Sample records for laguerre expansion technique

  1. Ultrafast Method for the Analysis of Fluorescence Lifetime Imaging Microscopy Data Based on the Laguerre Expansion Technique

    PubMed Central

    Jo, Javier A.; Fang, Qiyin; Marcu, Laura

    2007-01-01

    We report a new deconvolution method for fluorescence lifetime imaging microscopy (FLIM) based on the Laguerre expansion technique. The performance of this method was tested on synthetic and real FLIM images. The following interesting properties of this technique were demonstrated. 1) The fluorescence intensity decay can be estimated simultaneously for all pixels, without a priori assumption of the decay functional form. 2) The computation speed is extremely fast, performing at least two orders of magnitude faster than current algorithms. 3) The estimated maps of Laguerre expansion coefficients provide a new domain for representing FLIM information. 4) The number of images required for the analysis is relatively small, allowing reduction of the acquisition time. These findings indicate that the developed Laguerre expansion technique for FLIM analysis represents a robust and extremely fast deconvolution method that enables practical applications of FLIM in medicine, biology, biochemistry, and chemistry. PMID:19444338

  2. New methods for time-resolved fluorescence spectroscopy data analysis based on the Laguerre expansion technique--applications in tissue diagnosis.

    PubMed

    Jo, J A; Marcu, L; Fang, Q; Papaioannou, T; Qiao, J H; Fishbein, M C; Beseth, B; Dorafshar, A H; Reil, T; Baker, D; Freischlag, J

    2007-01-01

    A new deconvolution method for the analysis of time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) data is introduced and applied for tissue diagnosis. The intrinsic TR-LIFS decays are expanded on a Laguerre basis, and the computed Laguerre expansion coefficients (LEC) are used to characterize the sample fluorescence emission. The method was applied for the diagnosis of atherosclerotic vulnerable plaques. At a first stage, using a rabbit atherosclerotic model, 73 TR-LIFS in-vivo measurements from the normal and atherosclerotic aorta segments of eight rabbits were taken. The Laguerre deconvolution technique was able to accurately deconvolve the TR-LIFS measurements. More interesting, the LEC reflected the changes in the arterial biochemical composition and provided discrimination of lesions rich in macrophages/foam-cells with high sensitivity (> 85%) and specificity (> 95%). At a second stage, 348 TR-LIFS measurements were obtained from the explanted carotid arteries of 30 patients. Lesions with significant inflammatory cells (macrophages/foam-cells and lymphocytes) were detected with high sensitivity (> 80%) and specificity (> 90%), using LEC-based classifiers. This study has demonstrated the potential of using TR-LIFS information by means of LEC for in vivo tissue diagnosis, and specifically for detecting inflammation in atherosclerotic lesions, a key marker of plaque vulnerability.

  3. Detection of high-risk atherosclerotic lesions by time-resolved fluorescence spectroscopy based on the Laguerre deconvolution technique

    NASA Astrophysics Data System (ADS)

    Jo, J. A.; Fang, Q.; Papaioannou, T.; Qiao, J. H.; Fishbein, M. C.; Beseth, B.; Dorafshar, A. H.; Reil, T.; Baker, D.; Freischlag, J.; Marcu, L.

    2006-02-01

    This study introduces new methods of time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) data analysis for tissue characterization. These analytical methods were applied for the detection of atherosclerotic vulnerable plaques. Upon pulsed nitrogen laser (337 nm, 1 ns) excitation, TR-LIFS measurements were obtained from carotid atherosclerotic plaque specimens (57 endarteroctomy patients) at 492 distinct areas. The emission was both spectrally- (360-600 nm range at 5 nm interval) and temporally- (0.3 ns resolution) resolved using a prototype clinically compatible fiber-optic catheter TR-LIFS apparatus. The TR-LIFS measurements were subsequently analyzed using a standard multiexponential deconvolution and a recently introduced Laguerre deconvolution technique. Based on their histopathology, the lesions were classified as early (thin intima), fibrotic (collagen-rich intima), and high-risk (thin cap over necrotic core and/or inflamed intima). Stepwise linear discriminant analysis (SLDA) was applied for lesion classification. Normalized spectral intensity values and Laguerre expansion coefficients (LEC) at discrete emission wavelengths (390, 450, 500 and 550 nm) were used as features for classification. The Laguerre based SLDA classifier provided discrimination of high-risk lesions with high sensitivity (SE>81%) and specificity (SP>95%). Based on these findings, we believe that TR-LIFS information derived from the Laguerre expansion coefficients can provide a valuable additional dimension for the diagnosis of high-risk vulnerable atherosclerotic plaques.

  4. Application of the laguerre deconvolution method for time-resolved fluorescence spectroscopy to the characterization of atherosclerotic plaques.

    PubMed

    Jo, J A; Fang, Q; Papaioannou, T; Qiao, J H; Fishbein, M C; Beseth, B; Dorafshar, A H; Reil, T; Baker, D; Freischlag, J; Marcu, L

    2005-01-01

    This study investigates the ability of time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) to detect inflammation in atherosclerotic lesion, a key feature of plaque vulnerability. A total of 348 TR-LIFS measurements were taken from carotid plaques of 30 patients, and subsequently analyzed using the Laguerre deconvolution technique. The investigated spots were classified as Early, Fibrotic/Calcified or Inflamed lesions. A stepwise linear discriminant analysis algorithm was developed using spectral and TR features (normalized intensity values and Laguerre expansion coefficients at discrete emission wavelengths, respectively). Features from only three emission wavelengths (390, 450 and 500 nm) were used in the classifier. The Inflamed lesions were discriminated with sensitivity > 80% and specificity > 90 %, when the Laguerre expansion coefficients were included in the feature space. These results indicate that TR-LIFS information derived from the Laguerre expansion coefficients at few selected emission wavelengths can discriminate inflammation in atherosclerotic plaques. We believe that TR-LIFS derived Laguerre expansion coefficients can provide a valuable additional dimension for the detection of vulnerable plaques.

  5. On the properties of circular beams: normalization, Laguerre-Gauss expansion, and free-space divergence.

    PubMed

    Vallone, Giuseppe

    2015-04-15

    Circular beams were introduced as a very general solution to the paraxial wave equation carrying orbital angular momentum. Here, we study their properties by looking at their normalization and their expansion in terms of Laguerre-Gauss modes. We also study their far-field divergence and, for particular cases of the beam parameters, their possible experimental generation.

  6. On the connection coefficients and recurrence relations arising from expansions in series of Laguerre polynomials

    NASA Astrophysics Data System (ADS)

    Doha, E. H.

    2003-05-01

    A formula expressing the Laguerre coefficients of a general-order derivative of an infinitely differentiable function in terms of its original coefficients is proved, and a formula expressing explicitly the derivatives of Laguerre polynomials of any degree and for any order as a linear combination of suitable Laguerre polynomials is deduced. A formula for the Laguerre coefficients of the moments of one single Laguerre polynomial of certain degree is given. Formulae for the Laguerre coefficients of the moments of a general-order derivative of an infinitely differentiable function in terms of its Laguerre coefficients are also obtained. A simple approach in order to build and solve recursively for the connection coefficients between Jacobi-Laguerre and Hermite-Laguerre polynomials is described. An explicit formula for these coefficients between Jacobi and Laguerre polynomials is given, of which the ultra-spherical polynomials of the first and second kinds and Legendre polynomials are important special cases. An analytical formula for the connection coefficients between Hermite and Laguerre polynomials is also obtained.

  7. Instantaneous nonlinear assessment of complex cardiovascular dynamics by Laguerre-Volterra point process models.

    PubMed

    Valenza, Gaetano; Citi, Luca; Barbieri, Riccardo

    2013-01-01

    We report an exemplary study of instantaneous assessment of cardiovascular dynamics performed using point-process nonlinear models based on Laguerre expansion of the linear and nonlinear Wiener-Volterra kernels. As quantifiers, instantaneous measures such as high order spectral features and Lyapunov exponents can be estimated from a quadratic and cubic autoregressive formulation of the model first order moment, respectively. Here, these measures are evaluated on heartbeat series coming from 16 healthy subjects and 14 patients with Congestive Hearth Failure (CHF). Data were gathered from the on-line repository PhysioBank, which has been taken as landmark for testing nonlinear indices. Results show that the proposed nonlinear Laguerre-Volterra point-process methods are able to track the nonlinear and complex cardiovascular dynamics, distinguishing significantly between CHF and healthy heartbeat series.

  8. Laguerre-based method for analysis of time-resolved fluorescence data: application to in-vivo characterization and diagnosis of atherosclerotic lesions.

    PubMed

    Jo, Javier A; Fang, Qiyin; Papaioannou, Thanassis; Baker, J Dennis; Dorafshar, Amir H; Reil, Todd; Qiao, Jian-Hua; Fishbein, Michael C; Freischlag, Julie A; Marcu, Laura

    2006-01-01

    We report the application of the Laguerre deconvolution technique (LDT) to the analysis of in-vivo time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) data and the diagnosis of atherosclerotic plaques. TR-LIFS measurements were obtained in vivo from normal and atherosclerotic aortas (eight rabbits, 73 areas), and subsequently analyzed using LDT. Spectral and time-resolved features were used to develop four classification algorithms: linear discriminant analysis (LDA), stepwise LDA (SLDA), principal component analysis (PCA), and artificial neural network (ANN). Accurate deconvolution of TR-LIFS in-vivo measurements from normal and atherosclerotic arteries was provided by LDT. The derived Laguerre expansion coefficients reflected changes in the arterial biochemical composition, and provided a means to discriminate lesions rich in macrophages with high sensitivity (>85%) and specificity (>95%). Classification algorithms (SLDA and PCA) using a selected number of features with maximum discriminating power provided the best performance. This study demonstrates the potential of the LDT for in-vivo tissue diagnosis, and specifically for the detection of macrophages infiltration in atherosclerotic lesions, a key marker of plaque vulnerability.

  9. Laguerre-based method for analysis of time-resolved fluorescence data: application to in-vivo characterization and diagnosis of atherosclerotic lesions

    NASA Astrophysics Data System (ADS)

    Jo, Javier A.; Fang, Qiyin; Papaioannou, Thanassis; Baker, J. Dennis; Dorafshar, Amir; Reil, Todd; Qiao, Jianhua; Fishbein, Michael C.; Freischlag, Julie A.; Marcu, Laura

    2006-03-01

    We report the application of the Laguerre deconvolution technique (LDT) to the analysis of in-vivo time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) data and the diagnosis of atherosclerotic plaques. TR-LIFS measurements were obtained in vivo from normal and atherosclerotic aortas (eight rabbits, 73 areas), and subsequently analyzed using LDT. Spectral and time-resolved features were used to develop four classification algorithms: linear discriminant analysis (LDA), stepwise LDA (SLDA), principal component analysis (PCA), and artificial neural network (ANN). Accurate deconvolution of TR-LIFS in-vivo measurements from normal and atherosclerotic arteries was provided by LDT. The derived Laguerre expansion coefficients reflected changes in the arterial biochemical composition, and provided a means to discriminate lesions rich in macrophages with high sensitivity (>85%) and specificity (>95%). Classification algorithms (SLDA and PCA) using a selected number of features with maximum discriminating power provided the best performance. This study demonstrates the potential of the LDT for in-vivo tissue diagnosis, and specifically for the detection of macrophages infiltration in atherosclerotic lesions, a key marker of plaque vulnerability.

  10. Laguerre-based method for analysis of time-resolved fluorescence data: application to in-vivo characterization and diagnosis of atherosclerotic lesions

    PubMed Central

    Jo, Javier A.; Fang, Qiyin; Papaioannou, Thanassis; Baker, J. Dennis; Dorafshar, Amir H.; Reil, Todd; Qiao, Jian-Hua; Fishbein, Michael C.; Freischlag, Julie A.; Marcu, Laura

    2007-01-01

    We report the application of the Laguerre deconvolution technique (LDT) to the analysis of in-vivo time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) data and the diagnosis of atherosclerotic plaques. TR-LIFS measurements were obtained in vivo from normal and atherosclerotic aortas (eight rabbits, 73 areas), and subsequently analyzed using LDT. Spectral and time-resolved features were used to develop four classification algorithms: linear discriminant analysis (LDA), stepwise LDA (SLDA), principal component analysis (PCA), and artificial neural network (ANN). Accurate deconvolution of TR-LIFS in-vivo measurements from normal and atherosclerotic arteries was provided by LDT. The derived Laguerre expansion coefficients reflected changes in the arterial biochemical composition, and provided a means to discriminate lesions rich in macrophages with high sensitivity (>85%) and specificity (>95%). Classification algorithms (SLDA and PCA) using a selected number of features with maximum discriminating power provided the best performance. This study demonstrates the potential of the LDT for in-vivo tissue diagnosis, and specifically for the detection of macrophages infiltration in atherosclerotic lesions, a key marker of plaque vulnerability. PMID:16674179

  11. Nonlinear system modeling based on bilinear Laguerre orthonormal bases.

    PubMed

    Garna, Tarek; Bouzrara, Kais; Ragot, José; Messaoud, Hassani

    2013-05-01

    This paper proposes a new representation of discrete bilinear model by developing its coefficients associated to the input, to the output and to the crossed product on three independent Laguerre orthonormal bases. Compared to classical bilinear model, the resulting model entitled bilinear-Laguerre model ensures a significant parameter number reduction as well as simple recursive representation. However, such reduction still constrained by an optimal choice of Laguerre pole characterizing each basis. To do so, we develop a pole optimization algorithm which constitutes an extension of that proposed by Tanguy et al.. The bilinear-Laguerre model as well as the proposed pole optimization algorithm are illustrated and tested on a numerical simulations and validated on the Continuous Stirred Tank Reactor (CSTR) System. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.

  12. A technique for simultaneous detection of individual vortex states of Laguerre-Gaussian beams transmitted through an aqueous suspension of microparticles

    NASA Astrophysics Data System (ADS)

    Khonina, S. N.; Karpeev, S. V.; Paranin, V. D.

    2018-06-01

    A technique for simultaneous detection of individual vortex states of the beams propagating in a randomly inhomogeneous medium is proposed. The developed optical system relies on the correlation method that is invariant to the beam wandering. The intensity distribution formed at the optical system output does not require digital processing. The proposed technique based on a multi-order phase diffractive optical element (DOE) is studied numerically and experimentally. The developed detection technique is used for the analysis of Laguerre-Gaussian vortex beams propagating under conditions of intense absorption, reflection, and scattering in transparent and opaque microparticles in aqueous suspensions. The performed experimental studies confirm the relevance of the vortex phase dependence of a laser beam under conditions of significant absorption, reflection, and scattering of the light.

  13. Adaptive MPC based on MIMO ARX-Laguerre model.

    PubMed

    Ben Abdelwahed, Imen; Mbarek, Abdelkader; Bouzrara, Kais

    2017-03-01

    This paper proposes a method for synthesizing an adaptive predictive controller using a reduced complexity model. This latter is given by the projection of the ARX model on Laguerre bases. The resulting model is entitled MIMO ARX-Laguerre and it is characterized by an easy recursive representation. The adaptive predictive control law is computed based on multi-step-ahead finite-element predictors, identified directly from experimental input/output data. The model is tuned in each iteration by an online identification algorithms of both model parameters and Laguerre poles. The proposed approach avoids time consuming numerical optimization algorithms associated with most common linear predictive control strategies, which makes it suitable for real-time implementation. The method is used to synthesize and test in numerical simulations adaptive predictive controllers for the CSTR process benchmark. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  14. Rotation of large asymmetrical absorbing objects by Laguerre-Gauss beams.

    PubMed

    Herne, Catherine M; Capuzzi, Kristina M; Sobel, Emily; Kropas, Ryan T

    2015-09-01

    In this Letter, we show the manipulation and rotation of opaque graphite through adhesion with optically trapped polystyrene spheres. The absorbing graphite is rotated by the orbital angular momentum transfer from a Laguerre-Gauss laser mode and is trapped due to the presence of refracting spheres. This technique is effective for trapping and rotating absorbing objects of all sizes, including those larger than the laser mode.

  15. Computational aspects of pseudospectral Laguerre approximations

    NASA Technical Reports Server (NTRS)

    Funaro, Daniele

    1989-01-01

    Pseudospectral approximations in unbounded domains by Laguerre polynomials lead to ill-conditioned algorithms. Introduced are a scaling function and appropriate numerical procedures in order to limit these unpleasant phenomena.

  16. Maximum likelihood orientation estimation of 1-D patterns in Laguerre-Gauss subspaces.

    PubMed

    Di Claudio, Elio D; Jacovitti, Giovanni; Laurenti, Alberto

    2010-05-01

    A method for measuring the orientation of linear (1-D) patterns, based on a local expansion with Laguerre-Gauss circular harmonic (LG-CH) functions, is presented. It lies on the property that the polar separable LG-CH functions span the same space as the 2-D Cartesian separable Hermite-Gauss (2-D HG) functions. Exploiting the simple steerability of the LG-CH functions and the peculiar block-linear relationship among the two expansion coefficients sets, maximum likelihood (ML) estimates of orientation and cross section parameters of 1-D patterns are obtained projecting them in a proper subspace of the 2-D HG family. It is shown in this paper that the conditional ML solution, derived by elimination of the cross section parameters, surprisingly yields the same asymptotic accuracy as the ML solution for known cross section parameters. The accuracy of the conditional ML estimator is compared to the one of state of art solutions on a theoretical basis and via simulation trials. A thorough proof of the key relationship between the LG-CH and the 2-D HG expansions is also provided.

  17. Orthogonal polynomials, Laguerre Fock space, and quasi-classical asymptotics

    NASA Astrophysics Data System (ADS)

    Engliš, Miroslav; Ali, S. Twareque

    2015-07-01

    Continuing our earlier investigation of the Hermite case [S. T. Ali and M. Engliš, J. Math. Phys. 55, 042102 (2014)], we study an unorthodox variant of the Berezin-Toeplitz quantization scheme associated with Laguerre polynomials. In particular, we describe a "Laguerre analogue" of the classical Fock (Segal-Bargmann) space and the relevant semi-classical asymptotics of its Toeplitz operators; the former actually turns out to coincide with the Hilbert space appearing in the construction of the well-known Barut-Girardello coherent states. Further extension to the case of Legendre polynomials is likewise discussed.

  18. 40Gbit/s MDM-WDM Laguerre-Gaussian Mode with Equalization for Multimode Fiber in Access Networks

    NASA Astrophysics Data System (ADS)

    Fazea, Yousef; Amphawan, Angela

    2018-04-01

    Modal dispersion is seen as the primary impairment for multimode fiber. Mode division multiplexing (MDM) is a promising technology that has been realized as a favorable technology for considerably upsurges the capacity and distance of multimode fiber in conjunction with Wavelength Division Multiplexing (WDM) for fiber-to-the-home. This paper reveals the importance of an equalization technique in conjunction with controlling the modes spacing of mode division multiplexing-wavelength division multiplexing of Laguerre-Gaussian modes to alleviate modal dispersion for multimode fiber. The effects of channel spacing of 20 channels MDM-WDM were examined through controlling the azimuthal mode number and the radial mode number of Laguerre-Gaussian modes. A data rate of 40Gbit/s was achieved for a distance of 1,500 m for MDM-WDM.

  19. Laguerre-Gaussian quasi-modal q-plates from nanostructured glasses

    NASA Astrophysics Data System (ADS)

    Rafayelyan, Mushegh; Gertus, Titas; Brasselet, Etienne

    2017-06-01

    A quasi-modal version of the recently introduced Laguerre-Gaussian modal q-plates [Rafayelyan and Brasselet, Opt. Lett. 42, 1966-1969 (2017)] is proposed and implemented using femtosecond direct laser writing of space-variant nanogratings in the bulk of silica glass. The corresponding design consists of linear azimuthal modulation of the optical axis orientation and polynomial radial modulation of the retardance profile. Experimental demonstration is made for Laguerre-Gaussian modes with azimuthal indices l =(1, 2, 3) and radial index p = 0. Such quasi-modal q-plates overcome previous limitations regarding the robustness of modality against the handedness of the incident circular polarization state.

  20. Coarse-to-fine markerless gait analysis based on PCA and Gauss-Laguerre decomposition

    NASA Astrophysics Data System (ADS)

    Goffredo, Michela; Schmid, Maurizio; Conforto, Silvia; Carli, Marco; Neri, Alessandro; D'Alessio, Tommaso

    2005-04-01

    Human movement analysis is generally performed through the utilization of marker-based systems, which allow reconstructing, with high levels of accuracy, the trajectories of markers allocated on specific points of the human body. Marker based systems, however, show some drawbacks that can be overcome by the use of video systems applying markerless techniques. In this paper, a specifically designed computer vision technique for the detection and tracking of relevant body points is presented. It is based on the Gauss-Laguerre Decomposition, and a Principal Component Analysis Technique (PCA) is used to circumscribe the region of interest. Results obtained on both synthetic and experimental tests provide significant reduction of the computational costs, with no significant reduction of the tracking accuracy.

  1. Novel expansion techniques for skin grafts

    PubMed Central

    Kadam, Dinesh

    2016-01-01

    The quest for skin expansion is not restricted to cover a large area alone, but to produce acceptable uniform surfaces, robust engraftment to withstand mechanical shear and infection, with a minimal donor morbidity. Ease of the technique, shorter healing period and reproducible results are essential parameters to adopt novel techniques. Significant advances seen in four fronts of autologous grafting are: (1) Dermal–epidermal graft expansion techniques, (2) epidermal graft harvests technique, (3) melanocyte-rich basal cell therapy for vitiligo and (4) robust and faster autologous cell cultures. Meek's original concept that the sum of perimeter of smaller grafts is larger than the harvested graft, and smaller the graft size, the greater is the potential for regeneration is witnessed in newer modification. Further, as graft size becomes smaller or minced, these micrografts can survive on the wound bed exudate irrespective of their dermal orientation. Expansion produced by 4 mm × 4 mm sized Meek micrografts is 10-folds, similarly 0.8 mm × 0.8 mm size micrografts produce 100-fold expansion, which becomes 700-fold with pixel grafts of 0.3 mm × 0.3 mm size. Fractional skin harvest is another new technique with 700 μ size full thickness graft. These provide instant autologous non-cultured graft to cover extensive areas with similar quality of engraftment surface as split skin grafts. Newer tools for epidermal blister graft harvest quickly, with uniform size to produce 7-fold expansions with reproducible results. In addition, donor area heals faster with minimal scar. Melanocyte-rich cell suspension is utilised in vitiligo surgery tapping the potential of hair root melanocytes. Further advances in the cell culture to reduce the cultivation time and provide stronger epidermal sheets with dermal carrier are seen in trials. PMID:27274117

  2. Comment on ‘A novel method for fast and robust estimation of fluorescence decay dynamics using constrained least-square deconvolution with Laguerre expansion’

    NASA Astrophysics Data System (ADS)

    Zhang, Yongliang; Day-Uei Li, David

    2017-02-01

    This comment is to clarify that Poisson noise instead of Gaussian noise shall be included to assess the performances of least-squares deconvolution with Laguerre expansion (LSD-LE) for analysing fluorescence lifetime imaging data obtained from time-resolved systems. Moreover, we also corrected an equation in the paper. As the LSD-LE method is rapid and has the potential to be widely applied not only for diagnostic but for wider bioimaging applications, it is desirable to have precise noise models and equations.

  3. Photon polarization tensor in pulsed Hermite- and Laguerre-Gaussian beams

    NASA Astrophysics Data System (ADS)

    Karbstein, Felix; Mosman, Elena A.

    2017-12-01

    In this article, we provide analytical expressions for the photon polarization tensor in pulsed Hermite- and Laguerre-Gaussian laser beams. Our results are based on a locally constant field approximation of the one-loop Heisenberg-Euler effective Lagrangian for quantum electrodynamics. Hence, by construction they are limited to slowly varying electromagnetic fields, varying on spatial and temporal scales significantly larger than the Compton wavelength/time of the electron. The latter criterion is fulfilled by all laser beams currently available in the laboratory. Our findings will, e.g., be relevant for the study of vacuum birefringence experienced by probe photons brought into collision with a high-intensity laser pulse which can be represented as a superposition of either Hermite- or Laguerre-Gaussian modes.

  4. Multi-indexed Meixner and little q-Jacobi (Laguerre) polynomials

    NASA Astrophysics Data System (ADS)

    Odake, Satoru; Sasaki, Ryu

    2017-04-01

    As the fourth stage of the project multi-indexed orthogonal polynomials, we present the multi-indexed Meixner and little q-Jacobi (Laguerre) polynomials in the framework of ‘discrete quantum mechanics’ with real shifts defined on the semi-infinite lattice in one dimension. They are obtained, in a similar way to the multi-indexed Laguerre and Jacobi polynomials reported earlier, from the quantum mechanical systems corresponding to the original orthogonal polynomials by multiple application of the discrete analogue of the Darboux transformations or the Crum-Krein-Adler deletion of virtual state vectors. The virtual state vectors are the solutions of the matrix Schrödinger equation on all the lattice points having negative energies and infinite norm. This is in good contrast to the (q-)Racah systems defined on a finite lattice, in which the ‘virtual state’ vectors satisfy the matrix Schrödinger equation except for one of the two boundary points.

  5. Photoexcitation of atoms by Laguerre-Gaussian beams

    NASA Astrophysics Data System (ADS)

    Peshkov, A. A.; Seipt, D.; Surzhykov, A.; Fritzsche, S.

    2017-08-01

    In a recent experiment, Schmiegelow et al. [Nat. Commun. 7, 12998 (2016), 10.1038/ncomms12998] investigated the magnetic sublevel population of Ca+ ions in a Laguerre-Gaussian light beam if the target atoms were just centered along the beam axis. They demonstrated in this experiment that the sublevel population of the excited atoms is uniquely defined by the projection of the orbital angular momentum of the incident light. However, little attention has been paid so far to the question of how the magnetic sublevels are populated when atoms are displaced from the beam axis by some impact parameter b . Here, we analyze this sublevel population for different atomic impact parameters in first-order perturbation theory and by making use of the density-matrix formalism. Detailed calculations are performed especially for the 4 s 1/2 2S →3 d 5/2 2 transition in Ca+ ions and for the vector potential of a Laguerre-Gaussian beam in Coulomb gauge. It is shown that the magnetic sublevel population of the excited 5/2 2D level varies significantly with the impact parameter and is sensitive to the polarization, the radial index, as well as the orbital angular momentum of the incident light beam.

  6. Reply to Comment: 'A novel method for fast and robust estimation of fluorescence decay dynamics using constrained least-square deconvolution with Laguerre expansion'.

    PubMed

    Ma, Dinglong; Liu, Jing; Qi, Jinyi; Marcu, Laura

    2017-02-21

    In this response we underscore that the instrumentation described in the original publication (Liu et al 2012 Phys. Med. Biol. 57 843-65) was based on pulse-sampling technique, while the comment by Zhang et al is based on the assumption that a time-correlated single photon counting (TCSPC) instrumentation was used. Therefore the arguments made in the comment are not applicable to the noise model reported by Liu et al. As reported in the literature (Lakowicz 2006 Principles of Fluorescence Spectroscopy (New York: Springer)), while in the TCSPC the experimental noise can be estimated from Poisson statistics, such an assumption is not valid for pulse-sampling (transient recording) techniques. To further clarify this aspect, we present here a comprehensive noise model describing the signal and noise propagation of the pulse sampling time-resolved fluorescence detection. Experimental data recorded in various conditions are analyzed as a case study to demonstrate the noise model of our instrumental system. In addition, regarding the statement of correcting equation (3) in Liu et al (2012 Phys. Med. Biol. 57 843-65), the notation of discrete time Laguerre function in the original publication was clear and consistent with literature conventions (Marmarelis 1993 Ann. Biomed. Eng. 21 573-89, Westwick and Kearney 2003 Identification of Nonlinear Physiological Systems (Hoboken, NJ: Wiley)). Thus, it does not require revision.

  7. The Use of Generalized Laguerre Polynomials in Spectral Methods for Solving Fractional Delay Differential Equations.

    PubMed

    Khader, M M

    2013-10-01

    In this paper, an efficient numerical method for solving the fractional delay differential equations (FDDEs) is considered. The fractional derivative is described in the Caputo sense. The proposed method is based on the derived approximate formula of the Laguerre polynomials. The properties of Laguerre polynomials are utilized to reduce FDDEs to a linear or nonlinear system of algebraic equations. Special attention is given to study the error and the convergence analysis of the proposed method. Several numerical examples are provided to confirm that the proposed method is in excellent agreement with the exact solution.

  8. The recurrence coefficients of semi-classical Laguerre polynomials and the fourth Painlevé equation

    NASA Astrophysics Data System (ADS)

    Filipuk, Galina; Van Assche, Walter; Zhang, Lun

    2012-05-01

    We show that the coefficients of the three-term recurrence relation for orthogonal polynomials with respect to a semi-classical extension of the Laguerre weight satisfy the fourth Painlevé equation when viewed as functions of one of the parameters in the weight. We compare different approaches to derive this result, namely, the ladder operators approach, the isomonodromy deformations approach and combining the Toda system for the recurrence coefficients with a discrete equation. We also discuss a relation between the recurrence coefficients for the Freud weight and the semi-classical Laguerre weight and show how it arises from the Bäcklund transformation of the fourth Painlevé equation.

  9. Virtual modeling of polycrystalline structures of materials using particle packing algorithms and Laguerre cells

    NASA Astrophysics Data System (ADS)

    Morfa, Carlos Recarey; Farias, Márcio Muniz de; Morales, Irvin Pablo Pérez; Navarra, Eugenio Oñate Ibañez de; Valera, Roberto Roselló

    2018-04-01

    The influence of the microstructural heterogeneities is an important topic in the study of materials. In the context of computational mechanics, it is therefore necessary to generate virtual materials that are statistically equivalent to the microstructure under study, and to connect that geometrical description to the different numerical methods. Herein, the authors present a procedure to model continuous solid polycrystalline materials, such as rocks and metals, preserving their representative statistical grain size distribution. The first phase of the procedure consists of segmenting an image of the material into adjacent polyhedral grains representing the individual crystals. This segmentation allows estimating the grain size distribution, which is used as the input for an advancing front sphere packing algorithm. Finally, Laguerre diagrams are calculated from the obtained sphere packings. The centers of the spheres give the centers of the Laguerre cells, and their radii determine the cells' weights. The cell sizes in the obtained Laguerre diagrams have a distribution similar to that of the grains obtained from the image segmentation. That is why those diagrams are a convenient model of the original crystalline structure. The above-outlined procedure has been used to model real polycrystalline metallic materials. The main difference with previously existing methods lies in the use of a better particle packing algorithm.

  10. Tight focusing of higher orders Laguerre-Gaussian modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Savelyev, Dmitry A., E-mail: dmitrey.savelyev@yandex.ru; Khonina, Svetlana N.; Samara State Aerospace University, 34 Moskovskoye Shosse, Samara 443086

    2016-04-13

    The spatial redistribution of the contribution of different electric field components provides a decrease in the size of the central focal spot for higher orders Laguerre-Gaussian modes. It was shown that when sharply focusing laser beams with vortex or special binary phase plate, a sub-wavelength light localization of separate vector field components is possible for any polarization type. This fact should be considered for the interaction of laser radiation with materials selectively sensitive to lateral and longitudinal components of the electromagnetic field.

  11. Generation of 2 µm Laguerre-Gaussian mode in a Tm:LuYAG solid-state laser

    NASA Astrophysics Data System (ADS)

    Liu, Qiyao; Ding, Manman; Zhao, Yongguang; Zhou, Wei; Shen, Deyuan

    2018-04-01

    In this article, we discuss the first vortex laser in the 2 µm spectral range directly generated from a Tm:LuYAG oscillator, in which a pump beam with annular intensity distribution is employed in line with Laguerre-Gaussian modes. Laser thresholds of different-order Laguerre-Gaussian modes are theoretically analyzed and discussed. Vortex lasers with orbital angular momentum of ħ and  -ħ were experimentally produced with corresponding output powers of 1.75 W and 1.64 W, respectively. This directly emitted vortex laser generated in the ~2 µm region from a compact and robust Tm:LuYAG oscillator has potential applications in the areas of molecular spectroscopy and organic material processing amongst others.

  12. Numerical investigations of non-collinear optical parametric chirped pulse amplification for Laguerre-Gaussian vortex beam

    NASA Astrophysics Data System (ADS)

    Xu, Lu; Yu, Lianghong; Liang, Xiaoyan

    2016-04-01

    We present for the first time a scheme to amplify a Laguerre-Gaussian vortex beam based on non-collinear optical parametric chirped pulse amplification (OPCPA). In addition, a three-dimensional numerical model of non-collinear optical parametric amplification was deduced in the frequency domain, in which the effects of non-collinear configuration, temporal and spatial walk-off, group-velocity dispersion and diffraction were also taken into account, to trace the dynamics of the Laguerre-Gaussian vortex beam and investigate its critical parameters in the non-collinear OPCPA process. Based on the numerical simulation results, the scheme shows promise for implementation in a relativistic twisted laser pulse system, which will diversify the light-matter interaction field.

  13. Tunable magic wavelengths for trapping with focused Laguerre-Gaussian beams

    NASA Astrophysics Data System (ADS)

    Bhowmik, Anal; Dutta, Narendra Nath; Majumder, Sonjoy

    2018-02-01

    We present in this paper a theory of dynamic polarizability for an atomic state due to an external field of nonparaxial Laguerre-Gaussian (LG) beam using the sum-over-states technique. A highly correlated relativistic coupled-cluster theory is used to evaluate the most important and correlation-sensitive parts of the sum. The theory is applied on Sr+ to determine the magic wavelengths for 5 s1 /2→4 d3 /2,4 d5 /2 transitions. Results show the variation of magic wavelengths with the choice of orbital and spin angular momenta of the incident LG beam. Also, the tunability of the magic wavelengths is studied by using the focusing angle of the LG beam and its efficiency in the near-infrared region is observed. Evaluations of the wide spectrum of magic wavelengths from infrared to ultraviolet have substantial importance to experimentalists for carrying out high-precision measurements in fundamental physics. These magic wavelengths can be used to confine the atom or ion at the dark central node or at the high-intensity ring of the LG beam.

  14. Interactive Land-Use Optimization Using Laguerre Voronoi Diagram with Dynamic Generating Point Allocation

    NASA Astrophysics Data System (ADS)

    Chaidee, S.; Pakawanwong, P.; Suppakitpaisarn, V.; Teerasawat, P.

    2017-09-01

    In this work, we devise an efficient method for the land-use optimization problem based on Laguerre Voronoi diagram. Previous Voronoi diagram-based methods are more efficient and more suitable for interactive design than discrete optimization-based method, but, in many cases, their outputs do not satisfy area constraints. To cope with the problem, we propose a force-directed graph drawing algorithm, which automatically allocates generating points of Voronoi diagram to appropriate positions. Then, we construct a Laguerre Voronoi diagram based on these generating points, use linear programs to adjust each cell, and reconstruct the diagram based on the adjustment. We adopt the proposed method to the practical case study of Chiang Mai University's allocated land for a mixed-use complex. For this case study, compared to other Voronoi diagram-based method, we decrease the land allocation error by 62.557 %. Although our computation time is larger than the previous Voronoi-diagram-based method, it is still suitable for interactive design.

  15. Tissue expansion: Concepts, techniques and unfavourable results

    PubMed Central

    Wagh, Milind S.; Dixit, Varun

    2013-01-01

    The phenomenon of tissue expansion is observed in nature all the time. The same properties of the human skin to stretch and expand and yield extra skin if placed under continuous stress over a prolonged period of time has been utilised for reconstructive purposes with the help of a silicon balloon inserted under the skin and progressively filled with saline. The technique of tissue expansion is now more than three decades old and has been a value addition to our armamentarium in reconstructive surgery in all parts of the body. However, it still requires careful patient selection, meticulous planning and faultless execution to successfully carry out the process, which usually lasts for more than 8-12 weeks and involves two sittings of surgery. Any compromise in this process can lead to unfavourable results and complications, some minor, which allow continuance of the process to attain the expected goal and others major, which force abandonment of the process without reaching the expected goal. This article seeks to highlight the intricacies of the concept of tissue expansion, the technique related to flawless execution of the process and likely complications with emphasis on their management. We also present our results from a personal series of 138 patients operated over a period of 18 years between 1994 and 2012. PMID:24501470

  16. Implicitly causality enforced solution of multidimensional transient photon transport equation.

    PubMed

    Handapangoda, Chintha C; Premaratne, Malin

    2009-12-21

    A novel method for solving the multidimensional transient photon transport equation for laser pulse propagation in biological tissue is presented. A Laguerre expansion is used to represent the time dependency of the incident short pulse. Owing to the intrinsic causal nature of Laguerre functions, our technique automatically always preserve the causality constrains of the transient signal. This expansion of the radiance using a Laguerre basis transforms the transient photon transport equation to the steady state version. The resulting equations are solved using the discrete ordinates method, using a finite volume approach. Therefore, our method enables one to handle general anisotropic, inhomogeneous media using a single formulation but with an added degree of flexibility owing to the ability to invoke higher-order approximations of discrete ordinate quadrature sets. Therefore, compared with existing strategies, this method offers the advantage of representing the intensity with a high accuracy thus minimizing numerical dispersion and false propagation errors. The application of the method to one, two and three dimensional geometries is provided.

  17. Data availability and feasibility of various techniques to predict response to volume expansion in critically ill patients

    PubMed Central

    Lanspa, Michael J.; Briggs, Benjamin J.; Hirshberg, Eliotte L.; Pratt, Cristina M.; Grissom, Colin K.; Brown, Samuel M.

    2017-01-01

    Objective: The accuracy of various techniques to predict response to volume expansion in shock has been studied, but less well known is how feasible these techniques are in the ICU. Methods: This is a prospective observation single-center study of inpatients from a mixed profile ICU who received volume expansion. At time of volume expansion, we determined whether a particular technique to predict response was feasible, according to rules developed from available literature and nurse assessment. Results: We studied 214 volume expansions in 97 patients. The most feasible technique was central venous pressure (50%), followed by vena cava collapsibility, (47%) passive leg raise (42%), and stroke volume variation (22%). Aortic velocity variation, and pulse pressure variation, and were rarely feasible (1% each). In 37% of volume expansions, no technique that we assessed was feasible. Conclusions: Techniques to predict response to volume expansion are infeasible in many patients in shock. PMID:28971030

  18. The role of Gouy phase on the mechanical effects of Laguerre-Gaussian light interacting with atoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lembessis, V. E., E-mail: vlempesis@ksu.edu.sa; Babiker, M.; Ellinas, D.

    2016-06-10

    We consider the case of Laguerre-Gaussian (LG) light with high values of radial index, p, and/or winding number l, focussing on the effects of the Gouy phase together with other phase contributions due to the curvature in a Laguerre Gaussian beam when it interacts with atoms at near resonance. We show here that these phase anomalies amount to a significant reduction of the axial wavevector and thus lead to additional contributions to the phase gradient in the vicinity of the focus plane. In consequence, the axial recoil effects due to the stimulated emission and absorption of light by the atommore » become smaller. This has important effects on the dissipative axial forces acting on the atom, on the momentum fluctuations associated with the photon absorption and stimulated emission and on diffraction of atoms through light masks created by LG beams.« less

  19. 'Reverse expansion': A new technique of breast reconstruction with autologous tissue.

    PubMed

    Fabiocchi, L; Semprini, G; Cattin, F; Dellachiesa, L; Fogacci, T; Frisoni, G; Samorani, D

    2017-11-01

    The treatment for breast cancer is sometimes long and requires a multidisciplinary approach. In 2010, in our centre, we began to perform fat grafting for breast reconstruction using the so-called 'reverse expansion' technique. This consists of the insertion of a skin expander during mastectomy, in its expansion and then in its gradual deflation in the surgical theatre during fat grafting. We performed a complete breast reconstruction in 57 patients by reverse expansion. We harvested fat from the fat excess areas using a normal liposuction cannula. From each patient, an average of 640 ccs of was collected and then centrifuged in a 4000-rpm centrifuge for 3 min. The obtained adipocytes were then injected in the operated breast using a normal lipofilling cannula. We injected an average of 318.05 ccs of adipocytes for each patient each time. The average number of sessions per patient was 3.6. Reverse expansion can be a safe and effective technique for breast reconstruction in all the breast cancer patients. Copyright © 2017 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  20. Laguerre-Freud Equations for the Recurrence Coefficients of Some Discrete Semi-Classical Orthogonal Polynomials of Class Two

    NASA Astrophysics Data System (ADS)

    Hounga, C.; Hounkonnou, M. N.; Ronveaux, A.

    2006-10-01

    In this paper, we give Laguerre-Freud equations for the recurrence coefficients of discrete semi-classical orthogonal polynomials of class two, when the polynomials in the Pearson equation are of the same degree. The case of generalized Charlier polynomials is also presented.

  1. Detecting photons in the dark region of Laguerre-Gauss beams.

    PubMed

    Klimov, Vasily; Bloch, Daniel; Ducloy, Martial; Rios Leite, Jose R

    2009-06-08

    We show that a photon detector, sensitive to the magnetic field or to the gradient of electric field, can help to characterize the quantum properties of spatially-dependent optical fields. We discuss the excitation of an atom through magnetic dipole or electric quadrupole transitions with the photons of a Bessel beam or a Laguerre-Gauss (LG) beams. These spiral beams are shown to be not true hollow beams, due to the presence of magnetic fields and gradients of electric fields on beam axis. This approach paves the way to an analysis at the quantum level of the propagating light beams having a complicated spatial structure.

  2. Mode conversion efficiency to Laguerre-Gaussian OAM modes using spiral phase optics.

    PubMed

    Longman, Andrew; Fedosejevs, Robert

    2017-07-24

    An analytical model for the conversion efficiency from a TEM 00 mode to an arbitrary Laguerre-Gaussian (LG) mode with null radial index spiral phase optics is presented. We extend this model to include the effects of stepped spiral phase optics, spiral phase optics of non-integer topological charge, and the reduction in conversion efficiency due to broad laser bandwidth. We find that through optimization, an optimal beam waist ratio of the input and output modes exists and is dependent upon the output azimuthal mode number.

  3. Constructing petal modes from the coherent superposition of Laguerre-Gaussian modes

    NASA Astrophysics Data System (ADS)

    Naidoo, Darryl; Forbes, Andrew; Ait-Ameur, Kamel; Brunel, Marc

    2011-03-01

    An experimental approach in generating Petal-like transverse modes, which are similar to what is seen in porro-prism resonators, has been successfully demonstrated. We hypothesize that the petal-like structures are generated from a coherent superposition of Laguerre-Gaussian modes of zero radial order and opposite azimuthal order. To verify this hypothesis, visually based comparisons such as petal peak to peak diameter and the angle between adjacent petals are drawn between experimental data and simulated data. The beam quality factor of the Petal-like transverse modes and an inner product interaction is also experimentally compared to numerical results.

  4. Improving biomedical information retrieval by linear combinations of different query expansion techniques.

    PubMed

    Abdulla, Ahmed AbdoAziz Ahmed; Lin, Hongfei; Xu, Bo; Banbhrani, Santosh Kumar

    2016-07-25

    Biomedical literature retrieval is becoming increasingly complex, and there is a fundamental need for advanced information retrieval systems. Information Retrieval (IR) programs scour unstructured materials such as text documents in large reserves of data that are usually stored on computers. IR is related to the representation, storage, and organization of information items, as well as to access. In IR one of the main problems is to determine which documents are relevant and which are not to the user's needs. Under the current regime, users cannot precisely construct queries in an accurate way to retrieve particular pieces of data from large reserves of data. Basic information retrieval systems are producing low-quality search results. In our proposed system for this paper we present a new technique to refine Information Retrieval searches to better represent the user's information need in order to enhance the performance of information retrieval by using different query expansion techniques and apply a linear combinations between them, where the combinations was linearly between two expansion results at one time. Query expansions expand the search query, for example, by finding synonyms and reweighting original terms. They provide significantly more focused, particularized search results than do basic search queries. The retrieval performance is measured by some variants of MAP (Mean Average Precision) and according to our experimental results, the combination of best results of query expansion is enhanced the retrieved documents and outperforms our baseline by 21.06 %, even it outperforms a previous study by 7.12 %. We propose several query expansion techniques and their combinations (linearly) to make user queries more cognizable to search engines and to produce higher-quality search results.

  5. Conical refraction and formation of multiring focal image with Laguerre-Gauss light beams.

    PubMed

    Peet, Viktor

    2011-08-01

    For a light beam focused through a biaxial crystal along one of its optical axes, the effect of internal conical refraction in the crystal leads to the formation in the focal image plane of two bright rings separated by a dark ring. It is shown that, with circularly polarized Laguerre-Gauss LG(0)(ℓ) beams entering the crystal, this classical double-ring pattern is transformed into a multiring one consisting of ℓ+2 bright rings. © 2011 Optical Society of America

  6. Crystalline phases by an improved gradient expansion technique

    NASA Astrophysics Data System (ADS)

    Carignano, S.; Mannarelli, M.; Anzuini, F.; Benhar, O.

    2018-02-01

    We develop an innovative technique for studying inhomogeneous phases with a spontaneous broken symmetry. The method relies on the knowledge of the exact form of the free energy in the homogeneous phase and on a specific gradient expansion of the order parameter. We apply this method to quark matter at vanishing temperature and large chemical potential, which is expected to be relevant for astrophysical considerations. The method is remarkably reliable and fast as compared to performing the full numerical diagonalization of the quark Hamiltonian in momentum space and is designed to improve the standard Ginzburg-Landau expansion close to the phase transition points. For definiteness, we focus on inhomogeneous chiral symmetry breaking, accurately reproducing known results for one-dimensional and two-dimensional modulations and examining novel crystalline structures, as well. Consistently with previous results, we find that the energetically favored modulation is the so-called one-dimensional real-kink crystal. We propose a qualitative description of the pairing mechanism to motivate this result.

  7. Experimental generation of Laguerre-Gaussian beam using digital micromirror device.

    PubMed

    Ren, Yu-Xuan; Li, Ming; Huang, Kun; Wu, Jian-Guang; Gao, Hong-Fang; Wang, Zi-Qiang; Li, Yin-Mei

    2010-04-01

    A digital micromirror device (DMD) modulates laser intensity through computer control of the device. We experimentally investigate the performance of the modulation property of a DMD and optimize the modulation procedure through image correction. Furthermore, Laguerre-Gaussian (LG) beams with different topological charges are generated by projecting a series of forklike gratings onto the DMD. We measure the field distribution with and without correction, the energy of LG beams with different topological charges, and the polarization property in sequence. Experimental results demonstrate that it is possible to generate LG beams with a DMD that allows the use of a high-intensity laser with proper correction to the input images, and that the polarization state of the LG beam differs from that of the input beam.

  8. Non-integer expansion embedding techniques for reversible image watermarking

    NASA Astrophysics Data System (ADS)

    Xiang, Shijun; Wang, Yi

    2015-12-01

    This work aims at reducing the embedding distortion of prediction-error expansion (PE)-based reversible watermarking. In the classical PE embedding method proposed by Thodi and Rodriguez, the predicted value is rounded to integer number for integer prediction-error expansion (IPE) embedding. The rounding operation makes a constraint on a predictor's performance. In this paper, we propose a non-integer PE (NIPE) embedding approach, which can proceed non-integer prediction errors for embedding data into an audio or image file by only expanding integer element of a prediction error while keeping its fractional element unchanged. The advantage of the NIPE embedding technique is that the NIPE technique can really bring a predictor into full play by estimating a sample/pixel in a noncausal way in a single pass since there is no rounding operation. A new noncausal image prediction method to estimate a pixel with four immediate pixels in a single pass is included in the proposed scheme. The proposed noncausal image predictor can provide better performance than Sachnev et al.'s noncausal double-set prediction method (where data prediction in two passes brings a distortion problem due to the fact that half of the pixels were predicted with the watermarked pixels). In comparison with existing several state-of-the-art works, experimental results have shown that the NIPE technique with the new noncausal prediction strategy can reduce the embedding distortion for the same embedding payload.

  9. Galaxy halo expansions: a new biorthogonal family of potential-density pairs

    NASA Astrophysics Data System (ADS)

    Lilley, Edward J.; Sanders, Jason L.; Evans, N. Wyn; Erkal, Denis

    2018-05-01

    Efficient expansions of the gravitational field of (dark) haloes have two main uses in the modelling of galaxies: first, they provide a compact representation of numerically constructed (or real) cosmological haloes, incorporating the effects of triaxiality, lopsidedness or other distortion. Secondly, they provide the basis functions for self-consistent field expansion algorithms used in the evolution of N-body systems. We present a new family of biorthogonal potential-density pairs constructed using the Hankel transform of the Laguerre polynomials. The lowest order density basis functions are double-power-law profiles cusped like ρ ˜ r-2+1/α at small radii with asymptotic density fall-off like ρ ˜ r-3-1/(2α). Here, α is a parameter satisfying α ≥ 1/2. The family therefore spans the range of inner density cusps found in numerical simulations, but has much shallower - and hence more realistic - outer slopes than the corresponding members of the only previously known family deduced by Zhao and exemplified by Hernquist & Ostriker. When α = 1, the lowest order density profile has an inner density cusp of ρ ˜ r-1 and an outer density slope of ρ ˜ r-3.5, similar to the famous Navarro, Frenk & White (NFW) model. For this reason, we demonstrate that our new expansion provides a more accurate representation of flattened NFW haloes than the competing Hernquist-Ostriker expansion. We utilize our new expansion by analysing a suite of numerically constructed haloes and providing the distributions of the expansion coefficients.

  10. External tissue expansion for difficult wounds using a simple cost effective technique.

    PubMed

    Nandhagopal, Vijayaraghavan; Chittoria, Ravi Kumar; Mohapatra, Devi Prasad; Thiruvoth, Friji Meethale; Sivakumar, Dinesh Kumar; Ashokan, Arjun

    2015-01-01

    To study and discuss role of external tissue expansion and wound closure (ETEWC) technique using hooks and rubber bands. The present study is a retrospective analysis of nine cases of wounds of different aetiology where ETEWC technique was applied using hooks and rubber bands. All the wounds in the study healed completely without split thickness skin graft (SSG) or flap. ETEWC technique using hooks and rubber bands is a cost-effective technique which can be used for wound closure without SSG or flap.

  11. Novel methods of time-resolved fluorescence data analysis for in-vivo tissue characterization: application to atherosclerosis.

    PubMed

    Jo, J A; Fang, Q; Papaioannou, T; Qiao, J H; Fishbein, M C; Dorafshar, A; Reil, T; Baker, D; Freischlag, J; Marcu, L

    2004-01-01

    This study investigates the ability of new analytical methods of time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) data to characterize tissue in-vivo, such as the composition of atherosclerotic vulnerable plaques. A total of 73 TR-LIFS measurements were taken in-vivo from the aorta of 8 rabbits, and subsequently analyzed using the Laguerre deconvolution technique. The investigated spots were classified as normal aorta, thin or thick lesions, and lesions rich in either collagen or macrophages/foam-cells. Different linear and nonlinear classification algorithms (linear discriminant analysis, stepwise linear discriminant analysis, principal component analysis, and feedforward neural networks) were developed using spectral and TR features (ratios of intensity values and Laguerre expansion coefficients, respectively). Normal intima and thin lesions were discriminated from thick lesions (sensitivity >90%, specificity 100%) using only spectral features. However, both spectral and time-resolved features were necessary to discriminate thick lesions rich in collagen from thick lesions rich in foam cells (sensitivity >85%, specificity >93%), and thin lesions rich in foam cells from normal aorta and thin lesions rich in collagen (sensitivity >85%, specificity >94%). Based on these findings, we believe that TR-LIFS information derived from the Laguerre expansion coefficients can provide a valuable additional dimension for in-vivo tissue characterization.

  12. New families of superintegrable systems from Hermite and Laguerre exceptional orthogonal polynomials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marquette, Ian; Quesne, Christiane

    2013-04-15

    In recent years, many exceptional orthogonal polynomials (EOP) were introduced and used to construct new families of 1D exactly solvable quantum potentials, some of which are shape invariant. In this paper, we construct from Hermite and Laguerre EOP and their related quantum systems new 2D superintegrable Hamiltonians with higher-order integrals of motion and the polynomial algebras generated by their integrals of motion. We obtain the finite-dimensional unitary representations of the polynomial algebras and the corresponding energy spectrum. We also point out a new type of degeneracies of the energy levels of these systems that is associated with holes in sequencesmore » of EOP.« less

  13. Optical memory effect from polarized Laguerre-Gaussian light beam in light-scattering turbid media

    NASA Astrophysics Data System (ADS)

    Shumyatsky, Pavel; Milione, Giovanni; Alfano, Robert R.

    2014-06-01

    Propagation effects of polarized Laguerre-Gaussian light with different orbital angular momentum (L) in turbid media are described. The optical memory effect in scattering media consisting of small and large size (compared to the wavelength) scatterers is investigated for scattered polarized light. Imaging using polarized laser modes with a varying orbital strength L-parameter was performed. The backscattered image quality (contrast) was enhanced by more than an order of magnitude using circularly polarized light when the concentration of scatterers was close to invisibility of the object.

  14. Shaping Laguerre-Gaussian laser modes with binary gratings using a digital micromirror device.

    PubMed

    Lerner, Vitaly; Shwa, David; Drori, Yehonathan; Katz, Nadav

    2012-12-01

    Laguerre-Gaussian (LG) beams are used in many research fields, including microscopy, laser cavity modes, and optical tweezing. We developed a holographic method to generate pure LG modes (amplitude and phase) with a binary amplitude-only digital micromirror device (DMD) as an alternative to the commonly used phase-only spatial light modulator. The advantages of such a DMD include very high frame rates, low cost, and high damage thresholds. We have shown that the propagating shaped beams are self-similar and their phase fronts are of helical shape as demanded. We estimate the purity of the resultant beams to be above 94%.

  15. Miniaturized side-viewing imaging probe for fluorescence lifetime imaging (FLIM): validation with fluorescence dyes, tissue structural proteins and tissue specimens

    PubMed Central

    Elson, D S; Jo, J A

    2007-01-01

    We report a side viewing fibre-based endoscope that is compatible with intravascular imaging and fluorescence lifetime imaging microscopy (FLIM). The instrument has been validated through testing with fluorescent dyes and collagen and elastin powders using the Laguerre expansion deconvolution technique to calculate the fluorescence lifetimes. The instrument has also been tested on freshly excised unstained animal vascular tissues. PMID:19503759

  16. The generation of higher-order Laguerre-Gauss optical beams for high-precision interferometry.

    PubMed

    Carbone, Ludovico; Fulda, Paul; Bond, Charlotte; Brueckner, Frank; Brown, Daniel; Wang, Mengyao; Lodhia, Deepali; Palmer, Rebecca; Freise, Andreas

    2013-08-12

    Thermal noise in high-reflectivity mirrors is a major impediment for several types of high-precision interferometric experiments that aim to reach the standard quantum limit or to cool mechanical systems to their quantum ground state. This is for example the case of future gravitational wave observatories, whose sensitivity to gravitational wave signals is expected to be limited in the most sensitive frequency band, by atomic vibration of their mirror masses. One promising approach being pursued to overcome this limitation is to employ higher-order Laguerre-Gauss (LG) optical beams in place of the conventionally used fundamental mode. Owing to their more homogeneous light intensity distribution these beams average more effectively over the thermally driven fluctuations of the mirror surface, which in turn reduces the uncertainty in the mirror position sensed by the laser light. We demonstrate a promising method to generate higher-order LG beams by shaping a fundamental Gaussian beam with the help of diffractive optical elements. We show that with conventional sensing and control techniques that are known for stabilizing fundamental laser beams, higher-order LG modes can be purified and stabilized just as well at a comparably high level. A set of diagnostic tools allows us to control and tailor the properties of generated LG beams. This enabled us to produce an LG beam with the highest purity reported to date. The demonstrated compatibility of higher-order LG modes with standard interferometry techniques and with the use of standard spherical optics makes them an ideal candidate for application in a future generation of high-precision interferometry.

  17. Spiraling elliptic Laguerre-Gaussian soliton in isotropic nonlocal competing cubic-quintic nonlinear media

    NASA Astrophysics Data System (ADS)

    Wang, Qing; Li, JingZhen; Xie, WeiXin

    2018-06-01

    This paper introduce a kind of spiraling elliptic Laguerre-Gaussian (SELG) soliton which has complicated structures in its profile and phase, and find that it can be formed in nonlocal cubic, quantic and competing cubic-quintic nonlinear media, respectively. The different-order SELG solitons with the same ellipticity have the same rotation period, cross-term phase coefficient, critical power and different critical orbital angular momentums (OAM). However, with the increase of ellipticity, the rotation period, cross-term phase coefficient, critical power and OAM are all increased. In particular, there are bistable SELG solitons stemmed by the competing effect between self-focusing cubic and self-defocusing quintic nonlinearities.

  18. Displacements and evolution of optical vortices in edge-diffracted Laguerre-Gaussian beams

    NASA Astrophysics Data System (ADS)

    Bekshaev, Aleksandr; Chernykh, Aleksey; Khoroshun, Anna; Mikhaylovskaya, Lidiya

    2017-05-01

    Based on the Kirchhoff-Fresnel approximation, we consider the behavior of optical vortices (OV) upon propagation of diffracted Laguerre-Gaussian (LG) beams with topological charge ∣m∣ = 1, 2. Under conditions of weak diffraction perturbation (i.e. the diffraction obstacle covers only the far transverse periphery of the incident LG beam), these OVs describe almost perfect 3D spirals within the diffracted beam body, which is an impressive demonstration of the helical nature of an OV beam. The far-field OV positions within the diffracted beam cross section depend on the wavefront curvature of the incident OV beam, so that the input wavefront curvature is transformed into the output azimuthal OV rotation. The results are expected to be useful in OV metrology and OV beam diagnostics.

  19. A memory efficient implementation scheme of Gauss error function in a Laguerre-Volterra network for neuroprosthetic devices

    NASA Astrophysics Data System (ADS)

    Li, Will X. Y.; Cui, Ke; Zhang, Wei

    2017-04-01

    Cognitive neural prosthesis is a manmade device which can be used to restore or compensate for lost human cognitive modalities. The generalized Laguerre-Volterra (GLV) network serves as a robust mathematical underpinning for the development of such prosthetic instrument. In this paper, a hardware implementation scheme of Gauss error function for the GLV network targeting reconfigurable platforms is reported. Numerical approximations are formulated which transform the computation of nonelementary function into combinational operations of elementary functions, and memory-intensive look-up table (LUT) based approaches can therefore be circumvented. The computational precision can be made adjustable with the utilization of an error compensation scheme, which is proposed based on the experimental observation of the mathematical characteristics of the error trajectory. The precision can be further customizable by exploiting the run-time characteristics of the reconfigurable system. Compared to the polynomial expansion based implementation scheme, the utilization of slice LUTs, occupied slices, and DSP48E1s on a Xilinx XC6VLX240T field-programmable gate array has decreased by 94.2%, 94.1%, and 90.0%, respectively. While compared to the look-up table based scheme, 1.0 ×1017 bits of storage can be spared under the maximum allowable error of 1.0 ×10-3 . The proposed implementation scheme can be employed in the study of large-scale neural ensemble activity and in the design and development of neural prosthetic device.

