Sample records for lagrangian travel time

  1. Time-variant Lagrangian transport formulation reduces aggregation bias of water and solute mean travel time in heterogeneous catchments

    NASA Astrophysics Data System (ADS)

    Danesh-Yazdi, Mohammad; Botter, Gianluca; Foufoula-Georgiou, Efi

    2017-05-01

    Lack of hydro-bio-chemical data at subcatchment scales necessitates adopting an aggregated system approach for estimating water and solute transport properties, such as residence and travel time distributions, at the catchment scale. In this work, we show that within-catchment spatial heterogeneity, as expressed in spatially variable discharge-storage relationships, can be appropriately encapsulated within a lumped time-varying stochastic Lagrangian formulation of transport. This time (variability) for space (heterogeneity) substitution yields mean travel times (MTTs) that are not significantly biased to the aggregation of spatial heterogeneity. Despite the significant variability of MTT at small spatial scales, there exists a characteristic scale above which the MTT is not impacted by the aggregation of spatial heterogeneity. Extensive simulations of randomly generated river networks reveal that the ratio between the characteristic scale and the mean incremental area is on average independent of river network topology and the spatial arrangement of incremental areas.

  2. Orbital Maneuvers for Spacecrafts Travelling to/from the Lagrangian Points

    NASA Astrophysics Data System (ADS)

    Bertachini, A.

    ) Guess a final regularized time f and integrate the regularized equations of motion from 0 = 0 until f; iii) Check the final position rf obtained from the numerical integration with the prescribed final position and the final real time with the specified time of flight. If there is an agreement (difference less than a specified error allowed) the solution is found and the process can stop here. If there is no agreement, an increment in the initial guessed velocity Vi and in the guessed final regularized time is made and the process goes back to step i). The method used to find the increment in the guessed variables is the standard gradient method, as described in Press et. al., 1989. The routines available in this reference are also used in this research with minor modifications. After that this algorithm is implemented, the Lambert's three-body problem between the Earth and the Lagrangian points is solved for several values of the time of flight. Since the regularized system is used to solve this problem, there is no need to specify the final position of M3 as lying in an primary's parking orbit (to avoid the singularity). Then, to make a comparison with previous papers (Broucke, 1979 and Prado, 1996) the centre of the primary is used as the final position for M3. The results are organized in plots of the energy and the initial flight path angle (the control to be used) in the rotating frame against the time of flight. The definition of the angle is such that the zero is in the "x" axis, (pointing to the positive direction) and it increases in the counter-clock-wise sense. This problem, as well as the Lambert's original version, has two solutions for a given transfer time: one in the counter-clock-wise direction and one in the clock-wise direction in the inertial frame. In this paper, emphasis is given in finding the families with the smallest possible energy (and velocity), although many other families do exist. Broucke, R., (1979) Travelling Between the Lagrange

  3. Gravity, Time, and Lagrangians

    NASA Astrophysics Data System (ADS)

    Huggins, Elisha

    2010-11-01

    Feynman mentioned to us that he understood a topic in physics if he could explain it to a college freshman, a high school student, or a dinner guest. Here we will discuss two topics that took us a while to get to that level. One is the relationship between gravity and time. The other is the minus sign that appears in the Lagrangian. (Why would one subtract potential energy from kinetic energy?) In this paper we discuss a thought experiment that relates gravity and time. Then we use a Feynman thought experiment to explain the minus sign in the Lagrangian. Our surprise was that these two topics are related.

  4. Gravity, Time, and Lagrangians

    ERIC Educational Resources Information Center

    Huggins, Elisha

    2010-01-01

    Feynman mentioned to us that he understood a topic in physics if he could explain it to a college freshman, a high school student, or a dinner guest. Here we will discuss two topics that took us a while to get to that level. One is the relationship between gravity and time. The other is the minus sign that appears in the Lagrangian. (Why would one…

  5. A Lagrangian subgrid-scale model with dynamic estimation of Lagrangian time scale for large eddy simulation of complex flows

    NASA Astrophysics Data System (ADS)

    Verma, Aman; Mahesh, Krishnan

    2012-08-01

    The dynamic Lagrangian averaging approach for the dynamic Smagorinsky model for large eddy simulation is extended to an unstructured grid framework and applied to complex flows. The Lagrangian time scale is dynamically computed from the solution and does not need any adjustable parameter. The time scale used in the standard Lagrangian model contains an adjustable parameter θ. The dynamic time scale is computed based on a "surrogate-correlation" of the Germano-identity error (GIE). Also, a simple material derivative relation is used to approximate GIE at different events along a pathline instead of Lagrangian tracking or multi-linear interpolation. Previously, the time scale for homogeneous flows was computed by averaging along directions of homogeneity. The present work proposes modifications for inhomogeneous flows. This development allows the Lagrangian averaged dynamic model to be applied to inhomogeneous flows without any adjustable parameter. The proposed model is applied to LES of turbulent channel flow on unstructured zonal grids at various Reynolds numbers. Improvement is observed when compared to other averaging procedures for the dynamic Smagorinsky model, especially at coarse resolutions. The model is also applied to flow over a cylinder at two Reynolds numbers and good agreement with previous computations and experiments is obtained. Noticeable improvement is obtained using the proposed model over the standard Lagrangian model. The improvement is attributed to a physically consistent Lagrangian time scale. The model also shows good performance when applied to flow past a marine propeller in an off-design condition; it regularizes the eddy viscosity and adjusts locally to the dominant flow features.

  6. Lagrangian motion, coherent structures, and lines of persistent material strain.

    PubMed

    Samelson, R M

    2013-01-01

    Lagrangian motion in geophysical fluids may be strongly influenced by coherent structures that support distinct regimes in a given flow. The problems of identifying and demarcating Lagrangian regime boundaries associated with dynamical coherent structures in a given velocity field can be studied using approaches originally developed in the context of the abstract geometric theory of ordinary differential equations. An essential insight is that when coherent structures exist in a flow, Lagrangian regime boundaries may often be indicated as material curves on which the Lagrangian-mean principal-axis strain is large. This insight is the foundation of many numerical techniques for identifying such features in complex observed or numerically simulated ocean flows. The basic theoretical ideas are illustrated with a simple, kinematic traveling-wave model. The corresponding numerical algorithms for identifying candidate Lagrangian regime boundaries and lines of principal Lagrangian strain (also called Lagrangian coherent structures) are divided into parcel and bundle schemes; the latter include the finite-time and finite-size Lyapunov exponent/Lagrangian strain (FTLE/FTLS and FSLE/FSLS) metrics. Some aspects and results of oceanographic studies based on these approaches are reviewed, and the results are discussed in the context of oceanographic observations of dynamical coherent structures.

  7. Effects of Helicity on Lagrangian and Eulerian Time Correlations in Turbulence

    NASA Technical Reports Server (NTRS)

    Rubinstein, Robert; Zhou, Ye

    1998-01-01

    Taylor series expansions of turbulent time correlation functions are applied to show that helicity influences Eulerian time correlations more strongly than Lagrangian time correlations: to second order in time, the helicity effect on Lagrangian time correlations vanishes, but the helicity effect on Eulerian time correlations is nonzero. Fourier analysis shows that the helicity effect on Eulerian time correlations is confined to the largest inertial range scales. Some implications for sound radiation by swirling flows are discussed.

  8. Fellow travellers: Working memory and mental time travel in rodents.

    PubMed

    Dere, Ekrem; Dere, Dorothea; de Souza Silva, Maria Angelica; Huston, Joseph P; Zlomuzica, Armin

    2017-03-19

    The impairment of mental time travel is a severe cognitive symptom in patients with brain lesions and a number of neuropsychiatric disorders. Whether animals are also able to mentally travel in time both forward and backward is still a matter of debate. In this regard, we have proposed a continuum of mental time travel abilities across different animal species, with humans being the species with the ability to perform most sophisticated forms of mental time travel. In this review and perspective article, we delineate a novel approach to understand the evolution, characteristics and function of human and animal mental time travel. Furthermore, we propose a novel approach to measure mental time travel in rodents in a comprehensive manner using a test battery composed of well-validated and easy applicable tests. Copyright © 2017. Published by Elsevier B.V.

  9. Value of travel time.

    DOT National Transportation Integrated Search

    2016-08-01

    Knowingly or not, people generally place economic value on their time. Wage workers are paid a rate per hour, and service providers may charge per hour of their time. In the transportation realm, travelers place a value on their travel time and have ...

  10. Travel time data collection handbook

    DOT National Transportation Integrated Search

    1998-03-01

    This Travel Time Data Collection Handbook provides guidance to transportation : professionals and practitioners for the collection, reduction, and presentation : of travel time data. The handbook should be a useful reference for designing : travel ti...

  11. Examination of Eulerian and Lagrangian Coordinate Systems.

    ERIC Educational Resources Information Center

    Remillard, Wilfred J.

    1978-01-01

    Studies the relationship between Eulerian and Lagrangian coordinate systems with the help of computer plots of variables such as density and particle displacement. Gives examples which illustrate the differences in the shape of a traveling wave as seen by observers in the two systems. (Author/GA)

  12. Travel Time to Hospital for Childbirth: Comparing Calculated Versus Reported Travel Times in France.

    PubMed

    Pilkington, Hugo; Prunet, Caroline; Blondel, Béatrice; Charreire, Hélène; Combier, Evelyne; Le Vaillant, Marc; Amat-Roze, Jeanne-Marie; Zeitlin, Jennifer

    2018-01-01

    Objectives Timely access to health care is critical in obstetrics. Yet obtaining reliable estimates of travel times to hospital for childbirth poses methodological challenges. We compared two measures of travel time, self-reported and calculated, to assess concordance and to identify determinants of long travel time to hospital for childbirth. Methods Data came from the 2010 French National Perinatal Survey, a national representative sample of births (N = 14 681). We compared both travel time measures by maternal, maternity unit and geographic characteristics in rural, peri-urban and urban areas. Logistic regression models were used to study factors associated with reported and calculated times ≥30 min. Cohen's kappa coefficients were also calculated to estimate the agreement between reported and calculated times according to women's characteristics. Results In urban areas, the proportion of women with travel times ≥30 min was higher when reported rather than calculated times were used (11.0 vs. 3.6%). Longer reported times were associated with non-French nationality [adjusted odds ratio (aOR) 1.3 (95% CI 1.0-1.7)] and inadequate prenatal care [aOR 1.5 (95% CI 1.2-2.0)], but not for calculated times. Concordance between the two measures was higher in peri-urban and rural areas (52.4 vs. 52.3% for rural areas). Delivery in a specialised level 2 or 3 maternity unit was a principal determinant of long reported and measured times in peri-urban and rural areas. Conclusions for Practice The level of agreement between reported and calculated times varies according to geographic context. Poor measurement of travel time in urban areas may mask problems in accessibility.

  13. Network Structure and Travel Time Perception

    PubMed Central

    Parthasarathi, Pavithra; Levinson, David; Hochmair, Hartwig

    2013-01-01

    The purpose of this research is to test the systematic variation in the perception of travel time among travelers and relate the variation to the underlying street network structure. Travel survey data from the Twin Cities metropolitan area (which includes the cities of Minneapolis and St. Paul) is used for the analysis. Travelers are classified into two groups based on the ratio of perceived and estimated commute travel time. The measures of network structure are estimated using the street network along the identified commute route. T-test comparisons are conducted to identify statistically significant differences in estimated network measures between the two traveler groups. The combined effect of these estimated network measures on travel time is then analyzed using regression models. The results from the t-test and regression analyses confirm the influence of the underlying network structure on the perception of travel time. PMID:24204932

  14. Network structure and travel time perception.

    PubMed

    Parthasarathi, Pavithra; Levinson, David; Hochmair, Hartwig

    2013-01-01

    The purpose of this research is to test the systematic variation in the perception of travel time among travelers and relate the variation to the underlying street network structure. Travel survey data from the Twin Cities metropolitan area (which includes the cities of Minneapolis and St. Paul) is used for the analysis. Travelers are classified into two groups based on the ratio of perceived and estimated commute travel time. The measures of network structure are estimated using the street network along the identified commute route. T-test comparisons are conducted to identify statistically significant differences in estimated network measures between the two traveler groups. The combined effect of these estimated network measures on travel time is then analyzed using regression models. The results from the t-test and regression analyses confirm the influence of the underlying network structure on the perception of travel time.

  15. 5 CFR 550.1404 - Creditable travel time.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 5 Administrative Personnel 1 2012-01-01 2012-01-01 false Creditable travel time. 550.1404 Section... ADMINISTRATION (GENERAL) Compensatory Time Off for Travel § 550.1404 Creditable travel time. (a) General. Subject... off for time in a travel status if— (1) The employee is required to travel away from the official duty...

  16. 5 CFR 550.1404 - Creditable travel time.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 5 Administrative Personnel 1 2014-01-01 2014-01-01 false Creditable travel time. 550.1404 Section... ADMINISTRATION (GENERAL) Compensatory Time Off for Travel § 550.1404 Creditable travel time. (a) General. Subject... off for time in a travel status if— (1) The employee is required to travel away from the official duty...

  17. 5 CFR 550.1404 - Creditable travel time.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 5 Administrative Personnel 1 2013-01-01 2013-01-01 false Creditable travel time. 550.1404 Section... ADMINISTRATION (GENERAL) Compensatory Time Off for Travel § 550.1404 Creditable travel time. (a) General. Subject... off for time in a travel status if— (1) The employee is required to travel away from the official duty...

  18. 5 CFR 550.1404 - Creditable travel time.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 5 Administrative Personnel 1 2011-01-01 2011-01-01 false Creditable travel time. 550.1404 Section... ADMINISTRATION (GENERAL) Compensatory Time Off for Travel § 550.1404 Creditable travel time. (a) General. Subject... off for time in a travel status if— (1) The employee is required to travel away from the official duty...

  19. 5 CFR 550.1404 - Creditable travel time.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Creditable travel time. 550.1404 Section... ADMINISTRATION (GENERAL) Compensatory Time Off for Travel § 550.1404 Creditable travel time. (a) General. Subject... off for time in a travel status if— (1) The employee is required to travel away from the official duty...

  20. 5 CFR 630.207 - Travel time.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 5 Administrative Personnel 1 2011-01-01 2011-01-01 false Travel time. 630.207 Section 630.207... and General Provisions for Annual and Sick Leave § 630.207 Travel time. The travel time granted an employee under section 6303(d) of title 5, United States Code, is inclusive of the time necessarily...

  1. 5 CFR 630.207 - Travel time.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Travel time. 630.207 Section 630.207... and General Provisions for Annual and Sick Leave § 630.207 Travel time. The travel time granted an employee under section 6303(d) of title 5, United States Code, is inclusive of the time necessarily...

  2. 5 CFR 630.207 - Travel time.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 5 Administrative Personnel 1 2014-01-01 2014-01-01 false Travel time. 630.207 Section 630.207... and General Provisions for Annual and Sick Leave § 630.207 Travel time. The travel time granted an employee under section 6303(d) of title 5, United States Code, is inclusive of the time necessarily...

  3. 5 CFR 630.207 - Travel time.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 5 Administrative Personnel 1 2012-01-01 2012-01-01 false Travel time. 630.207 Section 630.207... and General Provisions for Annual and Sick Leave § 630.207 Travel time. The travel time granted an employee under section 6303(d) of title 5, United States Code, is inclusive of the time necessarily...

  4. 5 CFR 630.207 - Travel time.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 5 Administrative Personnel 1 2013-01-01 2013-01-01 false Travel time. 630.207 Section 630.207... and General Provisions for Annual and Sick Leave § 630.207 Travel time. The travel time granted an employee under section 6303(d) of title 5, United States Code, is inclusive of the time necessarily...

  5. Time - A Traveler's Guide

    NASA Astrophysics Data System (ADS)

    Pickover, Clifford A.

    1999-09-01

    "Bucky Fuller thought big," Wired magazine recently noted, "Arthur C. Clarke thinks big, but Cliff Pickover outdoes them both." In his newest book, Cliff Pickover outdoes even himself, probing a mystery that has baffled mystics, philosophers, and scientists throughout history--What is the nature of time?In Time: A Traveler's Guide , Pickover takes readers to the forefront of science as he illuminates the most mysterious phenomenon in the universe--time itself. Is time travel possible? Is time real? Does it flow in one direction only? Does it have a beginning and an end? What is eternity? Pickover's book offers a stimulating blend of Chopin, philosophy, Einstein, and modern physics, spiced with diverting side-trips to such topics as the history of clocks, the nature of free will, and the reason gold glitters. Numerous diagrams ensure readers will have no trouble following along.By the time we finish this book, we understand a wide variety of scientific concepts pertaining to time. And most important, we will understand that time travel is, indeed, possible.

  6. 5 CFR 551.422 - Time spent traveling.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Time spent traveling. 551.422 Section 551... Activities § 551.422 Time spent traveling. (a) Time spent traveling shall be considered hours of work if: (1... who is permitted to use an alternative mode of transportation, or an employee who travels at a time...

  7. 5 CFR 551.422 - Time spent traveling.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 5 Administrative Personnel 1 2013-01-01 2013-01-01 false Time spent traveling. 551.422 Section 551... Activities § 551.422 Time spent traveling. (a) Time spent traveling shall be considered hours of work if: (1... who is permitted to use an alternative mode of transportation, or an employee who travels at a time...

  8. 5 CFR 551.422 - Time spent traveling.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 5 Administrative Personnel 1 2011-01-01 2011-01-01 false Time spent traveling. 551.422 Section 551... Activities § 551.422 Time spent traveling. (a) Time spent traveling shall be considered hours of work if: (1... who is permitted to use an alternative mode of transportation, or an employee who travels at a time...

  9. 5 CFR 551.422 - Time spent traveling.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 5 Administrative Personnel 1 2012-01-01 2012-01-01 false Time spent traveling. 551.422 Section 551... Activities § 551.422 Time spent traveling. (a) Time spent traveling shall be considered hours of work if: (1... who is permitted to use an alternative mode of transportation, or an employee who travels at a time...

  10. 5 CFR 551.422 - Time spent traveling.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 5 Administrative Personnel 1 2014-01-01 2014-01-01 false Time spent traveling. 551.422 Section 551... Activities § 551.422 Time spent traveling. (a) Time spent traveling shall be considered hours of work if: (1... who is permitted to use an alternative mode of transportation, or an employee who travels at a time...

  11. Exploring the role of mixing between subsurface flow paths on transit time distributions using a Lagrangian model

    NASA Astrophysics Data System (ADS)

    Zehe, Erwin; Jackisch, Conrad; Rodriguez, Nicolas; Klaus, Julian

    2017-04-01

    Only a minute amount of global fresh water is stored in the unsaturated zone. Yet this tiny compartment controls soil microbial activity and associated trace gas emissions, transport and transformations of contaminants, plant productivity, runoff generation and groundwater recharge. To date, the processes controlling renewal and age of different fractions of the soil water stock are far from being understood. Current theories and process concepts were largely inferred either from over-simplified laboratory experiments, or non-exhaustive point observations and tracer data in the field. Tracer data provide key but yet integrated information about the distribution of travel times of the tracer molecules to a certain depth or on their travel depth distribution within a given time. We hence are able to observe the "effect" of soil structure i.e. partitioning of infiltrating water between fast preferential and slow flow paths and imperfect subsequent mixing between these flow paths in the subsurface and the related plant water uptake. However, we are not able to study the "cause" - because technologies for in-situ observations of flow, flow path topology and exchange processes at relevant interfaces have up to now not been at hand. In the present study we will make use of a Lagrangian model for subsurface water dynamics to explore how subsurface heterogeneity and mixing among different storage fractions affects residence time distribution in the unsaturated zone in a forward approach. Soil water is represented by particles of constant mass, which travel according to the Itô form of the Fokker Planck equation. The model concept builds on established soil physics by estimating the drift velocity and the diffusion term based on the soil water characteristics. The model has been shown to simulate capillary driven soil moisture dynamics in good accordance with a) the Richards equation and b) observed soil moisture data in different soil. The particle model may furthermore

  12. Decomposing Large Inverse Problems with an Augmented Lagrangian Approach: Application to Joint Inversion of Body-Wave Travel Times and Surface-Wave Dispersion Measurements

    NASA Astrophysics Data System (ADS)

    Reiter, D. T.; Rodi, W. L.

    2015-12-01

    Constructing 3D Earth models through the joint inversion of large geophysical data sets presents numerous theoretical and practical challenges, especially when diverse types of data and model parameters are involved. Among the challenges are the computational complexity associated with large data and model vectors and the need to unify differing model parameterizations, forward modeling methods and regularization schemes within a common inversion framework. The challenges can be addressed in part by decomposing the inverse problem into smaller, simpler inverse problems that can be solved separately, providing one knows how to merge the separate inversion results into an optimal solution of the full problem. We have formulated an approach to the decomposition of large inverse problems based on the augmented Lagrangian technique from optimization theory. As commonly done, we define a solution to the full inverse problem as the Earth model minimizing an objective function motivated, for example, by a Bayesian inference formulation. Our decomposition approach recasts the minimization problem equivalently as the minimization of component objective functions, corresponding to specified data subsets, subject to the constraints that the minimizing models be equal. A standard optimization algorithm solves the resulting constrained minimization problems by alternating between the separate solution of the component problems and the updating of Lagrange multipliers that serve to steer the individual solution models toward a common model solving the full problem. We are applying our inversion method to the reconstruction of the·crust and upper-mantle seismic velocity structure across Eurasia.· Data for the inversion comprise a large set of P and S body-wave travel times·and fundamental and first-higher mode Rayleigh-wave group velocities.

  13. Nonlinear refraction and reflection travel time tomography

    USGS Publications Warehouse

    Zhang, Jiahua; ten Brink, Uri S.; Toksoz, M.N.

    1998-01-01

    We develop a rapid nonlinear travel time tomography method that simultaneously inverts refraction and reflection travel times on a regular velocity grid. For travel time and ray path calculations, we apply a wave front method employing graph theory. The first-arrival refraction travel times are calculated on the basis of cell velocities, and the later refraction and reflection travel times are computed using both cell velocities and given interfaces. We solve a regularized nonlinear inverse problem. A Laplacian operator is applied to regularize the model parameters (cell slownesses and reflector geometry) so that the inverse problem is valid for a continuum. The travel times are also regularized such that we invert travel time curves rather than travel time points. A conjugate gradient method is applied to minimize the nonlinear objective function. After obtaining a solution, we perform nonlinear Monte Carlo inversions for uncertainty analysis and compute the posterior model covariance. In numerical experiments, we demonstrate that combining the first arrival refraction travel times with later reflection travel times can better reconstruct the velocity field as well as the reflector geometry. This combination is particularly important for modeling crustal structures where large velocity variations occur in the upper crust. We apply this approach to model the crustal structure of the California Borderland using ocean bottom seismometer and land data collected during the Los Angeles Region Seismic Experiment along two marine survey lines. Details of our image include a high-velocity zone under the Catalina Ridge, but a smooth gradient zone between. Catalina Ridge and San Clemente Ridge. The Moho depth is about 22 km with lateral variations. Copyright 1998 by the American Geophysical Union.

  14. Lagrangian transport properties of pulmonary interfacial flows

    PubMed Central

    Smith, Bradford J.; Lukens, Sarah; Yamaguchi, Eiichiro; Gaver, Donald P.

    2012-01-01

    Disease states characterized by airway fluid occlusion and pulmonary surfactant insufficiency, such as respiratory distress syndrome, have a high mortality rate. Understanding the mechanics of airway reopening, particularly involving surfactant transport, may provide an avenue to increase patient survival via optimized mechanical ventilation waveforms. We model the occluded airway as a liquid-filled rigid tube with the fluid phase displaced by a finger of air that propagates with both mean and sinusoidal velocity components. Finite-time Lyapunov exponent (FTLE) fields are employed to analyse the convective transport characteristics, taking note of Lagrangian coherent structures (LCSs) and their effects on transport. The Lagrangian perspective of these techniques reveals flow characteristics that are not readily apparent by observing Eulerian measures. These analysis techniques are applied to surfactant-free velocity fields determined computationally, with the boundary element method, and measured experimentally with micro particle image velocimetry (μ-PIV). We find that the LCS divides the fluid into two regimes, one advected upstream (into the thin residual film) and the other downstream ahead of the advancing bubble. At higher oscillatory frequencies particles originating immediately inside the LCS experience long residence times at the air–liquid interface, which may be conducive to surfactant transport. At high frequencies a well-mixed attractor region is identified; this volume of fluid cyclically travels along the interface and into the bulk fluid. The Lagrangian analysis is applied to velocity data measured with 0.01 mg ml−1 of the clinical pulmonary surfactant Infasurf in the bulk fluid, demonstrating flow field modifications with respect to the surfactant-free system that were not visible in the Eulerian frame. PMID:23049141

  15. Lagrangian Descriptors: A Method for Revealing Phase Space Structures of General Time Dependent Dynamical Systems

    NASA Astrophysics Data System (ADS)

    Mancho, Ana M.; Wiggins, Stephen; Curbelo, Jezabel; Mendoza, Carolina

    2013-11-01

    Lagrangian descriptors are a recent technique which reveals geometrical structures in phase space and which are valid for aperiodically time dependent dynamical systems. We discuss a general methodology for constructing them and we discuss a ``heuristic argument'' that explains why this method is successful. We support this argument by explicit calculations on a benchmark problem. Several other benchmark examples are considered that allow us to assess the performance of Lagrangian descriptors with both finite time Lyapunov exponents (FTLEs) and finite time averages of certain components of the vector field (``time averages''). In all cases Lagrangian descriptors are shown to be both more accurate and computationally efficient than these methods. We thank CESGA for computing facilities. This research was supported by MINECO grants: MTM2011-26696, I-Math C3-0104, ICMAT Severo Ochoa project SEV-2011-0087, and CSIC grant OCEANTECH. SW acknowledges the support of the ONR (Grant No. N00014-01-1-0769).

  16. The Role of Perspective in Mental Time Travel.

    PubMed

    Ansuini, Caterina; Cavallo, Andrea; Pia, Lorenzo; Becchio, Cristina

    2016-01-01

    Recent years have seen accumulating evidence for the proposition that people process time by mapping it onto a linear spatial representation and automatically "project" themselves on an imagined mental time line. Here, we ask whether people can adopt the temporal perspective of another person when travelling through time. To elucidate similarities and differences between time travelling from one's own perspective or from the perspective of another person, we asked participants to mentally project themselves or someone else (i.e., a coexperimenter) to different time points. Three basic properties of mental time travel were manipulated: temporal location (i.e., where in time the travel originates: past, present, and future), motion direction (either backwards or forwards), and temporal duration (i.e., the distance to travel: one, three, or five years). We found that time travels originating in the present lasted longer in the self- than in the other-perspective. Moreover, for self-perspective, but not for other-perspective, time was differently scaled depending on where in time the travel originated. In contrast, when considering the direction and the duration of time travelling, no dissimilarities between the self- and the other-perspective emerged. These results suggest that self- and other-projection, despite some differences, share important similarities in structure.

  17. Code for Calculating Regional Seismic Travel Time

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BALLARD, SANFORD; HIPP, JAMES; & BARKER, GLENN

    The RSTT software computes predictions of the travel time of seismic energy traveling from a source to a receiver through 2.5D models of the seismic velocity distribution within the Earth. The two primary applications for the RSTT library are tomographic inversion studies and seismic event location calculations. In tomographic inversions studies, a seismologist begins with number of source-receiver travel time observations and an initial starting model of the velocity distribution within the Earth. A forward travel time calculator, such as the RSTT library, is used to compute predictions of each observed travel time and all of the residuals (observed minusmore » predicted travel time) are calculated. The Earth model is then modified in some systematic way with the goal of minimizing the residuals. The Earth model obtained in this way is assumed to be a better model than the starting model if it has lower residuals. The other major application for the RSTT library is seismic event location. Given an Earth model, an initial estimate of the location of a seismic event, and some number of observations of seismic travel time thought to have originated from that event, location codes systematically modify the estimate of the location of the event with the goal of minimizing the difference between the observed and predicted travel times. The second application, seismic event location, is routinely implemented by the military as part of its effort to monitor the Earth for nuclear tests conducted by foreign countries.« less

  18. Validation of travel times to hospital estimated by GIS.

    PubMed

    Haynes, Robin; Jones, Andrew P; Sauerzapf, Violet; Zhao, Hongxin

    2006-09-19

    An increasing number of studies use GIS estimates of car travel times to health services, without presenting any evidence that the estimates are representative of real travel times. This investigation compared GIS estimates of travel times with the actual times reported by a sample of 475 cancer patients who had travelled by car to attend clinics at eight hospitals in the North of England. Car travel times were estimated by GIS using the shortest road route between home address and hospital and average speed assumptions. These estimates were compared with reported journey times and straight line distances using graphical, correlation and regression techniques. There was a moderately strong association between reported times and estimated travel times (r = 0.856). Reported travel times were similarly related to straight line distances. Altogether, 50% of travel time estimates were within five minutes of the time reported by respondents, 77% were within ten minutes and 90% were within fifteen minutes. The distribution of over- and under-estimates was symmetrical, but estimated times tended to be longer than reported times with increasing distance from hospital. Almost all respondents rounded their travel time to the nearest five or ten minutes. The reason for many cases of reported journey times exceeding the estimated times was confirmed by respondents' comments as traffic congestion. GIS estimates of car travel times were moderately close approximations to reported times. GIS travel time estimates may be superior to reported travel times for modelling purposes because reported times contain errors and can reflect unusual circumstances. Comparison with reported times did not suggest that estimated times were a more sensitive measure than straight line distance.

  19. Bridging Numerical and Analytical Models of Transient Travel Time Distributions: Challenges and Opportunities

    NASA Astrophysics Data System (ADS)

    Danesh Yazdi, M.; Klaus, J.; Condon, L. E.; Maxwell, R. M.

    2017-12-01

    Recent advancements in analytical solutions to quantify water and solute time-variant travel time distributions (TTDs) and the related StorAge Selection (SAS) functions synthesize catchment complexity into a simplified, lumped representation. While these analytical approaches are easy and efficient in application, they require high frequency hydrochemical data for parameter estimation. Alternatively, integrated hydrologic models coupled to Lagrangian particle-tracking approaches can directly simulate age under different catchment geometries and complexity at a greater computational expense. Here, we compare and contrast the two approaches by exploring the influence of the spatial distribution of subsurface heterogeneity, interactions between distinct flow domains, diversity of flow pathways, and recharge rate on the shape of TTDs and the relating SAS functions. To this end, we use a parallel three-dimensional variably saturated groundwater model, ParFlow, to solve for the velocity fields in the subsurface. A particle-tracking model, SLIM, is then implemented to determine the age distributions at every real time and domain location, facilitating a direct characterization of the SAS functions as opposed to analytical approaches requiring calibration of such functions. Steady-state results reveal that the assumption of random age sampling scheme might only hold in the saturated region of homogeneous catchments resulting in an exponential TTD. This assumption is however violated when the vadose zone is included as the underlying SAS function gives a higher preference to older ages. The dynamical variability of the true SAS functions is also shown to be largely masked by the smooth analytical SAS functions. As the variability of subsurface spatial heterogeneity increases, the shape of TTD approaches a power-law distribution function, including a broader distribution of shorter and longer travel times. We further found that larger (smaller) magnitude of effective

  20. Travel time and concurrent-schedule choice: retrospective versus prospective control.

    PubMed

    Davison, M; Elliffe, D

    2000-01-01

    Six pigeons were trained on concurrent variable-interval schedules in which two different travel times between alternatives, 4.5 and 0.5 s, were randomly arranged. In Part 1, the next travel time was signaled while the subjects were responding on each alternative. Generalized matching analyses of performance in the presence of the two travel-time signals showed significantly higher response and time sensitivity when the longer travel time was signaled compared to when the shorter time was signaled. When the data were analyzed as a function of the previous travel time, there were no differences in sensitivity. Dwell times on the alternatives were consistently longer in the presence of the stimulus that signaled the longer travel time than they were in the presence of the stimulus that signaled the shorter travel time. These results are in accord with a recent quantitative account of the effects of travel time. In Part 2, no signals indicating the next travel time were given. When these data were analyzed as a function of the previous travel time, time-allocation sensitivity after the 4.5-s travel time was significantly greater than that after the 0.5-s travel time, but no such difference was found for response allocation. Dwell times were also longer when the previous travel time had been longer.

  1. Ocean acoustic tomography - Travel time biases

    NASA Technical Reports Server (NTRS)

    Spiesberger, J. L.

    1985-01-01

    The travel times of acoustic rays traced through a climatological sound-speed profile are compared with travel times computed through the same profile containing an eddy field. The accuracy of linearizing the relations between the travel time difference and the sound-speed deviation at long ranges is assessed using calculations made for two different eddy fields measured in the eastern Atlantic. Significant nonlinearities are found in some cases, and the relationships of the values of these nonlinearities to the range between source and receiver, to the anomaly size associated with the eddies, and to the positions of the eddies are studied. An analytical model of the nonlinearities is discussed.

  2. Lagrangian Visualization and Real-Time Identification of the Vortex Shedding Time in the Wake of a Circular Cylinder

    NASA Astrophysics Data System (ADS)

    Rockwood, Matthew P.

    The flow around a circular cylinder, a canonical bluff body, has been extensively studied in the literature to determine the mechanisms that cause the formation of vortices in the cylinder wake. Understanding of these mechanisms has led to myriad attempts to control the vortices either to mitigate the oscillating forces they cause, or to augment them in order to enhance mixing in the near-wake. While these flow control techniques have been effective at low Reynolds numbers, they generally lose effectiveness or require excessive power at Reynolds numbers commonly experienced in practical applications. For this reason, new methods for identifying the locations of vortices and their shedding time could increase the effectiveness of the control techniques. In the current work, two-dimensional, two-component velocity data was collected in the wake of a circular cylinder using a planar digital particle image velocimetry (DPIV) measurement system at Reynolds numbers of 9,000 and 19,000. This experimental data, as well as two-dimensional simulation data at a Reynolds number of 150, and three-dimensional simulation data at a Reynolds number of 400, is used to calculate the finite-time Lyapunov exponent (FTLE) field. The locations of Lagrangian saddles, identified as non-parallel intersections of positive and negative time FTLE ridges, are shown to indicate the timing of von Karman vortex shedding in the wake of a circular cylinder. The Lagrangian saddle found upstream of a forming and subsequently shedding vortex is shown to clearly accelerate away from the cylinder surface as the vortex begins to shed. This provides a novel, objective method to determine the timing of vortex shedding. The saddles are impossible to track in real-time, however, since future flow field data is needed for the computation of the FTLE fields. In order to detect the Lagrangian saddle acceleration without direct access to the FTLE, the saddle dynamics are connected to measurable surface quantities

  3. [Mental Space Navigation and Mental Time Travel].

    PubMed

    Kawamura, Mitsuru

    2017-11-01

    We examined patients with mental space navigation or mental time travel disorder to identify regions in the brain that may play a critical role in mental time travel in terms of clinical neuropsychology. These regions included the precneus, posterior cingulate gyrus, retrosplenial cortex, and hippocampus, as well as the orbitofrontal cortex: the anterior and posterior medial areas were both shown to be important in this process. Further studies are required to define whether these form a network for mental time travel.

  4. Self-motion perception compresses time experienced in return travel.

    PubMed

    Seno, Takeharu; Ito, Hiroyuki; Shoji, Sunaga

    2011-01-01

    It is often anecdotally reported that time experienced in return travel (back to the start point) seems shorter than time spent in outward travel (travel to a new destination). Here, we report the first experimental results showing that return travel time is experienced as shorter than the actual time. This discrepancy is induced by the existence of self-motion perception.

  5. Dynamic travel time estimation using regression trees.

    DOT National Transportation Integrated Search

    2008-10-01

    This report presents a methodology for travel time estimation by using regression trees. The dissemination of travel time information has become crucial for effective traffic management, especially under congested road conditions. In the absence of c...

  6. Effectiveness of different approaches to disseminating traveler information on travel time reliability. [supporting datasets

    DOT National Transportation Integrated Search

    2013-11-30

    Travel time reliability information includes static data about traffic speeds or trip times that capture historic variations from day to day, and it can help individuals understand the level of variation in traffic. Unlike real-time travel time infor...

  7. Trip-oriented travel time prediction (TOTTP) with historical vehicle trajectories

    NASA Astrophysics Data System (ADS)

    Xu, Tao; Li, Xiang; Claramunt, Christophe

    2018-06-01

    Accurate travel time prediction is undoubtedly of importance to both traffic managers and travelers. In highly-urbanized areas, trip-oriented travel time prediction (TOTTP) is valuable to travelers rather than traffic managers as the former usually expect to know the travel time of a trip which may cross over multiple road sections. There are two obstacles to the development of TOTTP, including traffic complexity and traffic data coverage.With large scale historical vehicle trajectory data and meteorology data, this research develops a BPNN-based approach through integrating multiple factors affecting trip travel time into a BPNN model to predict trip-oriented travel time for OD pairs in urban network. Results of experiments demonstrate that it helps discover the dominate trends of travel time changes daily and weekly, and the impact of weather conditions is non-trivial.

  8. 5 CFR 610.123 - Travel on official time.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 5 Administrative Personnel 1 2014-01-01 2014-01-01 false Travel on official time. 610.123 Section... DUTY Weekly and Daily Scheduling of Work Work Schedules § 610.123 Travel on official time. Insofar as practicable travel during nonduty hours shall not be required of an employee. When it is essential that this...

  9. 5 CFR 610.123 - Travel on official time.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Travel on official time. 610.123 Section... DUTY Weekly and Daily Scheduling of Work Work Schedules § 610.123 Travel on official time. Insofar as practicable travel during nonduty hours shall not be required of an employee. When it is essential that this...

  10. 5 CFR 610.123 - Travel on official time.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 5 Administrative Personnel 1 2011-01-01 2011-01-01 false Travel on official time. 610.123 Section... DUTY Weekly and Daily Scheduling of Work Work Schedules § 610.123 Travel on official time. Insofar as practicable travel during nonduty hours shall not be required of an employee. When it is essential that this...

  11. 5 CFR 610.123 - Travel on official time.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 5 Administrative Personnel 1 2013-01-01 2013-01-01 false Travel on official time. 610.123 Section... DUTY Weekly and Daily Scheduling of Work Work Schedules § 610.123 Travel on official time. Insofar as practicable travel during nonduty hours shall not be required of an employee. When it is essential that this...

  12. 5 CFR 610.123 - Travel on official time.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 5 Administrative Personnel 1 2012-01-01 2012-01-01 false Travel on official time. 610.123 Section... DUTY Weekly and Daily Scheduling of Work Work Schedules § 610.123 Travel on official time. Insofar as practicable travel during nonduty hours shall not be required of an employee. When it is essential that this...

  13. Wireless data collection system for real-time arterial travel time estimates.

    DOT National Transportation Integrated Search

    2011-03-01

    This project pursued several objectives conducive to the implementation and testing of a Bluetooth (BT) based system to collect travel time data, including the deployment of a BT-based travel time data collection system to perform comprehensive testi...

  14. Lagrangian formulation of the general relativistic Poynting-Robertson effect

    NASA Astrophysics Data System (ADS)

    De Falco, Vittorio; Battista, Emmanuele; Falanga, Maurizio

    2018-04-01

    We propose the Lagrangian formulation for describing the motion of a test particle in a general relativistic, stationary, and axially symmetric spacetime. The test particle is also affected by a radiation field, modeled as a coherent flux of photons traveling along the null geodesics of the background spacetime, including the general relativistic Poynting-Robertson effect. The innovative part of this work is to prove the existence of the potential linked to the dissipative action caused by the Poynting-Robertson effect in general relativity through the help of an integrating factor, depending on the energy of the system. Generally, such kinds of inverse problems involving dissipative effects might not admit a Lagrangian formulation; especially, in general relativity, there are no examples of such attempts in the literature so far. We reduce this general relativistic Lagrangian formulation to the classic case in the weak-field limit. This approach facilitates further studies in improving the treatment of the radiation field, and it contains, for example, some implications for a deeper comprehension of the gravitational waves.

  15. The travel-time ellipse: An approximate zone of transport

    USGS Publications Warehouse

    Almendinger, J.E.

    1994-01-01

    A zone of transport for a well is defined as the area in the horizontal plane bounded by a contour of equal ground-water travel time to the well. For short distances and ground-water travel times near a well, the potentiometric surface may be simulated analytically as that for a fully penetrating well in a uniform flow field. The zone of transport for this configuration is nearly elliptical. A simple method is derived to calculate a travel-time ellipse that approximates the zone of transport for a well in a uniform flow field. The travel-time ellipse was nearly congruent with the exact solution for the theoretical zone of transport for ground-water travel times of at least 10 years and for aquifer property values appropriate for southeastern Minnesota. For distances and travel times approaching infinity, however, the ellipse becomes slightly wider at its midpoint and narrower near its upgradient boundary than the theoretical zone of transport. The travel-time ellipse also may be used to simulate the plume area surrounding an injection well. However, the travel-time ellipse is an approximation that does not account for the effect of dispersion in enlarging the true area of an injection plume or zone of transport; hence, caution is advised in the use and interpretation of this simple construction.

  16. Predicting river travel time from hydraulic characteristics

    USGS Publications Warehouse

    Jobson, H.E.

    2001-01-01

    Predicting the effect of a pollutant spill on downstream water quality is primarily dependent on the water velocity, longitudinal mixing, and chemical/physical reactions. Of these, velocity is the most important and difficult to predict. This paper provides guidance on extrapolating travel-time information from one within bank discharge to another. In many cases, a time series of discharge (such as provided by a U.S. Geological Survey stream gauge) will provide an excellent basis for this extrapolation. Otherwise, the accuracy of a travel time extrapolation based on a resistance equation can be greatly improved by assuming the total flow area is composed of two parts, an active and an inactive area. For 60 reaches of 12 rivers with slopes greater than about 0.0002, travel times could be predicted to within about 10% by computing the active flow area using the Manning equation with n = 0.035 and assuming a constant inactive area for each reach. The predicted travel times were not very sensitive to the assumed values of bed slope or channel width.

  17. Prisms to travel in time: Investigation of time-space association through prismatic adaptation effect on mental time travel.

    PubMed

    Anelli, Filomena; Ciaramelli, Elisa; Arzy, Shahar; Frassinetti, Francesca

    2016-11-01

    Accumulating evidence suggests that humans process time and space in similar veins. Humans represent time along a spatial continuum, and perception of temporal durations can be altered through manipulations of spatial attention by prismatic adaptation (PA). Here, we investigated whether PA-induced manipulations of spatial attention can also influence more conceptual aspects of time, such as humans' ability to travel mentally back and forward in time (mental time travel, MTT). Before and after leftward- and rightward-PA, participants projected themselves in the past, present or future time (i.e., self-projection), and, for each condition, determined whether a series of events were located in the past or the future with respect to that specific self-location in time (i.e., self-reference). The results demonstrated that leftward and rightward shifts of spatial attention facilitated recognition of past and future events, respectively. These findings suggest that spatial attention affects the temporal processing of the human self. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Eulerian-Lagrangian Simulations of Transonic Flutter Instabilities

    NASA Technical Reports Server (NTRS)

    Bendiksen, Oddvar O.

    1994-01-01

    This paper presents an overview of recent applications of Eulerian-Lagrangian computational schemes in simulating transonic flutter instabilities. This approach, the fluid-structure system is treated as a single continuum dynamics problem, by switching from an Eulerian to a Lagrangian formulation at the fluid-structure boundary. This computational approach effectively eliminates the phase integration errors associated with previous methods, where the fluid and structure are integrated sequentially using different schemes. The formulation is based on Hamilton's Principle in mixed coordinates, and both finite volume and finite element discretization schemes are considered. Results from numerical simulations of transonic flutter instabilities are presented for isolated wings, thin panels, and turbomachinery blades. The results suggest that the method is capable of reproducing the energy exchange between the fluid and the structure with significantly less error than existing methods. Localized flutter modes and panel flutter modes involving traveling waves can also be simulated effectively with no a priori knowledge of the type of instability involved.

  19. Travel time reliability modeling.

    DOT National Transportation Integrated Search

    2011-07-01

    This report includes three papers as follows: : 1. Guo F., Rakha H., and Park S. (2010), "A Multi-state Travel Time Reliability Model," : Transportation Research Record: Journal of the Transportation Research Board, n 2188, : pp. 46-54. : 2. Park S.,...

  20. Variability of Travel Times on New Jersey Highways

    DOT National Transportation Integrated Search

    2011-06-01

    This report presents the results of a link and path travel time study conducted on selected New Jersey (NJ) highways to produce estimates of the corresponding variability of travel time (VTT) by departure time of the day and days of the week. The tra...

  1. Analysis of travel time reliability on Indiana interstates.

    DOT National Transportation Integrated Search

    2009-09-15

    Travel-time reliability is a key performance measure in any transportation system. It is a : measure of quality of travel time experienced by transportation system users and reflects the efficiency : of the transportation system to serve citizens, bu...

  2. A travel time forecasting model based on change-point detection method

    NASA Astrophysics Data System (ADS)

    LI, Shupeng; GUANG, Xiaoping; QIAN, Yongsheng; ZENG, Junwei

    2017-06-01

    Travel time parameters obtained from road traffic sensors data play an important role in traffic management practice. A travel time forecasting model is proposed for urban road traffic sensors data based on the method of change-point detection in this paper. The first-order differential operation is used for preprocessing over the actual loop data; a change-point detection algorithm is designed to classify the sequence of large number of travel time data items into several patterns; then a travel time forecasting model is established based on autoregressive integrated moving average (ARIMA) model. By computer simulation, different control parameters are chosen for adaptive change point search for travel time series, which is divided into several sections of similar state.Then linear weight function is used to fit travel time sequence and to forecast travel time. The results show that the model has high accuracy in travel time forecasting.

  3. Backus-Gilbert inversion of travel time data

    NASA Technical Reports Server (NTRS)

    Johnson, L. E.

    1972-01-01

    Application of the Backus-Gilbert theory for geophysical inverse problems to the seismic body wave travel-time problem is described. In particular, it is shown how to generate earth models that fit travel-time data to within one standard error and having generated such models how to describe their degree of uniqueness. An example is given to illustrate the process.

  4. Time Travel: Separating Science Fact from Science Fiction.

    ERIC Educational Resources Information Center

    Al-Khalili, Jim

    2003-01-01

    Suggests that the subject of time travel is the best topic to introduce ideas behind some of the most beautiful and fundamental theories about the nature of space and time. Explains the distinction between the two directions of time travel and how relativity theory forced the abandonment of Newtonian notions about the nature of time. (Author/KHR)

  5. A Vertically Lagrangian Finite-Volume Dynamical Core for Global Models

    NASA Technical Reports Server (NTRS)

    Lin, Shian-Jiann

    2003-01-01

    A finite-volume dynamical core with a terrain-following Lagrangian control-volume discretization is described. The vertically Lagrangian discretization reduces the dimensionality of the physical problem from three to two with the resulting dynamical system closely resembling that of the shallow water dynamical system. The 2D horizontal-to-Lagrangian-surface transport and dynamical processes are then discretized using the genuinely conservative flux-form semi-Lagrangian algorithm. Time marching is split- explicit, with large-time-step for scalar transport, and small fractional time step for the Lagrangian dynamics, which permits the accurate propagation of fast waves. A mass, momentum, and total energy conserving algorithm is developed for mapping the state variables periodically from the floating Lagrangian control-volume to an Eulerian terrain-following coordinate for dealing with physical parameterizations and to prevent severe distortion of the Lagrangian surfaces. Deterministic baroclinic wave growth tests and long-term integrations using the Held-Suarez forcing are presented. Impact of the monotonicity constraint is discussed.

  6. Critical capacity, travel time delays and travel time distribution of rapid mass transit systems

    NASA Astrophysics Data System (ADS)

    Legara, Erika Fille; Monterola, Christopher; Lee, Kee Khoon; Hung, Gih Guang

    2014-07-01

    We set up a mechanistic agent-based model of a rapid mass transit system. Using empirical data from Singapore's unidentifiable smart fare card, we validate our model by reconstructing actual travel demand and duration of travel statistics. We subsequently use this model to investigate two phenomena that are known to significantly affect the dynamics within the RTS: (1) overloading in trains and (2) overcrowding in the RTS platform. We demonstrate that by varying the loading capacity of trains, a tipping point emerges at which an exponential increase in the duration of travel time delays is observed. We also probe the impact on the rail system dynamics of three types of passenger growth distribution across stations: (i) Dirac delta, (ii) uniform and (iii) geometric, which is reminiscent of the effect of land use on transport. Under the assumption of a fixed loading capacity, we demonstrate the dependence of a given origin-destination (OD) pair on the flow volume of commuters in station platforms.

  7. [Travel times of patients to ambulatory care physicians in Germany].

    PubMed

    Schang, Laura; Kopetsch, Thomas; Sundmacher, Leonie

    2017-12-01

    The time needed by patients to get to a doctor's office represents an important indicator of realised access to care. In Germany, findings on travel times are only available from surveys or for some regions. For the first time, this study examines nationwide and physician group-specific travel times in the ambulatory care sector in Germany and describes demographic, supply-side and spatial determinants of variations. Using a full review of patient consultations in the statutory health insurance system from 2009/2010 for 14 physician groups (approximately 518 million cases), case-related travel times by car between patients' places of residence and physician's practices were estimated at the municipal level. Physicians were reached in less than 30 min in 90.8% of cases for primary care physicians and up to 63% of cases for radiologists. Patients between 18 and under 30 years of age travel longer to get to the doctor than other age groups. The average travel time at the county level systematically differs between urban and rural planning areas. In the case of gynecologists, dermatologists and ophthalmologists, the average journey time decreases with increasing physician density at the county level, but remains approximately constant from a recognisable point of inflection. There is no association between primary care physician density and travel time at the district level. Spatial analyses show physician group-specific patterns of regional concentrations with an increased proportion of cases with very long travel times. Patients' travel times are influenced by supply- and demand-side determinants. Interactions between influential determinants should be analysed in depth to examine the extent to which the time travelled is an expression of regional under- or over-supply rather than an expression of patient preferences.

  8. Option volatility and the acceleration Lagrangian

    NASA Astrophysics Data System (ADS)

    Baaquie, Belal E.; Cao, Yang

    2014-01-01

    This paper develops a volatility formula for option on an asset from an acceleration Lagrangian model and the formula is calibrated with market data. The Black-Scholes model is a simpler case that has a velocity dependent Lagrangian. The acceleration Lagrangian is defined, and the classical solution of the system in Euclidean time is solved by choosing proper boundary conditions. The conditional probability distribution of final position given the initial position is obtained from the transition amplitude. The volatility is the standard deviation of the conditional probability distribution. Using the conditional probability and the path integral method, the martingale condition is applied, and one of the parameters in the Lagrangian is fixed. The call option price is obtained using the conditional probability and the path integral method.

  9. Identifying finite-time coherent sets from limited quantities of Lagrangian data.

    PubMed

    Williams, Matthew O; Rypina, Irina I; Rowley, Clarence W

    2015-08-01

    A data-driven procedure for identifying the dominant transport barriers in a time-varying flow from limited quantities of Lagrangian data is presented. Our approach partitions state space into coherent pairs, which are sets of initial conditions chosen to minimize the number of trajectories that "leak" from one set to the other under the influence of a stochastic flow field during a pre-specified interval in time. In practice, this partition is computed by solving an optimization problem to obtain a pair of functions whose signs determine set membership. From prior experience with synthetic, "data rich" test problems, and conceptually related methods based on approximations of the Perron-Frobenius operator, we observe that the functions of interest typically appear to be smooth. We exploit this property by using the basis sets associated with spectral or "mesh-free" methods, and as a result, our approach has the potential to more accurately approximate these functions given a fixed amount of data. In practice, this could enable better approximations of the coherent pairs in problems with relatively limited quantities of Lagrangian data, which is usually the case with experimental geophysical data. We apply this method to three examples of increasing complexity: The first is the double gyre, the second is the Bickley Jet, and the third is data from numerically simulated drifters in the Sulu Sea.

  10. Identifying finite-time coherent sets from limited quantities of Lagrangian data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Matthew O.; Rypina, Irina I.; Rowley, Clarence W.

    A data-driven procedure for identifying the dominant transport barriers in a time-varying flow from limited quantities of Lagrangian data is presented. Our approach partitions state space into coherent pairs, which are sets of initial conditions chosen to minimize the number of trajectories that “leak” from one set to the other under the influence of a stochastic flow field during a pre-specified interval in time. In practice, this partition is computed by solving an optimization problem to obtain a pair of functions whose signs determine set membership. From prior experience with synthetic, “data rich” test problems, and conceptually related methods basedmore » on approximations of the Perron-Frobenius operator, we observe that the functions of interest typically appear to be smooth. We exploit this property by using the basis sets associated with spectral or “mesh-free” methods, and as a result, our approach has the potential to more accurately approximate these functions given a fixed amount of data. In practice, this could enable better approximations of the coherent pairs in problems with relatively limited quantities of Lagrangian data, which is usually the case with experimental geophysical data. We apply this method to three examples of increasing complexity: The first is the double gyre, the second is the Bickley Jet, and the third is data from numerically simulated drifters in the Sulu Sea.« less

  11. Modeling highway travel time distribution with conditional probability models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oliveira Neto, Francisco Moraes; Chin, Shih-Miao; Hwang, Ho-Ling

    ABSTRACT Under the sponsorship of the Federal Highway Administration's Office of Freight Management and Operations, the American Transportation Research Institute (ATRI) has developed performance measures through the Freight Performance Measures (FPM) initiative. Under this program, travel speed information is derived from data collected using wireless based global positioning systems. These telemetric data systems are subscribed and used by trucking industry as an operations management tool. More than one telemetric operator submits their data dumps to ATRI on a regular basis. Each data transmission contains truck location, its travel time, and a clock time/date stamp. Data from the FPM program providesmore » a unique opportunity for studying the upstream-downstream speed distributions at different locations, as well as different time of the day and day of the week. This research is focused on the stochastic nature of successive link travel speed data on the continental United States Interstates network. Specifically, a method to estimate route probability distributions of travel time is proposed. This method uses the concepts of convolution of probability distributions and bivariate, link-to-link, conditional probability to estimate the expected distributions for the route travel time. Major contribution of this study is the consideration of speed correlation between upstream and downstream contiguous Interstate segments through conditional probability. The established conditional probability distributions, between successive segments, can be used to provide travel time reliability measures. This study also suggests an adaptive method for calculating and updating route travel time distribution as new data or information is added. This methodology can be useful to estimate performance measures as required by the recent Moving Ahead for Progress in the 21st Century Act (MAP 21).« less

  12. Comparison of Travel-Time and Amplitude Measurements for Deep-Focusing Time-Distance Helioseismology

    NASA Astrophysics Data System (ADS)

    Pourabdian, Majid; Fournier, Damien; Gizon, Laurent

    2018-04-01

    The purpose of deep-focusing time-distance helioseismology is to construct seismic measurements that have a high sensitivity to the physical conditions at a desired target point in the solar interior. With this technique, pairs of points on the solar surface are chosen such that acoustic ray paths intersect at this target (focus) point. Considering acoustic waves in a homogeneous medium, we compare travel-time and amplitude measurements extracted from the deep-focusing cross-covariance functions. Using a single-scattering approximation, we find that the spatial sensitivity of deep-focusing travel times to sound-speed perturbations is zero at the target location and maximum in a surrounding shell. This is unlike the deep-focusing amplitude measurements, which have maximum sensitivity at the target point. We compare the signal-to-noise ratio for travel-time and amplitude measurements for different types of sound-speed perturbations, under the assumption that noise is solely due to the random excitation of the waves. We find that, for highly localized perturbations in sound speed, the signal-to-noise ratio is higher for amplitude measurements than for travel-time measurements. We conclude that amplitude measurements are a useful complement to travel-time measurements in time-distance helioseismology.

  13. Lagrangian postprocessing of computational hemodynamics.

    PubMed

    Shadden, Shawn C; Arzani, Amirhossein

    2015-01-01

    Recent advances in imaging, modeling, and computing have rapidly expanded our capabilities to model hemodynamics in the large vessels (heart, arteries, and veins). This data encodes a wealth of information that is often under-utilized. Modeling (and measuring) blood flow in the large vessels typically amounts to solving for the time-varying velocity field in a region of interest. Flow in the heart and larger arteries is often complex, and velocity field data provides a starting point for investigating the hemodynamics. This data can be used to perform Lagrangian particle tracking, and other Lagrangian-based postprocessing. As described herein, Lagrangian methods are necessary to understand inherently transient hemodynamic conditions from the fluid mechanics perspective, and to properly understand the biomechanical factors that lead to acute and gradual changes of vascular function and health. The goal of the present paper is to review Lagrangian methods that have been used in post-processing velocity data of cardiovascular flows.

  14. Lagrangian postprocessing of computational hemodynamics

    PubMed Central

    Shadden, Shawn C.; Arzani, Amirhossein

    2014-01-01

    Recent advances in imaging, modeling and computing have rapidly expanded our capabilities to model hemodynamics in the large vessels (heart, arteries and veins). This data encodes a wealth of information that is often under-utilized. Modeling (and measuring) blood flow in the large vessels typically amounts to solving for the time-varying velocity field in a region of interest. Flow in the heart and larger arteries is often complex, and velocity field data provides a starting point for investigating the hemodynamics. This data can be used to perform Lagrangian particle tracking, and other Lagrangian-based postprocessing. As described herein, Lagrangian methods are necessary to understand inherently transient hemodynamic conditions from the fluid mechanics perspective, and to properly understand the biomechanical factors that lead to acute and gradual changes of vascular function and health. The goal of the present paper is to review Lagrangian methods that have been used in post-processing velocity data of cardiovascular flows. PMID:25059889

  15. Travel time estimation using Bluetooth.

    DOT National Transportation Integrated Search

    2015-06-01

    The objective of this study was to investigate the feasibility of using a Bluetooth Probe Detection System (BPDS) to : estimate travel time in an urban area. Specifically, the study investigated the possibility of measuring overall congestion, the : ...

  16. Memory, mental time travel and The Moustachio Quartet

    PubMed Central

    Wilkins, Clive

    2017-01-01

    Mental time travel allows us to revisit our memories and imagine future scenarios, and this is why memories are not only about the past, but they are also prospective. These episodic memories are not a fixed store of what happened, however, they are reassessed each time they are revisited and depend on the sequence in which events unfold. In this paper, we shall explore the complex relationships between memory and human experience, including through a series of novels ‘The Moustachio Quartet’ that can be read in any order. To do so, we shall integrate evidences from science and the arts to explore the subjective nature of memory and mental time travel, and argue that it has evolved primarily for prospection as opposed to retrospection. Furthermore, we shall question the notion that mental time travel is a uniquely human construct, and argue that some of the best evidence for the evolution of mental time travel comes from our distantly related cousins, the corvids, that cache food for the future and rely on long-lasting and highly accurate memories of what, where and when they stored their stashes of food. PMID:28479980

  17. Memory, mental time travel and The Moustachio Quartet.

    PubMed

    Clayton, Nicola; Wilkins, Clive

    2017-06-06

    Mental time travel allows us to revisit our memories and imagine future scenarios, and this is why memories are not only about the past, but they are also prospective. These episodic memories are not a fixed store of what happened, however, they are reassessed each time they are revisited and depend on the sequence in which events unfold. In this paper, we shall explore the complex relationships between memory and human experience, including through a series of novels 'The Moustachio Quartet' that can be read in any order. To do so, we shall integrate evidences from science and the arts to explore the subjective nature of memory and mental time travel, and argue that it has evolved primarily for prospection as opposed to retrospection. Furthermore, we shall question the notion that mental time travel is a uniquely human construct, and argue that some of the best evidence for the evolution of mental time travel comes from our distantly related cousins, the corvids, that cache food for the future and rely on long-lasting and highly accurate memories of what, where and when they stored their stashes of food.

