are coupled to a diagnostic biospheric model, the Vegetation Photosynthesis and Respiration Model (VPRM). The consistency of the simulations is assessed with special attention paid to the details of horizontal as well as vertical transport and mixing of CO2 concentrations in the atmosphere. The dependence of model mismatch (Eulerian vs. Lagrangian) on models' spatial resolution is further investigated. A case study using airborne measurements during which two models showed large deviations from each other is analyzed in detail as an extreme case. Using aircraft observations and pulse release simulations, we identified differences in the representation of details in the interaction between turbulent mixing and advection through wind shear as the main cause of discrepancies between WRF and STILT transport at a spatial resolution such as 2 and 6 km. Based on observations and inter-model comparisons of atmospheric CO2 concentrations, we show that a refinement of the parameterization of turbulent velocity variance and Lagrangian time-scale in STILT is needed to achieve a better match between the Eulerian and the Lagrangian transport at such a high spatial resolution (e.g. 2 and 6 km). Nevertheless, the inter-model differences in simulated CO2 time series for a tall tower observatory at Ochsenkopf in Germany are about a factor of two smaller than the model-data mismatch and about a factor of three smaller than the mismatch between the current global model simulations and the data.

  15. A kinematic wave model in Lagrangian coordinates incorporating capacity drop: Application to homogeneous road stretches and discontinuities

    NASA Astrophysics Data System (ADS)

    Yuan, Kai; Knoop, Victor L.; Hoogendoorn, Serge P.

    2017-01-01

    On freeways, congestion always leads to capacity drop. This means the queue discharge rate is lower than the pre-queue capacity. Our recent research findings indicate that the queue discharge rate increases with the speed in congestion, that is the capacity drop is strongly correlated with the congestion state. Incorporating this varying capacity drop into a kinematic wave model is essential for assessing consequences of control strategies. However, to the best of authors' knowledge, no such a model exists. This paper fills the research gap by presenting a Lagrangian kinematic wave model. "Lagrangian" denotes that the new model is solved in Lagrangian coordinates. The new model can give capacity drops accompanying both of stop-and-go waves (on homogeneous freeway section) and standing queues (at nodes) in a network. The new model can be applied in a network operation. In this Lagrangian kinematic wave model, the queue discharge rate (or the capacity drop) is a function of vehicular speed in traffic jams. Four case studies on links as well as at lane-drop and on-ramp nodes show that the Lagrangian kinematic wave model can give capacity drops well, consistent with empirical observations.

  16. Multi-Lagrangians for integrable systems

    NASA Astrophysics Data System (ADS)

    Nutku, Y.; Pavlov, M. V.

    2002-03-01

    We propose a general scheme to construct multiple Lagrangians for completely integrable nonlinear evolution equations that admit multi-Hamiltonian structure. The recursion operator plays a fundamental role in this construction. We use a conserved quantity higher/lower than the Hamiltonian in the potential part of the new Lagrangian and determine the corresponding kinetic terms by generating the appropriate momentum map. This leads to some remarkable new developments. We show that nonlinear evolutionary systems that admit N-fold first order local Hamiltonian structure can be cast into variational form with 2N-1 Lagrangians which will be local functionals of Clebsch potentials. This number increases to 3N-2 when the Miura transformation is invertible. Furthermore we construct a new Lagrangian for polytropic gas dynamics in 1+1 dimensions which is a free, local functional of the physical field variables, namely density and velocity, thus dispensing with the necessity of introducing Clebsch potentials entirely. This is a consequence of bi-Hamiltonian structure with a compatible pair of first and third order Hamiltonian operators derived from Sheftel's recursion operator.

  17. Lagrangian postprocessing of computational hemodynamics.

    PubMed

    Shadden, Shawn C; Arzani, Amirhossein

    2015-01-01

    Recent advances in imaging, modeling, and computing have rapidly expanded our capabilities to model hemodynamics in the large vessels (heart, arteries, and veins). This data encodes a wealth of information that is often under-utilized. Modeling (and measuring) blood flow in the large vessels typically amounts to solving for the time-varying velocity field in a region of interest. Flow in the heart and larger arteries is often complex, and velocity field data provides a starting point for investigating the hemodynamics. This data can be used to perform Lagrangian particle tracking, and other Lagrangian-based postprocessing. As described herein, Lagrangian methods are necessary to understand inherently transient hemodynamic conditions from the fluid mechanics perspective, and to properly understand the biomechanical factors that lead to acute and gradual changes of vascular function and health. The goal of the present paper is to review Lagrangian methods that have been used in post-processing velocity data of cardiovascular flows.

  18. Lagrangian postprocessing of computational hemodynamics

    PubMed Central

    Shadden, Shawn C.; Arzani, Amirhossein

    2014-01-01

    Recent advances in imaging, modeling and computing have rapidly expanded our capabilities to model hemodynamics in the large vessels (heart, arteries and veins). This data encodes a wealth of information that is often under-utilized. Modeling (and measuring) blood flow in the large vessels typically amounts to solving for the time-varying velocity field in a region of interest. Flow in the heart and larger arteries is often complex, and velocity field data provides a starting point for investigating the hemodynamics. This data can be used to perform Lagrangian particle tracking, and other Lagrangian-based postprocessing. As described herein, Lagrangian methods are necessary to understand inherently transient hemodynamic conditions from the fluid mechanics perspective, and to properly understand the biomechanical factors that lead to acute and gradual changes of vascular function and health. The goal of the present paper is to review Lagrangian methods that have been used in post-processing velocity data of cardiovascular flows. PMID:25059889

  19. Comparing Lagrangian and Eulerian models for CO2 transport - a step towards Bayesian inverse modeling using WRF/STILT-VPRM

    NASA Astrophysics Data System (ADS)

    Pillai, D.; Gerbig, C.; Kretschmer, R.; Beck, V.; Karstens, U.; Neininger, B.; Heimann, M.

    2012-01-01

    We present simulations of atmospheric CO2 concentrations provided by two modeling systems, run at high spatial resolution: the Eulerian-based Weather Research Forecasting (WRF) model and the Lagrangian-based Stochastic Time-Inverted Lagrangian Transport (STILT) model, both of which are coupled to a diagnostic biospheric model, the Vegetation Photosynthesis and Respiration Model (VPRM). The consistency of the simulations is assessed with special attention paid to the details of horizontal as well as vertical transport and mixing of CO2 concentrations in the atmosphere. The dependence of model mismatch (Eulerian vs. Lagrangian) on models' spatial resolution is further investigated. A case study using airborne measurements during which both models showed large deviations from each other is analyzed in detail as an extreme case. Using aircraft observations and pulse release simulations, we identified differences in the representation of details in the interaction between turbulent mixing and advection through wind shear as the main cause of discrepancies between WRF and STILT transport at a spatial resolution such as 2 and 6 km. Based on observations and inter-model comparisons of atmospheric CO2 concentrations, we show that a refinement of the parameterization of turbulent velocity variance and Lagrangian time-scale in STILT is needed to achieve a better match between the Eulerian and the Lagrangian transport at such a high spatial resolution (e.g. 2 and 6 km). Nevertheless, the inter-model differences in simulated CO2 time series for a tall tower observatory at Ochsenkopf in Germany are about a factor of two smaller than the model-data mismatch and about a factor of three smaller than the mismatch between the current global model simulations and the data. Thus suggests that it is reasonable to use STILT as an adjoint model of WRF atmospheric transport.

  20. 3 Lectures: "Lagrangian Models", "Numerical Transport Schemes", and "Chemical and Transport Models"

    NASA Technical Reports Server (NTRS)

    Douglass, A.

    2005-01-01

    The topics for the three lectures for the Canadian Summer School are Lagrangian Models, numerical transport schemes, and chemical and transport models. In the first lecture I will explain the basic components of the Lagrangian model (a trajectory code and a photochemical code), the difficulties in using such a model (initialization) and show some applications in interpretation of aircraft and satellite data. If time permits I will show some results concerning inverse modeling which is being used to evaluate sources of tropospheric pollutants. In the second lecture I will discuss one of the core components of any grid point model, the numerical transport scheme. I will explain the basics of shock capturing schemes, and performance criteria. I will include an example of the importance of horizontal resolution to polar processes. We have learned from NASA's global modeling initiative that horizontal resolution matters for predictions of the future evolution of the ozone hole. The numerical scheme will be evaluated using performance metrics based on satellite observations of long-lived tracers. The final lecture will discuss the evolution of chemical transport models over the last decade. Some of the problems with assimilated winds will be demonstrated, using satellite data to evaluate the simulations.

  1. Performance of extended Lagrangian schemes for molecular dynamics simulations with classical polarizable force fields and density functional theory

    NASA Astrophysics Data System (ADS)

    Vitale, Valerio; Dziedzic, Jacek; Albaugh, Alex; Niklasson, Anders M. N.; Head-Gordon, Teresa; Skylaris, Chris-Kriton

    2017-03-01

    Iterative energy minimization with the aim of achieving self-consistency is a common feature of Born-Oppenheimer molecular dynamics (BOMD) and classical molecular dynamics with polarizable force fields. In the former, the electronic degrees of freedom are optimized, while the latter often involves an iterative determination of induced point dipoles. The computational effort of the self-consistency procedure can be reduced by re-using converged solutions from previous time steps. However, this must be done carefully, as not to break time-reversal symmetry, which negatively impacts energy conservation. Self-consistent schemes based on the extended Lagrangian formalism, where the initial guesses for the optimized quantities are treated as auxiliary degrees of freedom, constitute one elegant solution. We report on the performance of two integration schemes with the same underlying extended Lagrangian structure, which we both employ in two radically distinct regimes—in classical molecular dynamics simulations with the AMOEBA polarizable force field and in BOMD simulations with the Onetep linear-scaling density functional theory (LS-DFT) approach. Both integration schemes are found to offer significant improvements over the standard (unpropagated) molecular dynamics formulation in both the classical and LS-DFT regimes.

  2. Performance of extended Lagrangian schemes for molecular dynamics simulations with classical polarizable force fields and density functional theory.

    PubMed

    Vitale, Valerio; Dziedzic, Jacek; Albaugh, Alex; Niklasson, Anders M N; Head-Gordon, Teresa; Skylaris, Chris-Kriton

    2017-03-28

    Iterative energy minimization with the aim of achieving self-consistency is a common feature of Born-Oppenheimer molecular dynamics (BOMD) and classical molecular dynamics with polarizable force fields. In the former, the electronic degrees of freedom are optimized, while the latter often involves an iterative determination of induced point dipoles. The computational effort of the self-consistency procedure can be reduced by re-using converged solutions from previous time steps. However, this must be done carefully, as not to break time-reversal symmetry, which negatively impacts energy conservation. Self-consistent schemes based on the extended Lagrangian formalism, where the initial guesses for the optimized quantities are treated as auxiliary degrees of freedom, constitute one elegant solution. We report on the performance of two integration schemes with the same underlying extended Lagrangian structure, which we both employ in two radically distinct regimes-in classical molecular dynamics simulations with the AMOEBA polarizable force field and in BOMD simulations with the Onetep linear-scaling density functional theory (LS-DFT) approach. Both integration schemes are found to offer significant improvements over the standard (unpropagated) molecular dynamics formulation in both the classical and LS-DFT regimes.

  3. Performance of extended Lagrangian schemes for molecular dynamics simulations with classical polarizable force fields and density functional theory

    DOE PAGES

    Vitale, Valerio; Dziedzic, Jacek; Albaugh, Alex; ...

    2017-03-28

    Iterative energy minimization with the aim of achieving self-consistency is a common feature of Born-Oppenheimer molecular dynamics (BOMD) and classical molecular dynamics with polarizable force fields. In the former, the electronic degrees of freedom are optimized, while the latter often involves an iterative determination of induced point dipoles. The computational effort of the self-consistency procedure can be reduced by re-using converged solutions from previous time steps. However, this must be done carefully, as not to break time-reversal symmetry, which negatively impacts energy conservation. Self-consistent schemes based on the extended Lagrangian formalism, where the initial guesses for the optimized quantities aremore » treated as auxiliary degrees of freedom, constitute one elegant solution. We report on the performance of two integration schemes with the same underlying extended Lagrangian structure, which we both employ in two radically distinct regimes—in classical molecular dynamics simulations with the AMOEBA polarizable force field and in BOMD simulations with the Onetep linear-scaling density functional theory (LS-DFT) approach. Furthermore, both integration schemes are found to offer significant improvements over the standard (unpropagated) molecular dynamics formulation in both the classical and LS-DFT regimes.« less

  4. Performance of extended Lagrangian schemes for molecular dynamics simulations with classical polarizable force fields and density functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vitale, Valerio; Dziedzic, Jacek; Albaugh, Alex

    Iterative energy minimization with the aim of achieving self-consistency is a common feature of Born-Oppenheimer molecular dynamics (BOMD) and classical molecular dynamics with polarizable force fields. In the former, the electronic degrees of freedom are optimized, while the latter often involves an iterative determination of induced point dipoles. The computational effort of the self-consistency procedure can be reduced by re-using converged solutions from previous time steps. However, this must be done carefully, as not to break time-reversal symmetry, which negatively impacts energy conservation. Self-consistent schemes based on the extended Lagrangian formalism, where the initial guesses for the optimized quantities aremore » treated as auxiliary degrees of freedom, constitute one elegant solution. We report on the performance of two integration schemes with the same underlying extended Lagrangian structure, which we both employ in two radically distinct regimes—in classical molecular dynamics simulations with the AMOEBA polarizable force field and in BOMD simulations with the Onetep linear-scaling density functional theory (LS-DFT) approach. Furthermore, both integration schemes are found to offer significant improvements over the standard (unpropagated) molecular dynamics formulation in both the classical and LS-DFT regimes.« less

  5. Target Lagrangian kinematic simulation for particle-laden flows.

    PubMed

    Murray, S; Lightstone, M F; Tullis, S

    2016-09-01

    The target Lagrangian kinematic simulation method was motivated as a stochastic Lagrangian particle model that better synthesizes turbulence structure, relative to stochastic separated flow models. By this method, the trajectories of particles are constructed according to synthetic turbulent-like fields, which conform to a target Lagrangian integral timescale. In addition to recovering the expected Lagrangian properties of fluid tracers, this method is shown to reproduce the crossing trajectories and continuity effects, in agreement with an experimental benchmark.

  6. Option volatility and the acceleration Lagrangian

    NASA Astrophysics Data System (ADS)

    Baaquie, Belal E.; Cao, Yang

    2014-01-01

    This paper develops a volatility formula for option on an asset from an acceleration Lagrangian model and the formula is calibrated with market data. The Black-Scholes model is a simpler case that has a velocity dependent Lagrangian. The acceleration Lagrangian is defined, and the classical solution of the system in Euclidean time is solved by choosing proper boundary conditions. The conditional probability distribution of final position given the initial position is obtained from the transition amplitude. The volatility is the standard deviation of the conditional probability distribution. Using the conditional probability and the path integral method, the martingale condition is applied, and one of the parameters in the Lagrangian is fixed. The call option price is obtained using the conditional probability and the path integral method.

  7. A Skill Score of Trajectory Model Evaluation Using Reinitialized Series of Normalized Cumulative Lagrangian Separation

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Weisberg, R. H.

    2017-12-01

    The Lagrangian separation distance between the endpoints of simulated and observed drifter trajectories is often used to assess the performance of numerical particle trajectory models. However, the separation distance fails to indicate relative model performance in weak and strong current regions, such as a continental shelf and its adjacent deep ocean. A skill score is proposed based on the cumulative Lagrangian separation distances normalized by the associated cumulative trajectory lengths. The new metrics correctly indicates the relative performance of the Global HYCOM in simulating the strong currents of the Gulf of Mexico Loop Current and the weaker currents of the West Florida Shelf in the eastern Gulf of Mexico. In contrast, the Lagrangian separation distance alone gives a misleading result. Also, the observed drifter position series can be used to reinitialize the trajectory model and evaluate its performance along the observed trajectory, not just at the drifter end position. The proposed dimensionless skill score is particularly useful when the number of drifter trajectories is limited and neither a conventional Eulerian-based velocity nor a Lagrangian-based probability density function may be estimated.

  8. Non-recursive augmented Lagrangian algorithms for the forward and inverse dynamics of constrained flexible multibodies

    NASA Technical Reports Server (NTRS)

    Bayo, Eduardo; Ledesma, Ragnar

    1993-01-01

    A technique is presented for solving the inverse dynamics of flexible planar multibody systems. This technique yields the non-causal joint efforts (inverse dynamics) as well as the internal states (inverse kinematics) that produce a prescribed nominal trajectory of the end effector. A non-recursive global Lagrangian approach is used in formulating the equations for motion as well as in solving the inverse dynamics equations. Contrary to the recursive method previously presented, the proposed method solves the inverse problem in a systematic and direct manner for both open-chain as well as closed-chain configurations. Numerical simulation shows that the proposed procedure provides an excellent tracking of the desired end effector trajectory.

  9. A Eulerian-Lagrangian Model to Simulate Two-Phase/Particulate Flows

    NASA Technical Reports Server (NTRS)

    Apte, S. V.; Mahesh, K.; Lundgren, T.

    2003-01-01

    Figure 1 shows a snapshot of liquid fuel spray coming out of an injector nozzle in a realistic gas-turbine combustor. Here the spray atomization was simulated using a stochastic secondary breakup model (Apte et al. 2003a) with point-particle approximation for the droplets. Very close to the injector, it is observed that the spray density is large and the droplets cannot be treated as point-particles. The volume displaced by the liquid in this region is significant and can alter the gas-phase ow and spray evolution. In order to address this issue, one can compute the dense spray regime by an Eulerian-Lagrangian technique using advanced interface tracking/level-set methods (Sussman et al. 1994; Tryggvason et al. 2001; Herrmann 2003). This, however, is computationally intensive and may not be viable in realistic complex configurations. We therefore plan to develop a methodology based on Eulerian-Lagrangian technique which will allow us to capture the essential features of primary atomization using models to capture interactions between the fluid and droplets and which can be directly applied to the standard atomization models used in practice. The numerical scheme for unstructured grids developed by Mahesh et al. (2003) for incompressible flows is modified to take into account the droplet volume fraction. The numerical framework is directly applicable to realistic combustor geometries. Our main objectives in this work are: Develop a numerical formulation based on Eulerian-Lagrangian techniques with models for interaction terms between the fluid and particles to capture the Kelvin- Helmholtz type instabilities observed during primary atomization. Validate this technique for various two-phase and particulate flows. Assess its applicability to capture primary atomization of liquid jets in conjunction with secondary atomization models.

  10. ATLAS - A new Lagrangian transport and mixing model with detailed stratospheric chemistry

    NASA Astrophysics Data System (ADS)

    Wohltmann, I.; Rex, M.; Lehmann, R.

    2009-04-01

    We present a new global Chemical Transport Model (CTM) with full stratospheric chemistry and Lagrangian transport and mixing called ATLAS. Lagrangian models have some crucial advantages over Eulerian grid-box based models, like no numerical diffusion, no limitation of the time step of the model by the CFL criterion, conservation of mixing ratios by design and easy parallelization of code. The transport module is based on a trajectory code developed at the Alfred Wegener Institute. The horizontal and vertical resolution, the vertical coordinate system (pressure, potential temperature, hybrid coordinate) and the time step of the model are flexible, so that the model can be used both for process studies and long-time runs over several decades. Mixing of the Lagrangian air parcels is parameterized based on the local shear and strain of the flow with a method similar to that used in the CLaMS model, but with some modifications like a triangulation that introduces no vertical layers. The stratospheric chemistry module was developed at the Institute and includes 49 species and 170 reactions and a detailed treatment of heterogenous chemistry on polar stratospheric clouds. We present an overview over the model architecture, the transport and mixing concept and some validation results. Comparison of model results with tracer data from flights of the ER2 aircraft in the stratospheric polar vortex in 1999/2000 which are able to resolve fine tracer filaments show that excellent agreement with observed tracer structures can be achieved with a suitable mixing parameterization.

  11. A Lagrangian Transport Eulerian Reaction Spatial (LATERS) Markov Model for Prediction of Effective Bimolecular Reactive Transport

    NASA Astrophysics Data System (ADS)

    Sund, Nicole; Porta, Giovanni; Bolster, Diogo; Parashar, Rishi

    2017-11-01

    Prediction of effective transport for mixing-driven reactive systems at larger scales, requires accurate representation of mixing at small scales, which poses a significant upscaling challenge. Depending on the problem at hand, there can be benefits to using a Lagrangian framework, while in others an Eulerian might have advantages. Here we propose and test a novel hybrid model which attempts to leverage benefits of each. Specifically, our framework provides a Lagrangian closure required for a volume-averaging procedure of the advection diffusion reaction equation. This hybrid model is a LAgrangian Transport Eulerian Reaction Spatial Markov model (LATERS Markov model), which extends previous implementations of the Lagrangian Spatial Markov model and maps concentrations to an Eulerian grid to quantify closure terms required to calculate the volume-averaged reaction terms. The advantage of this approach is that the Spatial Markov model is known to provide accurate predictions of transport, particularly at preasymptotic early times, when assumptions required by traditional volume-averaging closures are least likely to hold; likewise, the Eulerian reaction method is efficient, because it does not require calculation of distances between particles. This manuscript introduces the LATERS Markov model and demonstrates by example its ability to accurately predict bimolecular reactive transport in a simple benchmark 2-D porous medium.

  12. LAGRANGIAN MODELING OF A SUSPENDED-SEDIMENT PULSE.

    USGS Publications Warehouse

    Schoellhamer, David H.

    1987-01-01

    The one-dimensional Lagrangian Transport Model (LTM) has been applied in a quasi two-dimensional manner to simulate the transport of a slug injection of microbeads in steady experimental flows. A stationary bed segment was positioned below each parcel location to simulate temporary storage of beads on the bottom of the flume. Only one degree of freedom was available for all three bead simulations. The results show the versatility of the LTM and the ability of the LTM to accurately simulate transport of fine suspended sediment.

  13. Generalized Lagrangian coherent structures

    NASA Astrophysics Data System (ADS)

    Balasuriya, Sanjeeva; Ouellette, Nicholas T.; Rypina, Irina I.

    2018-06-01

    The notion of a Lagrangian Coherent Structure (LCS) is by now well established as a way to capture transient coherent transport dynamics in unsteady and aperiodic fluid flows that are known over finite time. We show that the concept of an LCS can be generalized to capture coherence in other quantities of interest that are transported by, but not fully locked to, the fluid. Such quantities include those with dynamic, biological, chemical, or thermodynamic relevance, such as temperature, pollutant concentration, vorticity, kinetic energy, plankton density, and so on. We provide a conceptual framework for identifying the Generalized Lagrangian Coherent Structures (GLCSs) associated with such evolving quantities. We show how LCSs can be seen as a special case within this framework, and provide an overarching discussion of various methods for identifying LCSs. The utility of this more general viewpoint is highlighted through a variety of examples. We also show that although LCSs approximate GLCSs in certain limiting situations under restrictive assumptions on how the velocity field affects the additional quantities of interest, LCSs are not in general sufficient to describe their coherent transport.

  14. Lagrangian particle method for compressible fluid dynamics

    NASA Astrophysics Data System (ADS)

    Samulyak, Roman; Wang, Xingyu; Chen, Hsin-Chiang

    2018-06-01

    A new Lagrangian particle method for solving Euler equations for compressible inviscid fluid or gas flows is proposed. Similar to smoothed particle hydrodynamics (SPH), the method represents fluid cells with Lagrangian particles and is suitable for the simulation of complex free surface/multiphase flows. The main contributions of our method, which is different from SPH in all other aspects, are (a) significant improvement of approximation of differential operators based on a polynomial fit via weighted least squares approximation and the convergence of prescribed order, (b) a second-order particle-based algorithm that reduces to the first-order upwind method at local extremal points, providing accuracy and long term stability, and (c) more accurate resolution of entropy discontinuities and states at free interfaces. While the method is consistent and convergent to a prescribed order, the conservation of momentum and energy is not exact and depends on the convergence order. The method is generalizable to coupled hyperbolic-elliptic systems. Numerical verification tests demonstrating the convergence order are presented as well as examples of complex multiphase flows.

  15. Lagrangian descriptors in dissipative systems.

    PubMed

    Junginger, Andrej; Hernandez, Rigoberto

    2016-11-09

    The reaction dynamics of time-dependent systems can be resolved through a recrossing-free dividing surface associated with the transition state trajectory-that is, the unique trajectory which is bound to the barrier region for all time in response to a given time-dependent potential. A general procedure based on the minimization of Lagrangian descriptors has recently been developed by Craven and Hernandez [Phys. Rev. Lett., 2015, 115, 148301] to construct this particular trajectory without requiring perturbative expansions relative to the naive transition state point at the top of the barrier. The extension of the method to account for dissipation in the equations of motion requires additional considerations established in this paper because the calculation of the Lagrangian descriptor involves the integration of trajectories in forward and backward time. The two contributions are in general very different because the friction term can act as a source (in backward time) or sink (in forward time) of energy, leading to the possibility that information about the phase space structure may be lost due to the dominance of only one of the terms. To compensate for this effect, we introduce a weighting scheme within the Lagrangian descriptor and demonstrate that for thermal Langevin dynamics it preserves the essential phase space structures, while they are lost in the nonweighted case.

  16. Enhancements to the Branched Lagrangian Transport Modeling System

    USGS Publications Warehouse

    Jobson, Harvey E.

    1997-01-01

    The Branched Lagrangian Transport Model (BLTM) has received wide use within the U.S. Geological Survey over the past 10 years. This report documents the enhancements and modifications that have been made to this modeling system since it was first introduced. The programs in the modeling system are arranged into five levels?programs to generate time-series of meteorological data (EQULTMP, SOLAR), programs to process time-series data (INTRP, MRG), programs to build input files for transport model (BBLTM, BQUAL2E), the model with defined reaction kinetics (BLTM, QUAL2E), and post processor plotting programs (CTPLT, CXPLT). An example application is presented to illustrate how the modeling system can be used to simulate 10 water-quality constituents in the Chattahoochee River below Atlanta, Georgia.

  17. Mass and tracer transport within oceanic Lagrangian coherent vortices as diagnosed in a global mesoscale eddying climate model

    NASA Astrophysics Data System (ADS)

    Tarshish, Nathaniel; Abernathey, Ryan; Dufour, Carolina; Frenger, Ivy; Griffies, Stephen

    2017-04-01

    Transient ocean mesoscale fluctuations play a central role in the global climate system, transporting climate relevant tracers such as heat and carbon. In satellite observations and numerical simulations, mesoscale vortices feature prominently as collectively rotating regions that remain visibly coherent. Prior studies on transport from ocean vortices typically rely on Eulerian identification methods, in which vortices are identified by selecting closed contours of Eulerian fields (e.g. sea surface height, or the Okubo-Weiss parameter) that satisfy geometric criteria and anomaly thresholds. In contrast, recent studies employ Lagrangian analysis of virtual particle trajectories initialized within the selected Eulerian contours, revealing significant discrepancies between the advection of the contour's material interior and the evolution of the Eulerian field contour. This work investigates the global mass and tracer transport associated with materially coherent surface ocean vortices. Further, it addresses differences between Eulerian and Lagrangian analyses for the detection of vortices. To do so, we use GFDL's CM2.6 coupled climate model with 5-10km horizontal grid spacing. We identify coherent vortices in CM2.6 by implementing the Rotationally Coherent Lagrangian Vortex (RCLV) framework, which recently emerged from dynamical systems theory. This approach involves the numerical advection of millions of Lagrangian particles and guarantees material coherence by construction. We compute the statistics, spatial distribution, and lifetimes of coherent vortices in addition to calculating the associated mass and tracer transports. We offer compelling evidence that Eulerian vortex methods are poorly suited to answer questions of mass and tracer transport.

  18. Lagrangian transport in a class of three-dimensional buoyancy-driven flows

    NASA Astrophysics Data System (ADS)

    Contreras, Sebastian; Speetjens, Michel; Clercx, Herman

    2017-11-01

    The study concerns the Lagrangian dynamics of three-dimensional (3D) buoyancy-driven cavity flows under steady and laminar conditions due to a global temperature gradient imposed via an opposite hot and cold sidewall. This serves as archetypal configuration for natural-convection flows in which gravity is perpendicular to the global temperature gradient. Limited insight into the Lagrangian properties of this class of flows motivates this study. The 3D Lagrangian dynamics are investigated in terms of the generic structure of the Lagrangian flow topology that is described in terms of the Grashof number (Gr) and the Prandtl number (Pr). Gr is the principal control parameter for the flow topology: vanishing Gr yields a state of closed streamlines (integrable state); increasing Gr causes the formation of toroidal coherent structures embedded in chaotic streamlines governed by Hamiltonian mechanisms. Fluid inertia prevails for ``smaller'' Gr. A buoyancy-induced bifurcation of the flow topology occurs for ``larger'' Gr and underlies the emergence of ``secondary rolls'' and secondary tori for ``larger'' Pr. Stagnation points and corresponding manifold interactions are key to the dynamics. S.C. acknowledges financial support from Consejo Nacional de Ciencia y Tecnología (CONACYT).

  19. Three dimensional Lagrangian structures in the Antarctic Polar Vortex.

    NASA Astrophysics Data System (ADS)

    Mancho, Ana M.; Garcia-Garrido, Victor J.; Curbelo, Jezabel; Niang, Coumba; Mechoso, Carlos R.; Wiggins, Stephen

    2017-04-01

    Dynamical systems theory has supported the description of transport processes in fluid dynamics. For understanding trajectory patterns in chaotic advection the geometrical approach by Poincaré seeks for spatial structures that separate regions corresponding to qualitatively different types of trajectories. These structures have been referred to as Lagrangian Coherent Structures (LCS), which typically in geophysical flows are well described under the approach of incompressible 2D flows. Different tools have been used to visualize LCS. In this presentation we use Lagrangian Descriptors [1,2,3,4] (function M) for visualizing 3D Lagrangian structures in the atmosphere, in particular in the Antarctic Polar Vortex. The function M is computed in a fully 3D incompressible flow obtained from data provided by the European Centre for Medium-Range Weather Forecast and it is represented in 2D surfaces. We discuss the findings during the final warming that took place in the spring of 1979 [5]. This research is supported by MINECO grant MTM2014-56392-R. Support is acknowledged also from CSIC grant COOPB20265, U.S. NSF grant AGS-1245069 and ONR grant No. N00014- 01-1-0769. C. Niang acknowledges Fundacion Mujeres por Africa and ICMAT Severo Ochoa project SEV-2011-0087 for financial support. [1] C. Mendoza, A. M. Mancho. The hidden geometry of ocean flows. Physical Review Letters 105 (2010), 3, 038501-1-038501-4. [2] A. M. Mancho, S. Wiggins, J. Curbelo, C. Mendoza. Lagrangian Descriptors: A Method for Revealing Phase Space Structures of General Time Dependent Dynamical Systems. Communications in Nonlinear Science and Numerical Simulation. 18 (2013) 3530-3557. [3] C. Lopesino, F. Balibrea-Iniesta, S. Wiggins and A. M. Mancho. Lagrangian descriptors for two dimensional, area preserving autonomous and nonautonomous maps. Communications in Nonlinear Science and Numerical Simulations, 27 (2015) (1-3), 40-51. [4] C. Lopesino, F. Balibrea-Iniesta, V. J. García-Garrido, S. Wiggins, and A

  20. The Hamiltonian and Lagrangian approaches to the dynamics of nonholonomic systems

    NASA Astrophysics Data System (ADS)

    Koon, Wang Sang; Marsden, Jerrold E.

    1997-08-01

    This paper compares the Hamiltonian approach to systems with nonholonomic constraints (see [31, 2, 4, 29] and references therein) with the Lagrangian approach (see [16, 27, 9]). There are many differences in the approaches and each has its own advantages; some structures have been discovered on one side and their analogues on the other side are interesting to clarify. For example, the momentum equation and the reconstruction equation were first found on the Lagrangian side and are useful for the control theory of these systems, while the failure of the reduced two-form to be closed (i.e., the failure of the Poisson bracket to satisfy the Jacobi identity) was first noticed on the Hamiltonian side. Clarifying the relation between these approaches is important for the future development of the control theory and stability and bifurcation theory for such systems. In addition to this work, we treat, in this unified framework, a simplified model of the bicycle (see [12, 13]), which is an important underactuated (nonminimum phase) control system.

  1. Two-dimensional Lagrangian simulation of suspended sediment

    USGS Publications Warehouse

    Schoellhamer, David H.

    1988-01-01

    A two-dimensional laterally averaged model for suspended sediment transport in steady gradually varied flow that is based on the Lagrangian reference frame is presented. The layered Lagrangian transport model (LLTM) for suspended sediment performs laterally averaged concentration. The elevations of nearly horizontal streamlines and the simulation time step are selected to optimize model stability and efficiency. The computational elements are parcels of water that are moved along the streamlines in the Lagrangian sense and are mixed with neighboring parcels. Three applications show that the LLTM can accurately simulate theoretical and empirical nonequilibrium suspended sediment distributions and slug injections of suspended sediment in a laboratory flume.

  2. Lagrangian particle method for compressible fluid dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samulyak, Roman; Wang, Xingyu; Chen, Hsin -Chiang

    A new Lagrangian particle method for solving Euler equations for compressible inviscid fluid or gas flows is proposed. Similar to smoothed particle hydrodynamics (SPH), the method represents fluid cells with Lagrangian particles and is suitable for the simulation of complex free surface / multi-phase flows. The main contributions of our method, which is different from SPH in all other aspects, are (a) significant improvement of approximation of differential operators based on a polynomial fit via weighted least squares approximation and the convergence of prescribed order, (b) a second-order particle-based algorithm that reduces to the first-order upwind method at local extremalmore » points, providing accuracy and long term stability, and (c) more accurate resolution of entropy discontinuities and states at free inter-faces. While the method is consistent and convergent to a prescribed order, the conservation of momentum and energy is not exact and depends on the convergence order . The method is generalizable to coupled hyperbolic-elliptic systems. As a result, numerical verification tests demonstrating the convergence order are presented as well as examples of complex multiphase flows.« less

  3. Lagrangian particle method for compressible fluid dynamics

    DOE PAGES

    Samulyak, Roman; Wang, Xingyu; Chen, Hsin -Chiang

    2018-02-09

    A new Lagrangian particle method for solving Euler equations for compressible inviscid fluid or gas flows is proposed. Similar to smoothed particle hydrodynamics (SPH), the method represents fluid cells with Lagrangian particles and is suitable for the simulation of complex free surface / multi-phase flows. The main contributions of our method, which is different from SPH in all other aspects, are (a) significant improvement of approximation of differential operators based on a polynomial fit via weighted least squares approximation and the convergence of prescribed order, (b) a second-order particle-based algorithm that reduces to the first-order upwind method at local extremalmore » points, providing accuracy and long term stability, and (c) more accurate resolution of entropy discontinuities and states at free inter-faces. While the method is consistent and convergent to a prescribed order, the conservation of momentum and energy is not exact and depends on the convergence order . The method is generalizable to coupled hyperbolic-elliptic systems. As a result, numerical verification tests demonstrating the convergence order are presented as well as examples of complex multiphase flows.« less

  4. Lagrangian geometrical optics of nonadiabatic vector waves and spin particles

    DOE PAGES

    Ruiz, D. E.; Dodin, I. Y.

    2015-07-29

    Linear vector waves, both quantum and classical, experience polarization-driven bending of ray trajectories and polarization dynamics that can be interpreted as the precession of the "wave spin". Here, both phenomena are governed by an effective gauge Hamiltonian vanishing in leading-order geometrical optics. This gauge Hamiltonian can be recognized as a generalization of the Stern-Gerlach Hamiltonian that is commonly known for spin-1/2 quantum particles. The corresponding reduced Lagrangians for continuous nondissipative waves and their geometrical-optics rays are derived from the fundamental wave Lagrangian. The resulting Euler-Lagrange equations can describe simultaneous interactions of N resonant modes, where N is arbitrary, and leadmore » to equations for the wave spin, which happens to be an (N 2 - 1)-dimensional spin vector. As a special case, classical equations for a Dirac particle (N = 2) are deduced formally, without introducing additional postulates or interpretations, from the Dirac quantum Lagrangian with the Pauli term. The model reproduces the Bargmann-Michel-Telegdi equations with added Stern-Gerlach force.« less

  5. Implications of Lagrangian Tracer Transport for Coupled Chemistry-Climate Simulations

    NASA Astrophysics Data System (ADS)

    Stenke, A.

    2009-05-01

    Today's coupled chemistry-climate models (CCM) consider a large number of trace species and feedback processes. Due to the radiative effect of some species, errors in simulated tracer distributions can feed back to model dynamics. Thus, shortcomings of the applied transport schemes can have severe implications for the overall model performance. Traditional Eulerian approaches show a satisfactory performance in case of homogeneously distributed trace species, but they can lead to severe problems when applied to highly inhomogeneous tracer distributions. In case of sharp gradients many schemes show a considerable numerical diffusion. Lagrangian approaches, on the other hand, combine a number of favourable numerical properties: They are strictly mass-conserving and do not suffer from numerical diffusion. Therefore they are able to maintain steeper gradients. A further advantage is that they allow the transport of a large number of tracers without being prohibitively expensive. A variety of benefits for stratospheric dynamics and chemistry resulting from a Lagrangian transport algorithm are demonstrated by the example of the CCM E39C. In an updated version of E39C, called E39C-A, the operational semi-Lagrangian advection scheme has been replaced with the purely Lagrangian scheme ATTILA. It will be shown that several model deficiencies can be cured by the choice of an appropriate transport algorithm. The most important advancement concerns the reduction of a pronounced wet bias in the extra- tropical lowermost stratosphere. In turn, the associated temperature error ("cold bias") is significantly reduced. Stratospheric wind variations are now in better agreement with observations, e.g. E39C-A is able to reproduce the stratospheric wind reversal in the Southern Hemisphere in summer which was not captured by the previous model version. Resulting changes in wave propagation and dissipation lead to a weakening of the simulated mean meridional circulation and therefore a more

  6. Lagrangian turbulence: Structures and mixing in admissible model flows

    NASA Astrophysics Data System (ADS)

    Ottino, Julio M.

    1991-12-01

    The goal of our research was to bridge the gap between modern ideas from dynamical systems and chaos and more traditional approaches to turbulence. In order to reach this objective we conducted theoretical and computational work on two systems: (1) a perturbed-Kelvin cat eyes flow, and (2) prototype solutions of the Navier-Stokes equations near solid walls. The main results obtained are two-fold: we have been able to produce flows capable of producing complex distributions of vorticity, and we have been able to construct flowfields, based on solutions of the Navier-Stokes equations, which are capable of displaying both Eulerian and Lagrangian turbulence. These results exemplify typical mechanisms of mixing enhancement in transitional flows.

  7. Dynamic modelling of a double-pendulum gantry crane system incorporating payload

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ismail, R. M. T. Raja; Ahmad, M. A.; Ramli, M. S.

    The natural sway of crane payloads is detrimental to safe and efficient operation. Under certain conditions, the problem is complicated when the payloads create a double pendulum effect. This paper presents dynamic modelling of a double-pendulum gantry crane system based on closed-form equations of motion. The Lagrangian method is used to derive the dynamic model of the system. A dynamic model of the system incorporating payload is developed and the effects of payload on the response of the system are discussed. Extensive results that validate the theoretical derivation are presented in the time and frequency domains.

  8. Quantification of errors induced by temporal resolution on Lagrangian particles in an eddy-resolving model

    NASA Astrophysics Data System (ADS)

    Qin, Xuerong; van Sebille, Erik; Sen Gupta, Alexander

    2014-04-01

    Lagrangian particle tracking within ocean models is an important tool for the examination of ocean circulation, ventilation timescales and connectivity and is increasingly being used to understand ocean biogeochemistry. Lagrangian trajectories are obtained by advecting particles within velocity fields derived from hydrodynamic ocean models. For studies of ocean flows on scales ranging from mesoscale up to basin scales, the temporal resolution of the velocity fields should ideally not be more than a few days to capture the high frequency variability that is inherent in mesoscale features. However, in reality, the model output is often archived at much lower temporal resolutions. Here, we quantify the differences in the Lagrangian particle trajectories embedded in velocity fields of varying temporal resolution. Particles are advected from 3-day to 30-day averaged fields in a high-resolution global ocean circulation model. We also investigate whether adding lateral diffusion to the particle movement can compensate for the reduced temporal resolution. Trajectory errors reveal the expected degradation of accuracy in the trajectory positions when decreasing the temporal resolution of the velocity field. Divergence timescales associated with averaging velocity fields up to 30 days are faster than the intrinsic dispersion of the velocity fields but slower than the dispersion caused by the interannual variability of the velocity fields. In experiments focusing on the connectivity along major currents, including western boundary currents, the volume transport carried between two strategically placed sections tends to increase with increased temporal averaging. Simultaneously, the average travel times tend to decrease. Based on these two bulk measured diagnostics, Lagrangian experiments that use temporal averaging of up to nine days show no significant degradation in the flow characteristics for a set of six currents investigated in more detail. The addition of random

  9. A purely Lagrangian method for computing linearly-perturbed flows in spherical geometry

    NASA Astrophysics Data System (ADS)

    Jaouen, Stéphane

    2007-07-01

    In many physical applications, one wishes to control the development of multi-dimensional instabilities around a one-dimensional (1D) complex flow. For predicting the growth rates of these perturbations, a general numerical approach is viable which consists in solving simultaneously the one-dimensional equations and their linearized form for three-dimensional perturbations. In Clarisse et al. [J.-M. Clarisse, S. Jaouen, P.-A. Raviart, A Godunov-type method in Lagrangian coordinates for computing linearly-perturbed planar-symmetric flows of gas dynamics, J. Comp. Phys. 198 (2004) 80-105], a class of Godunov-type schemes for planar-symmetric flows of gas dynamics has been proposed. Pursuing this effort, we extend these results to spherically symmetric flows. A new method to derive the Lagrangian perturbation equations, based on the canonical form of systems of conservation laws with zero entropy flux [B. Després, Lagrangian systems of conservation laws. Invariance properties of Lagrangian systems of conservation laws, approximate Riemann solvers and the entropy condition, Numer. Math. 89 (2001) 99-134; B. Després, C. Mazeran, Lagrangian gas dynamics in two dimensions and Lagrangian systems, Arch. Rational Mech. Anal. 178 (2005) 327-372] is also described. It leads to many advantages. First of all, many physical problems we are interested in enter this formalism (gas dynamics, two-temperature plasma equations, ideal magnetohydrodynamics, etc.) whatever is the geometry. Secondly, a class of numerical entropic schemes is available for the basic flow [11]. Last, linearizing and devising numerical schemes for the perturbed flow is straightforward. The numerical capabilities of these methods are illustrated on three test cases of increasing difficulties and we show that - due to its simplicity and its low computational cost - the Linear Perturbations Code (LPC) is a powerful tool to understand and predict the development of hydrodynamic instabilities in the linear regime.

  10. Lagrangian formulation for penny-shaped and Perkins-Kern geometry models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, W.S.

    1989-09-01

    This paper discusses basic theories for vertical penny-shaped and Perkins-Kern (PK) geometry models developed with a Lagrangian formulation combined with a virtual-work analysis. The Lagrangian formulation yields a pair of nonlinear equations in R/sub f/ or L/sub f/ and b/sub f/, the fracture radius or length and half-width. By introduction of a virtual-work analysis, a simple equation is obtained that can be solved numerically. This equation is written in a form that can be used to determine fracture geometry when the fluid-loss coefficient of the fracturing fluid is known. Also, this equation, coupled with a material-balance equation after shut-in, canmore » be used to analyze pressure-decline data after shut-in to determine the effective fluid-loss coefficient and fracture geometry.« less

  11. Lagrangian chaos in three- dimensional steady buoyancy-driven flows

    NASA Astrophysics Data System (ADS)

    Contreras, Sebastian; Speetjens, Michel; Clercx, Herman

    2016-11-01

    Natural convection plays a key role in fluid dynamics owing to its ubiquitous presence in nature and industry. Buoyancy-driven flows are prototypical systems in the study of thermal instabilities and pattern formation. The differentially heated cavity problem has been widely studied for the investigation of buoyancy-induced oscillatory flow. However, far less attention has been devoted to the three-dimensional Lagrangian transport properties in such flows. This study seeks to address this by investigating Lagrangian transport in the steady flow inside a cubic cavity differentially-heated from the side. The theoretical and numerical analysis expands on previously reported similarities between the current flow and lid-driven flows. The Lagrangian dynamics are controlled by the Péclet number (Pe) and the Prandtl number (Pr). Pe controls the behaviour qualitatively in that growing Pe progressively perturbs the integable state (Pe =0), thus paving the way to chaotic dynamics. Pr plays an entirely quantitative role in that Pr<1 and Pr>1 amplifies and diminishes, respectively, the perturbative effect of non-zero Pe. S.C. acknowledges financial support from Consejo Nacional de Ciencia y Tecnología (CONACYT).

  12. Lagrangian mixed layer modeling of the western equatorial Pacific

    NASA Technical Reports Server (NTRS)

    Shinoda, Toshiaki; Lukas, Roger

    1995-01-01

    Processes that control the upper ocean thermohaline structure in the western equatorial Pacific are examined using a Lagrangian mixed layer model. The one-dimensional bulk mixed layer model of Garwood (1977) is integrated along the trajectories derived from a nonlinear 1 1/2 layer reduced gravity model forced with actual wind fields. The Global Precipitation Climatology Project (GPCP) data are used to estimate surface freshwater fluxes for the mixed layer model. The wind stress data which forced the 1 1/2 layer model are used for the mixed layer model. The model was run for the period 1987-1988. This simple model is able to simulate the isothermal layer below the mixed layer in the western Pacific warm pool and its variation. The subduction mechanism hypothesized by Lukas and Lindstrom (1991) is evident in the model results. During periods of strong South Equatorial Current, the warm and salty mixed layer waters in the central Pacific are subducted below the fresh shallow mixed layer in the western Pacific. However, this subduction mechanism is not evident when upwelling Rossby waves reach the western equatorial Pacific or when a prominent deepening of the mixed layer occurs in the western equatorial Pacific or when a prominent deepening of the mixed layer occurs in the western equatorial Pacific due to episodes of strong wind and light precipitation associated with the El Nino-Southern Oscillation. Comparison of the results between the Lagrangian mixed layer model and a locally forced Eulerian mixed layer model indicated that horizontal advection of salty waters from the central Pacific strongly affects the upper ocean salinity variation in the western Pacific, and that this advection is necessary to maintain the upper ocean thermohaline structure in this region.

  13. An adaptive reconstruction for Lagrangian, direct-forcing, immersed-boundary methods

    NASA Astrophysics Data System (ADS)

    Posa, Antonio; Vanella, Marcos; Balaras, Elias

    2017-12-01

    Lagrangian, direct-forcing, immersed boundary (IB) methods have been receiving increased attention due to their robustness in complex fluid-structure interaction problems. They are very sensitive, however, on the selection of the Lagrangian grid, which is typically used to define a solid or flexible body immersed in a fluid flow. In the present work we propose a cost-efficient solution to this problem without compromising accuracy. Central to our approach is the use of isoparametric mapping to bridge the relative resolution requirements of Lagrangian IB, and Eulerian grids. With this approach, the density of surface Lagrangian markers, which is essential to properly enforce boundary conditions, is adapted dynamically based on the characteristics of the underlying Eulerian grid. The markers are not stored and the Lagrangian data-structure is not modified. The proposed scheme is implemented in the framework of a moving least squares reconstruction formulation, but it can be adapted to any Lagrangian, direct-forcing formulation. The accuracy and robustness of the approach is demonstrated in a variety of test cases of increasing complexity.

  14. Modelling sea ice dynamics

    NASA Astrophysics Data System (ADS)

    Murawski, Jens; Kleine, Eckhard

    2017-04-01

    Sea ice remains one of the frontiers of ocean modelling and is of vital importance for the correct forecasts of the northern oceans. At large scale, it is commonly considered a continuous medium whose dynamics is modelled in terms of continuum mechanics. Its specifics are a matter of constitutive behaviour which may be characterised as rigid-plastic. The new developed sea ice dynamic module bases on general principles and follows a systematic approach to the problem. Both drift field and stress field are modelled by a variational property. Rigidity is treated by Lagrangian relaxation. Thus one is led to a sensible numerical method. Modelling fast ice remains to be a challenge. It is understood that ridging and the formation of grounded ice keels plays a role in the process. The ice dynamic model includes a parameterisation of the stress associated with grounded ice keels. Shear against the grounded bottom contact might lead to plastic deformation and the loss of integrity. The numerical scheme involves a potentially large system of linear equations which is solved by pre-conditioned iteration. The entire algorithm consists of several components which result from decomposing the problem. The algorithm has been implemented and tested in practice.

  15. Comprehensive computational model for combining fluid hydrodynamics, light transport and biomass growth in a Taylor vortex algal photobioreactor: Lagrangian approach.

    PubMed

    Gao, Xi; Kong, Bo; Vigil, R Dennis

    2017-01-01

    A comprehensive quantitative model incorporating the effects of fluid flow patterns, light distribution, and algal growth kinetics on biomass growth rate is developed in order to predict the performance of a Taylor vortex algal photobioreactor for culturing Chlorella vulgaris. A commonly used Lagrangian strategy for coupling the various factors influencing algal growth was employed whereby results from computational fluid dynamics and radiation transport simulations were used to compute numerous microorganism light exposure histories, and this information in turn was used to estimate the global biomass specific growth rate. The simulations provide good quantitative agreement with experimental data and correctly predict the trend in reactor performance as a key reactor operating parameter is varied (inner cylinder rotation speed). However, biomass growth curves are consistently over-predicted and potential causes for these over-predictions and drawbacks of the Lagrangian approach are addressed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. A Theoretically Consistent Framework for Modelling Lagrangian Particle Deposition in Plant Canopies

    NASA Astrophysics Data System (ADS)

    Bailey, Brian N.; Stoll, Rob; Pardyjak, Eric R.

    2018-06-01

    We present a theoretically consistent framework for modelling Lagrangian particle deposition in plant canopies. The primary focus is on describing the probability of particles encountering canopy elements (i.e., potential deposition), and provides a consistent means for including the effects of imperfect deposition through any appropriate sub-model for deposition efficiency. Some aspects of the framework draw upon an analogy to radiation propagation through a turbid medium with which to develop model theory. The present method is compared against one of the most commonly used heuristic Lagrangian frameworks, namely that originally developed by Legg and Powell (Agricultural Meteorology, 1979, Vol. 20, 47-67), which is shown to be theoretically inconsistent. A recommendation is made to discontinue the use of this heuristic approach in favour of the theoretically consistent framework developed herein, which is no more difficult to apply under equivalent assumptions. The proposed framework has the additional advantage that it can be applied to arbitrary canopy geometries given readily measurable parameters describing vegetation structure.

  17. Lagrangian methods for blood damage estimation in cardiovascular devices--How numerical implementation affects the results.

    PubMed

    Marom, Gil; Bluestein, Danny

    2016-01-01

    This paper evaluated the influence of various numerical implementation assumptions on predicting blood damage in cardiovascular devices using Lagrangian methods with Eulerian computational fluid dynamics. The implementation assumptions that were tested included various seeding patterns, stochastic walk model, and simplified trajectory calculations with pathlines. Post processing implementation options that were evaluated included single passage and repeated passages stress accumulation and time averaging. This study demonstrated that the implementation assumptions can significantly affect the resulting stress accumulation, i.e., the blood damage model predictions. Careful considerations should be taken in the use of Lagrangian models. Ultimately, the appropriate assumptions should be considered based the physics of the specific case and sensitivity analysis, similar to the ones presented here, should be employed.

  18. Lagrangian methods for blood damage estimation in cardiovascular devices - How numerical implementation affects the results

    PubMed Central

    Marom, Gil; Bluestein, Danny

    2016-01-01

    Summary This paper evaluated the influence of various numerical implementation assumptions on predicting blood damage in cardiovascular devices using Lagrangian methods with Eulerian computational fluid dynamics. The implementation assumptions that were tested included various seeding patterns, stochastic walk model, and simplified trajectory calculations with pathlines. Post processing implementation options that were evaluated included single passage and repeated passages stress accumulation and time averaging. This study demonstrated that the implementation assumptions can significantly affect the resulting stress accumulation, i.e., the blood damage model predictions. Careful considerations should be taken in the use of Lagrangian models. Ultimately, the appropriate assumptions should be considered based the physics of the specific case and sensitivity analysis, similar to the ones presented here, should be employed. PMID:26679833

  19. Evaluation of the HF-Radar network system around Taiwan using normalized cumulative Lagrangian separation.

    NASA Astrophysics Data System (ADS)

    Fredj, Erick; Kohut, Josh; Roarty, Hugh; Lai, Jian-Wu

    2017-04-01

    The Lagrangian separation distance between the endpoints of simulated and observed drifter trajectories is often used to assess the performance of numerical particle trajectory models. However, the separation distance fails to indicate relative model performance in weak and strong current regions, such as over continental shelves and the adjacent deep ocean. A skill score described in detail by (Lui et.al. 2011) was applied to estimate the cumulative Lagrangian separation distances normalized by the associated cumulative trajectory lengths. In contrast, the Lagrangian separation distance alone gives a misleading result. The proposed dimensionless skill score is particularly useful when the number of drifter trajectories is limited and neither a conventional Eulerian-based velocity nor a Lagrangian based probability density function may be estimated. The skill score assesses The Taiwan Ocean Radar Observing System (TOROS) performance. TOROS consists of 17 SeaSonde type radars around the Taiwan Island. The currents off Taiwan are significantly influenced by the nearby Kuroshio current. The main stream of the Kuroshio flows along the east coast of Taiwan to the north throughout the year. Sometimes its branch current also bypasses the south end of Taiwan and goes north along the west coast of Taiwan. The Kuroshio is also prone to seasonal change in its speed of flow, current capacity, distribution width, and depth. The evaluations of HF-Radar National Taiwanese network performance using Lagrangian drifter records demonstrated the high quality and robustness of TOROS HF-Radar data using a purely trajectory-based non-dimensional index. Yonggang Liu and Robert H. Weisberg, "Evaluation of trajectory modeling in different dynamic regions using normalized cumulative Lagrangian separation", Journal of Geophysical Research, Vol. 116, C09013, doi:10.1029/2010JC006837, 2011

  20. An updated Lagrangian particle hydrodynamics (ULPH) for Newtonian fluids

    NASA Astrophysics Data System (ADS)

    Tu, Qingsong; Li, Shaofan

    2017-11-01

    In this work, we have developed an updated Lagrangian particle hydrodynamics (ULPH) for Newtonian fluid. Unlike the smoothed particle hydrodynamics, the non-local particle hydrodynamics formulation proposed here is consistent and convergence. Unlike the state-based peridynamics, the discrete particle dynamics proposed here has no internal material bond between particles, and it is not formulated with respect to initial or a fixed referential configuration. In specific, we have shown that (1) the non-local update Lagrangian particle hydrodynamics formulation converges to the conventional local fluid mechanics formulation; (2) the non-local updated Lagrangian particle hydrodynamics can capture arbitrary flow discontinuities without any changes in the formulation, and (3) the proposed non-local particle hydrodynamics is computationally efficient and robust.

  1. Quantization of Non-Lagrangian Systems

    NASA Astrophysics Data System (ADS)

    Kochan, Denis

    A novel method for quantization of non-Lagrangian (open) systems is proposed. It is argued that the essential object, which provides both classical and quantum evolution, is a certain canonical two-form defined in extended velocity space. In this setting classical dynamics is recovered from the stringy-type variational principle, which employs umbilical surfaces instead of histories of the system. Quantization is then accomplished in accordance with the introduced variational principle. The path integral for the transition probability amplitude (propagator) is rearranged to a surface functional integral. In the standard case of closed (Lagrangian) systems the presented method reduces to the standard Feynman's approach. The inverse problem of the calculus of variation, the problem of quantization ambiguity and the quantum mechanics in the presence of friction are analyzed in detail.

  2. Some Lagrangians for systems without a Lagrangian

    NASA Astrophysics Data System (ADS)

    Nucci, M. C.; Leach, P. G. L.

    2011-03-01

    We demonstrate how to construct many different Lagrangians for two famous examples that were deemed by Douglas (1941 Trans. Am. Math. Soc. 50 71-128) not to have a Lagrangian. Following Bateman's dictum (1931 Phys. Rev. 38 815-9), we determine different sets of equations that are compatible with those of Douglas and derivable from a variational principle.