  20. Dirac(-Pauli), Fokker-Planck equations and exceptional Laguerre polynomials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, Choon-Lin, E-mail: hcl@mail.tku.edu.tw

    2011-04-15

    Research Highlights: > Physical examples involving exceptional orthogonal polynomials. > Exceptional polynomials as deformations of classical orthogonal polynomials. > Exceptional polynomials from Darboux-Crum transformation. - Abstract: An interesting discovery in the last two years in the field of mathematical physics has been the exceptional X{sub l} Laguerre and Jacobi polynomials. Unlike the well-known classical orthogonal polynomials which start with constant terms, these new polynomials have lowest degree l = 1, 2, and ..., and yet they form complete set with respect to some positive-definite measure. While the mathematical properties of these new X{sub l} polynomials deserve further analysis, it ismore » also of interest to see if they play any role in physical systems. In this paper we indicate some physical models in which these new polynomials appear as the main part of the eigenfunctions. The systems we consider include the Dirac equations coupled minimally and non-minimally with some external fields, and the Fokker-Planck equations. The systems presented here have enlarged the number of exactly solvable physical systems known so far.« less

  1. Atomic Gaussian type orbitals and their Fourier transforms via the Rayleigh expansion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yükçü, Niyazi

    Gaussian type orbitals (GTOs), which are one of the types of exponential type orbitals (ETOs), are used usually as basis functions in the multi-center atomic and molecular integrals to better understand physical and chemical properties of matter. In the Fourier transform method (FTM), basis functions have not simplicity to make mathematical operations, but their Fourier transforms are easier to use. In this work, with the help of FTM, Rayleigh expansion and some properties of unnormalized GTOs, we present new mathematical results for the Fourier transform of GTOs in terms of Laguerre polynomials, hypergeometric and Whittaker functions. Physical and analytical propertiesmore » of GTOs are discussed and some numerical results have been given in a table. Finally, we compare our mathematical results with the other known literature results by using a computer program and details of evaluation are presented.« less

  2. Statistical properties of a Laguerre-Gaussian Schell-model beam in turbulent atmosphere.

    PubMed

    Chen, Rong; Liu, Lin; Zhu, Shijun; Wu, Gaofeng; Wang, Fei; Cai, Yangjian

    2014-01-27

    Laguerre-Gaussian Schell-model (LGSM) beam was proposed in theory [Opt. Lett.38, 91 (2013 Opt. Lett.38, 1814 (2013)] just recently. In this paper, we study the propagation of a LGSM beam in turbulent atmosphere. Analytical expressions for the cross-spectral density and the second-order moments of the Wigner distribution function of a LGSM beam in turbulent atmosphere are derived. The statistical properties, such as the degree of coherence and the propagation factor, of a LGSM beam in turbulent atmosphere are studied in detail. It is found that a LGSM beam with larger mode order n is less affected by turbulence than a LGSM beam with smaller mode order n or a GSM beam under certain condition, which will be useful in free-space optical communications.

  3. A burst compression and expansion technique for variable-rate users in satellite-switched TDMA networks

    NASA Technical Reports Server (NTRS)

    Budinger, James M.

    1990-01-01

    A burst compression and expansion technique is described for asynchronously interconnecting variable-data-rate users with cost-efficient ground terminals in a satellite-switched, time-division-multiple-access (SS/TDMA) network. Compression and expansion buffers in each ground terminal convert between lower rate, asynchronous, continuous-user data streams and higher-rate TDMA bursts synchronized with the satellite-switched timing. The technique described uses a first-in, first-out (FIFO) memory approach which enables the use of inexpensive clock sources by both the users and the ground terminals and obviates the need for elaborate user clock synchronization processes. A continous range of data rates from kilobits per second to that approaching the modulator burst rate (hundreds of megabits per second) can be accommodated. The technique was developed for use in the NASA Lewis Research Center System Integration, Test, and Evaluation (SITE) facility. Some key features of the technique have also been implemented in the gound terminals developed at NASA Lewis for use in on-orbit evaluation of the Advanced Communications Technology Satellite (ACTS) high burst rate (HBR) system.

  4. Attosecond electron bunches from a nanofiber driven by Laguerre-Gaussian laser pulses.

    PubMed

    Hu, Li-Xiang; Yu, Tong-Pu; Sheng, Zheng-Ming; Vieira, Jorge; Zou, De-Bin; Yin, Yan; McKenna, Paul; Shao, Fu-Qiu

    2018-05-08

    Generation of attosecond bunches of energetic electrons offers significant potential from ultrafast physics to novel radiation sources. However, it is still a great challenge to stably produce such electron beams with lasers, since the typical subfemtosecond electron bunches from laser-plasma interactions either carry low beam charge, or propagate for only several tens of femtoseconds. Here we propose an all-optical scheme for generating dense attosecond electron bunches via the interaction of an intense Laguerre-Gaussian (LG) laser pulse with a nanofiber. The dense bunch train results from the unique field structure of a circularly polarized LG laser pulse, enabling each bunch to be phase-locked and accelerated forward with low divergence, high beam charge and large beam-angular-momentum. This paves the way for wide applications in various fields, e.g., ultrabrilliant attosecond x/γ-ray emission.

  5. Simplified Technique for Predicting Offshore Pipeline Expansion

    NASA Astrophysics Data System (ADS)

    Seo, J. H.; Kim, D. K.; Choi, H. S.; Yu, S. Y.; Park, K. S.

    2018-06-01

    In this study, we propose a method for estimating the amount of expansion that occurs in subsea pipelines, which could be applied in the design of robust structures that transport oil and gas from offshore wells. We begin with a literature review and general discussion of existing estimation methods and terminologies with respect to subsea pipelines. Due to the effects of high pressure and high temperature, the production of fluid from offshore wells is typically caused by physical deformation of subsea structures, e.g., expansion and contraction during the transportation process. In severe cases, vertical and lateral buckling occurs, which causes a significant negative impact on structural safety, and which is related to on-bottom stability, free-span, structural collapse, and many other factors. In addition, these factors may affect the production rate with respect to flow assurance, wax, and hydration, to name a few. In this study, we developed a simple and efficient method for generating a reliable pipe expansion design in the early stage, which can lead to savings in both cost and computation time. As such, in this paper, we propose an applicable diagram, which we call the standard dimensionless ratio (SDR) versus virtual anchor length (L A ) diagram, that utilizes an efficient procedure for estimating subsea pipeline expansion based on applied reliable scenarios. With this user guideline, offshore pipeline structural designers can reliably determine the amount of subsea pipeline expansion and the obtained results will also be useful for the installation, design, and maintenance of the subsea pipeline.

  6. Optimization of auxiliary basis sets for the LEDO expansion and a projection technique for LEDO-DFT.

    PubMed

    Götz, Andreas W; Kollmar, Christian; Hess, Bernd A

    2005-09-01

    We present a systematic procedure for the optimization of the expansion basis for the limited expansion of diatomic overlap density functional theory (LEDO-DFT) and report on optimized auxiliary orbitals for the Ahlrichs split valence plus polarization basis set (SVP) for the elements H, Li--F, and Na--Cl. A new method to deal with near-linear dependences in the LEDO expansion basis is introduced, which greatly reduces the computational effort of LEDO-DFT calculations. Numerical results for a test set of small molecules demonstrate the accuracy of electronic energies, structural parameters, dipole moments, and harmonic frequencies. For larger molecular systems the numerical errors introduced by the LEDO approximation can lead to an uncontrollable behavior of the self-consistent field (SCF) process. A projection technique suggested by Löwdin is presented in the framework of LEDO-DFT, which guarantees for SCF convergence. Numerical results on some critical test molecules suggest the general applicability of the auxiliary orbitals presented in combination with this projection technique. Timing results indicate that LEDO-DFT is competitive with conventional density fitting methods. (c) 2005 Wiley Periodicals, Inc.

  7. Recurrences and explicit formulae for the expansion and connection coefficients in series of Bessel polynomials

    NASA Astrophysics Data System (ADS)

    Doha, E. H.; Ahmed, H. M.

    2004-08-01

    A formula expressing explicitly the derivatives of Bessel polynomials of any degree and for any order in terms of the Bessel polynomials themselves is proved. Another explicit formula, which expresses the Bessel expansion coefficients of a general-order derivative of an infinitely differentiable function in terms of its original Bessel coefficients, is also given. A formula for the Bessel coefficients of the moments of one single Bessel polynomial of certain degree is proved. A formula for the Bessel coefficients of the moments of a general-order derivative of an infinitely differentiable function in terms of its Bessel coefficients is also obtained. Application of these formulae for solving ordinary differential equations with varying coefficients, by reducing them to recurrence relations in the expansion coefficients of the solution, is explained. An algebraic symbolic approach (using Mathematica) in order to build and solve recursively for the connection coefficients between Bessel-Bessel polynomials is described. An explicit formula for these coefficients between Jacobi and Bessel polynomials is given, of which the ultraspherical polynomial and its consequences are important special cases. Two analytical formulae for the connection coefficients between Laguerre-Bessel and Hermite-Bessel are also developed.

  8. Three-photon Gaussian-Gaussian-Laguerre-Gaussian excitation of a localized atom to a highly excited Rydberg state

    NASA Astrophysics Data System (ADS)

    Mashhadi, L.

    2017-12-01

    Optical vortices are currently one of the most intensively studied topics in light-matter interaction. In this work, a three-step axial Doppler- and recoil-free Gaussian-Gaussian-Laguerre-Gaussian (GGLG) excitation of a localized atom to the highly excited Rydberg state is presented. By assuming a large detuning for intermediate states, an effective quadrupole excitation related to the Laguerre-Gaussian (LG) excitation to the highly excited Rydberg state is obtained. This special excitation system radially confines the single highly excited Rydberg atom independently of the trapping system into a sharp potential landscape into the so-called ‘far-off-resonance optical dipole-quadrupole trap’ (FORDQT). The key parameters of the Rydberg excitation to the highly excited state, namely the effective Rabi frequency and the effective detuning including a position-dependent AC Stark shift, are calculated in terms of the basic parameters of the LG beam and of the polarization of the excitation lasers. It is shown that the obtained parameters can be tuned to have a precise excitation of a single atom to the desired Rydberg state as well. The features of transferring the optical orbital and spin angular momentum of the polarized LG beam to the atom via quadrupole Rydberg excitation offer a long-lived and controllable qudit quantum memory. In addition, in contrast to the Gaussian laser beam, the doughnut-shaped LG beam makes it possible to use a high intensity laser beam to increase the signal-to-noise ratio in quadrupole excitation with minimized perturbations coming from stray light broadening in the last Rydberg excitation process.

  9. A Novel Femtosecond-gated, High-resolution, Frequency-shifted Shearing Interferometry Technique for Probing Pre-plasma Expansion in Ultra-intense Laser Experiments

    DTIC Science & Technology

    2014-07-17

    frequency-shifted shearing interferometry technique for probing pre-plasma expansion in ultra-intense laser experimentsa) Ultra-intense laser -matter...interaction experiments (>1018 W/cm2) with dense targets are highly sensitive to the effect of laser “noise” (in the form of pre-pulses) preceding the...interferometry technique for probing pre- plasma expansion in ultra-intense laser experimentsa) Report Title Ultra-intense laser -matter interaction

  10. Virial Expansion Bounds

    NASA Astrophysics Data System (ADS)

    Tate, Stephen James

    2013-10-01

    In the 1960s, the technique of using cluster expansion bounds in order to achieve bounds on the virial expansion was developed by Lebowitz and Penrose (J. Math. Phys. 5:841, 1964) and Ruelle (Statistical Mechanics: Rigorous Results. Benjamin, Elmsford, 1969). This technique is generalised to more recent cluster expansion bounds by Poghosyan and Ueltschi (J. Math. Phys. 50:053509, 2009), which are related to the work of Procacci (J. Stat. Phys. 129:171, 2007) and the tree-graph identity, detailed by Brydges (Phénomènes Critiques, Systèmes Aléatoires, Théories de Jauge. Les Houches 1984, pp. 129-183, 1986). The bounds achieved by Lebowitz and Penrose can also be sharpened by doing the actual optimisation and achieving expressions in terms of the Lambert W-function. The different bound from the cluster expansion shows some improvements for bounds on the convergence of the virial expansion in the case of positive potentials, which are allowed to have a hard core.

  11. Generation of a hollow dark spherical spot by 4pi focusing of a radially polarized Laguerre-Gaussian beam

    NASA Astrophysics Data System (ADS)

    Bokor, Nándor; Davidson, Nir

    2006-01-01

    The properties of the focal spot for 4pi focusing with radially polarized first-order Laguerre-Gaussian beams are calculated. It is shown that a focal spot that has an extremely sharp dark region at the center and an almost-perfect spherical symmetry can be achieved. When such a hollow dark spherical spot is used in 4pi fluorescence depletion microscopy, an axial FWHM spot size of ˜39 nm and a transverse FWHM spot size of ˜64 nm can be achieved simultaneously in a practical system.

  12. Generation of a hollow dark spherical spot by 4pi focusing of a radially polarized Laguerre-Gaussian beam.

    PubMed

    Bokor, Nándor; Davidson, Nir

    2006-01-15

    The properties of the focal spot for 4pi focusing with radially polarized first-order Laguerre-Gaussian beams are calculated. It is shown that a focal spot that has an extremely sharp dark region at the center and an almost-perfect spherical symmetry can be achieved. When such a hollow dark spherical spot is used in 4pi fluorescence depletion microscopy, an axial FWHM spot size of approximately 39 nm and a transverse FWHM spot size of approximately 64 nm can be achieved simultaneously in a practical system.

  13. The tight focusing properties of Laguerre-Gaussian-correlated Schell-model beams

    NASA Astrophysics Data System (ADS)

    Xu, Hua-Feng; Zhang, Zhou; Qu, Jun; Huang, Wei

    2016-08-01

    Based on the Richards-Wolf vectorial diffraction theory, the tight focusing properties, including the intensity distribution, the degree of polarization and the degree of coherence, of the Laguerre-Gaussian-correlated Schell-model (LGSM) beams through a high-numerical-aperture (NA) focusing system are investigated in detail. It is found that the LGSM beam exhibits some extraordinary focusing properties, which is quite different from that of the GSM beam, and the tight focusing properties are closely related to the initial spatial coherence ? and the mode order n. The LGSM beam can form an elliptical focal spot, a circular focal spot or a doughnut-shaped dark hollow beam at the focal plane by choosing a suitable value of the initial spatial coherence ?, and the central dark size of the dark hollow beam increases with the increase of the mode order n. In addition, the influences of the initial spatial coherence ? and the mode order n on the degree of polarization and the degree of coherence are also analysed in detail, respectively. Our results may find applications in optical trapping.

  14. Deblurring of Class-Averaged Images in Single-Particle Electron Microscopy.

    PubMed

    Park, Wooram; Madden, Dean R; Rockmore, Daniel N; Chirikjian, Gregory S

    2010-03-01

    This paper proposes a method for deblurring of class-averaged images in single-particle electron microscopy (EM). Since EM images of biological samples are very noisy, the images which are nominally identical projection images are often grouped, aligned and averaged in order to cancel or reduce the background noise. However, the noise in the individual EM images generates errors in the alignment process, which creates an inherent limit on the accuracy of the resulting class averages. This inaccurate class average due to the alignment errors can be viewed as the result of a convolution of an underlying clear image with a blurring function. In this work, we develop a deconvolution method that gives an estimate for the underlying clear image from a blurred class-averaged image using precomputed statistics of misalignment. Since this convolution is over the group of rigid body motions of the plane, SE(2), we use the Fourier transform for SE(2) in order to convert the convolution into a matrix multiplication in the corresponding Fourier space. For practical implementation we use a Hermite-function-based image modeling technique, because Hermite expansions enable lossless Cartesian-polar coordinate conversion using the Laguerre-Fourier expansions, and Hermite expansion and Laguerre-Fourier expansion retain their structures under the Fourier transform. Based on these mathematical properties, we can obtain the deconvolution of the blurred class average using simple matrix multiplication. Tests of the proposed deconvolution method using synthetic and experimental EM images confirm the performance of our method.

  15. Technique Incorporating Cooling & Contraction / Expansion Analysis to Illustrate Shrinkage Tendency in Cast Irons

    NASA Astrophysics Data System (ADS)

    Stan, S.; Chisamera, M.; Riposan, I.; Neacsu, L.; Cojocaru, A. M.; Stan, I.

    2017-06-01

    With the more widespread adoption of thermal analysis testing, thermal analysis data have become an indicator of cast iron quality. The cooling curve and its first derivative display patterns that can be used to predict the characteristics of a cast iron. An experimental device was developed with a technique to simultaneously evaluate cooling curves and expansion or contraction of cast metals during solidification. Its application is illustrated with results on shrinkage tendency of ductile iron treated with FeSiMgRECa master alloy and inoculated with FeSi based alloys, as affected by mould rigidity (green sand and resin sand moulds). Undercooling at the end of solidification relative to the metastable (carbidic) equilibrium temperature and the expansion within the solidification sequence appear to have a strong influence on the susceptibility to macro - and micro - shrinkage in ductile iron castings. Green sand moulds, as less rigid moulds, encourage the formation of contraction defects, not only because of high initial expansion values, but also because of a higher cooling rate during solidification, and consequently, increased undercooling below the metastable equilibrium temperature up to the end of solidification.

  16. Analysis of radial and longitudinal field of plasma wakefield generated by a Laguerre-Gauss laser pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Firouzjaei, Ali Shekari; Shokri, Babak

    In the present paper, we study the wakes known as the donut wake which is generated by Laguerre-Gauss (LG) laser pulses. Effects of the special spatial profile of a LG pulse on the radial and longitudinal wakefields are presented via an analytical model in a weakly non-linear regime in two dimensions. Different aspects of the donut-shaped wakefields have been analyzed and compared with Gaussian-driven wakes. There is also some discussion about the accelerating-focusing phase of the donut wake. Variations of longitudinal and radial wakes with laser amplitude, pulse length, and pulse spot size have been presented and discussed. Finally, wemore » present the optimum pulse duration for such wakes.« less

  17. Evaluation of a finite multipole expansion technique for the computation of electrostatic potentials of dibenzo-p-dioxins and related systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murray, J.S.; Grice, M.E.; Politzer, P.

    1990-01-01

    The electrostatic potential V(r) that the nuclei and electrons of a molecule create in the surrounding space is well established as a guide in the study of molecular reactivity, and particularly, of biological recognition processes. Its rigorous computation is, however, very demanding of computer time for large molecules, such as those of interest in recognition interactions. The authors have accordingly investigated the use of an approximate finite multicenter multipole expansion technique to determine its applicability for producing reliable electrostatic potentials of dibenzo-p-dioxins and related molecules, with significantly reduced amounts of computer time, at distances of interest in recognition studies. Amore » comparative analysis of the potentials of three dibenzo-q-dioxins and a substituted naphthalene molecule computed using both the multipole expansion technique and GAUSSIAN 82 at the STO-5G level has been carried out. Overall they found that regions of negative and positive V(r) at 1.75 A above the molecular plane are very well reproduced by the multipole expansion technique, with up to a twenty-fold improvement in computer time.« less

  18. Cast Off expansion plan by rapid improvement through Optimization tool design, Tool Parameters and using Six Sigma’s ECRS Technique

    NASA Astrophysics Data System (ADS)

    Gopalakrishnan, T.; Saravanan, R.

    2017-03-01

    Powerful management concepts step-up the quality of the product, time saving in producing the product thereby increase the production rate, improves tools and techniques, work culture, work place and employee motivation and morale. In this paper discussed about the case study of optimizing the tool design, tool parameters to cast off expansion plan according ECRS technique. The proposed designs and optimal tool parameters yielded best results and meet the customer demand without expansion plan. Hence the work yielded huge savings of money (direct and indirect cost), time and improved the motivation and more of employees significantly.

  19. The Laguerre finite difference one-way equation solver

    NASA Astrophysics Data System (ADS)

    Terekhov, Andrew V.

    2017-05-01

    This paper presents a new finite difference algorithm for solving the 2D one-way wave equation with a preliminary approximation of a pseudo-differential operator by a system of partial differential equations. As opposed to the existing approaches, the integral Laguerre transform instead of Fourier transform is used. After carrying out the approximation of spatial variables it is possible to obtain systems of linear algebraic equations with better computing properties and to reduce computer costs for their solution. High accuracy of calculations is attained at the expense of employing finite difference approximations of higher accuracy order that are based on the dispersion-relationship-preserving method and the Richardson extrapolation in the downward continuation direction. The numerical experiments have verified that as compared to the spectral difference method based on Fourier transform, the new algorithm allows one to calculate wave fields with a higher degree of accuracy and a lower level of numerical noise and artifacts including those for non-smooth velocity models. In the context of solving the geophysical problem the post-stack migration for velocity models of the types Syncline and Sigsbee2A has been carried out. It is shown that the images obtained contain lesser noise and are considerably better focused as compared to those obtained by the known Fourier Finite Difference and Phase-Shift Plus Interpolation methods. There is an opinion that purely finite difference approaches do not allow carrying out the seismic migration procedure with sufficient accuracy, however the results obtained disprove this statement. For the supercomputer implementation it is proposed to use the parallel dichotomy algorithm when solving systems of linear algebraic equations with block-tridiagonal matrices.

  20. Thermal expansion behavior study of Co nanowire array with in situ x-ray diffraction and x-ray absorption fine structure techniques

    NASA Astrophysics Data System (ADS)

    Mo, Guang; Cai, Quan; Jiang, Longsheng; Wang, Wei; Zhang, Kunhao; Cheng, Weidong; Xing, Xueqing; Chen, Zhongjun; Wu, Zhonghua

    2008-10-01

    In situ x-ray diffraction and x-ray absorption fine structure techniques were used to study the structural change of ordered Co nanowire array with temperature. The results show that the Co nanowires are polycrystalline with hexagonal close packed structure without phase change up until 700 °C. A nonlinear thermal expansion behavior has been found and can be well described by a quadratic equation with the first-order thermal expansion coefficient of 4.3×10-6/°C and the second-order thermal expansion coefficient of 5.9×10-9/°C. The mechanism of this nonlinear thermal expansion behavior is discussed.

  1. Scattering and propagation of a Laguerre-Gaussian vortex beam by uniaxial anisotropic bispheres

    NASA Astrophysics Data System (ADS)

    Qu, Tan; Wu, Zhensen; Shang, Qingchao; Li, Zhengjun; Wu, Jiaji; Li, Haiying

    2018-04-01

    Within the framework of the generalized multi-particle Mie (GMM) theory, analytical solution to electromagnetic scattering of two interacting homogeneous uniaxial anisotropic spheres by a Laguerre-Gaussian (LG) vortex beam is investigated. The particles with different size and dielectric parameter tensor elements are arbitrarily configured. Based on the continuous boundary conditions at each sphere surface, the interactive scattering coefficients are derived. The internal and near-surface field is investigated to describe the propagation of LG vortex beam through the NaCl crystal. In addition, the far fields of some typical anisotropic medium such as LiNbO3, TiO2 bispheres illuminated by an LG vortex beam are numerically presented in detail to analyze the influence of the anisotropic parameters, sphere positions, separation distance and topological charge etc. The results show that LG vortex beam has a better recovery after interacting with a spherical particle compared with Gaussian beam. The study in the paper are useful for the further research on the scattering and propagation characteristics of arbitrary vortex beam in anisotropic chains and periodic structure.

  2. Structured Laguerre-Gaussian beams for mitigation of spherical aberration in tightly focused regimes

    NASA Astrophysics Data System (ADS)

    Haddadi, S.; Bouzid, O.; Fromager, M.; Hasnaoui, A.; Harfouche, A.; Cagniot, E.; Forbes, A.; Aït-Ameur, K.

    2018-04-01

    Many laser applications utilise a focused laser beam having a single-lobed intensity profile in the focal plane, ideally with the highest possible on-axis intensity. Conventionally, this is achieved with the lowest-order Laguerre-Gaussian mode (LG00), the Gaussian beam, in a tight focusing configuration. However, tight focusing often involves significant spherical aberration due to the high numerical aperture of the systems involved, thus degrading the focal quality. Here, we demonstrate that a high-order radial LG p0 mode can be tailored to meet and in some instances exceed the performance of the Gaussian. We achieve this by phase rectification of the mode using a simple binary diffractive optic. By way of example, we show that the focusing of a rectified LG50 beam is almost insensitive to a spherical aberration coefficient of over three wavelengths, in contrast with the usual Gaussian beam for which the intensity of the focal spot is reduced by a factor of two. This work paves the way towards enhanced focal spots using structured light.

  3. Subluminal group velocity and dispersion of Laguerre Gauss beams in free space.

    PubMed

    Bareza, Nestor D; Hermosa, Nathaniel

    2016-05-27

    That the speed of light in free space c is constant has been a pillar of modern physics since the derivation of Maxwell and in Einstein's postulate in special relativity. This has been a basic assumption in light's various applications. However, a physical beam of light has a finite extent such that even in free space it is by nature dispersive. The field confinement changes its wavevector, hence, altering the light's group velocity vg. Here, we report the subluminal vg and consequently the dispersion in free space of Laguerre-Gauss (LG) beam, a beam known to carry orbital angular momentum. The vg of LG beam, calculated in the paraxial regime, is observed to be inversely proportional to the beam's divergence θ0, the orbital order ℓ and the radial order p. LG beams of higher orders travel relatively slower than that of lower orders. As a consequence, LG beams of different orders separate in the temporal domain along propagation. This is an added effect to the dispersion due to field confinement. Our results are useful for treating information embedded in LG beams from astronomical sources and/or data transmission in free space.

  4. On the construction of recurrence relations for the expansion and connection coefficients in series of Jacobi polynomials

    NASA Astrophysics Data System (ADS)

    Doha, E. H.

    2004-01-01

    Formulae expressing explicitly the Jacobi coefficients of a general-order derivative (integral) of an infinitely differentiable function in terms of its original expansion coefficients, and formulae for the derivatives (integrals) of Jacobi polynomials in terms of Jacobi polynomials themselves are stated. A formula for the Jacobi coefficients of the moments of one single Jacobi polynomial of certain degree is proved. Another formula for the Jacobi coefficients of the moments of a general-order derivative of an infinitely differentiable function in terms of its original expanded coefficients is also given. A simple approach in order to construct and solve recursively for the connection coefficients between Jacobi-Jacobi polynomials is described. Explicit formulae for these coefficients between ultraspherical and Jacobi polynomials are deduced, of which the Chebyshev polynomials of the first and second kinds and Legendre polynomials are important special cases. Two analytical formulae for the connection coefficients between Laguerre-Jacobi and Hermite-Jacobi are developed.

  5. Microwave interferometry technique for obtaining gas interface velocity measurements in an expansion tube facility

    NASA Technical Reports Server (NTRS)

    Laney, C. C., Jr.

    1974-01-01

    A microwave interferometer technique to determine the front interface velocity of a high enthalpy gas flow, is described. The system is designed to excite a standing wave in an expansion tube, and to measure the shift in this standing wave as it is moved by the test gas front. Data, in the form of a varying sinusoidal signal, is recorded on a high-speed drum camera-oscilloscope combination. Measurements of average and incremental velocities in excess of 6,000 meters per second were made.

  6. A hybrid-perturbation-Galerkin technique which combines multiple expansions

    NASA Technical Reports Server (NTRS)

    Geer, James F.; Andersen, Carl M.

    1989-01-01

    A two-step hybrid perturbation-Galerkin method for the solution of a variety of differential equations type problems is found to give better results when multiple perturbation expansions are employed. The method assumes that there is parameter in the problem formulation and that a perturbation method can be sued to construct one or more expansions in this perturbation coefficient functions multiplied by computed amplitudes. In step one, regular and/or singular perturbation methods are used to determine the perturbation coefficient functions. The results of step one are in the form of one or more expansions each expressed as a sum of perturbation coefficient functions multiplied by a priori known gauge functions. In step two the classical Bubnov-Galerkin method uses the perturbation coefficient functions computed in step one to determine a set of amplitudes which replace and improve upon the gauge functions. The hybrid method has the potential of overcoming some of the drawbacks of the perturbation and Galerkin methods as applied separately, while combining some of their better features. The proposed method is applied, with two perturbation expansions in each case, to a variety of model ordinary differential equations problems including: a family of linear two-boundary-value problems, a nonlinear two-point boundary-value problem, a quantum mechanical eigenvalue problem and a nonlinear free oscillation problem. The results obtained from the hybrid methods are compared with approximate solutions obtained by other methods, and the applicability of the hybrid method to broader problem areas is discussed.

  7. Laguerre-Gaussian, Hermite-Gaussian, Bessel-Gaussian, and Finite-Energy Airy Beams Carrying Orbital Angular Momentum in Strongly Nonlocal Nonlinear Media

    NASA Astrophysics Data System (ADS)

    Wu, Zhenkun; Gu, Yuzong

    2016-12-01

    The propagation of two-dimensional beams is analytically and numerically investigated in strongly nonlocal nonlinear media (SNNM) based on the ABCD matrix. The two-dimensional beams reported in this paper are described by the product of the superposition of generalized Laguerre-Gaussian (LG), Hermite-Gaussian (HG), Bessel-Gaussian (BG), and circular Airy (CA) beams, carrying an orbital angular momentum (OAM). Owing to OAM and the modulation of SNNM, we find that the propagation of these two-dimensional beams exhibits complete rotation and periodic inversion: the spatial intensity profile first extends and then diminishes, and during the propagation the process repeats to form a breath-like phenomenon.

  8. Reply to Comment: ‘A novel method for fast and robust estimation of fluorescence decay dynamics using constrained least-square deconvolution with Laguerre expansion’

    NASA Astrophysics Data System (ADS)

    Ma, Dinglong; Liu, Jing; Qi, Jinyi; Marcu, Laura

    2017-02-01

    In this response we underscore that the instrumentation described in the original publication (Liu et al 2012 Phys. Med. Biol. 57 843-65) was based on pulse-sampling technique, while the comment by Zhang et al is based on the assumption that a time-correlated single photon counting (TCSPC) instrumentation was used. Therefore the arguments made in the comment are not applicable to the noise model reported by Liu et al. As reported in the literature (Lakowicz 2006 Principles of Fluorescence Spectroscopy (New York: Springer)), while in the TCSPC the experimental noise can be estimated from Poisson statistics, such an assumption is not valid for pulse-sampling (transient recording) techniques. To further clarify this aspect, we present here a comprehensive noise model describing the signal and noise propagation of the pulse sampling time-resolved fluorescence detection. Experimental data recorded in various conditions are analyzed as a case study to demonstrate the noise model of our instrumental system. In addition, regarding the statement of correcting equation (3) in Liu et al (2012 Phys. Med. Biol. 57 843-65), the notation of discrete time Laguerre function in the original publication was clear and consistent with literature conventions (Marmarelis 1993 Ann. Biomed. Eng. 21 573-89, Westwick and Kearney 2003 Identification of Nonlinear Physiological Systems (Hoboken, NJ: Wiley)). Thus, it does not require revision.

  9. Expansion of transient operating data

    NASA Astrophysics Data System (ADS)

    Chipman, Christopher; Avitabile, Peter

    2012-08-01

    Real time operating data is very important to understand actual system response. Unfortunately, the amount of physical data points typically collected is very small and often interpretation of the data is difficult. Expansion techniques have been developed using traditional experimental modal data to augment this limited set of data. This expansion process allows for a much improved description of the real time operating response. This paper presents the results from several different structures to show the robustness of the technique. Comparisons are made to a more complete set of measured data to validate the approach. Both analytical simulations and actual experimental data are used to illustrate the usefulness of the technique.

  10. Diagnosis of vulnerable atherosclerotic plaques by time-resolved fluorescence spectroscopy and ultrasound imaging.

    PubMed

    Jo, J A; Fang, Q; Papaioannou, T; Qiao, J H; Fishbein, M C; Beseth, B; Dorafshar, A H; Reil, T; Baker, D; Freischlag, J; Shung, K K; Sun, L; Marcu, L

    2006-01-01

    In this study, time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) and ultrasonography were applied to detect vulnerable (high-risk) atherosclerotic plaque. A total of 813 TR-LIFS measurements were taken from carotid plaques of 65 patients, and subsequently analyzed using the Laguerre deconvolution technique. The investigated spots were classified by histopathology as thin, fibrotic, calcified, low-inflamed, inflamed and necrotic lesions. Spectral and time-resolved parameters (normalized intensity values and Laguerre expansion coefficients) were extracted from the TR-LIFS data. Feature selection for classification was performed by either analysis of variance (ANOVA) or principal component analysis (PCA). A stepwise linear discriminant analysis algorithm was developed for detecting inflamed and necrotic lesion, representing the most vulnerable plaques. These vulnerable plaques were detected with high sensitivity (>80%) and specificity (>90%). Ultrasound (US) imaging was obtained in 4 carotid plaques in addition to TR-LIFS examination. Preliminary results indicate that US provides important structural information of the plaques that could be combined with the compositional information obtained by TR-LIFS, to obtain a more accurate diagnosis of vulnerable atherosclerotic plaque.

  11. Hollow screw-like drill in plasma using an intense Laguerre-Gaussian laser

    NASA Astrophysics Data System (ADS)

    Wang, Wenpeng; Shen, Baifei; Zhang, Xiaomei; Zhang, Lingang; Shi, Yin; Xu, Zhizhan

    2015-02-01

    With the development of ultra-intense laser technology, MeV ions can be obtained from laser-foil interactions in the laboratory. These energetic ion beams can be applied in fast ignition for inertial confinement fusion, medical therapy, and proton imaging. However, these ions are mainly accelerated in the laser propagation direction. Ion acceleration in an azimuthal orientation was scarcely studied. In this research, a doughnut Laguerre-Gaussian (LG) laser is used for the first time to examine laser-plasma interaction in the relativistic intensity regime in three-dimensional particle-in-cell simulations. Studies have shown that a novel rotation of the plasma is produced from the hollow screw-like drill of an mode laser. The angular momentum of particles in the longitudinal direction produced by the LG laser is enhanced compared with that produced by the usual laser pulses, such as linearly and circularly polarized Gaussian pulses. Moreover, the particles (including electrons and ions) can be trapped and uniformly compressed in the dark central minimum of the doughnut LG pulse. The hollow-structured LG laser has potential applications in the generation of x-rays with orbital angular momentum, plasma accelerators, fast ignition for inertial confinement fusion, and pulsars in the astrophysical environment.

  12. Hollow screw-like drill in plasma using an intense Laguerre-Gaussian laser.

    PubMed

    Wang, Wenpeng; Shen, Baifei; Zhang, Xiaomei; Zhang, Lingang; Shi, Yin; Xu, Zhizhan

    2015-02-05

    With the development of ultra-intense laser technology, MeV ions can be obtained from laser-foil interactions in the laboratory. These energetic ion beams can be applied in fast ignition for inertial confinement fusion, medical therapy, and proton imaging. However, these ions are mainly accelerated in the laser propagation direction. Ion acceleration in an azimuthal orientation was scarcely studied. In this research, a doughnut Laguerre-Gaussian (LG) laser is used for the first time to examine laser-plasma interaction in the relativistic intensity regime in three-dimensional particle-in-cell simulations. Studies have shown that a novel rotation of the plasma is produced from the hollow screw-like drill of an mode laser. The angular momentum of particles in the longitudinal direction produced by the LG laser is enhanced compared with that produced by the usual laser pulses, such as linearly and circularly polarized Gaussian pulses. Moreover, the particles (including electrons and ions) can be trapped and uniformly compressed in the dark central minimum of the doughnut LG pulse. The hollow-structured LG laser has potential applications in the generation of x-rays with orbital angular momentum, plasma accelerators, fast ignition for inertial confinement fusion, and pulsars in the astrophysical environment.

  13. Rational approximation to e to the -x power with negative poles

    NASA Technical Reports Server (NTRS)

    Cuthill, E.

    1977-01-01

    MACSYMA was applied to the generation of an expansion in terms of Laguerre polynomials to obtain approximations to e to the -x power on 0, infinity. These approximations are compared with those developed by Saff, Schonhage, and Varga.

  14. Shear Recovery Accuracy in Weak-Lensing Analysis with the Elliptical Gauss-Laguerre Method

    NASA Astrophysics Data System (ADS)

    Nakajima, Reiko; Bernstein, Gary

    2007-04-01

    We implement the elliptical Gauss-Laguerre (EGL) galaxy-shape measurement method proposed by Bernstein & Jarvis and quantify the shear recovery accuracy in weak-lensing analysis. This method uses a deconvolution fitting scheme to remove the effects of the point-spread function (PSF). The test simulates >107 noisy galaxy images convolved with anisotropic PSFs and attempts to recover an input shear. The tests are designed to be immune to statistical (random) distributions of shapes, selection biases, and crowding, in order to test more rigorously the effects of detection significance (signal-to-noise ratio [S/N]), PSF, and galaxy resolution. The systematic error in shear recovery is divided into two classes, calibration (multiplicative) and additive, with the latter arising from PSF anisotropy. At S/N > 50, the deconvolution method measures the galaxy shape and input shear to ~1% multiplicative accuracy and suppresses >99% of the PSF anisotropy. These systematic errors increase to ~4% for the worst conditions, with poorly resolved galaxies at S/N simeq 20. The EGL weak-lensing analysis has the best demonstrated accuracy to date, sufficient for the next generation of weak-lensing surveys.

  15. Backscattering enhancement factor dependence of a Laguerre-Gaussian laser beam propagating on the location path in the atmosphere on optical turbulence intensity

    NASA Astrophysics Data System (ADS)

    Rytchkov, D. S.

    2017-11-01

    The paper presents the results of a study of the backscattering enhancement factor (BSE) dependence of vortex LaguerreGaussian beams propagating on monostatic location paths in the atmosphere on optical turbulence intensity. The numeric simulation split-step method of laser beam propagation was used to obtain BSE factor values of a laser beam propagated on monostatic location path in the turbulent atmosphere and reflected from a diffuse target. It is shown that BSE factor of the averaged intensity of a backscattered vortex laser beam of any topological charge is less than BSE factor values of backscattered Gaussian beam in arbitrary turbulent conditions.

  16. Acceleration and evolution of a hollow electron beam in wakefields driven by a Laguerre-Gaussian laser pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Guo-Bo; College of Science, National University of Defense Technology, Changsha 410073; Chen, Min, E-mail: minchen@sjtu.edu.cn, E-mail: yanyunma@126.com

    2016-03-15

    We show that a ring-shaped hollow electron beam can be injected and accelerated by using a Laguerre-Gaussian laser pulse and ionization-induced injection in a laser wakefield accelerator. The acceleration and evolution of such a hollow, relativistic electron beam are investigated through three-dimensional particle-in-cell simulations. We find that both the ring size and the beam thickness oscillate during the acceleration. The beam azimuthal shape is angularly dependent and evolves during the acceleration. The beam ellipticity changes resulting from the electron angular momenta obtained from the drive laser pulse and the focusing forces from the wakefield. The dependence of beam ring radiusmore » on the laser-plasma parameters (e.g., laser intensity, focal size, and plasma density) is studied. Such a hollow electron beam may have potential applications for accelerating and collimating positively charged particles.« less

  17. The Effects of Expansions, Questions and Cloze Procedures on Children's Conversational Skills

    ERIC Educational Resources Information Center

    Wong, Tze-Peng; Moran, Catherine; Foster-Cohen, Susan

    2012-01-01

    The effectiveness of expansion as a technique for facilitating children's language and conversational skills is well known (Scherer and Olswang, 1984). Expansion, however, can appear alone or in combination with other techniques. Using a repeated measures design, this study aimed to compare the effects of expansion alone (EA); expansion combined…

  18. Acceleration of on-axis and ring-shaped electron beams in wakefields driven by Laguerre-Gaussian pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Guo-Bo; Key Laboratory for Laser Plasmas; Chen, Min, E-mail: minchen@sjtu.edu.cn, E-mail: yanyunma@126.com

    2016-03-14

    The acceleration of electron beams with multiple transverse structures in wakefields driven by Laguerre-Gaussian pulses has been studied through three-dimensional (3D) particle-in-cell simulations. Under different laser-plasma conditions, the wakefield shows different transverse structures. In general cases, the wakefield shows a donut-like structure and it accelerates the ring-shaped hollow electron beam. When a lower plasma density or a smaller laser spot size is used, besides the donut-like wakefield, a central bell-like wakefield can also be excited. The wake sets in the center of the donut-like wake. In this case, both a central on-axis electron beam and a ring-shaped electron beam aremore » simultaneously accelerated. Further, reducing the plasma density or laser spot size leads to an on-axis electron beam acceleration only. The research is beneficial for some potential applications requiring special pulse beam structures, such as positron acceleration and collimation.« less

  19. Strain expansion-reduction approach

    NASA Astrophysics Data System (ADS)

    Baqersad, Javad; Bharadwaj, Kedar

    2018-02-01

    Validating numerical models are one of the main aspects of engineering design. However, correlating million degrees of freedom of numerical models to the few degrees of freedom of test models is challenging. Reduction/expansion approaches have been traditionally used to match these degrees of freedom. However, the conventional reduction/expansion approaches are only limited to displacement, velocity or acceleration data. While in many cases only strain data are accessible (e.g. when a structure is monitored using strain-gages), the conventional approaches are not capable of expanding strain data. To bridge this gap, the current paper outlines a reduction/expansion technique to reduce/expand strain data. In the proposed approach, strain mode shapes of a structure are extracted using the finite element method or the digital image correlation technique. The strain mode shapes are used to generate a transformation matrix that can expand the limited set of measurement data. The proposed approach can be used to correlate experimental and analytical strain data. Furthermore, the proposed technique can be used to expand real-time operating data for structural health monitoring (SHM). In order to verify the accuracy of the approach, the proposed technique was used to expand the limited set of real-time operating data in a numerical model of a cantilever beam subjected to various types of excitations. The proposed technique was also applied to expand real-time operating data measured using a few strain gages mounted to an aluminum beam. It was shown that the proposed approach can effectively expand the strain data at limited locations to accurately predict the strain at locations where no sensors were placed.

  20. Expansion-based passive ranging

    NASA Technical Reports Server (NTRS)

    Barniv, Yair

    1993-01-01

    A new technique of passive ranging which is based on utilizing the image-plane expansion experienced by every object as its distance from the sensor decreases is described. This technique belongs in the feature/object-based family. The motion and shape of a small window, assumed to be fully contained inside the boundaries of some object, is approximated by an affine transformation. The parameters of the transformation matrix are derived by initially comparing successive images, and progressively increasing the image time separation so as to achieve much larger triangulation baseline than currently possible. Depth is directly derived from the expansion part of the transformation. To a first approximation, image-plane expansion is independent of image-plane location with respect to the focus of expansion (FOE) and of platform maneuvers. Thus, an expansion-based method has the potential of providing a reliable range in the difficult image area around the FOE. In areas far from the FOE the shift parameters of the affine transformation can provide more accurate depth information than the expansion alone, and can thus be used similarly to the way they were used in conjunction with the Inertial Navigation Unit (INU) and Kalman filtering. However, the performance of a shift-based algorithm, when the shifts are derived from the affine transformation, would be much improved compared to current algorithms because the shifts - as well as the other parameters - can be obtained between widely separated images. Thus, the main advantage of this new approach is that, allowing the tracked window to expand and rotate, in addition to moving laterally, enables one to correlate images over a very long time span which, in turn, translates into a large spatial baseline - resulting in a proportionately higher depth accuracy.

  1. Expansion-based passive ranging

    NASA Technical Reports Server (NTRS)

    Barniv, Yair

    1993-01-01

    This paper describes a new technique of passive ranging which is based on utilizing the image-plane expansion experienced by every object as its distance from the sensor decreases. This technique belongs in the feature/object-based family. The motion and shape of a small window, assumed to be fully contained inside the boundaries of some object, is approximated by an affine transformation. The parameters of the transformation matrix are derived by initially comparing successive images, and progressively increasing the image time separation so as to achieve much larger triangulation baseline than currently possible. Depth is directly derived from the expansion part of the transformation. To a first approximation, image-plane expansion is independent of image-plane location with respect to the focus of expansion (FOE) and of platform maneuvers. Thus, an expansion-based method has the potential of providing a reliable range in the difficult image area around the FOE. In areas far from the FOE the shift parameters of the affine transformation can provide more accurate depth information than the expansion alone, and can thus be used similarly to the way they have been used in conjunction with the Inertial Navigation Unit (INU) and Kalman filtering. However, the performance of a shift-based algorithm, when the shifts are derived from the affine transformation, would be much improved compared to current algorithms because the shifts--as well as the other parameters--can be obtained between widely separated images. Thus, the main advantage of this new approach is that, allowing the tracked window to expand and rotate, in addition to moving laterally, enables one to correlate images over a very long time span which, in turn, translates into a large spatial baseline resulting in a proportionately higher depth accuracy.

  2. Outcome of 122 delayed breast reconstruction following post-mastectomy radiotherapy: The scarless latissimus dorsi flap with tissue expansion technique.

    PubMed

    de Runz, A; Boccara, D; Bekara, F; Chaouat, M; Mimoun, M

    2017-02-01

    Delayed breast reconstruction with tissue expansion may be risky after radiotherapy, due to the poor skin quality. To permit the use of the tissue expansion procedure, we propose a scarless latissimus dorsi flap to bring tissue trophicity, by a healthy vascularized muscular interface with no donor scar and no patch effect. The objective of this study is to assess the outcome of the tissue expansion technique with scarless latissimus dorsi flap after post-mastectomy radiotherapy. All the patients who had benefited of a delayed breast reconstruction after radiotherapy using tissue expansion technique with scarless latissimus dorsi flap, between January 2000 and January 2013, were reviewed. The exclusion criteria were: prior breast reconstruction, or interruption of breast reconstruction procedure due to active metastatic disease requiring ongoing oncological treatment. The complications were identified: failures of reconstruction, implant exposure, wound dehiscence, capsular contracture, deflation of implant, hematoma, infection, and skin necrosis. One hundred and twenty-two breasts were reviewed. The average time between the flap and the expander intervention was: 194±114 SD (28-1051) days. The mean volume of inserted expander was 633±111 SD (350-1100) mL and the mean inflation volume was 578±190 SD (170-1160) mL. The average time between insertion of the expander and insertion of the permanent implant was 132±76 SD (49-683) days. The mean inflation of the implant volume was 368±105 SD (130-620) mL. Forty patients developed at least one complication. The most common complication was the appearance of a capsular contracture requiring a capsulectomy: 11 (9.2%) with permanent implants and 6 (4.9%) with expander. Deflation of implants occurred with six permanent implants and with one expander. There were 3 breast reconstructions failures (two infections and one exposure of implants). This procedure offers the advantages that there is no unattractive scar, and

  3. Terahertz radiation generation through the nonlinear interaction of Hermite and Laguerre Gaussian laser beams with collisional plasma: Field profile optimization

    NASA Astrophysics Data System (ADS)

    Safari, Samaneh; Niknam, Ali Reza; Jahangiri, Fazel; Jazi, Bahram

    2018-04-01

    The nonlinear interaction of Hermite-Gaussian and Laguerre-Gaussian (LG) laser beams with a collisional inhomogeneous plasma is studied, and the amplitude of the emitted terahertz (THz) electric field is evaluated. The effects of laser beams and plasma parameters, including the beams width, LG modes, the plasma collision frequency, and the amplitude of density ripple on the evolution of THz electric field amplitude, are examined. It is found that the shape of the generated THz radiation pattern can be tuned by the laser parameters. In addition, the optimum values of the effective parameters for achieving the maximum THz electric field amplitude are proposed. It is shown that a significant enhancement up to 4.5% can be obtained in our scheme, which is much greater than the maximum efficiency obtained for laser beams with the same profiles.

  4. The Gibbs Phenomenon for Series of Orthogonal Polynomials

    ERIC Educational Resources Information Center

    Fay, T. H.; Kloppers, P. Hendrik

    2006-01-01

    This note considers the four classes of orthogonal polynomials--Chebyshev, Hermite, Laguerre, Legendre--and investigates the Gibbs phenomenon at a jump discontinuity for the corresponding orthogonal polynomial series expansions. The perhaps unexpected thing is that the Gibbs constant that arises for each class of polynomials appears to be the same…

  5. Electric and magnetic polarization singularities of first-order Laguerre-Gaussian beams diffracted at a half-plane screen.

    PubMed

    Luo, Yamei; Gao, Zenghui; Tang, Bihua; Lü, Baida

    2013-08-01

    Based on the vector Fresnel diffraction integrals, analytical expressions for the electric and magnetic components of first-order Laguerre-Gaussian beams diffracted at a half-plane screen are derived and used to study the electric and magnetic polarization singularities in the diffraction field for both two- and three-dimensional (2D and 3D) cases. It is shown that there exist 2D and 3D electric and magnetic polarization singularities in the diffraction field, which do not coincide each other in general. By suitably varying the waist width ratio, off-axis displacement parameter, amplitude ratio, or propagation distance, the motion, pair-creation, and annihilation of circular polarization singularities, and the motion of linear polarization singularities take place in 2D and 3D electric and magnetic fields. The V point, at which two circular polarization singularities with the same topological charge but opposite handedness collide, appears in the 2D electric field under certain conditions in the diffraction field and free-space propagation. A comparison with the free-space propagation is also made.

  6. Pressurized electrolysis stack with thermal expansion capability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bourgeois, Richard Scott

    The present techniques provide systems and methods for mounting an electrolyzer stack in an outer shell so as to allow for differential thermal expansion of the electrolyzer stack and shell. Generally, an electrolyzer stack may be formed from a material with a high coefficient of thermal expansion, while the shell may be formed from a material having a lower coefficient of thermal expansion. The differences between the coefficients of thermal expansion may lead to damage to the electrolyzer stack as the shell may restrain the thermal expansion of the electrolyzer stack. To allow for the differences in thermal expansion, themore » electrolyzer stack may be mounted within the shell leaving a space between the electrolyzer stack and shell. The space between the electrolyzer stack and the shell may be filled with a non-conductive fluid to further equalize pressure inside and outside of the electrolyzer stack.« less

  7. Nonparametric Model of Smooth Muscle Force Production During Electrical Stimulation.

    PubMed

    Cole, Marc; Eikenberry, Steffen; Kato, Takahide; Sandler, Roman A; Yamashiro, Stanley M; Marmarelis, Vasilis Z

    2017-03-01

    A nonparametric model of smooth muscle tension response to electrical stimulation was estimated using the Laguerre expansion technique of nonlinear system kernel estimation. The experimental data consisted of force responses of smooth muscle to energy-matched alternating single pulse and burst current stimuli. The burst stimuli led to at least a 10-fold increase in peak force in smooth muscle from Mytilus edulis, despite the constant energy constraint. A linear model did not fit the data. However, a second-order model fit the data accurately, so the higher-order models were not required to fit the data. Results showed that smooth muscle force response is not linearly related to the stimulation power.

  8. 36 CFR 72.42 - Expansion and new development.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., Rehabilitation and Innovation § 72.42 Expansion and new development. (a) Expansion. Because the UPARR Program is... development will not be assisted under a rehabilitation grant. (2) Innovation. New development may be allowed under an Innovation grant when it is directly related to a specific innovative idea or technique...

  9. 36 CFR 72.42 - Expansion and new development.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., Rehabilitation and Innovation § 72.42 Expansion and new development. (a) Expansion. Because the UPARR Program is... development will not be assisted under a rehabilitation grant. (2) Innovation. New development may be allowed under an Innovation grant when it is directly related to a specific innovative idea or technique...

  10. 36 CFR 72.42 - Expansion and new development.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., Rehabilitation and Innovation § 72.42 Expansion and new development. (a) Expansion. Because the UPARR Program is... development will not be assisted under a rehabilitation grant. (2) Innovation. New development may be allowed under an Innovation grant when it is directly related to a specific innovative idea or technique...

  11. 36 CFR 72.42 - Expansion and new development.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., Rehabilitation and Innovation § 72.42 Expansion and new development. (a) Expansion. Because the UPARR Program is... development will not be assisted under a rehabilitation grant. (2) Innovation. New development may be allowed under an Innovation grant when it is directly related to a specific innovative idea or technique...

  12. New operational matrices for solving fractional differential equations on the half-line.

    PubMed

    Bhrawy, Ali H; Taha, Taha M; Alzahrani, Ebraheem O; Alzahrani, Ebrahim O; Baleanu, Dumitru; Alzahrani, Abdulrahim A

    2015-01-01

    In this paper, the fractional-order generalized Laguerre operational matrices (FGLOM) of fractional derivatives and fractional integration are derived. These operational matrices are used together with spectral tau method for solving linear fractional differential equations (FDEs) of order ν (0 < ν < 1) on the half line. An upper bound of the absolute errors is obtained for the approximate and exact solutions. Fractional-order generalized Laguerre pseudo-spectral approximation is investigated for solving nonlinear initial value problem of fractional order ν. The extension of the fractional-order generalized Laguerre pseudo-spectral method is given to solve systems of FDEs. We present the advantages of using the spectral schemes based on fractional-order generalized Laguerre functions and compare them with other methods. Several numerical examples are implemented for FDEs and systems of FDEs including linear and nonlinear terms. We demonstrate the high accuracy and the efficiency of the proposed techniques.

  13. New Operational Matrices for Solving Fractional Differential Equations on the Half-Line

    PubMed Central

    2015-01-01

    In this paper, the fractional-order generalized Laguerre operational matrices (FGLOM) of fractional derivatives and fractional integration are derived. These operational matrices are used together with spectral tau method for solving linear fractional differential equations (FDEs) of order ν (0 < ν < 1) on the half line. An upper bound of the absolute errors is obtained for the approximate and exact solutions. Fractional-order generalized Laguerre pseudo-spectral approximation is investigated for solving nonlinear initial value problem of fractional order ν. The extension of the fractional-order generalized Laguerre pseudo-spectral method is given to solve systems of FDEs. We present the advantages of using the spectral schemes based on fractional-order generalized Laguerre functions and compare them with other methods. Several numerical examples are implemented for FDEs and systems of FDEs including linear and nonlinear terms. We demonstrate the high accuracy and the efficiency of the proposed techniques. PMID:25996369

  14. Using digital image correlation and three dimensional point tracking in conjunction with real time operating data expansion techniques to predict full-field dynamic strain

    NASA Astrophysics Data System (ADS)

    Avitabile, Peter; Baqersad, Javad; Niezrecki, Christopher

    2014-05-01

    Large structures pose unique difficulties in the acquisition of measured dynamic data with conventional techniques that are further complicated when the structure also has rotating members such as wind turbine blades and helicopter blades. Optical techniques (digital image correlation and dynamic point tracking) are used to measure line of sight data without the need to contact the structure, eliminating cumbersome cabling issues. The data acquired from these optical approaches are used in conjunction with a unique real time operating data expansion process to obtain full-field dynamic displacement and dynamic strain. The measurement approaches are described in this paper along with the expansion procedures. The data is collected for a single blade from a wind turbine and also for a three bladed assembled wind turbine configuration. Measured strains are compared to results from a limited set of optical measurements used to perform the expansion to obtain full-field strain results including locations that are not available from the line of sight measurements acquired. The success of the approach clearly shows that there are some very extraordinary possibilities that exist to provide very desperately needed full field displacement and strain information that can be used to help identify the structural health of structures.

  15. Predicting full-field dynamic strain on a three-bladed wind turbine using three dimensional point tracking and expansion techniques

    NASA Astrophysics Data System (ADS)

    Baqersad, Javad; Niezrecki, Christopher; Avitabile, Peter

    2014-03-01

    As part of a project to predict the full-field dynamic strain in rotating structures (e.g. wind turbines and helicopter blades), an experimental measurement was performed on a wind turbine attached to a 500-lb steel block and excited using a mechanical shaker. In this paper, the dynamic displacement of several optical targets mounted to a turbine placed in a semi-built-in configuration was measured by using three-dimensional point tracking. Using an expansion algorithm in conjunction with a finite element model of the blades, the measured displacements were expanded to all finite element degrees of freedom. The calculated displacements were applied to the finite element model to extract dynamic strain on the surface as well as within the interior points of the structure. To validate the technique for dynamic strain prediction, the physical strain at eight locations on the blades was measured during excitation using strain-gages. The expansion was performed by using both structural modes of an individual cantilevered blade and using modes of the entire structure (three-bladed wind turbine and the fixture) and the predicted strain was compared to the physical strain-gage measurements. The results demonstrate the ability of the technique to predict full-field dynamic strain from limited sets of measurements and can be used as a condition based monitoring tool to help provide damage prognosis of structures during operation.

  16. Hartree-Fock implementation using a Laguerre-based wave function for the ground state and correlation energies of two-electron atoms.

    PubMed

    King, Andrew W; Baskerville, Adam L; Cox, Hazel

    2018-03-13

    An implementation of the Hartree-Fock (HF) method using a Laguerre-based wave function is described and used to accurately study the ground state of two-electron atoms in the fixed nucleus approximation, and by comparison with fully correlated (FC) energies, used to determine accurate electron correlation energies. A variational parameter A is included in the wave function and is shown to rapidly increase the convergence of the energy. The one-electron integrals are solved by series solution and an analytical form is found for the two-electron integrals. This methodology is used to produce accurate wave functions, energies and expectation values for the helium isoelectronic sequence, including at low nuclear charge just prior to electron detachment. Additionally, the critical nuclear charge for binding two electrons within the HF approach is calculated and determined to be Z HF C =1.031 177 528.This article is part of the theme issue 'Modern theoretical chemistry'. © 2018 The Author(s).

  17. Off-diagonal series expansion for quantum partition functions

    NASA Astrophysics Data System (ADS)

    Hen, Itay

    2018-05-01

    We derive an integral-free thermodynamic perturbation series expansion for quantum partition functions which enables an analytical term-by-term calculation of the series. The expansion is carried out around the partition function of the classical component of the Hamiltonian with the expansion parameter being the strength of the off-diagonal, or quantum, portion. To demonstrate the usefulness of the technique we analytically compute to third order the partition functions of the 1D Ising model with longitudinal and transverse fields, and the quantum 1D Heisenberg model.

  18. Boson expansions based on the random phase approximation representation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pedrocchi, V.G.; Tamura, T.

    1984-04-01

    A new boson expansion theory based on the random phase approximation is presented. The boson expansions are derived here directly in the random phase approximation representation with the help of a technique that combines the use of the Usui operator with that of a new bosonization procedure, called the term-by-term bosonization method. The present boson expansion theory is constructed by retaining a single collective quadrupole random phase approximation component, a truncation that allows for a perturbative treatment of the whole problem. Both Hermitian, as well as non-Hermitian boson expansions, valid for even nuclei, are obtained.

  19. On Partial Fraction Expansion with Multiple Poles. Classroom Notes

    ERIC Educational Resources Information Center

    Hou, Shui-Hung; Hou, Edwin Sui-Hoi

    2004-01-01

    A simple and novel method for evaluating the partial fraction expansion of proper rational functions is presented. The technique involves simultaneous determination of the partial fraction coefficients associated with each of the multiple poles in the expansion in turn. Only synthetic division is required, which makes the process very suitable for…

  20. The investigation of trapped thickness shear modes in a contoured AT-cut quartz plate using the power series expansion technique

    NASA Astrophysics Data System (ADS)

    Li, Peng; Jin, Feng

    2018-01-01

    The dynamic model about the anti-plane vibration of a contoured quartz plate with thickness changing continuously is established by ignoring the effect of small elastic constant c 56. The governing equation is solved using the power series expansion technique, and the trapped thickness shear modes caused by bulge thickness are revealed. Theoretically, the proposed method is more general, which can be capable of handling various thickness profiles defined mathematically. After the convergence of the series is demonstrated and the correctness is numerically validated with the aid of finite element method results, systematic parametric studies are subsequently carried out to quantify the effects of the geometry parameter upon the trapped modes, including resonant frequency and mode shape. After that, the band structures of thickness shear waves propagation in a periodically contoured quartz plate, as well as the power transmission spectra, are obtained based on the power series expansion technique. It is revealed that broad stop bands below cut-off frequency exist owing to the trapped modes excited by the geometry inhomogeneity, which has little relationship with the structural periodicity, and its physical mechanism is different from the Bragg scattering effect. The outcome is widely applicable, and can be utilized to provide theoretical and practical guidance for the design and manufacturing of quartz resonators and wave filters.

  1. Excitation of high-radial-order Laguerre-Gaussian modes in a solid-state laser using a lower-loss digitally controlled amplitude mask

    NASA Astrophysics Data System (ADS)

    Bell, T.; Hasnaoui, A.; Ait-Ameur, K.; Ngcobo, S.

    2017-10-01

    In this paper we experimentally demonstrate selective excitation of high-radial-order Laguerre-Gaussian (LG p or LG{}p,0) modes with radial order p = 1-4 and azimuthal order l = 0 using a diode-pump solid-state laser (DPSSL) that is digitally controlled by a spatial light modulator (SLM). We encoded an amplitude mask containing p-absorbing rings, of various incompleteness (segmented) on grey-scale computer-generated digital holograms, and displayed them on an SLM which acted as an end mirror of the diode-pumped solid-state digital laser. The various incomplete (α) p-absorbing rings were digitally encoded to match the zero-intensity nulls of the desired LG p mode. We show that the creation of LG p , for p = 1 to p = 4, only requires an incomplete circular p-absorbing ring that has a completeness of ≈37.5%, giving the DPSSL resonator a lower pump threshold power while maintaining the same laser characteristics (such as beam propagation properties).

  2. Hole expansion test of third generation steels

    NASA Astrophysics Data System (ADS)

    Agirre, Julen; Mendiguren, Joseba; Galdos, Lander; de Argandoña, Eneko Sáenz

    2017-10-01

    The trend towards the implementation of new materials in the chassis of the automobiles is considerably making more complex the manufacturing of the components that built it up. In this scenario materials with higher strengths and lower formabilities are daily faced by tool makers and component producers what reduces the process windows and makes the forming processes to be in the limits of the materials. One of the concerns that tool makers must face during the definition of the tools is the expansion ratios that the holes in the sheet may reach before producing a breakage due to the stretching of the material (also known as edge cracks). For the characterization of such limits, a standard test, the hole expansion test, can be applied so that the limits of the material are known. At the present study, hole expansion tests of a third generation steel, Fortiform1050 with a thickness of 1.2 millimeters have been carried out and compared them to a mild steel, DX54D with a thickness of 0.6 millimeters. A comparison for each material in terms of technology used to punch the hole, mechanical punching vs laser cutting has also been conducted. In addition, the measurement technique (online measurement vs offline measurement) followed in the Hole Expansion Ratio (HER) identification has also been analyzed. Finally, differences between both materials and techniques are presented.