  18. Time Travel in the Library

    ERIC Educational Resources Information Center

    Brown, Donna W.

    2005-01-01

    A Time Travel project in the library gives enthusiasm to students to connect with the past and reinforces their research skills while instilling respect for the past years. The librarian should choose one specific decade to highlight in the library and create an extravaganza that would allow memorabilia from that time period to be located without…

  19. Incorporating travel time reliability into the Highway Capacity Manual.

    DOT National Transportation Integrated Search

    2014-01-01

    This final report documents the activities performed during SHRP 2 Reliability Project L08: Incorporating Travel Time Reliability into the Highway Capacity Manual. It serves as a supplement to the proposed chapters for incorporating travel time relia...

  20. The impact of travel distance, travel time and waiting time on health-related quality of life of diabetes patients: An investigation in six European countries.

    PubMed

    Konerding, Uwe; Bowen, Tom; Elkhuizen, Sylvia G; Faubel, Raquel; Forte, Paul; Karampli, Eleftheria; Mahdavi, Mahdi; Malmström, Tomi; Pavi, Elpida; Torkki, Paulus

    2017-04-01

    The effects of travel distance and travel time to the primary diabetes care provider and waiting time in the practice on health-related quality of life (HRQoL) of patients with type 2 diabetes are investigated. Survey data of 1313 persons with type 2 diabetes from six regions in England (274), Finland (163), Germany (254), Greece (165), the Netherlands (354), and Spain (103) were analyzed. Various multiple linear regression analyses with four different EQ-5D-3L indices (English, German, Dutch and Spanish index) as target variables, with travel distance, travel time, and waiting time in the practice as focal predictors and with control for study region, patient's gender, patient's age, patient's education, time since diagnosis, thoroughness of provider-patient communication were computed. Interactions of regions with the remaining five control variables and the three focal predictors were also tested. There are no interactions of regions with control variables or focal predictors. The indices decrease with increasing travel time to the provider and increasing waiting time in the provider's practice. HRQoL of patients with type 2 diabetes might be improved by decreasing travel time to the provider and waiting time in the provider's practice. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Heterogeneous Data Fusion Method to Estimate Travel Time Distributions in Congested Road Networks.

    PubMed

    Shi, Chaoyang; Chen, Bi Yu; Lam, William H K; Li, Qingquan

    2017-12-06

    Travel times in congested urban road networks are highly stochastic. Provision of travel time distribution information, including both mean and variance, can be very useful for travelers to make reliable path choice decisions to ensure higher probability of on-time arrival. To this end, a heterogeneous data fusion method is proposed to estimate travel time distributions by fusing heterogeneous data from point and interval detectors. In the proposed method, link travel time distributions are first estimated from point detector observations. The travel time distributions of links without point detectors are imputed based on their spatial correlations with links that have point detectors. The estimated link travel time distributions are then fused with path travel time distributions obtained from the interval detectors using Dempster-Shafer evidence theory. Based on fused path travel time distribution, an optimization technique is further introduced to update link travel time distributions and their spatial correlations. A case study was performed using real-world data from Hong Kong and showed that the proposed method obtained accurate and robust estimations of link and path travel time distributions in congested road networks.

  2. Some Lagrangians for systems without a Lagrangian

    NASA Astrophysics Data System (ADS)

    Nucci, M. C.; Leach, P. G. L.

    2011-03-01

    We demonstrate how to construct many different Lagrangians for two famous examples that were deemed by Douglas (1941 Trans. Am. Math. Soc. 50 71-128) not to have a Lagrangian. Following Bateman's dictum (1931 Phys. Rev. 38 815-9), we determine different sets of equations that are compatible with those of Douglas and derivable from a variational principle.

  3. A full-Bayesian approach to parameter inference from tracer travel time moments and investigation of scale effects at the Cape Cod experimental site

    USGS Publications Warehouse

    Woodbury, Allan D.; Rubin, Yoram

    2000-01-01

    A method for inverting the travel time moments of solutes in heterogeneous aquifers is presented and is based on peak concentration arrival times as measured at various samplers in an aquifer. The approach combines a Lagrangian [Rubin and Dagan, 1992] solute transport framework with full‐Bayesian hydrogeological parameter inference. In the full‐Bayesian approach the noise values in the observed data are treated as hyperparameters, and their effects are removed by marginalization. The prior probability density functions (pdfs) for the model parameters (horizontal integral scale, velocity, and log K variance) and noise values are represented by prior pdfs developed from minimum relative entropy considerations. Analysis of the Cape Cod (Massachusetts) field experiment is presented. Inverse results for the hydraulic parameters indicate an expected value for the velocity, variance of log hydraulic conductivity, and horizontal integral scale of 0.42 m/d, 0.26, and 3.0 m, respectively. While these results are consistent with various direct‐field determinations, the importance of the findings is in the reduction of confidence range about the various expected values. On selected control planes we compare observed travel time frequency histograms with the theoretical pdf, conditioned on the observed travel time moments. We observe a positive skew in the travel time pdf which tends to decrease as the travel time distance grows. We also test the hypothesis that there is no scale dependence of the integral scale λ with the scale of the experiment at Cape Cod. We adopt two strategies. The first strategy is to use subsets of the full data set and then to see if the resulting parameter fits are different as we use different data from control planes at expanding distances from the source. The second approach is from the viewpoint of entropy concentration. No increase in integral scale with distance is inferred from either approach over the range of the Cape Cod tracer

  4. Regular transport dynamics produce chaotic travel times.

    PubMed

    Villalobos, Jorge; Muñoz, Víctor; Rogan, José; Zarama, Roberto; Johnson, Neil F; Toledo, Benjamín; Valdivia, Juan Alejandro

    2014-06-01

    In the hope of making passenger travel times shorter and more reliable, many cities are introducing dedicated bus lanes (e.g., Bogota, London, Miami). Here we show that chaotic travel times are actually a natural consequence of individual bus function, and hence of public transport systems more generally, i.e., chaotic dynamics emerge even when the route is empty and straight, stops and lights are equidistant and regular, and loading times are negligible. More generally, our findings provide a novel example of chaotic dynamics emerging from a single object following Newton's laws of motion in a regularized one-dimensional system.

  5. Regular transport dynamics produce chaotic travel times

    NASA Astrophysics Data System (ADS)

    Villalobos, Jorge; Muñoz, Víctor; Rogan, José; Zarama, Roberto; Johnson, Neil F.; Toledo, Benjamín; Valdivia, Juan Alejandro

    2014-06-01

    In the hope of making passenger travel times shorter and more reliable, many cities are introducing dedicated bus lanes (e.g., Bogota, London, Miami). Here we show that chaotic travel times are actually a natural consequence of individual bus function, and hence of public transport systems more generally, i.e., chaotic dynamics emerge even when the route is empty and straight, stops and lights are equidistant and regular, and loading times are negligible. More generally, our findings provide a novel example of chaotic dynamics emerging from a single object following Newton's laws of motion in a regularized one-dimensional system.

  6. An Augmented Lagrangian Filter Method for Real-Time Embedded Optimization

    DOE PAGES

    Chiang, Nai -Yuan; Huang, Rui; Zavala, Victor M.

    2017-04-17

    We present a filter line-search algorithm for nonconvex continuous optimization that combines an augmented Lagrangian function and a constraint violation metric to accept and reject steps. The approach is motivated by real-time optimization applications that need to be executed on embedded computing platforms with limited memory and processor speeds. The proposed method enables primal–dual regularization of the linear algebra system that in turn permits the use of solution strategies with lower computing overheads. We prove that the proposed algorithm is globally convergent and we demonstrate the developments using a nonconvex real-time optimization application for a building heating, ventilation, and airmore » conditioning system. Our numerical tests are performed on a standard processor and on an embedded platform. Lastly, we demonstrate that the approach reduces solution times by a factor of over 1000.« less

  7. An Augmented Lagrangian Filter Method for Real-Time Embedded Optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiang, Nai -Yuan; Huang, Rui; Zavala, Victor M.

    We present a filter line-search algorithm for nonconvex continuous optimization that combines an augmented Lagrangian function and a constraint violation metric to accept and reject steps. The approach is motivated by real-time optimization applications that need to be executed on embedded computing platforms with limited memory and processor speeds. The proposed method enables primal–dual regularization of the linear algebra system that in turn permits the use of solution strategies with lower computing overheads. We prove that the proposed algorithm is globally convergent and we demonstrate the developments using a nonconvex real-time optimization application for a building heating, ventilation, and airmore » conditioning system. Our numerical tests are performed on a standard processor and on an embedded platform. Lastly, we demonstrate that the approach reduces solution times by a factor of over 1000.« less

  8. The impact of travel time on geographic distribution of dialysis patients.

    PubMed

    Kashima, Saori; Matsumoto, Masatoshi; Ogawa, Takahiko; Eboshida, Akira; Takeuchi, Keisuke

    2012-01-01

    The geographic disparity of prevalence rates among dialysis patients is unclear. We evaluate the association between travel time to dialysis facilities and prevalence rates of dialysis patients living in 1,867 census areas of Hiroshima, Japan. Furthermore, we study the effects of geographic features (mainland or island) on the prevalence rates and assess if these effects modify the association between travel time and prevalence. The study subjects were all 7,374 people that were certified as the "renal disabled" by local governments in 2011. The travel time from each patient to the nearest available dialysis facility was calculated by incorporating both travel time and the capacity of all 98 facilities. The effect of travel time on the age- and sex-adjusted standard prevalence rate (SPR) and 95% confidence intervals (CIs) at each census area was evaluated in two-level Poisson regression models with 1,867 census areas (level 1) nested within 35 towns or cities (level 2). The results were adjusted for area-based parameters of socioeconomic status, urbanity, and land type. Furthermore, the SPR of dialysis patients was calculated in each specific subgroup of population for travel time, land type, and combination of land type and travel time. In the regression analysis, SPR decreased by 5.2% (95% CI: -7.9--2.3) per 10-min increase in travel time even after adjusting for potential confounders. The effect of travel time on prevalence was different in the mainland and island groups. There was no travel time-dependent SPR disparity on the islands. The SPR among remote residents (>30 min from facilities) in the mainland was lower (0.77, 95% CI: 0.71-0.85) than that of closer residents (≤ 30 min; 0.95, 95% CI: 0.92-0.97). The prevalence of dialysis patients was lower among remote residents. Geographic difficulties for commuting seem to decrease the prevalence rate.

  9. An extended Lagrangian method

    NASA Technical Reports Server (NTRS)

    Liou, Meng-Sing

    1992-01-01

    A unique formulation of describing fluid motion is presented. The method, referred to as 'extended Lagrangian method', is interesting from both theoretical and numerical points of view. The formulation offers accuracy in numerical solution by avoiding numerical diffusion resulting from mixing of fluxes in the Eulerian description. Meanwhile, it also avoids the inaccuracy incurred due to geometry and variable interpolations used by the previous Lagrangian methods. Unlike the Lagrangian method previously imposed which is valid only for supersonic flows, the present method is general and capable of treating subsonic flows as well as supersonic flows. The method proposed in this paper is robust and stable. It automatically adapts to flow features without resorting to clustering, thereby maintaining rather uniform grid spacing throughout and large time step. Moreover, the method is shown to resolve multi-dimensional discontinuities with a high level of accuracy, similar to that found in one-dimensional problems.

  10. Using travel times to simulate multi-dimensional bioreactive transport in time-periodic flows.

    PubMed

    Sanz-Prat, Alicia; Lu, Chuanhe; Finkel, Michael; Cirpka, Olaf A

    2016-04-01

    In travel-time models, the spatially explicit description of reactive transport is replaced by associating reactive-species concentrations with the travel time or groundwater age at all locations. These models have been shown adequate for reactive transport in river-bank filtration under steady-state flow conditions. Dynamic hydrological conditions, however, can lead to fluctuations of infiltration velocities, putting the validity of travel-time models into question. In transient flow, the local travel-time distributions change with time. We show that a modified version of travel-time based reactive transport models is valid if only the magnitude of the velocity fluctuates, whereas its spatial orientation remains constant. We simulate nonlinear, one-dimensional, bioreactive transport involving oxygen, nitrate, dissolved organic carbon, aerobic and denitrifying bacteria, considering periodic fluctuations of velocity. These fluctuations make the bioreactive system pulsate: The aerobic zone decreases at times of low velocity and increases at those of high velocity. For the case of diurnal fluctuations, the biomass concentrations cannot follow the hydrological fluctuations and a transition zone containing both aerobic and obligatory denitrifying bacteria is established, whereas a clear separation of the two types of bacteria prevails in the case of seasonal velocity fluctuations. We map the 1-D results to a heterogeneous, two-dimensional domain by means of the mean groundwater age for steady-state flow in both domains. The mapped results are compared to simulation results of spatially explicit, two-dimensional, advective-dispersive-bioreactive transport subject to the same relative fluctuations of velocity as in the one-dimensional model. The agreement between the mapped 1-D and the explicit 2-D results is excellent. We conclude that travel-time models of nonlinear bioreactive transport are adequate in systems of time-periodic flow if the flow direction does not change

  11. Time-of-travel data for Nebraska streams, 1968 to 1977

    USGS Publications Warehouse

    Petri, L.R.

    1984-01-01

    This report documents the results of 10 time-of-travel studies, using ' dye-tracer ' methods, conducted on five streams in Nebraska during the period 1968 to 1977. Streams involved in the studies were the North Platte, North Loup, Elkhorn, and Big Blue Rivers and Salt Creek. Rhodamine WT dye in a 20 percent solution was used as the tracer for all 10 time-of-travel studies. Water samples were collected at several points below each injection site. Concentrations of dye in the samples were measured by determining fluorescence of the sample and comparing that value to fluorescence-concentration curves. Stream discharges were measured before and during each study. Results of each time-by-travel study are shown on two tables and on graph. The first table shows water discharge at injection and sampling sites, distance between sites, and time and rate of travel of the dye between sites. The second table provides descriptions of study sites, amounts of dye injected in the streams, actual sampling times, and actual concentrations of dye detected. The graphs for each time-of-travel study provide indications of changing travel rates between sampling sites, information on length of dye clouds, and times for dye passage past given points. (USGS)

  12. Applying Boundary Conditions Using a Time-Dependent Lagrangian for Modeling Laser-Plasma Interactions

    NASA Astrophysics Data System (ADS)

    Reyes, Jonathan; Shadwick, B. A.

    2016-10-01

    Modeling the evolution of a short, intense laser pulse propagating through an underdense plasma is of particular interest in the physics of laser-plasma interactions. Numerical models are typically created by first discretizing the equations of motion and then imposing boundary conditions. Using the variational principle of Chen and Sudan, we spatially discretize the Lagrangian density to obtain discrete equations of motion and a discrete energy conservation law which is exactly satisfied regardless of the spatial grid resolution. Modifying the derived equations of motion (e.g., enforcing boundary conditions) generally ruins energy conservation. However, time-dependent terms can be added to the Lagrangian which force the equations of motion to have the desired boundary conditions. Although some foresight is needed to choose these time-dependent terms, this approach provides a mechanism for energy to exit the closed system while allowing the conservation law to account for the loss. An appropriate time discretization scheme is selected based on stability analysis and resolution requirements. We present results using this variational approach in a co-moving coordinate system and compare such results to those using traditional second-order methods. This work was supported by the U. S. Department of Energy under Contract No. DE-SC0008382 and by the National Science Foundation under Contract No. PHY- 1104683.

  13. Heterogeneous Data Fusion Method to Estimate Travel Time Distributions in Congested Road Networks

    PubMed Central

    Lam, William H. K.; Li, Qingquan

    2017-01-01

    Travel times in congested urban road networks are highly stochastic. Provision of travel time distribution information, including both mean and variance, can be very useful for travelers to make reliable path choice decisions to ensure higher probability of on-time arrival. To this end, a heterogeneous data fusion method is proposed to estimate travel time distributions by fusing heterogeneous data from point and interval detectors. In the proposed method, link travel time distributions are first estimated from point detector observations. The travel time distributions of links without point detectors are imputed based on their spatial correlations with links that have point detectors. The estimated link travel time distributions are then fused with path travel time distributions obtained from the interval detectors using Dempster-Shafer evidence theory. Based on fused path travel time distribution, an optimization technique is further introduced to update link travel time distributions and their spatial correlations. A case study was performed using real-world data from Hong Kong and showed that the proposed method obtained accurate and robust estimations of link and path travel time distributions in congested road networks. PMID:29210978

  14. Collection and analysis of 2013-2014 travel time data.

    DOT National Transportation Integrated Search

    2017-07-04

    This report documents the findings of Planning Study 27, Collection and Analysis of 2013-2014 Travel Time Data, which is a continuation of Planning Study 24, Analysis of Historical Travel Time Data. The main scope is to analyze newly acquired link-re...

  15. Wandering tales: evolutionary origins of mental time travel and language

    PubMed Central

    Corballis, Michael C.

    2013-01-01

    A central component of mind wandering is mental time travel, the calling to mind of remembered past events and of imagined future ones. Mental time travel may also be critical to the evolution of language, which enables us to communicate about the non-present, sharing memories, plans, and ideas. Mental time travel is indexed in humans by hippocampal activity, and studies also suggest that the hippocampus in rats is active when the animals replay or pre play activity in a spatial environment, such as a maze. Mental time travel may have ancient origins, contrary to the view that it is unique to humans. Since mental time travel is also thought to underlie language, these findings suggest that language evolved gradually from pre-existing cognitive capacities, contrary to the view of Chomsky and others that language and symbolic thought emerged abruptly, in a single step, within the past 100,000 years. PMID:23908641

  16. Statistical scaling of pore-scale Lagrangian velocities in natural porous media.

    PubMed

    Siena, M; Guadagnini, A; Riva, M; Bijeljic, B; Pereira Nunes, J P; Blunt, M J

    2014-08-01

    We investigate the scaling behavior of sample statistics of pore-scale Lagrangian velocities in two different rock samples, Bentheimer sandstone and Estaillades limestone. The samples are imaged using x-ray computer tomography with micron-scale resolution. The scaling analysis relies on the study of the way qth-order sample structure functions (statistical moments of order q of absolute increments) of Lagrangian velocities depend on separation distances, or lags, traveled along the mean flow direction. In the sandstone block, sample structure functions of all orders exhibit a power-law scaling within a clearly identifiable intermediate range of lags. Sample structure functions associated with the limestone block display two diverse power-law regimes, which we infer to be related to two overlapping spatially correlated structures. In both rocks and for all orders q, we observe linear relationships between logarithmic structure functions of successive orders at all lags (a phenomenon that is typically known as extended power scaling, or extended self-similarity). The scaling behavior of Lagrangian velocities is compared with the one exhibited by porosity and specific surface area, which constitute two key pore-scale geometric observables. The statistical scaling of the local velocity field reflects the behavior of these geometric observables, with the occurrence of power-law-scaling regimes within the same range of lags for sample structure functions of Lagrangian velocity, porosity, and specific surface area.

  17. SALSA3D: A Tomographic Model of Compressional Wave Slowness in the Earth’s Mantle for Improved Travel-Time Prediction and Travel-Time Prediction Uncertainty

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ballard, Sanford; Hipp, James R.; Begnaud, Michael L.

    The task of monitoring the Earth for nuclear explosions relies heavily on seismic data to detect, locate, and characterize suspected nuclear tests. In this study, motivated by the need to locate suspected explosions as accurately and precisely as possible, we developed a tomographic model of the compressional wave slowness in the Earth’s mantle with primary focus on the accuracy and precision of travel-time predictions for P and Pn ray paths through the model. Path-dependent travel-time prediction uncertainties are obtained by computing the full 3D model covariance matrix and then integrating slowness variance and covariance along ray paths from source tomore » receiver. Path-dependent travel-time prediction uncertainties reflect the amount of seismic data that was used in tomography with very low values for paths represented by abundant data in the tomographic data set and very high values for paths through portions of the model that were poorly sampled by the tomography data set. The pattern of travel-time prediction uncertainty is a direct result of the off-diagonal terms of the model covariance matrix and underscores the importance of incorporating the full model covariance matrix in the determination of travel-time prediction uncertainty. In addition, the computed pattern of uncertainty differs significantly from that of 1D distance-dependent travel-time uncertainties computed using traditional methods, which are only appropriate for use with travel times computed through 1D velocity models.« less

  18. SALSA3D: A Tomographic Model of Compressional Wave Slowness in the Earth’s Mantle for Improved Travel-Time Prediction and Travel-Time Prediction Uncertainty

    DOE PAGES

    Ballard, Sanford; Hipp, James R.; Begnaud, Michael L.; ...

    2016-10-11

    The task of monitoring the Earth for nuclear explosions relies heavily on seismic data to detect, locate, and characterize suspected nuclear tests. In this study, motivated by the need to locate suspected explosions as accurately and precisely as possible, we developed a tomographic model of the compressional wave slowness in the Earth’s mantle with primary focus on the accuracy and precision of travel-time predictions for P and Pn ray paths through the model. Path-dependent travel-time prediction uncertainties are obtained by computing the full 3D model covariance matrix and then integrating slowness variance and covariance along ray paths from source tomore » receiver. Path-dependent travel-time prediction uncertainties reflect the amount of seismic data that was used in tomography with very low values for paths represented by abundant data in the tomographic data set and very high values for paths through portions of the model that were poorly sampled by the tomography data set. The pattern of travel-time prediction uncertainty is a direct result of the off-diagonal terms of the model covariance matrix and underscores the importance of incorporating the full model covariance matrix in the determination of travel-time prediction uncertainty. In addition, the computed pattern of uncertainty differs significantly from that of 1D distance-dependent travel-time uncertainties computed using traditional methods, which are only appropriate for use with travel times computed through 1D velocity models.« less

  19. An online-coupled NWP/ACT model with conserved Lagrangian levels

    NASA Astrophysics Data System (ADS)

    Sørensen, B.; Kaas, E.; Lauritzen, P. H.

    2012-04-01

    Numerical weather and climate modelling is under constant development. Semi-implicit semi-Lagrangian (SISL) models have proven to be numerically efficient in both short-range weather forecasts and climate models, due to the ability to use long time steps. Chemical/aerosol feedback mechanism are becoming more and more relevant in NWP as well as climate models, since the biogenic and anthropogenic emissions can have a direct effect on the dynamics and radiative properties of the atmosphere. To include chemical feedback mechanisms in the NWP models, on-line coupling is crucial. In 3D semi-Lagrangian schemes with quasi-Lagrangian vertical coordinates the Lagrangian levels are remapped to Eulerian model levels each time step. This remapping introduces an undesirable tendency to smooth sharp gradients and creates unphysical numerical diffusion in the vertical distribution. A semi-Lagrangian advection method is introduced, it combines an inherently mass conserving 2D semi-Lagrangian scheme, with a SISL scheme employing both hybrid vertical coordinates and a fully Lagrangian vertical coordinate. This minimizes the vertical diffusion and thus potentially improves the simulation of the vertical profiles of moisture, clouds, and chemical constituents. Since the Lagrangian levels suffer from traditional Lagrangian limitations caused by the convergence and divergence of the flow, remappings to the Eulerian model levels are generally still required - but this need only be applied after a number of time steps - unless dynamic remapping methods are used. For this several different remapping methods has been implemented. The combined scheme is mass conserving, consistent, and multi-tracer efficient.

  20. Effectiveness of different approaches to disseminating traveler information on travel time reliability.

    DOT National Transportation Integrated Search

    2014-01-01

    The second Strategic Highway Research Program (SHRP 2) Reliability program aims to improve trip time reliability by reducing the frequency and effects of events that cause travel times to fluctuate unpredictably. Congestion caused by unreliable, or n...

  1. Parallel computing using a Lagrangian formulation

    NASA Technical Reports Server (NTRS)

    Liou, May-Fun; Loh, Ching Yuen

    1991-01-01

    A new Lagrangian formulation of the Euler equation is adopted for the calculation of 2-D supersonic steady flow. The Lagrangian formulation represents the inherent parallelism of the flow field better than the common Eulerian formulation and offers a competitive alternative on parallel computers. The implementation of the Lagrangian formulation on the Thinking Machines Corporation CM-2 Computer is described. The program uses a finite volume, first-order Godunov scheme and exhibits high accuracy in dealing with multidimensional discontinuities (slip-line and shock). By using this formulation, a better than six times speed-up was achieved on a 8192-processor CM-2 over a single processor of a CRAY-2.

  2. Parallel computing using a Lagrangian formulation

    NASA Technical Reports Server (NTRS)

    Liou, May-Fun; Loh, Ching-Yuen

    1992-01-01

    This paper adopts a new Lagrangian formulation of the Euler equation for the calculation of two dimensional supersonic steady flow. The Lagrangian formulation represents the inherent parallelism of the flow field better than the common Eulerian formulation and offers a competitive alternative on parallel computers. The implementation of the Lagrangian formulation on the Thinking Machines Corporation CM-2 Computer is described. The program uses a finite volume, first-order Godunov scheme and exhibits high accuracy in dealing with multidimensional discontinuities (slip-line and shock). By using this formulation, we have achieved better than six times speed-up on a 8192-processor CM-2 over a single processor of a CRAY-2.

  3. Lagrangian clustering detection of internal wave boluses

    NASA Astrophysics Data System (ADS)

    Allshouse, M.; Salvador Vieira, G.; Swinney, H. L.

    2016-02-01

    The shoaling of internal waves on a continental slope or shelf produces boluses that travel up the slope with the wave. The boluses are regions of trapped fluid that are transported along with the wave, unlike fluid in the bulk that is temporarily pertubed by a passing wave. Boluses have been observed to transport oxygen-depleted water and induce rapid changes in temperature (Walter et al, JGR, 2012), both of which have potential ramifications for marine biology. Several previous studies have investigated boluses in systems with two layers of different density (e.g., Helfrich, JFM, 1992, and Sutherland et al., JGR, 2013). We conduct laboratory and computational studies of bolus generation and material transport in continuously stratified fluids with a pycnocline, as in the oceans. Our laboratory experiments in a 4 m long tank are complemented by 2-dimensional direct numerical simulations of the Navier-Stokes equations. Efforts have been made to identify boluses with Eularian measures in the past, but a Lagrangian perspective is necessary to objectively identify the bolus over its lifespan. Here we use a Lagrangian based coherent structure method relying on trajectory clustering using the fuzzy c-means approach (Froyland and Padberg-Gehle, Chaos, 2015). The objective detection of a bolus enables examination of the volume, distance traveled, and increased available potential energy of a bolus, as a function of the stratification, wave properties, and the angle of the sloping topography. The decay of a bolus through turbulent mixing is investigated by locating where the Richardson number drops below ¼, where velocity shear overcomes the tendency of a stratified fluid to remain stratified. (supported by ONR MURI grant N000141110701)

  4. Lagrangian descriptors in dissipative systems.

    PubMed

    Junginger, Andrej; Hernandez, Rigoberto

    2016-11-09

    The reaction dynamics of time-dependent systems can be resolved through a recrossing-free dividing surface associated with the transition state trajectory-that is, the unique trajectory which is bound to the barrier region for all time in response to a given time-dependent potential. A general procedure based on the minimization of Lagrangian descriptors has recently been developed by Craven and Hernandez [Phys. Rev. Lett., 2015, 115, 148301] to construct this particular trajectory without requiring perturbative expansions relative to the naive transition state point at the top of the barrier. The extension of the method to account for dissipation in the equations of motion requires additional considerations established in this paper because the calculation of the Lagrangian descriptor involves the integration of trajectories in forward and backward time. The two contributions are in general very different because the friction term can act as a source (in backward time) or sink (in forward time) of energy, leading to the possibility that information about the phase space structure may be lost due to the dominance of only one of the terms. To compensate for this effect, we introduce a weighting scheme within the Lagrangian descriptor and demonstrate that for thermal Langevin dynamics it preserves the essential phase space structures, while they are lost in the nonweighted case.

  5. Evaluation of a real-time travel time prediction system in a freeway construction work zone : executive summary.

    DOT National Transportation Integrated Search

    2001-03-01

    A real-time travel time prediction system (TIPS) was evaluated in a construction work : zone. TIPS includes changeable message signs (CMSs) displaying the travel time and : distance to the end of the work zone to motorists. The travel times displayed...

  6. Quantification of errors induced by temporal resolution on Lagrangian particles in an eddy-resolving model

    NASA Astrophysics Data System (ADS)

    Qin, Xuerong; van Sebille, Erik; Sen Gupta, Alexander

    2014-04-01

    Lagrangian particle tracking within ocean models is an important tool for the examination of ocean circulation, ventilation timescales and connectivity and is increasingly being used to understand ocean biogeochemistry. Lagrangian trajectories are obtained by advecting particles within velocity fields derived from hydrodynamic ocean models. For studies of ocean flows on scales ranging from mesoscale up to basin scales, the temporal resolution of the velocity fields should ideally not be more than a few days to capture the high frequency variability that is inherent in mesoscale features. However, in reality, the model output is often archived at much lower temporal resolutions. Here, we quantify the differences in the Lagrangian particle trajectories embedded in velocity fields of varying temporal resolution. Particles are advected from 3-day to 30-day averaged fields in a high-resolution global ocean circulation model. We also investigate whether adding lateral diffusion to the particle movement can compensate for the reduced temporal resolution. Trajectory errors reveal the expected degradation of accuracy in the trajectory positions when decreasing the temporal resolution of the velocity field. Divergence timescales associated with averaging velocity fields up to 30 days are faster than the intrinsic dispersion of the velocity fields but slower than the dispersion caused by the interannual variability of the velocity fields. In experiments focusing on the connectivity along major currents, including western boundary currents, the volume transport carried between two strategically placed sections tends to increase with increased temporal averaging. Simultaneously, the average travel times tend to decrease. Based on these two bulk measured diagnostics, Lagrangian experiments that use temporal averaging of up to nine days show no significant degradation in the flow characteristics for a set of six currents investigated in more detail. The addition of random

  7. Thermostating extended Lagrangian Born-Oppenheimer molecular dynamics.

    PubMed

    Martínez, Enrique; Cawkwell, Marc J; Voter, Arthur F; Niklasson, Anders M N

    2015-04-21

    Extended Lagrangian Born-Oppenheimer molecular dynamics is developed and analyzed for applications in canonical (NVT) simulations. Three different approaches are considered: the Nosé and Andersen thermostats and Langevin dynamics. We have tested the temperature distribution under different conditions of self-consistent field (SCF) convergence and time step and compared the results to analytical predictions. We find that the simulations based on the extended Lagrangian Born-Oppenheimer framework provide accurate canonical distributions even under approximate SCF convergence, often requiring only a single diagonalization per time step, whereas regular Born-Oppenheimer formulations exhibit unphysical fluctuations unless a sufficiently high degree of convergence is reached at each time step. The thermostated extended Lagrangian framework thus offers an accurate approach to sample processes in the canonical ensemble at a fraction of the computational cost of regular Born-Oppenheimer molecular dynamics simulations.

  8. Mixing-controlled reactive transport on travel times in heterogeneous media

    NASA Astrophysics Data System (ADS)

    Luo, J.; Cirpka, O.

    2008-05-01

    Modeling mixing-controlled reactive transport using traditional spatial discretization of the domain requires identifying the spatial distributions of hydraulic and reactive parameters including mixing-related quantities such as dispersivities and kinetic mass-transfer coefficients. In most applications, breakthrough curves of conservative and reactive compounds are measured at only a few locations and models are calibrated by matching these breakthrough curves, which is an ill posed inverse problem. By contrast, travel-time based transport models avoid costly aquifer characterization. By considering breakthrough curves measured on different scales, one can distinguish between mixing, which is a prerequisite for reactions, and spreading, which per se does not foster reactions. In the travel-time based framework, the breakthrough curve of a solute crossing an observation plane, or ending in a well, is interpreted as the weighted average of concentrations in an ensemble of non-interacting streamtubes, each of which is characterized by a distinct travel-time value. Mixing is described by longitudinal dispersion and/or kinetic mass transfer along individual streamtubes, whereas spreading is characterized by the distribution of travel times which also determines the weights associated to each stream tube. Key issues in using the travel-time based framework include the description of mixing mechanisms and the estimation of the travel-time distribution. In this work, we account for both apparent longitudinal dispersion and kinetic mass transfer as mixing mechanisms, thus generalizing the stochastic-convective model with or without inter-phase mass transfer and the advective-dispersive streamtube model. We present a nonparametric approach of determining the travel-time distribution, given a breakthrough curve integrated over an observation plane and estimated mixing parameters. The latter approach is superior to fitting parametric models in cases where the true travel-time

  9. Breast cancer stage at diagnosis: is travel time important?

    PubMed

    Henry, Kevin A; Boscoe, Francis P; Johnson, Christopher J; Goldberg, Daniel W; Sherman, Recinda; Cockburn, Myles

    2011-12-01

    Recent studies have produced inconsistent results in their examination of the potential association between proximity to healthcare or mammography facilities and breast cancer stage at diagnosis. Using a multistate dataset, we re-examine this issue by investigating whether travel time to a patient's diagnosing facility or nearest mammography facility impacts breast cancer stage at diagnosis. We studied 161,619 women 40 years and older diagnosed with invasive breast cancer from ten state population based cancer registries in the United States. For each woman, we calculated travel time to their diagnosing facility and nearest mammography facility. Logistic multilevel models of late versus early stage were fitted, and odds ratios were calculated for travel times, controlling for age, race/ethnicity, census tract poverty, rural/urban residence, health insurance, and state random effects. Seventy-six percent of women in the study lived less than 20 min from their diagnosing facility, and 93 percent lived less than 20 min from the nearest mammography facility. Late stage at diagnosis was not associated with increasing travel time to diagnosing facility or nearest mammography facility. Diagnosis age under 50, Hispanic and Non-Hispanic Black race/ethnicity, high census tract poverty, and no health insurance were all significantly associated with late stage at diagnosis. Travel time to diagnosing facility or nearest mammography facility was not a determinant of late stage of breast cancer at diagnosis, and better geographic proximity did not assure more favorable stage distributions. Other factors beyond geographic proximity that can affect access should be evaluated more closely, including facility capacity, insurance acceptance, public transportation, and travel costs.

  10. Bayesian Travel Time Inversion adopting Gaussian Process Regression

    NASA Astrophysics Data System (ADS)

    Mauerberger, S.; Holschneider, M.

    2017-12-01

    A major application in seismology is the determination of seismic velocity models. Travel time measurements are putting an integral constraint on the velocity between source and receiver. We provide insight into travel time inversion from a correlation-based Bayesian point of view. Therefore, the concept of Gaussian process regression is adopted to estimate a velocity model. The non-linear travel time integral is approximated by a 1st order Taylor expansion. A heuristic covariance describes correlations amongst observations and a priori model. That approach enables us to assess a proxy of the Bayesian posterior distribution at ordinary computational costs. No multi dimensional numeric integration nor excessive sampling is necessary. Instead of stacking the data, we suggest to progressively build the posterior distribution. Incorporating only a single evidence at a time accounts for the deficit of linearization. As a result, the most probable model is given by the posterior mean whereas uncertainties are described by the posterior covariance.As a proof of concept, a synthetic purely 1d model is addressed. Therefore a single source accompanied by multiple receivers is considered on top of a model comprising a discontinuity. We consider travel times of both phases - direct and reflected wave - corrupted by noise. Left and right of the interface are assumed independent where the squared exponential kernel serves as covariance.

  11. Lagrangian averages, averaged Lagrangians, and the mean effects of fluctuations in fluid dynamics.

    PubMed

    Holm, Darryl D.

    2002-06-01

    We begin by placing the generalized Lagrangian mean (GLM) equations for a compressible adiabatic fluid into the Euler-Poincare (EP) variational framework of fluid dynamics, for an averaged Lagrangian. This is the Lagrangian averaged Euler-Poincare (LAEP) theorem. Next, we derive a set of approximate small amplitude GLM equations (glm equations) at second order in the fluctuating displacement of a Lagrangian trajectory from its mean position. These equations express the linear and nonlinear back-reaction effects on the Eulerian mean fluid quantities by the fluctuating displacements of the Lagrangian trajectories in terms of their Eulerian second moments. The derivation of the glm equations uses the linearized relations between Eulerian and Lagrangian fluctuations, in the tradition of Lagrangian stability analysis for fluids. The glm derivation also uses the method of averaged Lagrangians, in the tradition of wave, mean flow interaction. Next, the new glm EP motion equations for incompressible ideal fluids are compared with the Euler-alpha turbulence closure equations. An alpha model is a GLM (or glm) fluid theory with a Taylor hypothesis closure. Such closures are based on the linearized fluctuation relations that determine the dynamics of the Lagrangian statistical quantities in the Euler-alpha equations. Thus, by using the LAEP theorem, we bridge between the GLM equations and the Euler-alpha closure equations, through the small-amplitude glm approximation in the EP variational framework. We conclude by highlighting a new application of the GLM, glm, and alpha-model results for Lagrangian averaged ideal magnetohydrodynamics. (c) 2002 American Institute of Physics.

  12. Reliability of Travel Time: Challenges Posed by a Multimodal Transport Participation

    NASA Astrophysics Data System (ADS)

    Wanjek, Monika; Hauger, Georg

    2017-10-01

    Travel time reliability represents an essential component in individual decision making processes for transport participants, particularly regarding mode choices. As criteria that describe the quality of both transportation systems and transportation modes, travel time reliability is already frequently compiled, analysed and quoted as an argument. Currently, travel time reliability is solely mentioned on monomodal trips, while it has remained unconsidered on multimodal transport participation. Given the fact that multimodality gained significantly in importance, it is crucial to discuss how travel time reliability could be determined on multimodal trips. This paper points out the challenges that occur for applying travel time reliability on multimodal transport participation. Therefore, examples will be given within this paper. In order to illustrate theoretical ideas, trips and influencing factors that could be expected within the everyday transport behaviour of commuters in a (sub)urban area will be described.

  13. 41 CFR 301-52.14 - What must I do with any travel advance outstanding at the time I submit my travel claim?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... travel advance outstanding at the time I submit my travel claim? 301-52.14 Section 301-52.14 Public Contracts and Property Management Federal Travel Regulation System TEMPORARY DUTY (TDY) TRAVEL ALLOWANCES... § 301-52.14 What must I do with any travel advance outstanding at the time I submit my travel claim? You...

  14. 41 CFR 301-52.14 - What must I do with any travel advance outstanding at the time I submit my travel claim?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... travel advance outstanding at the time I submit my travel claim? 301-52.14 Section 301-52.14 Public Contracts and Property Management Federal Travel Regulation System TEMPORARY DUTY (TDY) TRAVEL ALLOWANCES... § 301-52.14 What must I do with any travel advance outstanding at the time I submit my travel claim? You...

  15. 41 CFR 301-52.14 - What must I do with any travel advance outstanding at the time I submit my travel claim?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... travel advance outstanding at the time I submit my travel claim? 301-52.14 Section 301-52.14 Public Contracts and Property Management Federal Travel Regulation System TEMPORARY DUTY (TDY) TRAVEL ALLOWANCES... § 301-52.14 What must I do with any travel advance outstanding at the time I submit my travel claim? You...

  16. 41 CFR 301-52.14 - What must I do with any travel advance outstanding at the time I submit my travel claim?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... travel advance outstanding at the time I submit my travel claim? 301-52.14 Section 301-52.14 Public Contracts and Property Management Federal Travel Regulation System TEMPORARY DUTY (TDY) TRAVEL ALLOWANCES... § 301-52.14 What must I do with any travel advance outstanding at the time I submit my travel claim? You...

  17. 41 CFR 301-52.14 - What must I do with any travel advance outstanding at the time I submit my travel claim?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... travel advance outstanding at the time I submit my travel claim? 301-52.14 Section 301-52.14 Public Contracts and Property Management Federal Travel Regulation System TEMPORARY DUTY (TDY) TRAVEL ALLOWANCES... § 301-52.14 What must I do with any travel advance outstanding at the time I submit my travel claim? You...

  18. Lagrangian continuum dynamics in ALEGRA.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, Michael K. W.; Love, Edward

    Alegra is an ALE (Arbitrary Lagrangian-Eulerian) multi-material finite element code that emphasizes large deformations and strong shock physics. The Lagrangian continuum dynamics package in Alegra uses a Galerkin finite element spatial discretization and an explicit central-difference stepping method in time. The goal of this report is to describe in detail the characteristics of this algorithm, including the conservation and stability properties. The details provided should help both researchers and analysts understand the underlying theory and numerical implementation of the Alegra continuum hydrodynamics algorithm.

  19. Thermostating extended Lagrangian Born-Oppenheimer molecular dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martínez, Enrique; Cawkwell, Marc J.; Voter, Arthur F.

    Here, Extended Lagrangian Born-Oppenheimer molecular dynamics is developed and analyzed for applications in canonical (NVT) simulations. Three different approaches are considered: the Nosé and Andersen thermostats and Langevin dynamics. We have tested the temperature distribution under different conditions of self-consistent field (SCF) convergence and time step and compared the results to analytical predictions. We find that the simulations based on the extended Lagrangian Born-Oppenheimer framework provide accurate canonical distributions even under approximate SCF convergence, often requiring only a single diagonalization per time step, whereas regular Born-Oppenheimer formulations exhibit unphysical fluctuations unless a sufficiently high degree of convergence is reached atmore » each time step. Lastly, the thermostated extended Lagrangian framework thus offers an accurate approach to sample processes in the canonical ensemble at a fraction of the computational cost of regular Born-Oppenheimer molecular dynamics simulations.« less

  20. Thermostating extended Lagrangian Born-Oppenheimer molecular dynamics

    DOE PAGES

    Martínez, Enrique; Cawkwell, Marc J.; Voter, Arthur F.; ...

    2015-04-21

    Here, Extended Lagrangian Born-Oppenheimer molecular dynamics is developed and analyzed for applications in canonical (NVT) simulations. Three different approaches are considered: the Nosé and Andersen thermostats and Langevin dynamics. We have tested the temperature distribution under different conditions of self-consistent field (SCF) convergence and time step and compared the results to analytical predictions. We find that the simulations based on the extended Lagrangian Born-Oppenheimer framework provide accurate canonical distributions even under approximate SCF convergence, often requiring only a single diagonalization per time step, whereas regular Born-Oppenheimer formulations exhibit unphysical fluctuations unless a sufficiently high degree of convergence is reached atmore » each time step. Lastly, the thermostated extended Lagrangian framework thus offers an accurate approach to sample processes in the canonical ensemble at a fraction of the computational cost of regular Born-Oppenheimer molecular dynamics simulations.« less

  1. NOTE ON TRAVEL TIME SHIFTS DUE TO AMPLITUDE MODULATION IN TIME-DISTANCE HELIOSEISMOLOGY MEASUREMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nigam, R.; Kosovichev, A. G., E-mail: rakesh@quake.stanford.ed, E-mail: sasha@quake.stanford.ed

    Correct interpretation of acoustic travel times measured by time-distance helioseismology is essential to get an accurate understanding of the solar properties that are inferred from them. It has long been observed that sunspots suppress p-mode amplitude, but its implications on travel times have not been fully investigated so far. It has been found in test measurements using a 'masking' procedure, in which the solar Doppler signal in a localized quiet region of the Sun is artificially suppressed by a spatial function, and using numerical simulations that the amplitude modulations in combination with the phase-speed filtering may cause systematic shifts ofmore » acoustic travel times. To understand the properties of this procedure, we derive an analytical expression for the cross-covariance of a signal that has been modulated locally by a spatial function that has azimuthal symmetry and then filtered by a phase-speed filter typically used in time-distance helioseismology. Comparing this expression to the Gabor wavelet fitting formula without this effect, we find that there is a shift in the travel times that is introduced by the amplitude modulation. The analytical model presented in this paper can be useful also for interpretation of travel time measurements for the non-uniform distribution of oscillation amplitude due to observational effects.« less

  2. Dynamic Bus Travel Time Prediction Models on Road with Multiple Bus Routes

    PubMed Central

    Bai, Cong; Peng, Zhong-Ren; Lu, Qing-Chang; Sun, Jian

    2015-01-01

    Accurate and real-time travel time information for buses can help passengers better plan their trips and minimize waiting times. A dynamic travel time prediction model for buses addressing the cases on road with multiple bus routes is proposed in this paper, based on support vector machines (SVMs) and Kalman filtering-based algorithm. In the proposed model, the well-trained SVM model predicts the baseline bus travel times from the historical bus trip data; the Kalman filtering-based dynamic algorithm can adjust bus travel times with the latest bus operation information and the estimated baseline travel times. The performance of the proposed dynamic model is validated with the real-world data on road with multiple bus routes in Shenzhen, China. The results show that the proposed dynamic model is feasible and applicable for bus travel time prediction and has the best prediction performance among all the five models proposed in the study in terms of prediction accuracy on road with multiple bus routes. PMID:26294903

  3. Dynamic Bus Travel Time Prediction Models on Road with Multiple Bus Routes.

    PubMed

    Bai, Cong; Peng, Zhong-Ren; Lu, Qing-Chang; Sun, Jian

    2015-01-01

    Accurate and real-time travel time information for buses can help passengers better plan their trips and minimize waiting times. A dynamic travel time prediction model for buses addressing the cases on road with multiple bus routes is proposed in this paper, based on support vector machines (SVMs) and Kalman filtering-based algorithm. In the proposed model, the well-trained SVM model predicts the baseline bus travel times from the historical bus trip data; the Kalman filtering-based dynamic algorithm can adjust bus travel times with the latest bus operation information and the estimated baseline travel times. The performance of the proposed dynamic model is validated with the real-world data on road with multiple bus routes in Shenzhen, China. The results show that the proposed dynamic model is feasible and applicable for bus travel time prediction and has the best prediction performance among all the five models proposed in the study in terms of prediction accuracy on road with multiple bus routes.

  4. Scale-by-scale contributions to Lagrangian particle acceleration

    NASA Astrophysics Data System (ADS)

    Lalescu, Cristian C.; Wilczek, Michael

    2017-11-01

    Fluctuations on a wide range of scales in both space and time are characteristic of turbulence. Lagrangian particles, advected by the flow, probe these fluctuations along their trajectories. In an effort to isolate the influence of the different scales on Lagrangian statistics, we employ direct numerical simulations (DNS) combined with a filtering approach. Specifically, we study the acceleration statistics of tracers advected in filtered fields to characterize the smallest temporal scales of the flow. Emphasis is put on the acceleration variance as a function of filter scale, along with the scaling properties of the relevant terms of the Navier-Stokes equations. We furthermore discuss scaling ranges for higher-order moments of the tracer acceleration, as well as the influence of the choice of filter on the results. Starting from the Lagrangian tracer acceleration as the short time limit of the Lagrangian velocity increment, we also quantify the influence of filtering on Lagrangian intermittency. Our work complements existing experimental results on intermittency and accelerations of finite-sized, neutrally-buoyant particles: for the passive tracers used in our DNS, feedback effects are neglected such that the spatial averaging effect is cleanly isolated.

  5. Lagrangian statistics across the turbulent-nonturbulent interface in a turbulent plane jet.

    PubMed

    Taveira, Rodrigo R; Diogo, José S; Lopes, Diogo C; da Silva, Carlos B

    2013-10-01

    Lagrangian statistics from millions of particles are used to study the turbulent entrainment mechanism in a direct numerical simulation of a turbulent plane jet at Re(λ) ≈ 110. The particles (tracers) are initially seeded at the irrotational region of the jet near the turbulent shear layer and are followed as they are drawn into the turbulent region across the turbulent-nonturbulent interface (TNTI), allowing the study of the enstrophy buildup and thereby characterizing the turbulent entrainment mechanism in the jet. The use of Lagrangian statistics following fluid particles gives a more correct description of the entrainment mechanism than in previous works since the statistics in relation to the TNTI position involve data from the trajectories of the entraining fluid particles. The Lagrangian statistics for the particles show the existence of a velocity jump and a characteristic vorticity jump (with a thickness which is one order of magnitude greater than the Kolmogorov microscale), in agreement with previous results using Eulerian statistics. The particles initially acquire enstrophy by viscous diffusion and later by enstrophy production, which becomes "active" only deep inside the turbulent region. Both enstrophy diffusion and production near the TNTI differ substantially from inside the turbulent region. Only about 1% of all particles find their way into pockets of irrotational flow engulfed into the turbulent shear layer region, indicating that "engulfment" is not significant for the present flow, indirectly suggesting that the entrainment is largely due to "nibbling" small-scale mechanisms acting along the entire TNTI surface. Probability density functions of particle positions suggests that the particles spend more time crossing the region near the TNTI than traveling inside the turbulent region, consistent with the particles moving tangent to the interface around the time they cross it.

  6. Wireless data collection system for travel time estimation and traffic performance evaluation.

    DOT National Transportation Integrated Search

    2010-09-01

    Having accurate and continually updated travel time and other performance data for the road and highway system has many benefits. From the perspective of the road users, having real-time updates on travel times will permit better travel and route pla...

  7. Freeway travel-time estimation and forecasting.

    DOT National Transportation Integrated Search

    2012-09-01

    This project presents a microsimulation-based framework for generating short-term forecasts of travel time on freeway corridors. The microsimulation model that is developed (GTsim), replicates freeway capacity drop and relaxation phenomena critical f...

  8. Learn the Lagrangian: A Vector-Valued RKHS Approach to Identifying Lagrangian Systems.

    PubMed

    Cheng, Ching-An; Huang, Han-Pang

    2016-12-01

    We study the modeling of Lagrangian systems with multiple degrees of freedom. Based on system dynamics, canonical parametric models require ad hoc derivations and sometimes simplification for a computable solution; on the other hand, due to the lack of prior knowledge in the system's structure, modern nonparametric models in machine learning face the curse of dimensionality, especially in learning large systems. In this paper, we bridge this gap by unifying the theories of Lagrangian systems and vector-valued reproducing kernel Hilbert space. We reformulate Lagrangian systems with kernels that embed the governing Euler-Lagrange equation-the Lagrangian kernels-and show that these kernels span a subspace capturing the Lagrangian's projection as inverse dynamics. By such property, our model uses only inputs and outputs as in machine learning and inherits the structured form as in system dynamics, thereby removing the need for the mundane derivations for new systems as well as the generalization problem in learning from scratches. In effect, it learns the system's Lagrangian, a simpler task than directly learning the dynamics. To demonstrate, we applied the proposed kernel to identify the robot inverse dynamics in simulations and experiments. Our results present a competitive novel approach to identifying Lagrangian systems, despite using only inputs and outputs.

  9. Lagrangian description of warm plasmas

    NASA Technical Reports Server (NTRS)

    Kim, H.

    1970-01-01

    Efforts are described to extend the averaged Lagrangian method of describing small signal wave propagation and nonlinear wave interaction, developed by earlier workers for cold plasmas, to the more general conditions of warm collisionless plasmas, and to demonstrate particularly the effectiveness of the method in analyzing wave-wave interactions. The theory is developed for both the microscopic description and the hydrodynamic approximation to plasma behavior. First, a microscopic Lagrangian is formulated rigorously, and expanded in terms of perturbations about equilibrium. Two methods are then described for deriving a hydrodynamic Lagrangian. In the first of these, the Lagrangian is obtained by velocity integration of the exact microscopic Lagrangian. In the second, the expanded hydrodynamic Lagrangian is obtained directly from the expanded microscopic Lagrangian. As applications of the microscopic Lagrangian, the small-signal dispersion relations and the coupled mode equations are derived for all possible waves in a warm infinite, weakly inhomogeneous magnetoplasma, and their interactions are examined.

  10. Computing eddy-driven effective diffusivity using Lagrangian particles

    DOE PAGES

    Wolfram, Phillip J.; Ringler, Todd D.

    2017-08-14

    A novel method to derive effective diffusivity from Lagrangian particle trajectory data sets is developed and then analyzed relative to particle-derived meridional diffusivity for eddy-driven mixing in an idealized circumpolar current. Quantitative standard dispersion- and transport-based mixing diagnostics are defined, compared and contrasted to motivate the computation and use of effective diffusivity derived from Lagrangian particles. We compute the effective diffusivity by first performing scalar transport on Lagrangian control areas using stored trajectories computed from online Lagrangian In-situ Global High-performance particle Tracking (LIGHT) using the Model for Prediction Across Scales Ocean (MPAS-O). Furthermore, the Lagrangian scalar transport scheme is comparedmore » against an Eulerian scalar transport scheme. Spatially-variable effective diffusivities are computed from resulting time-varying cumulative concentrations that vary as a function of cumulative area. The transport-based Eulerian and Lagrangian effective diffusivity diagnostics are found to be qualitatively consistent with the dispersion-based diffusivity. All diffusivity estimates show a region of increased subsurface diffusivity within the core of an idealized circumpolar current and results are within a factor of two of each other. The Eulerian and Lagrangian effective diffusivities are most similar; smaller and more spatially diffused values are obtained with the dispersion-based diffusivity computed with particle clusters.« less

  11. Computing eddy-driven effective diffusivity using Lagrangian particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolfram, Phillip J.; Ringler, Todd D.

    A novel method to derive effective diffusivity from Lagrangian particle trajectory data sets is developed and then analyzed relative to particle-derived meridional diffusivity for eddy-driven mixing in an idealized circumpolar current. Quantitative standard dispersion- and transport-based mixing diagnostics are defined, compared and contrasted to motivate the computation and use of effective diffusivity derived from Lagrangian particles. We compute the effective diffusivity by first performing scalar transport on Lagrangian control areas using stored trajectories computed from online Lagrangian In-situ Global High-performance particle Tracking (LIGHT) using the Model for Prediction Across Scales Ocean (MPAS-O). Furthermore, the Lagrangian scalar transport scheme is comparedmore » against an Eulerian scalar transport scheme. Spatially-variable effective diffusivities are computed from resulting time-varying cumulative concentrations that vary as a function of cumulative area. The transport-based Eulerian and Lagrangian effective diffusivity diagnostics are found to be qualitatively consistent with the dispersion-based diffusivity. All diffusivity estimates show a region of increased subsurface diffusivity within the core of an idealized circumpolar current and results are within a factor of two of each other. The Eulerian and Lagrangian effective diffusivities are most similar; smaller and more spatially diffused values are obtained with the dispersion-based diffusivity computed with particle clusters.« less

  12. Shear and shearless Lagrangian structures in compound channels

    NASA Astrophysics Data System (ADS)

    Enrile, F.; Besio, G.; Stocchino, A.

    2018-03-01

    Transport processes in a physical model of a natural stream with a composite cross-section (compound channel) are investigated by means of a Lagrangian analysis based on nonlinear dynamical system theory. Two-dimensional free surface Eulerian experimental velocity fields of a uniform flow in a compound channel form the basis for the identification of the so-called Lagrangian Coherent Structures. Lagrangian structures are recognized as the key features that govern particle trajectories. We seek for two particular class of Lagrangian structures: Shear and shearless structures. The former are generated whenever the shear dominates the flow whereas the latter behave as jet-cores. These two type of structures are detected as ridges and trenches of the Finite-Time Lyapunov Exponents fields, respectively. Besides, shearlines computed applying the geodesic theory of transport barriers mark Shear Lagrangian Coherent Structures. So far, the detection of these structures in real experimental flows has not been deeply investigated. Indeed, the present results obtained in a wide range of the controlling parameters clearly show a different behaviour depending on the shallowness of the flow. Shear and Shearless Lagrangian Structures detected from laboratory experiments clearly appear as the flow develops in shallow conditions. The presence of these Lagrangian Structures tends to fade in deep flow conditions.

  13. Establishing monitoring programs for travel time reliability. [supporting datasets

    DOT National Transportation Integrated Search

    2014-01-01

    The objective of this project was to develop system designs for programs to monitor travel time reliability and to prepare a guidebook that practitioners and others can use to design, build, operate, and maintain such systems. Generally, such travel ...

  14. Two-dimensional Lagrangian simulation of suspended sediment

    USGS Publications Warehouse

    Schoellhamer, David H.

    1988-01-01

    A two-dimensional laterally averaged model for suspended sediment transport in steady gradually varied flow that is based on the Lagrangian reference frame is presented. The layered Lagrangian transport model (LLTM) for suspended sediment performs laterally averaged concentration. The elevations of nearly horizontal streamlines and the simulation time step are selected to optimize model stability and efficiency. The computational elements are parcels of water that are moved along the streamlines in the Lagrangian sense and are mixed with neighboring parcels. Three applications show that the LLTM can accurately simulate theoretical and empirical nonequilibrium suspended sediment distributions and slug injections of suspended sediment in a laboratory flume.

  15. An Eulerian/Lagrangian coupling procedure for three-dimensional vortical flows

    NASA Technical Reports Server (NTRS)

    Felici, Helene M.; Drela, Mark

    1993-01-01

    A coupled Eulerian/Lagrangian method is presented for the reduction of numerical diffusion observed in solutions of 3D vortical flows using standard Eulerian finite-volume time-marching procedures. A Lagrangian particle tracking method, added to the Eulerian time-marching procedure, provides a correction of the Eulerian solution. In turn, the Eulerian solution is used to integrate the Lagrangian state-vector along the particles trajectories. While the Eulerian solution ensures the conservation of mass and sets the pressure field, the particle markers describe accurately the convection properties and enhance the vorticity and entropy capturing capabilities of the Eulerian solver. The Eulerian/Lagrangian coupling strategies are discussed and the combined scheme is tested on a constant stagnation pressure flow in a 90 deg bend and on a swirling pipe flow. As the numerical diffusion is reduced when using the Lagrangian correction, a vorticity gradient augmentation is identified as a basic problem of this inviscid calculation.

  16. Can lagrangian models reproduce the migration time of European eel obtained from otolith analysis?

    NASA Astrophysics Data System (ADS)

    Rodríguez-Díaz, L.; Gómez-Gesteira, M.

    2017-12-01

    European eel can be found at the Bay of Biscay after a long migration across the Atlantic. The duration of migration, which takes place at larval stage, is of primary importance to understand eel ecology and, hence, its survival. This duration is still a controversial matter since it can range from 7 months to > 4 years depending on the method to estimate duration. The minimum migration duration estimated from our lagrangian model is similar to the duration obtained from the microstructure of eel otoliths, which is typically on the order of 7-9 months. The lagrangian model showed to be sensitive to different conditions like spatial and time resolution, release depth, release area and initial distribution. In general, migration showed to be faster when decreasing the depth and increasing the resolution of the model. In average, the fastest migration was obtained when only advective horizontal movement was considered. However, faster migration was even obtained in some cases when locally oriented random migration was taken into account.

  17. Evaluation of a real-time travel time prediction system in a freeway construction work zone : final report, March 2001.

    DOT National Transportation Integrated Search

    2001-03-01

    A real-time travel time prediction system (TIPS) was evaluated in a construction work zone. TIPS includes changeable message signs (CMSs) displaying the travel time and distance to the end of the work zone to motorists. The travel times displayed by ...

  18. Index of time-of-travel studies of the US Geological Survey

    USGS Publications Warehouse

    Boning, Charles W.

    1973-01-01

    This index identifies locations on streams where the U. S. Geological Survey has investigated the time of travel of a highly soluble material moving through a reach of stream channel. This index provides information only on the location of studied stream reaches; it contains no basic data. It does contain, however, a list of references to published data and analytical reports on time of travel and a list of U.S. Geological Survey offices where basic time-of-travel data are on file.

  19. Suburb-to-suburb intercity travel: Energy, time and dollar expenditures

    NASA Technical Reports Server (NTRS)

    Fels, M. F.

    1976-01-01

    The effect of adding suburb to terminal and terminal to suburb travel is examined. The energy consumed in entire trips was estimated. The total energy costs are compared with total travel times, and dollar costs to the traveler. Trips between origins in seven suburbs of Newark, New Jersey and destinations in two Washington, D. C. suburbs are analyzed.