  3. Lagrangian turbulence near walls: Structures and mixing in admissible model flows

    NASA Astrophysics Data System (ADS)

    Ottino, J. M.

    1989-05-01

    The general objective of work during this period was to bridge the gap between modern ideas from dynamical systems and chaos and more traditional approaches to turbulence. In order to reach this objective we conducted theoretical and computational work on two systems: a perturbed Kelvin cat eyes flow, and prototype solutions of the Navier-Stokes equations near solid walls. The main results obtained are two-fold: production flows capable of producing complex distributions of vorticity, and constructed flow fields, based on solutions of the Navier Stokes equations, which are capable of displaying both Eulerian and Lagrangian turbulence.

  4. A variable resolution nonhydrostatic global atmospheric semi-implicit semi-Lagrangian model

    NASA Astrophysics Data System (ADS)

    Pouliot, George Antoine

    2000-10-01

    The objective of this project is to develop a variable-resolution finite difference adiabatic global nonhydrostatic semi-implicit semi-Lagrangian (SISL) model based on the fully compressible nonhydrostatic atmospheric equations. To achieve this goal, a three-dimensional variable resolution dynamical core was developed and tested. The main characteristics of the dynamical core can be summarized as follows: Spherical coordinates were used in a global domain. A hydrostatic/nonhydrostatic switch was incorporated into the dynamical equations to use the fully compressible atmospheric equations. A generalized horizontal variable resolution grid was developed and incorporated into the model. For a variable resolution grid, in contrast to a uniform resolution grid, the order of accuracy of finite difference approximations is formally lost but remains close to the order of accuracy associated with the uniform resolution grid provided the grid stretching is not too significant. The SISL numerical scheme was implemented for the fully compressible set of equations. In addition, the generalized minimum residual (GMRES) method with restart and preconditioner was used to solve the three-dimensional elliptic equation derived from the discretized system of equations. The three-dimensional momentum equation was integrated in vector-form to incorporate the metric terms in the calculations of the trajectories. Using global re-analysis data for a specific test case, the model was compared to similar SISL models previously developed. Reasonable agreement between the model and the other independently developed models was obtained. The Held-Suarez test for dynamical cores was used for a long integration and the model was successfully integrated for up to 1200 days. Idealized topography was used to test the variable resolution component of the model. Nonhydrostatic effects were simulated at grid spacings of 400 meters with idealized topography and uniform flow. Using a high

  5. Lagrangian velocity and acceleration correlations of large inertial particles in a closed turbulent flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Machicoane, Nathanaël; Volk, Romain

    We investigate the response of large inertial particle to turbulent fluctuations in an inhomogeneous and anisotropic flow. We conduct a Lagrangian study using particles both heavier and lighter than the surrounding fluid, and whose diameters are comparable to the flow integral scale. Both velocity and acceleration correlation functions are analyzed to compute the Lagrangian integral time and the acceleration time scale of such particles. The knowledge of how size and density affect these time scales is crucial in understanding particle dynamics and may permit stochastic process modelization using two-time models (for instance, Sawford’s). As particles are tracked over long timesmore » in the quasi-totality of a closed flow, the mean flow influences their behaviour and also biases the velocity time statistics, in particular the velocity correlation functions. By using a method that allows for the computation of turbulent velocity trajectories, we can obtain unbiased Lagrangian integral time. This is particularly useful in accessing the scale separation for such particles and to comparing it to the case of fluid particles in a similar configuration.« less

  6. A Lagrangian cylindrical coordinate system for characterizing dynamic surface geometry of tubular anatomic structures.

    PubMed

    Lundh, Torbjörn; Suh, Ga-Young; DiGiacomo, Phillip; Cheng, Christopher

    2018-03-03

    Vascular morphology characterization is useful for disease diagnosis, risk stratification, treatment planning, and prediction of treatment durability. To quantify the dynamic surface geometry of tubular-shaped anatomic structures, we propose a simple, rigorous Lagrangian cylindrical coordinate system to monitor well-defined surface points. Specifically, the proposed system enables quantification of surface curvature and cross-sectional eccentricity. Using idealized software phantom examples, we validate the method's ability to accurately quantify longitudinal and circumferential surface curvature, as well as eccentricity and orientation of eccentricity. We then apply the method to several medical imaging data sets of human vascular structures to exemplify the utility of this coordinate system for analyzing morphology and dynamic geometric changes in blood vessels throughout the body. Graphical abstract Pointwise longitudinal curvature of a thoracic aortic endograft surface for systole and diastole, with their absolute difference.

  7. Reaction Analysis of Shocked Nitromethane using Extended Lagrangian Born-Oppenheimer Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Perriot, Romain; Kober, Ed; Mniszewski, Sue; Martinez, Enrique; Niklasson, Anders; Yang, Ping; McGrane, Shawn; Cawkwell, Marc

    2017-06-01

    Characterizing the complex, rapid reactions of energetic materials under conditions of high temperatures and pressures presents strong experimental and computational challenges. The recently developed extended Lagrangian Born-Oppenheimer molecular dynamics formalism enables the long-term conservation of the total energy in microcanonical trajectories, and using a density functional tight binding formulation provides good chemical accuracy. We use this combined approach to study the evolution of temperature, pressure, and chemical species in shock-compressed liquid nitromethane over hundreds of picoseconds. The chemical species seen in nitromethane under shock compression are compared with those seen under static high temperature conditions. A reduced-order representation of the complex sequence of chemical reactions that characterize this system has been developed from the molecular dynamics simulations by focusing on classes of chemical reactions rather than specific molecular species. Time-resolved infra-red vibrational spectra were also computed from the molecular trajectories and compared to the chemical analysis. These spectra provide a time history of the species present in the system that can be compared directly with recent experiments at LANL.

  8. Testing higher-order Lagrangian perturbation theory against numerical simulation. 1: Pancake models

    NASA Technical Reports Server (NTRS)

    Buchert, T.; Melott, A. L.; Weiss, A. G.

    1993-01-01

    We present results showing an improvement of the accuracy of perturbation theory as applied to cosmological structure formation for a useful range of quasi-linear scales. The Lagrangian theory of gravitational instability of an Einstein-de Sitter dust cosmogony investigated and solved up to the third order is compared with numerical simulations. In this paper we study the dynamics of pancake models as a first step. In previous work the accuracy of several analytical approximations for the modeling of large-scale structure in the mildly non-linear regime was analyzed in the same way, allowing for direct comparison of the accuracy of various approximations. In particular, the Zel'dovich approximation (hereafter ZA) as a subclass of the first-order Lagrangian perturbation solutions was found to provide an excellent approximation to the density field in the mildly non-linear regime (i.e. up to a linear r.m.s. density contrast of sigma is approximately 2). The performance of ZA in hierarchical clustering models can be greatly improved by truncating the initial power spectrum (smoothing the initial data). We here explore whether this approximation can be further improved with higher-order corrections in the displacement mapping from homogeneity. We study a single pancake model (truncated power-spectrum with power-spectrum with power-index n = -1) using cross-correlation statistics employed in previous work. We found that for all statistical methods used the higher-order corrections improve the results obtained for the first-order solution up to the stage when sigma (linear theory) is approximately 1. While this improvement can be seen for all spatial scales, later stages retain this feature only above a certain scale which is increasing with time. However, third-order is not much improvement over second-order at any stage. The total breakdown of the perturbation approach is observed at the stage, where sigma (linear theory) is approximately 2, which corresponds to the

  9. Atomization simulations using an Eulerian-VOF-Lagrangian method

    NASA Technical Reports Server (NTRS)

    Chen, Yen-Sen; Shang, Huan-Min; Liaw, Paul; Chen, C. P.

    1994-01-01

    This paper summarizes the technical development and validation of a multiphase computational fluid dynamics (CFD) numerical method using the volume-of-fluid (VOF) model and a Lagrangian tracking model which can be employed to analyze general multiphase flow problems with free surface mechanism. The gas-liquid interface mass, momentum and energy conservations are modeled by continuum surface mechanisms. A new solution method is developed such that the present VOF model can be applied for all-speed flow regimes. The objectives of the present study are to develop and verify the fractional volume-of-fluid cell partitioning approach into a predictor-corrector algorithm and to demonstrate the effectiveness of the present innovative approach by simulating benchmark problems including the coaxial jet atomization.

  10. A Lagrangian effective field theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vlah, Zvonimir; White, Martin; Aviles, Alejandro

    We have continued the development of Lagrangian, cosmological perturbation theory for the low-order correlators of the matter density field. We provide a new route to understanding how the effective field theory (EFT) of large-scale structure can be formulated in the Lagrandian framework and a new resummation scheme, comparing our results to earlier work and to a series of high-resolution N-body simulations in both Fourier and configuration space. The `new' terms arising from EFT serve to tame the dependence of perturbation theory on small-scale physics and improve agreement with simulations (though with an additional free parameter). We find that all ofmore » our models fare well on scales larger than about two to three times the non-linear scale, but fail as the non-linear scale is approached. This is slightly less reach than has been seen previously. At low redshift the Lagrangian model fares as well as EFT in its Eulerian formulation, but at higher z the Eulerian EFT fits the data to smaller scales than resummed, Lagrangian EFT. Furthermore, all the perturbative models fare better than linear theory.« less

  11. A Lagrangian effective field theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vlah, Zvonimir; White, Martin; Aviles, Alejandro, E-mail: zvlah@stanford.edu, E-mail: mwhite@berkeley.edu, E-mail: aviles@berkeley.edu

    We have continued the development of Lagrangian, cosmological perturbation theory for the low-order correlators of the matter density field. We provide a new route to understanding how the effective field theory (EFT) of large-scale structure can be formulated in the Lagrandian framework and a new resummation scheme, comparing our results to earlier work and to a series of high-resolution N-body simulations in both Fourier and configuration space. The 'new' terms arising from EFT serve to tame the dependence of perturbation theory on small-scale physics and improve agreement with simulations (though with an additional free parameter). We find that all ofmore » our models fare well on scales larger than about two to three times the non-linear scale, but fail as the non-linear scale is approached. This is slightly less reach than has been seen previously. At low redshift the Lagrangian model fares as well as EFT in its Eulerian formulation, but at higher z the Eulerian EFT fits the data to smaller scales than resummed, Lagrangian EFT. All the perturbative models fare better than linear theory.« less

  12. A Lagrangian effective field theory

    DOE PAGES

    Vlah, Zvonimir; White, Martin; Aviles, Alejandro

    2015-09-02

    We have continued the development of Lagrangian, cosmological perturbation theory for the low-order correlators of the matter density field. We provide a new route to understanding how the effective field theory (EFT) of large-scale structure can be formulated in the Lagrandian framework and a new resummation scheme, comparing our results to earlier work and to a series of high-resolution N-body simulations in both Fourier and configuration space. The `new' terms arising from EFT serve to tame the dependence of perturbation theory on small-scale physics and improve agreement with simulations (though with an additional free parameter). We find that all ofmore » our models fare well on scales larger than about two to three times the non-linear scale, but fail as the non-linear scale is approached. This is slightly less reach than has been seen previously. At low redshift the Lagrangian model fares as well as EFT in its Eulerian formulation, but at higher z the Eulerian EFT fits the data to smaller scales than resummed, Lagrangian EFT. Furthermore, all the perturbative models fare better than linear theory.« less

  13. Imposing a Lagrangian Particle Framework on an Eulerian Hydrodynamics Infrastructure in Flash

    NASA Technical Reports Server (NTRS)

    Dubey, A.; Daley, C.; ZuHone, J.; Ricker, P. M.; Weide, K.; Graziani, C.

    2012-01-01

    In many astrophysical simulations, both Eulerian and Lagrangian quantities are of interest. For example, in a galaxy cluster merger simulation, the intracluster gas can have Eulerian discretization, while dark matter can be modeled using particles. FLASH, a component-based scientific simulation code, superimposes a Lagrangian framework atop an adaptive mesh refinement Eulerian framework to enable such simulations. The discretization of the field variables is Eulerian, while the Lagrangian entities occur in many different forms including tracer particles, massive particles, charged particles in particle-in-cell mode, and Lagrangian markers to model fluid structure interactions. These widely varying roles for Lagrangian entities are possible because of the highly modular, flexible, and extensible architecture of the Lagrangian framework. In this paper, we describe the Lagrangian framework in FLASH in the context of two very different applications, Type Ia supernovae and galaxy cluster mergers, which use the Lagrangian entities in fundamentally different ways.

  14. Imposing a Lagrangian Particle Framework on an Eulerian Hydrodynamics Infrastructure in FLASH

    NASA Astrophysics Data System (ADS)

    Dubey, A.; Daley, C.; ZuHone, J.; Ricker, P. M.; Weide, K.; Graziani, C.

    2012-08-01

    In many astrophysical simulations, both Eulerian and Lagrangian quantities are of interest. For example, in a galaxy cluster merger simulation, the intracluster gas can have Eulerian discretization, while dark matter can be modeled using particles. FLASH, a component-based scientific simulation code, superimposes a Lagrangian framework atop an adaptive mesh refinement Eulerian framework to enable such simulations. The discretization of the field variables is Eulerian, while the Lagrangian entities occur in many different forms including tracer particles, massive particles, charged particles in particle-in-cell mode, and Lagrangian markers to model fluid-structure interactions. These widely varying roles for Lagrangian entities are possible because of the highly modular, flexible, and extensible architecture of the Lagrangian framework. In this paper, we describe the Lagrangian framework in FLASH in the context of two very different applications, Type Ia supernovae and galaxy cluster mergers, which use the Lagrangian entities in fundamentally different ways.

  15. The S-Lagrangian and a theory of homeostasis in living systems

    NASA Astrophysics Data System (ADS)

    Sandler, U.; Tsitolovsky, L.

    2017-04-01

    A major paradox of living things is their ability to actively counteract degradation in a continuously changing environment or being injured through homeostatic protection. In this study, we propose a dynamic theory of homeostasis based on a generalized Lagrangian approach (S-Lagrangian), which can be equally applied to physical and nonphysical systems. Following discoverer of homeostasis Cannon (1935), we assume that homeostasis results from tendency of the organisms to decrease of the stress and avoid of death. We show that the universality of homeostasis is a consequence of analytical properties of the S-Lagrangian, while peculiarities of the biochemical and physiological mechanisms of homeostasis determine phenomenological parameters of the S-Lagrangian. Additionally, we reveal that plausible assumptions about S-Lagrangian features lead to good agreement between theoretical descriptions and observed homeostatic behavior. Here, we have focused on homeostasis of living systems, however, the proposed theory is also capable of being extended to social systems.

  16. Adjoint of the global Eulerian-Lagrangian coupled atmospheric transport model (A-GELCA v1.0): development and validation

    NASA Astrophysics Data System (ADS)

    Belikov, Dmitry A.; Maksyutov, Shamil; Yaremchuk, Alexey; Ganshin, Alexander; Kaminski, Thomas; Blessing, Simon; Sasakawa, Motoki; Gomez-Pelaez, Angel J.; Starchenko, Alexander

    2016-02-01

    We present the development of the Adjoint of the Global Eulerian-Lagrangian Coupled Atmospheric (A-GELCA) model that consists of the National Institute for Environmental Studies (NIES) model as an Eulerian three-dimensional transport model (TM), and FLEXPART (FLEXible PARTicle dispersion model) as the Lagrangian Particle Dispersion Model (LPDM). The forward tangent linear and adjoint components of the Eulerian model were constructed directly from the original NIES TM code using an automatic differentiation tool known as TAF (Transformation of Algorithms in Fortran; http://www.FastOpt.com, with additional manual pre- and post-processing aimed at improving transparency and clarity of the code and optimizing the performance of the computing, including MPI (Message Passing Interface). The Lagrangian component did not require any code modification, as LPDMs are self-adjoint and track a significant number of particles backward in time in order to calculate the sensitivity of the observations to the neighboring emission areas. The constructed Eulerian adjoint was coupled with the Lagrangian component at a time boundary in the global domain. The simulations presented in this work were performed using the A-GELCA model in forward and adjoint modes. The forward simulation shows that the coupled model improves reproduction of the seasonal cycle and short-term variability of CO2. Mean bias and standard deviation for five of the six Siberian sites considered decrease roughly by 1 ppm when using the coupled model. The adjoint of the Eulerian model was shown, through several numerical tests, to be very accurate (within machine epsilon with mismatch around to ±6 e-14) compared to direct forward sensitivity calculations. The developed adjoint of the coupled model combines the flux conservation and stability of an Eulerian discrete adjoint formulation with the flexibility, accuracy, and high resolution of a Lagrangian backward trajectory formulation. A-GELCA will be incorporated

  17. Modeling Sediment Transport Using a Lagrangian Particle Tracking Algorithm Coupled with High-Resolution Large Eddy Simulations: a Critical Analysis of Model Limits and Sensitivity

    NASA Astrophysics Data System (ADS)

    Garcia, M. H.

    2016-12-01

    Modeling Sediment Transport Using a Lagrangian Particle Tracking Algorithm Coupled with High-Resolution Large Eddy Simulations: a Critical Analysis of Model Limits and Sensitivity Som Dutta1, Paul Fischer2, Marcelo H. Garcia11Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Il, 61801 2Department of Computer Science and Department of MechSE, University of Illinois at Urbana-Champaign, Urbana, Il, 61801 Since the seminal work of Niño and Garcia [1994], one-way coupled Lagrangian particle tracking has been used extensively for modeling sediment transport. Over time, the Lagrangian particle tracking method has been coupled with Eulerian flow simulations, ranging from Reynolds Averaged Navier-Stokes (RANS) based models to Detached Eddy Simulations (DES) [Escauriaza and Sotiropoulos, 2011]. Advent of high performance computing (HPC) platforms and faster algorithms have resulted in the work of Dutta et al. [2016], where Lagrangian particle tracking was coupled with high-resolution Large Eddy Simulations (LES) to model the complex and highly non-linear phenomenon of Bulle-Effect at diversions. Despite all the advancements in using Lagrangian particle tracking, there has not been a study that looks in detail at the limits of the model in the context of sediment transport, and also analyzes the sensitivity of the various force formulation in the force balance equation of the particles. Niño and Garcia [1994] did a similar analysis, but the vertical flow velocity distribution was modeled as the log-law. The current study extends the analysis by modeling the flow using high-resolution LES at a Reynolds number comparable to experiments of Niño et al. [1994]. Dutta et al., (2016), Large Eddy Simulation (LES) of flow and bedload transport at an idealized 90-degree diversion: insight into Bulle-Effect, River Flow 2016 - Constantinescu, Garcia & Hanes (Eds), Taylor & Francis Group, London, 101-109. Escauriaza and Sotiropoulos

  18. Cochlear Modeling Using Time-Averaged Lagrangian" Method:. Comparison with VBM, PST, and ZC Measurements

    NASA Astrophysics Data System (ADS)

    Yoon, Y.; Kim, N.; Puria, S.; Steele, C. R.

    2009-02-01

    In this work, basilar membrane velocity (VBM), scala tympani intracochlear pressure (PST), and cochlear input impedances (Zc) for gerbil and chinchilla are implemented using a three-dimensional hydro-dynamic cochlear model using 1) time-averaged Lagrangian, 2) push-pull mechanism in active case, and 3) the complex anatomy of cochlear scalae by micro computed tomography (μCT) scanning and 3-D reconstructions of gerbil and chinchilla temporal bones. The objective of this work is to compare the calculations and the physiological measurements of gerbil and chinchilla cochlear such as VBM (Ren and Nuttall [1]), PST (Olson [2]), and ZC (Decraemer et al. [3], Songer and Rosowski [4], Ruggero et al. [5]) with present model. A WKB asymptotic method combined with Fourier series expansions is used to provide an efficient simulation. VBM and PST simulation results for the gerbil cochlea show good agreement both in the magnitude and the phase for the physiological measurements without larger phase excursion. ZC simulation from the gerbil and chinchilla model show reasonably good agreement with measurement.

  19. Lagrangian descriptors of driven chemical reaction manifolds.

    PubMed

    Craven, Galen T; Junginger, Andrej; Hernandez, Rigoberto

    2017-08-01

    The persistence of a transition state structure in systems driven by time-dependent environments allows the application of modern reaction rate theories to solution-phase and nonequilibrium chemical reactions. However, identifying this structure is problematic in driven systems and has been limited by theories built on series expansion about a saddle point. Recently, it has been shown that to obtain formally exact rates for reactions in thermal environments, a transition state trajectory must be constructed. Here, using optimized Lagrangian descriptors [G. T. Craven and R. Hernandez, Phys. Rev. Lett. 115, 148301 (2015)PRLTAO0031-900710.1103/PhysRevLett.115.148301], we obtain this so-called distinguished trajectory and the associated moving reaction manifolds on model energy surfaces subject to various driving and dissipative conditions. In particular, we demonstrate that this is exact for harmonic barriers in one dimension and this verification gives impetus to the application of Lagrangian descriptor-based methods in diverse classes of chemical reactions. The development of these objects is paramount in the theory of reaction dynamics as the transition state structure and its underlying network of manifolds directly dictate reactivity and selectivity.

  20. Gravitational Field as a Pressure Force from Logarithmic Lagrangians and Non-Standard Hamiltonians: The Case of Stellar Halo of Milky Way

    NASA Astrophysics Data System (ADS)

    El-Nabulsi, Rami Ahmad

    2018-03-01

    Recently, the notion of non-standard Lagrangians was discussed widely in literature in an attempt to explore the inverse variational problem of nonlinear differential equations. Different forms of non-standard Lagrangians were introduced in literature and have revealed nice mathematical and physical properties. One interesting form related to the inverse variational problem is the logarithmic Lagrangian, which has a number of motivating features related to the Liénard-type and Emden nonlinear differential equations. Such types of Lagrangians lead to nonlinear dynamics based on non-standard Hamiltonians. In this communication, we show that some new dynamical properties are obtained in stellar dynamics if standard Lagrangians are replaced by Logarithmic Lagrangians and their corresponding non-standard Hamiltonians. One interesting consequence concerns the emergence of an extra pressure term, which is related to the gravitational field suggesting that gravitation may act as a pressure in a strong gravitational field. The case of the stellar halo of the Milky Way is considered.

  1. Lagrangian condensation microphysics with Twomey CCN activation

    NASA Astrophysics Data System (ADS)

    Grabowski, Wojciech W.; Dziekan, Piotr; Pawlowska, Hanna

    2018-01-01

    We report the development of a novel Lagrangian microphysics methodology for simulations of warm ice-free clouds. The approach applies the traditional Eulerian method for the momentum and continuous thermodynamic fields such as the temperature and water vapor mixing ratio, and uses Lagrangian super-droplets to represent condensed phase such as cloud droplets and drizzle or rain drops. In other applications of the Lagrangian warm-rain microphysics, the super-droplets outside clouds represent unactivated cloud condensation nuclei (CCN) that become activated upon entering a cloud and can further grow through diffusional and collisional processes. The original methodology allows for the detailed study of not only effects of CCN on cloud microphysics and dynamics, but also CCN processing by a cloud. However, when cloud processing is not of interest, a simpler and computationally more efficient approach can be used with super-droplets forming only when CCN is activated and no super-droplet existing outside a cloud. This is possible by applying the Twomey activation scheme where the local supersaturation dictates the concentration of cloud droplets that need to be present inside a cloudy volume, as typically used in Eulerian bin microphysics schemes. Since a cloud volume is a small fraction of the computational domain volume, the Twomey super-droplets provide significant computational advantage when compared to the original super-droplet methodology. Additional advantage comes from significantly longer time steps that can be used when modeling of CCN deliquescence is avoided. Moreover, other formulation of the droplet activation can be applied in case of low vertical resolution of the host model, for instance, linking the concentration of activated cloud droplets to the local updraft speed. This paper discusses the development and testing of the Twomey super-droplet methodology, focusing on the activation and diffusional growth. Details of the activation

  2. Dissipative inertial transport patterns near coherent Lagrangian eddies in the ocean.

    PubMed

    Beron-Vera, Francisco J; Olascoaga, María J; Haller, George; Farazmand, Mohammad; Triñanes, Joaquín; Wang, Yan

    2015-08-01

    Recent developments in dynamical systems theory have revealed long-lived and coherent Lagrangian (i.e., material) eddies in incompressible, satellite-derived surface ocean velocity fields. Paradoxically, observed drifting buoys and floating matter tend to create dissipative-looking patterns near oceanic eddies, which appear to be inconsistent with the conservative fluid particle patterns created by coherent Lagrangian eddies. Here, we show that inclusion of inertial effects (i.e., those produced by the buoyancy and size finiteness of an object) in a rotating two-dimensional incompressible flow context resolves this paradox. Specifically, we obtain that anticyclonic coherent Lagrangian eddies attract (repel) negatively (positively) buoyant finite-size particles, while cyclonic coherent Lagrangian eddies attract (repel) positively (negatively) buoyant finite-size particles. We show how these results explain dissipative-looking satellite-tracked surface drifter and subsurface float trajectories, as well as satellite-derived Sargassum distributions.

  3. Lagrangian derivation of the two coupled field equations in the Janus cosmological model

    NASA Astrophysics Data System (ADS)

    Petit, Jean-Pierre; D'Agostini, G.

    2015-05-01

    After a review citing the results obtained in previous articles introducing the Janus Cosmological Model, consisting of a set of two coupled field equations, where one metrics refers to the positive masses and the other to the negative masses, which explains the observed cosmic acceleration and the nature of dark energy, we present the Lagrangian derivation of the model.

  4. The Gaussian streaming model and convolution Lagrangian effective field theory

    DOE PAGES

    Vlah, Zvonimir; Castorina, Emanuele; White, Martin

    2016-12-05

    We update the ingredients of the Gaussian streaming model (GSM) for the redshift-space clustering of biased tracers using the techniques of Lagrangian perturbation theory, effective field theory (EFT) and a generalized Lagrangian bias expansion. After relating the GSM to the cumulant expansion, we present new results for the real-space correlation function, mean pairwise velocity and pairwise velocity dispersion including counter terms from EFT and bias terms through third order in the linear density, its leading derivatives and its shear up to second order. We discuss the connection to the Gaussian peaks formalism. We compare the ingredients of the GSM tomore » a suite of large N-body simulations, and show the performance of the theory on the low order multipoles of the redshift-space correlation function and power spectrum. We highlight the importance of a general biasing scheme, which we find to be as important as higher-order corrections due to non-linear evolution for the halos we consider on the scales of interest to us.« less

  5. The Gaussian streaming model and convolution Lagrangian effective field theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vlah, Zvonimir; Castorina, Emanuele; White, Martin, E-mail: zvlah@stanford.edu, E-mail: ecastorina@berkeley.edu, E-mail: mwhite@berkeley.edu

    We update the ingredients of the Gaussian streaming model (GSM) for the redshift-space clustering of biased tracers using the techniques of Lagrangian perturbation theory, effective field theory (EFT) and a generalized Lagrangian bias expansion. After relating the GSM to the cumulant expansion, we present new results for the real-space correlation function, mean pairwise velocity and pairwise velocity dispersion including counter terms from EFT and bias terms through third order in the linear density, its leading derivatives and its shear up to second order. We discuss the connection to the Gaussian peaks formalism. We compare the ingredients of the GSM tomore » a suite of large N-body simulations, and show the performance of the theory on the low order multipoles of the redshift-space correlation function and power spectrum. We highlight the importance of a general biasing scheme, which we find to be as important as higher-order corrections due to non-linear evolution for the halos we consider on the scales of interest to us.« less

  6. Lagrangian description of warm plasmas

    NASA Technical Reports Server (NTRS)

    Kim, H.

    1970-01-01

    Efforts are described to extend the averaged Lagrangian method of describing small signal wave propagation and nonlinear wave interaction, developed by earlier workers for cold plasmas, to the more general conditions of warm collisionless plasmas, and to demonstrate particularly the effectiveness of the method in analyzing wave-wave interactions. The theory is developed for both the microscopic description and the hydrodynamic approximation to plasma behavior. First, a microscopic Lagrangian is formulated rigorously, and expanded in terms of perturbations about equilibrium. Two methods are then described for deriving a hydrodynamic Lagrangian. In the first of these, the Lagrangian is obtained by velocity integration of the exact microscopic Lagrangian. In the second, the expanded hydrodynamic Lagrangian is obtained directly from the expanded microscopic Lagrangian. As applications of the microscopic Lagrangian, the small-signal dispersion relations and the coupled mode equations are derived for all possible waves in a warm infinite, weakly inhomogeneous magnetoplasma, and their interactions are examined.

  7. Nonlinear electromechanical modelling and dynamical behavior analysis of a satellite reaction wheel

    NASA Astrophysics Data System (ADS)

    Aghalari, Alireza; Shahravi, Morteza

    2017-12-01

    The present research addresses the satellite reaction wheel (RW) nonlinear electromechanical coupling dynamics including dynamic eccentricity of brushless dc (BLDC) motor and gyroscopic effects, as well as dry friction of shaft-bearing joints (relative small slip) and bearing friction. In contrast to other studies, the rotational velocity of the flywheel is considered to be controllable, so it is possible to study the reaction wheel dynamical behavior in acceleration stages. The RW is modeled as a three-phases BLDC motor as well as flywheel with unbalances on a rigid shaft and flexible bearings. Improved Lagrangian dynamics for electromechanical systems is used to obtain the mathematical model of the system. The developed model can properly describe electromechanical nonlinear coupled dynamical behavior of the satellite RW. Numerical simulations show the effectiveness of the presented approach.

  8. A Lagrangian analysis of a sudden stratospheric warming - Comparison of a model simulation and LIMS observations

    NASA Technical Reports Server (NTRS)

    Pierce, R. B.; Remsberg, Ellis E.; Fairlie, T. D.; Blackshear, W. T.; Grose, William L.; Turner, Richard E.

    1992-01-01

    Lagrangian area diagnostics and trajectory techniques are used to investigate the radiative and dynamical characteristics of a spontaneous sudden warming which occurred during a 2-yr Langley Research Center model simulation. The ability of the Langley Research Center GCM to simulate the major features of the stratospheric circulation during such highly disturbed periods is illustrated by comparison of the simulated warming to the observed circulation during the LIMS observation period. The apparent sink of vortex area associated with Rossby wave-breaking accounts for the majority of the reduction of the size of the vortex and also acts to offset the radiatively driven increase in the area occupied by the 'surf zone'. Trajectory analysis of selected material lines substantiates the conclusions from the area diagnostics.

  9. Modeling NIF experimental designs with adaptive mesh refinement and Lagrangian hydrodynamics

    NASA Astrophysics Data System (ADS)

    Koniges, A. E.; Anderson, R. W.; Wang, P.; Gunney, B. T. N.; Becker, R.; Eder, D. C.; MacGowan, B. J.; Schneider, M. B.

    2006-06-01

    Incorporation of adaptive mesh refinement (AMR) into Lagrangian hydrodynamics algorithms allows for the creation of a highly powerful simulation tool effective for complex target designs with three-dimensional structure. We are developing an advanced modeling tool that includes AMR and traditional arbitrary Lagrangian-Eulerian (ALE) techniques. Our goal is the accurate prediction of vaporization, disintegration and fragmentation in National Ignition Facility (NIF) experimental target elements. Although our focus is on minimizing the generation of shrapnel in target designs and protecting the optics, the general techniques are applicable to modern advanced targets that include three-dimensional effects such as those associated with capsule fill tubes. Several essential computations in ordinary radiation hydrodynamics need to be redesigned in order to allow for AMR to work well with ALE, including algorithms associated with radiation transport. Additionally, for our goal of predicting fragmentation, we include elastic/plastic flow into our computations. We discuss the integration of these effects into a new ALE-AMR simulation code. Applications of this newly developed modeling tool as well as traditional ALE simulations in two and three dimensions are applied to NIF early-light target designs.

  10. Detecting reactive islands using Lagrangian descriptors and the relevance to transition path sampling.

    PubMed

    Patra, Sarbani; Keshavamurthy, Srihari

    2018-02-14

    It has been known for sometime now that isomerization reactions, classically, are mediated by phase space structures called reactive islands (RI). RIs provide one possible route to correct for the nonstatistical effects in the reaction dynamics. In this work, we map out the reactive islands for the two dimensional Müller-Brown model potential and show that the reactive islands are intimately linked to the issue of rare event sampling. In particular, we establish the sensitivity of the so called committor probabilities, useful quantities in the transition path sampling technique, to the hierarchical RI structures. Mapping out the RI structure for high dimensional systems, however, is a challenging task. Here, we show that the technique of Lagrangian descriptors is able to effectively identify the RI hierarchy in the model system. Based on our results, we suggest that the Lagrangian descriptors can be useful for detecting RIs in high dimensional systems.

  11. Computing eddy-driven effective diffusivity using Lagrangian particles

    DOE PAGES

    Wolfram, Phillip J.; Ringler, Todd D.

    2017-08-14

    A novel method to derive effective diffusivity from Lagrangian particle trajectory data sets is developed and then analyzed relative to particle-derived meridional diffusivity for eddy-driven mixing in an idealized circumpolar current. Quantitative standard dispersion- and transport-based mixing diagnostics are defined, compared and contrasted to motivate the computation and use of effective diffusivity derived from Lagrangian particles. We compute the effective diffusivity by first performing scalar transport on Lagrangian control areas using stored trajectories computed from online Lagrangian In-situ Global High-performance particle Tracking (LIGHT) using the Model for Prediction Across Scales Ocean (MPAS-O). Furthermore, the Lagrangian scalar transport scheme is comparedmore » against an Eulerian scalar transport scheme. Spatially-variable effective diffusivities are computed from resulting time-varying cumulative concentrations that vary as a function of cumulative area. The transport-based Eulerian and Lagrangian effective diffusivity diagnostics are found to be qualitatively consistent with the dispersion-based diffusivity. All diffusivity estimates show a region of increased subsurface diffusivity within the core of an idealized circumpolar current and results are within a factor of two of each other. The Eulerian and Lagrangian effective diffusivities are most similar; smaller and more spatially diffused values are obtained with the dispersion-based diffusivity computed with particle clusters.« less

  12. Computing eddy-driven effective diffusivity using Lagrangian particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolfram, Phillip J.; Ringler, Todd D.

    A novel method to derive effective diffusivity from Lagrangian particle trajectory data sets is developed and then analyzed relative to particle-derived meridional diffusivity for eddy-driven mixing in an idealized circumpolar current. Quantitative standard dispersion- and transport-based mixing diagnostics are defined, compared and contrasted to motivate the computation and use of effective diffusivity derived from Lagrangian particles. We compute the effective diffusivity by first performing scalar transport on Lagrangian control areas using stored trajectories computed from online Lagrangian In-situ Global High-performance particle Tracking (LIGHT) using the Model for Prediction Across Scales Ocean (MPAS-O). Furthermore, the Lagrangian scalar transport scheme is comparedmore » against an Eulerian scalar transport scheme. Spatially-variable effective diffusivities are computed from resulting time-varying cumulative concentrations that vary as a function of cumulative area. The transport-based Eulerian and Lagrangian effective diffusivity diagnostics are found to be qualitatively consistent with the dispersion-based diffusivity. All diffusivity estimates show a region of increased subsurface diffusivity within the core of an idealized circumpolar current and results are within a factor of two of each other. The Eulerian and Lagrangian effective diffusivities are most similar; smaller and more spatially diffused values are obtained with the dispersion-based diffusivity computed with particle clusters.« less

  13. Modeling of Subsurface Lagrangian Sensor Swarms for Spatially Distributed Current Measurements in High Energy Coastal Environments

    NASA Astrophysics Data System (ADS)

    Harrison, T. W.; Polagye, B. L.

    2016-02-01

    Coastal ecosystems are characterized by spatially and temporally varying hydrodynamics. In marine renewable energy applications, these variations strongly influence project economics and in oceanographic studies, they impact accuracy of biological transport and pollutant dispersion models. While stationary point or profile measurements are relatively straight forward, spatial representativeness of point measurements can be poor due to strong gradients. Moving platforms, such as AUVs or surface vessels, offer better coverage, but suffer from energetic constraints (AUVs) and resolvable scales (vessels). A system of sub-surface, drifting sensor packages is being developed to provide spatially distributed, synoptic data sets of coastal hydrodynamics with meter-scale resolution over a regional extent of a kilometer. Computational investigation has informed system parameters such as drifter size and shape, necessary position accuracy, number of drifters, and deployment methods. A hydrodynamic domain with complex flow features was created using a computational fluid dynamics code. A simple model of drifter dynamics propagate the drifters through the domain in post-processing. System parameters are evaluated relative to their ability to accurately recreate domain hydrodynamics. Implications of these results for an inexpensive, depth-controlled Lagrangian drifter system is presented.

  14. Lagrangian Assimilation of Satellite Data for Climate Studies in the Arctic

    NASA Technical Reports Server (NTRS)

    Lindsay, Ronald W.; Zhang, Jin-Lun; Stern, Harry

    2004-01-01

    Under this grant we have developed and tested a new Lagrangian model of sea ice. A Lagrangian model keeps track of material parcels as they drift in the model domain. Besides providing a natural framework for the assimilation of Lagrangian data, it has other advantages: 1) a model that follows material elements is well suited for a medium such as sea ice in which an element retains its identity for a long period of time; 2) model cells can be added or dropped as needed, allowing the spatial resolution to be increased in areas of high variability or dense observations; 3) ice from particular regions, such as the marginal seas, can be marked and traced for a long time; and 4) slip lines in the ice motion are accommodated more naturally because there is no internal grid. Our work makes use of these strengths of the Lagrangian formulation.

  15. Simulation of atmospheric dispersion of radionuclides using an Eulerian-Lagrangian modelling system.

    PubMed

    Basit, Abdul; Espinosa, Francisco; Avila, Ruben; Raza, S; Irfan, N

    2008-12-01

    In this paper we present an atmospheric dispersion scenario for a proposed nuclear power plant in Pakistan involving the hypothetical accidental release of radionuclides. For this, a concept involving a Lagrangian stochastic particle model (LSPM) coupled with an Eulerian regional atmospheric modelling system (RAMS) is used. The atmospheric turbulent dispersion of radionuclides (represented by non-buoyant particles/neutral traces) in the LSPM is modelled by applying non-homogeneous turbulence conditions. The mean wind velocities governed by the topography of the region and the surface fluxes of momentum and heat are calculated by the RAMS code. A moving least squares (MLS) technique is introduced to calculate the concentration of radionuclides at ground level. The numerically calculated vertical profiles of wind velocity and temperature are compared with observed data. The results obtained demonstrate that in regions of complex terrain it is not sufficient to model the atmospheric dispersion of particles using a straight-line Gaussian plume model, and that by utilising a Lagrangian stochastic particle model and regional atmospheric modelling system a much more realistic estimation of the dispersion in such a hypothetical scenario was ascertained. The particle dispersion results for a 12 h ground release show that a triangular area of about 400 km(2) situated in the north-west quadrant of release is under radiological threat. The particle distribution shows that the use of a Gaussian plume model (GPM) in such situations will yield quite misleading results.

  16. Can lagrangian models reproduce the migration time of European eel obtained from otolith analysis?

    NASA Astrophysics Data System (ADS)

    Rodríguez-Díaz, L.; Gómez-Gesteira, M.

    2017-12-01

    European eel can be found at the Bay of Biscay after a long migration across the Atlantic. The duration of migration, which takes place at larval stage, is of primary importance to understand eel ecology and, hence, its survival. This duration is still a controversial matter since it can range from 7 months to > 4 years depending on the method to estimate duration. The minimum migration duration estimated from our lagrangian model is similar to the duration obtained from the microstructure of eel otoliths, which is typically on the order of 7-9 months. The lagrangian model showed to be sensitive to different conditions like spatial and time resolution, release depth, release area and initial distribution. In general, migration showed to be faster when decreasing the depth and increasing the resolution of the model. In average, the fastest migration was obtained when only advective horizontal movement was considered. However, faster migration was even obtained in some cases when locally oriented random migration was taken into account.

  17. SPH Modelling of Sea-ice Pack Dynamics

    NASA Astrophysics Data System (ADS)

    Staroszczyk, Ryszard

    2017-12-01

    The paper is concerned with the problem of sea-ice pack motion and deformation under the action of wind and water currents. Differential equations describing the dynamics of ice, with its very distinct mateFfigrial responses in converging and diverging flows, express the mass and linear momentum balances on the horizontal plane (the free surface of the ocean). These equations are solved by the fully Lagrangian method of smoothed particle hydrodynamics (SPH). Assuming that the ice behaviour can be approximated by a non-linearly viscous rheology, the proposed SPH model has been used to simulate the evolution of a sea-ice pack driven by wind drag stresses. The results of numerical simulations illustrate the evolution of an ice pack, including variations in ice thickness and ice area fraction in space and time. The effects of different initial ice pack configurations and of different conditions assumed at the coast-ice interface are examined. In particular, the SPH model is applied to a pack flow driven by a vortex wind to demonstrate how well the Lagrangian formulation can capture large deformations and displacements of sea ice.

  18. Modeling and Numerical Challenges in Eulerian-Lagrangian Computations of Shock-driven Multiphase Flows

    NASA Astrophysics Data System (ADS)

    Diggs, Angela; Balachandar, Sivaramakrishnan

    2015-06-01

    The present work addresses the numerical methods required for particle-gas and particle-particle interactions in Eulerian-Lagrangian simulations of multiphase flow. Local volume fraction as seen by each particle is the quantity of foremost importance in modeling and evaluating such interactions. We consider a general multiphase flow with a distribution of particles inside a fluid flow discretized on an Eulerian grid. Particle volume fraction is needed both as a Lagrangian quantity associated with each particle and also as an Eulerian quantity associated with the flow. In Eulerian Projection (EP) methods, the volume fraction is first obtained within each cell as an Eulerian quantity and then interpolated to each particle. In Lagrangian Projection (LP) methods, the particle volume fraction is obtained at each particle and then projected onto the Eulerian grid. Traditionally, EP methods are used in multiphase flow, but sub-grid resolution can be obtained through use of LP methods. By evaluating the total error and its components we compare the performance of EP and LP methods. The standard von Neumann error analysis technique has been adapted for rigorous evaluation of rate of convergence. The methods presented can be extended to obtain accurate field representations of other Lagrangian quantities. Most importantly, we will show that such careful attention to numerical methodologies is needed in order to capture complex shock interaction with a bed of particles. Supported by U.S. Department of Defense SMART Program and the U.S. Department of Energy PSAAP-II program under Contract No. DE-NA0002378.

  19. A majorized Newton-CG augmented Lagrangian-based finite element method for 3D restoration of geological models

    NASA Astrophysics Data System (ADS)

    Tang, Peipei; Wang, Chengjing; Dai, Xiaoxia

    2016-04-01

    In this paper, we propose a majorized Newton-CG augmented Lagrangian-based finite element method for 3D elastic frictionless contact problems. In this scheme, we discretize the restoration problem via the finite element method and reformulate it to a constrained optimization problem. Then we apply the majorized Newton-CG augmented Lagrangian method to solve the optimization problem, which is very suitable for the ill-conditioned case. Numerical results demonstrate that the proposed method is a very efficient algorithm for various large-scale 3D restorations of geological models, especially for the restoration of geological models with complicated faults.

  20. Classical Lagrangians and Finsler structures for the nonminimal fermion sector of the standard model extension

    NASA Astrophysics Data System (ADS)

    Schreck, M.

    2016-05-01

    This article is devoted to finding classical point-particle equivalents for the fermion sector of the nonminimal standard model extension (SME). For a series of nonminimal operators, such Lagrangians are derived at first order in Lorentz violation using the algebraic concept of Gröbner bases. Subsequently, the Lagrangians serve as a basis for reanalyzing the results of certain kinematic tests of special relativity that were carried out in the past century. Thereby, a number of new constraints on coefficients of the nonminimal SME is obtained. In the last part of the paper we point out connections to Finsler geometry.

  1. Lagrangian-based Backtracking of Oil Spill Dynamics from SAR Images: Application to Montara Case

    NASA Astrophysics Data System (ADS)

    Gautama, Budhi Gunadharma; Mercier, Gregoire; Fablet, Ronan; Longepe, Nicolas

    2016-08-01

    Within the framework of INDESO project (Infrastructure Development Space Oceanography), we address the issue of oilspill and aim at developing an operational SAR- based system for monitoring this issue in Indonesian waters from space. In this work, we focus on the backtrack- ing of an oilspill detected from SAR observations. As a case-study, we consider one large oil spill event that happened in Indonesian waters in 2009, referred to as the Montara oilspill. On 21 August 2009, the Montara Wellhead Platform had an uncontrolled release of hydrocarbons from one of the platform wells. It was estimated that 400 barrels (or approximately 64 tonnes) of crude oil were being lost per day. The uncontrolled release continued until 3 November 2009 and response operations continued until 3 December 2009. In this work, we develop a Langragian analysis and associated numerical inversion tools with a view to further analyzing the oil spread due to the Montara Wellhead Platform. Our model relies on a 2D Lagrangian transport model developed by CLS (Collecte Localisation Satellite). Our model involves four main parameters : the weights of wind- related and current-related advection, the origin and the duration of the oil leakage. Given SAR oilspill detections, we propose a numerical inversion of the parameters of the Lagrangian model, so that the simulated drift match the SAR observations of the oil spill. We demonstrate the relevance of the proposed model and numerical scheme for the Montara oilspill and further discuss their operational interest for the space-based oilspill backtracking and forecasting.

  2. A Lagrangian particle model to predict the airborne spread of foot-and-mouth disease virus

    NASA Astrophysics Data System (ADS)

    Mayer, D.; Reiczigel, J.; Rubel, F.

    Airborne spread of bioaerosols in the boundary layer over a complex terrain is simulated using a Lagrangian particle model, and applied to modelling the airborne spread of foot-and-mouth disease (FMD) virus. Two case studies are made with study domains located in a hilly region in the northwest of the Styrian capital Graz, the second largest town in Austria. Mountainous terrain as well as inhomogeneous and time varying meteorological conditions prevent from application of so far used Gaussian dispersion models, while the proposed model can handle these realistically. In the model, trajectories of several thousands of particles are computed and the distribution of virus concentration near the ground is calculated. This allows to assess risk of infection areas with respect to animal species of interest, such as cattle, swine or sheep. Meteorological input data like wind field and other variables necessary to compute turbulence were taken from the new pre-operational version of the non-hydrostatic numerical weather prediction model LMK ( Lokal-Modell-Kürzestfrist) running at the German weather service DWD ( Deutscher Wetterdienst). The LMK model provides meteorological parameters with a spatial resolution of about 2.8 km. To account for the spatial resolution of 400 m used by the Lagrangian particle model, the initial wind field is interpolated upon the finer grid by a mass consistent interpolation method. Case studies depict a significant influence of local wind systems on the spread of virus. Higher virus concentrations at the upwind side of the hills and marginal concentrations in the lee are well observable, as well as canalization effects by valleys. The study demonstrates that the Lagrangian particle model is an appropriate tool for risk assessment of airborne spread of virus by taking into account the realistic orographic and meteorological conditions.

  3. Euler-Lagrangian computation for estuarine hydrodynamics

    USGS Publications Warehouse

    Cheng, Ralph T.

    1983-01-01

    The transport of conservative and suspended matter in fluid flows is a phenomenon of Lagrangian nature because the process is usually convection dominant. Nearly all numerical investigations of such problems use an Eulerian formulation for the convenience that the computational grids are fixed in space and because the vast majority of field data are collected in an Eulerian reference frame. Several examples are given in this paper to illustrate a modeling approach which combines the advantages of both the Eulerian and Lagrangian computational techniques.

  4. Lagrangian-averaged model for magnetohydrodynamic turbulence and the absence of bottlenecks.

    PubMed

    Pietarila Graham, Jonathan; Mininni, Pablo D; Pouquet, Annick

    2009-07-01

    We demonstrate that, for the case of quasiequipartition between the velocity and the magnetic field, the Lagrangian-averaged magnetohydrodynamics (LAMHD) alpha model reproduces well both the large-scale and the small-scale properties of turbulent flows; in particular, it displays no increased (superfilter) bottleneck effect with its ensuing enhanced energy spectrum at the onset of the subfilter scales. This is in contrast to the case of the neutral fluid in which the Lagrangian-averaged Navier-Stokes alpha model is somewhat limited in its applications because of the formation of spatial regions with no internal degrees of freedom and subsequent contamination of superfilter-scale spectral properties. We argue that, as the Lorentz force breaks the conservation of circulation and enables spectrally nonlocal energy transfer (associated with Alfvén waves), it is responsible for the absence of a viscous bottleneck in magnetohydrodynamics (MHD), as compared to the fluid case. As LAMHD preserves Alfvén waves and the circulation properties of MHD, there is also no (superfilter) bottleneck found in LAMHD, making this method capable of large reductions in required numerical degrees of freedom; specifically, we find a reduction factor of approximately 200 when compared to a direct numerical simulation on a large grid of 1536;{3} points at the same Reynolds number.

  5. On tide-induced Lagrangian residual current and residual transport: 1. Lagrangian residual current

    USGS Publications Warehouse

    Feng, Shizuo; Cheng, Ralph T.; Pangen, Xi

    1986-01-01

    Residual currents in tidal estuaries and coastal embayments have been recognized as fundamental factors which affect the long-term transport processes. It has been pointed out by previous studies that it is more relevant to use a Lagrangian mean velocity than an Eulerian mean velocity to determine the movements of water masses. Under weakly nonlinear approximation, the parameter k, which is the ratio of the net displacement of a labeled water mass in one tidal cycle to the tidal excursion, is assumed to be small. Solutions for tides, tidal current, and residual current have been considered for two-dimensional, barotropic estuaries and coastal seas. Particular attention has been paid to the distinction between the Lagrangian and Eulerian residual currents. When k is small, the first-order Lagrangian residual is shown to be the sum of the Eulerian residual current and the Stokes drift. The Lagrangian residual drift velocity or the second-order Lagrangian residual current has been shown to be dependent on the phase of tidal current. The Lagrangian drift velocity is induced by nonlinear interactions between tides, tidal currents, and the first-order residual currents, and it takes the form of an ellipse on a hodograph plane. Several examples are given to further demonstrate the unique properties of the Lagrangian residual current.

  6. Do Assimilated Drifter Velocities Improve Lagrangian Predictability in an Operational Ocean Model?

    DTIC Science & Technology

    2015-05-01

    extended Kalman filter . Molcard et al. (2005) used a statistical method to cor- relate model and drifter velocities. Taillandier et al. (2006) describe the... temperature and salinity observations. Trajectory angular differ- ences are also reduced. 1. Introduction The importance of Lagrangian forecasts was seen... Temperature , salinity, and sea surface height (SSH, measured along-track by satellite altimeters) observa- tions are typically assimilated in

  7. Extracting quasi-steady Lagrangian transport patterns from the ocean circulation: An application to the Gulf of Mexico.

    PubMed

    Duran, R; Beron-Vera, F J; Olascoaga, M J

    2018-03-26

    We construct a climatology of Lagrangian coherent structures (LCSs)-the concealed skeleton that shapes transport-with a twelve-year-long data-assimilative simulation of the sea-surface circulation in the Gulf of Mexico (GoM). Computed as time-mean Cauchy-Green strain tensorlines of the climatological velocity, the climatological LCSs (cLCSs) unveil recurrent Lagrangian circulation patterns. The cLCSs strongly constrain the ensemble-mean Lagrangian circulation of the instantaneous model velocity, showing that a climatological velocity can preserve meaningful transport information. The quasi-steady transport patterns revealed by the cLCSs agree well with aspects of the GoM circulation described in several previous observational and numerical studies. For example, the cLCSs identify regions of persistent isolation, and suggest that coastal regions previously identified as high-risk for pollution impact are regions of maximal attraction. We also show that cLCSs are remarkably accurate at identifying transport patterns observed during the Deepwater Horizon and Ixtoc oil spills, and during the Grand LAgrangian Deployment (GLAD) experiment. Thus it is shown that computing cLCSs is an efficient and meaningful way of synthesizing vast amounts of Lagrangian information. The cLCS method confirms previous GoM studies, and contributes to our understanding by revealing the persistent nature of the dynamics and kinematics treated therein.

  8. Insights into the three-dimensional Lagrangian geometry of the Antarctic polar vortex

    NASA Astrophysics Data System (ADS)

    Curbelo, Jezabel; José García-Garrido, Víctor; Mechoso, Carlos Roberto; Mancho, Ana Maria; Wiggins, Stephen; Niang, Coumba

    2017-07-01

    In this paper we study the three-dimensional (3-D) Lagrangian structures in the stratospheric polar vortex (SPV) above Antarctica. We analyse and visualize these structures using Lagrangian descriptor function M. The procedure for calculation with reanalysis data is explained. Benchmarks are computed and analysed that allow us to compare 2-D and 3-D aspects of Lagrangian transport. Dynamical systems concepts appropriate to 3-D, such as normally hyperbolic invariant curves, are discussed and applied. In order to illustrate our approach we select an interval of time in which the SPV is relatively undisturbed (August 1979) and an interval of rapid SPV changes (October 1979). Our results provide new insights into the Lagrangian structure of the vertical extension of the stratospheric polar vortex and its evolution. Our results also show complex Lagrangian patterns indicative of strong mixing processes in the upper troposphere and lower stratosphere. Finally, during the transition to summer in the late spring, we illustrate the vertical structure of two counterrotating vortices, one the polar and the other an emerging one, and the invariant separatrix that divides them.

  9. APPLICATION OF BAYESIAN MONTE CARLO ANALYSIS TO A LAGRANGIAN PHOTOCHEMICAL AIR QUALITY MODEL. (R824792)

    EPA Science Inventory

    Uncertainties in ozone concentrations predicted with a Lagrangian photochemical air quality model have been estimated using Bayesian Monte Carlo (BMC) analysis. Bayesian Monte Carlo analysis provides a means of combining subjective "prior" uncertainty estimates developed ...

  10. Toroidal regularization of the guiding center Lagrangian

    DOE PAGES

    Burby, J. W.; Ellison, C. L.

    2017-11-22

    In the Lagrangian theory of guiding center motion, an effective magnetic field B* = B+ (m/e)v ∥∇ x b appears prominently in the equations of motion. Because the parallel component of this field can vanish, there is a range of parallel velocities where the Lagrangian guiding center equations of motion are either ill-defined or very badly behaved. Moreover, the velocity dependence of B* greatly complicates the identification of canonical variables and therefore the formulation of symplectic integrators for guiding center dynamics. Here, this letter introduces a simple coordinate transformation that alleviates both these problems simultaneously. In the new coordinates, themore » Liouville volume element is equal to the toroidal contravariant component of the magnetic field. Consequently, the large-velocity singularity is completely eliminated. Moreover, passing from the new coordinate system to canonical coordinates is extremely simple, even if the magnetic field is devoid of flux surfaces. We demonstrate the utility of this approach in regularizing the guiding center Lagrangian by presenting a new and stable one-step variational integrator for guiding centers moving in arbitrary time-dependent electromagnetic fields.« less

  11. Toroidal regularization of the guiding center Lagrangian

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burby, J. W.; Ellison, C. L.

    In the Lagrangian theory of guiding center motion, an effective magnetic field B* = B+ (m/e)v ∥∇ x b appears prominently in the equations of motion. Because the parallel component of this field can vanish, there is a range of parallel velocities where the Lagrangian guiding center equations of motion are either ill-defined or very badly behaved. Moreover, the velocity dependence of B* greatly complicates the identification of canonical variables and therefore the formulation of symplectic integrators for guiding center dynamics. Here, this letter introduces a simple coordinate transformation that alleviates both these problems simultaneously. In the new coordinates, themore » Liouville volume element is equal to the toroidal contravariant component of the magnetic field. Consequently, the large-velocity singularity is completely eliminated. Moreover, passing from the new coordinate system to canonical coordinates is extremely simple, even if the magnetic field is devoid of flux surfaces. We demonstrate the utility of this approach in regularizing the guiding center Lagrangian by presenting a new and stable one-step variational integrator for guiding centers moving in arbitrary time-dependent electromagnetic fields.« less

  12. On Lagrangian residual currents with applications in south San Francisco Bay, California

    USGS Publications Warehouse

    Cheng, Ralph T.; Casulli, Vincenzo

    1982-01-01

    The Lagrangian residual circulation has often been introduced as the sum of the Eulerian residual circulation and the Stokes' drift. Unfortunately, this definition of the Lagrangian residual circulation is conceptually incorrect because both the Eulerian residual circulation and the Stokes' drift are Eulerian variables. In this paper a classification of various residual variables are reviewed and properly defined. The Lagrangian residual circulation is then studied by means of a two-stage formulation of a computer model. The tidal circulation is first computed in a conventional Eulerian way, and then the Lagrangian residual circulation is determined by a method patterned after the method of markers and cells. To demonstrate properties of the Lagrangian residual circulation, application of this approach in South San Francisco Bay, California, is considered. With the aid of the model results, properties of the Eulerian and Lagrangian residual circulation are examined. It can be concluded that estimation of the Lagrangian residual circulation from Eulerian data may lead to unacceptable error, particularly in a tidal estuary where the tidal excursion is of the same order of magnitude as the length scale of the basin. A direction calculation of the Lagrangian residual circulation must be made and has been shown to be feasible.

