Sample records for lahar hazard zones

  1. Lahar hazard zones for eruption-generated lahars in the Lassen Volcanic Center, California

    USGS Publications Warehouse

    Robinson, Joel E.; Clynne, Michael A.

    2012-01-01

    lahar generation, we assume that the maximum historical water equivalent, 3.90 m, covers the entire basin area inside the H/L cone. The product of planimetric area of each basin inside the H/L and the maximum historical water equivalent yields the maximum water volume available to generate a lahar. We then double the water volumes to approximate maximum lahar volumes. The maximum lahar volumes and an understanding of the statistical uncertainties inherent to the LAHARZ calculations guided our selection of six hypothetical volumes, 1, 3, 10, 30, 60, and 90x106 m3, to delineate concentric lahar inundation zones. The lahar inundation zones extend, in general, tens of kilometers away from Lassen Peak. The small, more-frequent lahar inundation zones (1 and 3x106 m3) are, on average, 10 km long. The exceptions are the zones in Warner Creek and Mill Creek, which extend much further. All but one of the small, more-frequent lahar inundation zones reach outside of the Lassen Volcanic National Park boundary, and the zone in Mill Creek extends well past the park boundary. All of the medium, moderately frequent lahar inundation zones (10 and 30x106 m3) extend past the park boundary and could potentially impact the communities of Viola and Old Station and State Highways 36 and 44, both north and west of Lassen Peak. The approximately 27-km-long on average, large, less-frequent lahar inundation zones (60 and 90x106 m3) represent worst-case lahar scenarios that are unlikely to occur. Flood hazards continue downstream from the toes of the lahars, potentially affecting communities in the Sacramento River Valley.

  2. Community Exposure to Lahar Hazards from Mount Rainier, Washington

    USGS Publications Warehouse

    Wood, Nathan J.; Soulard, Christopher E.

    2009-01-01

    Geologic evidence of past events and inundation modeling of potential events suggest that lahars associated with Mount Rainier, Washington, are significant threats to downstream development. To mitigate potential impacts of future lahars and educate at-risk populations, officials need to understand how communities are vulnerable to these fast-moving debris flows and which individuals and communities may need assistance in preparing for and responding to an event. To support local risk-reduction planning for future Mount Rainier lahars, this study documents the variations among communities in King, Lewis, Pierce, and Thurston Counties in the amount and types of developed land, human populations, economic assets, and critical facilities in a lahar-hazard zone. The lahar-hazard zone in this study is based on the behavior of the Electron Mudflow, a lahar that traveled along the Puyallup River approximately 500 years ago and was due to a slope failure on the west flank of Mount Rainier. This lahar-hazard zone contains 78,049 residents, of which 11 percent are more than 65 years in age, 21 percent do not live in cities or unincorporated towns, and 39 percent of the households are renter occupied. The lahar-hazard zone contains 59,678 employees (4 percent of the four-county labor force) at 3,890 businesses that generate $16 billion in annual sales (4 and 7 percent, respectively, of totals in the four-county area) and tax parcels with a combined total value of $8.8 billion (2 percent of the study-area total). Employees in the lahar-hazard zone are primarily in businesses related to manufacturing, retail trade, transportation and warehousing, wholesale trade, and construction. Key road and rail corridors for the region are in the lahar-hazard zone, which could result in significant indirect economic losses for businesses that rely on these networks, such as the Port of Tacoma. Although occupancy values are not known for each site, the lahar-hazard zone contains numerous

  3. A comparison of the Landsat image and LAHARZ-simulated lahar inundation hazard zone by the 2010 Merapi eruption

    NASA Astrophysics Data System (ADS)

    Lee, Seul-Ki; Lee, Chang-Wook; Lee, Saro

    2015-06-01

    Located above the Java subduction zone, Merapi Volcano is an active stratovolcano with a volcanic activity cycle of 1-5 years. Most Merapi eruptions are relatively small with volcanic explosivity index (VEI) of 1-3. However, the most recent eruption, which occurred in 2010, was quite violent with a VEI of 4 and 386 people were killed. In this study, lahars and pyroclastic flow zones were detected using optical Landsat images and the lahar and pyroclastic flow zone simulated using the LAHARZ program. To detect areal extents of lahar and pyroclastic flows using Landsat images, supervised classification was performed after atmospheric correction by using a cosine of the solar zenith correction (COST) model. As a result, the extracted dimensions of pyroclastic flows are nearly identical to the Calatrava Volcanic Province (CVP) monthly reports. Then, areas of potential lahar and pyroclastic flow inundation based on flow volume using the LAHARZ program were simulated and mapped. Finally, the detected lahars and pyroclastic flow zones were compared with the simulated potential zones using LAHARZ program and verified. Results showed satisfactory similarity (55.63 %) between the detected and simulated zone. The simulated zones using the LAHARZ program can be used as an essential volcanic hazard map for preventing life and property damages for Merapi Volcano and other hazardous volcanic areas. Also, the LAHARZ program can be used to map volcano hazards in other hazardous volcanic areas.

  4. Modeling lahar behavior and hazards

    USGS Publications Warehouse

    Manville, Vernon; Major, Jon J.; Fagents, Sarah A.

    2013-01-01

    Lahars are highly mobile mixtures of water and sediment of volcanic origin that are capable of traveling tens to > 100 km at speeds exceeding tens of km hr-1. Such flows are among the most serious ground-based hazards at many volcanoes because of their sudden onset, rapid advance rates, long runout distances, high energy, ability to transport large volumes of material, and tendency to flow along existing river channels where populations and infrastructure are commonly concentrated. They can grow in volume and peak discharge through erosion and incorporation of external sediment and/or water, inundate broad areas, and leave deposits many meters thick. Furthermore, lahars can recur for many years to decades after an initial volcanic eruption, as fresh pyroclastic material is eroded and redeposited during rainfall events, resulting in a spatially and temporally evolving hazard. Improving understanding of the behavior of these complex, gravitationally driven, multi-phase flows is key to mitigating the threat to communities at lahar-prone volcanoes. However, their complexity and evolving nature pose significant challenges to developing the models of flow behavior required for delineating their hazards and hazard zones.

  5. Variations in population exposure and sensitivity to lahar hazards from Mount Rainier, Washington

    NASA Astrophysics Data System (ADS)

    Wood, Nathan; Soulard, Christopher

    2009-12-01

    Although much has been done to understand, quantify, and delineate volcanic hazards, there are fewer efforts to assess societal vulnerability to these hazards, particularly demographic differences in exposed populations or spatial variations in exposure to regional hazards. To better understand population diversity in volcanic hazard zones, we assess the number and types of people in a single type of hazard zone (lahars) for 27 communities downstream of Mount Rainier, Washington (USA). Using various socioeconomic and hazard datasets, we estimate that there are more than 78 000 residents, 59 000 employees, several dependent-population facilities (e.g., child-day-care centers, nursing homes) and numerous public venues (e.g., churches, hotels, museums) in a Mount Rainier lahar-hazard zone. We find that communities vary in the primary category of individuals in lahar-prone areas—exposed populations are dominated by residents in some communities (e.g., Auburn), employees in others (e.g., Tacoma), and tourists likely outnumber both of these groups in yet other areas (e.g., unincorporated Lewis County). Population exposure to potential lahar inundation varies considerably—some communities (e.g., Auburn) have large numbers of people but low percentages of them in hazard zones, whereas others (e.g., Orting) have fewer people but they comprise the majority of a community. A composite lahar-exposure index is developed to help emergency managers understand spatial variations in community exposure to lahars and results suggest that Puyallup has the highest combination of high numbers and percentages of people and assets in lahar-prone areas. Risk education and preparedness needs will vary based on who is threatened by future lahars, such as residents, employees, tourists at a public venue, or special-needs populations at a dependent-care facility. Emergency managers must first understand the people whom they are trying to prepare before they can expect these people to take

  6. Variations in population exposure and sensitivity to lahar hazards from Mount Rainier, Washington

    USGS Publications Warehouse

    Wood, N.; Soulard, C.

    2009-01-01

    Although much has been done to understand, quantify, and delineate volcanic hazards, there are fewer efforts to assess societal vulnerability to these hazards, particularly demographic differences in exposed populations or spatial variations in exposure to regional hazards. To better understand population diversity in volcanic hazard zones, we assess the number and types of people in a single type of hazard zone (lahars) for 27 communities downstream of Mount Rainier, Washington (USA). Using various socioeconomic and hazard datasets, we estimate that there are more than 78 000 residents, 59 000 employees, several dependent-population facilities (e.g., child-day-care centers, nursing homes) and numerous public venues (e.g., churches, hotels, museums) in a Mount Rainier lahar-hazard zone. We find that communities vary in the primary category of individuals in lahar-prone areas-exposed populations are dominated by residents in some communities (e.g., Auburn), employees in others (e.g., Tacoma), and tourists likely outnumber both of these groups in yet other areas (e.g., unincorporated Lewis County). Population exposure to potential lahar inundation varies considerably-some communities (e.g., Auburn) have large numbers of people but low percentages of them in hazard zones, whereas others (e.g., Orting) have fewer people but they comprise the majority of a community. A composite lahar-exposure index is developed to help emergency managers understand spatial variations in community exposure to lahars and results suggest that Puyallup has the highest combination of high numbers and percentages of people and assets in lahar-prone areas. Risk education and preparedness needs will vary based on who is threatened by future lahars, such as residents, employees, tourists at a public venue, or special-needs populations at a dependent-care facility. Emergency managers must first understand the people whom they are trying to prepare before they can expect these people to take

  7. Combining criteria for delineating lahar- and flash-flood-prone hazard and risk zones for the city of Arequipa, Peru

    NASA Astrophysics Data System (ADS)

    Thouret, J.-C.; Enjolras, G.; Martelli, K.; Santoni, O.; Luque, J. A.; Nagata, M.; Arguedas, A.; Macedo, L.

    2013-02-01

    Arequipa, the second largest city in Peru, is exposed to many natural hazards, most notably earthquakes, volcanic eruptions, landslides, lahars (volcanic debris flows), and flash floods. Of these, lahars and flash floods, triggered by occasional torrential rainfall, pose the most frequently occurring hazards that can affect the city and its environs, in particular the areas containing low-income neighbourhoods. This paper presents and discusses criteria for delineating areas prone to flash flood and lahar hazards, which are localized along the usually dry (except for the rainy season) ravines and channels of the Río Chili and its tributaries that dissect the city. Our risk-evaluation study is based mostly on field surveys and mapping, but we also took into account quality and structural integrity of buildings, available socio-economic data, and information gained from interviews with risk-managers officials. In our evaluation of the vulnerability of various parts of the city, in addition to geological and physical parameters, we also took into account selected socio-economic parameters, such as the educational and poverty level of the population, unemployment figures, and population density. In addition, we utilized a criterion of the "isolation factor", based on distances to access emergency resources (hospitals, shelters or safety areas, and water) in each city block. By combining the hazard, vulnerability and exposure criteria, we produced detailed risk-zone maps at the city-block scale, covering the whole city of Arequipa and adjacent suburbs. Not surprisingly, these maps show that the areas at high risk coincide with blocks or districts with populations at low socio-economic levels. Inhabitants at greatest risk are the poor recent immigrants from rural areas who live in unauthorized settlements in the outskirts of the city in the upper parts of the valleys. Such settlements are highly exposed to natural hazards and have little access to vital resources. Our

  8. Variations in community exposure to lahar hazards from multiple volcanoes in Washington State (USA)

    USGS Publications Warehouse

    Diefenbach, Angela K.; Wood, Nathan J.; Ewert, John W.

    2015-01-01

    Understanding how communities are vulnerable to lahar hazards provides critical input for effective design and implementation of volcano hazard preparedness and mitigation strategies. Past vulnerability assessments have focused largely on hazards posed by a single volcano, even though communities and officials in many parts of the world must plan for and contend with hazards associated with multiple volcanoes. To better understand community vulnerability in regions with multiple volcanic threats, we characterize and compare variations in community exposure to lahar hazards associated with five active volcanoes in Washington State, USA—Mount Baker, Glacier Peak, Mount Rainier, Mount Adams and Mount St. Helens—each having the potential to generate catastrophic lahars that could strike communities tens of kilometers downstream. We use geospatial datasets that represent various population indicators (e.g., land cover, residents, employees, tourists) along with mapped lahar-hazard boundaries at each volcano to determine the distributions of populations within communities that occupy lahar-prone areas. We estimate that Washington lahar-hazard zones collectively contain 191,555 residents, 108,719 employees, 433 public venues that attract visitors, and 354 dependent-care facilities that house individuals that will need assistance to evacuate. We find that population exposure varies considerably across the State both in type (e.g., residential, tourist, employee) and distribution of people (e.g., urban to rural). We develop composite lahar-exposure indices to identify communities most at-risk and communities throughout the State who share common issues of vulnerability to lahar-hazards. We find that although lahars are a regional hazard that will impact communities in different ways there are commonalities in community exposure across multiple volcanoes. Results will aid emergency managers, local officials, and the public in educating at-risk populations and developing

  9. Water, ice and mud: Lahars and lahar hazards at ice- and snow-clad volcanoes

    USGS Publications Warehouse

    Waythomas, Christopher F.

    2014-01-01

    Large-volume lahars are significant hazards at ice and snow covered volcanoes. Hot eruptive products produced during explosive eruptions can generate a substantial volume of melt water that quickly evolves into highly mobile flows of ice, sediment and water. At present it is difficult to predict the size of lahars that can form at ice and snow covered volcanoes due to their complex flow character and behaviour. However, advances in experiments and numerical approaches are producing new conceptual models and new methods for hazard assessment. Eruption triggered lahars that are ice-dominated leave behind thin, almost unrecognizable sedimentary deposits, making them likely to be under-represented in the geological record.

  10. Laharz_py: GIS tools for automated mapping of lahar inundation hazard zones

    USGS Publications Warehouse

    Schilling, Steve P.

    2014-01-01

    Laharz_py is written in the Python programming language as a suite of tools for use in ArcMap Geographic Information System (GIS). Primarily, Laharz_py is a computational model that uses statistical descriptions of areas inundated by past mass-flow events to forecast areas likely to be inundated by hypothetical future events. The forecasts use physically motivated and statistically calibrated power-law equations that each has a form A = cV2/3, relating mass-flow volume (V) to planimetric or cross-sectional areas (A) inundated by an average flow as it descends a given drainage. Calibration of the equations utilizes logarithmic transformation and linear regression to determine the best-fit values of c. The software uses values of V, an algorithm for idenitifying mass-flow source locations, and digital elevation models of topography to portray forecast hazard zones for lahars, debris flows, or rock avalanches on maps. Laharz_py offers two methods to construct areas of potential inundation for lahars: (1) Selection of a range of plausible V values results in a set of nested hazard zones showing areas likely to be inundated by a range of hypothetical flows; and (2) The user selects a single volume and a confidence interval for the prediction. In either case, Laharz_py calculates the mean expected A and B value from each user-selected value of V. However, for the second case, a single value of V yields two additional results representing the upper and lower values of the confidence interval of prediction. Calculation of these two bounding predictions require the statistically calibrated prediction equations, a user-specified level of confidence, and t-distribution statistics to calculate the standard error of regression, standard error of the mean, and standard error of prediction. The portrayal of results from these two methods on maps compares the range of inundation areas due to prediction uncertainties with uncertainties in selection of V values. The Open-File Report

  11. Reducing risk from lahar hazards: concepts, case studies, and roles for scientists

    USGS Publications Warehouse

    Pierson, Thomas C.; Wood, Nathan J.; Driedger, Carolyn L.

    2014-01-01

    Lahars are rapid flows of mud-rock slurries that can occur without warning and catastrophically impact areas more than 100 km downstream of source volcanoes. Strategies to mitigate the potential for damage or loss from lahars fall into four basic categories: (1) avoidance of lahar hazards through land-use planning; (2) modification of lahar hazards through engineered protection structures; (3) lahar warning systems to enable evacuations; and (4) effective response to and recovery from lahars when they do occur. Successful application of any of these strategies requires an accurate understanding and assessment of the hazard, an understanding of the applicability and limitations of the strategy, and thorough planning. The human and institutional components leading to successful application can be even more important: engagement of all stakeholders in hazard education and risk-reduction planning; good communication of hazard and risk information among scientists, emergency managers, elected officials, and the at-risk public during crisis and non-crisis periods; sustained response training; and adequate funding for risk-reduction efforts. This paper reviews a number of methods for lahar-hazard risk reduction, examines the limitations and tradeoffs, and provides real-world examples of their application in the U.S. Pacific Northwest and in other volcanic regions of the world. An overriding theme is that lahar-hazard risk reduction cannot be effectively accomplished without the active, impartial involvement of volcano scientists, who are willing to assume educational, interpretive, and advisory roles to work in partnership with elected officials, emergency managers, and vulnerable communities.

  12. Lahar hazard assessment in the southern drainage system of Cotopaxi volcano, Ecuador: Results from multiscale lahar simulations

    NASA Astrophysics Data System (ADS)

    Pistolesi, Marco; Cioni, Raffaello; Rosi, Mauro; Aguilera, Eduardo

    2014-02-01

    The ice-capped Cotopaxi volcano is known worldwide for the large-scale, catastrophic lahars that have occurred in connection with historical explosive eruptions. The most recent large-scale lahar event occurred in 1877 when scoria flows partially melted ice and snow of the summit glacier, generating debris flows that severely impacted all the river valleys originating from the volcano. The 1877 lahars have been considered in the recent years as a maximum expected event to define the hazard associated to lahar generation at Cotopaxi. Conversely, recent field-based studies have shown that such debris flows have occurred several times during the last 800 years of activity at Cotopaxi, and that the scale of lahars has been variable, including events much larger than that of 1877. Despite a rapid retreat of the summit ice cap over the past century, in fact, there are no data clearly suggesting that future events will be smaller than those observed in the deposits of the last 800 years of activity. In addition, geological field data prove that the lahar triggering mechanism also has to be considered as a key input parameter and, under appropriate eruptive mechanisms, a hazard scenario of a lahar with a volume 3-times larger than the 1877 event is likely. In order to analyze the impact scenarios in the southern drainage system of the volcano, simulations of inundation areas were performed with a semi-empirical model (LAHARZ), using input parameters including variable water volume. Results indicate that a lahar 3-times larger than the 1877 event would invade much wider areas than those flooded by the 1877 lahars along the southern valley system, eventually impacting highly-urbanized areas such as the city of Latacunga.

  13. Loss Estimation Modeling Of Scenario Lahars From Mount Rainier, Washington State, Using HAZUS-MH

    NASA Astrophysics Data System (ADS)

    Walsh, T. J.; Cakir, R.

    2011-12-01

    We have adapted lahar hazard zones developed by Hoblitt and others (1998) and converted to digital data by Schilling and others (2008) into the appropriate format for HAZUS-MH, which is FEMA's loss estimation model. We assume that structures engulfed by cohesive lahars will suffer complete loss, and structures affected by post-lahar flooding will be appropriately modeled by the HAZUS-MH flood model. Another approach investigated is to estimate the momentum of lahars, calculate a lateral force, and apply the earthquake model, substituting the lahar lateral force for PGA. Our initial model used the HAZUS default data, which include estimates of building type and value from census data. This model estimated a loss of about 12 billion for a repeat lahar similar to the Electron Mudflow down the Puyallup River. Because HAZUS data are based on census tracts, this estimated damage includes everything in the census tract, even buildings outside of the lahar hazard zone. To correct this, we acquired assessors data from all of the affected counties and converted them into HAZUS format. We then clipped it to the boundaries of the lahar hazard zone to more precisely delineate those properties actually at risk in each scenario. This refined our initial loss estimate to about 6 billion with exclusion of building content values. We are also investigating rebuilding the lahar hazard zones applying Lahar-Z to a more accurate topographic grid derived from recent Lidar data acquired from the Puget Sound Lidar Consortium and Mount Rainier National Park. Final results of these models for the major drainages of Mount Rainier will be posted to the Washington Interactive Geologic Map (http://www.dnr.wa.gov/ResearchScience/Topics/GeosciencesData/Pages/geology_portal.aspx).

  14. Volcanic Risk Perception and Preparedness in Communities within the Mount Baker and Glacier Peak Lahar Hazard Zones

    NASA Astrophysics Data System (ADS)

    Corwin, K.; Brand, B. D.

    2014-12-01

    A community's ability to effectively respond to and recover from natural hazards depends on both the physical characteristics of the hazard and the community's inherent resilience. Resilience is shaped by a number of factors including the residents' perception of and preparedness for a natural hazard as well as the level of institutional preparedness. This study examines perception of and preparedness for lahar hazards from Mount Baker and Glacier Peak in Washington's Skagit Valley. Through an online survey, this study isolates the influence of specific variables (e.g., knowledge, past experience, scientific background, trust in various information sources, occupation, self-efficacy, sense of community) on risk perception and explores reasons behind the frequent disconnect between perception and preparedness. We anticipate that individuals with more extensive education in the sciences, especially geology or earth science, foster greater trust in scientists and a more accurate knowledge, understanding, and perception of the volcanic hazards in their community. Additionally, little research exists examining the extent to which first responders and leaders in response-related institutions prepare on a personal level. Since these individuals work toward community preparedness professionally, we hypothesize that they will be more prepared at home than members of the general public. Finally, the Skagit Valley has a significant history of flooding. We expect that the need to respond to and recover from frequent flooding creates a community with an inherently higher level of preparedness for other hazards such as lahars. The results of this study will contribute to the understanding of what controls risk perception and the interplay between perception and preparedness. At a broader level, this study provides local and state-level emergency managers information to evaluate and improve response capabilities and communication with the public and key institutions in order to

  15. Preparing for Volcanic Hazards: An Examination of Lahar Knowledge, Risk Perception, and Preparedness around Mount Baker and Glacier Peak, WA

    NASA Astrophysics Data System (ADS)

    Corwin, K.; Brand, B. D.