  3. Quantification of OH and HO2 radicals during the low-temperature oxidation of hydrocarbons by Fluorescence Assay by Gas Expansion technique

    PubMed Central

    Blocquet, Marion; Schoemaecker, Coralie; Amedro, Damien; Herbinet, Olivier; Battin-Leclerc, Frédérique; Fittschen, Christa

    2013-01-01

    •OH and •HO2 radicals are known to be the key species in the development of ignition. A direct measurement of these radicals under low-temperature oxidation conditions (T = 550–1,000 K) has been achieved by coupling a technique named fluorescence assay by gas expansion, an experimental technique designed for the quantification of these radicals in the free atmosphere, to a jet-stirred reactor, an experimental device designed for the study of low-temperature combustion chemistry. Calibration allows conversion of relative fluorescence signals to absolute mole fractions. Such radical mole fraction profiles will serve as a benchmark for testing chemical models developed to improve the understanding of combustion processes. PMID:24277836

  4. Coherent superposition of propagation-invariant laser beams

    NASA Astrophysics Data System (ADS)

    Soskind, R.; Soskind, M.; Soskind, Y. G.

    2012-10-01

    The coherent superposition of propagation-invariant laser beams represents an important beam-shaping technique, and results in new beam shapes which retain the unique property of propagation invariance. Propagation-invariant laser beam shapes depend on the order of the propagating beam, and include Hermite-Gaussian and Laguerre-Gaussian beams, as well as the recently introduced Ince-Gaussian beams which additionally depend on the beam ellipticity parameter. While the superposition of Hermite-Gaussian and Laguerre-Gaussian beams has been discussed in the past, the coherent superposition of Ince-Gaussian laser beams has not received significant attention in literature. In this paper, we present the formation of propagation-invariant laser beams based on the coherent superposition of Hermite-Gaussian, Laguerre-Gaussian, and Ince-Gaussian beams of different orders. We also show the resulting field distributions of the superimposed Ince-Gaussian laser beams as a function of the ellipticity parameter. By changing the beam ellipticity parameter, we compare the various shapes of the superimposed propagation-invariant laser beams transitioning from Laguerre-Gaussian beams at one ellipticity extreme to Hermite-Gaussian beams at the other extreme.

  5. Off-diagonal expansion quantum Monte Carlo

    NASA Astrophysics Data System (ADS)

    Albash, Tameem; Wagenbreth, Gene; Hen, Itay

    2017-12-01

    We propose a Monte Carlo algorithm designed to simulate quantum as well as classical systems at equilibrium, bridging the algorithmic gap between quantum and classical thermal simulation algorithms. The method is based on a decomposition of the quantum partition function that can be viewed as a series expansion about its classical part. We argue that the algorithm not only provides a theoretical advancement in the field of quantum Monte Carlo simulations, but is optimally suited to tackle quantum many-body systems that exhibit a range of behaviors from "fully quantum" to "fully classical," in contrast to many existing methods. We demonstrate the advantages, sometimes by orders of magnitude, of the technique by comparing it against existing state-of-the-art schemes such as path integral quantum Monte Carlo and stochastic series expansion. We also illustrate how our method allows for the unification of quantum and classical thermal parallel tempering techniques into a single algorithm and discuss its practical significance.

  6. Off-diagonal expansion quantum Monte Carlo.

    PubMed

    Albash, Tameem; Wagenbreth, Gene; Hen, Itay

    2017-12-01

    We propose a Monte Carlo algorithm designed to simulate quantum as well as classical systems at equilibrium, bridging the algorithmic gap between quantum and classical thermal simulation algorithms. The method is based on a decomposition of the quantum partition function that can be viewed as a series expansion about its classical part. We argue that the algorithm not only provides a theoretical advancement in the field of quantum Monte Carlo simulations, but is optimally suited to tackle quantum many-body systems that exhibit a range of behaviors from "fully quantum" to "fully classical," in contrast to many existing methods. We demonstrate the advantages, sometimes by orders of magnitude, of the technique by comparing it against existing state-of-the-art schemes such as path integral quantum Monte Carlo and stochastic series expansion. We also illustrate how our method allows for the unification of quantum and classical thermal parallel tempering techniques into a single algorithm and discuss its practical significance.

  7. Modified expansive open-door laminoplasty technique improved postoperative neck pain and cervical range of motion.

    PubMed

    Yeh, Kuang-Ting; Chen, Ing-Ho; Yu, Tzai-Chiu; Liu, Kuan-Lin; Peng, Cheng-Huan; Wang, Jen-Hung; Lee, Ru-Ping; Wu, Wen-Tien

    2015-12-01

    Expansive open-door laminoplasty (EOLP) is a useful technique for multiple-level cervical spondylotic myelopathy. The common postoperative complications of EOLP include moderate to severe neck pain, loss of cervical lordosis, decrease of cervical range of motion, and C5 palsy. We modified the surgical technique to lessen these complications. This study is aimed to elucidate the efficacy of modified techniques to lessen the complications of traditional procedures. We collected data from 126 consecutive patients treated at our institution between August 2008 and December 2012. Of these, 66 patients underwent conventional EOLP (CEOLP) and the other 60 patients underwent modified EOLP (MEOLP). The demographic and preoperative data, axial pain visual analog scale scores at 2 weeks and 3 months postoperatively, clinical outcomes evaluated using Nurick score and Japanese Orthopedic Association recovery rate at 12 months postoperatively, and radiographic results assessed using plain films at 3 months and 12 months postoperatively for both groups were compared and analyzed. There were no significant differences regarding the preoperative condition between the CEOLP and MEOLP groups (p > 0.05). The Japanese Orthopedic Association recovery rate of the MEOLP group was 70.3%, comparable to the result of the other group (70.2%). Postoperative axial neck pain, loss of range of motion, and loss of lordosis of cervical curvature decreased significantly in the MEOLP group (p < 0.05). The complications of temporary C5 nerve palsy found in the CEOLP group did not exist in the MEOLP group. MEOLP is a minimally invasive surgical method to treat multiple-level cervical spondylotic myelopathy, which decreases postoperative complications effectively. Copyright © 2014. Published by Elsevier B.V.

  8. Electric Grid Expansion Planning with High Levels of Variable Generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hadley, Stanton W.; You, Shutang; Shankar, Mallikarjun

    2016-02-01

    distance in the EI system. Incorporating more details of renewables in expansion planning will inevitably increase the computational burden. Therefore, high performance computing (HPC) techniques are urgently needed for power system operation and planning optimization. As a scoping study task, this project tested some preliminary parallel computation techniques such as breaking down the simulation task into several sub-tasks based on chronology splitting or sample splitting, and then assigning these sub-tasks to different cores. Testing results show significant time reduction when a simulation task is split into several sub-tasks for parallel execution.« less

  9. Mapping Brazilian Cropland Expansion, 2000-2013

    NASA Astrophysics Data System (ADS)

    Zalles, V.; Hansen, M.; Potapov, P.

    2016-12-01

    Brazil is one of the world's leading producers and exporters of agricultural goods. Despite undergoing significant increases in its cropland area in the last decades, it remains one of the countries with the most potential for further agricultural expansion. Most notably, the expansion in production areas of commodity crops such as soybean, corn, and sugarcane has become the leading cause of land cover conversion in Brazil. Natural land covers, such as the Amazon and Cerrado forests, have been negatively affected by this agricultural expansion, causing carbon emissions, biodiversity loss, altered water cycles, and many other disturbances to ecosystem services. Monitoring of change in cropland area extent can provide relevant information to decision makers seeking to understand and manage land cover change drivers and their impacts. In this study, the freely-available Landsat archive was leveraged to produce a large-scale, methodologically consistent map of cropland cover at 30 m. resolution for the entire Brazilian territory in the year 2000. Additionally, we mapped cropland expansion from 2000 to 2013, and used statistical sampling techniques to accurately estimate cropland area per Brazilian state. Using the Global Forest Change product produced by Hansen et al. (2013), we can disaggregate forest cover loss due to cropland expansion by year, revealing spatiotemporal trends that could advance our understanding of the drivers of forest loss.

  10. Experiments on Interfaces To Support Query Expansion.

    ERIC Educational Resources Information Center

    Beaulieu, M.

    1997-01-01

    Focuses on the user and human-computer interaction aspects of the research based on the Okapi text retrieval system. Three experiments implementing different approaches to query expansion are described, including the use of graphical user interfaces with different windowing techniques. (Author/LRW)

  11. Monitoring the urban expansion of Athens using remote sensing and GIS techniques in the last 35 years

    NASA Astrophysics Data System (ADS)

    Nikolakopoulos, Konstantinos; Pavlopoulos, Kosmas; Chalkias, Christos; Manou, Dora

    2005-10-01

    During the last thirty-five years the capital of Greece has suffered from an enormous internal immigration. Its population has overpassed the five millions and today almost the half population of Greece is squeezed in Athens metropolitan area. Because of the significant increase of population, the urban expansion in the basin of Athens was also excessive and in some cases catastrophic. Buildings have covered all the free places, new roads have been constructed, the drainage networks have been covered or disappeared and a lot of changes have been occurred to the landforms. The construction of the new airport (Elefterios Venizelos) at the beginning of this decade created a new commercial and urban pole at the eastern part of Athens and the constructive activity has been moved to new areas around the airport. Our aim was to detect and map all the changes that occurred in the urban area, estimate the urban expansion rate and the human interferences in the natural landscape, using GIS and remote sensing techniques. We have used satellite images from three different periods (1973, 1992, 2002) and topographic maps of 1:25.000 scale. The spatial resolution of all the satellite images ranges from 5 to 10 meters and is it acceptable for the monitoring and mapping of the urban growth. Supervised classification and on screen digitizing methods have been used in order to map the changes. Finally the qualitative and quantitative results of this study are presented in this paper.

  12. Partial-fraction expansion and inverse Laplace transform of a rational function with real coefficients

    NASA Technical Reports Server (NTRS)

    Chang, F.-C.; Mott, H.

    1974-01-01

    This paper presents a technique for the partial-fraction expansion of functions which are ratios of polynomials with real coefficients. The expansion coefficients are determined by writing the polynomials as Taylor's series and obtaining the Laurent series expansion of the function. The general formula for the inverse Laplace transform is also derived.

  13. Vortex Laser based on III-V semiconductor metasurface: direct generation of coherent Laguerre-Gauss modes carrying controlled orbital angular momentum

    PubMed Central

    Seghilani, Mohamed S.; Myara, Mikhael; Sellahi, Mohamed; Legratiet, Luc; Sagnes, Isabelle; Beaudoin, Grégoire; Lalanne, Philippe; Garnache, Arnaud

    2016-01-01

    The generation of a coherent state, supporting a large photon number, with controlled orbital-angular-momentum L = ħl (of charge l per photon) presents both fundamental and technological challenges: we demonstrate a surface-emitting laser, based on III-V semiconductor technology with an integrated metasurface, generating vortex-like coherent state in the Laguerre-Gauss basis. We use a first order phase perturbation to lift orbital degeneracy of wavefunctions, by introducing a weak anisotropy called here “orbital birefringence”, based on a dielectric metasurface. The azimuthal symmetry breakdown and non-linear laser dynamics create “orbital gain dichroism” allowing selecting vortex handedness. This coherent photonic device was characterized and studied, experimentally and theoretically. It exhibits a low divergence (<1°) diffraction limited beam, emitting 49 mW output power in the near-IR at λ ≃ 1 μm, a charge l = ±1, … ±4 (>50 dB vortex purity), and single frequency operation in a stable low noise regime (0.1% rms). Such high performance laser opens the path to widespread new photonic applications. PMID:27917885

  14. Ultraprecise thermal expansion measurements of seven low expansion materials

    NASA Technical Reports Server (NTRS)

    Berthold, J. W., III; Jacobs, S. F.

    1976-01-01

    We summarize a large number of ultraprecise thermal expansion measurements made on seven different low expansivity materials. Expansion coefficients in the -150-300 C temperature range are shown for Owens-Illinois Cer-Vit C-101, Corning ULE 7971 (titanium silicate) and fused silica 7940, Heraeus-Schott Zerodur low-expansion material and Homosil fused silica, Universal Cyclops Invar LR-35, and Simonds Saw and Steel Super Invar.

  15. Ultraprecise thermal expansion measurements of seven low expansion materials.

    PubMed

    Berthold Iii, J W; Jacobs, S F

    1976-10-01

    We summarize a large number of ultraprecise thermal expansion measurements made on seven different low expansivity materials. Expansion coefficients in the -150-300 degrees C temperature range are shown for Owens-Illinois Cer-Vit C-101, Corning ULE 7971 (titanium silicate) and fused silica 7940, Heraeus-Schott Zerodur low-expansion material and Homosil fused silica, Universal Cyclops Invar LR-35, and Simonds Saw and Steel Super Invar.

  16. Quantum field theory in the presence of a medium: Green's function expansions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kheirandish, Fardin; Salimi, Shahriar

    2011-12-15

    Starting from a Lagrangian and using functional-integration techniques, series expansions of Green's function of a real scalar field and electromagnetic field, in the presence of a medium, are obtained. The parameter of expansion in these series is the susceptibility function of the medium. Relativistic and nonrelativistic Langevin-type equations are derived. Series expansions for Lifshitz energy in finite temperature and for an arbitrary matter distribution are derived. Covariant formulations for both scalar and electromagnetic fields are introduced. Two illustrative examples are given.

  17. In-situ investigation of stress conditions during expansion of bare metal stents and PLLA-coated stents using the XRD sin(2)ψ-technique.

    PubMed

    Kowalski, Wolfgang; Dammer, Markus; Bakczewitz, Frank; Schmitz, Klaus-Peter; Grabow, Niels; Kessler, Olaf

    2015-09-01

    Drug eluting stents (DES) consist of platform, coating and drug. The platform often is a balloon-expandable bare metal stent made of the CoCr alloy L-605 or stainless steel 316 L. The function of the coating, typically a permanent polymer, is to hold and release the drug, which should improve therapeutic outcome. Before implantation, DES are compressed (crimped) to allow implantation in the human body. During implantation, DES are expanded by balloon inflation. Crimping, as well as expansion, causes high stresses and high strains locally in the DES struts, as well as in the polymer coating. These stresses and strains are important design criteria of DES. Usually, they are calculated numerically by finite element analysis (FEA), but experimental results for validation are hardly available. In this work, the X-ray diffraction (XRD) sin(2)ψ-technique is applied to in-situ determination of stress conditions of bare metal L-605 stents, and Poly-(L-lactide) (PLLA) coated stents. This provides a realistic characterization of the near-surface stress state and a validation option of the numerical FEA. XRD-results from terminal stent struts of the bare metal stent show an increasing compressive load stress in tangential direction with increasing stent expansion. These findings correlate with numerical FEA results. The PLLA-coating also bears increasing compressive load stress during expansion. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Cluster expansion for ground states of local Hamiltonians

    NASA Astrophysics Data System (ADS)

    Bastianello, Alvise; Sotiriadis, Spyros

    2016-08-01

    A central problem in many-body quantum physics is the determination of the ground state of a thermodynamically large physical system. We construct a cluster expansion for ground states of local Hamiltonians, which naturally incorporates physical requirements inherited by locality as conditions on its cluster amplitudes. Applying a diagrammatic technique we derive the relation of these amplitudes to thermodynamic quantities and local observables. Moreover we derive a set of functional equations that determine the cluster amplitudes for a general Hamiltonian, verify the consistency with perturbation theory and discuss non-perturbative approaches. Lastly we verify the persistence of locality features of the cluster expansion under unitary evolution with a local Hamiltonian and provide applications to out-of-equilibrium problems: a simplified proof of equilibration to the GGE and a cumulant expansion for the statistics of work, for an interacting-to-free quantum quench.

  19. On skin expansion.

    PubMed

    Pamplona, Djenane C; Velloso, Raquel Q; Radwanski, Henrique N

    2014-01-01

    This article discusses skin expansion without considering cellular growth of the skin. An in vivo analysis was carried out that involved expansion at three different sites on one patient, allowing for the observation of the relaxation process. Those measurements were used to characterize the human skin of the thorax during the surgical process of skin expansion. A comparison between the in vivo results and the numerical finite elements model of the expansion was used to identify the material elastic parameters of the skin of the thorax of that patient. Delfino's constitutive equation was chosen to model the in vivo results. The skin is considered to be an isotropic, homogeneous, hyperelastic, and incompressible membrane. When the skin is extended, such as with expanders, the collagen fibers are also extended and cause stiffening in the skin, which results in increasing resistance to expansion or further stretching. We observed this phenomenon as an increase in the parameters as subsequent expansions continued. The number and shape of the skin expanders used in expansions were also studied, both mathematically and experimentally. The choice of the site where the expansion should be performed is discussed to enlighten problems that can lead to frustrated skin expansions. These results are very encouraging and provide insight into our understanding of the behavior of stretched skin by expansion. To our knowledge, this study has provided results that considerably improve our understanding of the behavior of human skin under expansion. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Generalized Ince Gaussian beams

    NASA Astrophysics Data System (ADS)

    Bandres, Miguel A.; Gutiérrez-Vega, Julio C.

    2006-08-01

    In this work we present a detailed analysis of the tree families of generalized Gaussian beams, which are the generalized Hermite, Laguerre, and Ince Gaussian beams. The generalized Gaussian beams are not the solution of a Hermitian operator at an arbitrary z plane. We derived the adjoint operator and the adjoint eigenfunctions. Each family of generalized Gaussian beams forms a complete biorthonormal set with their adjoint eigenfunctions, therefore, any paraxial field can be described as a superposition of a generalized family with the appropriate weighting and phase factors. Each family of generalized Gaussian beams includes the standard and elegant corresponding families as particular cases when the parameters of the generalized families are chosen properly. The generalized Hermite Gaussian and Laguerre Gaussian beams correspond to limiting cases of the generalized Ince Gaussian beams when the ellipticity parameter of the latter tends to infinity or to zero, respectively. The expansion formulas among the three generalized families and their Fourier transforms are also presented.

  1. Cycle expansions: From maps to turbulence

    NASA Astrophysics Data System (ADS)

    Lan, Y.

    2010-03-01

    We present a derivation, a physical explanation and applications of cycle expansions in different dynamical systems, ranging from simple one-dimensional maps to turbulence in fluids. Cycle expansion is a newly devised powerful tool for computing averages of physical observables in nonlinear chaotic systems which combines many innovative ideas developed in dynamical systems, such as hyperbolicity, invariant manifolds, symbolic dynamics, measure theory and thermodynamic formalism. The concept of cycle expansion has a deep root in theoretical physics, bearing a close analogy to cumulant expansion in statistical physics and effective action functional in quantum field theory, the essence of which is to represent a physical system in a hierarchical way by utilizing certain multiplicative structures such that the dominant parts of physical observables are captured by compact, maneuverable objects while minor detailed variations are described by objects with a larger space and time scale. The technique has been successfully applied to many low-dimensional dynamical systems and much effort has recently been made to extend its use to spatially extended systems. For one-dimensional systems such as the Kuramoto-Sivashinsky equation, the method turns out to be very effective while for more complex real-world systems including the Navier-Stokes equation, the method is only starting to yield its first fruits and much more work is needed to enable practical computations. However, the experience and knowledge accumulated so far is already very useful to a large set of research problems. Several such applications are briefly described in what follows. As more research effort is devoted to the study of complex dynamics of nonlinear systems, cycle expansion will undergo a fast development and find wide applications.

  2. Les Protheses d'Expansion dans le Traitement des Sequelles de Brulures

    PubMed Central

    Tourabi, K.; Ribag, Y.; Arrob, A.; Moussaoui, A.; Ihrai, H.

    2010-01-01

    Summary Les Auteurs présentent leur protocole pour l'expansion cutanée et rapportent quatre cas colligés au service des brûlures de leur hôpital au Maroc. Ils décrivent leur technique opératoire et les résultats obtenus. L'expansion cutanée reste la méthode de choix pour la couverture des pertes de substance étendues et la correction des séquelles de brûlure, et l'expérience rapportée par les Auteurs confirme les bons résultats que l'on peut obtenir avec cette technique, y compris les résultats esthétiques. PMID:21991194

  3. The causal perturbation expansion revisited: Rescaling the interacting Dirac sea

    NASA Astrophysics Data System (ADS)

    Finster, Felix; Grotz, Andreas

    2010-07-01

    The causal perturbation expansion defines the Dirac sea in the presence of a time-dependent external field. It yields an operator whose image generalizes the vacuum solutions of negative energy and thus gives a canonical splitting of the solution space into two subspaces. After giving a self-contained introduction to the ideas and techniques, we show that this operator is, in general, not idempotent. We modify the standard construction by a rescaling procedure giving a projector on the generalized negative-energy subspace. The resulting rescaled causal perturbation expansion uniquely defines the fermionic projector in terms of a series of distributional solutions of the Dirac equation. The technical core of the paper is to work out the combinatorics of the expansion in detail. It is also shown that the fermionic projector with interaction can be obtained from the free projector by a unitary transformation. We finally analyze the consequences of the rescaling procedure on the light-cone expansion.

  4. General methodology for nonlinear modeling of neural systems with Poisson point-process inputs.

    PubMed

    Marmarelis, V Z; Berger, T W

    2005-07-01

    This paper presents a general methodological framework for the practical modeling of neural systems with point-process inputs (sequences of action potentials or, more broadly, identical events) based on the Volterra and Wiener theories of functional expansions and system identification. The paper clarifies the distinctions between Volterra and Wiener kernels obtained from Poisson point-process inputs. It shows that only the Wiener kernels can be estimated via cross-correlation, but must be defined as zero along the diagonals. The Volterra kernels can be estimated far more accurately (and from shorter data-records) by use of the Laguerre expansion technique adapted to point-process inputs, and they are independent of the mean rate of stimulation (unlike their P-W counterparts that depend on it). The Volterra kernels can also be estimated for broadband point-process inputs that are not Poisson. Useful applications of this modeling approach include cases where we seek to determine (model) the transfer characteristics between one neuronal axon (a point-process 'input') and another axon (a point-process 'output') or some other measure of neuronal activity (a continuous 'output', such as population activity) with which a causal link exists.

  5. Optical Measurement Technique for Space Column Characterization

    NASA Technical Reports Server (NTRS)

    Barrows, Danny A.; Watson, Judith J.; Burner, Alpheus W.; Phelps, James E.

    2004-01-01

    A simple optical technique for the structural characterization of lightweight space columns is presented. The technique is useful for determining the coefficient of thermal expansion during cool down as well as the induced strain during tension and compression testing. The technique is based upon object-to-image plane scaling and does not require any photogrammetric calibrations or computations. Examples of the measurement of the coefficient of thermal expansion are presented for several lightweight space columns. Examples of strain measured during tension and compression testing are presented along with comparisons to results obtained with Linear Variable Differential Transformer (LVDT) position transducers.

  6. Following Surgically Assisted Rapid Palatal Expansion, Do Tooth-Borne or Bone-Borne Appliances Provide More Skeletal Expansion and Dental Expansion?

    PubMed

    Hamedi-Sangsari, Adrien; Chinipardaz, Zahra; Carrasco, Lee

    2017-10-01

    The aim of this study was to compare outcome measurements of skeletal and dental expansion with bone-borne (BB) versus tooth-borne (TB) appliances after surgically assisted rapid palatal expansion (SARPE). This study was performed to provide quantitative measurements that will help the oral surgeon and orthodontist in selecting the appliance with, on average, the greatest amount of skeletal expansion and the least amount of dental expansion. A computerized database search was performed using PubMed, EBSCO, Cochrane, Scopus, Web of Science, and Google Scholar on publications in reputable oral surgery and orthodontic journals. A systematic review and meta-analysis was completed with the predictor variable of expansion appliance (TB vs BB) and outcome measurement of expansion (in millimeters). Of 487 articles retrieved from the 6 databases, 5 articles were included, 4 with cone-beam computed tomographic (CBCT) data and 1 with non-CBCT 3-dimensional cast data. There was a significant difference in skeletal expansion (standardized mean difference [SMD], 0.92; 95% confidence interval [CI], 0.54-1.30; P < .001) in favor of BB rather than TB appliances. However, there was no significant difference in dental expansion (SMD, 0.05; 95% CI, -0.24 to 0.34; P = .03). According to the literature, to achieve more effective skeletal expansion and minimize dental expansion after SARPE, a BB appliance should be favored. Copyright © 2017 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  7. Mechanical properties and negative thermal expansion of a dense rare earth formate framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Zhanrui; Jiang, Xingxing; Feng, Guoqiang

    The fundamental mechanical properties of a dense metal–organic framework material, [NH{sub 2}CHNH{sub 2}][Er(HCOO){sub 4}] (1), have been studied using nanoindentation technique. The results demonstrate that the elastic moduli, hardnesses, and yield stresses on the (021)/(02−1) facets are 29.8/30.2, 1.80/1.83 and 0.93/1.01 GPa, respectively. Moreover, variable-temperature powder and single-crystal X-ray diffraction experiments reveal that framework 1 shows significant negative thermal expansion along its b axis, which can be explained by using a hinge–strut structural motif. - Graphical abstract: The structure of framework, [NH{sub 2}CHNH{sub 2}][Er(HCOO){sub 4}], and its indicatrix of thermal expansion. - Highlights: • The elastic modulus, hardness, and yieldmore » stress properties of a rare earth metal–organic framework material were studied via nanoindentation technique. • Variable-temperature powder X-ray diffraction experiments reveal that this framework shows significant negative thermal expansion along its b axis. • Based on variable-temperature single-crystal X-ray diffraction experiments, the mechanism of negative thermal expansion can be explained by a hinge–strut structural motif.« less

  8. A technique for measuring hypersonic flow velocity profiles

    NASA Technical Reports Server (NTRS)

    Gartrell, L. R.

    1973-01-01

    A technique for measuring hypersonic flow velocity profiles is described. This technique utilizes an arc-discharge-electron-beam system to produce a luminous disturbance in the flow. The time of flight of this disturbance was measured. Experimental tests were conducted in the Langley pilot model expansion tube. The measured velocities were of the order of 6000 m/sec over a free-stream density range from 0.000196 to 0.00186 kg/cu m. The fractional error in the velocity measurements was less than 5 percent. Long arc discharge columns (0.356 m) were generated under hypersonic flow conditions in the expansion-tube modified to operate as an expansion tunnel.

  9. Tissue expansion for breast reconstruction: Methods and techniques.

    PubMed

    Bertozzi, Nicolò; Pesce, Marianna; Santi, PierLuigi; Raposio, Edoardo

    2017-09-01

    In this work, the authors review recent data on the different methods and techniques of TE/implant-based reconstruction to determine the complication profiles and the advantages and disadvantages of the different techniques. This information will be valuable for surgeons performing breast reconstructions. A thorough literature review was conducted by the authors concerning the current strategy of tissue expander (TE)/implant-based breast reconstruction following breast cancer surgery. Loss of the breast can strongly affect a woman's personal and social life while breast reconstruction reduces the sense of mutilation felt by women after a mastectomy, and provides psychosocial as well as aesthetic benefits. TE/implant-based reconstruction is the most common breast reconstructive strategy, constituting almost 65% of all breast reconstructions in the US. Although numerous studies have been published on various aspects of alloplastic breast reconstructions, most studies are single-center observations. No evidence-based guidelines are available as yet. Conventional TE/implant-based reconstruction can be performed as a two-stage procedure either in the immediate or delayed setting. Moreover, the adjunctive use of acellular dermal matrix further broadened the alloplastic breast reconstruction indication and also enhanced aesthetic outcomes. TE/implant-based reconstruction has proved to be a safe, cost-effective, and reliable technique that can be performed in women with various comorbidities. Short operative time, fast recovery, and absence of donor site morbidity are other advantages over autologous breast reconstruction.

  10. Universal Expansion.

    ERIC Educational Resources Information Center

    McArdle, Heather K.

    1997-01-01

    Describes a week-long activity for general to honors-level students that addresses Hubble's law and the universal expansion theory. Uses a discrepant event-type activity to lead up to the abstract principles of the universal expansion theory. (JRH)

  11. Evaluating expansion strategies for startup European Union dairy farm businesses.

    PubMed

    McDonald, R; Shalloo, L; Pierce, K M; Horan, B

    2013-06-01

    A stochastic whole-farm simulation model was used to examine alternative strategies for new entrant dairy farmers to grow and develop dairy farm businesses in the context of European Union (EU) milk quota abolition in 2015. Six alternative strategies were compared: remain static, natural growth expansion, waiting until after EU milk quota abolition to expand, a full-scale expansion strategy without milk quotas and not incurring super levy penalties, a full-scale expansion strategy with milk quotas and incurring super levy penalties, and once-a-day milking until EU milk quota abolition, followed by full-scale expansion. Each discrete whole farm investment strategy was evaluated over a 15-yr period (2013-2027) using multiple financial stability and risk indicators, including overall discounted farm business profitability, net worth change, return on investment, and financial risk. The results of this study indicate that, although associated with increased risk, dairy farm expansion will ensure the future profitability of the farm business. Within the context of EU milk quotas until 2015, the most attractive expansion strategy is to increase cow numbers while avoiding super levy fines using once-a-day milking techniques, increasing to the full capacity of the dairy farm once milk quotas are removed. In contrast, the results also indicate that dairy farms that remain static will experience a significant reduction in farm profitability in the coming year due to production cost inflation. Cash flow deficits were observed during the initial year of expansion and, therefore, rapidly expanding dairy farm businesses require a significant cash reserve to alleviate business risk during the initial year of expansion. The results of this analysis also indicate that dairy farm businesses that expand using lower cost capital investments and avoid milk quota super levy fines significantly reduce the financial risks associated with expansion. Copyright © 2013 American Dairy Science

  12. Use of pressure manifestations following the water plasma expansion for phytomass disintegration.

    PubMed

    Maroušek, Josef; Kwan, Jason Tai Hong

    2013-01-01

    A prototype capable of generating underwater high-voltage discharges (3.5 kV) coupled with water plasma expansion was constructed. The level of phytomass disintegration caused by transmission of the pressure shockwaves (50-60 MPa) followed by this expansion was analyzed using gas adsorption techniques. The dynamics of the external surface area and the micropore volume on multiple pretreatment stages of maize silage and sunflower seeds was approximated with robust analytical techniques. The multiple increases on the reaction surface were manifest in up to a 15% increase in cumulative methane production, which was itself manifest in the overall acceleration of the anaerobic fermentation process. Disintegration of the sunflower seeds allowed up to 45% higher oil yields using the same operating pressure.

  13. Measurements of LGS, LGN, and LGT thermal coefficients of expansion and density.

    PubMed

    Malocha, Donald C; François-Saint-Cyr, Hugues; Richardson, Kathleen; Helmbold, Robert

    2002-03-01

    This paper will report on the measurements of the thermal coefficients of expansion and density of langasite (LGS), langanite (LGN), and langatate (LGT). The data were obtained by fabricating cubes with X, Y, and Z faces with nominal dimensions of 1 cm on a side for each material under test. The techniques used for measurement of density and thermal coefficients of expansion (TCE) of the materials are discussed. The data sets obtained and the extracted coefficients are presented.

  14. Obstacle detection by recognizing binary expansion patterns

    NASA Technical Reports Server (NTRS)

    Baram, Yoram; Barniv, Yair

    1993-01-01

    This paper describes a technique for obstacle detection, based on the expansion of the image-plane projection of a textured object, as its distance from the sensor decreases. Information is conveyed by vectors whose components represent first-order temporal and spatial derivatives of the image intensity, which are related to the time to collision through the local divergence. Such vectors may be characterized as patterns corresponding to 'safe' or 'dangerous' situations. We show that essential information is conveyed by single-bit vector components, representing the signs of the relevant derivatives. We use two recently developed, high capacity classifiers, employing neural learning techniques, to recognize the imminence of collision from such patterns.

  15. Generation expansion planning in a competitive electric power industry

    NASA Astrophysics Data System (ADS)

    Chuang, Angela Shu-Woan

    This work investigates the application of non-cooperative game theory to generation expansion planning (GEP) in a competitive electricity industry. We identify fundamental ways competition changes the nature of GEP, review different models of oligopoly behavior, and argue that assumptions of the Cournot model are compatible with GEP. Applying Cournot theory of oligopoly behavior, we formulate a GEP model that may characterize expansion in the new competitive regime, particularly in pool-dominated generation supply industries. Our formulation incorporates multiple markets and is patterned after the basic design of the California ISO/PX system. Applying the model, we conduct numerical experiments on a test system, and analyze generation investment and market participation decisions of different candidate expansion units that vary in costs and forced outage rates. Simulations are performed under different scenarios of competition. In particular, we observe higher probabilistic measures of reliability from Cournot expansion compared to the expansion plan of a monopoly with an equivalent minimum reserve margin requirement. We prove several results for a subclass of problems encompassed by our formulation. In particular, we prove that under certain conditions Cournot competition leads to greater total capacity expansion than a situation in which generators collude in a cartel. We also show that industry output after introduction of new technology is no less than monopoly output. So a monopoly may lack sufficient incentive to introduce new technologies. Finally, we discuss the association between capacity payments and the issue of pricing reliability. And we derive a formula for computing ideal capacity payment rates by extending the Value of Service Reliability technique.

  16. Serial Tissue Expansion at the Same Site in Pediatric Patients: Is the Subsequent Expansion Faster?

    PubMed Central

    Lee, Moon Ki; Park, Seong Oh; Choi, Tae Hyun

    2017-01-01

    Background Serial tissue expansion is performed to remove giant congenital melanocytic nevi. However, there have been no studies comparing the expansion rate between the subsequent and preceding expansions. In this study, we analyzed the rate of expansion in accordance with the number of surgeries, expander location, expander size, and sex. Methods A retrospective analysis was performed in pediatric patients who underwent tissue expansion for giant congenital melanocytic nevi. We tested four factors that may influence the expansion rate: The number of surgeries, expander location, expander size, and sex. The rate of expansion was calculated by dividing the ‘inflation amount’ by the ‘expander size’. Results The expansion rate, compared with the first-time group, was 1.25 times higher in the second-or-more group (P=0.04) and 1.84 times higher in the third-or-more group (P<0.01). The expansion rate was higher at the trunk than at other sites (P<0.01). There was a tendency of lower expansion rate for larger expanders (P=0.03). Sex did not affect the expansion rate. Conclusions There was a positive correlation between the number of surgeries and the expansion rate, a positive correlation between the expander location and the expansion rate, and a negative correlation between the expander size and the expansion rate. PMID:29076319

  17. [Atraumatic bone expansion: Interest of piezo-surgery, conicals expanders and immediate implantation combination].

    PubMed

    Iraqui, O; Lakhssassi, N; Berrada, S; Merzouk, N

    2016-06-01

    The durability of dental implants depends on the presence of a 1mm coating bone sheath all around the fixture. Therefore, bone resorption represents a challenge for the practitioner. Bone expansion is a surgical technique that allows the management of horizontal bone atrophy. Cortical bone splitting allows for an enlargement of the residual crest by displacement of the vestibular bone flap. The immediate placement of implants secures the widening and allows for a 97% survival rate. However, bone expansion is hard to undertake in sites with high bone density. Furthermore, the use of traditional instruments increases patient's stress and the risk for an interruptive fracture during bone displacement. Non-traumatic bone expansion is one solution to this problem. The combination of piezo-surgery and conical expanders allows for a secured displacement of the selected bone flap as well as an immediate implant placement, avoiding the risk of slipping, overheating, or fracture, all within an undeniable operative comfort. Non-traumatic bone expansion is a reliable, reproducible, conservative, and economical in time and cost procedure. We describe our atraumatic bone expension and immediate implant placement technique in high bone density sites and illustrate it by a clinical case. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  18. [Expansive suboccipital cranioplasty in Chiari 1 malformation (a case report and technical notes)].

    PubMed

    Korshunov, A E; Kushel', Yu V

    In this case report, we describe the use of expansive suboccipital cranioplasty in Chiari-1 malformation. The technique improves the efficacy and safety of treatment for Chiari-1 malformation. The technique can be used as an adjunct treatment together with any variant of posterior fossa decompression, including duroplasty and extradural decompression.

  19. Unconditionally stable WLP-FDTD method for the modeling of electromagnetic wave propagation in gyrotropic materials.

    PubMed

    Li, Zheng-Wei; Xi, Xiao-Li; Zhang, Jin-Sheng; Liu, Jiang-fan

    2015-12-14

    The unconditional stable finite-difference time-domain (FDTD) method based on field expansion with weighted Laguerre polynomials (WLPs) is applied to model electromagnetic wave propagation in gyrotropic materials. The conventional Yee cell is modified to have the tightly coupled current density components located at the same spatial position. The perfectly matched layer (PML) is formulated in a stretched-coordinate (SC) system with the complex-frequency-shifted (CFS) factor to achieve good absorption performance. Numerical examples are shown to validate the accuracy and efficiency of the proposed method.

  20. Power weighted L p -inequalities for Laguerre-Riesz transforms

    NASA Astrophysics Data System (ADS)

    Harboure, Eleonor; Segovia, Carlos; Torrea, José L.; Viviani, Beatriz

    2008-10-01

    In this paper we give a complete description of the power weighted inequalities, of strong, weak and restricted weak type for the pair of Riesz transforms associated with the Laguerre function system \\{mathcal{L}_k^{α}\\}, for any given α>-1. We achieve these results by a careful estimate of the kernels: near the diagonal we show that they are local Calderón-Zygmund operators while in the complement they are majorized by Hardy type operators and the maximal heat-diffusion operator. We also show that in all the cases our results are sharp.

  1. Numerical simulation of transient hypervelocity flow in an expansion tube

    NASA Technical Reports Server (NTRS)

    Jacobs, P. A.

    1992-01-01

    Several numerical simulations of the transient flow of helium in an expansion tube are presented. The aim of the exercise is to provide further information on the operational problems of the NASA Langley expansion tube. The calculations were performed with an axisymmetric Navier-Stokes code based on a finite-volume formulation and upwinding techniques. Although laminar flow and ideal bursting of the diaphragms was assumed, the simulations showed some of the important features seen in the experiments. In particular, the discontinuity in the tube diameter at the primary diaphragm station introduced a transverse perturbation to the expanding driver gas, and this perturbation was seen to propagate into the test gas under some flow conditions. The disturbances seen in the test flow can be characterized as either 'small-amplitude' noise possibly introduced during shock compression or 'large-amplitude' noise associated with the passage of the reflected head of the unsteady expansion.

  2. Tissue Expansion Using Hyaluronic Acid Filler for Single-Stage Ear Reconstruction: A Novel Concept for Difficult Areas.

    PubMed

    Inbal, Amir; Lemelman, Benjamin T; Millet, Eran; Greensmith, Andrew

    2017-10-16

    Auricular reconstruction is one of the most challenging procedures in plastic surgery. An adequate skin envelope is essential for cartilage framework coverage, yet few good options exist without additional surgery. We propose a novel method for minimally invasive tissue expansion, using hyaluronic acid (HA) filler to allow for single-stage ear reconstruction. To introduce the novel concept of HA filler for tissue expansion in ear reconstruction, and as an alternative to traditional expansion techniques. Macrolane is a large particle HA gel developed for large volume restoration. Expansion of the non-hair-bearing mastoid skin was performed in our clinic weekly or every other week. Final expansion was completed one week prior to reconstructive surgery. Tissue from one patient's expanded pocket was sent for histological analysis. Ten patients underwent single-stage auricular reconstruction with preoperative expansion. Injection sessions ranged from 7 to 13 (mean, 9.7). Mean injected volume per session was 2.03 mL per patient, for an average total of 19.8 mL (range, 14.5-30 mL). There were no major complications. One minor complication required removal of exposed wire from the antihelix in the office. Hematoxylin and eosin stain revealed similar histology to that seen with traditional expanders. This novel expansion technique using serial HA injections allowed for optimized skin coverage in single-stage ear reconstruction. The concept of tissue expansion using HA filler is a new frontier for research that may be applicable to other arenas of reconstruction. 4. © 2017 The American Society for Aesthetic Plastic Surgery, Inc. Reprints and permission: journals.permissions@oup.com

  3. Robust numerical electromagnetic eigenfunction expansion algorithms

    NASA Astrophysics Data System (ADS)

    Sainath, Kamalesh

    -region-dependent integration order (Chapter 3), (3) Integration partition-extrapolation-based (Chapter 3) and Gauss-Laguerre Quadrature (GLQ)-based (Chapter 4) evaluations of the deformed, semi-infinite-length integration contour tails, (4) Robust in-situ-based (i.e., at the spectral-domain integrand level) direct/homogeneous-medium field contribution subtraction and analytical curbing of the source current spatial spectrum function's ill behavior (Chapter 5), and (5) Analytical re-casting of the direct-field expressions when the source is embedded within a NBAM, short for non-birefringent anisotropic medium (Chapter 6). The benefits of these contributions are, respectively, (1) Avoiding computationally intensive critical-point location and tracking (computation time savings), (2) Sensor and material-robust curbing of the integrand's oscillatory and slow decay behavior, as well as preventing undesirable critical-point migration within the complex plane (computation speed, precision, and instability-avoidance benefits), (3) sensor and material-robust reduction (or, for GLQ, elimination) of integral truncation error, (4) robustly stable modeling of scattered fields and/or fields radiated from current sources modeled as spatially distributed (10 to 1000-fold compute-speed acceleration also realized for distributed-source computations), and (5) numerically stable modeling of fields radiated from sources within NBAM layers. Having addressed these limitations, are PWE algorithms applicable to modeling EM waves in tilted planar-layered geometries too? This question is explored in Chapter 7 using a Transformation Optics-based approach, allowing one to model wave propagation through layered media that (in the sensor's vicinity) possess tilted planar interfaces. The technique leads to spurious wave scattering however, whose induced computation accuracy degradation requires analysis. Mathematical exhibition, and exhaustive simulation-based study and analysis of the limitations of, this novel tilted

  4. Prediction and Observation of Post-Admission Hematoma Expansion in Patients with Intracerebral Hemorrhage

    PubMed Central

    Ovesen, Christian; Havsteen, Inger; Rosenbaum, Sverre; Christensen, Hanne

    2014-01-01

    Post-admission hematoma expansion in patients with intracerebral hemorrhage (ICH) comprises a simultaneous major clinical problem and a possible target for medical intervention. In any case, the ability to predict and observe hematoma expansion is of great clinical importance. We review radiological concepts in predicting and observing post-admission hematoma expansion. Hematoma expansion can be observed within the first 24 h after symptom onset, but predominantly occurs in the early hours. Thus capturing markers of on-going bleeding on imaging techniques could predict hematoma expansion. The spot sign observed on computed tomography angiography is believed to represent on-going bleeding and is to date the most well investigated and reliable radiological predictor of hematoma expansion as well as functional outcome and mortality. On non-contrast CT, the presence of foci of hypoattenuation within the hematoma along with the hematoma-size is reported to be predictive of hematoma expansion and outcome. Because patients tend to arrive earlier to the hospital, a larger fraction of acute ICH-patients must be expected to undergo hematoma expansion. This renders observation and radiological follow-up investigations increasingly relevant. Transcranial duplex sonography has in recent years proven to be able to estimate hematoma volume with good precision and could be a valuable tool in bedside serial observation of acute ICH-patients. Future studies will elucidate, if better prediction and observation of post-admission hematoma expansion can help select patients, who will benefit from hemostatic treatment. PMID:25324825

  5. [Landscape ecological security pattern during urban expansion of Nanchong City].

    PubMed

    Li, Sui; Shi, Tie-mao; Fu, Shi-lei; Zhou, Le; Liu, Miao; Wang, Wei

    2011-03-01

    Based on the theory of landscape ecological security pattern and the RS and GIS techniques, this paper analyzed the distribution of ecological security grades in Nanchong City, taking six elements including terrain condition, flood hazard, soil erosion, vegetation cover, geological disaster, and biological protection as the ecological constraints (or determinants) of urban expansion. According to the minimum cumulative resistance model, the ecological corridors and ecological nodes were built to strengthen the space contact of ecological network, and, on the basis of the protection of ecological safety, the reasonable trend of urban expansion and the optimization of space layout were investigated. The results showed that the ecological security of Nanchong City was quite good, with the regions of low ecological security mainly distributed in the west suburban mountains and the downstream region of Jialing River in the south of the City. Ecological elements were the most important constraints for the future expansion of urban space. There were more spaces for the urban expansion in the southern and northern parts of Nanchong City. To develop satellite towns would be the best selection to guarantee the ecological security of the city.

  6. Expansion tube test time predictions

    NASA Technical Reports Server (NTRS)

    Gourlay, Christopher M.

    1988-01-01

    The interaction of an interface between two gases and strong expansion is investigated and the effect on flow in an expansion tube is examined. Two mechanisms for the unsteady Pitot-pressure fluctuations found in the test section of an expansion tube are proposed. The first mechanism depends on the Rayleigh-Taylor instability of the driver-test gas interface in the presence of a strong expansion. The second mechanism depends on the reflection of the strong expansion from the interface. Predictions compare favorably with experimental results. The theory is expected to be independent of the absolute values of the initial expansion tube filling pressures.

  7. Linear dependence of surface expansion speed on initial plasma temperature in warm dense matter

    DOE PAGES

    Bang, Woosuk; Albright, Brian James; Bradley, Paul Andrew; ...

    2016-07-12

    Recent progress in laser-driven quasi-monoenergetic ion beams enabled the production of uniformly heated warm dense matter. Matter heated rapidly with this technique is under extreme temperatures and pressures, and promptly expands outward. While the expansion speed of an ideal plasma is known to have a square-root dependence on temperature, computer simulations presented here show a linear dependence of expansion speed on initial plasma temperature in the warm dense matter regime. The expansion of uniformly heated 1–100 eV solid density gold foils was modeled with the RAGE radiation-hydrodynamics code, and the average surface expansion speed was found to increase linearly withmore » temperature. The origin of this linear dependence is explained by comparing predictions from the SESAME equation-of-state tables with those from the ideal gas equation-of-state. In conclusion, these simulations offer useful insight into the expansion of warm dense matter and motivate the application of optical shadowgraphy for temperature measurement.« less

  8. Brillouin corrosion expansion sensors for steel reinforced concrete structures using a fiber optic coil winding method.

    PubMed

    Zhao, Xuefeng; Gong, Peng; Qiao, Guofu; Lu, Jie; Lv, Xingjun; Ou, Jinping

    2011-01-01

    In this paper, a novel kind of method to monitor corrosion expansion of steel rebars in steel reinforced concrete structures named fiber optic coil winding method is proposed, discussed and tested. It is based on the fiber optical Brillouin sensing technique. Firstly, a strain calibration experiment is designed and conducted to obtain the strain coefficient of single mode fiber optics. Results have shown that there is a good linear relationship between Brillouin frequency and applied strain. Then, three kinds of novel fiber optical Brillouin corrosion expansion sensors with different fiber optic coil winding packaging schemes are designed. Sensors were embedded into concrete specimens to monitor expansion strain caused by steel rebar corrosion, and their performance was studied in a designed electrochemical corrosion acceleration experiment. Experimental results have shown that expansion strain along the fiber optic coil winding area can be detected and measured by the three kinds of sensors with different measurement range during development the corrosion. With the assumption of uniform corrosion, diameters of corrosion steel rebars were obtained using calculated average strains. A maximum expansion strain of 6,738 με was monitored. Furthermore, the uniform corrosion analysis model was established and the evaluation formula to evaluate mass loss rate of steel rebar under a given corrosion rust expansion rate was derived. The research has shown that three kinds of Brillouin sensors can be used to monitor the steel rebar corrosion expansion of reinforced concrete structures with good sensitivity, accuracy and monitoring range, and can be applied to monitor different levels of corrosion. By means of this kind of monitoring technique, quantitative corrosion expansion monitoring can be carried out, with the virtues of long durability, real-time monitoring and quasi-distribution monitoring.

  9. Brillouin Corrosion Expansion Sensors for Steel Reinforced Concrete Structures Using a Fiber Optic Coil Winding Method

    PubMed Central

    Zhao, Xuefeng; Gong, Peng; Qiao, Guofu; Lu, Jie; Lv, Xingjun; Ou, Jinping

    2011-01-01

    In this paper, a novel kind of method to monitor corrosion expansion of steel rebars in steel reinforced concrete structures named fiber optic coil winding method is proposed, discussed and tested. It is based on the fiber optical Brillouin sensing technique. Firstly, a strain calibration experiment is designed and conducted to obtain the strain coefficient of single mode fiber optics. Results have shown that there is a good linear relationship between Brillouin frequency and applied strain. Then, three kinds of novel fiber optical Brillouin corrosion expansion sensors with different fiber optic coil winding packaging schemes are designed. Sensors were embedded into concrete specimens to monitor expansion strain caused by steel rebar corrosion, and their performance was studied in a designed electrochemical corrosion acceleration experiment. Experimental results have shown that expansion strain along the fiber optic coil winding area can be detected and measured by the three kinds of sensors with different measurement range during development the corrosion. With the assumption of uniform corrosion, diameters of corrosion steel rebars were obtained using calculated average strains. A maximum expansion strain of 6,738 με was monitored. Furthermore, the uniform corrosion analysis model was established and the evaluation formula to evaluate mass loss rate of steel rebar under a given corrosion rust expansion rate was derived. The research has shown that three kinds of Brillouin sensors can be used to monitor the steel rebar corrosion expansion of reinforced concrete structures with good sensitivity, accuracy and monitoring range, and can be applied to monitor different levels of corrosion. By means of this kind of monitoring technique, quantitative corrosion expansion monitoring can be carried out, with the virtues of long durability, real-time monitoring and quasi-distribution monitoring. PMID:22346672

  10. Image distortion analysis using polynomial series expansion.

    PubMed

    Baggenstoss, Paul M

    2004-11-01

    In this paper, we derive a technique for analysis of local distortions which affect data in real-world applications. In the paper, we focus on image data, specifically handwritten characters. Given a reference image and a distorted copy of it, the method is able to efficiently determine the rotations, translations, scaling, and any other distortions that have been applied. Because the method is robust, it is also able to estimate distortions for two unrelated images, thus determining the distortions that would be required to cause the two images to resemble each other. The approach is based on a polynomial series expansion using matrix powers of linear transformation matrices. The technique has applications in pattern recognition in the presence of distortions.

  11. The analytic structure of non-global logarithms: Convergence of the dressed gluon expansion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larkoski, Andrew J.; Moult, Ian; Neill, Duff Austin

    Non-global logarithms (NGLs) are the leading manifestation of correlations between distinct phase space regions in QCD and gauge theories and have proven a challenge to understand using traditional resummation techniques. Recently, the dressed gluon ex-pansion was introduced that enables an expansion of the NGL series in terms of a “dressed gluon” building block, defined by an all-orders factorization theorem. Here, we clarify the nature of the dressed gluon expansion, and prove that it has an infinite radius of convergence as a solution to the leading logarithmic and large-N c master equation for NGLs, the Banfi-Marchesini-Smye (BMS) equation. The dressed gluonmore » expansion therefore provides an expansion of the NGL series that can be truncated at any order, with reliable uncertainty estimates. In contrast, manifest in the results of the fixed-order expansion of the BMS equation up to 12-loops is a breakdown of convergence at a finite value of α slog. We explain this finite radius of convergence using the dressed gluon expansion, showing how the dynamics of the buffer region, a region of phase space near the boundary of the jet that was identified in early studies of NGLs, leads to large contributions to the fixed order expansion. We also use the dressed gluon expansion to discuss the convergence of the next-to-leading NGL series, and the role of collinear logarithms that appear at this order. Finally, we show how an understanding of the analytic behavior obtained from the dressed gluon expansion allows us to improve the fixed order NGL series using conformal transformations to extend the domain of analyticity. Furthermore, this allows us to calculate the NGL distribution for all values of α slog from the coefficients of the fixed order expansion.« less

  12. The analytic structure of non-global logarithms: Convergence of the dressed gluon expansion

    DOE PAGES

    Larkoski, Andrew J.; Moult, Ian; Neill, Duff Austin

    2016-11-15

    Non-global logarithms (NGLs) are the leading manifestation of correlations between distinct phase space regions in QCD and gauge theories and have proven a challenge to understand using traditional resummation techniques. Recently, the dressed gluon ex-pansion was introduced that enables an expansion of the NGL series in terms of a “dressed gluon” building block, defined by an all-orders factorization theorem. Here, we clarify the nature of the dressed gluon expansion, and prove that it has an infinite radius of convergence as a solution to the leading logarithmic and large-N c master equation for NGLs, the Banfi-Marchesini-Smye (BMS) equation. The dressed gluonmore » expansion therefore provides an expansion of the NGL series that can be truncated at any order, with reliable uncertainty estimates. In contrast, manifest in the results of the fixed-order expansion of the BMS equation up to 12-loops is a breakdown of convergence at a finite value of α slog. We explain this finite radius of convergence using the dressed gluon expansion, showing how the dynamics of the buffer region, a region of phase space near the boundary of the jet that was identified in early studies of NGLs, leads to large contributions to the fixed order expansion. We also use the dressed gluon expansion to discuss the convergence of the next-to-leading NGL series, and the role of collinear logarithms that appear at this order. Finally, we show how an understanding of the analytic behavior obtained from the dressed gluon expansion allows us to improve the fixed order NGL series using conformal transformations to extend the domain of analyticity. Furthermore, this allows us to calculate the NGL distribution for all values of α slog from the coefficients of the fixed order expansion.« less

  13. Detection of urban expansion in an urban-rural landscape with multitemporal QuickBird images

    PubMed Central

    Lu, Dengsheng; Hetrick, Scott; Moran, Emilio; Li, Guiying

    2011-01-01

    Accurately detecting urban expansion with remote sensing techniques is a challenge due to the complexity of urban landscapes. This paper explored methods for detecting urban expansion with multitemporal QuickBird images in Lucas do Rio Verde, Mato Grosso, Brazil. Different techniques, including image differencing, principal component analysis (PCA), and comparison of classified impervious surface images with the matched filtering method, were used to examine urbanization detection. An impervious surface image classified with the hybrid method was used to modify the urbanization detection results. As a comparison, the original multispectral image and segmentation-based mean-spectral images were used during the detection of urbanization. This research indicates that the comparison of classified impervious surface images with matched filtering method provides the best change detection performance, followed by the image differencing method based on segmentation-based mean spectral images. The PCA is not a good method for urban change detection in this study. Shadows and high spectral variation within the impervious surfaces represent major challenges to the detection of urban expansion when high spatial resolution images are used. PMID:21799706

  14. Ground state energies from converging and diverging power series expansions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lisowski, C.; Norris, S.; Pelphrey, R.

    2016-10-15

    It is often assumed that bound states of quantum mechanical systems are intrinsically non-perturbative in nature and therefore any power series expansion methods should be inapplicable to predict the energies for attractive potentials. However, if the spatial domain of the Schrödinger Hamiltonian for attractive one-dimensional potentials is confined to a finite length L, the usual Rayleigh–Schrödinger perturbation theory can converge rapidly and is perfectly accurate in the weak-binding region where the ground state’s spatial extension is comparable to L. Once the binding strength is so strong that the ground state’s extension is less than L, the power expansion becomes divergent,more » consistent with the expectation that bound states are non-perturbative. However, we propose a new truncated Borel-like summation technique that can recover the bound state energy from the diverging sum. We also show that perturbation theory becomes divergent in the vicinity of an avoided-level crossing. Here the same numerical summation technique can be applied to reproduce the energies from the diverging perturbative sums.« less

  15. Does query expansion limit our learning? A comparison of social-based expansion to content-based expansion for medical queries on the internet.

    PubMed

    Pentoney, Christopher; Harwell, Jeff; Leroy, Gondy

    2014-01-01

    Searching for medical information online is a common activity. While it has been shown that forming good queries is difficult, Google's query suggestion tool, a type of query expansion, aims to facilitate query formation. However, it is unknown how this expansion, which is based on what others searched for, affects the information gathering of the online community. To measure the impact of social-based query expansion, this study compared it with content-based expansion, i.e., what is really in the text. We used 138,906 medical queries from the AOL User Session Collection and expanded them using Google's Autocomplete method (social-based) and the content of the Google Web Corpus (content-based). We evaluated the specificity and ambiguity of the expansion terms for trigram queries. We also looked at the impact on the actual results using domain diversity and expansion edit distance. Results showed that the social-based method provided more precise expansion terms as well as terms that were less ambiguous. Expanded queries do not differ significantly in diversity when expanded using the social-based method (6.72 different domains returned in the first ten results, on average) vs. content-based method (6.73 different domains, on average).

  16. Iterative expansion microscopy.

    PubMed

    Chang, Jae-Byum; Chen, Fei; Yoon, Young-Gyu; Jung, Erica E; Babcock, Hazen; Kang, Jeong Seuk; Asano, Shoh; Suk, Ho-Jun; Pak, Nikita; Tillberg, Paul W; Wassie, Asmamaw T; Cai, Dawen; Boyden, Edward S

    2017-06-01

    We recently developed a method called expansion microscopy, in which preserved biological specimens are physically magnified by embedding them in a densely crosslinked polyelectrolyte gel, anchoring key labels or biomolecules to the gel, mechanically homogenizing the specimen, and then swelling the gel-specimen composite by ∼4.5× in linear dimension. Here we describe iterative expansion microscopy (iExM), in which a sample is expanded ∼20×. After preliminary expansion a second swellable polymer mesh is formed in the space newly opened up by the first expansion, and the sample is expanded again. iExM expands biological specimens ∼4.5 × 4.5, or ∼20×, and enables ∼25-nm-resolution imaging of cells and tissues on conventional microscopes. We used iExM to visualize synaptic proteins, as well as the detailed architecture of dendritic spines, in mouse brain circuitry.

  17. Removable Type Expansion Bolt Innovative Design

    NASA Astrophysics Data System (ADS)

    Wang, Feng-Lan; Zhang, Bo; Gao, Bo; Liu, Yan-Xin; Gao, Bo

    2016-05-01

    Expansion bolt is a kind of the most common things in our daily life. Currently, there are many kinds of expansion bolts in the market. However, they have some shortcomings that mainly contain underuse and unremovement but our innovation of design makes up for these shortcomings very well. Principle of working follows this: expansion tube is fixed outside of bolt, steel balls and expansion covers are fixed inside. Meanwhile, the steel balls have 120° with each other. When using it ,expansion cover is moved in the direction of its internal part. So the front part of expansion bolt cover is increasingly becoming big and steel halls is moved outside. Only in this way can it be fixed that steel balls make expansion tube expand. When removing them, expansion bolt is moved outside. So the front part of expansion bolt cover is gradually becoming small and steel balls moves inside, after expansion tube shrinks, we can detach them.

  18. Clinical evaluation of split-crest technique with ultrasonic bone surgery for narrow ridge expansion: status of soft and hard tissues and implant success.

    PubMed

    Anitua, Eduardo; Begoña, Leire; Orive, Gorka

    2013-04-01

    The aim of this study was to evaluate the split-crest technique with ultrasonic bone surgery for implant placement in patients with narrow ridges, focusing on the status of soft and hard tissues and on implant success rate, at least 6 months after implant loading. During September 2007 and November 2008, 15 patients received 37 implants (BTI implants) with split-crest surgical procedure using ultrasonic bone surgery. Plasma rich in growth factors (PRGF®) was applied during split crest procedure to promote tissue regeneration. Implant surfaces were humidified with PRGF to accelerate osseointegration. Patients were recalled for a final clinical evaluation at least 6 months after implant loading. Clinical assessment included the status of soft and hard tissues around implants, and implants' success rate. Thirty-seven implants in 15 patients were evaluated between July 2009 and January 2010. The status of soft tissues was very good, showing adequate plaque index, bleeding index, and probing depth values. Success rate of implants at the end of follow-up (between 11 and 28 months after insertion) was 100%. Bone ridge was measured and compared at final examination showing a mean ridge expansion of 3.35 mm (SD: 0.34). Split-crest with ultrasonic bone surgery can be considered an effective and safe procedure for narrow ridge expansion. © 2011 Wiley Periodicals, Inc.