  13. Asymptotic-preserving Lagrangian approach for modeling anisotropic transport in magnetized plasmas

    NASA Astrophysics Data System (ADS)

    Chacon, Luis; Del-Castillo-Negrete, Diego

    2012-03-01

    Modeling electron transport in magnetized plasmas is extremely challenging due to the extreme anisotropy between parallel (to the magnetic field) and perpendicular directions (the transport-coefficient ratio χ/χ˜10^10 in fusion plasmas). Recently, a novel Lagrangian Green's function method has been proposedfootnotetextD. del-Castillo-Negrete, L. Chac'on, PRL, 106, 195004 (2011); D. del-Castillo-Negrete, L. Chac'on, Phys. Plasmas, submitted (2011) to solve the local and non-local purely parallel transport equation in general 3D magnetic fields. The approach avoids numerical pollution, is inherently positivity-preserving, and is scalable algorithmically (i.e., work per degree-of-freedom is grid-independent). In this poster, we discuss the extension of the Lagrangian Green's function approach to include perpendicular transport terms and sources. We present an asymptotic-preserving numerical formulation, which ensures a consistent numerical discretization temporally and spatially for arbitrary χ/χ ratios. We will demonstrate the potential of the approach with various challenging configurations, including the case of transport across a magnetic island in cylindrical geometry.

  14. Lagrangian modeling of global atmospheric methane (1990-2012)

    NASA Astrophysics Data System (ADS)

    Arfeuille, Florian; Henne, Stephan; Brunner, Dominik

    2016-04-01

    In the MAIOLICA-II project, the lagrangian particle model FLEXPART is used to simulate the global atmospheric methane over the 1990-2012 period. In this lagrangian framework, 3 million particles are permanently transported based on winds from ERA-interim. The history of individual particles can be followed allowing for a comprehensive analysis of transport pathways and timescales. The link between sources (emissions) and receptors (measurement stations) is then established in a straightforward manner, a prerequisite for source inversion problems. FLEXPART was extended to incorporate the methane loss by reaction with OH, soil uptake and stratospheric loss reactions with prescribed Cl and O(1d) radicals. Sources are separated into 245 different tracers, depending on source origin (anthropogenic, wetlands, rice, biomass burning, termites, wild animals, oceans, volcanoes), region of emission, and time since emission (5 age classes). The inversion method applied is a fixed-lag Kalman smoother similar to that described in Bruhwiler et al. [2005]. Results from the FLEXPART global methane simulation and from the subsequent inversion will be presented. Results notably suggest: - A reduction in methane growth rates due to diminished wetland emissions and anthropogenic European emission in 1990-1993. - A second decrease in 1995-1996 is also mainly attributed to these two emission categories. - A reduced increase in Chinese anthropogenic emissions after 2003 compared to EDGAR inventories. - Large South American wetlands emissions during the entire period. Bruhwiler, L. M. P., Michalak, A. M., Peters, W., Baker, D. F. & Tans, P. 2005: An improved Kalman smoother fore atmospheric inversions, Atmos Chem Phys, 5, 2691-2702.

  15. Comparison of updated Lagrangian FEM with arbitrary Lagrangian Eulerian method for 3D thermo-mechanical extrusion of a tube profile

    NASA Astrophysics Data System (ADS)

    Kronsteiner, J.; Horwatitsch, D.; Zeman, K.

    2017-10-01

    Thermo-mechanical numerical modelling and simulation of extrusion processes faces several serious challenges. Large plastic deformations in combination with a strong coupling of thermal with mechanical effects leads to a high numerical demand for the solution as well as for the handling of mesh distortions. The two numerical methods presented in this paper also reflect two different ways to deal with mesh distortions. Lagrangian Finite Element Methods (FEM) tackle distorted elements by building a new mesh (called re-meshing) whereas Arbitrary Lagrangian Eulerian (ALE) methods use an "advection" step to remap the solution from the distorted to the undistorted mesh. Another difference between conventional Lagrangian and ALE methods is the separate treatment of material and mesh in ALE, allowing the definition of individual velocity fields. In theory, an ALE formulation contains the Eulerian formulation as a subset to the Lagrangian description of the material. The investigations presented in this paper were dealing with the direct extrusion of a tube profile using EN-AW 6082 aluminum alloy and a comparison of experimental with Lagrangian and ALE results. The numerical simulations cover the billet upsetting and last until one third of the billet length is extruded. A good qualitative correlation of experimental and numerical results could be found, however, major differences between Lagrangian and ALE methods concerning thermo-mechanical coupling lead to deviations in the thermal results.

  16. Development and evaluation of GRAL-C dispersion model, a hybrid Eulerian-Lagrangian approach capturing NO-NO 2-O 3 chemistry

    NASA Astrophysics Data System (ADS)

    Oettl, Dietmar; Uhrner, Ulrich

    2011-02-01

    Based on two recent publications using Lagrangian dispersion models to simulate NO-NO 2-O 3 chemistry for industrial plumes, a similar modified approach was implemented using GRAL-C ( Graz Lagrangian Model with Chemistry) and tested on two urban applications. In the hybrid dispersion model GRAL-C, the transport and turbulent diffusion of primary species such as NO and NO 2 are treated in a Lagrangian framework while those of O 3 are treated in an Eulerian framework. GRAL-C was employed on a one year street canyon simulation in Berlin and on a four-day simulation during a winter season in Graz, the second biggest city in Austria. In contrast to Middleton D.R., Jones A.R., Redington A.L., Thomson D.J., Sokhi R.S., Luhana L., Fisher B.E.A. (2008. Lagrangian modelling of plume chemistry for secondary pollutants in large industrial plumes. Atmospheric Environment 42, 415-427) and Alessandrini S., Ferrero E. (2008. A Lagrangian model with chemical reactions: application in real atmosphere. Proceedings of the 12th Int. Conf. on Harmonization within atmospheric dispersion modelling for regulatory purposes. Croatian Meteorological Journal, 43, ISSN: 1330-0083, 235-239) the treatment of ozone was modified in order to facilitate urban scale simulations encompassing dense road networks. For the street canyon application, modelled daily mean NO x/NO 2 concentrations deviated by +0.4%/-15% from observations, while the correlations for NO x and NO 2 were 0.67 and 0.76 respectively. NO 2 concentrations were underestimated in summer, but were captured well for other seasons. In Graz a fair agreement for NO x and NO 2 was obtained between observed and modelled values for NO x and NO 2. Simulated diurnal cycles of NO 2 and O 3 matched observations reasonably well, although O 3 was underestimated during the day. A possible explanation here might lie in the non-consideration of volatile organic compounds (VOCs) chemistry.

  17. Recording High Resolution 3D Lagrangian Motions In Marine Dinoflagellates using Digital Holographic Microscopic Cinematography

    NASA Astrophysics Data System (ADS)

    Sheng, J.; Malkiel, E.; Katz, J.; Place, A. R.; Belas, R.

    2006-11-01

    Detailed data on swimming behavior and locomotion for dense population of dinoflagellates constitutes a key component to understanding cell migration, cell-cell interactions and predator-prey dynamics, all of which affect algae bloom dynamics. Due to the multi-dimensional nature of flagellated cell motions, spatial-temporal Lagrangian measurements of multiple cells in high concentration are very limited. Here we present detailed data on 3D Lagrangian motions for three marine dinoflagellates: Oxyrrhis marina, Karlodinium veneficum, and Pfiesteria piscicida, using digital holographic microscopic cinematography. The measurements are performed in a 5x5x25mm cuvette with cell densities varying from 50,000 ˜ 90,000 cells/ml. Approximately 200-500 cells are tracked simultaneously for 12s at 60fps in a sample volume of 1x1x5 mm at a spatial resolution of 0.4x0.4x2 μm. We fully resolve the longitudinal flagella (˜200nm) along with the Lagrangian trajectory of each organism. Species dependent swimming behavior are identified and categorized quantitatively by velocities, radii of curvature, and rotations of pitch. Statistics on locomotion, temporal & spatial scales, and diffusion rate show substantial differences between species. The scaling between turning radius and cell dimension can be explained by a distributed stokeslet model for a self-propelled body.

  18. A two-field modified Lagrangian formulation for robust simulations of extrinsic cohesive zone models

    NASA Astrophysics Data System (ADS)

    Cazes, F.; Coret, M.; Combescure, A.

    2013-06-01

    This paper presents the robust implementation of a cohesive zone model based on extrinsic cohesive laws (i.e. laws involving an infinite initial stiffness). To this end, a two-field Lagrangian weak formulation in which cohesive tractions are chosen as the field variables along the crack's path is presented. Unfortunately, this formulation cannot model the infinite compliance of the broken elements accurately, and no simple criterion can be defined to determine the loading-unloading change of state at the integration points of the cohesive elements. Therefore, a modified Lagrangian formulation using a fictitious cohesive traction instead of the classical cohesive traction as the field variable is proposed. Thanks to this change of variable, the cohesive law becomes an increasing function of the equivalent displacement jump, which eliminates the problems mentioned previously. The ability of the proposed formulations to simulate fracture accurately and without field oscillations is investigated through three numerical test examples.

  19. Asymptotic-preserving Lagrangian approach for modeling anisotropic transport in magnetized plasmas for arbitrary magnetic fields

    NASA Astrophysics Data System (ADS)

    Chacon, Luis; Del-Castillo-Negrete, Diego; Hauck, Cory

    2012-10-01

    Modeling electron transport in magnetized plasmas is extremely challenging due to the extreme anisotropy between parallel (to the magnetic field) and perpendicular directions (χ/χ˜10^10 in fusion plasmas). Recently, a Lagrangian Green's function approach, developed for the purely parallel transport case,footnotetextD. del-Castillo-Negrete, L. Chac'on, PRL, 106, 195004 (2011)^,footnotetextD. del-Castillo-Negrete, L. Chac'on, Phys. Plasmas, 19, 056112 (2012) has been extended to the anisotropic transport case in the tokamak-ordering limit with constant density.footnotetextL. Chac'on, D. del-Castillo-Negrete, C. Hauck, JCP, submitted (2012) An operator-split algorithm is proposed that allows one to treat Eulerian and Lagrangian components separately. The approach is shown to feature bounded numerical errors for arbitrary χ/χ ratios, which renders it asymptotic-preserving. In this poster, we will present the generalization of the Lagrangian approach to arbitrary magnetic fields. We will demonstrate the potential of the approach with various challenging configurations, including the case of transport across a magnetic island in cylindrical geometry.

  20. Three dimensional adaptive mesh refinement on a spherical shell for atmospheric models with lagrangian coordinates

    NASA Astrophysics Data System (ADS)

    Penner, Joyce E.; Andronova, Natalia; Oehmke, Robert C.; Brown, Jonathan; Stout, Quentin F.; Jablonowski, Christiane; van Leer, Bram; Powell, Kenneth G.; Herzog, Michael

    2007-07-01

    One of the most important advances needed in global climate models is the development of atmospheric General Circulation Models (GCMs) that can reliably treat convection. Such GCMs require high resolution in local convectively active regions, both in the horizontal and vertical directions. During previous research we have developed an Adaptive Mesh Refinement (AMR) dynamical core that can adapt its grid resolution horizontally. Our approach utilizes a finite volume numerical representation of the partial differential equations with floating Lagrangian vertical coordinates and requires resolving dynamical processes on small spatial scales. For the latter it uses a newly developed general-purpose library, which facilitates 3D block-structured AMR on spherical grids. The library manages neighbor information as the blocks adapt, and handles the parallel communication and load balancing, freeing the user to concentrate on the scientific modeling aspects of their code. In particular, this library defines and manages adaptive blocks on the sphere, provides user interfaces for interpolation routines and supports the communication and load-balancing aspects for parallel applications. We have successfully tested the library in a 2-D (longitude-latitude) implementation. During the past year, we have extended the library to treat adaptive mesh refinement in the vertical direction. Preliminary results are discussed. This research project is characterized by an interdisciplinary approach involving atmospheric science, computer science and mathematical/numerical aspects. The work is done in close collaboration between the Atmospheric Science, Computer Science and Aerospace Engineering Departments at the University of Michigan and NOAA GFDL.

  1. Dry intrusions: Lagrangian climatology and impact on the boundary layer

    NASA Astrophysics Data System (ADS)

    Raveh-Rubin, Shira; Wernli, Heini

    2017-04-01

    Dry air intrusions (DIs) are large-scale descending airstreams. A DI is typically referred to as a coherent airstream in the cold sector of an extratropical cyclone. Emerging evidence suggests that DIs are linked to severe surface wind gusts. However, there is yet no strict Lagrangian definition of DIs, and so their climatological frequency, dynamical characteristics as well as their seasonal and spatial distributions are unknown. Furthermore, the dynamical interaction between DIs and the planetary boundary layer is not fully understood. Here, we suggest a Lagrangian definition for DI air parcels, namely a minimum pressure increase along a trajectory of 400 hPa in 48 hours. Based on this criterion, the open questions are addressed by: (i) a novel global Lagrangian climatology for the ECMWF ERA-Interim reanalysis dataset for the years 1979-2014; (ii) a case study illustrating the interaction between DIs and the boundary layer. We find that DIs occur predominantly in winter. DIs coherently descend from the upper troposphere (their stratospheric origin is small), to the mid- and low levels, where they mix with their environment and diverge. Different physical characteristics typify DIs in the different regions and seasons. Finally, we demonstrate the different mechanisms by which DIs can destabilize the boundary layer and facilitate the formation of strong surface winds.

  2. Modeling of confined turbulent fluid-particle flows using Eulerian and Lagrangian schemes

    NASA Technical Reports Server (NTRS)

    Adeniji-Fashola, A.; Chen, C. P.

    1990-01-01

    Two important aspects of fluid-particulate interaction in dilute gas-particle turbulent flows (the turbulent particle dispersion and the turbulence modulation effects) are addressed, using the Eulerian and Lagrangian modeling approaches to describe the particulate phase. Gradient-diffusion approximations are employed in the Eulerian formulation, while a stochastic procedure is utilized to simulate turbulent dispersion in the Lagrangina formulation. The k-epsilon turbulence model is used to characterize the time and length scales of the continuous phase turbulence. Models proposed for both schemes are used to predict turbulent fully-developed gas-solid vertical pipe flow with reasonable accuracy.

  3. Lagrangian analysis. Modern tool of the dynamics of solids

    NASA Astrophysics Data System (ADS)

    Cagnoux, J.; Chartagnac, P.; Hereil, P.; Perez, M.; Seaman, L.

    Explosive metal-working, material synthesis under shock loading, terminal ballistics, and explosive rock-blasting, are some of the civil and military fields of activity that call for a wider knowledge about the behavior of materials subjected to strong dynamic pressures. It is in these fields that Lagrangian analysis methods, the subject of this work, prove to be a useful investigative tool for the physicist. Lagrangian analysis was developed around 1970 by Fowles and Williams. The idea is based on the integration of the conservation equations of mechanics using stress or particle velocity records obtained by means of transducers placed in the path of a stress wave. In this way, all the kinematical and mechanical quantities contained in the conservation equations are obtained. In the first chapter the authors introduce the mathematical tools used to analyze plane and spherical one-dimensional motions. For plane motion, they describe the mathematical analysis methods pertinent to the three regimes of wave propagation encountered : the non-attenuating unsteady wave, the simple wave, and the attenuating unsteady wave. In each of these regimes, cases are treated for which either stress or particle velocity records are initially available. The authors insist that one or the other groups of data (stress and particle velocity) are sufficient to integrate the conservation equations in the case of the plane motion when both groups of data are necessary in the case of the spherical motion. However, in spite of this additional difficulty, Lagrangian analysis of the spherical motion remains particularly interesting for the physicist because it allows access to the behavior of the material under deformation processes other than that imposed by plane one-dimensional motion. The methods expounded in the first chapter are based on Lagrangian measurement of particle velocity and stress in relation to time in a material compressed by a plane or spherical dilatational wave. The

  4. Parent formulation at the Lagrangian level

    NASA Astrophysics Data System (ADS)

    Grigoriev, Maxim

    2011-07-01

    The recently proposed first-order parent formalism at the level of equations of motion is specialized to the case of Lagrangian systems. It is shown that for diffeomorphism-invariant theories the parent formulation takes the form of an AKSZ-type sigma model. The proposed formulation can be also seen as a Lagrangian version of the BV-BRST extension of the Vasiliev unfolded approach. We also discuss its possible interpretation as a multidimensional generalization of the Hamiltonian BFV-BRST formalism. The general construction is illustrated by examples of (parametrized) mechanics, relativistic particle, Yang-Mills theory, and gravity.

  5. Nonunitary Lagrangians and Unitary Non-Lagrangian Conformal Field Theories.

    PubMed

    Buican, Matthew; Laczko, Zoltan

    2018-02-23

    In various dimensions, we can sometimes compute observables of interacting conformal field theories (CFTs) that are connected to free theories via the renormalization group (RG) flow by computing protected quantities in the free theories. On the other hand, in two dimensions, it is often possible to algebraically construct observables of interacting CFTs using free fields without the need to explicitly construct an underlying RG flow. In this Letter, we begin to extend this idea to higher dimensions by showing that one can compute certain observables of an infinite set of unitary strongly interacting four-dimensional N=2 superconformal field theories (SCFTs) by performing simple calculations involving sets of nonunitary free four-dimensional hypermultiplets. These free fields are distant cousins of the Majorana fermion underlying the two-dimensional Ising model and are not obviously connected to our interacting theories via an RG flow. Rather surprisingly, this construction gives us Lagrangians for particular observables in certain subsectors of many "non-Lagrangian" SCFTs by sacrificing unitarity while preserving the full N=2 superconformal algebra. As a by-product, we find relations between characters in unitary and nonunitary affine Kac-Moody algebras. We conclude by commenting on possible generalizations of our construction.

  6. Nonunitary Lagrangians and Unitary Non-Lagrangian Conformal Field Theories

    NASA Astrophysics Data System (ADS)

    Buican, Matthew; Laczko, Zoltan

    2018-02-01

    In various dimensions, we can sometimes compute observables of interacting conformal field theories (CFTs) that are connected to free theories via the renormalization group (RG) flow by computing protected quantities in the free theories. On the other hand, in two dimensions, it is often possible to algebraically construct observables of interacting CFTs using free fields without the need to explicitly construct an underlying RG flow. In this Letter, we begin to extend this idea to higher dimensions by showing that one can compute certain observables of an infinite set of unitary strongly interacting four-dimensional N =2 superconformal field theories (SCFTs) by performing simple calculations involving sets of nonunitary free four-dimensional hypermultiplets. These free fields are distant cousins of the Majorana fermion underlying the two-dimensional Ising model and are not obviously connected to our interacting theories via an RG flow. Rather surprisingly, this construction gives us Lagrangians for particular observables in certain subsectors of many "non-Lagrangian" SCFTs by sacrificing unitarity while preserving the full N =2 superconformal algebra. As a by-product, we find relations between characters in unitary and nonunitary affine Kac-Moody algebras. We conclude by commenting on possible generalizations of our construction.

  7. Lagrangians for generalized Argyres-Douglas theories

    NASA Astrophysics Data System (ADS)

    Benvenuti, Sergio; Giacomelli, Simone

    2017-10-01

    We continue the study of Lagrangian descriptions of N=2 Argyres-Douglas theories. We use our recent interpretation in terms of sequential confinement to guess the Lagrangians of all the Argyres-Douglas models with Abelian three dimensional mirror. We find classes of four dimensional N=1 quivers that flow in the infrared to generalized Argyres-Douglas theories, such as the ( A k , A kN + N -1) models. We study in detail how the N=1 chiral rings map to the Coulomb and Higgs Branches of the N=2 CFT's. The three dimensional mirror RG flows are shown to land on the N=4 complete graph quivers. We also compactify to three dimensions the gauge theory dual to ( A 1, D 4), and find the expected Abelianization duality with N=4 SQED with 3 flavors.

  8. Form of the manifestly covariant Lagrangian

    NASA Astrophysics Data System (ADS)

    Johns, Oliver Davis

    1985-10-01

    The preferred form for the manifestly covariant Lagrangian function of a single, charged particle in a given electromagnetic field is the subject of some disagreement in the textbooks. Some authors use a ``homogeneous'' Lagrangian and others use a ``modified'' form in which the covariant Hamiltonian function is made to be nonzero. We argue in favor of the ``homogeneous'' form. We show that the covariant Lagrangian theories can be understood only if one is careful to distinguish quantities evaluated on the varied (in the sense of the calculus of variations) world lines from quantities evaluated on the unvaried world lines. By making this distinction, we are able to derive the Hamilton-Jacobi and Klein-Gordon equations from the ``homogeneous'' Lagrangian, even though the covariant Hamiltonian function is identically zero on all world lines. The derivation of the Klein-Gordon equation in particular gives Lagrangian theoretical support to the derivations found in standard quantum texts, and is also shown to be consistent with the Feynman path-integral method. We conclude that the ``homogeneous'' Lagrangian is a completely adequate basis for covariant Lagrangian theory both in classical and quantum mechanics. The article also explores the analogy with the Fermat theorem of optics, and illustrates a simple invariant notation for the Lagrangian and other four-vector equations.

  9. Getting Things Sorted With Lagrangian Coherent Structures

    NASA Astrophysics Data System (ADS)

    Atis, Severine; Peacock, Thomas; Environmental Dynamics Laboratory Team

    2014-11-01

    The dispersion of a tracer in a fluid flow is influenced by the Lagrangian motion of fluid elements. Even in laminar regimes, the irregular chaotic behavior of a fluid flow can lead to effective stirring that rapidly redistributes a tracer throughout the domain. For flows with arbitrary time-dependence, the modern approach of Lagrangian Coherent Structures (LCSs) provide a method for identifying the key material lines that organize flow transport. When the advected tracer particles possess a finite size and nontrivial shape, however, their dynamics can differ markedly from passive tracers, thus affecting the dispersion phenomena. We present details of numerical simulations and laboratory experiments that investigate the behavior of finite size particles in 2-dimensional chaotic flows. We show that the shape and the size of the particles alter the underlying LCSs, facilitating segregation between tracers of different shape in the same flow field.

  10. Lagrangian methods in nonlinear plasma wave interaction

    NASA Technical Reports Server (NTRS)

    Crawford, F. W.

    1980-01-01

    Analysis of nonlinear plasma wave interactions is usually very complicated, and simplifying mathematical approaches are highly desirable. The application of averaged-Lagrangian methods offers a considerable reduction in effort, with improved insight into synchronism and conservation (Manley-Rowe) relations. This chapter indicates how suitable Lagrangian densities have been defined, expanded, and manipulated to describe nonlinear wave-wave and wave-particle interactions in the microscopic, macroscopic and cold plasma models. Recently, further simplifications have been introduced by the use of techniques derived from Lie algebra. These and likely future developments are reviewed briefly.

  11. Functional integral for non-Lagrangian systems

    NASA Astrophysics Data System (ADS)

    Kochan, Denis

    2010-02-01

    A functional integral formulation of quantum mechanics for non-Lagrangian systems is presented. The approach, which we call “stringy quantization,” is based solely on classical equations of motion and is free of any ambiguity arising from Lagrangian and/or Hamiltonian formulation of the theory. The functionality of the proposed method is demonstrated on several examples. Special attention is paid to the stringy quantization of systems with a general A-power friction force -κq˙A. Results for A=1 are compared with those obtained in the approaches by Caldirola-Kanai, Bateman, and Kostin. Relations to the Caldeira-Leggett model and to the Feynman-Vernon approach are discussed as well.

  12. Gravitational Lagrangians, Mach's Principle, and the Equivalence Principle in an Expanding Universe

    NASA Astrophysics Data System (ADS)

    Essén, Hanno

    2014-08-01

    Gravitational Lagrangians as derived by Fock for the Einstein-Infeld-Hoffmann approach, and by Kennedy assuming only a fourth rank tensor interaction, contain long range interactions. Here we investigate how these affect the local dynamics when integrated over an expanding universe out to the Hubble radius. Taking the cosmic expansion velocity into account in a heuristic manner it is found that these long range interactions imply Mach's principle, provided the universe has the critical density, and that mass is renormalized. Suitable higher order additions to the Lagrangians make the formalism consistent with the equivalence principle.

  13. Variational data assimilation with a semi-Lagrangian semi-implicit global shallow-water equation model and its adjoint

    NASA Technical Reports Server (NTRS)

    Li, Y.; Navon, I. M.; Courtier, P.; Gauthier, P.

    1993-01-01

    An adjoint model is developed for variational data assimilation using the 2D semi-Lagrangian semi-implicit (SLSI) shallow-water equation global model of Bates et al. with special attention being paid to the linearization of the interpolation routines. It is demonstrated that with larger time steps the limit of the validity of the tangent linear model will be curtailed due to the interpolations, especially in regions where sharp gradients in the interpolated variables coupled with strong advective wind occur, a synoptic situation common in the high latitudes. This effect is particularly evident near the pole in the Northern Hemisphere during the winter season. Variational data assimilation experiments of 'identical twin' type with observations available only at the end of the assimilation period perform well with this adjoint model. It is confirmed that the computational efficiency of the semi-Lagrangian scheme is preserved during the minimization process, related to the variational data assimilation procedure.

  14. The Repeated Replacement Method: A Pure Lagrangian Meshfree Method for Computational Fluid Dynamics

    PubMed Central

    Walker, Wade A.

    2012-01-01

    In this paper we describe the repeated replacement method (RRM), a new meshfree method for computational fluid dynamics (CFD). RRM simulates fluid flow by modeling compressible fluids’ tendency to evolve towards a state of constant density, velocity, and pressure. To evolve a fluid flow simulation forward in time, RRM repeatedly “chops out” fluid from active areas and replaces it with new “flattened” fluid cells with the same mass, momentum, and energy. We call the new cells “flattened” because we give them constant density, velocity, and pressure, even though the chopped-out fluid may have had gradients in these primitive variables. RRM adaptively chooses the sizes and locations of the areas it chops out and replaces. It creates more and smaller new cells in areas of high gradient, and fewer and larger new cells in areas of lower gradient. This naturally leads to an adaptive level of accuracy, where more computational effort is spent on active areas of the fluid, and less effort is spent on inactive areas. We show that for common test problems, RRM produces results similar to other high-resolution CFD methods, while using a very different mathematical framework. RRM does not use Riemann solvers, flux or slope limiters, a mesh, or a stencil, and it operates in a purely Lagrangian mode. RRM also does not evaluate numerical derivatives, does not integrate equations of motion, and does not solve systems of equations. PMID:22866175

  15. A Lagrangian discontinuous Galerkin hydrodynamic method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xiaodong; Morgan, Nathaniel Ray; Burton, Donald E.

    Here, we present a new Lagrangian discontinuous Galerkin (DG) hydrodynamic method for solving the two-dimensional gas dynamic equations on unstructured hybrid meshes. The physical conservation laws for the momentum and total energy are discretized using a DG method based on linear Taylor expansions. Three different approaches are investigated for calculating the density variation over the element. The first approach evolves a Taylor expansion of the specific volume field. The second approach follows certain finite element methods and uses the strong mass conservation to calculate the density field at a location inside the element or on the element surface. The thirdmore » approach evolves a Taylor expansion of the density field. The nodal velocity, and the corresponding forces, are explicitly calculated by solving a multidirectional approximate Riemann problem. An effective limiting strategy is presented that ensures monotonicity of the primitive variables. This new Lagrangian DG hydrodynamic method conserves mass, momentum, and total energy. Results from a suite of test problems are presented to demonstrate the robustness and expected second-order accuracy of this new method.« less

  16. A Lagrangian discontinuous Galerkin hydrodynamic method

    DOE PAGES

    Liu, Xiaodong; Morgan, Nathaniel Ray; Burton, Donald E.

    2017-12-11

    Here, we present a new Lagrangian discontinuous Galerkin (DG) hydrodynamic method for solving the two-dimensional gas dynamic equations on unstructured hybrid meshes. The physical conservation laws for the momentum and total energy are discretized using a DG method based on linear Taylor expansions. Three different approaches are investigated for calculating the density variation over the element. The first approach evolves a Taylor expansion of the specific volume field. The second approach follows certain finite element methods and uses the strong mass conservation to calculate the density field at a location inside the element or on the element surface. The thirdmore » approach evolves a Taylor expansion of the density field. The nodal velocity, and the corresponding forces, are explicitly calculated by solving a multidirectional approximate Riemann problem. An effective limiting strategy is presented that ensures monotonicity of the primitive variables. This new Lagrangian DG hydrodynamic method conserves mass, momentum, and total energy. Results from a suite of test problems are presented to demonstrate the robustness and expected second-order accuracy of this new method.« less

  17. On whole Abelian model dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chauca, J.; Doria, R.; Aprendanet, Petropolis, 25600

    2012-09-24

    Physics challenge is to determine the objects dynamics. However, there are two ways for deciphering the part. The first one is to search for the ultimate constituents; the second one is to understand its behaviour in whole terms. Therefore, the parts can be defined either from elementary constituents or as whole functions. Historically, science has been moving through the first aspect, however, quarks confinement and complexity are interrupting this usual approach. These relevant facts are supporting for a systemic vision be introduced. Our effort here is to study on the whole meaning through gauge theory. Consider a systemic dynamics orientedmore » through the U(1) - systemic gauge parameter which function is to collect a fields set {l_brace}A{sub {mu}I}{r_brace}. Derive the corresponding whole gauge invariant Lagrangian, equations of motion, Bianchi identities, Noether relationships, charges and Ward-Takahashi equations. Whole Lorentz force and BRST symmetry are also studied. These expressions bring new interpretations further than the usual abelian model. They are generating a systemic system governed by 2N+ 10 classical equations plus Ward-Takahashi identities. A whole dynamics based on the notions of directive and circumstance is producing a set determinism where the parts dynamics are inserted in the whole evolution. A dynamics based on state, collective and individual equations with a systemic interdependence.« less

  18. An overview of a Lagrangian method for analysis of animal wake dynamics.

    PubMed

    Peng, Jifeng; Dabiri, John O

    2008-01-01

    The fluid dynamic analysis of animal wakes is becoming increasingly popular in studies of animal swimming and flying, due in part to the development of quantitative flow visualization techniques such as digital particle imaging velocimetry (DPIV). In most studies, quasi-steady flow is assumed and the flow analysis is based on velocity and/or vorticity fields measured at a single time instant during the stroke cycle. The assumption of quasi-steady flow leads to neglect of unsteady (time-dependent) wake vortex added-mass effects, which can contribute significantly to the instantaneous locomotive forces. In this paper we review a Lagrangian approach recently introduced to determine unsteady wake vortex structure by tracking the trajectories of individual fluid particles in the flow, rather than by analyzing the velocity/vorticity fields at fixed locations and single instants in time as in the Eulerian perspective. Once the momentum of the wake vortex and its added mass are determined, the corresponding unsteady locomotive forces can be quantified. Unlike previous studies that estimated the time-averaged forces over the stroke cycle, this approach enables study of how instantaneous locomotive forces evolve over time. The utility of this method for analyses of DPIV velocity measurements is explored, with the goal of demonstrating its applicability to data that are typically available to investigators studying animal swimming and flying. The methods are equally applicable to computational fluid dynamics studies where velocity field calculations are available.

  19. "Lagrangian" for a Non-Lagrangian Field Theory with N=2 Supersymmetry.

    PubMed

    Gadde, Abhijit; Razamat, Shlomo S; Willett, Brian

    2015-10-23

    We suggest that at least some of the strongly coupled N=2 quantum field theories in 4D can have a nonconformal N=1 Lagrangian description flowing to them at low energies. In particular, we construct such a description for the N=2 rank one superconformal field theory with E(6) flavor symmetry, for which a Lagrangian description was previously unavailable. We utilize this description to compute several supersymmetric partition functions.

  20. Numerical considerations for Lagrangian stochastic dispersion models: Eliminating rogue trajectories, and the importance of numerical accuracy

    USDA-ARS?s Scientific Manuscript database

    When Lagrangian stochastic models for turbulent dispersion are applied to complex flows, some type of ad hoc intervention is almost always necessary to eliminate unphysical behavior in the numerical solution. This paper discusses numerical considerations when solving the Langevin-based particle velo...

  1. Eulerian-Lagrangian Simulations of Transonic Flutter Instabilities

    NASA Technical Reports Server (NTRS)

    Bendiksen, Oddvar O.

    1994-01-01

    This paper presents an overview of recent applications of Eulerian-Lagrangian computational schemes in simulating transonic flutter instabilities. This approach, the fluid-structure system is treated as a single continuum dynamics problem, by switching from an Eulerian to a Lagrangian formulation at the fluid-structure boundary. This computational approach effectively eliminates the phase integration errors associated with previous methods, where the fluid and structure are integrated sequentially using different schemes. The formulation is based on Hamilton's Principle in mixed coordinates, and both finite volume and finite element discretization schemes are considered. Results from numerical simulations of transonic flutter instabilities are presented for isolated wings, thin panels, and turbomachinery blades. The results suggest that the method is capable of reproducing the energy exchange between the fluid and the structure with significantly less error than existing methods. Localized flutter modes and panel flutter modes involving traveling waves can also be simulated effectively with no a priori knowledge of the type of instability involved.

  2. Asymptotic-preserving Lagrangian approach for modeling anisotropic transport in magnetized plasmas

    NASA Astrophysics Data System (ADS)

    Chacon, Luis; Del-Castillo-Negrete, Diego

    2011-10-01

    Modeling electron transport in magnetized plasmas is extremely challenging due to the extreme anisotropy introduced by the presence of the magnetic field (χ∥ /χ⊥ ~1010 in fusion plasmas). Recently, a novel Lagrangian method has been proposed to solve the local and non-local purely parallel transport equation in general 3D magnetic fields. The approach avoids numerical pollution (in fact, it respects transport barriers -flux surfaces- exactly by construction), is inherently positivity-preserving, and is scalable algorithmically (i.e., work per degree-of-freedom is grid-independent). In this poster, we discuss the extension of the Lagrangian approach to include perpendicular transport and sources. We present an asymptotic-preserving numerical formulation that ensures a consistent numerical discretization temporally and spatially for arbitrary χ∥ /χ⊥ ratios. This is of importance because parallel and perpendicular transport terms in the transport equation may become comparable in regions of the plasma (e.g., at incipient islands), while remaining disparate elsewhere. We will demonstrate the potential of the approach with various challenging configurations, including the case of transport across a magnetic island in cylindrical geometry. D. del-Castillo-Negrete, L. Chacón, PRL, 106, 195004 (2011); DPP11 invited talk by del-Castillo-Negrete.

  3. Parameterizing Urban Canopy Layer transport in an Lagrangian Particle Dispersion Model

    NASA Astrophysics Data System (ADS)

    Stöckl, Stefan; Rotach, Mathias W.

    2016-04-01

    The percentage of people living in urban areas is rising worldwide, crossed 50% in 2007 and is even higher in developed countries. High population density and numerous sources of air pollution in close proximity can lead to health issues. Therefore it is important to understand the nature of urban pollutant dispersion. In the last decades this field has experienced considerable progress, however the influence of large roughness elements is complex and has as of yet not been completely described. Hence, this work studied urban particle dispersion close to source and ground. It used an existing, steady state, three-dimensional Lagrangian particle dispersion model, which includes Roughness Sublayer parameterizations of turbulence and flow. The model is valid for convective and neutral to stable conditions and uses the kernel method for concentration calculation. As most Lagrangian models, its lower boundary is the zero-plane displacement, which means that roughly the lower two-thirds of the mean building height are not included in the model. This missing layer roughly coincides with the Urban Canopy Layer. An earlier work "traps" particles hitting the lower model boundary for a recirculation period, which is calculated under the assumption of a vortex in skimming flow, before "releasing" them again. The authors hypothesize that improving the lower boundary condition by including Urban Canopy Layer transport could improve model predictions. This was tested herein by not only trapping the particles, but also advecting them with a mean, parameterized flow in the Urban Canopy Layer. Now the model calculates the trapping period based on either recirculation due to vortex motion in skimming flow regimes or vertical velocity if no vortex forms, depending on incidence angle of the wind on a randomly chosen street canyon. The influence of this modification, as well as the model's sensitivity to parameterization constants, was investigated. To reach this goal, the model was

  4. Guidelines for the formulation of Lagrangian stochastic models for particle simulations of single-phase and dispersed two-phase turbulent flows

    NASA Astrophysics Data System (ADS)

    Minier, Jean-Pierre; Chibbaro, Sergio; Pope, Stephen B.

    2014-11-01

    In this paper, we establish a set of criteria which are applied to discuss various formulations under which Lagrangian stochastic models can be found. These models are used for the simulation of fluid particles in single-phase turbulence as well as for the fluid seen by discrete particles in dispersed turbulent two-phase flows. The purpose of the present work is to provide guidelines, useful for experts and non-experts alike, which are shown to be helpful to clarify issues related to the form of Lagrangian stochastic models. A central issue is to put forward reliable requirements which must be met by Lagrangian stochastic models and a new element brought by the present analysis is to address the single- and two-phase flow situations from a unified point of view. For that purpose, we consider first the single-phase flow case and check whether models are fully consistent with the structure of the Reynolds-stress models. In the two-phase flow situation, coming up with clear-cut criteria is more difficult and the present choice is to require that the single-phase situation be well-retrieved in the fluid-limit case, elementary predictive abilities be respected and that some simple statistical features of homogeneous fluid turbulence be correctly reproduced. This analysis does not address the question of the relative predictive capacities of different models but concentrates on their formulation since advantages and disadvantages of different formulations are not always clear. Indeed, hidden in the changes from one structure to another are some possible pitfalls which can lead to flaws in the construction of practical models and to physically unsound numerical calculations. A first interest of the present approach is illustrated by considering some models proposed in the literature and by showing that these criteria help to assess whether these Lagrangian stochastic models can be regarded as acceptable descriptions. A second interest is to indicate how future

  5. Applying Boundary Conditions Using a Time-Dependent Lagrangian for Modeling Laser-Plasma Interactions

    NASA Astrophysics Data System (ADS)

    Reyes, Jonathan; Shadwick, B. A.

    2016-10-01

    Modeling the evolution of a short, intense laser pulse propagating through an underdense plasma is of particular interest in the physics of laser-plasma interactions. Numerical models are typically created by first discretizing the equations of motion and then imposing boundary conditions. Using the variational principle of Chen and Sudan, we spatially discretize the Lagrangian density to obtain discrete equations of motion and a discrete energy conservation law which is exactly satisfied regardless of the spatial grid resolution. Modifying the derived equations of motion (e.g., enforcing boundary conditions) generally ruins energy conservation. However, time-dependent terms can be added to the Lagrangian which force the equations of motion to have the desired boundary conditions. Although some foresight is needed to choose these time-dependent terms, this approach provides a mechanism for energy to exit the closed system while allowing the conservation law to account for the loss. An appropriate time discretization scheme is selected based on stability analysis and resolution requirements. We present results using this variational approach in a co-moving coordinate system and compare such results to those using traditional second-order methods. This work was supported by the U. S. Department of Energy under Contract No. DE-SC0008382 and by the National Science Foundation under Contract No. PHY- 1104683.

  6. Lagrangian averaging with geodesic mean

    NASA Astrophysics Data System (ADS)

    Oliver, Marcel

    2017-11-01

    This paper revisits the derivation of the Lagrangian averaged Euler (LAE), or Euler-α equations in the light of an intrinsic definition of the averaged flow map as the geodesic mean on the volume-preserving diffeomorphism group. Under the additional assumption that first-order fluctuations are statistically isotropic and transported by the mean flow as a vector field, averaging of the kinetic energy Lagrangian of an ideal fluid yields the LAE Lagrangian. The derivation presented here assumes a Euclidean spatial domain without boundaries.

  7. Lagrangian averaging with geodesic mean.

    PubMed

    Oliver, Marcel

    2017-11-01

    This paper revisits the derivation of the Lagrangian averaged Euler (LAE), or Euler- α equations in the light of an intrinsic definition of the averaged flow map as the geodesic mean on the volume-preserving diffeomorphism group. Under the additional assumption that first-order fluctuations are statistically isotropic and transported by the mean flow as a vector field, averaging of the kinetic energy Lagrangian of an ideal fluid yields the LAE Lagrangian. The derivation presented here assumes a Euclidean spatial domain without boundaries.

  8. Modeling Firn Compaction in Dynamic Regions

    NASA Astrophysics Data System (ADS)

    Horlings, Annika N.; Christianson, Knut; Waddington, Edwin D.; Stevens, C. Max; Holschuh, Nicholas

    2017-04-01

    Firn compaction remains the largest source of uncertainty in assessments of ice-sheet mass balance from repeat altimetry measurements due to our limited understanding of the physical processes responsible for the transformation of snow into ice. In addition to the lack of a comprehensive, physically-based constitutive relationship that describes firn compaction, dynamic thinning is an important process in some regions, but is generally neglected in firn-compaction models due to their one-dimensional nature. Here, we report on preliminary results incorporating dynamic strain thinning into firn compaction models. Using a Lagrangian (material-following) reference frame, we first compact each firn element using a standard 1-D firn-compaction model without longitudinal strain. Then, we stretch each firn parcel at each time step by applying a prescribed longitudinal strain rate in the absence of further density changes; this produces additional vertical thinning. To assess variations among firn models, we compare results from eight firn densification models currently included in the UW Community Firn Model. We focus on the Northeast Greenland Ice Stream due to the high extensile strain rates (10-3 yr-1 or higher) in the ice stream's shear margins and the extensive firn-density data in this area from seismic measurements and shallow firn/ice cores. For temperatures and accumulation rates typical for northeast Greenland, our preliminary results indicate up to an 18-meter decrease in bubble close-off depth in the shear margins compared to nearby areas either inside or outside the ice stream, which compares favorably to field data. Further work includes incorporating physically-based constitutive relations and applying these improved models to other dynamic regions, such as the Amundsen Sea Embayment, where dynamic strain thinning has accelerated in recent decades.

  9. Determination of NH3 emissions from confined areas using backward Lagrangian stochastic dispersion modelling

    NASA Astrophysics Data System (ADS)

    Häni, Christoph; Neftel, Albrecht; Sintermann, Jörg

    2016-04-01

    Employing backward Lagrangian stochastic (bLS) dispersion modelling to infer emission strengths from confined areas using trace gas concentration measurements is a convenient way of emission estimation from field measurements (see Wilson et al., 2012 and references therein). The freely available software 'WindTrax' (www.thunderbeachscientific.com), providing a graphical interface for the application of a bLS model, has spurred its utilisation in the past decade. Investigations include mainly methane (CH4) and ammonia (NH3) emissions based on experimental plots with dimensions between approximately 102 to 104 m2. Whereas for CH4 deposition processes can be neglected, NH3 has a strong affinity to any surface and is therefore efficiently deposited. Neglecting dry deposition will underestimate NH3 emissions, e.g. with a standard WindTrax approach. We extended the bLS model described in Flesch et al. (2004) by a dry deposition process using a simple, one-directional deposition velocity approach. At every contact of the model trajectories with ground level (here at the height of the roughness length Zo), deposition is modelled as: Fdep = vdep × CT raj (1) where vdep represents deposition velocity, and CTraj is the actual concentration of the specific trajectory at contact. A convenient way to model vdep is given by a resistances approach. The deposition velocity is modelled as the inverse of the sum of a series of different resistances to deposition. The aerodynamic resistance is already implicitly included in the bLS model, thus vdep is given as: v = ---1--- dep Rb + Rc (2) Rb and Rc represent resistances of different model layers between Zo and the surfaces where deposition take place. With this approach we analysed a dataset from measurements with an artificial NH3 source that consisted of 36 individual orifices mimicking a circular area source with a radius of 10 m. The use of three open-path miniDOAS (Sintermann et al., submitted to AMT) systems allowed to measure

  10. Intermittent Lagrangian velocities and accelerations in three-dimensional porous medium flow.

    PubMed

    Holzner, M; Morales, V L; Willmann, M; Dentz, M

    2015-07-01

    Intermittency of Lagrangian velocity and acceleration is a key to understanding transport in complex systems ranging from fluid turbulence to flow in porous media. High-resolution optical particle tracking in a three-dimensional (3D) porous medium provides detailed 3D information on Lagrangian velocities and accelerations. We find sharp transitions close to pore throats, and low flow variability in the pore bodies, which gives rise to stretched exponential Lagrangian velocity and acceleration distributions characterized by a sharp peak at low velocity, superlinear evolution of particle dispersion, and double-peak behavior in the propagators. The velocity distribution is quantified in terms of pore geometry and flow connectivity, which forms the basis for a continuous-time random-walk model that sheds light on the observed Lagrangian flow and transport behaviors.

  11. Movement and collision of Lagrangian particles in hydro-turbine intakes: a case study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romero-Gomez, Pedro; Richmond, Marshall C.

    Studies of the stress/survival of migratory fish during downstream passage through operating hydro-turbines are normally conducted to determine the fish-friendliness of units. One field approach consisting of recording extreme hydraulics with autonomous sensors is largely sensitive to the conditions of sensor release and the initial trajectories at the turbine intake. This study applies a modelling strategy based on flow simulations using computational fluid dynamics and Lagrangian particle tracking to represent the travel of live fish and autonomous sensor devices through hydro-turbine intakes. For the flow field calculation, the simulations were conducted with both a time-averaging turbulence model and an eddy-resolvingmore » technique. For the particle tracking calculation, different modelling assumptions for turbulence forcing, mass formulation, buoyancy, and release condition were tested. The modelling assumptions are evaluated with respect to data sets collected using a laboratory physical model and an autonomous sensor device deployed at Ice Harbor Dam (Snake River, State of Washington, U.S.A.) at the same discharge and release point as in the present computer simulations. We found an acceptable agreement between the simulated results and observed data and discuss relevant features of Lagrangian particle movement that are critical in turbine design and in the experimental design of field studies.« less

  12. Multiphase Fluid Dynamics for Spacecraft Applications

    NASA Astrophysics Data System (ADS)

    Shyy, W.; Sim, J.

    2011-09-01

    Multiphase flows involving moving interfaces between different fluids/phases are observed in nature as well as in a wide range of engineering applications. With the recent development of high fidelity computational techniques, a number of challenging multiphase flow problems can now be computed. We introduce the basic notion of the main categories of multiphase flow computation; Lagrangian, Eulerian, and Eulerian-Lagrangian techniques to represent and follow interface, and sharp and continuous interface methods to model interfacial dynamics. The marker-based adaptive Eulerian-Lagrangian method, which is one of the most popular methods, is highlighted with microgravity and space applications including droplet collision and spacecraft liquid fuel tank surface stability.

  13. A Backward-Lagrangian-Stochastic Footprint Model for the Urban Environment

    NASA Astrophysics Data System (ADS)

    Wang, Chenghao; Wang, Zhi-Hua; Yang, Jiachuan; Li, Qi

    2018-02-01

    Built terrains, with their complexity in morphology, high heterogeneity, and anthropogenic impact, impose substantial challenges in Earth-system modelling. In particular, estimation of the source areas and footprints of atmospheric measurements in cities requires realistic representation of the landscape characteristics and flow physics in urban areas, but has hitherto been heavily reliant on large-eddy simulations. In this study, we developed physical parametrization schemes for estimating urban footprints based on the backward-Lagrangian-stochastic algorithm, with the built environment represented by street canyons. The vertical profile of mean streamwise velocity is parametrized for the urban canopy and boundary layer. Flux footprints estimated by the proposed model show reasonable agreement with analytical predictions over flat surfaces without roughness elements, and with experimental observations over sparse plant canopies. Furthermore, comparisons of canyon flow and turbulence profiles and the subsequent footprints were made between the proposed model and large-eddy simulation data. The results suggest that the parametrized canyon wind and turbulence statistics, based on the simple similarity theory used, need to be further improved to yield more realistic urban footprint modelling.

  14. Dynamic Modeling and Simulation of an Underactuated System

    NASA Astrophysics Data System (ADS)

    Libardo Duarte Madrid, Juan; Ospina Henao, P. A.; González Querubín, E.

    2017-06-01

    In this paper, is used the Lagrangian classical mechanics for modeling the dynamics of an underactuated system, specifically a rotary inverted pendulum that will have two equations of motion. A basic design of the system is proposed in SOLIDWORKS 3D CAD software, which based on the material and dimensions of the model provides some physical variables necessary for modeling. In order to verify the results obtained, a comparison the CAD model simulated in the environment SimMechanics of MATLAB software with the mathematical model who was consisting of Euler-Lagrange’s equations implemented in Simulink MATLAB, solved with the ODE23tb method, included in the MATLAB libraries for the solution of systems of equations of the type and order obtained. This article also has a topological analysis of pendulum trajectories through a phase space diagram, which allows the identification of stable and unstable regions of the system.

  15. Flow stagnation volume and abdominal aortic aneurysm growth: Insights from patient-specific computational flow dynamics of Lagrangian-coherent structures.

    PubMed

    Joly, Florian; Soulez, Gilles; Garcia, Damien; Lessard, Simon; Kauffmann, Claude

    2018-01-01

    Abdominal aortic aneurysms (AAA) are localized, commonly-occurring dilations of the aorta. When equilibrium between blood pressure (loading) and wall mechanical resistance is lost, rupture ensues, and patient death follows, if not treated immediately. Experimental and numerical analyses of flow patterns in arteries show direct correlations between wall shear stress and wall mechano-adaptation with the development of zones prone to thrombus formation. For further insights into AAA flow topology/growth interaction, a workout of patient-specific computational flow dynamics (CFD) is proposed to compute finite-time Lyapunov exponents and extract Lagrangian-coherent structures (LCS). This computational model was first compared with 4-D phase-contrast magnetic resonance imaging (MRI) in 5 patients. To better understand the impact of flow topology and transport on AAA growth, hyperbolic, repelling LCS were computed in 1 patient during 8-year follow-up, including 9 volumetric morphologic AAA measures by computed tomography-angiography (CTA). LCS defined barriers to Lagrangian jet cores entering AAA. Domains enclosed between LCS and the aortic wall were considered to be stagnation zones. Their evolution was studied during AAA growth. Good correlation - 2-D cross-correlation coefficients of 0.65, 0.86 and 0.082 (min, max, SD) - was obtained between numerical simulations and 4-D MRI acquisitions in 6 specific cross-sections from 4 patients. In follow-up study, LCS divided AAA lumens into 3 dynamically-isolated zones: 2 stagnation volumes lying in dilated portions of the AAA, and circulating volume connecting the inlet to the outlet. The volume of each zone was tracked over time. Although circulating volume remained unchanged during 8-year follow-up, the AAA lumen and main stagnation zones grew significantly (8 cm 3 /year and 6 cm 3 /year, respectively). This study reveals that transient transport topology can be quantified in patient-specific AAA during disease progression

  16. Unambiguous formalism for higher order Lagrangian field theories

    NASA Astrophysics Data System (ADS)

    Campos, Cédric M.; de León, Manuel; Martín de Diego, David; Vankerschaver, Joris

    2009-11-01

    The aim of this paper is to propose an unambiguous intrinsic formalism for higher order field theories which avoids the arbitrariness in the generalization of the conventional description of field theories, and implies the existence of different Cartan forms and Legendre transformations. We propose a differential-geometric setting for the dynamics of a higher order field theory, based on the Skinner and Rusk formalism for mechanics. This approach incorporates aspects of both the Lagrangian and the Hamiltonian description, since the field equations are formulated using the Lagrangian on a higher order jet bundle and the canonical multisymplectic form on its affine dual. As both of these objects are uniquely defined, the Skinner-Rusk approach has the advantage that it does not suffer from the arbitrariness in conventional descriptions. The result is that we obtain a unique and global intrinsic version of the Euler-Lagrange equations for higher order field theories. Several examples illustrate our construction.

  17. A Lagrangian model for the age of tracer in surface water

    NASA Astrophysics Data System (ADS)

    Ding, Yu; Liu, Haifei; Yi, Yujun

    The age of tracer is a spatio-temporal scale, indicating the transition time of solute particles, which is helpful to monitor and manage the pollutant leakage accidents. In this study, an effective Lagrangian model for the age of tracer is developed based on the lattice Boltzmann method in D2Q5 lattices. A tracer age problem in an asymmetrical circular reservoir is then employed as a benchmark test to verify this method. Then it is applied to computing the age of tracers under two different reservoir operation schemes in the Danjiangkou Reservoir, the drinking water source for the Middle Route of South-to-North Water Transfer Project.

  18. The Monotonic Lagrangian Grid for Rapid Air-Traffic Evaluation

    NASA Technical Reports Server (NTRS)

    Kaplan, Carolyn; Dahm, Johann; Oran, Elaine; Alexandrov, Natalia; Boris, Jay

    2010-01-01

    The Air Traffic Monotonic Lagrangian Grid (ATMLG) is presented as a tool to evaluate new air traffic system concepts. The model, based on an algorithm called the Monotonic Lagrangian Grid (MLG), can quickly sort, track, and update positions of many aircraft, both on the ground (at airports) and in the air. The underlying data structure is based on the MLG, which is used for sorting and ordering positions and other data needed to describe N moving bodies and their interactions. Aircraft that are close to each other in physical space are always near neighbors in the MLG data arrays, resulting in a fast nearest-neighbor interaction algorithm that scales as N. Recent upgrades to ATMLG include adding blank place-holders within the MLG data structure, which makes it possible to dynamically change the MLG size and also improves the quality of the MLG grid. Additional upgrades include adding FAA flight plan data, such as way-points and arrival and departure times from the Enhanced Traffic Management System (ETMS), and combining the MLG with the state-of-the-art strategic and tactical conflict detection and resolution algorithms from the NASA-developed Stratway software. In this paper, we present results from our early efforts to couple ATMLG with the Stratway software, and we demonstrate that it can be used to quickly simulate air traffic flow for a very large ETMS dataset.

  19. Mean-Lagrangian formalism and covariance of fluid turbulence.

    PubMed

    Ariki, Taketo

    2017-05-01

    Mean-field-based Lagrangian framework is developed for the fluid turbulence theory, which enables physically objective discussions, especially, of the history effect. Mean flow serves as a purely geometrical object of Lie group theory, providing useful operations to measure the objective rate and history integration of the general tensor field. The proposed framework is applied, on the one hand, to one-point closure model, yielding an objective expression of the turbulence viscoelastic effect. Application to two-point closure, on the other hand, is also discussed, where natural extension of known Lagrangian correlation is discovered on the basis of an extended covariance group.

  20. Predicting seed dispersal using a Lagrangian Stochastic Model

    NASA Astrophysics Data System (ADS)

    Hsieh, C. I.; Chen, C. W.; Su, M. D.

    2017-12-01

    Migration and expansion of a plant species are determined by longdistance dispersion (LDD). A more sophisticated mechanical dispersion model is needed for mimicking LDD of wind-driven seeds. This study simulated seed dispersion trajectories in canopy turbulence by using the Lagrangian stochastic dispersion model under varying atmospheric stabilities in conjunction with the effects of turbulent kinetic energy dissipation rate intermittency. The effects of friction velocity, seed release height, and seed terminal velocity were also studied. The results showed that both the unstable atmosphere and the inclusion of the dissipation rate intermittency in the model could increase seeds' LDD. The number of seeds that escape the canopy volume by dissipation intermittency is increased under unstable atmospheric conditions. As a result, more seeds can be transported a further distance. When dissipation intermittency is included under astrong unstable atmosphere, the peak location of dispersal kernel tends to be closer to the source. Contrasting this, under both neutral and stable conditions when LDD of both are similar, the peak location will be further away from the source. However higher friction velocity, higher seed release height, and lower seed terminal velocity will all increase the LDD of seeds irregardless of atmospheric conditions. The change of LDD due to change in friction velocity, seed release height, or the seed terminal velocity, would be heightened under unstable conditions

  1. Nonlinear dynamics of steep surface waves as derived from a Lagrangian

    NASA Astrophysics Data System (ADS)

    Longuet-Higgins, Michael

    1999-11-01

    A simple and natural method for calculating the deformation of surface gravity waves on deep water was recently formulated by A.M. Balk (1996). The equations of motion are derived from a Lagrangian (T-V) where T and V are the kinetic and potential energies, expressed in terms of the Fourier coefficients a_n(t) of the motion in an auxiliary half-space. The method has certain advantages over the more usual Hamiltonian equations: (1) The expressions for T and V are of finite order N <= 4 in the Fourier coefficients a_n(t) and their rates of change dota(t); (2) the constants in these expressions are low integers, mainly ± 1 or 0; (3) breaking or overturning waves are described by single-valued functions of a parameter. The analysis leads to dynamical equations for än of the form sumj P_ij äj = Qi (a, ; dota) (P_ij and Qi being polynomials of low degree in the coefficients a_n) which can in general be solved to allow time-stepping to proceed. Conveniently, the determinant Δ of P_ij is found to factorise. Some examples will be discussed, particularly the case of standing waves, when the coefficients a_n(t) are all real. The phenomena of ``flip through'' and jet formation are of special interest.