    2015-12-01

    As the number of people living at risk from volcanic hazards in the U.S. Pacific Northwest continues to rise, so does the need for improved hazard science, mitigation, and response planning. The effectiveness of these efforts relies not only on scientists and policymakers, but on individuals and their risk perception and preparedness levels. This study examines the individual knowledge, perception, and preparedness of over 500 survey respondents living or working within the lahar zones of Mount Baker and Glacier Peak volcanoes. We (1) explore the common disconnect between accurate risk perception and adequate preparedness; (2) determine how participation in hazard response planning influences knowledge, risk perception, and preparedness; and (3) assess the effectiveness of current lahar hazard maps for public risk communication. Results indicate that a disconnect exists between perception and preparedness for the majority of respondents. While 82% of respondents accurately anticipate that future volcanic hazards will impact the Skagit Valley, this knowledge fails to motivate increased preparedness. A majority of respondents also feel "very responsible" for their own protection and provision of resources during a hazardous event (83%) and believe they have the knowledge and skills necessary to respond effectively to such an event (56%); however, many of these individuals still do not adequately prepare. When asked what barriers prevent them from preparing, respondents primarily cite a lack of knowledge about relevant local hazards. Results show that participation in response-related activities—a commonly recommended solution to this disconnect—minimally influences preparedness. Additionally, although local hazard maps successfully communicate the primary hazard—97% of respondents recognize the lahar hazard—many individuals incorrectly interpret other important facets of the maps. Those who participate in response-related activities fail to understand these

  16. Probabilistic Volcanic Multi-Hazard Assessment at Somma-Vesuvius (Italy): coupling Bayesian Belief Networks with a physical model for lahar propagation

    NASA Astrophysics Data System (ADS)

    Tierz, Pablo; Woodhouse, Mark; Phillips, Jeremy; Sandri, Laura; Selva, Jacopo; Marzocchi, Warner; Odbert, Henry

    2017-04-01

    Volcanoes are extremely complex physico-chemical systems where magma formed at depth breaks into the planet's surface resulting in major hazards from local to global scales. Volcano physics are dominated by non-linearities, and complicated spatio-temporal interrelationships which make volcanic hazards stochastic (i.e. not deterministic) by nature. In this context, probabilistic assessments are required to quantify the large uncertainties related to volcanic hazards. Moreover, volcanoes are typically multi-hazard environments where different hazardous processes can occur whether simultaneously or in succession. In particular, explosive volcanoes are able to accumulate, through tephra fallout and Pyroclastic Density Currents (PDCs), large amounts of pyroclastic material into the drainage basins surrounding the volcano. This addition of fresh particulate material alters the local/regional hydrogeological equilibrium and increases the frequency and magnitude of sediment-rich aqueous flows, commonly known as lahars. The initiation and volume of rain-triggered lahars may depend on: rainfall intensity and duration; antecedent rainfall; terrain slope; thickness, permeability and hydraulic diffusivity of the tephra deposit; etc. Quantifying these complex interrelationships (and their uncertainties), in a tractable manner, requires a structured but flexible probabilistic approach. A Bayesian Belief Network (BBN) is a directed acyclic graph that allows the representation of the joint probability distribution for a set of uncertain variables in a compact and efficient way, by exploiting unconditional and conditional independences between these variables. Once constructed and parametrized, the BBN uses Bayesian inference to perform causal (e.g. forecast) and/or evidential reasoning (e.g. explanation) about query variables, given some evidence. In this work, we illustrate how BBNs can be used to model the influence of several variables on the generation of rain-triggered lahars

  17. Lahar Hazards at Casita and San Cristóbal Volcanoes, Nicaragua

    USGS Publications Warehouse

    Vallance, J.W.; Schilling, S.P.; Devoli, G.; Reid, M.E.; Howell, M.M.; Brien, D.L.

    2004-01-01

    to form ash-fall deposits (tephra), debris avalanches, lava flows, and hot flowing mixtures of ash and rock (called pyroclastic flows). The chronology of activity at Casita is rather poorly known. Its last documented eruption occurred 8300 years ago, and included a pyroclastic flow. Tephra deposits exposed in the east crater suggest the possibility of subsequent eruptions. Work prior to Hurricane Mitch suggested that a part of the volcano’s apron that included the area inundated during the 1998 event south of Casita was a lahar pathway. Erosion during Hurricane Mitch revealed that at least three large lahars descended this pathway to distances of up to 10 km. This report describes the hazards of landslides and lahars in general, and discusses potential hazards from future landslides and lahars at San Cristóbal and Casita volcanoes in particular. The report also shows, in the accompanying lahar hazard-zonation maps, which areas are likely to be at risk from future landslides and lahars at Casita and San Cristóbal.

  18. Comparative lahar hazard mapping at Volcan Citlaltépetl, Mexico using SRTM, ASTER and DTED-1 digital topographic data

    USGS Publications Warehouse

    Hubbard, Bernard E.; Sheridan, Michael F.; Carrasco-Nunez, Gerardo; Diaz-Castellon, Rodolfo; Rodriguez, Sergio R.

    2007-01-01

    Finally, ASTERs 60 km swath width and 8% duty cycle presents a challenge for mapping lahar inundation hazards at E–W oriented stream valleys in low-latitude areas with persistent cloud cover. However, its continued operations enhances its utility as a means for updating the continuous but one-time coverage of SRTM, and for filling voids in the SRTM dataset such as those that occur along steep-sided valleys prone to hazards from future lahars.

  19. Lahars at Cotopaxi and Tungurahua Volcanoes, Ecuador: Highlights from stratigraphy and observational records and related downstream hazards: Chapter 6

    USGS Publications Warehouse

    Mothes, Patricia A; Vallance, James W.

    2015-01-01

    Lahars are volcanic debris flows that are dubbed primary when triggered by eruptive activity or secondary when triggered by other factors such as heavy rainfall after eruptive activity has waned. Variation in time and space of the proportion of sediment to water within a lahar dictates lahar flow phase and the resultant sedimentary character of deposits. Characteristics of source material and of debris eroded and incorporated during flow downstream may strongly affect the grain-size composition of flowing lahars and their deposits. Lahars borne on the flanks of two steep-sided stratocones in Ecuador exemplify two important lahar types. Glacier-clad Cotopaxi volcano has been a producer of primary lahars that flow great distances downstream. Such primary lahars include those of both clast-rich and matrix-rich composition—some of which have flowed as far as 325 km to the Pacific Ocean. Cotopaxi's last important eruption in 1877 generated formidable syneruptive lahars comparable in size to those that buried Armero, Colombia, following the 1985 eruption of Nevado del Ruiz volcano. In contrast, ash-producing eruptive activity during the past 15 years at Tungurahua volcano has generated a continual supply of fresh volcaniclastic debris that is regularly remobilized by precipitation. Between 2000 and 2011, 886 rain-generated lahars were registered at Tungurahua. These two volcanoes pose dramatically different hazards to nearby populations. At Tungurahua, the frequency and small sizes of lahars have resulted in effective mitigation measures. At Cotopaxi 137 years have passed since the last important lahar-producing eruption, and there is now a high-risk situation for more than 100,000 people living in downstream valleys.

  20. Examining the impact of lahars on buildings using numerical modelling

    NASA Astrophysics Data System (ADS)

    Mead, Stuart R.; Magill, Christina; Lemiale, Vincent; Thouret, Jean-Claude; Prakash, Mahesh

    2017-05-01

    Lahars are volcanic flows containing a mixture of fluid and sediment which have the potential to cause significant damage to buildings, critical infrastructure and human life. The extent of this damage is controlled by properties of the lahar, location of elements at risk and susceptibility of these elements to the lahar. Here we focus on understanding lahar-induced building damage. Quantification of building damage can be difficult due to the complexity of lahar behaviour (hazard), varying number and type of buildings exposed to the lahar (exposure) and the uncertain susceptibility of buildings to lahar impacts (vulnerability). In this paper, we quantify and examine the importance of lahar hazard, exposure and vulnerability in determining building damage with reference to a case study in the city of Arequipa, Peru. Numerical modelling is used to investigate lahar properties that are important in determining the inundation area and forces applied to buildings. Building vulnerability is quantified through the development of critical depth-pressure curves based on the ultimate bending moment of masonry structures. In the case study area, results suggest that building strength plays a minor role in determining overall building losses in comparison to the effects of building exposure and hydraulic characteristics of the lahar.

  1. Mitigation of hazards from future lahars from Mount Merapi in the Krasak River channel near Yogyakarta, central Java

    USGS Publications Warehouse

    Ege, John R.; ,

    1983-01-01

    Procedures for reducing hazards from future lahars and debris flows in the Krasak River channel near Yogyakarta, Central Java, Indonesia, include (1) determining the history of the location, size, and effects of previous lahars and debris flows, and (2) decreasing flow velocities. The first may be accomplished by geologic field mapping along with acquiring information by interviewing local residents, and the second by increasing the cross sectional area of the river channel and constructing barriers in the flow path.

  2. Modeled inundation limits of potential lahars from Mount Adams in the White Salmon River Valley, Washington

    USGS Publications Warehouse

    Griswold, Julia P.; Pierson, Thomas C.; Bard, Joseph A.

    2018-05-09

    ,000 years ago, primarily through the episodic effusion of lava flows; it has not had a history of major explosive eruptions like Mount St. Helens, its neighbor to the west. Timing of the most recent eruptive activity (recorded by four thin tephra layers) is on the order of 1,000 years ago; the tephras are bracketed by 2,500-year-old and 500-year-old ash layers from Mount St. Helens (Hildreth and Fierstein, 1995, 1997). Mount Adams currently shows no signs of renewed unrest.Eruptive history does not tell us everything we need to know about hazards at Mount Adams, however, which are fully addressed in the volcano hazard assessment for Mount Adams (W.E. Scott and others, 1995). This volcano has had a long-active hydrothermal system that circulated acidic hydrothermal fluids, formed by the solution of volcanic gases in heated groundwater, through fractures and permeable zones into upper parts of the volcanic cone. Acid sulfate leaching of rocks in the summit area may still be occurring, but chemical and thermal evidence suggests that the main hydrothermal system is no longer active at Mount Adams (Nathenson and Mariner, 2013). However, these rock-weakening chemical reactions have operated long enough to change about 0.4 cubic miles (mi3) (1.7 cubic kilometers [km3]) of the hard lava rock in the volcano’s upper cone to a much weaker clay-rich rock, thus significantly reducing rock strength and thereby slope stability in parts of the cone (Finn and others, 2007). The two largest previous lahars from Mount Adams were triggered by landslides of hydrothermally altered rock from the upper southwestern flank of the cone, and any future large lahars are likely to be triggered by the same mechanism. Mount Rainier also has had extensive hydrothermal alteration of rock in its upper edifice, and it also has a history of large landslides that transform into lahars (K.M. Scott and others, 1995; Vallance and Scott, 1997; Reid and others, 2001).The spatial depiction of modeled lahar

  3. Lahar flow simulation using Laharz_py program: Application for the Mt. Halla volcano, Jeju, Korea

    NASA Astrophysics Data System (ADS)

    Chang, C.; Yun, S. H.; Yi, W.

    2017-12-01

    Lahar, one of catastrophic events, has the potential to cause the loss of life and damage to infrastructure over inhabited areas. This study using Laharz_py, was performed schematic prediction on the impact area of lahar hazards at the Mt. Halla volcano, Jeju island. In order to comprehensively address the impact of lahar for the Mt. Halla, two distinct parameters, H/L ratio and lahar volume, were selected to influence variable for Laharz_py simulation. It was carried out on the basis of numerical simulation by estimating a possible lahar volumes of 30,000, 50,000, 70,000, 100,000, 300,000, 500,000 m3 according to H/L ratios (0.20, 0.22 and 0.25) was applied. Based on the numerical simulations, the area of the proximal hazard zone boundary is gradually decreased with increasing H/L ratio. The number of streams which affected by lahar, tended to decrease with increasing H/L ratio. In the case of H/L ratio 0.20, three streams (Gwangryeong stream, Dogeun stream, Han stream) in the Jeju-si area and six streams (Gungsan stream, Hogeun stream, Seohong stream, Donghong stream, Bomok stream, Yeong stream-Hyodon stream) in the Seogwipo-si area are affected. In the case of H/L ratio 0.22, two streams (Gwangryeong stream and Han stream) in the Jeju-si area and five streams (Gungsan stream, Seohong stream, Donghong stream, Bomok stream, Yeong stream-Hyodon stream) in the Seogwipo-si area are affected. And in the case of H/L ratio 0.25, two streams (Gwangryeong stream and Han stream) in the Jeju-si area and one stream (Yeong stream-Hyodon stream) in the Seogwipo-si area are affected. The results of this study will be used as basic data to create a risk map for the direct damage that can be caused due to volcanic hazards arising from Mt. Halla. This research was supported by a grant [MPSS-NH-2015-81] through the Disaster and Safety Management Institute funded by Ministry of Public Safety and Security of Korean government.

  4. Smoothed particle hydrodynamic modeling of volcanic debris flows: Application to Huiloac Gorge lahars (Popocatépetl volcano, Mexico)

    NASA Astrophysics Data System (ADS)

    Haddad, Bouchra; Palacios, David; Pastor, Manuel; Zamorano, José Juan

    2016-09-01

    Lahars are among the most catastrophic volcanic processes, and the ability to model them is central to mitigating their effects. Several lahars recently generated by the Popocatépetl volcano (Mexico) moved downstream through the Huiloac Gorge towards the village of Santiago Xalitzintla. The most dangerous was the 2001 lahar, in which the destructive power of the debris flow was maintained throughout the extent of the flow. Identifying the zone of hazard can be based either on numerical or empirical models, but a calibration and validation process is required to ensure hazard map quality. The Geoflow-SPH depth integrated numerical model used in this study to reproduce the 2001 lahar was derived from the velocity-pressure version of the Biot-Zienkiewicz model, and was discretized using the smoothed particle hydrodynamics (SPH) method. The results of the calibrated SPH model were validated by comparing the simulated deposit depth with the field depth measured at 16 cross sections distributed strategically along the gorge channel. Moreover, the dependency of the results on topographic mesh resolution, initial lahar mass shape and dimensions is also investigated. The results indicate that to accurately reproduce the 2001 lahar flow dynamics the channel topography needed to be discretized using a mesh having a minimum 5 m resolution, and an initial lahar mass shape that adopted the source area morphology. Field validation of the calibrated model showed that there was a satisfactory relationship between the simulated and field depths, the error being less than 20% for 11 of the 16 cross sections. This study demonstrates that the Geoflow-SPH model was able to accurately reproduce the lahar path and the extent of the flow, but also reproduced other parameters including flow velocity and deposit depth.

  5. Digital Data for Volcano Hazards of the Three Sisters Region, Oregon

    USGS Publications Warehouse

    Schilling, S.P.; Doelger, S.; Scott, W.E.; Iverson, R.M.

    2008-01-01

    Three Sisters is one of three active volcanic centers that lie close to rapidly growing communities and resort areas in Central Oregon. The major composite volcanoes of this area are clustered near the center of the region and include South Sister, Middle Sister, and Broken Top. Additionally, hundreds of mafic volcanoes are scattered throughout the Three Sisters area. These range from small cinder cones to large shield volcanoes like North Sister and Belknap Crater. Hazardous events include landslides from the steep flanks of large volcanoes and floods, which need not be triggered by eruptions, as well as eruption-triggered events such as fallout of tephra (volcanic ash) and lava flows. A proximal hazard zone roughly 20 kilometers (12 miles) in diameter surrounding the Three Sisters and Broken Top could be affected within minutes of the onset of an eruption or large landslide. Distal hazard zones that follow river valleys downstream from the Three Sisters and Broken Top could be inundated by lahars (rapid flows of water-laden rock and mud) generated either by melting of snow and ice during eruptions or by large landslides. Slow-moving lava flows could issue from new mafic volcanoes almost anywhere within the region. Fallout of tephra from eruption clouds can affect areas hundreds of kilometers (miles) downwind, so eruptions at volcanoes elsewhere in the Cascade Range also contribute to volcano hazards in Central Oregon. Scientists at the Cascades Volcano Observatory created a geographic information system (GIS) data set which depicts proximal and distal lahar hazard zones as well as a regional lava flow hazard zone for Three Sisters (USGS Open-File Report 99-437, Scott and others, 1999). The various distal lahar zones were constructed from LaharZ software using 20, 100, and 500 million cubic meter input flow volumes. Additionally, scientists used the depositional history of past events in the Three Sisters Region as well as experience and judgment derived from the

  6. Modeling the October 2005 lahars at Panabaj (Guatemala)

    NASA Astrophysics Data System (ADS)

    Charbonnier, S. J.; Connor, C. B.; Connor, L. J.; Sheridan, M. F.; Oliva Hernández, J. P.; Richardson, J. A.

    2018-01-01

    An extreme rainfall event in October of 2005 triggered two deadly lahars on the flanks of Tolimán volcano (Guatemala) that caused many fatalities in the village of Panabaj. We mapped the deposits of these lahars, then developed computer simulations of the lahars using the geologic data and compared simulated area inundated by the flows to mapped area inundated. Computer simulation of the two lahars was dramatically improved after calibration with geological data. Specifically, detailed field measurements of flow inundation area, flow thickness, flow direction, and velocity estimates, collected after lahar emplacement, were used to calibrate the rheological input parameters for the models, including deposit volume, yield strength, sediment and water concentrations, and Manning roughness coefficients. Simulations of the two lahars, with volumes of 240,200 ± 55,400 and 126,000 ± 29,000 m3, using the FLO-2D computer program produced models of lahar runout within 3% of measured runouts and produced reasonable estimates of flow thickness and velocity along the lengths of the simulated flows. We compare areas inundated using the Jaccard fit, model sensitivity, and model precision metrics, all related to Bayes' theorem. These metrics show that false negatives (areas inundated by the observed lahar where not simulated) and false positives (areas not inundated by the observed lahar where inundation was simulated) are reduced using a model calibrated by rheology. The metrics offer a procedure for tuning model performance that will enhance model accuracy and make numerical models a more robust tool for natural hazard reduction.

  7. Instrumental lahar monitoring at Merapi Volcano, Central Java, Indonesia

    USGS Publications Warehouse

    Lavigne, Franck; Thouret, J.-C.; Voight, B.; Young, K.; LaHusen, R.; Marso, J.; Suwa, H.; Sumaryono, A.; Sayudi, D.S.; Dejean, M.

    2000-01-01

    More than 50 volcanic debris flows or lahars were generated around Mt Merapi during the first rainy season following the nuees ardentes of 22 November 1994. The rainfalls that triggered the lahars were analyzed, using such instruments as weather radar and telemetered rain gauges. Lahar dynamics were also monitored, using new non-contact detection instrumentation installed on the slopes of the volcano. These devices include real-time seismic amplitude measurement (RSAM), seismic spectral amplitude measurement (SSAM) and acoustic flow monitoring (AFM) systems. Calibration of the various systems was accomplished by field measurements of flow velocities and discharge, contemporaneously with instrumental monitoring. The 1994–1995 lahars were relatively short events, their duration in the Boyong river commonly ranging between 30 min and 1 h 30 min. The great majority (90%) of the lahars was recognized at Kaliurang village between 13:00 and 17:30 h, due to the predominance of afternoon rainfalls. The observed mean velocity of lahar fronts ranged between 1.1 and 3.4 m/s, whereas the peak velocity of the flows varied from 11 to 15 m/s, under the Gardu Pandang viewpoint location at Kaliurang, to 8–10 m/s at a section 500 m downstream from this site. River slopes vary from 28 to 22 m/km at the two sites. Peak discharges recorded in various events ranged from 33 to 360 m3/s, with the maximum value of peak discharge 360 m3/s, on 20 May 1995. To improve the lahar warning system along Boyong river, some instrumental thresholds were proposed: large and potentially hazardous lahars may be detected by RSAM units exceeding 400, SSAM units exceeding 80 on the highest frequency band, or AFM values greater than 1500 mV on the low-gain, broad-band setting.

  8. Real-time prediction of rain-triggered lahars: incorporating seasonality and catchment recovery

    NASA Astrophysics Data System (ADS)

    Jones, Robbie; Manville, Vern; Peakall, Jeff; Froude, Melanie J.; Odbert, Henry M.

    2017-12-01

    Rain-triggered lahars are a significant secondary hydrological and geomorphic hazard at volcanoes where unconsolidated pyroclastic material produced by explosive eruptions is exposed to intense rainfall, often occurring for years to decades after the initial eruptive activity. Previous studies have shown that secondary lahar initiation is a function of rainfall parameters, source material characteristics and time since eruptive activity. In this study, probabilistic rain-triggered lahar forecasting models are developed using the lahar occurrence and rainfall record of the Belham River valley at the Soufrière Hills volcano (SHV), Montserrat, collected between April 2010 and April 2012. In addition to the use of peak rainfall intensity (PRI) as a base forecasting parameter, considerations for the effects of rainfall seasonality and catchment evolution upon the initiation of rain-triggered lahars and the predictability of lahar generation are also incorporated into these models. Lahar probability increases with peak 1 h rainfall intensity throughout the 2-year dataset and is higher under given rainfall conditions in year 1 than year 2. The probability of lahars is also enhanced during the wet season, when large-scale synoptic weather systems (including tropical cyclones) are more common and antecedent rainfall and thus levels of deposit saturation are typically increased. The incorporation of antecedent conditions and catchment evolution into logistic-regression-based rain-triggered lahar probability estimation models is shown to enhance model performance and displays the potential for successful real-time prediction of lahars, even in areas featuring strongly seasonal climates and temporal catchment recovery.

  9. Lahar infrasound associated with Volcán Villarrica's 3 March 2015 eruption

    NASA Astrophysics Data System (ADS)

    Johnson, Jeffrey B.; Palma, Jose L.

    2015-08-01

    The paroxysmal 2015 eruption of Volcán Villarrica (Chile) produced a 2.5 h long lahar, which descended more than 20 km within the Rio Correntoso/Turbio drainage and destroyed two small bridges. A three-element infrasound array 10 km from the summit, and 4 km from the lahar's closest approach, was used to study the flow's progression. Array processing using cross-correlation lag times and semblance places constraints on the lahar's dynamics, including detection of an initial flow pulse that traveled from 2 to 12 km at an average speed of 38 m/s. Subsequently, the lahar signal evolved to a relatively stationary infrasonic tremor located 10 to 12 km from the vent and adjacent to a topographic notch, through which sound may have preferentially diffracted toward the recording site. This study demonstrates the powerful capabilities of infrasound arrays for lahar study and suggests their potential application for future hazard monitoring.