  20. Acoustic streaming: an arbitrary Lagrangian-Eulerian perspective.

    PubMed

    Nama, Nitesh; Huang, Tony Jun; Costanzo, Francesco

    2017-08-25

    We analyse acoustic streaming flows using an arbitrary Lagrangian Eulerian (ALE) perspective. The formulation stems from an explicit separation of time scales resulting in two subproblems: a first-order problem, formulated in terms of the fluid displacement at the fast scale, and a second-order problem, formulated in terms of the Lagrangian flow velocity at the slow time scale. Following a rigorous time-averaging procedure, the second-order problem is shown to be intrinsically steady, and with exact boundary conditions at the oscillating walls. Also, as the second-order problem is solved directly for the Lagrangian velocity, the formulation does not need to employ the notion of Stokes drift, or any associated post-processing, thus facilitating a direct comparison with experiments. Because the first-order problem is formulated in terms of the displacement field, our formulation is directly applicable to more complex fluid-structure interaction problems in microacoustofluidic devices. After the formulation's exposition, we present numerical results that illustrate the advantages of the formulation with respect to current approaches.

  1. On tide-induced Lagrangian residual current and residual transport: 1. Lagrangian residual current

    USGS Publications Warehouse

    Feng, Shizuo; Cheng, Ralph T.; Pangen, Xi

    1986-01-01

    Residual currents in tidal estuaries and coastal embayments have been recognized as fundamental factors which affect the long-term transport processes. It has been pointed out by previous studies that it is more relevant to use a Lagrangian mean velocity than an Eulerian mean velocity to determine the movements of water masses. Under weakly nonlinear approximation, the parameter k, which is the ratio of the net displacement of a labeled water mass in one tidal cycle to the tidal excursion, is assumed to be small. Solutions for tides, tidal current, and residual current have been considered for two-dimensional, barotropic estuaries and coastal seas. Particular attention has been paid to the distinction between the Lagrangian and Eulerian residual currents. When k is small, the first-order Lagrangian residual is shown to be the sum of the Eulerian residual current and the Stokes drift. The Lagrangian residual drift velocity or the second-order Lagrangian residual current has been shown to be dependent on the phase of tidal current. The Lagrangian drift velocity is induced by nonlinear interactions between tides, tidal currents, and the first-order residual currents, and it takes the form of an ellipse on a hodograph plane. Several examples are given to further demonstrate the unique properties of the Lagrangian residual current.

  2. Travel time data collection for measurement of advanced traveler information systems accuracy

    DOT National Transportation Integrated Search

    2003-06-01

    The objective of this white paper is to recommend an approach to measuring ATIS travel time accuracy so that ITS planners might have the data they need to make cost effective decisions regarding deployment of surveillance technologies to support ATIS...

  3. Time-resolved large-scale volumetric pressure fields of an impinging jet from dense Lagrangian particle tracking

    NASA Astrophysics Data System (ADS)

    Huhn, F.; Schanz, D.; Manovski, P.; Gesemann, S.; Schröder, A.

    2018-05-01

    Time-resolved volumetric pressure fields are reconstructed from Lagrangian particle tracking with high seeding concentration using the Shake-The-Box algorithm in a perpendicular impinging jet flow with exit velocity U=4 m/s (Re˜ 36,000) and nozzle-plate spacing H/D=5. Helium-filled soap bubbles are used as tracer particles which are illuminated with pulsed LED arrays. A large measurement volume has been covered (cloud of tracked particles in a volume of 54 L, ˜ 180,000 particles). The reconstructed pressure field has been validated against microphone recordings at the wall with high correlation coefficients up to 0.88. In a reduced measurement volume (13 L), dense Lagrangian particle tracking is shown to be feasable up to the maximal possible jet velocity of U=16 m/s.

  4. About non standard Lagrangians in cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dimitrijevic, Dragoljub D.; Milosevic, Milan

    A review of non standard Lagrangians present in modern cosmological models will be considered. Well known example of non standard Lagrangian is Dirac-Born-Infeld (DBI) type Lagrangian for tachyon field. Another type of non standard Lagrangian under consideration contains scalar field which describes open p-adic string tachyon and is called p-adic string theory Lagrangian. We will investigate homogenous cases of both DBI and p-adic fields and obtain Lagrangians of the standard type which have the same equations of motions as aforementioned non standard one.

  5. [Travel time and distances to Norwegian out-of-hours casualty clinics].

    PubMed

    Raknes, Guttorm; Morken, Tone; Hunskår, Steinar

    2014-11-01

    Geographical factors have an impact on the utilisation of out-of-hours services. In this study we have investigated the travel distance to out-of-hours casualty clinics in Norwegian municipalities in 2011 and the number of municipalities covered by the proposed recommendations for secondary on-call arrangements due to long distances. We estimated the average maximum travel times and distances in Norwegian municipalities using a postcode-based method. Separate analyses were performed for municipalities with a single, permanently located casualty clinic. Altogether 417 out of 430 municipalities were included. We present the median value of the maximum travel times and distances for the included municipalities. The median maximum average travel distance for the municipalities was 19 km. The median maximum average travel time was 22 minutes. In 40 of the municipalities (10 %) the median maximum average travel time exceeded 60 minutes, and in 97 municipalities (23 %) the median maximum average travel time exceeded 40 minutes. The population of these groups comprised 2 % and 5 % of the country's total population respectively. For municipalities with permanent emergency facilities(N = 316), the median average flight time 16 minutes and median average distance 13 km.. In many municipalities, the inhabitants have a long average journey to out-of-hours emergency health services, but seen as a whole, the inhabitants of these municipalities account for a very small proportion of the Norwegian population. The results indicate that the proposed recommendations for secondary on-call duty based on long distances apply to only a small number of inhabitants. The recommendations should therefore be adjusted and reformulated to become more relevant.

  6. Time travel, Clock Puzzles and Their Experimental Tests

    NASA Astrophysics Data System (ADS)

    Ciufolini, Ignazio

    2013-09-01

    Is time travel possible? What is Einstein's theory of relativity mathematically predicting in that regard? Is time travel related to the so-called clock `paradoxes' of relativity and if so how? Is there any accurate experimental evidence of the phenomena regarding the different flow of time predicted by General Relativity and is there any possible application of the temporal phenomena predicted by relativity to our everyday life? Which temporal phenomena are predicted in the vicinities of a rotating body and of a mass-energy current, and do we have any experimental test of the occurrence of these phenomena near a rotating body? In this paper, we address and answer some of these questions.

  7. Visualizations of Travel Time Performance Based on Vehicle Reidentification Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, Stanley Ernest; Sharifi, Elham; Day, Christopher M.

    This paper provides a visual reference of the breadth of arterial performance phenomena based on travel time measures obtained from reidentification technology that has proliferated in the past 5 years. These graphical performance measures are revealed through overlay charts and statistical distribution as revealed through cumulative frequency diagrams (CFDs). With overlays of vehicle travel times from multiple days, dominant traffic patterns over a 24-h period are reinforced and reveal the traffic behavior induced primarily by the operation of traffic control at signalized intersections. A cumulative distribution function in the statistical literature provides a method for comparing traffic patterns from variousmore » time frames or locations in a compact visual format that provides intuitive feedback on arterial performance. The CFD may be accumulated hourly, by peak periods, or by time periods specific to signal timing plans that are in effect. Combined, overlay charts and CFDs provide visual tools with which to assess the quality and consistency of traffic movement for various periods throughout the day efficiently, without sacrificing detail, which is a typical byproduct of numeric-based performance measures. These methods are particularly effective for comparing before-and-after median travel times, as well as changes in interquartile range, to assess travel time reliability.« less

  8. Arterial link travel time estimation using loop detector data : phase 1

    DOT National Transportation Integrated Search

    1997-11-01

    The envisioned operational tests of Advanced Traveler Information Systems (ATIS) and Advanced Traffic Management Systems (ATMS) in the Minneapolis/St. Paul area call for the provision of timely and reliable travel times over an entire rod network. Un...

  9. APPLICATION OF TRAVEL TIME RELIABILITY FOR PERFORMANCE ORIENTED OPERATIONAL PLANNING OF EXPRESSWAYS

    NASA Astrophysics Data System (ADS)

    Mehran, Babak; Nakamura, Hideki

    Evaluation of impacts of congestion improvement scheme s on travel time reliability is very significant for road authorities since travel time reliability repr esents operational performance of expressway segments. In this paper, a methodology is presented to estimate travel tim e reliability prior to implementation of congestion relief schemes based on travel time variation modeling as a function of demand, capacity, weather conditions and road accident s. For subject expressway segmen ts, traffic conditions are modeled over a whole year considering demand and capacity as random variables. Patterns of demand and capacity are generated for each five minute interval by appl ying Monte-Carlo simulation technique, and accidents are randomly generated based on a model that links acci dent rate to traffic conditions. A whole year analysis is performed by comparing de mand and available capacity for each scenario and queue length is estimated through shockwave analysis for each time in terval. Travel times are estimated from refined speed-flow relationships developed for intercity expressways and buffer time index is estimated consequently as a measure of travel time reliability. For validation, estimated reliability indices are compared with measured values from empirical data, and it is shown that the proposed method is suitable for operational evaluation and planning purposes.

  10. Lagrangian ocean analysis: Fundamentals and practices

    DOE PAGES

    van Sebille, Erik; Griffies, Stephen M.; Abernathey, Ryan; ...

    2017-11-24

    Lagrangian analysis is a powerful way to analyse the output of ocean circulation models and other ocean velocity data such as from altimetry. In the Lagrangian approach, large sets of virtual particles are integrated within the three-dimensional, time-evolving velocity fields. A variety of tools and methods for this purpose have emerged, over several decades. Here, we review the state of the art in the field of Lagrangian analysis of ocean velocity data, starting from a fundamental kinematic framework and with a focus on large-scale open ocean applications. Beyond the use of explicit velocity fields, we consider the influence of unresolvedmore » physics and dynamics on particle trajectories. We comprehensively list and discuss the tools currently available for tracking virtual particles. We then showcase some of the innovative applications of trajectory data, and conclude with some open questions and an outlook. Our overall goal of this review paper is to reconcile some of the different techniques and methods in Lagrangian ocean analysis, while recognising the rich diversity of codes that have and continue to emerge, and the challenges of the coming age of petascale computing.« less

  11. Lagrangian ocean analysis: Fundamentals and practices

    NASA Astrophysics Data System (ADS)

    van Sebille, Erik; Griffies, Stephen M.; Abernathey, Ryan; Adams, Thomas P.; Berloff, Pavel; Biastoch, Arne; Blanke, Bruno; Chassignet, Eric P.; Cheng, Yu; Cotter, Colin J.; Deleersnijder, Eric; Döös, Kristofer; Drake, Henri F.; Drijfhout, Sybren; Gary, Stefan F.; Heemink, Arnold W.; Kjellsson, Joakim; Koszalka, Inga Monika; Lange, Michael; Lique, Camille; MacGilchrist, Graeme A.; Marsh, Robert; Mayorga Adame, C. Gabriela; McAdam, Ronan; Nencioli, Francesco; Paris, Claire B.; Piggott, Matthew D.; Polton, Jeff A.; Rühs, Siren; Shah, Syed H. A. M.; Thomas, Matthew D.; Wang, Jinbo; Wolfram, Phillip J.; Zanna, Laure; Zika, Jan D.

    2018-01-01

    Lagrangian analysis is a powerful way to analyse the output of ocean circulation models and other ocean velocity data such as from altimetry. In the Lagrangian approach, large sets of virtual particles are integrated within the three-dimensional, time-evolving velocity fields. Over several decades, a variety of tools and methods for this purpose have emerged. Here, we review the state of the art in the field of Lagrangian analysis of ocean velocity data, starting from a fundamental kinematic framework and with a focus on large-scale open ocean applications. Beyond the use of explicit velocity fields, we consider the influence of unresolved physics and dynamics on particle trajectories. We comprehensively list and discuss the tools currently available for tracking virtual particles. We then showcase some of the innovative applications of trajectory data, and conclude with some open questions and an outlook. The overall goal of this review paper is to reconcile some of the different techniques and methods in Lagrangian ocean analysis, while recognising the rich diversity of codes that have and continue to emerge, and the challenges of the coming age of petascale computing.

  12. Lagrangian ocean analysis: Fundamentals and practices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    van Sebille, Erik; Griffies, Stephen M.; Abernathey, Ryan

    Lagrangian analysis is a powerful way to analyse the output of ocean circulation models and other ocean velocity data such as from altimetry. In the Lagrangian approach, large sets of virtual particles are integrated within the three-dimensional, time-evolving velocity fields. A variety of tools and methods for this purpose have emerged, over several decades. Here, we review the state of the art in the field of Lagrangian analysis of ocean velocity data, starting from a fundamental kinematic framework and with a focus on large-scale open ocean applications. Beyond the use of explicit velocity fields, we consider the influence of unresolvedmore » physics and dynamics on particle trajectories. We comprehensively list and discuss the tools currently available for tracking virtual particles. We then showcase some of the innovative applications of trajectory data, and conclude with some open questions and an outlook. Our overall goal of this review paper is to reconcile some of the different techniques and methods in Lagrangian ocean analysis, while recognising the rich diversity of codes that have and continue to emerge, and the challenges of the coming age of petascale computing.« less

  13. Freeway travel time estimation using existing fixed traffic sensors : phase 2.

    DOT National Transportation Integrated Search

    2015-03-01

    Travel time, one of the most important freeway performance metrics, can be easily estimated using the : data collected from fixed traffic sensors, avoiding the need to install additional travel time data collectors. : This project is aimed at fully u...

  14. Innovative methods for calculation of freeway travel time using limited data : executive summary report.

    DOT National Transportation Integrated Search

    2008-08-01

    ODOTs policy for Dynamic Message Sign : utilization requires travel time(s) to be displayed as : a default message. The current method of : calculating travel time involves a workstation : operator estimating the travel time based upon : observati...

  15. Tile Drainage Density Reduces Groundwater Travel Times and Compromises Riparian Buffer Effectiveness.

    PubMed

    Schilling, Keith E; Wolter, Calvin F; Isenhart, Thomas M; Schultz, Richard C

    2015-11-01

    Strategies to reduce nitrate-nitrogen (nitrate) pollution delivered to streams often seek to increase groundwater residence time to achieve measureable results, yet the effects of tile drainage on residence time have not been well documented. In this study, we used a geographic information system groundwater travel time model to quantify the effects of artificial subsurface drainage on groundwater travel times in the 7443-ha Bear Creek watershed in north-central Iowa. Our objectives were to evaluate how mean groundwater travel times changed with increasing drainage intensity and to assess how tile drainage density reduces groundwater contributions to riparian buffers. Results indicate that mean groundwater travel times are reduced with increasing degrees of tile drainage. Mean groundwater travel times decreased from 5.6 to 1.1 yr, with drainage densities ranging from 0.005 m (7.6 mi) to 0.04 m (62 mi), respectively. Model simulations indicate that mean travel times with tile drainage are more than 150 times faster than those that existed before settlement. With intensive drainage, less than 2% of the groundwater in the basin appears to flow through a perennial stream buffer, thereby reducing the effectiveness of this practice to reduce stream nitrate loads. Hence, strategies, such as reconnecting tile drainage to buffers, are promising because they increase groundwater residence times in tile-drained watersheds. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  16. Extremal inversion of lunar travel time data. [seismic velocity structure

    NASA Technical Reports Server (NTRS)

    Burkhard, N.; Jackson, D. D.

    1975-01-01

    The tau method, developed by Bessonova et al. (1974), of inversion of travel times is applied to lunar P-wave travel time data to find limits on the velocity structure of the moon. Tau is the singular solution to the Clairaut equation. Models with low-velocity zones, with low-velocity zones at differing depths, and without low-velocity zones, were found to be consistent with data and within the determined limits. Models with and without a discontinuity at about 25-km depth have been found which agree with all travel time data to within two standard deviations. In other words, the existence of the discontinuity and its size and location have not been uniquely resolved. Models with low-velocity channels are also possible.

  17. Validation and augmentation of Inrix arterial travel time data using independent sources : [research summary].

    DOT National Transportation Integrated Search

    2015-02-01

    Although the freeway travel time data has been validated extensively in recent : years, the quality of arterial travel time data is not well known. This project : presents a comprehensive validation scheme for arterial travel time data based : on GPS...

  18. Bayesian Lagrangian Data Assimilation and Drifter Deployment Strategies

    NASA Astrophysics Data System (ADS)

    Dutt, A.; Lermusiaux, P. F. J.

    2017-12-01

    Ocean currents transport a variety of natural (e.g. water masses, phytoplankton, zooplankton, sediments, etc.) and man-made materials and other objects (e.g. pollutants, floating debris, search and rescue, etc.). Lagrangian Coherent Structures (LCSs) or the most influential/persistent material lines in a flow, provide a robust approach to characterize such Lagrangian transports and organize classic trajectories. Using the flow-map stochastic advection and a dynamically-orthogonal decomposition, we develop uncertainty prediction schemes for both Eulerian and Lagrangian variables. We then extend our Bayesian Gaussian Mixture Model (GMM)-DO filter to a joint Eulerian-Lagrangian Bayesian data assimilation scheme. The resulting nonlinear filter allows the simultaneous non-Gaussian estimation of Eulerian variables (e.g. velocity, temperature, salinity, etc.) and Lagrangian variables (e.g. drifter/float positions, trajectories, LCSs, etc.). Its results are showcased using a double-gyre flow with a random frequency, a stochastic flow past a cylinder, and realistic ocean examples. We further show how our Bayesian mutual information and adaptive sampling equations provide a rigorous efficient methodology to plan optimal drifter deployment strategies and predict the optimal times, locations, and types of measurements to be collected.

  19. Assessment and refinement of real-time travel time algorithms for use in practice : final report, October 2008.

    DOT National Transportation Integrated Search

    2008-10-01

    The FHWA has strongly encouraged transportation departments to display travel times on their Dynamic Message Signs (DMS). The Oregon : Department of Transportation (ODOT) currently displays travel time estimates on three DMSs in the Portland metropol...

  20. Establishing monitoring programs for travel time reliability.

    DOT National Transportation Integrated Search

    2014-01-01

    Within the second Strategic Highway Research Program (SHRP 2), Project L02 focused on creating a suite of methods by which transportation agencies could monitor and evaluate travel time reliability. Creation of the methods also produced an improved u...

  1. Mental time travel and the shaping of language.

    PubMed

    Corballis, Michael C

    2009-01-01

    Episodic memory can be regarded as part of a more general system, unique to humans, for mental time travel, and the construction of future episodes. This allows more detailed planning than is afforded by the more general mechanisms of instinct, learning, and semantic memory. To be useful, episodic memory need not provide a complete or even a faithful record of past events, and may even be part of a process whereby we construct fictional accounts. The properties of language are aptly designed for the communication and sharing of episodes, and for the telling of stories; these properties include symbolic representation of the elements of real-world events, time markers, and combinatorial rules. Language and mental time travel probably co-evolved during the Pleistocene, when brain size increased dramatically.

  2. Reduced rank models for travel time estimation of low order mode pulses.

    PubMed

    Chandrayadula, Tarun K; Wage, Kathleen E; Worcester, Peter F; Dzieciuch, Matthew A; Mercer, James A; Andrew, Rex K; Howe, Bruce M

    2013-10-01

    Mode travel time estimation in the presence of internal waves (IWs) is a challenging problem. IWs perturb the sound speed, which results in travel time wander and mode scattering. A standard approach to travel time estimation is to pulse compress the broadband signal, pick the peak of the compressed time series, and average the peak time over multiple receptions to reduce variance. The peak-picking approach implicitly assumes there is a single strong arrival and does not perform well when there are multiple arrivals due to scattering. This article presents a statistical model for the scattered mode arrivals and uses the model to design improved travel time estimators. The model is based on an Empirical Orthogonal Function (EOF) analysis of the mode time series. Range-dependent simulations and data from the Long-range Ocean Acoustic Propagation Experiment (LOAPEX) indicate that the modes are represented by a small number of EOFs. The reduced-rank EOF model is used to construct a travel time estimator based on the Matched Subspace Detector (MSD). Analysis of simulation and experimental data show that the MSDs are more robust to IW scattering than peak picking. The simulation analysis also highlights how IWs affect the mode excitation by the source.

  3. Validation and augmentation of Inrix arterial travel time data using independent sources.

    DOT National Transportation Integrated Search

    2015-02-01

    Travel time data is a key input to Intelligent Transportation Systems (ITS) applications. Advancement in vehicle : tracking and identification technologies and proliferation of location-aware and connected devices has made network-wide travel time da...

  4. Comparison of methods for measuring travel time at Florida freeways and arterials.

    DOT National Transportation Integrated Search

    2014-07-01

    Travel time is an important performance measure used to assess the traffic operational quality of various types of highway : facilities. Previous research funded by the Florida Department of Transportation (FDOT) on travel time reliability developed,...

  5. Modeling chloride transport using travel time distributions at Plynlimon, Wales

    NASA Astrophysics Data System (ADS)

    Benettin, Paolo; Kirchner, James W.; Rinaldo, Andrea; Botter, Gianluca

    2015-05-01

    Here we present a theoretical interpretation of high-frequency, high-quality tracer time series from the Hafren catchment at Plynlimon in mid-Wales. We make use of the formulation of transport by travel time distributions to model chloride transport originating from atmospheric deposition and compute catchment-scale travel time distributions. The relevance of the approach lies in the explanatory power of the chosen tools, particularly to highlight hydrologic processes otherwise clouded by the integrated nature of the measured outflux signal. The analysis reveals the key role of residual storages that are poorly visible in the hydrological response, but are shown to strongly affect water quality dynamics. A significant accuracy in reproducing data is shown by our calibrated model. A detailed representation of catchment-scale travel time distributions has been derived, including the time evolution of the overall dispersion processes (which can be expressed in terms of time-varying storage sampling functions). Mean computed travel times span a broad range of values (from 80 to 800 days) depending on the catchment state. Results also suggest that, in the average, discharge waters are younger than storage water. The model proves able to capture high-frequency fluctuations in the measured chloride concentrations, which are broadly explained by the sharp transition between groundwaters and faster flows originating from topsoil layers. This article was corrected on 22 JUN 2015. See the end of the full text for details.

  6. Racial disparities in travel time to radiotherapy facilities in the Atlanta metropolitan area

    PubMed Central

    Peipins, Lucy A.; Graham, Shannon; Young, Randall; Lewis, Brian; Flanagan, Barry

    2018-01-01

    Low-income women with breast cancer who rely on public transportation may have difficulty in completing recommended radiation therapy due to inadequate access to radiation facilities. Using a geographic information system (GIS) and network analysis we quantified spatial accessibility to radiation treatment facilities in the Atlanta, Georgia metropolitan area. We built a transportation network model that included all bus and rail routes and stops, system transfers and walk and wait times experienced by public transportation system travelers. We also built a private transportation network to model travel times by automobile. We calculated travel times to radiation therapy facilities via public and private transportation from a population-weighted center of each census tract located within the study area. We broadly grouped the tracts by low, medium and high household access to a private vehicle and by race. Facility service areas were created using the network model to map the extent of areal coverage at specified travel times (30, 45 and 60 min) for both public and private modes of transportation. The median public transportation travel time to the nearest radiotherapy facility was 56 min vs. approximately 8 min by private vehicle. We found that majority black census tracts had longer public transportation travel times than white tracts across all categories of vehicle access and that 39% of women in the study area had longer than 1 h of public transportation travel time to the nearest facility. In addition, service area analyses identified locations where the travel time barriers are the greatest. Spatial inaccessibility, especially for women who must use public transportation, is one of the barriers they face in receiving optimal treatment. PMID:23726213

  7. Racial disparities in travel time to radiotherapy facilities in the Atlanta metropolitan area.

    PubMed

    Peipins, Lucy A; Graham, Shannon; Young, Randall; Lewis, Brian; Flanagan, Barry

    2013-07-01

    Low-income women with breast cancer who rely on public transportation may have difficulty in completing recommended radiation therapy due to inadequate access to radiation facilities. Using a geographic information system (GIS) and network analysis we quantified spatial accessibility to radiation treatment facilities in the Atlanta, Georgia metropolitan area. We built a transportation network model that included all bus and rail routes and stops, system transfers and walk and wait times experienced by public transportation system travelers. We also built a private transportation network to model travel times by automobile. We calculated travel times to radiation therapy facilities via public and private transportation from a population-weighted center of each census tract located within the study area. We broadly grouped the tracts by low, medium and high household access to a private vehicle and by race. Facility service areas were created using the network model to map the extent of areal coverage at specified travel times (30, 45 and 60 min) for both public and private modes of transportation. The median public transportation travel time to the nearest radiotherapy facility was 56 min vs. approximately 8 min by private vehicle. We found that majority black census tracts had longer public transportation travel times than white tracts across all categories of vehicle access and that 39% of women in the study area had longer than 1 h of public transportation travel time to the nearest facility. In addition, service area analyses identified locations where the travel time barriers are the greatest. Spatial inaccessibility, especially for women who must use public transportation, is one of the barriers they face in receiving optimal treatment. Published by Elsevier Ltd.

  8. An extended Lagrangian method

    NASA Technical Reports Server (NTRS)

    Liou, Meng-Sing

    1993-01-01

    A unique formulation of describing fluid motion is presented. The method, referred to as 'extended Lagrangian method', is interesting from both theoretical and numerical points of view. The formulation offers accuracy in numerical solution by avoiding numerical diffusion resulting from mixing of fluxes in the Eulerian description. Meanwhile, it also avoids the inaccuracy incurred due to geometry and variable interpolations used by the previous Lagrangian methods. The present method is general and capable of treating subsonic flows as well as supersonic flows. The method proposed in this paper is robust and stable. It automatically adapts to flow features without resorting to clustering, thereby maintaining rather uniform grid spacing throughout and large time step. Moreover, the method is shown to resolve multidimensional discontinuities with a high level of accuracy, similar to that found in 1D problems.

  9. Travel-time-based thermal tracer tomography

    NASA Astrophysics Data System (ADS)

    Somogyvári, Márk; Bayer, Peter; Brauchler, Ralf

    2016-05-01

    Active thermal tracer testing is a technique to get information about the flow and transport properties of an aquifer. In this paper we propose an innovative methodology using active thermal tracers in a tomographic setup to reconstruct cross-well hydraulic conductivity profiles. This is facilitated by assuming that the propagation of the injected thermal tracer is mainly controlled by advection. To reduce the effects of density and viscosity changes and thermal diffusion, early-time diagnostics are used and specific travel times of the tracer breakthrough curves are extracted. These travel times are inverted with an eikonal solver using the staggered grid method to reduce constraints from the pre-defined grid geometry and to improve the resolution. Finally, non-reliable pixels are removed from the derived hydraulic conductivity tomograms. The method is applied to successfully reconstruct cross-well profiles as well as a 3-D block of a high-resolution fluvio-aeolian aquifer analog data set. Sensitivity analysis reveals a negligible role of the injection temperature, but more attention has to be drawn to other technical parameters such as the injection rate. This is investigated in more detail through model-based testing using diverse hydraulic and thermal conditions in order to delineate the feasible range of applications for the new tomographic approach.

  10. Extended Lagrangian Excited State Molecular Dynamics.

    PubMed

    Bjorgaard, J A; Sheppard, D; Tretiak, S; Niklasson, A M N

    2018-02-13

    An extended Lagrangian framework for excited state molecular dynamics (XL-ESMD) using time-dependent self-consistent field theory is proposed. The formulation is a generalization of the extended Lagrangian formulations for ground state Born-Oppenheimer molecular dynamics [Phys. Rev. Lett. 2008 100, 123004]. The theory is implemented, demonstrated, and evaluated using a time-dependent semiempirical model, though it should be generally applicable to ab initio theory. The simulations show enhanced energy stability and a significantly reduced computational cost associated with the iterative solutions of both the ground state and the electronically excited states. Relaxed convergence criteria can therefore be used both for the self-consistent ground state optimization and for the iterative subspace diagonalization of the random phase approximation matrix used to calculate the excited state transitions. The XL-ESMD approach is expected to enable numerically efficient excited state molecular dynamics for such methods as time-dependent Hartree-Fock (TD-HF), Configuration Interactions Singles (CIS), and time-dependent density functional theory (TD-DFT).

  11. A simple method to assess unsaturated zone time lag in the travel time from ground surface to receptor.

    PubMed

    Sousa, Marcelo R; Jones, Jon P; Frind, Emil O; Rudolph, David L

    2013-01-01

    In contaminant travel from ground surface to groundwater receptors, the time taken in travelling through the unsaturated zone is known as the unsaturated zone time lag. Depending on the situation, this time lag may or may not be significant within the context of the overall problem. A method is presented for assessing the importance of the unsaturated zone in the travel time from source to receptor in terms of estimates of both the absolute and the relative advective times. A choice of different techniques for both unsaturated and saturated travel time estimation is provided. This method may be useful for practitioners to decide whether to incorporate unsaturated processes in conceptual and numerical models and can also be used to roughly estimate the total travel time between points near ground surface and a groundwater receptor. This method was applied to a field site located in a glacial aquifer system in Ontario, Canada. Advective travel times were estimated using techniques with different levels of sophistication. The application of the proposed method indicates that the time lag in the unsaturated zone is significant at this field site and should be taken into account. For this case, sophisticated and simplified techniques lead to similar assessments when the same knowledge of the hydraulic conductivity field is assumed. When there is significant uncertainty regarding the hydraulic conductivity, simplified calculations did not lead to a conclusive decision. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Deconstructing field-induced ketene isomerization through Lagrangian descriptors.

    PubMed

    Craven, Galen T; Hernandez, Rigoberto

    2016-02-07

    The time-dependent geometrical separatrices governing state transitions in field-induced ketene isomerization are constructed using the method of Lagrangian descriptors. We obtain the stable and unstable manifolds of time-varying transition states as dynamic phase space objects governing configurational changes when the ketene molecule is subjected to an oscillating electric field. The dynamics of the isomerization reaction are modeled through classical trajectory studies on the Gezelter-Miller potential energy surface and an approximate dipole moment model which is coupled to a time-dependent electric field. We obtain a representation of the reaction geometry, over varying field strengths and oscillation frequencies, by partitioning an initial phase space into basins labeled according to which product state is reached at a given time. The borders between these basins are in agreement with those obtained using Lagrangian descriptors, even in regimes exhibiting chaotic dynamics. Major outcomes of this work are: validation and extension of a transition state theory framework built from Lagrangian descriptors, elaboration of the applicability for this theory to periodically- and aperiodically-driven molecular systems, and prediction of regimes in which isomerization of ketene and its derivatives may be controlled using an external field.

  13. Next generation extended Lagrangian first principles molecular dynamics

    NASA Astrophysics Data System (ADS)

    Niklasson, Anders M. N.

    2017-08-01

    Extended Lagrangian Born-Oppenheimer molecular dynamics [A. M. N. Niklasson, Phys. Rev. Lett. 100, 123004 (2008)] is formulated for general Hohenberg-Kohn density-functional theory and compared with the extended Lagrangian framework of first principles molecular dynamics by Car and Parrinello [Phys. Rev. Lett. 55, 2471 (1985)]. It is shown how extended Lagrangian Born-Oppenheimer molecular dynamics overcomes several shortcomings of regular, direct Born-Oppenheimer molecular dynamics, while improving or maintaining important features of Car-Parrinello simulations. The accuracy of the electronic degrees of freedom in extended Lagrangian Born-Oppenheimer molecular dynamics, with respect to the exact Born-Oppenheimer solution, is of second-order in the size of the integration time step and of fourth order in the potential energy surface. Improved stability over recent formulations of extended Lagrangian Born-Oppenheimer molecular dynamics is achieved by generalizing the theory to finite temperature ensembles, using fractional occupation numbers in the calculation of the inner-product kernel of the extended harmonic oscillator that appears as a preconditioner in the electronic equations of motion. Material systems that normally exhibit slow self-consistent field convergence can be simulated using integration time steps of the same order as in direct Born-Oppenheimer molecular dynamics, but without the requirement of an iterative, non-linear electronic ground-state optimization prior to the force evaluations and without a systematic drift in the total energy. In combination with proposed low-rank and on the fly updates of the kernel, this formulation provides an efficient and general framework for quantum-based Born-Oppenheimer molecular dynamics simulations.

  14. Next generation extended Lagrangian first principles molecular dynamics.

    PubMed

    Niklasson, Anders M N

    2017-08-07

    Extended Lagrangian Born-Oppenheimer molecular dynamics [A. M. N. Niklasson, Phys. Rev. Lett. 100, 123004 (2008)] is formulated for general Hohenberg-Kohn density-functional theory and compared with the extended Lagrangian framework of first principles molecular dynamics by Car and Parrinello [Phys. Rev. Lett. 55, 2471 (1985)]. It is shown how extended Lagrangian Born-Oppenheimer molecular dynamics overcomes several shortcomings of regular, direct Born-Oppenheimer molecular dynamics, while improving or maintaining important features of Car-Parrinello simulations. The accuracy of the electronic degrees of freedom in extended Lagrangian Born-Oppenheimer molecular dynamics, with respect to the exact Born-Oppenheimer solution, is of second-order in the size of the integration time step and of fourth order in the potential energy surface. Improved stability over recent formulations of extended Lagrangian Born-Oppenheimer molecular dynamics is achieved by generalizing the theory to finite temperature ensembles, using fractional occupation numbers in the calculation of the inner-product kernel of the extended harmonic oscillator that appears as a preconditioner in the electronic equations of motion. Material systems that normally exhibit slow self-consistent field convergence can be simulated using integration time steps of the same order as in direct Born-Oppenheimer molecular dynamics, but without the requirement of an iterative, non-linear electronic ground-state optimization prior to the force evaluations and without a systematic drift in the total energy. In combination with proposed low-rank and on the fly updates of the kernel, this formulation provides an efficient and general framework for quantum-based Born-Oppenheimer molecular dynamics simulations.

  15. Effect of evaporation and condensation on a thermoacoustic engine: A Lagrangian simulation approach.

    PubMed

    Yasui, Kyuichi; Izu, Noriya

    2017-06-01

    Acoustic oscillations of a fluid (a mixture of gas and vapor) parcel in a wet stack of a thermoacoustic engine are numerically simulated with a Lagrangian approach taking into account Rott equations and the effect of non-equilibrium evaporation and condensation of water vapor at the stack surface. In a traveling-wave engine, the volume oscillation amplitude of a fluid parcel always increases by evaporation and condensation. As a result, pV work done by a fluid parcel is enhanced, which means enhancement of acoustic energy in a thermoacoustic engine. On the other hand, in a standing-wave engine, the volume oscillation amplitude sometimes decreases by evaporation and condensation, and pV work is suppressed. Presence of a tiny traveling-wave component, however, results in the enhancement of pV work by evaporation and condensation.

  16. Relationships Between Confabulations and Mental Time Travel in Alzheimer's Disease.

    PubMed

    Noel, Myriam; Larøi, Frank; Gallouj, Karim; El Haj, Mohamad

    2018-05-30

    The authors assessed the relationship between confabulations in Alzheimer's disease and the ability to mentally travel in time to reexperience memories. Twenty-seven patients with Alzheimer's disease were administered evaluations of provoked confabulations, spontaneous confabulations, and mental time travel. Provoked and spontaneous confabulations were evaluated with questions probing personal and general knowledge and with a scale rated by nursing and medical staff. Mental time travel was assessed by asking patients to retrieve personal memories. After each memory, participants had to provide a "remember" response if they were able to retrieve the event with their encoding context or a "know" response if they knew that the event had occurred but were unable to recall any contextual details. Results showed significant negative correlations between confabulations and "remember" responses. These findings reflect a relationship between the occurrence of confabulations in patients with Alzheimer's disease and impairments in their ability to mentally project themselves in time when retrieving the context in which confabulated memories were originally encoded.

  17. Analytical solutions of travel time to a pumping well with variable evapotranspiration.

    PubMed

    Chen, Tian-Fei; Wang, Xu-Sheng; Wan, Li; Li, Hailong

    2014-01-01

    Analytical solutions of groundwater travel time to a pumping well in an unconfined aquifer have been developed in previous studies, however, the change in evapotranspiration was not considered. Here, we develop a mathematical model of unconfined flow toward a discharge well with redistribution of groundwater evapotranspiration for travel time analysis. Dependency of groundwater evapotranspiration on the depth to water table is described using a linear formula with an extinction depth. Analytical solutions of groundwater level and travel time are obtained. For a typical hypothetical example, these solutions perfectly agree with the numerical simulation results based on MODFLOW and MODPATH. As indicated in a dimensionless framework, a lumped parameter which is proportional to the pumping rate controls the distributions of groundwater evapotranspiration rate and the travel time along the radial direction. © 2013, National Ground Water Association.

  18. Lagrangian and Eulerian statistics obtained from direct numerical simulations of homogeneous turbulence

    NASA Technical Reports Server (NTRS)

    Squires, Kyle D.; Eaton, John K.

    1991-01-01

    Direct numerical simulation is used to study dispersion in decaying isotropic turbulence and homogeneous shear flow. Both Lagrangian and Eulerian data are presented allowing direct comparison, but at fairly low Reynolds number. The quantities presented include properties of the dispersion tensor, isoprobability contours of particle displacement, Lagrangian and Eulerian velocity autocorrelations and time scale ratios, and the eddy diffusivity tensor. The Lagrangian time microscale is found to be consistently larger than the Eulerian microscale, presumably due to the advection of the small scales by the large scales in the Eulerian reference frame.

  19. Construction and installation of travel time signs on I-35 in Austin.

    DOT National Transportation Integrated Search

    2016-08-01

    Dynamic travel time signs (DTTS) provide current travel times to a specific destination via one or more : routes. These signs aid motorists in making route choice decisions en route. Through this project, three : DTTS were fabricated and installed on...

  20. Form of the manifestly covariant Lagrangian

    NASA Astrophysics Data System (ADS)

    Johns, Oliver Davis

    1985-10-01

    The preferred form for the manifestly covariant Lagrangian function of a single, charged particle in a given electromagnetic field is the subject of some disagreement in the textbooks. Some authors use a ``homogeneous'' Lagrangian and others use a ``modified'' form in which the covariant Hamiltonian function is made to be nonzero. We argue in favor of the ``homogeneous'' form. We show that the covariant Lagrangian theories can be understood only if one is careful to distinguish quantities evaluated on the varied (in the sense of the calculus of variations) world lines from quantities evaluated on the unvaried world lines. By making this distinction, we are able to derive the Hamilton-Jacobi and Klein-Gordon equations from the ``homogeneous'' Lagrangian, even though the covariant Hamiltonian function is identically zero on all world lines. The derivation of the Klein-Gordon equation in particular gives Lagrangian theoretical support to the derivations found in standard quantum texts, and is also shown to be consistent with the Feynman path-integral method. We conclude that the ``homogeneous'' Lagrangian is a completely adequate basis for covariant Lagrangian theory both in classical and quantum mechanics. The article also explores the analogy with the Fermat theorem of optics, and illustrates a simple invariant notation for the Lagrangian and other four-vector equations.

  1. A Lagrangian effective field theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vlah, Zvonimir; White, Martin; Aviles, Alejandro

    We have continued the development of Lagrangian, cosmological perturbation theory for the low-order correlators of the matter density field. We provide a new route to understanding how the effective field theory (EFT) of large-scale structure can be formulated in the Lagrandian framework and a new resummation scheme, comparing our results to earlier work and to a series of high-resolution N-body simulations in both Fourier and configuration space. The `new' terms arising from EFT serve to tame the dependence of perturbation theory on small-scale physics and improve agreement with simulations (though with an additional free parameter). We find that all ofmore » our models fare well on scales larger than about two to three times the non-linear scale, but fail as the non-linear scale is approached. This is slightly less reach than has been seen previously. At low redshift the Lagrangian model fares as well as EFT in its Eulerian formulation, but at higher z the Eulerian EFT fits the data to smaller scales than resummed, Lagrangian EFT. Furthermore, all the perturbative models fare better than linear theory.« less

  2. A Lagrangian effective field theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vlah, Zvonimir; White, Martin; Aviles, Alejandro, E-mail: zvlah@stanford.edu, E-mail: mwhite@berkeley.edu, E-mail: aviles@berkeley.edu

    We have continued the development of Lagrangian, cosmological perturbation theory for the low-order correlators of the matter density field. We provide a new route to understanding how the effective field theory (EFT) of large-scale structure can be formulated in the Lagrandian framework and a new resummation scheme, comparing our results to earlier work and to a series of high-resolution N-body simulations in both Fourier and configuration space. The 'new' terms arising from EFT serve to tame the dependence of perturbation theory on small-scale physics and improve agreement with simulations (though with an additional free parameter). We find that all ofmore » our models fare well on scales larger than about two to three times the non-linear scale, but fail as the non-linear scale is approached. This is slightly less reach than has been seen previously. At low redshift the Lagrangian model fares as well as EFT in its Eulerian formulation, but at higher z the Eulerian EFT fits the data to smaller scales than resummed, Lagrangian EFT. All the perturbative models fare better than linear theory.« less

  3. A Lagrangian effective field theory

    DOE PAGES

    Vlah, Zvonimir; White, Martin; Aviles, Alejandro

    2015-09-02

    We have continued the development of Lagrangian, cosmological perturbation theory for the low-order correlators of the matter density field. We provide a new route to understanding how the effective field theory (EFT) of large-scale structure can be formulated in the Lagrandian framework and a new resummation scheme, comparing our results to earlier work and to a series of high-resolution N-body simulations in both Fourier and configuration space. The `new' terms arising from EFT serve to tame the dependence of perturbation theory on small-scale physics and improve agreement with simulations (though with an additional free parameter). We find that all ofmore » our models fare well on scales larger than about two to three times the non-linear scale, but fail as the non-linear scale is approached. This is slightly less reach than has been seen previously. At low redshift the Lagrangian model fares as well as EFT in its Eulerian formulation, but at higher z the Eulerian EFT fits the data to smaller scales than resummed, Lagrangian EFT. Furthermore, all the perturbative models fare better than linear theory.« less

  4. Stochastic partial differential fluid equations as a diffusive limit of deterministic Lagrangian multi-time dynamics.

    PubMed

    Cotter, C J; Gottwald, G A; Holm, D D

    2017-09-01

    In Holm (Holm 2015 Proc. R. Soc. A 471 , 20140963. (doi:10.1098/rspa.2014.0963)), stochastic fluid equations were derived by employing a variational principle with an assumed stochastic Lagrangian particle dynamics. Here we show that the same stochastic Lagrangian dynamics naturally arises in a multi-scale decomposition of the deterministic Lagrangian flow map into a slow large-scale mean and a rapidly fluctuating small-scale map. We employ homogenization theory to derive effective slow stochastic particle dynamics for the resolved mean part, thereby obtaining stochastic fluid partial equations in the Eulerian formulation. To justify the application of rigorous homogenization theory, we assume mildly chaotic fast small-scale dynamics, as well as a centring condition. The latter requires that the mean of the fluctuating deviations is small, when pulled back to the mean flow.

  5. Lagrangian Assimilation of Satellite Data for Climate Studies in the Arctic

    NASA Technical Reports Server (NTRS)

    Lindsay, Ronald W.; Zhang, Jin-Lun; Stern, Harry

    2004-01-01

    Under this grant we have developed and tested a new Lagrangian model of sea ice. A Lagrangian model keeps track of material parcels as they drift in the model domain. Besides providing a natural framework for the assimilation of Lagrangian data, it has other advantages: 1) a model that follows material elements is well suited for a medium such as sea ice in which an element retains its identity for a long period of time; 2) model cells can be added or dropped as needed, allowing the spatial resolution to be increased in areas of high variability or dense observations; 3) ice from particular regions, such as the marginal seas, can be marked and traced for a long time; and 4) slip lines in the ice motion are accommodated more naturally because there is no internal grid. Our work makes use of these strengths of the Lagrangian formulation.

  6. Effective Lagrangian in de Sitter spacetime

    NASA Astrophysics Data System (ADS)

    Kitamoto, Hiroyuki; Kitazawa, Yoshihisa

    2017-01-01

    Scale invariant fluctuations of metric are a universal feature of quantum gravity in de Sitter spacetime. We construct an effective Lagrangian which summarizes their implications on local physics by integrating superhorizon metric fluctuations. It shows infrared quantum effects are local and render fundamental couplings time dependent. We impose Lorenz invariance on the effective Lagrangian as it is required by the principle of general covariance. We show that such a requirement leads to unique physical predictions by fixing the quantization ambiguities. We explain how the gauge parameter dependence of observables is canceled. In particular the relative evolution speed of the couplings are shown to be gauge invariant.

  7. Mental time travel: animals anticipate the future.

    PubMed

    Roberts, William A

    2007-06-05

    Recent behavioral experiments with scrub jays and nonhuman primates indicate they can anticipate and plan for future needs not currently experienced. Combined with accumulating evidence for episodic-like memory in animals, these studies suggest that some animals can mentally time travel into both the past and future.

  8. Simple Kinematic Pathway Approach (KPA) to Catchment-scale Travel Time and Water Age Distributions

    NASA Astrophysics Data System (ADS)

    Soltani, S. S.; Cvetkovic, V.; Destouni, G.

    2017-12-01

    The distribution of catchment-scale water travel times is strongly influenced by morphological dispersion and is partitioned between hillslope and larger, regional scales. We explore whether hillslope travel times are predictable using a simple semi-analytical "kinematic pathway approach" (KPA) that accounts for dispersion on two levels of morphological and macro-dispersion. The study gives new insights to shallow (hillslope) and deep (regional) groundwater travel times by comparing numerical simulations of travel time distributions, referred to as "dynamic model", with corresponding KPA computations for three different real catchment case studies in Sweden. KPA uses basic structural and hydrological data to compute transient water travel time (forward mode) and age (backward mode) distributions at the catchment outlet. Longitudinal and morphological dispersion components are reflected in KPA computations by assuming an effective Peclet number and topographically driven pathway length distributions, respectively. Numerical simulations of advective travel times are obtained by means of particle tracking using the fully-integrated flow model MIKE SHE. The comparison of computed cumulative distribution functions of travel times shows significant influence of morphological dispersion and groundwater recharge rate on the compatibility of the "kinematic pathway" and "dynamic" models. Zones of high recharge rate in "dynamic" models are associated with topographically driven groundwater flow paths to adjacent discharge zones, e.g. rivers and lakes, through relatively shallow pathway compartments. These zones exhibit more compatible behavior between "dynamic" and "kinematic pathway" models than the zones of low recharge rate. Interestingly, the travel time distributions of hillslope compartments remain almost unchanged with increasing recharge rates in the "dynamic" models. This robust "dynamic" model behavior suggests that flow path lengths and travel times in shallow

  9. Iterative Bayesian Estimation of Travel Times on Urban Arterials: Fusing Loop Detector and Probe Vehicle Data.

    PubMed

    Liu, Kai; Cui, Meng-Ying; Cao, Peng; Wang, Jiang-Bo

    2016-01-01

    On urban arterials, travel time estimation is challenging especially from various data sources. Typically, fusing loop detector data and probe vehicle data to estimate travel time is a troublesome issue while considering the data issue of uncertain, imprecise and even conflicting. In this paper, we propose an improved data fusing methodology for link travel time estimation. Link travel times are simultaneously pre-estimated using loop detector data and probe vehicle data, based on which Bayesian fusion is then applied to fuse the estimated travel times. Next, Iterative Bayesian estimation is proposed to improve Bayesian fusion by incorporating two strategies: 1) substitution strategy which replaces the lower accurate travel time estimation from one sensor with the current fused travel time; and 2) specially-designed conditions for convergence which restrict the estimated travel time in a reasonable range. The estimation results show that, the proposed method outperforms probe vehicle data based method, loop detector based method and single Bayesian fusion, and the mean absolute percentage error is reduced to 4.8%. Additionally, iterative Bayesian estimation performs better for lighter traffic flows when the variability of travel time is practically higher than other periods.

  10. Iterative Bayesian Estimation of Travel Times on Urban Arterials: Fusing Loop Detector and Probe Vehicle Data

    PubMed Central

    Cui, Meng-Ying; Cao, Peng; Wang, Jiang-Bo

    2016-01-01

    On urban arterials, travel time estimation is challenging especially from various data sources. Typically, fusing loop detector data and probe vehicle data to estimate travel time is a troublesome issue while considering the data issue of uncertain, imprecise and even conflicting. In this paper, we propose an improved data fusing methodology for link travel time estimation. Link travel times are simultaneously pre-estimated using loop detector data and probe vehicle data, based on which Bayesian fusion is then applied to fuse the estimated travel times. Next, Iterative Bayesian estimation is proposed to improve Bayesian fusion by incorporating two strategies: 1) substitution strategy which replaces the lower accurate travel time estimation from one sensor with the current fused travel time; and 2) specially-designed conditions for convergence which restrict the estimated travel time in a reasonable range. The estimation results show that, the proposed method outperforms probe vehicle data based method, loop detector based method and single Bayesian fusion, and the mean absolute percentage error is reduced to 4.8%. Additionally, iterative Bayesian estimation performs better for lighter traffic flows when the variability of travel time is practically higher than other periods. PMID:27362654

  11. Movement and collision of Lagrangian particles in hydro-turbine intakes: a case study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romero-Gomez, Pedro; Richmond, Marshall C.

    Studies of the stress/survival of migratory fish during downstream passage through operating hydro-turbines are normally conducted to determine the fish-friendliness of units. One field approach consisting of recording extreme hydraulics with autonomous sensors is largely sensitive to the conditions of sensor release and the initial trajectories at the turbine intake. This study applies a modelling strategy based on flow simulations using computational fluid dynamics and Lagrangian particle tracking to represent the travel of live fish and autonomous sensor devices through hydro-turbine intakes. For the flow field calculation, the simulations were conducted with both a time-averaging turbulence model and an eddy-resolvingmore » technique. For the particle tracking calculation, different modelling assumptions for turbulence forcing, mass formulation, buoyancy, and release condition were tested. The modelling assumptions are evaluated with respect to data sets collected using a laboratory physical model and an autonomous sensor device deployed at Ice Harbor Dam (Snake River, State of Washington, U.S.A.) at the same discharge and release point as in the present computer simulations. We found an acceptable agreement between the simulated results and observed data and discuss relevant features of Lagrangian particle movement that are critical in turbine design and in the experimental design of field studies.« less

  12. Travel-time sensitivity kernels in long-range propagation.

    PubMed

    Skarsoulis, E K; Cornuelle, B D; Dzieciuch, M A

    2009-11-01

    Wave-theoretic travel-time sensitivity kernels (TSKs) are calculated in two-dimensional (2D) and three-dimensional (3D) environments and their behavior with increasing propagation range is studied and compared to that of ray-theoretic TSKs and corresponding Fresnel-volumes. The differences between the 2D and 3D TSKs average out when horizontal or cross-range marginals are considered, which indicates that they are not important in the case of range-independent sound-speed perturbations or perturbations of large scale compared to the lateral TSK extent. With increasing range, the wave-theoretic TSKs expand in the horizontal cross-range direction, their cross-range extent being comparable to that of the corresponding free-space Fresnel zone, whereas they remain bounded in the vertical. Vertical travel-time sensitivity kernels (VTSKs)-one-dimensional kernels describing the effect of horizontally uniform sound-speed changes on travel-times-are calculated analytically using a perturbation approach, and also numerically, as horizontal marginals of the corresponding TSKs. Good agreement between analytical and numerical VTSKs, as well as between 2D and 3D VTSKs, is found. As an alternative method to obtain wave-theoretic sensitivity kernels, the parabolic approximation is used; the resulting TSKs and VTSKs are in good agreement with normal-mode results. With increasing range, the wave-theoretic VTSKs approach the corresponding ray-theoretic sensitivity kernels.

  13. Commuting to work: RN travel time to employment in rural and urban areas.

    PubMed

    Rosenberg, Marie-Claire; Corcoran, Sean P; Kovner, Christine; Brewer, Carol

    2011-02-01

    To investigate the variation in average daily travel time to work among registered nurses (RNs) living in urban, suburban, and rural areas. We examine how travel time varies across RN characteristics, job setting, and availability of local employment opportunities. Descriptive statistics and linear regression using a 5% sample from the 2000 Census and a longitudinal survey of newly licensed RNs (NLRN). Travel time for NLRN respondents was estimated using geographic information systems (GIS) software. In the NLRN, rural nurses and those living in small towns had significantly longer average commute times. Young married RNs and RNs with children also tended to have longer commute times, as did RNs employed by hospitals. The findings indicate that travel time to work varies significantly across locale types. Further research is needed to understand whether and to what extent lengthy commute times impact RN workforce needs in rural and urban areas.

  14. Extreme Lagrangian acceleration in confined turbulent flow.

    PubMed

    Kadoch, Benjamin; Bos, Wouter J T; Schneider, Kai

    2008-05-09

    A Lagrangian study of two-dimensional turbulence for two different geometries, a periodic and a confined circular geometry, is presented to investigate the influence of solid boundaries on the Lagrangian dynamics. It is found that the Lagrangian acceleration is even more intermittent in the confined domain than in the periodic domain. The flatness of the Lagrangian acceleration as a function of the radius shows that the influence of the wall on the Lagrangian dynamics becomes negligible in the center of the domain, and it also reveals that the wall is responsible for the increased intermittency. The transition in the Lagrangian statistics between this region, not directly influenced by the walls, and a critical radius which defines a Lagrangian boundary layer is shown to be very sharp with a sudden increase of the acceleration flatness from about 5 to about 20.

  15. Seakeeping with the semi-Lagrangian particle finite element method

    NASA Astrophysics Data System (ADS)

    Nadukandi, Prashanth; Servan-Camas, Borja; Becker, Pablo Agustín; Garcia-Espinosa, Julio

    2017-07-01

    The application of the semi-Lagrangian particle finite element method (SL-PFEM) for the seakeeping simulation of the wave adaptive modular vehicle under spray generating conditions is presented. The time integration of the Lagrangian advection is done using the explicit integration of the velocity and acceleration along the streamlines (X-IVAS). Despite the suitability of the SL-PFEM for the considered seakeeping application, small time steps were needed in the X-IVAS scheme to control the solution accuracy. A preliminary proposal to overcome this limitation of the X-IVAS scheme for seakeeping simulations is presented.

  16. Dye Tracer Tests to Determine Time-of-Travel in Iowa Streams, 1990-2006

    USGS Publications Warehouse

    Christiansen, Daniel E.

    2009-01-01

    Dye-tracing tests have been used by the U.S. Geological Survey, Iowa Water Science Center to determine the time-of-travel in selected Iowa streams from 1990-2006. Time-of-travel data are tabulated for 309 miles of stream reaches in four Iowa drainage basins: the Des Moines, Raccoon, Cedar, and Turkey Rivers. Time-of-travel was estimated in the Des Moines River, Fourmile Creek, North Raccoon River, Raccoon River, Cedar River, and Roberts Creek. Estimation of time-of-travel is important for environmental studies and in determining fate of agricultural constituents and chemical movement through a waterway. The stream reaches range in length from slightly more than 5 miles on Fourmile Creek, to more than 137 miles on the North Raccoon River. The travel times during the dye-tracer tests ranged from 7.5 hours on Fourmile Creek to as long as 200 hours on Roberts Creek; velocities ranged from less than 4.50 feet per minute on Roberts Creek to more than 113 feet per minute on the Cedar River.

  17. Implementation and Comparison of Acoustic Travel-Time Measurement Procedures for the Helioseismic and Magnetic Imager Time-Distance Helioseismology Pipeline

    NASA Technical Reports Server (NTRS)

    Couvidat, S.; Zhao, J.; Birch, A. C.; Kosovichev, A. G.; Duvall, T. L., Jr.; Parchevsky, K.; Scherrer, P. H.

    2009-01-01

    The Helioseismic and Magnetic Imager (HMI) instrument on board the Solar Dynamics Observatory (SDO) satellite is designed to produce high-resolution Doppler velocity maps of oscillations at the solar surface with high temporal cadence. To take advantage of these high-quality oscillation data, a time-distance helioseismology pipeline has been implemented at the Joint Science Operations Center (JSOC) at Stanford University. The aim of this pipeline is to generate maps of acoustic travel times from oscillations on the solar surface, and to infer subsurface 3D flow velocities and sound-speed perturbations. The wave travel times are measured from cross covariances of the observed solar oscillation signals. For implementation into the pipeline we have investigated three different travel-time definitions developed in time-distance helioseismology: a Gabor wavelet fitting (Kosovichev and Duvall, 1997), a minimization relative to a reference cross-covariance function (Gizon and Birch, 2002), and a linearized version of the minimization method (Gizon and Birch, 2004). Using Doppler velocity data from the Michelson Doppler Imager (MDI) instrument on board SOHO, we tested and compared these definitions for the mean and difference travel-time perturbations measured from reciprocal signals. Although all three procedures return similar travel times in a quiet Sun region, the method of Gizon and Birch (2004) gives travel times that are significantly different from the others in a magnetic (active) region. Thus, for the pipeline implementation we chose the procedures of Kosovichev and Duvall (1997) and Gizon and Birch (2002). We investigated the relationships among these three travel-time definitions, their sensitivities to fitting parameters, and estimated the random errors they produce

  18. Stochastic partial differential fluid equations as a diffusive limit of deterministic Lagrangian multi-time dynamics

    PubMed Central

    Cotter, C. J.

    2017-01-01

    In Holm (Holm 2015 Proc. R. Soc. A 471, 20140963. (doi:10.1098/rspa.2014.0963)), stochastic fluid equations were derived by employing a variational principle with an assumed stochastic Lagrangian particle dynamics. Here we show that the same stochastic Lagrangian dynamics naturally arises in a multi-scale decomposition of the deterministic Lagrangian flow map into a slow large-scale mean and a rapidly fluctuating small-scale map. We employ homogenization theory to derive effective slow stochastic particle dynamics for the resolved mean part, thereby obtaining stochastic fluid partial equations in the Eulerian formulation. To justify the application of rigorous homogenization theory, we assume mildly chaotic fast small-scale dynamics, as well as a centring condition. The latter requires that the mean of the fluctuating deviations is small, when pulled back to the mean flow. PMID:28989316

  19. An asymptotic-preserving Lagrangian algorithm for the time-dependent anisotropic heat transport equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chacon, Luis; del-Castillo-Negrete, Diego; Hauck, Cory D.

    2014-09-01

    We propose a Lagrangian numerical algorithm for a time-dependent, anisotropic temperature transport equation in magnetized plasmas in the large guide field regime. The approach is based on an analytical integral formal solution of the parallel (i.e., along the magnetic field) transport equation with sources, and it is able to accommodate both local and non-local parallel heat flux closures. The numerical implementation is based on an operator-split formulation, with two straightforward steps: a perpendicular transport step (including sources), and a Lagrangian (field-line integral) parallel transport step. Algorithmically, the first step is amenable to the use of modern iterative methods, while themore » second step has a fixed cost per degree of freedom (and is therefore scalable). Accuracy-wise, the approach is free from the numerical pollution introduced by the discrete parallel transport term when the perpendicular to parallel transport coefficient ratio X ⊥ /X ∥ becomes arbitrarily small, and is shown to capture the correct limiting solution when ε = X⊥L 2 ∥/X1L 2 ⊥ → 0 (with L∥∙ L⊥ , the parallel and perpendicular diffusion length scales, respectively). Therefore, the approach is asymptotic-preserving. We demonstrate the capabilities of the scheme with several numerical experiments with varying magnetic field complexity in two dimensions, including the case of transport across a magnetic island.« less

  20. Transport induced by mean-eddy interaction: I. Theory, and relation to Lagrangian lobe dynamics

    NASA Astrophysics Data System (ADS)

    Ide, Kayo; Wiggins, Stephen

    2015-02-01

    In this paper we develop a method for the estimation of Transport Induced by the Mean-Eddy interaction (TIME) in two-dimensional unsteady flows. The method is based on the dynamical systems approach to fluid transport and can be viewed as a hybrid combination of Lagrangian and Eulerian methods. The (Eulerian) boundaries across which we consider (Lagrangian) transport are kinematically defined by appropriately chosen streamlines of the mean flow. By evaluating the impact of the mean-eddy interaction on transport, the TIME method can be used as a diagnostic tool for transport processes that occur during a specified time interval along a specified boundary segment. We introduce two types of TIME functions: one that quantifies the accumulation of flow properties and another that measures the displacement of the transport geometry. The spatial geometry of transport is described by the so-called pseudo-lobes, and temporal evolution of transport by their dynamics. In the case where the TIME functions are evaluated along a separatrix, the pseudo-lobes have a relationship to the lobes of Lagrangian transport theory. In fact, one of the TIME functions is identical to the Melnikov function that is used to measure the distance, at leading order in a small parameter, between the two invariant manifolds that define the Lagrangian lobes. We contrast the similarities and differences between the TIME and Lagrangian lobe dynamics in detail. An application of the TIME method is carried out for inter-gyre transport in the wind-driven oceanic circulation model and a comparison with the Lagrangian transport theory is made.