  2. Hamiltonian vs Lagrangian Embedding of a Massive Spin-One Theory Involving Two-Form Field

    NASA Astrophysics Data System (ADS)

    Harikumar, E.; Sivakumar, M.

    We consider the Hamiltonian and Lagrangian embedding of a first-order, massive spin-one, gauge noninvariant theory involving antisymmetric tensor field. We apply the BFV-BRST generalized canonical approach to convert the model to a first class system and construct nilpotent BFV-BRST charge and a unitarizing Hamiltonian. The canonical analysis of the Stückelberg formulation of this model is presented. We bring out the contrasting feature in the constraint structure, specifically with respect to the reducibility aspect, of the Hamiltonian and the Lagrangian embedded model. We show that to obtain manifestly covariant Stückelberg Lagrangian from the BFV embedded Hamiltonian, phase space has to be further enlarged and show how the reducible gauge structure emerges in the embedded model.

  3. Symmetries of SU(2) Skyrmion in Hamiltonian and Lagrangian Approaches

    NASA Astrophysics Data System (ADS)

    Hong, Soon-Tae; Kim, Yong-Wan; Park, Young-Jai

    We apply the Batalin-Fradkin-Tyutin (BFT) method to the SU(2) Skyrmion to study the full symmetry structure of the model at the first-class Hamiltonian level. On the other hand, we also analyze the symmetry structure of the action having the WZ term, which corresponds to this Hamiltonian, in the framework of the Lagrangian approach. Furthermore, following the BFV formalism we derive the BRST invariant gauge fixed Lagrangian from the above extended action.

  4. Transport upscaling from pore- to Darcy-scale: Incorporating pore-scale Berea sandstone Lagrangian velocity statistics into a Darcy-scale transport CTRW model

    NASA Astrophysics Data System (ADS)

    Puyguiraud, Alexandre; Dentz, Marco; Gouze, Philippe

    2017-04-01

    For the past several years a lot of attention has been given to pore-scale flow in order to understand and model transport, mixing and reaction in porous media. Nevertheless we believe that an accurate study of spatial and temporal evolution of velocities could bring important additional information for the upscaling from pore to higher scales. To gather these pieces of information, we perform Stokes flow simulations on pore-scale digitized images of a Berea sandstone core. First, micro-tomography (XRMT) imaging and segmentation processes allow us to obtain 3D black and white images of the sample [1]. Then we used an OpenFoam solver to perform the Stokes flow simulations mentioned above, which gives us the velocities at the interfaces of a cubic mesh. Subsequently, we use a particle streamline reconstruction technique which uses the Eulerian velocity field previously obtained. This technique, based on a modified Pollock algorithm [2], enables us to make particle tracking simulations on the digitized sample. In order to build a stochastic pore-scale transport model, we analyze the Lagrangian velocity series in two different ways. First we investigate the velocity evolution by sampling isochronically (t-Lagrangian), and by studying its statistical properties in terms of one- and two-points statistics. Intermittent patterns can be observed. These are due to the persistance of low velocities over a characteristic space length. Other results are investigated, such as correlation functions and velocity PDFs, which permit us to study more deeply this persistence in the velocities and to compute the correlation times. However, with the second approach, doing these same analysis in space by computing the velocities equidistantly, enables us to remove the intermittency shown in the temporal evolution and to model these velocity series as a Markov process. This renders the stochastic particle dynamics into a CTRW [3]. [1] Gjetvaj, F., A. Russian, P. Gouze, and M. Dentz (2015

  5. Statistical Decoupling of a Lagrangian Fluid Parcel in Newtonian Cosmology

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Szalay, Alex

    2016-03-01

    The Lagrangian dynamics of a single fluid element within a self-gravitational matter field is intrinsically non-local due to the presence of the tidal force. This complicates the theoretical investigation of the nonlinear evolution of various cosmic objects, e.g., dark matter halos, in the context of Lagrangian fluid dynamics, since fluid parcels with given initial density and shape may evolve differently depending on their environments. In this paper, we provide a statistical solution that could decouple this environmental dependence. After deriving the evolution equation for the probability distribution of the matter field, our method produces a set of closed ordinary differential equations whose solution is uniquely determined by the initial condition of the fluid element. Mathematically, it corresponds to the projected characteristic curve of the transport equation of the density-weighted probability density function (ρPDF). Consequently it is guaranteed that the one-point ρPDF would be preserved by evolving these local, yet nonlinear, curves with the same set of initial data as the real system. Physically, these trajectories describe the mean evolution averaged over all environments by substituting the tidal tensor with its conditional average. For Gaussian distributed dynamical variables, this mean tidal tensor is simply proportional to the velocity shear tensor, and the dynamical system would recover the prediction of the Zel’dovich approximation (ZA) with the further assumption of the linearized continuity equation. For a weakly non-Gaussian field, the averaged tidal tensor could be expanded perturbatively as a function of all relevant dynamical variables whose coefficients are determined by the statistics of the field.

  6. Effective Lagrangians and Current Algebra in Three Dimensions

    NASA Astrophysics Data System (ADS)

    Ferretti, Gabriele

    In this thesis we study three dimensional field theories that arise as effective Lagrangians of quantum chromodynamics in Minkowski space with signature (2,1) (QCD3). In the first chapter, we explain the method of effective Langrangians and the relevance of current algebra techniques to field theory. We also provide the physical motivations for the study of QCD3 as a toy model for confinement and as a theory of quantum antiferromagnets (QAF). In chapter two, we derive the relevant effective Lagrangian by studying the low energy behavior of QCD3, paying particular attention to how the global symmetries are realized at the quantum level. In chapter three, we show how baryons arise as topological solitons of the effective Lagrangian and also show that their statistics depends on the number of colors as predicted by the quark model. We calculate mass splitting and magnetic moments of the soliton and find logarithmic corrections to the naive quark model predictions. In chapter four, we drive the current algebra of the theory. We find that the current algebra is a co -homologically non-trivial generalization of Kac-Moody algebras to three dimensions. This fact may provide a new, non -perturbative way to quantize the theory. In chapter five, we discuss the renormalizability of the model in the large-N expansion. We prove the validity of the non-renormalization theorem and compute the critical exponents in a specific limiting case, the CP^ {N-1} model with a Chern-Simons term. Finally, chapter six contains some brief concluding remarks.

  7. Arctic sea-ice diffusion from observed and simulated Lagrangian trajectories

    NASA Astrophysics Data System (ADS)

    Rampal, Pierre; Bouillon, Sylvain; Bergh, Jon; Ólason, Einar

    2016-07-01

    We characterize sea-ice drift by applying a Lagrangian diffusion analysis to buoy trajectories from the International Arctic Buoy Programme (IABP) dataset and from two different models: the standalone Lagrangian sea-ice model neXtSIM and the Eulerian coupled ice-ocean model used for the TOPAZ reanalysis. By applying the diffusion analysis to the IABP buoy trajectories over the period 1979-2011, we confirm that sea-ice diffusion follows two distinct regimes (ballistic and Brownian) and we provide accurate values for the diffusivity and integral timescale that could be used in Eulerian or Lagrangian passive tracers models to simulate the transport and diffusion of particles moving with the ice. We discuss how these values are linked to the evolution of the fluctuating displacements variance and how this information could be used to define the size of the search area around the position predicted by the mean drift. By comparing observed and simulated sea-ice trajectories for three consecutive winter seasons (2007-2011), we show how the characteristics of the simulated motion may differ from or agree well with observations. This comparison illustrates the usefulness of first applying a diffusion analysis to evaluate the output of modeling systems that include a sea-ice model before using these in, e.g., oil spill trajectory models or, more generally, to simulate the transport of passive tracers in sea ice.

  8. Dynamic analysis of a needle insertion for soft materials: Arbitrary Lagrangian-Eulerian-based three-dimensional finite element analysis.

    PubMed

    Yamaguchi, Satoshi; Tsutsui, Kihei; Satake, Koji; Morikawa, Shigehiro; Shirai, Yoshiaki; Tanaka, Hiromi T

    2014-10-01

    Our goal was to develop a three-dimensional finite element model that enables dynamic analysis of needle insertion for soft materials. To demonstrate large deformation and fracture, we used the arbitrary Lagrangian-Eulerian (ALE) method for fluid analysis. We performed ALE-based finite element analysis for 3% agar gel and three types of copper needle with bevel tips. To evaluate simulation results, we compared the needle deflection and insertion force with corresponding experimental results acquired with a uniaxial manipulator. We studied the shear stress distribution of agar gel on various time scales. For 30°, 45°, and 60°, differences in deflections of each needle between both sets of results were 2.424, 2.981, and 3.737mm, respectively. For the insertion force, there was no significant difference for mismatching area error (p<0.05) between simulation and experimental results. Our results have the potential to be a stepping stone to develop pre-operative surgical planning to estimate an optimal needle insertion path for MR image-guided microwave coagulation therapy and for analyzing large deformation and fracture in biological tissues. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Microscopic Lagrangian description of warm plasmas. I - Linear wave propagation. II - Nonlinear wave interactions

    NASA Technical Reports Server (NTRS)

    Kim, H.; Crawford, F. W.

    1977-01-01

    It is pointed out that the conventional iterative analysis of nonlinear plasma wave phenomena, which involves a direct use of Maxwell's equations and the equations describing the particle dynamics, leads to formidable theoretical and algebraic complexities, especially for warm plasmas. As an effective alternative, the Lagrangian method may be applied. It is shown how this method may be used in the microscopic description of small-signal wave propagation and in the study of nonlinear wave interactions. The linear theory is developed for an infinite, homogeneous, collisionless, warm magnetoplasma. A summary is presented of a perturbation expansion scheme described by Galloway and Kim (1971), and Lagrangians to third order in perturbation are considered. Attention is given to the averaged-Lagrangian density, the action-transfer and coupled-mode equations, and the general solution of the coupled-mode equations.

  10. Alternative kinetic energy metrics for Lagrangian systems

    NASA Astrophysics Data System (ADS)

    Sarlet, W.; Prince, G.

    2010-11-01

    We examine Lagrangian systems on \\ {R}^n with standard kinetic energy terms for the possibility of additional, alternative Lagrangians with kinetic energy metrics different to the Euclidean one. Using the techniques of the inverse problem in the calculus of variations we find necessary and sufficient conditions for the existence of such Lagrangians. We illustrate the problem in two and three dimensions with quadratic and cubic potentials. As an aside we show that the well-known anomalous Lagrangians for the Coulomb problem can be removed by switching on a magnetic field, providing an appealing resolution of the ambiguous quantizations of the hydrogen atom.

  11. Extending geometrical optics: A Lagrangian theory for vector waves

    NASA Astrophysics Data System (ADS)

    Ruiz, D. E.

    2016-10-01

    Even diffraction aside, the commonly known equations of geometrical optics (GO) are not entirely accurate. GO considers wave rays as classical particles, which are completely described by their coordinates and momenta, but rays have another degree of freedom, namely, polarization. As a result, wave rays can behave as particles with spin. A well-known example of polarization dynamics is wave-mode conversion, which can be interpreted as rotation of the (classical) ``wave spin.'' However, there are other less-known manifestations of the wave spin, such as polarization precession and polarization-driven bending of ray trajectories. This talk presents recent advances in extending and reformulating GO as a first-principle Lagrangian theory, whose effective-gauge Hamiltonian governs both mentioned polarization phenomena simultaneously. Examples and numerical results are presented. When applied to classical waves, the theory correctly predicts the polarization-driven divergence of left- and right- polarized electromagnetic waves in isotropic media, such as dielectrics and nonmagnetized plasmas. In the case of particles with spin, the formalism also yields a point-particle Lagrangian model for the Dirac electron, i.e. the relativistic spin-1/2 electron, which includes both the Stern-Gerlach spin potential and the Bargmann-Michel-Telegdi spin precession. Additionally, the same theory contributes, perhaps unexpectedly, to the understanding of ponderomotive effects in both wave and particle dynamics; e.g., the formalism allows to obtain the ponderomotive Hamiltonian for a Dirac electron interacting with an arbitrarily large electromagnetic laser field with spin effects included. Supported by the NNSA SSAA Program through DOE Research Grant No. DE-NA0002948, by the U.S. DOE through Contract No. DE-AC02-09CH11466, and by the U.S. DOD NDSEG Fellowship through Contract No. 32-CFR-168a.

  12. The Performance Improvement of the Lagrangian Particle Dispersion Model (LPDM) Using Graphics Processing Unit (GPU) Computing

    DTIC Science & Technology

    2017-08-01

    access to the GPU for general purpose processing .5 CUDA is designed to work easily with multiple programming languages , including Fortran. CUDA is a...Using Graphics Processing Unit (GPU) Computing by Leelinda P Dawson Approved for public release; distribution unlimited...The Performance Improvement of the Lagrangian Particle Dispersion Model (LPDM) Using Graphics Processing Unit (GPU) Computing by Leelinda

  13. Variational Lagrangian data assimilation in open channel networks

    NASA Astrophysics Data System (ADS)

    Wu, Qingfang; Tinka, Andrew; Weekly, Kevin; Beard, Jonathan; Bayen, Alexandre M.

    2015-04-01

    This article presents a data assimilation method in a tidal system, where data from both Lagrangian drifters and Eulerian flow sensors were fused to estimate water velocity. The system is modeled by first-order, hyperbolic partial differential equations subject to periodic forcing. The estimation problem can then be formulated as the minimization of the difference between the observed variables and model outputs, and eventually provide the velocity and water stage of the hydrodynamic system. The governing equations are linearized and discretized using an implicit discretization scheme, resulting in linear equality constraints in the optimization program. Thus, the flow estimation can be formed as an optimization problem and efficiently solved. The effectiveness of the proposed method was substantiated by a large-scale field experiment in the Sacramento-San Joaquin River Delta in California. A fleet of 100 sensors developed at the University of California, Berkeley, were deployed in Walnut Grove, CA, to collect a set of Lagrangian data, a time series of positions as the sensors moved through the water. Measurements were also taken from Eulerian sensors in the region, provided by the United States Geological Survey. It is shown that the proposed method can effectively integrate Lagrangian and Eulerian measurement data, resulting in a suited estimation of the flow variables within the hydraulic system.

  14. Lagrangian Statistics and Intermittency in Gulf of Mexico.

    PubMed

    Lin, Liru; Zhuang, Wei; Huang, Yongxiang

    2017-12-12

    Due to the nonlinear interaction between different flow patterns, for instance, ocean current, meso-scale eddies, waves, etc, the movement of ocean is extremely complex, where a multiscale statistics is then relevant. In this work, a high time-resolution velocity with a time step 15 minutes obtained by the Lagrangian drifter deployed in the Gulf of Mexico (GoM) from July 2012 to October 2012 is considered. The measured Lagrangian velocity correlation function shows a strong daily cycle due to the diurnal tidal cycle. The estimated Fourier power spectrum E(f) implies a dual-power-law behavior which is separated by the daily cycle. The corresponding scaling exponents are close to -1.75 and -2.75 respectively for the time scale larger (resp. 0.1 ≤ f ≤ 0.4 day -1 ) and smaller (resp. 2 ≤ f ≤ 8 day -1 ) than 1 day. A Hilbert-based approach is then applied to this data set to identify the possible multifractal property of the cascade process. The results show an intermittent dynamics for the time scale larger than 1 day, while a less intermittent dynamics for the time scale smaller than 1 day. It is speculated that the energy is partially injected via the diurnal tidal movement and then transferred to larger and small scales through a complex cascade process, which needs more studies in the near future.

  15. An extended Lagrangian method

    NASA Technical Reports Server (NTRS)

    Liou, Meng-Sing

    1992-01-01

    A unique formulation of describing fluid motion is presented. The method, referred to as 'extended Lagrangian method', is interesting from both theoretical and numerical points of view. The formulation offers accuracy in numerical solution by avoiding numerical diffusion resulting from mixing of fluxes in the Eulerian description. Meanwhile, it also avoids the inaccuracy incurred due to geometry and variable interpolations used by the previous Lagrangian methods. Unlike the Lagrangian method previously imposed which is valid only for supersonic flows, the present method is general and capable of treating subsonic flows as well as supersonic flows. The method proposed in this paper is robust and stable. It automatically adapts to flow features without resorting to clustering, thereby maintaining rather uniform grid spacing throughout and large time step. Moreover, the method is shown to resolve multi-dimensional discontinuities with a high level of accuracy, similar to that found in one-dimensional problems.

  16. Rigid-flexible coupling dynamic modeling and investigation of a redundantly actuated parallel manipulator with multiple actuation modes

    NASA Astrophysics Data System (ADS)

    Liang, Dong; Song, Yimin; Sun, Tao; Jin, Xueying

    2017-09-01

    A systematic dynamic modeling methodology is presented to develop the rigid-flexible coupling dynamic model (RFDM) of an emerging flexible parallel manipulator with multiple actuation modes. By virtue of assumed mode method, the general dynamic model of an arbitrary flexible body with any number of lumped parameters is derived in an explicit closed form, which possesses the modular characteristic. Then the completely dynamic model of system is formulated based on the flexible multi-body dynamics (FMD) theory and the augmented Lagrangian multipliers method. An approach of combining the Udwadia-Kalaba formulation with the hybrid TR-BDF2 numerical algorithm is proposed to address the nonlinear RFDM. Two simulation cases are performed to investigate the dynamic performance of the manipulator with different actuation modes. The results indicate that the redundant actuation modes can effectively attenuate vibration and guarantee higher dynamic performance compared to the traditional non-redundant actuation modes. Finally, a virtual prototype model is developed to demonstrate the validity of the presented RFDM. The systematic methodology proposed in this study can be conveniently extended for the dynamic modeling and controller design of other planar flexible parallel manipulators, especially the emerging ones with multiple actuation modes.

  17. Model of Four-Dimensional Sub-Proton Euclidean Space with Real Time for Valence Quarks. Lagrangian Mechanics

    NASA Astrophysics Data System (ADS)

    Kreymer, E. L.

    2018-06-01

    The model of Euclidean space with imaginary time used in sub-hadron physics uses only part of it since this part is isomorphic to Minkowski space and has the velocity limit 0 ≤ ||v Ei|| ≤ 1. The model of four-dimensional Euclidean space with real time (E space), in which 0 ≤ ||v E|| ≤ ∞ is investigated. The vectors of this space have E-invariants, equal or analogous to the invariants of Minkowski space. All relations between physical quantities in E-space, after they are mapped into Minkowski space, satisfy the principles of SRT and are Lorentz-invariant, and the velocity of light corresponds to infinite velocity. Results obtained in the model are different from the physical laws in Minkowski space. Thus, from the model of the Lagrangian mechanics of quarks in a centrally symmetric attractive potential it follows that the energy-mass of a quark decreases with increase of the velocity and is equal to zero for v = ∞. This made it possible to establish the conditions of emission and absorption of gluons by quarks. The effect of emission of gluons by high-energy quarks was discovered experimentally significantly earlier. The model describes for the first time the dynamic coupling of the masses of constituent and current quarks and reveals new possibilities in the study of intrahardon space. The classical trajectory of the oscillation of quarks in protons is described.

  18. Lagrangian Approach to Study Catalytic Fluidized Bed Reactors

    NASA Astrophysics Data System (ADS)

    Madi, Hossein; Hossein Madi Team; Marcelo Kaufman Rechulski Collaboration; Christian Ludwig Collaboration; Tilman Schildhauer Collaboration

    2013-03-01

    Lagrangian approach of fluidized bed reactors is a method, which simulates the movement of catalyst particles (caused by the fluidization) by changing the gas composition around them. Application of such an investigation is in the analysis of the state of catalysts and surface reactions under quasi-operando conditions. The hydrodynamics of catalyst particles within a fluidized bed reactor was studied to improve a Lagrangian approach. A fluidized bed methanation employed in the production of Synthetic Natural Gas from wood was chosen as the case study. The Lagrangian perspective was modified and improved to include different particle circulation patterns, which were investigated through this study. Experiments were designed to evaluate the concepts of the model. The results indicate that the setup is able to perform the designed experiments and a good agreement between the simulation and the experimental results were observed. It has been shown that fluidized bed reactors, as opposed to fixed beds, can be used to avoid the deactivation of the methanation catalyst due to carbon deposits. Carbon deposition on the catalysts tested with the Lagrangian approach was investigated by temperature programmed oxidation (TPO) analysis of ex-situ catalyst samples. This investigation was done to identify the effects of particles velocity and their circulation patterns on the amount and type of deposited carbon on the catalyst surface. Ecole Polytechnique Federale de Lausanne(EPFL), Paul Scherrer Institute (PSI)

  19. A Nonlinear Multigrid Solver for an Atmospheric General Circulation Model Based on Semi-Implicit Semi-Lagrangian Advection of Potential Vorticity

    NASA Technical Reports Server (NTRS)

    McCormick, S.; Ruge, John W.

    1998-01-01

    This work represents a part of a project to develop an atmospheric general circulation model based on the semi-Lagrangian advection of potential vorticity (PC) with divergence as the companion prognostic variable.

  20. Elements of Dynamics of a One-Dimensional Trapped Bose-Einstein Condensate Excited by a Time-Dependent Dimple: A Lagrangian Variational Approach

    NASA Astrophysics Data System (ADS)

    Sakhel, Asaad R.; Sakhel, Roger R.

    2018-02-01

    We examine the dynamics of a one-dimensional harmonically trapped Bose-Einstein condensate (BEC), induced by the addition of a dimple trap whose depth oscillates with time. For this purpose, the Lagrangian variational method (LVM) is applied to provide the required analytical equations. The goal is to provide an analytical explanation for the quasiperiodic oscillations of the BEC size at resonance, that is additional to the one given by Adhikari (J Phys B At Mol Opt Phys 36:1109, 2003). It is shown that LVM is able to reproduce instabilities in the dynamics along the same lines outlined by Lellouch et al. (Phys Rev X 7:021015, 2017). Moreover, it is found that at resonance the energy dynamics display ordered oscillations, whereas at off-resonance they tend to be chaotic. Further, by using the Poincare-Lindstedt method to solve the LVM equation of motion, the resulting solution is able to reproduce the quasiperiodic oscillations of the BEC.

  1. The Lagrangian particle dispersion model FLEXPART version 10

    NASA Astrophysics Data System (ADS)

    Pisso, Ignacio; Sollum, Espen; Grythe, Henrik; Kristiansen, Nina; Cassiani, Massimo; Eckhardt, Sabine; Thompson, Rona; Groot Zwaaftnik, Christine; Evangeliou, Nikolaos; Hamburger, Thomas; Sodemann, Harald; Haimberger, Leopold; Henne, Stephan; Brunner, Dominik; Burkhart, John; Fouilloux, Anne; Fang, Xuekun; Phillip, Anne; Seibert, Petra; Stohl, Andreas

    2017-04-01

    The Lagrangian particle dispersion model FLEXPART was in its first original release in 1998 designed for calculating the long-range and mesoscale dispersion of air pollutants from point sources, such as after an accident in a nuclear power plant. The model has now evolved into a comprehensive tool for atmospheric transport modelling and analysis. Its application fields are extended to a range of atmospheric transport processes for both atmospheric gases and aerosols, e.g. greenhouse gases, short-lived climate forces like black carbon, volcanic ash and gases as well as studies of the water cycle. We present the newest release, FLEXPART version 10. Since the last publication fully describing FLEXPART (version 6.2), the model code has been parallelised in order to allow for the possibility to speed up computation. A new, more detailed gravitational settling parametrisation for aerosols was implemented, and the wet deposition scheme for aerosols has been heavily modified and updated to provide a more accurate representation of this physical process. In addition, an optional new turbulence scheme for the convective boundary layer is available, that considers the skewness in the vertical velocity distribution. Also, temporal variation and temperature dependence of the OH-reaction are included. Finally, user input files are updated to a more convenient and user-friendly namelist format, and the option to produce the output-files in netCDF-format instead of binary format is implemented. We present these new developments and show recent model applications. Moreover, we also introduce some tools for the preparation of the meteorological input data, as well as for the processing of FLEXPART output data.

  2. Communication: A simplified coupled-cluster Lagrangian for polarizable embedding.

    PubMed

    Krause, Katharina; Klopper, Wim

    2016-01-28

    A simplified coupled-cluster Lagrangian, which is linear in the Lagrangian multipliers, is proposed for the coupled-cluster treatment of a quantum mechanical system in a polarizable environment. In the simplified approach, the amplitude equations are decoupled from the Lagrangian multipliers and the energy obtained from the projected coupled-cluster equation corresponds to a stationary point of the Lagrangian.

  3. Communication: A simplified coupled-cluster Lagrangian for polarizable embedding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krause, Katharina; Klopper, Wim, E-mail: klopper@kit.edu

    A simplified coupled-cluster Lagrangian, which is linear in the Lagrangian multipliers, is proposed for the coupled-cluster treatment of a quantum mechanical system in a polarizable environment. In the simplified approach, the amplitude equations are decoupled from the Lagrangian multipliers and the energy obtained from the projected coupled-cluster equation corresponds to a stationary point of the Lagrangian.

  4. STATISTICAL DECOUPLING OF A LAGRANGIAN FLUID PARCEL IN NEWTONIAN COSMOLOGY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xin; Szalay, Alex, E-mail: xwang@cita.utoronto.ca

    The Lagrangian dynamics of a single fluid element within a self-gravitational matter field is intrinsically non-local due to the presence of the tidal force. This complicates the theoretical investigation of the nonlinear evolution of various cosmic objects, e.g., dark matter halos, in the context of Lagrangian fluid dynamics, since fluid parcels with given initial density and shape may evolve differently depending on their environments. In this paper, we provide a statistical solution that could decouple this environmental dependence. After deriving the evolution equation for the probability distribution of the matter field, our method produces a set of closed ordinary differentialmore » equations whose solution is uniquely determined by the initial condition of the fluid element. Mathematically, it corresponds to the projected characteristic curve of the transport equation of the density-weighted probability density function (ρPDF). Consequently it is guaranteed that the one-point ρPDF would be preserved by evolving these local, yet nonlinear, curves with the same set of initial data as the real system. Physically, these trajectories describe the mean evolution averaged over all environments by substituting the tidal tensor with its conditional average. For Gaussian distributed dynamical variables, this mean tidal tensor is simply proportional to the velocity shear tensor, and the dynamical system would recover the prediction of the Zel’dovich approximation (ZA) with the further assumption of the linearized continuity equation. For a weakly non-Gaussian field, the averaged tidal tensor could be expanded perturbatively as a function of all relevant dynamical variables whose coefficients are determined by the statistics of the field.« less

  5. Lagrangian photochemical modeling studies of the 1987 Antarctic spring vortex. I - Comparison with AAOE observations

    NASA Technical Reports Server (NTRS)

    Jones, R. L.; Austin, J.; Mckenna, D. S.; Anderson, J. G.; Fahey, D. W.; Farmer, C. B.; Vedder, J. F.

    1989-01-01

    Results from the Lagrangian photochemical model integrated along computed air parcel trajectories intersected by the ER-2 aircraft are presented and compared with AAOE observations. According to the model, the BrO observations made from the ER-2 within the dehydrated denitrified region are consistent with there being approximately 5 parts per trillion by volume of BrO(y) at 428 K in spring. Within the high ClO region, ozone destruction rates are expected to exceed 2 percent/d with approximately 80 percent due to the ClO dimer mechanism.

  6. Tracking plastics in the Mediterranean: 2D Lagrangian model.

    PubMed

    Liubartseva, S; Coppini, G; Lecci, R; Clementi, E

    2018-04-01

    Drift of floating debris is studied with a 2D Lagrangian model with stochastic beaching and sedimentation of plastics. An ensemble of >10 10 virtual particles is tracked from anthropogenic sources (coastal human populations, rivers, shipping lanes) to environmental destinations (sea surface, coastlines, seabed). Daily analyses of ocean currents and waves provided by CMEMS at a horizontal resolution of 1/16° are used to force the plastics. High spatio-temporal variability in sea-surface plastic concentrations without any stable long-term accumulations is found. Substantial accumulation of plastics is detected on coastlines and the sea bottom. The most contaminated areas are in the Cilician subbasin, Catalan Sea, and near the Po River Delta. Also, highly polluted local patches in the vicinity of sources with limited circulation are identified. An inverse problem solution, used to quantify the origins of plastics, shows that plastic pollution of every Mediterranean country is caused primarily by its own terrestrial sources. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. A Chiang-type lagrangian in CP^2

    NASA Astrophysics Data System (ADS)

    Cannas da Silva, Ana

    2018-03-01

    We analyse a monotone lagrangian in CP^2 that is hamiltonian isotopic to the standard lagrangian RP^2, yet exhibits a distinguishing behaviour under reduction by one of the toric circle actions, namely it intersects transversally the reduction level set and it projects one-to-one onto a great circle in CP^1. This lagrangian thus provides an example of embedded composition fitting work of Wehrheim-Woodward and Weinstein.

  8. SENSITIVITY ANALYSIS AND PRELIMINARY EVALUATION OF RELMAP (REGIONAL LAGRANGIAN MODEL OF AIR POLLUTION) INVOLVING FINE AND COURSE PARTICULATE MATTER

    EPA Science Inventory

    In response to the new, size-discriminate federal standards for Inhalable Particulate Matter, the Regional Lagrangian Model of Air Pollution (RELMAP) has been modified to include simple, linear parameterizations. As an initial step in the possible refinement, RELMAP has been subj...

  9. A pressure relaxation closure model for one-dimensional, two-material Lagrangian hydrodynamics based on the Riemann problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamm, James R; Shashkov, Mikhail J

    2009-01-01

    Despite decades of development, Lagrangian hydrodynamics of strengthfree materials presents numerous open issues, even in one dimension. We focus on the problem of closing a system of equations for a two-material cell under the assumption of a single velocity model. There are several existing models and approaches, each possessing different levels of fidelity to the underlying physics and each exhibiting unique features in the computed solutions. We consider the case in which the change in heat in the constituent materials in the mixed cell is assumed equal. An instantaneous pressure equilibration model for a mixed cell can be cast asmore » four equations in four unknowns, comprised of the updated values of the specific internal energy and the specific volume for each of the two materials in the mixed cell. The unique contribution of our approach is a physics-inspired, geometry-based model in which the updated values of the sub-cell, relaxing-toward-equilibrium constituent pressures are related to a local Riemann problem through an optimization principle. This approach couples the modeling problem of assigning sub-cell pressures to the physics associated with the local, dynamic evolution. We package our approach in the framework of a standard predictor-corrector time integration scheme. We evaluate our model using idealized, two material problems using either ideal-gas or stiffened-gas equations of state and compare these results to those computed with the method of Tipton and with corresponding pure-material calculations.« less

  10. Special Bohr-Sommerfeld Lagrangian submanifolds

    NASA Astrophysics Data System (ADS)

    Tyurin, N. A.

    2016-12-01

    We introduce a new notion in symplectic geometry, that of speciality for Lagrangian submanifolds satisfying the Bohr- Sommerfeld condition. We show that it enables one to construct finite-dimensional moduli spaces of special Bohr- Sommerfeld Lagrangian submanifolds with respect to any ample line bundle on an algebraic variety with a Hodge metric regarded as the symplectic form. This construction can be used to study mirror symmetry.

  11. Spatial and Temporal Extrapolation of Disdrometer Size Distributions Based on a Lagrangian Trajectory Model of Falling Rain

    NASA Technical Reports Server (NTRS)

    Lane, John E.; Kasparis, Takis; Jones, W. Linwood; Metzger, Philip T.

    2009-01-01

    Methodologies to improve disdrometer processing, loosely based on mathematical techniques common to the field of particle flow and fluid mechanics, are examined and tested. The inclusion of advection and vertical wind field estimates appear to produce significantly improved results in a Lagrangian hydrometeor trajectory model, in spite of very strict assumptions of noninteracting hydrometeors, constant vertical air velocity, and time independent advection during the scan time interval. Wind field data can be extracted from each radar elevation scan by plotting and analyzing reflectivity contours over the disdrometer site and by collecting the radar radial velocity data to obtain estimates of advection. Specific regions of disdrometer spectra (drop size versus time) often exhibit strong gravitational sorting signatures, from which estimates of vertical velocity can be extracted. These independent wind field estimates become inputs and initial conditions to the Lagrangian trajectory simulation of falling hydrometeors.

  12. Physically Based Modeling and Simulation with Dynamic Spherical Volumetric Simplex Splines

    PubMed Central

    Tan, Yunhao; Hua, Jing; Qin, Hong

    2009-01-01

    In this paper, we present a novel computational modeling and simulation framework based on dynamic spherical volumetric simplex splines. The framework can handle the modeling and simulation of genus-zero objects with real physical properties. In this framework, we first develop an accurate and efficient algorithm to reconstruct the high-fidelity digital model of a real-world object with spherical volumetric simplex splines which can represent with accuracy geometric, material, and other properties of the object simultaneously. With the tight coupling of Lagrangian mechanics, the dynamic volumetric simplex splines representing the object can accurately simulate its physical behavior because it can unify the geometric and material properties in the simulation. The visualization can be directly computed from the object’s geometric or physical representation based on the dynamic spherical volumetric simplex splines during simulation without interpolation or resampling. We have applied the framework for biomechanic simulation of brain deformations, such as brain shifting during the surgery and brain injury under blunt impact. We have compared our simulation results with the ground truth obtained through intra-operative magnetic resonance imaging and the real biomechanic experiments. The evaluations demonstrate the excellent performance of our new technique. PMID:20161636

  13. The general form of the coupled Horndeski Lagrangian that allows cosmological scaling solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gomes, Adalto R.; Amendola, Luca, E-mail: argomes.ufma@gmail.com, E-mail: l.amendola@thphys.uni-heidelberg.de

    We consider the general scalar field Horndeski Lagrangian coupled to dark matter. Within this class of models, we present two results that are independent of the particular form of the model. First, we show that in a Friedmann-Robertson-Walker metric the Horndeski Lagrangian coincides with the pressure of the scalar field. Second, we employ the previous result to identify the most general form of the Lagrangian that allows for cosmological scaling solutions, i.e. solutions where the ratio of dark matter to field density and the equation of state remain constant. Scaling solutions of this kind may help solving the coincidence problemmore » since in this case the presently observed ratio of matter to dark energy does not depend on initial conditions, but rather on the theoretical parameters.« less

  14. The exceptional sigma model

    NASA Astrophysics Data System (ADS)

    Arvanitakis, Alex S.; Blair, Chris D. A.

    2018-04-01

    We detail the construction of the exceptional sigma model, which describes a string propagating in the "extended spacetime" of exceptional field theory. This is to U-duality as the doubled sigma model is to T-duality. Symmetry specifies the Weylinvariant Lagrangian uniquely and we show how it reduces to the correct 10-dimensional string Lagrangians. We also consider the inclusion of a Fradkin-Tseytlin (or generalised dilaton) coupling as well as a reformulation with dynamical tension.

  15. Parallel computing using a Lagrangian formulation

    NASA Technical Reports Server (NTRS)

    Liou, May-Fun; Loh, Ching Yuen

    1991-01-01

    A new Lagrangian formulation of the Euler equation is adopted for the calculation of 2-D supersonic steady flow. The Lagrangian formulation represents the inherent parallelism of the flow field better than the common Eulerian formulation and offers a competitive alternative on parallel computers. The implementation of the Lagrangian formulation on the Thinking Machines Corporation CM-2 Computer is described. The program uses a finite volume, first-order Godunov scheme and exhibits high accuracy in dealing with multidimensional discontinuities (slip-line and shock). By using this formulation, a better than six times speed-up was achieved on a 8192-processor CM-2 over a single processor of a CRAY-2.

  16. Parallel computing using a Lagrangian formulation

    NASA Technical Reports Server (NTRS)

    Liou, May-Fun; Loh, Ching-Yuen

    1992-01-01

    This paper adopts a new Lagrangian formulation of the Euler equation for the calculation of two dimensional supersonic steady flow. The Lagrangian formulation represents the inherent parallelism of the flow field better than the common Eulerian formulation and offers a competitive alternative on parallel computers. The implementation of the Lagrangian formulation on the Thinking Machines Corporation CM-2 Computer is described. The program uses a finite volume, first-order Godunov scheme and exhibits high accuracy in dealing with multidimensional discontinuities (slip-line and shock). By using this formulation, we have achieved better than six times speed-up on a 8192-processor CM-2 over a single processor of a CRAY-2.

  17. Modelling of deposited black carbon with the Lagrangian particle dispersion model FLEXPART in backward mode

    NASA Astrophysics Data System (ADS)

    Eckhardt, Sabine; Cassiani, Massimo; Sollum, Espen; Evangeliou, Nikolaos; Stohl, Andreas

    2017-04-01

    Lagrangian particle dispersion models are popular tools to simulate the dispersion of trace gases, aerosols or radionuclides in the atmosphere. If they consider only linear processes, they are self-adjoint, i.e., they can be run forward and backward in time without changes to the source code. Backward simulations are very efficient if the number of receptors is smaller than the number of sources, and they are well suited to establish source-receptor (s-r) relationships for measurements of various trace substances in air. However, not only the air concentrations are of interest, but also the s-r relationships for deposition are important for interpreting measurement data. E.g., deposition of dust is measured regularly in ice cores, partly also as a proxy to understand changes in aridity in dust source regions. Contamination of snow by black carbon (BC) aerosols has recently become a hot topic because of the potential impact of BC on the snow albedo. To interpret such deposition measurements and study the sources of the deposited substance, it would be convenient to have a model that is capable of efficient s-r relationship calculations for such types of measurements. We present here the implementation of such an algorithm into the Lagrangian particle dispersion model FLEXPART, and test the new scheme by comparisons with results from forward simulations as well as comparisons with measurements. As an application, we analyse source regions for elemental carbon (EC) measured in snow over the years 2014-2016 in the Russian Arctic. Simulations using an annual constant black carbon inventory based on ECLIPSE V5 and GFED (Global Fire Emission Database), have been performed. The meteorological data used in the simulation are 3 hourly operational data from the European Centre of Medium Range Weather Forecast (ECMWF) on a 1 degree grid resolution and 138 vertical levels. The model is able to capture very well the measured concentrations. Gas flaring and residential

  18. Establishing Lagrangian Connections between Observations within Air Masses Crossing the Atlantic during the ICARTT Experiment

    NASA Technical Reports Server (NTRS)

    Methven, J.; Arnold, S. R.; Stohl, A.; Evans, M. J.; Avery, M.; Law, K.; Lewis, A. C.; Monks, P. S.; Parrish, D.; Reeves, C.; hide

    2006-01-01

    The International Consortium for Atmospheric Research on Transport and Transformation (ICARTT)-Lagrangian experiment was conceived with an aim to quantify the effects of photochemistry and mixing on the transformation of air masses in the free troposphere away from emissions. To this end attempts were made to intercept and sample air masses several times during their journey across the North Atlantic using four aircraft based in New Hampshire (USA), Faial (Azores) and Creil (France). This article begins by describing forecasts using two Lagrangian models that were used to direct the aircraft into target air masses. A novel technique is then used to identify Lagrangian matches between flight segments. Two independent searches are conducted: for Lagrangian model matches and for pairs of whole air samples with matching hydrocarbon fingerprints. The information is filtered further by searching for matching hydrocarbon samples that are linked by matching trajectories. The quality of these coincident matches is assessed using temperature, humidity and tracer observations. The technique pulls out five clear Lagrangian cases covering a variety of situations and these are examined in detail. The matching trajectories and hydrocarbon fingerprints are shown and the downwind minus upwind differences in tracers are discussed.

  19. A hybrid Lagrangian Voronoi-SPH scheme

    NASA Astrophysics Data System (ADS)

    Fernandez-Gutierrez, D.; Souto-Iglesias, A.; Zohdi, T. I.

    2018-07-01

    A hybrid Lagrangian Voronoi-SPH scheme, with an explicit weakly compressible formulation for both the Voronoi and SPH sub-domains, has been developed. The SPH discretization is substituted by Voronoi elements close to solid boundaries, where SPH consistency and boundary conditions implementation become problematic. A buffer zone to couple the dynamics of both sub-domains is used. This zone is formed by a set of particles where fields are interpolated taking into account SPH particles and Voronoi elements. A particle may move in or out of the buffer zone depending on its proximity to a solid boundary. The accuracy of the coupled scheme is discussed by means of a set of well-known verification benchmarks.

  20. A hybrid Lagrangian Voronoi-SPH scheme

    NASA Astrophysics Data System (ADS)

    Fernandez-Gutierrez, D.; Souto-Iglesias, A.; Zohdi, T. I.

    2017-11-01

    A hybrid Lagrangian Voronoi-SPH scheme, with an explicit weakly compressible formulation for both the Voronoi and SPH sub-domains, has been developed. The SPH discretization is substituted by Voronoi elements close to solid boundaries, where SPH consistency and boundary conditions implementation become problematic. A buffer zone to couple the dynamics of both sub-domains is used. This zone is formed by a set of particles where fields are interpolated taking into account SPH particles and Voronoi elements. A particle may move in or out of the buffer zone depending on its proximity to a solid boundary. The accuracy of the coupled scheme is discussed by means of a set of well-known verification benchmarks.

  1. Dynamical relaxation in 2HDM models

    NASA Astrophysics Data System (ADS)

    Lalak, Zygmunt; Markiewicz, Adam

    2018-03-01

    Dynamical relaxation provides an interesting solution to the hierarchy problem in face of the missing signatures of any new physics in recent experiments. Through a dynamical process taking place in the inflationary phase of the Universe it manages to achieve a small electroweak scale without introducing new states observable in current experiments. Appropriate approximation makes it possible to derive an explicit formula for the final vevs in the double-scanning scenario extended to a model with two Higgs doublets (2HDM). Analysis of the relaxation in the 2HDM confirms that in a general case it is impossible to keep vevs of both scalars small, unless fine-tuning is present or additional symmetries are cast upon the Lagrangian. Within the slightly constrained variant of the 2HDM, where odd powers of the fields’ expectation values are not present (which can be easily enforced by requiring that the doublets have different gauge transformations or by imposing a global symmetry) it is shown that the difference between the vevs of two scalars tends to be proportional to the cutoff. The analysis of the relaxation in 2HDM indicates that in a general case the relaxation would be stopped by the first doublet that gains a vev, with the other one remaining vevless with a mass of the order of the cutoff. This happens to conform with the inert doublet model.

  2. Development and evaluation of the aerosol dynamic and gas phase chemistry model ADCHEM

    NASA Astrophysics Data System (ADS)

    Roldin, P.; Swietlicki, E.; Schurgers, G.; Arneth, A.; Lehtinen, K. E. J.; Boy, M.; Kulmala, M.

    2010-08-01

    The aim of this work was to develop a model ideally suited for detailed studies on aerosol dynamics, gas and particle phase chemistry within urban plumes, from local scale (1×1 km2) to regional or global scale. This article describes and evaluates the trajectory model for Aerosol Dynamics, gas and particle phase CHEMistry and radiative transfer (ADCHEM), which has been developed and used at Lund University since 2007. The model treats both vertical and horizontal dispersion perpendicular to an air mass trajectory (2-space dimensions), which is not treated in Lagrangian box-models (0-space dimensions). The Lagrangian approach enables a more detailed representation of the aerosol dynamics, gas and particle phase chemistry and a finer spatial and temporal resolution compared to that of available regional 3D-CTMs. These features make it among others ideally suited for urban plume studies. The aerosol dynamics model includes Brownian coagulation, dry deposition, wet deposition, in-cloud processing, condensation, evaporation, primary particle emissions and homogeneous nucleation. The gas phase chemistry model calculates the gas phase concentrations of 63 different species, using 119 different chemical reactions. Daily isoprene and monoterpene emissions from European forests were simulated separately with the vegetation model LPJ-GUESS, and included as input to ADCHEM. ADCHEM was used to simulate the ageing of the urban plumes from the city of Malmö in Southern Sweden (280 000 inhabitants). Several sensitivity tests were performed concerning the number of size bins, size structure method, coupled or uncoupled condensation, the volatility basis set (VBS) or traditional 2-product model for secondary organic aerosol formation, different aerosol dynamic processes and vertical and horizontal mixing. The simulations show that the full-stationary size structure gives accurate results with little numerical diffusion when more than 50 size bins are used between 1.5 and 2500 nm

  3. Characteristics of the mixing volume model with the interactions among spatially distributed particles for Lagrangian simulations of turbulent mixing

    NASA Astrophysics Data System (ADS)

    Watanabe, Tomoaki; Nagata, Koji

    2016-11-01

    The mixing volume model (MVM), which is a mixing model for molecular diffusion in Lagrangian simulations of turbulent mixing problems, is proposed based on the interactions among spatially distributed particles in a finite volume. The mixing timescale in the MVM is derived by comparison between the model and the subgrid scale scalar variance equation. A-priori test of the MVM is conducted based on the direct numerical simulations of planar jets. The MVM is shown to predict well the mean effects of the molecular diffusion under various conditions. However, a predicted value of the molecular diffusion term is positively correlated to the exact value in the DNS only when the number of the mixing particles is larger than two. Furthermore, the MVM is tested in the hybrid implicit large-eddy-simulation/Lagrangian-particle-simulation (ILES/LPS). The ILES/LPS with the present mixing model predicts well the decay of the scalar variance in planar jets. This work was supported by JSPS KAKENHI Nos. 25289030 and 16K18013. The numerical simulations presented in this manuscript were carried out on the high performance computing system (NEC SX-ACE) in the Japan Agency for Marine-Earth Science and Technology.

  4. Modeling of Quasi-Four-Phase Flow in Continuous Casting Mold Using Hybrid Eulerian and Lagrangian Approach

    NASA Astrophysics Data System (ADS)

    Liu, Zhongqiu; Sun, Zhenbang; Li, Baokuan

    2017-04-01

    Lagrangian tracking model combined with Eulerian multi-phase model is employed to predict the time-dependent argon-steel-slag-air quasi-four-phase flow inside a slab continuous casting mold. The Eulerian approach is used for the description of three phases (molten steel, liquid slag, and air at the top of liquid slag layer). The dispersed argon bubble injected from the SEN is treated in the Lagrangian way. The complex interfacial momentum transfers between various phases are considered. Validation is supported by the measurement data of cold model experiments and industrial practice. Close agreements were achieved for the gas volume fraction, liquid flow pattern, level fluctuation, and exposed slag eye phenomena. Many known phenomena and new predictions were successfully reproduced using this model. The vortex slag entrapment phenomenon at the slag-steel interface was obtained using this model, some small slag drops are sucked deep into the liquid pool of molten steel. Varying gas flow rates have a large effect on the steel flow pattern in the upper recirculation zone. Three typical flow patterns inside the mold with different argon gas flow rates have been obtained: double roll, three roll, and single roll. Effects of argon gas flow rate, casting speed, and slag layer thickness on the exposed slag eye and level fluctuation at the slag-steel interface were studied. A dimensionless value of H ave/ h was proposed to describe the time-averaged level fluctuation of slag-steel interface. The exposed slag eye near the SEN would be formed when the value of H ave/ h is larger than 0.4.

  5. Assimilation of drifters' trajectories in velocity fields from coastal radar and model via the Lagrangian assimilation algorithm LAVA.

    NASA Astrophysics Data System (ADS)

    Berta, Maristella; Bellomo, Lucio; Griffa, Annalisa; Gatimu Magaldi, Marcello; Marmain, Julien; Molcard, Anne; Taillandier, Vincent

    2013-04-01

    The Lagrangian assimilation algorithm LAVA (LAgrangian Variational Analysis) is customized for coastal areas in the framework of the TOSCA (Tracking Oil Spills & Coastal Awareness network) Project, to improve the response to maritime accidents in the Mediterranean Sea. LAVA assimilates drifters' trajectories in the velocity fields which may come from either coastal radars or numerical models. In the present study, LAVA is applied to the coastal area in front of Toulon (France). Surface currents are available from a WERA radar network (2km spatial resolution, every 20 minutes) and from the GLAZUR model (1/64° spatial resolution, every hour). The cluster of drifters considered is constituted by 7 buoys, transmitting every 15 minutes for a period of 5 days. Three assimilation cases are considered: i) correction of the radar velocity field, ii) correction of the model velocity field and iii) reconstruction of the velocity field from drifters only. It is found that drifters' trajectories compare well with the ones obtained by the radar and the correction to radar velocity field is therefore minimal. Contrarily, observed and numerical trajectories separate rapidly and the correction to the model velocity field is substantial. For the reconstruction from drifters only, the velocity fields obtained are similar to the radar ones, but limited to the neighbor of the drifter paths.

  6. Multiscale geometric modeling of macromolecules II: Lagrangian representation

    PubMed Central

    Feng, Xin; Xia, Kelin; Chen, Zhan; Tong, Yiying; Wei, Guo-Wei

    2013-01-01

    Geometric modeling of biomolecules plays an essential role in the conceptualization of biolmolecular structure, function, dynamics and transport. Qualitatively, geometric modeling offers a basis for molecular visualization, which is crucial for the understanding of molecular structure and interactions. Quantitatively, geometric modeling bridges the gap between molecular information, such as that from X-ray, NMR and cryo-EM, and theoretical/mathematical models, such as molecular dynamics, the Poisson-Boltzmann equation and the Nernst-Planck equation. In this work, we present a family of variational multiscale geometric models for macromolecular systems. Our models are able to combine multiresolution geometric modeling with multiscale electrostatic modeling in a unified variational framework. We discuss a suite of techniques for molecular surface generation, molecular surface meshing, molecular volumetric meshing, and the estimation of Hadwiger’s functionals. Emphasis is given to the multiresolution representations of biomolecules and the associated multiscale electrostatic analyses as well as multiresolution curvature characterizations. The resulting fine resolution representations of a biomolecular system enable the detailed analysis of solvent-solute interaction, and ion channel dynamics, while our coarse resolution representations highlight the compatibility of protein-ligand bindings and possibility of protein-protein interactions. PMID:23813599

  7. Lagrangian formulation of the general relativistic Poynting-Robertson effect

    NASA Astrophysics Data System (ADS)

    De Falco, Vittorio; Battista, Emmanuele; Falanga, Maurizio

    2018-04-01

    We propose the Lagrangian formulation for describing the motion of a test particle in a general relativistic, stationary, and axially symmetric spacetime. The test particle is also affected by a radiation field, modeled as a coherent flux of photons traveling along the null geodesics of the background spacetime, including the general relativistic Poynting-Robertson effect. The innovative part of this work is to prove the existence of the potential linked to the dissipative action caused by the Poynting-Robertson effect in general relativity through the help of an integrating factor, depending on the energy of the system. Generally, such kinds of inverse problems involving dissipative effects might not admit a Lagrangian formulation; especially, in general relativity, there are no examples of such attempts in the literature so far. We reduce this general relativistic Lagrangian formulation to the classic case in the weak-field limit. This approach facilitates further studies in improving the treatment of the radiation field, and it contains, for example, some implications for a deeper comprehension of the gravitational waves.

  8. Evaluation of the Revised Lagrangian Particle Model GRAL Against Wind-Tunnel and Field Observations in the Presence of Obstacles

    NASA Astrophysics Data System (ADS)

    Oettl, Dietmar

    2015-05-01

    A revised microscale flow field model has been implemented in the Lagrangian particle model Graz Lagrangian Model (GRAL) for computing flows around obstacles. It is based on the Reynolds-averaged Navier-Stokes equations in three dimensions and the widely used standard turbulence model. Here we focus on evaluating the model regarding computed concentrations by use of a comprehensive wind-tunnel experiment with numerous combinations of building geometries, stack positions, and locations. In addition, two field experiments carried out in Denmark and in the U.S were used to evaluate the model. Further, two different formulations of the standard deviation of wind component fluctuations have also been investigated, but no clear picture could be drawn in this respect. Overall the model is able to capture several of the main features of pollutant dispersion around obstacles, but at least one future model improvement was identified for stack releases within the recirculation zone of buildings. Regulatory applications are the bread-and-butter of most GRAL users nowadays, requiring fast and robust modelling algorithms. Thus, a few simplifications have been introduced to decrease the computational time required. Although predicted concentrations for the two field experiments were found to be in good agreement with observations, shortcomings were identified regarding the extent of computed recirculation zones for the idealized wind-tunnel building geometries, with approaching flows perpendicular to building faces.

  9. Transport dissipative particle dynamics model for mesoscopic advection-diffusion-reaction problems

    PubMed Central

    Yazdani, Alireza; Tartakovsky, Alexandre; Karniadakis, George Em

    2015-01-01

    We present a transport dissipative particle dynamics (tDPD) model for simulating mesoscopic problems involving advection-diffusion-reaction (ADR) processes, along with a methodology for implementation of the correct Dirichlet and Neumann boundary conditions in tDPD simulations. tDPD is an extension of the classic dissipative particle dynamics (DPD) framework with extra variables for describing the evolution of concentration fields. The transport of concentration is modeled by a Fickian flux and a random flux between tDPD particles, and the advection is implicitly considered by the movements of these Lagrangian particles. An analytical formula is proposed to relate the tDPD parameters to the effective diffusion coefficient. To validate the present tDPD model and the boundary conditions, we perform three tDPD simulations of one-dimensional diffusion with different boundary conditions, and the results show excellent agreement with the theoretical solutions. We also performed two-dimensional simulations of ADR systems and the tDPD simulations agree well with the results obtained by the spectral element method. Finally, we present an application of the tDPD model to the dynamic process of blood coagulation involving 25 reacting species in order to demonstrate the potential of tDPD in simulating biological dynamics at the mesoscale. We find that the tDPD solution of this comprehensive 25-species coagulation model is only twice as computationally expensive as the conventional DPD simulation of the hydrodynamics only, which is a significant advantage over available continuum solvers. PMID:26156459

  10. Regional source identification using Lagrangian stochastic particle dispersion and HYSPLIT backward-trajectory models.

    PubMed

    Koracin, Darko; Vellore, Ramesh; Lowenthal, Douglas H; Watson, John G; Koracin, Julide; McCord, Travis; DuBois, David W; Chen, L W Antony; Kumar, Naresh; Knipping, Eladio M; Wheeler, Neil J M; Craig, Kenneth; Reid, Stephen

    2011-06-01

    The main objective of this study was to investigate the capabilities of the receptor-oriented inverse mode Lagrangian Stochastic Particle Dispersion Model (LSPDM) with the 12-km resolution Mesoscale Model 5 (MM5) wind field input for the assessment of source identification from seven regions impacting two receptors located in the eastern United States. The LSPDM analysis was compared with a standard version of the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) single-particle backward-trajectory analysis using inputs from MM5 and the Eta Data Assimilation System (EDAS) with horizontal grid resolutions of 12 and 80 km, respectively. The analysis included four 7-day summertime events in 2002; residence times in the modeling domain were computed from the inverse LSPDM runs and HYPSLIT-simulated backward trajectories started from receptor-source heights of 100, 500, 1000, 1500, and 3000 m. Statistics were derived using normalized values of LSPDM- and HYSPLIT-predicted residence times versus Community Multiscale Air Quality model-predicted sulfate concentrations used as baseline information. From 40 cases considered, the LSPDM identified first- and second-ranked emission region influences in 37 cases, whereas HYSPLIT-MM5 (HYSPLIT-EDAS) identified the sources in 21 (16) cases. The LSPDM produced a higher overall correlation coefficient (0.89) compared with HYSPLIT (0.55-0.62). The improvement of using the LSPDM is also seen in the overall normalized root mean square error values of 0.17 for LSPDM compared with 0.30-0.32 for HYSPLIT. The HYSPLIT backward trajectories generally tend to underestimate near-receptor sources because of a lack of stochastic dispersion of the backward trajectories and to overestimate distant sources because of a lack of treatment of dispersion. Additionally, the HYSPLIT backward trajectories showed a lack of consistency in the results obtained from different single vertical levels for starting the backward trajectories. To

  11. Unsteady force estimation using a Lagrangian drift-volume approach

    NASA Astrophysics Data System (ADS)

    McPhaden, Cameron J.; Rival, David E.