  10. Lahar hazards at Agua volcano, Guatemala

    USGS Publications Warehouse

    Schilling, S.P.; Vallance, J.W.; Matías, O.; Howell, M.M.

    2001-01-01

    At 3760 m, Agua volcano towers more than 3500 m above the Pacific coastal plain to the south and 2000 m above the Guatemalan highlands to the north. The volcano is within 5 to 10 kilometers (km) of Antigua, Guatemala and several other large towns situated on its northern apron. These towns have a combined population of nearly 100,000. It is within about 20 km of Escuintla (population, ca. 100,000) to the south. Though the volcano has not been active in historical time, or about the last 500 years, it has the potential to produce debris flows (watery flows of mud, rock, and debris—also known as lahars when they occur on a volcano) that could inundate these nearby populated areas.

  11. Three-dimensional geophysical mapping of rock alteration and water content at Mount Adams, Washington: Implications for lahar hazards

    USGS Publications Warehouse

    Finn, C.A.; Deszcz-Pan, M.; Anderson, E.D.; John, D.A.

    2007-01-01

    Hydrothermally altered rocks, particularly if water saturated, can weaken stratovolcanoes, thereby increasing the potential for catastrophic sector collapses that can lead to far-traveled, destructive debris flows. Evaluating the hazards associated with such alteration is difficult because alteration has been mapped on few active volcanoes and the distribution and intensity of subsurface alteration are largely unknown on any active volcano. At Mount Adams, some Holocene debris flows contain abundant hydrothermal minerals derived from collapse of the altered, edifice. Intense hydrothermal alteration significantly reduces the resistivity and magnetization of volcanic rock, and therefore hydrothermally altered rocks can be identified with helicopter electromagnetic and magnetic measurements. Electromagnetic and magnetic data, combined with geological mapping and rock property measurements, indicate the presence of appreciable thicknesses of hydrothermally altered rock in the central core of Mount Adams north of the summit. We identify steep cliffs at the western edge of this zone as the likely source for future large debris flows. In addition, the electromagnetic data identified water in the brecciated core of the upper 100-200 m of the volcano. Water helps alter the rocks, reduces the effective stress, thereby increasing the potential for slope failure, and acts, with entrained melting ice, as a lubricant to transform debris avalanches into lahars. Therefore knowing the distribution of water is also important for hazard assessments. Our results demonstrate that high-resolution geophysical and geological observations can yield unprecedented views of the three-dimensional distribution of altered rock and shallow pore water aiding evaluation of the debris avalanche hazard.

  12. Rain-triggered lahars following the 2010 eruption of Merapi volcano, Indonesia: A major risk

    NASA Astrophysics Data System (ADS)

    de Bélizal, Edouard; Lavigne, Franck; Hadmoko, Danang Sri; Degeai, Jean-Philippe; Dipayana, Gilang Aria; Mutaqin, Bachtiar Wahyu; Marfai, Muh Aris; Coquet, Marie; Mauff, Baptiste Le; Robin, Anne-Kyria; Vidal, Céline; Cholik, Noer; Aisyah, Nurnaning

    2013-07-01

    The 2010 VEI 4 eruption of Merapi volcano deposited roughly ten times the volume of pyroclastic materials of the 1994 and 2006 eruptions, and is recognized as one of the most intense eruption since 1872. However, as the eruptive phase is now over, another threat endangers local communities: rain-triggered lahars. Previous papers on lahars at Merapi presented lahar-related risk following small-scale dome-collapse PDCs. Thus the aim of this study is to provide new insights on lahar-related risk following a large scale VEI 4 eruption. The paper highlights the high number of events (240) during the 2010-2011 rainy season (October 2010-May 2011). The frequency of the 2010-2011 lahars is also the most important ever recorded at Merapi. Lahars occurred in almost all drainages located under the active cone, with runout distances exceeding 15 km. The geomorphic impacts of lahars on the distal slope of the volcano are then explained as they directly threaten houses and infrastructures: creation of large corridors, avulsions, riverbank erosion and riverbed downcutting are detailed through local scale examples. Related damage is also studied: 860 houses damaged, 14 sabo-dams and 21 bridges destroyed. Sedimentological characteristics of volcaniclastic sediments in lahar corridors are presented, with emphasis on the resource in building material that they represent for local communities. Risk studies should not forget that thousands of people are exposing themselves to lahar hazard when they quarry volcaniclastic sediment on lahar corridors. Finally, the efficient community-based crisis management is explained, and shows how local people organize themselves to manage the risk: 3 fatalities were reported, although lahars reached densely populated areas. To summarize, this study provides an update of lahar risk issues at Merapi, with emphasis on the distal slope of the volcano where lahars had not occurred for 40 years, and where lahar corridors were rapidly formed.

  13. Lahars and their deposits

    USGS Publications Warehouse

    Vallance, James W.; Iverson, Richard M.

    2015-01-01

    Lahars occur during volcanic eruptions--or, less predictably, through other processes on steep volcanic terrain--when large masses of water mixed with sediment sweep down and off volcano slopes and commonly incorporate additional sediment and water. Because lahars are water-saturated, both liquid and solid interactions influence their behavior and distinguish them from other related phenomena common to volcanoes, such as debris avalanches and floods. The rock fragments carried by lahars make them especially destructive; the abundant liquid contained in them allows them to flow over gentle gradients and inundate areas far away from their sources. People in such distal areas commonly neither expect the danger nor anticipate the destructive power of lahars.

  14. Lahar hazards at Mombacho Volcano, Nicaragua

    USGS Publications Warehouse

    Vallance, J.W.; Schilling, S.P.; Devoli, G.

    2001-01-01

    Mombacho volcano, at 1,350 meters, is situated on the shores of Lake Nicaragua and about 12 kilometers south of Granada, a city of about 90,000 inhabitants. Many more people live a few kilometers southeast of Granada in 'las Isletas de Granada and the nearby 'Peninsula de Aseses. These areas are formed of deposits of a large debris avalanche (a fast moving avalanche of rock and debris) from Mombacho. Several smaller towns with population, in the range of 5,000 to 12,000 inhabitants are to the northwest and the southwest of Mombacho volcano. Though the volcano has apparently not been active in historical time, or about the last 500 years, it has the potential to produce landslides and debris flows (watery flows of mud, rock, and debris -- also known as lahars when they occur on a volcano) that could inundate these nearby populated areas. -- Vallance, et.al., 2001

  15. Alteration, slope-classified alteration, and potential lahar inundation maps of volcanoes for the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Volcano Archive

    USGS Publications Warehouse

    Mars, John C.; Hubbard, Bernard E.; Pieri, David; Linick, Justin

    2015-01-01

    This study was undertaken during 2012–2013 in cooperation with the National Aeronautics and Space Administration (NASA). Since completion of this study, a new lahar modeling program (LAHAR_pz) has been released, which may produce slightly different modeling results from the LAHARZ model used in this study. The maps and data from this study should not be used in place of existing volcano hazard maps published by local authorities. For volcanoes without hazard maps and (or) published lahar-related hazard studies, this work will provide a starting point from which more accurate hazard maps can be produced. This is the first dataset to provide digital maps of altered volcanoes and adjacent watersheds that can be used for assessing volcanic hazards, hydrothermal alteration, and other volcanic processes in future studies.

  16. Causes, Dynamics and Impacts of Lahar Mass Flows due to the April 2015 Eruption of Calbuco Volcano, Chile

    NASA Astrophysics Data System (ADS)

    Dussaillant, Alejandro; Russell, Andy; Meier, Claudio; Rivera, Andres; Mella, Mauricio; Garrido, Natalia; Hernandez, Jorge; Napoleoni, Felipe; Gonzalez, Cristian

    2016-04-01

    Calbuco is a 2015m high, glacier capped, stratovolcano in the heavily populated Los Lagos region of southern Chile with a history of large volcanic eruptions in 1893-95, 1906-7, 1911-12, 1917, 1932, 1945, 1961 and 1972. Calbuco volcano experienced a powerful 90 minute eruption at 18:04h on 22 April, 2015 followed by additional major eruptions at 01:00h and 13:10h on 23 & 30 April, respectively, resulting in the evacuation of 6500 people and the imposition of a 20 km radius exclusion zone. Pyroclastic flows descended into several river catchments radiating from the volcano with lahars travelling distances of up to 14 km, reaching populated areas. We present findings from detailed field observations from April and July 2015, and January 2016, regarding the causes, dynamics and impacts of lahars generated by the April 2015 eruption, supported by satellite imagery, LiDAR and detailed rtkGPS & TLS surveys, as well as sediment sampling. Pyroclastic flows melted glacier ice and snow generating the largest lahars in the Rio Este and Rio Blanco Sur on the southern flanks of the volcano. Lahar deposits in the Rio Blanco Norte were buried by pyroclastic flow deposits with measured temperatures of up to 282°C three months after emplacement. Lahar erosional impacts included bedrock erosion, alluvial channel incision, erosion of surficial deposits and the felling of large areas of forest. Depositional landforms included boulder run-ups on the outsides of channel bends, boulder clusters and large woody debris jams. Lahars deposited up to 8m of sediment within distal reaches. Deposits on the southern flanks of Calbuco indicate the passage of multiple pulses of contrasting rheology. Lahar occurrence and magnitude was controlled by the pre-eruption distribution of snow and ice on the volcano. Pre-existing lahar channels controlled flows to lower piedmont zones where routing was determined by palaeo-lahar geomorphology. Ongoing erosion of proximal pyroclastic flow and lahar deposits

  17. Digital Data for Volcano Hazards from Mount Rainier, Washington, Revised 1998

    USGS Publications Warehouse

    Schilling, S.P.; Doelger, S.; Hoblitt, R.P.; Walder, J.S.; Driedger, C.L.; Scott, K.M.; Pringle, P.T.; Vallance, J.W.

    2008-01-01

    Mount Rainier at 4393 meters (14,410 feet) is the highest peak in the Cascade Range; a dormant volcano having glacier ice that exceeds that of any other mountain in the conterminous United States. This tremendous mass of rock and ice, in combination with great topographic relief, poses a variety of geologic hazards, both during inevitable future eruptions and during the intervening periods of repose. The volcano's past behavior is the best guide to possible future hazards. The written history (about A.D. 1820) of Mount Rainier includes one or two small eruptions, several small debris avalanches, and many small lahars (debris flows originating on a volcano). In addition, prehistoric deposits record the types, magnitudes, and frequencies of other events, and areas that were affected. Mount Rainier deposits produced since the latest ice age (approximately during the past 10,000 years) are well preserved. Studies of these deposits indicate we should anticipate potential hazards in the future. Some phenomena only occur during eruptions such as tephra falls, pyroclastic flows and surges, ballistic projectiles, and lava flows while others may occur without eruptive activity such as debris avalanches, lahars, and floods. The five geographic information system (GIS) volcano hazard data layers used to produce the Mount Rainier volcano hazard map in USGS Open-File Report 98-428 (Hoblitt and others, 1998) are included in this data set. Case 1, case 2, and case 3 layers were delineated by scientists at the Cascades Volcano Observatory and depict various lahar innundation zones around the mountain. Two additional layers delineate areas that may be affected by post-lahar sedimentation (postlahar layer) and pyroclastic flows (pyroclastic layer).

  18. Lahar Hazards at Concepción volcano, Nicaragua

    USGS Publications Warehouse

    Vallance, J.W.; Schilling, S.P.; Devoli, G.; Howell, M.M.

    2001-01-01

    Concepción is one of Nicaragua’s highest and most active volcanoes. The symmetrical cone occupies the northeastern half of a dumbbell shaped island called Isla Ometepa. The dormant volcano, Maderas, occupies the southwest half of the island. A narrow isthmus connects Concepción and Maderas volcanoes. Concepción volcano towers more than 1600 m above Lake Nicaragua and is within 5 to 10 km of several small towns situated on its aprons at or near the shoreline. These towns have a combined population of nearly 5,000. The volcano has frequently produced debris flows (watery flows of mud, rock, and debris—also known as lahars when they occur on a volcano) that could inundate these nearby populated areas. Concepción volcano has erupted more than 25 times in the last 120 years. Its first recorded activity was in AD 1883. Eruptions in the past century, most of which have originated from a small summit crater, comprise moderate explosions, ash that falls out of eruption plumes (called tephra), and occasional lava flows. Near the summit area, there are accumulations of rock that were emplaced hot (pyroclastic deposits), most of which were hot enough to stick together during deposition (a process called welding). These pyroclastic rocks are rather weak, and tend to break apart easily. The loose volcanic rock remobilizes during heavy rain to form lahars. Volcanic explosions have produced blankets of tephra that are distributed downwind, which on Isla Ometepe is mostly to the west. Older deposits at the west end of the island that are up to 1 m thick indicate larger explosive events have happened at Concepción volcano in prehistoric time. Like pyroclastic-flow deposits, loose tephra on the steep slopes of the volcano provides source material that heavy rainstorms and earthquakes can mobilize to trigger debris flow.

  19. The Mount Rainier Lahar Detection System

    NASA Astrophysics Data System (ADS)

    Lockhart, A. B.; Murray, T. L.

    2003-12-01

    To mitigate the risk of unheralded lahars from Mount Rainier, the U.S. Geological Survey, in cooperation with Pierce County, Washington, installed a lahar-detection system on the Puyallup and Carbon rivers that originate on Mount Rainier's western slopes. The system, installed in 1998, is designed to automatically detect the passage of lahars large enough to potentially affect populated areas downstream (approximate volume threshold 40 million cubic meters), while ignoring small lahars, earthquakes, extreme weather and floods. Along each river valley upstream, arrays of independent lahar-monitoring stations equipped with geophones and short tripwires telemeter data to a pair of redundant computer base stations located in and near Tacoma at existing public safety facilities that are staffed around the clock. Monitored data consist of ground-vibration levels, tripwire status, and transmissions at regular intervals. The base stations automatically evaluate these data to determine if a dangerous lahar is passing through the station array. The detection algorithm requires significant ground vibration to occur at those stations in the array that are above the anticipated level of inundation, while lower level `deadman' stations, inundated by the flow, experience tripwire breakage or are destroyed. Once a base station detects a lahar, it alerts staff who execute a call-down of public-safety officials and schools, initiating evacuation of areas potentially at risk. Because the system's risk-mitigation task imposes high standards of reliability on all components, it has been under test for several years. To date, the system has operated reliably and without false alarms, including during the nearby M6.8 Nisqually Earthquake on February 28, 2001. The system is being turned over to Pierce County, and activated as part of their lahar warning system.

  20. Catastrophic precipitation-triggered lahar at Casita volcano, Nicaragua: Occurrence, bulking and transformation

    USGS Publications Warehouse

    Scott, K.M.; Vallance, J.W.; Kerle, N.; Macias, J.L.; Strauch, W.; Devoli, G.

    2005-01-01

    A catastrophic lahar began on 30 October 1998, as hurricane precipitation triggered a small flank collapse of Casita volcano, a complex and probably dormant stratovolcano. The initial rockslide-debris avalanche evolved on the flank to yield a watery debris flood with a sediment concentration less than 60 per cent by volume at the base of the volcano. Within 2-5 km, however, the watery flow entrained (bulked) enough sediment to transform entirely to a debris flow. The debris flow, 6 km downstream and 1??2 km wide and 3 to 6 m deep, killed 2500 people, nearly the entire populations of the communities of El Porvenir and Rolando Rodriguez. These 'new towns' were developed in a prehistoric lahar pathway: at least three flows of similar size since 8330 14C years BP are documented by stratigraphy in the same 30-degree sector. Travel time between perception of the flow and destruction of the towns was only 2??5-3??0 minutes. The evolution of the flow wave occurred with hydraulic continuity and without pause or any extraordinary addition of water. The precipitation trigger of the Casita lahar emphasizes the nee d, in volcano hazard assessments, for including the potential for non-eruption-related collapse lahars with the more predictable potential of their syneruption analogues. The flow behaviour emphasizes that volcano collapses can yield not only volcanic debris avalanches with restricted runouts, but also mobile lahars that enlarge by bulking as they flow. Volumes and hence inundation areas of collapse-runout lahars can increase greatly beyond their sources: the volume of the Casita lahar bulked to at least 2??6 times the contributing volume of the flank collapse and 4??2 times that of the debris flood. At least 78 per cent of the debris flow matrix (sediment < -1??0??; 2 mm) was entrained during flow. Copyright c 2004 John Wiley & Sons, Ltd.

  1. Sedimentary control of volcanic debris-avalanche structures and transformation into lahars

    NASA Astrophysics Data System (ADS)

    Bernard, Karine; van Wyk de Vries, Benjamin; Thouret, Jean-Claude; Roche, Olivier; Samaniego Eguiguren, Pablo

    2017-04-01

    facies and transformations. Inherited fractures from tectono-volcanic structures contribute to the particle size distributions of DAD and associated deposits such as pyroclastic and lahar deposits (Misti, Mt Dore, Tutupaca). The statistical results highlight granular structure and kinematic process of DAD transformations into lahars and associated deposits, which would contribute to understand the rheological process behind the excess DAD run-out and to test granular models for DAD transformations. Key words: volcanic debris-avalanche deposits, lahar transformation, structure, sedimentology, hazard

  2. Incorporating Community Knowledge to Lahar Hazard Maps: Canton Buenos Aires Case Study, at Santa Ana (Ilamatepec) Volcano

    NASA Astrophysics Data System (ADS)

    Bajo, J. V.; Martinez-Hackert, B.; Polio, C.; Gutierrez, E.

    2015-12-01

    Santa Ana (Ilamatepec) Volcano is an active composite volcano located in the Apaneca Volcanic Field located in western part of El Salvador, Central America. The volcano is surrounded by rural communities in its proximal areas and the second (Santa Ana, 13 km) and fourth (Sonsosante, 15 km) largest cities of the country. On October 1st, 2005, the volcano erupted after months of increased activity. Following the eruption, volcanic mitigation projects were conducted in the region, but the communities had little or no input on them. This project consisted in the creation of lahar volcanic hazard map for the Canton Buanos Aires on the northern part of the volcano by incorporating the community's knowledge from prior events to model parameters and results. The work with the community consisted in several meetings where the community members recounted past events. They were asked to map the outcomes of those events using either a topographic map of the area, a Google Earth image, or a blank paper poster size. These maps have been used to identify hazard and vulnerable areas, and for model validation. These maps were presented to the communities and they accepted their results and the maps.

  3. Simulating the Osceola Mudflow Lahar Event in the Pacific Northwest using a GPU Based 2-Dimensional Hydraulic Model

    NASA Astrophysics Data System (ADS)

    Katz, B. G.; Eppert, S.; Lohmann, D.; Li, S.; Goteti, G.; Kaheil, Y. H.

    2011-12-01

    At 4,400 meters, Mount Rainer has been the point of origin for several major lahar events. The largest event, termed the "Osceola Mudflow," occurred 5,500 years ago and covered an area of approximately 550km2 with a total volume of deposited material from 2 to 4km3. Particularly deadly, large lahars are estimated to have maximum flow velocities in of 100km/h with a density often described as "Flowing Concrete." While rare, these events typically cause total destruction within a lahar inundation zone. It is estimated that approximately 150,000 people live on top of previous deposits left by lahars which can be triggered by anything from earthquakes to glacial and chemical erosion of volcanic bedrock over time to liquefaction caused by extreme rainfall events. A novel methodology utilizing a 2 dimensional hydraulic model has been implemented allowing for high resolution (30m) lahar inundation maps to be generated. The utility of this model above or in addition to other methodologies such as that of Iverson (1998), lies in its portability to other lahar zones as well as its ability to model any total volume specified by the user. The process for generating lahar flood plains requires few inputs including: a Digital Terrain Map of any resolution (DTM), a mask defining the locations for lahar genesis, a raster of friction coefficients, and a time series depicting uniform material accumulation over the genesis mask which is allowed to flow down-slope. Finally, a significant improvement in speed has been made for solving the two dimensional model by utilizing the latest in graphics processing unit (GPU) technology which has resulted in a greater than 200 times speed up in model run time over previous CPU-based methods. The model runs for the Osceola Mudflow compare favorably with USGS derived inundation regions as derived using field measurements and GIS based approaches such as the LAHARZ program suit. Overall gradation of low to high risk match well, however the new

  4. Implications of different digital elevation models and preprocessing techniques to delineate debris flow inundation hazard zones in El Salvador

    NASA Astrophysics Data System (ADS)

    Anderson, E. R.; Griffin, R.; Irwin, D.

    2013-12-01

    Heavy rains and steep, volcanic slopes in El Salvador cause numerous landslides every year, posing a persistent threat to the population, economy and environment. Although potential debris inundation hazard zones have been delineated using digital elevation models (DEMs), some disparities exist between the simulated zones and actual affected areas. Moreover, these hazard zones have only been identified for volcanic lahars and not the shallow landslides that occur nearly every year. This is despite the availability of tools to delineate a variety of landslide types (e.g., the USGS-developed LAHARZ software). Limitations in DEM spatial resolution, age of the data, and hydrological preprocessing techniques can contribute to inaccurate hazard zone definitions. This study investigates the impacts of using different elevation models and pit filling techniques in the final debris hazard zone delineations, in an effort to determine which combination of methods most closely agrees with observed landslide events. In particular, a national DEM digitized from topographic sheets from the 1970s and 1980s provide an elevation product at a 10 meter resolution. Both natural and anthropogenic modifications of the terrain limit the accuracy of current landslide hazard assessments derived from this source. Global products from the Shuttle Radar Topography Mission (SRTM) and the Advanced Spaceborne Thermal Emission and Reflection Radiometer Global DEM (ASTER GDEM) offer more recent data but at the cost of spatial resolution. New data derived from the NASA Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) in 2013 provides the opportunity to update hazard zones at a higher spatial resolution (approximately 6 meters). Hydrological filling of sinks or pits for current hazard zone simulation has previously been achieved through ArcInfo spatial analyst. Such hydrological processing typically only fills pits and can lead to drastic modifications of original elevation values

  5. Volcanism and associated hazards: the Andean perspective

    NASA Astrophysics Data System (ADS)

    Tilling, R. I.