  19. Identifying and reducing error in cluster-expansion approximations of protein energies.

    PubMed

    Hahn, Seungsoo; Ashenberg, Orr; Grigoryan, Gevorg; Keating, Amy E

    2010-12-01

    Protein design involves searching a vast space for sequences that are compatible with a defined structure. This can pose significant computational challenges. Cluster expansion is a technique that can accelerate the evaluation of protein energies by generating a simple functional relationship between sequence and energy. The method consists of several steps. First, for a given protein structure, a training set of sequences with known energies is generated. Next, this training set is used to expand energy as a function of clusters consisting of single residues, residue pairs, and higher order terms, if required. The accuracy of the sequence-based expansion is monitored and improved using cross-validation testing and iterative inclusion of additional clusters. As a trade-off for evaluation speed, the cluster-expansion approximation causes prediction errors, which can be reduced by including more training sequences, including higher order terms in the expansion, and/or reducing the sequence space described by the cluster expansion. This article analyzes the sources of error and introduces a method whereby accuracy can be improved by judiciously reducing the described sequence space. The method is applied to describe the sequence-stability relationship for several protein structures: coiled-coil dimers and trimers, a PDZ domain, and T4 lysozyme as examples with computationally derived energies, and SH3 domains in amphiphysin-1 and endophilin-1 as examples where the expanded pseudo-energies are obtained from experiments. Our open-source software package Cluster Expansion Version 1.0 allows users to expand their own energy function of interest and thereby apply cluster expansion to custom problems in protein design. © 2010 Wiley Periodicals, Inc.

  20. Pain and Anxiety Levels of Patients Undergoing Tissue Expansion After Mastectomies: A Case Series Study.

    PubMed

    Le, Nicole K; García-Molina, Carla; Kumar, Ambuj; Griffin, Lisa; Dayicioglu, Deniz

    2017-01-01

    The tissue expansion process is done after mastectomies to increase the submuscular space in preparation for the placement of permanent breast implant. The process is often believed to be painful by patients who are often intimidated by the prospect of mechanically stretching out their skin and muscle. This study aims to quantify the pain experienced by patients and determine the different pain management techniques used. We used a case series approach, in which patients who were undergoing serial tissue expansion process were asked to rate their pain and anxiety on a scale from 1 to 10, using a questionnaire and the visual analog scale. Pain was rated during and after the expansion procedure, and patients were also surveyed to find the most commonly used and most effective pain management technique. Patients typically reported very little pain during and after the procedure, with an average of 0.4 to 2.5 pain experienced out of 10. The pain did not last, on average, longer than 1 day. Furthermore, the most widely used and most helpful pain medication was ibuprofen. During the tissue expansion procedure, the mean anxiety level was 0.64 (1.3). The findings show that tissue expansion process is a relatively low pain procedure and is not a contraindication for undergoing breast reconstruction. Ibuprofen, a mild treatment with few side effects, was efficacious in pain relief though most patients required no pain relief.

  1. Magnus expansion method for two-level atom interacting with few-cycle pulse

    NASA Astrophysics Data System (ADS)

    Begzjav, T.; Ben-Benjamin, J. S.; Eleuch, H.; Nessler, R.; Rostovtsev, Y.; Shchedrin, G.

    2018-06-01

    Using the Magnus expansion to the fourth order, we obtain analytic expressions for the atomic state of a two-level system driven by a laser pulse of arbitrary shape with small pulse area. We also determine the limitation of our obtained formulas due to limited range of convergence of the Magnus series. We compare our method to the recently developed method of Rostovtsev et al. (PRA 2009, 79, 063833) for several detunings. Our analysis shows that our technique based on the Magnus expansion can be used as a complementary method to the one in PRA 2009.

  2. Thermal Expansion of Self-Organized and Shear-Oriented Cellulose Nanocrystal Films

    Treesearch

    Jairo A. Diaz; Xiawa Wu; Ashlie Martini; Jeffrey P. Youngblood; Robert J. Moon

    2013-01-01

    The coefficient of thermal expansion (CTE) of cellulose nanocrystal (CNC) films was characterized using novel experimental techniques complemented by molecular simulations. The characteristic birefringence exhibited by CNC films was utilized to calculate the in-plane CTE of selforganized and shear-oriented self-standing CNC films from room temperature to 100 °...

  3. Measured extent of agricultural expansion depends on analysis technique

    DOE PAGES

    Dunn, Jennifer B.; Merz, Dylan; Copenhaver, Ken L.; ...

    2017-01-31

    Concern is rising that ecologically important, carbon-rich natural lands in the United States are losing ground to agriculture. We investigate how quantitative assessments of historical land use change to address this concern differ in their conclusions depending on the data set used. We examined land use change between 2006 and 2014 in 20 counties in the Prairie Pothole Region using the Cropland Data Layer, a modified Cropland Data Layer, data from the National Agricultural Imagery Program, and in-person ground-truthing. The Cropland Data Layer analyses overwhelmingly returned the largest amount of land use change with associated error that limits drawing conclusionsmore » from it. Analysis with visual imagery estimated a fraction of this land use change. Clearly, analysis technique drives understanding of the measured extent of land use change; different techniques produce vastly different results that would inform land management policy in strikingly different ways. As a result, best practice guidelines are needed.« less

  4. Measured extent of agricultural expansion depends on analysis technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunn, Jennifer B.; Merz, Dylan; Copenhaver, Ken L.

    Concern is rising that ecologically important, carbon-rich natural lands in the United States are losing ground to agriculture. We investigate how quantitative assessments of historical land use change to address this concern differ in their conclusions depending on the data set used. We examined land use change between 2006 and 2014 in 20 counties in the Prairie Pothole Region using the Cropland Data Layer, a modified Cropland Data Layer, data from the National Agricultural Imagery Program, and in-person ground-truthing. The Cropland Data Layer analyses overwhelmingly returned the largest amount of land use change with associated error that limits drawing conclusionsmore » from it. Analysis with visual imagery estimated a fraction of this land use change. Clearly, analysis technique drives understanding of the measured extent of land use change; different techniques produce vastly different results that would inform land management policy in strikingly different ways. As a result, best practice guidelines are needed.« less

  5. Genetic drift and selection in many-allele range expansions.

    PubMed

    Weinstein, Bryan T; Lavrentovich, Maxim O; Möbius, Wolfram; Murray, Andrew W; Nelson, David R

    2017-12-01

    We experimentally and numerically investigate the evolutionary dynamics of four competing strains of E. coli with differing expansion velocities in radially expanding colonies. We compare experimental measurements of the average fraction, correlation functions between strains, and the relative rates of genetic domain wall annihilations and coalescences to simulations modeling the population as a one-dimensional ring of annihilating and coalescing random walkers with deterministic biases due to selection. The simulations reveal that the evolutionary dynamics can be collapsed onto master curves governed by three essential parameters: (1) an expansion length beyond which selection dominates over genetic drift; (2) a characteristic angular correlation describing the size of genetic domains; and (3) a dimensionless constant quantifying the interplay between a colony's curvature at the frontier and its selection length scale. We measure these parameters with a new technique that precisely measures small selective differences between spatially competing strains and show that our simulations accurately predict the dynamics without additional fitting. Our results suggest that the random walk model can act as a useful predictive tool for describing the evolutionary dynamics of range expansions composed of an arbitrary number of genotypes with different fitnesses.

  6. Prelaminated extended temporoparietal fascia flap without tissue expansion for hemifacial reconstruction.

    PubMed

    Altındaş, Muzaffer; Arslan, Hakan; Bingöl, Uğur Anıl; Demiröz, Anıl

    2017-10-01

    Disfigurement of the face caused by postburn scars, resected congenital nevi and vascular malformations has both functional and psychological consequences. Ideal reconstruction of the facial components requires producing not only function but also the better appearance of the face. The skin of the neck, supraclavicular or cervicothoracic regions are the most commonly used and the most likely source of skin for facial reconstruction in those techniques which prefabrications with tissue expansion are used. This retrospective cohort study describes the two staged prelaminated temporoparietal fascia flap which eliminates the usage of tissue expansion by using skin graft harvested from the neck and occipital region and the application of this flap for the lower three-fourths of the face. 5 patients received prelaminated temporoparietal fascia flap without tissue expansion for facial resurfacing. The mean age at surgery was 39, 2 years (range, 17-60 years). The average follow up was 21.6 months (range, 10-48 months). The size of the raised prelaminated temporoparietal fascia flaps ranged from 9 × 8 cm to 14 × 10 cm. All flaps survived after second stage. Varied degrees of venous congestion were observed after flap insets in all cases but none required any further treatment for the congestion. The entire lesion could not be resected due to the large size of the lesion in all patients. Two stage prelaminated temporoparietal fascia flap with skin graft is an effective technique for the reconstruction of partial facial defects in selected patients. It is simple, quick, safe and reliable, and requires no expansion of skin or no microsurgery. Copyright © 2017 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  7. Rotational Relaxation in Nonequilibrium Freejet Expansions of Heated Nitrogen

    NASA Technical Reports Server (NTRS)

    Gochberg, Lawrence A.; Hurlbut, Franklin C.; Arnold, James O. (Technical Monitor)

    1994-01-01

    Rotational temperatures have been measured in rarefied, nonequilibrium, heated freejet expansions of nitrogen using the electron beam fluorescence technique at the University of California at Berkeley Low Density Wind Tunnel facility. Spectroscopic measurements of the (0,0) band of the first negative system of nitrogen reveal the nonequilibrium behavior in the flowfield upstream of, and through the Mach disk, which forms as the freejet expands into a region of finite back pressure. Results compare well with previous freejet expansion data and computations regarding location of the Mach disk and terminal rotational temperature in the expansion. Measurements are also presented for shock thickness based on the rotational temperature changes in the flow. Thickening shock layers, departures of rotational temperature from equilibrium in the expansion region, and downstream rotational temperature recovery much below that of an isentropic normal shock provide indications of the rarefied, nonequilibrium flow behavior. The data are analyzed to infer constant values of the rotational-relaxation collision number from 2.2 to 6.5 for the various flow conditions. Collision numbers are also calculated in a consistent manner for data from other investigations for which is seen a qualitative increase with increasing temperature. Rotational-relaxation collision numbers are seen as not fully descriptive of the rarefied freejet flows. This may be due to the high degree of nonequilibrium in the flowfields, and/or to the use of a temperature-insensitive rotational-relaxation collision number model in the data analyses.

  8. Experimental residual stress evaluation of hydraulic expansion transitions in Alloy 690 steam generator tubing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGregor, R.; Doherty, P.; Hornbach, D.

    1995-12-31

    Nuclear Steam Generator (SG) service reliability and longevity have been seriously affected worldwide by corrosion at the tube-to-tubesheet joint expansion. Current SG designs for new facilities and replacement projects enhance corrosion resistance through the use of advanced tubing materials and improved joint design and fabrication techniques. Here, transition zones of hydraulic expansions have undergone detailed experimental evaluation to define residual stress and cold-work distribution on and below the secondary-side surface. Using X-ray diffraction techniques, with supporting finite element analysis, variations are compared in tubing metallurgical condition, tube/pitch geometry, expansion pressure, and tube-to-hole clearance. Initial measurements to characterize the unexpanded tubemore » reveal compressive stresses associated with a thin work-hardened layer on the outer surface of the tube. The gradient of cold-work was measured as 3% to 0% within .001 inch of the surface. The levels and character of residual stresses following hydraulic expansion are primarily dependent on this work-hardened surface layer and initial stress state that is unique to each tube fabrication process. Tensile stresses following expansion are less than 25% of the local yield stress and are found on the transition in a narrow circumferential band at the immediate tube surface (< .0002 inch/0.005 mm depth). The measurements otherwise indicate a predominance of compressive stresses on and below the secondary-side surface of the transition zone. Excellent resistance to SWSCC initiation is offered by the low levels of tensile stress and cold-work. Propagation of any possible cracking would be deterred by the compressive stress field that surrounds this small volume of tensile material.« less

  9. An FBG Optical Approach to Thermal Expansion Measurements under Hydrostatic Pressure.

    PubMed

    Rosa, Priscila F S; Thomas, Sean M; Balakirev, Fedor F; Betts, Jon; Seo, Soonbeom; Bauer, Eric D; Thompson, Joe D; Jaime, Marcelo

    2017-11-04

    We report on an optical technique for measuring thermal expansion and magnetostriction at cryogenic temperatures and under applied hydrostatic pressures of 2.0 GPa. Optical fiber Bragg gratings inside a clamp-type pressure chamber are used to measure the strain in a millimeter-sized sample of CeRhIn₅. We describe the simultaneous measurement of two Bragg gratings in a single optical fiber using an optical sensing instrument capable of resolving changes in length [dL/L = (L- L₀)/L₀] on the order of 10 -7 . Our results demonstrate the possibility of performing high-resolution thermal expansion measurements under hydrostatic pressure, a capability previously hindered by the small working volumes typical of pressure cells.

  10. Expansion method in secondary total ear reconstruction for undesirable reconstructed ear.

    PubMed

    Liu, Tun; Hu, Jintian; Zhou, Xu; Zhang, Qingguo

    2014-09-01

    Ear reconstruction by autologous costal cartilage grafting is the most widely applied technique with fewer complications. However, undesirable ear reconstruction brings more problems to plastic surgeons. Some authors resort to free flap or osseointegration technique with prosthetic ear. In this article, we introduce a secondary total ear reconstruction with expanded skin flap method. From July 2010 to April 2012, 7 cases of undesirable ear reconstruction were repaired by tissue expansion method. Procedures including removal of previous cartilage framework, soft tissue expander insertion, and second stage of cartilage framework insertion were performed to each case regarding their local conditions. The follow-up time ranged from 6 months to 2.5 years. All of the cases recovered well with good 3-dimensional forms, symmetrical auriculocephalic angle, and stable fixation. All these evidence showed that this novel expansion method is safe, stable, and less traumatic for secondary total ear reconstruction. With sufficient expanded skin flap and refabricated cartilage framework, lifelike appearance of reconstructed ear could be acquired without causing additional injury.

  11. Expansion Mini-Microscopy: An Enabling Alternative in Point-of-Care Diagnostics

    PubMed Central

    Zhang, Yu Shrike; Santiago, Grissel Trujillo-de; Alvarez, Mario Moisés; Schiff, Steven J.; Boyden, Edward S.; Khademhosseini, Ali

    2017-01-01

    Diagnostics play a significant role in health care. In the developing world and low-resource regions the utility for point-of-care (POC) diagnostics becomes even greater. This need has long been recognized, and diagnostic technology has seen tremendous progress with the development of portable instrumentation such as miniature imagers featuring low complexity and cost. However, such inexpensive devices have not been able to achieve a resolution sufficient for POC detection of pathogens at very small scales, such as single-cell parasites, bacteria, fungi, and viruses. To this end, expansion microscopy (ExM) is a recently developed technique that, by physically expanding preserved biological specimens through a chemical process, enables super-resolution imaging on conventional microscopes and improves imaging resolution of a given microscope without the need to modify the existing microscope hardware. Here we review recent advances in ExM and portable imagers, respectively, and discuss the rational combination of the two technologies, that we term expansion mini-microscopy (ExMM). In ExMM, the physical expansion of a biological sample followed by imaging on a mini-microscope achieves a resolution as high as that attainable by conventional high-end microscopes imaging non-expanded samples, at significant reduction in cost. We believe that this newly developed ExMM technique is likely to find widespread applications in POC diagnostics in resource-limited and remote regions by expanded-scale imaging of biological specimens that are otherwise not resolvable using low-cost imagers. PMID:29062977

  12. Strategies of leaf expansion in Ficus carica under semiarid conditions.

    PubMed

    González-Rodríguez, A M; Peters, J

    2010-05-01

    Leaf area expansion, thickness and inclination, gas exchange parameters and relative chlorophyll content were analysed in field-grown fig (Ficus carica L.) leaves over time, from emergence until after full leaf expansion (FLE). Ficus carica leaves showed a subtle change in shape during the early stages of development, and FLE was reached within ca. 30 days after emergence. Changes in leaf thickness and inclination after FLE demonstrated good adaptation to environmental conditions during summer in areas with a Mediterranean climate. Changes in gas exchange parameters and relative chlorophyll content showed that F. carica is a delayed-greening species, reaching maximum values 20 days after FLE. Correlation analysis of datasets collected during leaf expansion, confirmed dependence among structural and functional traits in F. carica. Pn was directly correlated with stomatal conductance (Gs), transpiration (E), leaf area (LA) and relative chlorophyll content up to FLE. The effect of pruning on leaf expansion, a cultural technique commonly applied in this fruit tree, was also evaluated. Although leaf development in pruned branches gave a significantly higher relative leaf area growth rate (RGR(l)) and higher LA than non-pruned branches, no significant differences were found in other morphological and physiological traits, indicating no pruning effect on leaf development. All studied morphological and physiological characteristics indicate that F. carica is well adapted to semiarid conditions. The delayed greening strategy of this species is discussed.

  13. Thermal expansion in FeCrCoNiGa high-entropy alloy from theory and experiment

    NASA Astrophysics Data System (ADS)

    Huang, Shuo; Vida, Ádám; Li, Wei; Molnár, Dávid; Kyun Kwon, Se; Holmström, Erik; Varga, Béla; Károly Varga, Lajos; Vitos, Levente

    2017-06-01

    First-principle alloy theory and key experimental techniques are applied to determine the thermal expansion of FeCrCoNiGa high-entropy alloy. The magnetic transition, observed at 649 K, is accompanied by a significant increase in the thermal expansion coefficient. The phase stability is analyzed as a function of temperature via the calculated free energies accounting for the structural, magnetic, electronic, vibrational and configurational contributions. The single- and polycrystal elastic modulus for the ferro- and paramagnetic states of the face-centered and body-centered cubic phases are presented. By combining the measured and theoretically predicted temperature-dependent lattice parameters, we reveal the structural and magnetic origin of the observed anomalous thermal expansion behavior.

  14. Distraction Osteogenesis Maxillary Expansion (DOME) for Adult Obstructive Sleep Apnea Patients with High Arched Palate.

    PubMed

    Liu, Stanley Yung-Chuan; Guilleminault, Christian; Huon, Leh-Kiong; Yoon, Audrey

    2017-08-01

    A narrow maxilla with high arched palate characterizes a phenotype of obstructive sleep apnea (OSA) patients that is associated with increased nasal resistance and posterior tongue displacement. Current maxillary expansion techniques for adults are designed to correct dentofacial deformity. We describe distraction osteogenesis maxillary expansion (DOME) tailored to adult patients with OSA with narrow nasal floor and high arched palate without soft tissue redundancy. DOME is performed with placement of maxillary expanders secured by mini-implants along the midpalatal suture. This minimizes the maxillary osteotomies necessary to re-create sutural separation for reliable expansion at the nasal floor and palatal vault. We report the safety and efficacy profile of the first 20 patients at Stanford who underwent DOME.

  15. Order reduction of z-transfer functions via multipoint Jordan continued-fraction expansion

    NASA Technical Reports Server (NTRS)

    Lee, Ying-Chin; Hwang, Chyi; Shieh, Leang S.

    1992-01-01

    The order reduction problem of z-transfer functions is solved by using the multipoint Jordan continued-fraction expansion (MJCFE) technique. An efficient algorithm that does not require the use of complex algebra is presented for obtaining an MJCFE from a stable z-transfer function with expansion points selected from the unit circle and/or the positive real axis of the z-plane. The reduced-order models are exactly the multipoint Pade approximants of the original system and, therefore, they match the (weighted) time-moments of the impulse response and preserve the frequency responses of the system at some characteristic frequencies, such as gain crossover frequency, phase crossover frequency, bandwidth, etc.

  16. AUTOMATIC GENERATION OF FFT FOR TRANSLATIONS OF MULTIPOLE EXPANSIONS IN SPHERICAL HARMONICS

    PubMed Central

    Mirkovic, Dragan; Pettitt, B. Montgomery; Johnsson, S. Lennart

    2009-01-01

    The fast multipole method (FMM) is an efficient algorithm for calculating electrostatic interactions in molecular simulations and a promising alternative to Ewald summation methods. Translation of multipole expansion in spherical harmonics is the most important operation of the fast multipole method and the fast Fourier transform (FFT) acceleration of this operation is among the fastest methods of improving its performance. The technique relies on highly optimized implementation of fast Fourier transform routines for the desired expansion sizes, which need to incorporate the knowledge of symmetries and zero elements in the input arrays. Here a method is presented for automatic generation of such, highly optimized, routines. PMID:19763233

  17. Thermal Expansion of Polyurethane Foam

    NASA Technical Reports Server (NTRS)

    Lerch, Bradley A.; Sullivan, Roy M.

    2006-01-01

    Closed cell foams are often used for thermal insulation. In the case of the Space Shuttle, the External Tank uses several thermal protection systems to maintain the temperature of the cryogenic fuels. A few of these systems are polyurethane, closed cell foams. In an attempt to better understand the foam behavior on the tank, we are in the process of developing and improving thermal-mechanical models for the foams. These models will start at the microstructural level and progress to the overall structural behavior of the foams on the tank. One of the key properties for model characterization and verification is thermal expansion. Since the foam is not a material, but a structure, the modeling of the expansion is complex. It is also exacerbated by the anisoptropy of the material. During the spraying and foaming process, the cells become elongated in the rise direction and this imparts different properties in the rise direction than in the transverse directions. Our approach is to treat the foam as a two part structure consisting of the polymeric cell structure and the gas inside the cells. The polymeric skeleton has a thermal expansion of its own which is derived from the basic polymer chemistry. However, a major contributor to the thermal expansion is the volume change associated with the gas inside of the closed cells. As this gas expands it exerts pressure on the cell walls and changes the shape and size of the cells. The amount that this occurs depends on the elastic and viscoplastic properties of the polymer skeleton. The more compliant the polymeric skeleton, the more influence the gas pressure has on the expansion. An additional influence on the expansion process is that the polymeric skeleton begins to breakdown at elevated temperatures and releases additional gas species into the cell interiors, adding to the gas pressure. The fact that this is such a complex process makes thermal expansion ideal for testing the models. This report focuses on the thermal

  18. Expansion: A Plan for Success.

    ERIC Educational Resources Information Center

    Callahan, A.P.

    This report provides selling brokers' guidelines for the successful expansion of their operations outlining a basic method of preparing an expansion plan. Topic headings are: The Pitfalls of Expansion (The Language of Business, Timely Financial Reporting, Regulatory Agencies of Government, Preoccupation with the Facade of Business, A Business Is a…

  19. Thermal expansion of silver iodide-silver molybdate glasses at low temperatures

    NASA Astrophysics Data System (ADS)

    Mandanici, A.; Raimondo, A.; Cutroni, M.; Ramos, M. A.; Rodrigo, J. G.; Vieira, S.; Armellini, C.; Rocca, F.

    2009-05-01

    Ionic glasses obtained combining silver iodide and silver molybdate are characterized by quite low values of the glass transition temperature Tg around 320-350 K, by high values of the dc ionic conductivity even at room temperature and by a peculiar behavior of the mechanical response at ultrasonic frequencies. In fact, at temperatures well below their glass transition temperature, these glasses exhibit an intense peak of acoustic attenuation well described by two different and almost overlapping relaxational contributions. Considering also that negative thermal expansion has been reported for some molybdate crystalline compounds, we have investigated in this work the thermal expansion of two silver iodomolybdate glasses (AgI)1-x(Ag2MoO4)x for x =0.25 and x =0.33 in a wide temperature range (4.2-300 K) from cryogenic temperatures up to some 20 K below Tg using a precision capacitance dilatometer aiming to understand whether the expansivity shows some possible fingerprint corresponding to the above-mentioned mechanical response. Two different measuring methods, a quasiadiabatic and a continuous one, have been used for the thermal expansion measurements. The results are discussed in comparison with the information obtained from previous investigations based on the extended x-ray absorption fine structure (EXAFS) technique and with the behavior of other ionic glasses.

  20. 48 CFR 570.403 - Expansion requests.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Continued Space Requirements 570.403 Expansion requests. (a) If the expansion space is in the general scope... justification under FAR 6.3. (b) If the expansion space needed is outside the general scope of the lease, the contracting officer must determine whether it is more prudent to provide the expansion space by supplemental...

  1. 48 CFR 570.403 - Expansion requests.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Continued Space Requirements 570.403 Expansion requests. (a) If the expansion space is in the general scope... FAR 6.3. (b) If the expansion space needed is outside the general scope of the lease, determine whether it is more prudent to provide the expansion space by supplemental agreement to the existing lease...

  2. 48 CFR 570.403 - Expansion requests.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Continued Space Requirements 570.403 Expansion requests. (a) If the expansion space is in the general scope... justification under FAR 6.3. (b) If the expansion space needed is outside the general scope of the lease, the contracting officer must determine whether it is more prudent to provide the expansion space by supplemental...

  3. 48 CFR 570.403 - Expansion requests.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Continued Space Requirements 570.403 Expansion requests. (a) If the expansion space is in the general scope... justification under FAR 6.3. (b) If the expansion space needed is outside the general scope of the lease, the contracting officer must determine whether it is more prudent to provide the expansion space by supplemental...

  4. 48 CFR 570.403 - Expansion requests.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Continued Space Requirements 570.403 Expansion requests. (a) If the expansion space is in the general scope... justification under FAR 6.3. (b) If the expansion space needed is outside the general scope of the lease, the contracting officer must determine whether it is more prudent to provide the expansion space by supplemental...

  5. Bearing-Mounting Concept Accommodates Thermal Expansion

    NASA Technical Reports Server (NTRS)

    Nespodzany, Robert; Davis, Toren S.

    1995-01-01

    Pins or splines allow radial expansion without slippage. Design concept for mounting rotary bearing accommodates differential thermal expansion between bearing and any structure(s) to which bearing connected. Prevents buildup of thermal stresses by allowing thermal expansion to occur freely but accommodating expansion in such way not to introduce looseness. Pin-in-slot configuration also maintains concentricity.

  6. Efficient computation of PDF-based characteristics from diffusion MR signal.

    PubMed

    Assemlal, Haz-Edine; Tschumperlé, David; Brun, Luc

    2008-01-01

    We present a general method for the computation of PDF-based characteristics of the tissue micro-architecture in MR imaging. The approach relies on the approximation of the MR signal by a series expansion based on Spherical Harmonics and Laguerre-Gaussian functions, followed by a simple projection step that is efficiently done in a finite dimensional space. The resulting algorithm is generic, flexible and is able to compute a large set of useful characteristics of the local tissues structure. We illustrate the effectiveness of this approach by showing results on synthetic and real MR datasets acquired in a clinical time-frame.

  7. Quasi-linear theory via the cumulant expansion approach

    NASA Technical Reports Server (NTRS)

    Jones, F. C.; Birmingham, T. J.

    1974-01-01

    The cumulant expansion technique of Kubo was used to derive an intergro-differential equation for f , the average one particle distribution function for particles being accelerated by electric and magnetic fluctuations of a general nature. For a very restricted class of fluctuations, the f equation degenerates exactly to a differential equation of Fokker-Planck type. Quasi-linear theory, including the adiabatic assumption, is an exact theory for this limited class of fluctuations. For more physically realistic fluctuations, however, quasi-linear theory is at best approximate.

  8. An FBG Optical Approach to Thermal Expansion Measurements under Hydrostatic Pressure

    DOE PAGES

    Rosa, Priscila Ferrari Silveira; Thomas, Sean Michael; Balakirev, Fedor Fedorovich; ...

    2017-11-04

    We report on an optical technique for measuring thermal expansion and magnetostriction at cryogenic temperatures and under applied hydrostatic pressures of 2.0 GPa. Optical fiber Bragg gratings inside a clamp-type pressure chamber are used to measure the strain in a millimeter-sized sample of CeRhIn 5. We describe the simultaneous measurement of two Bragg gratings in a single optical fiber using an optical sensing instrument capable of resolving changes in length [dL/L = (L- L 0)/L 0] on the order of 10 -7. Our results demonstrate the possibility of performing high-resolution thermal expansion measurements under hydrostatic pressure, a capability previously hinderedmore » by the small working volumes typical of pressure cells.« less

  9. An FBG Optical Approach to Thermal Expansion Measurements under Hydrostatic Pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosa, Priscila Ferrari Silveira; Thomas, Sean Michael; Balakirev, Fedor Fedorovich

    We report on an optical technique for measuring thermal expansion and magnetostriction at cryogenic temperatures and under applied hydrostatic pressures of 2.0 GPa. Optical fiber Bragg gratings inside a clamp-type pressure chamber are used to measure the strain in a millimeter-sized sample of CeRhIn 5. We describe the simultaneous measurement of two Bragg gratings in a single optical fiber using an optical sensing instrument capable of resolving changes in length [dL/L = (L- L 0)/L 0] on the order of 10 -7. Our results demonstrate the possibility of performing high-resolution thermal expansion measurements under hydrostatic pressure, a capability previously hinderedmore » by the small working volumes typical of pressure cells.« less

  10. Calculating shock arrival in expansion tubes and shock tunnels using Bayesian changepoint analysis

    NASA Astrophysics Data System (ADS)

    James, Christopher M.; Bourke, Emily J.; Gildfind, David E.

    2018-06-01

    To understand the flow conditions generated in expansion tubes and shock tunnels, shock speeds are generally calculated based on shock arrival times at high-frequency wall-mounted pressure transducers. These calculations require that the shock arrival times are obtained accurately. This can be non-trivial for expansion tubes especially because pressure rises may be small and shock speeds high. Inaccurate shock arrival times can be a significant source of uncertainty. To help address this problem, this paper investigates two separate but complimentary techniques. Principally, it proposes using a Bayesian changepoint detection method to automatically calculate shock arrival, potentially reducing error and simplifying the shock arrival finding process. To compliment this, a technique for filtering the raw data without losing the shock arrival time is also presented and investigated. To test the validity of the proposed techniques, tests are performed using both a theoretical step change with different levels of noise and real experimental data. It was found that with conditions added to ensure that a real shock arrival time was found, the Bayesian changepoint analysis method was able to automatically find the shock arrival time, even for noisy signals.

  11. Nonlinear effects on composite laminate thermal expansion

    NASA Technical Reports Server (NTRS)

    Hashin, Z.; Rosen, B. W.; Pipes, R. B.

    1979-01-01

    Analyses of Graphite/Polyimide laminates shown that the thermomechanical strains cannot be separated into mechanical strain and free thermal expansion strain. Elastic properties and thermal expansion coefficients of unidirectional Graphite/Polyimide specimens were measured as a function of temperature to provide inputs for the analysis. The + or - 45 degrees symmetric Graphite/Polyimide laminates were tested to obtain free thermal expansion coefficients and thermal expansion coefficients under various uniaxial loads. The experimental results demonstrated the effects predicted by the analysis, namely dependence of thermal expansion coefficients on load, and anisotropy of thermal expansion under load. The significance of time dependence on thermal expansion was demonstrated by comparison of measured laminate free expansion coefficients with and without 15 day delay at intermediate temperature.

  12. Tensor integrand reduction via Laurent expansion

    NASA Astrophysics Data System (ADS)

    Hirschi, Valentin; Peraro, Tiziano

    2016-06-01

    We introduce a new method for the application of one-loop integrand reduction via the Laurent expansion algorithm, as implemented in the public C ++ library N inja. We show how the coefficients of the Laurent expansion can be computed by suitable contractions of the loop numerator tensor with cut-dependent projectors, making it possible to interface N inja to any one-loop matrix element generator that can provide the components of this tensor. We implemented this technique in the N inja library and interfaced it to M adL oop, which is part of the public M adG raph5_ aMC@NLO framework. We performed a detailed performance study, comparing against other public reduction tools, namely C utT ools, S amurai, IREGI, PJF ry++ and G olem95. We find that N inja out-performs traditional integrand reduction in both speed and numerical stability, the latter being on par with that of the tensor integral reduction tool Golem95 which is however more limited and slower than N inja. We considered many benchmark multi-scale processes of increasing complexity, involving QCD and electro-weak corrections as well as effective non-renormalizable couplings, showing that N inja's performance scales well with both the rank and multiplicity of the considered process.

  13. Tensor integrand reduction via Laurent expansion

    DOE PAGES

    Hirschi, Valentin; Peraro, Tiziano

    2016-06-09

    We introduce a new method for the application of one-loop integrand reduction via the Laurent expansion algorithm, as implemented in the public C++ library Ninja. We show how the coefficients of the Laurent expansion can be computed by suitable contractions of the loop numerator tensor with cut-dependent projectors, making it possible to interface Ninja to any one-loop matrix element generator that can provide the components of this tensor. We implemented this technique in the Ninja library and interfaced it to MadLoop, which is part of the public MadGraph5_aMC@NLO framework. We performed a detailed performance study, comparing against other public reductionmore » tools, namely CutTools, Samurai, IREGI, PJFry++ and Golem95. We find that Ninja out-performs traditional integrand reduction in both speed and numerical stability, the latter being on par with that of the tensor integral reduction tool Golem95 which is however more limited and slower than Ninja. Lastly, we considered many benchmark multi-scale processes of increasing complexity, involving QCD and electro-weak corrections as well as effective non-renormalizable couplings, showing that Ninja’s performance scales well with both the rank and multiplicity of the considered process.« less

  14. Conformal expansions and renormalons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rathsman, J.

    2000-02-07

    The coefficients in perturbative expansions in gauge theories are factorially increasing, predominantly due to renormalons. This type of factorial increase is not expected in conformal theories. In QCD conformal relations between observables can be defined in the presence of a perturbative infrared fixed-point. Using the Banks-Zaks expansion the authors study the effect of the large-order behavior of the perturbative series on the conformal coefficients. The authors find that in general these coefficients become factorially increasing. However, when the factorial behavior genuinely originates in a renormalon integral, as implied by a postulated skeleton expansion, it does not affect the conformal coefficients.more » As a consequence, the conformal coefficients will indeed be free of renormalon divergence, in accordance with previous observations concerning the smallness of these coefficients for specific observables. The authors further show that the correspondence of the BLM method with the skeleton expansion implies a unique scale-setting procedure. The BLM coefficients can be interpreted as the conformal coefficients in the series relating the fixed-point value of the observable with that of the skeleton effective charge. Through the skeleton expansion the relevance of renormalon-free conformal coefficients extends to real-world QCD.« less

  15. Predicted range expansion of Chinese tallow tree (Triadica sebifera) in forestlands of the southern United States

    Treesearch

    Hsiao-Hsuan Wang; William Grant; Todd Swannack; Jianbang Gan; William Rogers; Tomasz Koralewski; James Miller; John W. Taylor Jr.

    2011-01-01

    We present an integrated approach for predicting future range expansion of an invasive species (Chinese tallow tree) that incorporates statistical forecasting and analytical techniques within a spatially explicit, agent-based, simulation framework.

  16. Identification of expansive soils using remote sensing and in-situ field measurements : phase I.

    DOT National Transportation Integrated Search

    2012-10-01

    Researchers at the University of Arkansas have conducted research on the suitability of using remote sensing techniques (radar and LIDAR) to monitor the shrink-swell behavior of an expansive clay material in a field test site as part of the Mack Blac...

  17. The Expansion of National Educational Systems: Tests of a Population Ecology Model

    ERIC Educational Resources Information Center

    Nielsen, Francois; Hannan, Michael T.

    1977-01-01

    This paper investigates the expansion of enrollments in national systems of education during the 1950-1970 period from the point of view of the population ecology of organizations. A simplified dynamic model of the growth of a population of educational organizations is estimated using various techniques for pooling time series of data. (Author/JM)

  18. Nonstationary multivariate modeling of cerebral autoregulation during hypercapnia.

    PubMed

    Kostoglou, Kyriaki; Debert, Chantel T; Poulin, Marc J; Mitsis, Georgios D

    2014-05-01

    We examined the time-varying characteristics of cerebral autoregulation and hemodynamics during a step hypercapnic stimulus by using recursively estimated multivariate (two-input) models which quantify the dynamic effects of mean arterial blood pressure (ABP) and end-tidal CO2 tension (PETCO2) on middle cerebral artery blood flow velocity (CBFV). Beat-to-beat values of ABP and CBFV, as well as breath-to-breath values of PETCO2 during baseline and sustained euoxic hypercapnia were obtained in 8 female subjects. The multiple-input, single-output models used were based on the Laguerre expansion technique, and their parameters were updated using recursive least squares with multiple forgetting factors. The results reveal the presence of nonstationarities that confirm previously reported effects of hypercapnia on autoregulation, i.e. a decrease in the MABP phase lead, and suggest that the incorporation of PETCO2 as an additional model input yields less time-varying estimates of dynamic pressure autoregulation obtained from single-input (ABP-CBFV) models. Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.

  19. Tissue expansion in the treatment of giant congenital melanocytic nevi of the upper extremity

    PubMed Central

    Ma, Tengxiao; Fan, Ke; Li, Lei; Xie, Feng; Li, Hao; Chou, Haiyan; Zhang, Zhengwen

    2017-01-01

    Abstract The aim of our study was to use tissue expansion for the treatment of giant congenital melanocytic nevi of the upper extremity and examine potential advantages over traditional techniques. There were 3 stages in the treatment of giant congenital melanocytic nevi of the upper extremities using tissue expansion: first, the expander was inserted into the subcutaneous pocket; second, the expander was removed, lesions were excised, and the wound of the upper extremity was placed into the pocket to delay healing; third, the residual lesion was excised and the pedicle was removed. The pedicle flap was then unfolded to resurface the wound. During the period between June 2007 and December 2015, there were 11 patients with giant congenital melanocytic nevi of the upper extremities who underwent reconstruction at our department with skin expansion. Few complications were noted in each stage of treatment. The functional and aesthetic results were observed and discussed in this study. Optimal aesthetic and functional results were obtained using tissue expansion to reconstruct the upper extremities due to the giant congenital melanocytic nevi. PMID:28353563

  20. Non-surgical treatment of transverse deficiency in adults using Microimplant-assisted Rapid Palatal Expansion (MARPE)

    PubMed Central

    Brunetto, Daniel Paludo; Sant’Anna, Eduardo Franzzotti; Machado, Andre Wilson; Moon, Won

    2017-01-01

    ABSTRACT Introduction: Maxillary transverse deficiency is a highly prevalent malocclusion present in all age groups, from primary to permanent dentition. If not treated on time, it can aggravate and evolve to a more complex malocclusion, hindering facial growth and development. Aside from the occlusal consequences, the deficiency can bring about serious respiratory problems as well, due to the consequent nasal constriction usually associated. In growing patients, this condition can be easily handled with a conventional rapid palatal expansion. However, mature patients are frequently subjected to a more invasive procedure, the surgically-assisted rapid palatal expansion (SARPE). More recently, researches have demonstrated that it is possible to expand the maxilla in grown patients without performing osteotomies, but using microimplants anchorage instead. This novel technique is called microimplant-assisted rapid palatal expansion (MARPE). Objective: The aim of the present article was to demonstrate and discuss a MARPE technique developed by Dr. Won Moon and colleagues at University of California - Los Angeles (UCLA). Methods: All laboratory and clinical steps needed for its correct execution are thoroughly described. For better comprehension, a mature patient case is reported, detailing all the treatment progress and results obtained. Conclusion: It was concluded that the demonstrated technique could be an interesting alternative to SARPE in the majority of non-growing patients with maxillary transverse deficiency. The present patient showed important occlusal and respiratory benefits following the procedure, without requiring any surgical intervention. PMID:28444019

  1. Mixed-state fidelity susceptibility through iterated commutator series expansion

    NASA Astrophysics Data System (ADS)

    Tonchev, N. S.

    2014-11-01

    We present a perturbative approach to the problem of computation of mixed-state fidelity susceptibility (MFS) for thermal states. The mathematical techniques used provide an analytical expression for the MFS as a formal expansion in terms of the thermodynamic mean values of successively higher commutators of the Hamiltonian with the operator involved through the control parameter. That expression is naturally divided into two parts: the usual isothermal susceptibility and a constituent in the form of an infinite series of thermodynamic mean values which encodes the noncommutativity in the problem. If the symmetry properties of the Hamiltonian are given in terms of the generators of some (finite-dimensional) algebra, the obtained expansion may be evaluated in a closed form. This issue is tested on several popular models, for which it is shown that the calculations are much simpler if they are based on the properties from the representation theory of the Heisenberg or SU(1, 1) Lie algebra.

  2. Expansion and melting of Xe nanocrystals in Si

    NASA Astrophysics Data System (ADS)

    Faraci, Giuseppe; Pennisi, Agata R.; Zontone, Federico; Li, Boquan; Petrov, Ivan

    2006-12-01

    Xe agglomerates confined in a Si matrix by ion implantation were synthesized with different size depending on the implantation process and/or the thermal treatment. At low temperature Xe nanocrystals are formed, whose expansion and melting were studied in the range 15- 300K . Previous high resolution x-ray diffraction spectra were corroborated with complementary techniques such as two-dimensional imaging plate patterns and transmission electron microscopy. We detected fcc Xe nanocrystals whose properties were size dependent. The experiments showed that in annealed samples epitaxial condensation of small Xe clusters, on the cavities of the Si matrix, gave in fact expanded and oriented Xe, suggesting a possible preferential growth of Xe(311) planes oriented orthogonally to the Si[02-2] direction. On the contrary, small Xe clusters in an amorphous Si matrix have a fcc lattice contracted as a consequence of surface tension. Furthermore, a solid-to-liquid phase transition size dependent was found. Expansion of fcc Xe lattice was accurately determined as a function of the temperature. Overpressurized nanocrystals and/or binary size distributions were disproved.

  3. Iterative expansion microscopy

    PubMed Central

    Chang, Jae-Byum; Chen, Fei; Yoon, Young-Gyu; Jung, Erica E.; Babcock, Hazen; Kang, Jeong Seuk; Asano, Shoh; Suk, Ho-Jun; Pak, Nikita; Tillberg, Paul W.; Wassie, Asmamaw; Cai, Dawen; Boyden, Edward S.

    2017-01-01

    We recently discovered it was possible to physically magnify preserved biological specimens by embedding them in a densely crosslinked polyelectrolyte gel, anchoring key labels or biomolecules to the gel, mechanically homogenizing the specimen, and then swelling the gel-specimen composite by ~4.5x in linear dimension, a process we call expansion microscopy (ExM). Here we describe iterative expansion microscopy (iExM), in which a sample is expanded, then a second swellable polymer mesh is formed in the space newly opened up by the first expansion, and finally the sample is expanded again. iExM expands biological specimens ~4.5 × 4.5 or ~20x, and enables ~25 nm resolution imaging of cells and tissues on conventional microscopes. We used iExM to visualize synaptic proteins, as well as the detailed architecture of dendritic spines, in mouse brain circuitry. PMID:28417997

  4. Tunnel Vision Prismatic Field Expansion: Challenges and Requirements.

    PubMed

    Apfelbaum, Henry; Peli, Eli

    2015-12-01

    No prismatic solution for peripheral field loss (PFL) has gained widespread acceptance. Field extended by prisms has a corresponding optical scotoma at the prism apices. True expansion can be achieved when each eye is given a different view (through visual confusion). We analyze the effects of apical scotomas and binocular visual confusion in different designs to identify constraints on any solution that is likely to meet acceptance. Calculated perimetry diagrams were compared to perimetry with PFL patients wearing InWave channel prisms and Trifield spectacles. Percept diagrams illustrate the binocular visual confusion. Channel prisms provide no benefit at primary gaze. Inconsequential extension was provided by InWave prisms, although accessible with moderate gaze shifts. Higher-power prisms provide greater extension, with greater paracentral scotoma loss, but require uncomfortable gaze shifts. Head turns, not eye scans, are needed to see regions lost to the apical scotomas. Trifield prisms provide field expansion at all gaze positions, but acceptance was limited by disturbing effects of central binocular visual confusion. Field expansion when at primary gaze (where most time is spent) is needed while still providing unobstructed central vision. Paracentral multiplexing prisms we are developing that superimpose shifted and see-through views may accomplish that. Use of the analyses and diagramming techniques presented here will be of value when considering prismatic aids for PFL, and could have prevented many unsuccessful designs and the improbable reports we cited from the literature. New designs must likely address the challenges identified here.

  5. A non-contacting approach for full field dynamic strain monitoring of rotating structures using the photogrammetry, finite element, and modal expansion techniques

    NASA Astrophysics Data System (ADS)

    Baqersad, Javad

    Health monitoring of rotating structures such as wind turbines and helicopter rotors is generally performed using conventional sensors that provide a limited set of data at discrete locations near or on the hub. These sensors usually provide no data on the blades or interior locations where failures may occur. Within this work, an unique expansion algorithm was extended and combined with finite element (FE) modeling and an optical measurement technique to identify the dynamic strain in rotating structures. The merit of the approach is shown by using the approach to predict the dynamic strain on a small non-rotating and rotating wind turbine. A three-bladed wind turbine having 2.3-meter long blades was placed in a semi-built-in boundary condition using a hub, a machining chuck, and a steel block. A finite element model of the three wind turbine blades assembled to the hub was created and used to extract resonant frequencies and mode shapes. The FE model was validated and updated using experimental modal tests. For the non-rotating optical test, the turbine was excited using a sinusoidal excitation, a pluck test, arbitrary impacts on three blades, and random force excitations with a mechanical shaker. The response of the structure to the excitations was measured using three-dimensional point tracking. A pair of high-speed cameras was used to measure the displacement of optical targets on the structure when the blades were vibrating. The measured displacements at discrete locations were expanded and applied to the finite element model of the structure to extract the full-field dynamic strain. The results of the work show an excellent correlation between the strain predicted using the proposed approach and the strain measured with strain-gages for all of the three loading conditions. Similar to the non-rotating case, optical measurements were also preformed on a rotating wind turbine. The point tracking technique measured both rigid body displacement and flexible

  6. Impact of Casing Expansion on the Mechanical and Petro-Physical Properties of Wellbore Cements

    NASA Astrophysics Data System (ADS)

    Oyibo, A. E.

    2014-12-01

    The main objective of this research is to investigate the applicability of expandable casing technology as a remediation technique for leaky wells resulting in gas migration problems. Micro annulus is usually created at the cement-formation/cement-casing interface or within the cement matrix either due to poor primary cementing or as a result of activities such as temperature and pressure variation or fracturing operations. Recent reports on gas migration in hydraulically fractured wellbores, has raised concerns on the contamination of fresh water aquifers resulting from fluid migration though this flow path. A unique bench-scale physical model which utilizes expandable tubulars in the remediation of micro annular gas flow has been used to simulate expansion of a previously-cemented casing under field-like conditions. Three different designs of cement slurry: regular 16.4 lb. /gal, 16.4 lb. /gal base slurry foamed to 13 lb. /gal and 16.4 lb. /gal cement slurry with 10% salt concentration. Gas flow path (microannulus) was artificially created at the pipe-cement interface by rotating the inner pipe in a pipe inside pipe assembly with cement in the annulus within the first few hours of hydration to create debonding at the cement-casing interface. Nitrogen gas flow-through experiments were performed before and after the expansion to confirm the sealing of the microannulus. The results obtained confirmed the effectiveness of this technique in the complete closure of gas leakage path, providing seal-tight cement-formation interface free of microannulus. The manipulation of the cement sheath during the casing expansion resulted in improved porosity, permeability and the strength of the cement sheath. SEM micrographs revealed decrease in pore size and fracturing of unhydrated cement grains within the cement matrix. This technology has great potential to become one of the leading cement remediation techniques for leaks behind the casing if implemented. Keywords: Wellbore

  7. Mayer-cluster expansion of instanton partition functions and thermodynamic bethe ansatz

    NASA Astrophysics Data System (ADS)

    Meneghelli, Carlo; Yang, Gang

    2014-05-01

    In [19] Nekrasov and Shatashvili pointed out that the = 2 instanton partition function in a special limit of the Ω-deformation parameters is characterized by certain thermodynamic Bethe ansatz (TBA) like equations. In this work we present an explicit derivation of this fact as well as generalizations to quiver gauge theories. To do so we combine various techniques like the iterated Mayer expansion, the method of expansion by regions, and the path integral tricks for non-perturbative summation. The TBA equations derived entirely within gauge theory have been proposed to encode the spectrum of a large class of quantum integrable systems. We hope that the derivation presented in this paper elucidates further this completely new point of view on the origin, as well as on the structure, of TBA equations in integrable models.

  8. The accurate solution of Poisson's equation by expansion in Chebyshev polynomials

    NASA Technical Reports Server (NTRS)

    Haidvogel, D. B.; Zang, T.

    1979-01-01

    A Chebyshev expansion technique is applied to Poisson's equation on a square with homogeneous Dirichlet boundary conditions. The spectral equations are solved in two ways - by alternating direction and by matrix diagonalization methods. Solutions are sought to both oscillatory and mildly singular problems. The accuracy and efficiency of the Chebyshev approach compare favorably with those of standard second- and fourth-order finite-difference methods.

  9. Research on corrosion detection for steel reinforced concrete structures using the fiber optical white light interferometer sensing technique

    NASA Astrophysics Data System (ADS)

    Zhao, Xuefeng; Cui, Yanjun; Wei, Heming; Kong, Xianglong; Zhang, Pinglei; Sun, Changsen

    2013-06-01

    In this paper, a novel kind of steel rebar corrosion monitoring technique for steel reinforced concrete structures is proposed, designed, and tested. The technique is based on the fiber optical white light interferometer (WLI) sensing technique. Firstly, a feasibility test was carried out using an equal-strength beam for comparison of strain sensing ability between the WLI and a fiber Bragg grating (FBG). The comparison results showed that the sensitivity of the WLI is sufficient for corrosion expansion strain monitoring. Then, two WLI corrosion sensors (WLI-CSs) were designed, fabricated, and embedded into concrete specimens to monitor expansion strain caused by steel rebar corrosion. Their performance was studied in an accelerated electrochemical corrosion test. Experimental results show that expansion strain along the fiber optical coil winding area can be detected and measured accurately by the proposed sensor. The advantages of the proposed monitoring technique allow for quantitative corrosion expansion monitoring to be executed in real time for reinforced concrete structures and with low cost.

  10. Moment expansion for ionospheric range error

    NASA Technical Reports Server (NTRS)

    Mallinckrodt, A.; Reich, R.; Parker, H.; Berbert, J.

    1972-01-01

    On a plane earth, the ionospheric or tropospheric range error depends only on the total refractivity content or zeroth moment of the refracting layer and the elevation angle. On a spherical earth, however, the dependence is more complex; so for more accurate results it has been necessary to resort to complex ray-tracing calculations. A simple, high-accuracy alternative to the ray-tracing calculation is presented. By appropriate expansion of the angular dependence in the ray-tracing integral in a power series in height, an expression is obtained for the range error in terms of a simple function of elevation angle, E, at the expansion height and of the mth moment of the refractivity, N, distribution about the expansion height. The rapidity of convergence is heavily dependent on the choice of expansion height. For expansion heights in the neighborhood of the centroid of the layer (300-490 km), the expansion to N = 2 (three terms) gives results accurate to about 0.4% at E = 10 deg. As an analytic tool, the expansion affords some insight on the influence of layer shape on range errors in special problems.

  11. 18 CFR 154.309 - Incremental expansions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Incremental expansions. 154.309 Section 154.309 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION... Changes § 154.309 Incremental expansions. (a) For every expansion for which incremental rates are charged...

  12. 18 CFR 154.309 - Incremental expansions.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Incremental expansions. 154.309 Section 154.309 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION... Changes § 154.309 Incremental expansions. (a) For every expansion for which incremental rates are charged...

  13. 18 CFR 154.309 - Incremental expansions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Incremental expansions. 154.309 Section 154.309 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION... Changes § 154.309 Incremental expansions. (a) For every expansion for which incremental rates are charged...

  14. 18 CFR 154.309 - Incremental expansions.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Incremental expansions. 154.309 Section 154.309 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION... Changes § 154.309 Incremental expansions. (a) For every expansion for which incremental rates are charged...

  15. 18 CFR 154.309 - Incremental expansions.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Incremental expansions. 154.309 Section 154.309 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION... Changes § 154.309 Incremental expansions. (a) For every expansion for which incremental rates are charged...

  16. Thermal expansion of composites using Moire interferometry

    NASA Technical Reports Server (NTRS)

    Bowles, D. E.; Post, D.; Herakovich, C. T.; Tenny, D. R.

    1980-01-01

    An experimental technique for precise measurement of the thermal response of fiber-reinforced composite materials uses moire interferometry with fringe multiplication which yield a sensitivity of 833 nm (32.8 mu in.) per fringe. Results from the technique are compared with those obtained from electrical resistance strain gages, and also those predicted from classical lamination theory. Temperature dependent coefficients of thermal expansion for composite materials subjected to thermal cycling in the temperature range of 297 K (75 F) to 422 K (300 F) were determined for four laminate configurations (0, 90, 0/ + or - 45/90 sub s and 0/90/ + or - 45 sub s) of T300/5208 graphite epoxy, and ranged from -0.107 mu epsilon K/1 (-0.059 mu epsilon deg F/-) for the 0 laminate to 32.18 mu epsilon K/1 (17.88 mu epsilon F/1) for the 90 laminate. Moisture was found to greatly influence the thermal response of a quasi-isotropic laminate, resulting in hysteresis and residual compressive strain as the moisture content was reduced. Comparisons between moire and strain gage measurements were inconclusive with both techniques giving consistent but systematically different results. Differences of as much as 29% were observed.

  17. Modeling of thermal expansion coefficient of perovskite oxide for solid oxide fuel cell cathode

    NASA Astrophysics Data System (ADS)

    Heydari, F.; Maghsoudipour, A.; Alizadeh, M.; Khakpour, Z.; Javaheri, M.

    2015-09-01

    Artificial intelligence models have the capacity to eliminate the need for expensive experimental investigation in various areas of manufacturing processes, including the material science. This study investigates the applicability of adaptive neuro-fuzzy inference system (ANFIS) approach for modeling the performance parameters of thermal expansion coefficient (TEC) of perovskite oxide for solid oxide fuel cell cathode. Oxides (Ln = La, Nd, Sm and M = Fe, Ni, Mn) have been prepared and characterized to study the influence of the different cations on TEC. Experimental results have shown TEC decreases favorably with substitution of Nd3+ and Mn3+ ions in the lattice. Structural parameters of compounds have been determined by X-ray diffraction, and field emission scanning electron microscopy has been used for the morphological study. Comparison results indicated that the ANFIS technique could be employed successfully in modeling thermal expansion coefficient of perovskite oxide for solid oxide fuel cell cathode, and considerable savings in terms of cost and time could be obtained by using ANFIS technique.

  18. Tanshinon IIA injection accelerates tissue expansion by reducing the formation of the fibrous capsule.

    PubMed

    Yu, Qingxiong; Sheng, Lingling; Yang, Mei; Zhu, Ming; Huang, Xiaolu; Li, Qingfeng

    2014-01-01

    The tissue expansion technique has been applied to obtain new skin tissue to repair large defects in clinical practice. The implantation of tissue expander could initiate a host response to foreign body (FBR), which leads to fibrotic encapsulation around the expander and prolongs the period of tissue expansion. Tanshinon IIA (Tan IIA) has been shown to have anti-inflammation and immunoregulation effect. The rat tissue expansion model was used in this study to observe whether Tan IIA injection systematically could inhibit the FBR to reduce fibrous capsule formation and accelerate the process of tissue expansion. Forty-eight rats were randomly divided into the Tan IIA group and control group with 24 rats in each group. The expansion was conducted twice a week to maintain a capsule pressure of 60 mmHg. The expansion volume and expanded area were measured. The expanded tissue in the two groups was harvested, and histological staining was performed; proinflammatory cytokines such as tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-1β (IL-1β) and transforming growth factor-β (TGF-β) were examined. The expansion volume and the expanded area in the Tan IIA group were greater than that of the control group. The thickness of the fibrous capsule in the Tan IIA group was reduced with no influence on the normal skin regeneration. Decreased infiltration of macrophages, lower level of TNF-α, IL-6, IL-1β and TGF-β, less proliferating myofibroblasts and enhanced neovascularization were observed in the Tan IIA group. Our findings indicated that the Tan IIA injection reduced the formation of the fibrous capsule and accelerated the process of tissue expansion by inhibiting the FBR.

  19. Numerical simulation of transient hypervelocity flow in an expansion tube

    NASA Technical Reports Server (NTRS)

    Jacobs, P. A.

    1992-01-01

    Several numerical simulations of the transient flow of helium in an expansion tube are presented in an effort to identify some of the basic mechanisms which cause the noisy test flows seen in experiments. The calculations were performed with an axisymmetric Navier-Stokes code based on a finite volume formulation and upwinding techniques. Although laminar flow and ideal bursting of the diaphragms was assumed, the simulations showed some of the important features seen in experiments. In particular, the discontinuity in tube diameter of the primary diaphragm station introduced a transverse perturbation to the expanding driver gas and this perturbation was seen to propagate into the test gas under some flow conditions. The disturbances seen in the test flow can be characterized as either small amplitude, low frequency noise possibly introduced during shock compression or large amplitude, high frequency noise associated with the passage of the reflected head of the unsteady expansion.

  20. Autofrettage to Counteract Coefficient of Thermal Expansion Mismatch in Cryogenic Pressurized Pipes with Metallic Liners

    NASA Technical Reports Server (NTRS)

    Wen, Ed; Barbero, Ever; Tygielski, Phlip; Turner, James E. (Technical Monitor)

    2001-01-01

    Composite feedlines with metal liners have the potential to reduce weight/cost while providing the same level of permeation resistance and material compatibility of all-metal feedlines carrying cryogenic propellants in spacecraft. The major technical challenges are the large difference in Coefficient of Thermal Expansion between the liner and the composite, and the manufacturing method required to make a very thin liner with the required strength and dimensional tolerance. This study investigates the use of autofrettage (compressive preload) to counteract Coefficient of Thermal Expansion when pre-pressurization procedures cannot be used to solve this problem. Promising materials (aluminum 2219, Inconel 718, nickel, nickel alloy) and manufacturing techniques (chemical milling, electroplating) are evaluated to determine the best liner candidates. Robust, autofrettaged feedlines with a low Coefficient of Thermal Expansion liner (Inconel 718 or nickel alloy) are shown to successfully counteract mismatch at LOX temperature. A new concept, autofrettage by temperature, is introduced for high Coefficient of Thermal Expansion materials (aluminum and pure nickel) where pressure cannot be used to add compressive preload.

  1. A robust and efficient stepwise regression method for building sparse polynomial chaos expansions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abraham, Simon, E-mail: Simon.Abraham@ulb.ac.be; Raisee, Mehrdad; Ghorbaniasl, Ghader

    2017-03-01

    Polynomial Chaos (PC) expansions are widely used in various engineering fields for quantifying uncertainties arising from uncertain parameters. The computational cost of classical PC solution schemes is unaffordable as the number of deterministic simulations to be calculated grows dramatically with the number of stochastic dimension. This considerably restricts the practical use of PC at the industrial level. A common approach to address such problems is to make use of sparse PC expansions. This paper presents a non-intrusive regression-based method for building sparse PC expansions. The most important PC contributions are detected sequentially through an automatic search procedure. The variable selectionmore » criterion is based on efficient tools relevant to probabilistic method. Two benchmark analytical functions are used to validate the proposed algorithm. The computational efficiency of the method is then illustrated by a more realistic CFD application, consisting of the non-deterministic flow around a transonic airfoil subject to geometrical uncertainties. To assess the performance of the developed methodology, a detailed comparison is made with the well established LAR-based selection technique. The results show that the developed sparse regression technique is able to identify the most significant PC contributions describing the problem. Moreover, the most important stochastic features are captured at a reduced computational cost compared to the LAR method. The results also demonstrate the superior robustness of the method by repeating the analyses using random experimental designs.« less

  2. The Thermal Expansion Of Feldspars

    NASA Astrophysics Data System (ADS)

    Hovis, G. L.; Medford, A.; Conlon, M.

    2009-12-01

    Hovis and others (1) investigated the thermal expansion of natural and synthetic AlSi3 feldspars and demonstrated that the coefficient of thermal expansion (α) decreases significantly, and linearly, with increasing room-temperature volume (VRT). In all such feldspars, therefore, chemical expansion limits thermal expansion. The scope of this work now has been broadened to include plagioclase and Ba-K feldspar crystalline solutions. X-ray powder diffraction data have been collected between room temperature and 925 °C on six plagioclase specimens ranging in composition from anorthite to oligoclase. When combined with thermal expansion data for albite (2,3,4) a steep linear trend of α as a function of VRT emerges, reflecting how small changes in composition dramatically affect expansion behavior. The thermal expansion data for five synthetic Ba-K feldspars ranging in composition from 20 to 100 mole percent celsian, combined with data for pure K-feldspar (3,4), show α-VRT relationships similar in nature to the plagioclase series, but with a slope and intercept different from the latter. Taken as a group all Al2Si2 feldspars, including anorthite and celsian from the present study along with Sr- (5) and Pb-feldspar (6) from other workers, show very limited thermal expansion that, unlike AlSi3 feldspars, has little dependence on the divalent-ion (or M-) site occupant. This apparently is due to the necessitated alternation of Al and Si in the tetrahedral sites of these minerals (7), which in turn locks the tetrahedral framework and makes the M-site occupant nearly irrelevant to expansion behavior. Indeed, in feldspar series with coupled chemical substitution it is the change away from a 1:1 Al:Si ratio that gives feldspars greater freedom to expand. Overall, the relationships among α, chemical composition, and room-temperature volume provide useful predictive tools for estimating feldspar thermal expansion and give insight into the controls of expansion behavior in

  3. Industrial trials of low-expansivity sawblades

    Treesearch

    Jeanne D. Danielson; Frank J. Worzala

    1992-01-01

    Low-expansivity alloys have the potential to reduce thermal instability of sawblades during the sawing operation. In preliminary industrial trials of sawblades made of low-expansivity alloy, sawing accuracy was improved 22 to 38 percent during normal sawing. When saws made of a low-expansivity alloy were operated with a large temperature gradient across the blade,...