    2018-04-01

    A novel Lagrangian force estimation technique for unsteady fluid flows has been developed, using the concept of a Darwinian drift volume to measure unsteady forces on accelerating bodies. The construct of added mass in viscous flows, calculated from a series of drift volumes, is used to calculate the reaction force on an accelerating circular flat plate, containing highly-separated, vortical flow. The net displacement of fluid contained within the drift volumes is, through Darwin's drift-volume added-mass proposition, equal to the added mass of the plate and provides the reaction force of the fluid on the body. The resultant unsteady force estimates from the proposed technique are shown to align with the measured drag force associated with a rapid acceleration. The critical aspects of understanding unsteady flows, relating to peak and time-resolved forces, often lie within the acceleration phase of the motions, which are well-captured by the drift-volume approach. Therefore, this Lagrangian added-mass estimation technique opens the door to fluid-dynamic analyses in areas that, until now, were inaccessible by conventional means.

  12. Steady-state and dynamic models for particle engulfment during solidification

    NASA Astrophysics Data System (ADS)

    Tao, Yutao; Yeckel, Andrew; Derby, Jeffrey J.

    2016-06-01

    Steady-state and dynamic models are developed to study the physical mechanisms that determine the pushing or engulfment of a solid particle at a moving solid-liquid interface. The mathematical model formulation rigorously accounts for energy and momentum conservation, while faithfully representing the interfacial phenomena affecting solidification phase change and particle motion. A numerical solution approach is developed using the Galerkin finite element method and elliptic mesh generation in an arbitrary Lagrangian-Eulerian implementation, thus allowing for a rigorous representation of forces and dynamics previously inaccessible by approaches using analytical approximations. We demonstrate that this model accurately computes the solidification interface shape while simultaneously resolving thin fluid layers around the particle that arise from premelting during particle engulfment. We reinterpret the significance of premelting via the definition an unambiguous critical velocity for engulfment from steady-state analysis and bifurcation theory. We also explore the complicated transient behaviors that underlie the steady states of this system and posit the significance of dynamical behavior on engulfment events for many systems. We critically examine the onset of engulfment by comparing our computational predictions to those obtained using the analytical model of Rempel and Worster [29]. We assert that, while the accurate calculation of van der Waals repulsive forces remains an open issue, the computational model developed here provides a clear benefit over prior models for computing particle drag forces and other phenomena needed for the faithful simulation of particle engulfment.

  13. Numerical Simulations of Homogeneous Turbulence Using Lagrangian-Averaged Navier-Stokes Equations

    NASA Technical Reports Server (NTRS)

    Mohseni, Kamran; Shkoller, Steve; Kosovic, Branko; Marsden, Jerrold E.; Carati, Daniele; Wray, Alan; Rogallo, Robert

    2000-01-01

    The Lagrangian-averaged Navier-Stokes (LANS) equations are numerically evaluated as a turbulence closure. They are derived from a novel Lagrangian averaging procedure on the space of all volume-preserving maps and can be viewed as a numerical algorithm which removes the energy content from the small scales (smaller than some a priori fixed spatial scale alpha) using a dispersive rather than dissipative mechanism, thus maintaining the crucial features of the large scale flow. We examine the modeling capabilities of the LANS equations for decaying homogeneous turbulence, ascertain their ability to track the energy spectrum of fully resolved direct numerical simulations (DNS), compare the relative energy decay rates, and compare LANS with well-accepted large eddy simulation (LES) models.

  14. Direct experimental visualization of the global Hamiltonian progression of two-dimensional Lagrangian flow topologies from integrable to chaotic state.

    PubMed

    Baskan, O; Speetjens, M F M; Metcalfe, G; Clercx, H J H

    2015-10-01

    Countless theoretical/numerical studies on transport and mixing in two-dimensional (2D) unsteady flows lean on the assumption that Hamiltonian mechanisms govern the Lagrangian dynamics of passive tracers. However, experimental studies specifically investigating said mechanisms are rare. Moreover, they typically concern local behavior in specific states (usually far away from the integrable state) and generally expose this indirectly by dye visualization. Laboratory experiments explicitly addressing the global Hamiltonian progression of the Lagrangian flow topology entirely from integrable to chaotic state, i.e., the fundamental route to efficient transport by chaotic advection, appear non-existent. This motivates our study on experimental visualization of this progression by direct measurement of Poincaré sections of passive tracer particles in a representative 2D time-periodic flow. This admits (i) accurate replication of the experimental initial conditions, facilitating true one-to-one comparison of simulated and measured behavior, and (ii) direct experimental investigation of the ensuing Lagrangian dynamics. The analysis reveals a close agreement between computations and observations and thus experimentally validates the full global Hamiltonian progression at a great level of detail.

  15. Gravity, Time, and Lagrangians

    NASA Astrophysics Data System (ADS)

    Huggins, Elisha

    2010-11-01

    Feynman mentioned to us that he understood a topic in physics if he could explain it to a college freshman, a high school student, or a dinner guest. Here we will discuss two topics that took us a while to get to that level. One is the relationship between gravity and time. The other is the minus sign that appears in the Lagrangian. (Why would one subtract potential energy from kinetic energy?) In this paper we discuss a thought experiment that relates gravity and time. Then we use a Feynman thought experiment to explain the minus sign in the Lagrangian. Our surprise was that these two topics are related.

  16. A nominally second-order cell-centered Lagrangian scheme for simulating elastic-plastic flows on two-dimensional unstructured grids

    NASA Astrophysics Data System (ADS)

    Maire, Pierre-Henri; Abgrall, Rémi; Breil, Jérôme; Loubère, Raphaël; Rebourcet, Bernard

    2013-02-01

    In this paper, we describe a cell-centered Lagrangian scheme devoted to the numerical simulation of solid dynamics on two-dimensional unstructured grids in planar geometry. This numerical method, utilizes the classical elastic-perfectly plastic material model initially proposed by Wilkins [M.L. Wilkins, Calculation of elastic-plastic flow, Meth. Comput. Phys. (1964)]. In this model, the Cauchy stress tensor is decomposed into the sum of its deviatoric part and the thermodynamic pressure which is defined by means of an equation of state. Regarding the deviatoric stress, its time evolution is governed by a classical constitutive law for isotropic material. The plasticity model employs the von Mises yield criterion and is implemented by means of the radial return algorithm. The numerical scheme relies on a finite volume cell-centered method wherein numerical fluxes are expressed in terms of sub-cell force. The generic form of the sub-cell force is obtained by requiring the scheme to satisfy a semi-discrete dissipation inequality. Sub-cell force and nodal velocity to move the grid are computed consistently with cell volume variation by means of a node-centered solver, which results from total energy conservation. The nominally second-order extension is achieved by developing a two-dimensional extension in the Lagrangian framework of the Generalized Riemann Problem methodology, introduced by Ben-Artzi and Falcovitz [M. Ben-Artzi, J. Falcovitz, Generalized Riemann Problems in Computational Fluid Dynamics, Cambridge Monogr. Appl. Comput. Math. (2003)]. Finally, the robustness and the accuracy of the numerical scheme are assessed through the computation of several test cases.

  17. A nominally second-order cell-centered Lagrangian scheme for simulating elastic–plastic flows on two-dimensional unstructured grids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maire, Pierre-Henri, E-mail: maire@celia.u-bordeaux1.fr; Abgrall, Rémi, E-mail: remi.abgrall@math.u-bordeau1.fr; Breil, Jérôme, E-mail: breil@celia.u-bordeaux1.fr

    2013-02-15

    In this paper, we describe a cell-centered Lagrangian scheme devoted to the numerical simulation of solid dynamics on two-dimensional unstructured grids in planar geometry. This numerical method, utilizes the classical elastic-perfectly plastic material model initially proposed by Wilkins [M.L. Wilkins, Calculation of elastic–plastic flow, Meth. Comput. Phys. (1964)]. In this model, the Cauchy stress tensor is decomposed into the sum of its deviatoric part and the thermodynamic pressure which is defined by means of an equation of state. Regarding the deviatoric stress, its time evolution is governed by a classical constitutive law for isotropic material. The plasticity model employs themore » von Mises yield criterion and is implemented by means of the radial return algorithm. The numerical scheme relies on a finite volume cell-centered method wherein numerical fluxes are expressed in terms of sub-cell force. The generic form of the sub-cell force is obtained by requiring the scheme to satisfy a semi-discrete dissipation inequality. Sub-cell force and nodal velocity to move the grid are computed consistently with cell volume variation by means of a node-centered solver, which results from total energy conservation. The nominally second-order extension is achieved by developing a two-dimensional extension in the Lagrangian framework of the Generalized Riemann Problem methodology, introduced by Ben-Artzi and Falcovitz [M. Ben-Artzi, J. Falcovitz, Generalized Riemann Problems in Computational Fluid Dynamics, Cambridge Monogr. Appl. Comput. Math. (2003)]. Finally, the robustness and the accuracy of the numerical scheme are assessed through the computation of several test cases.« less

  18. Analytical solution of the problem of a shock wave in the collapsing gas in Lagrangian coordinates

    NASA Astrophysics Data System (ADS)

    Kuropatenko, V. F.; Shestakovskaya, E. S.

    2016-10-01

    It is proposed the exact solution of the problem of a convergent shock wave and gas dynamic compression in a spherical vessel with an impermeable wall in Lagrangian coordinates. At the initial time the speed of cold ideal gas is equal to zero, and a negative velocity is set on boundary of the sphere. When t > t0 the shock wave spreads from this point into the gas. The boundary of the sphere will move under the certain law correlated with the motion of the shock wave. The trajectories of the gas particles in Lagrangian coordinates are straight lines. The equations determining the structure of the gas flow between the shock front and gas border have been found as a function of time and Lagrangian coordinate. The dependence of the entropy on the velocity of the shock wave has been found too. For Lagrangian coordinates the problem is first solved. It is fundamentally different from previously known formulations of the problem of the self-convergence of the self-similar shock wave to the center of symmetry and its reflection from the center, which was built up for the infinite area in Euler coordinates.

  19. Mixing model with multi-particle interactions for Lagrangian simulations of turbulent mixing

    NASA Astrophysics Data System (ADS)

    Watanabe, T.; Nagata, K.

    2016-08-01

    We report on the numerical study of the mixing volume model (MVM) for molecular diffusion in Lagrangian simulations of turbulent mixing problems. The MVM is based on the multi-particle interaction in a finite volume (mixing volume). A priori test of the MVM, based on the direct numerical simulations of planar jets, is conducted in the turbulent region and the interfacial layer between the turbulent and non-turbulent fluids. The results show that the MVM predicts well the mean effects of the molecular diffusion under various numerical and flow parameters. The number of the mixing particles should be large for predicting a value of the molecular diffusion term positively correlated to the exact value. The size of the mixing volume relative to the Kolmogorov scale η is important in the performance of the MVM. The scalar transfer across the turbulent/non-turbulent interface is well captured by the MVM especially with the small mixing volume. Furthermore, the MVM with multiple mixing particles is tested in the hybrid implicit large-eddy-simulation/Lagrangian-particle-simulation (LES-LPS) of the planar jet with the characteristic length of the mixing volume of O(100η). Despite the large mixing volume, the MVM works well and decays the scalar variance in a rate close to the reference LES. The statistics in the LPS are very robust to the number of the particles used in the simulations and the computational grid size of the LES. Both in the turbulent core region and the intermittent region, the LPS predicts a scalar field well correlated to the LES.

  20. Cancellation exponent and multifractal structure in two-dimensional magnetohydrodynamics: direct numerical simulations and Lagrangian averaged modeling.

    PubMed

    Graham, Jonathan Pietarila; Mininni, Pablo D; Pouquet, Annick

    2005-10-01

    We present direct numerical simulations and Lagrangian averaged (also known as alpha model) simulations of forced and free decaying magnetohydrodynamic turbulence in two dimensions. The statistics of sign cancellations of the current at small scales is studied using both the cancellation exponent and the fractal dimension of the structures. The alpha model is found to have the same scaling behavior between positive and negative contributions as the direct numerical simulations. The alpha model is also able to reproduce the time evolution of these quantities in free decaying turbulence. At large Reynolds numbers, an independence of the cancellation exponent with the Reynolds numbers is observed.

  1. Multi-Material Closure Model for High-Order Finite Element Lagrangian Hydrodynamics

    DOE PAGES

    Dobrev, V. A.; Kolev, T. V.; Rieben, R. N.; ...

    2016-04-27

    We present a new closure model for single fluid, multi-material Lagrangian hydrodynamics and its application to high-order finite element discretizations of these equations [1]. The model is general with respect to the number of materials, dimension and space and time discretizations. Knowledge about exact material interfaces is not required. Material indicator functions are evolved by a closure computation at each quadrature point of mixed cells, which can be viewed as a high-order variational generalization of the method of Tipton [2]. This computation is defined by the notion of partial non-instantaneous pressure equilibration, while the full pressure equilibration is achieved bymore » both the closure model and the hydrodynamic motion. Exchange of internal energy between materials is derived through entropy considerations, that is, every material produces positive entropy, and the total entropy production is maximized in compression and minimized in expansion. Results are presented for standard one-dimensional two-material problems, followed by two-dimensional and three-dimensional multi-material high-velocity impact arbitrary Lagrangian–Eulerian calculations. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.« less

  2. Multi-Material Closure Model for High-Order Finite Element Lagrangian Hydrodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dobrev, V. A.; Kolev, T. V.; Rieben, R. N.

    We present a new closure model for single fluid, multi-material Lagrangian hydrodynamics and its application to high-order finite element discretizations of these equations [1]. The model is general with respect to the number of materials, dimension and space and time discretizations. Knowledge about exact material interfaces is not required. Material indicator functions are evolved by a closure computation at each quadrature point of mixed cells, which can be viewed as a high-order variational generalization of the method of Tipton [2]. This computation is defined by the notion of partial non-instantaneous pressure equilibration, while the full pressure equilibration is achieved bymore » both the closure model and the hydrodynamic motion. Exchange of internal energy between materials is derived through entropy considerations, that is, every material produces positive entropy, and the total entropy production is maximized in compression and minimized in expansion. Results are presented for standard one-dimensional two-material problems, followed by two-dimensional and three-dimensional multi-material high-velocity impact arbitrary Lagrangian–Eulerian calculations. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.« less

  3. Comparing High-latitude Ionospheric and Thermospheric Lagrangian Coherent Structures

    NASA Astrophysics Data System (ADS)

    Wang, N.; Ramirez, U.; Flores, F.; Okic, D.; Datta-Barua, S.

    2015-12-01

    Lagrangian Coherent Structures (LCSs) are invisible boundaries in time varying flow fields that may be subject to mixing and turbulence. The LCS is defined by the local maxima of the finite time Lyapunov exponent (FTLE), a scalar field quantifying the degree of stretching of fluid elements over the flow domain. Although the thermosphere is dominated by neutral wind processes and the ionosphere is governed by plasma electrodynamics, we can compare the LCS in the two modeled flow fields to yield insight into transport and interaction processes in the high-latitude IT system. For obtaining thermospheric LCS, we use the Horizontal Wind Model 2014 (HWM14) [1] at a single altitude to generate the two-dimensional velocity field. The FTLE computation is applied to study the flow field of the neutral wind, and to visualize the forward-time Lagrangian Coherent Structures in the flow domain. The time-varying structures indicate a possible thermospheric LCS ridge in the auroral oval area. The results of a two-day run during a geomagnetically quiet period show that the structures are diurnally quasi-periodic, thus that solar radiation influences the neutral wind flow field. To find the LCS in the high-latitude ionospheric drifts, the Weimer 2001 [2] polar electric potential model and the International Geomagnetic Reference Field 11 [3] are used to compute the ExB drift flow field in ionosphere. As with the neutral winds, the Lagrangian Coherent Structures are obtained by applying the FTLE computation. The relationship between the thermospheric and ionospheric LCS is analyzed by comparing overlapping FTLE maps. Both a publicly available FTLE solver [4] and a custom-built FTLE computation are used and compared for validation [5]. Comparing the modeled IT LCSs on a quiet day with the modeled IT LCSs on a storm day indicates important factors on the structure and time evolution of the LCS.

  4. A Computational Fluid Dynamic Model for a Novel Flash Ironmaking Process

    NASA Astrophysics Data System (ADS)

    Perez-Fontes, Silvia E.; Sohn, Hong Yong; Olivas-Martinez, Miguel

    A computational fluid dynamic model for a novel flash ironmaking process based on the direct gaseous reduction of iron oxide concentrates is presented. The model solves the three-dimensional governing equations including both gas-phase and gas-solid reaction kinetics. The turbulence-chemistry interaction in the gas-phase is modeled by the eddy dissipation concept incorporating chemical kinetics. The particle cloud model is used to track the particle phase in a Lagrangian framework. A nucleation and growth kinetics rate expression is adopted to calculate the reduction rate of magnetite concentrate particles. Benchmark experiments reported in the literature for a nonreacting swirling gas jet and a nonpremixed hydrogen jet flame were simulated for validation. The model predictions showed good agreement with measurements in terms of gas velocity, gas temperature and species concentrations. The relevance of the computational model for the analysis of a bench reactor operation and the design of an industrial-pilot plant is discussed.

  5. Eulerian and Lagrangian Parameterization of the Oceanic Mixed Layer using Large Eddy Simulation and MPAS-Ocean

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Roekel, Luke

    We have conducted a suite of Large Eddy Simulation (LES) to form the basis of a multi-model comparison (left). The results have led to proposed model improvements. We have verified that Eulerian-Lagrangian effective diffusivity estimates of mesoscale mixing are consistent with traditional particle statistics metrics (right). LES and Lagrangian particles will be utilized to better represent the movement of water into and out of the mixed layer.

  6. A Lagrangian stochastic model to demonstrate multi-scale interactions between convection and land surface heterogeneity in the atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Parsakhoo, Zahra; Shao, Yaping

    2017-04-01

    Near-surface turbulent mixing has considerable effect on surface fluxes, cloud formation and convection in the atmospheric boundary layer (ABL). Its quantifications is however a modeling and computational challenge since the small eddies are not fully resolved in Eulerian models directly. We have developed a Lagrangian stochastic model to demonstrate multi-scale interactions between convection and land surface heterogeneity in the atmospheric boundary layer based on the Ito Stochastic Differential Equation (SDE) for air parcels (particles). Due to the complexity of the mixing in the ABL, we find that linear Ito SDE cannot represent convections properly. Three strategies have been tested to solve the problem: 1) to make the deterministic term in the Ito equation non-linear; 2) to change the random term in the Ito equation fractional, and 3) to modify the Ito equation by including Levy flights. We focus on the third strategy and interpret mixing as interaction between at least two stochastic processes with different Lagrangian time scales. The model is in progress to include the collisions among the particles with different characteristic and to apply the 3D model for real cases. One application of the model is emphasized: some land surface patterns are generated and then coupled with the Large Eddy Simulation (LES).

  7. Source-receptor matrix calculation with a Lagrangian particle dispersion model in backward mode

    NASA Astrophysics Data System (ADS)

    Seibert, P.; Frank, A.

    2003-04-01

    A method for the calculation of source-receptor (s-r) relationships (sensitivity of a trace substance concentration at some place and time to emission at some place and time) with Lagrangian particle models has been derived and presented previously (Air Pollution Modeling and its Application XIV, Proc. of ITM Boulder 2000). Now, the generalisation to any linear s-r relationship, including dry and wet deposition, decay etc., is presented. It was implemented in the model FLEXPART and tested extensively in idealised set-ups. These tests turned out to be very useful for finding minor model bugs and inaccuracies, and can be recommended generally for model testing. Recently, a convection scheme has been integrated in FLEXPART which was also tested. Both source and receptor can be specified in mass mixing ratio or mass units. Properly taking care of this is quite relevant for sources and receptors at different levels in the atmosphere. Furthermore, we present a test with the transport of aerosol-bound Caesium-137 from the areas contaminated by the Chernobyl disaster to Stockholm during one month.

  8. Wake modeling in complex terrain using a hybrid Eulerian-Lagrangian Split Solver

    NASA Astrophysics Data System (ADS)

    Fuchs, Franz G.; Rasheed, Adil; Tabib, Mandar; Fonn, Eivind

    2016-09-01

    Wake vortices (WVs) generated by aircraft are a source of risk to the following aircraft. The probability of WV related accidents increases in the vicinity of airport runways due to the shorter time of recovery after a WV encounter. Hence, solutions that can reduce the risk of WV encounters are needed to ensure increased flight safety. In this work we propose an interesting approach to model such wake vortices in real time using a hybrid Eulerian- Lagrangian approach. We derive an appropriate mathematical model, and show a comparison of the different types of solvers. We will conclude with a real life application of the methodology by simulating how wake vortices left behind by an aircraft at the Vffirnes airport in Norway get transported and decay under the influence of a background wind and turbulence field. Although the work demonstrates the application in an aviation context the same approach can be used in a wind energy context.

  9. Testing of a new dense gas approach in the Lagrangian Dispersion Model SPRAY.

    NASA Astrophysics Data System (ADS)

    Mortarini, Luca; Alessandrini, Stefano; Ferrero, Enrico; Anfossi, Domenico; Manfrin, Massimiliano

    2013-04-01

    A new original method for the dispersion of a positively and negatively buoyant plume is proposed. The buoyant pollutant movement is treated introducing a fictitious scalar inside the Lagrangian Stochastic Particle Model SPRAY. The method is based on the same idea of Alessandrini and Ferrero (Phys. A 388:1375-1387, 2009) for the treatment of a background substance entrainment into the plume. In this application, the fictitious scalar is the density and momentum difference between the plume portions and the environment air that naturally takes into account the interaction between the plume and the environment. As a consequence, no more particles than those inside the plume have to be released to simulate the entrainment of the background air temperature. In this way the entrainment is properly simulated and the plume sink is calculated from the local property of the flow. This new approach is wholly Lagrangian in the sense that the Eulerian grid is only used to compute the propriety of a portion of the plume from the particles contained in every cell. No equation of the bulk plume is solved on a fixed grid. To thoroughly test the turbulent velocity field calculated by the model, the latter is compared with a water tank experiment carried out in the TURLAB laboratory in Turin (Italy). A vertical density driven current was created releasing a saline solution (salt and water) in a water tank with no mean flow. The experiment reproduces in physical similarity, based on the density Froud number, the release of a dense gas in the planetary boundary layer and the Particle Image Velocimetry technique has been used to analyze the buoyancy generated velocity field. The high temporal and spatial resolution of the measurements gives a deep insight to the problems of the bouncing of the dense gas and of the creation of the outflow velocity at the ground.

  10. Guidelines for the formulation of Lagrangian stochastic models for particle simulations of single-phase and dispersed two-phase turbulent flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minier, Jean-Pierre, E-mail: Jean-Pierre.Minier@edf.fr; Chibbaro, Sergio; Pope, Stephen B.

    In this paper, we establish a set of criteria which are applied to discuss various formulations under which Lagrangian stochastic models can be found. These models are used for the simulation of fluid particles in single-phase turbulence as well as for the fluid seen by discrete particles in dispersed turbulent two-phase flows. The purpose of the present work is to provide guidelines, useful for experts and non-experts alike, which are shown to be helpful to clarify issues related to the form of Lagrangian stochastic models. A central issue is to put forward reliable requirements which must be met by Lagrangianmore » stochastic models and a new element brought by the present analysis is to address the single- and two-phase flow situations from a unified point of view. For that purpose, we consider first the single-phase flow case and check whether models are fully consistent with the structure of the Reynolds-stress models. In the two-phase flow situation, coming up with clear-cut criteria is more difficult and the present choice is to require that the single-phase situation be well-retrieved in the fluid-limit case, elementary predictive abilities be respected and that some simple statistical features of homogeneous fluid turbulence be correctly reproduced. This analysis does not address the question of the relative predictive capacities of different models but concentrates on their formulation since advantages and disadvantages of different formulations are not always clear. Indeed, hidden in the changes from one structure to another are some possible pitfalls which can lead to flaws in the construction of practical models and to physically unsound numerical calculations. A first interest of the present approach is illustrated by considering some models proposed in the literature and by showing that these criteria help to assess whether these Lagrangian stochastic models can be regarded as acceptable descriptions. A second interest is to indicate how future

  11. On modeling heterogeneous coastal sediment transport - A numerical study using multiphase Eulerian and Euler-Lagrangian approaches

    NASA Astrophysics Data System (ADS)

    Cheng, Z.; Yu, X.; Hsu, T. J.; Calantoni, J.; Chauchat, J.

    2016-02-01

    Regional scale coastal evolution models do not explicitly resolve wave-driven sediment transport and must rely on bedload/suspended modules that utilize empirical assumptions. Under extreme wave events or in regions of high sediment heterogeneity, these empirical bedload/suspended load modules may need to be reevaluated with detailed observation and more sophisticated small-scale models. In the past decade, significant research efforts have been devoted to modeling sediment transport using multiphase Eulerian or Euler-Lagrangian approaches. Recently, an open-source multi-dimensional Reynolds-averaged two-phase sediment transport model, SedFOAM is developed by the authors and it has been adopted by many researchers to study momentary bed failure, granular rheology in sheet flow and scour around structures. In this abstract, we further report our recent progress made in extending the model with 3D turbulence-resolving capability and to model the sediment phase with the Discrete Element method (DEM). Adopting the large-eddy simulation methodology, we validate the 3D model with measured fine sediment transport is oscillatory sheet flow and demonstrate that the model is able to resolve sediment burst events during flow reversals. To better resolve the intergranular interactions and to model heterogeneous properties of sediment (e.g., mixed grain sizes and grain shape), we use an Euler-Lagrangian solver called CFDEM, which couples OpenFOAM for the fluid phase and LIGGGHTS for the particle phase. We improve the model by better enforcing conservation of mass in the pressure solver. The modified CFDEM solver is validated with measured oscillatory sheet flow data for coarse sand and we demonstrated that the model can reproduce the well-known armoring effects. We show that under Stokes second-order wave forcing, the armoring effect is more significant during the energetic positive peak, and hence the net onshore transport is reduced. Preliminary results modeling the shape

  12. SPH non-Newtonian Model for Ice Sheet and Ice Shelf Dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tartakovsky, Alexandre M.; Pan, Wenxiao; Monaghan, Joseph J.

    2012-07-07

    We propose a new three-dimensional smoothed particle hydrodynamics (SPH) non-Newtonian model to study coupled ice sheet and ice shelf dynamics. Most existing ice sheet numerical models use a grid-based Eulerian approach, and are usually restricted to shallow ice sheet and ice shelf approximations of the momentum conservation equation. SPH, a fully Lagrangian particle method, solves the full momentum conservation equation. SPH method also allows modeling of free-surface flows, large material deformation, and material fragmentation without employing complex front-tracking schemes, and does not require re-meshing. As a result, SPH codes are highly scalable. Numerical accuracy of the proposed SPH model ismore » first verified by simulating a plane shear flow with a free surface and the propagation of a blob of ice along a horizontal surface. Next, the SPH model is used to investigate the grounding line dynamics of ice sheet/shelf. The steady position of the grounding line, obtained from our SPH simulations, is in good agreement with laboratory observations for a wide range of bedrock slopes, ice-to-fluid density ratios, and flux. We examine the effect of non-Newtonian behavior of ice on the grounding line dynamics. The non-Newtonian constitutive model is based on Glen's law for a creeping flow of a polycrystalline ice. Finally, we investigate the effect of a bedrock geometry on a steady-state position of the grounding line.« less

  13. The γ p →p η η reaction in an effective Lagrangian model

    NASA Astrophysics Data System (ADS)

    Liu, Bo-Chao; Chen, Shao-Fei

    2017-11-01

    In this paper, we investigate the γ p →p η η reaction within an effective Lagrangian approach and isobar model. We consider the contributions from the intermediate N*(1535 ) , N*(1650 ) , N*(1710 ) , and N*(1720 ) isobars which finally decay to the N η state. It is found that the excitation of the N*(1535 ) dominates this reaction close to threshold and ρ meson exchange plays the most important role for the excitation of nucleon resonances. Therefore, this reaction offers a potentially good place to study the properties of nucleon resonances and their couplings to the N ρ channel. Predictions for angular distributions and invariant mass spectra of final particles are also presented for future comparison with data.

  14. Automated detection of Lagrangian eddies and coherent transport of heat and salinity in the Agulhas leakage

    NASA Astrophysics Data System (ADS)

    Huhn, Florian; Haller, George

    2014-05-01

    Haller and Beron-Vera(2013) have recently introduced a new objective method to detect coherent Lagrangian eddies in turbulence. They find that closed null-geodesics of a generalized Green-Lagrange strain tensor act as coherent Lagrangian eddy boundaries, showing near-zero and uniform material stretching. We make use of this method to develop an automated detection procedure for coherent Lagrangian eddies in large-scale ocean data. We apply our results to a recent 3D general circulation model, the Southern Ocean State Estimate (SOSE), with focus on the South Atlantic Ocean and the inter-ocean exchange between the Indian and Atlantic ocean. We detect a large number of coherent Lagrangian eddies and present statistics of their properties. The largest and most circular eddy boundaries represent Lagrangian Agulhas rings. Circular regions inside these rings with higher temperature and salinity than the surrounding waters can be explained by the coherent eddy boundaries that enclose and isolate the eddy interiors. We compare eddy boundaries at different depths with eddy boundaries obtained from geostrophic velocities derived from the model's sea surface height (SSH). The transport of mass, heat and salinity enclosed by coherent eddies through a section in the Cape basin is quantified and compared to the non-coherent transport by the background flow.

  15. Scale-by-scale contributions to Lagrangian particle acceleration

    NASA Astrophysics Data System (ADS)

    Lalescu, Cristian C.; Wilczek, Michael

    2017-11-01

    Fluctuations on a wide range of scales in both space and time are characteristic of turbulence. Lagrangian particles, advected by the flow, probe these fluctuations along their trajectories. In an effort to isolate the influence of the different scales on Lagrangian statistics, we employ direct numerical simulations (DNS) combined with a filtering approach. Specifically, we study the acceleration statistics of tracers advected in filtered fields to characterize the smallest temporal scales of the flow. Emphasis is put on the acceleration variance as a function of filter scale, along with the scaling properties of the relevant terms of the Navier-Stokes equations. We furthermore discuss scaling ranges for higher-order moments of the tracer acceleration, as well as the influence of the choice of filter on the results. Starting from the Lagrangian tracer acceleration as the short time limit of the Lagrangian velocity increment, we also quantify the influence of filtering on Lagrangian intermittency. Our work complements existing experimental results on intermittency and accelerations of finite-sized, neutrally-buoyant particles: for the passive tracers used in our DNS, feedback effects are neglected such that the spatial averaging effect is cleanly isolated.

  16. Lagrangian statistics in compressible isotropic homogeneous turbulence

    NASA Astrophysics Data System (ADS)

    Yang, Yantao; Wang, Jianchun; Shi, Yipeng; Chen, Shiyi

    2011-11-01

    In this work we conducted the Direct Numerical Simulation (DNS) of a forced compressible isotropic homogeneous turbulence and investigated the flow statistics from the Lagrangian point of view, namely the statistics is computed following the passive tracers trajectories. The numerical method combined the Eulerian field solver which was developed by Wang et al. (2010, J. Comp. Phys., 229, 5257-5279), and a Lagrangian module for tracking the tracers and recording the data. The Lagrangian probability density functions (p.d.f.'s) have then been calculated for both kinetic and thermodynamic quantities. In order to isolate the shearing part from the compressing part of the flow, we employed the Helmholtz decomposition to decompose the flow field (mainly the velocity field) into the solenoidal and compressive parts. The solenoidal part was compared with the incompressible case, while the compressibility effect showed up in the compressive part. The Lagrangian structure functions and cross-correlation between various quantities will also be discussed. This work was supported in part by the China's Turbulence Program under Grant No.2009CB724101.

  17. Mixing model with multi-particle interactions for Lagrangian simulations of turbulent mixing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watanabe, T., E-mail: watanabe.tomoaki@c.nagoya-u.jp; Nagata, K.

    We report on the numerical study of the mixing volume model (MVM) for molecular diffusion in Lagrangian simulations of turbulent mixing problems. The MVM is based on the multi-particle interaction in a finite volume (mixing volume). A priori test of the MVM, based on the direct numerical simulations of planar jets, is conducted in the turbulent region and the interfacial layer between the turbulent and non-turbulent fluids. The results show that the MVM predicts well the mean effects of the molecular diffusion under various numerical and flow parameters. The number of the mixing particles should be large for predicting amore » value of the molecular diffusion term positively correlated to the exact value. The size of the mixing volume relative to the Kolmogorov scale η is important in the performance of the MVM. The scalar transfer across the turbulent/non-turbulent interface is well captured by the MVM especially with the small mixing volume. Furthermore, the MVM with multiple mixing particles is tested in the hybrid implicit large-eddy-simulation/Lagrangian-particle-simulation (LES–LPS) of the planar jet with the characteristic length of the mixing volume of O(100η). Despite the large mixing volume, the MVM works well and decays the scalar variance in a rate close to the reference LES. The statistics in the LPS are very robust to the number of the particles used in the simulations and the computational grid size of the LES. Both in the turbulent core region and the intermittent region, the LPS predicts a scalar field well correlated to the LES.« less

  18. CFD Lagrangian Modeling of Water Droplet Transport for ISS Hygiene Activity Application

    NASA Technical Reports Server (NTRS)

    Son, Chang H.

    2013-01-01

    The goal of this study was to assess the impacts of free water propagation in the Waste and Hygiene Compartment (WHC) installed in Node 3. Free water can be generated inside the WHC in small quantities due to crew hygiene activity. To mitigate potential impact of free water in Node 3 cabin the WHC doorway is enclosed by a waterproof bump-out, Kabin, with openings at the top and bottom. At the overhead side of the rack, there is a screen that prevents large drops of water from exiting. However, as the avionics fan in the WHC causes airflow toward the deck side of the rack, small quantities of free water may exit at the bottom of the Kabin. A Computational Fluid Dynamics (CFD) analysis of Node 3 cabin airflow enable identifying the paths of water transport. To simulate the droplet transport the Lagrangian discrete phase approach was used. Various initial droplet distributions were considered in the study. The droplet diameter was varied in the range of 5-20 mm. The results of the computations showed that most of the drops fall to the rack surface not far from the WHC curtain.

  19. Lagrangian theory of structure formation in relativistic cosmology. IV. Lagrangian approach to gravitational waves

    NASA Astrophysics Data System (ADS)

    Al Roumi, Fosca; Buchert, Thomas; Wiegand, Alexander

    2017-12-01

    The relativistic generalization of the Newtonian Lagrangian perturbation theory is investigated. In previous works, the perturbation and solution schemes that are generated by the spatially projected gravitoelectric part of the Weyl tensor were given to any order of the perturbations, together with extensions and applications for accessing the nonperturbative regime. We here discuss more in detail the general first-order scheme within the Cartan formalism including and concentrating on the gravitational wave propagation in matter. We provide master equations for all parts of Lagrangian-linearized perturbations propagating in the perturbed spacetime, and we outline the solution procedure that allows one to find general solutions. Particular emphasis is given to global properties of the Lagrangian perturbation fields by employing results of Hodge-de Rham theory. We here discuss how the Hodge decomposition relates to the standard scalar-vector-tensor decomposition. Finally, we demonstrate that we obtain the known linear perturbation solutions of the standard relativistic perturbation scheme by performing two steps: first, by restricting our solutions to perturbations that propagate on a flat unperturbed background spacetime and, second, by transforming to Eulerian background coordinates with truncation of nonlinear terms.

  20. Source apportion of atmospheric particulate matter: a joint Eulerian/Lagrangian approach.

    PubMed

    Riccio, A; Chianese, E; Agrillo, G; Esposito, C; Ferrara, L; Tirimberio, G

    2014-12-01

    PM2.5 samples were collected during an annual monitoring campaign (January 2012-January 2013) in the urban area of Naples, one of the major cities in Southern Italy. Samples were collected by means of a standard gravimetric sampler (Tecora Echo model) and characterized from a chemical point of view by ion chromatography. As a result, 143 samples together with their ionic composition have been collected. We extend traditional source apportionment techniques, usually based on multivariate factor analysis, interpreting the chemical analysis results within a Lagrangian framework. The Hybrid Single-Particle Lagrangian Integrated Trajectory Model (HYSPLIT) model was used, providing linkages to the source regions in the upwind areas. Results were analyzed in order to quantify the relative weight of different source types/areas. Model results suggested that PM concentrations are strongly affected not only by local emissions but also by transboundary emissions, especially from the Eastern and Northern European countries and African Saharan dust episodes.

  1. Perturbed-input-data ensemble modeling of magnetospheric dynamics

    NASA Astrophysics Data System (ADS)

    Morley, S.; Steinberg, J. T.; Haiducek, J. D.; Welling, D. T.; Hassan, E.; Weaver, B. P.

    2017-12-01

    Many models of Earth's magnetospheric dynamics - including global magnetohydrodynamic models, reduced complexity models of substorms and empirical models - are driven by solar wind parameters. To provide consistent coverage of the upstream solar wind these measurements are generally taken near the first Lagrangian point (L1) and algorithmically propagated to the nose of Earth's bow shock. However, the plasma and magnetic field measured near L1 is a point measurement of an inhomogeneous medium, so the individual measurement may not be sufficiently representative of the broader region near L1. The measured plasma may not actually interact with the Earth, and the solar wind structure may evolve between L1 and the bow shock. To quantify uncertainties in simulations, as well as to provide probabilistic forecasts, it is desirable to use perturbed input ensembles of magnetospheric and space weather forecasting models. By using concurrent measurements of the solar wind near L1 and near the Earth, we construct a statistical model of the distributions of solar wind parameters conditioned on their upstream value. So that we can draw random variates from our model we specify the conditional probability distributions using Kernel Density Estimation. We demonstrate the utility of this approach using ensemble runs of selected models that can be used for space weather prediction.

  2. Direct experimental visualization of the global Hamiltonian progression of two-dimensional Lagrangian flow topologies from integrable to chaotic state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baskan, O.; Clercx, H. J. H; Speetjens, M. F. M.

    Countless theoretical/numerical studies on transport and mixing in two-dimensional (2D) unsteady flows lean on the assumption that Hamiltonian mechanisms govern the Lagrangian dynamics of passive tracers. However, experimental studies specifically investigating said mechanisms are rare. Moreover, they typically concern local behavior in specific states (usually far away from the integrable state) and generally expose this indirectly by dye visualization. Laboratory experiments explicitly addressing the global Hamiltonian progression of the Lagrangian flow topology entirely from integrable to chaotic state, i.e., the fundamental route to efficient transport by chaotic advection, appear non-existent. This motivates our study on experimental visualization of this progressionmore » by direct measurement of Poincaré sections of passive tracer particles in a representative 2D time-periodic flow. This admits (i) accurate replication of the experimental initial conditions, facilitating true one-to-one comparison of simulated and measured behavior, and (ii) direct experimental investigation of the ensuing Lagrangian dynamics. The analysis reveals a close agreement between computations and observations and thus experimentally validates the full global Hamiltonian progression at a great level of detail.« less

  3. COLAcode: COmoving Lagrangian Acceleration code

    NASA Astrophysics Data System (ADS)

    Tassev, Svetlin V.

    2016-02-01

    COLAcode is a serial particle mesh-based N-body code illustrating the COLA (COmoving Lagrangian Acceleration) method; it solves for Large Scale Structure (LSS) in a frame that is comoving with observers following trajectories calculated in Lagrangian Perturbation Theory (LPT). It differs from standard N-body code by trading accuracy at small-scales to gain computational speed without sacrificing accuracy at large scales. This is useful for generating large ensembles of accurate mock halo catalogs required to study galaxy clustering and weak lensing; such catalogs are needed to perform detailed error analysis for ongoing and future surveys of LSS.

  4. Lagrangian speckle model and tissue-motion estimation--theory.

    PubMed

    Maurice, R L; Bertrand, M

    1999-07-01

    It is known that when a tissue is subjected to movements such as rotation, shearing, scaling, etc., changes in speckle patterns that result act as a noise source, often responsible for most of the displacement-estimate variance. From a modeling point of view, these changes can be thought of as resulting from two mechanisms: one is the motion of the speckles and the other, the alterations of their morphology. In this paper, we propose a new tissue-motion estimator to counteract these speckle decorrelation effects. The estimator is based on a Lagrangian description of the speckle motion. This description allows us to follow local characteristics of the speckle field as if they were a material property. This method leads to an analytical description of the decorrelation in a way which enables the derivation of an appropriate inverse filter for speckle restoration. The filter is appropriate for linear geometrical transformation of the scattering function (LT), i.e., a constant-strain region of interest (ROI). As the LT itself is a parameter of the filter, a tissue-motion estimator can be formulated as a nonlinear minimization problem, seeking the best match between the pre-tissue-motion image and a restored-speckle post-motion image. The method is tested, using simulated radio-frequency (RF) images of tissue undergoing axial shear.

  5. Polarizable Force Fields and Polarizable Continuum Model: A Fluctuating Charges/PCM Approach. 1. Theory and Implementation.

    PubMed

    Lipparini, Filippo; Barone, Vincenzo

    2011-11-08

    We present a combined fluctuating charges-polarizable continuum model approach to describe molecules in solution. Both static and dynamic approaches are discussed: analytical first and second derivatives are shown as well as an extended lagrangian for molecular dynamics simluations. In particular, we use the polarizable continuum model to provide nonperiodic boundary conditions for molecular dynamics simulations of aqueous solutions. The extended lagrangian method is extensively discussed, with specific reference to the fluctuating charge model, from a numerical point of view by means of several examples, and a rationalization of the behavior found is presented. Several prototypical applications are shown, especially regarding solvation of ions and polar molecules in water.

  6. Lagrangian approach to understanding the origin of the gill-kinematics switch in mayfly nymphs.

    PubMed

    Chabreyrie, R; Balaras, E; Abdelaziz, K; Kiger, K

    2014-12-01

    The mayfly nymph breathes under water through an oscillating array of plate-shaped tracheal gills. As the nymph grows, the kinematics of these gills change abruptly from rowing to flapping. The classical fluid dynamics approach to consider the mayfly nymph as a pumping device fails in giving clear reasons for this switch. In order to shed some light on this switch between the two distinct kinematics, we analyze the problem under a Lagrangian viewpoint. We consider that a good Lagrangian transport that effectively distributes and stirs water and dissolved oxygen between and around the gills is the main goal of the gill motion. Using this Lagrangian approach, we are able to provide possible reasons behind the observed switch from rowing to flapping. More precisely, we conduct a series of in silico mayfly nymph experiments, where body shape, as well as gill shapes, structures, and kinematics are matched to those from in vivo. In this paper, we show both qualitatively and quantitatively how the change of kinematics enables better attraction, confinement, and stirring of water charged of dissolved oxygen inside the gills area. We reveal the attracting barriers to transport, i.e., attracting Lagrangian coherent structures, that form the transport skeleton between and around the gills. In addition, we quantify how well the fluid particles are stirred inside the gills area, which by extension leads us to conclude that it will increase the proneness of molecules of dissolved oxygen to be close enough to the gills for extraction.

  7. A Constructive Approach to Regularity of Lagrangian Trajectories for Incompressible Euler Flow in a Bounded Domain

    NASA Astrophysics Data System (ADS)

    Besse, Nicolas; Frisch, Uriel

    2017-04-01

    The 3D incompressible Euler equations are an important research topic in the mathematical study of fluid dynamics. Not only is the global regularity for smooth initial data an open issue, but the behaviour may also depend on the presence or absence of boundaries. For a good understanding, it is crucial to carry out, besides mathematical studies, high-accuracy and well-resolved numerical exploration. Such studies can be very demanding in computational resources, but recently it has been shown that very substantial gains can be achieved first, by using Cauchy's Lagrangian formulation of the Euler equations and second, by taking advantage of analyticity results of the Lagrangian trajectories for flows whose initial vorticity is Hölder-continuous. The latter has been known for about 20 years (Serfati in J Math Pures Appl 74:95-104, 1995), but the combination of the two, which makes use of recursion relations among time-Taylor coefficients to obtain constructively the time-Taylor series of the Lagrangian map, has been achieved only recently (Frisch and Zheligovsky in Commun Math Phys 326:499-505, 2014; Podvigina et al. in J Comput Phys 306:320-342, 2016 and references therein). Here we extend this methodology to incompressible Euler flow in an impermeable bounded domain whose boundary may be either analytic or have a regularity between indefinite differentiability and analyticity. Non-constructive regularity results for these cases have already been obtained by Glass et al. (Ann Sci Éc Norm Sup 45:1-51, 2012). Using the invariance of the boundary under the Lagrangian flow, we establish novel recursion relations that include contributions from the boundary. This leads to a constructive proof of time-analyticity of the Lagrangian trajectories with analytic boundaries, which can then be used subsequently for the design of a very high-order Cauchy-Lagrangian method.

  8. Edgeworth streaming model for redshift space distortions

    NASA Astrophysics Data System (ADS)

    Uhlemann, Cora; Kopp, Michael; Haugg, Thomas

    2015-09-01

    We derive the Edgeworth streaming model (ESM) for the redshift space correlation function starting from an arbitrary distribution function for biased tracers of dark matter by considering its two-point statistics and show that it reduces to the Gaussian streaming model (GSM) when neglecting non-Gaussianities. We test the accuracy of the GSM and ESM independent of perturbation theory using the Horizon Run 2 N -body halo catalog. While the monopole of the redshift space halo correlation function is well described by the GSM, higher multipoles improve upon including the leading order non-Gaussian correction in the ESM: the GSM quadrupole breaks down on scales below 30 Mpc /h whereas the ESM stays accurate to 2% within statistical errors down to 10 Mpc /h . To predict the scale-dependent functions entering the streaming model we employ convolution Lagrangian perturbation theory (CLPT) based on the dust model and local Lagrangian bias. Since dark matter halos carry an intrinsic length scale given by their Lagrangian radius, we extend CLPT to the coarse-grained dust model and consider two different smoothing approaches operating in Eulerian and Lagrangian space, respectively. The coarse graining in Eulerian space features modified fluid dynamics different from dust while the coarse graining in Lagrangian space is performed in the initial conditions with subsequent single-streaming dust dynamics, implemented by smoothing the initial power spectrum in the spirit of the truncated Zel'dovich approximation. Finally, we compare the predictions of the different coarse-grained models for the streaming model ingredients to N -body measurements and comment on the proper choice of both the tracer distribution function and the smoothing scale. Since the perturbative methods we considered are not yet accurate enough on small scales, the GSM is sufficient when applied to perturbation theory.

  9. Nonconservative Lagrangian Mechanics: Purely Causal Equations of Motion

    NASA Astrophysics Data System (ADS)

    Dreisigmeyer, David W.; Young, Peter M.

    2015-06-01

    This work builds on the Volterra series formalism presented in Dreisigmeyer and Young (J Phys A 36: 8297, 2003) to model nonconservative systems. Here we treat Lagrangians and actions as `time dependent' Volterra series. We present a new family of kernels to be used in these Volterra series that allow us to derive a single retarded equation of motion using a variational principle.

  10. Matter Lagrangian of particles and fluids

    NASA Astrophysics Data System (ADS)

    Avelino, P. P.; Sousa, L.

    2018-03-01

    We consider a model where particles are described as localized concentrations of energy, with fixed rest mass and structure, which are not significantly affected by their self-induced gravitational field. We show that the volume average of the on-shell matter Lagrangian Lm describing such particles, in the proper frame, is equal to the volume average of the trace T of the energy-momentum tensor in the same frame, independently of the particle's structure and constitution. Since both Lm and T are scalars, and thus independent of the reference frame, this result is also applicable to collections of moving particles and, in particular, to those which can be described by a perfect fluid. Our results are expected to be particularly relevant in the case of modified theories of gravity with nonminimal coupling to matter where the matter Lagrangian appears explicitly in the equations of motion of the gravitational and matter fields, such as f (R ,Lm) and f (R ,T ) gravity. In particular, they indicate that, in this context, f (R ,Lm) theories may be regarded as a subclass of f (R ,T ) gravity.

  11. Dynamic modeling and optimal joint torque coordination of advanced robotic systems

    NASA Astrophysics Data System (ADS)

    Kang, Hee-Jun

    The development is documented of an efficient dynamic modeling algorithm and the subsequent optimal joint input load coordination of advanced robotic systems for industrial application. A closed-form dynamic modeling algorithm for the general closed-chain robotic linkage systems is presented. The algorithm is based on the transfer of system dependence from a set of open chain Lagrangian coordinates to any desired system generalized coordinate set of the closed-chain. Three different techniques for evaluation of the kinematic closed chain constraints allow the representation of the dynamic modeling parameters in terms of system generalized coordinates and have no restriction with regard to kinematic redundancy. The total computational requirement of the closed-chain system model is largely dependent on the computation required for the dynamic model of an open kinematic chain. In order to improve computational efficiency, modification of an existing open-chain KIC based dynamic formulation is made by the introduction of the generalized augmented body concept. This algorithm allows a 44 pct. computational saving over the current optimized one (O(N4), 5995 when N = 6). As means of resolving redundancies in advanced robotic systems, local joint torque optimization is applied for effectively using actuator power while avoiding joint torque limits. The stability problem in local joint torque optimization schemes is eliminated by using fictitious dissipating forces which act in the necessary null space. The performance index representing the global torque norm is shown to be satisfactory. In addition, the resulting joint motion trajectory becomes conservative, after a transient stage, for repetitive cyclic end-effector trajectories. The effectiveness of the null space damping method is shown. The modular robot, which is built of well defined structural modules from a finite-size inventory and is controlled by one general computer system, is another class of evolving

  12. Scalar curvature of Lagrangian Riemannian submersions and their harmonicity

    NASA Astrophysics Data System (ADS)

    Eken Meri˙ç, Şemsi; Kiliç, Erol; Sağiroğlu, Yasemi˙n

    In this paper, we consider a Lagrangian Riemannian submersion from a Hermitian manifold to a Riemannian manifold and establish some basic inequalities to obtain relationships between the intrinsic and extrinsic invariants for such a submersion. Indeed, using these inequalities, we provide necessary and sufficient conditions for which a Lagrangian Riemannian submersion π has totally geodesic or totally umbilical fibers. Moreover, we study the harmonicity of Lagrangian Riemannian submersions and obtain a characterization for such submersions to be harmonic.

  13. Lagrangian methods of cosmic web classification

    NASA Astrophysics Data System (ADS)

    Fisher, J. D.; Faltenbacher, A.; Johnson, M. S. T.

    2016-05-01

    The cosmic web defines the large-scale distribution of matter we see in the Universe today. Classifying the cosmic web into voids, sheets, filaments and nodes allows one to explore structure formation and the role environmental factors have on halo and galaxy properties. While existing studies of cosmic web classification concentrate on grid-based methods, this work explores a Lagrangian approach where the V-web algorithm proposed by Hoffman et al. is implemented with techniques borrowed from smoothed particle hydrodynamics. The Lagrangian approach allows one to classify individual objects (e.g. particles or haloes) based on properties of their nearest neighbours in an adaptive manner. It can be applied directly to a halo sample which dramatically reduces computational cost and potentially allows an application of this classification scheme to observed galaxy samples. Finally, the Lagrangian nature admits a straightforward inclusion of the Hubble flow negating the necessity of a visually defined threshold value which is commonly employed by grid-based classification methods.

  14. Lagrangian model for the evolution of turbulent magnetic and passive scalar fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hater, T.; Grauer, R.; Homann, H.

    2011-01-15

    In this Brief Report we present an extension of the recent fluid deformation (RFD) closure introduced by Chevillard and Meneveau [L. Chevillard and C. Meneveau, Phys. Rev. Lett. 97, 174501 (2006)] which was developed for modeling the time evolution of Lagrangian fluctuations in incompressible Navier-Stokes turbulence. We apply the RFD closure to study the evolution of magnetic and passive scalar fluctuations. This comparison is especially interesting since the stretching term for the magnetic field and for the gradient of the passive scalar are similar but differ by a sign such that the effect of stretching and compression by the turbulentmore » velocity field is reversed. Probability density functions (PDFs) of magnetic fluctuations and fluctuations of the gradient of the passive scalar obtained from the RFD closure are compared against PDFs obtained from direct numerical simulations.« less

  15. The initial value problem in Lagrangian drift kinetic theory

    NASA Astrophysics Data System (ADS)

    Burby, J. W.

    2016-06-01

    > Existing high-order variational drift kinetic theories contain unphysical rapidly varying modes that are not seen at low orders. These unphysical modes, which may be rapidly oscillating, damped or growing, are ushered in by a failure of conventional high-order drift kinetic theory to preserve the structure of its parent model's initial value problem. In short, the (infinite dimensional) system phase space is unphysically enlarged in conventional high-order variational drift kinetic theory. I present an alternative, `renormalized' variational approach to drift kinetic theory that manifestly respects the parent model's initial value problem. The basic philosophy underlying this alternate approach is that high-order drift kinetic theory ought to be derived by truncating the all-orders system phase-space Lagrangian instead of the usual `field particle' Lagrangian. For the sake of clarity, this story is told first through the lens of a finite-dimensional toy model of high-order variational drift kinetics; the analogous full-on drift kinetic story is discussed subsequently. The renormalized drift kinetic system, while variational and just as formally accurate as conventional formulations, does not support the troublesome rapidly varying modes.

  16. Bayesian Nonlinear Assimilation of Eulerian and Lagrangian Coastal Flow Data

    DTIC Science & Technology

    2015-09-30

    Lagrangian Coastal Flow Data Dr. Pierre F.J. Lermusiaux Department of Mechanical Engineering Center for Ocean Science and Engineering Massachusetts...Develop and apply theory, schemes and computational systems for rigorous Bayesian nonlinear assimilation of Eulerian and Lagrangian coastal flow data...coastal ocean fields, both in Eulerian and Lagrangian forms. - Further develop and implement our GMM-DO schemes for robust Bayesian nonlinear estimation

  17. Subgrid-scale stresses and scalar fluxes constructed by the multi-scale turnover Lagrangian map

    NASA Astrophysics Data System (ADS)

    AL-Bairmani, Sukaina; Li, Yi; Rosales, Carlos; Xie, Zheng-tong

    2017-04-01

    The multi-scale turnover Lagrangian map (MTLM) [C. Rosales and C. Meneveau, "Anomalous scaling and intermittency in three-dimensional synthetic turbulence," Phys. Rev. E 78, 016313 (2008)] uses nested multi-scale Lagrangian advection of fluid particles to distort a Gaussian velocity field and, as a result, generate non-Gaussian synthetic velocity fields. Passive scalar fields can be generated with the procedure when the fluid particles carry a scalar property [C. Rosales, "Synthetic three-dimensional turbulent passive scalar fields via the minimal Lagrangian map," Phys. Fluids 23, 075106 (2011)]. The synthetic fields have been shown to possess highly realistic statistics characterizing small scale intermittency, geometrical structures, and vortex dynamics. In this paper, we present a study of the synthetic fields using the filtering approach. This approach, which has not been pursued so far, provides insights on the potential applications of the synthetic fields in large eddy simulations and subgrid-scale (SGS) modelling. The MTLM method is first generalized to model scalar fields produced by an imposed linear mean profile. We then calculate the subgrid-scale stress, SGS scalar flux, SGS scalar variance, as well as related quantities from the synthetic fields. Comparison with direct numerical simulations (DNSs) shows that the synthetic fields reproduce the probability distributions of the SGS energy and scalar dissipation rather well. Related geometrical statistics also display close agreement with DNS results. The synthetic fields slightly under-estimate the mean SGS energy dissipation and slightly over-predict the mean SGS scalar variance dissipation. In general, the synthetic fields tend to slightly under-estimate the probability of large fluctuations for most quantities we have examined. Small scale anisotropy in the scalar field originated from the imposed mean gradient is captured. The sensitivity of the synthetic fields on the input spectra is assessed by

  18. Coupling of Coastal Zone Color Scanner data to a physical-biological model of the southeastern U.S. continental shelf ecosystem. I - CZCS data description and Lagrangian particle tracing experiments. II - An Eulerian model. III - Nutrient and phytoplankton fluxes and CZCS data assimilation

    NASA Technical Reports Server (NTRS)

    Ishizaka, Joji

    1990-01-01

    Surface phytoplankton biomass of the southeastern U.S. continental shelf area is discussed based on coastal zone color scanner (CZCS) images obtained in April 1980. Data of chlorophyll distributions are analyzed in conjunction with concurrent flow and temperature fields. Lagrangian particle tracing experiments show that the particles move consistently with the evolution of the chlorophyll patterns. A four-component physical-biological model for a horizontal plane at a nominal depth of 17 m is presented. Model simulations using various physical-biological dynamics and boundary conditions show that the variability of chlorophyll distributions is controlled by horizontal advection. Phytoplankton and nutrient fluxes, calculated using the model, show considerable variability with time. The chlorophyll distributions obtained from the CZCS images are assimilated into the model to improve the phytoplankton flux estimates.