    2009-12-01

    Andean volcanism occurs within the Andean Volcanic Arc (AVA), which is the product of subduction of the Nazca Plate and Antarctica Plates beneath the South America Plate. The AVA is Earth's longest but discontinuous continental-margin volcanic arc, which consists of four distinct segments: Northern Volcanic Zone, Central Volcanic Zone, Southern Volcanic Zone, and Austral Volcanic Zone. These segments are separated by volcanically inactive gaps that are inferred to indicate regions where the dips of the subducting plates are too shallow to favor the magma generation needed to sustain volcanism. The Andes host more volcanoes that have been active during the Holocene (past 10 000 years) than any other volcanic region in the world, as well as giant caldera systems that have produced 6 of the 47 largest explosive eruptions (so-called "super eruptions") recognized worldwide that have occurred from the Ordovician to the Pleistocene. The Andean region's most powerful historical explosive eruption occurred in 1600 at Huaynaputina Volcano (Peru). The impacts of this event, whose eruptive volume exceeded 11 km3, were widespread, with distal ashfall reported at distances >1000 km away. Despite the huge size of the Huaynaputina eruption, human fatalities from hazardous processes (pyroclastic flows, ashfalls, volcanogenic earthquakes, and lahars) were comparatively small owing to the low population density at the time. In contrast, lahars generated by a much smaller eruption (<0.05 km3) in 1985 of Nevado del Ruiz (Colombia) killed about 25 000 people - the worst volcanic disaster in the Andean region as well as the second worst in the world in the 20th century. The Ruiz tragedy has been attributed largely to ineffective communications of hazards information and indecisiveness by government officials, rather than any major deficiencies in scientific data. Ruiz's disastrous outcome, however, together with responses to subsequent hazardous eruptions in Chile, Colombia, Ecuador, and

  6. Volcanism and associated hazards: The Andean perspective

    USGS Publications Warehouse

    Tilling, R.I.

    2009-01-01

    Andean volcanism occurs within the Andean Volcanic Arc (AVA), which is the product of subduction of the Nazca Plate and Antarctica Plates beneath the South America Plate. The AVA is Earth's longest but discontinuous continental-margin volcanic arc, which consists of four distinct segments: Northern Volcanic Zone, Central Volcanic Zone, Southern Volcanic Zone, and Austral Volcanic Zone. These segments are separated by volcanically inactive gaps that are inferred to indicate regions where the dips of the subducting plates are too shallow to favor the magma generation needed to sustain volcanism. The Andes host more volcanoes that have been active during the Holocene (past 10 000 years) than any other volcanic region in the world, as well as giant caldera systems that have produced 6 of the 47 largest explosive eruptions (so-called "super eruptions") recognized worldwide that have occurred from the Ordovician to the Pleistocene.

    The Andean region's most powerful historical explosive eruption occurred in 1600 at Huaynaputina Volcano (Peru). The impacts of this event, whose eruptive volume exceeded 11 km3, were widespread, with distal ashfall reported at distances >1000 km away. Despite the huge size of the Huaynaputina eruption, human fatalities from hazardous processes (pyroclastic flows, ashfalls, volcanogenic earthquakes, and lahars) were comparatively small owing to the low population density at the time. In contrast, lahars generated by a much smaller eruption (<0.05 km 3) in 1985 of Nevado del Ruiz (Colombia) killed about 25 000 people - the worst volcanic disaster in the Andean region as well as the second worst in the world in the 20th century. The Ruiz tragedy has been attributed largely to ineffective communications of hazards information and indecisiveness by government officials, rather than any major deficiencies in scientific data. Ruiz's disastrous outcome, however, together with responses to subsequent hazardous eruptions in Chile, Colombia

  7. Groundwater drainage from fissures as a source for lahars

    NASA Astrophysics Data System (ADS)

    Johnson, P. J.; Valentine, G. A.; Stauffer, P. H.; Lowry, C. S.; Sonder, I.; Pulgarín, B. A.; Santacoloma, C. C.; Agudelo, A.

    2018-04-01

    One mechanism for generating lahars at volcanoes experiencing unrest is the disruption of internal aquifers. These disruptions can trigger releases of large quantities of groundwater. An example of such aquifer disruption occurred at Nevado del Huila Volcano, Colombia, during February and April 2007 when large fractures formed across the summit area of the volcano and lahars were emitted from them. Previous work interpreted that lahar volumes could not be accounted for by melted glacial snow or precipitation, and by elimination suggested that the primary water source was groundwater. Conceptual models have been developed for perched, confined aquifers that have been heated and pressurized by magma intrusions, followed by sudden pressure release and water emission during fracture formation. We consider an alternative end member wherein water release from large fissures at volcanoes is driven by simple gravity drainage. We apply numerical modeling to quantify water discharge from the porous medium surrounding a fissure with a low-elevation free exit. If a long fracture with high vertical extent (on the order of hundreds of meters) intersects a highly connected saturated porous medium, large volumes (on order 103 m3/m of crack length) of water may be released within tens of minutes. The drainage rates from the model may be adequate to account for the Nevado del Huila events if the medium surrounding the crack contains a large volume of water and has high horizontal permeability. This simple but poorly understood mechanism can present a hazard on its own or compound other processes releasing water from volcanoes.

  8. 36 CFR 13.1304 - Ice fall hazard zones.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false Ice fall hazard zones. 13.1304 Section 13.1304 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE... Provisions § 13.1304 Ice fall hazard zones. Entering an ice fall hazard zone is prohibited. These zones will...

  9. 36 CFR 13.1304 - Ice fall hazard zones.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Ice fall hazard zones. 13.1304 Section 13.1304 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE... Provisions § 13.1304 Ice fall hazard zones. Entering an ice fall hazard zone is prohibited. These zones will...

  10. 36 CFR 13.1304 - Ice fall hazard zones.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Ice fall hazard zones. 13.1304 Section 13.1304 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE... Provisions § 13.1304 Ice fall hazard zones. Entering an ice fall hazard zone is prohibited. These zones will...

  11. 36 CFR 13.1304 - Ice fall hazard zones.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Ice fall hazard zones. 13.1304 Section 13.1304 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE... Provisions § 13.1304 Ice fall hazard zones. Entering an ice fall hazard zone is prohibited. These zones will...

  12. Volcano hazards in the Mount Hood region, Oregon

    USGS Publications Warehouse

    Scott, W.E.; Pierson, T.C.; Schilling, S.P.; Costa, J.E.; Gardner, C.A.; Vallance, J.W.; Major, J.J.

    1997-01-01

    Mount Hood is a potentially active volcano close to rapidly growing communities and recreation areas. The most likely widespread and hazardous consequence of a future eruption will be for lahars (rapidly moving mudflows) to sweep down the entire length of the Sandy (including the Zigzag) and White River valleys. Lahars can be generated by hot volcanic flows that melt snow and ice or by landslides from the steep upper flanks of the volcano. Structures close to river channels are at greatest risk of being destroyed. The degree of hazard decreases as height above a channel increases, but large lahars can affect areas more than 30 vertical meters (100 vertical feet) above river beds. The probability of eruption-generated lahars affecting the Sandy and White River valleys is 1-in-15 to l-in-30 during the next 30 years, whereas the probability of extensive areas in the Hood River Valley being affected by lahars is about ten times less. The accompanying volcano-hazard-zonation map outlines areas potentially at risk and shows that some areas may be too close for a reasonable chance of escape or survival during an eruption. Future eruptions of Mount Hood could seriously disrupt transportation (air, river, and highway), some municipal water supplies, and hydroelectric power generation and transmission in northwest Oregon and southwest Washington.

  13. Lahars of Mount Pinatubo, Philippines

    USGS Publications Warehouse

    Newhall, Christopher G.; Stauffer, Peter H.; Hendley, James W.

    1997-01-01

    On June 15, 1991, Mount Pinatubo in the Philippines exploded in the second largest volcanic eruption on Earth this century. This eruption deposited more than 1 cubic mile (5 cubic kilometers) of volcanic ash and rock fragments on the volcano's slopes. Within hours, heavy rains began to wash this material down into the surrounding lowlands in giant, fast-moving mudflows called lahars. In the next four rainy seasons, lahars carried about half of the deposits off the volcano, causing even more destruction in the lowlands than the eruption itself.

  14. Stratigraphic and sedimetological study of relevant lahar deposits of La Lumbre ravine, Colima volcano (Mexico): preliminary results.

    NASA Astrophysics Data System (ADS)

    Sarocchi, D.; Rodriguez-Sedano, L. A.; Saucedo, R.; Capra, L.

    2009-04-01

    Volcán de Colima is the most active volcano of Mexico with more than fifty eruptions documented in the last four centuries. The great amount of pyroclastic material deposited in the volcano slopes represents a perfect source for an intense lahar activity. Despite the intense volcanic activity with production of explosive eruptions and pyroclastic flows, lahars are greatly the most dangerous phenomena at Volcán de Colima. Pyroclastic flows did not reach long distances, generally less than 5 km from the crater. In contrast, lahars travel long distances, up to 10 km, causing damage to infrastructure and being able to affect populated areas. For this reason in the last 100 years more than 350 people died for lahars in the Colima Volcanic Complex and only 8 lost their lives for pyroclastic flows in 1913 plinian eruption. "La Lumbre" ravine is a very important morphological feature in the western-southwestern sector of the volcano, there, it gathers the main drainage system and collects water from "El Playon", a wide intra-caldera basin delimited by the Volcán de Colima to the south and the "Paleofuego" caldera rim to the north. This ravine produced huge lahars such as the 1906 lahar which killed almost 325 people, or the lahars associated with the great 1913 eruption, other associated with de 1990-91 volcanic crisis, and is still very active, continuously remobilizing the 1998-99 pyroclastic flow deposits. In 2002 near the confluence between "La Lumbre" and "El Zarco" Ravine, a house was destroyed fortunately with no danger for people. In order to perform future accurate lahar numerical simulation and obtain reliable hazard study along this ravine, is very important to reconstruct the complex stratigraphy and understand which of such important deposits is related with the 1906, 1913 or 1991 eruptive crisis. For this reason we are performing a detailed stratigraphic study of the lahars sequence. We selected the best outcrops at different distances from the crater. In

  15. Groundwater drainage from fissures as a source for lahars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, P. J.; Valentine, G. A.; Stauffer, P. H.

    One mechanism for generating lahars at volcanoes experiencing unrest is the disruption of internal aquifers. These disruptions can trigger releases of large quantities of groundwater. An example of such aquifer disruption occurred at Nevado del Huila Volcano, Colombia, during February and April 2007 when large fractures formed across the summit area of the volcano and lahars were emitted from them. Previous work interpreted that lahar volumes could not be accounted for by melted glacial snow or precipitation, and by elimination suggested that the primary water source was groundwater. Conceptual models have been developed for perched, confined aquifers that have beenmore » heated and pressurized by magma intrusions, followed by sudden pressure release and water emission during fracture formation. In this paper, we consider an alternative end member wherein water release from large fissures at volcanoes is driven by simple gravity drainage. We apply numerical modeling to quantify water discharge from the porous medium surrounding a fissure with a low-elevation free exit. If a long fracture with high vertical extent (on the order of hundreds of meters) intersects a highly connected saturated porous medium, large volumes (on order 10 3 m 3/m of crack length) of water may be released within tens of minutes. The drainage rates from the model may be adequate to account for the Nevado del Huila events if the medium surrounding the crack contains a large volume of water and has high horizontal permeability. Finally, this simple but poorly understood mechanism can present a hazard on its own or compound other processes releasing water from volcanoes.« less

  16. Groundwater drainage from fissures as a source for lahars

    DOE PAGES

    Johnson, P. J.; Valentine, G. A.; Stauffer, P. H.; ...

    2018-03-22

    One mechanism for generating lahars at volcanoes experiencing unrest is the disruption of internal aquifers. These disruptions can trigger releases of large quantities of groundwater. An example of such aquifer disruption occurred at Nevado del Huila Volcano, Colombia, during February and April 2007 when large fractures formed across the summit area of the volcano and lahars were emitted from them. Previous work interpreted that lahar volumes could not be accounted for by melted glacial snow or precipitation, and by elimination suggested that the primary water source was groundwater. Conceptual models have been developed for perched, confined aquifers that have beenmore » heated and pressurized by magma intrusions, followed by sudden pressure release and water emission during fracture formation. In this paper, we consider an alternative end member wherein water release from large fissures at volcanoes is driven by simple gravity drainage. We apply numerical modeling to quantify water discharge from the porous medium surrounding a fissure with a low-elevation free exit. If a long fracture with high vertical extent (on the order of hundreds of meters) intersects a highly connected saturated porous medium, large volumes (on order 10 3 m 3/m of crack length) of water may be released within tens of minutes. The drainage rates from the model may be adequate to account for the Nevado del Huila events if the medium surrounding the crack contains a large volume of water and has high horizontal permeability. Finally, this simple but poorly understood mechanism can present a hazard on its own or compound other processes releasing water from volcanoes.« less

  17. Dendrogeomorphic reconstruction of lahar activity and triggers: Shiveluch volcano, Kamchatka Peninsula, Russia

    NASA Astrophysics Data System (ADS)

    Salaorni, E.; Stoffel, M.; Tutubalina, O.; Chernomorets, S.; Seynova, I.; Sorg, A.

    2017-01-01

    Lahars are highly concentrated, water-saturated volcanic hyperconcentrated flows or debris flows containing pyroclastic material and are a characteristic mass movement process on volcanic slopes. On Kamchatka Peninsula (Russian Federation), lahars are widespread and may affect remote settlements. Historical records of past lahar occurrences are generally sparse and mostly limited to events which damaged infrastructure on the slopes or at the foot of volcanoes. In this study, we present a tree-ring-based reconstruction of spatiotemporal patterns of past lahar activity at Shiveluch volcano. Using increment cores and cross sections from 126 Larix cajanderi trees, we document 34 events covering the period AD 1729-2012. Analyses of the seasonality of damage in trees reveal that 95% of all lahars occurred between October and May and thus point to the predominant role of the sudden melt of the snow cover by volcanic material. These observations suggest that most lahars were likely syn-eruptive and that lahar activity is largely restricted to periods of volcanic activity. By contrast, rainfall events do not seem to play a significant role in lahar triggering.

  18. Mobility statistics and automated hazard mapping for debris flows and rock avalanches

    USGS Publications Warehouse

    Griswold, Julia P.; Iverson, Richard M.

    2008-01-01

    Power-law equations that are physically motivated and statistically tested and calibrated provide a basis for forecasting areas likely to be inundated by debris flows, rock avalanches, and lahars with diverse volumes. The equations A=α1V2/3 and B=α2V2/3 are based on the postulate that the maximum valley cross-sectional area (A) and total valley planimetric area (B) likely to be inundated by a flow depend only on its volume (V) and the topography of the flow path. Testing of these equations involves determining whether or not they fit data for documented flows satisfactorily, and calibration entails determining best-fit values of the coefficients α1 and α2 for debris flows, rock avalanches, and lahars. This report describes statistical testing and calibration of the equations by using field data compiled from many sources, and it describes application of the equations to delineation of debris-flow hazard zones. Statistical results show that for each type of flow (debris flows, rock avalanches, and lahars), the dependence of A and B on V is described well by power laws with exponents equal to 2/3. This value of the exponent produces fits that are effectively indistinguishable from the best fits obtained by using adjustable power-law exponents. Statistically calibrated values of the coefficients α1 and α2 provide scale-invariant indices of the relative mobilities of rock avalanches (α1 = 0.2, α2 = 20), nonvolcanic debris flows (α1 = 0.1, α2 = 20), and lahars (α1 = 0.05, α2 = 200). These values show, for example, that a lahar of specified volume can be expected to inundate a planimetric area ten times larger than that inundated by a rock avalanche or nonvolcanic debris flow of the same volume. The utility of the calibrated debris-flow inundation equations A=0.1V2/3 and B=20V2/3 is demonstrated by using them within the GIS program LAHARZ to delineate nested hazard zones for future debris flows in an area bordering the Umpqua River in the south-central Oregon

  19. Long boundary drainage as a source of lahars: Can big cracks make big floods?

    NASA Astrophysics Data System (ADS)

    Johnson, P. J.; Valentine, G.; Lowry, C.; Sonder, I.; Stauffer, P. H.; Santacoloma, C.; Pulgarín, B.; Adriana, A.

    2016-12-01

    Two phreatic eruptions in 2007 at Nevado del Huila Volcano, Colombia, were associated with the formation of very large (estimated 2,000 m long by 50 m wide) fracture systems at the summit of the volcano. Lahars with volumes up to 75 million m3 followed formation of these fissures, damaging villages downstream. Previous work suggested that water for these lahars was sourced at least in part by groundwater within the edifice that was rapidly expelled during the eruptions. The mechanisms for the rapid release of large volumes of water are unclear and cannot be uniquely constrained based on available data, leading to multiple conceptual models. We examine one conceptual model in which water discharge results primarily from gravity-driven drainage through the walls of the newly-opened fracture. The presence of a topographically low pour-point on the side of the edifice allows this leaking water to escape, forming a lahar. Steady state calculations and numerical modeling of transient-state fluid flow using the Finite Element Heat and Mass model (FEHM, https://fehm.lanl.gov) are used to estimate the resulting discharges. Our results show that a pulse of water is rapidly released through a new fracture, with discharge decreasing as the medium drains. Emitted water volumes depend on the dimensions of the crack and particularly sensitive to the height of the draining fracture wall and the magnitude of the permeability increase created during the fracturing event. Hazardous lahar events could be generated by this mechanism if large cracks form in water-bearing edifices elsewhere.

  20. Mobile machine hazardous working zone warning system

    DOEpatents

    Schiffbauer, William H.; Ganoe, Carl W.

    1999-01-01

    A warning system is provided for a mobile working machine to alert an individual of a potentially dangerous condition in the event the individual strays into a hazardous working zone of the machine. The warning system includes a transmitter mounted on the machine and operable to generate a uniform magnetic field projecting beyond an outer periphery of the machine in defining a hazardous working zone around the machine during operation thereof. A receiver, carried by the individual and activated by the magnetic field, provides an alarm signal to alert the individual when he enters the hazardous working zone of the machine.

  1. Mobile machine hazardous working zone warning system

    DOEpatents

    Schiffbauer, W.H.; Ganoe, C.W.

    1999-08-17

    A warning system is provided for a mobile working machine to alert an individual of a potentially dangerous condition in the event the individual strays into a hazardous working zone of the machine. The warning system includes a transmitter mounted on the machine and operable to generate a uniform magnetic field projecting beyond an outer periphery of the machine in defining a hazardous working zone around the machine during operation. A receiver, carried by the individual and activated by the magnetic field, provides an alarm signal to alert the individual when he enters the hazardous working zone of the machine. 3 figs.

  2. Does exposure to lahars risk affect people's risk-preferences and other attitudes? Field data from incentivized experiments and surveys in Arequipa - Peru

    NASA Astrophysics Data System (ADS)

    Heitz, C.; Bchir, M. A.; Willinger, M.

    2012-04-01

    Many individuals are exposed to risks which are either difficult to insure or hard to mitigate, such as tsunamis, floods, volcanic eruption,... Little is known about how exposure to such risks shapes individuals' risk-preferences. Are they more (less) risk-averse than people who are unexposed to such hazard risk? We provide empirical evidence about this question for the case of individuals exposed to lahars risk. Lahars are sediments laden flows from volcanic origin. We compare the risk-attitude of people exposed - versus non-exposed ones - to lahars risk. The originality of our approach is that we combine standard survey data to behavioural data collected by means of incentivized experiments. We collected data in various locations of the city of Arequipa (Peru), a densely populated area down the volcano El Misti. Participants in our experiment were identified as (non-)exposed to lahars risk based on risk zoning. Our survey questionnaire allows us to compare assessed exposure and the perceived exposure. We elicit risk-preference, time-preference, and trusting behaviour (a measure of social capital) for each respondent in addition to standard survey data. Our field experiment involved a total of 209 respondents from exposed and non-exposed areas. While respondents endow legitimacy in risk reduction (more than 74%) to a national authority (Defensa Civil) in charge of the management of risk in the city, more than 64% of them consider that they are not sufficiently informed about the behaviours to adopt in case of a disaster. Respondents are therefore poorly motivated to adopt initiatives of self-protection (23%) and express instead high expectations with respect to authorities' actions for decreasing their vulnerability (73%). The experimental data show that participants who live in exposed areas are not significantly more risk-averse than those living in non-exposed ones. Furthermore, there is no significant difference in time-preference between exposed and non

  3. Rheological behavior of water-ash mixtures from Sakurajima and Ontake volcanoes: implications for lahar flow dynamics

    NASA Astrophysics Data System (ADS)

    Kurokawa, Aika K.; Ishibashi, Hidemi; Miwa, Takahiro; Nanayama, Futoshi

    2018-06-01

    Lahars represent one of the most serious volcanic hazards, potentially causing severe damage to the surrounding environment, not only immediately after eruption but also later due to rainfall or snowfall. The flow of a lahar is governed by volcanic topography and its rheological behavior, which is controlled by its volume, microscale properties, and the concentration of particles. However, the effects of particle properties on the rheology of lahars are poorly understood. In this study, viscosity measurements were performed on water-ash mixtures from Sakurajima and Ontake volcanoes. Samples from Sakurajima show strong and simple shear thinning, whereas those from Ontake show viscosity fluctuations and a transition between shear thinning and shear thickening. Particle analysis of the volcanic ash together with a theoretical analysis suggests that the rheological difference between the two types of suspension can be explained by variations in particle size distribution and shape. In particular, to induce the complex rheology of the Ontake samples, coexistence of two particle size groups may be required since two independent behaviors, one of which follows the streamline (Stokes number St << 1, inertial number I < 0.001) and the other shows a complicated motion ( St 1, I 0.001), compete against each other. The variations in the spatial distribution of polydisperse particles, and the time dependence of this feature which generates apparent rheological changes, indicate that processes related to microscale particle heterogeneities are important in understanding the flow dynamics of lahars and natural polydisperse granular-fluid mixtures in general.