  4. Derivative expansion of wave function equivalent potentials

    NASA Astrophysics Data System (ADS)

    Sugiura, Takuya; Ishii, Noriyoshi; Oka, Makoto

    2017-04-01

    Properties of the wave function equivalent potentials introduced by the HAL QCD collaboration are studied in a nonrelativistic coupled-channel model. The derivative expansion is generalized, and then applied to the energy-independent and nonlocal potentials. The expansion coefficients are determined from analytic solutions to the Nambu-Bethe-Salpeter wave functions. The scattering phase shifts computed from these potentials are compared with the exact values to examine the convergence of the expansion. It is confirmed that the generalized derivative expansion converges in terms of the scattering phase shift rather than the functional structure of the non-local potentials. It is also found that the convergence can be improved by tuning either the choice of interpolating fields or expansion scale in the generalized derivative expansion.

  5. A comparative study of tissue expansion and free parascapular flaps in extensive facial burn scar reconstruction

    PubMed Central

    Kalra, G S; Bedi, Mitesh; Barala, Vipin Kumar

    2017-01-01

    Background: Large post burn scars are a very difficult problem to treat. Available methods include skin grafts and tissue expansion. The reconstructive method used should be tailored according to individual patient rather than following a textbook approach in each. Patients and Methods: A retrospective analysis was done of cases with extensive facial burn scars in whom secondary reconstruction was done with either free parascapular flap cover or tissue expansion and flap advancement following facial burn scar excision by a single surgeon (GSK) in Department of Burns, Plastic and reconstructive surgery. Results: A total of 15 patients with free parascapular flap and 15 patients with tissue expansion followed by flap advancement were analyzed in the group. There were no free flap failures, but 2 patients required skin graft at donor site. In patients undergoing tissue expansion, minor complication was noted in 1 patient. Conclusion: Tissue expansion is a useful technique in reconstruction of post burn scars, but has its limitations, especially in patients with extensive burns in head and neck region with limited local tissue availability. Parascapular free flap may provide a good alternative option for reconstruction in such cases. PMID:28804686

  6. Effective potential of the three-dimensional Ising model: The pseudo-ɛ expansion study

    NASA Astrophysics Data System (ADS)

    Sokolov, A. I.; Kudlis, A.; Nikitina, M. A.

    2017-08-01

    The ratios R2k of renormalized coupling constants g2k that enter the effective potential and small-field equation of state acquire the universal values at criticality. They are calculated for the three-dimensional scalar λϕ4 field theory (3D Ising model) within the pseudo-ɛ expansion approach. Pseudo-ɛ expansions for the critical values of g6, g8, g10, R6 =g6 / g42, R8 =g8 / g43 and R10 =g10 / g44 originating from the five-loop renormalization group (RG) series are derived. Pseudo-ɛ expansions for the sextic coupling have rapidly diminishing coefficients, so addressing Padé approximants yields proper numerical results. Use of Padé-Borel-Leroy and conformal mapping resummation techniques further improves the accuracy leading to the values R6* = 1.6488 and R6* = 1.6490 which are in a brilliant agreement with the result of advanced lattice calculations. For the octic coupling the numerical structure of the pseudo-ɛ expansions is less favorable. Nevertheless, the conform-Borel resummation gives R8* = 0.868, the number being close to the lattice estimate R8* = 0.871 and compatible with the result of 3D RG analysis R8* = 0.857. Pseudo-ɛ expansions for R10* and g10* are also found to have much smaller coefficients than those of the original RG series. They remain, however, fast growing and big enough to prevent obtaining fair numerical estimates.

  7. Thermal expansion of L-ascorbic acid

    NASA Astrophysics Data System (ADS)

    Nicolaï, B.; Barrio, M.; Tamarit, J.-Ll.; Céolin, R.; Rietveld, I. B.

    2017-04-01

    The specific volume of vitamin C has been investigated by X-ray powder diffraction as a function of temperature from 110 K up to complete degradation around 440 K. Its thermal expansion is relatively small in comparison with other organic compounds with an expansivity α v of 1.2(3) × 10-4 K-1. The structure consists of strongly bound molecules in the ac plane through a dense network of hydrogen bonds. The thermal expansion is anisotropic. Along the b axis, the expansion has most leeway and is about 10 times larger than in the other directions.

  8. Skin expansion. Long term follow up of complications and costs of care.

    PubMed

    Steenfos, H; Tarnow, P; Blomqvist, G

    1993-01-01

    To find out our rate of complications after tissue expansion, and the cost of treatment in terms of use of hospital resources and length of sick leave, we analysed our experience of 181 expansion treatments in 97 patients undertaken between 1986 and 1991. There were 60 women and 37 men, with a mean age of 22 (range 1-74). Twenty patients had more than one period of treatment (range 2-8). The most common conditions treated were naevi (n = 75); scars (trauma--n = 33, burns--n = 17, and operations--n = 16); and breasts that required reconstruction (n = 15). Of the 181 expansions there were 29 failures (16%), and 117 complete successes (64%); fifteen of the latter developed minor complications (8%), 35 were partly successful (20%). There were 77 complications in 71 treatments (38%), and 45 expanders (25%) had to be removed prematurely because of complications. The most common complications were skin penetration (n = 15), minor infection (n = 13), and breakdown of the surgical wound (n = 13). The median (range) inpatient hospital stay was 8 days (2-39); number of visits to the outpatient clinic for filling 7 days (0-20); and total treatment time/patient 82 (19-286). We conclude that skin expansion is a useful technique, but that there is room for improvement in reducing the rate of complications and the amount of time that patients spend being treated.

  9. Experimental and Computational Investigation of a Translating-Throat Single-Expansion-Ramp Nozzle

    NASA Technical Reports Server (NTRS)

    Deere, Karen A.; Asbury, Scott C.

    1999-01-01

    An experimental and computational study was conducted on a high-speed, single-expansion-ramp nozzle (SERN) concept designed for efficient off-design performance. The translating-throat SERN concept adjusts the axial location of the throat to provide a variable expansion ratio and allow a more optimum jet exhaust expansion at various flight conditions in an effort to maximize nozzle performance. Three design points (throat locations) were investigated to simulate the operation of this concept at subsonic-transonic, low supersonic, and high supersonic flight conditions. The experimental study was conducted in the jet exit test facility at the Langley Research Center. Internal nozzle performance was obtained at nozzle pressure ratios (NPR's) up to 13 for six nozzles with design nozzle pressure ratios near 9, 42, and 102. Two expansion-ramp surfaces, one concave and one convex, were tested for each design point. Paint-oil flow and focusing schlieren flow visualization techniques were utilized to acquire additional flow data at selected NPR'S. The Navier-Stokes code, PAB3D, was used with a two-equation k-e turbulence model for the computational study. Nozzle performance characteristics were predicted at nozzle pressure ratios of 5, 9, and 13 for the concave ramp, low Mach number nozzle and at 10, 13, and 102 for the concave ramp, high Mach number nozzle.

  10. Tunnel Vision Prismatic Field Expansion: Challenges and Requirements

    PubMed Central

    Apfelbaum, Henry; Peli, Eli

    2015-01-01

    Purpose No prismatic solution for peripheral field loss (PFL) has gained widespread acceptance. Field extended by prisms has a corresponding optical scotoma at the prism apices. True expansion can be achieved when each eye is given a different view (through visual confusion). We analyze the effects of apical scotomas and binocular visual confusion in different designs to identify constraints on any solution that is likely to meet acceptance. Methods Calculated perimetry diagrams were compared to perimetry with PFL patients wearing InWave channel prisms and Trifield spectacles. Percept diagrams illustrate the binocular visual confusion. Results Channel prisms provide no benefit at primary gaze. Inconsequential extension was provided by InWave prisms, although accessible with moderate gaze shifts. Higher-power prisms provide greater extension, with greater paracentral scotoma loss, but require uncomfortable gaze shifts. Head turns, not eye scans, are needed to see regions lost to the apical scotomas. Trifield prisms provide field expansion at all gaze positions, but acceptance was limited by disturbing effects of central binocular visual confusion. Conclusions Field expansion when at primary gaze (where most time is spent) is needed while still providing unobstructed central vision. Paracentral multiplexing prisms we are developing that superimpose shifted and see-through views may accomplish that. Translational Relevance Use of the analyses and diagramming techniques presented here will be of value when considering prismatic aids for PFL, and could have prevented many unsuccessful designs and the improbable reports we cited from the literature. New designs must likely address the challenges identified here. PMID:26740910

  11. Miniature cryogenic expansion turbines - A review

    NASA Astrophysics Data System (ADS)

    Sixsmith, H.

    Lord Rayleigh (1898) has first suggested the use of a turbine instead of a piston expander for the liquification of air. The development of expansion turbines is discussed, taking into account the first successful commercial application for cryogenic expansion turbines in Germany, Kapitza's turbine, work on much smaller turbines conducted in England, the development of a helium expansion turbine at the National Bureau of Standards, the development of small turboexpanders in Switzerland, the development of gas bearing expansion turbines, and the development of a small turboexpander similar to designs developed at the National Bureau of Standards. The reliability of cryogenic expansion turbines is discussed. It is found that applications for helium refrigerators and the demand for them would greatly increase if the reliability of these devices could be improved. Such a development would be crucial for the adoption of superconducting machinery by industry.

  12. Expansion of urban area and wastewater irrigated rice area in Hyderabad, India

    USGS Publications Warehouse

    Gumma, K.M.; van, Rooijen D.; Nelson, A.; Thenkabail, P.S.; Aakuraju, Radha V.; Amerasinghe, P.

    2011-01-01

    The goal of this study was to investigate land use changes in urban and peri-urban Hyderabad and their influence on wastewater irrigated rice using Landsat ETM + data and spectral matching techniques. The main source of irrigation water is the Musi River, which collects a large volume of wastewater and stormwater while running through the city. From 1989 to 2002, the wastewater irrigated area along the Musi River increased from 5,213 to 8,939 ha with concurrent expansion of the city boundaries from 22,690 to 42,813 ha and also decreased barren lands and range lands from 86,899 to 66,616 ha. Opportunistic shifts in land use, especially related to wastewater irrigated agriculture, were seen as a response to the demand for fresh vegetables and easy access to markets, exploited mainly by migrant populations. While wastewater irrigated agriculture contributes to income security of marginal groups, it also supplements the food basket of many city dwellers. Landsat ETM + data and advanced methods such as spectral matching techniques are ideal for quantifying urban expansion and associated land use changes, and are useful for urban planners and decision makers alike. ?? 2011 Springer Science+Business Media B.V.

  13. Design of a three-dimensional scramjet nozzle considering lateral expansion and geometric constraints

    NASA Astrophysics Data System (ADS)

    Lv, Zheng; Xu, Jinglei; Mo, Jianwei

    2017-12-01

    A new method based on quasi two-dimensional supersonic flow and maximum thrust theory to design a three-dimensional nozzle while considering lateral expansion and geometric constraints is presented in this paper. To generate the configuration of the three-dimensional nozzle, the inviscid flowfield is calculated through the method of characteristics, and the reference temperature method is applied to correct the boundary layer thickness. The computational fluid dynamics approach is used to obtain the aerodynamic performance of the nozzle. Results show that the initial arc radius slightly influences the axial thrust coefficient, whereas the variations in the lateral expansion contour, the length and initial expansion angle of the lower cowl significantly affect the axial thrust coefficient. The three-dimensional nozzle designed by streamline tracing technique is also investigated for comparison to verify the superiority of the new method. The proposed nozzle shows increases in the axial thrust coefficient, lift, and pitching moment of 6.86%, 203.15%, and 642.86%, respectively, at the design point, compared with the nozzle designed by streamline tracing approach. In addition, the lateral expansion accounts for 22.46% of the entire axial thrust, while it has no contribution to the lift and pitching moment in the proposed nozzle.

  14. A novel femtosecond-gated, high-resolution, frequency-shifted shearing interferometry technique for probing pre-plasma expansion in ultra-intense laser experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feister, S., E-mail: feister.7@osu.edu; Orban, C.; Innovative Scientific Solutions, Inc., Dayton, Ohio 45459

    Ultra-intense laser-matter interaction experiments (>10{sup 18} W/cm{sup 2}) with dense targets are highly sensitive to the effect of laser “noise” (in the form of pre-pulses) preceding the main ultra-intense pulse. These system-dependent pre-pulses in the nanosecond and/or picosecond regimes are often intense enough to modify the target significantly by ionizing and forming a plasma layer in front of the target before the arrival of the main pulse. Time resolved interferometry offers a robust way to characterize the expanding plasma during this period. We have developed a novel pump-probe interferometry system for an ultra-intense laser experiment that uses two short-pulse amplifiersmore » synchronized by one ultra-fast seed oscillator to achieve 40-fs time resolution over hundreds of nanoseconds, using a variable delay line and other techniques. The first of these amplifiers acts as the pump and delivers maximal energy to the interaction region. The second amplifier is frequency shifted and then frequency doubled to generate the femtosecond probe pulse. After passing through the laser-target interaction region, the probe pulse is split and recombined in a laterally sheared Michelson interferometer. Importantly, the frequency shift in the probe allows strong plasma self-emission at the second harmonic of the pump to be filtered out, allowing plasma expansion near the critical surface and elsewhere to be clearly visible in the interferograms. To aid in the reconstruction of phase dependent imagery from fringe shifts, three separate 120° phase-shifted (temporally sheared) interferograms are acquired for each probe delay. Three-phase reconstructions of the electron densities are then inferred by Abel inversion. This interferometric system delivers precise measurements of pre-plasma expansion that can identify the condition of the target at the moment that the ultra-intense pulse arrives. Such measurements are indispensable for correlating laser pre

  15. Wall relaxation and the driving forces for cell expansive growth

    NASA Technical Reports Server (NTRS)

    Cosgrove, D. J.

    1987-01-01

    When water uptake by growing cells is prevented, the turgor pressure and the tensile stress in the cell wall are reduced by continued wall loosening. This process, termed in vivo stress relaxation, provides a new way to study the dynamics of wall loosening and to measure the wall yield threshold and the physiological wall extensibility. Stress relaxation experiments indicate that wall stress supplies the mechanical driving force for wall yielding. Cell expansion also requires water absorption. The driving force for water uptake during growth is created by wall relaxation, which lowers the water potential of the expanding cells. New techniques for measuring this driving force show that it is smaller than believed previously; in elongating stems it is only 0.3 to 0.5 bar. This means that the hydraulic resistance of the water transport pathway is small and that rate of cell expansion is controlled primarily by wall loosening and yielding.

  16. Multipole expansions and Fock symmetry of the hydrogen atom

    NASA Astrophysics Data System (ADS)

    Meremianin, A. V.; Rost, J.-M.

    2006-10-01

    The main difficulty in utilizing the O(4) symmetry of the hydrogen atom in practical calculations is the dependence of the Fock stereographic projection on energy. This is due to the fact that the wavefunctions of the states with different energies are proportional to the hyperspherical harmonics (HSH) corresponding to different points on the hypersphere. Thus, the calculation of the matrix elements reduces to the problem of re-expanding HSH in terms of HSH depending on different points on the hypersphere. We solve this problem by applying the technique of multipole expansions for four-dimensional HSH. As a result, we obtain the multipole expansions whose coefficients are the matrix elements of the boost operator taken between hydrogen wavefunctions (i.e., hydrogen form factors). The explicit expressions for those coefficients are derived. It is shown that the hydrogen matrix elements can be presented as derivatives of an elementary function. Such an operator representation is convenient for the derivation of recurrence relations connecting matrix elements between states corresponding to different values of the quantum numbers n and l.

  17. Extended Analytic Device Optimization Employing Asymptotic Expansion

    NASA Technical Reports Server (NTRS)

    Mackey, Jonathan; Sehirlioglu, Alp; Dynsys, Fred

    2013-01-01

    Analytic optimization of a thermoelectric junction often introduces several simplifying assumptionsincluding constant material properties, fixed known hot and cold shoe temperatures, and thermallyinsulated leg sides. In fact all of these simplifications will have an effect on device performance,ranging from negligible to significant depending on conditions. Numerical methods, such as FiniteElement Analysis or iterative techniques, are often used to perform more detailed analysis andaccount for these simplifications. While numerical methods may stand as a suitable solution scheme,they are weak in gaining physical understanding and only serve to optimize through iterativesearching techniques. Analytic and asymptotic expansion techniques can be used to solve thegoverning system of thermoelectric differential equations with fewer or less severe assumptionsthan the classic case. Analytic methods can provide meaningful closed form solutions and generatebetter physical understanding of the conditions for when simplifying assumptions may be valid.In obtaining the analytic solutions a set of dimensionless parameters, which characterize allthermoelectric couples, is formulated and provide the limiting cases for validating assumptions.Presentation includes optimization of both classic rectangular couples as well as practically andtheoretically interesting cylindrical couples using optimization parameters physically meaningful toa cylindrical couple. Solutions incorporate the physical behavior for i) thermal resistance of hot andcold shoes, ii) variable material properties with temperature, and iii) lateral heat transfer through legsides.

  18. All-digital pulse-expansion-based CMOS digital-to-time converter

    NASA Astrophysics Data System (ADS)

    Chen, Chun-Chi; Chu, Che-Hsun

    2017-02-01

    This paper presents a new all-digital CMOS digital-to-time converter (DTC) based on pulse expansion. Pulse expansion is achieved using an all-digital pulse-mixing scheme that can effectively improve the timing resolution and enable the DTC to be concise. Without requiring the Vernier principle or a costly digital-to-analog converter, the DTC comprises a pulse generator for generating a pulse, a pulse-expanding circuit (PEC) for programming timing generation, and a time subtractor for removing the time width of the pulse. The PEC comprises only a delay chain composed of proposed pulse-expanding units and a multiplexer. For accuracy enhancement, a pulse neutralization technique is presented to eliminate undesirable pulse variation. A 4-bit converter was fabricated in a 0.35-μ m Taiwan Semiconductor Manufacturing Company CMOS process and had a small area of nearly 0.045 mm2. Six chips were tested, all of which exhibited an improved resolution (approximately 16 ps) and low integral nonlinearity (less than ±0.4 least significant bit). The power consumption was 0.2 mW when the sample rate was 1M samples/s and the voltage supply was 3.3 V. The proposed DTC not only has favorable cost and power but also achieves an acceptable resolution without requiring an advanced CMOS process. This study is the first to use pulse expansion in digital-to-time conversion.

  19. All-digital pulse-expansion-based CMOS digital-to-time converter.

    PubMed

    Chen, Chun-Chi; Chu, Che-Hsun

    2017-02-01

    This paper presents a new all-digital CMOS digital-to-time converter (DTC) based on pulse expansion. Pulse expansion is achieved using an all-digital pulse-mixing scheme that can effectively improve the timing resolution and enable the DTC to be concise. Without requiring the Vernier principle or a costly digital-to-analog converter, the DTC comprises a pulse generator for generating a pulse, a pulse-expanding circuit (PEC) for programming timing generation, and a time subtractor for removing the time width of the pulse. The PEC comprises only a delay chain composed of proposed pulse-expanding units and a multiplexer. For accuracy enhancement, a pulse neutralization technique is presented to eliminate undesirable pulse variation. A 4-bit converter was fabricated in a 0.35-μm Taiwan Semiconductor Manufacturing Company CMOS process and had a small area of nearly 0.045 mm 2 . Six chips were tested, all of which exhibited an improved resolution (approximately 16 ps) and low integral nonlinearity (less than ±0.4 least significant bit). The power consumption was 0.2 mW when the sample rate was 1M samples/s and the voltage supply was 3.3 V. The proposed DTC not only has favorable cost and power but also achieves an acceptable resolution without requiring an advanced CMOS process. This study is the first to use pulse expansion in digital-to-time conversion.

  20. Least squares polynomial chaos expansion: A review of sampling strategies

    NASA Astrophysics Data System (ADS)

    Hadigol, Mohammad; Doostan, Alireza

    2018-04-01

    As non-institutive polynomial chaos expansion (PCE) techniques have gained growing popularity among researchers, we here provide a comprehensive review of major sampling strategies for the least squares based PCE. Traditional sampling methods, such as Monte Carlo, Latin hypercube, quasi-Monte Carlo, optimal design of experiments (ODE), Gaussian quadratures, as well as more recent techniques, such as coherence-optimal and randomized quadratures are discussed. We also propose a hybrid sampling method, dubbed alphabetic-coherence-optimal, that employs the so-called alphabetic optimality criteria used in the context of ODE in conjunction with coherence-optimal samples. A comparison between the empirical performance of the selected sampling methods applied to three numerical examples, including high-order PCE's, high-dimensional problems, and low oversampling ratios, is presented to provide a road map for practitioners seeking the most suitable sampling technique for a problem at hand. We observed that the alphabetic-coherence-optimal technique outperforms other sampling methods, specially when high-order ODE are employed and/or the oversampling ratio is low.

  1. Node-Expansion Operators for the UCT Algorithm

    NASA Astrophysics Data System (ADS)

    Yajima, Takayuki; Hashimoto, Tsuyoshi; Matsui, Toshiki; Hashimoto, Junichi; Spoerer, Kristian

    Recent works on the MCTS and UCT framework in the domain of Go focused on introducing knowledge to the playout and on pruning variations from the tree, but so far node expansion has not been investigated. In this paper we show that delaying expansion according to the number of the siblings delivers a gain of more than 92% when compared to normal expansion. We propose three improvements; one that uses domain knowledge and two that are domain-independent methods. Experimental results show that all advanced operators significantly improve the UCT performance when compared to the basic delaying expansion. From the results we may conclude that the new expansion operators are an appropriate means to improve the UCT algorithm.

  2. Five years' experience of the modified Meek technique in the management of extensive burns.

    PubMed

    Hsieh, Chun-Sheng; Schuong, Jen-Yu; Huang, W S; Huang, Ted T

    2008-05-01

    The Meek technique of skin expansion is useful for covering a large open wound with a small piece of skin graft, but requires a carefully followed protocol. Over the past 5 years, a skin graft expansion technique following the Meek principle was used to treat 37 individuals who had sustained third degree burns involving more than 40% of the body surface. A scheme was devised whereby the body was divided into six areas, in order to clarify the optimal order of wound debridements and skin grafting procedures as well as the regimen of aftercare. The mean body surface involvement was 72.9% and the mean area of third degree burns was 41%. The average number of operations required was 1.84. There were four deaths among in this group of patients. The Meek technique of skin expansion and the suggested protocol are together efficient and effective in covering an open wound, particularly where there is a paucity of skin graft donor sites.

  3. Comparative study of the expansion dynamics of laser-driven plasma and shock wave in in-air and underwater ablation regimes

    NASA Astrophysics Data System (ADS)

    Nguyen, Thao T. P.; Tanabe, Rie; Ito, Yoshiro

    2018-03-01

    We compared the expansion characteristics of the plasma plumes and shock waves generated in laser-induced shock process between the two ablation regimes: in air and under water. The observation was made from the initial moment when the laser pulse hit the target until 1.5 μs. The shock processes were driven by focusing a single laser pulse (1064 nm, FWHM = 13 ns) onto the surface of epoxy-resin blocks using a 40-mm focal length lens. The estimated laser intensity at the target plane is approximate to 9 ×109Wcm-2 . We used the fast-imaging technique to observe the expansion of the plasma plume and a custom-designed time-resolved photoelasticity imaging technique to observe the propagation of shock waves with the time resolution of nanoseconds. We found that at the same intensity of the laser beam, the plasma expansion during the laser pulse follows different mechanisms: the plasma plume that grows in air follows a radiation-wave model while a detonation-wave model can explain the expansion of the plasma plume induced in water. The ideal blast wave theory can be used to predict the decay of the shock wave in air but is not appropriate to describe the decay of the shock wave induced under water.

  4. Characterization of the Decision Network for Wing Expansion in Drosophila Using Targeted Expression of the TRPM8 Channel

    PubMed Central

    Peabody, Nathan C.; Pohl, Jascha B.; Diao, Fengqiu; Vreede, Andrew P.; Sandstrom, David J.; Wang, Howard; Zelensky, Paul K.; White, Benjamin H.

    2009-01-01

    After emergence, adult flies and other insects select a suitable perch and expand their wings. Wing expansion is governed by the hormone bursicon and can be delayed under adverse environmental conditions. How environmental factors delay bursicon release and alter perch selection and expansion behaviors has not been investigated in detail. Here we provide evidence that in Drosophila the motor programs underlying perch selection and wing expansion have different environmental dependencies. Using physical manipulations, we demonstrate that the decision to perch is based primarily on environmental valuations and is incrementally delayed under conditions of increasing perturbation and confinement. In contrast, the all-or-none motor patterns underlying wing expansion are relatively invariant in length regardless of environmental conditions. Using a novel technique for targeted activation of neurons, we show that the highly stereotyped wing expansion motor patterns can be initiated by stimulation of NCCAP, a small network of central neurons that regulates the release of bursicon. Activation of this network using the cold-sensitive rat TRPM8 channel is sufficient to trigger all essential behavioral and somatic processes required for wing expansion. The delay of wing expansion under adverse circumstances thus couples an environmentally-sensitive decision network to a command-like network that initiates a fixed action pattern. Because NCCAP mediates environmentally-insensitive ecdysis-related behaviors in Drosophila development prior to adult emergence, the study of wing expansion promises insights not only into how networks mediate behavioral choices, but also into how decision networks develop. PMID:19295141

  5. A Query Expansion Framework in Image Retrieval Domain Based on Local and Global Analysis

    PubMed Central

    Rahman, M. M.; Antani, S. K.; Thoma, G. R.

    2011-01-01

    We present an image retrieval framework based on automatic query expansion in a concept feature space by generalizing the vector space model of information retrieval. In this framework, images are represented by vectors of weighted concepts similar to the keyword-based representation used in text retrieval. To generate the concept vocabularies, a statistical model is built by utilizing Support Vector Machine (SVM)-based classification techniques. The images are represented as “bag of concepts” that comprise perceptually and/or semantically distinguishable color and texture patches from local image regions in a multi-dimensional feature space. To explore the correlation between the concepts and overcome the assumption of feature independence in this model, we propose query expansion techniques in the image domain from a new perspective based on both local and global analysis. For the local analysis, the correlations between the concepts based on the co-occurrence pattern, and the metrical constraints based on the neighborhood proximity between the concepts in encoded images, are analyzed by considering local feedback information. We also analyze the concept similarities in the collection as a whole in the form of a similarity thesaurus and propose an efficient query expansion based on the global analysis. The experimental results on a photographic collection of natural scenes and a biomedical database of different imaging modalities demonstrate the effectiveness of the proposed framework in terms of precision and recall. PMID:21822350

  6. Asymptotic response of observables from divergent weak-coupling expansions: a fractional-calculus-assisted Padé technique.

    PubMed

    Dhatt, Sharmistha; Bhattacharyya, Kamal

    2012-08-01

    Appropriate constructions of Padé approximants are believed to provide reasonable estimates of the asymptotic (large-coupling) amplitude and exponent of an observable, given its weak-coupling expansion to some desired order. In many instances, however, sequences of such approximants are seen to converge very poorly. We outline here a strategy that exploits the idea of fractional calculus to considerably improve the convergence behavior. Pilot calculations on the ground-state perturbative energy series of quartic, sextic, and octic anharmonic oscillators reveal clearly the worth of our endeavor.

  7. [Tissular expansion in giant congenital nevi treatment].

    PubMed

    Nguyen Van Nuoi, V; Francois-Fiquet, C; Diner, P; Sergent, B; Zazurca, F; Franchi, G; Buis, J; Vazquez, M-P; Picard, A; Kadlub, N

    2014-08-01

    Surgical management of giant melanotic naevi remains a surgical challenge. Tissue expansion provides tissue of the same quality for the repair of defects. The aim of this study is to review tissular expansion for giant melanotic naevi. We conducted a retrospective study from 2000 to 2012. All children patients who underwent a tissular expansion for giant congenital naevi had been included. Epidemiological data, surgical procedure, complication rate and results had been analysed. Thirty-tree patients had been included; they underwent 61 procedures with 79 tissular-expansion prosthesis. Previous surgery, mostly simple excision had been performed before tissular expansion. Complete naevus excision had been performed in 63.3% of the cases. Complications occurred in 45% of the cases, however in 50% of them were minor. Iterative surgery increased the complication rate. Tissular expansion is a valuable option for giant congenital naevus. However, complication rate remained high, especially when iterative surgery is needed. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  8. Flight test techniques for the X-29A aircraft

    NASA Technical Reports Server (NTRS)

    Hicks, John W.; Cooper, James M., Jr.; Sefic, Walter J.

    1987-01-01

    The X-29A advanced technology demonstrator is a single-seat, single-engine aircraft with a forward-swept wing. The aircraft incorporates many advanced technologies being considered for this country's next generation of aircraft. This unusual aircraft configuration, which had never been flown before, required a precise approach to flight envelope expansion. This paper describes the real-time analysis methods and flight test techniques used during the envelope expansion of the x-29A aircraft, including new and innovative approaches.

  9. Mesopores induced zero thermal expansion in single-crystal ferroelectrics.

    PubMed

    Ren, Zhaohui; Zhao, Ruoyu; Chen, Xing; Li, Ming; Li, Xiang; Tian, He; Zhang, Ze; Han, Gaorong

    2018-04-24

    For many decades, zero thermal expansion materials have been the focus of numerous investigations because of their intriguing physical properties and potential applications in high-precision instruments. Different strategies, such as composites, solid solution and doping, have been developed as promising approaches to obtain zero thermal expansion materials. However, microstructure controlled zero thermal expansion behavior via interface or surface has not been realized. Here we report the observation of an impressive zero thermal expansion (volumetric thermal expansion coefficient, -1.41 × 10 -6  K -1 , 293-623 K) in single-crystal ferroelectric PbTiO 3 fibers with large-scale faceted and enclosed mesopores. The zero thermal expansion behavior is attributed to a synergetic effect of positive thermal expansion near the mesopores due to the oxygen-based polarization screening and negative thermal expansion from an intrinsic ferroelectricity. Our results show that a fascinating surface construction in negative thermal expansion ferroelectric materials could be a promising strategy to realize zero thermal expansion.

  10. 46 CFR 154.432 - Expansion and contraction.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Membrane Tanks § 154.432 Expansion and contraction. The support system of a membrane tank must allow for thermal and physical expansion and contraction of the tank. Semi-Membrane Tanks ... 46 Shipping 5 2011-10-01 2011-10-01 false Expansion and contraction. 154.432 Section 154.432...

  11. 46 CFR 154.432 - Expansion and contraction.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Membrane Tanks § 154.432 Expansion and contraction. The support system of a membrane tank must allow for thermal and physical expansion and contraction of the tank. Semi-Membrane Tanks ... 46 Shipping 5 2010-10-01 2010-10-01 false Expansion and contraction. 154.432 Section 154.432...

  12. Novel micronisation β-carotene using rapid expansion supercritical solution with co-solvent

    NASA Astrophysics Data System (ADS)

    Kien, Le Anh

    2017-09-01

    Rapid expansion of supercritical solution (RESS) is the most common approach of pharmaceutical pacticle forming methods using supercritical fluids. The RESS method is a technology producing a small solid product with a very narrow particle size distribution, organic solvent-free particles. This process is also simple and easy to control the operating parameters in comparision with other ways based on supercritical techniques. In this study, β-carotene, a strongly colored red-orange pigment abundant in plants and fruits, has been forming by RESS. In addition, the size and morphology effect of four different RESS parameters including co-solvent, extraction temperature, and extraction pressure and expansion nozzle temperature has surveyed. The particle size distribution has been determined by using laser diffraction experiment. SEM has conducted to analyze the surface structure, DSC and FTIR for thermal and chemical structure analysis.

  13. Hematoma Expansion Following Acute Intracerebral Hemorrhage

    PubMed Central

    Brouwers, H. Bart; Greenberg, Steven M.

    2013-01-01

    Intracerebral hemorrhage, the most devastating form of stroke, has no specific therapy proven to improve outcome by randomized controlled trial. Location and baseline hematoma volume are strong predictors of mortality, but are non-modifiable by the time of diagnosis. Expansion of the initial hematoma is a further marker of poor prognosis that may be at least partly preventable. Several risk factors for hematoma expansion have been identified, including baseline ICH volume, early presentation after symptom onset, anticoagulation, and the CT angiography spot sign. Although the biological mechanisms of hematoma expansion remain unclear, accumulating evidence supports a model of ongoing secondary bleeding from ruptured adjacent vessels surrounding the initial bleeding site. Several large clinical trials testing therapies aimed at preventing hematoma expansion are in progress, including aggressive blood pressure reduction, treatment with recombinant factor VIIa guided by CT angiography findings, and surgical intervention for superficial hematomas without intraventricular extension. Hematoma expansion is so far the only marker of outcome that is amenable to treatment and thus a potentially important therapeutic target. PMID:23466430

  14. Geothermal expansion spool piston

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reed, L. T.

    1985-08-06

    A packing supporting piston assembly removably securable to an end section of a production casing of a geothermal well, which end section is disposed above a well head. The piston assembly when so mounted has packing in abutting sealing contact with the end section of the production casing and also has packing that is in slidable sealing contact with the interior surface of the expansion spool. The piston assembly is of such structure that the pressures exerted by the packing on the end section of the casing and on the interior surface of the expansion spool are independently adjustable tomore » desired magnitudes. The degree of pressure exerted by the packing on the interior surface of the expansion spool is adjustable after the packing has been disposed within the confines of the spool. The piston assembly in a preferred form includes a circumferentially extending high temperature resisting grease seal situated within the confines of the piston assembly. In addition to the preferred form of the piston assembly, alternate forms of the piston assembly are provided, each of which permits the pressure exerted by the packing on the interior surface of the expansion spool to be adjusted to a desired magnitude and periodically varied as the same becomes necessary to maintain an effective seal.« less

  15. Stochastic series expansion simulation of the t -V model

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Liu, Ye-Hua; Troyer, Matthias

    2016-04-01

    We present an algorithm for the efficient simulation of the half-filled spinless t -V model on bipartite lattices, which combines the stochastic series expansion method with determinantal quantum Monte Carlo techniques widely used in fermionic simulations. The algorithm scales linearly in the inverse temperature, cubically with the system size, and is free from the time-discretization error. We use it to map out the finite-temperature phase diagram of the spinless t -V model on the honeycomb lattice and observe a suppression of the critical temperature of the charge-density-wave phase in the vicinity of a fermionic quantum critical point.

  16. Long gap esophageal atresia: lengthening technique and primary anastomosis.

    PubMed

    Hadidi, Ahmed T; Hosie, Stuart; Waag, Karl-Ludwig

    2007-10-01

    The treatment of long gap esophageal atresia remains a major surgical challenge. The authors describe a modification of a lengthening technique based on tissue expansion to avoid sutures cutting through the esophagus. Between January 2004 and August 2006, 4 patients did not respond to stretching, and underwent this modified esophageal lengthening technique using silastic tubes. RESULTS AND FOLLOW-UP: All infants recovered and have an intact esophagus. All infants developed gastroesophageal reflux. Thal antireflux procedure was performed in the first infant. The other 3 patients were managed conservatively. Follow-up ranged between 6 and 34 months. The tissue expansion principle can be successfully applied in the esophagus through external traction. Silastic tube fixation at esophageal ends may help to apply even traction and avoid sutures cutting through the esophageal tissue.

  17. Human-caused Indo-Pacific warm pool expansion.

    PubMed

    Weller, Evan; Min, Seung-Ki; Cai, Wenju; Zwiers, Francis W; Kim, Yeon-Hee; Lee, Donghyun

    2016-07-01

    The Indo-Pacific warm pool (IPWP) has warmed and grown substantially during the past century. The IPWP is Earth's largest region of warm sea surface temperatures (SSTs), has the highest rainfall, and is fundamental to global atmospheric circulation and hydrological cycle. The region has also experienced the world's highest rates of sea-level rise in recent decades, indicating large increases in ocean heat content and leading to substantial impacts on small island states in the region. Previous studies have considered mechanisms for the basin-scale ocean warming, but not the causes of the observed IPWP expansion, where expansion in the Indian Ocean has far exceeded that in the Pacific Ocean. We identify human and natural contributions to the observed IPWP changes since the 1950s by comparing observations with climate model simulations using an optimal fingerprinting technique. Greenhouse gas forcing is found to be the dominant cause of the observed increases in IPWP intensity and size, whereas natural fluctuations associated with the Pacific Decadal Oscillation have played a smaller yet significant role. Further, we show that the shape and impact of human-induced IPWP growth could be asymmetric between the Indian and Pacific basins, the causes of which remain uncertain. Human-induced changes in the IPWP have important implications for understanding and projecting related changes in monsoonal rainfall, and frequency or intensity of tropical storms, which have profound socioeconomic consequences.

  18. Spatial Linkage and Urban Expansion: AN Urban Agglomeration View

    NASA Astrophysics Data System (ADS)

    Jiao, L. M.; Tang, X.; Liu, X. P.

    2017-09-01

    Urban expansion displays different characteristics in each period. From the perspective of the urban agglomeration, studying the spatial and temporal characteristics of urban expansion plays an important role in understanding the complex relationship between urban expansion and network structure of urban agglomeration. We analyze urban expansion in the Yangtze River Delta Urban Agglomeration (YRD) through accessibility to and spatial interaction intensity from core cities as well as accessibility of road network. Results show that: (1) Correlation between urban expansion intensity and spatial indicators such as location and space syntax variables is remarkable and positive, while it decreases after rapid expansion. (2) Urban expansion velocity displays a positive correlation with spatial indicators mentioned above in the first (1980-1990) and second (1990-2000) period. However, it exhibits a negative relationship in the third period (2000-2010), i.e., cities located in the periphery of urban agglomeration developing more quickly. Consequently, the hypothesis of convergence of urban expansion in rapid expansion stage is put forward. (3) Results of Zipf's law and Gibrat's law show urban expansion in YRD displays a convergent trend in rapid expansion stage, small and medium-sized cities growing faster. This study shows that spatial linkage plays an important but evolving role in urban expansion within the urban agglomeration. In addition, it serves as a reference to the planning of Yangtze River Delta Urban Agglomeration and regulation of urban expansion of other urban agglomerations.

  19. Tunable thermal expansion in framework materials through redox intercalation

    NASA Astrophysics Data System (ADS)

    Chen, Jun; Gao, Qilong; Sanson, Andrea; Jiang, Xingxing; Huang, Qingzhen; Carnera, Alberto; Rodriguez, Clara Guglieri; Olivi, Luca; Wang, Lei; Hu, Lei; Lin, Kun; Ren, Yang; Lin, Zheshuai; Wang, Cong; Gu, Lin; Deng, Jinxia; Attfield, J. Paul; Xing, Xianran

    2017-02-01

    Thermal expansion properties of solids are of fundamental interest and control of thermal expansion is important for practical applications but can be difficult to achieve. Many framework-type materials show negative thermal expansion when internal cages are empty but positive thermal expansion when additional atoms or molecules fill internal voids present. Here we show that redox intercalation offers an effective method to control thermal expansion from positive to zero to negative by insertion of Li ions into the simple negative thermal expansion framework material ScF3, doped with 10% Fe to enable reduction. The small concentration of intercalated Li ions has a strong influence through steric hindrance of transverse fluoride ion vibrations, which directly controls the thermal expansion. Redox intercalation of guest ions is thus likely to be a general and effective method for controlling thermal expansion in the many known framework materials with phonon-driven negative thermal expansion.

  20. A unified perturbation expansion for surface scattering

    NASA Technical Reports Server (NTRS)

    Rodriguez, Ernesto; Kim, Yunjin

    1992-01-01

    Starting with the extinction theorem, a perturbation expansion which, to first and second orders, converges over a wider domain than the small perturbation expansion and the momentum transfer expansion is presented. It is shown that, in the appropriate limits, both of these theories, as well as the two-scale expansion, are recovered. There is no adjustable parameter, such as a spectral split, in the theory. This theory is applied to random rough surfaces and derive analytic expressions for the coherent field and the bistatic cross section. Finally, a numerical test of the theory against method of moments results for Gaussian random rough surfaces with a power law spectrum is given. These results show that the expansion is ramarkably accurate over a large range of surface heights and slopes for both horizontal and vertical polarization.

  1. NATO’s Expansion Decision

    DTIC Science & Technology

    1997-04-01

    crime.…Meanwhile the US is making a 18 bad situation worse by insisting on the expansion of NATO, a project that has mobilized nationalist emotions in......xx-xx-1997 to xx-xx-1997 4. TITLE AND SUBTITLE NATO’s Expansion Decision Unclassified 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER

  2. Tunable thermal expansion in framework materials through redox intercalation

    PubMed Central

    Chen, Jun; Gao, Qilong; Sanson, Andrea; Jiang, Xingxing; Huang, Qingzhen; Carnera, Alberto; Rodriguez, Clara Guglieri; Olivi, Luca; Wang, Lei; Hu, Lei; Lin, Kun; Ren, Yang; Lin, Zheshuai; Wang, Cong; Gu, Lin; Deng, Jinxia; Attfield, J. Paul; Xing, Xianran

    2017-01-01

    Thermal expansion properties of solids are of fundamental interest and control of thermal expansion is important for practical applications but can be difficult to achieve. Many framework-type materials show negative thermal expansion when internal cages are empty but positive thermal expansion when additional atoms or molecules fill internal voids present. Here we show that redox intercalation offers an effective method to control thermal expansion from positive to zero to negative by insertion of Li ions into the simple negative thermal expansion framework material ScF3, doped with 10% Fe to enable reduction. The small concentration of intercalated Li ions has a strong influence through steric hindrance of transverse fluoride ion vibrations, which directly controls the thermal expansion. Redox intercalation of guest ions is thus likely to be a general and effective method for controlling thermal expansion in the many known framework materials with phonon-driven negative thermal expansion. PMID:28181576

  3. Tunable thermal expansion in framework materials through redox intercalation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Jun; Gao, Qilong; Sanson, Andrea

    Thermal expansion properties of solids are of fundamental interest and control of thermal expansion is important for practical applications but can be difficult to achieve. Many framework type materials show negative thermal expansion when internal cages are empty but positive thermal expansion when additional atoms or molecules fill internal voids present, offering a potential route for control. Here we show that redox intercalation offers an effective method to control thermal expansion from positive to zero to negative by insertion of Li ions into the simple negative thermal expansion framework material ScF 3, doped with 10% Fe to enable reduction. Themore » small concentration of intercalated Li ions has a strong influence through steric hindrance of transverse fluoride ion vibrations, which directly controls the thermal expansion. As a result, redox intercalation of guest ions is thus likely to be a general and effective method for controlling thermal expansion in the many known framework materials with phonon-driven negative thermal expansion.« less

  4. Tunable thermal expansion in framework materials through redox intercalation

    DOE PAGES

    Chen, Jun; Gao, Qilong; Sanson, Andrea; ...

    2017-02-09

    Thermal expansion properties of solids are of fundamental interest and control of thermal expansion is important for practical applications but can be difficult to achieve. Many framework type materials show negative thermal expansion when internal cages are empty but positive thermal expansion when additional atoms or molecules fill internal voids present, offering a potential route for control. Here we show that redox intercalation offers an effective method to control thermal expansion from positive to zero to negative by insertion of Li ions into the simple negative thermal expansion framework material ScF 3, doped with 10% Fe to enable reduction. Themore » small concentration of intercalated Li ions has a strong influence through steric hindrance of transverse fluoride ion vibrations, which directly controls the thermal expansion. As a result, redox intercalation of guest ions is thus likely to be a general and effective method for controlling thermal expansion in the many known framework materials with phonon-driven negative thermal expansion.« less

  5. Superresolution imaging of Drosophila tissues using expansion microscopy.

    PubMed

    Jiang, Nan; Kim, Hyeon-Jin; Chozinski, Tyler J; Azpurua, Jorge E; Eaton, Benjamin A; Vaughan, Joshua C; Parrish, Jay Z

    2018-06-15

    The limited resolving power of conventional diffraction-limited microscopy hinders analysis of small, densely packed structural elements in cells. Expansion microscopy (ExM) provides an elegant solution to this problem, allowing for increased resolution with standard microscopes via physical expansion of the specimen in a swellable polymer hydrogel. Here, we apply, validate, and optimize ExM protocols that enable the study of Drosophila embryos, larval brains, and larval and adult body walls. We achieve a lateral resolution of ∼70 nm in Drosophila tissues using a standard confocal microscope, and we use ExM to analyze fine intracellular structures and intercellular interactions. First, we find that ExM reveals features of presynaptic active zone (AZ) structure that are observable with other superresolution imaging techniques but not with standard confocal microscopy. We further show that synapses known to exhibit age-dependent changes in activity also exhibit age-dependent changes in AZ structure. Finally, we use the significantly improved axial resolution of ExM to show that dendrites of somatosensory neurons are inserted into epithelial cells at a higher frequency than previously reported in confocal microscopy studies. Altogether, our study provides a foundation for the application of ExM to Drosophila tissues and underscores the importance of tissue-specific optimization of ExM procedures.

  6. Chemical recombination in an expansion tube

    NASA Technical Reports Server (NTRS)

    Bakos, Robert J.; Morgan, Richard G.

    1994-01-01

    The note describes the theoretical basis of chemical recombination in an expansion tube which simulates energy, Reynolds number, and stream chemistry at near-orbital velocities. Expansion tubes can satisfy ground-based hypersonic propulsion and aerothermal testing requirements.

  7. Measurements of the frequency stability of ultralow thermal expansion glass ceramic optical cavity lasers

    NASA Astrophysics Data System (ADS)

    Oram, R. J.; Latimer, I. D.; Spoor, S. P.

    1997-05-01

    This paper reports on a technique for providing a frequency-stabilized helium - neon gas laser by using inherently stable ultralow thermal expansion optical cavities. Four longitudinal monoblock cavity lasers were constructed and tested. These had their laser mirrors optically contacted to the bulk material. A 1 mm diameter hole along the axis of the block served as the discharge channel with electrodes optically contacted to the sides of the block. One of these lasers had a glass capilliary for the discharge channel. A fifth laser had a gain tube with Brewster angle windows fixed in a Zerodur box with the mirrors contacted to the ends. The warm-up characteristics of the five different lasers have been obtained and a theoretical model using finite element analysis was developed to determine the thermal expansion during warm-up. Using this computer model the thermal expansion coefficient of the material Zerodur was obtained. The results suggest that monoblock lasers can produce a free-running laser frequency stability of better than 10 MHz and show a repeatable warm-up characteristic of 100 MHz frequency drift.

  8. A new multi-domain method based on an analytical control surface for linear and second-order mean drift wave loads on floating bodies

    NASA Astrophysics Data System (ADS)

    Liang, Hui; Chen, Xiaobo

    2017-10-01

    A novel multi-domain method based on an analytical control surface is proposed by combining the use of free-surface Green function and Rankine source function. A cylindrical control surface is introduced to subdivide the fluid domain into external and internal domains. Unlike the traditional domain decomposition strategy or multi-block method, the control surface here is not panelized, on which the velocity potential and normal velocity components are analytically expressed as a series of base functions composed of Laguerre function in vertical coordinate and Fourier series in the circumference. Free-surface Green function is applied in the external domain, and the boundary integral equation is constructed on the control surface in the sense of Galerkin collocation via integrating test functions orthogonal to base functions over the control surface. The external solution gives rise to the so-called Dirichlet-to-Neumann [DN2] and Neumann-to-Dirichlet [ND2] relations on the control surface. Irregular frequencies, which are only dependent on the radius of the control surface, are present in the external solution, and they are removed by extending the boundary integral equation to the interior free surface (circular disc) on which the null normal derivative of potential is imposed, and the dipole distribution is expressed as Fourier-Bessel expansion on the disc. In the internal domain, where the Rankine source function is adopted, new boundary integral equations are formulated. The point collocation is imposed over the body surface and free surface, while the collocation of the Galerkin type is applied on the control surface. The present method is valid in the computation of both linear and second-order mean drift wave loads. Furthermore, the second-order mean drift force based on the middle-field formulation can be calculated analytically by using the coefficients of the Fourier-Laguerre expansion.

  9. Transverse Expansion and Stability after Segmental Le Fort I Osteotomy versus Surgically Assisted Rapid Maxillary Expansion: a Systematic Review

    PubMed Central

    Blæhr, Tue Lindberg

    2016-01-01

    ABSTRACT Objectives The objective of the present systematic review was to test the hypothesis of no difference in transverse skeletal and dental arch expansion and relapse after segmental Le Fort I osteotomy versus surgically assisted rapid maxillary expansion. Material and Methods A MEDLINE (PubMed), Embase and Cochrane library search in combination with a hand-search of relevant journals was conducted by including human studies published in English from January 1, 2000 to June 1, 2016. Results The search provided 130 titles and four studies fulfilled the inclusion criteria. All the included studies were characterized by high risk of bias and meta-analysis was not possible due to considerable variation. Both treatment modalities significantly increase the transverse maxillary skeletal and dental arch width. The transverse dental arch expansion and relapse seems to be substantial higher with tooth-borne surgically assisted rapid maxillary expansion compared to segmental Le Fort I osteotomy. The ratio of dental to skeletal relapse was significantly higher in the posterior maxilla with tooth-borne surgically assisted rapid maxillary expansion. Moreover, a parallel opening without segment tilting was observed after segmental Le Fort I osteotomy. Conclusions Maxillary transverse deficiency in adults can be treated successfully with both treatment modalities, although surgically assisted rapid maxillary expansion seems more effective when large transverse maxillary skeletal and dental arch expansion is required. However, considering the methodological limitations of the included studies, long-term randomized studies assessing transverse skeletal and dental expansion and relapse with the two treatment modalities are needed before definite conclusions can be provided. PMID:28154745

  10. Thermal expansion of boron subnitrides

    NASA Astrophysics Data System (ADS)

    Cherednichenko, Kirill A.; Gigli, Lara; Solozhenko, Vladimir L.

    2018-07-01

    The lattice parameters of two boron subnitrides, B13N2 and B50N2, have been measured as a function of temperature between 298 and 1273 K, and the corresponding thermal expansion coefficients have been determined. Thermal expansion of both boron subnitrides was found to be quasi-linear, and the volume thermal expansion coefficients of B50N2 (15.7 (2) × 10-6 K-1) and B13N2 (21.3 (2) × 10-6 K-1) are of the same order of magnitude as those of boron-rich compounds with structure related to α-rhombohedral boron. For both boron subnitrides no temperature-induced phase transitions have been observed in the temperature range under study.

  11. Optical fiber sensor based on a polymer optical fiber macro-bend to study thermal expansion of metals

    NASA Astrophysics Data System (ADS)

    Pakdeevanich, Paradorn

    2018-05-01

    Thermal expansion is an important parameter for characterization of metals. As metal is heated, the molecules vibrate more violently and expand in all direction. Investigators have focused to study the thermal strain. However, the amount of expansion is difficult to measure. An attempt has been made to develop an apparatus using optical technique. The principle of this system is the transformation of length changes into changes of light intensity. The purpose of this work is to design and develop an optical fiber sensor based on a macro-bend of a polymer optical fiber. In this system, thermal expansion of metal was converted into the rolling of a needle in which placed beneath a flat bar of metal. Optical fiber sensor was attached to the ended section of a needle. As the crimp tube of the fiber sensor was moved due to thermal expansion of metal, the bend radii of optical fiber sensor was changed. As a sequence, the loss induced by the bending effect was depended on the expansion of metal that changed with temperature. In this study, we utilized optical fiber sensor to monitor and compare the thermal expansion of copper, brass and aluminum. According to our experimental results, the linear response with temperature was reported. The measured values of coefficient of thermal expansion was analyzed to be 0.45, 0.35 and 0.32 a.u./°C for aluminum bar, brass bar and copper bar, respectively. In addition, the effect of the size of the diameter of a needle on the response of bending loss was investigated.

  12. Early Impacts of the Affordable Care Act on Health Insurance Coverage in Medicaid Expansion and Non-Expansion States.

    PubMed

    Courtemanche, Charles; Marton, James; Ukert, Benjamin; Yelowitz, Aaron; Zapata, Daniela

    2017-01-01

    The Affordable Care Act (ACA) aimed to achieve nearly universal health insurance coverage in the United States through a combination of insurance market reforms, mandates, subsidies, health insurance exchanges, and Medicaid expansions, most of which took effect in 2014. This paper estimates the causal effects of the ACA on health insurance coverage in 2014 using data from the American Community Survey. We utilize difference-in-difference-in-differences models that exploit cross-sectional variation in the intensity of treatment arising from state participation in the Medicaid expansion and local area pre-ACA uninsured rates. This strategy allows us to identify the effects of the ACA in both Medicaid expansion and non-expansion states. Our preferred specification suggests that, at the average pre-treatment uninsured rate, the full ACA increased the proportion of residents with insurance by 5.9 percentage points compared to 2.8 percentage points in states that did not expand Medicaid. Private insurance expansions from the ACA were due to increases in both employer-provided and non-group coverage. The coverage gains from the full ACA were largest for those without a college degree, non-whites, young adults, unmarried individuals, and those without children in the home. We find no evidence that the Medicaid expansion crowded out private coverage.

  13. Denonvilliers' space expansion by transperineal injection of hydrogel: implications for focal therapy of prostate cancer.

    PubMed

    de Castro Abreu, Andre Luis; Ma, Yanling; Shoji, Sunao; Marien, Arnaud; Leslie, Scott; Gill, Inderbir; Ukimura, Osamu

    2014-04-01

    We developed and assessed a technique of: (i) expanding Denonvilliers' space by hydrogel (polyethylene glycol) during focal cryoabation; and (ii) temperature mapping to ensure protection of the rectal wall. In a fresh cadaver, 20 cc of hydrogel was injected transperineally into Denonvilliers' space under transrectal ultrasound guidance. Successful expansion of Denonvilliers' space was achieved with a range of 9-11 mm thickness covering the entire posterior prostate surface. Two freeze-thaw cycles were used to expand the iceball reaching the rectal wall as an end-point. Intraoperative transrectal ultrasound monitoring and temperature mapping in Denonvilliers' space by multiple thermocouples documented real-time iceball expansion up to 10 mm beyond the prostate, and safety in protecting the rectal wall from thermal injury. The lowest temperatures of the thermocouples with a distance of 0 mm, 5 mm and 10 mm from the prostate were: -35°C, -18°C and 0°C (P < 0.001), respectively. In gross and microscopic examination, the hydrogel mass measured 11 × 40 × 34 mm, which was identical to the intraoperative transrectal ultrasound measurements, there was no infiltration of the hydrogel into the rectal wall or prostate and no injury to the pelvic organs. In conclusion, the expansion of Denonvilliers' space by transperineal injection of hydrogel is feasible and a promising technique to facilitate energy-based focal therapy of prostate cancer. © 2013 The Japanese Urological Association.

  14. Preparation of Shrinkage Compensating Concrete with HCSA Expansive Agent

    NASA Astrophysics Data System (ADS)

    Li, Changcheng; Jia, Fujia

    2017-10-01

    Shrinkage compensating concrete (SCC) has become one of the best effective methods of preventing and reducing concrete cracking. SCC is prepared by HCSA high performance expansive agent for concrete which restrained expansion rate is optimized by 0.057%. Slump, compressive strength, restrained expansion rate and cracking resistance test were carried out on SCC. The results show that the initial slump of fresh SCC was about 220mm-230mm, while slump after 2 hours was 180mm-200mm. The restrained expansion rate of SCC increased with the mixing amount of expansive agent. After cured in water for 14 days, the restrained expansion rate of C35 and C40 SCC were 0.020%-0.032%. With the dosage of expansive agent increasing, restrained expansion rate of SCC increased, maximum compressive stress and cracking stress improved, cracking temperature fell, thus cracking resistance got effectively improvement.

  15. Expansion shock waves in regularized shallow-water theory

    NASA Astrophysics Data System (ADS)

    El, Gennady A.; Hoefer, Mark A.; Shearer, Michael

    2016-05-01

    We identify a new type of shock wave by constructing a stationary expansion shock solution of a class of regularized shallow-water equations that include the Benjamin-Bona-Mahony and Boussinesq equations. An expansion shock exhibits divergent characteristics, thereby contravening the classical Lax entropy condition. The persistence of the expansion shock in initial value problems is analysed and justified using matched asymptotic expansions and numerical simulations. The expansion shock's existence is traced to the presence of a non-local dispersive term in the governing equation. We establish the algebraic decay of the shock as it is gradually eroded by a simple wave on either side. More generally, we observe a robustness of the expansion shock in the presence of weak dissipation and in simulations of asymmetric initial conditions where a train of solitary waves is shed from one side of the shock.

  16. The ideas behind self-consistent expansion

    NASA Astrophysics Data System (ADS)

    Schwartz, Moshe; Katzav, Eytan

    2008-04-01

    In recent years we have witnessed a growing interest in various non-equilibrium systems described in terms of stochastic nonlinear field theories. In some of those systems, like KPZ and related models, the interesting behavior is in the strong coupling regime, which is inaccessible by traditional perturbative treatments such as dynamical renormalization group (DRG). A useful tool in the study of such systems is the self-consistent expansion (SCE), which might be said to generate its own 'small parameter'. The self-consistent expansion (SCE) has the advantage that its structure is just that of a regular expansion, the only difference is that the simple system around which the expansion is performed is adjustable. The purpose of this paper is to present the method in a simple and understandable way that hopefully will make it accessible to a wider public working on non-equilibrium statistical physics.

  17. Economical processing of fiber-reinforced components with thermal expansion molding

    NASA Technical Reports Server (NTRS)

    Schneider, K.

    1979-01-01

    The concept of economical fabrication of fiber-reinforced structural components is illustrated with an example of a typical control surface (aileron). The concept provides for fabricating struts, ribs, and a cover plate as an integral structure in a hardening device and then joining the closure cover plate mechanically. Fabrication of the integral structure is achieved by the 'thermal expansion molding' technique. The hardening pressure is produced by silicone rubber cores which expand under the influence of temperature. Test results are presented for several rubber materials as well as for various structural pieces. The technique is demonstrated extensively for an aileron, consisting of five ribs, struts, and a cover plate. Economically, for a large scale technical production of an aileron, cost savings of twenty-five percent can be realized compared to those for a sheet metal structure.

  18. Broad-scale lake expansion and flooding inundates essential wood bison habitat in northwestern Canada.

    NASA Astrophysics Data System (ADS)

    Blais, J. M.; Korosi, J.; Thienpont, J. R.; Pisaric, M. F.; Kokelj, S.; Smol, J. P.; Simpson, M. J.

    2017-12-01

    Climate change-induced landscape alterations have consequences for vulnerable wildlife. In high-latitude regions, dramatic changes in water levels have been linked to climate warming. While most attention has focused on shrinking Arctic lakes, here, we document the opposite scenario: extensive lake expansion in Canada's Northwest Territories that has implications for the conservation of ecologically-important wood bison. We quantified lake area changes since 1986 using remote sensing techniques, and recorded a net gain of > 500 km2, from 5.7% to 11% total water coverage. Inter-annual variability in water level was significantly correlated to the Pacific/North American pattern teleconnection and the summer sea surface temperature anomaly. Historical reconstructions using proxy data archived in dated sediment cores showed that recent lake expansion is outside the range of natural variability of these ecosystems over at least the last 300 years. Lake expansion resulted in increased allochthonous carbon transport, as shown unequivocally by increases in lignin-derived phenols, but with a greater proportional increase in the contribution of organic matter from phytoplankton, as a result of increased open-water habitat. We conclude that complex hydrological changes occurring as a result of recent climatic change have resulted in rapid and widespread lake expansion that may significantly affect at-risk wildlife populations. This study is based on results we reported in Nature Communications in 2017 (DOI: 10.1038/ncomms14510).