  19. A semi-Lagrangian advection scheme for radioactive tracers in a regional spectral model

    NASA Astrophysics Data System (ADS)

    Chang, E.-C.; Yoshimura, K.

    2015-06-01

    In this study, the non-iteration dimensional-split semi-Lagrangian (NDSL) advection scheme is applied to the National Centers for Environmental Prediction (NCEP) regional spectral model (RSM) to alleviate the Gibbs phenomenon. The Gibbs phenomenon is a problem wherein negative values of positive-definite quantities (e.g., moisture and tracers) are generated by the spectral space transformation in a spectral model system. To solve this problem, the spectral prognostic specific humidity and radioactive tracer advection scheme is replaced by the NDSL advection scheme, which considers advection of tracers in a grid system without spectral space transformations. A regional version of the NDSL is developed in this study and is applied to the RSM. Idealized experiments show that the regional version of the NDSL is successful. The model runs for an actual case study suggest that the NDSL can successfully advect radioactive tracers (iodine-131 and cesium-137) without noise from the Gibbs phenomenon. The NDSL can also remove negative specific humidity values produced in spectral calculations without losing detailed features.

  20. Preconditioned augmented Lagrangian formulation for nearly incompressible cardiac mechanics.

    PubMed

    Campos, Joventino Oliveira; Dos Santos, Rodrigo Weber; Sundnes, Joakim; Rocha, Bernardo Martins

    2018-04-01

    Computational modeling of the heart is a subject of substantial medical and scientific interest, which may contribute to increase the understanding of several phenomena associated with cardiac physiological and pathological states. Modeling the mechanics of the heart have led to considerable insights, but it still represents a complex and a demanding computational problem, especially in a strongly coupled electromechanical setting. Passive cardiac tissue is commonly modeled as hyperelastic and is characterized by quasi-incompressible, orthotropic, and nonlinear material behavior. These factors are known to be very challenging for the numerical solution of the model. The near-incompressibility is known to cause numerical issues such as the well-known locking phenomenon and ill-conditioning of the stiffness matrix. In this work, the augmented Lagrangian method is used to handle the nearly incompressible condition. This approach can potentially improve computational performance by reducing the condition number of the stiffness matrix and thereby improving the convergence of iterative solvers. We also improve the performance of iterative solvers by the use of an algebraic multigrid preconditioner. Numerical results of the augmented Lagrangian method combined with a preconditioned iterative solver for a cardiac mechanics benchmark suite are presented to show its improved performance. Copyright © 2017 John Wiley & Sons, Ltd.

  1. A Parallel, Multi-Scale Watershed-Hydrologic-Inundation Model with Adaptively Switching Mesh for Capturing Flooding and Lake Dynamics

    NASA Astrophysics Data System (ADS)

    Ji, X.; Shen, C.

    2017-12-01

    Flood inundation presents substantial societal hazards and also changes biogeochemistry for systems like the Amazon. It is often expensive to simulate high-resolution flood inundation and propagation in a long-term watershed-scale model. Due to the Courant-Friedrichs-Lewy (CFL) restriction, high resolution and large local flow velocity both demand prohibitively small time steps even for parallel codes. Here we develop a parallel surface-subsurface process-based model enhanced by multi-resolution meshes that are adaptively switched on or off. The high-resolution overland flow meshes are enabled only when the flood wave invades to floodplains. This model applies semi-implicit, semi-Lagrangian (SISL) scheme in solving dynamic wave equations, and with the assistant of the multi-mesh method, it also adaptively chooses the dynamic wave equation only in the area of deep inundation. Therefore, the model achieves a balance between accuracy and computational cost.

  2. Lagrangian flows within reflecting internal waves at a horizontal free-slip surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Qi, E-mail: q.zhou@damtp.cam.ac.uk; Diamessis, Peter J.

    In this paper sequel to Zhou and Diamessis [“Reflection of an internal gravity wave beam off a horizontal free-slip surface,” Phys. Fluids 25, 036601 (2013)], we consider Lagrangian flows within nonlinear internal waves (IWs) reflecting off a horizontal free-slip rigid lid, the latter being a model of the ocean surface. The problem is approached both analytically using small-amplitude approximations and numerically by tracking Lagrangian fluid particles in direct numerical simulation (DNS) datasets of the Eulerian flow. Inviscid small-amplitude analyses for both plane IWs and IW beams (IWBs) show that Eulerian mean flow due to wave-wave interaction and wave-induced Stokes driftmore » cancels each other out completely at the second order in wave steepness A, i.e., O(A{sup 2}), implying zero Lagrangian mean flow up to that order. However, high-accuracy particle tracking in finite-Reynolds-number fully nonlinear DNS datasets from the work of Zhou and Diamessis suggests that the Euler-Stokes cancelation on O(A{sup 2}) is not complete. This partial cancelation significantly weakens the mean Lagrangian flows but does not entirely eliminate them. As a result, reflecting nonlinear IWBs produce mean Lagrangian drifts on O(A{sup 2}) and thus particle dispersion on O(A{sup 4}). The above findings can be relevant to predicting IW-driven mass transport in the oceanic surface and subsurface region which bears important observational and environmental implications, under circumstances where the effect of Earth rotation can be ignored.« less

  3. A deterministic Lagrangian particle separation-based method for advective-diffusion problems

    NASA Astrophysics Data System (ADS)

    Wong, Ken T. M.; Lee, Joseph H. W.; Choi, K. W.

    2008-12-01

    A simple and robust Lagrangian particle scheme is proposed to solve the advective-diffusion transport problem. The scheme is based on relative diffusion concepts and simulates diffusion by regulating particle separation. This new approach generates a deterministic result and requires far less number of particles than the random walk method. For the advection process, particles are simply moved according to their velocity. The general scheme is mass conservative and is free from numerical diffusion. It can be applied to a wide variety of advective-diffusion problems, but is particularly suited for ecological and water quality modelling when definition of particle attributes (e.g., cell status for modelling algal blooms or red tides) is a necessity. The basic derivation, numerical stability and practical implementation of the NEighborhood Separation Technique (NEST) are presented. The accuracy of the method is demonstrated through a series of test cases which embrace realistic features of coastal environmental transport problems. Two field application examples on the tidal flushing of a fish farm and the dynamics of vertically migrating marine algae are also presented.

  4. Spectral-Lagrangian methods for collisional models of non-equilibrium statistical states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gamba, Irene M.; Tharkabhushanam, Sri Harsha

    We propose a new spectral Lagrangian based deterministic solver for the non-linear Boltzmann transport equation (BTE) in d-dimensions for variable hard sphere (VHS) collision kernels with conservative or non-conservative binary interactions. The method is based on symmetries of the Fourier transform of the collision integral, where the complexity in its computation is reduced to a separate integral over the unit sphere S{sup d-1}. The conservation of moments is enforced by Lagrangian constraints. The resulting scheme, implemented in free space, is very versatile and adjusts in a very simple manner to several cases that involve energy dissipation due to local micro-reversibilitymore » (inelastic interactions) or elastic models of slowing down process. Our simulations are benchmarked with available exact self-similar solutions, exact moment equations and analytical estimates for the homogeneous Boltzmann equation, both for elastic and inelastic VHS interactions. Benchmarking of the simulations involves the selection of a time self-similar rescaling of the numerical distribution function which is performed using the continuous spectrum of the equation for Maxwell molecules as studied first in Bobylev et al. [A.V. Bobylev, C. Cercignani, G. Toscani, Proof of an asymptotic property of self-similar solutions of the Boltzmann equation for granular materials, Journal of Statistical Physics 111 (2003) 403-417] and generalized to a wide range of related models in Bobylev et al. [A.V. Bobylev, C. Cercignani, I.M. Gamba, On the self-similar asymptotics for generalized non-linear kinetic Maxwell models, Communication in Mathematical Physics, in press. URL: ()]. The method also produces accurate results in the case of inelastic diffusive Boltzmann equations for hard spheres (inelastic collisions under thermal bath), where overpopulated non-Gaussian exponential tails have been conjectured in computations by stochastic methods [T.V. Noije, M

  5. An Extended Lagrangian Method

    NASA Technical Reports Server (NTRS)

    Liou, Meng-Sing

    1995-01-01

    A unique formulation of describing fluid motion is presented. The method, referred to as 'extended Lagrangian method,' is interesting from both theoretical and numerical points of view. The formulation offers accuracy in numerical solution by avoiding numerical diffusion resulting from mixing of fluxes in the Eulerian description. The present method and the Arbitrary Lagrangian-Eulerian (ALE) method have a similarity in spirit-eliminating the cross-streamline numerical diffusion. For this purpose, we suggest a simple grid constraint condition and utilize an accurate discretization procedure. This grid constraint is only applied to the transverse cell face parallel to the local stream velocity, and hence our method for the steady state problems naturally reduces to the streamline-curvature method, without explicitly solving the steady stream-coordinate equations formulated a priori. Unlike the Lagrangian method proposed by Loh and Hui which is valid only for steady supersonic flows, the present method is general and capable of treating subsonic flows and supersonic flows as well as unsteady flows, simply by invoking in the same code an appropriate grid constraint suggested in this paper. The approach is found to be robust and stable. It automatically adapts to flow features without resorting to clustering, thereby maintaining rather uniform grid spacing throughout and large time step. Moreover, the method is shown to resolve multi-dimensional discontinuities with a high level of accuracy, similar to that found in one-dimensional problems.

  6. Fluid Dynamics Lagrangian Simulation Model

    DTIC Science & Technology

    1994-02-08

    In recent experimental studies by Ramberg where all variables are non -dimensionalised by h and et al.6 and Swean et al.s.7 single-point hot-film mea- 0...determining the effect on the vortex street of superimposing a small perturbation on the incident mean flow upstream of the cylinder. Experimental work...region. The results were compared with experimental data and with data obtained numerically by other 0 investigators, who had not attempted to define the

  7. An extended Lagrangian method

    NASA Technical Reports Server (NTRS)

    Liou, Meng-Sing

    1993-01-01

    A unique formulation of describing fluid motion is presented. The method, referred to as 'extended Lagrangian method', is interesting from both theoretical and numerical points of view. The formulation offers accuracy in numerical solution by avoiding numerical diffusion resulting from mixing of fluxes in the Eulerian description. Meanwhile, it also avoids the inaccuracy incurred due to geometry and variable interpolations used by the previous Lagrangian methods. The present method is general and capable of treating subsonic flows as well as supersonic flows. The method proposed in this paper is robust and stable. It automatically adapts to flow features without resorting to clustering, thereby maintaining rather uniform grid spacing throughout and large time step. Moreover, the method is shown to resolve multidimensional discontinuities with a high level of accuracy, similar to that found in 1D problems.

  8. Lagrangian particles with mixing. I. Simulating scalar transport

    NASA Astrophysics Data System (ADS)

    Klimenko, A. Y.

    2009-06-01

    The physical similarity and mathematical equivalence of continuous diffusion and particle random walk forms one of the cornerstones of modern physics and the theory of stochastic processes. The randomly walking particles do not need to posses any properties other than location in physical space. However, particles used in many models dealing with simulating turbulent transport and turbulent combustion do posses a set of scalar properties and mixing between particle properties is performed to reflect the dissipative nature of the diffusion processes. We show that the continuous scalar transport and diffusion can be accurately specified by means of localized mixing between randomly walking Lagrangian particles with scalar properties and assess errors associated with this scheme. Particles with scalar properties and localized mixing represent an alternative formulation for the process, which is selected to represent the continuous diffusion. Simulating diffusion by Lagrangian particles with mixing involves three main competing requirements: minimizing stochastic uncertainty, minimizing bias introduced by numerical diffusion, and preserving independence of particles. These requirements are analyzed for two limited cases of mixing between two particles and mixing between a large number of particles. The problem of possible dependences between particles is most complicated. This problem is analyzed using a coupled chain of equations that has similarities with Bogolubov-Born-Green-Kirkwood-Yvon chain in statistical physics. Dependences between particles can be significant in close proximity of the particles resulting in a reduced rate of mixing. This work develops further ideas introduced in the previously published letter [Phys. Fluids 19, 031702 (2007)]. Paper I of this work is followed by Paper II [Phys. Fluids 19, 065102 (2009)] where modeling of turbulent reacting flows by Lagrangian particles with localized mixing is specifically considered.

  9. Computational Fluid Dynamics Modeling of Bacillus anthracis ...

    EPA Pesticide Factsheets

    Journal Article Three-dimensional computational fluid dynamics and Lagrangian particle deposition models were developed to compare the deposition of aerosolized Bacillus anthracis spores in the respiratory airways of a human with that of the rabbit, a species commonly used in the study of anthrax disease. The respiratory airway geometries for each species were derived from computed tomography (CT) or µCT images. Both models encompassed airways that extended from the external nose to the lung with a total of 272 outlets in the human model and 2878 outlets in the rabbit model. All simulations of spore deposition were conducted under transient, inhalation-exhalation breathing conditions using average species-specific minute volumes. Four different exposure scenarios were modeled in the rabbit based upon experimental inhalation studies. For comparison, human simulations were conducted at the highest exposure concentration used during the rabbit experimental exposures. Results demonstrated that regional spore deposition patterns were sensitive to airway geometry and ventilation profiles. Despite the complex airway geometries in the rabbit nose, higher spore deposition efficiency was predicted in the upper conducting airways of the human at the same air concentration of anthrax spores. This greater deposition of spores in the upper airways in the human resulted in lower penetration and deposition in the tracheobronchial airways and the deep lung than that predict

  10. The Monotonic Lagrangian Grid for Fast Air-Traffic Evaluation

    NASA Technical Reports Server (NTRS)

    Alexandrov, Natalia; Kaplan, Carolyn; Oran, Elaine; Boris, Jay

    2010-01-01

    This paper describes the continued development of a dynamic air-traffic model, ATMLG, intended for rapid evaluation of rules and methods to control and optimize transport systems. The underlying data structure is based on the Monotonic Lagrangian Grid (MLG), which is used for sorting and ordering positions and other data needed to describe N moving bodies, and their interactions. In ATMLG, the MLG is combined with algorithms for collision avoidance and updating aircraft trajectories. Aircraft that are close to each other in physical space are always near neighbors in the MLG data arrays, resulting in a fast nearest-neighbor interaction algorithm that scales as N. In this paper, we use ATMLG to examine how the ability to maintain a required separation between aircraft decreases as the number of aircraft in the volume increases. This requires keeping track of the primary and subsequent collision avoidance maneuvers necessary to maintain a five mile separation distance between all aircraft. Simulation results show that the number of collision avoidance moves increases exponentially with the number of aircraft in the volume.

  11. Lagrangian Particle Tracking Simulation for Warm-Rain Processes in Quasi-One-Dimensional Domain

    NASA Astrophysics Data System (ADS)

    Kunishima, Y.; Onishi, R.

    2017-12-01

    Conventional cloud simulations are based on the Euler method and compute each microphysics process in a stochastic way assuming infinite numbers of particles within each numerical grid. They therefore cannot provide the Lagrangian statistics of individual particles in cloud microphysics (i.e., aerosol particles, cloud particles, and rain drops) nor discuss the statistical fluctuations due to finite number of particles. We here simulate the entire precipitation process of warm-rain, with tracking individual particles. We use the Lagrangian Cloud Simulator (LCS), which is based on the Euler-Lagrangian framework. In that framework, flow motion and scalar transportation are computed with the Euler method, and particle motion with the Lagrangian one. The LCS tracks particle motions and collision events individually with considering the hydrodynamic interaction between approaching particles with a superposition method, that is, it can directly represent the collisional growth of cloud particles. It is essential for trustworthy collision detection to take account of the hydrodynamic interaction. In this study, we newly developed a stochastic model based on the Twomey cloud condensation nuclei (CCN) activation for the Lagrangian tracking simulation and integrated it into the LCS. Coupling with the Euler computation for water vapour and temperature fields, the initiation and condensational growth of water droplets were computed in the Lagrangian way. We applied the integrated LCS for a kinematic simulation of warm-rain processes in a vertically-elongated domain of, at largest, 0.03×0.03×3000 (m3) with horizontal periodicity. Aerosol particles with a realistic number density, 5×107 (m3), were evenly distributed over the domain at the initial state. Prescribed updraft at the early stage initiated development of a precipitating cloud. We have confirmed that the obtained bulk statistics fairly agree with those from a conventional spectral-bin scheme for a vertical column

  12. An Eulerian/Lagrangian coupling procedure for three-dimensional vortical flows

    NASA Technical Reports Server (NTRS)

    Felici, Helene M.; Drela, Mark

    1993-01-01

    A coupled Eulerian/Lagrangian method is presented for the reduction of numerical diffusion observed in solutions of 3D vortical flows using standard Eulerian finite-volume time-marching procedures. A Lagrangian particle tracking method, added to the Eulerian time-marching procedure, provides a correction of the Eulerian solution. In turn, the Eulerian solution is used to integrate the Lagrangian state-vector along the particles trajectories. While the Eulerian solution ensures the conservation of mass and sets the pressure field, the particle markers describe accurately the convection properties and enhance the vorticity and entropy capturing capabilities of the Eulerian solver. The Eulerian/Lagrangian coupling strategies are discussed and the combined scheme is tested on a constant stagnation pressure flow in a 90 deg bend and on a swirling pipe flow. As the numerical diffusion is reduced when using the Lagrangian correction, a vorticity gradient augmentation is identified as a basic problem of this inviscid calculation.

  13. The Route to Raindrop Formation in a Shallow Cumulus Cloud Simulated by a Lagrangian Cloud Model

    NASA Astrophysics Data System (ADS)

    Noh, Yign; Hoffmann, Fabian; Raasch, Siegfried

    2017-11-01

    The mechanism of raindrop formation in a shallow cumulus cloud is investigated using a Lagrangian cloud model (LCM). The analysis is focused on how and under which conditions a cloud droplet grows to a raindrop by tracking the history of individual Lagrangian droplets. It is found that the rapid collisional growth, leading to raindrop formation, is triggered when single droplets with a radius of 20 μm appear in the region near the cloud top, characterized by a large liquid water content, strong turbulence, large mean droplet size, a broad drop size distribution (DSD), and high supersaturations. Raindrop formation easily occurs when turbulence-induced collision enhancement(TICE) is considered, with or without any extra broadening of the DSD by another mechanism (such as entrainment and mixing). In contrast, when TICE is not considered, raindrop formation is severely delayed if no other broadening mechanism is active. The reason leading to the difference is clarified by the additional analysis of idealized box-simulations of the collisional growth process for different DSDs in varied turbulent environments. It is found that TICE does not accelerate the timing of the raindrop formation for individual droplets, but it enhances the collisional growth rate significantly afterward. KMA R & D Program (Korea), DFG (Germany).

  14. Extended hamiltonian formalism and Lorentz-violating lagrangians

    NASA Astrophysics Data System (ADS)

    Colladay, Don

    2017-09-01

    A new perspective on the classical mechanical formulation of particle trajectories in Lorentz-violating theories is presented. Using the extended hamiltonian formalism, a Legendre Transformation between the associated covariant lagrangian and hamiltonian varieties is constructed. This approach enables calculation of trajectories using Hamilton's equations in momentum space and the Euler-Lagrange equations in velocity space away from certain singular points that arise in the theory. Singular points are naturally de-singularized by requiring the trajectories to be smooth functions of both velocity and momentum variables. In addition, it is possible to identify specific sheets of the dispersion relations that correspond to specific solutions for the lagrangian. Examples corresponding to bipartite Finsler functions are computed in detail. A direct connection between the lagrangians and the field-theoretic solutions to the Dirac equation is also established for a special case.

  15. Adaptive reconnection-based arbitrary Lagrangian Eulerian method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bo, Wurigen; Shashkov, Mikhail

    We present a new adaptive Arbitrary Lagrangian Eulerian (ALE) method. This method is based on the reconnection-based ALE (ReALE) methodology of Refs. [35], [34] and [6]. The main elements in a standard ReALE method are: an explicit Lagrangian phase on an arbitrary polygonal (in 2D) mesh in which the solution and positions of grid nodes are updated; a rezoning phase in which a new grid is defined by changing the connectivity (using Voronoi tessellation) but not the number of cells; and a remapping phase in which the Lagrangian solution is transferred onto the new grid. Furthermore, in the standard ReALEmore » method, the rezoned mesh is smoothed by using one or several steps toward centroidal Voronoi tessellation, but it is not adapted to the solution in any way.« less

  16. Adaptive reconnection-based arbitrary Lagrangian Eulerian method

    DOE PAGES

    Bo, Wurigen; Shashkov, Mikhail

    2015-07-21

    We present a new adaptive Arbitrary Lagrangian Eulerian (ALE) method. This method is based on the reconnection-based ALE (ReALE) methodology of Refs. [35], [34] and [6]. The main elements in a standard ReALE method are: an explicit Lagrangian phase on an arbitrary polygonal (in 2D) mesh in which the solution and positions of grid nodes are updated; a rezoning phase in which a new grid is defined by changing the connectivity (using Voronoi tessellation) but not the number of cells; and a remapping phase in which the Lagrangian solution is transferred onto the new grid. Furthermore, in the standard ReALEmore » method, the rezoned mesh is smoothed by using one or several steps toward centroidal Voronoi tessellation, but it is not adapted to the solution in any way.« less

  17. A Godunov-like point-centered essentially Lagrangian hydrodynamic approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgan, Nathaniel R.; Waltz, Jacob I.; Burton, Donald E.

    We present an essentially Lagrangian hydrodynamic scheme suitable for modeling complex compressible flows on tetrahedron meshes. The scheme reduces to a purely Lagrangian approach when the flow is linear or if the mesh size is equal to zero; as a result, we use the term essentially Lagrangian for the proposed approach. The motivation for developing a hydrodynamic method for tetrahedron meshes is because tetrahedron meshes have some advantages over other mesh topologies. Notable advantages include reduced complexity in generating conformal meshes, reduced complexity in mesh reconnection, and preserving tetrahedron cells with automatic mesh refinement. A challenge, however, is tetrahedron meshesmore » do not correctly deform with a lower order (i.e. piecewise constant) staggered-grid hydrodynamic scheme (SGH) or with a cell-centered hydrodynamic (CCH) scheme. The SGH and CCH approaches calculate the strain via the tetrahedron, which can cause artificial stiffness on large deformation problems. To resolve the stiffness problem, we adopt the point-centered hydrodynamic approach (PCH) and calculate the evolution of the flow via an integration path around the node. The PCH approach stores the conserved variables (mass, momentum, and total energy) at the node. The evolution equations for momentum and total energy are discretized using an edge-based finite element (FE) approach with linear basis functions. A multidirectional Riemann-like problem is introduced at the center of the tetrahedron to account for discontinuities in the flow such as a shock. Conservation is enforced at each tetrahedron center. The multidimensional Riemann-like problem used here is based on Lagrangian CCH work [8, 19, 37, 38, 44] and recent Lagrangian SGH work [33-35, 39, 45]. In addition, an approximate 1D Riemann problem is solved on each face of the nodal control volume to advect mass, momentum, and total energy. The 1D Riemann problem produces fluxes [18] that remove a volume error in the PCH

  18. A Godunov-like point-centered essentially Lagrangian hydrodynamic approach

    DOE PAGES

    Morgan, Nathaniel R.; Waltz, Jacob I.; Burton, Donald E.; ...

    2014-10-28

    We present an essentially Lagrangian hydrodynamic scheme suitable for modeling complex compressible flows on tetrahedron meshes. The scheme reduces to a purely Lagrangian approach when the flow is linear or if the mesh size is equal to zero; as a result, we use the term essentially Lagrangian for the proposed approach. The motivation for developing a hydrodynamic method for tetrahedron meshes is because tetrahedron meshes have some advantages over other mesh topologies. Notable advantages include reduced complexity in generating conformal meshes, reduced complexity in mesh reconnection, and preserving tetrahedron cells with automatic mesh refinement. A challenge, however, is tetrahedron meshesmore » do not correctly deform with a lower order (i.e. piecewise constant) staggered-grid hydrodynamic scheme (SGH) or with a cell-centered hydrodynamic (CCH) scheme. The SGH and CCH approaches calculate the strain via the tetrahedron, which can cause artificial stiffness on large deformation problems. To resolve the stiffness problem, we adopt the point-centered hydrodynamic approach (PCH) and calculate the evolution of the flow via an integration path around the node. The PCH approach stores the conserved variables (mass, momentum, and total energy) at the node. The evolution equations for momentum and total energy are discretized using an edge-based finite element (FE) approach with linear basis functions. A multidirectional Riemann-like problem is introduced at the center of the tetrahedron to account for discontinuities in the flow such as a shock. Conservation is enforced at each tetrahedron center. The multidimensional Riemann-like problem used here is based on Lagrangian CCH work [8, 19, 37, 38, 44] and recent Lagrangian SGH work [33-35, 39, 45]. In addition, an approximate 1D Riemann problem is solved on each face of the nodal control volume to advect mass, momentum, and total energy. The 1D Riemann problem produces fluxes [18] that remove a volume error in the PCH

  19. Ensemble Simulations with Coupled Atmospheric Dynamic and Dispersion Models: Illustrating Uncertainties in Dosage Simulations.

    NASA Astrophysics Data System (ADS)

    Warner, Thomas T.; Sheu, Rong-Shyang; Bowers, James F.; Sykes, R. Ian; Dodd, Gregory C.; Henn, Douglas S.

    2002-05-01

    Ensemble simulations made using a coupled atmospheric dynamic model and a probabilistic Lagrangian puff dispersion model were employed in a forensic analysis of the transport and dispersion of a toxic gas that may have been released near Al Muthanna, Iraq, during the Gulf War. The ensemble study had two objectives, the first of which was to determine the sensitivity of the calculated dosage fields to the choices that must be made about the configuration of the atmospheric dynamic model. In this test, various choices were used for model physics representations and for the large-scale analyses that were used to construct the model initial and boundary conditions. The second study objective was to examine the dispersion model's ability to use ensemble inputs to predict dosage probability distributions. Here, the dispersion model was used with the ensemble mean fields from the individual atmospheric dynamic model runs, including the variability in the individual wind fields, to generate dosage probabilities. These are compared with the explicit dosage probabilities derived from the individual runs of the coupled modeling system. The results demonstrate that the specific choices made about the dynamic-model configuration and the large-scale analyses can have a large impact on the simulated dosages. For example, the area near the source that is exposed to a selected dosage threshold varies by up to a factor of 4 among members of the ensemble. The agreement between the explicit and ensemble dosage probabilities is relatively good for both low and high dosage levels. Although only one ensemble was considered in this study, the encouraging results suggest that a probabilistic dispersion model may be of value in quantifying the effects of uncertainties in a dynamic-model ensemble on dispersion model predictions of atmospheric transport and dispersion.

  20. Modeling coupled nanoparticle aggregation and transport in porous media: A Lagrangian approach

    NASA Astrophysics Data System (ADS)

    Taghavy, Amir; Pennell, Kurt D.; Abriola, Linda M.

    2015-01-01

    Changes in nanoparticle size and shape due to particle-particle interactions (i.e., aggregation or agglomeration) may significantly alter particle mobility and retention in porous media. To date, however, few modeling studies have considered the coupling of transport and particle aggregation processes. The majority of particle transport models employ an Eulerian modeling framework and are, consequently, limited in the types of collisions and aggregate sizes that can be considered. In this work, a more general Lagrangian modeling framework is developed and implemented to explore coupled nanoparticle aggregation and transport processes. The model was verified through comparison of model simulations to published results of an experimental and Eulerian modeling study (Raychoudhury et al., 2012) of carboxymethyl cellulose (CMC)-modified nano-sized zero-valent iron particle (nZVI) transport and retention in water-saturated sand columns. A model sensitivity analysis reveals the influence of influent particle concentration (ca. 70 to 700 mg/L), primary particle size (10-100 nm) and pore water velocity (ca. 1-6 m/day) on particle-particle, and, consequently, particle-collector interactions. Model simulations demonstrate that, when environmental conditions promote particle-particle interactions, neglecting aggregation effects can lead to under- or over-estimation of nanoparticle mobility. Results also suggest that the extent to which higher order particle-particle collisions influence aggregation kinetics will increase with the fraction of primary particles. This work demonstrates the potential importance of time-dependent aggregation processes on nanoparticle mobility and provides a numerical model capable of capturing/describing these interactions in water-saturated porous media.

  1. Modeling coupled nanoparticle aggregation and transport in porous media: a Lagrangian approach.

    PubMed

    Taghavy, Amir; Pennell, Kurt D; Abriola, Linda M

    2015-01-01

    Changes in nanoparticle size and shape due to particle-particle interactions (i.e., aggregation or agglomeration) may significantly alter particle mobility and retention in porous media. To date, however, few modeling studies have considered the coupling of transport and particle aggregation processes. The majority of particle transport models employ an Eulerian modeling framework and are, consequently, limited in the types of collisions and aggregate sizes that can be considered. In this work, a more general Lagrangian modeling framework is developed and implemented to explore coupled nanoparticle aggregation and transport processes. The model was verified through comparison of model simulations to published results of an experimental and Eulerian modeling study (Raychoudhury et al., 2012) of carboxymethyl cellulose (CMC)-modified nano-sized zero-valent iron particle (nZVI) transport and retention in water-saturated sand columns. A model sensitivity analysis reveals the influence of influent particle concentration (ca. 70 to 700 mg/L), primary particle size (10-100 nm) and pore water velocity (ca. 1-6 m/day) on particle-particle, and, consequently, particle-collector interactions. Model simulations demonstrate that, when environmental conditions promote particle-particle interactions, neglecting aggregation effects can lead to under- or over-estimation of nanoparticle mobility. Results also suggest that the extent to which higher order particle-particle collisions influence aggregation kinetics will increase with the fraction of primary particles. This work demonstrates the potential importance of time-dependent aggregation processes on nanoparticle mobility and provides a numerical model capable of capturing/describing these interactions in water-saturated porous media. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Lagrangian transport properties of pulmonary interfacial flows

    PubMed Central

    Smith, Bradford J.; Lukens, Sarah; Yamaguchi, Eiichiro; Gaver, Donald P.

    2012-01-01

    Disease states characterized by airway fluid occlusion and pulmonary surfactant insufficiency, such as respiratory distress syndrome, have a high mortality rate. Understanding the mechanics of airway reopening, particularly involving surfactant transport, may provide an avenue to increase patient survival via optimized mechanical ventilation waveforms. We model the occluded airway as a liquid-filled rigid tube with the fluid phase displaced by a finger of air that propagates with both mean and sinusoidal velocity components. Finite-time Lyapunov exponent (FTLE) fields are employed to analyse the convective transport characteristics, taking note of Lagrangian coherent structures (LCSs) and their effects on transport. The Lagrangian perspective of these techniques reveals flow characteristics that are not readily apparent by observing Eulerian measures. These analysis techniques are applied to surfactant-free velocity fields determined computationally, with the boundary element method, and measured experimentally with micro particle image velocimetry (μ-PIV). We find that the LCS divides the fluid into two regimes, one advected upstream (into the thin residual film) and the other downstream ahead of the advancing bubble. At higher oscillatory frequencies particles originating immediately inside the LCS experience long residence times at the air–liquid interface, which may be conducive to surfactant transport. At high frequencies a well-mixed attractor region is identified; this volume of fluid cyclically travels along the interface and into the bulk fluid. The Lagrangian analysis is applied to velocity data measured with 0.01 mg ml−1 of the clinical pulmonary surfactant Infasurf in the bulk fluid, demonstrating flow field modifications with respect to the surfactant-free system that were not visible in the Eulerian frame. PMID:23049141

  3. Parcels v0.9: prototyping a Lagrangian ocean analysis framework for the petascale age

    NASA Astrophysics Data System (ADS)

    Lange, Michael; van Sebille, Erik

    2017-11-01

    As ocean general circulation models (OGCMs) move into the petascale age, where the output of single simulations exceeds petabytes of storage space, tools to analyse the output of these models will need to scale up too. Lagrangian ocean analysis, where virtual particles are tracked through hydrodynamic fields, is an increasingly popular way to analyse OGCM output, by mapping pathways and connectivity of biotic and abiotic particulates. However, the current software stack of Lagrangian ocean analysis codes is not dynamic enough to cope with the increasing complexity, scale and need for customization of use-cases. Furthermore, most community codes are developed for stand-alone use, making it a nontrivial task to integrate virtual particles at runtime of the OGCM. Here, we introduce the new Parcels code, which was designed from the ground up to be sufficiently scalable to cope with petascale computing. We highlight its API design that combines flexibility and customization with the ability to optimize for HPC workflows, following the paradigm of domain-specific languages. Parcels is primarily written in Python, utilizing the wide range of tools available in the scientific Python ecosystem, while generating low-level C code and using just-in-time compilation for performance-critical computation. We show a worked-out example of its API, and validate the accuracy of the code against seven idealized test cases. This version 0.9 of Parcels is focused on laying out the API, with future work concentrating on support for curvilinear grids, optimization, efficiency and at-runtime coupling with OGCMs.

  4. A Symbolic and Graphical Computer Representation of Dynamical Systems

    NASA Astrophysics Data System (ADS)

    Gould, Laurence I.

    2005-04-01

    AUTONO is a Macsyma/Maxima program, designed at the University of Hartford, for solving autonomous systems of differential equations as well as for relating Lagrangians and Hamiltonians to their associated dynamical equations. AUTONO can be used in a number of fields to decipher a variety of complex dynamical systems with ease, producing their Lagrangian and Hamiltonian equations in seconds. These equations can then be incorporated into VisSim, a modeling and simulation program, which yields graphical representations of motion in a given system through easily chosen input parameters. The program, along with the VisSim differential-equations graphical package, allows for resolution and easy understanding of complex problems in a relatively short time; thus enabling quicker and more advanced computing of dynamical systems on any number of platforms---from a network of sensors on a space probe, to the behavior of neural networks, to the effects of an electromagnetic field on components in a dynamical system. A flowchart of AUTONO, along with some simple applications and VisSim output, will be shown.

  5. On the Lagrangian description of dissipative systems

    NASA Astrophysics Data System (ADS)

    Martínez-Pérez, N. E.; Ramírez, C.

    2018-03-01

    We consider the Lagrangian formulation with duplicated variables of dissipative mechanical systems. The application of Noether theorem leads to physical observable quantities which are not conserved, like energy and angular momentum, and conserved quantities, like the Hamiltonian, that generate symmetry transformations and do not correspond to observables. We show that there are simple relations among the equations satisfied by these two types of quantities. In the case of the damped harmonic oscillator, from the quantities obtained by the Noether theorem follows the algebra of Feshbach and Tikochinsky. Furthermore, if we consider the whole dynamics, the degrees of freedom separate into a physical and an unphysical sector. We analyze several cases, with linear and nonlinear dissipative forces; the physical consistency of the solutions is ensured, observing that the unphysical sector has always the trivial solution.

  6. Nitrate Sources, Supply, and Phytoplankton Growth in the Great Australian Bight: An Eulerian-Lagrangian Modeling Approach

    NASA Astrophysics Data System (ADS)

    Cetina-Heredia, Paulina; van Sebille, Erik; Matear, Richard J.; Roughan, Moninya

    2018-02-01

    The Great Australian Bight (GAB), a coastal sea bordered by the Pacific, Southern, and Indian Oceans, sustains one of the largest fisheries in Australia but the geographical origin of nutrients that maintain its productivity is not fully known. We use 12 years of modeled data from a coupled hydrodynamic and biogeochemical model and an Eulerian-Lagrangian approach to quantify nitrate supply to the GAB and the region between the GAB and the Subantarctic Australian Front (GAB-SAFn), identify phytoplankton growth within the GAB, and ascertain the source of nitrate that fuels it. We find that nitrate concentrations have a decorrelation timescale of ˜60 days; since most of the water from surrounding oceans takes longer than 60 days to reach the GAB, 23% and 75% of nitrate used by phytoplankton to grow are sourced within the GAB and from the GAB-SAFn, respectively. Thus, most of the nitrate is recycled locally. Although nitrate concentrations and fluxes into the GAB are greater below 100 m than above, 79% of the nitrate fueling phytoplankton growth is sourced from above 100 m. Our findings suggest that topographical uplift and stratification erosion are key mechanisms delivering nutrients from below the nutricline into the euphotic zone and triggering large phytoplankton growth. We find annual and semiannual periodicities in phytoplankton growth, peaking in the austral spring and autumn when the mixed layer deepens leading to a subsurface maximum of phytoplankton growth. This study highlights the importance of examining phytoplankton growth at depth and the utility of Lagrangian approaches.

  7. Lagrangian analysis of multiscale particulate flows with the particle finite element method

    NASA Astrophysics Data System (ADS)

    Oñate, Eugenio; Celigueta, Miguel Angel; Latorre, Salvador; Casas, Guillermo; Rossi, Riccardo; Rojek, Jerzy

    2014-05-01

    We present a Lagrangian numerical technique for the analysis of flows incorporating physical particles of different sizes. The numerical approach is based on the particle finite element method (PFEM) which blends concepts from particle-based techniques and the FEM. The basis of the Lagrangian formulation for particulate flows and the procedure for modelling the motion of small and large particles that are submerged in the fluid are described in detail. The numerical technique for analysis of this type of multiscale particulate flows using a stabilized mixed velocity-pressure formulation and the PFEM is also presented. Examples of application of the PFEM to several particulate flows problems are given.

  8. Coupled Eulerian-Lagrangian transport of large debris by tsunamis

    NASA Astrophysics Data System (ADS)

    Conde, Daniel A. S.; Ferreira, Rui M. L.; Sousa Oliveira, Carlos

    2016-04-01

    Tsunamis are notorious for the large disruption they can cause on coastal environments, not only due to the imparted momentum of the incoming wave but also due to its capacity to transport large quantities of solid debris, either from natural or human-made sources, over great distances. A 2DH numerical model under development at CERIS-IST (Ferreira et al., 2009; Conde, 2013) - STAV2D - capable of simulating solid transport in both Eulerian and Lagrangian paradigms will be used to assess the relevance of Lagrangian-Eulerian coupling when modelling the transport of solid debris by tsunamis. The model has been previously validated and applied to tsunami scenarios (Conde, 2013), being well-suited for overland tsunami propagation and capable of handling morphodynamic changes in estuaries and seashores. The discretization scheme is an explicit Finite Volume technique employing flux-vector splitting and a reviewed Roe-Riemann solver. Source term formulations are employed in a semi-implicit way, including the two-way coupling of the Lagrangian and Eulerian solvers by means of conservative mass and momentum transfers between fluid and solid phases. The model was applied to Sines Port, a major commercial port in Portugal, where two tsunamigenic scenarios are considered: an 8.5 Mw scenario, consistent with the Great Lisbon Earthquake and Tsunami of the 1st November 1755 (Baptista, 2009), and an hypothetical 9.5 Mw worst-case scenario based on the same historical event. Open-ocean propagation of these scenarios were simulated with GeoClaw model from ClawPack (Leveque, 2011). Following previous efforts on the modelling of debris transport by tsunamis in seaports (Conde, 2015), this work discusses the sensitivity of the obtained results with respect to the phenomenological detail of the employed Eulerian-Lagrangian formulation and the resolution of the mesh used in the Eulerian solver. The results have shown that the fluid to debris mass ratio is the key parameter regarding the

  9. Surface 3D nanostructuring by tightly focused laser pulse: simulations by Lagrangian code and molecular dynamics

    NASA Astrophysics Data System (ADS)

    Inogamov, Nail A.; Zhakhovsky, Vasily V.

    2016-02-01

    There are many important applications in which the ultrashort diffraction-limited and therefore tightly focused laser pulses irradiates metal films mounted on dielectric substrate. Here we present the detailed picture of laser peeling and 3D structure formation of the thin (relative to a depth of a heat affected zone in the bulk targets) gold films on glass substrate. The underlying physics of such diffraction-limited laser peeling was not well understood previously. Our approach is based on a physical model which takes into consideration the new calculations of the two-temperature (2T) equation of state (2T EoS) and the two-temperature transport coefficients together with the coupling parameter between electron and ion subsystems. The usage of the 2T EoS and the kinetic coefficients is required because absorption of an ultrashort pulse with duration of 10-1000 fs excites electron subsystem of metal and transfers substance into the 2T state with hot electrons (typical electron temperatures 1-3 eV) and much colder ions. It is shown that formation of submicrometer-sized 3D structures is a result of the electron-ion energy transfer, melting, and delamination of film from substrate under combined action of electron and ion pressures, capillary deceleration of the delaminated liquid metal or semiconductor, and ultrafast freezing of molten material. We found that the freezing is going in non-equilibrium regime with strongly overcooled liquid phase. In this case the Stefan approximation is non-applicable because the solidification front speed is limited by the diffusion rate of atoms in the molten material. To solve the problem we have developed the 2T Lagrangian code including all this reach physics in. We also used the high-performance combined Monte- Carlo and molecular dynamics code for simulation of surface 3D nanostructuring at later times after completion of electron-ion relaxation.

  10. Comparisons of Lagrangian and Eulerian PDF methods in simulations of non-premixed turbulent jet flames with moderate-to-strong turbulence-chemistry interactions

    NASA Astrophysics Data System (ADS)

    Jaishree, J.; Haworth, D. C.

    2012-06-01

    Transported probability density function (PDF) methods have been applied widely and effectively for modelling turbulent reacting flows. In most applications of PDF methods to date, Lagrangian particle Monte Carlo algorithms have been used to solve a modelled PDF transport equation. However, Lagrangian particle PDF methods are computationally intensive and are not readily integrated into conventional Eulerian computational fluid dynamics (CFD) codes. Eulerian field PDF methods have been proposed as an alternative. Here a systematic comparison is performed among three methods for solving the same underlying modelled composition PDF transport equation: a consistent hybrid Lagrangian particle/Eulerian mesh (LPEM) method, a stochastic Eulerian field (SEF) method and a deterministic Eulerian field method with a direct-quadrature-method-of-moments closure (a multi-environment PDF-MEPDF method). The comparisons have been made in simulations of a series of three non-premixed, piloted methane-air turbulent jet flames that exhibit progressively increasing levels of local extinction and turbulence-chemistry interactions: Sandia/TUD flames D, E and F. The three PDF methods have been implemented using the same underlying CFD solver, and results obtained using the three methods have been compared using (to the extent possible) equivalent physical models and numerical parameters. Reasonably converged mean and rms scalar profiles are obtained using 40 particles per cell for the LPEM method or 40 Eulerian fields for the SEF method. Results from these stochastic methods are compared with results obtained using two- and three-environment MEPDF methods. The relative advantages and disadvantages of each method in terms of accuracy and computational requirements are explored and identified. In general, the results obtained from the two stochastic methods (LPEM and SEF) are very similar, and are in closer agreement with experimental measurements than those obtained using the MEPDF method

  11. Long-time Dynamics of Stochastic Wave Breaking

    NASA Astrophysics Data System (ADS)

    Restrepo, J. M.; Ramirez, J. M.; Deike, L.; Melville, K.

    2017-12-01

    A stochastic parametrization is proposed for the dynamics of wave breaking of progressive water waves. The model is shown to agree with transport estimates, derived from the Lagrangian path of fluid parcels. These trajectories are obtained numerically and are shown to agree well with theory in the non-breaking regime. Of special interest is the impact of wave breaking on transport, momentum exchanges and energy dissipation, as well as dispersion of trajectories. The proposed model, ensemble averaged to larger time scales, is compared to ensemble averages of the numerically generated parcel dynamics, and is then used to capture energy dissipation and path dispersion.

  12. Chiral anomalies and effective vector meson Lagrangian beyond the tree level

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dominguez, C.A.

    1987-12-01

    The decays ..pi../sup O/ ..-->.. ..gamma gamma.., rho ..-->.. ..pi gamma.., ..omega.. ..-->.. ..pi gamma.., ..omega.. ..-->.. 3..pi.. and ..gamma.. ..-->.. 3..pi.. are studied in the framework of the chiral invariant effective Vector Meson Lagrangian beyond the tree level. The standard Lagrangian is enlarged by including an infinite number of radial excitations which are summed according to the dual model. As a result tree level diagrams are modified by a universal form factor at each vertex containing off-mass-shell mesons, but still respecting chiral anomaly low energy theorems. These vertex corrections bring the tree level predictions into better agreement with experiment.more » The presence of the ..omega.. ..-->.. 3..pi.. contact term is confirmed but its strength is considerably smaller than at tree level.« less

  13. Geometric effects in microfluidics on heterogeneous cell stress using an Eulerian-Lagrangian approach.

    PubMed

    Warren, K M; Mpagazehe, J N; LeDuc, P R; Higgs, C F

    2016-02-07

    The response of individual cells at the micro-scale in cell mechanics is important in understanding how they are affected by changing environments. To control cell stresses, microfluidics can be implemented since there is tremendous control over the geometry of the devices. Designing microfluidic devices to induce and manipulate stress levels on biological cells can be aided by computational modeling approaches. Such approaches serve as an efficient precursor to fabricating various microfluidic geometries that induce predictable levels of stress on biological cells, based on their mechanical properties. Here, a three-dimensional, multiphase computational fluid dynamics (CFD) modeling approach was implemented for soft biological materials. The computational model incorporates the physics of the particle dynamics, fluid dynamics and solid mechanics, which allows us to study how stresses affect the cells. By using an Eulerian-Lagrangian approach to treat the fluid domain as a continuum in the microfluidics, we are conducting studies of the cells' movement and the stresses applied to the cell. As a result of our studies, we were able to determine that a channel with periodically alternating columns of obstacles was capable of stressing cells at the highest rate, and that microfluidic systems can be engineered to impose heterogenous cell stresses through geometric configuring. We found that when using controlled geometries of the microfluidics channels with staggered obstructions, we could increase the maximum cell stress by nearly 200 times over cells flowing through microfluidic channels with no obstructions. Incorporating computational modeling in the design of microfluidic configurations for controllable cell stressing could help in the design of microfludic devices for stressing cells such as cell homogenizers.

  14. Hamiltonian stability for weighted measure and generalized Lagrangian mean curvature flow

    NASA Astrophysics Data System (ADS)

    Kajigaya, Toru; Kunikawa, Keita

    2018-06-01

    In this paper, we generalize several results for the Hamiltonian stability and the mean curvature flow of Lagrangian submanifolds in a Kähler-Einstein manifold to more general Kähler manifolds including a Fano manifold equipped with a Kähler form ω ∈ 2 πc1(M) by using the method proposed by Behrndt (2011). Namely, we first consider a weighted measure on a Lagrangian submanifold L in a Kähler manifold M and investigate the variational problem of L for the weighted volume functional. We call a stationary point of the weighted volume functional f-minimal, and define the notion of Hamiltonian f-stability as a local minimizer under Hamiltonian deformations. We show such examples naturally appear in a toric Fano manifold. Moreover, we consider the generalized Lagrangian mean curvature flow in a Fano manifold which is introduced by Behrndt and Smoczyk-Wang. We generalize the result of H. Li, and show that if the initial Lagrangian submanifold is a small Hamiltonian deformation of an f-minimal and Hamiltonian f-stable Lagrangian submanifold, then the generalized MCF converges exponentially fast to an f-minimal Lagrangian submanifold.

  15. Development of an analytical Lagrangian model for passive scalar dispersion in low-wind speed meandering conditions

    NASA Astrophysics Data System (ADS)

    Stefanello, M. B.; Degrazia, G. A.; Mortarini, L.; Buligon, L.; Maldaner, S.; Carvalho, J. C.; Acevedo, O. C.; Martins, L. G. N.; Anfossi, D.; Buriol, C.; Roberti, D.

    2018-02-01

    Describing the effects of wind meandering motions on the dispersion of scalars is a challenging task, since this type of flow represents a physical state characterized by multiple scales. In this study, a Lagrangian stochastic diffusion model is derived to describe scalar transport during the horizontal wind meandering phenomenon that occurs within a planetary boundary layer. The model is derived from the linearization of the Langevin equation, and it employs a heuristic functional form that represents the autocorrelation function of meandering motion. The new solutions, which describe the longitudinal and lateral wind components, were used to simulate tracer experiments that were performed in low-wind speed conditions. The results of the comparison indicate that the new model can effectively reproduce the observed concentrations of the contaminants, and therefore, it can satisfactorily describe enhanced dispersion effects due to the presence of meandering.

  16. A macroscopic plasma Lagrangian and its application to wave interactions and resonances

    NASA Technical Reports Server (NTRS)

    Peng, Y. K. M.

    1974-01-01

    The derivation of a macroscopic plasma Lagrangian is considered, along with its application to the description of nonlinear three-wave interaction in a homogeneous plasma and linear resonance oscillations in a inhomogeneous plasma. One approach to obtain the Lagrangian is via the inverse problem of the calculus of variations for arbitrary first and second order quasilinear partial differential systems. Necessary and sufficient conditions for the given equations to be Euler-Lagrange equations of a Lagrangian are obtained. These conditions are then used to determine the transformations that convert some classes of non-Euler-Lagrange equations to Euler-Lagrange equation form. The Lagrangians for a linear resistive transmission line and a linear warm collisional plasma are derived as examples. Using energy considerations, the correct macroscopic plasma Lagrangian is shown to differ from the velocity-integrated low Lagrangian by a macroscopic potential energy that equals twice the particle thermal kinetic energy plus the energy lost by heat conduction.

  17. Lagrangian transported MDF methods for compressible high speed flows

    NASA Astrophysics Data System (ADS)

    Gerlinger, Peter

    2017-06-01

    This paper deals with the application of thermochemical Lagrangian MDF (mass density function) methods for compressible sub- and supersonic RANS (Reynolds Averaged Navier-Stokes) simulations. A new approach to treat molecular transport is presented. This technique on the one hand ensures numerical stability of the particle solver in laminar regions of the flow field (e.g. in the viscous sublayer) and on the other hand takes differential diffusion into account. It is shown in a detailed analysis, that the new method correctly predicts first and second-order moments on the basis of conventional modeling approaches. Moreover, a number of challenges for MDF particle methods in high speed flows is discussed, e.g. high cell aspect ratio grids close to solid walls, wall heat transfer, shock resolution, and problems from statistical noise which may cause artificial shock systems in supersonic flows. A Mach 2 supersonic mixing channel with multiple shock reflection and a model rocket combustor simulation demonstrate the eligibility of this technique to practical applications. Both test cases are simulated successfully for the first time with a hybrid finite-volume (FV)/Lagrangian particle solver (PS).

  18. A shifted hyperbolic augmented Lagrangian-based artificial fish two-swarm algorithm with guaranteed convergence for constrained global optimization

    NASA Astrophysics Data System (ADS)

    Rocha, Ana Maria A. C.; Costa, M. Fernanda P.; Fernandes, Edite M. G. P.

    2016-12-01

    This article presents a shifted hyperbolic penalty function and proposes an augmented Lagrangian-based algorithm for non-convex constrained global optimization problems. Convergence to an ?-global minimizer is proved. At each iteration k, the algorithm requires the ?-global minimization of a bound constrained optimization subproblem, where ?. The subproblems are solved by a stochastic population-based metaheuristic that relies on the artificial fish swarm paradigm and a two-swarm strategy. To enhance the speed of convergence, the algorithm invokes the Nelder-Mead local search with a dynamically defined probability. Numerical experiments with benchmark functions and engineering design problems are presented. The results show that the proposed shifted hyperbolic augmented Lagrangian compares favorably with other deterministic and stochastic penalty-based methods.

  19. Complete one-loop renormalization of the Higgs-electroweak chiral Lagrangian

    NASA Astrophysics Data System (ADS)

    Buchalla, G.; Catà, O.; Celis, A.; Knecht, M.; Krause, C.

    2018-03-01

    Employing background-field method and super-heat-kernel expansion, we compute the complete one-loop renormalization of the electroweak chiral Lagrangian with a light Higgs boson. Earlier results from purely scalar fluctuations are confirmed as a special case. We also recover the one-loop renormalization of the conventional Standard Model in the appropriate limit.

  20. The coupling effects of kinematics and flexibility on the Lagrangian dynamic formulation of open chain deformable links

    NASA Technical Reports Server (NTRS)

    Changizi, Koorosh

    1989-01-01

    A nonlinear Lagrangian formulation for the spatial kinematic and dynamic analysis of open chain deformable links consisting of cylindrical joints that connect pairs of flexible links is developed. The special cases of revolute or prismatic joint can also be obtained from the kinematic equations. The kinematic equations are described using a 4x4 matrix method. The configuration of each deformable link in the open loop kinematic chain is identified using a coupled set of relative joint variables, constant geometric parameters, and elastic coordinates. The elastic coordinates define the link deformation with respect to a selected joint coordinate system that is consistent with the kinematic constraints on the boundary of the deformable link. These coordinates can be introduced using approximation techniques such as Rayleigh-Ritz method, finite element technique or any other desired approach. The large relative motion between two neighboring links are defined by a set of joint coordinates which describes the large relative translational and rotational motion between two neighboring joint coordinate systems. The origin of these coordinate systems are rigidly attached to the neighboring links at the joint definition points along the axis of motion.

  1. Microscopic Lagrangian description of warm plasmas. IV - Macroscopic approximation

    NASA Technical Reports Server (NTRS)

    Kim, H.; Crawford, F. W.

    1983-01-01

    The averaged-Lagrangian method is applied to linear wave propagation and nonlinear three-wave interaction in a warm magnetoplasma, in the macroscopic approximation. The microscopic Lagrangian treated by Kim and Crawford (1977) and by Galloway and Crawford (1977) is first expanded to third order in perturbation. Velocity integration is then carried out, before applying Hamilton's principle to obtain a general description of wave propagation and coupling. The results are specialized to the case of interaction between two electron plasma waves and an Alfven wave. The method is shown to be more powerful than the alternative possibility of working from the beginning with a macroscopic Lagrangian density.

  2. Effective Lagrangian in de Sitter spacetime

    NASA Astrophysics Data System (ADS)

    Kitamoto, Hiroyuki; Kitazawa, Yoshihisa

    2017-01-01

    Scale invariant fluctuations of metric are a universal feature of quantum gravity in de Sitter spacetime. We construct an effective Lagrangian which summarizes their implications on local physics by integrating superhorizon metric fluctuations. It shows infrared quantum effects are local and render fundamental couplings time dependent. We impose Lorenz invariance on the effective Lagrangian as it is required by the principle of general covariance. We show that such a requirement leads to unique physical predictions by fixing the quantization ambiguities. We explain how the gauge parameter dependence of observables is canceled. In particular the relative evolution speed of the couplings are shown to be gauge invariant.

  3. Updated Lagrangian finite element formulations of various biological soft tissue non-linear material models: a comprehensive procedure and review.

    PubMed

    Townsend, Molly T; Sarigul-Klijn, Nesrin

    2016-01-01

    Simplified material models are commonly used in computational simulation of biological soft tissue as an approximation of the complicated material response and to minimize computational resources. However, the simulation of complex loadings, such as long-duration tissue swelling, necessitates complex models that are not easy to formulate. This paper strives to offer the updated Lagrangian formulation comprehensive procedure of various non-linear material models for the application of finite element analysis of biological soft tissues including a definition of the Cauchy stress and the spatial tangential stiffness. The relationships between water content, osmotic pressure, ionic concentration and the pore pressure stress of the tissue are discussed with the merits of these models and their applications.

  4. Lagrangian transport near perturbed periodic lines in three-dimensional unsteady flows

    NASA Astrophysics Data System (ADS)

    Speetjens, Michel

    2015-11-01

    Periodic lines formed by continuous strings of periodic points are key organizing entities in the Lagrangian flow topology of certain three-dimensional (3D) time-periodic flows. Such lines generically consist of elliptic and/or hyperbolic points and thus give rise to 3D flow topologies made up of families of concentric closed trajectories embedded in chaotic regions. Weak perturbation destroys the periodic lines and causes said trajectories to coalesce into families of concentric tubes. However, emergence of isolated periodic points near the disintegrating periodic lines and/or partitioning of the original lines into elliptic and hyperbolic segments interrupt the tube formation. This yields incomplete tubes that interact with the (chaotic) environment through their open ends, resulting in intricate and essentially 3D flow topologies These phenomena have been observed in various realistic flows yet the underlying mechanisms are to date only partially understood. This study deepens insight into the (perturbed) Lagrangian dynamics of these flows by way of a linearized representation of the equations of motion near the periodic lines. Predictions on the basis of this investigation are in full (qualitative) agreement with observed behavior in the actual flows

  5. Forms of null Lagrangians in field theories of continuum mechanics

    NASA Astrophysics Data System (ADS)

    Kovalev, V. A.; Radaev, Yu. N.