  4. Rapid Loss of Andean Alpine Glaciers: A Reflection on Cotopaxi´s Long-Distance Historical Lahars and Future Lahar Scenarios

    NASA Astrophysics Data System (ADS)

    Mothes, P. A.; Hall, M. L.; Samaniego, P.; Francou, B.; Castro, M.; Hidalgo, X.

    2007-05-01

    Andean alpine glaciers are in rapid retreat, as witnessed by actual measurements, comparative imagery and popular memory. Overall glacier losses will diminish future water availability for human consumption as well as for lahar generation, the product of mixing incandescent eruptive materials with glacial ice and snow. The field study and modeling of long-distance historical lahars from Cotopaxi volcano, Ecuador has shown them to be some of the most voluminous and longest reported. Based on back calculations, peak discharges were commonly between 45,000-60,000 m3/sec, velocities reached 70 km/hr, and run outs attained 325 km. The last "super" debris flow was produced at Cotopaxi in 1877. Observations made after the 1877 eruption reported that the glacier had suffered about 10 meters of ice stripped off the top and the incision of deep gullies from melting and erosion by the scoria block-rich pyroclastic flows. Average reductions of 45% and 60%, respectively, of the area and volume of Cotopaxi´s 19 alpine glaciers during the last 30 years have left an ice cap of only 13 km2 and a volume of 0.60 km3. Descriptions by astute 18th and 19th century observers lead us to conclude that Cotopaxi glaciers were much more robust then, surpassing a total area of about 30 km2, a fact which contributed to generating large volume lahars and high discharges, during the waning "Little Ice Age". If an eruption similar to that of 1877 occurs at Cotopaxi in the future, reduced glacier sizes and the glaciers´ preferential distribution upon the cone will likely attenuate volcano-ice interactions and will lower the probability of "super" lahars being produced during eruptive periods. However, in the last 2000 years of eruptive activity, explosive eruptions display a large size span-- from weakly explosive events (VEI= 2) to highly explosive eruptive cycles (VEI= 4-5). Given the uncertainty of the size of the next explosive eruption of Cotopaxi, several scenarios for lahar generation must

  5. Satellite remote sensing as a tool in Lahar disaster management.

    PubMed

    Kerle, Norman; Oppenheimer, Clive

    2002-06-01

    At least 40,000 deaths have been attributed to historic lahars (volcanic mudflows). The most recent lahar disaster occurred in 1998 at Casita volcano, Nicaragua, claiming over 2,500 lives. Lahars can cover large areas and be highly destructive, and constitute a challenge for disaster management. With infrastructure affected and access frequently impeded, disaster management can benefit from the synoptic coverage provided by satellite imagery. This potential has been recognisedfor other types of natural disasters, but limitations are also known. Dedicated satellite constellations for disaster response and management have been proposed as one solution. Here we investigate the utility of currently available and forthcoming optical and radar sensors as tools in lahar disaster management. Applied to the Casita case, we find that imagery available at the time could not have significantly improved disaster response. However, forthcoming satellites, especially radar, will improve the situation, reducing the benefit of dedicated constellations.

  6. The hazards of eruptions through lakes and seawater

    USGS Publications Warehouse

    Mastin, L.G.; Witter, J.B.

    2000-01-01

    Eruptions through crater lakes or shallow seawater, referred to here as subaqueous eruptions, present hazards from hydromagmatic explosions, such as base surges, lahars, and tsunamis, which may not exist at volcanoes on dry land. We have systematically compiled information from eruptions through surface water in order to understand the circumstances under which these hazards occur and what disastrous effects they have caused in the past. Subaqueous eruptions represent only 8% of all recorded eruptions but have produced about 20% of all fatalities associated with volcanic activity in historical time. Excluding eruptions that have resulted in about a hundred deaths or less, lahars have killed people in the largest number of historical subaqueous eruptions (8), followed by pyroclastic flows (excluding base surges; 5) tsunamis (4), and base surges (2). Subaqueous eruptions have produced lahars primarily on high (>1000 m), steep-sided volcanoes containing small (<1 km diameter) crater lakes. Tsunamis and other water waves have caused death or destroyed man-made structures only at submarine volcanoes and at Lake Taal in the Philippines. In spite of evidence that magma-water mixing makes eruptions more explosive, such explosions and their associated base surges have caused fewer deaths, and have been implicated in fewer eruptions involving large numbers of fatalities than lahars and tsunamis. The latter hazards are more deadly because they travel much farther from a volcano and inundate coastal areas and stream valleys that tend to be densely settled.

  7. Western Rainier Seismic Zone Airborne Laser Swath Mapping

    NASA Technical Reports Server (NTRS)

    Harding, David J.; Haugerud, Ralph A.; Johnson, Samuel Y.; Scott, Kevin M.; Weaver, Craig S.; Martinez, Diana M.; Zeigler, John C.; Latypov, Damir

    2003-01-01

    Airborne laser swath mapping (ALSM) of the Puget Lowland conducted by TerraPoint LLC for the Purget Sound Lidar Concortium (PSLC), has been successful in revealing Holocene fault scarps and lendsliders hidden beneath the dense, temperate rain forest cover and in quantifying shoreline terrace uplift. Expanding the PSLC efforts, NASA-USGS collaboration is now focusing on topographic mapping of seismogenic zones adjacent to volcanois in the western Cascades range in order to assess the presence of active faulting and tectonic deformation, better define the extend of lahars and understand their flow processes, and characterize landslide occurrence. Mapping of the western Rainier zone (WRZ) was conducted by TerraPoint in late 2002, after leaf fall and before snow accumulation. The WRZ is a NNW-trending, approx. 30 km-long zone of seismicity west of Mount Rainier National Park. The Puget Lowland ALSM methods were modified to accommodate challenges posed by the steep, high relief terrian. The laser data, acquired with a density of approx. 2 pulses /sq m, was filtered to identify returns from the ground from which a bare Earth digital elevation model (DEM) was produced with a grid size of 1.8 m. The RMS elevation accuracy of the DEM in flat, unvegetated areas is approx. 10cm based on consistency between overlapping flight swaths and comparisons to ground control points. The resulting DEM substantially improves upon Shuttle Radar Topography Mission and USGS photogrammetric mapping. For example, the DEM defines the size and spatial distribution of flood erratics left by the Electron lahar and of megaclasts within the Round Pass lahar, important for characterizing the lahar hydraulics. A previously unknown lateral levee on the Round Pass lahar is also revealed. In addition, to illustrating geomorfic feature within the WRZ, future plans for laser mapping of the Saint Helens and Darrington seismic zones will be described.

  8. Airborne Magnetic and Electromagnetic Data map Rock Alteration and Water Content at Mount Adams, Mount Baker and Mount Rainier, Washington: Implications for Lahar Hazards and Hydrothermal Systems

    NASA Astrophysics Data System (ADS)

    Finn, C. A.; Deszcz-Pan, M.; Horton, R.; Breit, G.; John, D.

    2007-12-01

    High resolution helicopter-borne magnetic and electromagnetic (EM) data flown over the rugged, ice-covered, highly magnetic and mostly resistive volcanoes of Mount Rainier, Mount Adams and Mount Baker, along with rock property measurements, reveal the distribution of alteration, water and hydrothermal fluids that are essential to evaluating volcanic landslide hazards and understanding hydrothermal systems. Hydrothermally altered rocks, particularly if water saturated, can weaken stratovolcanoes, thereby increasing the potential for catastrophic sector collapses that can lead to far-traveled, destructive debris flows. Intense hydrothermal alteration significantly reduces the magnetization and resistivity of volcanic rock resulting in clear recognition of altered rock by helicopter magnetic and EM measurements. Magnetic and EM data, combined with geological mapping and rock property measurements, indicate the presence of appreciable thicknesses of hydrothermally altered rock west of the modern summit of Mount Rainier in the Sunset Amphitheater region, in the central core of Mount Adams north of the summit, and in much of the central cone of Mount Baker. We identify the Sunset Amphitheater region and steep cliffs at the western edge of the central altered zone at Mount Adams as likely sources for future debris flows. In addition, the EM data identified water-saturated rocks in the upper 100-200 m of the three volcanoes. The water-saturated zone could extend deeper, but is beyond the detection limits of the EM data. Water in hydrothermal fluids reacts with the volcanic rock to produce clay minerals. The formation of clay minerals and presence of free water reduces the effective stress, thereby increasing the potential for slope failure, and acts, with entrained melting ice, as a lubricant to transform debris avalanches into lahars. Therefore, knowing the distribution of water is also important for hazard assessments. Finally, modeling requires extremely low

  9. Monitoring the Dynamic of a Fluvial Channel after Lahar Disturbance: Huiloac Gorge (Popocatepetl Volcano, Mexico)

    NASA Astrophysics Data System (ADS)

    Andres, N.; Palacios, D.; Zamorano, J. J.; Tanarro, L. M.; Renschler, C.; Sanjosé, J. J.; Atkinson, A.

    2009-04-01

    Volcanic eruptions generate disturbances that affect hydrological systems (Major, 2003) by depositing large volumes of sediments in watersheds that exceed amounts common to non-volcanic river systems (Montgomery, 2005). If the eruption releases abundant melt water, the river system may respond immediately by forming hazardous flows called lahars. River system recovery following eruptive and laharic impact is an important process, but it has received little attention (Gran and Montgomery, 2005) despite the fact that Major et al. (2000) and Hayes et al. (2002) have shown that these disruptions cause long term instability and their effects persist for decades. Lahar deposits resulting from interaction between volcanic activity and the glacier located above the Huiloac Gorge on the northern slope of Popocatepetl volcano (19°02´ N, 98°62´ W, 5,424 m), have infilled the gorge (Palacios, 1995; Palacios et al., 1998 and 2001; Capra et al., 2004; Muñoz, 2007). All of the major lahars that occurred on the volcano in 1995 (4 km), 1997 (21 km), and 2001 (14 km) have channelled through Huiloac Gorge, and have dramatically altered its morphology and dynamics through erosion and deposition. The present study traces these changes in the aftermath of the laharic events that occurred from 1997-2001. A sector of the channel, located at 3200m-3240m altitude, of 500 m long and 15 to 20 m wide, in the mid-section of the gorge, was chosen as the control site. Precipitation is heaviest there and is most apt to trigger secondary post-eruptive lahars. ArcGis software was used to draw 6 geomorphic maps of the site showing spatial variations in the landforms for the period February 2002 - February 2008. In addition, 29 cross-profiles were made of the gorge for the same time interval, excluding February 2004. The volume of sediment eroded and deposited was calculated for each date by comparing variations in the height of the floor and banks of the gorge depicted in the cross-profile, and

  10. Long-term multi-hazard assessment for El Misti volcano (Peru)

    NASA Astrophysics Data System (ADS)

    Sandri, Laura; Thouret, Jean-Claude; Constantinescu, Robert; Biass, Sébastien; Tonini, Roberto

    2014-02-01

    We propose a long-term probabilistic multi-hazard assessment for El Misti Volcano, a composite cone located <20 km from Arequipa. The second largest Peruvian city is a rapidly expanding economic centre and is classified by UNESCO as World Heritage. We apply the Bayesian Event Tree code for Volcanic Hazard (BET_VH) to produce probabilistic hazard maps for the predominant volcanic phenomena that may affect c.900,000 people living around the volcano. The methodology accounts for the natural variability displayed by volcanoes in their eruptive behaviour, such as different types/sizes of eruptions and possible vent locations. For this purpose, we treat probabilistically several model runs for some of the main hazardous phenomena (lahars, pyroclastic density currents (PDCs), tephra fall and ballistic ejecta) and data from past eruptions at El Misti (tephra fall, PDCs and lahars) and at other volcanoes (PDCs). The hazard maps, although neglecting possible interactions among phenomena or cascade effects, have been produced with a homogeneous method and refer to a common time window of 1 year. The probability maps reveal that only the north and east suburbs of Arequipa are exposed to all volcanic threats except for ballistic ejecta, which are limited to the uninhabited but touristic summit cone. The probability for pyroclastic density currents reaching recently expanding urban areas and the city along ravines is around 0.05 %/year, similar to the probability obtained for roof-critical tephra loading during the rainy season. Lahars represent by far the most probable threat (around 10 %/year) because at least four radial drainage channels can convey them approximately 20 km away from the volcano across the entire city area in heavy rain episodes, even without eruption. The Río Chili Valley represents the major concern to city safety owing to the probable cascading effect of combined threats: PDCs and rockslides, dammed lake break-outs and subsequent lahars or floods

  11. Syn- and posteruptive hazards of maar diatreme volcanoes

    NASA Astrophysics Data System (ADS)

    Lorenz, Volker

    2007-01-01

    Maar-diatreme volcanoes represent the second most common volcano type on continents and islands. This study presents a first review of syn- and posteruptive volcanic and related hazards and intends to stimulate future research in this field. Maar-diatreme volcanoes are phreatomagmatic monogenetic volcanoes. They may erupt explosively for days to 15 years. Above the preeruptive surface a relatively flat tephra ring forms. Below the preeruptive surface the maar crater is incised because of formation and downward penetration of a cone-shaped diatreme and its root zone. During activity both the maar-crater and the diatreme grow in depth and diameter. Inside the diatreme, which may penetrate downwards for up to 2.5 km, fragmented country rocks and juvenile pyroclasts accumulate in primary pyroclastic deposits but to a large extent also as reworked deposits. Ejection of large volumes of country rocks results in a mass deficiency in the root zone of the diatreme and causes the diatreme fill to subside, thus the diatreme represents a kind of growing sinkhole. Due to the subsidence of the diatreme underneath, the maar-crater is a subsidence crater and also grows in depth and diameter with ongoing activity. As long as phreatomagmatic eruptions continue the tephra ring grows in thickness and outer slope angle. Syneruptive hazards of maar-diatreme volcanoes are earthquakes, eruption clouds, tephra fall, base surges, ballistic blocks and bombs, lahars, volcanic gases, cutting of the growing maar crater into the preeruptive ground, formation of a tephra ring, fragmentation of country rocks, thus destruction of area and ground, changes in groundwater table, and potential renewal of eruptions. The main hazards mostly affect an area 3 to possibly 5 km in radius. Distal effects are comparable to those of small eruption clouds from polygenetic volcanoes. Syneruptive effects on infrastructure, people, animals, vegetation, agricultural land, and drainage are pointed out. Posteruptive

  12. Pine Root Collar Weevil Hazard Zones for Red Pine in Lower Michigan

    Treesearch

    Louis F. Wilson; Patrick C. Kennedy

    1970-01-01

    The Lower Peninsula of Michigan is divided into low, medium, and high hazard zones by degree of potential weevil damage. New plantings should be established no closer than I mile from a weevil infestation in the high hazard zone or no closer than ? mile in the medium hazard zone to lessen the probability of those plantings becoming heavily infested.

  13. Developing building-damage scales for lahars: application to Merapi volcano, Indonesia

    NASA Astrophysics Data System (ADS)

    Jenkins, Susanna F.; Phillips, Jeremy C.; Price, Rebecca; Feloy, Kate; Baxter, Peter J.; Hadmoko, Danang Sri; de Bélizal, Edouard

    2015-09-01

    Lahar damage to buildings can include burial by sediment and/or failure of walls, infiltration into the building and subsequent damage to contents. The extent to which a building is damaged will be dictated by the dynamic characteristics of the lahar, i.e. the velocity, depth, sediment concentration and grain size, as well as the structural characteristics and setting of the building in question. The focus of this paper is on quantifying how buildings may respond to impact by lahar. We consider the potential for lahar damage to buildings on Merapi volcano, Indonesia, as a result of the voluminous deposits produced during the large (VEI 4) eruption in 2010. A building-damage scale has been developed that categorises likely lahar damage levels and, through theoretical calculations of expected building resistance to impact, approximate ranges of impact pressures. We found that most weak masonry buildings on Merapi would be destroyed by dilute lahars with relatively low velocities (ca. 3 m/s) and pressures (ca. 5 kPa); however, the majority of stronger rubble stone buildings may be expected to withstand higher velocities (to 6 m/s) and pressures (to 20 kPa). We applied this preliminary damage scale to a large lahar in the Putih River on 9 January 2011, which inundated and caused extensive building damage in the village of Gempol, 16 km southwest of Merapi. The scale was applied remotely through the use of public satellite images and through field studies to categorise damage and estimate impact pressures and velocities within the village. Results were compared with those calculated independently from Manning's calculations for flow velocity and depth within Gempol village using an estimate of flow velocity at one upstream site as input. The results of this calculation showed reasonable agreement with an average channel velocity derived from travel time observations. The calculated distribution of flow velocities across the area of damaged buildings was consistent with

  14. Record of late holocene debris avalanches and lahars at Iliamna Volcano, Alaska

    USGS Publications Warehouse

    Waythomas, C.F.; Miller, T.P.; Beget, J.E.

    2000-01-01

    Iliamna Volcano is a 3053-meter high, glaciated stratovolcano in the southern Cook Inlet region of Alaska and is one of seven volcanoes in this region that have erupted multiple times during the past 10,000 yr. Prior to our studies of Iliamna Volcano, little was known about the frequency, magnitude, and character of Holocene volcanic activity. Here we present geologic evidence of the most recent eruptive activity of the volcano and provide the first outline of Late Holocene debris-avalanche and lahar formation. Iliamna has had no documented historical eruptions but our recent field investigations indicate that the volcano has erupted at least twice in the last 300 yr. Clay-rich lahar deposits dated by radiocarbon to ???1300 and ???90 yr BP are present in two major valleys that head on the volcano. These deposits indicate that at least two large, possibly deep-seated, flank failures of the volcanic edifice have occurred in the last 1300 yr. Noncohesive lahar deposits likely associated with explosive pyroclastic eruptions date to 2400-1300,>1500,???300, and <305 yr BP. Debris-avalanche deposits from recent and historical small-volume slope failures of the hydrothermally altered volcanic edifice cover most of the major glaciers on the volcano. Although these deposits consist almost entirely of hydrothermally altered rock debris and snow and ice, none of the recently generated debris avalanches evolved to lahars. A clay-rich lahar deposit that formed <90??60 radiocarbon yr BP and entered the Johnson River Valley southeast of the volcano cannot be confidently related to an eruption of Iliamna Volcano, which has had no known historical eruptions. This deposit may record an unheralded debris avalanche and lahar. ?? 2000 Elsevier Science B.V. All rights reserved.

  15. Hydrological control of large hurricane-induced lahars: evidence from rainfall-runoff modeling, seismic and video monitoring

    NASA Astrophysics Data System (ADS)

    Capra, Lucia; Coviello, Velio; Borselli, Lorenzo; Márquez-Ramírez, Víctor-Hugo; Arámbula-Mendoza, Raul

    2018-03-01

    within a lahar are not randomly distributed in time, and they can be correlated with rainfall peak intensity and/or watershed discharge, depending on the watershed area and shape. This outcome has important implications for hazard assessment during extreme hydro-meteorological events, as it could help in providing real-time alerts. A theoretical rainfall distribution curve was designed for Volcán de Colima based on the rainfall and time distribution of hurricanes Manuel and Patricia. This can be used to run simulations using weather forecasts prior to the actual event, in order to estimate the arrival time of main lahar pulses, usually characterized by block-rich fronts, which are responsible for most of the damage to infrastructure and loss of goods and lives.

  16. Geomorphological evolution of a fluvial channel after primary lahar deposition: Huiloac Gorge, Popocatépetl volcano (Mexico)

    NASA Astrophysics Data System (ADS)

    Tanarro, L. M.; Andrés, N.; Zamorano, J. J.; Palacios, D.; Renschler, C. S.

    2010-10-01

    Popocatépetl volcano (19°02' N, 98°62' W, 5424 m) began its most recent period of volcanic activity in December 1994. The interaction of volcanic and glacier activity triggered the formation of lahars through the Huiloac Gorge, located on the northern flank of the volcano, causing significant morphological changes in the channel. The most powerful lahars occurred in April 1995, July 1997 and January 2001, and were followed by secondary lahars that formed during the post-eruptive period. This study interprets the geomorphological evolution of the Huiloac Gorge after the January 2001 lahar. Variations in channel morphology at a 520 m-long research site located mid-way down the gorge were recorded over a 4 year period from February 2002 to March 2005, and depicted in five geomorphological maps (scale 1:200) for 14 February and 15 October 2002, 27 September 2003, 9 February 2004, and 16 March 2006. A GIS was used to calculate the surface area for the landforms identified for each map and detected changes and erosion-deposition processes of the landforms using the overlay function for different dates. Findings reveal that secondary lahars and others types of flows, like sediment-laden or muddy streamflows caused by precipitation, rapidly modified the gorge channel following the January 2001 non-eruptive lahar, a period associated with volcanic inactivity and the disappearance of the glacier once located at the headwall of the gorge. Field observations also confirmed that secondary flows altered the dynamics and geomorphological development of the channel. These flows incised and destroyed the formations generated by the primary lahars (1997 and 2001), causing a widening of the channel that continues today. After February 2004, a rain-triggered lahar and other flows infilled the channel with materials transported by these flows. The deposits on the lateral edges of the channel form terraces. A recent lull in lahar activity contrasts with the increasing instability of

  17. Simulating Lahars Using A Rotating Drum

    NASA Astrophysics Data System (ADS)

    Neather, Adam; Lube, Gert; Jones, Jim; Cronin, Shane

    2014-05-01

    A large (0.5 m in diameter, 0.15 m wide) rotating drum is used to investigate the erosion and deposition mechanics of lahars. To systematically simulate the conditions occurring in natural mass flows our experimental setup differs from the common rotating drum employed in industrial/engineering studies. Natural materials with their typical friction properties are used, as opposed to the frequently employed spherical glass beads; the drum is completely water-proof, so solid/air and solid/liquid mixtures can be investigated; the drum velocity and acceleration can be precisely controlled using a software interface to a micro-controller, allowing for the study of steady, unsteady and intermediate flow regimes. The drum has a toughened glass door, allowing high-resolution, high-speed video recording of the material inside. Vector maps of the velocities involved in the flows are obtained using particle image velocimetry (PIV). The changes in velocity direction and/or magnitude are used to locate the primary internal boundaries between layers of opposite flow direction, as well as secondary interfaces between shear layers. A range of variables can be measured: thickness and number of layers; the curvature of the free surface; frequency of avalanching; position of the centre of mass of the material; and the velocity profiles of the flowing material. Experiments to date have focussed on dry materials, and have had a fill factor of approximately 0.3. Combining these measured variables allows us to derive additional data of interest, such as mass and momentum flux. It is these fluxes that we propose will allow insight into the erosion/deposition mechanics of a lahar. A number of conclusions can be drawn to date. A primary interface separates flowing and passive region (this interface has been identified in previous studies). As well as the primary interface, the flowing layer separates into individual shear layers, with individual erosion/deposition and flow histories. This

  18. Preliminary observations of voluminous ice-rich and water-rich lahars generated during the 2009 eruption of Redoubt, Alaska

    USGS Publications Warehouse

    Waythomas, Christopher F.; Pierson, Thomas C.; Major, Jon J.; Scott, William E.