  1. Future decision-making without episodic mental time travel.

    PubMed

    Kwan, Donna; Craver, Carl F; Green, Leonard; Myerson, Joel; Boyer, Pascal; Rosenbaum, R Shayna

    2012-06-01

    Deficits in episodic memory are associated with deficits in the ability to imagine future experiences (i.e., mental time travel). We show that K.C., a person with episodic amnesia and an inability to imagine future experiences, nonetheless systematically discounts the value of future rewards, and his discounting is within the range of controls in terms of both rate and consistency. Because K.C. is neither able to imagine personal uses for the rewards nor provide a rationale for selecting larger future rewards over smaller current rewards, this study demonstrates a dissociation between imagining and making decisions involving the future. Thus, although those capable of mental time travel may use it in making decisions about future rewards, these results demonstrate that it is not required for such decisions. Copyright © 2011 Wiley Periodicals, Inc.

  2. Vorticity and symplecticity in multi-symplectic, Lagrangian gas dynamics

    NASA Astrophysics Data System (ADS)

    Webb, G. M.; Anco, S. C.

    2016-02-01

    The Lagrangian, multi-dimensional, ideal, compressible gas dynamic equations are written in a multi-symplectic form, in which the Lagrangian fluid labels, m i (the Lagrangian mass coordinates) and time t are the independent variables, and in which the Eulerian position of the fluid element {x}={x}({m},t) and the entropy S=S({m},t) are the dependent variables. Constraints in the variational principle are incorporated by means of Lagrange multipliers. The constraints are: the entropy advection equation S t = 0, the Lagrangian map equation {{x}}t={u} where {u} is the fluid velocity, and the mass continuity equation which has the form J=τ where J={det}({x}{ij}) is the Jacobian of the Lagrangian map in which {x}{ij}=\\partial {x}i/\\partial {m}j and τ =1/ρ is the specific volume of the gas. The internal energy per unit volume of the gas \\varepsilon =\\varepsilon (ρ ,S) corresponds to a non-barotropic gas. The Lagrangian is used to define multi-momenta, and to develop de Donder-Weyl Hamiltonian equations. The de Donder-Weyl equations are cast in a multi-symplectic form. The pullback conservation laws and the symplecticity conservation laws are obtained. One class of symplecticity conservation laws give rise to vorticity and potential vorticity type conservation laws, and another class of symplecticity laws are related to derivatives of the Lagrangian energy conservation law with respect to the Lagrangian mass coordinates m i . We show that the vorticity-symplecticity laws can be derived by a Lie dragging method, and also by using Noether’s second theorem and a fluid relabelling symmetry which is a divergence symmetry of the action. We obtain the Cartan-Poincaré form describing the equations and we discuss a set of differential forms representing the equation system.

  3. "Lagrangian" for a Non-Lagrangian Field Theory with N=2 Supersymmetry.

    PubMed

    Gadde, Abhijit; Razamat, Shlomo S; Willett, Brian

    2015-10-23

    We suggest that at least some of the strongly coupled N=2 quantum field theories in 4D can have a nonconformal N=1 Lagrangian description flowing to them at low energies. In particular, we construct such a description for the N=2 rank one superconformal field theory with E(6) flavor symmetry, for which a Lagrangian description was previously unavailable. We utilize this description to compute several supersymmetric partition functions.

  4. Lagrangian acceleration statistics in a turbulent channel flow

    NASA Astrophysics Data System (ADS)

    Stelzenmuller, Nickolas; Polanco, Juan Ignacio; Vignal, Laure; Vinkovic, Ivana; Mordant, Nicolas

    2017-05-01

    Lagrangian acceleration statistics in a fully developed turbulent channel flow at Reτ=1440 are investigated, based on tracer particle tracking in experiments and direct numerical simulations. The evolution with wall distance of the Lagrangian velocity and acceleration time scales is analyzed. Dependency between acceleration components in the near-wall region is described using cross-correlations and joint probability density functions. The strong streamwise coherent vortices typical of wall-bounded turbulent flows are shown to have a significant impact on the dynamics. This results in a strong anisotropy at small scales in the near-wall region that remains present in most of the channel. Such statistical properties may be used as constraints in building advanced Lagrangian stochastic models to predict the dispersion and mixing of chemical components for combustion or environmental studies.

  5. Lorentz Invariance of Gravitational Lagrangians in the Space of Reference Frames

    NASA Astrophysics Data System (ADS)

    Cognola, G.

    1980-06-01

    The recently proposed theories of gravitation in the space of reference frames S are based on a Lagrangian invariant with respect to the homogeneous Lorentz group. However, in theories of this kind, the Lorentz invariance is not a necessary consequence of some physical principles, as in the theories formulated in space-time, but rather a purely esthetic request. In the present paper, we give a systematic method for the construction of gravitational theories in the space S, without assuming a priori the Lorentz invariance of the Lagrangian. The Einstein-Cartan equations of gravitation are obtained requiring only that the Lagrangian is invariant under proper rotations and has particular transformation properties under space reflections and space-time dilatations

  6. Application of travel time information for traffic management.

    DOT National Transportation Integrated Search

    2012-03-01

    This report summarizes findings and implementations of probe vehicle data collection based on Bluetooth MAC address matching : technology. Probe vehicle travel time data are studied in the following field deployment case studies: analysis of traffic ...

  7. Relative Travel Time Tomography for East Asia

    NASA Astrophysics Data System (ADS)

    Chang, S. J.; CHO, S.

    2016-12-01

    Japan island region is one of the most seismically active region in the world. As a large number of earthquakes have recently occurred along circum-Pacific belt called the ring of fire, concern over earthquakes is increasing in South Korea close to Japan. In this study, we perform seismic imaging based on relative S-wave travel-times to examine S-wave velocity upper mantle structure of East Asia. We used teleseismic events recorded at the Korea Institute of Geoscience and Mineral Resources (KIGAM) network and F-net network operated by the National Research Institute for Earth Science and Disaster Prevention (NIED). Relative travel-time residuals were obtained by a multi-channel cross-correlation method designed to automatically determine accurate relative phase arrival times. The resulting images show high-velocity anomalies along East and South side of Japan island region. These anomalies may indicate subducting Pacific and Philippine Sea plates, respectively. The velocity structure beneath southwest Japan is revealed very complex because the two slabs interact with each other there. Velocity structure of East Asia is useful to understand the tectonic evolution and the mechanism of earthquakes that occur in this region.

  8. Extended Lagrangian Excited State Molecular Dynamics

    DOE PAGES

    Bjorgaard, Josiah August; Sheppard, Daniel Glen; Tretiak, Sergei; ...

    2018-01-09

    In this work, an extended Lagrangian framework for excited state molecular dynamics (XL-ESMD) using time-dependent self-consistent field theory is proposed. The formulation is a generalization of the extended Lagrangian formulations for ground state Born–Oppenheimer molecular dynamics [Phys. Rev. Lett. 2008 100, 123004]. The theory is implemented, demonstrated, and evaluated using a time-dependent semiempirical model, though it should be generally applicable to ab initio theory. The simulations show enhanced energy stability and a significantly reduced computational cost associated with the iterative solutions of both the ground state and the electronically excited states. Relaxed convergence criteria can therefore be used both formore » the self-consistent ground state optimization and for the iterative subspace diagonalization of the random phase approximation matrix used to calculate the excited state transitions. In conclusion, the XL-ESMD approach is expected to enable numerically efficient excited state molecular dynamics for such methods as time-dependent Hartree–Fock (TD-HF), Configuration Interactions Singles (CIS), and time-dependent density functional theory (TD-DFT).« less

  9. Extended Lagrangian Excited State Molecular Dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bjorgaard, Josiah August; Sheppard, Daniel Glen; Tretiak, Sergei

    In this work, an extended Lagrangian framework for excited state molecular dynamics (XL-ESMD) using time-dependent self-consistent field theory is proposed. The formulation is a generalization of the extended Lagrangian formulations for ground state Born–Oppenheimer molecular dynamics [Phys. Rev. Lett. 2008 100, 123004]. The theory is implemented, demonstrated, and evaluated using a time-dependent semiempirical model, though it should be generally applicable to ab initio theory. The simulations show enhanced energy stability and a significantly reduced computational cost associated with the iterative solutions of both the ground state and the electronically excited states. Relaxed convergence criteria can therefore be used both formore » the self-consistent ground state optimization and for the iterative subspace diagonalization of the random phase approximation matrix used to calculate the excited state transitions. In conclusion, the XL-ESMD approach is expected to enable numerically efficient excited state molecular dynamics for such methods as time-dependent Hartree–Fock (TD-HF), Configuration Interactions Singles (CIS), and time-dependent density functional theory (TD-DFT).« less

  10. A Quantitative Analysis of the Relationship Between Radiation Therapy Use and Travel Time.

    PubMed

    Liu, Emma; Santibáñez, Pablo; Puterman, Martin L; Weber, Leah; Ma, Xiang; Sauré, Antoine; Olivotto, Ivo A; Halperin, Ross; French, John; Tyldesley, Scott

    2015-11-01

    To model and quantify the relationship between radiation therapy (RT) use and travel time to RT services. Population-based registries and databases were used to identify both incident cancer patient and patients receiving RT within 1 year of diagnosis (RT1y) in British Columbia, Canada, between 1992 and 2011. The effects of age, gender, diagnosis year, income, prevailing wait time, and travel duration for RT on RT1y were assessed. Significant factors from univariate analyses were included in a multivariable logistic regression model. The shape of the travel time-RT1y curve was represented by generalized additive and segmented regression models. Analyses were conducted for breast, lung, and genitourinary cancer separately and for all cancer sites combined. After adjustment for age, gender, diagnosis year, income, and prevailing wait times, increasing travel time to the closest RT facility had a negative impact RT1y. The shape of the travel time-RT1y curve varied with cancer type. For breast cancer, the odds of RT1y were constant for the first 2 driving hours and decreased at 17% per hour thereafter. For lung cancer, the odds of RT1y decreased by 16% after 20 minutes and then decreased at 6% per hour. Genitourinary cancer RT1y was relatively independent of travel time. For all cancer sites combined, the odds of RT1y were constant within the first 2 driving hours and decreased at 7% per hour thereafter. Travel time to receive RT has a different impact on RT1y for different tumor sites. The results provide evidence-based insights for the configuration of catchment areas for new and existing cancer centers providing RT. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Bluetooth-based travel time/speed measuring systems development.

    DOT National Transportation Integrated Search

    2010-06-01

    Agencies in the Houston region have traditionally used toll tag readers to provide travel times on : freeways and High Occupancy Vehicle (HOV) lanes, but these systems require large amounts of costly and : physically invasive infrastructure. Bluetoot...

  12. Innovative methods for calculation of freeway travel time using limited data : final report.

    DOT National Transportation Integrated Search

    2008-01-01

    Description: Travel time estimations created by processing of simulated freeway loop detector data using proposed method have been compared with travel times reported from VISSIM model. An improved methodology was proposed to estimate freeway corrido...

  13. Bi-criteria travelling salesman subtour problem with time threshold

    NASA Astrophysics Data System (ADS)

    Kumar Thenepalle, Jayanth; Singamsetty, Purusotham

    2018-03-01

    This paper deals with the bi-criteria travelling salesman subtour problem with time threshold (BTSSP-T), which comes from the family of the travelling salesman problem (TSP) and is NP-hard in the strong sense. The problem arises in several application domains, mainly in routing and scheduling contexts. Here, the model focuses on two criteria: total travel distance and gains attained. The BTSSP-T aims to determine a subtour that starts and ends at the same city and visits a subset of cities at a minimum travel distance with maximum gains, such that the time spent on the tour does not exceed the predefined time threshold. A zero-one integer-programming problem is adopted to formulate this model with all practical constraints, and it includes a finite set of feasible solutions (one for each tour). Two algorithms, namely, the Lexi-Search Algorithm (LSA) and the Tabu Search (TS) algorithm have been developed to solve the BTSSP-T problem. The proposed LSA implicitly enumerates the feasible patterns and provides an efficient solution with backtracking, whereas the TS, which is metaheuristic, will give the better approximate solution. A numerical example is demonstrated in order to understand the search mechanism of the LSA. Numerical experiments are carried out in the MATLAB environment, on the different benchmark instances available in the TSPLIB domain as well as on randomly generated test instances. The experimental results show that the proposed LSA works better than the TS algorithm in terms of solution quality and, computationally, both LSA and TS are competitive.

  14. Generalized extended Lagrangian Born-Oppenheimer molecular dynamics

    DOE PAGES

    Niklasson, Anders M. N.; Cawkwell, Marc J.

    2014-10-29

    Extended Lagrangian Born-Oppenheimer molecular dynamics based on Kohn-Sham density functional theory is generalized in the limit of vanishing self-consistent field optimization prior to the force evaluations. The equations of motion are derived directly from the extended Lagrangian under the condition of an adiabatic separation between the nuclear and the electronic degrees of freedom. We show how this separation is automatically fulfilled and system independent. The generalized equations of motion require only one diagonalization per time step and are applicable to a broader range of materials with improved accuracy and stability compared to previous formulations.

  15. Measurement and evaluation of transit travel time reliability

    DOT National Transportation Integrated Search

    2011-01-01

    Transportation system customers need consistency in their daily travel times to enable them to plan their daily : activities, whether that is a commuter on their way to work, a company setting up delivery schedules for justintime : manufacturin...

  16. Estimating reaction rate coefficients within a travel-time modeling framework.

    PubMed

    Gong, R; Lu, C; Wu, W-M; Cheng, H; Gu, B; Watson, D; Jardine, P M; Brooks, S C; Criddle, C S; Kitanidis, P K; Luo, J

    2011-01-01

    A generalized, efficient, and practical approach based on the travel-time modeling framework is developed to estimate in situ reaction rate coefficients for groundwater remediation in heterogeneous aquifers. The required information for this approach can be obtained by conducting tracer tests with injection of a mixture of conservative and reactive tracers and measurements of both breakthrough curves (BTCs). The conservative BTC is used to infer the travel-time distribution from the injection point to the observation point. For advection-dominant reactive transport with well-mixed reactive species and a constant travel-time distribution, the reactive BTC is obtained by integrating the solutions to advective-reactive transport over the entire travel-time distribution, and then is used in optimization to determine the in situ reaction rate coefficients. By directly working on the conservative and reactive BTCs, this approach avoids costly aquifer characterization and improves the estimation for transport in heterogeneous aquifers which may not be sufficiently described by traditional mechanistic transport models with constant transport parameters. Simplified schemes are proposed for reactive transport with zero-, first-, nth-order, and Michaelis-Menten reactions. The proposed approach is validated by a reactive transport case in a two-dimensional synthetic heterogeneous aquifer and a field-scale bioremediation experiment conducted at Oak Ridge, Tennessee. The field application indicates that ethanol degradation for U(VI)-bioremediation is better approximated by zero-order reaction kinetics than first-order reaction kinetics. Copyright © 2010 The Author(s). Journal compilation © 2010 National Ground Water Association.

  17. Estimating Reaction Rate Coefficients Within a Travel-Time Modeling Framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gong, R; Lu, C; Luo, Jian

    A generalized, efficient, and practical approach based on the travel-time modeling framework is developed to estimate in situ reaction rate coefficients for groundwater remediation in heterogeneous aquifers. The required information for this approach can be obtained by conducting tracer tests with injection of a mixture of conservative and reactive tracers and measurements of both breakthrough curves (BTCs). The conservative BTC is used to infer the travel-time distribution from the injection point to the observation point. For advection-dominant reactive transport with well-mixed reactive species and a constant travel-time distribution, the reactive BTC is obtained by integrating the solutions to advective-reactive transportmore » over the entire travel-time distribution, and then is used in optimization to determine the in situ reaction rate coefficients. By directly working on the conservative and reactive BTCs, this approach avoids costly aquifer characterization and improves the estimation for transport in heterogeneous aquifers which may not be sufficiently described by traditional mechanistic transport models with constant transport parameters. Simplified schemes are proposed for reactive transport with zero-, first-, nth-order, and Michaelis-Menten reactions. The proposed approach is validated by a reactive transport case in a two-dimensional synthetic heterogeneous aquifer and a field-scale bioremediation experiment conducted at Oak Ridge, Tennessee. The field application indicates that ethanol degradation for U(VI)-bioremediation is better approximated by zero-order reaction kinetics than first-order reaction kinetics.« less

  18. An Extended Lagrangian Method

    NASA Technical Reports Server (NTRS)

    Liou, Meng-Sing

    1995-01-01

    A unique formulation of describing fluid motion is presented. The method, referred to as 'extended Lagrangian method,' is interesting from both theoretical and numerical points of view. The formulation offers accuracy in numerical solution by avoiding numerical diffusion resulting from mixing of fluxes in the Eulerian description. The present method and the Arbitrary Lagrangian-Eulerian (ALE) method have a similarity in spirit-eliminating the cross-streamline numerical diffusion. For this purpose, we suggest a simple grid constraint condition and utilize an accurate discretization procedure. This grid constraint is only applied to the transverse cell face parallel to the local stream velocity, and hence our method for the steady state problems naturally reduces to the streamline-curvature method, without explicitly solving the steady stream-coordinate equations formulated a priori. Unlike the Lagrangian method proposed by Loh and Hui which is valid only for steady supersonic flows, the present method is general and capable of treating subsonic flows and supersonic flows as well as unsteady flows, simply by invoking in the same code an appropriate grid constraint suggested in this paper. The approach is found to be robust and stable. It automatically adapts to flow features without resorting to clustering, thereby maintaining rather uniform grid spacing throughout and large time step. Moreover, the method is shown to resolve multi-dimensional discontinuities with a high level of accuracy, similar to that found in one-dimensional problems.

  19. Assessing segment- and corridor-based travel-time reliability on urban freeways : final report.

    DOT National Transportation Integrated Search

    2016-09-01

    Travel time and its reliability are intuitive performance measures for freeway traffic operations. The objective of this project was to quantify segment-based and corridor-based travel time reliability measures on urban freeways. To achieve this obje...

  20. Lagrangian averaging with geodesic mean

    NASA Astrophysics Data System (ADS)

    Oliver, Marcel

    2017-11-01

    This paper revisits the derivation of the Lagrangian averaged Euler (LAE), or Euler-α equations in the light of an intrinsic definition of the averaged flow map as the geodesic mean on the volume-preserving diffeomorphism group. Under the additional assumption that first-order fluctuations are statistically isotropic and transported by the mean flow as a vector field, averaging of the kinetic energy Lagrangian of an ideal fluid yields the LAE Lagrangian. The derivation presented here assumes a Euclidean spatial domain without boundaries.

  1. Lagrangian averaging with geodesic mean.

    PubMed

    Oliver, Marcel

    2017-11-01

    This paper revisits the derivation of the Lagrangian averaged Euler (LAE), or Euler- α equations in the light of an intrinsic definition of the averaged flow map as the geodesic mean on the volume-preserving diffeomorphism group. Under the additional assumption that first-order fluctuations are statistically isotropic and transported by the mean flow as a vector field, averaging of the kinetic energy Lagrangian of an ideal fluid yields the LAE Lagrangian. The derivation presented here assumes a Euclidean spatial domain without boundaries.

  2. Using a numerical model to understand the connection between the ocean and acoustic travel-time measurements.

    PubMed

    Powell, Brian S; Kerry, Colette G; Cornuelle, Bruce D

    2013-10-01

    Measurements of acoustic ray travel-times in the ocean provide synoptic integrals of the ocean state between source and receiver. It is known that the ray travel-time is sensitive to variations in the ocean at the transmission time, but the sensitivity of the travel-time to spatial variations in the ocean prior to the acoustic transmission have not been quantified. This study examines the sensitivity of ray travel-time to the temporally and spatially evolving ocean state in the Philippine Sea using the adjoint of a numerical model. A one year series of five day backward integrations of the adjoint model quantify the sensitivity of travel-times to varying dynamics that can alter the travel-time of a 611 km ray by 200 ms. The early evolution of the sensitivities reveals high-mode internal waves that dissipate quickly, leaving the lowest three modes, providing a connection to variations in the internal tide generation prior to the sample time. They are also strongly sensitive to advective effects that alter density along the ray path. These sensitivities reveal how travel-time measurements are affected by both nearby and distant waters. Temporal nonlinearity of the sensitivities suggests that prior knowledge of the ocean state is necessary to exploit the travel-time observations.

  3. DOTD support for UTC project : travel time estimation using bluetooth, [research project capsule].

    DOT National Transportation Integrated Search

    2013-10-01

    Travel time estimates are useful tools for measuring congestion in an urban area. Current : practice involves using probe vehicles or video cameras to measure travel time, but this is a laborintensive and expensive means of obtaining the information....

  4. Travel Times for Screening Mammography: Impact of Geographic Expansion by a Large Academic Health System.

    PubMed

    Rosenkrantz, Andrew B; Liang, Yu; Duszak, Richard; Recht, Michael P

    2017-09-01

    This study aims to assess the impact of off-campus facility expansion by a large academic health system on patient travel times for screening mammography. Screening mammograms performed from 2013 to 2015 and associated patient demographics were identified using the NYU Langone Medical Center Enterprise Data Warehouse. During this time, the system's number of mammography facilities increased from 6 to 19, reflecting expansion beyond Manhattan throughout the New York metropolitan region. Geocoding software was used to estimate driving times from patients' homes to imaging facilities. For 147,566 screening mammograms, the mean estimated patient travel time was 19.9 ± 15.2 minutes. With facility expansion, travel times declined significantly (P < 0.001) from 26.8 ± 18.9 to 18.5 ± 13.3 minutes (non-Manhattan residents: from 31.4 ± 20.3 to 18.7 ± 13.6). This decline occurred consistently across subgroups of patient age, race, ethnicity, payer status, and rurality, leading to decreased variation in travel times between such subgroups. However, travel times to pre-expansion facilities remained stable (initial: 26.8 ± 18.9 minutes, final: 26.7 ± 18.6 minutes). Among women undergoing mammography before and after expansion, travel times were shorter for the postexpansion mammogram in only 6.3%, but this rate varied significantly (all P < 0.05) by certain demographic factors (higher in younger and non-Hispanic patients) and was as high as 18.2%-18.9% of patients residing in regions with the most active expansion. Health system mammography facility geographic expansion can improve average patient travel burden and reduce travel time variation among sociodemographic populations. Nonetheless, existing patients strongly tend to return to established facilities despite potentially shorter travel time locations, suggesting strong site loyalty. Variation in travel times likely relates to various factors other than facility proximity

  5. The nitrate response of a lowland catchment and groundwater travel times

    NASA Astrophysics Data System (ADS)

    van der Velde, Ype; Rozemeijer, Joachim; de Rooij, Gerrit; van Geer, Frans

    2010-05-01

    Intensive agriculture in lowland catchments causes eutrophication of downstream waters. To determine effective measures to reduce the nutrient loads from upstream lowland catchments, we need to understand the origin of long-term and daily variations in surface water nutrient concentrations. Surface water concentrations are often linked to travel time distributions of water passing through the saturated and unsaturated soil of the contributing catchment. This distribution represents the contact time over which sorption, desorption and degradation takes place. However, travel time distributions are strongly influenced by processes like tube drain flow, overland flow and the dynamics of draining ditches and streams and therefore exhibit strong daily and seasonal variations. The study we will present is situated in the 6.6 km2 Hupsel brook catchment in The Netherlands. In this catchment nitrate and chloride concentrations have been intensively monitored for the past 26 years under steadily decreasing agricultural inputs. We described the complicated dynamics of subsurface water fluxes as streams, ditches and tube drains locally switch between active or passive depending on the ambient groundwater level by a groundwater model with high spatial and temporal resolutions. A transient particle tracking approach is used to derive a unique catchment-scale travel time distribution for each day during the 26 year model period. These transient travel time distributions are not smooth distributions, but distributions that are strongly spiked reflecting the contribution of past rainfall events to the current discharge. We will show that a catchment-scale mass response function approach that only describes catchment-scale mixing and degradation suffices to accurately reproduce observed chloride and nitrate surface water concentrations as long as the mass response functions include the dynamics of travel time distributions caused by the highly variable connectivity of the surface

  6. Lagrangian statistics and flow topology in forced two-dimensional turbulence.

    PubMed

    Kadoch, B; Del-Castillo-Negrete, D; Bos, W J T; Schneider, K

    2011-03-01

    A study of the relationship between Lagrangian statistics and flow topology in fluid turbulence is presented. The topology is characterized using the Weiss criterion, which provides a conceptually simple tool to partition the flow into topologically different regions: elliptic (vortex dominated), hyperbolic (deformation dominated), and intermediate (turbulent background). The flow corresponds to forced two-dimensional Navier-Stokes turbulence in doubly periodic and circular bounded domains, the latter with no-slip boundary conditions. In the double periodic domain, the probability density function (pdf) of the Weiss field exhibits a negative skewness consistent with the fact that in periodic domains the flow is dominated by coherent vortex structures. On the other hand, in the circular domain, the elliptic and hyperbolic regions seem to be statistically similar. We follow a Lagrangian approach and obtain the statistics by tracking large ensembles of passively advected tracers. The pdfs of residence time in the topologically different regions are computed introducing the Lagrangian Weiss field, i.e., the Weiss field computed along the particles' trajectories. In elliptic and hyperbolic regions, the pdfs of the residence time have self-similar algebraic decaying tails. In contrast, in the intermediate regions the pdf has exponential decaying tails. The conditional pdfs (with respect to the flow topology) of the Lagrangian velocity exhibit Gaussian-like behavior in the periodic and in the bounded domains. In contrast to the freely decaying turbulence case, the conditional pdfs of the Lagrangian acceleration in forced turbulence show a comparable level of intermittency in both the periodic and the bounded domains. The conditional pdfs of the Lagrangian curvature are characterized, in all cases, by self-similar power-law behavior with a decay exponent of order -2.

  7. Implementation and testing of the travel time prediction system (TIPS) : final report, May 2001.

    DOT National Transportation Integrated Search

    2001-05-01

    The Travel Time Prediction System (TIPS) is a portable automated system for predicting and displaying travel time for motorists in advance of and through freeway construction work zones, on a real-time basis. It collects real-time traffic flow data u...

  8. Implementation and testing of the travel time prediction system (TIPS) : executive summary, May 2001.

    DOT National Transportation Integrated Search

    2001-05-01

    The Travel Time Prediction System (TIPS) is a portable automated system for predicting and displaying travel time for motorists in advance of and through freeway construction work zones, on a real-time basis. It collects real-time traffic flow data u...

  9. Variation in Patients' Travel Times among Imaging Examination Types at a Large Academic Health System.

    PubMed

    Rosenkrantz, Andrew B; Liang, Yu; Duszak, Richard; Recht, Michael P

    2017-08-01

    Patients' willingness to travel farther distances for certain imaging services may reflect their perceptions of the degree of differentiation of such services. We compare patients' travel times for a range of imaging examinations performed across a large academic health system. We searched the NYU Langone Medical Center Enterprise Data Warehouse to identify 442,990 adult outpatient imaging examinations performed over a recent 3.5-year period. Geocoding software was used to estimate typical driving times from patients' residences to imaging facilities. Variation in travel times was assessed among examination types. The mean expected travel time was 29.2 ± 20.6 minutes, but this varied significantly (p < 0.001) among examination types. By modality, travel times were shortest for ultrasound (26.8 ± 18.9) and longest for positron emission tomography-computed tomography (31.9 ± 21.5). For magnetic resonance imaging, travel times were shortest for musculoskeletal extremity (26.4 ± 19.2) and spine (28.6 ± 21.0) examinations and longest for prostate (35.9 ± 25.6) and breast (32.4 ± 22.3) examinations. For computed tomography, travel times were shortest for a range of screening examinations [colonography (25.5 ± 20.8), coronary artery calcium scoring (26.1 ± 19.2), and lung cancer screening (26.4 ± 14.9)] and longest for angiography (32.0 ± 22.6). For ultrasound, travel times were shortest for aortic aneurysm screening (22.3 ± 18.4) and longest for breast (30.1 ± 19.2) examinations. Overall, men (29.9 ± 21.6) had longer (p < 0.001) travel times than women (27.8 ± 20.3); this difference persisted for each modality individually (p ≤ 0.006). Patients' willingness to travel longer times for certain imaging examination types (particularly breast and prostate imaging) supports the role of specialized services in combating potential commoditization of imaging services. Disparities in travel

  10. Existence and Stability of Traveling Waves for Degenerate Reaction-Diffusion Equation with Time Delay

    NASA Astrophysics Data System (ADS)

    Huang, Rui; Jin, Chunhua; Mei, Ming; Yin, Jingxue

    2018-01-01

    This paper deals with the existence and stability of traveling wave solutions for a degenerate reaction-diffusion equation with time delay. The degeneracy of spatial diffusion together with the effect of time delay causes us the essential difficulty for the existence of the traveling waves and their stabilities. In order to treat this case, we first show the existence of smooth- and sharp-type traveling wave solutions in the case of c≥c^* for the degenerate reaction-diffusion equation without delay, where c^*>0 is the critical wave speed of smooth traveling waves. Then, as a small perturbation, we obtain the existence of the smooth non-critical traveling waves for the degenerate diffusion equation with small time delay τ >0 . Furthermore, we prove the global existence and uniqueness of C^{α ,β } -solution to the time-delayed degenerate reaction-diffusion equation via compactness analysis. Finally, by the weighted energy method, we prove that the smooth non-critical traveling wave is globally stable in the weighted L^1 -space. The exponential convergence rate is also derived.

  11. Existence and Stability of Traveling Waves for Degenerate Reaction-Diffusion Equation with Time Delay

    NASA Astrophysics Data System (ADS)

    Huang, Rui; Jin, Chunhua; Mei, Ming; Yin, Jingxue

    2018-06-01

    This paper deals with the existence and stability of traveling wave solutions for a degenerate reaction-diffusion equation with time delay. The degeneracy of spatial diffusion together with the effect of time delay causes us the essential difficulty for the existence of the traveling waves and their stabilities. In order to treat this case, we first show the existence of smooth- and sharp-type traveling wave solutions in the case of c≥c^* for the degenerate reaction-diffusion equation without delay, where c^*>0 is the critical wave speed of smooth traveling waves. Then, as a small perturbation, we obtain the existence of the smooth non-critical traveling waves for the degenerate diffusion equation with small time delay τ >0. Furthermore, we prove the global existence and uniqueness of C^{α ,β }-solution to the time-delayed degenerate reaction-diffusion equation via compactness analysis. Finally, by the weighted energy method, we prove that the smooth non-critical traveling wave is globally stable in the weighted L^1-space. The exponential convergence rate is also derived.

  12. Lagrangian averaging, nonlinear waves, and shock regularization

    NASA Astrophysics Data System (ADS)

    Bhat, Harish S.

    In this thesis, we explore various models for the flow of a compressible fluid as well as model equations for shock formation, one of the main features of compressible fluid flows. We begin by reviewing the variational structure of compressible fluid mechanics. We derive the barotropic compressible Euler equations from a variational principle in both material and spatial frames. Writing the resulting equations of motion requires certain Lie-algebraic calculations that we carry out in detail for expository purposes. Next, we extend the derivation of the Lagrangian averaged Euler (LAE-alpha) equations to the case of barotropic compressible flows. The derivation in this thesis involves averaging over a tube of trajectories etaepsilon centered around a given Lagrangian flow eta. With this tube framework, the LAE-alpha equations are derived by following a simple procedure: start with a given action, expand via Taylor series in terms of small-scale fluid fluctuations xi, truncate, average, and then model those terms that are nonlinear functions of xi. We then analyze a one-dimensional subcase of the general models derived above. We prove the existence of a large family of traveling wave solutions. Computing the dispersion relation for this model, we find it is nonlinear, implying that the equation is dispersive. We carry out numerical experiments that show that the model possesses smooth, bounded solutions that display interesting pattern formation. Finally, we examine a Hamiltonian partial differential equation (PDE) that regularizes the inviscid Burgers equation without the addition of standard viscosity. Here alpha is a small parameter that controls a nonlinear smoothing term that we have added to the inviscid Burgers equation. We show the existence of a large family of traveling front solutions. We analyze the initial-value problem and prove well-posedness for a certain class of initial data. We prove that in the zero-alpha limit, without any standard viscosity

  13. Real-time traveler information market assessment white paper.

    DOT National Transportation Integrated Search

    2010-02-22

    This report takes a multi-modal look at the lay of the land of the real-time traveler information : market in the United States. This includes identification and characterization of the gaps in the : domestic industry with respect to data cover...

  14. Screen time and passive school travel as independent predictors of cardiorespiratory fitness in youth.

    PubMed

    Sandercock, Gavin R H; Ogunleye, Ayodele A

    2012-05-01

    The most prevalent sedentary behaviours in children and adolescents are engagement with small screen media (screen-time) and passive travel (by motorised vehicle). The objective of this research was to assess the independence of these behaviours from one another and from physical activity as predictors of cardiorespiratory fitness in youth. We measured cardiorespiratory fitness in n=6819 10-16 year olds (53% male) who self-reported their physical activity (7-day recall) school travel and screen time habits. Travel was classified as active (walking, cycling) or passive; screen time as <2 h, 2-4 h or >4 h. The multivariate odds of being fit were higher in active travel (Boys: OR 1.32, 95% CI: 1.09-1.59; Girls: OR 1.46, 1.15-1.84) than in passive travel groups. Boys reporting low screen time were more likely to be fit than those reporting >4 h (OR 2.11, 95% CI: 1.68-2.63) as were girls (OR 1.66, 95% CI: 1.24-2.20). These odds remained significant after additionally controlling for physical activity. Passive travel and high screen time are independently associated with poor cardiorespiratory fitness in youth, and this relationship is independent of physical activity levels. A lifestyle involving high screen time and habitual passive school travel appears incompatible with healthful levels of cardiorespiratory fitness in youth. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Effects of a workplace travel plan intervention encouraging active travel to work: outcomes from a three-year time-series study.

    PubMed

    Petrunoff, N; Wen, L M; Rissel, C

    2016-06-01

    To evaluate the effects of a three-year workplace travel plan intervention on increasing active travel to work. A time-series study with staff was conducted in 2011 (n = 804), 2012 (n = 904), 2013 (n = 872) and 2014 (n = 687). A travel plan was implemented at a large, outer-suburban worksite in Sydney, Australia. Implementation was assessed by reviewing annual reports including travel plan actions and their status. Annual cross-sectional on-line surveys assessed primary outcomes which included change in the proportion of staff travelling to work via active modes. Multivariate logistic regression was used to adjust for confounders. Strategies to encourage active travel were partially implemented. An average survey response rate was 23% (n = 817). The proportion of staff travelling actively to work increased by 4%-6% across intervention years compared to the baseline, and this increase was significant in 2012 (P = 0.04) and 2013 (P = 0.003). Compared to baseline, after adjusting for distances staff lived from work staff had 33% (95% CI 1%-74%) greater odds of travelling to work via active modes in 2012, and 50% (95% CI 15%-96%) greater odds in 2013. There was no evidence of change in physical activity levels. A workplace travel plan which only included strategies to encourage active travel to work achieved small but significant increases in active travel. Workplace travel plans appear to be a promising way to increase active travel to work. Copyright © 2016 The Royal Society for Public Health. All rights reserved.

  16. A Quantitative Analysis of the Relationship Between Radiation Therapy Use and Travel Time

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Emma; Santibáñez, Pablo; Puterman, Martin L.

    Purpose: To model and quantify the relationship between radiation therapy (RT) use and travel time to RT services. Methods and Materials: Population-based registries and databases were used to identify both incident cancer patient and patients receiving RT within 1 year of diagnosis (RT1y) in British Columbia, Canada, between 1992 and 2011. The effects of age, gender, diagnosis year, income, prevailing wait time, and travel duration for RT on RT1y were assessed. Significant factors from univariate analyses were included in a multivariable logistic regression model. The shape of the travel time–RT1y curve was represented by generalized additive and segmented regression models. Analysesmore » were conducted for breast, lung, and genitourinary cancer separately and for all cancer sites combined. Results: After adjustment for age, gender, diagnosis year, income, and prevailing wait times, increasing travel time to the closest RT facility had a negative impact RT1y. The shape of the travel time–RT1y curve varied with cancer type. For breast cancer, the odds of RT1y were constant for the first 2 driving hours and decreased at 17% per hour thereafter. For lung cancer, the odds of RT1y decreased by 16% after 20 minutes and then decreased at 6% per hour. Genitourinary cancer RT1y was relatively independent of travel time. For all cancer sites combined, the odds of RT1y were constant within the first 2 driving hours and decreased at 7% per hour thereafter. Conclusions: Travel time to receive RT has a different impact on RT1y for different tumor sites. The results provide evidence-based insights for the configuration of catchment areas for new and existing cancer centers providing RT.« less

  17. METHOD OF ESTIMATING THE TRAVEL TIME OF NONINTERACTING SOLUTES THROUGH COMPACTED SOIL MATERIAL

    EPA Science Inventory

    The pollutant travel time through compacted soil material (i.e., when a pollutant introduced at the top first appears at the bottom) cannot be accurately predicted from the permeability (saturated hydraulic conductivity) alone. The travel time is also dependent on the effective p...

  18. Method of calculating tsunami travel times in the Andaman Sea region

    PubMed Central

    Visuthismajarn, Parichart; Tanavud, Charlchai; Robson, Mark G.

    2014-01-01

    A new model to calculate tsunami travel times in the Andaman Sea region has been developed. The model specifically provides more accurate travel time estimates for tsunamis propagating to Patong Beach on the west coast of Phuket, Thailand. More generally, the model provides better understanding of the influence of the accuracy and resolution of bathymetry data on the accuracy of travel time calculations. The dynamic model is based on solitary wave theory, and a lookup function is used to perform bilinear interpolation of bathymetry along the ray trajectory. The model was calibrated and verified using data from an echosounder record, tsunami photographs, satellite altimetry records, and eyewitness accounts of the tsunami on 26 December 2004. Time differences for 12 representative targets in the Andaman Sea and the Indian Ocean regions were calculated. The model demonstrated satisfactory time differences (<2 min/h), despite the use of low resolution bathymetry (ETOPO2v2). To improve accuracy, the dynamics of wave elevation and a velocity correction term must be considered, particularly for calculations in the nearshore region. PMID:25741129

  19. Method of calculating tsunami travel times in the Andaman Sea region.

    PubMed

    Kietpawpan, Monte; Visuthismajarn, Parichart; Tanavud, Charlchai; Robson, Mark G

    2008-07-01

    A new model to calculate tsunami travel times in the Andaman Sea region has been developed. The model specifically provides more accurate travel time estimates for tsunamis propagating to Patong Beach on the west coast of Phuket, Thailand. More generally, the model provides better understanding of the influence of the accuracy and resolution of bathymetry data on the accuracy of travel time calculations. The dynamic model is based on solitary wave theory, and a lookup function is used to perform bilinear interpolation of bathymetry along the ray trajectory. The model was calibrated and verified using data from an echosounder record, tsunami photographs, satellite altimetry records, and eyewitness accounts of the tsunami on 26 December 2004. Time differences for 12 representative targets in the Andaman Sea and the Indian Ocean regions were calculated. The model demonstrated satisfactory time differences (<2 min/h), despite the use of low resolution bathymetry (ETOPO2v2). To improve accuracy, the dynamics of wave elevation and a velocity correction term must be considered, particularly for calculations in the nearshore region.

  20. Intermittent Lagrangian velocities and accelerations in three-dimensional porous medium flow.

    PubMed

    Holzner, M; Morales, V L; Willmann, M; Dentz, M

    2015-07-01

    Intermittency of Lagrangian velocity and acceleration is a key to understanding transport in complex systems ranging from fluid turbulence to flow in porous media. High-resolution optical particle tracking in a three-dimensional (3D) porous medium provides detailed 3D information on Lagrangian velocities and accelerations. We find sharp transitions close to pore throats, and low flow variability in the pore bodies, which gives rise to stretched exponential Lagrangian velocity and acceleration distributions characterized by a sharp peak at low velocity, superlinear evolution of particle dispersion, and double-peak behavior in the propagators. The velocity distribution is quantified in terms of pore geometry and flow connectivity, which forms the basis for a continuous-time random-walk model that sheds light on the observed Lagrangian flow and transport behaviors.

  1. Spectral-clustering approach to Lagrangian vortex detection.

    PubMed

    Hadjighasem, Alireza; Karrasch, Daniel; Teramoto, Hiroshi; Haller, George

    2016-06-01

    One of the ubiquitous features of real-life turbulent flows is the existence and persistence of coherent vortices. Here we show that such coherent vortices can be extracted as clusters of Lagrangian trajectories. We carry out the clustering on a weighted graph, with the weights measuring pairwise distances of fluid trajectories in the extended phase space of positions and time. We then extract coherent vortices from the graph using tools from spectral graph theory. Our method locates all coherent vortices in the flow simultaneously, thereby showing high potential for automated vortex tracking. We illustrate the performance of this technique by identifying coherent Lagrangian vortices in several two- and three-dimensional flows.

  2. A new method to calibrate Lagrangian model with ASAR images for oil slick trajectory.

    PubMed

    Tian, Siyu; Huang, Xiaoxia; Li, Hongga

    2017-03-15

    Since Lagrangian model coefficients vary with different conditions, it is necessary to calibrate the model to obtain optimal coefficient combination for special oil spill accident. This paper focuses on proposing a new method to calibrate Lagrangian model with time series of Envisat ASAR images. Oil slicks extracted from time series images form a detected trajectory of special oil slick. Lagrangian model is calibrated by minimizing the difference between simulated trajectory and detected trajectory. mean center position distance difference (MCPD) and rotation difference (RD) of Oil slicks' or particles' standard deviational ellipses (SDEs) are calculated as two evaluations. The two parameters are taken to evaluate the performance of Lagrangian transport model with different coefficient combinations. This method is applied to Penglai 19-3 oil spill accident. The simulation result with calibrated model agrees well with related satellite observations. It is suggested the new method is effective to calibrate Lagrangian model. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Locating suppression resources by travel times to wildfires

    Treesearch

    Romain M. Mees

    1986-01-01

    Two mathematical models are given to determine the best locations for initial attack resources in terms of travel time: a linear programmingmodel and a statistical model. An example for the Clearwater National Forest in Idaho illustrates some of the differences between the two models.

  4. Influence of compressibility on the Lagrangian statistics of vorticity-strain-rate interactions.

    PubMed

    Danish, Mohammad; Sinha, Sawan Suman; Srinivasan, Balaji

    2016-07-01

    The objective of this study is to investigate the influence of compressibility on Lagrangian statistics of vorticity and strain-rate interactions. The Lagrangian statistics are extracted from "almost" time-continuous data sets of direct numerical simulations of compressible decaying isotropic turbulence by employing a cubic spline-based Lagrangian particle tracker. We study the influence of compressibility on Lagrangian statistics of alignment in terms of compressibility parameters-turbulent Mach number, normalized dilatation-rate, and flow topology. In comparison to incompressible turbulence, we observe that the presence of compressibility in a flow field weakens the alignment tendency of vorticity toward the largest strain-rate eigenvector. Based on the Lagrangian statistics of alignment conditioned on dilatation and topology, we find that the weakened tendency of alignment observed in compressible turbulence is because of a special group of fluid particles that have an initially negligible dilatation-rate and are associated with stable-focus-stretching topology.

  5. Effect of travel distance and time to radiotherapy on likelihood of receiving mastectomy.

    PubMed

    Goyal, Sharad; Chandwani, Sheenu; Haffty, Bruce G; Demissie, Kitaw

    2015-04-01

    Breast-conserving surgery (BCS) followed by adjuvant radiation therapy (RT) is the standard of care for women with early-stage breast cancer as an alternative to mastectomy. The purpose of this study was to examine the relationship between receipt of mastectomy and travel distance and time to RT facility in New Jersey (NJ). Data were collected from a cohort of 634 NJ women diagnosed with early-stage breast cancer. In patients receiving RT, the precise RT facility was used, whereas in patients not receiving RT, surgeons were contacted to determine the location of RT referral. Travel distance and time to RT facility from the patients' residential address were modeled separately using multiple binomial regression to examine their association with choice of surgery while adjusting for clinical and sociodemographic factors. Overall, 58.5 % patients underwent BCS with median travel distance to the radiation facility of 4.8 miles (vs. 6.6 miles for mastectomy) and median travel time of 12.0 min (vs. 15.0 min for mastectomy). Patients residing > 9.2 miles compared with ≤ 9.2 miles from radiation facility were 44 % more likely to receive mastectomy. Additionally, patients requiring > 19 min compared with ≤ 19 min of travel time were 36 % more likely to receive mastectomy. These data found that travel distance and time from RT facility act as barriers to undergoing BCS in women with early-stage breast cancer. Despite being in an urban region, a significant number of women in NJ with early-stage breast cancer did not receive BCS.

  6. Generalized Lagrangian coherent structures

    NASA Astrophysics Data System (ADS)

    Balasuriya, Sanjeeva; Ouellette, Nicholas T.; Rypina, Irina I.

    2018-06-01

    The notion of a Lagrangian Coherent Structure (LCS) is by now well established as a way to capture transient coherent transport dynamics in unsteady and aperiodic fluid flows that are known over finite time. We show that the concept of an LCS can be generalized to capture coherence in other quantities of interest that are transported by, but not fully locked to, the fluid. Such quantities include those with dynamic, biological, chemical, or thermodynamic relevance, such as temperature, pollutant concentration, vorticity, kinetic energy, plankton density, and so on. We provide a conceptual framework for identifying the Generalized Lagrangian Coherent Structures (GLCSs) associated with such evolving quantities. We show how LCSs can be seen as a special case within this framework, and provide an overarching discussion of various methods for identifying LCSs. The utility of this more general viewpoint is highlighted through a variety of examples. We also show that although LCSs approximate GLCSs in certain limiting situations under restrictive assumptions on how the velocity field affects the additional quantities of interest, LCSs are not in general sufficient to describe their coherent transport.

  7. Perinatal outcomes and travel time from home to hospital: Welsh data from 1995 to 2009.

    PubMed

    Paranjothy, Shantini; Watkins, W John; Rolfe, Kim; Adappa, Roshan; Gong, Yi; Dunstan, Frank; Kotecha, Sailesh

    2014-12-01

    To study the association between travel time from home to hospital and birth outcomes. For all registrable births to women resident in Wales (1995-2009), we calculated the travel time between the mother's residence and the postcode-based location for both the birth hospital and all hospitals with maternity services that were open. Using logistic regression, we obtained odds ratios for the association between travel time and each birth outcome, adjusted for confounders. In our analysis of 412 827 singleton births, for every 15-min increase in travel time to the birth hospital, there was an increased risk of early (n = 609; OR: 1.13; 95%CI: 1.07, 1.20) and late neonatal death (n = 251; OR: 1.15; 95%CI: 1.05, 1.26). Results for intrapartum stillbirth were inconclusive (n = 135; OR: 1.13; 95%CI: 0.98, 1.30). For the above-combined (n = 995) results, we get OR: 1.15, 95%CI: 1.09, 1.20. No association was found with travel time to the nearest hospital (OR: 1.01; 95%CI: 0.90, 1.13 per 15-min increase in travel time) for the composite outcome of intrapartum stillbirth and neonatal deaths. Longer travel time to the birth hospital was associated with increased risk of neonatal deaths, but there was no strong evidence of association with the geographical location of maternity services. ©2014 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.

  8. Impact of data source on travel time reliability assessment.

    DOT National Transportation Integrated Search

    2014-08-01

    Travel time reliability measures are becoming an increasingly important input to the mobility and : congestion management studies. In the case of Maryland State Highway Administration, reliability : measures are key elements in the agencys Annual ...

  9. Forecasting Future Sea Ice Conditions: A Lagrangian Approach

    DTIC Science & Technology

    2015-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Forecasting Future Sea Ice Conditions: A Lagrangian ...GCMs participating in IPCC AR5 agree with observed source region patterns from the satellite- derived dataset. 4- Compare Lagrangian ice... Lagrangian sea-ice back trajectories to estimate thermodynamic and dynamic (advection) ice loss. APPROACH We use a Lagrangian trajectory model to

  10. Approaching the Brachistochrone Using Inclined Planes--Striving for Shortest or Equal Travelling Times

    ERIC Educational Resources Information Center

    Theilmann, Florian

    2017-01-01

    The classical "brachistochrone" problem asks for the path on which a mobile point M just driven by its own gravity will travel in the shortest possible time between two given points "A" and "B." The resulting curve, the cycloid, will also be the "tautochrone" curve, i.e. the travelling time of the mobile…

  11. Modeling, implementation, and validation of arterial travel time reliability.

    DOT National Transportation Integrated Search

    2013-11-01

    Previous research funded by Florida Department of Transportation (FDOT) developed a method for estimating : travel time reliability for arterials. This method was not initially implemented or validated using field data. This : project evaluated and r...

  12. Stochastic modeling of Lagrangian accelerations

    NASA Astrophysics Data System (ADS)

    Reynolds, Andy

    2002-11-01

    It is shown how Sawford's second-order Lagrangian stochastic model (Phys. Fluids A 3, 1577-1586, 1991) for fluid-particle accelerations can be combined with a model for the evolution of the dissipation rate (Pope and Chen, Phys. Fluids A 2, 1437-1449, 1990) to produce a Lagrangian stochastic model that is consistent with both the measured distribution of Lagrangian accelerations (La Porta et al., Nature 409, 1017-1019, 2001) and Kolmogorov's similarity theory. The later condition is found not to be satisfied when a constant dissipation rate is employed and consistency with prescribed acceleration statistics is enforced through fulfilment of a well-mixed condition.

  13. Modeling, implementation, and validation of arterial travel time reliability : [summary].

    DOT National Transportation Integrated Search

    2013-11-01

    Travel time reliability (TTR) has been proposed as : a better measure of a facilitys performance than : a statistical measure like peak hour demand. TTR : is based on more information about average traffic : flows and longer time periods, thus inc...

  14. Time-zone effects on the long distance air traveler.

    DOT National Transportation Integrated Search

    1969-09-01

    Findings are presented on the consequences of rapidly crossing numerous time zones, such as occurs in present-day jet aircraft travel. Conclusions reached by FAA researchers and scientists of other laboratories are included, together with recommendat...

  15. Estimating spatial travel times using automatic vehicle identification data

    DOT National Transportation Integrated Search

    2001-01-01

    Prepared ca. 2001. The paper describes an algorithm that was developed for estimating reliable and accurate average roadway link travel times using Automatic Vehicle Identification (AVI) data. The algorithm presented is unique in two aspects. First, ...

  16. The influence of travel time on breast cancer characteristics, receipt of primary therapy, and surveillance mammography.

    PubMed

    Onega, Tracy; Cook, Andrea; Kirlin, Beth; Shi, Xun; Alford-Teaster, Jennifer; Tuzzio, Leah; Buist, Diana S M

    2011-08-01

    Travel time has been shown to influence some aspects of cancer characteristics at diagnosis and care for women with breast cancer, but important gaps remain in our understanding of its impact. We examined the influence of travel time to the nearest radiology facility on breast cancer characteristics, treatment, and surveillance for women with early-stage invasive breast cancer. We included 1,012 women with invasive breast cancer (stages I and II) who had access to care within an integrated health care delivery system in western Washington State. The travel times to the nearest radiology facility were calculated for all the U.S. Census blocks within the study area and assigned to women based on residence at diagnosis. We collected cancer characteristics, primary and adjuvant therapies, and surveillance mammography for at least 2.5 years post diagnosis and used multivariable analyses to test the associations of travel time. The majority of women (68.6%) lived within 20 min of the nearest radiology facility, had stage I disease (72.7%), received breast conserving therapy (68.7%), and had annual surveillance mammography the first 2 years after treatment (73.7%). The travel time was not significantly associated with the stage or surveillance mammography after adjusting for covariates. Primary therapy was significantly related to travel time, with greater travel time (>30 min vs. ≤ 10 min) associated with a higher likelihood of mastectomy compared to breast conserving surgery (RR = 1.53; 95% CI, 1.16-2.01). The travel time was not associated with the stage at diagnosis or surveillance mammography receipt. The travel time does seem to influence the type of primary therapy among women with breast cancer, suggesting that women may prefer low frequency services, such as mastectomy, if geographic access to a radiology facility is limited.

  17. The influence of travel time on breast cancer characteristics, receipt of primary therapy, and surveillance mammography

    PubMed Central

    Cook, Andrea; Kirlin, Beth; Shi, Xun; Alford-Teaster, Jennifer; Tuzzio, Leah; Buist, Diana S. M.

    2013-01-01

    Travel time has been shown to influence some aspects of cancer characteristics at diagnosis and care for women with breast cancer, but important gaps remain in our understanding of its impact. We examined the influence of travel time to the nearest radiology facility on breast cancer characteristics, treatment, and surveillance for women with early-stage invasive breast cancer. We included 1,012 women with invasive breast cancer (stages I and II) who had access to care within an integrated health care delivery system in western Washington State. The travel times to the nearest radiology facility were calculated for all the U.S. Census blocks within the study area and assigned to women based on residence at diagnosis. We collected cancer characteristics, primary and adjuvant therapies, and surveillance mammography for at least 2.5 years post diagnosis and used multivariable analyses to test the associations of travel time. The majority of women (68.6%) lived within 20 min of the nearest radiology facility, had stage I disease (72.7%), received breast conserving therapy (68.7%), and had annual surveillance mammography the first 2 years after treatment (73.7%). The travel time was not significantly associated with the stage or surveillance mammography after adjusting for covariates. Primary therapy was significantly related to travel time, with greater travel time (>30 min vs. ≤ 10 min) associated with a higher likelihood of mastectomy compared to breast conserving surgery (RR = 1.53; 95% CI, 1.16–2.01). The travel time was not associated with the stage at diagnosis or surveillance mammography receipt. The travel time does seem to influence the type of primary therapy among women with breast cancer, suggesting that women may prefer low frequency services, such as mastectomy, if geographic access to a radiology facility is limited. PMID:21553117

  18. Evaluation of Effective Factors on Travel Time in Optimization of Bus Stops Placement Using Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Bargegol, Iraj; Ghorbanzadeh, Mahyar; Ghasedi, Meisam; Rastbod, Mohammad

    2017-10-01

    In congested cities, locating and proper designing of bus stops according to the unequal distribution of passengers is crucial issue economically and functionally, since this subject plays an important role in the use of bus system by passengers. Location of bus stops is a complicated subject; by reducing distances between stops, walking time decreases, but the total travel time may increase. In this paper, a specified corridor in the city of Rasht in north of Iran is studied. Firstly, a new formula is presented to calculate the travel time, by which the number of stops and consequently, the travel time can be optimized. An intended corridor with specified number of stops and distances between them is addressed, the related formulas to travel time are created, and its travel time is calculated. Then the corridor is modelled using a meta-heuristic method in order that the placement and the optimal distances of bus stops for that are determined. It was found that alighting and boarding time along with bus capacity are the most effective factors affecting travel time. Consequently, it is better to have more concentration on indicated factors for improving the efficiency of bus system.

  19. A matched-peak inversion approach for ocean acoustic travel-time tomography

    PubMed

    Skarsoulis

    2000-03-01

    A new approach for the inversion of travel-time data is proposed, based on the matching between model arrivals and observed peaks. Using the linearized model relations between sound-speed and arrival-time perturbations about a set of background states, arrival times and associated errors are calculated on a fine grid of model states discretizing the sound-speed parameter space. Each model state can explain (identify) a number of observed peaks in a particular reception lying within the uncertainty intervals of the corresponding predicted arrival times. The model states that explain the maximum number of observed peaks are considered as the more likely parametric descriptions of the reception; these model states can be described in terms of mean values and variances providing a statistical answer (matched-peak solution) to the inversion problem. A basic feature of the matched-peak inversion approach is that each reception can be treated independently, i.e., no constraints are posed from previous-reception identification or inversion results. Accordingly, there is no need for initialization of the inversion procedure and, furthermore, discontinuous travel-time data can be treated. The matched-peak inversion method is demonstrated by application to 9-month-long travel-time data from the Thetis-2 tomography experiment in the western Mediterranean sea.

  20. Next Generation Extended Lagrangian Quantum-based Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Negre, Christian

    2017-06-01

    A new framework for extended Lagrangian first-principles molecular dynamics simulations is presented, which overcomes shortcomings of regular, direct Born-Oppenheimer molecular dynamics, while maintaining important advantages of the unified extended Lagrangian formulation of density functional theory pioneered by Car and Parrinello three decades ago. The new framework allows, for the first time, energy conserving, linear-scaling Born-Oppenheimer molecular dynamics simulations, which is necessary to study larger and more realistic systems over longer simulation times than previously possible. Expensive, self-consinstent-field optimizations are avoided and normal integration time steps of regular, direct Born-Oppenheimer molecular dynamics can be used. Linear scaling electronic structure theory is presented using a graph-based approach that is ideal for parallel calculations on hybrid computer platforms. For the first time, quantum based Born-Oppenheimer molecular dynamics simulation is becoming a practically feasible approach in simulations of +100,000 atoms-representing a competitive alternative to classical polarizable force field methods. In collaboration with: Anders Niklasson, Los Alamos National Laboratory.

  1. Time series analysis of travel trends in Vermont

    Treesearch

    Varna M. Ramaswamy; Walter F. Kuentzel

    1995-01-01

    Vermont's travel and tourism industry is not keeping pace with the nation-wide growth in the travel industry. While travel indicators such as domestic travel expenditures, tourism generated employment, payroll and tax receipts have been steadily increasing across the United States, these indicators in Vermont peaked in 1978 and have declined ever since. The state...

  2. Coherent Lagrangian swirls among submesoscale motions.

    PubMed

    Beron-Vera, F J; Hadjighasem, A; Xia, Q; Olascoaga, M J; Haller, G

    2018-03-05

    The emergence of coherent Lagrangian swirls (CLSs) among submesoscale motions in the ocean is illustrated. This is done by applying recent nonlinear dynamics tools for Lagrangian coherence detection on a surface flow realization produced by a data-assimilative submesoscale-permitting ocean general circulation model simulation of the Gulf of Mexico. Both mesoscale and submesoscale CLSs are extracted. These extractions prove the relevance of coherent Lagrangian eddies detected in satellite-altimetry-based geostrophic flow data for the arguably more realistic ageostrophic multiscale flow.

  3. Alternative kinetic energy metrics for Lagrangian systems

    NASA Astrophysics Data System (ADS)

    Sarlet, W.; Prince, G.

    2010-11-01

    We examine Lagrangian systems on \\ {R}^n with standard kinetic energy terms for the possibility of additional, alternative Lagrangians with kinetic energy metrics different to the Euclidean one. Using the techniques of the inverse problem in the calculus of variations we find necessary and sufficient conditions for the existence of such Lagrangians. We illustrate the problem in two and three dimensions with quadratic and cubic potentials. As an aside we show that the well-known anomalous Lagrangians for the Coulomb problem can be removed by switching on a magnetic field, providing an appealing resolution of the ambiguous quantizations of the hydrogen atom.