    2012-02-01

    The divergence representation of a null Lagrangian that is regular in a star-shaped domain is used to obtain its general expression containing field gradients of order ≤ 1 in the case of spacetime of arbitrary dimension. It is shown that for a static three-component field in the three-dimensional space, a null Lagrangian can contain up to 15 independent elements in total. The general form of a null Lagrangian in the four-dimensional Minkowski spacetime is obtained (the number of physical field variables is assumed arbitrary). A complete theory of the null Lagrangian for the n-dimensional spacetime manifold (including the four-dimensional Minkowski spacetime as a special case) is given. Null Lagrangians are then used as a basis for solving an important variational problem of an integrating factor. This problem involves searching for factors that depend on the spacetime variables, field variables, and their gradients and, for a given system of partial differential equations, ensure the equality between the scalar product of a vector multiplier by the system vector and some divergence expression for arbitrary field variables and, hence, allow one to formulate a divergence conservation law on solutions to the system.

  6. The canonical Lagrangian approach to three-space general relativity

    NASA Astrophysics Data System (ADS)

    Shyam, Vasudev; Venkatesh, Madhavan

    2013-07-01

    We study the action for the three-space formalism of general relativity, better known as the Barbour-Foster-Ó Murchadha action, which is a square-root Baierlein-Sharp-Wheeler action. In particular, we explore the (pre)symplectic structure by pulling it back via a Legendre map to the tangent bundle of the configuration space of this action. With it we attain the canonical Lagrangian vector field which generates the gauge transformations (3-diffeomorphisms) and the true physical evolution of the system. This vector field encapsulates all the dynamics of the system. We also discuss briefly the observables and perennials for this theory. We then present a symplectic reduction of the constrained phase space.

  7. A unifying framework for ghost-free Lorentz-invariant Lagrangian field theories

    NASA Astrophysics Data System (ADS)

    Li, Wenliang

    2018-04-01

    We propose a framework for Lorentz-invariant Lagrangian field theories where Ostrogradsky's scalar ghosts could be absent. A key ingredient is the generalized Kronecker delta. The general Lagrangians are reformulated in the language of differential forms. The absence of higher order equations of motion for the scalar modes stems from the basic fact that every exact form is closed. The well-established Lagrangian theories for spin-0, spin-1, p-form, spin-2 fields have natural formulations in this framework. We also propose novel building blocks for Lagrangian field theories. Some of them are novel nonlinear derivative terms for spin-2 fields. It is nontrivial that Ostrogradsky's scalar ghosts are absent in these fully nonlinear theories.

  8. A river-scale Lagrangian experiment examining controls on phytoplankton dynamics in the presence and absence of treated wastewater effluent high in ammonium

    USGS Publications Warehouse

    Kraus, Tamara; Carpenter, Kurt; Bergamaschi, Brian; Parker, Alexander; Stumpner, Elizabeth; Downing, Bryan D.; Travis, Nicole; Wilkerson, Frances; Kendall, Carol; Mussen, Timothy

    2017-01-01

    Phytoplankton are critical component of the food web in most large rivers and estuaries, and thus identifying dominant controls on phytoplankton abundance and species composition is important to scientists, managers, and policymakers. Recent studies from a variety of systems indicate that ammonium ( NH+4) in treated wastewater effluent decreases primary production and alters phytoplankton species composition. However, these findings are based mainly on laboratory and enclosure studies, which may not adequately represent natural systems. To test effects of effluent high in ammonium on phytoplankton at the ecosystem scale, we conducted whole-river–scale experiments by halting discharges to the Sacramento River from the regional wastewater treatment plant (WWTP), and used a Lagrangian approach to compare changes in phytoplankton abundance and species composition in the presence (+EFF) and absence (−EFF) of effluent. Over 5 d of downstream travel from 20 km above to 50 km below the WWTP, chlorophyll concentrations declined from 15–25 to ∼2.5 μg L−1, irrespective of effluent addition. Benthic diatoms were dominant in most samples. We found no significant difference in phytoplankton abundance or species composition between +EFF and −EFF conditions. Moreover, greatest declines in chlorophyll occurred upstream of the WWTP where NH+4 concentrations were low. Grazing by clams and zooplankton could not account for observed losses, suggesting other factors such as hydrodynamics and light limitation were responsible for phytoplankton declines. These results highlight the advantages of conducting ecosystem-scale, Lagrangian-based experiments to understand the dynamic and complex interplay between physical, chemical, and biological factors that control phytoplankton populations.

  9. Spinor matter fields in SL(2,C) gauge theories of gravity: Lagrangian and Hamiltonian approaches

    NASA Astrophysics Data System (ADS)

    Antonowicz, Marek; Szczyrba, Wiktor

    1985-06-01

    We consider the SL(2,C)-covariant Lagrangian formulation of gravitational theories with the presence of spinor matter fields. The invariance properties of such theories give rise to the conservation laws (the contracted Bianchi identities) having in the presence of matter fields a more complicated form than those known in the literature previously. A general SL(2,C) gauge theory of gravity is cast into an SL(2,C)-covariant Hamiltonian formulation. Breaking the SL(2,C) symmetry of the system to the SU(2) symmetry, by introducing a spacelike slicing of spacetime, we get an SU(2)-covariant Hamiltonian picture. The qualitative analysis of SL(2,C) gauge theories of gravity in the SU(2)-covariant formulation enables us to define the dynamical symplectic variables and the gauge variables of the theory under consideration as well as to divide the set of field equations into the dynamical equations and the constraints. In the SU(2)-covariant Hamiltonian formulation the primary constraints, which are generic for first-order matter Lagrangians (Dirac, Weyl, Fierz-Pauli), can be reduced. The effective matter symplectic variables are given by SU(2)-spinor-valued half-forms on three-dimensional slices of spacetime. The coupled Einstein-Cartan-Dirac (Weyl, Fierz-Pauli) system is analyzed from the (3+1) point of view. This analysis is complete; the field equations of the Einstein-Cartan-Dirac theory split into 18 gravitational dynamical equations, 8 dynamical Dirac equations, and 7 first-class constraints. The system has 4+8=12 independent degrees of freedom in the phase space.

  10. Chemical dynamics between wells across a time-dependent barrier: Self-similarity in the Lagrangian descriptor and reactive basins.

    PubMed

    Junginger, Andrej; Duvenbeck, Lennart; Feldmaier, Matthias; Main, Jörg; Wunner, Günter; Hernandez, Rigoberto

    2017-08-14

    In chemical or physical reaction dynamics, it is essential to distinguish precisely between reactants and products for all times. This task is especially demanding in time-dependent or driven systems because therein the dividing surface (DS) between these states often exhibits a nontrivial time-dependence. The so-called transition state (TS) trajectory has been seen to define a DS which is free of recrossings in a large number of one-dimensional reactions across time-dependent barriers and thus, allows one to determine exact reaction rates. A fundamental challenge to applying this method is the construction of the TS trajectory itself. The minimization of Lagrangian descriptors (LDs) provides a general and powerful scheme to obtain that trajectory even when perturbation theory fails. Both approaches encounter possible breakdowns when the overall potential is bounded, admitting the possibility of returns to the barrier long after the trajectories have reached the product or reactant wells. Such global dynamics cannot be captured by perturbation theory. Meanwhile, in the LD-DS approach, it leads to the emergence of additional local minima which make it difficult to extract the optimal branch associated with the desired TS trajectory. In this work, we illustrate this behavior for a time-dependent double-well potential revealing a self-similar structure of the LD, and we demonstrate how the reflections and side-minima can be addressed by an appropriate modification of the LD associated with the direct rate across the barrier.

  11. A global multilevel atmospheric model using a vector semi-Lagrangian finite-difference scheme. I - Adiabatic formulation

    NASA Technical Reports Server (NTRS)

    Bates, J. R.; Moorthi, S.; Higgins, R. W.

    1993-01-01

    An adiabatic global multilevel primitive equation model using a two time-level, semi-Lagrangian semi-implicit finite-difference integration scheme is presented. A Lorenz grid is used for vertical discretization and a C grid for the horizontal discretization. The momentum equation is discretized in vector form, thus avoiding problems near the poles. The 3D model equations are reduced by a linear transformation to a set of 2D elliptic equations, whose solution is found by means of an efficient direct solver. The model (with minimal physics) is integrated for 10 days starting from an initialized state derived from real data. A resolution of 16 levels in the vertical is used, with various horizontal resolutions. The model is found to be stable and efficient, and to give realistic output fields. Integrations with time steps of 10 min, 30 min, and 1 h are compared, and the differences are found to be acceptable.

  12. Using Lagrangian Coherent Structures to understand coastal water quality

    NASA Astrophysics Data System (ADS)

    Fiorentino, L. A.; Olascoaga, M. J.; Reniers, A.; Feng, Z.; Beron-Vera, F. J.; MacMahan, J. H.

    2012-09-01

    The accumulation of pollutants near the shoreline can result in low quality coastal water with negative effects on human health. To understand the role of mixing by tidal flows in coastal water quality we study the nearshore Lagrangian circulation. Specifically, we reveal Lagrangian Coherent Structures (LCSs), i.e., distinguished material curves which shape global mixing patterns and thus act as skeletons of the Lagrangian circulation. This is done using the recently developed geodesic theory of transport barriers. Particular focus is placed on Hobie Beach, a recreational subtropical marine beach located in Virginia Key, Miami, Florida. According to studies of water quality, Hobie Beach is characterized by high microbial levels. Possible sources of pollution in Hobie Beach include human bather shedding, dog fecal matter, runoff, and sand efflux at high tides. Consistent with the patterns formed by satellite-tracked drifter trajectories, the LCSs extracted from simulated currents reveal a Lagrangian circulation favoring the retention near the shoreline of pollutants released along the shoreline, which can help explain the low quality water registered at Hobie Beach.

  13. Integration over families of Lagrangian submanifolds in BV formalism

    NASA Astrophysics Data System (ADS)

    Mikhailov, Andrei

    2018-03-01

    Gauge fixing is interpreted in BV formalism as a choice of Lagrangian submanifold in an odd symplectic manifold (the BV phase space). A natural construction defines an integration procedure on families of Lagrangian submanifolds. In string perturbation theory, the moduli space integrals of higher genus amplitudes can be interpreted in this way. We discuss the role of gauge symmetries in this construction. We derive the conditions which should be imposed on gauge symmetries for the consistency of our integration procedure. We explain how these conditions behave under the deformations of the worldsheet theory. In particular, we show that integrated vertex operator is actually an inhomogeneous differential form on the space of Lagrangian submanifolds.

  14. Segmental Analysis of Cardiac Short-Axis Views Using Lagrangian Radial and Circumferential Strain.

    PubMed

    Ma, Chi; Wang, Xiao; Varghese, Tomy

    2016-11-01

    Accurate description of myocardial deformation in the left ventricle is a three-dimensional problem, requiring three normal strain components along its natural axis, that is, longitudinal, radial, and circumferential strains. Although longitudinal strains are best estimated from long-axis views, radial and circumferential strains are best depicted in short-axis views. An algorithm that utilizes a polar grid for short-axis views previously developed in our laboratory for a Lagrangian description of tissue deformation is utilized for radial and circumferential displacement and strain estimation. Deformation of the myocardial wall, utilizing numerical simulations with ANSYS, and a finite-element analysis-based canine heart model were adapted as the input to a frequency-domain ultrasound simulation program to generate radiofrequency echo signals. Clinical in vivo data were also acquired from a healthy volunteer. Local displacements estimated along and perpendicular to the ultrasound beam propagation direction are then transformed into radial and circumferential displacements and strains using the polar grid based on a pre-determined centroid location. Lagrangian strain variations demonstrate good agreement with the ideal strain when compared with Eulerian results. Lagrangian radial and circumferential strain estimation results are also demonstrated for experimental data on a healthy volunteer. Lagrangian radial and circumferential strain tracking provide accurate results with the assistance of the polar grid, as demonstrated using both numerical simulations and in vivo study. © The Author(s) 2015.

  15. Segmental Analysis of Cardiac Short-Axis Views Using Lagrangian Radial and Circumferential Strain

    PubMed Central

    Ma, Chi; Wang, Xiao; Varghese, Tomy

    2016-01-01

    Accurate description of myocardial deformation in the left ventricle is a three-dimensional problem, requiring three normal strain components along its natural axis, that is, longitudinal, radial, and circumferential strains. Although longitudinal strains are best estimated from long-axis views, radial and circumferential strains are best depicted in short-axis views. An algorithm that utilizes a polar grid for short-axis views previously developed in our laboratory for a Lagrangian description of tissue deformation is utilized for radial and circumferential displacement and strain estimation. Deformation of the myocardial wall, utilizing numerical simulations with ANSYS, and a finite-element analysis–based canine heart model were adapted as the input to a frequency-domain ultrasound simulation program to generate radiofrequency echo signals. Clinical in vivo data were also acquired from a healthy volunteer. Local displacements estimated along and perpendicular to the ultrasound beam propagation direction are then transformed into radial and circumferential displacements and strains using the polar grid based on a pre-determined centroid location. Lagrangian strain variations demonstrate good agreement with the ideal strain when compared with Eulerian results. Lagrangian radial and circumferential strain estimation results are also demonstrated for experimental data on a healthy volunteer. Lagrangian radial and circumferential strain tracking provide accurate results with the assistance of the polar grid, as demonstrated using both numerical simulations and in vivo study. PMID:26578642

  16. Acoustic streaming: an arbitrary Lagrangian-Eulerian perspective.

    PubMed

    Nama, Nitesh; Huang, Tony Jun; Costanzo, Francesco

    2017-08-25

    We analyse acoustic streaming flows using an arbitrary Lagrangian Eulerian (ALE) perspective. The formulation stems from an explicit separation of time scales resulting in two subproblems: a first-order problem, formulated in terms of the fluid displacement at the fast scale, and a second-order problem, formulated in terms of the Lagrangian flow velocity at the slow time scale. Following a rigorous time-averaging procedure, the second-order problem is shown to be intrinsically steady, and with exact boundary conditions at the oscillating walls. Also, as the second-order problem is solved directly for the Lagrangian velocity, the formulation does not need to employ the notion of Stokes drift, or any associated post-processing, thus facilitating a direct comparison with experiments. Because the first-order problem is formulated in terms of the displacement field, our formulation is directly applicable to more complex fluid-structure interaction problems in microacoustofluidic devices. After the formulation's exposition, we present numerical results that illustrate the advantages of the formulation with respect to current approaches.

  17. Research on an augmented Lagrangian penalty function algorithm for nonlinear programming

    NASA Technical Reports Server (NTRS)

    Frair, L.

    1978-01-01

    The augmented Lagrangian (ALAG) Penalty Function Algorithm for optimizing nonlinear mathematical models is discussed. The mathematical models of interest are deterministic in nature and finite dimensional optimization is assumed. A detailed review of penalty function techniques in general and the ALAG technique in particular is presented. Numerical experiments are conducted utilizing a number of nonlinear optimization problems to identify an efficient ALAG Penalty Function Technique for computer implementation.

  18. Enhancement of a dynamic porous model considering compression-release hysteresis behavior: application to graphite

    NASA Astrophysics Data System (ADS)

    Jodar, B.; Seisson, G.; Hébert, D.; Bertron, I.; Boustie, M.; Berthe, L.

    2016-08-01

    Because of their shock wave attenuation properties, porous materials and foams are increasingly used for various applications such as graphite in the aerospace industry and polyurethane (PU) foams in biomedical engineering. For these two materials, the absence of residual compaction after compression and release cycles limits the efficiency of the usual numerical dynamic porous models such as P-α and POREQST. In this paper, we suggest a simple enhancement of the latter in order to take into account the compression-release hysteresis behavior experimentally observed for the considered materials. The new model, named H-POREQST, was implemented into a Lagrangian hydrocode and tested for simulating plate impact experiments at moderate pressure onto a commercial grade of porous graphite (EDM3). It proved to be in far better agreement with experimental data than the original model which encourages us to pursue numerical tests and developments.

  19. Using Lagrangian Chemical Transport Modeling to Assess the Impact of Biomass Burning on Ozone and PM2.5

    NASA Astrophysics Data System (ADS)

    Alvarado, M. J.; Lonsdale, C. R.; Brodowski, C. M.

    2017-12-01

    One of the challenges of using in situ measurements to study the air quality and climate impacts of biomass burning is correctly determining the contribution of biomass burning sources to the measured ambient concentrations. This is especially important for policy purposes, as the ozone (O3) and fine particulate matter (PM2.5) from natural wildfires should not be confused with that from controllable anthropogenic sources. We have developed a Lagrangian chemical transport model called STILT-ASP that is able to quantify the impact of wildfire events on O3 and PM2.5 measurements made at surface monitoring sites, by mobile laboratories, or by aircraft. STILT-ASP is built by coupling the Stochastic Time Inverted Lagrangian Transport (STILT) model with AER's Aerosol Simulation Program (ASP), which has been used in many studies of the gas and aerosol chemistry of biomass burning smoke. Here we present recent revisions made in STILT-ASP v2.0, including the use of more detailed chemical speciation of fire emissions and biogenic emissions calculated using the MEGAN model with meteorological inputs consistent with those used to drive STILT. We will present the results of an evaluation of the performance of STILT-ASP v2.0 using surface, mobile lab, and aircraft data from the 2013 Houston DISCOVER-AQ campaign. STILT-ASP v2.0 showed good average performance for O3 during the peak of the high O3 episodes on Sept. 25-26, 2013, with a mean bias of -4 ppbv. We will also demonstrate the use of STILT-ASP to evaluate the impact of biomass burning on O3 and PM2.5 in urban areas and to assess the impact of remote fires on the boundary conditions used in Eulerian chemical transport models like CAMx.

  20. Avoiding drift related to linear analysis update with Lagrangian coordinate models

    NASA Astrophysics Data System (ADS)

    Wang, Yiguo; Counillon, Francois; Bertino, Laurent

    2015-04-01

    When applying data assimilation to Lagrangian coordinate models, it is profitable to correct its grid (position, volume). In isopycnal ocean coordinate model, such information is provided by the layer thickness that can be massless but must remains positive (truncated Gaussian distribution). A linear gaussian analysis does not ensure positivity for such variable. Existing methods have been proposed to handle this issue - e.g. post processing, anamorphosis or resampling - but none ensures conservation of the mean, which is imperative in climate application. Here, a framework is introduced to test a new method, which proceed as following. First, layers for which analysis yields negative values are iteratively grouped with neighboring layers, resulting in a probability density function with a larger mean and smaller standard deviation that prevent appearance of negative values. Second, analysis increments of the grouped layer are uniformly distributed, which prevent massless layers to become filled and vice-versa. The new method is proved fully conservative with e.g. OI or 3DVAR but a small drift remains with ensemble-based methods (e.g. EnKF, DEnKF, …) during the update of the ensemble anomaly. However, the resulting drift with the latter is small (an order of magnitude smaller than with post-processing) and the increase of the computational cost moderate. The new method is demonstrated with a realistic application in the Norwegian Climate Prediction Model (NorCPM) that provides climate prediction by assimilating sea surface temperature with the Ensemble Kalman Filter in a fully coupled Earth System model (NorESM) with an isopycnal ocean model (MICOM). Over 25-year analysis period, the new method does not impair the predictive skill of the system but corrects the artificial steric drift introduced by data assimilation, and provide estimate in good agreement with IPCC AR5.

  1. Integration of the shallow water equations on the sphere using a vector semi-Lagrangian scheme with a multigrid solver

    NASA Technical Reports Server (NTRS)

    Bates, J. R.; Semazzi, F. H. M.; Higgins, R. W.; Barros, Saulo R. M.

    1990-01-01

    A vector semi-Lagrangian semi-implicit two-time-level finite-difference integration scheme for the shallow water equations on the sphere is presented. A C-grid is used for the spatial differencing. The trajectory-centered discretization of the momentum equation in vector form eliminates pole problems and, at comparable cost, gives greater accuracy than a previous semi-Lagrangian finite-difference scheme which used a rotated spherical coordinate system. In terms of the insensitivity of the results to increasing timestep, the new scheme is as successful as recent spectral semi-Lagrangian schemes. In addition, the use of a multigrid method for solving the elliptic equation for the geopotential allows efficient integration with an operation count which, at high resolution, is of lower order than in the case of the spectral models. The properties of the new scheme should allow finite-difference models to compete with spectral models more effectively than has previously been possible.

  2. Influence of compressibility on the Lagrangian statistics of vorticity-strain-rate interactions.

    PubMed

    Danish, Mohammad; Sinha, Sawan Suman; Srinivasan, Balaji

    2016-07-01

    The objective of this study is to investigate the influence of compressibility on Lagrangian statistics of vorticity and strain-rate interactions. The Lagrangian statistics are extracted from "almost" time-continuous data sets of direct numerical simulations of compressible decaying isotropic turbulence by employing a cubic spline-based Lagrangian particle tracker. We study the influence of compressibility on Lagrangian statistics of alignment in terms of compressibility parameters-turbulent Mach number, normalized dilatation-rate, and flow topology. In comparison to incompressible turbulence, we observe that the presence of compressibility in a flow field weakens the alignment tendency of vorticity toward the largest strain-rate eigenvector. Based on the Lagrangian statistics of alignment conditioned on dilatation and topology, we find that the weakened tendency of alignment observed in compressible turbulence is because of a special group of fluid particles that have an initially negligible dilatation-rate and are associated with stable-focus-stretching topology.

  3. Lagrangian water mass tracing from pseudo-Argo, model-derived salinity, tracer and velocity data: An application to Antarctic Intermediate Water in the South Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Blanke, Bruno; Speich, Sabrina; Rusciano, Emanuela

    2015-01-01

    We use the tracer and velocity fields of a climatological ocean model to investigate the ability of Argo-like data to estimate accurately water mass movements and transformations, in the style of analyses commonly applied to the output of ocean general circulation model. To this end, we introduce an algorithm for the reconstruction of a fully non-divergent three-dimensional velocity field from the simple knowledge of the model vertical density profiles and 1000-m horizontal velocity components. The validation of the technique consists in comparing the resulting pathways for Antarctic Intermediate Water in the South Atlantic Ocean to equivalent reference results based on the full model information available for velocity and tracers. We show that the inclusion of a wind-induced Ekman pumping and of a well-thought-out expression for vertical velocity at the level of the intermediate waters is essential for the reliable reproduction of quantitative Lagrangian analyses. Neglecting the seasonal variability of the velocity and tracer fields is not a significant source of errors, at least well below the permanent thermocline. These results give us confidence in the success of the adaptation of the algorithm to true gridded Argo data for investigating the dynamics of flows in the ocean interior.

  4. An extended Lagrangian method for subsonic flows

    NASA Technical Reports Server (NTRS)

    Liou, Meng-Sing; Loh, Ching Y.

    1992-01-01

    It is well known that fluid motion can be specified by either the Eulerian of Lagrangian description. Most of Computational Fluid Dynamics (CFD) developments over the last three decades have been based on the Eulerian description and considerable progress has been made. In particular, the upwind methods, inspired and guided by the work of Gudonov, have met with many successes in dealing with complex flows, especially where discontinuities exist. However, this shock capturing property has proven to be accurate only when the discontinuity is aligned with one of the grid lines since most upwind methods are strictly formulated in 1-D framework and only formally extended to multi-dimensions. Consequently, the attractive property of crisp resolution of these discontinuities is lost and research on genuine multi-dimensional approach has just been undertaken by several leading researchers. Nevertheless they are still based on the Eulerian description.

  5. Lagrangian solution of supersonic real gas flows

    NASA Technical Reports Server (NTRS)

    Loh, Ching-Yuen; Liou, Meng-Sing

    1993-01-01

    The present extention of a Lagrangian approach of the Riemann solution procedure, which was originally proposed for perfect gases, to real gases, is nontrivial and requires the development of an exact real-gas Riemann solver for the Lagrangian form of the conservation laws. Calculations including complex wave interactions of various types were conducted to test the accuracy and robustness of the approach. Attention is given to the case of 2D oblique waves' capture, where a slip line is clearly in evidence; the real gas effect is demonstrated in the case of a generic engine nozzle.

  6. A few words about resonances in the electroweak effective Lagrangian

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosell, Ignasi; Pich, Antonio; Santos, Joaquín

    Contrary to a widely spread believe, we have demonstrated that strongly coupled electroweak models including both a light Higgs-like boson and massive spin-1 resonances are not in conflict with experimental constraints on the oblique S and T parameters. We use an effective Lagrangian implementing the chiral symmetry breaking SU (2){sub L} ⊗ SU (2){sub R} → SU (2){sub L+R} that contains the Standard Model gauge bosons coupled to the electroweak Goldstones, one Higgs-like scalar state h with mass m{sub h} = 126 GeV and the lightest vector and axial-vector resonance multiplets V and A. We have considered the one-loop calculationmore » of S and T in order to study the viability of these strongly-coupled scenarios, being short-distance constraints and dispersive relations the main ingredients of the calculation. Once we have constrained the resonance parameters, we do a first approach to the determination of the low energy constants of the electroweak effective theory at low energies (without resonances). We show this determination in the case of the purely Higgsless bosonic Lagrangian.« less

  7. Exploring the role of mixing between subsurface flow paths on transit time distributions using a Lagrangian model

    NASA Astrophysics Data System (ADS)

    Zehe, Erwin; Jackisch, Conrad; Rodriguez, Nicolas; Klaus, Julian

    2017-04-01

    Only a minute amount of global fresh water is stored in the unsaturated zone. Yet this tiny compartment controls soil microbial activity and associated trace gas emissions, transport and transformations of contaminants, plant productivity, runoff generation and groundwater recharge. To date, the processes controlling renewal and age of different fractions of the soil water stock are far from being understood. Current theories and process concepts were largely inferred either from over-simplified laboratory experiments, or non-exhaustive point observations and tracer data in the field. Tracer data provide key but yet integrated information about the distribution of travel times of the tracer molecules to a certain depth or on their travel depth distribution within a given time. We hence are able to observe the "effect" of soil structure i.e. partitioning of infiltrating water between fast preferential and slow flow paths and imperfect subsequent mixing between these flow paths in the subsurface and the related plant water uptake. However, we are not able to study the "cause" - because technologies for in-situ observations of flow, flow path topology and exchange processes at relevant interfaces have up to now not been at hand. In the present study we will make use of a Lagrangian model for subsurface water dynamics to explore how subsurface heterogeneity and mixing among different storage fractions affects residence time distribution in the unsaturated zone in a forward approach. Soil water is represented by particles of constant mass, which travel according to the Itô form of the Fokker Planck equation. The model concept builds on established soil physics by estimating the drift velocity and the diffusion term based on the soil water characteristics. The model has been shown to simulate capillary driven soil moisture dynamics in good accordance with a) the Richards equation and b) observed soil moisture data in different soil. The particle model may furthermore

  8. The Lagrangian Ensemble metamodel for simulating plankton ecosystems

    NASA Astrophysics Data System (ADS)

    Woods, J. D.

    2005-10-01

    This paper presents a detailed account of the Lagrangian Ensemble (LE) metamodel for simulating plankton ecosystems. It uses agent-based modelling to describe the life histories of many thousands of individual plankters. The demography of each plankton population is computed from those life histories. So too is bio-optical and biochemical feedback to the environment. The resulting “virtual ecosystem” is a comprehensive simulation of the plankton ecosystem. It is based on phenotypic equations for individual micro-organisms. LE modelling differs significantly from population-based modelling. The latter uses prognostic equations to compute demography and biofeedback directly. LE modelling diagnoses them from the properties of individual micro-organisms, whose behaviour is computed from prognostic equations. That indirect approach permits the ecosystem to adjust gracefully to changes in exogenous forcing. The paper starts with theory: it defines the Lagrangian Ensemble metamodel and explains how LE code performs a number of computations “behind the curtain”. They include budgeting chemicals, and deriving biofeedback and demography from individuals. The next section describes the practice of LE modelling. It starts with designing a model that complies with the LE metamodel. Then it describes the scenario for exogenous properties that provide the computation with initial and boundary conditions. These procedures differ significantly from those used in population-based modelling. The next section shows how LE modelling is used in research, teaching and planning. The practice depends largely on hindcasting to overcome the limits to predictability of weather forecasting. The scientific method explains observable ecosystem phenomena in terms of finer-grained processes that cannot be observed, but which are controlled by the basic laws of physics, chemistry and biology. What-If? Prediction ( WIP), used for planning, extends hindcasting by adding events that describe

  9. Dynamics of tethered satellites in the vicinity of the Lagrangian point L2 of the Earth-Moon system

    NASA Astrophysics Data System (ADS)

    Baião, M. F.; Stuchi, T. J.

    2017-08-01

    This paper analyzes the dynamical evolution of satellites formed by two masses connected by a cable— tethered satellites. We derive the Lagrangian equations of motion in the neighborhood of the collinear equilibrium points, especially for the L2 , of the restricted problem of three bodies. The rigid body configuration is expanded in Legendre polynomials up to fourth degree. We present some numerical simulations of the influence of the parameters such as cable length, mass ratio and initial conditions in the behavior of the tethered satellites. The equation for the collinear equilibrium point is derived and numerically solved. The evolution of the equilibria with the variation of the cable length as a parameter is studied. We also present a discussion of the linear stability around these equilibria. Based on this analysis calculate some unstable Lyapunov orbits associated to these equilibrium points. We found periodic orbits in which the tether travels parallel to itself without involving the angular motion. The numerical applications are focused on the Earth-Moon system. However, the general character of the equations allows applications to the L1 equilibrium and obviously to systems other than the Earth-Moon.

  10. Lagrangian statistics and flow topology in forced two-dimensional turbulence.

    PubMed

    Kadoch, B; Del-Castillo-Negrete, D; Bos, W J T; Schneider, K

    2011-03-01

    A study of the relationship between Lagrangian statistics and flow topology in fluid turbulence is presented. The topology is characterized using the Weiss criterion, which provides a conceptually simple tool to partition the flow into topologically different regions: elliptic (vortex dominated), hyperbolic (deformation dominated), and intermediate (turbulent background). The flow corresponds to forced two-dimensional Navier-Stokes turbulence in doubly periodic and circular bounded domains, the latter with no-slip boundary conditions. In the double periodic domain, the probability density function (pdf) of the Weiss field exhibits a negative skewness consistent with the fact that in periodic domains the flow is dominated by coherent vortex structures. On the other hand, in the circular domain, the elliptic and hyperbolic regions seem to be statistically similar. We follow a Lagrangian approach and obtain the statistics by tracking large ensembles of passively advected tracers. The pdfs of residence time in the topologically different regions are computed introducing the Lagrangian Weiss field, i.e., the Weiss field computed along the particles' trajectories. In elliptic and hyperbolic regions, the pdfs of the residence time have self-similar algebraic decaying tails. In contrast, in the intermediate regions the pdf has exponential decaying tails. The conditional pdfs (with respect to the flow topology) of the Lagrangian velocity exhibit Gaussian-like behavior in the periodic and in the bounded domains. In contrast to the freely decaying turbulence case, the conditional pdfs of the Lagrangian acceleration in forced turbulence show a comparable level of intermittency in both the periodic and the bounded domains. The conditional pdfs of the Lagrangian curvature are characterized, in all cases, by self-similar power-law behavior with a decay exponent of order -2.

  11. Dynamic modeling and hierarchical compound control of a novel 2-DOF flexible parallel manipulator with multiple actuation modes

    NASA Astrophysics Data System (ADS)

    Liang, Dong; Song, Yimin; Sun, Tao; Jin, Xueying

    2018-03-01

    This paper addresses the problem of rigid-flexible coupling dynamic modeling and active control of a novel flexible parallel manipulator (PM) with multiple actuation modes. Firstly, based on the flexible multi-body dynamics theory, the rigid-flexible coupling dynamic model (RFDM) of system is developed by virtue of the augmented Lagrangian multipliers approach. For completeness, the mathematical models of permanent magnet synchronous motor (PMSM) and piezoelectric transducer (PZT) are further established and integrated with the RFDM of mechanical system to formulate the electromechanical coupling dynamic model (ECDM). To achieve the trajectory tracking and vibration suppression, a hierarchical compound control strategy is presented. Within this control strategy, the proportional-differential (PD) feedback controller is employed to realize the trajectory tracking of end-effector, while the strain and strain rate feedback (SSRF) controller is developed to restrain the vibration of the flexible links using PZT. Furthermore, the stability of the control algorithm is demonstrated based on the Lyapunov stability theory. Finally, two simulation case studies are performed to illustrate the effectiveness of the proposed approach. The results indicate that, under the redundant actuation mode, the hierarchical compound control strategy can guarantee the flexible PM achieves singularity-free motion and vibration attenuation within task workspace simultaneously. The systematic methodology proposed in this study can be conveniently extended for the dynamic modeling and efficient controller design of other flexible PMs, especially the emerging ones with multiple actuation modes.

  12. Implications for Post-processing Nucleosynthesis of Core-collapse Supernova Models with Lagrangian Particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harris, J. Austin; Hix, W. Raphael; Chertkow, Merek A.

    In this paper, we investigate core-collapse supernova (CCSN) nucleosynthesis with self-consistent, axisymmetric (2D) simulations performed using the neutrino hydrodynamics code Chimera. Computational costs have traditionally constrained the evolution of the nuclear composition within multidimensional CCSN models to, at best, a 14-species α-network capable of tracking onlymore » $$(\\alpha ,\\gamma )$$ reactions from 4He to 60Zn. Such a simplified network limits the ability to accurately evolve detailed composition and neutronization or calculate the nuclear energy generation rate. Lagrangian tracer particles are commonly used to extend the nuclear network evolution by incorporating more realistic networks into post-processing nucleosynthesis calculations. However, limitations such as poor spatial resolution of the tracer particles; inconsistent thermodynamic evolution, including misestimation of expansion timescales; and uncertain determination of the multidimensional mass cut at the end of the simulation impose uncertainties inherent to this approach. Finally, we present a detailed analysis of the impact of such uncertainties for four self-consistent axisymmetric CCSN models initiated from solar-metallicity, nonrotating progenitors of 12, 15, 20, and 25 $${M}_{\\odot }$$ and evolved with the smaller α-network to more than 1 s after the launch of an explosion.« less

  13. Implications for Post-processing Nucleosynthesis of Core-collapse Supernova Models with Lagrangian Particles

    DOE PAGES

    Harris, J. Austin; Hix, W. Raphael; Chertkow, Merek A.; ...

    2017-06-26

    In this paper, we investigate core-collapse supernova (CCSN) nucleosynthesis with self-consistent, axisymmetric (2D) simulations performed using the neutrino hydrodynamics code Chimera. Computational costs have traditionally constrained the evolution of the nuclear composition within multidimensional CCSN models to, at best, a 14-species α-network capable of tracking onlymore » $$(\\alpha ,\\gamma )$$ reactions from 4He to 60Zn. Such a simplified network limits the ability to accurately evolve detailed composition and neutronization or calculate the nuclear energy generation rate. Lagrangian tracer particles are commonly used to extend the nuclear network evolution by incorporating more realistic networks into post-processing nucleosynthesis calculations. However, limitations such as poor spatial resolution of the tracer particles; inconsistent thermodynamic evolution, including misestimation of expansion timescales; and uncertain determination of the multidimensional mass cut at the end of the simulation impose uncertainties inherent to this approach. Finally, we present a detailed analysis of the impact of such uncertainties for four self-consistent axisymmetric CCSN models initiated from solar-metallicity, nonrotating progenitors of 12, 15, 20, and 25 $${M}_{\\odot }$$ and evolved with the smaller α-network to more than 1 s after the launch of an explosion.« less

  14. Implications for Post-processing Nucleosynthesis of Core-collapse Supernova Models with Lagrangian Particles

    NASA Astrophysics Data System (ADS)

    Harris, J. Austin; Hix, W. Raphael; Chertkow, Merek A.; Lee, C. T.; Lentz, Eric J.; Messer, O. E. Bronson

    2017-07-01

    We investigate core-collapse supernova (CCSN) nucleosynthesis with self-consistent, axisymmetric (2D) simulations performed using the neutrino hydrodynamics code Chimera. Computational costs have traditionally constrained the evolution of the nuclear composition within multidimensional CCSN models to, at best, a 14-species α-network capable of tracking only (α ,γ ) reactions from 4He to 60Zn. Such a simplified network limits the ability to accurately evolve detailed composition and neutronization or calculate the nuclear energy generation rate. Lagrangian tracer particles are commonly used to extend the nuclear network evolution by incorporating more realistic networks into post-processing nucleosynthesis calculations. However, limitations such as poor spatial resolution of the tracer particles inconsistent thermodynamic evolution, including misestimation of expansion timescales and uncertain determination of the multidimensional mass cut at the end of the simulation impose uncertainties inherent to this approach. We present a detailed analysis of the impact of such uncertainties for four self-consistent axisymmetric CCSN models initiated from solar-metallicity, nonrotating progenitors of 12, 15, 20, and 25 {M}⊙ and evolved with the smaller α-network to more than 1 s after the launch of an explosion.

  15. Climatology of convective showers dynamics in a convection-permitting model

    NASA Astrophysics Data System (ADS)

    Brisson, Erwan; Brendel, Christoph; Ahrens, Bodo

    2017-04-01

    Convection-permitting simulations have proven their usefulness in improving both the representation of convective rain and the uncertainty range of climate projections. However, most studies have focused on temporal scales greater or equal to convection cell lifetime. A large knowledge gap remains on the model's performance in representing the temporal dynamic of convective showers and how could this temporal dynamic be altered in a warmer climate. In this study, we proposed to fill this gap by analyzing 5-minute convection-permitting model (CPM) outputs. In total, more than 1200 one-day cases are simulated at the resolution of 0.01° using the regional climate model COSMO-CLM over central Europe. The analysis follows a Lagrangian approach and consists of tracking showers characterized by five-minute intensities greater than 20 mm/hour. The different features of these showers (e.g., temporal evolution, horizontal speed, lifetime) are investigated. These features as modeled by an ERA-Interim forced simulation are evaluated using a radar dataset for the period 2004-2010. The model shows good performance in representing most features observed in the radar dataset. Besides, the observed relation between the temporal evolution of precipitation and temperature are well reproduced by the CPM. In a second modeling experiment, the impact of climate change on convective cell features are analyzed based on an EC-Earth RCP8.5 forced simulation for the period 2071-2100. First results show only minor changes in the temporal structure and size of showers. The increase in convective precipitation found in previous studies seems to be mainly due to an increase in the number of convective cells.

  16. A semi-Lagrangian advection scheme for radioactive tracers in the NCEP Regional Spectral Model (RSM)

    NASA Astrophysics Data System (ADS)

    Chang, E.-C.; Yoshimura, K.

    2015-10-01

    In this study, the non-iteration dimensional-split semi-Lagrangian (NDSL) advection scheme is applied to the National Centers for Environmental Prediction (NCEP) Regional Spectral Model (RSM) to alleviate the Gibbs phenomenon. The Gibbs phenomenon is a problem wherein negative values of positive-definite quantities (e.g., moisture and tracers) are generated by the spectral space transformation in a spectral model system. To solve this problem, the spectral prognostic specific humidity and radioactive tracer advection scheme is replaced by the NDSL advection scheme, which considers advection of tracers in a grid system without spectral space transformations. A regional version of the NDSL is developed in this study and is applied to the RSM. Idealized experiments show that the regional version of the NDSL is successful. The model runs for an actual case study suggest that the NDSL can successfully advect radioactive tracers (iodine-131 and cesium-137) without noise from the Gibbs phenomenon. The NDSL can also remove negative specific humidity values produced in spectral calculations without losing detailed features.

  17. Lagrangian displacement tracking using a polar grid between endocardial and epicardial contours for cardiac strain imaging.

    PubMed

    Ma, Chi; Varghese, Tomy

    2012-04-01

    Accurate cardiac deformation analysis for cardiac displacement and strain imaging over time requires Lagrangian description of deformation of myocardial tissue structures. Failure to couple the estimated displacement and strain information with the correct myocardial tissue structures will lead to erroneous result in the displacement and strain distribution over time. Lagrangian based tracking in this paper divides the tissue structure into a fixed number of pixels whose deformation is tracked over the cardiac cycle. An algorithm that utilizes a polar-grid generated between the estimated endocardial and epicardial contours for cardiac short axis images is proposed to ensure Lagrangian description of the pixels. Displacement estimates from consecutive radiofrequency frames were then mapped onto the polar grid to obtain a distribution of the actual displacement that is mapped to the polar grid over time. A finite element based canine heart model coupled with an ultrasound simulation program was used to verify this approach. Segmental analysis of the accumulated displacement and strain over a cardiac cycle demonstrate excellent agreement between the ideal result obtained directly from the finite element model and our Lagrangian approach to strain estimation. Traditional Eulerian based estimation results, on the other hand, show significant deviation from the ideal result. An in vivo comparison of the displacement and strain estimated using parasternal short axis views is also presented. Lagrangian displacement tracking using a polar grid provides accurate tracking of myocardial deformation demonstrated using both finite element and in vivo radiofrequency data acquired on a volunteer. In addition to the cardiac application, this approach can also be utilized for transverse scans of arteries, where a polar grid can be generated between the contours delineating the outer and inner wall of the vessels from the blood flowing though the vessel.

  18. The Lagrangian-Hamiltonian formalism for higher order field theories

    NASA Astrophysics Data System (ADS)

    Vitagliano, Luca

    2010-06-01

    We generalize the Lagrangian-Hamiltonian formalism of Skinner and Rusk to higher order field theories on fiber bundles. As a byproduct we solve the long standing problem of defining, in a coordinate free manner, a Hamiltonian formalism for higher order Lagrangian field theories. Namely, our formalism does only depend on the action functional and, therefore, unlike previously proposed ones, is free from any relevant ambiguity.

  19. Near-Surface Monsoonal Circulation of the Vietnam East Sea from Lagrangian Drifters

    DTIC Science & Technology

    2015-09-30

    Sea from Lagrangian Drifters Luca Centurioni Scripps Institution of Oceanography 9500 Gilman Drive Mail Code 0213 La Jolla, California 92103...Contribute to the study of coastal and open ocean current systems in sparsely sampled regions such us the South China Sea (SCS), using a Lagrangian ...We intend to make new Lagrangian and Eulerian observations to measure the seasonal circulation 1) in the coastal waters of Vietnam and 2) in the SCS

  20. An efficient and stable hybrid extended Lagrangian/self-consistent field scheme for solving classical mutual induction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albaugh, Alex; Demerdash, Omar; Head-Gordon, Teresa, E-mail: thg@berkeley.edu

    2015-11-07

    We have adapted a hybrid extended Lagrangian self-consistent field (EL/SCF) approach, developed for time reversible Born Oppenheimer molecular dynamics for quantum electronic degrees of freedom, to the problem of classical polarization. In this context, the initial guess for the mutual induction calculation is treated by auxiliary induced dipole variables evolved via a time-reversible velocity Verlet scheme. However, we find numerical instability, which is manifested as an accumulation in the auxiliary velocity variables, that in turn results in an unacceptable increase in the number of SCF cycles to meet even loose convergence tolerances for the real induced dipoles over the coursemore » of a 1 ns trajectory of the AMOEBA14 water model. By diagnosing the numerical instability as a problem of resonances that corrupt the dynamics, we introduce a simple thermostating scheme, illustrated using Berendsen weak coupling and Nose-Hoover chain thermostats, applied to the auxiliary dipole velocities. We find that the inertial EL/SCF (iEL/SCF) method provides superior energy conservation with less stringent convergence thresholds and a correspondingly small number of SCF cycles, to reproduce all properties of the polarization model in the NVT and NVE ensembles accurately. Our iEL/SCF approach is a clear improvement over standard SCF approaches to classical mutual induction calculations and would be worth investigating for application to ab initio molecular dynamics as well.« less

  1. Space tether dynamics: an introduction

    NASA Astrophysics Data System (ADS)

    Denny, Mark

    2018-05-01

    The dynamics of orbiting tethers (space elevators and skyhooks) is developed from an unusual direction: Lagrangian rather than Newtonian mechanics. These basic results are derived among others: space elevator required length with and without counterweight, location and magnitude of maximum tether tension, skyhook orbital parameters and tether tension. These conceptual devices are being increasingly discussed as technologically feasible; here they make an interesting pedagogical application of Lagrangian mechanics suitable for undergraduate physics students.

  2. LSPRAY-IV: A Lagrangian Spray Module

    NASA Technical Reports Server (NTRS)

    Raju, M. S.

    2012-01-01

    LSPRAY-IV is a Lagrangian spray solver developed for application with parallel computing and unstructured grids. It is designed to be massively parallel and could easily be coupled with any existing gas-phase flow and/or Monte Carlo Probability Density Function (PDF) solvers. The solver accommodates the use of an unstructured mesh with mixed elements of either triangular, quadrilateral, and/or tetrahedral type for the gas flow grid representation. It is mainly designed to predict the flow, thermal and transport properties of a rapidly vaporizing spray. Some important research areas covered as a part of the code development are: (1) the extension of combined CFD/scalar-Monte- Carlo-PDF method to spray modeling, (2) the multi-component liquid spray modeling, and (3) the assessment of various atomization models used in spray calculations. The current version contains the extension to the modeling of superheated sprays. The manual provides the user with an understanding of various models involved in the spray formulation, its code structure and solution algorithm, and various other issues related to parallelization and its coupling with other solvers.

  3. An adaptive semi-Lagrangian advection model for transport of volcanic emissions in the atmosphere

    NASA Astrophysics Data System (ADS)

    Gerwing, Elena; Hort, Matthias; Behrens, Jörn; Langmann, Bärbel

    2018-06-01

    The dispersion of volcanic emissions in the Earth atmosphere is of interest for climate research, air traffic control and human wellbeing. Current volcanic emission dispersion models rely on fixed-grid structures that often are not able to resolve the fine filamented structure of volcanic emissions being transported in the atmosphere. Here we extend an existing adaptive semi-Lagrangian advection model for volcanic emissions including the sedimentation of volcanic ash. The advection of volcanic emissions is driven by a precalculated wind field. For evaluation of the model, the explosive eruption of Mount Pinatubo in June 1991 is chosen, which was one of the largest eruptions in the 20th century. We compare our simulations of the climactic eruption on 15 June 1991 to satellite data of the Pinatubo ash cloud and evaluate different sets of input parameters. We could reproduce the general advection of the Pinatubo ash cloud and, owing to the adaptive mesh, simulations could be performed at a high local resolution while minimizing computational cost. Differences to the observed ash cloud are attributed to uncertainties in the input parameters and the course of Typhoon Yunya, which is probably not completely resolved in the wind data used to drive the model. The best results were achieved for simulations with multiple ash particle sizes.

  4. Lagrangian and Hamiltonian constraints for guiding-center Hamiltonian theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tronko, Natalia; Brizard, Alain J.

    A consistent guiding-center Hamiltonian theory is derived by Lie-transform perturbation method, with terms up to second order in magnetic-field nonuniformity. Consistency is demonstrated by showing that the guiding-center transformation presented here satisfies separate Jacobian and Lagrangian constraints that have not been explored before. A new first-order term appearing in the guiding-center phase-space Lagrangian is identified through a calculation of the guiding-center polarization. It is shown that this new polarization term also yields a simpler expression of the guiding-center toroidal canonical momentum, which satisfies an exact conservation law in axisymmetric magnetic geometries. Finally, an application of the guiding-center Lagrangian constraint onmore » the guiding-center Hamiltonian yields a natural interpretation for its higher-order corrections.« less

  5. Dispersion upscaling from a pore scale characterization of Lagrangian velocities

    NASA Astrophysics Data System (ADS)

    Turuban, Régis; de Anna, Pietro; Jiménez-Martínez, Joaquín; Tabuteau, Hervé; Méheust, Yves; Le Borgne, Tanguy

    2013-04-01

    Mixing and reactive transport are primarily controlled by the interplay between diffusion, advection and reaction at pore scale. Yet, how the distribution and spatial correlation of the velocity field at pore scale impact these processes is still an open question. Here we present an experimental investigation of the distribution and correlation of pore scale velocities and its relation with upscaled dispersion. We use a quasi two-dimensional (2D) horizontal set up, consisting of two glass plates filled with cylinders representing the grains of the porous medium : the cell is built by soft lithography technique, wich allows for full control of the system geometry. The local velocity field is quantified from particle tracking velocimetry using microspheres that are advected with the pore scale flow. Their displacement is purely advective, as the particle size is chosen large enough to avoid diffusion. We thus obtain particle trajectories as well as lagrangian velocities in the entire system. The measured velocity field shows the existence of a network of preferential flow paths in channels with high velocities, as well as very low velocity in stagnation zones, with a non Gaussian distribution. Lagrangian velocities are long range correlated in time, which implies a non-fickian scaling of the longitudinal variance of particle positions. To upscale this process we develop an effective transport model, based on correlated continous time random walk, which is entirely parametrized by the pore scale velocity distribution and correlation. The model predictions are compared with conservative tracer test data for different Peclet numbers. Furthermore, we investigate the impact of different pore geometries on the distribution and correlation of Lagrangian velocities and we discuss the link between these properties and the effective dispersion behavior.

  6. Dynamic modelling and adaptive robust tracking control of a space robot with two-link flexible manipulators under unknown disturbances

    NASA Astrophysics Data System (ADS)

    Yang, Xinxin; Ge, Shuzhi Sam; He, Wei

    2018-04-01

    In this paper, both the closed-form dynamics and adaptive robust tracking control of a space robot with two-link flexible manipulators under unknown disturbances are developed. The dynamic model of the system is described with assumed modes approach and Lagrangian method. The flexible manipulators are represented as Euler-Bernoulli beams. Based on singular perturbation technique, the displacements/joint angles and flexible modes are modelled as slow and fast variables, respectively. A sliding mode control is designed for trajectories tracking of the slow subsystem under unknown but bounded disturbances, and an adaptive sliding mode control is derived for slow subsystem under unknown slowly time-varying disturbances. An optimal linear quadratic regulator method is proposed for the fast subsystem to damp out the vibrations of the flexible manipulators. Theoretical analysis validates the stability of the proposed composite controller. Numerical simulation results demonstrate the performance of the closed-loop flexible space robot system.

  7. Lagrangian Transport Model Forecasts as Useful Support of the Flight Planning During the Intercontinental Transport and Chemical Transformation 2002 (ITCT 2k2) Measurement Campaign

    NASA Astrophysics Data System (ADS)

    Forster, C.; Cooper, O.; Stohl, A.; Eckhardt, S.; James, P.; Dunlea, E.; Nicks, D. K.; Holloway, J. S.; Hübler, G.; Parrish, D. D.; Ryerson, T. B.; Trainer, M.

    2002-12-01

    In this study, the Lagrangian tracer transport model FLEXPART is shown to be a useful forecasting tool for the flight planning during the ITCT 2k2 (Intercontinental Transport and Chemical Transformation 2002) aircraft measurement campaign. The advantages of this model are that it requires only a short computation time, has a finer spatial resolution and does not suffer numerical diffusion compared to chemistry transport models (CTMs). It is a compromise between simple trajectory calculations and complex CTMs that makes best use of available computer hardware. During the campaign FLEXPART provided three-day forecasts for four different anthropogenic CO tracers: Asian, North American, Japanese, and European. The forecasts were based on data from the Aviation model (AVN) of the National Center for Environmental Prediction (NCEP) and relied on the EDGAR emission inventory for the base year 1990. In two case studies, the forecast abilities of FLEXPART are analysed and discussed by comparing the forecasts with measurement data, results from the post analysis modelling, infrared satellite images, and backward trajectories calculated with two different Lagrangian trajectory models. It is shown that intercontinental transport and dispersion of pollution plumes were qualitatively well predicted, and the aircraft could successfully be directed into the polluted air masses.

  8. Bounded fractional diffusion in geological media: Definition and Lagrangian approximation

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Green, Christopher T.; LaBolle, Eric M.; Neupauer, Roseanna M.; Sun, HongGuang

    2016-11-01

    Spatiotemporal fractional-derivative models (FDMs) have been increasingly used to simulate non-Fickian diffusion, but methods have not been available to define boundary conditions for FDMs in bounded domains. This study defines boundary conditions and then develops a Lagrangian solver to approximate bounded, one-dimensional fractional diffusion. Both the zero-value and nonzero-value Dirichlet, Neumann, and mixed Robin boundary conditions are defined, where the sign of Riemann-Liouville fractional derivative (capturing nonzero-value spatial-nonlocal boundary conditions with directional superdiffusion) remains consistent with the sign of the fractional-diffusive flux term in the FDMs. New Lagrangian schemes are then proposed to track solute particles moving in bounded domains, where the solutions are checked against analytical or Eulerian solutions available for simplified FDMs. Numerical experiments show that the particle-tracking algorithm for non-Fickian diffusion differs from Fickian diffusion in relocating the particle position around the reflective boundary, likely due to the nonlocal and nonsymmetric fractional diffusion. For a nonzero-value Neumann or Robin boundary, a source cell with a reflective face can be applied to define the release rate of random-walking particles at the specified flux boundary. Mathematical definitions of physically meaningful nonlocal boundaries combined with bounded Lagrangian solvers in this study may provide the only viable techniques at present to quantify the impact of boundaries on anomalous diffusion, expanding the applicability of FDMs from infinite domains to those with any size and boundary conditions.

  9. Bounded fractional diffusion in geological media: Definition and Lagrangian approximation

    USGS Publications Warehouse

    Zhang, Yong; Green, Christopher T.; LaBolle, Eric M.; Neupauer, Roseanna M.; Sun, HongGuang

    2016-01-01

    Spatiotemporal Fractional-Derivative Models (FDMs) have been increasingly used to simulate non-Fickian diffusion, but methods have not been available to define boundary conditions for FDMs in bounded domains. This study defines boundary conditions and then develops a Lagrangian solver to approximate bounded, one-dimensional fractional diffusion. Both the zero-value and non-zero-value Dirichlet, Neumann, and mixed Robin boundary conditions are defined, where the sign of Riemann-Liouville fractional derivative (capturing non-zero-value spatial-nonlocal boundary conditions with directional super-diffusion) remains consistent with the sign of the fractional-diffusive flux term in the FDMs. New Lagrangian schemes are then proposed to track solute particles moving in bounded domains, where the solutions are checked against analytical or Eularian solutions available for simplified FDMs. Numerical experiments show that the particle-tracking algorithm for non-Fickian diffusion differs from Fickian diffusion in relocating the particle position around the reflective boundary, likely due to the non-local and non-symmetric fractional diffusion. For a non-zero-value Neumann or Robin boundary, a source cell with a reflective face can be applied to define the release rate of random-walking particles at the specified flux boundary. Mathematical definitions of physically meaningful nonlocal boundaries combined with bounded Lagrangian solvers in this study may provide the only viable techniques at present to quantify the impact of boundaries on anomalous diffusion, expanding the applicability of FDMs from infinite do mains to those with any size and boundary conditions.

  10. A Modification and Analysis of Lagrangian Trajectory Modeling and Granular Dynamics of Lunar Dust Particles

    NASA Technical Reports Server (NTRS)

    Long, Jason M.; Lane, John E.; Metzger, Philip T.

    2008-01-01

    A previously developed mathematical model is amended to more accurately incorporate the effects of lift and drag on single dust particles in order to predict their behavior in the wake of high velocity gas flow. The model utilizes output from a CFD or DSMC simulation of exhaust from a rocket nozzle hot gas jet. An extension of the Saffman equation for lift based on the research of McLaughlin (1991) and Mei (1992) is used, while an equation for the Magnus force modeled after the work of Oesterle (1994) and Tsuji et al (1985) is applied. A relationship for drag utilizing a particle shape factor (phi = 0.8) is taken from the work of Haider and Levenspiel (1989) for application to non-spherical particle dynamics. The drag equation is further adjusted to account for rarefaction and compressibility effects in rarefied and high Mach number flows according to the work of Davies (1945) and Loth (2007) respectively. Simulations using a more accurate model with the correction factor (Epsilon = 0.8 in a 20% particle concentration gas flow) given by Richardson and Zaki (1954) and Rowe (1961) show that particles have lower ejection angles than those that were previously calculated. This is more prevalent in smaller particles, which are shown through velocity and trajectory comparison to be more influenced by the flow of the surrounding gas. It is shown that particles are more affected by minor changes to drag forces than larger adjustments to lift forces, demanding a closer analysis of the shape and behavior of lunar dust particles and the composition of the surrounding gas flow.