    2012-01-01

    Redoubt Volcano in south-central Alaska began erupting on March 15, 2009, and by April 4, 2009, had produced at least 20 explosive events that generated plumes of ash and lahars. The 3,108-m high, snow- and -ice-clad stratovolcano has an ice-filled summit crater that is breached to the north. The volcano supports about 4 km3 of ice and snow and about 1 km3 of this makes up the Drift glacier on the northern side of the volcano. Explosive eruptions between March 22 and April 4, which included the destruction of at least two lava domes, triggered significant lahars in the Drift River valley on March 23 and April 4 and several smaller lahars between March 24 and March 31. High-flow marks, character of deposits, areas of inundation, and estimates of flow velocity revealed that the lahars on March 23 and April 4 were the largest of the eruption. In the 2-km-wide upper Drift River valley, average flow depths were about 3–5 m. Average peak-flow velocities were likely between 10 and 15 ms-1, and peak discharges were on the order of 104–105 m3s-1. The area inundated by lahars on March 23 was at least 100 km2 and on April 4 about 125 km2. The lahars emplaced on March 23 and April 4 had volumes on the order of 107–108 m3 and were similar in size to the largest lahar of the 1989–90 eruption. The March 23 lahars were primarily flowing slurries of snow and ice entrained from the Drift glacier and seasonal snow and tabular blocks of river ice from the Drift River valley. Only a single, undifferentiated deposit up to 5 m thick was found and contained about 80–95 percent of poorly sorted, massive to imbricate assemblages of snow and ice. The deposit was frozen soon after it was emplaced and later eroded and buried by the April 4 lahar. The lahar of April 4, in contrast, was primarily a hyperconcentrated flow, as interpreted from 1- to 6-m thick deposits of massive to horizontally stratified sand-to-fine-gravel. Rock material in the April 4 lahar deposit is predominantly

  19. 14 CFR 417.411 - Safety clear zones for hazardous operations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... zone on the following criteria: (i) For a possible explosive event, base a safety clear zone on the... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Safety clear zones for hazardous operations... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH SAFETY Ground Safety § 417.411 Safety clear zones...

  20. Seismic signals of snow-slurry lahars in motion: 25 September 2007, Mt Ruapehu, New Zealand

    NASA Astrophysics Data System (ADS)

    Cole, S. E.; Cronin, S. J.; Sherburn, S.; Manville, V.

    2009-05-01

    Detection of ground shaking forms the basis of many lahar-warning systems. Seismic records of two lahar types at Ruapehu, New Zealand, in 2007 are used to examine their nature and internal dynamics. Upstream detection of a flow depends upon flow type and coupling with the ground. 3-D characteristics of seismic signals can be used to distinguish the dominant rheology and gross physical composition. Water-rich hyperconcentrated flows are turbulent; common inter-particle and particle-substrate collisions engender higher energy in cross-channel vibrations relative to channel-parallel. Plug-like snow-slurry lahars show greater energy in channel-parallel signals, due to lateral deposition insulating channel margins, and low turbulence. Direct comparison of flow size must account for flow rheology; a water-rich lahar will generate signals of greater amplitude than a similar-sized snow-slurry flow.

  1. Map showing lava-flow hazard zones, Island of Hawaii

    USGS Publications Warehouse

    Wright, Thomas L.; Chun, Jon Y.F.; Exposo, Jean; Heliker, Christina; Hodge, Jon; Lockwood, John P.; Vogt, Susan M.

    1992-01-01

    This map shows lava-flow hazard zones for the five volcanoes on the Island of Hawaii. Volcano boundaries are shown as heavy, dark bands, reflecting the overlapping of lava flows from adjacent volcanoes along their common boundary. Hazard-zone boundaries are drawn as double lines because of the geologic uncertainty in their placement. Most boundaries are gradational, and the change In the degree of hazard can be found over a distance of a mile or more. The general principles used to place hazard-zone boundaries are discussed by Mullineaux and others (1987) and Heliker (1990). The differences between the boundaries presented here and in Heliker (1990) reflect new data used in the compilation of a geologic map for the Island of Hawaii (E.W. Wolfe and Jean Morris, unpub. data, 1989). The primary source of information for volcano boundaries and generalized ages of lava flows for all five volcanoes on the Island of Hawaii is the geologic map of Hawaii (E.W. Wolfe and Jean Morris, unpub. data, 1989). More detailed information is available for the three active volcanoes. For Hualalai, see Moore and others (1987) and Moore and Clague (1991); for Mauna Loa, see Lockwood and Lipman (1987); and for Kilauea, see Holcomb (1987) and Moore and Trusdell (1991).

  2. Geophysics of Volcanic Landslide Hazards: The Inside Story

    NASA Astrophysics Data System (ADS)

    Finn, C.; Deszcz-Pan, M.; Bedrosian, P. A.

    2013-05-01

    Flank collapses of volcanoes pose significant potential hazards, including triggering lahars, eruptions, and tsunamis. Significant controls on the stability of volcanoes are the distribution of hydrothermal alteration and the location of groundwater. Groundwater position, abundance, and flow rates within a volcano affect the transmission of fluid pressure and the transport of mass and heat. Interaction of groundwater with acid magmatic gases can lead to hydrothermal alteration that mechanically weakens rocks and makes them prone to failure and flank collapse. Therefore, detecting the presence and volume of hydrothermally altered rocks and shallow ground water is critical for evaluating landslide hazards. High-resolution helicopter magnetic and electromagnetic (HEM) data collected over the rugged, ice-covered Mount Adams, Mount Baker, Mount Rainier, Mount St. Helens (Washington) and Mount Iliamna (Alaska) volcanoes, reveal the distribution of alteration, water and ice thickness essential to evaluating volcanic landslide hazards. These data, combined with geological mapping, other geophysical data and rock property measurements, indicate the presence of appreciable thicknesses (>500 m) of water-saturated hydrothermally altered rock west of the modern summit of Mount Rainier in the Sunset Amphitheater region and in the central core of Mount Adams north of the summit. Water-saturated alteration at Mount Baker is restricted to thinner (<200 m) zones beneath Sherman Crater and the Dorr Fumarole Fields. The HEM data can be used to identify water-saturated fresh volcanic rocks from the surface to the detection limit (~100-200 m) in discreet zones on the summits of Mount Rainier and Mt Adams, in shattered fresh dome rocks under the crater of Mount St. Helens and in the entire summit region at Mount Baker. A 50-100 m thick water saturated layer is imaged within or beneath parts of glaciers on Mount Iliamna. Removal of ice and snow during eruptions and landslide can result in

  3. Volcano hazards in the Three Sisters region, Oregon

    USGS Publications Warehouse

    Scott, William E.; Iverson, R.M.; Schilling, S.P.; Fisher, B.J.

    2001-01-01

    Three Sisters is one of three potentially active volcanic centers that lie close to rapidly growing communities and resort areas in Central Oregon. Two types of volcanoes exist in the Three Sisters region and each poses distinct hazards to people and property. South Sister, Middle Sister, and Broken Top, major composite volcanoes clustered near the center of the region, have erupted repeatedly over tens of thousands of years and may erupt explosively in the future. In contrast, mafic volcanoes, which range from small cinder cones to large shield volcanoes like North Sister and Belknap Crater, are typically short-lived (weeks to centuries) and erupt less explosively than do composite volcanoes. Hundreds of mafic volcanoes scattered through the Three Sisters region are part of a much longer zone along the High Cascades of Oregon in which birth of new mafic volcanoes is possible. This report describes the types of hazardous events that can occur in the Three Sisters region and the accompanying volcano-hazard-zonation map outlines areas that could be at risk from such events. Hazardous events include landslides from the steep flanks of large volcanoes and floods, which need not be triggered by eruptions, as well as eruption-triggered events such as fallout of tephra (volcanic ash) and lava flows. A proximal hazard zone roughly 20 kilometers (12 miles) in diameter surrounding the Three Sisters and Broken Top could be affected within minutes of the onset of an eruption or large landslide. Distal hazard zones that follow river valleys downstream from the Three Sisters and Broken Top could be inundated by lahars (rapid flows of water-laden rock and mud) generated either by melting of snow and ice during eruptions or by large landslides. Slow-moving lava flows could issue from new mafic volcanoes almost anywhere within the region. Fallout of tephra from eruption clouds can affect areas hundreds of kilometers (miles) downwind, so eruptions at volcanoes elsewhere in the

  4. The drag forces exerted by lahar flows on a cylindrical pier: case study of post Mount Merapi eruptions

    NASA Astrophysics Data System (ADS)

    Faizien Haza, Zainul

    2018-03-01

    Debris flows of lahar flows occurred in post mount eruption is a phenomenon in which large quantities of water, mud, and gravel flow down a stream at a high velocity. It is a second stage of danger after the first danger of lava flows, pyroclastic, and toxic gases. The debris flow of lahar flows has a high density and also high velocity; therefore it has potential detrimental consequences against homes, bridges, and infrastructures, as well as loss of life along its pathway. The collision event between lahar flows and pier of a bridge is observed. The condition is numerically simulated using commercial software of computational fluid dynamic (CFD). The work is also conducted in order to investigate drag force generated during collision. Rheological data of lahar is observed through laboratory test of lahar model as density and viscosity. These data were used as the input data of the CFD simulation. The numerical model is involving two types of fluid: mud and water, therefore multiphase model is adopted in the current CFD simulation. The problem formulation is referring to the constitutive equations of mass and momentum conservation for incompressible and viscous fluid, which in perspective of two dimension (2D). The simulation models describe the situation of the collision event between lahar flows and pier of a bridge. It provides sequential view images of lahar flow impaction and the propagation trend line of the drag force coefficient values. Lahar flow analysis used non-dimensional parameter of Reynolds number. According to the results of numerical simulations, the drag force coefficients are in range 1.23 to 1.48 those are generated by value of flow velocity in range 11.11 m/s to 16.67 m/s.

  5. Mechanism of sand slide - cold lahar induced by extreme rainfall

    NASA Astrophysics Data System (ADS)

    Fukuoka, Hiroshi; Yamada, Masumi; Dok, Atitkagna

    2014-05-01

    Along with the increasing frequencies of extreme rainfall events in almost every where on the earth, shallow slide - debris flow, i.e. cold lahars running long distance often occurs and claims downslope residents lives. In the midnight of 15 October 2013, Typhoon Wilpha attacked the Izu-Oshima, a active volcanic Island and the extreme rainfall of more than 800 mm / 24 hours was recorded. This downpour of more than 80 mm/hr lasted 4 hours at its peak and caused a number of cold lahars. The initial stage of those lahars was shallow slides of surface black volcanic ash deposits, containing mostly fine sands. The thickness was only 50 cm - 1 m. In the reconnaissance investigation, author found that the sliding surface was the boundary of two separate volcanic ash layers between the black and yellow colored and apparently showing contrast of permeability and hardness. Permeability contrast may have contributed to generation of excess pore pressure on the border and trigger the slide. Then, the unconsolidated, unpacked mass was easily fluidized and transformed into mud flows, that which volcanologists call cold lahars. Seismometers installed for monitoring the active volcano's activities, succeeded to detect many tremors events. Many are spikes but 5 larger and longer events were extracted. They lasted 2 -3 minutes and if we assume that this tremors reflects the runout movement, then we can calculate the mean velocity of the lahars. Estimated velocity was 45 - 60 km/h, which is much higher than the average speed 30 - 40 km/h of debris flows observed in Japan. Flume tests of volcanic ash flows by the Forestry and Forest Products Research Institute showed the wet volcanic ash can run at higher speed than other materials. The two tremor records were compare d with the local residents witnessed and confirmed by newspaper reported that the reach of the lahar was observed at the exact time when tremor ends. We took the black volcanic ash and conducted ring shear tests to

  6. High-resolution DEM generation from multiple remote sensing data sources for improved volcanic hazard assessment - a case study from Nevado del Ruiz, Colombia

    NASA Astrophysics Data System (ADS)

    Deng, Fanghui; Dixon, Timothy H.; Rodgers, Mel; Charbonnier, Sylvain J.; Gallant, Elisabeth A.; Voss, Nicholas; Xie, Surui; Malservisi, Rocco; Ordoñez, Milton; López, Cristian M.

    2017-04-01

    Eruptions of active volcanoes in the presence of snow and ice can cause dangerous floods, avalanches and lahars, threatening millions of people living close to such volcanoes. Colombia's deadliest volcanic hazard in recorded history was caused by Nevado del Ruiz Volcano. On November 13, 1985, a relatively small eruption triggered enormous lahars, killing over 23,000 people in the city of Armero and 2,000 people in the town of Chinchina. Meltwater from a glacier capping the summit of the volcano was the main contributor to the lahars. From 2010 to present, increased seismicity, surface deformation, ash plumes and gas emissions have been observed at Nevado del Ruiz. The DEM is a key parameter for accurate prediction of the pathways of lava flows, pyroclastic flows, and lahars. While satellite coverage has greatly improved the quality of DEMs around the world, volcanoes remain a challenging target because of extremely rugged terrain with steep slopes and deeply cut valleys. In this study, three types of remote sensing data sources with different spatial scales (satellite radar interferometry, terrestrial radar interferometry (TRI), and structure from motion (SfM)) were combined to generate a high resolution DEM (10 m) of Nevado del Ruiz. 1) Synthetic aperture radar (SAR) images acquired by TSX/TDX satellites were applied to generate DEM covering most of the study area. To reduce the effect of geometric distortion inherited from SAR images, TSX/TDX DEMs from ascending and descending orbits were merged to generate a 10×10 m DEM. 2) TRI is a technique that uses a scanning radar to measure the amplitude and phase of a backscattered microwave signal. It provides a more flexible and reliable way to generate DEMs in steep-slope terrain compared with TSX/TDX satellites. The TRI was mounted at four different locations to image the upper slopes of the volcano. A DEM with 5×5 m resolution was generated by TRI. 3) SfM provides an alternative for shadow zones in both TSX/TDX and

  7. Earthquake Hazard in the New Madrid Seismic Zone Remains a Concern

    USGS Publications Warehouse

    Frankel, A.D.; Applegate, D.; Tuttle, M.P.; Williams, R.A.

    2009-01-01

    There is broad agreement in the scientific community that a continuing concern exists for a major destructive earthquake in the New Madrid seismic zone. Many structures in Memphis, Tenn., St. Louis, Mo., and other communities in the central Mississippi River Valley region are vulnerable and at risk from severe ground shaking. This assessment is based on decades of research on New Madrid earthquakes and related phenomena by dozens of Federal, university, State, and consulting earth scientists. Considerable interest has developed recently from media reports that the New Madrid seismic zone may be shutting down. These reports stem from published research using global positioning system (GPS) instruments with results of geodetic measurements of strain in the Earth's crust. Because of a lack of measurable strain at the surface in some areas of the seismic zone over the past 14 years, arguments have been advanced that there is no buildup of stress at depth within the New Madrid seismic zone and that the zone may no longer pose a significant hazard. As part of the consensus-building process used to develop the national seismic hazard maps, the U.S. Geological Survey (USGS) convened a workshop of experts in 2006 to evaluate the latest findings in earthquake hazards in the Eastern United States. These experts considered the GPS data from New Madrid available at that time that also showed little to no ground movement at the surface. The experts did not find the GPS data to be a convincing reason to lower the assessment of earthquake hazard in the New Madrid region, especially in light of the many other types of data that are used to construct the hazard assessment, several of which are described here.

  8. 14 CFR 417.411 - Safety clear zones for hazardous operations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Safety clear zones for hazardous operations. 417.411 Section 417.411 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH SAFETY Ground Safety § 417.411 Safety clear zones...

  9. Assessment of volcanic hazards, vulnerability, risk and uncertainty (Invited)

    NASA Astrophysics Data System (ADS)

    Sparks, R. S.

    2009-12-01

    A volcanic hazard is any phenomenon that threatens communities . These hazards include volcanic events like pyroclastic flows, explosions, ash fall and lavas, and secondary effects such as lahars and landslides. Volcanic hazards are described by the physical characteristics of the phenomena, by the assessment of the areas that they are likely to affect and by the magnitude-dependent return period of events. Volcanic hazard maps are generated by mapping past volcanic events and by modelling the hazardous processes. Both these methods have their strengths and limitations and a robust map should use both approaches in combination. Past records, studied through stratigraphy, the distribution of deposits and age dating, are typically incomplete and may be biased. Very significant volcanic hazards, such as surge clouds and volcanic blasts, are not well-preserved in the geological record for example. Models of volcanic processes are very useful to help identify hazardous areas that do not have any geological evidence. They are, however, limited by simplifications and incomplete understanding of the physics. Many practical volcanic hazards mapping tools are also very empirical. Hazards maps are typically abstracted into hazards zones maps, which are some times called threat or risk maps. Their aim is to identify areas at high levels of threat and the boundaries between zones may take account of other factors such as roads, escape routes during evacuation, infrastructure. These boundaries may change with time due to new knowledge on the hazards or changes in volcanic activity levels. Alternatively they may remain static but implications of the zones may change as volcanic activity changes. Zone maps are used for planning purposes and for management of volcanic crises. Volcanic hazards maps are depictions of the likelihood of future volcanic phenomena affecting places and people. Volcanic phenomena are naturally variable, often complex and not fully understood. There are

  10. The Osceola Mudflow from Mount Rainier: Sedimentology and hazard implications of a huge clay-rich debris flow

    USGS Publications Warehouse

    Vallance, J.W.; Scott, K.M.

    1997-01-01

    altered rock in the preavalanche mass determines whether a debris avalanche will transform into a cohesive debris flow or remain a largely unsaturated debris avalanche. The distinction among cohesive lahar, noncohesive lahar, and debris avalanche is important in hazard assessment because cohesive lahars spread much more widely than noncohesive lahars that travel similar distances, and travel farther and spread more widely than debris avalanches of similar volume. The Osceola Mudflow is documented here as an example of a cohesive debris flow of huge size that can be used as a model for hazard analysis of similar flows.

  11. Earthquake hazards on the cascadia subduction zone.

    PubMed

    Heaton, T H; Hartzell, S H

    1987-04-10

    Large subduction earthquakes on the Cascadia subduction zone pose a potential seismic hazard. Very young oceanic lithosphere (10 million years old) is being subducted beneath North America at a rate of approximately 4 centimeters per year. The Cascadia subduction zone shares many characteristics with subduction zones in southern Chile, southwestern Japan, and Colombia, where comparably young oceanic lithosphere is also subducting. Very large subduction earthquakes, ranging in energy magnitude (M(w)) between 8 and 9.5, have occurred along these other subduction zones. If the Cascadia subduction zone is also storing elastic energy, a sequence of several great earthquakes (M(w) 8) or a giant earthquake (M(w) 9) would be necessary to fill this 1200-kilometer gap. The nature of strong ground motions recorded during subduction earthquakes of M(w) less than 8.2 is discussed. Strong ground motions from even larger earthquakes (M(w) up to 9.5) are estimated by simple simulations. If large subduction earthquakes occur in the Pacific Northwest, relatively strong shaking can be expected over a large region. Such earthquakes may also be accompanied by large local tsunamis.

  12. Utilizing NASA Earth Observations to Model Volcanic Hazard Risk Levels in Areas Surrounding the Copahue Volcano in the Andes Mountains

    NASA Astrophysics Data System (ADS)

    Keith, A. M.; Weigel, A. M.; Rivas, J.

    2014-12-01

    Copahue is a stratovolcano located along the rim of the Caviahue Caldera near the Chile-Argentina border in the Andes Mountain Range. There are several small towns located in proximity of the volcano with the two largest being Banos Copahue and Caviahue. During its eruptive history, it has produced numerous lava flows, pyroclastic flows, ash deposits, and lahars. This isolated region has steep topography and little vegetation, rendering it poorly monitored. The need to model volcanic hazard risk has been reinforced by recent volcanic activity that intermittently released several ash plumes from December 2012 through May 2013. Exposure to volcanic ash is currently the main threat for the surrounding populations as the volcano becomes more active. The goal of this project was to study Copahue and determine areas that have the highest potential of being affected in the event of an eruption. Remote sensing techniques were used to examine and identify volcanic activity and areas vulnerable to experiencing volcanic hazards including volcanic ash, SO2 gas, lava flow, pyroclastic density currents and lahars. Landsat 7 Enhanced Thematic Mapper Plus (ETM+), Landsat 8 Operational Land Imager (OLI), EO-1 Advanced Land Imager (ALI), Terra Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), Shuttle Radar Topography Mission (SRTM), ISS ISERV Pathfinder, and Aura Ozone Monitoring Instrument (OMI) products were used to analyze volcanic hazards. These datasets were used to create a historic lava flow map of the Copahue volcano by identifying historic lava flows, tephra, and lahars both visually and spectrally. Additionally, a volcanic risk and hazard map for the surrounding area was created by modeling the possible extent of ash fallout, lahars, lava flow, and pyroclastic density currents (PDC) for future eruptions. These model results were then used to identify areas that should be prioritized for disaster relief and evacuation orders.