  4. Reduction of numerical diffusion in three-dimensional vortical flows using a coupled Eulerian/Lagrangian solution procedure

    NASA Technical Reports Server (NTRS)

    Felici, Helene M.; Drela, Mark

    1993-01-01

    A new approach based on the coupling of an Eulerian and a Lagrangian solver, aimed at reducing the numerical diffusion errors of standard Eulerian time-marching finite-volume solvers, is presented. The approach is applied to the computation of the secondary flow in two bent pipes and the flow around a 3D wing. Using convective point markers the Lagrangian approach provides a correction of the basic Eulerian solution. The Eulerian flow in turn integrates in time the Lagrangian state-vector. A comparison of coarse and fine grid Eulerian solutions makes it possible to identify numerical diffusion. It is shown that the Eulerian/Lagrangian approach is an effective method for reducing numerical diffusion errors.

  5. Implications of Lagrangian transport for coupled chemistry-climate simulations

    NASA Astrophysics Data System (ADS)

    Stenke, A.; Dameris, M.; Grewe, V.; Garny, H.

    2008-10-01

    For the first time a purely Lagrangian transport algorithm is applied in a fully coupled chemistry-climate model (CCM). We use the Lagrangian scheme ATTILA for the transport of water vapour, cloud water and chemical trace species in the ECHAM4.L39(DLR)/CHEM (E39C) CCM. The advantage of the Lagrangian approach is that it is numerically non-diffusive and therefore maintains steeper and more realistic gradients than the operational semi-Lagrangian transport scheme. In case of radiatively active species changes in the simulated distributions feed back to model dynamics which in turn affect the modelled transport. The implications of the Lagrangian transport scheme for stratospheric model dynamics and tracer distributions in the upgraded model version E39C-ATTILA (E39C-A) are evaluated by comparison with observations and results of the E39C model with the operational semi-Lagrangian advection scheme. We find that several deficiencies in stratospheric dynamics in E39C seem to originate from a pronounced modelled wet bias and an associated cold bias in the extra-tropical lowermost stratosphere. The reduction of the simulated moisture and temperature bias in E39C-A leads to a significant advancement of stratospheric dynamics in terms of the mean state as well as annual and interannual variability. As a consequence of the favourable numerical characteristics of the Lagrangian transport scheme and the improved model dynamics, E39C-A generally shows more realistic stratospheric tracer distributions: Compared to E39C high stratospheric chlorine (Cly) concentrations extend further downward and agree now well with analyses derived from observations. Therefore E39C-A realistically covers the altitude of maximum ozone depletion in the stratosphere. The location of the ozonopause, i.e. the transition from low tropospheric to high stratospheric ozone values, is also clearly improved in E39C-A. Furthermore, the simulated temporal evolution of stratospheric Cly in the past is

  6. Multi-Lagrangians for integrable systems

    NASA Astrophysics Data System (ADS)

    Nutku, Y.; Pavlov, M. V.

    2002-03-01

    We propose a general scheme to construct multiple Lagrangians for completely integrable nonlinear evolution equations that admit multi-Hamiltonian structure. The recursion operator plays a fundamental role in this construction. We use a conserved quantity higher/lower than the Hamiltonian in the potential part of the new Lagrangian and determine the corresponding kinetic terms by generating the appropriate momentum map. This leads to some remarkable new developments. We show that nonlinear evolutionary systems that admit N-fold first order local Hamiltonian structure can be cast into variational form with 2N-1 Lagrangians which will be local functionals of Clebsch potentials. This number increases to 3N-2 when the Miura transformation is invertible. Furthermore we construct a new Lagrangian for polytropic gas dynamics in 1+1 dimensions which is a free, local functional of the physical field variables, namely density and velocity, thus dispensing with the necessity of introducing Clebsch potentials entirely. This is a consequence of bi-Hamiltonian structure with a compatible pair of first and third order Hamiltonian operators derived from Sheftel's recursion operator.

  7. Inferring changes in water cycle dynamics of intensively managed landscapes via the theory of time-variant travel time distributions

    NASA Astrophysics Data System (ADS)

    Danesh-Yazdi, Mohammad; Foufoula-Georgiou, Efi; Karwan, Diana L.; Botter, Gianluca

    2016-10-01

    Climatic trends and anthropogenic changes in land cover and land use are impacting the hydrology and water quality of streams at the field, watershed, and regional scales in complex ways. In poorly drained agricultural landscapes, subsurface drainage systems have been successful in increasing crop productivity by removing excess soil moisture. However, their hydroecological consequences are still debated in view of the observed increased concentrations of nitrate, phosphorus, and pesticides in many streams, as well as altered runoff volumes and timing. In this study, we employ the recently developed theory of time-variant travel time distributions within the StorAge Selection function framework to quantify changes in water cycle dynamics resulting from the combined climate and land use changes. Our results from analysis of a subbasin in the Minnesota River Basin indicate a significant decrease in the mean travel time of water in the shallow subsurface layer during the growing season under current conditions compared to the pre-1970s conditions. We also find highly damped year-to-year fluctuations in the mean travel time, which we attribute to the "homogenization" of the hydrologic response due to artificial drainage. The dependence of the mean travel time on the spatial heterogeneity of some soil characteristics as well as on the basin scale is further explored via numerical experiments. Simulations indicate that the mean travel time is independent of scale for spatial scales larger than approximately 200 km2, suggesting that hydrologic data from larger basins may be used to infer the average of smaller-scale-driven changes in water cycle dynamics.

  8. [What about the mental time travel and age-related effects?].

    PubMed

    Coste, Cécile; Navarro, Béatrice; Abram, Maria; Duval, Céline; Picard, Laurence; Piolino, Pascale

    2012-03-01

    According to Tulving, episodic memory allows humans to travel mentally through subjective time into either the past or the future, this ability being at the origin of adaptation, organization and planning of future behavior. The main aim of this review is to present a state of art of episodic mental time travel and a lifespan perspective from children to elderly people. We examine the numerous similarities between remembering the past and envisioning the future which have been highlighted in cognitive, neuroimaging, and neuropsychological studies. We also present studies that have given evidence that remembering the past and imagining the future differ somewhat. We focus on demonstrating that hippocampal dysfunction is associated with disturbances in the recall of episodic autobiographical details in past memories, but also in the imagining of episodic detailed future events. More specifically, we discuss that the future seems to involve higher semantic processes mediated by the inferior frontal and lateral temporal gyri. We propose that the study of mental travel in personal time could be undertaken in line with the distinction between the memory of (episodic) experiences and (semantic) personal knowledge of one's life, which constitutes a major part of the self and constraints what we have been, what we are now, and what we might yet become.

  9. Comparison of acoustic travel-time measurements of solar meridional circulation from SDO/HMI and SOHO/MDI

    NASA Astrophysics Data System (ADS)

    Liang, Zhi-Chao; Birch, Aaron C.; Duvall, Thomas L., Jr.; Gizon, Laurent; Schou, Jesper

    2017-05-01

    Context. Time-distance helioseismology is one of the primary tools for studying the solar meridional circulation, especially in the lower convection zone. However, travel-time measurements of the subsurface meridional flow suffer from a variety of systematic errors, such as a center-to-limb variation and an offset due to the position angle (P-angle) uncertainty of solar images. It has been suggested that the center-to-limb variation can be removed by subtracting east-west from south-north travel-time measurements. This ad hoc method for the removal of the center-to-limb effect has been adopted widely but not tested for travel distances corresponding to the lower convection zone. Aims: We explore the effects of two major sources of the systematic errors, the P-angle error arising from the instrumental misalignment and the center-to-limb variation, on the acoustic travel-time measurements in the south-north direction. Methods: We apply the time-distance technique to contemporaneous medium-degree Dopplergrams produced by SOHO/MDI and SDO/HMI to obtain the travel-time difference caused by meridional circulation throughout the solar convection zone. The P-angle offset in MDI images is measured by cross-correlating MDI and HMI images. The travel-time measurements in the south-north and east-west directions are averaged over the same observation period (May 2010 to Apr. 2011) for the two data sets and then compared to examine the consistency of MDI and HMI travel times after applying the above-mentioned corrections. Results: The offsets in the south-north travel-time difference from MDI data induced by the P-angle error gradually diminish with increasing travel distance. However, these offsets become noisy for travel distances corresponding to waves that reach the base of the convection zone. This suggests that a careful treatment of the P-angle problem is required when studying a deep meridional flow. After correcting the P-angle and the removal of the center

  10. A coupled Eulerian/Lagrangian method for the solution of three-dimensional vortical flows

    NASA Technical Reports Server (NTRS)

    Felici, Helene Marie

    1992-01-01

    A coupled Eulerian/Lagrangian method is presented for the reduction of numerical diffusion observed in solutions of three-dimensional rotational flows using standard Eulerian finite-volume time-marching procedures. A Lagrangian particle tracking method using particle markers is added to the Eulerian time-marching procedure and provides a correction of the Eulerian solution. In turn, the Eulerian solutions is used to integrate the Lagrangian state-vector along the particles trajectories. The Lagrangian correction technique does not require any a-priori information on the structure or position of the vortical regions. While the Eulerian solution ensures the conservation of mass and sets the pressure field, the particle markers, used as 'accuracy boosters,' take advantage of the accurate convection description of the Lagrangian solution and enhance the vorticity and entropy capturing capabilities of standard Eulerian finite-volume methods. The combined solution procedures is tested in several applications. The convection of a Lamb vortex in a straight channel is used as an unsteady compressible flow preservation test case. The other test cases concern steady incompressible flow calculations and include the preservation of turbulent inlet velocity profile, the swirling flow in a pipe, and the constant stagnation pressure flow and secondary flow calculations in bends. The last application deals with the external flow past a wing with emphasis on the trailing vortex solution. The improvement due to the addition of the Lagrangian correction technique is measured by comparison with analytical solutions when available or with Eulerian solutions on finer grids. The use of the combined Eulerian/Lagrangian scheme results in substantially lower grid resolution requirements than the standard Eulerian scheme for a given solution accuracy.

  11. Toroidal regularization of the guiding center Lagrangian

    DOE PAGES

    Burby, J. W.; Ellison, C. L.

    2017-11-22

    In the Lagrangian theory of guiding center motion, an effective magnetic field B* = B+ (m/e)v ∥∇ x b appears prominently in the equations of motion. Because the parallel component of this field can vanish, there is a range of parallel velocities where the Lagrangian guiding center equations of motion are either ill-defined or very badly behaved. Moreover, the velocity dependence of B* greatly complicates the identification of canonical variables and therefore the formulation of symplectic integrators for guiding center dynamics. Here, this letter introduces a simple coordinate transformation that alleviates both these problems simultaneously. In the new coordinates, themore » Liouville volume element is equal to the toroidal contravariant component of the magnetic field. Consequently, the large-velocity singularity is completely eliminated. Moreover, passing from the new coordinate system to canonical coordinates is extremely simple, even if the magnetic field is devoid of flux surfaces. We demonstrate the utility of this approach in regularizing the guiding center Lagrangian by presenting a new and stable one-step variational integrator for guiding centers moving in arbitrary time-dependent electromagnetic fields.« less

  12. Toroidal regularization of the guiding center Lagrangian

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burby, J. W.; Ellison, C. L.

    In the Lagrangian theory of guiding center motion, an effective magnetic field B* = B+ (m/e)v ∥∇ x b appears prominently in the equations of motion. Because the parallel component of this field can vanish, there is a range of parallel velocities where the Lagrangian guiding center equations of motion are either ill-defined or very badly behaved. Moreover, the velocity dependence of B* greatly complicates the identification of canonical variables and therefore the formulation of symplectic integrators for guiding center dynamics. Here, this letter introduces a simple coordinate transformation that alleviates both these problems simultaneously. In the new coordinates, themore » Liouville volume element is equal to the toroidal contravariant component of the magnetic field. Consequently, the large-velocity singularity is completely eliminated. Moreover, passing from the new coordinate system to canonical coordinates is extremely simple, even if the magnetic field is devoid of flux surfaces. We demonstrate the utility of this approach in regularizing the guiding center Lagrangian by presenting a new and stable one-step variational integrator for guiding centers moving in arbitrary time-dependent electromagnetic fields.« less

  13. Assessing segment- and corridor-based travel-time reliability on urban freeways tech transfer summary : tech transfer summary.

    DOT National Transportation Integrated Search

    2016-09-01

    Travel time and travel-time reliability have been used as performance : measures to evaluate traffic system conditions and develop advanced : traveler information and traffic management systems. The objectives of this research were to: : - Quantify s...

  14. Viruses as groundwater tracers: using ecohydrology to characterize short travel times in aquifers.

    PubMed

    Hunt, Randall J; Borchardt, Mark A; Bradbury, Kenneth R

    2014-01-01

    Viruses are attractive tracers of short (<3 year) travel times in aquifers because they have unique genetic signatures, are detectable in trace quantities, and are mobile in groundwater. Virus "snaphots" result from infection and disappearance in a population over time; therefore, the virus snapshot shed in the fecal wastes of an infected population at a specific point in time can serve as a marker for tracking virus and groundwater movement. The virus tracing approach and an example application are described to illustrate their ability to characterize travel times in high-groundwater velocity settings, and provide insight unavailable from standard hydrogeologic approaches. Although characterization of preferential flowpaths does not usually characterize the majority of other travel times occurring in the groundwater system (e.g., center of plume mass; tail of the breakthrough curve), virus approaches can trace very short times of transport, and thus can fill an important gap in our current hydrogeology toolbox. © 2014, National Ground Water Association.

  15. Viruses as groundwater tracers: using ecohydrology to characterize short travel times in aquifers

    USGS Publications Warehouse

    Hunt, Randall J.; Borchardt, Mark A.; Bradbury, Kenneth R.

    2014-01-01

    Viruses are attractive tracers of short (<3 year) travel times in aquifers because they have unique genetic signatures, are detectable in trace quantities, and are mobile in groundwater. Virus “snaphots” result from infection and disappearance in a population over time; therefore, the virus snapshot shed in the fecal wastes of an infected population at a specific point in time can serve as a marker for tracking virus and groundwater movement. The virus tracing approach and an example application are described to illustrate their ability to characterize travel times in high-groundwater velocity settings, and provide insight unavailable from standard hydrogeologic approaches. Although characterization of preferential flowpaths does not usually characterize the majority of other travel times occurring in the groundwater system (e.g., center of plume mass; tail of the breakthrough curve), virus approaches can trace very short times of transport, and thus can fill an important gap in our current hydrogeology toolbox.

  16. Target Lagrangian kinematic simulation for particle-laden flows.

    PubMed

    Murray, S; Lightstone, M F; Tullis, S

    2016-09-01

    The target Lagrangian kinematic simulation method was motivated as a stochastic Lagrangian particle model that better synthesizes turbulence structure, relative to stochastic separated flow models. By this method, the trajectories of particles are constructed according to synthetic turbulent-like fields, which conform to a target Lagrangian integral timescale. In addition to recovering the expected Lagrangian properties of fluid tracers, this method is shown to reproduce the crossing trajectories and continuity effects, in agreement with an experimental benchmark.

  17. Insights into the three-dimensional Lagrangian geometry of the Antarctic polar vortex

    NASA Astrophysics Data System (ADS)

    Curbelo, Jezabel; José García-Garrido, Víctor; Mechoso, Carlos Roberto; Mancho, Ana Maria; Wiggins, Stephen; Niang, Coumba

    2017-07-01

    In this paper we study the three-dimensional (3-D) Lagrangian structures in the stratospheric polar vortex (SPV) above Antarctica. We analyse and visualize these structures using Lagrangian descriptor function M. The procedure for calculation with reanalysis data is explained. Benchmarks are computed and analysed that allow us to compare 2-D and 3-D aspects of Lagrangian transport. Dynamical systems concepts appropriate to 3-D, such as normally hyperbolic invariant curves, are discussed and applied. In order to illustrate our approach we select an interval of time in which the SPV is relatively undisturbed (August 1979) and an interval of rapid SPV changes (October 1979). Our results provide new insights into the Lagrangian structure of the vertical extension of the stratospheric polar vortex and its evolution. Our results also show complex Lagrangian patterns indicative of strong mixing processes in the upper troposphere and lower stratosphere. Finally, during the transition to summer in the late spring, we illustrate the vertical structure of two counterrotating vortices, one the polar and the other an emerging one, and the invariant separatrix that divides them.

  18. Preliminary study of visual perspective in mental time travel in schizophrenia.

    PubMed

    Wang, Ya; Wang, Yi; Zhao, Qing; Cui, Ji-Fang; Hong, Xiao-Hong; Chan, Raymond Ck

    2017-10-01

    This study explored specificity and visual perspective of mental time travel in schizophrenia. Fifteen patients with schizophrenia and 18 controls were recruited. Participants were asked to recall or imagine specific events according to cue words. Results showed that schizophrenia patients generated fewer specific events than controls, the recalled events were more specific than imagined events. Schizophrenia adopted less field perspective and more observer perspective than controls. These results suggested that patients with schizophrenia were impaired in mental time travel both in specificity and visual perspective. Further studies are needed to identify the underlying mechanisms. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Mental time travel to the future might be reduced in sleep.

    PubMed

    Speth, Jana; Schloerscheidt, Astrid M; Speth, Clemens

    2017-02-01

    We present a quantitative study of mental time travel to the future in sleep. Three independent, blind judges analysed a total of 563 physiology-monitored mentation reports from sleep onset, REM sleep, non-REM sleep, and waking. The linguistic tool for the mentation report analysis is based on established grammatical and cognitive-semantic theories and has been validated in previous studies. Our data indicate that REM and non-REM sleep must be characterized by a reduction in mental time travel to the future, which would support earlier physiological evidence at the level of brain function. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Characterizing Global Flood Wave Travel Times to Optimize the Utility of Near Real-Time Satellite Remote Sensing Products

    NASA Astrophysics Data System (ADS)

    Allen, G. H.; David, C. H.; Andreadis, K. M.; Emery, C. M.; Famiglietti, J. S.

    2017-12-01

    Earth observing satellites provide valuable near real-time (NRT) information about flood occurrence and magnitude worldwide. This NRT information can be used in early flood warning systems and other flood management applications to save lives and mitigate flood damage. However, these NRT products are only useful to early flood warning systems if they are quickly made available, with sufficient time for flood mitigation actions to be implemented. More specifically, NRT data latency, or the time period between the satellite observation and when the user has access to the information, must be less than the time it takes a flood to travel from the flood observation location to a given downstream point of interest. Yet the paradigm that "lower latency is always better" may not necessarily hold true in river systems due to tradeoffs between data latency and data quality. Further, the existence of statistical breaks in the global distribution of flood wave travel time (i.e. a jagged statistical distribution) would represent preferable latencies for river-observation NRT remote sensing products. Here we present a global analysis of flood wave velocity (i.e. flow celerity) and travel time. We apply a simple kinematic wave model to a global hydrography dataset and calculate flow wave celerity and travel time during bankfull flow conditions. Bankfull flow corresponds to the condition of maximum celerity and thus we present the "worst-case scenario" minimum flow wave travel time. We conduct a similar analysis with respect to the time it takes flood waves to reach the next downstream city, as well as the next downstream reservoir. Finally, we conduct these same analyses, but with regards to the technical capabilities of the planned Surface Water and Ocean Topography (SWOT) satellite mission, which is anticipated to provide waterbody elevation and extent measurements at an unprecedented spatial and temporal resolution. We validate these results with discharge records from paired

  1. Decreasing patient cost and travel time through pediatric rheumatology telemedicine visits.

    PubMed

    Kessler, Elizabeth A; Sherman, Ashley K; Becker, Mara L

    2016-09-20

    There is a critical shortage of pediatric rheumatologists in the US. Substantial travel to clinics can impose time and monetary burdens on families. The aim of this study was to evaluate the cost of in-person pediatric rheumatology visits for families and determine if telemedicine clinics resulted in time and cost savings. Factors associated with interest in telemedicine were also explored. Surveys were offered to parents and guardians of patients in Pediatric Rheumatology follow-up clinics in Kansas City, Missouri, the primary site of in-person care, and at a telemedicine outreach site 160 miles away, in Joplin, Missouri. Survey questions were asked about non-medical, out-of-pocket costs associated with the appointment and interest in a telemedicine clinic. At the primary Kansas City clinic, the median distance traveled one-way was 40 miles [IQR = 18-80]. In the Joplin sample, the median distance traveled to the telemedicine clinic was 60 miles [IQR = 20-85] compared to 175 miles [IQR = 160-200] for the same cohort of patients when seen in Kansas City (p < 0.001). When the Joplin cohort was seen via telemedicine they missed less time from work and school (p = 0.028, p = 0.003, respectively) and a smaller percentage spent money on food compared to when they had traveled to Kansas City (p < 0.001). There was no statistical difference between the Joplin cohort when they had traveled to Kansas City and the Kansas City cohort in terms of miles driven to clinic, time missed from work and school, and percentage of subjects who spent money on food. Traditional in-person visits can result in a financial toll on families, which can be ameliorated by the use of telemedicine. Telemedicine leveled the economic burden of clinic visits so that when the Joplin cohort was seen via telemedicine, they experienced costs similar to the Kansas City cohort.

  2. Communication: A simplified coupled-cluster Lagrangian for polarizable embedding.

    PubMed

    Krause, Katharina; Klopper, Wim

    2016-01-28

    A simplified coupled-cluster Lagrangian, which is linear in the Lagrangian multipliers, is proposed for the coupled-cluster treatment of a quantum mechanical system in a polarizable environment. In the simplified approach, the amplitude equations are decoupled from the Lagrangian multipliers and the energy obtained from the projected coupled-cluster equation corresponds to a stationary point of the Lagrangian.

  3. Communication: A simplified coupled-cluster Lagrangian for polarizable embedding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krause, Katharina; Klopper, Wim, E-mail: klopper@kit.edu

    A simplified coupled-cluster Lagrangian, which is linear in the Lagrangian multipliers, is proposed for the coupled-cluster treatment of a quantum mechanical system in a polarizable environment. In the simplified approach, the amplitude equations are decoupled from the Lagrangian multipliers and the energy obtained from the projected coupled-cluster equation corresponds to a stationary point of the Lagrangian.

  4. Travel-time source-specific station correction improves location accuracy

    NASA Astrophysics Data System (ADS)

    Giuntini, Alessandra; Materni, Valerio; Chiappini, Stefano; Carluccio, Roberto; Console, Rodolfo; Chiappini, Massimo

    2013-04-01

    Accurate earthquake locations are crucial for investigating seismogenic processes, as well as for applications like verifying compliance to the Comprehensive Test Ban Treaty (CTBT). Earthquake location accuracy is related to the degree of knowledge about the 3-D structure of seismic wave velocity in the Earth. It is well known that modeling errors of calculated travel times may have the effect of shifting the computed epicenters far from the real locations by a distance even larger than the size of the statistical error ellipses, regardless of the accuracy in picking seismic phase arrivals. The consequences of large mislocations of seismic events in the context of the CTBT verification is particularly critical in order to trigger a possible On Site Inspection (OSI). In fact, the Treaty establishes that an OSI area cannot be larger than 1000 km2, and its larger linear dimension cannot be larger than 50 km. Moreover, depth accuracy is crucial for the application of the depth event screening criterion. In the present study, we develop a method of source-specific travel times corrections based on a set of well located events recorded by dense national seismic networks in seismically active regions. The applications concern seismic sequences recorded in Japan, Iran and Italy. We show that mislocations of the order of 10-20 km affecting the epicenters, as well as larger mislocations in hypocentral depths, calculated from a global seismic network and using the standard IASPEI91 travel times can be effectively removed by applying source-specific station corrections.

  5. Integrating stochastic time-dependent travel speed in solution methods for the dynamic dial-a-ride problem.

    PubMed

    Schilde, M; Doerner, K F; Hartl, R F

    2014-10-01

    In urban areas, logistic transportation operations often run into problems because travel speeds change, depending on the current traffic situation. If not accounted for, time-dependent and stochastic travel speeds frequently lead to missed time windows and thus poorer service. Especially in the case of passenger transportation, it often leads to excessive passenger ride times as well. Therefore, time-dependent and stochastic influences on travel speeds are relevant for finding feasible and reliable solutions. This study considers the effect of exploiting statistical information available about historical accidents, using stochastic solution approaches for the dynamic dial-a-ride problem (dynamic DARP). The authors propose two pairs of metaheuristic solution approaches, each consisting of a deterministic method (average time-dependent travel speeds for planning) and its corresponding stochastic version (exploiting stochastic information while planning). The results, using test instances with up to 762 requests based on a real-world road network, show that in certain conditions, exploiting stochastic information about travel speeds leads to significant improvements over deterministic approaches.

  6. A Chiang-type lagrangian in CP^2

    NASA Astrophysics Data System (ADS)

    Cannas da Silva, Ana

    2018-03-01

    We analyse a monotone lagrangian in CP^2 that is hamiltonian isotopic to the standard lagrangian RP^2, yet exhibits a distinguishing behaviour under reduction by one of the toric circle actions, namely it intersects transversally the reduction level set and it projects one-to-one onto a great circle in CP^1. This lagrangian thus provides an example of embedded composition fitting work of Wehrheim-Woodward and Weinstein.

  7. Stochastic Lagrangian dynamics for charged flows in the E-F regions of ionosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang Wenbo; Mahalov, Alex

    2013-03-15

    We develop a three-dimensional numerical model for the E-F region ionosphere and study the Lagrangian dynamics for plasma flows in this region. Our interest rests on the charge-neutral interactions and the statistics associated with stochastic Lagrangian motion. In particular, we examine the organizing mixing patterns for plasma flows due to polarized gravity wave excitations in the neutral field, using Lagrangian coherent structures (LCS). LCS objectively depict the flow topology-the extracted attractors indicate generation of ionospheric density gradients, due to accumulation of plasma. Using Lagrangian measures such as the finite-time Lyapunov exponents, we locate the Lagrangian skeletons for mixing in plasma,more » hence where charged fronts are expected to appear. With polarized neutral wind, we find that the corresponding plasma velocity is also polarized. Moreover, the polarized velocity alone, coupled with stochastic Lagrangian motion, may give rise to polarized density fronts in plasma. Statistics of these trajectories indicate high level of non-Gaussianity. This includes clear signatures of variance, skewness, and kurtosis of displacements taking polarized structures aligned with the gravity waves, and being anisotropic.« less

  8. The Trapping Index: How to integrate the Eulerian and the Lagrangian approach for the computation of the transport time scales of semi-enclosed basins.

    PubMed

    Cucco, Andrea; Umgiesser, Georg

    2015-09-15

    In this work, we investigated if the Eulerian and the Lagrangian approaches for the computation of the Transport Time Scales (TTS) of semi-enclosed water bodies can be used univocally to define the spatial variability of basin flushing features. The Eulerian and Lagrangian TTS were computed for both simplified test cases and a realistic domain: the Venice Lagoon. The results confirmed the two approaches cannot be adopted univocally and that the spatial variability of the water renewal capacity can be investigated only through the computation of both the TTS. A specific analysis, based on the computation of a so-called Trapping Index, was then suggested to integrate the information provided by the two different approaches. The obtained results proved the Trapping Index to be useful to avoid any misleading interpretation due to the evaluation of the basin renewal features just from an Eulerian only or from a Lagrangian only perspective. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Quantifying groundwater travel time near managed recharge operations using 35S as an intrinsic tracer

    DOE PAGES

    Urióstegui, Stephanie H.; Bibby, Richard K.; Esser, Bradley K.; ...

    2016-04-23

    By identifying groundwater retention times near managed aquifer recharge (MAR) facilities is a high priority for managing water quality, especially for operations that incorporate recycled wastewater. In order to protect public health, California guidelines for Groundwater Replenishment Reuse Projects require a minimum 2–6 month subsurface retention time for recycled water depending on the level of disinfection, which highlights the importance of quantifying groundwater travel times on short time scales. This study developed and evaluated a new intrinsic tracer method using the naturally occurring radioisotope sulfur-35 (35S). The 87.5 day half-life of 35S is ideal for investigating groundwater travel times onmore » the <1 year timescale of interest to MAR managers. Natural concentrations of 35S found in water as dissolved sulfate (35SO4) were measured in source waters and groundwater at the Rio Hondo Spreading Grounds in Los Angeles County, CA, and Orange County Groundwater Recharge Facilities in Orange County, CA. 35SO4 travel times are comparable to travel times determined by well-established deliberate tracer studies. The study also revealed that 35SO4 in MAR source water can vary seasonally and therefore careful characterization of 35SO4 is needed to accurately quantify groundwater travel time. But, more data is needed to fully assess whether or not this tracer could become a valuable tool for managers.« less

  10. Quantifying groundwater travel time near managed recharge operations using 35S as an intrinsic tracer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Urióstegui, Stephanie H.; Bibby, Richard K.; Esser, Bradley K.

    By identifying groundwater retention times near managed aquifer recharge (MAR) facilities is a high priority for managing water quality, especially for operations that incorporate recycled wastewater. In order to protect public health, California guidelines for Groundwater Replenishment Reuse Projects require a minimum 2–6 month subsurface retention time for recycled water depending on the level of disinfection, which highlights the importance of quantifying groundwater travel times on short time scales. This study developed and evaluated a new intrinsic tracer method using the naturally occurring radioisotope sulfur-35 (35S). The 87.5 day half-life of 35S is ideal for investigating groundwater travel times onmore » the <1 year timescale of interest to MAR managers. Natural concentrations of 35S found in water as dissolved sulfate (35SO4) were measured in source waters and groundwater at the Rio Hondo Spreading Grounds in Los Angeles County, CA, and Orange County Groundwater Recharge Facilities in Orange County, CA. 35SO4 travel times are comparable to travel times determined by well-established deliberate tracer studies. The study also revealed that 35SO4 in MAR source water can vary seasonally and therefore careful characterization of 35SO4 is needed to accurately quantify groundwater travel time. But, more data is needed to fully assess whether or not this tracer could become a valuable tool for managers.« less

  11. Quantifying groundwater travel time near managed recharge operations using 35S as an intrinsic tracer

    NASA Astrophysics Data System (ADS)

    Urióstegui, Stephanie H.; Bibby, Richard K.; Esser, Bradley K.; Clark, Jordan F.

    2016-12-01

    Identifying groundwater retention times near managed aquifer recharge (MAR) facilities is a high priority for managing water quality, especially for operations that incorporate recycled wastewater. To protect public health, California guidelines for Groundwater Replenishment Reuse Projects require a minimum 2-6 month subsurface retention time for recycled water depending on the level of disinfection, which highlights the importance of quantifying groundwater travel times on short time scales. This study developed and evaluated a new intrinsic tracer method using the naturally occurring radioisotope sulfur-35 (35S). The 87.5 day half-life of 35S is ideal for investigating groundwater travel times on the <1 year timescale of interest to MAR managers. Natural concentrations of 35S found in water as dissolved sulfate (35SO4) were measured in source waters and groundwater at the Rio Hondo Spreading Grounds in Los Angeles County, CA, and Orange County Groundwater Recharge Facilities in Orange County, CA. 35SO4 travel times are comparable to travel times determined by well-established deliberate tracer studies. The study also revealed that 35SO4 in MAR source water can vary seasonally and therefore careful characterization of 35SO4 is needed to accurately quantify groundwater travel time. More data is needed to fully assess whether or not this tracer could become a valuable tool for managers.

  12. A wavefront orientation method for precise numerical determination of tsunami travel time

    NASA Astrophysics Data System (ADS)

    Fine, I. V.; Thomson, R. E.

    2013-04-01

    We present a highly accurate and computationally efficient method (herein, the "wavefront orientation method") for determining the travel time of oceanic tsunamis. Based on Huygens principle, the method uses an eight-point grid-point pattern and the most recent information on the orientation of the advancing wave front to determine the time for a tsunami to travel to a specific oceanic location. The method is shown to provide improved accuracy and reduced anisotropy compared with the conventional multiple grid-point method presently in widespread use.

  13. Impact of a University-Based Outpatient Telemedicine Program on Time Savings, Travel Costs, and Environmental Pollutants.

    PubMed

    Dullet, Navjit W; Geraghty, Estella M; Kaufman, Taylor; Kissee, Jamie L; King, Jesse; Dharmar, Madan; Smith, Anthony C; Marcin, James P

    2017-04-01

    The objective of this study was to estimate travel-related and environmental savings resulting from the use of telemedicine for outpatient specialty consultations with a university telemedicine program. The study was designed to retrospectively analyze the telemedicine consultation database at the University of California Davis Health System (UCDHS) between July 1996 and December 2013. Travel distances and travel times were calculated between the patient home, the telemedicine clinic, and the UCDHS in-person clinic. Travel cost savings and environmental impact were calculated by determining differences in mileage reimbursement rate and emissions between those incurred in attending telemedicine appointments and those that would have been incurred if a visit to the hub site had been necessary. There were 19,246 consultations identified among 11,281 unique patients. Telemedicine visits resulted in a total travel distance savings of 5,345,602 miles, a total travel time savings of 4,708,891 minutes or 8.96 years, and a total direct travel cost savings of $2,882,056. The mean per-consultation round-trip distance savings were 278 miles, average travel time savings were 245 minutes, and average cost savings were $156. Telemedicine consultations resulted in a total emissions savings of 1969 metric tons of CO 2 , 50 metric tons of CO, 3.7 metric tons of NO x , and 5.5 metric tons of volatile organic compounds. This study demonstrates the positive impact of a health system's outpatient telemedicine program on patient travel time, patient travel costs, and environmental pollutants. Copyright © 2017 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  14. Special Bohr-Sommerfeld Lagrangian submanifolds

    NASA Astrophysics Data System (ADS)

    Tyurin, N. A.

    2016-12-01

    We introduce a new notion in symplectic geometry, that of speciality for Lagrangian submanifolds satisfying the Bohr- Sommerfeld condition. We show that it enables one to construct finite-dimensional moduli spaces of special Bohr- Sommerfeld Lagrangian submanifolds with respect to any ample line bundle on an algebraic variety with a Hodge metric regarded as the symplectic form. This construction can be used to study mirror symmetry.

  15. Analyses of Sea Surface Height, Bottom Pressure and Acoustic Travel Time in the Japan/East Sea

    DTIC Science & Technology

    2006-01-01

    ANALYSES OF SEA SURFACE HEIGHT, BOTTOM PRESSURE AND ACOUSTIC TRAVEL TIME IN THE JAPAN/EAST SEA BY YONGSHENG XU A DISSERTATION SUBMITTED IN PARTIAL...COVERED 00-00-2006 to 00-00-2006 4. TITLE AND SUBTITLE Analyses of Sea Surface Height, Bottom Pressure and Acoustic Travel Time in the Japan/East Sea...1999 to July 2001. The PIESs recorded hourly vertical acoustic travel time and pressure, which are respectively good proxies of baroclinic and

  16. Time Is Not Space: Core Computations and Domain-Specific Networks for Mental Travels.

    PubMed

    Gauthier, Baptiste; van Wassenhove, Virginie

    2016-11-23

    Humans can consciously project themselves in the future and imagine themselves at different places. Do mental time travel and mental space navigation abilities share common cognitive and neural mechanisms? To test this, we recorded fMRI while participants mentally projected themselves in time or in space (e.g., 9 years ago, in Paris) and ordered historical events from their mental perspective. Behavioral patterns were comparable for mental time and space and shaped by self-projection and by the distance of historical events to the mental position of the self, suggesting the existence of egocentric mapping in both dimensions. Nonetheless, self-projection in space engaged the medial and lateral parietal cortices, whereas self-projection in time engaged a widespread parietofrontal network. Moreover, while a large distributed network was found for spatial distances, temporal distances specifically engaged the right inferior parietal cortex and the anterior insula. Across these networks, a robust overlap was only found in a small region of the inferior parietal lobe, adding evidence for its role in domain-general egocentric mapping. Our findings suggest that mental travel in time or space capitalizes on egocentric remapping and on distance computation, which are implemented in distinct dimension-specific cortical networks converging in inferior parietal lobe. As humans, we can consciously imagine ourselves at a different time (mental time travel) or at a different place (mental space navigation). Are such abilities domain-general, or are the temporal and spatial dimensions of our conscious experience separable? Here, we tested the hypothesis that mental time travel and mental space navigation required the egocentric remapping of events, including the estimation of their distances to the self. We report that, although both remapping and distance computation are foundational for the processing of the temporal and spatial dimensions of our conscious experience, their

  17. Congestion relief by travel time minimization in near real time : Detroit area I-75 corridor study.

    DOT National Transportation Integrated Search

    2008-12-01

    "This document summarizes the activities concerning the project: Congestion Relief by : Travel Time Minimization in Near Real Time -- Detroit Area I-75 Corridor Study since : the inception of the project (Nov. 22, 2006 through September 30, 2008). : ...

  18. Negotiating on location, timing, duration, and participant in agent-mediated joint activity-travel scheduling

    NASA Astrophysics Data System (ADS)

    Ma, Huiye; Ronald, Nicole; Arentze, Theo A.; Timmermans, Harry J. P.

    2013-10-01

    Agent-based simulation has become an important modeling approach in activity-travel analysis. Social activities account for a large amount of travel and have an important effect on activity-travel scheduling. Participants in joint activities usually have various options regarding location, participants, and timing and take different approaches to make their decisions. In this context, joint activity participation requires negotiation among agents involved, so that conflicts among the agents can be addressed. Existing mechanisms do not fully provide a solution when utility functions of agents are nonlinear and non-monotonic. Considering activity-travel scheduling in time and space as an application, we propose a novel negotiation approach, which takes into account these properties, such as continuous and discrete issues, and nonlinear and non-monotonic utility functions, by defining a concession strategy and a search mechanism. The results of experiments show that agents having these properties can negotiate efficiently. Furthermore, the negotiation procedure affects individuals’ choices of location, timing, duration, and participants.

  19. Predictability of the Lagrangian Motion in the Upper Ocean

    NASA Astrophysics Data System (ADS)

    Piterbarg, L. I.; Griffa, A.; Griffa, A.; Mariano, A. J.; Ozgokmen, T. M.; Ryan, E. H.

    2001-12-01

    The complex non-linear dynamics of the upper ocean leads to chaotic behavior of drifter trajectories in the ocean. Our study is focused on estimating the predictability limit for the position of an individual Lagrangian particle or a particle cluster based on the knowledge of mean currents and observations of nearby particles (predictors). The Lagrangian prediction problem, besides being a fundamental scientific problem, is also of great importance for practical applications such as search and rescue operations and for modeling the spread of fish larvae. A stochastic multi-particle model for the Lagrangian motion has been rigorously formulated and is a generalization of the well known "random flight" model for a single particle. Our model is mathematically consistent and includes a few easily interpreted parameters, such as the Lagrangian velocity decorrelation time scale, the turbulent velocity variance, and the velocity decorrelation radius, that can be estimated from data. The top Lyapunov exponent for an isotropic version of the model is explicitly expressed as a function of these parameters enabling us to approximate the predictability limit to first order. Lagrangian prediction errors for two new prediction algorithms are evaluated against simple algorithms and each other and are used to test the predictability limits of the stochastic model for isotropic turbulence. The first algorithm is based on a Kalman filter and uses the developed stochastic model. Its implementation for drifter clusters in both the Tropical Pacific and Adriatic Sea, showed good prediction skill over a period of 1-2 weeks. The prediction error is primarily a function of the data density, defined as the number of predictors within a velocity decorrelation spatial scale from the particle to be predicted. The second algorithm is model independent and is based on spatial regression considerations. Preliminary results, based on simulated, as well as, real data, indicate that it performs

  20. Three dimensional Lagrangian structures in the Antarctic Polar Vortex.

    NASA Astrophysics Data System (ADS)

    Mancho, Ana M.; Garcia-Garrido, Victor J.; Curbelo, Jezabel; Niang, Coumba; Mechoso, Carlos R.; Wiggins, Stephen

    2017-04-01

    Dynamical systems theory has supported the description of transport processes in fluid dynamics. For understanding trajectory patterns in chaotic advection the geometrical approach by Poincaré seeks for spatial structures that separate regions corresponding to qualitatively different types of trajectories. These structures have been referred to as Lagrangian Coherent Structures (LCS), which typically in geophysical flows are well described under the approach of incompressible 2D flows. Different tools have been used to visualize LCS. In this presentation we use Lagrangian Descriptors [1,2,3,4] (function M) for visualizing 3D Lagrangian structures in the atmosphere, in particular in the Antarctic Polar Vortex. The function M is computed in a fully 3D incompressible flow obtained from data provided by the European Centre for Medium-Range Weather Forecast and it is represented in 2D surfaces. We discuss the findings during the final warming that took place in the spring of 1979 [5]. This research is supported by MINECO grant MTM2014-56392-R. Support is acknowledged also from CSIC grant COOPB20265, U.S. NSF grant AGS-1245069 and ONR grant No. N00014- 01-1-0769. C. Niang acknowledges Fundacion Mujeres por Africa and ICMAT Severo Ochoa project SEV-2011-0087 for financial support. [1] C. Mendoza, A. M. Mancho. The hidden geometry of ocean flows. Physical Review Letters 105 (2010), 3, 038501-1-038501-4. [2] A. M. Mancho, S. Wiggins, J. Curbelo, C. Mendoza. Lagrangian Descriptors: A Method for Revealing Phase Space Structures of General Time Dependent Dynamical Systems. Communications in Nonlinear Science and Numerical Simulation. 18 (2013) 3530-3557. [3] C. Lopesino, F. Balibrea-Iniesta, S. Wiggins and A. M. Mancho. Lagrangian descriptors for two dimensional, area preserving autonomous and nonautonomous maps. Communications in Nonlinear Science and Numerical Simulations, 27 (2015) (1-3), 40-51. [4] C. Lopesino, F. Balibrea-Iniesta, V. J. García-Garrido, S. Wiggins, and A

  1. Computational methods for inverse problems in geophysics: inversion of travel time observations

    USGS Publications Warehouse

    Pereyra, V.; Keller, H.B.; Lee, W.H.K.

    1980-01-01

    General ways of solving various inverse problems are studied for given travel time observations between sources and receivers. These problems are separated into three components: (a) the representation of the unknown quantities appearing in the model; (b) the nonlinear least-squares problem; (c) the direct, two-point ray-tracing problem used to compute travel time once the model parameters are given. Novel software is described for (b) and (c), and some ideas given on (a). Numerical results obtained with artificial data and an implementation of the algorithm are also presented. ?? 1980.

  2. Estimating Travel Time in Bank Filtration Systems from a Numerical Model Based on DTS Measurements.

    PubMed

    des Tombe, Bas F; Bakker, Mark; Schaars, Frans; van der Made, Kees-Jan

    2018-03-01

    An approach is presented to determine the seasonal variations in travel time in a bank filtration system using a passive heat tracer test. The temperature in the aquifer varies seasonally because of temperature variations of the infiltrating surface water and at the soil surface. Temperature was measured with distributed temperature sensing along fiber optic cables that were inserted vertically into the aquifer with direct push equipment. The approach was applied to a bank filtration system consisting of a sequence of alternating, elongated recharge basins and rows of recovery wells. A SEAWAT model was developed to simulate coupled flow and heat transport. The model of a two-dimensional vertical cross section is able to simulate the temperature of the water at the well and the measured vertical temperature profiles reasonably well. MODPATH was used to compute flowpaths and the travel time distribution. At the study site, temporal variation of the pumping discharge was the dominant factor influencing the travel time distribution. For an equivalent system with a constant pumping rate, variations in the travel time distribution are caused by variations in the temperature-dependent viscosity. As a result, travel times increase in the winter, when a larger fraction of the water travels through the warmer, lower part of the aquifer, and decrease in the summer, when the upper part of the aquifer is warmer. © 2017 The Authors. Groundwater published by Wiley Periodicals, Inc. on behalf of National Ground Water Association.

  3. Influence of geomorphological properties and stage on in-stream travel time

    NASA Astrophysics Data System (ADS)

    Åkesson, Anna; Wörman, Anders

    2014-05-01

    The travel time distribution within stream channels is known to vary non-linearly with stage (discharge), depending on the combined effects of geomorphologic, hydrodynamic and kinematic dispersions. This non-linearity, implying that stream network travel time generally decreases with increasing discharge is a factor that is important to account for in hydrological modelling - especially when making peak flow predictions where uncertainty is often high and large values can be at risk. Through hydraulic analysis of several stream networks, we analyse how travel time distributions varies with discharge. The principal focus is the coupling to the geomorphologic properties of stream networks with the final goal being to use this physically based information as a parameterisation tool of the streamflow component of hydrologic models. For each of the studied stream networks, a 1D, steady-state, distributed routing model was set up to determine the velocities in each reach during different flow conditions. Although the model (based in the Manning friction formula) is built on the presence of uniform conditions within sub-reaches, the model can in the stream network scale be considered to include effects of non-uniformity as supercritical conditions in sections of the stream network give rise to backwater effects that reduce the flow velocities in upstream reaches in the stream. By coupling the routing model to a particle tracking routine tracing water "parcels" through the stream network, the average travel time within the stream network can be determined quantitatively for different flow conditions. The data used to drive the model is digitised stream network maps, topographical data (DEMs). The model is not calibrated in any way, but is run for with different sets of parameters representing a span of possible friction coefficients and cross-sectional geometries as this information is not generally known. The routing model is implemented in several different stream

  4. Cooperative Convex Optimization in Networked Systems: Augmented Lagrangian Algorithms With Directed Gossip Communication

    NASA Astrophysics Data System (ADS)

    Jakovetic, Dusan; Xavier, João; Moura, José M. F.

    2011-08-01

    We study distributed optimization in networked systems, where nodes cooperate to find the optimal quantity of common interest, x=x^\\star. The objective function of the corresponding optimization problem is the sum of private (known only by a node,) convex, nodes' objectives and each node imposes a private convex constraint on the allowed values of x. We solve this problem for generic connected network topologies with asymmetric random link failures with a novel distributed, decentralized algorithm. We refer to this algorithm as AL-G (augmented Lagrangian gossiping,) and to its variants as AL-MG (augmented Lagrangian multi neighbor gossiping) and AL-BG (augmented Lagrangian broadcast gossiping.) The AL-G algorithm is based on the augmented Lagrangian dual function. Dual variables are updated by the standard method of multipliers, at a slow time scale. To update the primal variables, we propose a novel, Gauss-Seidel type, randomized algorithm, at a fast time scale. AL-G uses unidirectional gossip communication, only between immediate neighbors in the network and is resilient to random link failures. For networks with reliable communication (i.e., no failures,) the simplified, AL-BG (augmented Lagrangian broadcast gossiping) algorithm reduces communication, computation and data storage cost. We prove convergence for all proposed algorithms and demonstrate by simulations the effectiveness on two applications: l_1-regularized logistic regression for classification and cooperative spectrum sensing for cognitive radio networks.

  5. Integrating stochastic time-dependent travel speed in solution methods for the dynamic dial-a-ride problem

    PubMed Central

    Schilde, M.; Doerner, K.F.; Hartl, R.F.

    2014-01-01

    In urban areas, logistic transportation operations often run into problems because travel speeds change, depending on the current traffic situation. If not accounted for, time-dependent and stochastic travel speeds frequently lead to missed time windows and thus poorer service. Especially in the case of passenger transportation, it often leads to excessive passenger ride times as well. Therefore, time-dependent and stochastic influences on travel speeds are relevant for finding feasible and reliable solutions. This study considers the effect of exploiting statistical information available about historical accidents, using stochastic solution approaches for the dynamic dial-a-ride problem (dynamic DARP). The authors propose two pairs of metaheuristic solution approaches, each consisting of a deterministic method (average time-dependent travel speeds for planning) and its corresponding stochastic version (exploiting stochastic information while planning). The results, using test instances with up to 762 requests based on a real-world road network, show that in certain conditions, exploiting stochastic information about travel speeds leads to significant improvements over deterministic approaches. PMID:25844013

  6. St. Augustine's Reflections on Memory and Time and the Current Concept of Subjective Time in Mental Time Travel.

    PubMed

    Manning, Liliann; Cassel, Daniel; Cassel, Jean-Christophe

    2013-06-01

    Reconstructing the past and anticipating the future, i.e., the ability of travelling in mental time, is thought to be at the heart of consciousness and, by the same token, at the center of human cognition. This extraordinary mental activity is possible thanks to the ability of being aware of 'subjective time'. In the present study, we attempt to trace back the first recorded reflections on the relations between time and memory, to the end of the fourth century's work, the Confessions, by the theologian and philosopher, St. Augustine. We concentrate on Book 11, where he extensively developed a series of articulated and detailed observations on memory and time. On the bases of selected paragraphs, we endeavor to highlight some concepts that may be considered as the product of the first or, at least, very early reflections related to our current notions of subjective time in mental time travel. We also draw a fundamental difference inherent to the frameworks within which the questions were raised. The contribution of St. Augustine on time and memory remains significant, notwithstanding the 16 centuries elapsed since it was made, likely because of the universality of its contents.

  7. Eye movements during mental time travel follow a diagonal line.

    PubMed

    Hartmann, Matthias; Martarelli, Corinna S; Mast, Fred W; Stocker, Kurt

    2014-11-01

    Recent research showed that past events are associated with the back and left side, whereas future events are associated with the front and right side of space. These spatial-temporal associations have an impact on our sensorimotor system: thinking about one's past and future leads to subtle body sways in the sagittal dimension of space (Miles, Nind, & Macrae, 2010). In this study we investigated whether mental time travel leads to sensorimotor correlates in the horizontal dimension of space. Participants were asked to mentally displace themselves into the past or future while measuring their spontaneous eye movements on a blank screen. Eye gaze was directed more rightward and upward when thinking about the future than when thinking about the past. Our results provide further insight into the spatial nature of temporal thoughts, and show that not only body, but also eye movements follow a (diagonal) "time line" during mental time travel. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Travel during Pregnancy

    MedlinePlus

    ... are 36 weeks pregnant. When is the best time to travel during pregnancy? The best time to travel is the middle of your pregnancy—between week ... Sitting or not moving for long periods of time, such as during long-distance travel, can increase the risk of DVT. Pregnancy further ...

  9. The evaluation of advanced traveler information services (ATIS) impacts on truck travel time reliability : using the simulated yoked study concept

    DOT National Transportation Integrated Search

    2004-03-01

    The ability of Advanced Traveler Information Systems (ATIS) to improve the on-time reliability of urban truck movements is evaluated through the application of the Heuristic On-Line Web- : Linked Arrival Time Estimation (HOWLATE) methodology. In HOWL...

  10. Developing corridor-level truck travel time estimates and other freight performance measures from archived ITS data.

    DOT National Transportation Integrated Search

    2009-08-01

    The objectives of this research were to retrospectively study the feasibility for using truck transponder data to produce freight corridor performance measures (travel times) and real-time traveler information. To support this analysis, weigh-in-moti...

  11. Structure of sheared and rotating turbulence: Multiscale statistics of Lagrangian and Eulerian accelerations and passive scalar dynamics.

    PubMed

    Jacobitz, Frank G; Schneider, Kai; Bos, Wouter J T; Farge, Marie

    2016-01-01

    The acceleration statistics of sheared and rotating homogeneous turbulence are studied using direct numerical simulation results. The statistical properties of Lagrangian and Eulerian accelerations are considered together with the influence of the rotation to shear ratio, as well as the scale dependence of their statistics. The probability density functions (pdfs) of both Lagrangian and Eulerian accelerations show a strong and similar dependence on the rotation to shear ratio. The variance and flatness of both accelerations are analyzed and the extreme values of the Eulerian acceleration are observed to be above those of the Lagrangian acceleration. For strong rotation it is observed that flatness yields values close to three, corresponding to Gaussian-like behavior, and for moderate and vanishing rotation the flatness increases. Furthermore, the Lagrangian and Eulerian accelerations are shown to be strongly correlated for strong rotation due to a reduced nonlinear term in this case. A wavelet-based scale-dependent analysis shows that the flatness of both Eulerian and Lagrangian accelerations increases as scale decreases, which provides evidence for intermittent behavior. For strong rotation the Eulerian acceleration is even more intermittent than the Lagrangian acceleration, while the opposite result is obtained for moderate rotation. Moreover, the dynamics of a passive scalar with gradient production in the direction of the mean velocity gradient is analyzed and the influence of the rotation to shear ratio is studied. Concerning the concentration of a passive scalar spread by the flow, the pdf of its Eulerian time rate of change presents higher extreme values than those of its Lagrangian time rate of change. This suggests that the Eulerian time rate of change of scalar concentration is mainly due to advection, while its Lagrangian counterpart is only due to gradient production and viscous dissipation.

  12. Lagrangian velocity and acceleration correlations of large inertial particles in a closed turbulent flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Machicoane, Nathanaël; Volk, Romain

    We investigate the response of large inertial particle to turbulent fluctuations in an inhomogeneous and anisotropic flow. We conduct a Lagrangian study using particles both heavier and lighter than the surrounding fluid, and whose diameters are comparable to the flow integral scale. Both velocity and acceleration correlation functions are analyzed to compute the Lagrangian integral time and the acceleration time scale of such particles. The knowledge of how size and density affect these time scales is crucial in understanding particle dynamics and may permit stochastic process modelization using two-time models (for instance, Sawford’s). As particles are tracked over long timesmore » in the quasi-totality of a closed flow, the mean flow influences their behaviour and also biases the velocity time statistics, in particular the velocity correlation functions. By using a method that allows for the computation of turbulent velocity trajectories, we can obtain unbiased Lagrangian integral time. This is particularly useful in accessing the scale separation for such particles and to comparing it to the case of fluid particles in a similar configuration.« less

  13. A method for generating an illusion of backwards time travel using immersive virtual reality-an exploratory study.

    PubMed

    Friedman, Doron; Pizarro, Rodrigo; Or-Berkers, Keren; Neyret, Solène; Pan, Xueni; Slater, Mel

    2014-01-01

    We introduce a new method, based on immersive virtual reality (IVR), to give people the illusion of having traveled backwards through time to relive a sequence of events in which they can intervene and change history. The participant had played an important part in events with a tragic outcome-deaths of strangers-by having to choose between saving 5 people or 1. We consider whether the ability to go back through time, and intervene, to possibly avoid all deaths, has an impact on how the participant views such moral dilemmas, and also whether this experience leads to a re-evaluation of past unfortunate events in their own lives. We carried out an exploratory study where in the "Time Travel" condition 16 participants relived these events three times, seeing incarnations of their past selves carrying out the actions that they had previously carried out. In a "Repetition" condition another 16 participants replayed the same situation three times, without any notion of time travel. Our results suggest that those in the Time Travel condition did achieve an illusion of "time travel" provided that they also experienced an illusion of presence in the virtual environment, body ownership, and agency over the virtual body that substituted their own. Time travel produced an increase in guilt feelings about the events that had occurred, and an increase in support of utilitarian behavior as the solution to the moral dilemma. Time travel also produced an increase in implicit morality as judged by an implicit association test. The time travel illusion was associated with a reduction of regret associated with bad decisions in their own lives. The results show that when participants have a third action that they can take to solve the moral dilemma (that does not immediately involve choosing between the 1 and the 5) then they tend to take this option, even though it is useless in solving the dilemma, and actually results in the deaths of a greater number.

  14. Soil Moisture Content Estimation using GPR Reflection Travel Time

    NASA Astrophysics Data System (ADS)

    Lunt, I. A.; Hubbard, S. S.; Rubin, Y.

    2003-12-01

    Ground-penetrating radar (GPR) reflection travel time data were used to estimate changes in soil water content under a range of soil saturation conditions throughout the growing season at a California winery. Data were collected during four data acquisition campaigns over an 80 by 180 m area using 100 MHz surface GPR antennae. GPR reflections were associated with a thin, low permeability clay layer located between 0.8 to 1.3 m below the ground surface that was calibrated with borehole information and mapped across the study area. Field infiltration tests and neutron probe logs suggest that the thin clay layer inhibited vertical water flow, and was coincident with high volumetric water content (VWC) values. The GPR reflection two-way travel time and the depth of the reflector at borehole locations were used to calculate an average dielectric constant for soils above the reflector. A site-specific relationship between the dielectric constant and VWC was then used to estimate the depth-averaged VWC of the soils above the reflector. Compared to average VWC measurements from calibrated neutron probe logs over the same depth interval, the average VWC estimates obtained from GPR reflections had an RMS error of 2 percent. We also investigated the estimation of VWC using reflections associated with an advancing water front, and found that estimates of average VWC to the water front could be obtained with similar accuracy. These results suggested that the two-way travel time to a GPR reflection associated with a geological surface or wetting front can be used under natural conditions to obtain estimates of average water content when borehole control is available. The GPR reflection method therefore has potential for monitoring soil water content over large areas and under variable hydrological conditions.

  15. Network-based study of Lagrangian transport and mixing

    NASA Astrophysics Data System (ADS)

    Padberg-Gehle, Kathrin; Schneide, Christiane

    2017-10-01

    Transport and mixing processes in fluid flows are crucially influenced by coherent structures and the characterization of these Lagrangian objects is a topic of intense current research. While established mathematical approaches such as variational methods or transfer-operator-based schemes require full knowledge of the flow field or at least high-resolution trajectory data, this information may not be available in applications. Recently, different computational methods have been proposed to identify coherent behavior in flows directly from Lagrangian trajectory data, that is, numerical or measured time series of particle positions in a fluid flow. In this context, spatio-temporal clustering algorithms have been proven to be very effective for the extraction of coherent sets from sparse and possibly incomplete trajectory data. Inspired by these recent approaches, we consider an unweighted, undirected network, where Lagrangian particle trajectories serve as network nodes. A link is established between two nodes if the respective trajectories come close to each other at least once in the course of time. Classical graph concepts are then employed to analyze the resulting network. In particular, local network measures such as the node degree, the average degree of neighboring nodes, and the clustering coefficient serve as indicators of highly mixing regions, whereas spectral graph partitioning schemes allow us to extract coherent sets. The proposed methodology is very fast to run and we demonstrate its applicability in two geophysical flows - the Bickley jet as well as the Antarctic stratospheric polar vortex.

  16. Completion of construction and installation of travel time signs on I-35 in Austin : project summary.

    DOT National Transportation Integrated Search

    2015-08-31

    Drivers desire real-time information when : traveling in order to make route choice : decisions. One type of information that can be : provided is current (dynamic) travel times on : two possible routes that serve a common : destination. In this way,...

  17. Making Decisions with the Future in Mind: Developmental and Comparative Identification of Mental Time Travel

    ERIC Educational Resources Information Center

    Suddendorf, T.; Busby, J.

    2005-01-01

    Mechanisms that produce behavior which increase future survival chances provide an adaptive advantage. The flexibility of human behavior is at least partly the result of one such mechanism, our ability to travel mentally in time and entertain potential future scenarios. We can study mental time travel in children using language. Current results…

  18. Implementation and Comparison of Acoustic Travel-Time Measurement Procedures for the Solar Dynamics Observatory-Helioseismic and Magnetic Imager Time-Distance Helioseismology Pipeline

    NASA Technical Reports Server (NTRS)

    Couvidat, S.; Zhao, J.; Birch, A. C.; Kosovichev, A. G.; Duvall, Thomas L., Jr.; Parchevsky, K.; Scherrer, P. H.