  11. Spectral-clustering approach to Lagrangian vortex detection.

    PubMed

    Hadjighasem, Alireza; Karrasch, Daniel; Teramoto, Hiroshi; Haller, George

    2016-06-01

    One of the ubiquitous features of real-life turbulent flows is the existence and persistence of coherent vortices. Here we show that such coherent vortices can be extracted as clusters of Lagrangian trajectories. We carry out the clustering on a weighted graph, with the weights measuring pairwise distances of fluid trajectories in the extended phase space of positions and time. We then extract coherent vortices from the graph using tools from spectral graph theory. Our method locates all coherent vortices in the flow simultaneously, thereby showing high potential for automated vortex tracking. We illustrate the performance of this technique by identifying coherent Lagrangian vortices in several two- and three-dimensional flows.

  12. Establishing Lagrangian connections between observations within air masses crossing the Atlantic during the International Consortium for Atmospheric Research on Transport and Transformation experiment

    NASA Astrophysics Data System (ADS)

    Methven, J.; Arnold, S. R.; Stohl, A.; Evans, M. J.; Avery, M.; Law, K.; Lewis, A. C.; Monks, P. S.; Parrish, D. D.; Reeves, C. E.; Schlager, H.; Atlas, E.; Blake, D. R.; Coe, H.; Crosier, J.; Flocke, F. M.; Holloway, J. S.; Hopkins, J. R.; McQuaid, J.; Purvis, R.; Rappenglück, B.; Singh, H. B.; Watson, N. M.; Whalley, L. K.; Williams, P. I.

    2006-12-01

    The ITCT-Lagrangian-2K4 (Intercontinental Transport and Chemical Transformation) experiment was conceived with an aim to quantify the effects of photochemistry and mixing on the transformation of air masses in the free troposphere away from emissions. To this end, attempts were made to intercept and sample air masses several times during their journey across the North Atlantic using four aircraft based in New Hampshire (USA), Faial (Azores) and Creil (France). This article begins by describing forecasts from two Lagrangian models that were used to direct the aircraft into target air masses. A novel technique then identifies Lagrangian matches between flight segments. Two independent searches are conducted: for Lagrangian model matches and for pairs of whole air samples with matching hydrocarbon fingerprints. The information is filtered further by searching for matching hydrocarbon samples that are linked by matching trajectories. The quality of these "coincident matches" is assessed using temperature, humidity and tracer observations. The technique pulls out five clear Lagrangian cases covering a variety of situations and these are examined in detail. The matching trajectories and hydrocarbon fingerprints are shown, and the downwind minus upwind differences in tracers are discussed.

  13. Relativistic thermodynamics, a Lagrangian field theory for general flows including rotation

    NASA Astrophysics Data System (ADS)

    Frønsdal, Christian

    Any theory that is based on an action principle has a much greater predictive power than one that does not have such a formulation. The formulation of a dynamical theory of General Relativity, including matter, is here viewed as a problem of coupling Einstein’s theory of pure gravity to an independently chosen and well-defined field theory of matter. It is well known that this is accomplished in a most natural way when both theories are formulated as relativistic, Lagrangian field theories, as is the case with Einstein-Maxwell theory. Special matter models of this type have been available; here a more general thermodynamical model that allows for vortex flows is presented. In a wider context, the problem of subjecting hydrodynamics and thermodynamics to an action principle is one that has been pursued for at least 150 years. A solution to this problem has been known for some time, but only under the strong restriction to potential flows. A variational principle for general flows has become available. It represents a development of the Navier-Stokes-Fourier approach to fluid dynamics. The principal innovation is the recognition that two kinds of flow velocity fields are needed, one the gradient of a scalar field and the other the time derivative of a vector field, the latter closely associated with vorticity. In the relativistic theory that is presented here, the latter is the Hodge dual of an exact 3-form, well known as the notoph field of Ogievetskij and Palubarinov, the B-field of Kalb and Ramond and the vorticity field of Lund and Regge. The total number of degrees of freedom of a unary system, including the density and the two velocity fields is 4, as expected — as in classical hydrodynamics. In this paper, we do not reduce Einstein’s dynamical equation for the metric to phenomenology, which would have denied the relevance of any intrinsic dynamics for the matter sector, nor do we abandon the equation of continuity - the very soul of hydrodynamics.

  14. Estimation of radionuclide (137Cs) emission rates from a nuclear power plant accident using the Lagrangian Particle Dispersion Model (LPDM).

    PubMed

    Park, Soon-Ung; Lee, In-Hye; Ju, Jae-Won; Joo, Seung Jin

    2016-10-01

    A methodology for the estimation of the emission rate of 137 Cs by the Lagrangian Particle Dispersion Model (LPDM) with the use of monitored 137 Cs concentrations around a nuclear power plant has been developed. This method has been employed with the MM5 meteorological model in the 600 km × 600 km model domain with the horizontal grid scale of 3 km × 3 km centered at the Fukushima nuclear power plant to estimate 137 Cs emission rate for the accidental period from 00 UTC 12 March to 00 UTC 6 April 2011. The Lagrangian Particles are released continuously with the rate of one particle per minute at the first level modelled, about 15 m above the power plant site. The presently developed method was able to simulate quite reasonably the estimated 137 Cs emission rate compared with other studies, suggesting the potential usefulness of the present method for the estimation of the emission rate from the accidental power plant without detailed inventories of reactors and fuel assemblies and spent fuels. The advantage of this method is not so complicated but can be applied only based on one-time forward LPDM simulation with monitored concentrations around the power plant, in contrast to other inverse models. It was also found that continuously monitored radionuclides concentrations from possibly many sites located in all directions around the power plant are required to get accurate continuous emission rates from the accident power plant. The current methodology can also be used to verify the previous version of radionuclides emissions used among other modeling groups for the cases of intermittent or discontinuous samplings. Copyright © 2016. Published by Elsevier Ltd.

  15. Extending geometrical optics: A Lagrangian theory for vector waves

    DOE PAGES

    Ruiz, D. E.; Dodin, I. Y.

    2017-03-16

    Even when neglecting diffraction effects, the well-known equations of geometrical optics (GO) are not entirely accurate. Traditional GO treats wave rays as classical particles, which are completely described by their coordinates and momenta, but vector-wave rays have another degree of freedom, namely, their polarization. The polarization degree of freedom manifests itself as an effective (classical) “wave spin” that can be assigned to rays and can affect the wave dynamics accordingly. A well-known manifestation of polarization dynamics is mode conversion, which is the linear exchange of quanta between different wave modes and can be interpreted as a rotation of the wavemore » spin. Another, less-known polarization effect is the polarization-driven bending of ray trajectories. Here, this work presents an extension and reformulation of GO as a first-principle Lagrangian theory, whose effective Hamiltonian governs the aforementioned polarization phenomena simultaneously. As an example, the theory is applied to describe the polarization-driven divergence of right-hand and left-hand circularly polarized electromagnetic waves in weakly magnetized plasma.« less

  16. Extending geometrical optics: A Lagrangian theory for vector waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruiz, D. E.; Dodin, I. Y.

    Even when neglecting diffraction effects, the well-known equations of geometrical optics (GO) are not entirely accurate. Traditional GO treats wave rays as classical particles, which are completely described by their coordinates and momenta, but vector-wave rays have another degree of freedom, namely, their polarization. The polarization degree of freedom manifests itself as an effective (classical) “wave spin” that can be assigned to rays and can affect the wave dynamics accordingly. A well-known manifestation of polarization dynamics is mode conversion, which is the linear exchange of quanta between different wave modes and can be interpreted as a rotation of the wavemore » spin. Another, less-known polarization effect is the polarization-driven bending of ray trajectories. Here, this work presents an extension and reformulation of GO as a first-principle Lagrangian theory, whose effective Hamiltonian governs the aforementioned polarization phenomena simultaneously. As an example, the theory is applied to describe the polarization-driven divergence of right-hand and left-hand circularly polarized electromagnetic waves in weakly magnetized plasma.« less

  17. Non-material finite element modelling of large vibrations of axially moving strings and beams

    NASA Astrophysics Data System (ADS)

    Vetyukov, Yury

    2018-02-01

    We present a new mathematical model for the dynamics of a beam or a string, which moves in a given axial direction across a particular domain. Large in-plane vibrations are coupled with the gross axial motion, and a Lagrangian (material) form of the equations of structural mechanics becomes inefficient. The proposed mixed Eulerian-Lagrangian description features mechanical fields as functions of a spatial coordinate in the axial direction. The material travels across a finite element mesh, and the boundary conditions are applied in fixed nodes. Beginning with the variational equation of virtual work in its material form, we analytically derive the Lagrange's equations of motion of the second kind for the considered case of a discretized non-material control domain and for geometrically exact kinematics. The dynamic analysis is straightforward as soon as the strain and the kinetic energies of the control domain are available. In numerical simulations we demonstrate the rapid mesh convergence of the model, the effect of the bending stiffness and the dynamic instability when the axial velocity gets high. We also show correspondence to the results of fully Lagrangian benchmark solutions.

  18. Verification of experimental dynamic strength methods with atomistic ramp-release simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, Alexander P.; Brown, Justin L.; Lim, Hojun

    Material strength and moduli can be determined from dynamic high-pressure ramp-release experiments using an indirect method of Lagrangian wave profile analysis of surface velocities. This method, termed self-consistent Lagrangian analysis (SCLA), has been difficult to calibrate and corroborate with other experimental methods. Using nonequilibrium molecular dynamics, we validate the SCLA technique by demonstrating that it accurately predicts the same bulk modulus, shear modulus, and strength as those calculated from the full stress tensor data, especially where strain rate induced relaxation effects and wave attenuation are small. We show here that introducing a hold in the loading profile at peak pressuremore » gives improved accuracy in the shear moduli and relaxation-adjusted strength by reducing the effect of wave attenuation. When rate-dependent effects coupled with wave attenuation are large, we find that Lagrangian analysis overpredicts the maximum unload wavespeed, leading to increased error in the measured dynamic shear modulus. Furthermore, these simulations provide insight into the definition of dynamic strength, as well as a plausible explanation for experimental disagreement in reported dynamic strength values.« less

  19. Verification of experimental dynamic strength methods with atomistic ramp-release simulations

    NASA Astrophysics Data System (ADS)

    Moore, Alexander P.; Brown, Justin L.; Lim, Hojun; Lane, J. Matthew D.

    2018-05-01

    Material strength and moduli can be determined from dynamic high-pressure ramp-release experiments using an indirect method of Lagrangian wave profile analysis of surface velocities. This method, termed self-consistent Lagrangian analysis (SCLA), has been difficult to calibrate and corroborate with other experimental methods. Using nonequilibrium molecular dynamics, we validate the SCLA technique by demonstrating that it accurately predicts the same bulk modulus, shear modulus, and strength as those calculated from the full stress tensor data, especially where strain rate induced relaxation effects and wave attenuation are small. We show here that introducing a hold in the loading profile at peak pressure gives improved accuracy in the shear moduli and relaxation-adjusted strength by reducing the effect of wave attenuation. When rate-dependent effects coupled with wave attenuation are large, we find that Lagrangian analysis overpredicts the maximum unload wavespeed, leading to increased error in the measured dynamic shear modulus. These simulations provide insight into the definition of dynamic strength, as well as a plausible explanation for experimental disagreement in reported dynamic strength values.

  20. Verification of experimental dynamic strength methods with atomistic ramp-release simulations

    DOE PAGES

    Moore, Alexander P.; Brown, Justin L.; Lim, Hojun; ...

    2018-05-04

    Material strength and moduli can be determined from dynamic high-pressure ramp-release experiments using an indirect method of Lagrangian wave profile analysis of surface velocities. This method, termed self-consistent Lagrangian analysis (SCLA), has been difficult to calibrate and corroborate with other experimental methods. Using nonequilibrium molecular dynamics, we validate the SCLA technique by demonstrating that it accurately predicts the same bulk modulus, shear modulus, and strength as those calculated from the full stress tensor data, especially where strain rate induced relaxation effects and wave attenuation are small. We show here that introducing a hold in the loading profile at peak pressuremore » gives improved accuracy in the shear moduli and relaxation-adjusted strength by reducing the effect of wave attenuation. When rate-dependent effects coupled with wave attenuation are large, we find that Lagrangian analysis overpredicts the maximum unload wavespeed, leading to increased error in the measured dynamic shear modulus. Furthermore, these simulations provide insight into the definition of dynamic strength, as well as a plausible explanation for experimental disagreement in reported dynamic strength values.« less

  1. Constraints on non-Standard Model Higgs boson interactions in an effective Lagrangian using differential cross sections measured in the H→γγ decay channel at \\(\\sqrt{s} = 8\\) TeV with the ATLAS detector

    DOE PAGES

    Aad, G.

    2015-12-02

    The strength and tensor structure of the Higgs boson's interactions are investigated using an effective Lagrangian, which introduces additional CP-even and CP-odd interactions that lead to changes in the kinematic properties of the Higgs boson and associated jet spectra with respect to the Standard Model. We found that the parameters of the effective Lagrangian are probed using a fit to five differential cross sections previously measured by the ATLAS experiment in the H→γγ decay channel with an integrated luminosity of 20.3 fb -1 at \\(\\sqrt{s} = 8\\) TeV. In order to perform a simultaneous fit to the five distributions, themore » statistical correlations between them are determined by re-analysing the H→γγ candidate events in the proton–proton collision data. No significant deviations from the Standard Model predictions are observed and limits on the effective Lagrangian parameters are derived. These statistical correlations are made publicly available to allow for future analysis of theories with non-Standard Model interactions.« less

  2. Constraints on non-Standard Model Higgs boson interactions in an effective Lagrangian using differential cross sections measured in the H→γγ decay channel at \\(\\sqrt{s} = 8\\) TeV with the ATLAS detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aad, G.

    The strength and tensor structure of the Higgs boson's interactions are investigated using an effective Lagrangian, which introduces additional CP-even and CP-odd interactions that lead to changes in the kinematic properties of the Higgs boson and associated jet spectra with respect to the Standard Model. We found that the parameters of the effective Lagrangian are probed using a fit to five differential cross sections previously measured by the ATLAS experiment in the H→γγ decay channel with an integrated luminosity of 20.3 fb -1 at \\(\\sqrt{s} = 8\\) TeV. In order to perform a simultaneous fit to the five distributions, themore » statistical correlations between them are determined by re-analysing the H→γγ candidate events in the proton–proton collision data. No significant deviations from the Standard Model predictions are observed and limits on the effective Lagrangian parameters are derived. These statistical correlations are made publicly available to allow for future analysis of theories with non-Standard Model interactions.« less

  3. Lagrangian Coherent Structures, Hyperbolicity, and Lyapunov Exponents

    NASA Astrophysics Data System (ADS)

    Haller, George

    2010-05-01

    We review the fundamental physical motivation behind the definition of Lagrangian Coherent Structures (LCS) and show how it leads to the concept of finite-time hyperbolicity in non-autonomous dynamical systems. Using this concept of hyperbolicity, we obtain a self-consistent criterion for the existence of attracting and repelling material surfaces in unsteady fluid flows, such as those in the atmosphere and the ocean. The existence of LCS is often postulated in terms of features of the Finite-Time Lyapunov Exponent (FTLE) field associated with the system. As simple examples show, however, the FTLE field does not necessarily highlight LCS, or may ighlight structures that are not LCS. Under appropriate nondegeneracy conditions, we show that ridges of the FTLE field indeed coincide with LCS in volume-preserving flows. For general flows, we obtain a more general scalar field whose ridges correspond to LCS. We finally review recent applications of LCS techniques to flight safety analysis at Hong Kong International Airport.

  4. Gravity, Time, and Lagrangians

    ERIC Educational Resources Information Center

    Huggins, Elisha

    2010-01-01

    Feynman mentioned to us that he understood a topic in physics if he could explain it to a college freshman, a high school student, or a dinner guest. Here we will discuss two topics that took us a while to get to that level. One is the relationship between gravity and time. The other is the minus sign that appears in the Lagrangian. (Why would one…

  5. Anatomically accurate individual face modeling.

    PubMed

    Zhang, Yu; Prakash, Edmond C; Sung, Eric

    2003-01-01

    This paper presents a new 3D face model of a specific person constructed from the anatomical perspective. By exploiting the laser range data, a 3D facial mesh precisely representing the skin geometry is reconstructed. Based on the geometric facial mesh, we develop a deformable multi-layer skin model. It takes into account the nonlinear stress-strain relationship and dynamically simulates the non-homogenous behavior of the real skin. The face model also incorporates a set of anatomically-motivated facial muscle actuators and underlying skull structure. Lagrangian mechanics governs the facial motion dynamics, dictating the dynamic deformation of facial skin in response to the muscle contraction.

  6. Lagrangian averaging, nonlinear waves, and shock regularization

    NASA Astrophysics Data System (ADS)

    Bhat, Harish S.

    In this thesis, we explore various models for the flow of a compressible fluid as well as model equations for shock formation, one of the main features of compressible fluid flows. We begin by reviewing the variational structure of compressible fluid mechanics. We derive the barotropic compressible Euler equations from a variational principle in both material and spatial frames. Writing the resulting equations of motion requires certain Lie-algebraic calculations that we carry out in detail for expository purposes. Next, we extend the derivation of the Lagrangian averaged Euler (LAE-alpha) equations to the case of barotropic compressible flows. The derivation in this thesis involves averaging over a tube of trajectories etaepsilon centered around a given Lagrangian flow eta. With this tube framework, the LAE-alpha equations are derived by following a simple procedure: start with a given action, expand via Taylor series in terms of small-scale fluid fluctuations xi, truncate, average, and then model those terms that are nonlinear functions of xi. We then analyze a one-dimensional subcase of the general models derived above. We prove the existence of a large family of traveling wave solutions. Computing the dispersion relation for this model, we find it is nonlinear, implying that the equation is dispersive. We carry out numerical experiments that show that the model possesses smooth, bounded solutions that display interesting pattern formation. Finally, we examine a Hamiltonian partial differential equation (PDE) that regularizes the inviscid Burgers equation without the addition of standard viscosity. Here alpha is a small parameter that controls a nonlinear smoothing term that we have added to the inviscid Burgers equation. We show the existence of a large family of traveling front solutions. We analyze the initial-value problem and prove well-posedness for a certain class of initial data. We prove that in the zero-alpha limit, without any standard viscosity

  7. Multi-phase CFD modeling of solid sorbent carbon capture system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryan, E. M.; DeCroix, D.; Breault, R.

    2013-07-01

    Computational fluid dynamics (CFD) simulations are used to investigate a low temperature post-combustion carbon capture reactor. The CFD models are based on a small scale solid sorbent carbon capture reactor design from ADA-ES and Southern Company. The reactor is a fluidized bed design based on a silica-supported amine sorbent. CFD models using both Eulerian–Eulerian and Eulerian–Lagrangian multi-phase modeling methods are developed to investigate the hydrodynamics and adsorption of carbon dioxide in the reactor. Models developed in both FLUENT® and BARRACUDA are presented to explore the strengths and weaknesses of state of the art CFD codes for modeling multi-phase carbon capturemore » reactors. The results of the simulations show that the FLUENT® Eulerian–Lagrangian simulations (DDPM) are unstable for the given reactor design; while the BARRACUDA Eulerian–Lagrangian model is able to simulate the system given appropriate simplifying assumptions. FLUENT® Eulerian–Eulerian simulations also provide a stable solution for the carbon capture reactor given the appropriate simplifying assumptions.« less

  8. Multi-Phase CFD Modeling of Solid Sorbent Carbon Capture System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryan, Emily M.; DeCroix, David; Breault, Ronald W.

    2013-07-30

    Computational fluid dynamics (CFD) simulations are used to investigate a low temperature post-combustion carbon capture reactor. The CFD models are based on a small scale solid sorbent carbon capture reactor design from ADA-ES and Southern Company. The reactor is a fluidized bed design based on a silica-supported amine sorbent. CFD models using both Eulerian-Eulerian and Eulerian-Lagrangian multi-phase modeling methods are developed to investigate the hydrodynamics and adsorption of carbon dioxide in the reactor. Models developed in both FLUENT® and BARRACUDA are presented to explore the strengths and weaknesses of state of the art CFD codes for modeling multi-phase carbon capturemore » reactors. The results of the simulations show that the FLUENT® Eulerian-Lagrangian simulations (DDPM) are unstable for the given reactor design; while the BARRACUDA Eulerian-Lagrangian model is able to simulate the system given appropriate simplifying assumptions. FLUENT® Eulerian-Eulerian simulations also provide a stable solution for the carbon capture reactor given the appropriate simplifying assumptions.« less

  9. BRST theory without Hamiltonian and Lagrangian

    NASA Astrophysics Data System (ADS)

    Lyakhovich, S. L.; Sharapov, A. A.

    2005-03-01

    We consider a generic gauge system, whose physical degrees of freedom are obtained by restriction on a constraint surface followed by factorization with respect to the action of gauge transformations; in so doing, no Hamiltonian structure or action principle is supposed to exist. For such a generic gauge system we construct a consistent BRST formulation, which includes the conventional BV Lagrangian and BFV Hamiltonian schemes as particular cases. If the original manifold carries a weak Poisson structure (a bivector field giving rise to a Poisson bracket on the space of physical observables) the generic gauge system is shown to admit deformation quantization by means of the Kontsevich formality theorem. A sigma-model interpretation of this quantization algorithm is briefly discussed.

  10. LSPRAY-V: A Lagrangian Spray Module

    NASA Technical Reports Server (NTRS)

    Raju, M. S.

    2015-01-01

    LSPRAY-V is a Lagrangian spray solver developed for application with unstructured grids and massively parallel computers. It is mainly designed to predict the flow, thermal and transport properties of a rapidly vaporizing spray encountered over a wide range of operating conditions in modern aircraft engine development. It could easily be coupled with any existing gas-phase flow and/or Monte Carlo Probability Density Function (PDF) solvers. The manual provides the user with an understanding of various models involved in the spray formulation, its code structure and solution algorithm, and various other issues related to parallelization and its coupling with other solvers. With the development of LSPRAY-V, we have advanced the state-of-the-art in spray computations in several important ways.

  11. Evaluation of wastewater contaminant transport in surface waters using verified Lagrangian sampling.

    PubMed

    Antweiler, Ronald C; Writer, Jeffrey H; Murphy, Sheila F

    2014-02-01

    Contaminants released from wastewater treatment plants can persist in surface waters for substantial distances. Much research has gone into evaluating the fate and transport of these contaminants, but this work has often assumed constant flow from wastewater treatment plants. However, effluent discharge commonly varies widely over a 24-hour period, and this variation controls contaminant loading and can profoundly influence interpretations of environmental data. We show that methodologies relying on the normalization of downstream data to conservative elements can give spurious results, and should not be used unless it can be verified that the same parcel of water was sampled. Lagrangian sampling, which in theory samples the same water parcel as it moves downstream (the Lagrangian parcel), links hydrologic and chemical transformation processes so that the in-stream fate of wastewater contaminants can be quantitatively evaluated. However, precise Lagrangian sampling is difficult, and small deviations - such as missing the Lagrangian parcel by less than 1h - can cause large differences in measured concentrations of all dissolved compounds at downstream sites, leading to erroneous conclusions regarding in-stream processes controlling the fate and transport of wastewater contaminants. Therefore, we have developed a method termed "verified Lagrangian" sampling, which can be used to determine if the Lagrangian parcel was actually sampled, and if it was not, a means for correcting the data to reflect the concentrations which would have been obtained had the Lagrangian parcel been sampled. To apply the method, it is necessary to have concentration data for a number of conservative constituents from the upstream, effluent, and downstream sites, along with upstream and effluent concentrations that are constant over the short-term (typically 2-4h). These corrections can subsequently be applied to all data, including non-conservative constituents. Finally, we show how data

  12. Towards Interpreting the Signal of CO2 Emissions from Megacities by Applying a Lagrangian Receptor-oriented Model to OCO-2 XCO2 data

    NASA Astrophysics Data System (ADS)

    Wu, D.; Lin, J. C.; Oda, T.; Ye, X.; Lauvaux, T.; Yang, E. G.; Kort, E. A.

    2017-12-01

    Urban regions are large emitters of CO2 whose emission inventories are still associated with large uncertainties. Therefore, a strong need exists to better quantify emissions from megacities using a top-down approach. Satellites — e.g., the Orbiting Carbon Observatory 2 (OCO-2), provide a platform for monitoring spatiotemporal column CO2 concentrations (XCO2). In this study, we present a Lagrangian receptor-oriented model framework and evaluate "model-retrieved" XCO2 by comparing against OCO-2-retrieved XCO2, for three megacities/regions (Riyadh, Cairo and Pearl River Delta). OCO-2 soundings indicate pronounced XCO2 enhancements (dXCO2) when crossing Riyadh, which are successfully captured by our model with a slight latitude shift. From this model framework, we can identify and compare the relative contributions of dXCO2 resulted from anthropogenic emission versus biospheric fluxes. In addition, to impose constraints on emissions for Riyadh through inversion methods, three uncertainties sources are addressed in this study, including 1) transport errors, 2) receptor and model setups in atmospheric models, and 3) urban emission uncertainties. For 1), we calculate transport errors by adding a wind error component to randomize particle distributions. For 2), a set of sensitivity tests using bootstrap method is performed to describe proper ways to setup receptors in Lagrangian models. For 3), both emission uncertainties from the Fossil Fuel Data Assimilation System (FFDAS) and the spread among three emission inventories are used to approximate an overall fractional uncertainty in modeled anthropogenic signal (dXCO2.anthro). Lastly, we investigate the definition of background (clean) XCO2 for megacities from retrieved XCO2 by means of statistical tools and our model framework.

  13. The Case for Including Eulerian Kinematics in Undergraduate Dynamics.

    ERIC Educational Resources Information Center

    Uram, Earl M.

    A Eulerian framework is proposed as an alternative to the Lagrangian framework usually used in undergraduate dynamics courses. An attempt to introduce Eulerian kinematics into a dynamics course is discussed. (LMH)

  14. Lagrangian and Eulerian statistics obtained from direct numerical simulations of homogeneous turbulence

    NASA Technical Reports Server (NTRS)

    Squires, Kyle D.; Eaton, John K.

    1991-01-01

    Direct numerical simulation is used to study dispersion in decaying isotropic turbulence and homogeneous shear flow. Both Lagrangian and Eulerian data are presented allowing direct comparison, but at fairly low Reynolds number. The quantities presented include properties of the dispersion tensor, isoprobability contours of particle displacement, Lagrangian and Eulerian velocity autocorrelations and time scale ratios, and the eddy diffusivity tensor. The Lagrangian time microscale is found to be consistently larger than the Eulerian microscale, presumably due to the advection of the small scales by the large scales in the Eulerian reference frame.

  15. A COCHLEAR MODEL USING THE TIME-AVERAGED LAGRANGIAN AND THE PUSH-PULL MECHANISM IN THE ORGAN OF CORTI.

    PubMed

    Yoon, Yongjin; Puria, Sunil; Steele, Charles R

    2009-09-05

    In our previous work, the basilar membrane velocity V(BM) for a gerbil cochlea was calculated and compared with physiological measurements. The calculated V(BM) showed excessive phase excursion and, in the active case, a best-frequency place shift of approximately two fifths of an octave higher. Here we introduce a refined model that uses the time-averaged Lagrangian for the conservative system to resolve the phase excursion issues. To improve the overestimated best-frequency place found in the previous feed-forward active model, we implement in the new model a push-pull mechanism from the outer hair cells and phalangeal process. Using this new model, the V(BM) for the gerbil cochlea was calculated and compared with animal measurements, The results show excellent agreement for mapping the location of the maximum response to frequency, while the agreement for the response at a fixed point as a function of frequency is excellent for the amplitude and good for the phase.

  16. A COCHLEAR MODEL USING THE TIME-AVERAGED LAGRANGIAN AND THE PUSH-PULL MECHANISM IN THE ORGAN OF CORTI

    PubMed Central

    YOON, YONGJIN; PURIA, SUNIL; STEELE, CHARLES R.

    2010-01-01

    In our previous work, the basilar membrane velocity VBM for a gerbil cochlea was calculated and compared with physiological measurements. The calculated VBM showed excessive phase excursion and, in the active case, a best-frequency place shift of approximately two fifths of an octave higher. Here we introduce a refined model that uses the time-averaged Lagrangian for the conservative system to resolve the phase excursion issues. To improve the overestimated best-frequency place found in the previous feed-forward active model, we implement in the new model a push-pull mechanism from the outer hair cells and phalangeal process. Using this new model, the VBM for the gerbil cochlea was calculated and compared with animal measurements, The results show excellent agreement for mapping the location of the maximum response to frequency, while the agreement for the response at a fixed point as a function of frequency is excellent for the amplitude and good for the phase. PMID:20485540

  17. Intercomparisons of Aura MLS, ACE, and HALOE Observations of Long-Lived Trace Species Using the Langley Lagrangian Chemistry and Transport Model

    NASA Technical Reports Server (NTRS)

    Considine, David B.; Natarajan, Murali; Fairlie, T. D.; Lingenfelser, Gretchen S.; Bernath, Peter

    2007-01-01

    We use the LaRC Lagrangian Chemistry and Transport Model (LCTM) [Considine et al., 2007; Pierce et al., 2003] to intercompare ACE, Aura, and HALOE observations of long-lived trace species. The LCTM calculates the transport, mixing, and photochemical evolution of an ensemble of parcels that have been initialized from ACE-FTS measurements. Here we focus on late November, 2004 comparisons, due to the previous 3-week period of continuous HALOE observations and MLS v2.2 data on November 29, 2004.

  18. Top marine predators track Lagrangian coherent structures

    PubMed Central

    Tew Kai, Emilie; Rossi, Vincent; Sudre, Joel; Weimerskirch, Henri; Lopez, Cristobal; Hernandez-Garcia, Emilio; Marsac, Francis; Garçon, Veronique

    2009-01-01

    Meso- and submesoscales (fronts, eddies, filaments) in surface ocean flow have a crucial influence on marine ecosystems. Their dynamics partly control the foraging behavior and the displacement of marine top predators (tuna, birds, turtles, and cetaceans). In this work we focus on the role of submesoscale structures in the Mozambique Channel in the distribution of a marine predator, the Great Frigatebird. Using a newly developed dynamic concept, the finite-size Lyapunov exponent (FSLE), we identified Lagrangian coherent structures (LCSs) present in the surface flow in the channel over a 2-month observation period (August and September 2003). By comparing seabird satellite positions with LCS locations, we demonstrate that frigatebirds track precisely these structures in the Mozambique Channel, providing the first evidence that a top predator is able to track these FSLE ridges to locate food patches. After comparing bird positions during long and short trips and different parts of these trips, we propose several hypotheses to understand how frigatebirds can follow these LCSs. The birds might use visual and/or olfactory cues and/or atmospheric current changes over the structures to move along these biologic corridors. The birds being often associated with tuna schools around foraging areas, a thorough comprehension of their foraging behavior and movement during the breeding season is crucial not only to seabird ecology but also to an appropriate ecosystemic approach to fisheries in the channel. PMID:19416811

  19. Incomplete augmented Lagrangian preconditioner for steady incompressible Navier-Stokes equations.

    PubMed

    Tan, Ning-Bo; Huang, Ting-Zhu; Hu, Ze-Jun

    2013-01-01

    An incomplete augmented Lagrangian preconditioner, for the steady incompressible Navier-Stokes equations discretized by stable finite elements, is proposed. The eigenvalues of the preconditioned matrix are analyzed. Numerical experiments show that the incomplete augmented Lagrangian-based preconditioner proposed is very robust and performs quite well by the Picard linearization or the Newton linearization over a wide range of values of the viscosity on both uniform and stretched grids.

  20. Incomplete Augmented Lagrangian Preconditioner for Steady Incompressible Navier-Stokes Equations

    PubMed Central

    Tan, Ning-Bo; Huang, Ting-Zhu; Hu, Ze-Jun

    2013-01-01

    An incomplete augmented Lagrangian preconditioner, for the steady incompressible Navier-Stokes equations discretized by stable finite elements, is proposed. The eigenvalues of the preconditioned matrix are analyzed. Numerical experiments show that the incomplete augmented Lagrangian-based preconditioner proposed is very robust and performs quite well by the Picard linearization or the Newton linearization over a wide range of values of the viscosity on both uniform and stretched grids. PMID:24235888

  1. Lagrangian technique to calculate window interface velocity from shock velocity measurements: Application for quartz windows

    DOE PAGES

    McCoy, Chad A.; Knudson, Marcus D.

    2017-08-24

    Measurement of the window interface velocity is a common technique for investigating the dynamic response materials at high strain rates. However, these measurements are limited in pressure to the range where the window remains transparent. The most common window material for this application is lithium fluoride, which under single shock compression becomes opaque at ~200 GPa. To date, no other window material has been identified for use at higher pressures. Here, we present a Lagrangian technique to calculate the interface velocity from a continuously measured shock velocity, with application to quartz. The quartz shock front becomes reflective upon melt, atmore » ~100 GPa, enabling the use of velocity interferometry to continuously measure the shock velocity. This technique overlaps with the range of pressures accessible with LiF windows and extends the region where wave profile measurements are possible to pressures in excess of 2000 GPa. Lastly, we show through simulated data that the technique accurately reproduces the interface velocity within 20% of the initial state, and that the Lagrangian technique represents a significant improvement over a simple linear approximation.« less

  2. Lagrangian technique to calculate window interface velocity from shock velocity measurements: Application for quartz windows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCoy, Chad A.; Knudson, Marcus D.

    Measurement of the window interface velocity is a common technique for investigating the dynamic response materials at high strain rates. However, these measurements are limited in pressure to the range where the window remains transparent. The most common window material for this application is lithium fluoride, which under single shock compression becomes opaque at ~200 GPa. To date, no other window material has been identified for use at higher pressures. Here, we present a Lagrangian technique to calculate the interface velocity from a continuously measured shock velocity, with application to quartz. The quartz shock front becomes reflective upon melt, atmore » ~100 GPa, enabling the use of velocity interferometry to continuously measure the shock velocity. This technique overlaps with the range of pressures accessible with LiF windows and extends the region where wave profile measurements are possible to pressures in excess of 2000 GPa. Lastly, we show through simulated data that the technique accurately reproduces the interface velocity within 20% of the initial state, and that the Lagrangian technique represents a significant improvement over a simple linear approximation.« less

  3. Multi-Scale Analysis for Characterizing Near-Field Constituent Concentrations in the Context of a Macro-Scale Semi-Lagrangian Numerical Model

    NASA Astrophysics Data System (ADS)

    Yearsley, J. R.

    2017-12-01

    The semi-Lagrangian numerical scheme employed by RBM, a model for simulating time-dependent, one-dimensional water quality constituents in advection-dominated rivers, is highly scalable both in time and space. Although the model has been used at length scales of 150 meters and time scales of three hours, the majority of applications have been at length scales of 1/16th degree latitude/longitude (about 5 km) or greater and time scales of one day. Applications of the method at these scales has proven successful for characterizing the impacts of climate change on water temperatures in global rivers and on the vulnerability of thermoelectric power plants to changes in cooling water temperatures in large river systems. However, local effects can be very important in terms of ecosystem impacts, particularly in the case of developing mixing zones for wastewater discharges with pollutant loadings limited by regulations imposed by the Federal Water Pollution Control Act (FWPCA). Mixing zone analyses have usually been decoupled from large-scale watershed influences by developing scenarios that represent critical scenarios for external processes associated with streamflow and weather conditions . By taking advantage of the particle-tracking characteristics of the numerical scheme, RBM can provide results at any point in time within the model domain. We develop a proof of concept for locations in the river network where local impacts such as mixing zones may be important. Simulated results from the semi-Lagrangian numerical scheme are treated as input to a finite difference model of the two-dimensional diffusion equation for water quality constituents such as water temperature or toxic substances. Simulations will provide time-dependent, two-dimensional constituent concentration in the near-field in response to long-term basin-wide processes. These results could provide decision support to water quality managers for evaluating mixing zone characteristics.

  4. Understanding spatial and temporal behavior of sea spray droplets in the marine atmospheric boundary layer using an Eulerian-Lagrangian model

    NASA Astrophysics Data System (ADS)

    Nissanka, I. D.; Richter, D. H.

    2017-12-01

    Previous studies have shown that sea spray droplets can play a significant role in air-sea heat and moisture exchange. The larger spray droplets have potential to transfer considerable amount of mass, momentum and heat, however they remain closer to surface and their residence times are shorter due to the faster settling. On the other hand, smaller droplets have high vertical mobility which allows sufficient time for droplets to adjust to ambient conditions. Hence, to study the heat and moisture characteristics of sea spray droplets it is important to understand how different droplet sizes behave in the Marine Atmospheric Boundary Layer (MABL), especially their temporal evolutions. In this study sea spray droplet transport in the MABL is simulated using Large Eddy Simulation combined with a Lagrangian Particle model which represents spray droplets of varying size. The individual droplets are tracked while their radius and temperature evolve based on local ambient conditions. The particles are advected based on the local resolved velocities and the particle dispersion due to sub-filtered scale motions are modeled using a Lagrangian stochastic model. In this study a series of simulations are conducted with the focus of understanding fundamental droplet microphysics, which will help characterize and quantify the lifetime and airborne concentrations of spray droplets in the MABL, thus elucidating ongoing knowledge gaps which are impossible to fill using observations alone. We measure the size resolved spray droplet vertical concentrations, particle residence times, and temporal evolution of droplet radius and temperature to explain the behavior of sea spry droplets in MABL. The PDF of residence time of different initial droplet sizes and joint PDFs of droplet life time and radius and temperature for different droplet sizes are calculated to further quantify the temporal and spatial behavior of sea spray droplets in the MABL, which can be used as inputs into bulk models

  5. Lorentz Invariance of Gravitational Lagrangians in the Space of Reference Frames

    NASA Astrophysics Data System (ADS)

    Cognola, G.

    1980-06-01

    The recently proposed theories of gravitation in the space of reference frames S are based on a Lagrangian invariant with respect to the homogeneous Lorentz group. However, in theories of this kind, the Lorentz invariance is not a necessary consequence of some physical principles, as in the theories formulated in space-time, but rather a purely esthetic request. In the present paper, we give a systematic method for the construction of gravitational theories in the space S, without assuming a priori the Lorentz invariance of the Lagrangian. The Einstein-Cartan equations of gravitation are obtained requiring only that the Lagrangian is invariant under proper rotations and has particular transformation properties under space reflections and space-time dilatations

  6. Collisionless Dynamics and the Cosmic Web

    NASA Astrophysics Data System (ADS)

    Hahn, Oliver

    2016-10-01

    I review the nature of three-dimensional collapse in the Zeldovich approximation, how it relates to the underlying nature of the three-dimensional Lagrangian manifold and naturally gives rise to a hierarchical structure formation scenario that progresses through collapse from voids to pancakes, filaments and then halos. I then discuss how variations of the Zeldovich approximation (based on the gravitational or the velocity potential) have been used to define classifications of the cosmic large-scale structure into dynamically distinct parts. Finally, I turn to recent efforts to devise new approaches relying on tessellations of the Lagrangian manifold to follow the fine-grained dynamics of the dark matter fluid into the highly non-linear regime and both extract the maximum amount of information from existing simulations as well as devise new simulation techniques for cold collisionless dynamics.

  7. Lagrangian trajectories, residual currents and rectification process in the Northern Gulf of California

    NASA Astrophysics Data System (ADS)

    Rodríguez, Pablo Alonso; Carbajal, Noel; Rodríguez, Juan Heberto Gaviño

    2017-07-01

    Considering a semi-implicit approximation of the Coriolis terms, a numerical solution of the vertically integrated equations of motion is proposed. To test the two-dimensional numerical model, several experiments for the calculation of Euler, Stokes and Lagrange residual currents in the Gulf of California were carried out. To estimate the Lagrangian residual current, trajectories of particles were also simulated. The applied tidal constituents were M2, S2, K2, N2, K1, P1 and O1. At spring tides, strong tidal velocities occur in the northern half of the gulf. In this region of complex geometry, depths change from a few meter in the northern shelf zone to more than 3000 m in the southern part. In the archipelago region, the presence of islands alters amplitude and direction of tidal currents producing a rectification process which is reflected in a clockwise circulation around Tiburón Island in the Lagrangian residual current. The rectification process is explained by the superposition of the Euler and Stokes residual currents. Residual current patterns show several cyclonic and anticyclonic gyres in the Northern Gulf of California. Numerical experiments for individual and combinations of several tidal constituents revealed a large variability of Lagrangian trajectories.

  8. ALE3D: An Arbitrary Lagrangian-Eulerian Multi-Physics Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noble, Charles R.; Anderson, Andrew T.; Barton, Nathan R.

    ALE3D is a multi-physics numerical simulation software tool utilizing arbitrary-Lagrangian- Eulerian (ALE) techniques. The code is written to address both two-dimensional (2D plane and axisymmetric) and three-dimensional (3D) physics and engineering problems using a hybrid finite element and finite volume formulation to model fluid and elastic-plastic response of materials on an unstructured grid. As shown in Figure 1, ALE3D is a single code that integrates many physical phenomena.

  9. Three-Dimensional Numerical Analyses of Earth Penetration Dynamics

    DTIC Science & Technology

    1979-01-31

    Lagrangian formulation based on the HEMP method and has been adapted and validated for treatment of normal-incidence (axisymmetric) impact and...code, is a detailed analysis of the structural response of the EPW. This analysis is generated using a nonlinear dynamic, elastic- plastic finite element...based on the HEMP scheme. Thus, the code has the same material modeling capabilities and abilities to track large scale motion found in the WAVE-L code

  10. MESOI Version 2. 0: an interactive mesoscale Lagrangian puff dispersion model with deposition and decay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramsdell, J.V.; Athey, G.F.; Glantz, C.S.

    1983-11-01

    MESOI Version 2.0 is an interactive Lagrangian puff model for estimating the transport, diffusion, deposition and decay of effluents released to the atmosphere. The model is capable of treating simultaneous releases from as many as four release points, which may be elevated or at ground-level. The puffs are advected by a horizontal wind field that is defined in three dimensions. The wind field may be adjusted for expected topographic effects. The concentration distribution within the puffs is initially assumed to be Gaussian in the horizontal and vertical. However, the vertical concentration distribution is modified by assuming reflection at the groundmore » and the top of the atmospheric mixing layer. Material is deposited on the surface using a source depletion, dry deposition model and a washout coefficient model. The model also treats the decay of a primary effluent species and the ingrowth and decay of a single daughter species using a first order decay process. This report is divided into two parts. The first part discusses the theoretical and mathematical bases upon which MESOI Version 2.0 is based. The second part contains the MESOI computer code. The programs were written in the ANSI standard FORTRAN 77 and were developed on a VAX 11/780 computer. 43 references, 14 figures, 13 tables.« less

  11. Identifying Lagrangian fronts with favourable fishery conditions

    NASA Astrophysics Data System (ADS)

    Prants, S. V.; Budyansky, M. V.; Uleysky, M. Yu.

    2014-08-01

    Lagrangian fronts (LFs) in the ocean are defined as boundaries between surface waters with strongly different Lagrangian properties. They can be accurately detected in a given velocity field by computing synoptic maps for displacements of synthetic tracers and other Lagrangian indicators. We use Pacific saury catch and location data for a number of commercial fishery seasons in the region of the northwest Pacific with one of the richest fishery in the world. It is shown statistically that the saury fishing grounds with maximal catches are not randomly distributed over the region but located mainly along the sharp LFs where productive cold waters of the Oyashio Current, warmer waters of the southern branch of the Soya Current, and waters of warm-core Kuroshio rings converge. Computation of those fronts in altimetric geostrophic velocity fields both in the years with the First and Second Oyashio Intrusions shows that in spite of different oceanographic conditions LF locations may serve as good indicators of potential fishing grounds. Possible biophysical reasons for saury aggregation near sharp LFs are discussed. We propose a mechanism for effective export of nutrient rich waters based on stretching of material lines in the vicinity of hyperbolic objects in the ocean. The developed method, based on identifying LFs in any velocity fields, is quite general and may be applied to find potential fishing grounds for the other pelagic fish.

  12. A coupled Eulerian/Lagrangian method for the solution of three-dimensional vortical flows

    NASA Technical Reports Server (NTRS)

    Felici, Helene Marie

    1992-01-01

    A coupled Eulerian/Lagrangian method is presented for the reduction of numerical diffusion observed in solutions of three-dimensional rotational flows using standard Eulerian finite-volume time-marching procedures. A Lagrangian particle tracking method using particle markers is added to the Eulerian time-marching procedure and provides a correction of the Eulerian solution. In turn, the Eulerian solutions is used to integrate the Lagrangian state-vector along the particles trajectories. The Lagrangian correction technique does not require any a-priori information on the structure or position of the vortical regions. While the Eulerian solution ensures the conservation of mass and sets the pressure field, the particle markers, used as 'accuracy boosters,' take advantage of the accurate convection description of the Lagrangian solution and enhance the vorticity and entropy capturing capabilities of standard Eulerian finite-volume methods. The combined solution procedures is tested in several applications. The convection of a Lamb vortex in a straight channel is used as an unsteady compressible flow preservation test case. The other test cases concern steady incompressible flow calculations and include the preservation of turbulent inlet velocity profile, the swirling flow in a pipe, and the constant stagnation pressure flow and secondary flow calculations in bends. The last application deals with the external flow past a wing with emphasis on the trailing vortex solution. The improvement due to the addition of the Lagrangian correction technique is measured by comparison with analytical solutions when available or with Eulerian solutions on finer grids. The use of the combined Eulerian/Lagrangian scheme results in substantially lower grid resolution requirements than the standard Eulerian scheme for a given solution accuracy.

  13. Adaptive switching of interaction potentials in the time domain: an extended Lagrangian approach tailored to transmute force field to QM/MM simulations and back.

    PubMed

    Böckmann, Marcus; Doltsinis, Nikos L; Marx, Dominik

    2015-06-09

    An extended Lagrangian formalism that allows for a smooth transition between two different descriptions of interactions during a molecular dynamics simulation is presented. This time-adaptive method is particularly useful in the context of multiscale simulation as it provides a sound recipe to switch on demand between different hierarchical levels of theory, for instance between ab initio ("QM") and force field ("MM") descriptions of a given (sub)system in the course of a molecular dynamics simulation. The equations of motion can be integrated straightforwardly using the usual propagators, such as the Verlet algorithm. First test cases include a bath of harmonic oscillators, of which a subset is switched to a different force constant and/or equilibrium position, as well as an all-MM to QM/MM transition in a hydrogen-bonded water dimer. The method is then applied to a smectic 8AB8 liquid crystal and is shown to be able to switch dynamically a preselected 8AB8 molecule from an all-MM to a QM/MM description which involves partition boundaries through covalent bonds. These examples show that the extended Lagrangian approach is not only easy to implement into existing code but that it is also efficient and robust. The technique moreover provides easy access to a conserved energy quantity, also in cases when Nosé-Hoover chain thermostatting is used throughout dynamical switching. A simple quadratic driving potential proves to be sufficient to guarantee a smooth transition whose time scale can be easily tuned by varying the fictitious mass parameter associated with the auxiliary variable used to extend the Lagrangian. The method is general and can be applied to time-adaptive switching on demand between two different levels of theory within the framework of hybrid scale-bridging simulations.

  14. Distributed Containment Control for Multiple Unknown Second-Order Nonlinear Systems With Application to Networked Lagrangian Systems.

    PubMed

    Mei, Jie; Ren, Wei; Li, Bing; Ma, Guangfu

    2015-09-01

    In this paper, we consider the distributed containment control problem for multiagent systems with unknown nonlinear dynamics. More specifically, we focus on multiple second-order nonlinear systems and networked Lagrangian systems. We first study the distributed containment control problem for multiple second-order nonlinear systems with multiple dynamic leaders in the presence of unknown nonlinearities and external disturbances under a general directed graph that characterizes the interaction among the leaders and the followers. A distributed adaptive control algorithm with an adaptive gain design based on the approximation capability of neural networks is proposed. We present a necessary and sufficient condition on the directed graph such that the containment error can be reduced as small as desired. As a byproduct, the leaderless consensus problem is solved with asymptotical convergence. Because relative velocity measurements between neighbors are generally more difficult to obtain than relative position measurements, we then propose a distributed containment control algorithm without using neighbors' velocity information. A two-step Lyapunov-based method is used to study the convergence of the closed-loop system. Next, we apply the ideas to deal with the containment control problem for networked unknown Lagrangian systems under a general directed graph. All the proposed algorithms are distributed and can be implemented using only local measurements in the absence of communication. Finally, simulation examples are provided to show the effectiveness of the proposed control algorithms.

  15. From 6D superconformal field theories to dynamic gauged linear sigma models

    NASA Astrophysics Data System (ADS)

    Apruzzi, Fabio; Hassler, Falk; Heckman, Jonathan J.; Melnikov, Ilarion V.

    2017-09-01

    Compactifications of six-dimensional (6D) superconformal field theories (SCFTs) on four- manifolds generate a large class of novel two-dimensional (2D) quantum field theories. We consider in detail the case of the rank-one simple non-Higgsable cluster 6D SCFTs. On the tensor branch of these theories, the gauge group is simple and there are no matter fields. For compactifications on suitably chosen Kähler surfaces, we present evidence that this provides a method to realize 2D SCFTs with N =(0 ,2 ) supersymmetry. In particular, we find that reduction on the tensor branch of the 6D SCFT yields a description of the same 2D fixed point that is described in the UV by a gauged linear sigma model (GLSM) in which the parameters are promoted to dynamical fields, that is, a "dynamic GLSM" (DGLSM). Consistency of the model requires the DGLSM to be coupled to additional non-Lagrangian sectors obtained from reduction of the antichiral two-form of the 6D theory. These extra sectors include both chiral and antichiral currents, as well as spacetime filling noncritical strings of the 6D theory. For each candidate 2D SCFT, we also extract the left- and right-moving central charges in terms of data of the 6D SCFT and the compactification manifold.

  16. Seakeeping with the semi-Lagrangian particle finite element method

    NASA Astrophysics Data System (ADS)

    Nadukandi, Prashanth; Servan-Camas, Borja; Becker, Pablo Agustín; Garcia-Espinosa, Julio

    2017-07-01

    The application of the semi-Lagrangian particle finite element method (SL-PFEM) for the seakeeping simulation of the wave adaptive modular vehicle under spray generating conditions is presented. The time integration of the Lagrangian advection is done using the explicit integration of the velocity and acceleration along the streamlines (X-IVAS). Despite the suitability of the SL-PFEM for the considered seakeeping application, small time steps were needed in the X-IVAS scheme to control the solution accuracy. A preliminary proposal to overcome this limitation of the X-IVAS scheme for seakeeping simulations is presented.

  17. On the roto-translatory internal motions of a three layer non-isobarycentric Earth model: a Lagrangian system approach

    NASA Astrophysics Data System (ADS)

    Escapa, Alberto; Fukushima, Toshio

    2010-05-01

    of this relative motion, three characteristic proper modes appear: one in the direction of the figure axis (polar mode) and two orthogonal to it (equatorial modes). These modes are usually referred as Slichter triplet. In the case of the polar mode, Busse (1974) determined analytically its expression in an implicit way; later other authors have obtained by numerical methods the values of all the modes (e.g Rieutord 2002). These expressions differ substantially from the single degenerate mode existing for a non-rotating model, the differences arising from the roto-traslatory coupling of the system. To construct an analytical description of the motion of this non-isobarycentric Earth model we have approximated it by a Lagrangian system, inspired in the successful of this variational approach to tackle the rotational dynamics of isobarycentric Earth models (e.g. Moritz 1982, Getino and Ferrándiz 2001). In this way, the fluid flow is represented as the sum of a rigid motion part plus a potential motion part. In this way, the resulting dynamical system is described by means of nine generalized co-ordinates. Once constructed the kinetic energy of each layer of the Earth model and the potential energy due to the gravitational interaction of the spherical rigid inner core with the fluid, we form the Euler-Lagrange equations of the system which turn out to be non-linear. By assuming a small departure with respect to the steady rotation configuration we linearice the differential equations of the motion, deriving from them the analytical expressions of the Slichter triplet. These expressions are compared with the existing numerical ones, appearing some discrepancies between both approaches. They might be caused by neglecting the non-linear terms in the resolution of the equations or by an incomplete description of the fluid flow. However, the numerical values of the modes derived with this treatment show a great improvement with respect to the values obtained from performing

  18. Disentangling the Cosmic Web with Lagrangian Submanifold

    NASA Astrophysics Data System (ADS)

    Shandarin, Sergei F.; Medvedev, Mikhail V.

    2016-10-01

    The Cosmic Web is a complicated highly-entangled geometrical object. Remarkably it has formed from practically Gaussian initial conditions, which may be regarded as the simplest departure from exactly uniform universe in purely deterministic mapping. The full complexity of the web is revealed neither in configuration no velocity spaces considered separately. It can be fully appreciated only in six-dimensional (6D) phase space. However, studies of the phase space is complicated by the fact that every projection of it on a three-dimensional (3D) space is multivalued and contained caustics. In addition phase space is not a metric space that complicates studies of geometry. We suggest to use Lagrangian submanifold i.e., x = x(q), where both x and q are 3D vectors instead of the phase space for studies the complexity of cosmic web in cosmological N-body dark matter simulations. Being fully equivalent in dynamical sense to the phase space it has an advantage of being a single valued and also metric space.

  19. 3-D Lagrangian-based investigations of the time-dependent cloud cavitating flows around a Clark-Y hydrofoil with special emphasis on shedding process analysis

    NASA Astrophysics Data System (ADS)

    Cheng, Huai-yu; Long, Xin-ping; Ji, Bin; Liu, Qi; Bai, Xiao-rui

    2018-02-01

    In the present paper, the unsteady cavitating flow around a 3-D Clark-Y hydrofoil is numerically investigated with the filter-based density correction model (FBDCM), a turbulence model and the Zwart-Gerber-Belamri (ZGB) cavitation model. A reasonable agreement is obtained between the numerical and experimental results. To study the complex flow structures more straightforwardly, a 3-D Lagrangian technology is developed, which can provide the particle tracks and the 3-D Lagrangian coherent structures (LCSs). Combined with the traditional methods based on the Eulerian viewpoint, this technology is used to analyze the attached cavity evolution and the re-entrant jet behavior in detail. At stage I, the collapse of the previous shedding cavity and the growth of a new attached cavity, the significant influence of the collapse both on the suction and pressure sides are captured quite well by the 3-D LCSs, which is underestimated by the traditional methods like the iso-surface of Q-criteria. As a kind of special LCSs, the arching LCSs are observed in the wake, induced by the counter-rotating vortexes. At stage II, with the development of the re-entrant jet, the influence of the cavitation on the pressure side is still not negligible. And with this 3-D Lagrangian technology, the tracks of the re-entrant jet are visualized clearly, moving from the trailing edge to the leading edge. Finally, at stage III, the re-entrant jet collides with the mainstream and finally induces the shedding. The cavitation evolution and the re-entrant jet movement in the whole cycle are well visualized with the 3-D Lagrangian technology. Moreover, the comparison between the LCSs obtained with 2-D and 3-D Lagrangian technologies indicates the advantages of the latter. It is demonstrated that the 3-D Lagrangian technology is a promising tool in the investigation of complex cavitating flows.

  20. Vector-borne diseases models with residence times - A Lagrangian perspective.

    PubMed

    Bichara, Derdei; Castillo-Chavez, Carlos

    2016-11-01

    A multi-patch and multi-group modeling framework describing the dynamics of a class of diseases driven by the interactions between vectors and hosts structured by groups is formulated. Hosts' dispersal is modeled in terms of patch-residence times with the nonlinear dynamics taking into account the effective patch-host size. The residence times basic reproduction number R 0 is computed and shown to depend on the relative environmental risk of infection. The model is robust, that is, the disease free equilibrium is globally asymptotically stable (GAS) if R 0 ≤1 and a unique interior endemic equilibrium is shown to exist that is GAS whenever R 0 >1 whenever the configuration of host-vector interactions is irreducible. The effects of patchiness and groupness, a measure of host-vector heterogeneous structure, on the basic reproduction number R 0 , are explored. Numerical simulations are carried out to highlight the effects of residence times on disease prevalence. Copyright © 2016 Elsevier Inc. All rights reserved.