  13. 36 CFR 13.1304 - Ice fall hazard zones.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Ice fall hazard zones. 13.1304 Section 13.1304 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Kenai Fjords National Park General...

  14. GPR-derived architecture of a lahar-generated fan at Cotopaxi volcano, Ecuador

    NASA Astrophysics Data System (ADS)

    Ettinger, Susanne; Manville, Vern; Kruse, Sarah; Paris, Raphaël

    2014-05-01

    The internal geometry of volcaniclastic fans produced by aggradation during lahar events is difficult to examine in modern settings because of the frequent lack of three-dimensional exposures. This makes it challenging to (i) reconstruct the spatial and temporal evolution of such fans; and (ii) interpret observed facies stratigraphy in the context of lahar flow dynamics from proximal to distal fan reaches. This research therefore presents the results of a ground penetrating radar (GPR) survey of the Rumipamba fan at the mouth of the Burrohuaycu quebrada on the southwestern flank of Cotopaxi volcano. A survey grid consisting of 50 individual GPR profiles representing a total length of 19.4 km was constructed covering most of the 4-km2 large fan surface. All GPR profiles were collected using a PulseEKKO 100 with a 400 V transmitter. Fan sediments consist of sandy and gravelly lahar deposits, alternating with volcanic fallout including ash and pumice lapilli, at times reworked by fluvial processes. Deposits could be ground-truthed to a depth of ~3 m, whereas GPR penetration depth reaches 15 m. Data interpretation was based on classification into 15 distinct radar facies characterized by the nature of their bounding surfaces and/or internal features, cross-referenced where possible with shallow exposures. Three main facies were identified: parallel, irregular, and clinoform. Erosional contacts were distinguished from aggradational ones (vertical, channel fill, and lateral accretion). Flow parallel versus flow transverse and proximal-distal variations in deposit architecture were featured. The results of this study confirm the existence of two major channel systems in the northern and southern extremities of the fan and the more recent formation of a smaller central fan channel system. Deposit architecture is complex and facies chronologies illustrate that lahars have affected the entire survey area.

  15. Snow and ice perturbation during historical volcanic eruptions and the formation of lahars and floods

    USGS Publications Warehouse

    Major, Jon J.; Newhall, Christopher G.

    1989-01-01

    Historical eruptions have produced lahars and floods by perturbing snow and ice at more than 40 volcanoes worldwide. Most of these volcanoes are located at latitudes higher than 35°; those at lower latitudes reach altitudes generally above 4000 m. Volcanic events can perturb mantles of snow and ice in at least five ways: (1) scouring and melting by flowing pyroclastic debris or blasts of hot gases and pyroclastic debris, (2) surficial melting by lava flows, (3) basal melting of glacial ice or snow by subglacial eruptions or geothermal activity, (4) ejection of water by eruptions through a crater lake, and (5) deposition of tephra fall. Historical records of volcanic eruptions at snow-clad volcanoes show the following: (1) Flowing pyroclastic debris (pyroclastic flows and surges) and blasts of hot gases and pyroclastic debris are the most common volcanic events that generate lahars and floods; (2) Surficial lava flows generally cannot melt snow and ice rapidly enough to form large lahars or floods; (3) Heating the base of a glacier or snowpack by subglacial eruptions or by geothermal activity can induce basal melting that may result in ponding of water and lead to sudden outpourings of water or sediment-rich debris flows; (4) Tephra falls usually alter ablation rates of snow and ice but generally produce little meltwater that results in the formation of lahars and floods; (5) Lahars and floods generated by flowing pyroclastic debris, blasts of hot gases and pyroclastic debris, or basal melting of snow and ice commonly have volumes that exceed 105 m3.The glowing lava (pyroclastic flow) which flowed with force over ravines and ridges...gathered in the basin quickly and then forced downwards. As a result, tremendously wide and deep pathways in the ice and snow were made and produced great streams of water (Wolf 1878).

  16. Snow and ice perturbation during historical volcanic eruptions and the formation of lahars and floods

    NASA Astrophysics Data System (ADS)

    Major, Jon J.; Newhall, Christopher G.

    1989-10-01

    Historical eruptions have produced lahars and floods by perturbing snow and ice at more than 40 volcanoes worldwide. Most of these volcanoes are located at latitudes higher than 35°; those at lower latitudes reach altitudes generally above 4000 m. Volcanic events can perturb mantles of snow and ice in at least five ways: (1) scouring and melting by flowing pyroclastic debris or blasts of hot gases and pyroclastic debris, (2) surficial melting by lava flows, (3) basal melting of glacial ice or snow by subglacial eruptions or geothermal activity, (4) ejection of water by eruptions through a crater lake, and (5) deposition of tephra fall. Historical records of volcanic eruptions at snow-clad volcanoes show the following: (1) Flowing pyroclastic debris (pyroclastic flows and surges) and blasts of hot gases and pyroclastic debris are the most common volcanic events that generate lahars and floods; (2) Surficial lava flows generally cannot melt snow and ice rapidly enough to form large lahars or floods; (3) Heating the base of a glacier or snowpack by subglacial eruptions or by geothermal activity can induce basal melting that may result in ponding of water and lead to sudden outpourings of water or sediment-rich debris flows; (4) Tephra falls usually alter ablation rates of snow and ice but generally produce little meltwater that results in the formation of lahars and floods; (5) Lahars and floods generated by flowing pyroclastic debris, blasts of hot gases and pyroclastic debris, or basal melting of snow and ice commonly have volumes that exceed 105 m3. The glowing lava (pyroclastic flow) which flowed with force over ravines and ridges...gathered in the basin quickly and then forced downwards. As a result, tremendously wide and deep pathways in the ice and snow were made and produced great streams of water (Wolf 1878).

  17. The respiratory health hazard of tephra from the 2010 Centennial eruption of Merapi with implications for occupational mining of deposits

    NASA Astrophysics Data System (ADS)

    Damby, D. E.; Horwell, C. J.; Baxter, P. J.; Delmelle, P.; Donaldson, K.; Dunster, C.; Fubini, B.; Murphy, F. A.; Nattrass, C.; Sweeney, S.; Tetley, T. D.; Tomatis, M.

    2013-07-01

    Ashfall into heavily populated areas during the October-November 2010 eruption of Merapi volcano, Indonesia created anxiety regarding the growing impacts to health as the eruption escalated and the hazard zone widened. We made a preliminary assessment of the respiratory hazards to human health of the tephra deposits (ashfall, lahar, and PDC surge) from the eruption using a laboratory protocol specifically developed to study the toxic potential of volcanic ash particles. Twenty samples collected from a range of locations were analysed for health-pertinent mineralogical parameters (grain size, crystalline silica content, morphology, surface area, bulk chemistry, and leachable elements) and bio-reactivity (hydroxyl radical generation, haemolytic potential, oxidative capacity, pro-inflammatory response). The grain size pertinent to respiratory health was variable, ranging from 1.4-15.6 vol.% sub-4 μm and 3.0-28.9 vol.% sub-10 μm diameter material. No fibre-like particles were observed. Cristobalite was present in all samples, ranging from 1.9-9.5 wt.%, but surface reactivity and in vitro toxicity assays showed low reactivity for all samples tested. The risk of direct exposure to ash from fallout was in any case low due to seasonal rains limiting its re-suspension and the immediate and effective clean-up of communities by local people who supplied the ash to the Indonesian construction industry for use as aggregate. However, mining of the lahar and thick PDC deposits in the valleys draining the volcano is performed on a vast, industrial scale, which could result in high occupational exposure to thousands of sand miners at Merapi during the dry seasons. Further study of the health hazard of the mined Merapi deposits is warranted.

  18. An approach to source characterization of tremor signals associated with eruptions and lahars

    NASA Astrophysics Data System (ADS)

    Kumagai, Hiroyuki; Mothes, Patricia; Ruiz, Mario; Maeda, Yuta

    2015-11-01

    Tremor signals are observed in association with eruption activity and lahar descents. Reduced displacement ( D R) derived from tremor signals has been used to quantify tremor sources. However, tremor duration is not considered in D R, which makes it difficult to compare D R values estimated for different tremor episodes. We propose application of the amplitude source location (ASL) method to characterize the sources of tremor signals. We used this method to estimate the tremor source location and source amplitude from high-frequency (5-10 Hz) seismic amplitudes under the assumption of isotropic S-wave radiation. We considered the source amplitude to be the maximum value during tremor. We estimated the cumulative source amplitude ( I s) as the offset value of the time-integrated envelope of the vertical seismogram of tremor corrected for geometrical spreading and medium attenuation in the 5-10-Hz band. For eruption tremor signals, we also estimated the cumulative source pressure ( I p) from an infrasonic envelope waveform corrected for geometrical spreading. We studied these parameters of tremor signals associated with eruptions and lahars and explosion events at Tungurahua volcano, Ecuador. We identified two types of eruption tremor at Tungurahua: noise-like inharmonic waveforms and harmonic oscillatory signals. We found that I s increased linearly with increasing source amplitude for lahar tremor signals and explosion events, but I s increased exponentially with increasing source amplitude for inharmonic eruption tremor signals. The source characteristics of harmonic eruption tremor signals differed from those of inharmonic tremor signals. We found a linear relation between I s and I p for both explosion events and eruption tremor. Because I p may be proportional to the total mass involved during an eruption episode, this linear relation suggests that I s may be useful to quantify eruption size. The I s values we estimated for inharmonic eruption tremor were

  19. Late Pleistocene and Holocene Geology and Hazards at Glacier Peak Volcano, Washington

    NASA Astrophysics Data System (ADS)

    Vallance, J. W.; Van Eaton, A. R.; Ramsey, D. W.

    2015-12-01

    Recent fieldwork, improved radiocarbon dating, and mapping on recently acquired LiDAR base have better delineated timing, frequency, and style of volcanism at Glacier Peak. The work shows that, after Mount St. Helens, Glacier Peak is one of the most frequently active Cascade volcanoes. The volcano has erupted multiple times 13-14 ka, 5­-7 ka, 1-2.5 ka, and perhaps as recently as a few hundred years ago. The plinian eruptions of ~13.5 ka were much more voluminous than those of Mount St. Helens in 1980 and show that Glacier Peak is among the most explosive of Cascade volcanoes. These eruptions dispersed ash fallout hundreds of kilometers downwind in Idaho, Montana and Wyoming; produced a partly welded ignimbrite and a small debris avalanche; and caused lahars and flooding far across Puget Sound lowland. Numerous more recent eruptions during the periods 5-7 ka and 1-2.5 ka extruded lava domes whose hot rock avalanched across snow and ice to produce pyroclastic flows and lahars. These eruptions dispersed ash tens of to a hundred or more kilometers downwind. Resulting lahars and floods inundated as far as Puget Sound lowland. Glacier Peak is remote and hidden from most areas of the densely populated Puget Sound lowland; hence, it gets less attention than other prominent Cascade volcanoes like Mounts Rainier, Baker, and St. Helens. Despite its remote location, Glacier Peak poses substantial hazard because even small eruptions on ice-clad volcanoes can have devastating consequences. Distal threats include hazard to air traffic owing to ash plumes. Lahars and potential long-term sedimentation and flooding downstream pose threats to communities near rivers along Skagit and Stillaguamish River drainages. Farther downstream, sedimentation is likely to decrease channel capacity, increasing likelihood of floods. Lava flows, pyroclastic flows, and debris avalanches will threaten hikers in the wilderness near Glacier Peak.

  20. 49 CFR 173.133 - Assignment of packing group and hazard zones for Division 6.1 materials.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... atmospheric pressure. Note 2: A liquid in Division 6.1 meeting criteria for Packing Group I, Hazard Zones A or... 49 Transportation 2 2012-10-01 2012-10-01 false Assignment of packing group and hazard zones for... Group Assignments and Exceptions for Hazardous Materials Other Than Class 1 and Class 7 § 173.133...

  1. Debris-flow hazards caused by hydrologic events at Mount Rainier, Washington

    USGS Publications Warehouse

    Vallance, James W.; Cunico, Michelle L.; Schilling, Steve P.

    2003-01-01

    above the elevations of glacier termini and extend down valley. This report discusses potential hazards from debris flows induced by hydrologic events such as glacial outburst floods and torrential rain at Mount Rainier and the surrounding area bounded by Mount Rainier National Park. The report also shows, in the accompanying hazard-zonation maps, which areas are likely to be at risk from future such debris flows at Mount Rainier. Lahar hazards related to avalanches of altered rock and to the interactions of hot rock and ice during eruptions are discussed in Scott and Vallance (1995) and Hoblitt et al. (1998) and are not addressed in this report.

  2. 49 CFR 173.133 - Assignment of packing group and hazard zones for Division 6.1 materials.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... pressure. Note 2: A liquid in Division 6.1 meeting criteria for Packing Group I, Hazard Zones A or B stated... 49 Transportation 2 2014-10-01 2014-10-01 false Assignment of packing group and hazard zones for... Group Assignments and Exceptions for Hazardous Materials Other Than Class 1 and Class 7 § 173.133...

  3. 49 CFR 173.133 - Assignment of packing group and hazard zones for Division 6.1 materials.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... pressure. Note 2: A liquid in Division 6.1 meeting criteria for Packing Group I, Hazard Zones A or B stated... 49 Transportation 2 2013-10-01 2013-10-01 false Assignment of packing group and hazard zones for... Group Assignments and Exceptions for Hazardous Materials Other Than Class 1 and Class 7 § 173.133...

  4. Preliminary volcano-hazard assessment for Iliamna Volcano, Alaska

    USGS Publications Warehouse

    Waythomas, Christopher F.; Miller, Thomas P.

    1999-01-01

    Iliamna Volcano is a 3,053-meter-high, ice- and snow-covered stratovolcano in the southwestern Cook Inlet region about 225 kilometers southwest of Anchorage and about 100 kilometers northwest of Homer. Historical eruptions of Iliamna Volcano have not been positively documented; however, the volcano regularly emits steam and gas, and small, shallow earthquakes are often detected beneath the summit area. The most recent eruptions of the volcano occurred about 300 years ago, and possibly as recently as 90-140 years ago. Prehistoric eruptions have generated plumes of volcanic ash, pyroclastic flows, and lahars that extended to the volcano flanks and beyond. Rock avalanches from the summit area have occurred numerous times in the past. These avalanches flowed several kilometers down the flanks and at least two large avalanches transformed to cohesive lahars. The number and distribution of known volcanic ash deposits from Iliamna Volcano indicate that volcanic ash clouds from prehistoric eruptions were significantly less voluminous and probably less common relative to ash clouds generated by eruptions of other Cook Inlet volcanoes. Plumes of volcanic ash from Iliamna Volcano would be a major hazard to jet aircraft using Anchorage International Airport and other local airports, and depending on wind direction, could drift at least as far as the Kenai Peninsula and beyond. Ashfall from future eruptions could disrupt oil and gas operations and shipping activities in Cook Inlet. Because Iliamna Volcano has not erupted for several hundred years, a future eruption could involve significant amounts of ice and snow that could lead to the formation of large lahars and downstream flooding. The greatest hazards in order of importance are described below and shown on plate 1.

  5. Digital Data for Volcano Hazards of the Mount Hood Region, Oregon

    USGS Publications Warehouse

    Schilling, S.P.; Doelger, S.; Scott, W.E.; Pierson, T.C.; Costa, J.E.; Gardner, C.A.; Vallance, J.W.; Major, J.J.

    2008-01-01

    Snow-clad Mount Hood dominates the Cascade skyline from the Portland metropolitan area to the wheat fields of Wasco and Sherman Counties. The mountain contributes valuable water, scenic, and recreational resources that help sustain the agricultural and tourist segments of the economies of surrounding cities and counties. Mount Hood is also one of the major volcanoes of the Cascade Range, having erupted repeatedly for hundreds of thousands of years, most recently during two episodes in the past 1,500 yr. The last episode ended shortly before the arrival of Lewis and Clark in 1805. When Mount Hood erupts again, it will severely affect areas on its flanks and far downstream in the major river valleys that head on the volcano. Volcanic ash may fall on areas up to several hundred kilometers downwind. The purpose of the volcano hazard report USGS Open-File Report 97-89 (Scott and others, 1997) is to describe the kinds of hazardous geologic events that have happened at Mount Hood in the past and to show which areas will be at risk when such events occur in the future. This data release contains the geographic information system (GIS) data layers used to produce the Mount Hood volcano hazard map in USGS Open-File Report 97-89. Both proximal and distal hazard zones were delineated by scientists at the Cascades Volcano Observatory and depict various volcano hazard areas around the mountain. A second data layer contains points that indicate estimated travel times of lahars.

  6. A seismic hazard uncertainty analysis for the New Madrid seismic zone

    USGS Publications Warehouse

    Cramer, C.H.

    2001-01-01

    A review of the scientific issues relevant to characterizing earthquake sources in the New Madrid seismic zone has led to the development of a logic tree of possible alternative parameters. A variability analysis, using Monte Carlo sampling of this consensus logic tree, is presented and discussed. The analysis shows that for 2%-exceedence-in-50-year hazard, the best-estimate seismic hazard map is similar to previously published seismic hazard maps for the area. For peak ground acceleration (PGA) and spectral acceleration at 0.2 and 1.0 s (0.2 and 1.0 s Sa), the coefficient of variation (COV) representing the knowledge-based uncertainty in seismic hazard can exceed 0.6 over the New Madrid seismic zone and diminishes to about 0.1 away from areas of seismic activity. Sensitivity analyses show that the largest contributor to PGA, 0.2 and 1.0 s Sa seismic hazard variability is the uncertainty in the location of future 1811-1812 New Madrid sized earthquakes. This is followed by the variability due to the choice of ground motion attenuation relation, the magnitude for the 1811-1812 New Madrid earthquakes, and the recurrence interval for M>6.5 events. Seismic hazard is not very sensitive to the variability in seismogenic width and length. Published by Elsevier Science B.V.

  7. Volcano-hazards Education for Emergency Officials Through Study Trip Learning—The 2013 Colombia-USA Bi-national Exchange

    NASA Astrophysics Data System (ADS)

    Driedger, C. L.; Ewert, J. W.

    2015-12-01

    A central tenant of hazard communication is that colleagues with principal responsibilities for emergency planning and response sustain a 'long-term conversation' that builds trust, and increases understanding of hazards and successful protocols. This requires well maintained partnerships among a broad spectrum of officials who are knowledgeable about volcano hazards; credible within their communities; and who have personal and professional stake in their community's safety. It can require that volcano scientists facilitate learning opportunities for partners in emergency management who have little or no familiarity with eruption response. Scientists and officials from Colombia and the Cascades region of the United States recognized that although separated by geographic and cultural distance, their communities faced similar hazards from lahars. For the purpose of sharing best practices, the 2013 Colombia-USA Bi-national Exchange was organized by the US Geological Survey (USGS) and the Washington Emergency Management Division, with support from the US Agency for International Development (USAID). Nine Colombian emergency officials and scientists visited the U.S. to observe emergency response planning and protocols and to view the scale of a potential lahar disaster at Mount Rainier. Ten U.S. delegates visited Colombia to absorb best practices developed after the catastrophic 1985 eruption and lahars at Nevado del Ruiz. They observed the devastation and spoke with survivors, first responders, and emergency managers responsible for post-disaster recovery efforts. Delegates returned to their nations energized and with improved knowledge about volcanic crises and effective mitigation and response. In the U.S., trainings, hazard signage, evacuation routes and assembly points, and community websites have gained momentum. Colombian officials gained a deeper appreciation of and a renewed commitment to response planning, education, and disaster preparedness.

  8. Seismic characterization of low-magnitude floods and lahars at La Lumbre ravine, Volcán de Colima (Mexico)

    NASA Astrophysics Data System (ADS)

    Coviello, Velio; Capra, Lucia; Márquez, Víctor H.; Procter, Jonathan; Walsh, Braden

    2017-04-01

    Volcán de Colima currently is the most active volcano in Mexico where a number of rain-induced lahars occur each year. After an explosive phase, lahar frequency increases due to the immediate reworking of pyroclastic material and it progressively decreases in the following years. This behavior was distinctly observed during the two last rainy seasons that followed the intense volcanic activity of July 2015. La Lumbre ravine drains the West-Southwestern slopes of Volcán de Colima and is one of the most active channels of the volcano. Since 2014, monitoring is performed in a heavily instrumented cross-section located at 1580 m a.s.l. on the left bank of the channel. At the present day, the monitoring station is equipped with a raingauge, two stage sensors, a videocamera, and different seismic devices. At La Lumbre, lahars initiate as dilute, sediment-laden stream flows and with the entrainment of additional sediment they evolve into hyper-concentrations and debris flows. The hydro-repellency mechanism of the highly vegetated volcanic soils can explain the high frequency of lahars triggered by low-intensity rainfall events: under these hydrophobic conditions, infiltration is inhibited and runoff is facilitated at less highly peaked discharges that are more likely to initiate lahars that can have an impact on the inhabited areas located downstream. This is the reason why the possibility to detect not only large lahars but also low-magnitude flows is particularly important at La Lumbre. Here we present monitoring data of processes ranging from stream flows to large lahars that occurred during the last rainy seasons along La Lumbre ravine. In particular, we investigate the possibility to estimate the sediment concentration of debris flood and small lahars using a very easy-to-install and low-cost seismic sensor, i.e. a geophone, installed outside the flow path. For instance, we show how a hyper-concentrated flow characterized by a mean velocity of less than 1 meter per

  9. Coastal Zone Hazards Related to Groundwater-Surface Water Interactions and Groundwater Flooding

    NASA Astrophysics Data System (ADS)

    Kontar, Y. A.; Ozorovich, Y. R.; Salokhiddinov, A. T.