    2010-01-01

    The Helioseismic and Magnetic Imager (HMI) instrument onboard the Solar Dynamics Observatory (SDO) satellite is designed to produce high-resolution Doppler-velocity maps of oscillations at the solar surface with high temporal cadence. To take advantage of these high-quality oscillation data, a time - distance helioseismology pipeline (Zhao et al., Solar Phys. submitted, 2010) has been implemented at the Joint Science Operations Center (JSOC) at Stanford University. The aim of this pipeline is to generate maps of acoustic travel times from oscillations on the solar surface, and to infer subsurface 3D flow velocities and sound-speed perturbations. The wave travel times are measured from cross-covariances of the observed solar oscillation signals. For implementation into the pipeline we have investigated three different travel-time definitions developed in time - distance helioseismology: a Gabor-wavelet fitting (Kosovichev and Duvall, SCORE'96: Solar Convection and Oscillations and Their Relationship, ASSL, Dordrecht, 241, 1997), a minimization relative to a reference cross-covariance function (Gizon and Birch, Astrophys. J. 571, 966, 2002), and a linearized version of the minimization method (Gizon and Birch, Astrophys. J. 614, 472, 2004). Using Doppler-velocity data from the Michelson Doppler Imager (MDI) instrument onboard SOHO, we tested and compared these definitions for the mean and difference traveltime perturbations measured from reciprocal signals. Although all three procedures return similar travel times in a quiet-Sun region, the method of Gizon and Birch (Astrophys. J. 614, 472, 2004) gives travel times that are significantly different from the others in a magnetic (active) region. Thus, for the pipeline implementation we chose the procedures of Kosovichev and Duvall (SCORE'96: Solar Convection and Oscillations and Their Relationship, ASSL, Dordrecht, 241, 1997) and Gizon and Birch (Astrophys. J. 571, 966, 2002). We investigated the relationships among

  19. Pre-Travel Medical Preparation of Business and Occupational Travelers

    PubMed Central

    Khan, Nomana M.; Jentes, Emily S.; Brown, Clive; Han, Pauline; Rao, Sowmya R.; Kozarsky, Phyllis; Hagmann, Stefan H.F.; LaRocque, Regina C.; Ryan, Edward T.

    2016-01-01

    Objectives: The aim of the study was to understand more about pre-travel preparations and itineraries of business and occupational travelers. Methods: De-identified data from 18 Global TravEpiNet clinics from January 2009 to December 2012 were analyzed. Results: Of 23,534 travelers, 61% were non-occupational and 39% occupational. Business travelers were more likely to be men, had short times to departure and shorter trip durations, and commonly refused influenza, meningococcal, and hepatitis B vaccines. Most business travelers indicated that employers suggested the pre-travel health consultation, whereas non-occupational travelers sought consultations because of travel health concerns. Conclusions: Sub-groups of occupational travelers have characteristic profiles, with business travelers being particularly distinct. Employers play a role in encouraging business travelers to seek pre-travel consultations. Such consultations, even if scheduled immediately before travel, can identify vaccination gaps and increase coverage. PMID:26479857

  20. Lagrangian formulation of irreversible thermodynamics and the second law of thermodynamics.

    PubMed

    Glavatskiy, K S

    2015-05-28

    We show that the equations which describe irreversible evolution of a system can be derived from a variational principle. We suggest a Lagrangian, which depends on the properties of the normal and the so-called "mirror-image" system. The Lagrangian is symmetric in time and therefore compatible with microscopic reversibility. The evolution equations in the normal and mirror-imaged systems are decoupled and describe therefore independent irreversible evolution of each of the systems. The second law of thermodynamics follows from a symmetry of the Lagrangian. Entropy increase in the normal system is balanced by the entropy decrease in the mirror-image system, such that there exists an "integral of evolution" which is a constant. The derivation relies on the property of local equilibrium, which states that the local relations between the thermodynamic quantities in non-equilibrium are the same as in equilibrium.

  1. An empirical method for estimating travel times for wet volcanic mass flows

    USGS Publications Warehouse

    Pierson, Thomas C.

    1998-01-01

    Travel times for wet volcanic mass flows (debris avalanches and lahars) can be forecast as a function of distance from source when the approximate flow rate (peak discharge near the source) can be estimated beforehand. The near-source flow rate is primarily a function of initial flow volume, which should be possible to estimate to an order of magnitude on the basis of geologic, geomorphic, and hydrologic factors at a particular volcano. Least-squares best fits to plots of flow-front travel time as a function of distance from source provide predictive second-degree polynomial equations with high coefficients of determination for four broad size classes of flow based on near-source flow rate: extremely large flows (>1 000 000 m3/s), very large flows (10 000–1 000 000 m3/s), large flows (1000–10 000 m3/s), and moderate flows (100–1000 m3/s). A strong nonlinear correlation that exists between initial total flow volume and flow rate for "instantaneously" generated debris flows can be used to estimate near-source flow rates in advance. Differences in geomorphic controlling factors among different flows in the data sets have relatively little effect on the strong nonlinear correlations between travel time and distance from source. Differences in flow type may be important, especially for extremely large flows, but this could not be evaluated here. At a given distance away from a volcano, travel times can vary by approximately an order of magnitude depending on flow rate. The method can provide emergency-management officials a means for estimating time windows for evacuation of communities located in hazard zones downstream from potentially hazardous volcanoes.

  2. Accessing doctors at times of need-measuring the distance tolerance of rural residents for health-related travel.

    PubMed

    McGrail, Matthew Richard; Humphreys, John Stirling; Ward, Bernadette

    2015-05-29

    Poor access to doctors at times of need remains a significant impediment to achieving good health for many rural residents. The two-step floating catchment area (2SFCA) method has emerged as a key tool for measuring healthcare access in rural areas. However, the choice of catchment size, a key component of the 2SFCA method, is problematic because little is known about the distance tolerance of rural residents for health-related travel. Our study sought new evidence to test the hypothesis that residents of sparsely settled rural areas are prepared to travel further than residents of closely settled rural areas when accessing primary health care at times of need. A questionnaire survey of residents in five small rural communities of Victoria and New South Wales in Australia was used. The two outcome measures were current travel time to visit their usual doctor and maximum time prepared to travel to visit a doctor, both for non-emergency care. Kaplan-Meier charts were used to compare the association between increased distance and decreased travel propensity for closely-settled and sparsely-settled areas, and ordinal multivariate regression models tested significance after controlling for health-related travel moderating factors and town clustering. A total of 1079 questionnaires were completed with 363 from residents in closely-settled locations and 716 from residents in sparsely-settled areas. Residents of sparsely-settled communities travel, on average, 10 min further than residents of closely-settled communities (26.3 vs 16.9 min, p < 0.001), though this difference was not significant after controlling for town clustering. Differences were more apparent in terms of maximum time prepared to travel (54.1 vs 31.9 min, p < 0.001). Differences of maximum time remained significant after controlling for demographic and other constraints to access, such as transport availability or difficulties getting doctor appointments, as well as after controlling for town

  3. Comparison of updated Lagrangian FEM with arbitrary Lagrangian Eulerian method for 3D thermo-mechanical extrusion of a tube profile

    NASA Astrophysics Data System (ADS)

    Kronsteiner, J.; Horwatitsch, D.; Zeman, K.

    2017-10-01

    Thermo-mechanical numerical modelling and simulation of extrusion processes faces several serious challenges. Large plastic deformations in combination with a strong coupling of thermal with mechanical effects leads to a high numerical demand for the solution as well as for the handling of mesh distortions. The two numerical methods presented in this paper also reflect two different ways to deal with mesh distortions. Lagrangian Finite Element Methods (FEM) tackle distorted elements by building a new mesh (called re-meshing) whereas Arbitrary Lagrangian Eulerian (ALE) methods use an "advection" step to remap the solution from the distorted to the undistorted mesh. Another difference between conventional Lagrangian and ALE methods is the separate treatment of material and mesh in ALE, allowing the definition of individual velocity fields. In theory, an ALE formulation contains the Eulerian formulation as a subset to the Lagrangian description of the material. The investigations presented in this paper were dealing with the direct extrusion of a tube profile using EN-AW 6082 aluminum alloy and a comparison of experimental with Lagrangian and ALE results. The numerical simulations cover the billet upsetting and last until one third of the billet length is extruded. A good qualitative correlation of experimental and numerical results could be found, however, major differences between Lagrangian and ALE methods concerning thermo-mechanical coupling lead to deviations in the thermal results.

  4. Quasi Real Time Cruise Deployment Guidance to Coherent Regions Using Lagrangian Methods

    NASA Astrophysics Data System (ADS)

    Dehghani Ashkezari, M.; Barone, B.; Follows, M. J.; Hill, C. N.; Wilson, S. T.; Karl, D. M.

    2016-02-01

    We describe Lagrangian strategies that were used to help plan a field experiment in the North Pacific Subtropical Gyre in July 2015 close to Station ALOHA. The field study, part of the Simons Collaboration on Ocean Processes and Ecology (SCOPE), aimed to characterize diel changes in the composition and activity of the surface ocean microbial community. The study required forecasting a coherent water mass would remain relatively isolated from neighboring waters over 10 days. To this end, we used near-real-time remote-sensed altimetric data with 0.25 degree resolution (provided by Colorado Center for Astrodynamics Research) to compute particle trajectories and Finite-Time Lyapunov Exponent (FTLE) techniques to pinpoint the candidate coherent regions and exclude undesirable, highly dispersive regimes. We will demonstrate the utility of the approach, which was successful at the identification of the coherent region as evidenced by the trajectories of Surface Velocity Program drifters. It accurately identified a poorly suited field of strong transport close to Station ALOHA and identified a well suited region, associated with an anti-cylonic eddy that provided an ideal context for the field campaign. This talk will describe the methodology and the results from the Summer 2015 expedition as well as the potential to apply the approach more broadly.

  5. A LES-based Eulerian-Lagrangian approach to predict the dynamics of bubble plumes

    NASA Astrophysics Data System (ADS)

    Fraga, Bruño; Stoesser, Thorsten; Lai, Chris C. K.; Socolofsky, Scott A.

    2016-01-01

    An approach for Eulerian-Lagrangian large-eddy simulation of bubble plume dynamics is presented and its performance evaluated. The main numerical novelties consist in defining the gas-liquid coupling based on the bubble size to mesh resolution ratio (Dp/Δx) and the interpolation between Eulerian and Lagrangian frameworks through the use of delta functions. The model's performance is thoroughly validated for a bubble plume in a cubic tank in initially quiescent water using experimental data obtained from high-resolution ADV and PIV measurements. The predicted time-averaged velocities and second-order statistics show good agreement with the measurements, including the reproduction of the anisotropic nature of the plume's turbulence. Further, the predicted Eulerian and Lagrangian velocity fields, second-order turbulence statistics and interfacial gas-liquid forces are quantified and discussed as well as the visualization of the time-averaged primary and secondary flow structure in the tank.

  6. Travel-time tomography in shallow water: experimental demonstration at an ultrasonic scale.

    PubMed

    Roux, Philippe; Iturbe, Ion; Nicolas, Barbara; Virieux, Jean; Mars, Jérôme I

    2011-09-01

    Acoustic tomography in a shallow ultrasonic waveguide is demonstrated at the laboratory scale between two source-receiver arrays. At a 1/1,000 scale, the waveguide represents a 1.1-km-long, 52-m-deep ocean acoustic channel in the kilohertz frequency range. Two coplanar arrays record the transfer matrix in the time domain of the waveguide between each pair of source-receiver transducers. A time-domain, double-beamforming algorithm is simultaneously performed on the source and receiver arrays that projects the multi-reflected acoustic echoes into an equivalent set of eigenrays, which are characterized by their travel times and their launch and arrival angles. Travel-time differences are measured for each eigenray every 0.1 s when a thermal plume is generated at a given location in the waveguide. Travel-time tomography inversion is then performed using two forward models based either on ray theory or on the diffraction-based sensitivity kernel. The spatially resolved range and depth inversion data confirm the feasibility of acoustic tomography in shallow water. Comparisons are made between inversion results at 1 and 3 MHz with the inversion procedure using ray theory or the finite-frequency approach. The influence of surface fluctuations at the air-water interface is shown and discussed in the framework of shallow-water ocean tomography. © 2011 Acoustical Society of America

  7. Helioseismic Holography of Simulated Sunspots: dependence of the travel time on magnetic field strength and Wilson depression

    PubMed Central

    Felipe, T.; Braun, D. C.; Birch, A. C.

    2018-01-01

    Improving methods for determining the subsurface structure of sunspots from their seismic signature requires a better understanding of the interaction of waves with magnetic field concentrations. We aim to quantify the impact of changes in the internal structure of sunspots on local helioseismic signals. We have numerically simulated the propagation of a stochastic wave field through sunspot models with different properties, accounting for changes in the Wilson depression between 250 and 550 km and in the photospheric umbral magnetic field between 1500 and 3500 G. The results show that travel-time shifts at frequencies above approximately 3.50 mHz (depending on the phase-speed filter) are insensitive to the magnetic field strength. The travel time of these waves is determined exclusively by the Wilson depression and sound-speed perturbation. The travel time of waves with lower frequencies is affected by the direct effect of the magnetic field, although photospheric field strengths below 1500 G do not leave a significant trace on the travel-time measurements. These results could potentially be used to develop simplified travel-time inversion methods. PMID:29670298

  8. Helioseismic Holography of Simulated Sunspots: dependence of the travel time on magnetic field strength and Wilson depression.

    PubMed

    Felipe, T; Braun, D C; Birch, A C

    2017-01-01

    Improving methods for determining the subsurface structure of sunspots from their seismic signature requires a better understanding of the interaction of waves with magnetic field concentrations. We aim to quantify the impact of changes in the internal structure of sunspots on local helioseismic signals. We have numerically simulated the propagation of a stochastic wave field through sunspot models with different properties, accounting for changes in the Wilson depression between 250 and 550 km and in the photospheric umbral magnetic field between 1500 and 3500 G. The results show that travel-time shifts at frequencies above approximately 3.50 mHz (depending on the phase-speed filter) are insensitive to the magnetic field strength. The travel time of these waves is determined exclusively by the Wilson depression and sound-speed perturbation. The travel time of waves with lower frequencies is affected by the direct effect of the magnetic field, although photospheric field strengths below 1500 G do not leave a significant trace on the travel-time measurements. These results could potentially be used to develop simplified travel-time inversion methods.

  9. Getting Things Sorted With Lagrangian Coherent Structures

    NASA Astrophysics Data System (ADS)

    Atis, Severine; Peacock, Thomas; Environmental Dynamics Laboratory Team

    2014-11-01

    The dispersion of a tracer in a fluid flow is influenced by the Lagrangian motion of fluid elements. Even in laminar regimes, the irregular chaotic behavior of a fluid flow can lead to effective stirring that rapidly redistributes a tracer throughout the domain. For flows with arbitrary time-dependence, the modern approach of Lagrangian Coherent Structures (LCSs) provide a method for identifying the key material lines that organize flow transport. When the advected tracer particles possess a finite size and nontrivial shape, however, their dynamics can differ markedly from passive tracers, thus affecting the dispersion phenomena. We present details of numerical simulations and laboratory experiments that investigate the behavior of finite size particles in 2-dimensional chaotic flows. We show that the shape and the size of the particles alter the underlying LCSs, facilitating segregation between tracers of different shape in the same flow field.

  10. Does Involuntary Mental Time Travel Make Sense in Prospective Teachers' Feelings and Behaviors during Lessons?

    ERIC Educational Resources Information Center

    Eren, Altay; Yesilbursa, Amanda

    2013-01-01

    This study examined the effects of involuntary mental time travel into the past and into the future on prospective teachers' feelings and behaviors during the period of a class hour. A total of 110 prospective teachers participated voluntarily in the study. The results of the present study showed that (a) the involuntary mental time travel into…

  11. Self-Efficacy Beliefs and Mental Time Travel Ability: Uncovering a Hidden Relationship in Educational Settings

    ERIC Educational Resources Information Center

    Eren, Altay

    2009-01-01

    The aim of this study was threefold: first, it was to explore the profiles of student teachers' mental time travel ability; second, it was to examine the relationship between student teachers' mental time travel ability and self-efficacy beliefs; and third, it was to investigate the role of self-efficacy beliefs in relationship between the past…

  12. The effect of centralization of health care services on travel time and its equality.

    PubMed

    Kobayashi, Daisuke; Otsubo, Tetsuya; Imanaka, Yuichi

    2015-03-01

    To analyze the regional variations in travel time between patient residences and medical facilities for the treatment of ischemic heart disease and breast cancer, and to simulate the effects of health care services centralization on travel time and equality of access. We used medical insurance claims data for inpatients and outpatients for the two target diseases that had been filed between September 2008 and May 2009 in Kyoto Prefecture, Japan. Using a geographical information system, patient travel times were calculated based on the driving distance between patient residences and hospitals via highways and toll roads. Locations of residences and hospital locations were identified using postal codes. We then conducted a simulation analysis of centralization of health care services to designated regional core hospitals. The simulated changes in potential spatial access to care were examined. Inequalities in access to care were examined using Gini coefficients, which ranged from 0.4109 to 0.4574. Simulations of health care services centralization showed reduced travel time for most patients and overall improvements in equality of access, except in breast cancer outpatients. Our findings may contribute to the decision-making process in policies aimed at improving the potential spatial access to health care services. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  13. Lagrangian space consistency relation for large scale structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horn, Bart; Hui, Lam; Xiao, Xiao

    Consistency relations, which relate the squeezed limit of an (N+1)-point correlation function to an N-point function, are non-perturbative symmetry statements that hold even if the associated high momentum modes are deep in the nonlinear regime and astrophysically complex. Recently, Kehagias & Riotto and Peloso & Pietroni discovered a consistency relation applicable to large scale structure. We show that this can be recast into a simple physical statement in Lagrangian space: that the squeezed correlation function (suitably normalized) vanishes. This holds regardless of whether the correlation observables are at the same time or not, and regardless of whether multiple-streaming is present.more » Furthermore, the simplicity of this statement suggests that an analytic understanding of large scale structure in the nonlinear regime may be particularly promising in Lagrangian space.« less

  14. Lagrangian space consistency relation for large scale structure

    DOE PAGES

    Horn, Bart; Hui, Lam; Xiao, Xiao

    2015-09-29

    Consistency relations, which relate the squeezed limit of an (N+1)-point correlation function to an N-point function, are non-perturbative symmetry statements that hold even if the associated high momentum modes are deep in the nonlinear regime and astrophysically complex. Recently, Kehagias & Riotto and Peloso & Pietroni discovered a consistency relation applicable to large scale structure. We show that this can be recast into a simple physical statement in Lagrangian space: that the squeezed correlation function (suitably normalized) vanishes. This holds regardless of whether the correlation observables are at the same time or not, and regardless of whether multiple-streaming is present.more » Furthermore, the simplicity of this statement suggests that an analytic understanding of large scale structure in the nonlinear regime may be particularly promising in Lagrangian space.« less

  15. Basic Investigations of Dynamic Travel Time Estimation Model for Traffic Signals Control Using Information from Optical Beacons

    NASA Astrophysics Data System (ADS)

    Okutani, Iwao; Mitsui, Tatsuro; Nakada, Yusuke

    In this paper put forward are neuron-type models, i.e., neural network model, wavelet neuron model and three layered wavelet neuron model(WV3), for estimating traveling time between signalized intersections in order to facilitate adaptive setting of traffic signal parameters such as green time and offset. Model validation tests using simulated data reveal that compared to other models, WV3 model works very fast in learning process and can produce more accurate estimates of travel time. Also, it is exhibited that up-link information obtainable from optical beacons, i.e., travel time observed during the former cycle time in this case, makes a crucial input variable to the models in that there isn't any substantial difference between the change of estimated and simulated travel time with the change of green time or offset when up-link information is employed as input while there appears big discrepancy between them when not employed.

  16. Frequency Dependence of Helioseismic Measurements of the Center-to-Limb Effect and Flow-induced Travel-time Shifts

    NASA Astrophysics Data System (ADS)

    Chen, Ruizhu; Zhao, Junwei

    2018-02-01

    Time–distance helioseismology measures acoustic travel times to infer the structure and flow field of the solar interior; however, both the mean travel times and the travel-time shifts suffer systematic center-to-limb variations, which complicate the interpretation and inversions of the time–distance measurements. In particular, the center-to-limb variation in travel-time shifts (CtoL effect) has a significant impact on the inference of the Sun’s meridional circulation, and needs to be removed from the helioseismic measurements, although the observational properties and the physical cause of the CtoL effect have yet to be investigated. In this study, we measure the CtoL effect in the frequency domain using Doppler-velocity data from the Solar Dynamics Observatory/Helioseismic and Magnetic Imager, and study its properties as a function of disk-centric distance, travel distance, and frequency of acoustic waves. It is found that the CtoL effect has a significant frequency dependence—it reverses sign at a frequency around 5.4 mHz and reaches maximum at around 4.0 mHz before the sign reversal. The tendency of frequency dependence varies with disk-centric distance in a way that both the sign-reversal frequency and the maximum-value frequency decrease closer to the limb. The variation tendency does not change with travel distance, but the variation magnitude is approximately proportional to travel distance. For comparison, the flow-induced travel-time shifts show little frequency dependence. These observational properties provide more clues on the nature of the CtoL effect, and also possibly lead to new ways of effect-removal for a more robust determination of the deep meridional flow.

  17. St. Augustine’s Reflections on Memory and Time and the Current Concept of Subjective Time in Mental Time Travel

    PubMed Central

    Manning, Liliann; Cassel, Daniel; Cassel, Jean-Christophe

    2013-01-01

    Reconstructing the past and anticipating the future, i.e., the ability of travelling in mental time, is thought to be at the heart of consciousness and, by the same token, at the center of human cognition. This extraordinary mental activity is possible thanks to the ability of being aware of ‘subjective time’. In the present study, we attempt to trace back the first recorded reflections on the relations between time and memory, to the end of the fourth century’s work, the Confessions, by the theologian and philosopher, St. Augustine. We concentrate on Book 11, where he extensively developed a series of articulated and detailed observations on memory and time. On the bases of selected paragraphs, we endeavor to highlight some concepts that may be considered as the product of the first or, at least, very early reflections related to our current notions of subjective time in mental time travel. We also draw a fundamental difference inherent to the frameworks within which the questions were raised. The contribution of St. Augustine on time and memory remains significant, notwithstanding the 16 centuries elapsed since it was made, likely because of the universality of its contents. PMID:25379236

  18. [Pre-travel advice and patient education of Hungarian travellers].

    PubMed

    Lengyel, Ingrid; Felkai, Péter

    2018-03-01

    According to international surveys, over half of the travellers face some kind of health issue when travelling. The overwhelming majority of travel-related illnesses can be prevented with pre-travel medical consultations, but the syllabus and content of the consultation have to match the travel habits and culture of the given society. This publication explores the specificities and travel habits of Hungarian travellers. One hundred participants of a travel exhibition completed a survey about their international travel. As the survey was not representative, the data could only be processed through simple statistical methods. However, since the exhibition was presumably attended by those wishing to travel, the conclusions drawn from the results are worth publishing, since no similar survey in Hungary has been published before. Based on the suitable classification of age groups in travel medicine, 11% of the participants were adolescents / young adults (aged 15-24), 81% adults (25-59) and 8% elderly (60-74). Twenty-eight percent of the participants travel multiple times a year, 40% yearly and 32% of them less frequently; 16% of the adults, 8% of the adolescents and 4% of the elderly age group travel multiple times a year. The travel destinations of Hungarian travellers have remained practically unchanged since a study was conducted 13 years ago: the vast majority (95%) travelled within Europe, 2% to the United States, and 11% of them elsewhere. Since Hungarians do not travel to endemic areas, only 5% consulted their general practitioners (GPs) prior to travelling, and 29% did when they had to be vaccinated. Forty-two percent of those wishing to travel never consult their GPs, even though 29% of them are aware of some chronic illness. Instead, 51% gather their health information from the internet and only 6% from their doctors. By the contradiction between the poor health status of the majority of Hungarian travellers and the negligence of seeking pre-travel advice

  19. Monitoring the impact of decentralised chronic care services on patient travel time in rural Africa--methods and results in Northern Malawi.

    PubMed

    Houben, Rein M G J; Van Boeckel, Thomas P; Mwinuka, Venance; Mzumara, Peter; Branson, Keith; Linard, Catherine; Chimbwandira, Frank; French, Neil; Glynn, Judith R; Crampin, Amelia C

    2012-11-15

    Decentralised health services form a key part of chronic care strategies in resource-limited settings by reducing the distance between patient and clinic and thereby the time and costs involved in travelling. However, few tools exist to evaluate the impact of decentralisation on patient travel time or what proportion of patients attend their nearest clinic. Here we develop methods to monitor changes in travel time, using data from the antiretroviral therapy (ART) roll-out in a rural district in North Malawi. Clinic position was combined with GPS information on the home village of patients accessing ART services in Karonga District (North Malawi) between July 2005 and July 2009. Potential travel time was estimated as the travel time for an individual attending their nearest clinic, and estimated actual travel time as the time to the clinic attended. This allowed us to calculate changes in potential and actual travel time as new clinics opened and track the proportion and origin of patients not accessing their nearest clinic. The model showed how the opening of further ART clinics in Karonga District reduced median potential travel time from 83 to 43 minutes, and median actual travel time fell from 83 to 47 minutes. The proportion of patients not attending their nearest clinic increased from 6% when two clinics were open, to 12% with four open. Integrating GPS information with patient data shows the impact of decentralisation on travel time and clinic choice to inform policy and research questions. In our case study, travel time decreased, accompanied by an increased uptake of services. However, the model also identified an increasing proportion of ART patients did not attend their nearest clinic.

  20. Lagrangian Hotspots of In-Use NOX Emissions from Transit Buses.

    PubMed

    Kotz, Andrew J; Kittelson, David B; Northrop, William F

    2016-06-07

    In-use, spatiotemporal NOX emissions were measured from a conventional powertrain transit bus and a series electric hybrid bus over gradients of route kinetic intensity and ambient temperature. This paper introduces a new method for identifying NOX emissions hotspots along a bus route using high fidelity Lagrangian vehicle data to explore spatial interactions that may influence emissions production. Our study shows that the studied transit buses emit higher than regulated emissions because on-route operation does not accurately represent the range of engine operation tested according to regulatory standards. Using the Lagrangian hotspot detection, we demonstrate that NOX hotspots occurred at bus stops, during cold starts, on inclines, and for accelerations. On the selected routes, bus stops resulted in 3.3 times the route averaged emissions factor in grams/km without significant dependence on bus type or climate. The buses also emitted 2.3 times the route averaged NOX emissions factor at the beginning of each route due to cold selective catalytic reduction aftertreatment temperature. The Lagrangian hotspot detection technique demonstrated here could be employed in future connected vehicles empowered by advances in computational power, data storage capability, and improved sensor technology to optimize emissions as a function of spatial location.

  1. Comparing High-latitude Ionospheric and Thermospheric Lagrangian Coherent Structures

    NASA Astrophysics Data System (ADS)

    Wang, N.; Ramirez, U.; Flores, F.; Okic, D.; Datta-Barua, S.

    2015-12-01

    Lagrangian Coherent Structures (LCSs) are invisible boundaries in time varying flow fields that may be subject to mixing and turbulence. The LCS is defined by the local maxima of the finite time Lyapunov exponent (FTLE), a scalar field quantifying the degree of stretching of fluid elements over the flow domain. Although the thermosphere is dominated by neutral wind processes and the ionosphere is governed by plasma electrodynamics, we can compare the LCS in the two modeled flow fields to yield insight into transport and interaction processes in the high-latitude IT system. For obtaining thermospheric LCS, we use the Horizontal Wind Model 2014 (HWM14) [1] at a single altitude to generate the two-dimensional velocity field. The FTLE computation is applied to study the flow field of the neutral wind, and to visualize the forward-time Lagrangian Coherent Structures in the flow domain. The time-varying structures indicate a possible thermospheric LCS ridge in the auroral oval area. The results of a two-day run during a geomagnetically quiet period show that the structures are diurnally quasi-periodic, thus that solar radiation influences the neutral wind flow field. To find the LCS in the high-latitude ionospheric drifts, the Weimer 2001 [2] polar electric potential model and the International Geomagnetic Reference Field 11 [3] are used to compute the ExB drift flow field in ionosphere. As with the neutral winds, the Lagrangian Coherent Structures are obtained by applying the FTLE computation. The relationship between the thermospheric and ionospheric LCS is analyzed by comparing overlapping FTLE maps. Both a publicly available FTLE solver [4] and a custom-built FTLE computation are used and compared for validation [5]. Comparing the modeled IT LCSs on a quiet day with the modeled IT LCSs on a storm day indicates important factors on the structure and time evolution of the LCS.

  2. Residence-time framework for modeling multicomponent reactive transport in stream hyporheic zones

    NASA Astrophysics Data System (ADS)

    Painter, S. L.; Coon, E. T.; Brooks, S. C.

    2017-12-01

    Process-based models for transport and transformation of nutrients and contaminants in streams require tractable representations of solute exchange between the stream channel and biogeochemically active hyporheic zones. Residence-time based formulations provide an alternative to detailed three-dimensional simulations and have had good success in representing hyporheic exchange of non-reacting solutes. We extend the residence-time formulation for hyporheic transport to accommodate general multicomponent reactive transport. To that end, the integro-differential form of previous residence time models is replaced by an equivalent formulation based on a one-dimensional advection dispersion equation along the channel coupled at each channel location to a one-dimensional transport model in Lagrangian travel-time form. With the channel discretized for numerical solution, the associated Lagrangian model becomes a subgrid model representing an ensemble of streamlines that are diverted into the hyporheic zone before returning to the channel. In contrast to the previous integro-differential forms of the residence-time based models, the hyporheic flowpaths have semi-explicit spatial representation (parameterized by travel time), thus allowing coupling to general biogeochemical models. The approach has been implemented as a stream-corridor subgrid model in the open-source integrated surface/subsurface modeling software ATS. We use bedform-driven flow coupled to a biogeochemical model with explicit microbial biomass dynamics as an example to show that the subgrid representation is able to represent redox zonation in sediments and resulting effects on metal biogeochemical dynamics in a tractable manner that can be scaled to reach scales.

  3. When travel is a challenge: Travel medicine and the 'dis-abled' traveller.

    PubMed

    Bauer, Irmgard

    Travellers with recognised disabilities or the dis-ability to function as required during a trip have been overlooked in the travel medicine literature. This paper provides a starting point for further discussion and research into this neglected traveller population. In contrast, tourism research has explored travel with a disability for some time in order to understand the travellers' needs and to improve services accordingly. The contemporary bio-psycho-social understanding of disability serves as the framework for exploring motivations to travel as well as barriers, such as inter and intrapersonal, economic, structural and attitudinal obstacles. The demands of complex travel planning are acknowledged. Attention is also drawn to the particular issue of acquired disability. The theoretical discussion is complemented by travellers' own accounts using as examples mobility impairment on aeroplanes, sensory impairments, and obesity. These insights should inform high quality travel health care starting with an exploration of the health professionals' own views on such endeavours. Important are appropriate communication skills, an understanding of the travellers'/carers' views, wishes and judgment of abilities, as well as the appreciation of the reason for the trip, destination and planned activities. Challenging may be the need to accept that the traveller/carer will be more knowledgeable about the disability, needs, potential problems and solutions than the health professional. Finally, medical requirements for destination and activity need to be combined with the medical requirements for the dis-abling condition. Scarce literature and increasing numbers of travellers with disabilities should make this field a research priority in travel medicine. Unless there is an absolute medical contraindication, travel health professionals should encourage and support travellers for whom travel is a challenge. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Evaluating effectiveness of real-time advanced traveler information systems using a small test vehicle fleet

    DOT National Transportation Integrated Search

    1997-01-01

    ADVANCE was an in-vehicle advanced traveler information system (ATIS) providing route guidance in real time that operated in the northwestern portion and northwest suburbs of Chicago, Illinois. It used probe vehicles to generate dynamically travel ti...

  5. Mental time travel and the shaping of the human mind

    PubMed Central

    Suddendorf, Thomas; Addis, Donna Rose; Corballis, Michael C.

    2009-01-01

    Episodic memory, enabling conscious recollection of past episodes, can be distinguished from semantic memory, which stores enduring facts about the world. Episodic memory shares a core neural network with the simulation of future episodes, enabling mental time travel into both the past and the future. The notion that there might be something distinctly human about mental time travel has provoked ingenious attempts to demonstrate episodic memory or future simulation in non-human animals, but we argue that they have not yet established a capacity comparable to the human faculty. The evolution of the capacity to simulate possible future events, based on episodic memory, enhanced fitness by enabling action in preparation of different possible scenarios that increased present or future survival and reproduction chances. Human language may have evolved in the first instance for the sharing of past and planned future events, and, indeed, fictional ones, further enhancing fitness in social settings. PMID:19528013

  6. Connected Traveler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2016-06-01

    The Connected Traveler framework seeks to boost the energy efficiency of personal travel and the overall transportation system by maximizing the accuracy of predicted traveler behavior in response to real-time feedback and incentives. It is anticipated that this approach will establish a feedback loop that 'learns' traveler preferences and customizes incentives to meet or exceed energy efficiency targets by empowering individual travelers with information needed to make energy-efficient choices and reducing the complexity required to validate transportation system energy savings. This handout provides an overview of NREL's Connected Traveler project, including graphics, milestones, and contact information.

  7. Variational Lagrangian data assimilation in open channel networks

    NASA Astrophysics Data System (ADS)

    Wu, Qingfang; Tinka, Andrew; Weekly, Kevin; Beard, Jonathan; Bayen, Alexandre M.

    2015-04-01

    This article presents a data assimilation method in a tidal system, where data from both Lagrangian drifters and Eulerian flow sensors were fused to estimate water velocity. The system is modeled by first-order, hyperbolic partial differential equations subject to periodic forcing. The estimation problem can then be formulated as the minimization of the difference between the observed variables and model outputs, and eventually provide the velocity and water stage of the hydrodynamic system. The governing equations are linearized and discretized using an implicit discretization scheme, resulting in linear equality constraints in the optimization program. Thus, the flow estimation can be formed as an optimization problem and efficiently solved. The effectiveness of the proposed method was substantiated by a large-scale field experiment in the Sacramento-San Joaquin River Delta in California. A fleet of 100 sensors developed at the University of California, Berkeley, were deployed in Walnut Grove, CA, to collect a set of Lagrangian data, a time series of positions as the sensors moved through the water. Measurements were also taken from Eulerian sensors in the region, provided by the United States Geological Survey. It is shown that the proposed method can effectively integrate Lagrangian and Eulerian measurement data, resulting in a suited estimation of the flow variables within the hydraulic system.

  8. Lagrangian formulation of irreversible thermodynamics and the second law of thermodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glavatskiy, K. S.

    We show that the equations which describe irreversible evolution of a system can be derived from a variational principle. We suggest a Lagrangian, which depends on the properties of the normal and the so-called “mirror-image” system. The Lagrangian is symmetric in time and therefore compatible with microscopic reversibility. The evolution equations in the normal and mirror-imaged systems are decoupled and describe therefore independent irreversible evolution of each of the systems. The second law of thermodynamics follows from a symmetry of the Lagrangian. Entropy increase in the normal system is balanced by the entropy decrease in the mirror-image system, such thatmore » there exists an “integral of evolution” which is a constant. The derivation relies on the property of local equilibrium, which states that the local relations between the thermodynamic quantities in non-equilibrium are the same as in equilibrium.« less

  9. Efficient constraint handling in electromagnetism-like algorithm for traveling salesman problem with time windows.

    PubMed

    Yurtkuran, Alkın; Emel, Erdal

    2014-01-01

    The traveling salesman problem with time windows (TSPTW) is a variant of the traveling salesman problem in which each customer should be visited within a given time window. In this paper, we propose an electromagnetism-like algorithm (EMA) that uses a new constraint handling technique to minimize the travel cost in TSPTW problems. The EMA utilizes the attraction-repulsion mechanism between charged particles in a multidimensional space for global optimization. This paper investigates the problem-specific constraint handling capability of the EMA framework using a new variable bounding strategy, in which real-coded particle's boundary constraints associated with the corresponding time windows of customers, is introduced and combined with the penalty approach to eliminate infeasibilities regarding time window violations. The performance of the proposed algorithm and the effectiveness of the constraint handling technique have been studied extensively, comparing it to that of state-of-the-art metaheuristics using several sets of benchmark problems reported in the literature. The results of the numerical experiments show that the EMA generates feasible and near-optimal results within shorter computational times compared to the test algorithms.

  10. Delivery and application of precise timing for a traveling wave powerline fault locator system

    NASA Technical Reports Server (NTRS)

    Street, Michael A.

    1990-01-01

    The Bonneville Power Administration (BPA) has successfully operated an in-house developed powerline fault locator system since 1986. The BPA fault locator system consists of remotes installed at cardinal power transmission line system nodes and a central master which polls the remotes for traveling wave time-of-arrival data. A power line fault produces a fast rise-time traveling wave which emanates from the fault point and propagates throughout the power grid. The remotes time-tag the traveling wave leading edge as it passes through the power system cardinal substation nodes. A synchronizing pulse transmitted via the BPA analog microwave system on a wideband channel sychronizes the time-tagging counters in the remote units to a different accuracy of better than one microsecond. The remote units correct the raw time tags for synchronizing pulse propagation delay and return these corrected values to the fault locator master. The master then calculates the power system disturbance source using the collected time tags. The system design objective is a fault location accuracy of 300 meters. BPA's fault locator system operation, error producing phenomena, and method of distributing precise timing are described.

  11. A multinational investigation of time and traveling costs in attending anticoagulation clinics.

    PubMed

    Jowett, Sue; Bryan, Stirling; Mahé, Isabelle; Brieger, David; Carlsson, Jonas; Kartman, Bernt; Nevinson, Mark

    2008-01-01

    Anticoagulation is used in patients with atrial fibrillation to reduce the risk of ischemic stroke. The therapy requires regular monitoring and, frequently, dose adjustment. This study aimed to determine the time and traveling costs that patients incur to themselves and society in attending anticoagulation clinics. A subset of patients from 105 primary and secondary care clinics allocated to the warfarin arm of SPORTIF III (patients from Australia, France, Portugal, Spain, Sweden, and the UK) completed a questionnaire. Patients indicated the type of transport used for clinic visits, and estimated traveling expenses. Patients were also asked to estimate total traveling and clinic attendance time, and to confirm whether they were currently employed and whether they had to give up time from work to attend the clinic. Time cost of companions was also taken into consideration. Cost per visit was calculated (euro, 2003 prices). Questionnaires for a total of 381 patients were analyzed, with the majority of patients from Sweden (n = 130) and the UK (n = 101). Mean cost to patients varied widely between countries, ranging from euro6.9 (France) to euro20.5 (Portugal) per visit. For most countries, time costs (value of lost working and leisure time) were the main driver of costs. Mean time cost to society ranged from euro5.6 (France) to euro31.7 (Portugal) per visit. Patients incur considerable costs when visiting anticoagulation clinics, and these costs vary by country. The results suggest the importance of taking a broad economic perspective when considering the cost-effectiveness of warfarin.

  12. A Lagrangian dynamic subgrid-scale model turbulence

    NASA Technical Reports Server (NTRS)

    Meneveau, C.; Lund, T. S.; Cabot, W.

    1994-01-01

    A new formulation of the dynamic subgrid-scale model is tested in which the error associated with the Germano identity is minimized over flow pathlines rather than over directions of statistical homogeneity. This procedure allows the application of the dynamic model with averaging to flows in complex geometries that do not possess homogeneous directions. The characteristic Lagrangian time scale over which the averaging is performed is chosen such that the model is purely dissipative, guaranteeing numerical stability when coupled with the Smagorinsky model. The formulation is tested successfully in forced and decaying isotropic turbulence and in fully developed and transitional channel flow. In homogeneous flows, the results are similar to those of the volume-averaged dynamic model, while in channel flow, the predictions are superior to those of the plane-averaged dynamic model. The relationship between the averaged terms in the model and vortical structures (worms) that appear in the LES is investigated. Computational overhead is kept small (about 10 percent above the CPU requirements of the volume or plane-averaged dynamic model) by using an approximate scheme to advance the Lagrangian tracking through first-order Euler time integration and linear interpolation in space.

  13. New Applications of Cosmogenic Radioactive Isotopes to Study Water Travel Times

    NASA Astrophysics Data System (ADS)

    Visser, A.; Thaw, M.; Deinhart, A.; Bibby, R. K.; Esser, B.

    2017-12-01

    The travel time of water moving through a landscape influences nutrient dynamics and biogeochemical cycles. Constraining water travel times helps to understand the functioning of the critical zone. Water travel times cannot be observed directly but can be constrained by measurements of cosmogenic radioactive isotopes. We studied a small (4.6 km2) subalpine (1660-2117 m) catchment in a Mediterranean climate (8 °C, 1200 mm/yr) in the California Sierra Nevada to assess subsurface water storage dynamics and investigate flow paths and flow velocities. We analyzed a combination of three cosmogenic radioactive isotopes with half-lives varying from 87 days (sulfur-35), 2.6 years (sodium-22) to 12.3 years (tritium) in precipitation and stream samples. Water stable isotopes and solute chemistry aided the interpretation of the cosmogenic isotopes. Tritium samples (1L) are analyzed by noble gas mass spectrometry after helium-3 accumulation. Samples for sulfur-35 and sodium-22 are collected by processing 20-1000 L of water through an anion and cation exchange column in-situ. Sulfur-35 is analyzed by liquid scintillation counting after chemical purification and precipitation. Sodium-22 is analyzed by gamma counting after eluting the cations into a 4L Marinelli beaker. Monthly collected precipitation samples show variability of deposition rate for tritium and sulfur-35. Sodium-22 levels in cumulative yearly precipitation samples are consistent with recent studies in the US and Japan. The observed variability of deposition rates complicates direct use as decaying age tracers. The level and variability of tritium in monthly stream samples indicate a mean residence time on the order of 10 years and only small contributions of younger water during high flow conditions. Sulfur-35 and sodium-22 concentrations were critically interpreted considering possible uptake by vegetation and cation exchange. Detections of sodium-22 confirm a small fraction of younger (< 5 years) water. Low

  14. Assessment of smolt condition for travel time analysis. Annual report 1988

    USGS Publications Warehouse

    Rondorf, D.W.; Beeman, J.W.; Faler, J.C.; Free, M.E.; Wagner, E.J.

    1989-01-01

    Estimates of migration rates and travel times of juvenile salmonids within index reaches of the Columbia River basin are collected through the Smolt Monitoring Program for use by the Fish Passage Center. With increased reliance upon travel time estimates in 1988 by the Fish Passage Center, this study was implemented to monitor the biological attributes of juvenile chinook salmon Oncorhynchus tshawytscha and steelhead trout 0.- mykiss used for the travel time estimates, The physiological ability of fish to respond to stress was assessed by measuring levels of plasma cortisol, glucose, and chloride before and after a stress-challenge test. Most mid-Columbia and Snake river groups responded normally to the stress challenge exhibiting an increase in plasma glucose and cortisol and a slight decrease in chloride. Fish trucked to release sites were more stressed than those released directly from the hatchery, but most still responded to the stress challenge test normally. An abnormal or extreme stress response occurred when there were deviations from preferred protocol, disease problems at hatcheries, or when fish were trucked over long periods (7h). The development of smoltification was evaluated by measuring gill Na+K+-ATPase, plasma thyroxine, purines, and body morphology. Most groups were similar at the hatcheries but differed as the migration to McNary Dam proceeded. Gill ATPase activity increased 2-3 fold during the first 20 days of migration, after which it changed little. Fish with longer in-river travel times appeared to be more smolted than those which were in the river for a shorter period of time. The prevalence of bacterial kidney disease (BKD) in spring chinook salmon was evaluated using the enzyme linked immunosorbent assay (ELISA) and fluorescent antibody technique (FAT). Prevalence of BKD in groups tested using the ELISA method was as high as 99% at some downstream locations. A review of indices is presented as a guide, to the development of an index of

  15. A Lagrangian stochastic model for aerial spray transport above an oak forest

    USGS Publications Warehouse

    Wang, Yansen; Miller, David R.; Anderson, Dean E.; McManus, Michael L.

    1995-01-01

    An aerial spray droplets' transport model has been developed by applying recent advances in Lagrangian stochastic simulation of heavy particles. A two-dimensional Lagrangian stochastic model was adopted to simulate the spray droplet dispersion in atmospheric turbulence by adjusting the Lagrangian integral time scale along the drop trajectory. The other major physical processes affecting the transport of spray droplets above a forest canopy, the aircraft wingtip vortices and the droplet evaporation, were also included in each time step of the droplets' transport.The model was evaluated using data from an aerial spray field experiment. In generally neutral stability conditions, the accuracy of the model predictions varied from run-to-run as expected. The average root-mean-square error was 24.61 IU cm−2, and the average relative error was 15%. The model prediction was adequate in two-dimensional steady wind conditions, but was less accurate in variable wind condition. The results indicated that the model can simulate successfully the ensemble; average transport of aerial spray droplets under neutral, steady atmospheric wind conditions.

  16. 41 CFR 301-11.10 - Am I required to record departure/arrival dates and times on my travel claim?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... departure/arrival dates and times on my travel claim? 301-11.10 Section 301-11.10 Public Contracts and... dates and times on my travel claim? You must record the date of departure from, and arrival at, the... visited. You do not have to record departure/arrival times, but you must annotate your travel claim when...

  17. 41 CFR 301-11.10 - Am I required to record departure/arrival dates and times on my travel claim?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... departure/arrival dates and times on my travel claim? 301-11.10 Section 301-11.10 Public Contracts and... dates and times on my travel claim? You must record the date of departure from, and arrival at, the... visited. You do not have to record departure/arrival times, but you must annotate your travel claim when...

  18. 41 CFR 301-11.10 - Am I required to record departure/arrival dates and times on my travel claim?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... departure/arrival dates and times on my travel claim? 301-11.10 Section 301-11.10 Public Contracts and... dates and times on my travel claim? You must record the date of departure from, and arrival at, the... visited. You do not have to record departure/arrival times, but you must annotate your travel claim when...

  19. 41 CFR 301-11.10 - Am I required to record departure/arrival dates and times on my travel claim?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... departure/arrival dates and times on my travel claim? 301-11.10 Section 301-11.10 Public Contracts and... dates and times on my travel claim? You must record the date of departure from, and arrival at, the... visited. You do not have to record departure/arrival times, but you must annotate your travel claim when...

  20. 41 CFR 301-11.10 - Am I required to record departure/arrival dates and times on my travel claim?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... departure/arrival dates and times on my travel claim? 301-11.10 Section 301-11.10 Public Contracts and... dates and times on my travel claim? You must record the date of departure from, and arrival at, the... visited. You do not have to record departure/arrival times, but you must annotate your travel claim when...

  1. Prospective and retrospective time perception are related to mental time travel: evidence from Alzheimer's disease.

    PubMed

    El Haj, Mohamad; Moroni, Christine; Samson, Séverine; Fasotti, Luciano; Allain, Philippe

    2013-10-01

    Unlike prospective time perception paradigms, in which participants are aware that they have to estimate forthcoming time, little is known about retrospective time perception in normal aging and Alzheimer's disease (AD). Our paper addresses this shortcoming by comparing prospective and retrospective time estimation in younger adults, older adults, and AD patients. In four prospective tasks (lasting 30s, 60s, 90s, or 120s) participants were asked to read a series of numbers and to provide a verbal estimation of the reading time. In four other retrospective tasks, they were not informed about time judgment until they were asked to provide a verbal estimation of four elapsed time intervals (lasting 30s, 60s, 90s, or 120s). AD participants gave shorter verbal time estimations than older adults and younger participants did, suggesting that time is perceived to pass quickly in these patients. For all participants, the duration of the retrospective tasks was underestimated as compared to the prospective tasks and both estimations were shorter than the real time interval. Prospective time estimation was further correlated with mental time travel, as measured with the Remember/Know paradigm. Mental time travel was even higher correlated with retrospective time estimation. Our findings shed light on the relationship between time perception and the ability to mentally project oneself into time, two skills contributing to human memory functioning. Finally, time perception deficits, as observed in AD patients, can be interpreted in terms of dramatic changes occurring in frontal lobes and hippocampus. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Incorporating travel-time reliability into the congestion management process : a primer.

    DOT National Transportation Integrated Search

    2015-02-01

    This primer explains the value of incorporating travel-time reliability into the Congestion Management Process (CMP) : and identifies the most current tools available to assist with this effort. It draws from applied research and best practices : fro...

  3. Measuring cross-border travel times for freight : Otay Mesa international border crossing.

    DOT National Transportation Integrated Search

    2010-09-01

    Cross border movement of people and goods is a vital part of the North American economy. Accurate real-time data on travel times along the US-Mexico border can help generate a range of tangible benefits covering improved operations and security, lowe...

  4. A quasi-Lagrangian finite element method for the Navier-Stokes equations in a time-dependent domain

    NASA Astrophysics Data System (ADS)

    Lozovskiy, Alexander; Olshanskii, Maxim A.; Vassilevski, Yuri V.

    2018-05-01

    The paper develops a finite element method for the Navier-Stokes equations of incompressible viscous fluid in a time-dependent domain. The method builds on a quasi-Lagrangian formulation of the problem. The paper provides stability and convergence analysis of the fully discrete (finite-difference in time and finite-element in space) method. The analysis does not assume any CFL time-step restriction, it rather needs mild conditions of the form $\\Delta t\\le C$, where $C$ depends only on problem data, and $h^{2m_u+2}\\le c\\,\\Delta t$, $m_u$ is polynomial degree of velocity finite element space. Both conditions result from a numerical treatment of practically important non-homogeneous boundary conditions. The theoretically predicted convergence rate is confirmed by a set of numerical experiments. Further we apply the method to simulate a flow in a simplified model of the left ventricle of a human heart, where the ventricle wall dynamics is reconstructed from a sequence of contrast enhanced Computed Tomography images.

  5. Lagrangian Perturbation Approach to the Formation of Large-scale Structure

    NASA Astrophysics Data System (ADS)

    Buchert, Thomas

    The present lecture notes address three columns on which the Lagrangian perturbation approach to cosmological dynamics is based: 1. the formulation of a Lagrangian theory of self-gravitating flows in which the dynamics is described in terms of a single field variable; 2. the procedure, how to obtain the dynamics of Eulerian fields from the Lagrangian picture, and 3. a precise definition of a Newtonian cosmology framework in which Lagrangian perturbation solutions can be studied. While the first is a discussion of the basic equations obtained by transforming the Eulerian evolution and field equations to the Lagrangian picture, the second exemplifies how the Lagrangian theory determines the evolution of Eulerian fields including kinematical variables like expansion, vorticity, as well as the shear and tidal tensors. The third column is based on a specification of initial and boundary conditions, and in particular on the identification of the average flow of an inhomogeneous cosmology with a `Hubble-flow'. Here, we also look at the limits of the Lagrangian perturbation approach as inferred from comparisons with N-body simulations and illustrate some striking properties of the solutions.

  6. Probabilistic Health Risk Assessment of Chemical Mixtures: Importance of Travel Times and Connectivity

    NASA Astrophysics Data System (ADS)

    Henri, Christopher V.; Fernàndez-Garcia, Daniel; de Barros, Felipe P. J.

    2014-05-01

    Subsurface contamination cases giving rise to groundwater pollutions are extensively found in all industrialized countries. Under this pressure, risk assessment methods play an important role in population protection by (1) quantifying the potential impact on human health of an aquifer contamination and (2) helping and driving decisions of groundwater-resource managers. Many reactive components such as chlorinated solvents or nitrates potentially experience attenuation processes under common geochemical conditions. This represents an attractive and extensively used remediation solution but leads often to the production of by-products before to reach a harmless chemical form. This renders mixtures of contaminants a common issue for groundwater resources managers. In this case, the threat posed by these contaminants to human health at a given sensitive location greatly depends on the competition between reactive and advective-dispersive characteristic times. However, hydraulic properties of the aquifer are known to be spatially variable, which can lead to the formation of preferential flow channels and fast contamination pathways. Therefore, the uncertainty on the spatial distribution of the aquifer properties controlling the plume travel time may then play a particular role in the human health risk assessment of chemical mixtures. We investigate here the risk related to a multispecies system in response to different degrees of heterogeneity of the hydraulic conductivity (K or Y =ln(K)). This work focuses on a Perchloroethylene (PCE) contamination problem followed by the sequential first-order production/biodegradation of its daughter species Trichloroethylene (TCE), Dichloroethylene (DCE) and Vinyl Chlorine (VC). For this specific case, VC is known to be a highly toxic contaminant. By performing numerical experiments, we evaluate transport through three-dimensional mildly (σY 2=1.0) and highly (σY 2=4.0) heterogeneous aquifers. Uncertainty on the hydraulic

  7. Time of travel of the Flint River, Utah Dam to highway M-13, Michigan, August 4-8, 1981

    USGS Publications Warehouse

    Cummings, T. Ray; Miller, John B.

    1982-01-01

    Tracing of rhodamine WT dye has provided time-of-travel data for waste-load allocation studies of a 42.8-mile reach of the Flint River at low flow. A discharge equaled or exceeded about 90 percent of the time was measured at Grand Traverse Street in Flint before dye injection. Dye was injected at two locations in Flint--at Utah Dam and at Grand Traverse Street, From Utah Dam to Grand Traverse Street, the mean velocity of flow was about 0.1 foot per second; time-of-travel was 35.3 hours. From Grand Traverse Street to Highway M-13, mean velocity was about 0.7 foot per second; time-of-travel was 78.8 hours. Time-of-travel for the reach between Utah Dam and Highway M-13 was thus 114 hours.

  8. Lagrangian formulation and symmetrical description of liquid dynamics.

    PubMed

    Trachenko, K

    2017-12-01

    Theoretical description of liquids has been primarily based on the hydrodynamic approach and its generalization to the solid-like regime. We show that the same liquid properties can be derived starting from solid-like equations and generalizing them to account for the hydrodynamic flow. Both approaches predict propagating shear waves with the notable gap in k-space. This gives an important symmetry of liquids regarding their description. We subsequently construct a two-field Lagrangian of liquid dynamics where the dissipative hydrodynamic and solid-like terms are treated on equal footing. The Lagrangian predicts two gapped waves propagating in opposite space-time directions. The dissipative and mass terms compete by promoting gaps in k-space and energy, respectively. When bare mass is close to the field hopping frequency, both gaps close and the dissipative term annihilates the bare mass.

  9. Lagrangian space consistency relation for large scale structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horn, Bart; Hui, Lam; Xiao, Xiao, E-mail: bh2478@columbia.edu, E-mail: lh399@columbia.edu, E-mail: xx2146@columbia.edu

    Consistency relations, which relate the squeezed limit of an (N+1)-point correlation function to an N-point function, are non-perturbative symmetry statements that hold even if the associated high momentum modes are deep in the nonlinear regime and astrophysically complex. Recently, Kehagias and Riotto and Peloso and Pietroni discovered a consistency relation applicable to large scale structure. We show that this can be recast into a simple physical statement in Lagrangian space: that the squeezed correlation function (suitably normalized) vanishes. This holds regardless of whether the correlation observables are at the same time or not, and regardless of whether multiple-streaming is present.more » The simplicity of this statement suggests that an analytic understanding of large scale structure in the nonlinear regime may be particularly promising in Lagrangian space.« less

  10. Lagrangian formulation and symmetrical description of liquid dynamics

    NASA Astrophysics Data System (ADS)

    Trachenko, K.

    2017-12-01

    Theoretical description of liquids has been primarily based on the hydrodynamic approach and its generalization to the solid-like regime. We show that the same liquid properties can be derived starting from solid-like equations and generalizing them to account for the hydrodynamic flow. Both approaches predict propagating shear waves with the notable gap in k -space. This gives an important symmetry of liquids regarding their description. We subsequently construct a two-field Lagrangian of liquid dynamics where the dissipative hydrodynamic and solid-like terms are treated on equal footing. The Lagrangian predicts two gapped waves propagating in opposite space-time directions. The dissipative and mass terms compete by promoting gaps in k -space and energy, respectively. When bare mass is close to the field hopping frequency, both gaps close and the dissipative term annihilates the bare mass.

  11. Direct Lagrangian tracking simulations of particles in vertically-developing atmospheric clouds

    NASA Astrophysics Data System (ADS)

    Onishi, Ryo; Kunishima, Yuichi

    2017-11-01

    We have been developing the Lagrangian Cloud Simulator (LCS), which follows the so-called Euler-Lagrangian framework, where flow motion and scalar transportations (i.e., temperature and humidity) are computed with the Euler method and particle motion with the Lagrangian method. The LCS simulation considers the hydrodynamic interaction between approaching particles for robust collision detection. This leads to reliable simulations of collision growth of cloud droplets. Recently the activation process, in which aerosol particles become tiny liquid droplets, has been implemented in the LCS. The present LCS can therefore consider the whole warm-rain precipitation processes -activation, condensation, collision and drop precipitation. In this talk, after briefly introducing the LCS, we will show kinematic simulations using the LCS for quasi-one dimensional domain, i.e., vertically elongated 3D domain. They are compared with one-dimensional kinematic simulations using a spectral-bin cloud microphysics scheme, which is based on the Euler method. The comparisons show fairly good agreement with small discrepancies, the source of which will be presented. The Lagrangian statistics, obtained for the first time for the vertical domain, will be the center of discussion. This research was supported by MEXT as ``Exploratory Challenge on Post-K computer'' (Frontiers of Basic Science: Challenging the Limits).

  12. Uncovering the Geometry of Barrierless Reactions Using Lagrangian Descriptors.

    PubMed

    Junginger, Andrej; Hernandez, Rigoberto

    2016-03-03

    Transition-state theories describing barrierless chemical reactions, or more general activated problems, are often hampered by the lack of a saddle around which the dividing surface can be constructed. For example, the time-dependent transition-state trajectory uncovering the nonrecrossing dividing surface in thermal reactions in the framework of the Langevin equation has relied on perturbative approaches in the vicinity of the saddle. We recently obtained an alternative approach using Lagrangian descriptors to construct time-dependent and recrossing-free dividing surfaces. This is a nonperturbative approach making no reference to a putative saddle. Here we show how the Lagrangian descriptor can be used to obtain the transition-state geometry of a dissipated and thermalized reaction across barrierless potentials. We illustrate the method in the case of a 1D Brownian motion for both barrierless and step potentials; however, the method is not restricted and can be directly applied to different kinds of potentials and higher dimensional systems.

  13. Chaotic Lagrangian models for turbulent relative dispersion.

    PubMed

    Lacorata, Guglielmo; Vulpiani, Angelo

    2017-04-01

    A deterministic multiscale dynamical system is introduced and discussed as a prototype model for relative dispersion in stationary, homogeneous, and isotropic turbulence. Unlike stochastic diffusion models, here trajectory transport and mixing properties are entirely controlled by Lagrangian chaos. The anomalous "sweeping effect," a known drawback common to kinematic simulations, is removed through the use of quasi-Lagrangian coordinates. Lagrangian dispersion statistics of the model are accurately analyzed by computing the finite-scale Lyapunov exponent (FSLE), which is the optimal measure of the scaling properties of dispersion. FSLE scaling exponents provide a severe test to decide whether model simulations are in agreement with theoretical expectations and/or observation. The results of our numerical experiments cover a wide range of "Reynolds numbers" and show that chaotic deterministic flows can be very efficient, and numerically low-cost, models of turbulent trajectories in stationary, homogeneous, and isotropic conditions. The mathematics of the model is relatively simple, and, in a geophysical context, potential applications may regard small-scale parametrization issues in general circulation models, mixed layer, and/or boundary layer turbulence models as well as Lagrangian predictability studies.

  14. Lagrangian statistics in compressible isotropic homogeneous turbulence

    NASA Astrophysics Data System (ADS)

    Yang, Yantao; Wang, Jianchun; Shi, Yipeng; Chen, Shiyi

    2011-11-01

    In this work we conducted the Direct Numerical Simulation (DNS) of a forced compressible isotropic homogeneous turbulence and investigated the flow statistics from the Lagrangian point of view, namely the statistics is computed following the passive tracers trajectories. The numerical method combined the Eulerian field solver which was developed by Wang et al. (2010, J. Comp. Phys., 229, 5257-5279), and a Lagrangian module for tracking the tracers and recording the data. The Lagrangian probability density functions (p.d.f.'s) have then been calculated for both kinetic and thermodynamic quantities. In order to isolate the shearing part from the compressing part of the flow, we employed the Helmholtz decomposition to decompose the flow field (mainly the velocity field) into the solenoidal and compressive parts. The solenoidal part was compared with the incompressible case, while the compressibility effect showed up in the compressive part. The Lagrangian structure functions and cross-correlation between various quantities will also be discussed. This work was supported in part by the China's Turbulence Program under Grant No.2009CB724101.