  19. A Generalized Technique in Numerical Integration

    NASA Astrophysics Data System (ADS)

    Safouhi, Hassan

    2018-02-01

    Integration by parts is one of the most popular techniques in the analysis of integrals and is one of the simplest methods to generate asymptotic expansions of integral representations. The product of the technique is usually a divergent series formed from evaluating boundary terms; however, sometimes the remaining integral is also evaluated. Due to the successive differentiation and anti-differentiation required to form the series or the remaining integral, the technique is difficult to apply to problems more complicated than the simplest. In this contribution, we explore a generalized and formalized integration by parts to create equivalent representations to some challenging integrals. As a demonstrative archetype, we examine Bessel integrals, Fresnel integrals and Airy functions.

  20. Expansion shock waves in regularized shallow-water theory

    PubMed Central

    El, Gennady A.; Shearer, Michael

    2016-01-01

    We identify a new type of shock wave by constructing a stationary expansion shock solution of a class of regularized shallow-water equations that include the Benjamin–Bona–Mahony and Boussinesq equations. An expansion shock exhibits divergent characteristics, thereby contravening the classical Lax entropy condition. The persistence of the expansion shock in initial value problems is analysed and justified using matched asymptotic expansions and numerical simulations. The expansion shock's existence is traced to the presence of a non-local dispersive term in the governing equation. We establish the algebraic decay of the shock as it is gradually eroded by a simple wave on either side. More generally, we observe a robustness of the expansion shock in the presence of weak dissipation and in simulations of asymmetric initial conditions where a train of solitary waves is shed from one side of the shock. PMID:27279780

  1. Concentric ring flywheel without expansion separators

    DOEpatents

    Kuklo, Thomas C.

    1999-01-01

    A concentric ring flywheel wherein the adjacent rings are configured to eliminate the need for differential expansion separators between the adjacent rings. This is accomplished by forming a circumferential step on an outer surface of an inner concentric ring and forming a matching circumferential step on the inner surface of an adjacent outer concentric ring. During operation the circumferential steps allow the rings to differentially expand due to the difference in the radius of the rings without the formation of gaps therebetween, thereby eliminating the need for expansion separators to take up the gaps formed by differential expansion.

  2. Supercritical flow characteristics at abrupt expansion structure

    NASA Astrophysics Data System (ADS)

    Lim, Jia Jun; Puay, How Tion; Zakaria, Nor Azazi

    2017-10-01

    When dealing with the design of a hydraulic structure, lateral expansion is often necessary for flow emerging at high velocity served as a cross-sectional transition. If the abrupt expansion structure is made to diverge rapidly, it will cause the major part of the flow fail to follow the boundaries. If the transition is too gradual, it will result in a waste of structural material. A preliminary study on the flow structure near the expansion and its relationship with flow parameter is carried out in this study. A two-dimensional depth-averaged model is developed to simulate the supercritical flow at the abrupt expansion structure. Constrained Interpolation Profile (CIP) scheme (which is of third order accuracy) is adopted in the numerical model. Results show that the flow structure and flow characteristics at the abrupt expansion can be reproduced numerically. The validation of numerical result is done against analytical studies. The result from numerical simulation showed good agreement with the analytical solution.

  3. Solution of a Nonlinear Heat Conduction Equation for a Curvilinear Region with Dirichlet Conditions by the Fast-Expansion Method

    NASA Astrophysics Data System (ADS)

    Chernyshov, A. D.

    2018-05-01

    The analytical solution of the nonlinear heat conduction problem for a curvilinear region is obtained with the use of the fast-expansion method together with the method of extension of boundaries and pointwise technique of computing Fourier coefficients.

  4. The Economic Impact of Medicaid Expansion on Pennsylvania.

    PubMed

    Price, Carter C; Donohue, Julie M; Saltzman, Evan; Woods, Dulani; Eibner, Christine

    2013-01-01

    The Affordable Care Act is a substantial reform of the U.S. health care insurance system. Using the RAND COMPARE model, researchers assessed the act's potential economic effects on Pennsylvania, factoring in an optional expansion of Medicaid, and found the state would enjoy significant net benefits. With or without the expansion of Medicaid, the act will increase insurance coverage to hundreds of thousands of Pennsylvanians, but the COMPARE model estimates that the expansion of Medicaid eligibility would cover an additional 350,000 people and bring more than $2 billion in federal spending into the state annually than if the state did not expand. Should the state expand Medicaid, the additional spending will add more than $3 billion a year to the state's GDP and support 35,000 jobs. But Medicaid expansion is not without cost for the state; the estimated cumulative effect on Pennsylvania's Medicaid spending will be $180 million higher with the expansion than without between 2014 and 2020. Substantial reductions in uncompensated care costs for hospitals are possible even without expansion, but savings to hospitals for uncompensated care funding are even larger with the Medicaid expansion, amounting to $550 million or more each year.

  5. Controlling Thermal Expansion: A Metal–Organic Frameworks Route

    PubMed Central

    2016-01-01

    Controlling thermal expansion is an important, not yet resolved, and challenging problem in materials research. A conceptual design is introduced here, for the first time, for the use of metal–organic frameworks (MOFs) as platforms for controlling thermal expansion devices that can operate in the negative, zero, and positive expansion regimes. A detailed computer simulation study, based on molecular dynamics, is presented to support the targeted application. MOF-5 has been selected as model material, along with three molecules of similar size and known differences in terms of the nature of host–guest interactions. It has been shown that adsorbate molecules can control, in a colligative way, the thermal expansion of the solid, so that changing the adsorbate molecules induces the solid to display positive, zero, or negative thermal expansion. We analyze in depth the distortion mechanisms, beyond the ligand metal junction, to cover the ligand distortions, and the energetic and entropic effect on the thermo-structural behavior. We provide an unprecedented atomistic insight on the effect of adsorbates on the thermal expansion of MOFs as a basic tool toward controlling the thermal expansion. PMID:28190918

  6. Human-caused Indo-Pacific warm pool expansion

    PubMed Central

    Weller, Evan; Min, Seung-Ki; Cai, Wenju; Zwiers, Francis W.; Kim, Yeon-Hee; Lee, Donghyun

    2016-01-01

    The Indo-Pacific warm pool (IPWP) has warmed and grown substantially during the past century. The IPWP is Earth’s largest region of warm sea surface temperatures (SSTs), has the highest rainfall, and is fundamental to global atmospheric circulation and hydrological cycle. The region has also experienced the world’s highest rates of sea-level rise in recent decades, indicating large increases in ocean heat content and leading to substantial impacts on small island states in the region. Previous studies have considered mechanisms for the basin-scale ocean warming, but not the causes of the observed IPWP expansion, where expansion in the Indian Ocean has far exceeded that in the Pacific Ocean. We identify human and natural contributions to the observed IPWP changes since the 1950s by comparing observations with climate model simulations using an optimal fingerprinting technique. Greenhouse gas forcing is found to be the dominant cause of the observed increases in IPWP intensity and size, whereas natural fluctuations associated with the Pacific Decadal Oscillation have played a smaller yet significant role. Further, we show that the shape and impact of human-induced IPWP growth could be asymmetric between the Indian and Pacific basins, the causes of which remain uncertain. Human-induced changes in the IPWP have important implications for understanding and projecting related changes in monsoonal rainfall, and frequency or intensity of tropical storms, which have profound socioeconomic consequences. PMID:27419228

  7. Secret-key expansion from covert communication

    NASA Astrophysics Data System (ADS)

    Arrazola, Juan Miguel; Amiri, Ryan

    2018-02-01

    Covert communication allows the transmission of messages in such a way that it is not possible for adversaries to detect that the communication is occurring. This provides protection in situations where knowledge that two parties are talking to each other may be incriminating to them. In this work, we study how covert communication can be used for a different purpose: secret key expansion. First, we show that any message transmitted in a secure covert protocol is also secret and therefore unknown to an adversary. We then propose a covert communication protocol where the amount of key consumed in the protocol is smaller than the transmitted key, thus leading to secure secret key expansion. We derive precise conditions for secret key expansion to occur, showing that it is possible when there are sufficiently low levels of noise for a given security level. We conclude by examining how secret key expansion from covert communication can be performed in a computational security model.

  8. Producing a satellite-derived map and modelling Spartina alterniflora expansion for Willapa Bay in Washington State

    NASA Astrophysics Data System (ADS)

    Berlin, Cynthia Jane

    1998-12-01

    This research addresses the identification of the areal extent of the intertidal wetlands of Willapa Bay, Washington, and the evaluation of the potential for exotic Spartina alterniflora (smooth cordgrass) expansion in the bay using a spatial geographic approach. It is hoped that the results will address not only the management needs of the study area but provide a research design that may be applied to studies of other coastal wetlands. Four satellite images, three Landsat Multi-Spectral (MSS) and one Thematic Mapper (TM), are used to derive a map showing areas of water, low, middle and high intertidal, and upland. Two multi-date remote sensing mapping techniques are assessed: a supervised classification using density-slicing and an unsupervised classification using an ISODATA algorithm. Statistical comparisons are made between the resultant derived maps and the U.S.G.S. topographic maps for the Willapa Bay area. The potential for Spartina expansion in the bay is assessed using a sigmoidal (logistic) growth model and a spatial modelling procedure for four possible growth scenarios: without management controls (Business-as-Usual), with moderate management controls (e.g. harvesting to eliminate seed setting), under a hypothetical increase in the growth rate that may reflect favorable environmental changes, and under a hypothetical decrease in the growth rate that may reflect aggressive management controls. Comparisons for the statistics of the two mapping techniques suggest that although the unsupervised classification method performed satisfactorily, the supervised classification (density-slicing) method provided more satisfactory results. Results from the modelling of potential Spartina expansion suggest that Spartina expansion will proceed rapidly for the Business-as-Usual and hypothetical increase in the growth rate scenario, and at a slower rate for the elimination of seed setting and hypothetical decrease in the growth rate scenarios, until all potential

  9. RTEL1 Inhibits Trinucleotide Repeat Expansions and Fragility

    PubMed Central

    Frizzell, Aisling; Nguyen, Jennifer H.G.; Petalcorin, Mark I.R.; Turner, Katherine D.; Boulton, Simon J.; Freudenreich, Catherine H.; Lahue, Robert S.

    2018-01-01

    SUMMARY Human RTEL1 is an essential, multifunctional helicase that maintains telomeres, regulates homologous recombination, and helps prevent bone marrow failure. Here, we show that RTEL1 also blocks trinucleotide repeat expansions, the causal mutation for 17 neurological diseases. Increased expansion frequencies of (CTG·CAG) repeats occurred in human cells following knockdown of RTEL1, but not the alternative helicase Fbh1, and purified RTEL1 efficiently unwound triplet repeat hairpins in vitro. The expansion-blocking activity of RTEL1 also required Rad18 and HLTF, homologs of yeast Rad18 and Rad5. These findings are reminiscent of budding yeast Srs2, which inhibits expansions, unwinds hairpins, and prevents triplet-repeat-induced chromosome fragility. Accordingly, we found expansions and fragility were suppressed in yeast srs2 mutants expressing RTEL1, but not Fbh1. We propose that RTEL1 serves as a human analog of Srs2 to inhibit (CTG·CAG) repeat expansions and fragility, likely by unwinding problematic hairpins. PMID:24561255

  10. Thermal Expansion "Paradox."

    ERIC Educational Resources Information Center

    Fakhruddin, Hasan

    1993-01-01

    Describes a paradox in the equation for thermal expansion. If the calculations for heating a rod and subsequently cooling a rod are determined, the new length of the cool rod is shorter than expected. (PR)

  11. Pulse shape discrimination and classification methods for continuous depth of interaction encoding PET detectors.

    PubMed

    Roncali, Emilie; Phipps, Jennifer E; Marcu, Laura; Cherry, Simon R

    2012-10-21

    In previous work we demonstrated the potential of positron emission tomography (PET) detectors with depth-of-interaction (DOI) encoding capability based on phosphor-coated crystals. A DOI resolution of 8 mm full-width at half-maximum was obtained for 20 mm long scintillator crystals using a delayed charge integration linear regression method (DCI-LR). Phosphor-coated crystals modify the pulse shape to allow continuous DOI information determination, but the relationship between pulse shape and DOI is complex. We are therefore interested in developing a sensitive and robust method to estimate the DOI. Here, linear discriminant analysis (LDA) was implemented to classify the events based on information extracted from the pulse shape. Pulses were acquired with 2×2×20 mm(3) phosphor-coated crystals at five irradiation depths and characterized by their DCI values or Laguerre coefficients. These coefficients were obtained by expanding the pulses on a Laguerre basis set and constituted a unique signature for each pulse. The DOI of individual events was predicted using LDA based on Laguerre coefficients (Laguerre-LDA) or DCI values (DCI-LDA) as discriminant features. Predicted DOIs were compared to true irradiation depths. Laguerre-LDA showed higher sensitivity and accuracy than DCI-LDA and DCI-LR and was also more robust to predict the DOI of pulses with higher statistical noise due to low light levels (interaction depths further from the photodetector face). This indicates that Laguerre-LDA may be more suitable to DOI estimation in smaller crystals where lower collected light levels are expected. This novel approach is promising for calculating DOI using pulse shape discrimination in single-ended readout depth-encoding PET detectors.

  12. Pulse Shape Discrimination and Classification Methods for Continuous Depth of Interaction Encoding PET Detectors

    PubMed Central

    Roncali, Emilie; Phipps, Jennifer E.; Marcu, Laura; Cherry, Simon R.

    2012-01-01

    In previous work we demonstrated the potential of positron emission tomography (PET) detectors with depth-of-interaction (DOI) encoding capability based on phosphor-coated crystals. A DOI resolution of 8 mm full-width at half-maximum was obtained for 20 mm long scintillator crystals using a delayed charge integration linear regression method (DCI-LR). Phosphor-coated crystals modify the pulse shape to allow continuous DOI information determination, but the relationship between pulse shape and DOI is complex. We are therefore interested in developing a sensitive and robust method to estimate the DOI. Here, linear discriminant analysis (LDA) was implemented to classify the events based on information extracted from the pulse shape. Pulses were acquired with 2 × 2 × 20 mm3 phosphor-coated crystals at five irradiation depths and characterized by their DCI values or Laguerre coefficients. These coefficients were obtained by expanding the pulses on a Laguerre basis set and constituted a unique signature for each pulse. The DOI of individual events was predicted using LDA based on Laguerre coefficients (Laguerre-LDA) or DCI values (DCI-LDA) as discriminant features. Predicted DOIs were compared to true irradiation depths. Laguerre-LDA showed higher sensitivity and accuracy than DCI-LDA and DCI-LR and was also more robust to predict the DOI of pulses with higher statistical noise due to low light levels (interaction depths further from the photodetector face). This indicates that Laguerre-LDA may be more suitable to DOI estimation in smaller crystals where lower collected light levels are expected. This novel approach is promising for calculating DOI using pulse shape discrimination in single-ended readout depth-encoding PET detectors. PMID:23010690

  13. Expansive Learning as Production of Community

    ERIC Educational Resources Information Center

    Morck, Line Lerche

    2010-01-01

    This article contributes a framework for analyzing learning as an expansive process in which persons come to partly transcend marginalization. Expansive learning is a kind of learning that partly transcends marginalization through changed participation and recognition by others of participants in their changed communities. This article draws on…

  14. 14 CFR 23.969 - Fuel tank expansion space.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel tank expansion space. 23.969 Section 23.969 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT....969 Fuel tank expansion space. Each fuel tank must have an expansion space of not less than two...

  15. 14 CFR 23.969 - Fuel tank expansion space.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel tank expansion space. 23.969 Section 23.969 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT....969 Fuel tank expansion space. Each fuel tank must have an expansion space of not less than two...

  16. 14 CFR 23.969 - Fuel tank expansion space.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel tank expansion space. 23.969 Section 23.969 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT....969 Fuel tank expansion space. Each fuel tank must have an expansion space of not less than two...

  17. 14 CFR 23.969 - Fuel tank expansion space.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel tank expansion space. 23.969 Section 23.969 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT....969 Fuel tank expansion space. Each fuel tank must have an expansion space of not less than two...

  18. 14 CFR 23.969 - Fuel tank expansion space.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel tank expansion space. 23.969 Section 23.969 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT....969 Fuel tank expansion space. Each fuel tank must have an expansion space of not less than two...

  19. Research progress on expansive soil cracks under changing environment.

    PubMed

    Shi, Bei-xiao; Zheng, Cheng-feng; Wu, Jin-kun

    2014-01-01

    Engineering problems shunned previously rise to the surface gradually with the activities of reforming the natural world in depth, the problem of expansive soil crack under the changing environment becoming a control factor of expansive soil slope stability. The problem of expansive soil crack has gradually become a research hotspot, elaborates the occurrence and development of cracks from the basic properties of expansive soil, and points out the role of controlling the crack of expansive soil strength. We summarize the existing research methods and results of expansive soil crack characteristics. Improving crack measurement and calculation method and researching the crack depth measurement, statistical analysis method, crack depth and surface feature relationship will be the future direction.

  20. Principles of Thermal Expansion in Feldspars

    NASA Astrophysics Data System (ADS)

    Hovis, Guy; Medford, Aaron; Conlon, Maricate; Tether, Allison; Romanoski, Anthony

    2010-05-01

    Following the recent thermal expansion work of Hovis et al. (1) on AlSi3 feldspars, we have investigated the thermal expansion of plagioclase, Ba-K, and Ca-K feldspar crystalline solutions. X-ray powder diffraction data were collected between room temperature and 925 °C on six natural plagioclase specimens ranging in composition from anorthite to oligoclase, the K-exchanged equivalents of these plagioclase specimens, and five synthetic Ba-K feldspars with compositions ranging from 25 to 99 mol % BaAl2Si2O8. The resulting thermal expansion coefficients (α) for volume have been combined with earlier results for end-member Na- and K-feldspars (2,3). Unlike AlSi3 feldspars, Al2Si2 feldspars, including anorthite and celsian from the present study plus Sr- and Pb-feldspar from other workers (4,5), show essentially constant and very limited thermal expansion, regardless of divalent cation size. In the context of structures where the Lowenstein rule (6) requires Al and Si to alternate among tetrahedra, the proximity of bridging Al-O-Si oxygen ions to divalent neighbors (ranging from 0 to 2) produces short Ca-O (or Ba-O) bonds (7,8) that apparently are the result of local charge-balance requirements (9). Gibbs et al. (10) suggest that short bonds such as these have a partially covalent character. This in turn stiffens the structure. Thus, for feldspar series with coupled substitution the change away from a purely divalent M-site occupant gives the substituting (less strongly bonded) monovalent cations increasingly greater influence on thermal expansion. Overall, then, thermal expansion in the feldspar system is well represented on a plot of α against room-temperature volume, where one sees a quadrilateral bounded by data for (A) AlSi3 feldspars whose expansion behavior is controlled largely by the size of the monovalent alkali-site occupant, (B) Al2Si2 feldspars whose expansion is uniformly limited by partially-covalent bonds between divalent M-site occupants and

  1. The Expansive Executive. Report Number 147. Second Edition.

    ERIC Educational Resources Information Center

    Kaplan, Robert E.

    This report seeks to understand executive leadership by focusing on a character type called "expansive." Expansive character revolves around mastery of tasks and a continual desire to accomplish. In the report, several goals are featured: to define what expansive character is; to discuss its origins; to show how moderate versus extreme…

  2. 36 CFR 72.42 - Expansion and new development.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Expansion and new development..., Rehabilitation and Innovation § 72.42 Expansion and new development. (a) Expansion. Because the UPARR Program is... distressed neighborhoods. (b) New development. For purposes of this program, new development is defined as...

  3. On Complicated Expansions of Solutions to ODES

    NASA Astrophysics Data System (ADS)

    Bruno, A. D.

    2018-03-01

    Polynomial ordinary differential equations are studied by asymptotic methods. The truncated equation associated with a vertex or a nonhorizontal edge of their polygon of the initial equation is assumed to have a solution containing the logarithm of the independent variable. It is shown that, under very weak constraints, this nonpower asymptotic form of solutions to the original equation can be extended to an asymptotic expansion of these solutions. This is an expansion in powers of the independent variable with coefficients being Laurent series in decreasing powers of the logarithm. Such expansions are sometimes called psi-series. Algorithms for such computations are described. Six examples are given. Four of them are concern with Painlevé equations. An unexpected property of these expansions is revealed.

  4. The heavy quark expansion of QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Falk, A.F.

    1997-06-01

    These lectures contain an elementary introduction to heavy quark symmetry and the heavy quark expansion. Applications such as the expansion of heavy meson decay constants and the treatment of inclusive and exclusive semileptonic B decays are included. Heavy hadron production via nonperturbative fragmentation processes is also discussed. 54 refs., 7 figs.

  5. Hydration and Thermal Expansion in Anatase Nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, He; Li, Qiang; Ren, Yang

    A tunable thermal expansion is reported in nanosized anatase by taking advantage of surface hydration. The coefficient of thermal expansion of 4 nm TiO2 along a-axis is negative with a hydrated surface and is positive without a hydrated surface. High-energy synchrotron X-ray pair distribution function analysis combined with ab initio calculations on the specific hydrated surface are carried out to reveal the local structure distortion that is responsible for the unusual negative thermal expansion.

  6. Breaking the Link between Environmental Degradation and Oil Palm Expansion: A Method for Enabling Sustainable Oil Palm Expansion

    PubMed Central

    Smit, Hans Harmen; Meijaard, Erik; van der Laan, Carina; Mantel, Stephan; Budiman, Arif; Verweij, Pita

    2013-01-01

    Land degradation is a global concern. In tropical areas it primarily concerns the conversion of forest into non-forest lands and the associated losses of environmental services. Defining such degradation is not straightforward hampering effective reduction in degradation and use of already degraded lands for more productive purposes. To facilitate the processes of avoided degradation and land rehabilitation, we have developed a methodology in which we have used international environmental and social sustainability standards to determine the suitability of lands for sustainable agricultural expansion. The method was developed and tested in one of the frontiers of agricultural expansion, West Kalimantan province in Indonesia. The focus was on oil palm expansion, which is considered as a major driver for deforestation in tropical regions globally. The results suggest that substantial changes in current land-use planning are necessary for most new plantations to comply with international sustainability standards. Through visualizing options for sustainable expansion with our methodology, we demonstrate that the link between oil palm expansion and degradation can be broken. Application of the methodology with criteria and thresholds similar to ours could help the Indonesian government and the industry to achieve its pro-growth, pro-job, pro-poor and pro-environment development goals. For sustainable agricultural production, context specific guidance has to be developed in areas suitable for expansion. Our methodology can serve as a template for designing such commodity and country specific tools and deliver such guidance. PMID:24039700

  7. A Meta-Analysis of Global Urban Land Expansion

    PubMed Central

    Seto, Karen C.; Fragkias, Michail; Güneralp, Burak; Reilly, Michael K.

    2011-01-01

    The conversion of Earth's land surface to urban uses is one of the most irreversible human impacts on the global biosphere. It drives the loss of farmland, affects local climate, fragments habitats, and threatens biodiversity. Here we present a meta-analysis of 326 studies that have used remotely sensed images to map urban land conversion. We report a worldwide observed increase in urban land area of 58,000 km2 from 1970 to 2000. India, China, and Africa have experienced the highest rates of urban land expansion, and the largest change in total urban extent has occurred in North America. Across all regions and for all three decades, urban land expansion rates are higher than or equal to urban population growth rates, suggesting that urban growth is becoming more expansive than compact. Annual growth in GDP per capita drives approximately half of the observed urban land expansion in China but only moderately affects urban expansion in India and Africa, where urban land expansion is driven more by urban population growth. In high income countries, rates of urban land expansion are slower and increasingly related to GDP growth. However, in North America, population growth contributes more to urban expansion than it does in Europe. Much of the observed variation in urban expansion was not captured by either population, GDP, or other variables in the model. This suggests that contemporary urban expansion is related to a variety of factors difficult to observe comprehensively at the global level, including international capital flows, the informal economy, land use policy, and generalized transport costs. Using the results from the global model, we develop forecasts for new urban land cover using SRES Scenarios. Our results show that by 2030, global urban land cover will increase between 430,000 km2 and 12,568,000 km2, with an estimate of 1,527,000 km2 more likely. PMID:21876770

  8. Expansive Soil Crack Depth under Cumulative Damage

    PubMed Central

    Shi, Bei-xiao; Chen, Sheng-shui; Han, Hua-qiang; Zheng, Cheng-feng

    2014-01-01

    The crack developing depth is a key problem to slope stability of the expansive soil and its project governance and the crack appears under the roles of dry-wet cycle and gradually develops. It is believed from the analysis that, because of its own cohesion, the expansive soil will have a certain amount of deformation under pulling stress but without cracks. The soil body will crack only when the deformation exceeds the ultimate tensile strain that causes cracks. And it is also believed that, due to the combined effect of various environmental factors, particularly changes of the internal water content, the inherent basic physical properties of expansive soil are weakened, and irreversible cumulative damages are eventually formed, resulting in the development of expansive soil cracks in depth. Starting from the perspective of volumetric strain that is caused by water loss, considering the influences of water loss rate and dry-wet cycle on crack developing depth, the crack developing depth calculation model which considers the water loss rate and the cumulative damages is established. Both the proposal of water loss rate and the application of cumulative damage theory to the expansive soil crack development problems try to avoid difficulties in matrix suction measurement, which will surely play a good role in promoting and improving the research of unsaturated expansive soil. PMID:24737974

  9. Range expansion of heterogeneous populations.

    PubMed

    Reiter, Matthias; Rulands, Steffen; Frey, Erwin

    2014-04-11

    Risk spreading in bacterial populations is generally regarded as a strategy to maximize survival. Here, we study its role during range expansion of a genetically diverse population where growth and motility are two alternative traits. We find that during the initial expansion phase fast-growing cells do have a selective advantage. By contrast, asymptotically, generalists balancing motility and reproduction are evolutionarily most successful. These findings are rationalized by a set of coupled Fisher equations complemented by stochastic simulations.

  10. Estimates of expansion time scales

    NASA Astrophysics Data System (ADS)

    Jones, E. M.

    Monte Carlo simulations of the expansion of a spacefaring civilization show that descendants of that civilization should be found near virtually every useful star in the Galaxy in a time much less than the current age of the Galaxy. Only extreme assumptions about local population growth rates, emigration rates, or ship ranges can slow or halt an expansion. The apparent absence of extraterrestrials from the solar system suggests that no such civilization has arisen in the Galaxy.

  11. A phase cell cluster expansion for Euclidean field theories

    NASA Astrophysics Data System (ADS)

    Battle, Guy A., III; Federbush, Paul

    1982-08-01

    We adapt the cluster expansion first used to treat infrared problems for lattice models (a mass zero cluster expansion) to the usual field theory situation. The field is expanded in terms of special block spin functions and the cluster expansion given in terms of the expansion coefficients (phase cell variables); the cluster expansion expresses correlation functions in terms of contributions from finite coupled subsets of these variables. Most of the present work is carried through in d space time dimensions (for φ24 the details of the cluster expansion are pursued and convergence is proven). Thus most of the results in the present work will apply to a treatment of φ34 to which we hope to return in a succeeding paper. Of particular interest in this paper is a substitute for the stability of the vacuum bound appropriate to this cluster expansion (for d = 2 and d = 3), and a new method for performing estimates with tree graphs. The phase cell cluster expansions have the renormalization group incorporated intimately into their structure. We hope they will be useful ultimately in treating four dimensional field theories.

  12. RTEL1 inhibits trinucleotide repeat expansions and fragility.

    PubMed

    Frizzell, Aisling; Nguyen, Jennifer H G; Petalcorin, Mark I R; Turner, Katherine D; Boulton, Simon J; Freudenreich, Catherine H; Lahue, Robert S

    2014-03-13

    Human RTEL1 is an essential, multifunctional helicase that maintains telomeres, regulates homologous recombination, and helps prevent bone marrow failure. Here, we show that RTEL1 also blocks trinucleotide repeat expansions, the causal mutation for 17 neurological diseases. Increased expansion frequencies of (CTG⋅CAG) repeats occurred in human cells following knockdown of RTEL1, but not the alternative helicase Fbh1, and purified RTEL1 efficiently unwound triplet repeat hairpins in vitro. The expansion-blocking activity of RTEL1 also required Rad18 and HLTF, homologs of yeast Rad18 and Rad5. These findings are reminiscent of budding yeast Srs2, which inhibits expansions, unwinds hairpins, and prevents triplet-repeat-induced chromosome fragility. Accordingly, we found expansions and fragility were suppressed in yeast srs2 mutants expressing RTEL1, but not Fbh1. We propose that RTEL1 serves as a human analog of Srs2 to inhibit (CTG⋅CAG) repeat expansions and fragility, likely by unwinding problematic hairpins. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Measured opening characteristics of an electromagnetically opened diaphragm for the Langley expansion tunnel

    NASA Technical Reports Server (NTRS)

    Moore, J. A.

    1976-01-01

    Results from an experimental study of the opening characteristics of an electromagnetically opened, 15.24 cm diameter diaphragm are presented. This diaphragm consists of a polyester film bonded to a preformed wire and is opened by passing a current pulse (capacitor discharge) through the wire. The diaphragm separates the acceleration section of the expansion tunnel from the nozzle so that the nozzle may be at a lower pressure than the acceleration section prior to a test. Opening times and cleanness of the opened area were examined for dependence on diaphragm thickness, on wire diameter, on technique of bonding the wire to the diaphragm, and on voltage and energy level of the energy source. Time histories of the pitot pressure measured at the expansion-tunnel nozzle entrance location are presented for (1) no diaphragm, (2) a flow-opened diaphragm, and (3) an electromagnetically opened diaphragm.

  14. Laboratory Evaluation of the Effects of 3-Chloride Compounds on the Geotechnical Properties of an Expansive Subgrade Soil

    NASA Astrophysics Data System (ADS)

    Radhakrishnan, G.; Anjan Kumar, M.; Raju, G. V. R. Prasada

    2017-12-01

    Expansive soils are known to be problematic due to their nature and behavior. These soils show volume changes due to changes in moisture content, which cause distortions to structures constructed on them. Relentless efforts are being made all over the world to find solution to the problems of expansive soils. In the case of flexible pavements, unless the subgrade is appropriately treated during the construction stage, the maintenance cost will increase substantially due to deterioration. There are many methods of stabilising expansive subgrade soils. Chemical stabilisation is one such technique employed in improving the engineering properties of the expansive soil. Investigations on chemical stabilization of expansive soils revealed that conventionally used lime could be replaced by the chloride compound chemicals because of their ready dissolvability in water, ease of mixing with soil and supply of sufficient cations for ready cation exchange. The main objective of this work is to study the effectiveness of three chloride compound chemicals, ammonium chloride (NH4Cl), magnesium chloride (MgCl2) and aluminum chloride (AlCl3) on the geotechnical properties of an expansive soil. The chemicals content up to 2% were added to the soil and its effect on the index limits, swell pressure, compaction characteristics as well as California bearing ratio are studied. It was observed that aluminum chloride chemical content has a significantly higher influence than the other two chemicals and it could be recognized as an effective chemical stabilizer.

  15. Multifunctional Lattices with Low Thermal Expansion and Low Thermal Conductivity

    NASA Astrophysics Data System (ADS)

    Xu, Hang; Liu, Lu; Pasini, Damiano

    Systems in space are vulnerable to large temperature changes when travelling into and out of the Earth's shadow. Variations in temperature can lead to undesired geometric changes in susceptible applications requiring very fine precision. In addition, temperature-sensitive electronic equipment hosted in a satellite needs adequate thermal-control to guarantee a moderate ambient temperature. To address these specifications, materials with low coefficient of thermal expansion (CTE) and low coefficient of thermal conductivity (CTC) over a wide range of temperatures are often sought, especially for bearing components in satellites. Besides low CTE and low CTC, these materials should also provide desirable stiffness, strength and extraordinarily low mass. This work presents ultralightweight bi-material lattices with tunable CTE and CTC, besides high stiffness and strength. We show that the compensation of the thermal expansion and joint rotation at the lattice joints can be used as an effective strategy to tailor thermomechanical performance. Proof-of-concept lattices are fabricated from Al and Ti alloy sheets via a simple snap-fit technique and vacuum brazing, and their CTE and CTC are assessed via a combination of experiments and theory. Corresponding Author.

  16. Periodontal evaluation in patients undergoing maxillary expansion.

    PubMed

    Carmen, M; Marcella, P; Giuseppe, C; Roberto, A

    2000-09-01

    Maxillary transverse diameter expansion is a treatment various authors have claimed is related to the development of gingival recession on the teeth of the upper arch. The aim of the present study was to compare such an incidence in two different groups of patients: those treated with surgically assisted rapid maxillary expansion and orthopedic expansion, respectively. Both treatments achieved the goal of expanding the transverse dimension (5.3 and 4.4 mm, respectively), but a significant difference was shown by the chi 2 test for the incidence of gingival recession of premolar/molar upper teeth, more than double for the latter than for the former. Therefore, surgically assisted rapid maxillary expansion seems to be an orthodontically effective procedure, safer than the orthopedic treatment regarding the possible development of mucogingival problems.

  17. Territorial expansion and primary state formation

    PubMed Central

    Spencer, Charles S.

    2010-01-01

    A major research problem in anthropology is the origin of the state and its bureaucratic form of governance. Of particular importance for evaluating theories of state origins are cases of primary state formation, whereby a first-generation state evolves without contact with any preexisting states. A general model of this process, the territorial-expansion model, is presented and assessed with archaeological data from six areas where primary states emerged in antiquity: Mesoamerica, Peru, Egypt, Mesopotamia, the Indus Valley, and China. In each case, the evidence shows a close correspondence in time between the first appearance of state institutions and the earliest expansion of the state's political-economic control to regions lying more than a day's round-trip from the capital. Although additional research will add detail and clarity to the empirical record, the results to date are consistent with the territorial-expansion model, which argues that the success of such long-distance expansion not only demanded the bureaucratization of central authority but also helped provide the resources necessary to underwrite this administrative transformation. PMID:20385804

  18. Thermal expansion anomaly regulated by entropy.

    PubMed

    Liu, Zi-Kui; Wang, Yi; Shang, ShunLi

    2014-11-13

    Thermal expansion, defined as the temperature dependence of volume under constant pressure, is a common phenomenon in nature and originates from anharmonic lattice dynamics. However, it has been poorly understood how thermal expansion can show anomalies such as colossal positive, zero, or negative thermal expansion (CPTE, ZTE, or NTE), especially in quantitative terms. Here we show that changes in configurational entropy due to metastable micro(scopic)states can lead to quantitative prediction of these anomalies. We integrate the Maxwell relation, statistic mechanics, and first-principles calculations to demonstrate that when the entropy is increased by pressure, NTE occurs such as in Invar alloy (Fe3Pt, for example), silicon, ice, and water, and when the entropy is decreased dramatically by pressure, CPTE is expected such as in anti-Invar cerium, ice and water. Our findings provide a theoretic framework to understand and predict a broad range of anomalies in nature in addition to thermal expansion, which may include gigantic electrocaloric and electromechanical responses, anomalously reduced thermal conductivity, and spin distributions.

  19. Territorial expansion and primary state formation.

    PubMed

    Spencer, Charles S

    2010-04-20

    A major research problem in anthropology is the origin of the state and its bureaucratic form of governance. Of particular importance for evaluating theories of state origins are cases of primary state formation, whereby a first-generation state evolves without contact with any preexisting states. A general model of this process, the territorial-expansion model, is presented and assessed with archaeological data from six areas where primary states emerged in antiquity: Mesoamerica, Peru, Egypt, Mesopotamia, the Indus Valley, and China. In each case, the evidence shows a close correspondence in time between the first appearance of state institutions and the earliest expansion of the state's political-economic control to regions lying more than a day's round-trip from the capital. Although additional research will add detail and clarity to the empirical record, the results to date are consistent with the territorial-expansion model, which argues that the success of such long-distance expansion not only demanded the bureaucratization of central authority but also helped provide the resources necessary to underwrite this administrative transformation.

  20. Thermal Expansion Anomaly Regulated by Entropy

    NASA Astrophysics Data System (ADS)

    Liu, Zi-Kui; Wang, Yi; Shang, Shunli

    2014-11-01

    Thermal expansion, defined as the temperature dependence of volume under constant pressure, is a common phenomenon in nature and originates from anharmonic lattice dynamics. However, it has been poorly understood how thermal expansion can show anomalies such as colossal positive, zero, or negative thermal expansion (CPTE, ZTE, or NTE), especially in quantitative terms. Here we show that changes in configurational entropy due to metastable micro(scopic)states can lead to quantitative prediction of these anomalies. We integrate the Maxwell relation, statistic mechanics, and first-principles calculations to demonstrate that when the entropy is increased by pressure, NTE occurs such as in Invar alloy (Fe3Pt, for example), silicon, ice, and water, and when the entropy is decreased dramatically by pressure, CPTE is expected such as in anti-Invar cerium, ice and water. Our findings provide a theoretic framework to understand and predict a broad range of anomalies in nature in addition to thermal expansion, which may include gigantic electrocaloric and electromechanical responses, anomalously reduced thermal conductivity, and spin distributions.

  1. Lattice-structures and constructs with designed thermal expansion coefficients

    DOEpatents

    Spadaccini, Christopher; Hopkins, Jonathan

    2014-10-28

    A thermal expansion-managed lattice structure having a plurality of unit cells each having flexure bearing-mounted tabs supported on a base and actuated by thermal expansion of an actuator having a thermal expansion coefficient greater than the base and arranged so that the tab is inwardly displaced into a base cavity. The flexure bearing-mounted tabs are connected to other flexure-bearing-mounted tabs of adjacent unit cells so that the adjacent unit cells are spaced from each other to accommodate thermal expansion of individual unit cells while maintaining a desired bulk thermal expansion coefficient of the lattice structure as a whole.

  2. Thermal expansion of quaternary nitride coatings

    NASA Astrophysics Data System (ADS)

    Tasnádi, Ferenc; Wang, Fei; Odén, Magnus; Abrikosov, Igor A.

    2018-04-01

    The thermal expansion coefficient of technologically relevant multicomponent cubic nitride alloys are predicted using the Debye model with ab initio elastic constants calculated at 0 K and an isotropic approximation for the Grüneisen parameter. Our method is benchmarked against measured thermal expansion of TiN and Ti(1-x)Al x N as well as against results of molecular dynamics simulations. We show that the thermal expansion coefficients of Ti(1-x-y)X y Al x N (X  =  Zr, Hf, Nb, V, Ta) solid solutions monotonously increase with the amount of alloying element X at all temperatures except for Zr and Hf, for which they instead decrease for y≳ 0.5 .

  3. Approximate techniques of structural reanalysis

    NASA Technical Reports Server (NTRS)

    Noor, A. K.; Lowder, H. E.

    1974-01-01

    A study is made of two approximate techniques for structural reanalysis. These include Taylor series expansions for response variables in terms of design variables and the reduced-basis method. In addition, modifications to these techniques are proposed to overcome some of their major drawbacks. The modifications include a rational approach to the selection of the reduced-basis vectors and the use of Taylor series approximation in an iterative process. For the reduced basis a normalized set of vectors is chosen which consists of the original analyzed design and the first-order sensitivity analysis vectors. The use of the Taylor series approximation as a first (initial) estimate in an iterative process, can lead to significant improvements in accuracy, even with one iteration cycle. Therefore, the range of applicability of the reanalysis technique can be extended. Numerical examples are presented which demonstrate the gain in accuracy obtained by using the proposed modification techniques, for a wide range of variations in the design variables.

  4. Continuum-wise expansiveness for generic diffeomorphisms

    NASA Astrophysics Data System (ADS)

    Lee, Manseob

    2018-06-01

    Let M be a closed smooth manifold and let be a diffeomorphism. C 1-generically, a continuum-wise expansive satisfies Axiom A without cycles. Let and let . There are a C 1 neighborhood of and a residual set such that for any , g is not continuum-wise expansive, where is the set of all robustly transitive diffeomorphisms on

  5. Ridge expansion and immediate placement with piezosurgery and screw expanders in atrophic maxillary sites: two case reports.

    PubMed

    Kelly, Andrew; Flanagan, Dennis

    2013-02-01

    Endosseous dental implants may require bone augmentation before implant placement. Herein is described an approach to edentulous ridge expansion with the use of piezosurgery and immediate placement of implants. This may allow for a shortened treatment time and the elimination of donor-site morbidity. Two cases are reported. This technique uses a piezoelectric device to cut the crestal and proximal facial cortices. Space is then created with motorized osteotomes to widen the split ridge. This technique allows for expansion of narrow, anatomically limiting, atrophic ridges, creating space for immediate implant placement. The facial and lingual cortices provide support with vital osteocytes for osteogenesis. The 2 patients presented had adequate bone height for implant placement but narrow edentulous ridges. In patient 1 at site #11, the ridge crest was 3.12 mm thick and was expanded to accept a 4.3 mm × 13 mm implant. The resulting ridge width was 8.88 mm, which was verified using cone beam computerized tomography (CBCT). In patient 2 at site #8 and site #9, the narrow ridge was expanded using the same technique to accept 2 adjacent 3.5 mm × 14 mm implants. The implants were restored to a functional and esthetic outcome.

  6. AUTO-EXPANSIVE FLOW

    EPA Science Inventory

    Physics suggests that the interplay of momentum, continuity, and geometry in outward radial flow must produce density and concomitant pressure reductions. In other words, this flow is intrinsically auto-expansive. It has been proposed that this process is the key to understanding...

  7. A Power Series Expansion and Its Applications

    ERIC Educational Resources Information Center

    Chen, Hongwei

    2006-01-01

    Using the power series solution of a differential equation and the computation of a parametric integral, two elementary proofs are given for the power series expansion of (arcsin x)[squared], as well as some applications of this expansion.

  8. Simplifying Bridge Expansion Joint Design and Maintenance

    DOT National Transportation Integrated Search

    2011-10-19

    This report presents a study focused on identifying the most durable expansion joints for the South : Carolina Department of Transportation. This is performed by proposing a degradation model for the : expansion joints and updating it based on bridge...

  9. Expansion Under Climate Change: The Genetic Consequences.

    PubMed

    Garnier, Jimmy; Lewis, Mark A

    2016-11-01

    Range expansion and range shifts are crucial population responses to climate change. Genetic consequences are not well understood but are clearly coupled to ecological dynamics that, in turn, are driven by shifting climate conditions. We model a population with a deterministic reaction-diffusion model coupled to a heterogeneous environment that develops in time due to climate change. We decompose the resulting travelling wave solution into neutral genetic components to analyse the spatio-temporal dynamics of its genetic structure. Our analysis shows that range expansions and range shifts under slow climate change preserve genetic diversity. This is because slow climate change creates range boundaries that promote spatial mixing of genetic components. Mathematically, the mixing leads to so-called pushed travelling wave solutions. This mixing phenomenon is not seen in spatially homogeneous environments, where range expansion reduces genetic diversity through gene surfing arising from pulled travelling wave solutions. However, the preservation of diversity is diminished when climate change occurs too quickly. Using diversity indices, we show that fast expansions and range shifts erode genetic diversity more than slow range expansions and range shifts. Our study provides analytical insight into the dynamics of travelling wave solutions in heterogeneous environments.

  10. Improvement of Expansive Soils Using Chemical Stabilizers

    NASA Astrophysics Data System (ADS)

    Ikizler, S. B.; Senol, A.; Khosrowshahi, S. K.; Hatipoğlu, M.

    2014-12-01

    The aim of this study is to investigate the effect of two chemical stabilizers on the swelling potential of expansive soil. A high plasticity sodium bentonite was used as the expansive soil. The additive materials including fly ash (FA) and lime (L) were evaluated as potential stabilizers to decrease the swelling pressure of bentonite. Depending on the type of additive materials, they were blended with bentonite in different percentages to assess the optimum state and approch the maximum swell pressure reduction. According to the results of swell pressure test, both fly ash and lime reduce the swelling potential of bentonite but the maximum improvement occurs using bentonite-lime mixture while the swelling pressure reduction approaches to 49%. The results reveal a significant reduction of swelling potential of expansive soil using chemical stabilizers. Keywords: Expansive soil; swell pressure; chemical stabilization; fly ash; lime

  11. A hybrid perturbation-Galerkin technique for partial differential equations

    NASA Technical Reports Server (NTRS)

    Geer, James F.; Anderson, Carl M.

    1990-01-01

    A two-step hybrid perturbation-Galerkin technique for improving the usefulness of perturbation solutions to partial differential equations which contain a parameter is presented and discussed. In the first step of the method, the leading terms in the asymptotic expansion(s) of the solution about one or more values of the perturbation parameter are obtained using standard perturbation methods. In the second step, the perturbation functions obtained in the first step are used as trial functions in a Bubnov-Galerkin approximation. This semi-analytical, semi-numerical hybrid technique appears to overcome some of the drawbacks of the perturbation and Galerkin methods when they are applied by themselves, while combining some of the good features of each. The technique is illustrated first by a simple example. It is then applied to the problem of determining the flow of a slightly compressible fluid past a circular cylinder and to the problem of determining the shape of a free surface due to a sink above the surface. Solutions obtained by the hybrid method are compared with other approximate solutions, and its possible application to certain problems associated with domain decomposition is discussed.

  12. Differential cosmic expansion and the Hubble flow anisotropy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolejko, Krzysztof; Nazer, M. Ahsan; Wiltshire, David L., E-mail: bolejko@physics.usyd.edu.au, E-mail: ahsan.nazer@canterbury.ac.nz, E-mail: david.wiltshire@canterbury.ac.nz

    2016-06-01

    The Universe on scales 10–100 h {sup −1}Mpc is dominated by a cosmic web of voids, filaments, sheets and knots of galaxy clusters. These structures participate differently in the global expansion of the Universe: from non-expanding clusters to the above average expansion rate of voids. In this paper we characterize Hubble expansion anisotropies in the COMPOSITE sample of 4534 galaxies and clusters. We concentrate on the dipole and quadrupole in the rest frame of the Local Group. These both have statistically significant amplitudes. These anisotropies, and their redshift dependence, cannot be explained solely by a boost of the Local Groupmore » in the Friedmann-Lemaitre-Robertson-Walker (FLRW) model which expands isotropically in the rest frame of the cosmic microwave background (CMB) radiation. We simulate the local expansion of the Universe with inhomogeneous Szekeres solutions, which match the standard FLRW model on ∼> 100 h {sup −1}Mpc scales but exhibit nonkinematic relativistic differential expansion on small scales. We restrict models to be consistent with observed CMB temperature anisotropies, while simultaneously fitting the redshift variation of the Hubble expansion dipole. We include features to account for both the Local Void and the 'Great Attractor'. While this naturally accounts for the Hubble expansion and CMB dipoles, the simulated quadrupoles are smaller than observed. Further refinement to incorporate additional structures may improve this. This would enable a test of the hypothesis that some large angle CMB anomalies result from failing to treat the relativistic differential expansion of the background geometry; a natural feature of solutions to Einstein's equations not included in the current standard model of cosmology.« less

  13. On a difficulty in eigenfunction expansion solutions for the start-up of fluid flow

    NASA Astrophysics Data System (ADS)

    Christov, Ivan C.

    2015-11-01

    Most mathematics and engineering textbooks describe the process of ``subtracting off'' the steady state of a linear parabolic partial differential equation as a technique for obtaining a boundary-value problem with homogeneous boundary conditions that can be solved by separation of variables (i.e., eigenfunction expansions). While this method produces the correct solution for the start-up of the flow of, e.g., a Newtonian fluid between parallel plates, it can lead to erroneous solutions to the corresponding problem for a class of non-Newtonian fluids. We show that the reason for this is the non-rigorous enforcement of the start-up condition in the textbook approach, which leads to a violation of the principle of causality. Nevertheless, these boundary-value problems can be solved correctly using eigenfunction expansions, and we present the formulation that makes this possible (in essence, an application of Duhamel's principle). The solutions obtained by this new approach are shown to agree identically with those obtained by using the Laplace transform in time only, a technique that enforces the proper start-up condition implicitly (hence, the same error cannot be committed). Supported, in part, by NSF Grant DMS-1104047 and the U.S. DOE (Contract No. DE-AC52-06NA25396) through the LANL/LDRD Program.

  14. Micromechanics investigation of expansive reactions in chemoelastic concrete.

    PubMed

    Lemarchand, Eric; Dormieux, Luc; Ulm, Franz-Josef

    2005-11-15

    Expansive reactions damage porous materials through the formation of reaction products of a volume in excess of the available space left by the reactants and the natural porosity of the material. This leads to pressurizing the pore space accessible to the reaction products, which differs when the chemical reaction is through-solution or topochemical or both in nature. This paper investigates expansive reactions from a micromechanical point of view, which allows bridging the scale from the local chemo-mechanical mechanisms to the macroscopically observable stress-free expansion. In particular, the study of the effect of morphology of the pore space, in which the chemical expansion occurs locally, on the macroscopically observable expansion is the main focus of this paper. The first part revisits the through-solution and the topochemical reaction mechanism within the framework of micro-macro-homogenization theories, and the effect of the microscopic geometry of pores and microcracks in the solid matrix on the macroscopic chemical expansion is examined. The second part deals with the transition from a topochemical to a through-solution-like mechanism that occurs in a solid matrix with inclusions (cracks, pores) of different morphology.

  15. Path-integral approach to the Wigner-Kirkwood expansion.

    PubMed

    Jizba, Petr; Zatloukal, Václav

    2014-01-01

    We study the high-temperature behavior of quantum-mechanical path integrals. Starting from the Feynman-Kac formula, we derive a functional representation of the Wigner-Kirkwood perturbation expansion for quantum Boltzmann densities. As shown by its applications to different potentials, the presented expansion turns out to be quite efficient in generating analytic form of the higher-order expansion coefficients. To put some flesh on the bare bones, we apply the expansion to obtain basic thermodynamic functions of the one-dimensional anharmonic oscillator. Further salient issues, such as generalization to the Bloch density matrix and comparison with the more customary world-line formulation, are discussed.

  16. Spectral likelihood expansions for Bayesian inference

    NASA Astrophysics Data System (ADS)

    Nagel, Joseph B.; Sudret, Bruno

    2016-03-01

    A spectral approach to Bayesian inference is presented. It pursues the emulation of the posterior probability density. The starting point is a series expansion of the likelihood function in terms of orthogonal polynomials. From this spectral likelihood expansion all statistical quantities of interest can be calculated semi-analytically. The posterior is formally represented as the product of a reference density and a linear combination of polynomial basis functions. Both the model evidence and the posterior moments are related to the expansion coefficients. This formulation avoids Markov chain Monte Carlo simulation and allows one to make use of linear least squares instead. The pros and cons of spectral Bayesian inference are discussed and demonstrated on the basis of simple applications from classical statistics and inverse modeling.

  17. Origami structures for tunable thermal expansion

    NASA Astrophysics Data System (ADS)

    Boatti, Elisa; Bertoldi, Katia

    Materials with engineered thermal expansion, capable of achieving targeted and extreme area/volume changes in response to variations in temperature, are important for a number of aerospace, optical, energy, and microelectronic applications. While most of the proposed structures with tunable coefficient of thermal expansion consist of bi-material 2D or 3D lattices, here we propose a periodic metastructure based on a bilayer Miura-Ori origami fold. We combine experiments and simulations to demonstrate that by tuning the geometrical and mechanical parameters an extremely broad range of thermal expansion coefficients can be obtained, spanning both negative and positive values. Additionally, the thermal properties along different directions can be adjusted independently. Differently from all previously reported systems, the proposed structure is non-porous.

  18. A hybrid Pade-Galerkin technique for differential equations

    NASA Technical Reports Server (NTRS)

    Geer, James F.; Andersen, Carl M.

    1993-01-01

    A three-step hybrid analysis technique, which successively uses the regular perturbation expansion method, the Pade expansion method, and then a Galerkin approximation, is presented and applied to some model boundary value problems. In the first step of the method, the regular perturbation method is used to construct an approximation to the solution in the form of a finite power series in a small parameter epsilon associated with the problem. In the second step of the method, the series approximation obtained in step one is used to construct a Pade approximation in the form of a rational function in the parameter epsilon. In the third step, the various powers of epsilon which appear in the Pade approximation are replaced by new (unknown) parameters (delta(sub j)). These new parameters are determined by requiring that the residual formed by substituting the new approximation into the governing differential equation is orthogonal to each of the perturbation coordinate functions used in step one. The technique is applied to model problems involving ordinary or partial differential equations. In general, the technique appears to provide good approximations to the solution even when the perturbation and Pade approximations fail to do so. The method is discussed and topics for future investigations are indicated.

  19. The { β}-expansion formalism in perturbative QCD and its extension

    NASA Astrophysics Data System (ADS)

    Kataev, A. L.; Mikhailov, S. V.

    2016-11-01

    We discuss the { β}-expansion for renormalization group invariant quantities tracing this expansion to the different contractions of the corresponding incomplete BPHZ R-operation. All of the coupling renormalizations, which follow from these contractions, should be taken into account for the { β}-expansion. We illustrate this feature considering the nonsinglet Adler function D NS in the third order of perturbation. We propose a generalization of the { β}-expansion for the renormalization group covariant quantities — the { β, γ}-expansion.

  20. Shock waves generated by sudden expansions of a water jet

    NASA Astrophysics Data System (ADS)

    Salinas-Vázquez, M.; Echeverría, C.; Porta, D.; Stern, C. E.; Ascanio, G.; Vicente, W.; Aguayo, J. P.

    2018-07-01

    Direct shadowgraph with parallel light combined with high-speed recording has been used to analyze the water jet of a cutting machine. The use of image processing allowed observing sudden expansions in the jet diameter as well as estimating the jet velocity by means of the Mach angle, obtaining velocities of about 500 m s^{-1}. The technique used here revealed the development of hydrodynamic instabilities in the jet. Additionally, this is the first reporting of the onset of shock waves generated by small fluctuations of a continuous flow of water at high velocity surrounded by air, a result confirmed by a transient computational fluid dynamics simulation.

  1. Salinity Gradient Energy from Expansion and Contraction of Poly(allylamine hydrochloride) Hydrogels.

    PubMed

    Bui, Tri Quang; Cao, Vinh Duy; Do, Nu Bich Duyen; Christoffersen, Trine Eker; Wang, Wei; Kjøniksen, Anna-Lena

    2018-06-22

    Salinity gradients exhibit a great potential for production of renewable energy. Several techniques such as pressure-retarded osmosis and reverse electrodialysis have been employed to extract this energy. Unfortunately, these techniques are restricted by the high costs of membranes and problems with membrane fouling. However, the expansion and contraction of hydrogels can be a new and cheaper way to harvest energy from salinity gradients since the hydrogels swell in freshwater and shrink in saltwater. We have examined the effect of cross-linker concentration and different external loads on the energy recovered for this type of energy-producing systems. Poly(allylamine hydrochloride) hydrogels were cross-linked with glutaraldehyde to produce hydrogels with excellent expansion and contraction properties. Increasing the cross-linker concentration markedly improved the energy that could be recovered from the hydrogels, especially at high external loads. A swollen hydrogel of 60 g could recover more than 1800 mJ when utilizing a high cross-linker concentration, and the maximum amount of energy produced per gram of polymer was 3.4 J/g. Although more energy is recovered at high cross-linking densities, the maximum amount of energy produced per gram of polymer is highest at an intermediate cross-linking concentration. Energy recovery was reduced when the salt concentration was increased for the low-concentration saline solution. The results illustrate that hydrogels are promising for salinity gradient energy recovery, and that optimizing the systems significantly increases the amount of energy that can be recovered.

  2. 49 CFR 179.220-16 - Expansion capacity.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.220-16 Expansion capacity. Expansion capacity...

  3. A survey of techniques for refrigeration, reliquefaction, and production of slush for hydrogen

    NASA Technical Reports Server (NTRS)

    Overcash, Dan R.

    1990-01-01

    Several techniques were surveyed for the refrigeration, reliquefaction and production of slush from hydrogen. The techniques included auger; bubbling helium gas; Simon desorption; the Petlier effect; Joule-Kelvin expansion using Stirling, Brayton, and Viulleumirer approaches; rotary reciprocating; a dilution refrigerator; adiabatic demagnetization of a paramagnetic salt; and adiabatic magnetization of a superconductor.

  4. Transactional Space: Feedback, Critical Thinking, and Learning Dance Technique

    ERIC Educational Resources Information Center

    Akinleye, Adesola; Payne, Rose

    2016-01-01

    This article explores attitudes about feedback and critical thinking in dance technique classes. The authors discuss an expansion of their teaching practices to include feedback as bidirectional (transactional) and a part of developing critical thinking skills in student dancers. The article was written after the authors undertook research…

  5. Energy Absorption of Expansion Tube Considering Local Buckling Characteristics

    NASA Astrophysics Data System (ADS)

    Ahn, Kwang-Hyun; Kim, Jin-Sung; Huh, Hoon

    This paper deals with the crash energy absorption and the local buckling characteristics of the expansion tube during the tube expanding processes. In order to improve energy absorption capacity of expansion tubes, local buckling characteristics of an expansion tube must be considered. The local buckling load and the absorbed energy during the expanding process were calculated for various types of tubes and punch shapes with finite element analysis. The energy absorption capacity of the expansion tube is influenced by the tube and the punch shape. The material properties of tubes are also important parameter for energy absorption. During the expanding process, local buckling occurs in some cases, which causes significant decreasing the absorbed energy of the expansion tube. Therefore, it is important to predict the local buckling load accurately to improve the energy absorption capacity of the expansion tube. Local buckling takes place relatively easily at the large punch angle and expansion ratio. Local buckling load is also influenced by both the tube radius and the thickness. In prediction of the local buckling load, modified Plantema equation was used for strain hardening and strain rate hardening. The modified Plantema equation shows a good agreement with the numerical result.

  6. The mechanics of surface expansion anisotropy in Medicago truncatula root hairs.

    PubMed

    Dumais, Jacques; Long, Sharon R; Shaw, Sidney L

    2004-10-01

    Wall expansion in tip-growing cells shows variations according to position and direction. In Medicago truncatula root hairs, wall expansion exhibits a strong meridional gradient with a maximum near the pole of the cell. Root hair cells also show a striking expansion anisotropy, i.e. over most of the dome surface the rate of circumferential wall expansion exceeds the rate of meridional expansion. Concomitant measurements of expansion rates and wall stresses reveal that the extensibility of the cell wall must vary abruptly along the meridian of the cell to maintain the gradient of wall expansion. To determine the mechanical basis of expansion anisotropy, we compared measurements of wall expansion with expansion patterns predicted from wall structural models that were either fully isotropic, transversely isotropic, or fully anisotropic. Our results indicate that a model based on a transversely isotropic wall structure can provide a good fit of the data although a fully anisotropic model offers the best fit overall. We discuss how such mechanical properties could be controlled at the microstructural level.

  7. Surgically assisted rapid maxillary expansion in adults.

    PubMed

    Pogrel, M A; Kaban, L B; Vargervik, K; Baumrind, S

    1992-01-01

    Twelve adults with maxillary width discrepancy of greater than 5 mm were treated by surgically assisted rapid maxillary expansion. The procedure consisted of bilateral zygomatic buttress and midpalatal osteotomies combined with the use of a tooth-borne orthopedic device postoperatively. Mean palatal expansion of 7.5 mm (range of 6 to 13 mm), measured in the first molar region, was achieved within 3 weeks in all patients. Expansion remained stable during the 12-month study period, with a mean relapse for the entire group of 0.88 +/- 0.48 mm. Morbidity was limited to mild postoperative discomfort. The results of this preliminary study indicated that surgically assisted rapid maxillary expansion is a safe, simple, and reliable procedure for achieving a permanent increase in skeletal maxillary width in adults. Further study is necessary to document the three-dimensional movements of the maxillary segments and long-term stability of the skeletal and dental changes.

  8. Genetic Code Expansion as a Tool to Study Regulatory Processes of Transcription

    NASA Astrophysics Data System (ADS)

    Schmidt, Moritz; Summerer, Daniel

    2014-02-01

    The expansion of the genetic code with noncanonical amino acids (ncAA) enables the chemical and biophysical properties of proteins to be tailored, inside cells, with a previously unattainable level of precision. A wide range of ncAA with functions not found in canonical amino acids have been genetically encoded in recent years and have delivered insights into biological processes that would be difficult to access with traditional approaches of molecular biology. A major field for the development and application of novel ncAA-functions has been transcription and its regulation. This is particularly attractive, since advanced DNA sequencing- and proteomics-techniques continue to deliver vast information on these processes on a global level, but complementing methodologies to study them on a detailed, molecular level and in living cells have been comparably scarce. In a growing number of studies, genetic code expansion has now been applied to precisely control the chemical properties of transcription factors, RNA polymerases and histones, and this has enabled new insights into their interactions, conformational changes, cellular localizations and the functional roles of posttranslational modifications.