  15. Chaotic Lagrangian models for turbulent relative dispersion

    NASA Astrophysics Data System (ADS)

    Lacorata, Guglielmo; Vulpiani, Angelo

    2017-04-01

    A deterministic multiscale dynamical system is introduced and discussed as a prototype model for relative dispersion in stationary, homogeneous, and isotropic turbulence. Unlike stochastic diffusion models, here trajectory transport and mixing properties are entirely controlled by Lagrangian chaos. The anomalous "sweeping effect," a known drawback common to kinematic simulations, is removed through the use of quasi-Lagrangian coordinates. Lagrangian dispersion statistics of the model are accurately analyzed by computing the finite-scale Lyapunov exponent (FSLE), which is the optimal measure of the scaling properties of dispersion. FSLE scaling exponents provide a severe test to decide whether model simulations are in agreement with theoretical expectations and/or observation. The results of our numerical experiments cover a wide range of "Reynolds numbers" and show that chaotic deterministic flows can be very efficient, and numerically low-cost, models of turbulent trajectories in stationary, homogeneous, and isotropic conditions. The mathematics of the model is relatively simple, and, in a geophysical context, potential applications may regard small-scale parametrization issues in general circulation models, mixed layer, and/or boundary layer turbulence models as well as Lagrangian predictability studies.

  16. Lagrangian theory of structure formation in relativistic cosmology. IV. Lagrangian approach to gravitational waves

    NASA Astrophysics Data System (ADS)

    Al Roumi, Fosca; Buchert, Thomas; Wiegand, Alexander

    2017-12-01

    The relativistic generalization of the Newtonian Lagrangian perturbation theory is investigated. In previous works, the perturbation and solution schemes that are generated by the spatially projected gravitoelectric part of the Weyl tensor were given to any order of the perturbations, together with extensions and applications for accessing the nonperturbative regime. We here discuss more in detail the general first-order scheme within the Cartan formalism including and concentrating on the gravitational wave propagation in matter. We provide master equations for all parts of Lagrangian-linearized perturbations propagating in the perturbed spacetime, and we outline the solution procedure that allows one to find general solutions. Particular emphasis is given to global properties of the Lagrangian perturbation fields by employing results of Hodge-de Rham theory. We here discuss how the Hodge decomposition relates to the standard scalar-vector-tensor decomposition. Finally, we demonstrate that we obtain the known linear perturbation solutions of the standard relativistic perturbation scheme by performing two steps: first, by restricting our solutions to perturbations that propagate on a flat unperturbed background spacetime and, second, by transforming to Eulerian background coordinates with truncation of nonlinear terms.

  17. Travelers' Health: Yellow Fever

    MedlinePlus

    ... and local rate of virus transmission at the time of travel. Although reported cases of human disease are the ... be receiving yellow fever vaccine for the first time. If travel is unavoidable, the decision to vaccinate travelers aged ≥ ...

  18. Imposing a Lagrangian Particle Framework on an Eulerian Hydrodynamics Infrastructure in Flash

    NASA Technical Reports Server (NTRS)

    Dubey, A.; Daley, C.; ZuHone, J.; Ricker, P. M.; Weide, K.; Graziani, C.

    2012-01-01

    In many astrophysical simulations, both Eulerian and Lagrangian quantities are of interest. For example, in a galaxy cluster merger simulation, the intracluster gas can have Eulerian discretization, while dark matter can be modeled using particles. FLASH, a component-based scientific simulation code, superimposes a Lagrangian framework atop an adaptive mesh refinement Eulerian framework to enable such simulations. The discretization of the field variables is Eulerian, while the Lagrangian entities occur in many different forms including tracer particles, massive particles, charged particles in particle-in-cell mode, and Lagrangian markers to model fluid structure interactions. These widely varying roles for Lagrangian entities are possible because of the highly modular, flexible, and extensible architecture of the Lagrangian framework. In this paper, we describe the Lagrangian framework in FLASH in the context of two very different applications, Type Ia supernovae and galaxy cluster mergers, which use the Lagrangian entities in fundamentally different ways.

  19. Imposing a Lagrangian Particle Framework on an Eulerian Hydrodynamics Infrastructure in FLASH

    NASA Astrophysics Data System (ADS)

    Dubey, A.; Daley, C.; ZuHone, J.; Ricker, P. M.; Weide, K.; Graziani, C.

    2012-08-01

    In many astrophysical simulations, both Eulerian and Lagrangian quantities are of interest. For example, in a galaxy cluster merger simulation, the intracluster gas can have Eulerian discretization, while dark matter can be modeled using particles. FLASH, a component-based scientific simulation code, superimposes a Lagrangian framework atop an adaptive mesh refinement Eulerian framework to enable such simulations. The discretization of the field variables is Eulerian, while the Lagrangian entities occur in many different forms including tracer particles, massive particles, charged particles in particle-in-cell mode, and Lagrangian markers to model fluid-structure interactions. These widely varying roles for Lagrangian entities are possible because of the highly modular, flexible, and extensible architecture of the Lagrangian framework. In this paper, we describe the Lagrangian framework in FLASH in the context of two very different applications, Type Ia supernovae and galaxy cluster mergers, which use the Lagrangian entities in fundamentally different ways.

  20. Travel medicine

    PubMed Central

    Aw, Brian; Boraston, Suni; Botten, David; Cherniwchan, Darin; Fazal, Hyder; Kelton, Timothy; Libman, Michael; Saldanha, Colin; Scappatura, Philip; Stowe, Brian

    2014-01-01

    Abstract Objective To define the practice of travel medicine, provide the basics of a comprehensive pretravel consultation for international travelers, and assist in identifying patients who might require referral to travel medicine professionals. Sources of information Guidelines and recommendations on travel medicine and travel-related illnesses by national and international travel health authorities were reviewed. MEDLINE and EMBASE searches for related literature were also performed. Main message Travel medicine is a highly dynamic specialty that focuses on pretravel preventive care. A comprehensive risk assessment for each individual traveler is essential in order to accurately evaluate traveler-, itinerary-, and destination-specific risks, and to advise on the most appropriate risk management interventions to promote health and prevent adverse health outcomes during travel. Vaccinations might also be required and should be personalized according to the individual traveler’s immunization history, travel itinerary, and the amount of time available before departure. Conclusion A traveler’s health and safety depends on a practitioner’s level of expertise in providing pretravel counseling and vaccinations, if required. Those who advise travelers are encouraged to be aware of the extent of this responsibility and to refer all high-risk travelers to travel medicine professionals whenever possible. PMID:25500599

  1. Freeway travel time estimation using existing fixed traffic sensors : phase 1.

    DOT National Transportation Integrated Search

    2013-08-01

    Freeway travel time is one of the most useful pieces of information for road users and an : important measure of effectiveness (MOE) for traffic engineers and policy makers. In the Greater : St. Louis area, Gateway Guide, the St. Louis Transportation...

  2. Lagrangian Statistics and Intermittency in Gulf of Mexico.

    PubMed

    Lin, Liru; Zhuang, Wei; Huang, Yongxiang

    2017-12-12

    Due to the nonlinear interaction between different flow patterns, for instance, ocean current, meso-scale eddies, waves, etc, the movement of ocean is extremely complex, where a multiscale statistics is then relevant. In this work, a high time-resolution velocity with a time step 15 minutes obtained by the Lagrangian drifter deployed in the Gulf of Mexico (GoM) from July 2012 to October 2012 is considered. The measured Lagrangian velocity correlation function shows a strong daily cycle due to the diurnal tidal cycle. The estimated Fourier power spectrum E(f) implies a dual-power-law behavior which is separated by the daily cycle. The corresponding scaling exponents are close to -1.75 and -2.75 respectively for the time scale larger (resp. 0.1 ≤ f ≤ 0.4 day -1 ) and smaller (resp. 2 ≤ f ≤ 8 day -1 ) than 1 day. A Hilbert-based approach is then applied to this data set to identify the possible multifractal property of the cascade process. The results show an intermittent dynamics for the time scale larger than 1 day, while a less intermittent dynamics for the time scale smaller than 1 day. It is speculated that the energy is partially injected via the diurnal tidal movement and then transferred to larger and small scales through a complex cascade process, which needs more studies in the near future.

  3. Joint refraction and reflection travel-time tomography of multichannel and wide-angle seismic data

    NASA Astrophysics Data System (ADS)

    Begovic, Slaven; Meléndez, Adrià; Ranero, César; Sallarès, Valentí

    2017-04-01

    Both near-vertical multichannel (MCS) and wide-angle (WAS) seismic data are sensitive to same properties of sampled model, but commonly they are interpreted and modeled using different approaches. Traditional MCS images provide good information on position and geometry of reflectors especially in shallow, commonly sedimentary layers, but have limited or no refracted waves, which severely hampers the retrieval of velocity information. Compared to MCS data, conventional wide-angle seismic (WAS) travel-time tomography uses sparse data (generally stations are spaced by several kilometers). While it has refractions that allow retrieving velocity information, the data sparsity makes it difficult to define velocity and the geometry of geologic boundaries (reflectors) with the appropriate resolution, especially at the shallowest crustal levels. A well-known strategy to overcome these limitations is to combine MCS and WAS data into a common inversion strategy. However, the number of available codes that can jointly invert for both types of data is limited. We have adapted the well-known and widely-used joint refraction and reflection travel-time tomography code tomo2d (Korenaga et al, 2000), and its 3D version tomo3d (Meléndez et al, 2015), to implement streamer data and multichannel acquisition geometries. This allows performing joint travel-time tomographic inversion based on refracted and reflected phases from both WAS and MCS data sets. We show with a series of synthetic tests following a layer-stripping strategy that combining these two data sets into joint travel-time tomographic method the drawbacks of each data set are notably reduced. First, we have tested traditional travel-time inversion scheme using only WAS data (refracted and reflected phases) with typical acquisition geometry with one ocean bottom seismometer (OBS) each 10 km. Second, we have jointly inverted WAS refracted and reflected phases with only streamer (MCS) reflection travel-times. And at the end

  4. COLAcode: COmoving Lagrangian Acceleration code

    NASA Astrophysics Data System (ADS)

    Tassev, Svetlin V.

    2016-02-01

    COLAcode is a serial particle mesh-based N-body code illustrating the COLA (COmoving Lagrangian Acceleration) method; it solves for Large Scale Structure (LSS) in a frame that is comoving with observers following trajectories calculated in Lagrangian Perturbation Theory (LPT). It differs from standard N-body code by trading accuracy at small-scales to gain computational speed without sacrificing accuracy at large scales. This is useful for generating large ensembles of accurate mock halo catalogs required to study galaxy clustering and weak lensing; such catalogs are needed to perform detailed error analysis for ongoing and future surveys of LSS.

  5. Monostable traveling waves for a time-periodic and delayed nonlocal reaction-diffusion equation

    NASA Astrophysics Data System (ADS)

    Li, Panxiao; Wu, Shi-Liang

    2018-04-01

    This paper is concerned with a time-periodic and delayed nonlocal reaction-diffusion population model with monostable nonlinearity. Under quasi-monotone or non-quasi-monotone assumptions, it is known that there exists a critical wave speed c_*>0 such that a periodic traveling wave exists if and only if the wave speed is above c_*. In this paper, we first prove the uniqueness of non-critical periodic traveling waves regardless of whether the model is quasi-monotone or not. Further, in the quasi-monotone case, we establish the exponential stability of non-critical periodic traveling fronts. Finally, we illustrate the main results by discussing two types of death and birth functions arising from population biology.

  6. Travel time on arterials and rural highways : state-of-the-practice synthesis on rural data collection technology.

    DOT National Transportation Integrated Search

    2013-04-01

    "Travel time to a destination is a key piece of information that motorists want and need, and is vital for good decision-making by travelers. Technology now makes it feasible to provide drivers with real-time information about how long it takes to re...

  7. Efficient Constraint Handling in Electromagnetism-Like Algorithm for Traveling Salesman Problem with Time Windows

    PubMed Central

    Yurtkuran, Alkın

    2014-01-01

    The traveling salesman problem with time windows (TSPTW) is a variant of the traveling salesman problem in which each customer should be visited within a given time window. In this paper, we propose an electromagnetism-like algorithm (EMA) that uses a new constraint handling technique to minimize the travel cost in TSPTW problems. The EMA utilizes the attraction-repulsion mechanism between charged particles in a multidimensional space for global optimization. This paper investigates the problem-specific constraint handling capability of the EMA framework using a new variable bounding strategy, in which real-coded particle's boundary constraints associated with the corresponding time windows of customers, is introduced and combined with the penalty approach to eliminate infeasibilities regarding time window violations. The performance of the proposed algorithm and the effectiveness of the constraint handling technique have been studied extensively, comparing it to that of state-of-the-art metaheuristics using several sets of benchmark problems reported in the literature. The results of the numerical experiments show that the EMA generates feasible and near-optimal results within shorter computational times compared to the test algorithms. PMID:24723834

  8. Nonunitary Lagrangians and Unitary Non-Lagrangian Conformal Field Theories.

    PubMed

    Buican, Matthew; Laczko, Zoltan

    2018-02-23

    In various dimensions, we can sometimes compute observables of interacting conformal field theories (CFTs) that are connected to free theories via the renormalization group (RG) flow by computing protected quantities in the free theories. On the other hand, in two dimensions, it is often possible to algebraically construct observables of interacting CFTs using free fields without the need to explicitly construct an underlying RG flow. In this Letter, we begin to extend this idea to higher dimensions by showing that one can compute certain observables of an infinite set of unitary strongly interacting four-dimensional N=2 superconformal field theories (SCFTs) by performing simple calculations involving sets of nonunitary free four-dimensional hypermultiplets. These free fields are distant cousins of the Majorana fermion underlying the two-dimensional Ising model and are not obviously connected to our interacting theories via an RG flow. Rather surprisingly, this construction gives us Lagrangians for particular observables in certain subsectors of many "non-Lagrangian" SCFTs by sacrificing unitarity while preserving the full N=2 superconformal algebra. As a by-product, we find relations between characters in unitary and nonunitary affine Kac-Moody algebras. We conclude by commenting on possible generalizations of our construction.

  9. Nonunitary Lagrangians and Unitary Non-Lagrangian Conformal Field Theories

    NASA Astrophysics Data System (ADS)

    Buican, Matthew; Laczko, Zoltan

    2018-02-01

    In various dimensions, we can sometimes compute observables of interacting conformal field theories (CFTs) that are connected to free theories via the renormalization group (RG) flow by computing protected quantities in the free theories. On the other hand, in two dimensions, it is often possible to algebraically construct observables of interacting CFTs using free fields without the need to explicitly construct an underlying RG flow. In this Letter, we begin to extend this idea to higher dimensions by showing that one can compute certain observables of an infinite set of unitary strongly interacting four-dimensional N =2 superconformal field theories (SCFTs) by performing simple calculations involving sets of nonunitary free four-dimensional hypermultiplets. These free fields are distant cousins of the Majorana fermion underlying the two-dimensional Ising model and are not obviously connected to our interacting theories via an RG flow. Rather surprisingly, this construction gives us Lagrangians for particular observables in certain subsectors of many "non-Lagrangian" SCFTs by sacrificing unitarity while preserving the full N =2 superconformal algebra. As a by-product, we find relations between characters in unitary and nonunitary affine Kac-Moody algebras. We conclude by commenting on possible generalizations of our construction.

  10. A Regional Seismic Travel Time Model for North America

    DTIC Science & Technology

    2010-09-01

    velocity at the Moho, the mantle velocity gradient, and the average crustal velocity. After tomography across Eurasia, rigorous tests find that Pn...velocity gradient, and the average crustal velocity. After tomography across Eurasia rigorous tests find that Pn travel time residuals are reduced...and S-wave velocity in the crustal layers and in the upper mantle. A good prior model is essential because the RSTT tomography inversion is invariably

  11. A Constructive Approach to Regularity of Lagrangian Trajectories for Incompressible Euler Flow in a Bounded Domain

    NASA Astrophysics Data System (ADS)

    Besse, Nicolas; Frisch, Uriel

    2017-04-01

    The 3D incompressible Euler equations are an important research topic in the mathematical study of fluid dynamics. Not only is the global regularity for smooth initial data an open issue, but the behaviour may also depend on the presence or absence of boundaries. For a good understanding, it is crucial to carry out, besides mathematical studies, high-accuracy and well-resolved numerical exploration. Such studies can be very demanding in computational resources, but recently it has been shown that very substantial gains can be achieved first, by using Cauchy's Lagrangian formulation of the Euler equations and second, by taking advantage of analyticity results of the Lagrangian trajectories for flows whose initial vorticity is Hölder-continuous. The latter has been known for about 20 years (Serfati in J Math Pures Appl 74:95-104, 1995), but the combination of the two, which makes use of recursion relations among time-Taylor coefficients to obtain constructively the time-Taylor series of the Lagrangian map, has been achieved only recently (Frisch and Zheligovsky in Commun Math Phys 326:499-505, 2014; Podvigina et al. in J Comput Phys 306:320-342, 2016 and references therein). Here we extend this methodology to incompressible Euler flow in an impermeable bounded domain whose boundary may be either analytic or have a regularity between indefinite differentiability and analyticity. Non-constructive regularity results for these cases have already been obtained by Glass et al. (Ann Sci Éc Norm Sup 45:1-51, 2012). Using the invariance of the boundary under the Lagrangian flow, we establish novel recursion relations that include contributions from the boundary. This leads to a constructive proof of time-analyticity of the Lagrangian trajectories with analytic boundaries, which can then be used subsequently for the design of a very high-order Cauchy-Lagrangian method.

  12. Travellers' profile, travel patterns and vaccine practices--a 10-year prospective study in a Swiss Travel Clinic.

    PubMed

    Boubaker, Rim; Meige, Pierrette; Mialet, Catherine; Buffat, Chantal Ngarambe; Uwanyiligira, Mediatrice; Widmer, Francine; Rochat, Jacynthe; Fossati, Annie Hérard; Souvannaraj-Blanchant, Manisinh; Payot, Sylvie; Rochat, Laurence; de Vallière, Serge; Genton, Blaise; D'Acremont, Valérie

    2016-01-01

    The travel clinic in Lausanne serves a catchment area of 700 000 of inhabitants and provides pre- and post-travel consultations. This study describes the profile of attendees before departure, their travel patterns and the travel clinic practices in terms of vaccination over time. We included all pre-travel first consultation data recorded between November 2002 and December 2012 by a custom-made program DIAMM/G. We analysed client profiles, travel characteristics and vaccinations prescribed over time. Sixty-five thousand and forty-six client-trips were recorded. Fifty-one percent clients were female. Mean age was 32 years. In total, 0.1% were aged <1 year and 0.2% ≥80 years. Forty-six percent of travellers had pre-existing medical conditions. Forty-six percent were travelling to Africa, 35% to Asia, 20% to Latin America and 1% (each) to Oceania and Europe; 19% visited more than one country. India was the most common destination (9.6% of travellers) followed by Thailand (8.6%) and Kenya (6.4%). Seventy-three percent of travellers were planning to travel for ≤ 4 weeks. The main reasons for travel were tourism (75%) and visiting friends and relatives (18%). Sixteen percent were backpackers. Pre-travel advice were sought a median of 29 days before departure. Ninety-nine percent received vaccine(s). The most frequently administered vaccines were hepatitis A (53%), tetanus-diphtheria (46%), yellow fever (39%), poliomyelitis (38%) and typhoid fever (30%). The profile of travel clinic attendees was younger than the general Swiss population. A significant proportion of travellers received vaccinations that are recommended in the routine national programme. These findings highlight the important role of travel clinics to (i) take care of an age group that has little contact with general practitioners and (ii) update vaccination status. The most commonly prescribed travel-related vaccines were for hepatitis A and yellow fever. The question remains to know whether

  13. Existence, Uniqueness and Asymptotic Stability of Time Periodic Traveling Waves for a Periodic Lotka-Volterra Competition System with Diffusion

    PubMed Central

    Zhao, Guangyu; Ruan, Shigui

    2011-01-01

    We study the existence, uniqueness, and asymptotic stability of time periodic traveling wave solutions to a periodic diffusive Lotka-Volterra competition system. Under certain conditions, we prove that there exists a maximal wave speed c* such that for each wave speed c ≤ c*, there is a time periodic traveling wave connecting two semi-trivial periodic solutions of the corresponding kinetic system. It is shown that such a traveling wave is unique modulo translation and is monotone with respect to its co-moving frame coordinate. We also show that the traveling wave solutions with wave speed c < c* are asymptotically stable in certain sense. In addition, we establish the nonexistence of time periodic traveling waves for nonzero speed c > c*. PMID:21572575

  14. Improving value of travel time savings estimation for more effective transportation project evaluation.

    DOT National Transportation Integrated Search

    2012-12-01

    Estimates of value of time (VOT) and value of travel time savings (VTTS) are critical elements in benefitcost : analyses of transportation projects and in developing congestion pricing policies. In addition, : differences in VTTS among various modes ...

  15. Time-of-travel study in the Sebasticook River basin, Maine

    USGS Publications Warehouse

    Parker, Gene W.

    1981-01-01

    Time of travel was determined for four reaches of the Sebasticook River, two on the East Branch Sebasticook River and two on the main stem of the Sebasticook River. Reach A included 7.8 miles of the East Branch Sebasticook River from Dexter to Corinna, Maine. Reach B included 8 miles of the East Branch Sebasticook River from Newport to its mouth, and one mile of the Sebasticook River to Peltoma bridge near Pittsfield, Maine. Reach C included 3.5 miles of the Sebasticook River from Hartland to West Palmyra, Maine. Reach D included 31.4 miles of the Sebasticook River from Pittsfield to Winslow, Maine. Using a 20-percent solution of rhodamine WT, three dye tracer study runs were made in each reach. Water samples were collected at 11 sites in the study area. The samples were then analyzed for dye concentrations. Time-of-travel data for each subreach are depicted in a series of illustrations and summarized in tabular form. Examples are given to illustrate the use of the data presented. (USGS)

  16. On a `time' reparametrization in relativistic electrodynamics with travelling waves

    NASA Astrophysics Data System (ADS)

    Fiore, Gaetano

    2018-01-01

    We briefly report on our method [23] of simplifying the equations of motion of charged particles in an electromagnetic (EM) field that is the sum of a plane travelling wave and a static part; it is based on changes of the dependent variables and the independent one (light-like coordinate ξ instead of time t). We sketch its application to a few cases of extreme laser-induced accelerations, both in vacuum and in plane problems at the vacuum-plasma interface, where we are able to reduce the system of the (Lorentz-Maxwell and continuity) partial differential equations into a family of decoupled systems of Hamilton equations in 1 dimension. Since Fourier analysis plays no role, the method can be applied to all kind of travelling waves, ranging from almost monochromatic to socalled "impulses".

  17. Arterial pressure transfer characteristics: effects of travel time.

    PubMed

    Westerhof, Berend E; Guelen, Ilja; Stok, Wim J; Wesseling, Karel H; Spaan, Jos A E; Westerhof, Nico; Bos, Willem Jan; Stergiopulos, Nikos

    2007-02-01

    We investigated the quantitative contribution of all local conduit arterial, blood, and distal load properties to the pressure transfer function from brachial artery to aorta. The model was based on anatomical data, Young's modulus, wall viscosity, blood viscosity, and blood density. A three-element windkessel represented the distal arterial tree. Sensitivity analysis was performed in terms of frequency and magnitude of the peak of the transfer function and in terms of systolic, diastolic, and pulse pressure in the aorta. The root mean square error (RMSE) described the accuracy in wave-shape prediction. The percent change of these variables for a 25% alteration of each of the model parameters was calculated. Vessel length and diameter are found to be the most important parameters determining pressure transfer. Systolic and diastolic pressure changed <3% and RMSE <1.8 mmHg for a 25% change in vessel length and diameter. To investigate how arterial tapering influences the pressure transfer, a single uniform lossless tube was modeled. This simplification introduced only small errors in systolic and diastolic pressures (1% and 0%, respectively), and wave shape was less well described (RMSE, approximately 2.1 mmHg). Local (arm) vasodilation affects the transfer function little, because it has limited effect on the reflection coefficient. Since vessel length and diameter translate into travel time, this parameter can describe the transfer accurately. We suggest that with a, preferably, noninvasively measured travel time, an accurate individualized description of pressure transfer can be obtained.

  18. An adaptive reconstruction for Lagrangian, direct-forcing, immersed-boundary methods

    NASA Astrophysics Data System (ADS)

    Posa, Antonio; Vanella, Marcos; Balaras, Elias

    2017-12-01

    Lagrangian, direct-forcing, immersed boundary (IB) methods have been receiving increased attention due to their robustness in complex fluid-structure interaction problems. They are very sensitive, however, on the selection of the Lagrangian grid, which is typically used to define a solid or flexible body immersed in a fluid flow. In the present work we propose a cost-efficient solution to this problem without compromising accuracy. Central to our approach is the use of isoparametric mapping to bridge the relative resolution requirements of Lagrangian IB, and Eulerian grids. With this approach, the density of surface Lagrangian markers, which is essential to properly enforce boundary conditions, is adapted dynamically based on the characteristics of the underlying Eulerian grid. The markers are not stored and the Lagrangian data-structure is not modified. The proposed scheme is implemented in the framework of a moving least squares reconstruction formulation, but it can be adapted to any Lagrangian, direct-forcing formulation. The accuracy and robustness of the approach is demonstrated in a variety of test cases of increasing complexity.

  19. Time-of-travel and dispersion studies, Lehigh River, Francis E. Walter Lake to Easton, Pennsylvania

    USGS Publications Warehouse

    Kauffman, C.D.

    1983-01-01

    Results of time-of-travel and dispersion studies are presented for the 77.0 mile reach of the Lehigh River from Francis E. Walter Lake to Easton, Pennsylvania. Rhodamine WT dye was injected at several points for a variety of several common flow conditions and its downstream travel was monitored at a number of downstream points by means of a fluorometer. Time-of-travel data have been related to stream discharge, distance along the river channel and dispersion. If 2.205 pounds of a conservative water soluble contaminant were accidentally spilled into the Lehigh River at Penn Haven Junction at Black Creek 6.09 miles downstream from Rockport, Pennsylvania, when the discharge at Walnutport, Pennsylvania, was 600 cubic feet per second, the leading edge, peak, and trailing edge of the contaminant would arrive 31.6 miles downstream at the Northhampton, Pennsylvania, water intakes 45, 54, and 66 hours later, respectively. The maximum concentration expected at the intakes would be about 1.450 micrograms per liter. From data and relations presented, time-of-travel and maximum concentration estimates can be made for any two points within the reach. (USGS)

  20. 41 CFR 301-71.306 - Are there exceptions to collecting an advance at the time the employee files a travel claim?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... collecting an advance at the time the employee files a travel claim? 301-71.306 Section 301-71.306 Public Contracts and Property Management Federal Travel Regulation System TEMPORARY DUTY (TDY) TRAVEL ALLOWANCES...-71.306 Are there exceptions to collecting an advance at the time the employee files a travel claim...

  1. 41 CFR 301-71.306 - Are there exceptions to collecting an advance at the time the employee files a travel claim?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... collecting an advance at the time the employee files a travel claim? 301-71.306 Section 301-71.306 Public Contracts and Property Management Federal Travel Regulation System TEMPORARY DUTY (TDY) TRAVEL ALLOWANCES...-71.306 Are there exceptions to collecting an advance at the time the employee files a travel claim...

  2. 41 CFR 301-71.306 - Are there exceptions to collecting an advance at the time the employee files a travel claim?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... collecting an advance at the time the employee files a travel claim? 301-71.306 Section 301-71.306 Public Contracts and Property Management Federal Travel Regulation System TEMPORARY DUTY (TDY) TRAVEL ALLOWANCES...-71.306 Are there exceptions to collecting an advance at the time the employee files a travel claim...

  3. 41 CFR 301-71.306 - Are there exceptions to collecting an advance at the time the employee files a travel claim?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... collecting an advance at the time the employee files a travel claim? 301-71.306 Section 301-71.306 Public Contracts and Property Management Federal Travel Regulation System TEMPORARY DUTY (TDY) TRAVEL ALLOWANCES...-71.306 Are there exceptions to collecting an advance at the time the employee files a travel claim...

  4. 41 CFR 301-71.306 - Are there exceptions to collecting an advance at the time the employee files a travel claim?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... collecting an advance at the time the employee files a travel claim? 301-71.306 Section 301-71.306 Public Contracts and Property Management Federal Travel Regulation System TEMPORARY DUTY (TDY) TRAVEL ALLOWANCES...-71.306 Are there exceptions to collecting an advance at the time the employee files a travel claim...

  5. Traveling with breathing problems

    MedlinePlus

    ... obstructive lung disease - travel; Chronic bronchitis - travel; Emphysema - travel ... you: Are short of breath most of the time Get short of breath ... doctor if you plan to travel in a place at a high altitude (such ...

  6. Seismic Travel Time Tomography in Modeling Low Velocity Anomalies between the Boreholes

    NASA Astrophysics Data System (ADS)

    Octova, A.; Sule, R.

    2018-04-01

    Travel time cross-hole seismic tomography is applied to describing the structure of the subsurface. The sources are placed at one borehole and some receivers are placed in the others. First arrival travel time data that received by each receiver is used as the input data in seismic tomography method. This research is devided into three steps. The first step is reconstructing the synthetic model based on field parameters. Field parameters are divided into 24 receivers and 45 receivers. The second step is applying inversion process for the field data that consists of five pairs bore holes. The last step is testing quality of tomogram with resolution test. Data processing using FAST software produces an explicit shape and resemble the initial model reconstruction of synthetic model with 45 receivers. The tomography processing in field data indicates cavities in several place between the bore holes. Cavities are identified on BH2A-BH1, BH4A-BH2A and BH4A-BH5 with elongated and rounded structure. In resolution tests using a checker-board, anomalies still can be identified up to 2 meter x 2 meter size. Travel time cross-hole seismic tomography analysis proves this mothod is very good to describing subsurface structure and boundary layer. Size and anomalies position can be recognized and interpreted easily.

  7. Water-Channel Estimation of Eulerian and Lagrangian Time Scales of the Turbulence in Idealized Two-Dimensional Urban Canopies

    NASA Astrophysics Data System (ADS)

    Di Bernardino, Annalisa; Monti, Paolo; Leuzzi, Giovanni; Querzoli, Giorgio

    2017-11-01

    Lagrangian and Eulerian statistics are obtained from a water-channel experiment of an idealized two-dimensional urban canopy flow in neutral conditions. The objective is to quantify the Eulerian (TE) and Lagrangian (TL) time scales of the turbulence above the canopy layer as well as to investigate their dependence on the aspect ratio of the canopy, AR, as the latter is the ratio of the width ( W) to the height ( H) of the canyon. Experiments are also conducted for the case of flat terrain, which can be thought of as equivalent to a classical one-directional shear flow. The values found for the Eulerian time scales on flat terrain are in agreement with previous numerical results found in the literature. It is found that both the streamwise and vertical components of the Lagrangian time scale, T_u^L and T_w^L , follow Raupach's linear law within the constant-flux layer. The same holds true for T_w^L in both the canopies analyzed (AR= 1 and AR= 2) and also for T_u^L when AR = 1. In contrast, for AR = 2, T_u^L follows Raupach's law only above z=2H. Below that level, T_u^L is nearly constant with height, showing at z=H a value approximately one order of magnitude greater than that found for AR = 1. It is shown that the assumption usually adopted for flat terrain, that β =TL/TE is proportional to the inverse of the turbulence intensity, also holds true even for the canopy flow in the constant-flux layer. In particular, γ /i_u fits well β _u =T_u^L /T_u^E in both the configurations by choosing γ to be 0.35 (here, i_u =σ _u / \\bar{u} , where \\bar{u} and σ _u are the mean and the root-mean-square of the streamwise velocity component, respectively). On the other hand, β _w =T_w^L /T_w^E follows approximately γ /i_w =0.65/( {σ _w /\\bar{u} } ) for z > 2H, irrespective of the AR value. The second main objective is to estimate other parameters of interest in dispersion studies, such as the eddy diffusivity of momentum (KT) and the Kolmogorov constant (C_0). It is

  8. A Lagrangian Analysis of a Developing and Non-Developing Disturbance Observed During the PREDICT Experiment

    DTIC Science & Technology

    2012-12-03

    paper provides an introduction of Lagrangian techniques for locating flow boundaries that encompass regions of recirculation in time- dependent flows...the low- to mid- level embryonic vortex from adverse conditions, while the 1The glossary on NOAA’s Hurricane Research Division’s web - site uses...wave or disturbance. This paper provides an introduction of Lagrangian techniques for locating flow boundaries that encompass regions of recirculation

  9. A Theoretical Framework for Lagrangian Descriptors

    NASA Astrophysics Data System (ADS)

    Lopesino, C.; Balibrea-Iniesta, F.; García-Garrido, V. J.; Wiggins, S.; Mancho, A. M.

    This paper provides a theoretical background for Lagrangian Descriptors (LDs). The goal of achieving rigorous proofs that justify the ability of LDs to detect invariant manifolds is simplified by introducing an alternative definition for LDs. The definition is stated for n-dimensional systems with general time dependence, however we rigorously prove that this method reveals the stable and unstable manifolds of hyperbolic points in four particular 2D cases: a hyperbolic saddle point for linear autonomous systems, a hyperbolic saddle point for nonlinear autonomous systems, a hyperbolic saddle point for linear nonautonomous systems and a hyperbolic saddle point for nonlinear nonautonomous systems. We also discuss further rigorous results which show the ability of LDs to highlight additional invariants sets, such as n-tori. These results are just a simple extension of the ergodic partition theory which we illustrate by applying this methodology to well-known examples, such as the planar field of the harmonic oscillator and the 3D ABC flow. Finally, we provide a thorough discussion on the requirement of the objectivity (frame-invariance) property for tools designed to reveal phase space structures and their implications for Lagrangian descriptors.

  10. Nonconservative Lagrangian Mechanics: Purely Causal Equations of Motion

    NASA Astrophysics Data System (ADS)

    Dreisigmeyer, David W.; Young, Peter M.

    2015-06-01

    This work builds on the Volterra series formalism presented in Dreisigmeyer and Young (J Phys A 36: 8297, 2003) to model nonconservative systems. Here we treat Lagrangians and actions as `time dependent' Volterra series. We present a new family of kernels to be used in these Volterra series that allow us to derive a single retarded equation of motion using a variational principle.

  11. A method for generating an illusion of backwards time travel using immersive virtual reality—an exploratory study

    PubMed Central

    Friedman, Doron; Pizarro, Rodrigo; Or-Berkers, Keren; Neyret, Solène; Pan, Xueni; Slater, Mel

    2014-01-01

    We introduce a new method, based on immersive virtual reality (IVR), to give people the illusion of having traveled backwards through time to relive a sequence of events in which they can intervene and change history. The participant had played an important part in events with a tragic outcome—deaths of strangers—by having to choose between saving 5 people or 1. We consider whether the ability to go back through time, and intervene, to possibly avoid all deaths, has an impact on how the participant views such moral dilemmas, and also whether this experience leads to a re-evaluation of past unfortunate events in their own lives. We carried out an exploratory study where in the “Time Travel” condition 16 participants relived these events three times, seeing incarnations of their past selves carrying out the actions that they had previously carried out. In a “Repetition” condition another 16 participants replayed the same situation three times, without any notion of time travel. Our results suggest that those in the Time Travel condition did achieve an illusion of “time travel” provided that they also experienced an illusion of presence in the virtual environment, body ownership, and agency over the virtual body that substituted their own. Time travel produced an increase in guilt feelings about the events that had occurred, and an increase in support of utilitarian behavior as the solution to the moral dilemma. Time travel also produced an increase in implicit morality as judged by an implicit association test. The time travel illusion was associated with a reduction of regret associated with bad decisions in their own lives. The results show that when participants have a third action that they can take to solve the moral dilemma (that does not immediately involve choosing between the 1 and the 5) then they tend to take this option, even though it is useless in solving the dilemma, and actually results in the deaths of a greater number. PMID:25228889

  12. Scalar curvature of Lagrangian Riemannian submersions and their harmonicity

    NASA Astrophysics Data System (ADS)

    Eken Meri˙ç, Şemsi; Kiliç, Erol; Sağiroğlu, Yasemi˙n

    In this paper, we consider a Lagrangian Riemannian submersion from a Hermitian manifold to a Riemannian manifold and establish some basic inequalities to obtain relationships between the intrinsic and extrinsic invariants for such a submersion. Indeed, using these inequalities, we provide necessary and sufficient conditions for which a Lagrangian Riemannian submersion π has totally geodesic or totally umbilical fibers. Moreover, we study the harmonicity of Lagrangian Riemannian submersions and obtain a characterization for such submersions to be harmonic.

  13. Preserving Lagrangian Structure in Nonlinear Model Reduction with Application to Structural Dynamics

    DOE PAGES

    Carlberg, Kevin; Tuminaro, Ray; Boggs, Paul

    2015-03-11

    Our work proposes a model-reduction methodology that preserves Lagrangian structure and achieves computational efficiency in the presence of high-order nonlinearities and arbitrary parameter dependence. As such, the resulting reduced-order model retains key properties such as energy conservation and symplectic time-evolution maps. We focus on parameterized simple mechanical systems subjected to Rayleigh damping and external forces, and consider an application to nonlinear structural dynamics. To preserve structure, the method first approximates the system's “Lagrangian ingredients''---the Riemannian metric, the potential-energy function, the dissipation function, and the external force---and subsequently derives reduced-order equations of motion by applying the (forced) Euler--Lagrange equation with thesemore » quantities. Moreover, from the algebraic perspective, key contributions include two efficient techniques for approximating parameterized reduced matrices while preserving symmetry and positive definiteness: matrix gappy proper orthogonal decomposition and reduced-basis sparsification. Our results for a parameterized truss-structure problem demonstrate the practical importance of preserving Lagrangian structure and illustrate the proposed method's merits: it reduces computation time while maintaining high accuracy and stability, in contrast to existing nonlinear model-reduction techniques that do not preserve structure.« less

  14. Preserving Lagrangian Structure in Nonlinear Model Reduction with Application to Structural Dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlberg, Kevin; Tuminaro, Ray; Boggs, Paul

    Our work proposes a model-reduction methodology that preserves Lagrangian structure and achieves computational efficiency in the presence of high-order nonlinearities and arbitrary parameter dependence. As such, the resulting reduced-order model retains key properties such as energy conservation and symplectic time-evolution maps. We focus on parameterized simple mechanical systems subjected to Rayleigh damping and external forces, and consider an application to nonlinear structural dynamics. To preserve structure, the method first approximates the system's “Lagrangian ingredients''---the Riemannian metric, the potential-energy function, the dissipation function, and the external force---and subsequently derives reduced-order equations of motion by applying the (forced) Euler--Lagrange equation with thesemore » quantities. Moreover, from the algebraic perspective, key contributions include two efficient techniques for approximating parameterized reduced matrices while preserving symmetry and positive definiteness: matrix gappy proper orthogonal decomposition and reduced-basis sparsification. Our results for a parameterized truss-structure problem demonstrate the practical importance of preserving Lagrangian structure and illustrate the proposed method's merits: it reduces computation time while maintaining high accuracy and stability, in contrast to existing nonlinear model-reduction techniques that do not preserve structure.« less

  15. Value of travel-time reliability : commuters' route-choice behavior in the Twin Cities.

    DOT National Transportation Integrated Search

    2011-10-01

    Travel-time variability is a noteworthy factor in network performance. It measures the temporal uncertainty experienced by users in their : movement between any two nodes in a network. The importance of the time variance depends on the penalties incu...

  16. Lagrangian methods of cosmic web classification

    NASA Astrophysics Data System (ADS)

    Fisher, J. D.; Faltenbacher, A.; Johnson, M. S. T.

    2016-05-01

    The cosmic web defines the large-scale distribution of matter we see in the Universe today. Classifying the cosmic web into voids, sheets, filaments and nodes allows one to explore structure formation and the role environmental factors have on halo and galaxy properties. While existing studies of cosmic web classification concentrate on grid-based methods, this work explores a Lagrangian approach where the V-web algorithm proposed by Hoffman et al. is implemented with techniques borrowed from smoothed particle hydrodynamics. The Lagrangian approach allows one to classify individual objects (e.g. particles or haloes) based on properties of their nearest neighbours in an adaptive manner. It can be applied directly to a halo sample which dramatically reduces computational cost and potentially allows an application of this classification scheme to observed galaxy samples. Finally, the Lagrangian nature admits a straightforward inclusion of the Hubble flow negating the necessity of a visually defined threshold value which is commonly employed by grid-based classification methods.

  17. Higher-Order Advection-Based Remap of Magnetic Fields in an Arbitrary Lagrangian-Eulerian Code

    NASA Astrophysics Data System (ADS)

    Cornille, Brian; White, Dan

    2017-10-01

    We will present methods formulated for the Eulerian advection stage of an arbitrary Lagrangian-Eulerian code for the new addition of magnetohydrodynamic (MHD) effects. The various physical fields are advanced in time using a Lagrangian formulation of the system. When this Lagrangian motion produces substantial distortion of the mesh, it can be difficult or impossible to progress the simulation forward. This is overcome by relaxation of the mesh while the physical fields are frozen. The code has already successfully been extended to include evolution of magnetic field diffusion during the Lagrangian motion stage. This magnetic field is discretized using an H(div) compatible finite element basis. The advantage of this basis is that the divergence-free constraint of magnetic fields is maintained exactly during the Lagrangian motion evolution. Our goal is to preserve this property during Eulerian advection as well. We will demonstrate this property and the importance of MHD effects in several numerical experiments. In pulsed-power experiments magnetic fields may be imposed or spontaneously generated. When these magnetic fields are present, the evolution of the experiment may differ from a comparable configuration without magnetic fields. Prepared by LLNL under Contract DE-AC52-07NA27344. Supported by DOE CSGF under Grant Number DE-FG02-97ER25308.

  18. Time of travel of solutes in selected reaches of the Sandusky River Basin, Ohio, 1972 and 1973

    USGS Publications Warehouse

    Westfall, Arthur O.

    1976-01-01

    A time of travel study of a 106-mile (171-kilometer) reach of the Sandusky River and a 39-mile (63-kilometer) reach of Tymochtee Creek was made to determine the time required for water released from Killdeer Reservoir on Tymochtee Creek to reach selected downstream points. In general, two dye sample runs were made through each subreach to define the time-discharge relation for approximating travel times at selected discharges within the measured range, and time-discharge graphs are presented for 38 subreaches. Graphs of dye dispersion and variation in relation to time are given for three selected sampling sites. For estimating travel time and velocities between points in the study reach, tables for selected flow durations are given. Duration curves of daily discharge for four index stations are presented to indicate the lo-flow characteristics and for use in shaping downward extensions of the time-discharge curves.

  19. Regional Seismic Travel-Time Prediction, Uncertainty, and Location Improvement in Western Eurasia

    NASA Astrophysics Data System (ADS)

    Flanagan, M. P.; Myers, S. C.

    2004-12-01

    We investigate our ability to improve regional travel-time prediction and seismic event location using an a priori, three-dimensional velocity model of Western Eurasia and North Africa: WENA1.0 [Pasyanos et al., 2004]. Our objective is to improve the accuracy of seismic location estimates and calculate representative location uncertainty estimates. As we focus on the geographic region of Western Eurasia, the Middle East, and North Africa, we develop, test, and validate 3D model-based travel-time prediction models for 30 stations in the study region. Three principal results are presented. First, the 3D WENA1.0 velocity model improves travel-time prediction over the iasp91 model, as measured by variance reduction, for regional Pg, Pn, and P phases recorded at the 30 stations. Second, a distance-dependent uncertainty model is developed and tested for the WENA1.0 model. Third, an end-to-end validation test based on 500 event relocations demonstrates improved location performance over the 1-dimensional iasp91 model. Validation of the 3D model is based on a comparison of approximately 11,000 Pg, Pn, and P travel-time predictions and empirical observations from ground truth (GT) events. Ray coverage for the validation dataset is chosen to provide representative, regional-distance sampling across Eurasia and North Africa. The WENA1.0 model markedly improves travel-time predictions for most stations with an average variance reduction of 25% for all ray paths. We find that improvement is station dependent, with some stations benefiting greatly from WENA1.0 predictions (52% at APA, 33% at BKR, and 32% at NIL), some stations showing moderate improvement (12% at KEV, 14% at BOM, and 12% at TAM), some benefiting only slightly (6% at MOX, and 4% at SVE), and some are degraded (-6% at MLR and -18% at QUE). We further test WENA1.0 by comparing location accuracy with results obtained using the iasp91 model. Again, relocation of these events is dependent on ray paths that evenly

  20. Bayesian Nonlinear Assimilation of Eulerian and Lagrangian Coastal Flow Data

    DTIC Science & Technology

    2015-09-30

    Lagrangian Coastal Flow Data Dr. Pierre F.J. Lermusiaux Department of Mechanical Engineering Center for Ocean Science and Engineering Massachusetts...Develop and apply theory, schemes and computational systems for rigorous Bayesian nonlinear assimilation of Eulerian and Lagrangian coastal flow data...coastal ocean fields, both in Eulerian and Lagrangian forms. - Further develop and implement our GMM-DO schemes for robust Bayesian nonlinear estimation

  1. Establishing Lagrangian Connections between Observations within Air Masses Crossing the Atlantic during the ICARTT Experiment

    NASA Technical Reports Server (NTRS)

    Methven, J.; Arnold, S. R.; Stohl, A.; Evans, M. J.; Avery, M.; Law, K.; Lewis, A. C.; Monks, P. S.; Parrish, D.; Reeves, C.; hide

    2006-01-01

    The International Consortium for Atmospheric Research on Transport and Transformation (ICARTT)-Lagrangian experiment was conceived with an aim to quantify the effects of photochemistry and mixing on the transformation of air masses in the free troposphere away from emissions. To this end attempts were made to intercept and sample air masses several times during their journey across the North Atlantic using four aircraft based in New Hampshire (USA), Faial (Azores) and Creil (France). This article begins by describing forecasts using two Lagrangian models that were used to direct the aircraft into target air masses. A novel technique is then used to identify Lagrangian matches between flight segments. Two independent searches are conducted: for Lagrangian model matches and for pairs of whole air samples with matching hydrocarbon fingerprints. The information is filtered further by searching for matching hydrocarbon samples that are linked by matching trajectories. The quality of these coincident matches is assessed using temperature, humidity and tracer observations. The technique pulls out five clear Lagrangian cases covering a variety of situations and these are examined in detail. The matching trajectories and hydrocarbon fingerprints are shown and the downwind minus upwind differences in tracers are discussed.

  2. Acoustic travel time gauges for in-situ determination of pressure and temperature in multi-anvil apparatus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xuebing; Chen, Ting; Qi, Xintong

    In this study, we developed a new method for in-situ pressure determination in multi-anvil, high-pressure apparatus using an acoustic travel time approach within the framework of acoustoelasticity. The ultrasonic travel times of polycrystalline Al{sub 2}O{sub 3} were calibrated against NaCl pressure scale up to 15 GPa and 900 °C in a Kawai-type double-stage multi-anvil apparatus in conjunction with synchrotron X-radiation, thereby providing a convenient and reliable gauge for pressure determination at ambient and high temperatures. The pressures derived from this new travel time method are in excellent agreement with those from the fixed-point methods. Application of this new pressure gauge in anmore » offline experiment revealed a remarkable agreement of the densities of coesite with those from the previous single crystal compression studies under hydrostatic conditions, thus providing strong validation for the current travel time pressure scale. The travel time approach not only can be used for continuous in-situ pressure determination at room temperature, high temperatures, during compression and decompression, but also bears a unique capability that none of the previous scales can deliver, i.e., simultaneous pressure and temperature determination with a high accuracy (±0.16 GPa in pressure and ±17 °C in temperature). Therefore, the new in-situ Al{sub 2}O{sub 3} pressure gauge is expected to enable new and expanded opportunities for offline laboratory studies of solid and liquid materials under high pressure and high temperature in multi-anvil apparatus.« less

  3. Euler-Lagrangian computation for estuarine hydrodynamics

    USGS Publications Warehouse

    Cheng, Ralph T.

    1983-01-01

    The transport of conservative and suspended matter in fluid flows is a phenomenon of Lagrangian nature because the process is usually convection dominant. Nearly all numerical investigations of such problems use an Eulerian formulation for the convenience that the computational grids are fixed in space and because the vast majority of field data are collected in an Eulerian reference frame. Several examples are given in this paper to illustrate a modeling approach which combines the advantages of both the Eulerian and Lagrangian computational techniques.

  4. 41 CFR 302-3.315 - May I be granted an extension to the time limit for beginning my separation travel?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... extension to the time limit for beginning my separation travel? 302-3.315 Section 302-3.315 Public Contracts and Property Management Federal Travel Regulation System RELOCATION ALLOWANCES RELOCATION ALLOWANCES 3... be granted an extension to the time limit for beginning my separation travel? Yes, your agency may...

  5. 41 CFR 302-3.315 - May I be granted an extension to the time limit for beginning my separation travel?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... extension to the time limit for beginning my separation travel? 302-3.315 Section 302-3.315 Public Contracts and Property Management Federal Travel Regulation System RELOCATION ALLOWANCES RELOCATION ALLOWANCES 3... be granted an extension to the time limit for beginning my separation travel? Yes, your agency may...

  6. 41 CFR 302-3.315 - May I be granted an extension to the time limit for beginning my separation travel?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... extension to the time limit for beginning my separation travel? 302-3.315 Section 302-3.315 Public Contracts and Property Management Federal Travel Regulation System RELOCATION ALLOWANCES RELOCATION ALLOWANCES 3... be granted an extension to the time limit for beginning my separation travel? Yes, your agency may...

  7. Adaptive switching of interaction potentials in the time domain: an extended Lagrangian approach tailored to transmute force field to QM/MM simulations and back.

    PubMed

    Böckmann, Marcus; Doltsinis, Nikos L; Marx, Dominik

    2015-06-09

    An extended Lagrangian formalism that allows for a smooth transition between two different descriptions of interactions during a molecular dynamics simulation is presented. This time-adaptive method is particularly useful in the context of multiscale simulation as it provides a sound recipe to switch on demand between different hierarchical levels of theory, for instance between ab initio ("QM") and force field ("MM") descriptions of a given (sub)system in the course of a molecular dynamics simulation. The equations of motion can be integrated straightforwardly using the usual propagators, such as the Verlet algorithm. First test cases include a bath of harmonic oscillators, of which a subset is switched to a different force constant and/or equilibrium position, as well as an all-MM to QM/MM transition in a hydrogen-bonded water dimer. The method is then applied to a smectic 8AB8 liquid crystal and is shown to be able to switch dynamically a preselected 8AB8 molecule from an all-MM to a QM/MM description which involves partition boundaries through covalent bonds. These examples show that the extended Lagrangian approach is not only easy to implement into existing code but that it is also efficient and robust. The technique moreover provides easy access to a conserved energy quantity, also in cases when Nosé-Hoover chain thermostatting is used throughout dynamical switching. A simple quadratic driving potential proves to be sufficient to guarantee a smooth transition whose time scale can be easily tuned by varying the fictitious mass parameter associated with the auxiliary variable used to extend the Lagrangian. The method is general and can be applied to time-adaptive switching on demand between two different levels of theory within the framework of hybrid scale-bridging simulations.

  8. Expression for time travel based on diffusive wave theory: applicability and considerations

    NASA Astrophysics Data System (ADS)

    Aguilera, J. C.; Escauriaza, C. R.; Passalacqua, P.; Gironas, J. A.

    2017-12-01

    Prediction of hydrological response is of utmost importance when dealing with urban planning, risk assessment, or water resources management issues. With the advent of climate change, special care must be taken with respect to variations in rainfall and runoff due to rising temperature averages. Nowadays, while typical workstations have adequate power to run distributed routing hydrological models, it is still not enough for modeling on-the-fly, a crucial ability in a natural disaster context, where rapid decisions must be made. Semi-distributed time travel models, which compute a watershed's hydrograph without explicitly solving the full shallow water equations, appear as an attractive approach to rainfall-runoff modeling since, like fully distributed models, also superimpose a grid on the watershed, and compute runoff based on cell parameter values. These models are heavily dependent on the travel time expression for an individual cell. Many models make use of expressions based on kinematic wave theory, which is not applicable in cases where watershed storage is important, such as mild slopes. This work presents a new expression for concentration times in overland flow, based on diffusive wave theory, which considers not only the effects of storage but also the effects on upstream contribution. Setting upstream contribution equal to zero gives an expression consistent with previous work on diffusive wave theory; on the other hand, neglecting storage effects (i.e.: diffusion,) is shown to be equivalent to kinematic wave theory, currently used in many spatially distributed time travel models. The newly found expression is shown to be dependent on plane discretization, particularly when dealing with very non-kinematic cases. This is shown to be the result of upstream contribution, which gets larger downstream, versus plane length. This result also provides some light on the limits on applicability of the expression: when a certain kinematic threshold is reached, the

  9. Lagrangian single-particle turbulent statistics through the Hilbert-Huang transform.

    PubMed

    Huang, Yongxiang; Biferale, Luca; Calzavarini, Enrico; Sun, Chao; Toschi, Federico

    2013-04-01

    The Hilbert-Huang transform is applied to analyze single-particle Lagrangian velocity data from numerical simulations of hydrodynamic turbulence. The velocity trajectory is described in terms of a set of intrinsic mode functions C(i)(t) and of their instantaneous frequency ω(i)(t). On the basis of this decomposition we define the ω-conditioned statistical moments of the C(i) modes, named q-order Hilbert spectra (HS). We show that such quantities have enhanced scaling properties as compared to traditional Fourier transform- or correlation-based (structure functions) statistical indicators, thus providing better insights into the turbulent energy transfer process. We present clear empirical evidence that the energylike quantity, i.e., the second-order HS, displays a linear scaling in time in the inertial range, as expected from a dimensional analysis. We also measure high-order moment scaling exponents in a direct way, without resorting to the extended self-similarity procedure. This leads to an estimate of the Lagrangian structure function exponents which are consistent with the multifractal prediction in the Lagrangian frame as proposed by Biferale et al. [Phys. Rev. Lett. 93, 064502 (2004)].

  10. Computing travel time when the exact address is unknown: a comparison of point and polygon ZIP code approximation methods.

    PubMed

    Berke, Ethan M; Shi, Xun

    2009-04-29

    Travel time is an important metric of geographic access to health care. We compared strategies of estimating travel times when only subject ZIP code data were available. Using simulated data from New Hampshire and Arizona, we estimated travel times to nearest cancer centers by using: 1) geometric centroid of ZIP code polygons as origins, 2) population centroids as origin, 3) service area rings around each cancer center, assigning subjects to rings by assuming they are evenly distributed within their ZIP code, 4) service area rings around each center, assuming the subjects follow the population distribution within the ZIP code. We used travel times based on street addresses as true values to validate estimates. Population-based methods have smaller errors than geometry-based methods. Within categories (geometry or population), centroid and service area methods have similar errors. Errors are smaller in urban areas than in rural areas. Population-based methods are superior to the geometry-based methods, with the population centroid method appearing to be the best choice for estimating travel time. Estimates in rural areas are less reliable.

  11. Travel time and cancer care: an example of the inverse care law?

    PubMed

    Baird, G; Flynn, R; Baxter, G; Donnelly, M; Lawrence, J

    2008-01-01

    There is growing evidence that in rural areas cancer mortality is higher and referral occurs later, indicating different patterns of care. In Scotland services to rural areas have been organized through 'managed clinical networks'. In some cases, these organizational networks have been structured so that the referral hospital is not the one nearest to the patient's home. This study set out to discover if access to cancer specialist care in mainland Scotland altered with distance to tertiary care facilities. The aim was to explore the relationship between hospital admission rates, type of hospital and travel time. Retrospective analysis of all registered cancers in Scotland over the three-year period 2000-2002, examining incidence rates and accessibility of care over 3 years, measured by hospital discharge rates (equivalent to admission rates) and mean bed days for cancer patients. The type of hospital to which a cancer patient was admitted and the duration of admission varied with travel distance from a patient's home. All patients travelling more than one hour had lower admission rates to a specialist cancer centre. Those travelling more than 3 hours were not always admitted to the facility nearest their home address and were admitted for significantly fewer days than all other groups. Differences in tertiary cancer care obtained may explain some of the reasons behind late presentation and higher mortality rates. This study provides evidence that the recognized increased cancer mortality in rural patients is indeed compounded by an increased travel burden.

  12. Cash transportation vehicle routing and scheduling under stochastic travel times

    NASA Astrophysics Data System (ADS)

    Yan, Shangyao; Wang, Sin-Siang; Chang, Yu-Hsuan

    2014-03-01

    Stochastic disturbances occurring in real-world operations could have a significant influence on the planned routing and scheduling results of cash transportation vehicles. In this study, a time-space network flow technique is utilized to construct a cash transportation vehicle routing and scheduling model incorporating stochastic travel times. In addition, to help security carriers to formulate more flexible routes and schedules, a concept of the similarity of time and space for vehicle routing and scheduling is incorporated into the model. The test results show that the model could be useful for security carriers in actual practice.

  13. Wireless data collection system for travel time estimation and traffic performance evaluation.

    DOT National Transportation Integrated Search

    2012-05-01

    This report presents the results of the third and final research and development project of an implementable wireless : travel time data collection system. Utilizing Bluetooth wireless technology as a platform, the prior projects focused on : data co...

  14. Analytical solution of the problem of a shock wave in the collapsing gas in Lagrangian coordinates

    NASA Astrophysics Data System (ADS)

    Kuropatenko, V. F.; Shestakovskaya, E. S.

    2016-10-01

    It is proposed the exact solution of the problem of a convergent shock wave and gas dynamic compression in a spherical vessel with an impermeable wall in Lagrangian coordinates. At the initial time the speed of cold ideal gas is equal to zero, and a negative velocity is set on boundary of the sphere. When t > t0 the shock wave spreads from this point into the gas. The boundary of the sphere will move under the certain law correlated with the motion of the shock wave. The trajectories of the gas particles in Lagrangian coordinates are straight lines. The equations determining the structure of the gas flow between the shock front and gas border have been found as a function of time and Lagrangian coordinate. The dependence of the entropy on the velocity of the shock wave has been found too. For Lagrangian coordinates the problem is first solved. It is fundamentally different from previously known formulations of the problem of the self-convergence of the self-similar shock wave to the center of symmetry and its reflection from the center, which was built up for the infinite area in Euler coordinates.

  15. A semi-Lagrangian approach to the shallow water equation

    NASA Technical Reports Server (NTRS)

    Bates, J. R.; Mccormick, Stephen F.; Ruge, John; Sholl, David S.; Yavneh, Irad

    1993-01-01

    We present a formulation of the shallow water equations that emphasizes the conservation of potential vorticity. A locally conservative semi-Lagrangian time-stepping scheme is developed, which leads to a system of three coupled PDE's to be solved at each time level. We describe a smoothing analysis of these equations, on which an effective multigrid solver is constructed. Some results from applying this solver to the static version of these equations are presented.

  16. Renormalization in Coulomb-gauge QCD within the Lagrangian formalism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niegawa, A.

    2006-08-15

    We study renormalization of Coulomb-gauge QCD within the Lagrangian, second-order, formalism. We derive a Ward identity and the Zinn-Justin equation, and, with the help of the latter, we give a proof of algebraic renormalizability of the theory. Through diagrammatic analysis, we show that, in the strict Coulomb gauge, g{sup 2}D{sup 00} is invariant under renormalization. (D{sup 00} is the time-time component of the gluon propagator.)