  9. Comparison among Magnus/Floquet/Fer expansion schemes in solid-state NMR.

    PubMed

    Takegoshi, K; Miyazawa, Norihiro; Sharma, Kshama; Madhu, P K

    2015-04-07

    We here revisit expansion schemes used in nuclear magnetic resonance (NMR) for the calculation of effective Hamiltonians and propagators, namely, Magnus, Floquet, and Fer expansions. While all the expansion schemes are powerful methods there are subtle differences among them. To understand the differences, we performed explicit calculation for heteronuclear dipolar decoupling, cross-polarization, and rotary-resonance experiments in solid-state NMR. As the propagator from the Fer expansion takes the form of a product of sub-propagators, it enables us to appreciate effects of time-evolution under Hamiltonians with different orders separately. While 0th-order average Hamiltonian is the same for the three expansion schemes with the three cases examined, there is a case that the 2nd-order term for the Magnus/Floquet expansion is different from that obtained with the Fer expansion. The difference arises due to the separation of the 0th-order term in the Fer expansion. The separation enables us to appreciate time-evolution under the 0th-order average Hamiltonian, however, for that purpose, we use a so-called left-running Fer expansion. Comparison between the left-running Fer expansion and the Magnus expansion indicates that the sign of the odd orders in Magnus may better be reversed if one would like to consider its effect in order.

  10. Comparison among Magnus/Floquet/Fer expansion schemes in solid-state NMR

    NASA Astrophysics Data System (ADS)

    Takegoshi, K.; Miyazawa, Norihiro; Sharma, Kshama; Madhu, P. K.

    2015-04-01

    We here revisit expansion schemes used in nuclear magnetic resonance (NMR) for the calculation of effective Hamiltonians and propagators, namely, Magnus, Floquet, and Fer expansions. While all the expansion schemes are powerful methods there are subtle differences among them. To understand the differences, we performed explicit calculation for heteronuclear dipolar decoupling, cross-polarization, and rotary-resonance experiments in solid-state NMR. As the propagator from the Fer expansion takes the form of a product of sub-propagators, it enables us to appreciate effects of time-evolution under Hamiltonians with different orders separately. While 0th-order average Hamiltonian is the same for the three expansion schemes with the three cases examined, there is a case that the 2nd-order term for the Magnus/Floquet expansion is different from that obtained with the Fer expansion. The difference arises due to the separation of the 0th-order term in the Fer expansion. The separation enables us to appreciate time-evolution under the 0th-order average Hamiltonian, however, for that purpose, we use a so-called left-running Fer expansion. Comparison between the left-running Fer expansion and the Magnus expansion indicates that the sign of the odd orders in Magnus may better be reversed if one would like to consider its effect in order.

  11. Expansive Cements

    DTIC Science & Technology

    1970-10-01

    plastic or semi- plastic concrete and place no stress on the restraint provided. If, on the other hand, the ettringite continues to form rapidly for too...yield, I and wp.ter-cement ratio. Such a change in cement content may cause a greater change in expansion caracteristics than the change in...the tendency toward plastic shrinkage is increased. During the w’nter znths most structural concrete installations hare had adequate heating and no

  12. A strictly Markovian expansion for plasma turbulence theory

    NASA Technical Reports Server (NTRS)

    Jones, F. C.

    1976-01-01

    The collision operator that appears in the equation of motion for a particle distribution function that was averaged over an ensemble of random Hamiltonians is non-Markovian. It is non-Markovian in that it involves a propagated integral over the past history of the ensemble averaged distribution function. All formal expansions of this nonlinear collision operator to date preserve this non-Markovian character term by term yielding an integro-differential equation that must be converted to a diffusion equation by an additional approximation. An expansion is derived for the collision operator that is strictly Markovian to any finite order and yields a diffusion equation as the lowest nontrivial order. The validity of this expansion is seen to be the same as that of the standard quasilinear expansion.

  13. Expansion of Pannes

    EPA Science Inventory

    For the Long Island, New Jersey, and southern New England region, one facet of marsh drowning as a result of accelerated sea level rise is the expansion of salt marsh ponds and pannes. Over the past century, marsh ponds and pannes have formed and expanded in areas of poor drainag...

  14. Future urban land expansion and implications for global croplands.

    PubMed

    Bren d'Amour, Christopher; Reitsma, Femke; Baiocchi, Giovanni; Barthel, Stephan; Güneralp, Burak; Erb, Karl-Heinz; Haberl, Helmut; Creutzig, Felix; Seto, Karen C

    2017-08-22

    Urban expansion often occurs on croplands. However, there is little scientific understanding of how global patterns of future urban expansion will affect the world's cultivated areas. Here, we combine spatially explicit projections of urban expansion with datasets on global croplands and crop yields. Our results show that urban expansion will result in a 1.8-2.4% loss of global croplands by 2030, with substantial regional disparities. About 80% of global cropland loss from urban expansion will take place in Asia and Africa. In both Asia and Africa, much of the cropland that will be lost is more than twice as productive as national averages. Asia will experience the highest absolute loss in cropland, whereas African countries will experience the highest percentage loss of cropland. Globally, the croplands that are likely to be lost were responsible for 3-4% of worldwide crop production in 2000. Urban expansion is expected to take place on cropland that is 1.77 times more productive than the global average. The loss of cropland is likely to be accompanied by other sustainability risks and threatens livelihoods, with diverging characteristics for different megaurban regions. Governance of urban area expansion thus emerges as a key area for securing livelihoods in the agrarian economies of the Global South.

  15. Future urban land expansion and implications for global croplands

    PubMed Central

    Bren d’Amour, Christopher; Reitsma, Femke; Baiocchi, Giovanni; Barthel, Stephan; Güneralp, Burak; Erb, Karl-Heinz; Haberl, Helmut; Seto, Karen C.

    2017-01-01

    Urban expansion often occurs on croplands. However, there is little scientific understanding of how global patterns of future urban expansion will affect the world’s cultivated areas. Here, we combine spatially explicit projections of urban expansion with datasets on global croplands and crop yields. Our results show that urban expansion will result in a 1.8–2.4% loss of global croplands by 2030, with substantial regional disparities. About 80% of global cropland loss from urban expansion will take place in Asia and Africa. In both Asia and Africa, much of the cropland that will be lost is more than twice as productive as national averages. Asia will experience the highest absolute loss in cropland, whereas African countries will experience the highest percentage loss of cropland. Globally, the croplands that are likely to be lost were responsible for 3–4% of worldwide crop production in 2000. Urban expansion is expected to take place on cropland that is 1.77 times more productive than the global average. The loss of cropland is likely to be accompanied by other sustainability risks and threatens livelihoods, with diverging characteristics for different megaurban regions. Governance of urban area expansion thus emerges as a key area for securing livelihoods in the agrarian economies of the Global South. PMID:28028219

  16. Evolution of density-dependent movement during experimental range expansions.

    PubMed

    Fronhofer, E A; Gut, S; Altermatt, F

    2017-12-01

    Range expansions and biological invasions are prime examples of transient processes that are likely impacted by rapid evolutionary changes. As a spatial process, range expansions are driven by dispersal and movement behaviour. Although it is widely accepted that dispersal and movement may be context-dependent, for instance density-dependent, and best represented by reaction norms, the evolution of density-dependent movement during range expansions has received little experimental attention. We therefore tested current theory predicting the evolution of increased movement at low densities at range margins using highly replicated and controlled range expansion experiments across multiple genotypes of the protist model system Tetrahymena thermophila. Although rare, we found evolutionary changes during range expansions even in the absence of initial standing genetic variation. Range expansions led to the evolution of negatively density-dependent movement at range margins. In addition, we report the evolution of increased intrastrain competitive ability and concurrently decreased population growth rates in range cores. Our findings highlight the importance of understanding movement and dispersal as evolving reaction norms and plastic life-history traits of central relevance for range expansions, biological invasions and the dynamics of spatially structured systems in general. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  17. Adjustable selective maxillary expansion combined with maxillomandibular surgery: A case report.

    PubMed

    Leyder, Patrick; Altounian, Gérard; Chardain, Jacques; Quilichini, Julien

    2015-09-01

    Surgically assisted rapid maxillary expansion (SARME) is usually considered the gold standard for maxillary transverse expansion in adults. However, a second surgical procedure is needed in cases of associated sagittal or vertical discrepancies. We describe the use of two new innovative devices for the correction of discrepancies in all dimensions during a single surgical procedure, thus reducing treatment duration. We report the case of a 21-year-old female patient, referred to our department for skeletal Class III malocclusion associated with right-side laterognathism and transverse maxillary deficiency. The patient underwent one-stage surgery, using sliding osteosynthesis plates and an adjustable bone-borne distractor. Pre-surgical orthodontics consisted in leveling and aligning the mandibular arch; maxillary leveling was initiated 3 months before surgery. Postoperative palatal distraction combined with orthodontic finishing enabled complete correction of dental and bony discrepancies after 3 months. In our experience, treatment of transverse, sagittal and vertical discrepancies has been possible in a single surgical procedure, using two innovative techniques: sliding osteosynthesis and an adjustable bone distractor. Two years post-surgery, the correction is stable in all dimensions. Copyright © 2015. Published by Elsevier Masson SAS.

  18. Hoberman-sphere-inspired lattice metamaterials with tunable negative thermal expansion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yangbo; Chen, Yanyu; Li, Tiantian

    Materials with engineered thermal expansion coefficients, capable of avoiding failure or irreversible destruction of structures and devices, are important for aerospace, civil, biomedical, optics, and semiconductor applications. In natural materials, thermal expansion usually cannot be adjusted easily and a negative thermal expansion coefficient is still uncommon. Here we propose a novel architected lattice bi-material system, inspired by the Hoberman sphere, showing a wide range of tunable thermal expansion coefficient from negative to positive, -1.04 x 10 -3 degrees C-1 to 1.0 x 10 -5 degrees C-1. Numerical simulations and analytical formulations are implemented to quantify the evolution of the thermalmore » expansion coefficients and reveal the underlying mechanisms responsible for this unusual behavior. We show that the thermal expansion coefficient of the proposed metamaterials depends on the thermal expansion coefficient ratio and the axial stiffness ratio of the constituent materials, as well as the bending stiffness and the topological arrangement of the constitutive elements. The finding reported here provides a new routine to design architected metamaterial systems with tunable negative thermal expansion for a wide range of potential applications.« less

  19. Hoberman-sphere-inspired lattice metamaterials with tunable negative thermal expansion

    DOE PAGES

    Li, Yangbo; Chen, Yanyu; Li, Tiantian; ...

    2018-02-02

    Materials with engineered thermal expansion coefficients, capable of avoiding failure or irreversible destruction of structures and devices, are important for aerospace, civil, biomedical, optics, and semiconductor applications. In natural materials, thermal expansion usually cannot be adjusted easily and a negative thermal expansion coefficient is still uncommon. Here we propose a novel architected lattice bi-material system, inspired by the Hoberman sphere, showing a wide range of tunable thermal expansion coefficient from negative to positive, -1.04 x 10 -3 degrees C-1 to 1.0 x 10 -5 degrees C-1. Numerical simulations and analytical formulations are implemented to quantify the evolution of the thermalmore » expansion coefficients and reveal the underlying mechanisms responsible for this unusual behavior. We show that the thermal expansion coefficient of the proposed metamaterials depends on the thermal expansion coefficient ratio and the axial stiffness ratio of the constituent materials, as well as the bending stiffness and the topological arrangement of the constitutive elements. The finding reported here provides a new routine to design architected metamaterial systems with tunable negative thermal expansion for a wide range of potential applications.« less

  20. Negative Thermal Expansion and Ferroelectric Oxides in Electronic Device Composites

    NASA Astrophysics Data System (ADS)

    Trujillo, Joy Elizabeth

    Electronic devices increasingly pervade our daily lives, driving the need to develop components which have material properties that can be designed to target a specific need. The principle motive of this thesis is to investigate the effects of particle size and composition on three oxides which possess electronic and thermal properties essential to designing improved ceramic composites for more efficient, high energy storage devices. A metal matrix composite project used the negative thermal expansion oxide, ZrW2O 8, to offset the high thermal expansion of the metal matrix without sacrificing high thermal conductivity. Composite preparation employed a powder mixing technique to achieve easy composition control and homogenous phase distribution in order to build composites which target a specific coefficient of thermal expansion (CTE). A tailorable CTE material is desirable for overcoming thermomechanical failure in heat sinks or device casings. This thesis also considers the particle size effect on dielectric properties in a common ferroelectric perovskite, Ba1-xSrxTiO 3. By varying the Ba:Sr ratio, the Curie temperature can be adjusted and by reducing the particle size, the dielectric constant can be increased and hysteresis decreased. These conditions could yield anonymously large dielectric constants near room temperature. However, the ferroelectric behavior has been observed to cease below a minimum size of a few tens of nanometers in bulk or thin film materials. Using a new particle slurry approach, electrochemical impedance spectroscopy allows dielectric properties to be determined for nanoparticles, as opposed to conventional methods which measure only bulk or thin film dielectric properties. In this manner, Ba1-xSrxTiO3 was investigated in a new size regime, extending the theory on the ferroelectric behavior to < 10 nm diameter. This knowledge will improve the potential to incorporate high dielectric constant, low loss ferroelectric nanoparticles in many

  1. Thermal expansion behavior of fluor-chlorapatite crystalline solutions

    NASA Astrophysics Data System (ADS)

    Hovis, G.; Harlov, D.; Gottschalk, M.; Hudacek, W.; Wildermuth, S.

    2009-04-01

    Apatite Ca5(PO4)3(F,Cl,OH,CO3) occurs widely as an accessory mineral in many igneous and metamorphic rocks and in nature displays a wide range of F-Cl-OH-CO3 mixtures (e.g., O'Reilly and Griffin, 2000) that have been used to interpret the role of fluids, e.g. Cl, F, and OH activities, during metamorphic and igneous processes (e.g., Harlov and Förster, 2002). It is important, therefore, to understand the thermodynamic behavior of these solid solutions, including their thermal expansion properties. Fluorapatite - chlorapatite samples were synthesized at the GFZ-Potsdam (Hovis, Harlov, Hahn and Steigert, 2007) using an adaptation of the molten flux method of Cherniak (2000). Dry CaF2 and CaCl2 (0.1 mole total) were mixed with Ca3(PO4)2 (0.03 moles), placed in a Pt crucible, equilibrated for 15 hours at 1375 °C, cooled to 1220 °C at 3 °C/hour, removed from the oven and cooled in air. Crystals were separated from the flux by boiling the quenched product in water. F:Cl fractions for each sample were determined via Rietveld refinement of X-ray powder diffraction data. Chemical homogeneity was confirmed by Rietveld refinement and high-contrast back-scattered electron imaging. Room-temperature unit-cell volumes were determined at the GFZ-Potsdam through Rietveld analysis of X-ray powder diffraction data and also at Lafayette College by standard unit-cell refinement techniques (Holland and Redfern, 1997) using NBS/NIST 640a Si as an internal standard. High-temperature unit-cell dimensions were calculated from X-ray powder diffraction data collected at Cambridge University from room temperature to 1000 °C on a Bruker D8 X-ray diffractometer. NBS Si again was utilized as an internal standard; high-temperature Si peak positions were taken from Parrish (1953). Results indicate that despite the considerable size difference between fluorine and chlorine ions, reflected by substantially different unit-cell sizes at room temperature, the coefficient of thermal expansion across

  2. Comparison among Magnus/Floquet/Fer expansion schemes in solid-state NMR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takegoshi, K., E-mail: takeyan@kuchem.kyoto-u.ac.jp; Miyazawa, Norihiro; Sharma, Kshama

    2015-04-07

    We here revisit expansion schemes used in nuclear magnetic resonance (NMR) for the calculation of effective Hamiltonians and propagators, namely, Magnus, Floquet, and Fer expansions. While all the expansion schemes are powerful methods there are subtle differences among them. To understand the differences, we performed explicit calculation for heteronuclear dipolar decoupling, cross-polarization, and rotary-resonance experiments in solid-state NMR. As the propagator from the Fer expansion takes the form of a product of sub-propagators, it enables us to appreciate effects of time-evolution under Hamiltonians with different orders separately. While 0th-order average Hamiltonian is the same for the three expansion schemes withmore » the three cases examined, there is a case that the 2nd-order term for the Magnus/Floquet expansion is different from that obtained with the Fer expansion. The difference arises due to the separation of the 0th-order term in the Fer expansion. The separation enables us to appreciate time-evolution under the 0th-order average Hamiltonian, however, for that purpose, we use a so-called left-running Fer expansion. Comparison between the left-running Fer expansion and the Magnus expansion indicates that the sign of the odd orders in Magnus may better be reversed if one would like to consider its effect in order.« less

  3. Urban Expansion Study

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Under an Egyptian government contract, PADCO studies urban growth in the Nile Area. They were assisted by LANDSAT survey maps and measurements provided by TAC. TAC had classified the raw LANDSAT data and processed it into various categories to detail urban expansion. PADCO crews spot checked the results, and correlations were established.

  4. Dynamic structure of confined shocks undergoing sudden expansion

    NASA Astrophysics Data System (ADS)

    Abate, G.; Shyy, W.

    2002-01-01

    The gas dynamic phenomenon associated with a normal shock wave within a tube undergoing a sudden area expansion consists of highly transient flow and diffraction that give rise to turbulent, compressible, vortical flows. These interactions can occur at time scales typically ranging from micro- to milliseconds. In this article, we review recent experimental and numerical results to highlight the flow phenomena and main physical mechanisms associated with this geometry. The topics addressed include time-accurate shock and vortex locations, flowfield evolution and structure, wall-shock Mach number, two- vs. three-dimensional sudden expansions, and the effect of viscous dissipation on planar shock-front expansions. Between axisymmetric and planar geometries, the flow structure evolves very similarly early on in the sudden expansion process (i.e., within the first two shock tube diameters). Both numerical and experimental studies confirm that the trajectory of the vortex formed at the expansion corner is convected into the flowfield faster in the axisymmetric case than the planar case. The lateral propagation of the vortices correlates very well between axisymmetric and planar geometries. In regard to the rate of dissipation of turbulent kinetic energy (TKE) for a two-dimensional planar shock undergoing a sudden expansion within a confined chamber, calculations show that the solenoidal dissipation is confined to the region of high strain rates arising from the expansion corner. Furthermore, the dilatational dissipation is concentrated mainly at the curvature of the incident, reflected, and barrel shock fronts. The multiple physical mechanisms identified, including shock-strain rate interaction, baroclinic effect, vorticity generation, and different aspects of viscous dissipation, have produced individual and collective flow structures observed experimentally.

  5. 12 CFR 34.84 - Future bank expansion.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 12 Banks and Banking 1 2011-01-01 2011-01-01 false Future bank expansion. 34.84 Section 34.84 Banks and Banking COMPTROLLER OF THE CURRENCY, DEPARTMENT OF THE TREASURY REAL ESTATE LENDING AND APPRAISALS Other Real Estate Owned § 34.84 Future bank expansion. A national bank normally should use real...

  6. Magnetic Properties of Strongly Correlated Hubbard Model and Quantum Spin-One Ferromagnets with Arbitrary Crystal-Field Potential: Linked Cluster Series Expansion Approach

    NASA Astrophysics Data System (ADS)

    Pan, Kok-Kwei

    We have generalized the linked cluster expansion method to solve more many-body quantum systems, such as quantum spin systems with crystal-field potentials and the Hubbard model. The technique sums up all connected diagrams to a certain order of the perturbative Hamiltonian. The modified multiple-site Wick reduction theorem and the simple tau dependence of the standard basis operators have been used to facilitate the evaluation of the integration procedures in the perturbation expansion. Computational methods are developed to calculate all terms in the series expansion. As a first example, the perturbation series expansion of thermodynamic quantities of the single-band Hubbard model has been obtained using a linked cluster series expansion technique. We have made corrections to all previous results of several papers (up to fourth order). The behaviors of the three dimensional simple cubic and body-centered cubic systems have been discussed from the qualitative analysis of the perturbation series up to fourth order. We have also calculated the sixth-order perturbation series of this model. As a second example, we present the magnetic properties of spin-one Heisenberg model with arbitrary crystal-field potential using a linked cluster series expansion. The calculation of the thermodynamic properties using this method covers the whole range of temperature, in both magnetically ordered and disordered phases. The series for the susceptibility and magnetization have been obtained up to fourth order for this model. The method sums up all perturbation terms to certain order and estimates the result using a well -developed and highly successful extrapolation method (the standard ratio method). The dependence of critical temperature on the crystal-field potential and the magnetization as a function of temperature and crystal-field potential are shown. The critical behaviors at zero temperature are also shown. The range of the crystal-field potential for Ni(2+) compounds is

  7. Lightweight Mechanical Metamaterials with Tunable Negative Thermal Expansion

    NASA Astrophysics Data System (ADS)

    Wang, Qiming; Jackson, Julie A.; Ge, Qi; Hopkins, Jonathan B.; Spadaccini, Christopher M.; Fang, Nicholas X.

    2016-10-01

    Ice floating on water is a great manifestation of negative thermal expansion (NTE) in nature. The limited examples of natural materials possessing NTE have stimulated research on engineered structures. Previous studies on NTE structures were mostly focused on theoretical design with limited experimental demonstration in two-dimensional planar geometries. In this work, aided with multimaterial projection microstereolithography, we experimentally fabricate lightweight multimaterial lattices that exhibit significant negative thermal expansion in three directions and over a temperature range of 170 degrees. Such NTE is induced by the structural interaction of material components with distinct thermal expansion coefficients. The NTE can be tuned over a large range by varying the thermal expansion coefficient difference between constituent beams and geometrical arrangements. Our experimental results match qualitatively with a simple scaling law and quantitatively with computational models.

  8. External combustion engine having a combustion expansion chamber

    NASA Astrophysics Data System (ADS)

    Duva, Anthony W.

    1993-03-01

    This patent application discloses an external combustion engine having a combustion expansion chamber. The engine includes a combustion chamber for generating a high-pressure, energized gas from a monopropellant fuel, and a cylinder for receiving the energized gas through a rotary valve to perform work on a cylinder disposed therein. A baffle plate is positioned between the combustion area and expansion area for reducing the pressure of the gas. The combustion area and expansion area are separated by a baffle plate having a flow area which is sufficiently large to eliminate the transmission of pressure pulsations from the combustion area to the expansion area while being small enough to provide for substantially complete combustion in the combustion area. The engine is particularly well suited for use in a torpedo.

  9. A strictly Markovian expansion for plasma turbulence theory

    NASA Technical Reports Server (NTRS)

    Jones, F. C.

    1978-01-01

    The collision operator that appears in the equation of motion for a particle distribution function that has been averaged over an ensemble of random Hamiltonians is non-Markovian. It is non-Markovian in that it involves a propagated integral over the past history of the ensemble averaged distribution function. All formal expansions of this nonlinear collision operator to date preserve this non-Markovian character term by term yielding an integro-differential equation that must be converted to a diffusion equation by an additional approximation. In this note we derive an expansion of the collision operator that is strictly Markovian to any finite order and yields a diffusion equation as the lowest non-trivial order. The validity of this expansion is seen to be the same as that of the standard quasi-linear expansion.

  10. The Expansion of the Pulmonary Rib Cage during Breath Stacking Is Influenced by Age in Obese Women

    PubMed Central

    Barcelar, Jacqueline de Melo; Aliverti, Andrea; Rattes, Catarina; Ximenes, Maria Eduarda; Campos, Shirley Lima; Brandão, Daniella Cunha; Fregonezi, Guilherme; de Andrade, Armèle Dornelas

    2014-01-01

    Objective To analyze in obese women the acute effects of the breath stacking technique on thoraco-abdominal expansion. Design and Methods Nineteen obese women (BMI≥30 kg/m2) were evaluated by anthropometry, spirometry and maximal respiratory muscle pressures and successively analyzed by Opto-Electronic Plethysmography and a Wright respirometer during quiet breathing and breath stacking maneuvers and compared with a group of 15 normal-weighted healthy women. The acute effects of the maneuvers were assessed in terms of total and compartmental chest wall volumes at baseline, end of the breath stacking maneuver and after the maneuver. Obese subjects were successively classified into two groups, accordingly to the response during the maneuver, group 1 = prevalent rib cage or group 2 = abdominal expansion. Results Age was significantly lower in group 1 than group 2. When considering the two obese groups, FEV1 was lower and minute ventilation was higher only in group 2 compared to controls group. During breath stacking, inspiratory capacity was significant differences in obese subjects with a smaller expansion of the pulmonary rib cage and a greater expansion of the abdomen compared to controls and also between groups 1 and 2. A significant inverse linear relationship was found between age and inspiratory capacity of the pulmonary rib cage but not of the abdomen. Conclusions In obese women the maximal expansion of the rib cage and abdomen is influenced by age and breath stacking maneuver could be a possible therapy for preventing respiratory complications. PMID:25372469

  11. Finnish Higher Education Expansion and Regional Policy

    ERIC Educational Resources Information Center

    Saarivirta, Toni

    2010-01-01

    This paper concentrates on the expansion of Finnish higher education between the 1960s and 1970s, exposes its background in the light of the policy decisions that were made, compares the unique features of this expansion with those of certain other countries, discusses the impact of the controlled "top down" governance of higher…

  12. Series expansion of the modified Einstein Procedure

    Treesearch

    Seema Chandrakant Shah-Fairbank

    2009-01-01

    This study examines calculating total sediment discharge based on the Modified Einstein Procedure (MEP). A new procedure based on the Series Expansion of the Modified Einstein Procedure (SEMEP) has been developed. This procedure contains four main modifications to MEP. First, SEMEP solves the Einstein integrals quickly and accurately based on a series expansion. Next,...

  13. Spherical-wave expansions of piston-radiator fields.

    PubMed

    Wittmann, R C; Yaghjian, A D

    1991-09-01

    Simple spherical-wave expansions of the continuous-wave fields of a circular piston radiator in a rigid baffle are derived. These expansions are valid throughout the illuminated half-space and are useful for efficient numerical computation in the near-field region. Multipole coefficients are given by closed-form expressions which can be evaluated recursively.

  14. Thermal Expansion of Ferromagnetic Superconductors:. Possible Application to UGe2

    NASA Astrophysics Data System (ADS)

    Hatayama, Nobukuni; Konno, Rikio

    2011-03-01

    We investigate the temperature dependence of thermal expansion of the ferromagnetic triplet superconductors and their thermal expansion coefficients below the superconducting transition temperature of a majority spin conduction band. The free energy of the ferromagnetic superconductors derived by Linder et al. is used. The superconducting gaps in the A2 phase of 3He and with a node in UGe2 are considered. By applying Takahashi's method to the free energy, i.e. by taking into account the volume dependence of the free energy explicitly, the temperature dependence of the thermal expansion and the thermal expansion coefficients is studied below the superconducting transition temperature of the majority spin conduction band. We find that we have anomalies of the thermal expansion in the vicinity of the superconducting transition temperatures and that we have divergence of the thermal expansion coefficients are divergent at the superconducting transition temperatures. The Grüneisen's relation between the temperature dependence of the thermal expansion coefficients and the temperature dependence of the specific heat at low temperatures is satisfied.

  15. Thermal Expansion of Ferromagnetic Superconductors:. Possible Application to UGe2

    NASA Astrophysics Data System (ADS)

    Hatayama, Nobukuni; Konno, Rikio

    We investigate the temperature dependence of thermal expansion of the ferromagnetic triplet superconductors and their thermal expansion coefficients below the superconducting transition temperature of a majority spin conduction band. The free energy of the ferromagnetic superconductors derived by Linder et al. is used. The superconducting gaps in the A2 phase of 3He and with a node in UGe2 are considered. By applying Takahashi's method to the free energy, i.e. by taking into account the volume dependence of the free energy explicitly, the temperature dependence of the thermal expansion and the thermal expansion coefficients is studied below the superconducting transition temperature of the majority spin conduction band. We find that we have anomalies of the thermal expansion in the vicinity of the superconducting transition temperatures and that we have divergence of the thermal expansion coefficients are divergent at the superconducting transition temperatures. The Grüneisen's relation between the temperature dependence of the thermal expansion coefficients and the temperature dependence of the specific heat at low temperatures is satisfied.

  16. Detailed characterization of thermal expansion tensor in monoclinic K Re(WO 4) 2 (where Re = Gd, Y, Lu, Yb)

    NASA Astrophysics Data System (ADS)

    Loiko, P. A.; Yumashev, K. V.; Kuleshov, N. V.; Rachkovskaya, G. E.; Pavlyuk, A. A.

    2011-11-01

    Linear thermal expansion coefficients αT were measured in monoclinic potassium (rare-earth) double tungstates K Re(WO 4) 2 ( Re = Gd, Y, Lu, Yb) by a dilatometric technique in the directions of a1, b1, c1∗ crystallographic axes (I2/c space group) and optical indicatrix axes Nm and Ng. Thermal expansion tensor αij was evaluated in the { Nm, Np, Ng} frame and then diagonalized. The orientation of corresponding frame {Xi'} with respect to crystallographic and optical indicatrix frames was determined, considering two different crystallographic settings (C2/c and I2/c). Potassium lutetium tungstate KLu(WO 4) 2 was found to possess the lower thermal expansion anisotropy among K Re(WO 4) 2 family. Athermal orientations of laser elements were proposed for K Re(WO 4) 2-based lasers under diode pumping, taking into account temperature dependence of the refractive index and bulging of crystal end faces.

  17. Expansion of a cold non-neutral plasma slab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karimov, A. R.; Department of Electrophysical Facilities, National Research Nuclear University MEPhI, Kashirskoye shosse 31, Moscow 115409; Yu, M. Y., E-mail: myyu@zju.edu.cn

    2014-12-15

    Expansion of the ion and electron fronts of a cold non-neutral plasma slab with a quasi-neutral core bounded by layers containing only ions is investigated analytically and exact solutions are obtained. It is found that on average, the plasma expansion time scales linearly with the initial inverse ion plasma frequency as well as the degree of charge imbalance, and no expansion occurs if the cold plasma slab is stationary and overall neutral. However, in both cases, there can exist prominent oscillations on the electron front.

  18. The poor man's Geographic Information System: plot expansion factors

    Treesearch

    Paul C. Van Deusen

    2007-01-01

    Plot expansion factors can serve as a crude Geographic Information System for users of Forest Inventory and Analysis (FIA) data. Each FIA plot has an associated expansion factor that is often interpreted as the number of forested acres that the plot represents. The derivation of expansion factors is discussed and it is shown that the mapped plot design requires a...

  19. Long-range corrected density functional through the density matrix expansion based semilocal exchange hole.

    PubMed

    Patra, Bikash; Jana, Subrata; Samal, Prasanjit

    2018-03-28

    The exchange hole, which is one of the principal constituents of the density functional formalism, can be used to design accurate range-separated hybrid functionals in association with appropriate correlation. In this regard, the exchange hole derived from the density matrix expansion has gained attention due to its fulfillment of some of the desired exact constraints. Thus, the new long-range corrected density functional proposed here combines the meta generalized gradient approximation level exchange functional designed from the density matrix expansion based exchange hole coupled with the ab initio Hartree-Fock exchange through the range separation of the Coulomb interaction operator using the standard error function technique. Then, in association with the Lee-Yang-Parr correlation functional, the assessment and benchmarking of the above newly constructed range-separated functional with various well-known test sets shows its reasonable performance for a broad range of molecular properties, such as thermochemistry, non-covalent interaction and barrier heights of the chemical reactions.

  20. Cell counting in whole mount tissue volumes using expansion OCT (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Liu, Yehe; Gu, Shi; Watanabe, Michiko; Rollins, Andrew M.; Jenkins, Michael W.

    2017-02-01

    Abnormal cell proliferation and migration during heart development can lead to severe congenital heart defects (CHDs). Studying the spatial distribution of cells during embryonic development helps our understanding of how the heart develops and the etiology of certain CHDs. However, imaging large groups of single cells in intact tissue volumes is challenging. No current technique can accomplish this task in both a time-efficient and cost-effective manner. OCT has potential with its large field of view and micron-scale resolution, but even the highest resolution OCT systems have poor contrast for counting cells and have a small field of view compared to conventional OCT. We propose using a conventional OCT system and processing the sample to enhance cellular contrast. Inspired by the recently developed Expansion Microscopy, we permeated whole-mount embryonic tissue with a superabsorbent monomer solution and polymerized into a hydrogel. When hydrated in DI water, the tissue-hydrogel complex was uniformly enlarged ( 5X in all dimensions) without distorting the microscopic structure. This had a twofold effect: it increased the resolution by a factor of 5 and decreased scattering, which allowed us to resolve cellular level features deep in the tissue with high contrast using conventional OCT. We noted that cell nuclei caused significantly more backscattering than the other subcellular structures after expansion. Based on this property, we were able to distinguish individual cell nuclei, and thus count cells, in expanded OCT images with simple intensity thresholding. We demonstrate the technique with embryonic quail hearts at various developmental stages.

  1. Aeroelastic Model Structure Computation for Envelope Expansion

    NASA Technical Reports Server (NTRS)

    Kukreja, Sunil L.

    2007-01-01

    Structure detection is a procedure for selecting a subset of candidate terms, from a full model description, that best describes the observed output. This is a necessary procedure to compute an efficient system description which may afford greater insight into the functionality of the system or a simpler controller design. Structure computation as a tool for black-box modelling may be of critical importance in the development of robust, parsimonious models for the flight-test community. Moreover, this approach may lead to efficient strategies for rapid envelope expansion which may save significant development time and costs. In this study, a least absolute shrinkage and selection operator (LASSO) technique is investigated for computing efficient model descriptions of nonlinear aeroelastic systems. The LASSO minimises the residual sum of squares by the addition of an l(sub 1) penalty term on the parameter vector of the traditional 2 minimisation problem. Its use for structure detection is a natural extension of this constrained minimisation approach to pseudolinear regression problems which produces some model parameters that are exactly zero and, therefore, yields a parsimonious system description. Applicability of this technique for model structure computation for the F/A-18 Active Aeroelastic Wing using flight test data is shown for several flight conditions (Mach numbers) by identifying a parsimonious system description with a high percent fit for cross-validated data.

  2. Rapid replacement of bridge deck expansion joints study - phase I.

    DOT National Transportation Integrated Search

    2014-12-01

    Bridge deck expansion joints are used to allow for movement of the bridge deck due to thermal expansion, dynamics loading, and : other factors. More recently, expansion joints have also been utilized to prevent the passage of winter de-icing chemical...

  3. Multipole expansion method for supernova neutrino oscillations

    DOE PAGES

    Duan, Huaiyu; Shalgar, Shashank

    2014-10-31

    Here, we demonstrate a multipole expansion method to calculate collective neutrino oscillations in supernovae using the neutrino bulb model. We show that it is much more efficient to solve multi-angle neutrino oscillations in multipole basis than in angle basis. The multipole expansion method also provides interesting insights into multi-angle calculations that were accomplished previously in angle basis.

  4. Expansion patterns and parallaxes for planetary nebulae

    NASA Astrophysics Data System (ADS)

    Schönberner, D.; Balick, B.; Jacob, R.

    2018-02-01

    Aims: We aim to determine individual distances to a small number of rather round, quite regularly shaped planetary nebulae by combining their angular expansion in the plane of the sky with a spectroscopically measured expansion along the line of sight. Methods: We combined up to three epochs of Hubble Space Telescope imaging data and determined the angular proper motions of rim and shell edges and of other features. These results are combined with measured expansion speeds to determine individual distances by assuming that line of sight and sky-plane expansions are equal. We employed 1D radiation-hydrodynamics simulations of nebular evolution to correct for the difference between the spectroscopically measured expansion velocities of rim and shell and of their respective shock fronts. Results: Rim and shell are two independently expanding entities, driven by different physical mechanisms, although their model-based expansion timescales are quite similar. We derive good individual distances for 15 objects, and the main results are as follows: (i) distances derived from rim and shell agree well; (ii) comparison with the statistical distances in the literature gives reasonable agreement; (iii) our distances disagree with those derived by spectroscopic methods; (iv) central-star "plateau" luminosities range from about 2000 L⊙ to well below 10 000 L⊙, with a mean value at about 5000 L⊙, in excellent agreement with other samples of known distance (Galactic bulge, Magellanic Clouds, and K648 in the globular cluster M 15); (v) the central-star mass range is rather restricted: from about 0.53 to about 0.56 M⊙, with a mean value of 0.55 M⊙. Conclusions: The expansion measurements of nebular rim and shell edges confirm the predictions of radiation-hydrodynamics simulations and offer a reliable method for the evaluation of distances to suited objects. Results of this paper are based on observations made with the NASA/ESA Hubble Space Telescope in Cycle 16 (GO11122

  5. Host-targeted RAD-Seq reveals genetic changes in the coral Oculina patagonica associated with range expansion along the Spanish Mediterranean coast.

    PubMed

    Leydet, Karine Posbic; Grupstra, Carsten G B; Coma, Rafel; Ribes, Marta; Hellberg, Michael E

    2018-06-01

    Many organisms are expanding their ranges in response to changing environmental conditions. Understanding the patterns of genetic diversity and adaptation along an expansion front is crucial to assessing a species' long-term success. While next-generation sequencing techniques can reveal these changes in fine detail, ascribing them to a particular species can be difficult for organisms that live in close association with symbionts. Using a novel modified restriction site-associated DNA sequencing (RAD-Seq) protocol to target coral DNA, we collected 595 coral-specific single nucleotide polymorphisms from 189 colonies of the invasive coral Oculina patagonica from the Spanish Mediterranean coast, including established core populations and two expansion fronts. Surprisingly, populations from the recent northern expansion are genetically distinct from the westward expansion and core populations and also harbour greater genetic diversity. We found that temperature may have driven adaptation along the northern expansion, as genome scans for selection found three candidate loci associated with temperature in the north but none in the west. We found no genomic signature of selection associated with artificial substrate, which has been proposed for explaining the rapid spread of O. patagonica. This suggests that this coral is simply an opportunistic colonizer of free space made available by coastal habitat modifications. Our results suggest that unique genetic variation, possibly due to limited dispersal across the Ibiza Channel, an influx of individuals from different depths and/or adaptation to cooler temperatures along the northern expansion front may have facilitated the northward range expansion of O. patagonica in the western Mediterranean. © 2018 John Wiley & Sons Ltd.

  6. RESEARCH: Shrub Propagation Techniques for Biological Control ofInvading Tree Species

    PubMed

    Meilleur; Veronneau; Bouchard

    1997-05-01

    / The use of relatively stable shrub communities to control invasionby trees could be an efficient way of reducing herbicide applications, andthus represents an environmental gain, in areas such as rights-of-way. Thequestion is how to favor the expansion of these relatively stable shrubcommunities using different propagation techniques. Three experimentaltreatments, cutting back, layering, and cutting back-layering were performedon Cornus stolonifera, Salix petiolaris, and Spiraea albaclones already located within the corridor of an electrical power line. Toestablish the efficiency of treatments, we examined the statisticaldifferences of growth traits between species and treatments.An analysis of the effects of layering shows, after the first growth season,differences for all growth traits in only one species, Spiraea alba.After the second growth season, we observed the development of new aerialstems. Layering favors horizontal expansion of shrubs over heightdevelopment. The third year after treatment, the effect of layering isreduced except for Cornus stolonifera, which continuously increases,as shown by the significant progression of the clone issued from the layereven five years after treatments. With the cutting back technique, weexpected a distinct vertical growth of the shrubs at the expense ofincreasing the crown diameter. This technique would be best associated withthe rejuvenation of clones, followed by a layering of new shoots to allow ahorizontal expansion of the shrubs. Therefore, the formation of a dense shrubcommunity by layering should be considered a valuable approach for thebiological control of undesirable trees in powerline rights-of-way.KEY WORDS: Layering; Cutting back; Right-of-way; Cornus stolonifera;Salix petiolaris; Spiraea alba; Quebec

  7. Expansion of all multitrace tree level EYM amplitudes

    NASA Astrophysics Data System (ADS)

    Du, Yi-Jian; Feng, Bo; Teng, Fei

    2017-12-01

    In this paper, we investigate the expansion of tree level multitrace Einstein-Yang-Mills (EYM) amplitudes. First, we propose two types of recursive expansions of tree level EYM amplitudes with an arbitrary number of gluons, gravitons and traces by those amplitudes with fewer traces or/and gravitons. Then we give many support evidence, including proofs using the Cachazo-He-Yuan (CHY) formula and Britto-Cachazo-Feng-Witten (BCFW) recursive relation. As a byproduct, two types of generalized BCJ relations for multitrace EYM are further proposed, which will be useful in the BCFW proof. After one applies the recursive expansions repeatedly, any multitrace EYM amplitudes can be given in the Kleiss-Kuijf (KK) basis of tree level color ordered Yang-Mills (YM) amplitudes. Thus the Bern-Carrasco-Johansson (BCJ) numerators, as the expansion coefficients, for all multitrace EYM amplitudes are naturally constructed.

  8. Expansive cements for the manufacture of the concrete protective bandages

    NASA Astrophysics Data System (ADS)

    Yakymechko, Yaroslav; Voloshynets, Vladyslav

    2017-12-01

    One of the promising directions of the use of expansive cements is making the protective bandages for the maintenance of pipelines. Bandages expansive application of the compositions of the pipeline reinforce the damaged area and reduce stress due to compressive stress in the cylindrical area. Such requirements are best suited for expansive compositions obtained from portland cement and modified quicklime. The article presents the results of expansive cements based on quick lime in order to implement protective bandages pipelines.

  9. Self-similar expansion of adiabatic electronegative dusty plasma

    NASA Astrophysics Data System (ADS)

    Shahmansouri, M.; Bemooni, A.; Mamun, A. A.

    2017-12-01

    The self-similar expansion of an adiabatic electronegative dusty plasma (consisting of inertialess adiabatic electrons, inertialess adiabatic ions and inertial adiabatic negatively charged dust fluids) is theoretically investigated by employing the self-similar approach. It is found that the effects of the plasma adiabaticity (represented by the adiabatic index ) and dusty plasma parameters (determined by dust temperature and initial dust population) significantly modify the nature of the plasma expansion. The implications of our results are expected to play an important role in understanding the physics of the expansion of space and laboratory electronegative dusty plasmas.

  10. The influence of interspecific interactions on species range expansion rates

    USGS Publications Warehouse

    Svenning, Jens-Christian; Gravel, Dominique; Holt, Robert D.; Schurr, Frank M.; Thuiller, Wilfried; Münkemüller, Tamara; Schiffers, Katja H.; Dullinger, Stefan; Edwards, Thomas C.; Hickler, Thomas; Higgins, Steven I.; Nabel, Julia E.M.S.; Pagel, Jörn; Normand, Signe

    2014-01-01

    Ongoing and predicted global change makes understanding and predicting species’ range shifts an urgent scientific priority. Here, we provide a synthetic perspective on the so far poorly understood effects of interspecific interactions on range expansion rates. We present theoretical foundations for how interspecific interactions may modulate range expansion rates, consider examples from empirical studies of biological invasions and natural range expansions as well as process-based simulations, and discuss how interspecific interactions can be more broadly represented in process-based, spatiotemporally explicit range forecasts. Theory tells us that interspecific interactions affect expansion rates via alteration of local population growth rates and spatial displacement rates, but also via effects on other demographic parameters. The best empirical evidence for interspecific effects on expansion rates comes from studies of biological invasions. Notably, invasion studies indicate that competitive dominance and release from specialized enemies can enhance expansion rates. Studies of natural range expansions especially point to the potential for competition from resident species to reduce expansion rates. Overall, it is clear that interspecific interactions may have important consequences for range dynamics, but also that their effects have received too little attention to robustly generalize on their importance. We then discuss how interspecific interactions effects can be more widely incorporated in dynamic modeling of range expansions. Importantly, models must describe spatiotemporal variation in both local population dynamics and dispersal. Finally, we derive the following guidelines for when it is particularly important to explicitly represent interspecific interactions in dynamic range expansion forecasts: if most interacting species show correlated spatial or temporal trends in their effects on the target species, if the number of interacting species is low

  11. The influence of interspecific interactions on species range expansion rates.

    PubMed

    Svenning, Jens-Christian; Gravel, Dominique; Holt, Robert D; Schurr, Frank M; Thuiller, Wilfried; Münkemüller, Tamara; Schiffers, Katja H; Dullinger, Stefan; Edwards, Thomas C; Hickler, Thomas; Higgins, Steven I; Nabel, Julia E M S; Pagel, Jörn; Normand, Signe

    2014-12-01

    Ongoing and predicted global change makes understanding and predicting species' range shifts an urgent scientific priority. Here, we provide a synthetic perspective on the so far poorly understood effects of interspecific interactions on range expansion rates. We present theoretical foundations for how interspecific interactions may modulate range expansion rates, consider examples from empirical studies of biological invasions and natural range expansions as well as process-based simulations, and discuss how interspecific interactions can be more broadly represented in process-based, spatiotemporally explicit range forecasts. Theory tells us that interspecific interactions affect expansion rates via alteration of local population growth rates and spatial displacement rates, but also via effects on other demographic parameters. The best empirical evidence for interspecific effects on expansion rates comes from studies of biological invasions. Notably, invasion studies indicate that competitive dominance and release from specialized enemies can enhance expansion rates. Studies of natural range expansions especially point to the potential for competition from resident species to reduce expansion rates. Overall, it is clear that interspecific interactions may have important consequences for range dynamics, but also that their effects have received too little attention to robustly generalize on their importance. We then discuss how interspecific interactions effects can be more widely incorporated in dynamic modeling of range expansions. Importantly, models must describe spatiotemporal variation in both local population dynamics and dispersal. Finally, we derive the following guidelines for when it is particularly important to explicitly represent interspecific interactions in dynamic range expansion forecasts: if most interacting species show correlated spatial or temporal trends in their effects on the target species, if the number of interacting species is low, and

  12. The influence of interspecific interactions on species range expansion rates

    PubMed Central

    Svenning, Jens-Christian; Gravel, Dominique; Holt, Robert D.; Schurr, Frank M.; Thuiller, Wilfried; Münkemüller, Tamara; Schiffers, Katja H.; Dullinger, Stefan; Edwards, Thomas C.; Hickler, Thomas; Higgins, Steven I.; Nabel, Julia E. M. S.; Pagel, Jörn; Normand, Signe

    2014-01-01

    Ongoing and predicted global change makes understanding and predicting species’ range shifts an urgent scientific priority. Here, we provide a synthetic perspective on the so far poorly understood effects of interspecific interactions on range expansion rates. We present theoretical foundations for how interspecific interactions may modulate range expansion rates, consider examples from empirical studies of biological invasions and natural range expansions as well as process-based simulations, and discuss how interspecific interactions can be more broadly represented in process-based, spatiotemporally explicit range forecasts. Theory tells us that interspecific interactions affect expansion rates via alteration of local population growth rates and spatial displacement rates, but also via effects on other demographic parameters. The best empirical evidence for interspecific effects on expansion rates comes from studies of biological invasions. Notably, invasion studies indicate that competitive dominance and release from specialized enemies can enhance expansion rates. Studies of natural range expansions especially point to the potential for competition from resident species to reduce expansion rates. Overall, it is clear that interspecific interactions may have important consequences for range dynamics, but also that their effects have received too little attention to robustly generalize on their importance. We then discuss how interspecific interactions effects can be more widely incorporated in dynamic modeling of range expansions. Importantly, models must describe spatiotemporal variation in both local population dynamics and dispersal. Finally, we derive the following guidelines for when it is particularly important to explicitly represent interspecific interactions in dynamic range expansion forecasts: if most interacting species show correlated spatial or temporal trends in their effects on the target species, if the number of interacting species is low

  13. Free-stream temperature, density, and pressure measurements in an expansion tube flow

    NASA Technical Reports Server (NTRS)

    Haggard, K. V.

    1973-01-01

    An experimental study was conducted to determine test-flow conditions in the Langley pilot model expansion tube. Measurements of temperature, density, wall pressure, pitot pressure, and shock and interface velocities were compared with theoretical calculations based on various models of the flow cycle. The vibrational temperature and integrated density of the molecular oxygen component of the flow were measured by use of vacuum ultraviolet absorption techniques. These measurements indicate both the presence and possible degree of nonequilibrium in the flow. Data are compared with several simplified models of the flow cycle, and data trends are discussed.

  14. Intraosseous anesthesia: implications, instrumentation and techniques.

    PubMed

    Kleber, Christopher H

    2003-04-01

    The author reviews historical methods and the instruments used to bring about intraosseous anesthesia, or IOA; discusses the criteria for successful use of the intraosseous injection, or IOI, technique; and provides recommendations. Articles from before 1990 consisted of subjective reports of patient types and procedures performed using IOI as a primary technique. Studies published after 1990 yielded subjective findings on indications for expanded clinical use. The author discusses the expansion of the role of IOI relative to integrated local anesthetic delivery systems. The literature and studies verify the efficacy of IOI as a supplemental or primary technique. The author recommends anesthetics and infusion sites, and reports on the patients' perceptions of comfort. IOI can be used as a supplemental or primary technique to bring about local anesthesia in routine dental procedures. It can be used as a supplemental technique with mandibular nerve blocks to enhance deep pulpal anesthesia. It can be used as a primary technique so that patients do not experience numb lips or tongues postoperatively. Dentists can appreciate the immediate onset of anesthesia and reduced dosage levels of anesthetics associated with using IOI.

  15. Investigation of Thermal Expansion of a Glass Ceramic Material with an Extra-Low Thermal Linear Expansion Coefficient

    NASA Astrophysics Data System (ADS)

    Kompan, T. A.; Korenev, A. S.; Lukin, A. Ya.

    2008-10-01

    The artificial material sitall CO-115M was developed purposely as a material with an extra-low thermal expansion. The controlled crystallization of an aluminosilicate glass melt leads to the formation of a mixture of β-spodumen, β-eucryptite, and β-silica anisotropic microcrystals in a matrix of residual glass. Due to the small size of the microcrystals, the material is homogeneous and transparent. Specific lattice anharmonism of these microcrystal materials results in close to zero average thermal linear expansion coefficient (TLEC) of the sitall material. The thermal expansion coefficient of this material was measured using an interferometric method in line with the classical approach of Fizeau. To obtain the highest accuracy, the registration of light intensity of the total interference field was used. Then, the parameters of the interference pattern were calculated. Due to the large amount of information in the interference pattern, the error of the calculated fringe position was less than the size of a pixel of the optical registration system. The thermal expansion coefficient of the sitall CO-115M and its temperature dependence were measured. The TLEC value of about 3 × 10-8 K-1 to 5 × 10-8 K-1 in the temperature interval from -20 °C to +60 °C was obtained. A special investigation was carried out to show the homogeneity of the material.

  16. Crystalline folliculitis revealed by non-aqueous staining technique.

    PubMed

    Siscos, Spyros Michael; Tran, Chi; Fischer, Ryan; Fraga, Garth

    2017-07-15

    Necrotizing infundibular crystalline folliculitis (NICF) is a rare superficial folliculitis characterized by expansive deposits of birefringent crystallized lipid. We report a case of NICF in a transplant patient presenting with folliculocentric acneiform papules across the lateral face and neck. Biopsy demonstrated intrafollicular crystalline deposits within an intact epidermis. Diagnostic crystals were identified using a non-aqueous histologic technique involving thick unstained sections. To our knowledge, this is the first report of NICF in a transplant patient. Our case suggests NICF is a follicular disorder and highlights a technique that may prevent loss of birefringent crystals and assist in facilitating accurate diagnosis.

  17. The effect of 150μm expandable graphite on char expansion of intumescent fire retardant coating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ullah, Sami, E-mail: samichemist1@gmail.com; Shariff, A. M., E-mail: azmish@petronas.com.my, E-mail: azmibustam@petronas.com.my; Bustam, M. A., E-mail: azmish@petronas.com.my, E-mail: azmibustam@petronas.com.my

    2014-10-24

    Intumescent is defined as the swelling of certain substances to insulate the underlying substrate when they are heated. In this research work the effect of 150μm expandable graphite (EG) was studied on char expansion, char morphology and char composition of intumescent coating formulations (ICFs). To study the expansion and thermal properties of the coating, nine different formulations were prepared. The coatings were tested at 500 °C for one hour and physically were found very stable and well bound with the steel substrate. The morphology was studied by Scanning Electron Microscopy (SEM). The char composition was analysed by X-ray Diffraction (XRD)more » and Fourier transform infrared spectroscopy (FTIR) techniques. EG above than 10.8wt% expands the char abruptly with uniform network structure and affect the outer surface of the char.« less

  18. Human expansion precipitates niche expansion for an opportunistic apex predator (Puma concolor).

    PubMed

    Moss, Wynne E; Alldredge, Mathew W; Logan, Kenneth A; Pauli, Jonathan N

    2016-12-23

    There is growing recognition that developed landscapes are important systems in which to promote ecological complexity and conservation. Yet, little is known about processes regulating these novel ecosystems, or behaviours employed by species adapting to them. We evaluated the isotopic niche of an apex carnivore, the cougar (Puma concolor), over broad spatiotemporal scales and in a region characterized by rapid landscape change. We detected a shift in resource use, from near complete specialization on native herbivores in wildlands to greater use of exotic and invasive species by cougars in contemporary urban interfaces. We show that 25 years ago, cougars inhabiting these same urban interfaces possessed diets that were intermediate. Thus, niche expansion followed human expansion over both time and space, indicating that an important top predator is interacting with prey in novel ways. Thus, though human-dominated landscapes can provide sufficient resources for apex carnivores, they do not necessarily preserve their ecological relationships.

  19. Crystal structure and thermal expansion of a CsCe 2Cl 7 scintillator

    DOE PAGES

    Zhuravleva, M.; Lindsey, A.; Chakoumakos, B. C.; ...

    2015-04-06

    Here we used single-crystal X-ray diffraction data to determine crystal structure of CsCe 2Cl 7. It crystallizes in a P112 1/b space group with a = 19.352(1) Å, b = 19.352(1) Å, c = 14.838(1) Å, γ = 119.87(2) ° , and V = 4818.6(5) Å 3. Differential scanning calorimetry measurements combined with the structural evolution of CsCe 2Cl 7 via X-ray diffractometry over a temperature range from room temperature to the melting point indicates no obvious intermediate solid-solid phase transitions. The anisotropy in the average linear coefficient of thermal expansion of the a axis (21.3 10 -6/ °C) withmore » respect to the b and c axes (27.0 10 -6/ °C) was determined through lattice parameter refinement of the temperature dependent diffraction patterns. Lastly, these findings suggest that the reported cracking behavior during melt growth of CsCe 2Cl 7 bulk crystals using conventional Bridgman and Czochralski techniques may be largely attributed to the anisotropy in thermal expansion.« less

  20. One-loop matching and running with covariant derivative expansion

    NASA Astrophysics Data System (ADS)

    Henning, Brian; Lu, Xiaochuan; Murayama, Hitoshi

    2018-01-01

    We develop tools for performing effective field theory (EFT) calculations in a manifestly gauge-covariant fashion. We clarify how functional methods account for one-loop diagrams resulting from the exchange of both heavy and light fields, as some confusion has recently arisen in the literature. To efficiently evaluate functional traces containing these "mixed" one-loop terms, we develop a new covariant derivative expansion (CDE) technique that is capable of evaluating a much wider class of traces than previous methods. The technique is detailed in an appendix, so that it can be read independently from the rest of this work. We review the well-known matching procedure to one-loop order with functional methods. What we add to this story is showing how to isolate one-loop terms coming from diagrams involving only heavy propagators from diagrams with mixed heavy and light propagators. This is done using a non-local effective action, which physically connects to the notion of "integrating out" heavy fields. Lastly, we show how to use a CDE to do running analyses in EFTs, i.e. to obtain the anomalous dimension matrix. We demonstrate the methodologies by several explicit example calculations.

  1. Medicaid enrollment after liver transplantation: Effects of medicaid expansion.

    PubMed

    Tumin, Dmitry; Hayes, Don; Washburn, W Kenneth; Tobias, Joseph D; Black, Sylvester M

    2016-08-01

    Liver transplantation (LT) recipients in the United States have low rates of paid employment, making some eligible for Medicaid public health insurance after transplant. We test whether recent expansions of Medicaid eligibility increased Medicaid enrollment and insurance coverage in this population. Patients of ages 18-59 years receiving first-time LTs in 2009-2013 were identified in the United Network for Organ Sharing registry and stratified according to insurance at transplantation (private versus Medicaid/Medicare). Posttransplant insurance status was assessed through June 2015. Difference-in-difference multivariate competing-risks models stratified on state of residence estimated effects of Medicaid expansion on Medicaid enrollment or use of uninsured care after LT. Of 12,837 patients meeting inclusion criteria, 6554 (51%) lived in a state that expanded Medicaid eligibility. Medicaid participation after LT was more common in Medicaid-expansion states (25%) compared to nonexpansion states (19%; P < 0.001). Multivariate analysis of 7279 patients with private insurance at transplantation demonstrated that after the effective date of Medicaid expansion (January 1, 2014), the hazard of posttransplant Medicaid enrollment increased in states participating in Medicaid expansion (hazard ratio [HR] = 1.5; 95% confidence interval [CI] = 1.1-2.0; P = 0.01), but not in states opting out of Medicaid expansion (HR = 0.8; 95% CI = 0.5-1.3; P = 0.37), controlling for individual characteristics and time-invariant state-level factors. No effects of Medicaid expansion on the use of posttransplant uninsured care were found, regardless of private or government insurance status at transplantation. Medicaid expansion increased posttransplant Medicaid enrollment among patients who had private insurance at transplantation, but it did not improve overall access to health insurance among LT recipients. Liver Transplantation 22 1075-1084 2016 AASLD. © 2016 American Association for the

  2. Ergodic model for the expansion of spherical nanoplasmas.

    PubMed

    Peano, F; Coppa, G; Peinetti, F; Mulas, R; Silva, L O

    2007-06-01

    Recently, the collisionless expansion of spherical nanoplasmas has been analyzed with a new ergodic model, clarifying the transition from hydrodynamiclike to Coulomb-explosion regimes, and providing accurate laws for the relevant features of the phenomenon. A complete derivation of the model is presented here. The important issue of the self-consistent initial conditions is addressed by analyzing the initial charging transient due to the electron expansion, in the approximation of immobile ions. A comparison among different kinetic models for the expansion is presented, showing that the ergodic model provides a simplified description, which retains the essential information on the electron distribution, in particular, the energy spectrum. Results are presented for a wide range of initial conditions (determined from a single dimensionless parameter), in excellent agreement with calculations from the exact Vlasov-Poisson theory, thus providing a complete and detailed characterization of all the stages of the expansion.

  3. Urban Expansion Modeling Approach Based on Multi-Agent System and Cellular Automata

    NASA Astrophysics Data System (ADS)

    Zeng, Y. N.; Yu, M. M.; Li, S. N.

    2018-04-01

    Urban expansion is a land-use change process that transforms non-urban land into urban land. This process results in the loss of natural vegetation and increase in impervious surfaces. Urban expansion also alters the hydrologic cycling, atmospheric circulation, and nutrient cycling processes and generates enormous environmental and social impacts. Urban expansion monitoring and modeling are crucial to understanding urban expansion process, mechanism, and its environmental impacts, and predicting urban expansion in future scenarios. Therefore, it is important to study urban expansion monitoring and modeling approaches. We proposed to simulate urban expansion by combining CA and MAS model. The proposed urban expansion model based on MSA and CA was applied to a case study area of Changsha-Zhuzhou-Xiangtan urban agglomeration, China. The results show that this model can capture urban expansion with good adaptability. The Kappa coefficient of the simulation results is 0.75, which indicated that the combination of MAS and CA offered the better simulation result.

  4. Enrollment, expenditures, and utilization after CHIP expansion: evidence from Alabama.

    PubMed

    Becker, David J; Blackburn, Justin; Morrisey, Michael A; Sen, Bisakha; Kilgore, Meredith L; Caldwell, Cathy; Sellers, Chris; Menachemi, Nir

    2015-01-01

    In October 2009, Alabama expanded eligibility in its Children's Health Insurance Program (CHIP), known as ALL Kids, from 200% to 300% of the federal poverty level (FPL). We examined the expenditures, utilization, and enrollment behavior of expansion enrollees relative to traditional enrollees (100-200% FPL) and assessed the impact of expansion on total program expenditures. We compared unadjusted mean person-month-level expenditures and utilization of expansion enrollees and various categories of existing enrollees and used a 2-part modeling strategy to examine differences after controlling for enrollee characteristics. We used probit models to examine adjusted differences in reenrollment behavior by eligibility category. Expansion enrollees had higher total monthly expenditures ($10.33, P < .05) than traditional ALL Kids enrollees, including higher outpatient ($5.35, P < .001) and dental ($0.85, P < .01) expenditures but lower emergency department (-$1.34, P < .001) expenditures. Expansion enrollees had marginally lower utilization of emergency department services for low-severity conditions and higher utilization of physician outpatient visits. Expansion enrollees were 4.47 percentage points (P < .001) more likely to reenroll before their contract expiration date than traditional ALL Kids enrollees. As of October 2012, expansion enrollees accounted for approximately 20% of ALL Kids enrollment and expenditures. The expansion population was characterized by moderately higher health expenditures and utilization, and more persistent enrollment relative to fee group enrollees who are subject to the same levels of cost sharing and annual premiums. Although states are prohibited from changing program eligibility until 2019, the costs associated with the expansion population will be important to future policy decisions. Copyright © 2015 Academic Pediatric Association. Published by Elsevier Inc. All rights reserved.

  5. A simplified method for correcting Tanzer's group II constricted ears: Construction of the superior crus as a strut with cartilage expansion grafting.

    PubMed

    Kim, Young Soo; Chung, Seum

    2016-04-01

    A constricted ear, also known as a cup ear or lop ear, is a deformity characterized by curling of the upper portion of the ear, including the helix, scapha, and antihelix. In Tanzer's classification, group II constricted ears have deformities involving the helix and the scapha. Although partial or total absence of the superior crus of the antihelix has been noted in group II constricted ears, most plastic surgeons have corrected group II constricted ears using the expansion technique and skin flaps, without formation of the superior crus. However, the expansion technique does not always yield satisfactory results in group II constricted ears. Between May 2011 and April 2014, the authors operated on 21 patients with group II constricted ears using the technique described in this study. The follow-up period ranged from 2 months to 2 years. In our procedure for correcting group II constricted ears, we focused on restoring the superior crus of the antihelix. As a strong superior crus acts as a strut in the upper third of the ear, it supports the helical rim and creates the scapha. Eventually, the newly formed superior crus enables the helical rim to expand in the upper third of the constricted ear. In this article, we present our method of correcting group II constricted ears, in which the superior crus is constructed as a strut and cartilage expansion grafts are used. Copyright © 2016 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  6. Seasonal hydroclimatic impacts of Brazilian sugar cane expansion

    NASA Astrophysics Data System (ADS)

    Georgescu, M.; Lobell, D. B.; Field, C. B.; Mahalov, A.

    2012-12-01

    Brazil is the leading producer of sugar cane in the world with roughly half used for ethanol production. Because of suitable climatic growing conditions, the majority of biofuel production is derived from sugar plantations in southeastern states. Anticipated increases in global demand for biofuels are expected to lead to future sugar cane expansion extending into Brazilian pasturelands and native cerrado. Prior to undergoing large-scale expansion an evaluation of impacts on the region's hydroclimate is warranted. Using a suite of multi-year ensemble-based simulations with the WRF modeling system, we quantify hydroclimatic consequences of sugar cane expansion across portions of south-central Brazil. Conversion from current land use to sugar cane causes opposing seasonal impacts on near-surface temperature. Proggresively greater cooling is simulated during the course of the growing season, followed by an abrupt warming shift post-harvest. Although seasonal impacts on near-surface temperature are significant, with cooling of 1C occurring during the peak of the growing season followed by warming of similar magnitude, impacts are small when annually averaged. Ensemble mean differences between the imposed sugar cane expansion and non-expansion scenario are suggestive of a drying precipitation trend, yet large uncertainty among individual members precludes definitive statements about impacts on the region's rainfall.

  7. Meeting Canadian Forces Expansion Goals through Retention

    DTIC Science & Technology

    2010-05-01

    performed well) for the recognition they would receive, while at the same time supporting satisfaction of intrinsic needs, by reinforcing the good feeling...Expansion Goals Through Expansion 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS LCol M.A. Nixon 6. AUTHOR(S) 7. PERFORMING ORGANIZATION NAME(S...AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING

  8. Visible-Light Photocatalytic Intramolecular Cyclopropane Ring Expansion.

    PubMed

    Luis-Barrera, Javier; Laina-Martín, Víctor; Rigotti, Thomas; Peccati, Francesca; Solans-Monfort, Xavier; Sodupe, Mariona; Mas-Ballesté, Rubén; Liras, Marta; Alemán, José

    2017-06-26

    Described herein is a new visible-light photocatalytic strategy for the synthesis of enantioenriched dihydrofurans and cyclopentenes by an intramolecular nitro cyclopropane ring expansion reaction. Mechanistic studies and DFT calculations are used to elucidate the key factors in this new ring expansion reaction, and the need for the nitro group on the cyclopropane. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Instability of a planar expansion wave.

    PubMed

    Velikovich, A L; Zalesak, S T; Metzler, N; Wouchuk, J G

    2005-10-01

    An expansion wave is produced when an incident shock wave interacts with a surface separating a fluid from a vacuum. Such an interaction starts the feedout process that transfers perturbations from the rippled inner (rear) to the outer (front) surface of a target in inertial confinement fusion. Being essentially a standing sonic wave superimposed on a centered expansion wave, a rippled expansion wave in an ideal gas, like a rippled shock wave, typically produces decaying oscillations of all fluid variables. Its behavior, however, is different at large and small values of the adiabatic exponent gamma. At gamma > 3, the mass modulation amplitude delta(m) in a rippled expansion wave exhibits a power-law growth with time alpha(t)beta, where beta = (gamma - 3)/(gamma - 1). This is the only example of a hydrodynamic instability whose law of growth, dependent on the equation of state, is expressed in a closed analytical form. The growth is shown to be driven by a physical mechanism similar to that of a classical Richtmyer-Meshkov instability. In the opposite extreme gamma - 1 < 1, delta(m) exhibits oscillatory growth, approximately linear with time, until it reaches its peak value approximately (gamma - 1)(-1/2), and then starts to decrease. The mechanism driving the growth is the same as that of Vishniac's instability of a blast wave in a gas with low . Exact analytical expressions for the growth rates are derived for both cases and favorably compared to hydrodynamic simulation results.

  10. Method for cancelling expansion waves in a wave rotor

    NASA Astrophysics Data System (ADS)

    Paxson, Daniel E.

    1994-03-01

    A wave rotor system includes a wave rotor coupled to first and second end plates. Special ports are provided, one in each of the first and second end plates, to cancel expansion waves generated by the release of working fluid from the wave rotor. One of the expansion waves is reflected in the wave rotor from a reflecting portion, and provided to the special port in the second end plate. Fluid present at the special port in the second end plate has a stagnation pressure and mass flow which is substantially the same as that of the cells of the wave rotor communicating with such special port. This allows for cancellation of the expansion wave generated by the release of working fluid from the wave rotor. The special port in the second end plate has a first end corresponding substantially to the head of the expansion wave, and a second end corresponding substantially to the tail of the expansion wave. Also, the special port is configured to continually change along the circumference of the second end plate to affect expansion wave cancellation. An expansion wave generated by a second release of working fluid from the wave rotor is cancelled in a similar manner to that described above using a special port in the first end plate. Preferably the cycle of operation of the wave rotor system is designed so that the stagnation pressure and mass flow of the fluid present at the special ports is the same so that the special ports may be connected by a common duct.

  11. 14 CFR 29.969 - Fuel tank expansion space.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel tank expansion space. 29.969 Section 29.969 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.969 Fuel tank expansion space...

  12. 14 CFR 27.969 - Fuel tank expansion space.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel tank expansion space. 27.969 Section 27.969 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.969 Fuel tank expansion space...

  13. 14 CFR 29.969 - Fuel tank expansion space.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel tank expansion space. 29.969 Section 29.969 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.969 Fuel tank expansion space...

  14. 14 CFR 25.969 - Fuel tank expansion space.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel tank expansion space. 25.969 Section 25.969 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.969 Fuel tank expansion space...

  15. 14 CFR 27.969 - Fuel tank expansion space.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel tank expansion space. 27.969 Section 27.969 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.969 Fuel tank expansion space...

  16. 14 CFR 29.969 - Fuel tank expansion space.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel tank expansion space. 29.969 Section 29.969 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.969 Fuel tank expansion space...

  17. 14 CFR 25.969 - Fuel tank expansion space.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel tank expansion space. 25.969 Section 25.969 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.969 Fuel tank expansion space...

  18. 14 CFR 27.969 - Fuel tank expansion space.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel tank expansion space. 27.969 Section 27.969 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.969 Fuel tank expansion space...

  19. 14 CFR 25.969 - Fuel tank expansion space.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel tank expansion space. 25.969 Section 25.969 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.969 Fuel tank expansion space...

  20. 14 CFR 29.969 - Fuel tank expansion space.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel tank expansion space. 29.969 Section 29.969 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.969 Fuel tank expansion space...

  1. 14 CFR 25.969 - Fuel tank expansion space.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel tank expansion space. 25.969 Section 25.969 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.969 Fuel tank expansion space...

  2. 14 CFR 29.969 - Fuel tank expansion space.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel tank expansion space. 29.969 Section 29.969 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System § 29.969 Fuel tank expansion space...

  3. 14 CFR 27.969 - Fuel tank expansion space.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel tank expansion space. 27.969 Section 27.969 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.969 Fuel tank expansion space...

  4. 14 CFR 27.969 - Fuel tank expansion space.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel tank expansion space. 27.969 Section 27.969 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.969 Fuel tank expansion space...

  5. 14 CFR 25.969 - Fuel tank expansion space.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel tank expansion space. 25.969 Section 25.969 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.969 Fuel tank expansion space...

  6. Variations in the expansion and shear scalars for dissipative fluids

    NASA Astrophysics Data System (ADS)

    Akram, A.; Ahmad, S.; Jami, A. Rehman; Sufyan, M.; Zahid, U.

    2018-04-01

    This work is devoted to the study of some dynamical features of spherical relativistic locally anisotropic stellar geometry in f(R) gravity. In this paper, a specific configuration of tanh f(R) cosmic model has been taken into account. The mass function through technique introduced by Misner-Sharp has been formulated and with the help of it, various fruitful relations are derived. After orthogonal decomposition of the Riemann tensor, the tanh modified structure scalars are calculated. The role of these tanh modified structure scalars (MSS) has been discussed through shear, expansion as well as Weyl scalar differential equations. The inhomogeneity factor has also been explored for the case of radiating viscous locally anisotropic spherical system and spherical dust cloud with and without constant Ricci scalar corrections.

  7. Species-specific chitin-binding module 18 expansion in the amphibian pathogen Batrachochytrium dendrobatidis.

    PubMed

    Abramyan, John; Stajich, Jason E

    2012-01-01

    Batrachochytrium dendrobatidis is the causative agent of chytridiomycosis, which is considered one of the driving forces behind the worldwide decline in populations of amphibians. As a member of the phylum Chytridiomycota, B. dendrobatidis has diverged significantly to emerge as the only pathogen of adult vertebrates. Such shifts in lifestyle are generally accompanied by various degrees of genomic modifications, yet neither its mode of pathogenicity nor any factors associated with it have ever been identified. Presented here is the identification and characterization of a unique expansion of the carbohydrate-binding module family 18 (CBM18), specific to B. dendrobatidis. CBM (chitin-binding module) expansions have been likened to the evolution of pathogenicity in a variety of fungus species, making this expanded group a prime candidate for the identification of potential pathogenicity factors. Furthermore, the CBM18 expansions are confined to three categories of genes, each having been previously implicated in host-pathogen interactions. These correlations highlight this specific domain expansion as a potential key player in the mode of pathogenicity in this unique fungus. The expansion of CBM18 in B. dendrobatidis is exceptional in its size and diversity compared to other pathogenic species of fungi, making this genomic feature unique in an evolutionary context as well as in pathogenicity. Amphibian populations are declining worldwide at an unprecedented rate. Although various factors are thought to contribute to this phenomenon, chytridiomycosis has been identified as one of the leading causes. This deadly fungal disease is cause by Batrachochytrium dendrobatidis, a chytrid fungus species unique in its pathogenicity and, furthermore, its specificity to amphibians. Despite more than two decades of research, the biology of this fungus species and its deadly interaction with amphibians had been notoriously difficult to unravel. Due to the alarming rate of worldwide

  8. Effects of emergency department expansion on emergency department patient flow.

    PubMed

    Mumma, Bryn E; McCue, James Y; Li, Chin-Shang; Holmes, James F

    2014-05-01

    Emergency department (ED) crowding is an increasing problem associated with adverse patient outcomes. ED expansion is one method advocated to reduce ED crowding. The objective of this analysis was to determine the effect of ED expansion on measures of ED crowding. This was a retrospective study using administrative data from two 11-month periods before and after the expansion of an ED from 33 to 53 adult beds in an academic medical center. ED volume, staffing, and hospital admission and occupancy data were obtained either from the electronic health record (EHR) or from administrative records. The primary outcome was the rate of patients who left without being treated (LWBT), and the secondary outcome was total ED boarding time for admitted patients. A multivariable robust linear regression model was used to determine whether ED expansion was associated with the outcome measures. The mean (±SD) daily adult volume was 128 (±14) patients before expansion and 145 (±17) patients after. The percentage of patients who LWBT was unchanged: 9.0% before expansion versus 8.3% after expansion (difference = 0.6%, 95% confidence interval [CI] = -0.16% to 1.4%). Total ED boarding time increased from 160 to 180 hours/day (difference = 20 hours, 95% CI = 8 to 32 hours). After daily ED volume, low-acuity area volume, daily wait time, daily boarding hours, and nurse staffing were adjusted for, the percentage of patients who LWBT was not independently associated with ED expansion (p = 0.053). After ED admissions, ED intensive care unit (ICU) admissions, elective surgical admissions, hospital occupancy rate, ICU occupancy rate, and number of operational ICU beds were adjusted for, the increase in ED boarding hours was independently associated with the ED expansion (p = 0.005). An increase in ED bed capacity was associated with no significant change in the percentage of patients who LWBT, but had an unintended consequence of an increase in ED boarding hours. ED expansion alone does

  9. Theoretical modelling on thermal expansion of Al, Ag and Cu nanomaterials

    NASA Astrophysics Data System (ADS)

    Manu, Mehul; Dubey, Vikash

    2018-05-01

    A simple theoretical model is developed for the calculating the coefficient of volume thermal expansion (CTE) and volume thermal expansion (VTE) of Al, Ag and Cu nanomaterials by considering the cubo-octahedral structure with the change of temperature and the cluster size. At the room temperature, the coefficient of volume thermal expansion decreases sharply below 20-25 nm and the decrement of the coefficient of volume thermal expansion becomes slower above 20-25 nm. We also saw a variation in the volume thermal expansion with the variation of temperature and cluster size. At a fixed cluster size, the volume thermal expansion increases with an increase of temperature at below the melting temperature and show a linear relation of volume thermal expansion with the temperature. At a constant temperature, the volume thermal expansion decreases rapidly with an increase in cluster size below 20-25 nm and after 20-25 nm the decrement of volume thermal expansion becomes slower with the increase of the size of the cluster. Thermal expansion is due to the anharmonicity of the atom interaction. As the temperature rises the amplitude of crystal lattice vibration increases, but the equilibrium distance shifts as the atom spend more time at distance greater than the original spacing due as the repulsion at short distance greater than the corresponding attraction at farther distance. In considering the cubo- octahedral structure with the cluster order, the model prediction on the CTE and the VTE are in good agreement with the available experimental data which demonstrate the validity of our work.

  10. Resonance lamp absorption measurement of OH number density and temperature in expansion tube scramjet engine tests

    NASA Technical Reports Server (NTRS)

    Lempert, Walter R.; Trucco, Richard E.; Bittner, Robert D.

    1992-01-01

    In this paper, we report results of hydroxyl radical and static temperature measurements performed in the General Applied Science Laboratories-NASA HYPULSE expansion tube facility using the microwave resonance lamp absorption technique. Data were obtained as part of a series of hydrogen/air and hydrogen/oxygen combustion tests at stagnation enthalpies corresponding to Mach 17 flight speeds. Data from a representative injector configuration is compared to a full Navier-Stokes CFD solution.

  11. Thermal expansion and phase transitions of α-AlF{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morelock, Cody R.; Hancock, Justin C.; Wilkinson, Angus P., E-mail: angus.wilkinson@chemistry.gatech.edu

    ReO{sub 3}-type materials are of interest for their potential low or negative thermal expansion. Many metal trifluorides MF{sub 3} adopt the cubic form of this structure at elevated temperatures, which rhombohedrally distorts upon cooling. The rhombohedral form displays strong positive volume thermal expansion, but cubic MF{sub 3} display much lower and sometimes negative thermal expansion. The expansion behavior of α-AlF{sub 3} was characterized via synchrotron powder diffraction between 323 and 1177 K. α-AlF{sub 3} is rhombohedral at ambient conditions and displays strongly anisotropic thermal expansion. The volume coefficient of thermal expansion (CTE), α{sub V}, at 500 K is ∼86 ppmmore » K{sup −1}, but the linear CTE along the c-axis, α{sub c}, is close to zero. α-AlF{sub 3} becomes cubic on heating to ∼713 K and continues to show positive thermal expansion above the phase transition (α{sub V}(900 K) ∼25 ppm K{sup −1}). - Graphical abstract: α-AlF{sub 3} has a rhombohedrally distorted ReO{sub 3}-type structure at ambient conditions and displays strongly positive volume thermal expansion that is highly anisotropic; the material becomes cubic on heating above ∼713 K and continues to show positive thermal expansion. - Highlights: • ReO{sub 3}-type α-AlF{sub 3} displays strongly anisotropic thermal expansion below 713 K. • α-AlF{sub 3} is cubic above 713 K and maintains positive (isotropic) thermal expansion. • The volume CTE changes from ∼86 to ∼25 ppm K{sup −1} on heating from 500 to 900 K. • The PTE of cubic α-AlF{sub 3} may be due to the presence of local octahedral tilts.« less

  12. The 1/ N Expansion of Tensor Models Beyond Perturbation Theory

    NASA Astrophysics Data System (ADS)

    Gurau, Razvan

    2014-09-01

    We analyze in full mathematical rigor the most general quartically perturbed invariant probability measure for a random tensor. Using a version of the Loop Vertex Expansion (which we call the mixed expansion) we show that the cumulants write as explicit series in 1/ N plus bounded rest terms. The mixed expansion recasts the problem of determining the subleading corrections in 1/ N into a simple combinatorial problem of counting trees decorated by a finite number of loop edges. As an aside, we use the mixed expansion to show that the (divergent) perturbative expansion of the tensor models is Borel summable and to prove that the cumulants respect an uniform scaling bound. In particular the quartically perturbed measures fall, in the N→ ∞ limit, in the universality class of Gaussian tensor models.

  13. A two-parameter family of double-power-law biorthonormal potential-density expansions

    NASA Astrophysics Data System (ADS)

    Lilley, Edward J.; Sanders, Jason L.; Evans, N. Wyn

    2018-07-01

    We present a two-parameter family of biorthonormal double-power-law potential-density expansions. Both the potential and density are given in a closed analytic form and may be rapidly computed via recurrence relations. We show that this family encompasses all the known analytic biorthonormal expansions: the Zhao expansions (themselves generalizations of ones found earlier by Hernquist & Ostriker and by Clutton-Brock) and the recently discovered Lilley et al. expansion. Our new two-parameter family includes expansions based around many familiar spherical density profiles as zeroth-order models, including the γ models and the Jaffe model. It also contains a basis expansion that reproduces the famous Navarro-Frenk-White (NFW) profile at zeroth order. The new basis expansions have been found via a systematic methodology which has wide applications in finding other new expansions. In the process, we also uncovered a novel integral transform solution to Poisson's equation.

  14. A two-parameter family of double-power-law biorthonormal potential-density expansions

    NASA Astrophysics Data System (ADS)

    Lilley, Edward J.; Sanders, Jason L.; Evans, N. Wyn

    2018-05-01

    We present a two-parameter family of biorthonormal double-power-law potential-density expansions. Both the potential and density are given in closed analytic form and may be rapidly computed via recurrence relations. We show that this family encompasses all the known analytic biorthonormal expansions: the Zhao expansions (themselves generalizations of ones found earlier by Hernquist & Ostriker and by Clutton-Brock) and the recently discovered Lilley et al. (2017a) expansion. Our new two-parameter family includes expansions based around many familiar spherical density profiles as zeroth-order models, including the γ models and the Jaffe model. It also contains a basis expansion that reproduces the famous Navarro-Frenk-White (NFW) profile at zeroth order. The new basis expansions have been found via a systematic methodology which has wide applications in finding other new expansions. In the process, we also uncovered a novel integral transform solution to Poisson's equation.

  15. A two-parameter family of double-power-law biorthonormal potential-density expansions

    NASA Astrophysics Data System (ADS)

    Lilley, Edward J.; Sanders, Jason L.; Evans, N. Wyn

    2018-05-01

    We present a two-parameter family of biorthonormal double-power-law potential-density expansions. Both the potential and density are given in closed analytic form and may be rapidly computed via recurrence relations. We show that this family encompasses all the known analytic biorthonormal expansions: the Zhao expansions (themselves generalizations of ones found earlier by Hernquist & Ostriker and by Clutton-Brock) and the recently discovered Lilley et al. (2018b) expansion. Our new two-parameter family includes expansions based around many familiar spherical density profiles as zeroth-order models, including the γ models and the Jaffe model. It also contains a basis expansion that reproduces the famous Navarro-Frenk-White (NFW) profile at zeroth order. The new basis expansions have been found via a systematic methodology which has wide applications in finding other new expansions. In the process, we also uncovered a novel integral transform solution to Poisson's equation.

  16. Comparison of Slab and Cylinder Expansion Test Geometries for PBX 9501

    NASA Astrophysics Data System (ADS)

    Jackson, Scott; Anderson, Eric; Aslam, Tariq; Whitley, Von

    2017-06-01

    The slab expansion test or ``sandwich test'' is the two-dimensional analog of the axisymmetric cylinder expansion test. The test consists of a high-aspect-ratio rectangular cuboid of high explosive with the two large sides confined by a thin metal confiner. Analysis of the confiner motion after the passage of the detonation yields the detonation product isentrope, which is a specialized form of the product equation of state. The slab expansion geometry inherently exhibits a lower product expansion rate and lower plastic work on the confiner than the cylinder expansion geometry. The slab geometry does, however, have a shorter test time. We review recent slab and cylinder expansion data with PBX 9501, the associated equation of state analysis, and the advantages of each geometry for different applications.

  17. Genetic traces of east-to-west human expansion waves in Eurasia.

    PubMed

    Chaix, Raphaëlle; Austerlitz, Frédéric; Hegay, Tatyana; Quintana-Murci, Lluís; Heyer, Evelyne

    2008-07-01

    In this study, we describe the landscape of human demographic expansions in Eurasia using a large continental Y chromosome and mitochondrial DNA dataset. Variation at these two uniparentally-inherited genetic systems retraces expansions that occurred in the past 60 ky, and shows a clear decrease of expansion ages from east to west Eurasia. To investigate the demographic events at the origin of this westward decrease of expansion ages, the estimated divergence ages between Eurasian populations are compared with the estimated expansion ages within each population. Both markers suggest that the demographic expansion diffused from east to west in Eurasia in a demic way, i.e., through migrations of individuals (and not just through diffusion of new technologies), highlighting the prominent role of eastern regions within Eurasia during Palaeolithic times. (c) 2008 Wiley-Liss, Inc.

  18. Medicaid expansion and access to care among cancer survivors: a baseline overview.

    PubMed

    Tarazi, Wafa W; Bradley, Cathy J; Harless, David W; Bear, Harry D; Sabik, Lindsay M

    2016-06-01

    Medicaid expansion under the Affordable Care Act facilitates access to care among vulnerable populations, but 21 states have not yet expanded the program. Medicaid expansions may provide increased access to care for cancer survivors, a growing population with chronic conditions. We compare access to health care services among cancer survivors living in non-expansion states to those living in expansion states, prior to Medicaid expansion under the Affordable Care Act. We use the 2012 and 2013 Behavioral Risk Factor Surveillance System to estimate multiple logistic regression models to compare inability to see a doctor because of cost, having a personal doctor, and receiving an annual checkup in the past year between cancer survivors who lived in non-expansion states and survivors who lived in expansion states. Cancer survivors in non-expansion states had statistically significantly lower odds of having a personal doctor (adjusted odds ratio [AOR] 0.76, 95 % confidence interval [CI] 0.63-0.92, p < 0.05) and higher odds of being unable to see a doctor because of cost (AOR 1.14, 95 % CI 0.98-1.31, p < 0.10). Statistically significant differences were not found for annual checkups. Prior to the passage of the Affordable Care Act, cancer survivors living in expansion states had better access to care than survivors living in non-expansion states. Failure to expand Medicaid could potentially leave many cancer survivors with limited access to routine care. Existing disparities in access to care are likely to widen between cancer survivors in Medicaid non-expansion and expansion states.

  19. Compressive Sensing Cluster Expansion Studies of Lithium Intercalation and Phase Transformation in MoS2 for Energy Storage

    NASA Astrophysics Data System (ADS)

    Liu, Chi-Ping; Zhou, Fei; Ozolins, Vidvuds; University of California, Los Angeles Collaboration; Lawrence livermore national laboratory Collaboration

    2015-03-01

    Bulk molybdenum disulfide (MoS2) is a good electrode material candidate for energy storage applications, such as lithium ion batteries and supercapacitors due to its high theoretical energy and power density. First-principles density-functional theory (DFT) calculations combined with cluster expansion are an effective method to study thermodynamic and kinetic properties of electrode materials. In order to construct accurate models for cluster expansion, it is important to effectively choose clusters with significant contributions. In this work, we employ a compressive sensing based technique to select relevant clusters in order to build an accurate Hamiltonian for cluster expansion, enabling the study of Li intercalation in MoS2. We find that the 2H MoS2 structure is only stable at low Li content while 1T MoS2 is the preferred phase at high Li content. The results show that the 2H MoS2 phase transforms into the disordered 1T phase and the disordered 1T structure remains after the first Li insertion/deinsertion cycle suggesting that disordered 1T MoS2 is stable even at dilute Li content. This work also highlights that cluster expansion treated with compressive sensing is an effective and powerful tool for model construction and can be applied to advanced battery and supercapacitor electrode materials.

  20. Medicaid Expansion in a Litmus State: The Missouri Struggle.

    PubMed

    Brasfield, James

    2016-12-01

    For a century Missouri was a bellwether state in presidential elections, always picking the winner. Since 2008 it has been experiencing a partisan divide along urban/rural lines with President Obama losing the state twice. The battle over Medicaid expansion found a Democratic governor unable to convince a Republican legislative majority to support ACA-based expansion. The more highly partisan legislative environment has rendered traditional bargaining and negotiations impossible on the controversial question of Medicaid expansion.Despite supportive advocacy by hospitals and the business community, the Republican legislative leaders have opposed any movement on Medicaid expansion over the past four years. There will be a new occupant in the governor's mansion in 2017, which may create a fork in the road. Democrats are unlikely to regain a legislative majority, and one path is continued Republican refusal to consider expansion. The other path features the new governor responding to the national 2016 election outcome, and creating the prospects for a deal, perhaps around a waiver plan. Copyright © 2016 by Duke University Press.

  1. Improvements to the ejector expansion refrigeration cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menegay, P.; Kornhauser, A.A.

    1996-12-31

    The ejector expansion refrigeration cycle (EERC) is a variant of the standard vapor compression cycle in which an ejector is used to recover part of the work that would otherwise be lost in the expansion valve. In initial testing EERC performance was poor, mainly due to thermodynamic non-equilibrium conditions in the ejector motive nozzle. Modifications were made to correct this problem, and significant performance improvements were found.

  2. Evaluation on expansive performance of the expansive soil using electrical responses

    NASA Astrophysics Data System (ADS)

    Chu, Ya; Liu, Songyu; Bate, Bate; Xu, Lei

    2018-01-01

    Light structures, such as highways and railroads, built on expansive soils are prone to damages from the swelling of their underlain soil layers. Considerable amount of research has been conducted to characterize the swelling properties of expansive soils. Current swell characterization models, however, are limited by lack of standardized tests. Electrical methods are non-destructive, and are faster and less expensive than the traditional geotechnical methods. Therefore, geo-electrical methods are attractive for defining soil characteristics, including the swelling behavior. In this study, comprehensive laboratory experiments were undertaken to measure the free swelling and electrical resistivity of the mixtures of commercial kaolinite and bentonite. The electrical conductivity of kaolinite-bentonite mixtures was measured by a self-developed four-electrode soil resistivity box. Increasing the free swelling rate of the kaolinite-bentonite mixtures (0.72 to 1 of porosity of soils samples) led to a reduction in the electrical resistivity and an increase in conductivity. A unique relationship between free swelling rate and normalized surface conductivity was constructed for expensive soils by eliminating influences of porosity and m exponent. Therefore, electrical response measurement can be used to characterize the free swelling rate of expensive soils.

  3. Random wandering of laser beams with orbital angular momentum during propagation through atmospheric turbulence.

    PubMed

    Aksenov, Valerii P; Kolosov, Valeriy V; Pogutsa, Cheslav E

    2014-06-10

    The propagation of laser beams having orbital angular momenta (OAM) in the turbulent atmosphere is studied numerically. The variance of random wandering of these beams is investigated with the use of the Monte Carlo technique. It is found that, among various types of vortex laser beams, such as the Laguerre-Gaussian (LG) beam, modified Bessel-Gaussian beam, and hypergeometric Gaussian beam, having identical initial effective radii and OAM, the LG beam occupying the largest effective volume in space is the most stable one.

  4. Cryogenic expansion joint for large superconducting magnet structures

    DOEpatents

    Brown, Robert L.

    1978-01-01

    An expansion joint is provided that accommodates dimensional changes occurring during the cooldown and warm-up of large cryogenic devices such as superconducting magnet coils. Flattened tubes containing a refrigerant such as gaseous nitrogen (N.sub.2) are inserted into expansion spaces in the structure. The gaseous N.sub.2 is circulated under pressure and aids in the cooldown process while providing its primary function of accommodating differential thermal contraction and expansion in the structure. After lower temperatures are reached and the greater part of the contraction has occured, the N.sub.2 liquefies then solidifies to provide a completely rigid structure at the cryogenic operating temperatures of the device.

  5. Going Up? The Pros and Cons of Vertical Expansion.

    ERIC Educational Resources Information Center

    Myler, Patricia A.; Boggs, Richard C.

    2002-01-01

    Describes the advantages and disadvantages of the vertical expansion of school buildings. Considers such factors as fire protection, compliance with the Americans with Disabilities Act, and cost. Discusses alternatives to vertical expansion. (PKP)

  6. 34 CFR 361.35 - Innovation and expansion activities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 34 Education 2 2013-07-01 2013-07-01 false Innovation and expansion activities. 361.35 Section 361.35 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF SPECIAL... Innovation and expansion activities. (a) The State plan must assure that the State will reserve and use a...

  7. 34 CFR 361.35 - Innovation and expansion activities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 34 Education 2 2012-07-01 2012-07-01 false Innovation and expansion activities. 361.35 Section 361.35 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF SPECIAL... Innovation and expansion activities. (a) The State plan must assure that the State will reserve and use a...

  8. 34 CFR 361.35 - Innovation and expansion activities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 34 Education 2 2011-07-01 2010-07-01 true Innovation and expansion activities. 361.35 Section 361.35 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF SPECIAL... Innovation and expansion activities. (a) The State plan must assure that the State will reserve and use a...

  9. 34 CFR 361.35 - Innovation and expansion activities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 34 Education 2 2014-07-01 2013-07-01 true Innovation and expansion activities. 361.35 Section 361.35 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF SPECIAL... Innovation and expansion activities. (a) The State plan must assure that the State will reserve and use a...

  10. Public insurance expansions and crowd out of private coverage.

    PubMed

    Marquis, M Susan; Long, Stephen H

    2003-03-01

    The extent to which persons enrolling in new public insurance programs substitute the public coverage for private insurance is of concern to policy makers. To look at the extent of the substitution resulting from new state programs that cover a broad base of the low-income population and to look at the responses of both families and employers. The March CPS for 1991-1993 and 1997-1998 were used to study the responses of families. Two large national surveys of employers with information about the employment-based system in 1993 and 1997 were used to study employer responses. The analysis looks at changes in coverage and employer offer rates before and after the public insurance expansions in selected states and compares these changes to those in a control group in states without expansions. Coverage by private insurance for low-income persons in states with expansions fell by more than expected based on the control states, indicating some substitution of public coverage for private insurance. Changes in employee coverage in own-employer sponsored insurance accord with this result. The expansion of public insurance has a bigger effect on employer offer decisions when a large share of its workers is eligible for public programs. The results show a significant substitution of public insurance for private coverage in the expansions studied. However, endogeneity of state expansion policies and possible confounding with other policy changes temper the conclusions. More recent public insurance expansions as part of the State Childrens' Health Insurance Program have adopted a range of methods to limit crowd out. Future research is needed to evaluate whether these procedures and rules have succeeded.

  11. [Spatiotemporal characteristics of urban land expansion in central area of Shanghai, China].

    PubMed

    Hu, Han-Wen; Wei, Ben-Sheng; Shen, Xing-Hua; Li, Jun-Xiang

    2013-12-01

    Using the high spatial resolution (2.5 m) color-infrared aerial photos acquired in 1989, 1994, 2000 and 2005, this paper analyzed the spatiotemporal characteristics of rapid urban expansion in central Shanghai with urban expansion intensity index and gradient analysis. Results showed that urban land use in Shanghai increased rapidly in a "pancake" style during the study period, and the anisotropic urban expansion moved the urban center 2.62 km toward southwest. The urban land use expansion intensity doubled and showed a rural-urban gradient. The most intensive urban expansion zone fell in the rural-urban transition zone, indicating the dominance of peripheral expansion as the primary urban expansion mode in Shanghai. However, the urban land use intensity decreased with time at the urban center. The primary driving forces of urban expansion included support from government policies and decision-making, enhanced economic activities, societal fixed assets investment, urban infrastructure investment, extension of transportation routes, as well as increase in urban population.

  12. Bigravity from gradient expansion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamashita, Yasuho; Tanaka, Takahiro; Department of Physics, Kyoto University,606-8502, Kyoto

    2016-05-04

    We discuss how the ghost-free bigravity coupled with a single scalar field can be derived from a braneworld setup. We consider DGP two-brane model without radion stabilization. The bulk configuration is solved for given boundary metrics, and it is substituted back into the action to obtain the effective four-dimensional action. In order to obtain the ghost-free bigravity, we consider the gradient expansion in which the brane separation is supposed to be sufficiently small so that two boundary metrics are almost identical. The obtained effective theory is shown to be ghost free as expected, however, the interaction between two gravitons takesmore » the Fierz-Pauli form at the leading order of the gradient expansion, even though we do not use the approximation of linear perturbation. We also find that the radion remains as a scalar field in the four-dimensional effective theory, but its coupling to the metrics is non-trivial.« less

  13. Thermal Expansion of Vacuum Plasma Sprayed Coatings

    NASA Technical Reports Server (NTRS)

    Raj, S V.; Palczer, A. R.

    2010-01-01

    Metallic Cu-8%Cr, Cu-26%Cr, Cu-8%Cr-1%Al, NiAl and NiCrAlY monolithic coatings were fabricated by vacuum plasma spray deposition processes for thermal expansion property measurements between 293 and 1223 K. The corrected thermal expansion, (DL/L(sub 0) varies with the absolute temperature, T, as (DL/L(sub 0) = A(T - 293)(sup 3) + BIT - 293)(sup 2) + C(T - 293) + D, where, A, B, C and D are thermal, regression constants. Excellent reproducibility was observed for all of the coatings except for data obtained on the Cu-8%Cr and Cu-26%Cr coatings in the first heat-up cycle, which deviated from those determined in the subsequent cycles. This deviation is attributed to the presence of residual stresses developed during the spraying of the coatings, which are relieved after the first heat-up cycle. In the cases of Cu-8%Cr and NiAl, the thermal expansion data were observed to be reproducible for three specimens. The linear expansion data for Cu-8% Cr and Cu-26%Cr agree extremely well with rule of mixture (ROM) predictions. Comparison of the data for the Cu-8%Cr coating with literature data for Cr and Cu revealed that the thermal expansion behavior of this alloy is determined by the Cu-rich matrix. The data for NiAl and NiCrAlY are in excellent agreement with published results irrespective of composition and the methods used for processing the materials. The implications of these results on coating GRCop-84 copper alloy combustor liners for reusable launch vehicles are discussed.

  14. 216-B-3 expansion ponds closure plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-10-01

    This document describes the activities for clean closure under the Resource Conservation and Recovery Act of 1976 (RCRA) of the 216-B-3 Expansion Ponds. The 216-B-3 Expansion Ponds are operated by the US Department of Energy, Richland Operations Office (DOE-RL) and co-operated by Westinghouse Hanford Company (Westinghouse Hanford). The 216-B-3 Expansion Ponds consists of a series of three earthen, unlined, interconnected ponds that receive waste water from various 200 East Area operating facilities. The 3A, 3B, and 3C ponds are referred to as Expansion Ponds because they expanded the capability of the B Pond System. Waste water (primarily cooling water, steammore » condensate, and sanitary water) from various 200 East Area facilities is discharged to the Bypass pipe (Project X-009). Water discharged to the Bypass pipe flows directly into the 216-B-3C Pond. The ponds were operated in a cascade mode, where the Main Pond overflowed into the 3A Pond and the 3A Pond overflowed into the 3C Pond. The 3B Pond has not received waste water since May 1985; however, when in operation, the 3B Pond received overflow from the 3A Pond. In the past, waste water discharges to the Expansion Ponds had the potential to have contained mixed waste (radioactive waste and dangerous waste). The radioactive portion of mixed waste has been interpreted by the US Department of Energy (DOE) to be regulated under the Atomic Energy Act of 1954; the dangerous waste portion of mixed waste is regulated under RCRA.« less

  15. Locally-smeared operator product expansions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monahan, Christopher; Orginos, Kostantinos

    2014-12-01

    We propose a "locally-smeared Operator Product Expansion" (sOPE) to decompose non-local operators in terms of a basis of locally-smeared operators. The sOPE formally connects nonperturbative matrix elements of smeared degrees of freedom, determined numerically using the gradient flow, to non-local operators in the continuum. The nonperturbative matrix elements do not suffer from power-divergent mixing on the lattice, provided the smearing scale is kept fixed in the continuum limit. The presence of this smearing scale prevents a simple connection to the standard operator product expansion and therefore requires the construction of a two-scale formalism. We demonstrate the feasibility of our approachmore » using the example of real scalar field theory.« less

  16. Tunable thermal expansion and magnetism in Zr-doped ScF 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Tao; Xu, Jiale; Hu, Lei

    The negative thermal expansion (NTE) behavior provides us an opportunity to design materials with controllable coefficient of thermal expansion (CTE). In this letter, we report a tunable isotropic thermal expansion in the cubic (Sc1-xZrx)F3+δ over a wide temperature and CTE range (αl = -4.0 to +16.8 x 10-6 K-1, 298–648 K). The thermal expansion can be well adjusted from strong negative to zero, and finally to large positive. Intriguingly, isotropic zero thermal expansion (αl = 2.6 x 10-7 K-1, 298–648 K) has been observed in the composition of (Sc0.8Zr0.2)F3+δ. The controllable thermal expansion in (Sc1-xZrx)F3+δ is correlated to the localmore » structural distortion. Interestingly, the ordered magnetic behavior has been found in the zero thermal expansion compound of (Sc0.8Zr0.2)F3+δ at room temperature, which presumably correlates with the unpaired electron of the lower chemical valence of Zr cation. The present study provides a useful reference to control the thermal expansion and explore the multi-functionalization for NTE materials.« less

  17. Aeroelastic Model Structure Computation for Envelope Expansion

    NASA Technical Reports Server (NTRS)

    Kukreja, Sunil L.

    2007-01-01

    Structure detection is a procedure for selecting a subset of candidate terms, from a full model description, that best describes the observed output. This is a necessary procedure to compute an efficient system description which may afford greater insight into the functionality of the system or a simpler controller design. Structure computation as a tool for black-box modeling may be of critical importance in the development of robust, parsimonious models for the flight-test community. Moreover, this approach may lead to efficient strategies for rapid envelope expansion that may save significant development time and costs. In this study, a least absolute shrinkage and selection operator (LASSO) technique is investigated for computing efficient model descriptions of non-linear aeroelastic systems. The LASSO minimises the residual sum of squares with the addition of an l(Sub 1) penalty term on the parameter vector of the traditional l(sub 2) minimisation problem. Its use for structure detection is a natural extension of this constrained minimisation approach to pseudo-linear regression problems which produces some model parameters that are exactly zero and, therefore, yields a parsimonious system description. Applicability of this technique for model structure computation for the F/A-18 (McDonnell Douglas, now The Boeing Company, Chicago, Illinois) Active Aeroelastic Wing project using flight test data is shown for several flight conditions (Mach numbers) by identifying a parsimonious system description with a high percent fit for cross-validated data.

  18. Cropland expansion in Brazil, 2000 to 2014

    NASA Astrophysics Data System (ADS)

    Zalles, V.; Hansen, M.; Potapov, P.; Stehman, S. V.; Tyukavina, A.; Pickens, A. H.; Okpa, C.; Aguilar, R.; John, N.; Chavez, S.

    2017-12-01

    Brazil has become a global leader in the production of commodity row crops such as soybean, sugarcane, cotton, and corn. Here, we employ 30m spatial resolution Landsat data to estimate cropland extent in the year 2000 and its subsequent expansion through 2014. A probability-based sample of reference data allows us to report unbiased estimates of national, biome, and state-scale area of crop expansion with associated uncertainties. We find an increase in Brazilian cropland extent from 26.0 Mha in 2000 to 46.1 Mha in 2014. The cropland frontier states of Maranhao, Tocantins, Piaui, Bahia (MATOPIBA), Mato Grosso, Mato Grosso do Sul, and Para all more than doubled in cropland extent. The states of Goias, Minas Gerais and Sao Paulo experienced >50% increases. The vast majority of expansion, 79%, occurred on repurposed pasture lands, and 20% from the conversion of natural vegetation. Area of converted Cerrado savannas was nearly 2.5 times that of Amazon forests, and accounted for over half of new cropland in MATOPIBA. Spatio-temporal dynamics of cropland expansion are reflected in market conditions, land use policies, and other factors. Continued extensification of cropland is a viable option across Brazil with attendant benefits for and challenges to development.

  19. 34 CFR 361.35 - Innovation and expansion activities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 2 2010-07-01 2010-07-01 false Innovation and expansion activities. 361.35 Section 361... Innovation and expansion activities. (a) The State plan must assure that the State will reserve and use a... reserved funds were used during the preceding year. (Approved by the Office of Management and Budget under...

  20. Rocket nozzle expansion ratio analysis for dual-fuel earth-to-orbit vehicles

    NASA Technical Reports Server (NTRS)

    Martin, James A.

    1989-01-01

    Results are reported from a recent study of the effects of Space Shuttle Main Engine expansion ratio modifications, in the cases of both single-stage and two-stage systems. Two-position nozzles were employed; after varying the lower expansion ratio while the higher was held constant at 120, the lower expansion ratio was held constant at 40 or 60 while the higher expansion ratio was varied. The expansion ratios for minimum vehicle dry mass are different for single-stage and two-stage systems. For two-stage systems, a single expansion ratio of 77.5 provides a lower dry mass than any two-position nozzle.

  1. On WKB expansions for Alfven waves in the solar wind

    NASA Technical Reports Server (NTRS)

    Hollweg, Joseph V.

    1990-01-01

    The WKB expansion for 'toroidal' Alfven waves in solar wind, which is described by equations of Heinemann and Olbert (1980), is examined. In this case, the multiple scales method (Nayfeh, 1981) is used to obtain a uniform expansion. It is shown that the WKB expansion used by Belcher (1971) and Hollweg (1973) for Alfven waves in the solar wind is nonuniformly convergent.

  2. On WKB expansions for Alfven waves in the solar wind

    NASA Astrophysics Data System (ADS)

    Hollweg, Joseph V.

    1990-09-01

    The WKB expansion for 'toroidal' Alfven waves in solar wind, which is described by equations of Heinemann and Olbert (1980), is examined. In this case, the multiple scales method (Nayfeh, 1981) is used to obtain a uniform expansion. It is shown that the WKB expansion used by Belcher (1971) and Hollweg (1973) for Alfven waves in the solar wind is nonuniformly convergent.

  3. Strategic Expansion Models in Academic Radiology.

    PubMed

    Natesan, Rajni; Yang, Wei T; Tannir, Habib; Parikh, Jay

    2016-03-01

    In response to economic pressures, academic institutions in the United States and their radiology practices, are expanding into the community to build a larger network, thereby driving growth and achieving economies of scale. These economies of scale are being achieved variously via brick-and-mortar construction, community practice acquisition, and partnership-based network expansion. We describe and compare these three expansion models within a 4-part framework of: (1) upfront investment; (2) profitability impact; (3) brand impact; and (4) risk of execution. Copyright © 2016 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  4. Contemporary retinal imaging techniques in diabetic retinopathy: a review.

    PubMed

    Cole, Emily Dawn; Novais, Eduardo Amorim; Louzada, Ricardo Noguera; Waheed, Nadia K

    2016-05-01

    Over the last decade, there has been an expansion of imaging modalities available to clinicians to diagnose and monitor the treatment and progression of diabetic retinopathy. Recently, advances in image technologies related to OCT and OCT angiography have enabled improved visualization and understanding of this disease. In this review, we will describe the use of imaging techniques such as colour fundus photography, fundus autofluorescence, fluorescein angiography, infrared reflectance imaging, OCT, OCT-Angiography and techniques in adaptive optics and hyperspectral imaging in the diagnosis and management of diabetic retinopathy. © 2016 Royal Australian and New Zealand College of Ophthalmologists.

  5. Facilitating Expansive Learning in a Public Sector Organization

    ERIC Educational Resources Information Center

    Gustavsson, Maria

    2009-01-01

    The aim of this article is to discuss how learning opportunities can be organized to promote expansive learning in work practice. The discussion draws on results from a case study examining local development work and conditions that facilitate processes of expansive learning in a work team within a public sector organization in a Swedish…

  6. Investigation of some formal aspects of the boson expansion technique in nuclear theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pedrocchi, V.G.

    1982-01-01

    The use of the boson expansion theory (BET) in nuclear physics now has about twenty years history, and a large number of papers is available in the literature. Some of them emphasize BET's practical use, successfully showing that it is in fact a very powerful, practical tool to understand the collective properties in nuclei. Others, on the other hand, concentrated more on formal aspects of the BET, and it is these formal aspects we deal with in this dissertation. The BET is not unique, and thus a variety of methods has been proposed. It was felt that it was desirablemore » to see whether they were in fact different theories, or the difference was only apparent. Actually, at the surface, many theories look different from each other, having various merits and demerits. However, it is possible that they are more closely related than they appear; and, if so, it may be attempted to unify them in such a way that a new BET can be constructed which embodies all the merits of the various theories that have been known so far. With this goal in mind, every detailed comparison of two methods was explored: the commutator method (CM) and the Marumori-Yamamura-Tokunaga (MYT) method, which have been discussed most popularly in the past, though often with controversy. It was found that they are, in fact, equivalent theories if looked at from a particular point of view, although they are not necessarily exactly the same in every aspect. Similar comparison was also made with the generalized Holstein-Primakoff (GHP) and the Dyson methods.« less

  7. A technique for evaluating the influence of spatial sampling on the determination of global mean total columnar ozone

    NASA Technical Reports Server (NTRS)

    Tolson, R. H.

    1981-01-01

    A technique is described for providing a means of evaluating the influence of spatial sampling on the determination of global mean total columnar ozone. A finite number of coefficients in the expansion are determined, and the truncated part of the expansion is shown to contribute an error to the estimate, which depends strongly on the spatial sampling and is relatively insensitive to data noise. First and second order statistics are derived for each term in a spherical harmonic expansion which represents the ozone field, and the statistics are used to estimate systematic and random errors in the estimates of total ozone.

  8. Medicaid Expansion and ACA Repeal: Evidence From Ohio.

    PubMed

    Seiber, Eric E; Berman, Micah L

    2017-06-01

    To examine the health insurance coverage options for Medicaid expansion enrollees if the Affordable Care Act (ACA) is repealed, using evidence from Ohio, where more than half a million adults have enrolled in the state's Medicaid program through the ACA expansion. The Ohio Medicaid Assessment Survey interviewed 42 000 households in 2015. We report data from a unique battery of questions designed to identify insurance coverage immediately prior to Medicaid enrollment. Ninety-five percent of new Medicaid enrollees in Ohio did not have a private health insurance option immediately before enrollment. These new enrollees are predominantly older, low-income Whites with a high school education or less. Only 5% of new Medicaid enrollees were eligible for an employer-sponsored insurance plan to which they could potentially return in the case of repeal of the ACA. The vast majority of Medicaid expansion enrollees would have no plausible pathway to obtaining private-sector insurance if the ACA were repealed. Demographic similarities between the expansion population and 2016 exit polls suggest that coverage losses would fall disproportionately on members of the winning Republican coalition.

  9. Changes in Emergency Department Utilization After Early Medicaid Expansion in California.

    PubMed

    Sabik, Lindsay M; Cunningham, Peter J; Tehrani, Ali Bonakdar

    2017-06-01

    Medicaid expansions aim to improve access to primary care, which could reduce nonemergent (NE) use of the emergency department (ED). In contrast, Medicaid enrollees use the ED more than other groups, including the uninsured. Thus, the expected impact of Medicaid expansion on ED use is unclear. To estimate changes in total and NE ED visits as a result of California's early Medicaid expansion under the Affordable Care Act. In addition to overall changes in the number of visits, changes by payer and safety net hospital status are examined. We used a quasi-experimental approach to examine changes in ED utilization, comparing California expansion counties to comparison counties from California and 2 other states in the same region that did not implement Medicaid expansion during the study period. Regression estimates show no significant change in total number of ED visits following expansion. Medicaid visits increased by 145 visits per hospital-quarter in the first year following expansion and 242 visits subsequent to the first year, whereas visits among uninsured patients decreased by 129 visits per hospital-quarter in the first year and 175 visits in subsequent years, driven by changes at safety net hospitals. We also observe an increase in NE visits per hospital-quarter paid for by Medicaid, and a significant decrease in uninsured NE visits. Medicaid expansions in California were associated with increases in ED visits paid for by Medicaid and declines in uninsured visits. Expansion was also associated with changes in NE visits among Medicaid enrollees and the uninsured.

  10. Thermal expansion behavior of LDEF metal matrix composites

    NASA Technical Reports Server (NTRS)

    Le, T. D.; Steckel, G. L.

    1992-01-01

    The effects of the space environment on the thermal expansion stability of metal matrix composites (graphite/Al and graphite/Mg) will be presented. A sample from each category of metal matrix composites mounted on the leading and trailing edge was chosen for analysis of the temperature-time-thermal strain histories. Typical thermal expansion curves over the same range of temperature were selected at the beginning, mid, and end of the recording duration. The thermal expansion of selected post-flight LDEF samples were measured over the same range of temperature in the laboratory using a Michelson laser interferometer. The thermal strains were monitored concurrently with a laser interferometer and a mounted strain gage.

  11. Thermal expansion of coexistence of ferromagnetism and superconductivity

    NASA Astrophysics Data System (ADS)

    Hatayama, Nobukuni; Konno, Rikio

    2010-01-01

    The temperature dependence of thermal expansion of coexistence of ferromag-netism and superconductivity below the superconducting transition temperature Tc↑ of a majority spin conduction band is investigated. Majority spin and minority spin superconducting gaps exist in the coexistent state. We assume that the Curie temperature is much larger than the superconducting transition temperatures. The free energy that Linder et al. [Phys. Rev. B76, 054511 (2007)] derived is used. The thermal expansion of coexistence of ferromagnetism and superconductivity is derived by the application of the method of Takahashi and Nakano [J. Phys.: Condens. Matter 18, 521 (2006)]. We find that we have the anomalies of the thermal expansion in the vicinity of the superconducting transition temperatures.

  12. On a realization of { β}-expansion in QCD

    NASA Astrophysics Data System (ADS)

    Mikhailov, S. V.

    2017-04-01

    We suggest a simple algebraic approach to fix the elements of the { β}-expansion for renormalization group invariant quantities, which uses additional degrees of freedom. The approach is discussed in detail for N2LO calculations in QCD with the MSSM gluino — an additional degree of freedom. We derive the formulae of the { β}-expansion for the nonsinglet Adler D-function and Bjorken polarized sum rules in the actual N3LO within this quantum field theory scheme with the MSSM gluino and the scheme with the second additional degree of freedom. We discuss the properties of the { β}-expansion for higher orders considering the N4LO as an example.

  13. Review of Maxillary Expansion Appliance Activation Methods: Engineering and Clinical Perspectives

    PubMed Central

    Romanyk, D. L.; Lagravere, M. O.; Toogood, R. W.; Major, P. W.; Carey, J. P.

    2010-01-01

    Objective. Review the reported activation methods of maxillary expansion devices for midpalatal suture separation from an engineering perspective and suggest areas of improvement. Materials and Methods. A literature search of Scopus and PubMed was used to determine current expansion methods. A U.S. and Canadian patent database search was also conducted using patent classification and keywords. Any paper presenting a new method of expansion was included. Results. Expansion methods in use, or patented, can be classified as either a screw- or spring-type, magnetic, or shape memory alloy expansion appliance. Conclusions. Each activation method presented unique advantages and disadvantages from both clinical and engineering perspectives. Areas for improvement still remain and are identified in the paper. PMID:20948570

  14. Volume of Plasma Expansion and Functional Outcomes in Stroke.

    PubMed

    Miller, Joseph B; Lewandowski, Christopher; Wira, Charles R; Taylor, Andrew; Burmeister, Charlotte; Welch, Robert

    2017-04-01

    Plasma expansion in acute ischemic stroke has potential to improve cerebral perfusion, but the long-term effects on functional outcome are mixed in prior trials. The goal of this study was to evaluate how the magnitude of plasma expansion affects neurological recovery in acute stroke. This was a secondary analysis of data from the Albumin in Acute Stroke Part 2 trial investigating the relationship between the magnitude of overall intravenous volume infusion (crystalloid and colloid) to clinical outcome. The data were inclusive of 841 patients with a mean age of 64 years and a median National Institutes of Health Stroke Scale (NIHSS) of 11. In a multivariable-adjusted logistic regression model, this analysis tested the volume of plasma expansion over the first 48 h of hospitalization as a predictor of favorable outcome, defined as either a modified Rankin Scale score of 0 or 1 or a NIHSS score of 0 or 1 at 90 days. This model included all study patients, irrespective of albumin or isotonic saline treatment. Patients that received higher volumes of plasma expansion more frequently had large vessel ischemic stroke and higher NIHSS scores. The multivariable-adjusted model revealed that there was decreased odds of a favorable outcome for every 250 ml additional volume plasma expansion over the first 48 h (OR 0.91, 95 % CI, 0.88-0.94). The present study demonstrates an association between greater volume of plasma expansion and worse neurological recovery.

  15. Ab-initio study of thermal expansion in pure graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mann, Sarita; Kumar, Ranjan; Jindal, V. K., E-mail: jindal@pu.ac.in

    Graphene is a zero band gap semiconductor with exceptionally high thermal conductivity. The electronic properties having been studied, therole of phonon in contributing to thermal expansion, thermal conductivity and other thermodynamic properties, is required to be investigated. This paper focuses more on thermal expansion. Some others results like phonon dispersion, Grüneisenparameters and bulk modulus,which are essential to estimation of thermal expansion, are also presented. The dynamical matrix was calculated using VASP code using both DFT and DFPT and the phonon frequencies were calculated using phonopy code under harmonic approximation. The linear thermal expansion coefficient of graphene is found to bemore » strongly dependent on temperature but remains negative upto 470 K and positive thereafter, with a room temperature value of −1.44×10{sup −6}. The negative expansion coefficient is very interesting and is found to be in conformity with experimental as well as with recent theoretical estimates. There is only qualitative agreement of our results with experimental data and motivates further investigation, primarily on the high negative values of Grüneisen parameters.« less

  16. Cost of Incremental Expansion of an Existing Family Medicine Residency Program.

    PubMed

    Ashkin, Evan A; Newton, Warren P; Toomey, Brian; Lingley, Ronald; Page, Cristen P

    2017-07-01

    Expanding residency training programs to address shortages in the primary care workforce is challenged by the present graduate medical education (GME) environment. The Medicare funding cap on new GME positions and reductions in the Health Resources and Services Administration (HRSA) Teaching Health Center (THC) GME program require innovative solutions to support primary care residency expansion. Sparse literature exists to assist in predicting the actual cost of incremental expansion of a family medicine residency program without federal or state GME support. In 2011 a collaboration to develop a community health center (CHC) academic medical partnership (CHAMP), was formed and created a THC as a training site for expansion of an existing family medicine residency program. The cost of expansion was a critical factor as no Federal GME funding or HRSA THC GME program support was available. Initial start-up costs were supported by a federal grant and local foundations. Careful financial analysis of the expansion has provided actual costs per resident of the incremental expansion of the residencyRESULTS: The CHAMP created a new THC and expanded the residency from eight to ten residents per year. The cost of expansion was approximately $72,000 per resident per year. The cost of incremental expansion of our residency program in the CHAMP model was more than 50% less than that of the recently reported cost of training in the HRSA THC GME program.

  17. Multiple pathways of commodity crop expansion in tropical forest landscapes

    NASA Astrophysics Data System (ADS)

    Meyfroidt, Patrick; Carlson, Kimberly M.; Fagan, Matthew E.; Gutiérrez-Vélez, Victor H.; Macedo, Marcia N.; Curran, Lisa M.; DeFries, Ruth S.; Dyer, George A.; Gibbs, Holly K.; Lambin, Eric F.; Morton, Douglas C.; Robiglio, Valentina

    2014-07-01

    Commodity crop expansion, for both global and domestic urban markets, follows multiple land change pathways entailing direct and indirect deforestation, and results in various social and environmental impacts. Here we compare six published case studies of rapid commodity crop expansion within forested tropical regions. Across cases, between 1.7% and 89.5% of new commodity cropland was sourced from forestlands. Four main factors controlled pathways of commodity crop expansion: (i) the availability of suitable forestland, which is determined by forest area, agroecological or accessibility constraints, and land use policies, (ii) economic and technical characteristics of agricultural systems, (iii) differences in constraints and strategies between small-scale and large-scale actors, and (iv) variable costs and benefits of forest clearing. When remaining forests were unsuitable for agriculture and/or policies restricted forest encroachment, a larger share of commodity crop expansion occurred by conversion of existing agricultural lands, and land use displacement was smaller. Expansion strategies of large-scale actors emerge from context-specific balances between the search for suitable lands; transaction costs or conflicts associated with expanding into forests or other state-owned lands versus smallholder lands; net benefits of forest clearing; and greater access to infrastructure in already-cleared lands. We propose five hypotheses to be tested in further studies: (i) land availability mediates expansion pathways and the likelihood that land use is displaced to distant, rather than to local places; (ii) use of already-cleared lands is favored when commodity crops require access to infrastructure; (iii) in proportion to total agricultural expansion, large-scale actors generate more clearing of mature forests than smallholders; (iv) property rights and land tenure security influence the actors participating in commodity crop expansion, the form of land use displacement

  18. Loop vertex expansion for higher-order interactions

    NASA Astrophysics Data System (ADS)

    Rivasseau, Vincent

    2018-05-01

    This note provides an extension of the constructive loop vertex expansion to stable interactions of arbitrarily high order, opening the way to many applications. We treat in detail the example of the (\\bar{φ } φ )^p field theory in zero dimension. We find that the important feature to extend the loop vertex expansion is not to use an intermediate field representation, but rather to force integration of exactly one particular field per vertex of the initial action.

  19. Composite asymptotic expansions and scaling wall turbulence.

    PubMed

    Panton, Ronald L

    2007-03-15

    In this article, the assumptions and reasoning that yield composite asymptotic expansions for wall turbulence are discussed. Particular attention is paid to the scaling quantities that are used to render the variables non-dimensional and of order one. An asymptotic expansion is proposed for the streamwise Reynolds stress that accounts for the active and inactive turbulence by using different scalings. The idea is tested with the data from the channel flows and appears to have merit.

  20. Acoustic waves in shock tunnels and expansion tubes

    NASA Technical Reports Server (NTRS)

    Paull, A.; Stalker, R. J.

    1992-01-01

    It is shown that disturbances in shock and expansion tubes can be modelled as lateral acoustic waves. The ratio of sound speed across the driver-test gas interface is shown to govern the quantity of noise in the test gas. Frequency 'focusing' which is fundamental to centered unsteady expansions is discussed and displayed in centerline pitot pressure measurements.