  17. Valuation of travel time savings in viewpoint of WTA.

    PubMed

    Shao, Chang-Qiao; Liu, Yang; Liu, Xiao-Ming

    2014-01-01

    In order to investigate the issues in measurement of value of travel time savings (VTTS), the willingness-to-accept (WTA) for the private car owner is studied by using surveyed data. It is convincing that trip purpose, trip length, time savings, cost savings, income, and allowance from employee have effects on the WTA. Moreover, influences of these variables are not the same for different trip purposes. For commuting trips, effects of income and allowance from employee are significant while time savings and cost savings are dominated for leisure and shopping trips. It is also found that WTA is much higher than expected which implies that there are a group of drivers who are not prone to switching to other trip modes other than passenger car.

  18. Astrometric light-travel time signature of sources in nonlinear motion. I. Derivation of the effect and radial motion

    NASA Astrophysics Data System (ADS)

    Anglada-Escudé, G.; Torra, J.

    2006-04-01

    Context: .Very precise planned space astrometric missions and recent improvements in imaging capabilities require a detailed review of the assumptions of classical astrometric modeling.Aims.We show that Light-Travel Time must be taken into account in modeling the kinematics of astronomical objects in nonlinear motion, even at stellar distances.Methods.A closed expression to include Light-Travel Time in the current astrometric models with nonlinear motion is provided. Using a perturbative approach the expression of the Light-Travel Time signature is derived. We propose a practical form of the astrometric modelling to be applied in astrometric data reduction of sources at stellar distances(d>1 pc).Results.We show that the Light-Travel Time signature is relevant at μ as accuracy (or even at mas) depending on the time span of the astrometric measurements. We explain how information on the radial motion of a source can be obtained. Some estimates are provided for known nearby binary systemsConclusions.Given the obtained results, it is clear that this effect must be taken into account in interpreting precise astrometric measurements. The effect is particularly relevant in measurements performed by the planned astrometric space missions (GAIA, SIM, JASMINE, TPF/DARWIN). An objective criterion is provided to quickly evaluate whether the Light-Travel Time modeling is required for a given source or system.

  19. Extended hamiltonian formalism and Lorentz-violating lagrangians

    NASA Astrophysics Data System (ADS)

    Colladay, Don

    2017-09-01

    A new perspective on the classical mechanical formulation of particle trajectories in Lorentz-violating theories is presented. Using the extended hamiltonian formalism, a Legendre Transformation between the associated covariant lagrangian and hamiltonian varieties is constructed. This approach enables calculation of trajectories using Hamilton's equations in momentum space and the Euler-Lagrange equations in velocity space away from certain singular points that arise in the theory. Singular points are naturally de-singularized by requiring the trajectories to be smooth functions of both velocity and momentum variables. In addition, it is possible to identify specific sheets of the dispersion relations that correspond to specific solutions for the lagrangian. Examples corresponding to bipartite Finsler functions are computed in detail. A direct connection between the lagrangians and the field-theoretic solutions to the Dirac equation is also established for a special case.

  20. Adaptive reconnection-based arbitrary Lagrangian Eulerian method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bo, Wurigen; Shashkov, Mikhail

    We present a new adaptive Arbitrary Lagrangian Eulerian (ALE) method. This method is based on the reconnection-based ALE (ReALE) methodology of Refs. [35], [34] and [6]. The main elements in a standard ReALE method are: an explicit Lagrangian phase on an arbitrary polygonal (in 2D) mesh in which the solution and positions of grid nodes are updated; a rezoning phase in which a new grid is defined by changing the connectivity (using Voronoi tessellation) but not the number of cells; and a remapping phase in which the Lagrangian solution is transferred onto the new grid. Furthermore, in the standard ReALEmore » method, the rezoned mesh is smoothed by using one or several steps toward centroidal Voronoi tessellation, but it is not adapted to the solution in any way.« less

  1. Adaptive reconnection-based arbitrary Lagrangian Eulerian method

    DOE PAGES

    Bo, Wurigen; Shashkov, Mikhail

    2015-07-21

    We present a new adaptive Arbitrary Lagrangian Eulerian (ALE) method. This method is based on the reconnection-based ALE (ReALE) methodology of Refs. [35], [34] and [6]. The main elements in a standard ReALE method are: an explicit Lagrangian phase on an arbitrary polygonal (in 2D) mesh in which the solution and positions of grid nodes are updated; a rezoning phase in which a new grid is defined by changing the connectivity (using Voronoi tessellation) but not the number of cells; and a remapping phase in which the Lagrangian solution is transferred onto the new grid. Furthermore, in the standard ReALEmore » method, the rezoned mesh is smoothed by using one or several steps toward centroidal Voronoi tessellation, but it is not adapted to the solution in any way.« less

  2. Travelers' Health: Pregnant Travelers

    MedlinePlus

    ... Most experts recommend a slower ascent with adequate time for acclimatization. No studies or case reports show harm to a fetus if the mother travels briefly to high altitudes during pregnancy. However, it ...

  3. Effects of spatial attention on mental time travel in patients with neglect.

    PubMed

    Anelli, Filomena; Avanzi, Stefano; Arzy, Shahar; Mancuso, Mauro; Frassinetti, Francesca

    2018-04-01

    Numerous studies agree that time is represented in spatial terms in the brain. Here we investigate how a deficit in orienting attention in space influences the ability to mentally travel in time, that is to recall the past and anticipate the future. Right brain-damaged patients, with (RBD-N+) and without neglect (RBD-N-), and healthy controls (HC) were subjected to a Mental Time Travel (MTT) task. Participants were asked to project themselves in time to past, present or future (i.e., self-projection) and, for each self-projection, to judge whether events were located relatively in the past or the future (i.e., self-reference). The MTT-task was performed before and after a manipulation, through prismatic adaptation (PA), inducing a leftward shift of spatial attention. Before PA, RBD-N+ were slower for future than for past events, whereas RBD-N- and HC responded similarly to past and future events. A leftward shift of spatial attention by PA reduced the difference in past/future processing in RBD-N+ and fastened RBD-N- and HC's response to past events. Assuming that time concepts, such as past/future, are coded with a left-to-right order on a mental time line (MTL), a recursive search of future-events can explain neglect patients' performance. Improvement of the spatial deficit following PA reduces the recursive search of future events on the rightmost part of the MTL, facilitating exploration of past events on the leftmost part of the MTL, finally favoring the correct location of past and future events. In addition, the study of the anatomical correlates of the temporal deficit in mental time travel through voxel-based lesion-symptom mapping showed a correlation with a lesion located in the insula and in the thalamus. These findings provide new insights about the inter-relations of space and time, and can pave the way to a procedure to rehabilitate a deficit in these cognitive domains. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. A Godunov-like point-centered essentially Lagrangian hydrodynamic approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgan, Nathaniel R.; Waltz, Jacob I.; Burton, Donald E.

    We present an essentially Lagrangian hydrodynamic scheme suitable for modeling complex compressible flows on tetrahedron meshes. The scheme reduces to a purely Lagrangian approach when the flow is linear or if the mesh size is equal to zero; as a result, we use the term essentially Lagrangian for the proposed approach. The motivation for developing a hydrodynamic method for tetrahedron meshes is because tetrahedron meshes have some advantages over other mesh topologies. Notable advantages include reduced complexity in generating conformal meshes, reduced complexity in mesh reconnection, and preserving tetrahedron cells with automatic mesh refinement. A challenge, however, is tetrahedron meshesmore » do not correctly deform with a lower order (i.e. piecewise constant) staggered-grid hydrodynamic scheme (SGH) or with a cell-centered hydrodynamic (CCH) scheme. The SGH and CCH approaches calculate the strain via the tetrahedron, which can cause artificial stiffness on large deformation problems. To resolve the stiffness problem, we adopt the point-centered hydrodynamic approach (PCH) and calculate the evolution of the flow via an integration path around the node. The PCH approach stores the conserved variables (mass, momentum, and total energy) at the node. The evolution equations for momentum and total energy are discretized using an edge-based finite element (FE) approach with linear basis functions. A multidirectional Riemann-like problem is introduced at the center of the tetrahedron to account for discontinuities in the flow such as a shock. Conservation is enforced at each tetrahedron center. The multidimensional Riemann-like problem used here is based on Lagrangian CCH work [8, 19, 37, 38, 44] and recent Lagrangian SGH work [33-35, 39, 45]. In addition, an approximate 1D Riemann problem is solved on each face of the nodal control volume to advect mass, momentum, and total energy. The 1D Riemann problem produces fluxes [18] that remove a volume error in the PCH

  5. A Godunov-like point-centered essentially Lagrangian hydrodynamic approach

    DOE PAGES

    Morgan, Nathaniel R.; Waltz, Jacob I.; Burton, Donald E.; ...

    2014-10-28

    We present an essentially Lagrangian hydrodynamic scheme suitable for modeling complex compressible flows on tetrahedron meshes. The scheme reduces to a purely Lagrangian approach when the flow is linear or if the mesh size is equal to zero; as a result, we use the term essentially Lagrangian for the proposed approach. The motivation for developing a hydrodynamic method for tetrahedron meshes is because tetrahedron meshes have some advantages over other mesh topologies. Notable advantages include reduced complexity in generating conformal meshes, reduced complexity in mesh reconnection, and preserving tetrahedron cells with automatic mesh refinement. A challenge, however, is tetrahedron meshesmore » do not correctly deform with a lower order (i.e. piecewise constant) staggered-grid hydrodynamic scheme (SGH) or with a cell-centered hydrodynamic (CCH) scheme. The SGH and CCH approaches calculate the strain via the tetrahedron, which can cause artificial stiffness on large deformation problems. To resolve the stiffness problem, we adopt the point-centered hydrodynamic approach (PCH) and calculate the evolution of the flow via an integration path around the node. The PCH approach stores the conserved variables (mass, momentum, and total energy) at the node. The evolution equations for momentum and total energy are discretized using an edge-based finite element (FE) approach with linear basis functions. A multidirectional Riemann-like problem is introduced at the center of the tetrahedron to account for discontinuities in the flow such as a shock. Conservation is enforced at each tetrahedron center. The multidimensional Riemann-like problem used here is based on Lagrangian CCH work [8, 19, 37, 38, 44] and recent Lagrangian SGH work [33-35, 39, 45]. In addition, an approximate 1D Riemann problem is solved on each face of the nodal control volume to advect mass, momentum, and total energy. The 1D Riemann problem produces fluxes [18] that remove a volume error in the PCH

  6. Viruses as groundwater tracers: using ecohydrology to characterize short travel times in aquifers

    USDA-ARS?s Scientific Manuscript database

    Viruses are attractive tracers of short (<3 yr) travel times in aquifers because they have unique genetic signatures, are detectable in trace quantities, and are mobile and stable in groundwater. Virus “snaphots” result from infection and disappearance over time as a community develops resistance. T...

  7. Investigating the source of anomalous PKP travel-times on south-Sandwich to Alaska paths

    NASA Astrophysics Data System (ADS)

    Frost, D. A.; Romanowicz, B. A.

    2017-12-01

    Inner core anisotropy was proposed thirty years ago to explain differences in travel times of inner core phases (PKIKP) on polar and equatorial paths (Morelli et al., 1986). Over time, models of inner core anisotropy have become very complex, with evidence for depth dependence, hemispherical variations, and other localised features. Some models propose the strength of anisotropy to be in excess of 4% in the western hemisphere of the inner core. This is difficult to reconcile with predictions from mineral physics and dynamical models of inner core growth. The strong anisotropy is confined to anomalous paths between earthquakes in the south Sandwich Islands and stations in Alaska. In contrast, the strength of inner core anisotropy obtained from measurements of PKPPKP travel times on polar paths does not exceed 1-2% (Bréger et al., 2000; Frost and Romanowicz, 2017). We re-examine the trends of PKIKP travel times on polar paths, in order to reconcile the different measurements and to determine whether discrepancies can be explained by structure in the mantle, the outer core, or localized strong anisotropy in the inner core. For this, we combine existing and new measurements, taking advantage of recent deployments of broadband arrays in Alaska and Antarctica.

  8. SYSTEMATIC CENTER-TO-LIMB VARIATION IN MEASURED HELIOSEISMIC TRAVEL TIMES AND ITS EFFECT ON INFERENCES OF SOLAR INTERIOR MERIDIONAL FLOWS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao Junwei; Nagashima, Kaori; Bogart, R. S.

    We report on a systematic center-to-limb variation in measured helioseismic travel times, which must be taken into account for an accurate determination of solar interior meridional flows. The systematic variation, found in time-distance helioseismology analysis using SDO/HMI and SDO/AIA observations, is different in both travel-time magnitude and variation trend for different observables. It is not clear what causes this systematic effect. Subtracting the longitude-dependent east-west travel times, obtained along the equatorial area, from the latitude-dependent north-south travel times, obtained along the central meridian area, gives remarkably similar results for different observables. We suggest this as an effective procedure for removingmore » the systematic center-to-limb variation. The subsurface meridional flows obtained from inversion of the corrected travel times are approximately 10 m s{sup -1} slower than those obtained without removing the systematic effect. The detected center-to-limb variation may have important implications in the derivation of meridional flows in the deep interior and needs to be better understood.« less

  9. Systematic Center-To-Limb Variation in Measured Helioseismic Travel Times and Its Effect on Inferences of Solar Interior Meridional Flows

    NASA Technical Reports Server (NTRS)

    Zhao, Junwei; Nagashima, Kaori; Bogart, R. S.; Kosovichev, Alexander; Duvall, T. L., Jr.

    2012-01-01

    We report on a systematic center-to-limb variation in measured helioseismic travel times, which must be taken into account for an accurate determination of solar interior meridional flows. The systematic variation, found in time-distance helioseismology analysis using SDO/HMI and SDO/AIA observations, is different in both travel-time magnitude and variation trend for different observables. It is not clear what causes this systematic effect. Subtracting the longitude-dependent east-west travel times, obtained along the equatorial area, from the latitude-dependent north-south travel times, obtained along the central meridian area, gives remarkably similar results for different observables. We suggest this as an effective procedure for removing the systematic center-to-limb variation. The subsurface meridional flows obtained from inversion of the corrected travel times are approximately 10 m s-1 slower than those obtained without removing the systematic effect. The detected center-to-limb variation may have important implications in the derivation of meridional flows in the deep interior and needs to be better understood.

  10. On Lagrangian residual currents with applications in south San Francisco Bay, California

    USGS Publications Warehouse

    Cheng, Ralph T.; Casulli, Vincenzo

    1982-01-01

    The Lagrangian residual circulation has often been introduced as the sum of the Eulerian residual circulation and the Stokes' drift. Unfortunately, this definition of the Lagrangian residual circulation is conceptually incorrect because both the Eulerian residual circulation and the Stokes' drift are Eulerian variables. In this paper a classification of various residual variables are reviewed and properly defined. The Lagrangian residual circulation is then studied by means of a two-stage formulation of a computer model. The tidal circulation is first computed in a conventional Eulerian way, and then the Lagrangian residual circulation is determined by a method patterned after the method of markers and cells. To demonstrate properties of the Lagrangian residual circulation, application of this approach in South San Francisco Bay, California, is considered. With the aid of the model results, properties of the Eulerian and Lagrangian residual circulation are examined. It can be concluded that estimation of the Lagrangian residual circulation from Eulerian data may lead to unacceptable error, particularly in a tidal estuary where the tidal excursion is of the same order of magnitude as the length scale of the basin. A direction calculation of the Lagrangian residual circulation must be made and has been shown to be feasible.

  11. 20 CFR 404.1008 - Agent-driver or commission-driver, full-time life insurance salesman, home worker, or traveling...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... commission-driver, full-time life insurance salesman, home worker, or traveling or city salesman. (a) General... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false Agent-driver or commission-driver, full-time life insurance salesman, home worker, or traveling or city salesman. 404.1008 Section 404.1008...

  12. 20 CFR 404.1008 - Agent-driver or commission-driver, full-time life insurance salesman, home worker, or traveling...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... commission-driver, full-time life insurance salesman, home worker, or traveling or city salesman. (a) General... 20 Employees' Benefits 2 2012-04-01 2012-04-01 false Agent-driver or commission-driver, full-time life insurance salesman, home worker, or traveling or city salesman. 404.1008 Section 404.1008...

  13. 20 CFR 404.1008 - Agent-driver or commission-driver, full-time life insurance salesman, home worker, or traveling...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... commission-driver, full-time life insurance salesman, home worker, or traveling or city salesman. (a) General... 20 Employees' Benefits 2 2013-04-01 2013-04-01 false Agent-driver or commission-driver, full-time life insurance salesman, home worker, or traveling or city salesman. 404.1008 Section 404.1008...

  14. 20 CFR 404.1008 - Agent-driver or commission-driver, full-time life insurance salesman, home worker, or traveling...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... commission-driver, full-time life insurance salesman, home worker, or traveling or city salesman. (a) General... 20 Employees' Benefits 2 2014-04-01 2014-04-01 false Agent-driver or commission-driver, full-time life insurance salesman, home worker, or traveling or city salesman. 404.1008 Section 404.1008...

  15. 20 CFR 404.1008 - Agent-driver or commission-driver, full-time life insurance salesman, home worker, or traveling...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... commission-driver, full-time life insurance salesman, home worker, or traveling or city salesman. (a) General... 20 Employees' Benefits 2 2011-04-01 2011-04-01 false Agent-driver or commission-driver, full-time life insurance salesman, home worker, or traveling or city salesman. 404.1008 Section 404.1008...

  16. Groundwater vulnerability assessment for the karst aquifer of Tanour and Rasoun spring using EPIK, COP, and travel time methods

    NASA Astrophysics Data System (ADS)

    Hamdan, Ibraheem; Sauter, Martin; Margane, Armin; Ptak, Thomas; Wiegand, Bettina

    2016-04-01

    Key words: Karst, groundwater vulnerability, EPIK, COP, travel time, Jordan. Karst aquifers are especially sensitive to short-lived contaminants because of fast water travel times and a low storage capacity in the conduit system. Tanour and Rasoun karst springs located around 75 km northwest of the city of Amman in Jordan represent the main domestic water supply for the surrounding villages. Both springs suffer from pollution events especially during the winter season, either by microbiological contamination due to wastewater leakage from septic tanks or by wastewater discharge from local olive oil presses. To assess the vulnerability of the karst aquifer of Tanour and Rasoun spring and its sensitivity for pollution, two different intrinsic groundwater vulnerability methods were applied: EPIK and COP. In addition, a travel time vulnerability method was applied to determine the time water travels from different points in the catchment to the streams, as a function of land surface gradients and presumed lateral flow within the epikarst. For the application of the COP and EPIK, a detailed geological survey was carried out to determine karst features and the karst network development within the catchment area. In addition, parameters, such as soil data, long term daily precipitation data, land use and topographical data were collected. For the application of the travel time vulnerability method, flow length, hydraulic conductivity, effective porosity, and slope gradient was used in order to determining the travel time in days. ArcGIS software was used for map preparation. The results of the combined vulnerability methods (COP, EPIK and travel time) show a high percentage of "very high" to "moderate" vulnerable areas within the catchment area of Tanour and Rasoun karst springs. Therefore, protection of the catchment area of Tanour and Rasoun springs from pollution and proper management of land use types is urgently needed to maintain the quality of drinking water in the

  17. TRAVEL FORECASTER

    NASA Technical Reports Server (NTRS)

    Mauldin, L. E.

    1994-01-01

    Business travel planning within an organization is often a time-consuming task. Travel Forecaster is a menu-driven, easy-to-use program which plans, forecasts cost, and tracks actual vs. planned cost for business-related travel of a division or branch of an organization and compiles this information into a database to aid the travel planner. The program's ability to handle multiple trip entries makes it a valuable time-saving device. Travel Forecaster takes full advantage of relational data base properties so that information that remains constant, such as per diem rates and airline fares (which are unique for each city), needs entering only once. A typical entry would include selection with the mouse of the traveler's name and destination city from pop-up lists, and typed entries for number of travel days and purpose of the trip. Multiple persons can be selected from the pop-up lists and multiple trips are accommodated by entering the number of days by each appropriate month on the entry form. An estimated travel cost is not required of the user as it is calculated by a Fourth Dimension formula. With this information, the program can produce output of trips by month with subtotal and total cost for either organization or sub-entity of an organization; or produce outputs of trips by month with subtotal and total cost for international-only travel. It will also provide monthly and cumulative formats of planned vs. actual outputs in data or graph form. Travel Forecaster users can do custom queries to search and sort information in the database, and it can create custom reports with the user-friendly report generator. Travel Forecaster 1.1 is a database program for use with Fourth Dimension Runtime 2.1.1. It requires a Macintosh Plus running System 6.0.3 or later, 2Mb of RAM and a hard disk. The standard distribution medium for this package is one 3.5 inch 800K Macintosh format diskette. Travel Forecaster was developed in 1991. Macintosh is a registered trademark of

  18. Estimating the Value of Life, Injury, and Travel Time Saved Using a Stated Preference Framework.

    PubMed

    Niroomand, Naghmeh; Jenkins, Glenn P

    2016-06-01

    The incidence of fatality over the period 2010-2014 from automobile accidents in North Cyprus is 2.75 times greater than the average for the EU. With the prospect of North Cyprus entering the EU, many investments will need to be undertaken to improve road safety in order to reach EU benchmarks. The objective of this study is to provide local estimates of the value of a statistical life and injury along with the value of time savings. These are among the parameter values needed for the evaluation of the change in the expected incidence of automotive accidents and time savings brought about by such projects. In this study we conducted a stated choice experiment to identify the preferences and tradeoffs of automobile drivers in North Cyprus for improved travel times, travel costs, and safety. The choice of route was examined using mixed logit models to obtain the marginal utilities associated with each attribute of the routes that consumers choose. These estimates were used to assess the individuals' willingness to pay (WTP) to avoid fatalities and injuries and to save travel time. We then used the results to obtain community-wide estimates of the value of a statistical life (VSL) saved, the value of injury (VI) prevented, and the value per hour of travel time saved. The estimates for the VSL range from €315,293 to €1,117,856 and the estimates of VI from € 5,603 to € 28,186. These values are consistent, after adjusting for differences in incomes, with the median results of similar studies done for EU countries. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Impacts of wireless charging lanes on travel time and energy consumption in a two-lane road system

    NASA Astrophysics Data System (ADS)

    He, Jia; Yang, Hai; Huang, Hai-Jun; Tang, Tie-Qiao

    2018-06-01

    In this paper, we propose a method to compare different energy consumption models and design a strategy to study the quantitative effects of wireless charging lane (WCL) on each electric vehicle's (EV's) link travel time. We utilize the modified energy consumption model and strategy to explore electric vehicle's electricity consumption and link travel time in a two-lane system with a WCL. The numerical results show that EVs' charging behavior on WCL will cause the drivers to execute the lane-changing maneuvers frequently and that the WCL has prominent impacts on EV's energy consumption and travel time, i.e., the capacity drops by 8%-17% while the EV's energy consumption increases by 3%-14% in the two-lane road system.

  20. Improvements of Travel-time Tomography Models from Joint Inversion of Multi-channel and Wide-angle Seismic Data

    NASA Astrophysics Data System (ADS)

    Begović, Slaven; Ranero, César; Sallarès, Valentí; Meléndez, Adrià; Grevemeyer, Ingo

    2016-04-01

    Commonly multichannel seismic reflection (MCS) and wide-angle seismic (WAS) data are modeled and interpreted with different approaches. Conventional travel-time tomography models using solely WAS data lack the resolution to define the model properties and, particularly, the geometry of geologic boundaries (reflectors) with the required accuracy, specially in the shallow complex upper geological layers. We plan to mitigate this issue by combining these two different data sets, specifically taking advantage of the high redundancy of multichannel seismic (MCS) data, integrated with wide-angle seismic (WAS) data into a common inversion scheme to obtain higher-resolution velocity models (Vp), decrease Vp uncertainty and improve the geometry of reflectors. To do so, we have adapted the tomo2d and tomo3d joint refraction and reflection travel time tomography codes (Korenaga et al, 2000; Meléndez et al, 2015) to deal with streamer data and MCS acquisition geometries. The scheme results in a joint travel-time tomographic inversion based on integrated travel-time information from refracted and reflected phases from WAS data and reflected identified in the MCS common depth point (CDP) or shot gathers. To illustrate the advantages of a common inversion approach we have compared the modeling results for synthetic data sets using two different travel-time inversion strategies: We have produced seismic velocity models and reflector geometries following typical refraction and reflection travel-time tomographic strategy modeling just WAS data with a typical acquisition geometry (one OBS each 10 km). Second, we performed joint inversion of two types of seismic data sets, integrating two coincident data sets consisting of MCS data collected with a 8 km-long streamer and the WAS data into a common inversion scheme. Our synthetic results of the joint inversion indicate a 5-10 times smaller ray travel-time misfit in the deeper parts of the model, compared to models obtained using just

  1. Pregnancy and travel

    MedlinePlus

    ... a cruise, it may not be the best time to go. Travel by sea may cause motion sickness or nausea. ... out of the country. Plan ahead to allow time for any shots or medicines you may need. When you travel, take a copy of your prenatal care record ...

  2. 41 CFR 302-3.219 - Is there a limit on how many times I may receive reimbursement for tour renewal travel?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... many times I may receive reimbursement for tour renewal travel? 302-3.219 Section 302-3.219 Public Contracts and Property Management Federal Travel Regulation System RELOCATION ALLOWANCES RELOCATION....219 Is there a limit on how many times I may receive reimbursement for tour renewal travel? (a) If you...

  3. 41 CFR 302-3.219 - Is there a limit on how many times I may receive reimbursement for tour renewal travel?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... many times I may receive reimbursement for tour renewal travel? 302-3.219 Section 302-3.219 Public Contracts and Property Management Federal Travel Regulation System RELOCATION ALLOWANCES RELOCATION....219 Is there a limit on how many times I may receive reimbursement for tour renewal travel? (a) If you...

  4. 41 CFR 302-3.219 - Is there a limit on how many times I may receive reimbursement for tour renewal travel?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... many times I may receive reimbursement for tour renewal travel? 302-3.219 Section 302-3.219 Public Contracts and Property Management Federal Travel Regulation System RELOCATION ALLOWANCES RELOCATION....219 Is there a limit on how many times I may receive reimbursement for tour renewal travel? (a) If you...

  5. 41 CFR 302-3.219 - Is there a limit on how many times I may receive reimbursement for tour renewal travel?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... many times I may receive reimbursement for tour renewal travel? 302-3.219 Section 302-3.219 Public Contracts and Property Management Federal Travel Regulation System RELOCATION ALLOWANCES RELOCATION....219 Is there a limit on how many times I may receive reimbursement for tour renewal travel? (a) If you...

  6. 41 CFR 302-3.219 - Is there a limit on how many times I may receive reimbursement for tour renewal travel?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... many times I may receive reimbursement for tour renewal travel? 302-3.219 Section 302-3.219 Public Contracts and Property Management Federal Travel Regulation System RELOCATION ALLOWANCES RELOCATION....219 Is there a limit on how many times I may receive reimbursement for tour renewal travel? (a) If you...

  7. 41 CFR 302-2.10 - Does the 2-year time period in § 302-2.8 include time that I cannot travel and/or transport my...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 4 2010-07-01 2010-07-01 false Does the 2-year time period in § 302-2.8 include time that I cannot travel and/or transport my household effects due to... time that I cannot travel and/or transport my household effects due to shipping restrictions to or from...

  8. 41 CFR 302-2.10 - Does the 1-year time period in § 302-2.8 include time that I cannot travel and/or transport my...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 41 Public Contracts and Property Management 4 2013-07-01 2012-07-01 true Does the 1-year time period in § 302-2.8 include time that I cannot travel and/or transport my household effects due to... time that I cannot travel and/or transport my household effects due to shipping restrictions to or from...

  9. 41 CFR 302-2.10 - Does the 2-year time period in § 302-2.8 include time that I cannot travel and/or transport my...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 41 Public Contracts and Property Management 4 2011-07-01 2011-07-01 false Does the 2-year time period in § 302-2.8 include time that I cannot travel and/or transport my household effects due to... time that I cannot travel and/or transport my household effects due to shipping restrictions to or from...

  10. 41 CFR 302-2.10 - Does the 1-year time period in § 302-2.8 include time that I cannot travel and/or transport my...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 41 Public Contracts and Property Management 4 2014-07-01 2014-07-01 false Does the 1-year time period in § 302-2.8 include time that I cannot travel and/or transport my household effects due to... time that I cannot travel and/or transport my household effects due to shipping restrictions to or from...

  11. 41 CFR 302-2.10 - Does the 1-year time period in § 302-2.8 include time that I cannot travel and/or transport my...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 41 Public Contracts and Property Management 4 2012-07-01 2012-07-01 false Does the 1-year time period in § 302-2.8 include time that I cannot travel and/or transport my household effects due to... time that I cannot travel and/or transport my household effects due to shipping restrictions to or from...

  12. Comparison of methods for measuring travel time at Florida freeways and arterials : [summary].

    DOT National Transportation Integrated Search

    2014-07-01

    In this project, University of Florida researchers : collected field data along several highways to : evaluate travel time measurements from several : sources: STEWARD, BlueTOAD, INRIX, and HERE. : STEWARD (Statewide Transportation Engineering : Ware...

  13. Extended Lagrangian Density Functional Tight-Binding Molecular Dynamics for Molecules and Solids.

    PubMed

    Aradi, Bálint; Niklasson, Anders M N; Frauenheim, Thomas

    2015-07-14

    A computationally fast quantum mechanical molecular dynamics scheme using an extended Lagrangian density functional tight-binding formulation has been developed and implemented in the DFTB+ electronic structure program package for simulations of solids and molecular systems. The scheme combines the computational speed of self-consistent density functional tight-binding theory with the efficiency and long-term accuracy of extended Lagrangian Born-Oppenheimer molecular dynamics. For systems without self-consistent charge instabilities, only a single diagonalization or construction of the single-particle density matrix is required in each time step. The molecular dynamics simulation scheme can be applied to a broad range of problems in materials science, chemistry, and biology.

  14. Parallel Decomposition of the Fictitious Lagrangian Algorithm and its Accuracy for Molecular Dynamics Simulations of Semiconductors.

    NASA Astrophysics Data System (ADS)

    Yeh, Mei-Ling

    We have performed a parallel decomposition of the fictitious Lagrangian method for molecular dynamics with tight-binding total energy expression into the hypercube computer. This is the first time in literature that the dynamical simulation of semiconducting systems containing more than 512 silicon atoms has become possible with the electrons treated as quantum particles. With the utilization of the Intel Paragon system, our timing analysis predicts that our code is expected to perform realistic simulations on very large systems consisting of thousands of atoms with time requirements of the order of tens of hours. Timing results and performance analysis of our parallel code are presented in terms of calculation time, communication time, and setup time. The accuracy of the fictitious Lagrangian method in molecular dynamics simulation is also investigated, especially the energy conservation of the total energy of ions. We find that the accuracy of the fictitious Lagrangian scheme in small silicon cluster and very large silicon system simulations is good for as long as the simulations proceed, even though we quench the electronic coordinates to the Born-Oppenheimer surface only in the beginning of the run. The kinetic energy of electrons does not increase as time goes on, and the energy conservation of the ionic subsystem remains very good. This means that, as far as the ionic subsystem is concerned, the electrons are on the average in the true quantum ground states. We also tie up some odds and ends regarding a few remaining questions about the fictitious Lagrangian method, such as the difference between the results obtained from the Gram-Schmidt and SHAKE method of orthonormalization, and differences between simulations where the electrons are quenched to the Born -Oppenheimer surface only once compared with periodic quenching.

  15. Parent formulation at the Lagrangian level

    NASA Astrophysics Data System (ADS)

    Grigoriev, Maxim

    2011-07-01

    The recently proposed first-order parent formalism at the level of equations of motion is specialized to the case of Lagrangian systems. It is shown that for diffeomorphism-invariant theories the parent formulation takes the form of an AKSZ-type sigma model. The proposed formulation can be also seen as a Lagrangian version of the BV-BRST extension of the Vasiliev unfolded approach. We also discuss its possible interpretation as a multidimensional generalization of the Hamiltonian BFV-BRST formalism. The general construction is illustrated by examples of (parametrized) mechanics, relativistic particle, Yang-Mills theory, and gravity.

  16. Dissolved Organic Carbon 14C in Southern Nevada Groundwater and Implications for Groundwater Travel Times

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hershey, Ronald L.; Fereday, Wyall; Thomas, James M

    Dissolved inorganic carbon (DIC) carbon-14 ( 14C) ages must be corrected for complex chemical and physical reactions and processes that change the amount of 14C in groundwater as it flows from recharge to downgradient areas. Because of these reactions, DIC 14C can produce unrealistically old ages and long groundwater travel times that may, or may not, agree with travel times estimated by other methods. Dissolved organic carbon (DOC) 14C ages are often younger than DIC 14C ages because there are few chemical reactions or physical processes that change the amount of DOC 14C in groundwater. However, there are several issuesmore » that create uncertainty in DOC 14C groundwater ages including limited knowledge of the initial (A 0) DOC 14C in groundwater recharge and potential changes in DOC composition as water moves through an aquifer. This study examines these issues by quantifying A 0 DOC 14C in recharge areas of southern Nevada groundwater flow systems and by evaluating changes in DOC composition as water flows from recharge areas to downgradient areas. The effect of these processes on DOC 14C groundwater ages is evaluated and DOC and DIC 14C ages are then compared along several southern Nevada groundwater flow paths. Twenty-seven groundwater samples were collected from springs and wells in southern Nevada in upgradient, midgradient, and downgradient locations. DOC 14C for upgradient samples ranged from 96 to 120 percent modern carbon (pmc) with an average of 106 pmc, verifying modern DOC 14C ages in recharge areas, which decreases uncertainty in DOC 14C A 0 values, groundwater ages, and travel times. The HPLC spectra of groundwater along a flow path in the Spring Mountains show the same general pattern indicating that the DOC compound composition does not change along this flow path. Although DOC concentration decreases from recharge-area to downgradient groundwater, the organic compounds are similar, indicating that DOC 14C is unaffected by other processes such

  17. Interactive, open source, travel time scenario modelling: tools to facilitate participation in health service access analysis.

    PubMed

    Fisher, Rohan; Lassa, Jonatan

    2017-04-18

    Modelling travel time to services has become a common public health tool for planning service provision but the usefulness of these analyses is constrained by the availability of accurate input data and limitations inherent in the assumptions and parameterisation. This is particularly an issue in the developing world where access to basic data is limited and travel is often complex and multi-modal. Improving the accuracy and relevance in this context requires greater accessibility to, and flexibility in, travel time modelling tools to facilitate the incorporation of local knowledge and the rapid exploration of multiple travel scenarios. The aim of this work was to develop simple open source, adaptable, interactive travel time modelling tools to allow greater access to and participation in service access analysis. Described are three interconnected applications designed to reduce some of the barriers to the more wide-spread use of GIS analysis of service access and allow for complex spatial and temporal variations in service availability. These applications are an open source GIS tool-kit and two geo-simulation models. The development of these tools was guided by health service issues from a developing world context but they present a general approach to enabling greater access to and flexibility in health access modelling. The tools demonstrate a method that substantially simplifies the process for conducting travel time assessments and demonstrate a dynamic, interactive approach in an open source GIS format. In addition this paper provides examples from empirical experience where these tools have informed better policy and planning. Travel and health service access is complex and cannot be reduced to a few static modeled outputs. The approaches described in this paper use a unique set of tools to explore this complexity, promote discussion and build understanding with the goal of producing better planning outcomes. The accessible, flexible, interactive and

  18. The TimeGeo modeling framework for urban mobility without travel surveys

    PubMed Central

    Jiang, Shan; Yang, Yingxiang; Gupta, Siddharth; Veneziano, Daniele; Athavale, Shounak; González, Marta C.

    2016-01-01

    Well-established fine-scale urban mobility models today depend on detailed but cumbersome and expensive travel surveys for their calibration. Not much is known, however, about the set of mechanisms needed to generate complete mobility profiles if only using passive datasets with mostly sparse traces of individuals. In this study, we present a mechanistic modeling framework (TimeGeo) that effectively generates urban mobility patterns with resolution of 10 min and hundreds of meters. It ties together the inference of home and work activity locations from data, with the modeling of flexible activities (e.g., other) in space and time. The temporal choices are captured by only three features: the weekly home-based tour number, the dwell rate, and the burst rate. These combined generate for each individual: (i) stay duration of activities, (ii) number of visited locations per day, and (iii) daily mobility networks. These parameters capture how an individual deviates from the circadian rhythm of the population, and generate the wide spectrum of empirically observed mobility behaviors. The spatial choices of visited locations are modeled by a rank-based exploration and preferential return (r-EPR) mechanism that incorporates space in the EPR model. Finally, we show that a hierarchical multiplicative cascade method can measure the interaction between land use and generation of trips. In this way, urban structure is directly related to the observed distance of travels. This framework allows us to fully embrace the massive amount of individual data generated by information and communication technologies (ICTs) worldwide to comprehensively model urban mobility without travel surveys. PMID:27573826

  19. The TimeGeo modeling framework for urban motility without travel surveys.

    PubMed

    Jiang, Shan; Yang, Yingxiang; Gupta, Siddharth; Veneziano, Daniele; Athavale, Shounak; González, Marta C

    2016-09-13

    Well-established fine-scale urban mobility models today depend on detailed but cumbersome and expensive travel surveys for their calibration. Not much is known, however, about the set of mechanisms needed to generate complete mobility profiles if only using passive datasets with mostly sparse traces of individuals. In this study, we present a mechanistic modeling framework (TimeGeo) that effectively generates urban mobility patterns with resolution of 10 min and hundreds of meters. It ties together the inference of home and work activity locations from data, with the modeling of flexible activities (e.g., other) in space and time. The temporal choices are captured by only three features: the weekly home-based tour number, the dwell rate, and the burst rate. These combined generate for each individual: (i) stay duration of activities, (ii) number of visited locations per day, and (iii) daily mobility networks. These parameters capture how an individual deviates from the circadian rhythm of the population, and generate the wide spectrum of empirically observed mobility behaviors. The spatial choices of visited locations are modeled by a rank-based exploration and preferential return (r-EPR) mechanism that incorporates space in the EPR model. Finally, we show that a hierarchical multiplicative cascade method can measure the interaction between land use and generation of trips. In this way, urban structure is directly related to the observed distance of travels. This framework allows us to fully embrace the massive amount of individual data generated by information and communication technologies (ICTs) worldwide to comprehensively model urban mobility without travel surveys.

  20. Children's Experiences of Time when a Parent Travels for Work.

    PubMed

    Zvonkovic, Anisa; Swenson, Andrea; Cornwell, Zoë

    2017-08-01

    This qualitative study focuses on different ways time is experienced by children in families who face time challenges due to a family member's job that required work travel. Data are from a family-level study that includes interviews of all family members over the age of 7. Using grounded theory methodology, this study illustrates ways in which job demands and family processes interact. Analysis centers on the 75 children's perspectives from 43 families. Holding together assessments of having enough time while wanting more time with their parents, children express emotion, generally unrecognized by parents, around the topic of family time. Children's experience of time with parents is rushed or calm, depending on the activities done in time and the gender of the parent with whom they spend time. Findings are interpreted through a feminist social constructionist lens.

  1. Estimating Unsaturated Zone N Fluxes and Travel Times to Groundwater at Watershed Scales

    NASA Astrophysics Data System (ADS)

    Liao, L.; Green, C. T.; Harter, T.; Nolan, B. T.; Juckem, P. F.; Shope, C. L.

    2016-12-01

    Nitrate concentrations in groundwater vary at spatial and temporal scales. Local variability depends on soil properties, unsaturated zone properties, hydrology, reactivity, and other factors. For example, the travel time in the unsaturated zone can cause contaminant responses in aquifers to lag behind changes in N inputs at the land surface, and variable leaching-fractions of applied N fertilizer to groundwater can elevate (or reduce) concentrations in groundwater. In this study, we apply the vertical flux model (VFM) (Liao et al., 2012) to address the importance of travel time of N in the unsaturated zone and its fraction leached from the unsaturated zone to groundwater. The Fox-Wolf-Peshtigo basins, including 34 out of 72 counties in Wisconsin, were selected as the study area. Simulated concentrations of NO3-, N2 from denitrification, O2, and environmental tracers of groundwater age were matched to observations by adjusting parameters for recharge rate, unsaturated zone travel time, fractions of N inputs leached to groundwater, O2 reduction rate, O2 threshold for denitrification, denitrification rate, and dispersivity. Correlations between calibrated parameters and GIS parameters (land use, drainage class and soil properties etc.) were evaluated. Model results revealed a median of recharge rate of 0.11 m/yr, which is comparable with results from three independent estimates of recharge rates in the study area. The unsaturated travel times ranged from 0.2 yr to 25 yr with median of 6.8 yr. The correlation analysis revealed that relationships between VFM parameters and landscape characteristics (GIS parameters) were consistent with expected relationships. Fraction N leached was lower in the vicinity of wetlands and greater in the vicinity of crop lands. Faster unsaturated zone transport in forested areas was consistent with results of studies showing rapid vertical transport in forested soils. Reaction rate coefficients correlated with chemical indicators such as Fe

  2. Effect of a Starting Model on the Solution of a Travel Time Seismic Tomography Problem

    NASA Astrophysics Data System (ADS)

    Yanovskaya, T. B.; Medvedev, S. V.; Gobarenko, V. S.

    2018-03-01

    In the problems of three-dimensional (3D) travel time seismic tomography where the data are travel times of diving waves and the starting model is a system of plane layers where the velocity is a function of depth alone, the solution turns out to strongly depend on the selection of the starting model. This is due to the fact that in the different starting models, the rays between the same points can intersect different layers, which makes the tomography problem fundamentally nonlinear. This effect is demonstrated by the model example. Based on the same example, it is shown how the starting model should be selected to ensure a solution close to the true velocity distribution. The starting model (the average dependence of the seismic velocity on depth) should be determined by the method of successive iterations at each step of which the horizontal velocity variations in the layers are determined by solving the two-dimensional tomography problem. An example illustrating the application of this technique to the P-wave travel time data in the region of the Black Sea basin is presented.

  3. Visiting Astronomers Travel Guide | CTIO

    Science.gov Websites

    please advise Ximena Herreros at the time that you initiate travel plans, if your stay in Chile will , well in advance of their travel time, regarding current visa requirements for Chile. back to top Visiting Astronomers Travel Guide Director's Discretionary (DD) Time CTIO 2016 Ephemeris ToO Policy CTIO

  4. Australian senior adventure travellers to Peru: Maximising older tourists' travel health experience.

    PubMed

    Bauer, Irmgard

    2012-03-01

    Financially comfortable, with ample spare time and much better health, older people travel more than ever and to more adventurous destinations. Taking Australian senior adventure travellers to Peru as an example, travel health preparations need to take into account the phenomenon 'senior traveller', the destination with its attractions and challenges, and age-related changes and restrictions. The need for routine travel health advice, vaccinations and prophylaxis remains unchanged. However, more emphasis should be placed on locality-specific issues so that age-appropriate advice and preparations maximize the chances for a safe and memorable travel experience. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Assimilating Eulerian and Lagrangian data in traffic-flow models

    NASA Astrophysics Data System (ADS)

    Xia, Chao; Cochrane, Courtney; DeGuire, Joseph; Fan, Gaoyang; Holmes, Emma; McGuirl, Melissa; Murphy, Patrick; Palmer, Jenna; Carter, Paul; Slivinski, Laura; Sandstede, Björn

    2017-05-01

    Data assimilation of traffic flow remains a challenging problem. One difficulty is that data come from different sources ranging from stationary sensors and camera data to GPS and cell phone data from moving cars. Sensors and cameras give information about traffic density, while GPS data provide information about the positions and velocities of individual cars. Previous methods for assimilating Lagrangian data collected from individual cars relied on specific properties of the underlying computational model or its reformulation in Lagrangian coordinates. These approaches make it hard to assimilate both Eulerian density and Lagrangian positional data simultaneously. In this paper, we propose an alternative approach that allows us to assimilate both Eulerian and Lagrangian data. We show that the proposed algorithm is accurate and works well in different traffic scenarios and regardless of whether ensemble Kalman or particle filters are used. We also show that the algorithm is capable of estimating parameters and assimilating real traffic observations and synthetic observations obtained from microscopic models.

  6. Access to destinations : arterial data acquisition and network-wide travel time estimation (phase II).

    DOT National Transportation Integrated Search

    2010-03-01

    The objectives of this project were to (a) produce historic estimates of travel times on Twin-Cities arterials : for 1995 and 2005, and (b) develop an initial architecture and database that could, in the future, produce timely : estimates of arterial...

  7. Lagrangian descriptors of driven chemical reaction manifolds.

    PubMed

    Craven, Galen T; Junginger, Andrej; Hernandez, Rigoberto

    2017-08-01

    The persistence of a transition state structure in systems driven by time-dependent environments allows the application of modern reaction rate theories to solution-phase and nonequilibrium chemical reactions. However, identifying this structure is problematic in driven systems and has been limited by theories built on series expansion about a saddle point. Recently, it has been shown that to obtain formally exact rates for reactions in thermal environments, a transition state trajectory must be constructed. Here, using optimized Lagrangian descriptors [G. T. Craven and R. Hernandez, Phys. Rev. Lett. 115, 148301 (2015)PRLTAO0031-900710.1103/PhysRevLett.115.148301], we obtain this so-called distinguished trajectory and the associated moving reaction manifolds on model energy surfaces subject to various driving and dissipative conditions. In particular, we demonstrate that this is exact for harmonic barriers in one dimension and this verification gives impetus to the application of Lagrangian descriptor-based methods in diverse classes of chemical reactions. The development of these objects is paramount in the theory of reaction dynamics as the transition state structure and its underlying network of manifolds directly dictate reactivity and selectivity.

  8. Lagrangian displacement tracking using a polar grid between endocardial and epicardial contours for cardiac strain imaging.

    PubMed

    Ma, Chi; Varghese, Tomy

    2012-04-01

    Accurate cardiac deformation analysis for cardiac displacement and strain imaging over time requires Lagrangian description of deformation of myocardial tissue structures. Failure to couple the estimated displacement and strain information with the correct myocardial tissue structures will lead to erroneous result in the displacement and strain distribution over time. Lagrangian based tracking in this paper divides the tissue structure into a fixed number of pixels whose deformation is tracked over the cardiac cycle. An algorithm that utilizes a polar-grid generated between the estimated endocardial and epicardial contours for cardiac short axis images is proposed to ensure Lagrangian description of the pixels. Displacement estimates from consecutive radiofrequency frames were then mapped onto the polar grid to obtain a distribution of the actual displacement that is mapped to the polar grid over time. A finite element based canine heart model coupled with an ultrasound simulation program was used to verify this approach. Segmental analysis of the accumulated displacement and strain over a cardiac cycle demonstrate excellent agreement between the ideal result obtained directly from the finite element model and our Lagrangian approach to strain estimation. Traditional Eulerian based estimation results, on the other hand, show significant deviation from the ideal result. An in vivo comparison of the displacement and strain estimated using parasternal short axis views is also presented. Lagrangian displacement tracking using a polar grid provides accurate tracking of myocardial deformation demonstrated using both finite element and in vivo radiofrequency data acquired on a volunteer. In addition to the cardiac application, this approach can also be utilized for transverse scans of arteries, where a polar grid can be generated between the contours delineating the outer and inner wall of the vessels from the blood flowing though the vessel.

  9. Hamiltonian stability for weighted measure and generalized Lagrangian mean curvature flow

    NASA Astrophysics Data System (ADS)

    Kajigaya, Toru; Kunikawa, Keita

    2018-06-01

    In this paper, we generalize several results for the Hamiltonian stability and the mean curvature flow of Lagrangian submanifolds in a Kähler-Einstein manifold to more general Kähler manifolds including a Fano manifold equipped with a Kähler form ω ∈ 2 πc1(M) by using the method proposed by Behrndt (2011). Namely, we first consider a weighted measure on a Lagrangian submanifold L in a Kähler manifold M and investigate the variational problem of L for the weighted volume functional. We call a stationary point of the weighted volume functional f-minimal, and define the notion of Hamiltonian f-stability as a local minimizer under Hamiltonian deformations. We show such examples naturally appear in a toric Fano manifold. Moreover, we consider the generalized Lagrangian mean curvature flow in a Fano manifold which is introduced by Behrndt and Smoczyk-Wang. We generalize the result of H. Li, and show that if the initial Lagrangian submanifold is a small Hamiltonian deformation of an f-minimal and Hamiltonian f-stable Lagrangian submanifold, then the generalized MCF converges exponentially fast to an f-minimal Lagrangian submanifold.

  10. The New England travel market: generational travel patterns, 1979 to 1996

    Treesearch

    Rod Warnick

    2002-01-01

    Generations of travelers who select New England as a primary destination are examined over time from the years of 1979 through 1996 and the analysis serves to update an earlier review of generational travel patterns of the region (Warnick, 1994). Changes in travel patterns are noted by overall adjusted annual change rates by demographic and geographic regions of...

  11. Simulation of Runoff Hydrograph on Soil Surfaces with Different Microtopography Using a Travel Time Method at the Plot Scale

    PubMed Central

    Zhao, Longshan; Wu, Faqi

    2015-01-01

    In this study, a simple travel time-based runoff model was proposed to simulate a runoff hydrograph on soil surfaces with different microtopographies. Three main parameters, i.e., rainfall intensity (I), mean flow velocity (v m) and ponding time of depression (t p), were inputted into this model. The soil surface was divided into numerous grid cells, and the flow length of each grid cell (l i) was then calculated from a digital elevation model (DEM). The flow velocity in each grid cell (v i) was derived from the upstream flow accumulation area using v m. The total flow travel time through each grid cell to the surface outlet was the sum of the sum of flow travel times along the flow path (i.e., the sum of l i/v i) and t p. The runoff rate at the slope outlet for each respective travel time was estimated by finding the sum of the rain rate from all contributing cells for all time intervals. The results show positive agreement between the measured and predicted runoff hydrographs. PMID:26103635

  12. Simulation of Runoff Hydrograph on Soil Surfaces with Different Microtopography Using a Travel Time Method at the Plot Scale.

    PubMed

    Zhao, Longshan; Wu, Faqi

    2015-01-01

    In this study, a simple travel time-based runoff model was proposed to simulate a runoff hydrograph on soil surfaces with different microtopographies. Three main parameters, i.e., rainfall intensity (I), mean flow velocity (vm) and ponding time of depression (tp), were inputted into this model. The soil surface was divided into numerous grid cells, and the flow length of each grid cell (li) was then calculated from a digital elevation model (DEM). The flow velocity in each grid cell (vi) was derived from the upstream flow accumulation area using vm. The total flow travel time through each grid cell to the surface outlet was the sum of the sum of flow travel times along the flow path (i.e., the sum of li/vi) and tp. The runoff rate at the slope outlet for each respective travel time was estimated by finding the sum of the rain rate from all contributing cells for all time intervals. The results show positive agreement between the measured and predicted runoff hydrographs.

  13. A macroscopic plasma Lagrangian and its application to wave interactions and resonances

    NASA Technical Reports Server (NTRS)

    Peng, Y. K. M.

    1974-01-01

    The derivation of a macroscopic plasma Lagrangian is considered, along with its application to the description of nonlinear three-wave interaction in a homogeneous plasma and linear resonance oscillations in a inhomogeneous plasma. One approach to obtain the Lagrangian is via the inverse problem of the calculus of variations for arbitrary first and second order quasilinear partial differential systems. Necessary and sufficient conditions for the given equations to be Euler-Lagrange equations of a Lagrangian are obtained. These conditions are then used to determine the transformations that convert some classes of non-Euler-Lagrange equations to Euler-Lagrange equation form. The Lagrangians for a linear resistive transmission line and a linear warm collisional plasma are derived as examples. Using energy considerations, the correct macroscopic plasma Lagrangian is shown to differ from the velocity-integrated low Lagrangian by a macroscopic potential energy that equals twice the particle thermal kinetic energy plus the energy lost by heat conduction.

  14. [Travel time and participation in breast cancer screening in a region with high population dispersion].

    PubMed

    Borda, Alfredo; Sanz, Belén; Otero, Laura; Blasco, Teresa; García-Gómez, Francisco J; de Andrés, Fuencisla

    2011-01-01

    To analyze the association between travel time and participation in a breast cancer screening program adjusted for contextual variables in the province of Segovia (Spain). We performed an ecological study using the following data sources: the Breast Cancer Early Detection Program of the Primary Care Management of Segovia, the Population and Housing Census for 2001 and the municipal register for 2006-2007. The study period comprised January 2006 to December 2007. Dependent variables consisted of the municipal participation rate and the desired level of municipal participation (greater than or equal to 70%). The key independent variable was travel time from the municipality to the mammography unit. Covariables consisted of the municipalities' demographic and socioeconomic factors. We performed univariate and multivariate Poisson regression analyses of the participation rate, and logistic regression of the desired participation level. The sample was composed of 178 municipalities. The mean participation rate was 75.2%. The desired level of participation (≥ 70%) was achieved in 119 municipalities (67%). In the multivariate Poisson and logistic regression analyses, longer travel time was associated with a lower participation rate and with lower participation after adjustment was made for geographic density, age, socioeconomic status and dependency ratio, with a relative risk index of 0.88 (95% CI: 0.81-0.96) and an odds ratio of 0.22 (95% CI: 0.1-0.47), respectively. Travel time to the mammography unit may help to explain participation in breast cancer screening programs. Copyright © 2010 SESPAS. Published by Elsevier Espana. All rights reserved.

  15. Travelers' Health: Immunocompromised Travelers

    MedlinePlus

    ... clinical and epidemiologic studies are insufficient at this time to evaluate the actual risk of severe adverse effects associated with YF vaccine among recipients with limited immune deficits. If international travel requirements, and not true exposure risk, are the ...

  16. Cochlear Modeling Using Time-Averaged Lagrangian" Method:. Comparison with VBM, PST, and ZC Measurements

    NASA Astrophysics Data System (ADS)

    Yoon, Y.; Kim, N.; Puria, S.; Steele, C. R.

    2009-02-01

    In this work, basilar membrane velocity (VBM), scala tympani intracochlear pressure (PST), and cochlear input impedances (Zc) for gerbil and chinchilla are implemented using a three-dimensional hydro-dynamic cochlear model using 1) time-averaged Lagrangian, 2) push-pull mechanism in active case, and 3) the complex anatomy of cochlear scalae by micro computed tomography (μCT) scanning and 3-D reconstructions of gerbil and chinchilla temporal bones. The objective of this work is to compare the calculations and the physiological measurements of gerbil and chinchilla cochlear such as VBM (Ren and Nuttall [1]), PST (Olson [2]), and ZC (Decraemer et al. [3], Songer and Rosowski [4], Ruggero et al. [5]) with present model. A WKB asymptotic method combined with Fourier series expansions is used to provide an efficient simulation. VBM and PST simulation results for the gerbil cochlea show good agreement both in the magnitude and the phase for the physiological measurements without larger phase excursion. ZC simulation from the gerbil and chinchilla model show reasonably good agreement with measurement.

  17. Spatial gradients of protein-level time delays set the pace of the traveling segmentation clock waves

    PubMed Central

    Ay, Ahmet; Holland, Jack; Sperlea, Adriana; Devakanmalai, Gnanapackiam Sheela; Knierer, Stephan; Sangervasi, Sebastian; Stevenson, Angel; Özbudak, Ertuğrul M.

    2014-01-01

    The vertebrate segmentation clock is a gene expression oscillator controlling rhythmic segmentation of the vertebral column during embryonic development. The period of oscillations becomes longer as cells are displaced along the posterior to anterior axis, which results in traveling waves of clock gene expression sweeping in the unsegmented tissue. Although various hypotheses necessitating the inclusion of additional regulatory genes into the core clock network at different spatial locations have been proposed, the mechanism underlying traveling waves has remained elusive. Here, we combined molecular-level computational modeling and quantitative experimentation to solve this puzzle. Our model predicts the existence of an increasing gradient of gene expression time delays along the posterior to anterior direction to recapitulate spatiotemporal profiles of the traveling segmentation clock waves in different genetic backgrounds in zebrafish. We validated this prediction by measuring an increased time delay of oscillatory Her1 protein production along the unsegmented tissue. Our results refuted the need for spatial expansion of the core feedback loop to explain the occurrence of traveling waves. Spatial regulation of gene expression time delays is a novel way of creating dynamic patterns; this is the first report demonstrating such a control mechanism in any tissue and future investigations will explore the presence of analogous examples in other biological systems. PMID:25336742

  18. Approximate solutions for radial travel time and capture zone in unconfined aquifers.

    PubMed

    Zhou, Yangxiao; Haitjema, Henk

    2012-01-01

    Radial time-of-travel (TOT) capture zones have been evaluated for unconfined aquifers with and without recharge. The solutions of travel time for unconfined aquifers are rather complex and have been replaced with much simpler approximate solutions without significant loss of accuracy in most practical cases. The current "volumetric method" for calculating the radius of a TOT capture zone assumes no recharge and a constant aquifer thickness. It was found that for unconfined aquifers without recharge, the volumetric method leads to a smaller and less protective wellhead protection zone when ignoring drawdowns. However, if the saturated thickness near the well is used in the volumetric method a larger more protective TOT capture zone is obtained. The same is true when the volumetric method is used in the presence of recharge. However, for that case it leads to unreasonableness over the prediction of a TOT capture zone of 5 years or more. © 2011, The Author(s). Ground Water © 2011, National Ground Water Association.

  19. Microscopic Lagrangian description of warm plasmas. IV - Macroscopic approximation

    NASA Technical Reports Server (NTRS)

    Kim, H.; Crawford, F. W.

    1983-01-01

    The averaged-Lagrangian method is applied to linear wave propagation and nonlinear three-wave interaction in a warm magnetoplasma, in the macroscopic approximation. The microscopic Lagrangian treated by Kim and Crawford (1977) and by Galloway and Crawford (1977) is first expanded to third order in perturbation. Velocity integration is then carried out, before applying Hamilton's principle to obtain a general description of wave propagation and coupling. The results are specialized to the case of interaction between two electron plasma waves and an Alfven wave. The method is shown to be more powerful than the alternative possibility of working from the beginning with a macroscopic Lagrangian density.

  20. Optimizing Travel Time to Outpatient Interventional Radiology Procedures in a Multi-Site Hospital System Using a Google Maps Application.

    PubMed

    Mandel, Jacob E; Morel-Ovalle, Louis; Boas, Franz E; Ziv, Etay; Yarmohammadi, Hooman; Deipolyi, Amy; Mohabir, Heeralall R; Erinjeri, Joseph P

    2018-02-20

    The purpose of this study is to determine whether a custom Google Maps application can optimize site selection when scheduling outpatient interventional radiology (IR) procedures within a multi-site hospital system. The Google Maps for Business Application Programming Interface (API) was used to develop an internal web application that uses real-time traffic data to determine estimated travel time (ETT; minutes) and estimated travel distance (ETD; miles) from a patient's home to each a nearby IR facility in our hospital system. Hypothetical patient home addresses based on the 33 cities comprising our institution's catchment area were used to determine the optimal IR site for hypothetical patients traveling from each city based on real-time traffic conditions. For 10/33 (30%) cities, there was discordance between the optimal IR site based on ETT and the optimal IR site based on ETD at non-rush hour time or rush hour time. By choosing to travel to an IR site based on ETT rather than ETD, patients from discordant cities were predicted to save an average of 7.29 min during non-rush hour (p = 0.03), and 28.80 min during rush hour (p < 0.001). Using a custom Google Maps application to schedule outpatients for IR procedures can effectively reduce patient travel time when more than one location providing IR procedures is available within the same hospital system.