    2009-12-01

    Worldwide, as many as half a million people have died in natural and man-made disasters since the turn of the 21st century (Wirtz, 2008). Further, natural and man-made hazards can lead to extreme financial losses (Elsner et al, 2009). Hazards, hydrological and geophysical risk analysis related to groundwater-surface water interactions and groundwater flooding have been to a large extent under-emphasized for coastal zone applications either due to economical limitations or underestimation of its significance. This is particularly true for tsunamis creating salt water intrusion to coastal aquifers, even though most tsunami hazard assessments have in the past relied on scenario or deterministic type models (Geist and Parsons, 2006), and to increasing mineralization of potable water because of intensive water diversions and also the abundance of highly toxic pollutants (mainly pesticides) in water, air and food, which contribute to the deterioration of the coastal population's health (Glantz, 2007). In the wake of pressing environmental and economic issues, it is of prime importance for the scientific community to shed light onto the great efforts by hydrologists and geophysicists to quantify conceptual uncertainties and to provide quality assurances of potential coastal zone hazard evaluation and prediction. This paper proposes consideration of two case studies which are important and significant for future development and essential for feasibility studies of hazards in the coastal zone. The territory of the Aral Sea Region in Central Asia is known as an ecological disaster coastal zone (Zavialov, 2005). It is now obvious that, in order to provide reasonable living conditions to the coastal zone population, it is first of all necessary to drastically improve the quality of the water dedicated to human needs. Due to their intensive pollution by industrial wastes and by drainage waters from irrigated fields, the Syr Darya and Amu Darya rivers can no longer be considered

  10. Digital Data for Volcano Hazards in the Mount Jefferson Region, Oregon

    USGS Publications Warehouse

    Schilling, S.P.; Doelger, S.; Walder, J.S.; Gardner, C.A.; Conrey, R.M.; Fisher, B.J.

    2008-01-01

    Mount Jefferson has erupted repeatedly for hundreds of thousands of years, with its last eruptive episode during the last major glaciation which culminated about 15,000 years ago. Geologic evidence shows that Mount Jefferson is capable of large explosive eruptions. The largest such eruption occurred between 35,000 and 100,000 years ago. If Mount Jefferson erupts again, areas close to the eruptive vent will be severely affected, and even areas tens of kilometers (tens of miles) downstream along river valleys or hundreds of kilometers (hundreds of miles) downwind may be at risk. Numerous small volcanoes occupy the area between Mount Jefferson and Mount Hood to the north, and between Mount Jefferson and the Three Sisters region to the south. These small volcanoes tend not to pose the far-reaching hazards associated with Mount Jefferson, but are nonetheless locally important. A concern at Mount Jefferson, but not at the smaller volcanoes, is the possibility that small-to-moderate sized landslides could occur even during periods of no volcanic activity. Such landslides may transform as they move into lahars (watery flows of rock, mud, and debris) that can inundate areas far downstream. The geographic information system (GIS) volcano hazard data layer used to produce the Mount Jefferson volcano hazard map in USGS Open-File Report 99-24 (Walder and others, 1999) is included in this data set. Both proximal and distal hazard zones were delineated by scientists at the Cascades Volcano Observatory and depict various volcano hazard areas around the mountain.

  11. Occupational hazards and illnesses of Filipino women workers in export processing zones.

    PubMed

    Lu, Jinky Leilanie

    2008-01-01

    This was a baseline study on occupational exposure and health problems among women workers in export processing zones. Physical, chemical, and ergonomic hazards were evaluated and measured through workplace ambient monitoring, survey questionnaires, and interviews with 500 respondents in 24 companies (most were female at 88.8%). The top 5 hazards were ergonomic hazards (72.2%), heat (66.6%), overwork (66.6%), poor ventilation (54.8%), and chemical exposure (50.8%). The most common illnesses were gastrointestinal problems (57.4%), backache (56%), headache (53.2%), and fatigue/weakness (53.2%). Logistic regression showed an association between certain work-related factors and occupational illnesses, and psychosocial problems. Highly significant associations were hearing loss with years spent in the company (p=.005) and gender (p=.006), headache and dizziness with poor ventilation (p=.000), backache with prolonged work (p=.003). These results will have implications for policy and program formulation for women workers' concerns and issues in export zones.

  12. Next-Level ShakeZoning for Earthquake Hazard Definition in Nevada

    NASA Astrophysics Data System (ADS)

    Louie, J. N.; Savran, W. H.; Flinchum, B. A.; Dudley, C.; Prina, N.; Pullammanappallil, S.; Pancha, A.

    2011-12-01

    We are developing "Next-Level ShakeZoning" procedures tailored for defining earthquake hazards in Nevada. The current Federally sponsored tools- the USGS hazard maps and ShakeMap, and FEMA HAZUS- were developed as statistical summaries to match earthquake data from California, Japan, and Taiwan. The 2008 Wells and Mogul events in Nevada showed in particular that the generalized statistical approach taken by ShakeMap cannot match actual data on shaking from earthquakes in the Intermountain West, even to first order. Next-Level ShakeZoning relies on physics and geology to define earthquake shaking hazards, rather than statistics. It follows theoretical and computational developments made over the past 20 years, to capitalize on detailed and specific local data sets to more accurately model the propagation and amplification of earthquake waves through the multiple geologic basins of the Intermountain West. Excellent new data sets are now available for Las Vegas Valley. Clark County, Nevada has completed the nation's very first effort to map earthquake hazard class systematically through an entire urban area using Optim's SeisOpt° ReMi technique, which was adapted for large-scale data collection. Using the new Parcel Map in computing shaking in the Valley for scenario earthquakes is crucial for obtaining realistic predictions of ground motions. In an educational element of the project, a dozen undergraduate students have been computing 50 separate earthquake scenarios affecting Las Vegas Valley, using the Next-Level ShakeZoning process. Despite affecting only the upper 30 meters, the Vs30 geotechnical shear-velocity from the Parcel Map shows clear effects on 3-d shaking predictions computed so far at frequencies from 0.1 Hz up to 1.0 Hz. The effect of the Parcel Map on even the 0.1-Hz waves is prominent even with the large mismatch of wavelength to geotechnical depths. Amplifications and de-amplifications affected by the Parcel Map exceed a factor of two, and are

  13. Perturbation and melting of snow and ice by the 13 November 1985 eruption of Nevado del Ruiz, Colombia, and consequent mobilization, flow and deposition of lahars

    USGS Publications Warehouse

    Pierson, T.C.; Janda, R.J.; Thouret, J.-C.; Borrero, C.A.

    1990-01-01

    A complex sequence of pyroclastic flows and surges erupted by Nevado del Ruiz volcano on 13 November 1985 interacted with snow and ice on the summit ice cap to trigger catastrophic lahars (volcanic debris flows), which killed more than 23,000 people living at or beyond the base of the volcano. The rapid transfer of heat from the hot eruptive products to about 10 km2 of the snowpack, combined with seismic shaking, produced large volumes of meltwater that flowed downslope, liquefied some of the new volcanic deposits, and generated avalanches of saturated snow, ice and rock debris within minutes of the 21:08 (local time) eruption. About 2 ?? 107 m3 of water was discharged into the upper reaches of the Molinos, Nereidas, Guali, Azufrado and Lagunillas valleys, where rapid entrainment of valley-fill sediment transformed the dilute flows and avalanches to debris flows. Computed mean velocities of the lahars at peak flow ranged up to 17 m s-1. Flows were rapid in the steep, narrow upper canyons and slowed with distance away from the volcano as flow depth and channel slope diminished. Computed peak discharges ranged up to 48,000 m3 s-1 and were greatest in reaches 10 to 20 km downstream from the summit. A total of about 9 ?? 107 m3 of lahar slurry was transported to depositional areas up to 104 km from the source area. Initial volumes of individual lahars increased up to 4 times with distance away from the summit. The sedimentology and stratigraphy of the lahar deposits provide compelling evidence that: (1) multiple initial meltwater pulses tended to coalesce into single flood waves; (2) lahars remained fully developed debris flows until they reached confluences with major rivers; and (3) debris-flow slurry composition and rheology varied to produce gradationally density-stratified flows. Key lessons and reminders from the 1985 Nevado del Ruiz volcanic eruption are: (1) catastrophic lahars can be generated on ice- and snow-capped volcanoes by relatively small eruptions; (2

  14. Relationship between geomorphology and lithotypes of lahar deposit from Chokai volcano, Japan

    NASA Astrophysics Data System (ADS)

    Minami, Y.; Ohba, T.; Hayashi, S.; Kataoka, K.

    2013-12-01

    Chokai volcano, located in the northern Honshu arc in Japan, is an andesitic stratovolcano that collapsed partly at ca. 2500 years ago. A post collapse lahar deposit (Shirayukigawa lahar deposit) is distributed in the northern foot of the volcanic edifice. The deposit consists of 16 units of debris flow, hyperconcentrated flow and streamflow deposits. The Shirayukigawa lahar deposit has a total thickness of 30 m and overlies the 2.5-ka Kisakata debris avalanche deposit. Shirayukigawa lahar deposit forms volcanic fan and volcanic apron. The volcanic fan is subdivided into four areas on the basis of slope angles and of geomorphological features: 1) steeply sloped area, 2) moderately sloped area, 3) gently sloped area and 4) horizontal area. From sedimentary facies and structures, each unit of the Shirayukigawa lahar deposit is classified into one of four lithotypes: clast-supported debris flow deposit (Cc), matrix-supported debris flow deposit (Cm1), hyperconcentrated flow deposit (Cm2) and streamflow deposit (Sl). Each type has the following lithological characteristics. The lithotypes are well correlated with the geomorphology of the volcanic fan. The steeply-sloped and the moderately-sloped areas are dominated by Cc, Cm1, and Cm2, and The horizontal area are dominated by Sl. Debris flow deposit (Cc) is massive, very poorly sorted, partly graded, and clast-supported with polymictic clasts dominated by subrounded to rounded volcanic clasts. Matrix is sandy to muddy. Preferred clast orientation are present. Debris flow deposit (Cm1) is massive, very poorly sorted, and matrix-supported with polymictic clasts dominated by subrounded to rounded volcanic clasts. Matrix is sandy to muddy. Some layers exhibit coarse-tail normal/inverse grading. Most clasts are oriented. Hyperconcentrated flow deposit (Cm2) is massive to diffusely laminated, very poorly sorted and matrix-supported with polymictic clasts dominated by subrounded to rounded volcanic rocks. Matrix is sandy. The

  15. Determination of Particular Endogenous Fires Hazard Zones in Goaf with Caving of Longwall

    NASA Astrophysics Data System (ADS)

    Tutak, Magdalena; Brodny, Jaroslaw

    2017-12-01

    Hazard of endogenous fires is one of the basic and common presented occupational safety hazards in coal mine in Poland and in the world. This hazard means possibility of coal self-ignition as the result of its self-heating process in mining heading or its surrounding. In underground coal-mining during ventilating of operating longwalls takes place migration of parts of airflow to goaf with caving. In a case when in these goaf a coal susceptible to selfignition occurs, then the airflow through these goaf may influence on formation of favourable conditions for coal oxidation and subsequently to its self-heating and self-ignition. Endogenous fire formed in such conditions can pose a serious hazard for the crew and for continuity of operation of mining plant. From the practical point of view, a very significant meaning has determination of the zone in the goaf with caving, in which necessary conditions for occurrence of endogenous fire are fulfilled. In the real conditions determination of such a zone is practically impossible. Therefore, authors of paper developed a methodology of determination of this zone basing on the results of modelling tests. This methodology includes a development of model of tested area, determination of boundary conditions and carrying out the simulation calculations. Based on the obtained results particular hazardous zone of endogenous fire is determined. A base for development of model of investigated region and selection of boundary conditions are the results of real tests. In the paper fundamental assumption of developed methodology, particularly in a range of assumed hazard criterion and sealing coefficient of goaf with caving were discussed. Also a mathematical model of gas flow through the porous media was characterized. Example of determination of a zone particularly endangered by endogenous fire for real system of mining heading in one of the hard coal mine was presented. Longwall ventilated in the „Y” system was subjected to the

  16. Atlas of natural hazards in the Hawaiian coastal zone

    USGS Publications Warehouse

    Fletcher, Charles H.; Grossman, Eric E.; Richmond, Bruce M.; Gibbs, Ann E.

    2002-01-01

    The purpose of this report is to communicate to citizens and regulatory authorities the history and relative intensity of coastal hazards in Hawaii. This information is the key to the wise use and management of coastal resources. The information contained in this document,we hope,will improve the ability of Hawaiian citizens and visitors to safely enjoy the coast and provide a strong data set for planners and managers to guide the future of coastal resources. This work is largely based on previous investigations by scientific and engineering researchers and county, state, and federal offices and agencies. The unique aspect of this report is that, to the extent possible, it assimilates prior efforts in documenting Hawaiian coastal hazards and combines existing knowledge into a single comprehensive coastal hazard data set. This is by no means the final word on coastal hazards in Hawaii. Every hazardous phenomenon described here, and others such as slope failure and rocky shoreline collapse, need to be more carefully quantified, forecast, and mitigated. Our ultimate goal, of course, is to make the Hawaiian coast a safer place by educating the people of the state, and their leaders, about the hazardous nature of the environment. In so doing, we will also be taking steps toward improved preservation of coastal environments, because the best way to avoid coastal hazards is to avoid inappropriate development in the coastal zone. We have chosen maps as the medium for both recording and communicating the hazard history and its intensity along the Hawaiian coast.Two types of maps are used: 1) smallscale maps showing a general history of hazards on each island and summarizing coastal hazards in a readily understandable format for general use, and 2) a large-scale series of technical maps (1:50,000) depicting coastal sections approximately 5 to 7 miles in length with color bands along the coast ranking the relative intensity of each hazard at the adjacent shoreline.

  17. Hazardous geology zoning and influence factorsin the near-shore shallow strata and seabed surfaceof the modern Yellow River Delta, China

    NASA Astrophysics Data System (ADS)

    Li, P.

    2016-12-01

    In this study, on the basis of 3,200 km shallow stratigraphic section and sidescan sonar data of the coastal area of the Yellow River Delta, we delineated and interpreted a total of seven types of typical hazardous geologies, including the hazardous geology in the shallow strata (buried ancient channel and strata disturbance) and hazardous geology in the seabed surface strata (pit, erosive residual body, sand patch, sand wave and scour channel). We selected eight parameters representing the development scale of the hazardous geology as the zoning indexes, including the number of hazardous geology types, pit depth, height of erosive residual body, length of scour channel, area of sand patch, length of sand wave, width of the buried ancient channel and depth of strata disturbance, and implemented the grid processing of the research area to calculate the arithmetic sum of the zoning indexes of each unit grid one by one. We then adopted the clustering analysis method to divide the near-shore waters of the Yellow River Delta into five hazardous geology areas, namely the serious erosion disaster area controlled by Diaokou lobe waves, hazardous geology area of multi-disasters under the combined action of the Shenxiangou lobe river wave flow, accumulation type hazardous geology area controlled by the current estuary river, hazardous geology area of single disaster in the deep water area and potential hazardous geology area of the Chengdao Oilfield. All four of the main factors affecting the development of hazardous geology, namely the diffusion and movement of sediment flux of the Yellow River water entering the sea, seabed stability, bottom sediment type and distribution, as well as the marine hydrodynamic characteristics, show significant regional differentiation characteristics and laws. These characteristics and laws are consistent with the above-mentioned zoning results, in which the distribution, scale and genetic mechanism of hazardous geology are considered

  18. An index-based method to assess risks of climate-related hazards in coastal zones: The case of Tetouan

    NASA Astrophysics Data System (ADS)

    Satta, Alessio; Snoussi, Maria; Puddu, Manuela; Flayou, Latifa; Hout, Radouane

    2016-06-01

    The regional risk assessment carried out within the ClimVar & ICZM Project identified the coastal zone of Tetouan as a hotspot of the Mediterranean Moroccan coast and so it was chosen for the application of the Multi-Scale Coastal Risk Index for Local Scale (CRI-LS). The local scale approach provides a useful tool for local coastal planning and management by exploring the effects and the extensions of the hazards and combining hazard, vulnerability and exposure variables in order to identify areas where the risk is relatively high. The coast of Tetouan is one of the coastal areas that have been most rapidly and densely urbanized in Morocco and it is characterized by an erosive shoreline. Local authorities are facing the complex task of balancing development and managing coastal risks, especially coastal erosion and flooding, and then be prepared to the unavoidable impacts of climate change. The first phase of the application of the CRI-LS methodology to Tetouan consisted of defining the coastal hazard zone, which results from the overlaying of the erosion hazard zone and the flooding hazard zone. Nineteen variables were chosen to describe the Hazards, Vulnerability and Exposure factors. The scores corresponding to each variable were calculated and the weights assigned through an expert judgement elicitation. The resulting values are hosted in a geographic information system (GIS) platform that enables the individual variables and aggregated risk scores to be color-coded and mapped across the coastal hazard zone. The results indicated that 10% and 27% of investigated littoral fall under respectively very high and high vulnerability because of combination of high erosion rates with high capital land use. The risk map showed that some areas, especially the flood plains of Restinga, Smir and Martil-Alila, with distances over 5 km from the coast, are characterized by high levels of risk due to the low topography of the flood plains and to the high values of exposure

  19. Pyroclastic density current dynamics and associated hazards at ice-covered volcanoes

    NASA Astrophysics Data System (ADS)

    Dufek, J.; Cowlyn, J.; Kennedy, B.; McAdams, J.

    2015-12-01

    Understanding the processes by which pyroclastic density currents (PDCs) are emplaced is crucial for volcanic hazard prediction and assessment. Snow and ice can facilitate PDC generation by lowering the coefficient of friction and by causing secondary hydrovolcanic explosions, promoting remobilisation of proximally deposited material. Where PDCs travel over snow or ice, the reduction in surface roughness and addition of steam and meltwater signficantly changes the flow dynamics, affecting PDC velocities and runout distances. Additionally, meltwater generated during transit and after the flow has come to rest presents an immediate secondary lahar hazard that can impact areas many tens of kilometers beyond the intial PDC. This, together with the fact that deposits emplaced on ice are rarely preserved means that PDCs over ice have been little studied despite the prevalence of summit ice at many tall stratovolcanoes. At Ruapehu volcano in the North Island of New Zealand, a monolithologic welded PDC deposit with unusually rounded clasts provides textural evidence for having been transported over glacial ice. Here, we present the results of high-resolution multiphase numerical PDC modeling coupled with experimentaly determined rates of water and steam production for the Ruapehu deposits in order to assess the effect of ice on the Ruapehu PDC. The results suggest that the presence of ice significantly modified the PDC dynamics, with implications for assessing the PDC and associated lahar hazards at Ruapehu and other glaciated volcanoes worldwide.

  20. Rheological Variations in Lahars Expected to Flow Along the Sides of Sakurajima and Ontake Volcanoes, Japan

    NASA Astrophysics Data System (ADS)

    Kurokawa, A. K.; Ishibashi, H.

    2016-12-01

    Volcanic ash is known to accumulate on the ground surface around volcano after eruptions. Once the ash gains weight and mixes with water to a critical point, the mixture of volcanic ash and water runs down a side of volcano causing severe damage to the ambient environment. The flow is referred to as lahar that is widely observed all over the world and it occasionally generates seismic signals [Walsh et al., 2016; Ogiso and Yomogida, 2015]. Sometimes it happens just after an eruption [Nakayama and Kuroda, 2003] whereas a large debris flow, which occurred about 30 years after the latest eruption due to heavy rainfall is also reported [Ogiso and Yomogida, 2015]. Thus when the lahar starts flowing is a key. In order to understand flow characteristics of lahar, it is important to focus on the rheology. However, little is known about the rheological property although the experimental condition can be controlled at atmospheric pressure and ambient temperature. This is an advantage when compared with magma and rock, which need to reach high-pressure and/or high-temperature conditions to be measured. Based on the background, we have performed basic rheological measurements using mixtures of water and volcanic ashes collected at Sakurajima and Ontake volcanoes in Japan. The first important point of our findings is that the two types of mixtures show non-linear characteristics differently. For instance, the viscosity variation strongly depends on the water content in the case of Sakurajima sample while the viscosity fluctuates within a certain definite range of shear rate using Ontake sample. Since these non-linear characteristics are related to structural changes in the flow, our results indicate that the flow of lahar is time-variable and complicated. In this presentation, we report the non-linear rheology in detail and go into the relation to temporal changes in the flow.

  1. 33 CFR 165.1151 - Security Zones; liquefied hazardous gas tank vessels, San Pedro Bay, California.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... a tank vessel as liquefied petroleum gas, liquefied natural gas, or similar liquefied gas products... Eleventh Coast Guard District § 165.1151 Security Zones; liquefied hazardous gas tank vessels, San Pedro... the sea floor, within a 500 yard radius around any liquefied hazardous gas (LHG) tank vessel that is...

  2. Proposed method for hazard mapping of landslide propagation zone

    NASA Astrophysics Data System (ADS)

    Serbulea, Manole-Stelian; Gogu, Radu; Manoli, Daniel-Marcel; Gaitanaru, Dragos Stefan; Priceputu, Adrian; Andronic, Adrian; Anghel, Alexandra; Liviu Bugea, Adrian; Ungureanu, Constantin; Niculescu, Alexandru

    2013-04-01

    Sustainable development of communities situated in areas with landslide potential requires a fully understanding of the mechanisms that govern the triggering of the phenomenon as well as the propagation of the sliding mass, with catastrophic consequences on the nearby inhabitants and environment. Modern analysis methods for areas affected by the movement of the soil bodies are presented in this work, as well as a new procedure to assess the landslide hazard. Classical soil mechanics offer sufficient numeric models to assess the landslide triggering zone, such as Limit Equilibrium Methods (Fellenius, Janbu, Morgenstern-Price, Bishop, Spencer etc.), blocks model or progressive mobilization models, Lagrange-based finite element method etc. The computation methods for assessing the propagation zones are quite recent and have high computational requirements, thus not being sufficiently used in practice to confirm their feasibility. The proposed procedure aims to assess not only the landslide hazard factor, but also the affected areas, by means of simple mathematical operations. The method can easily be employed in GIS software, without requiring engineering training. The result is obtained by computing the first and second derivative of the digital terrain model (slope and curvature maps). Using the curvature maps, it is shown that one can assess the areas most likely to be affected by the propagation of the sliding masses. The procedure is first applied on a simple theoretical model and then used on a representative section of a high exposure area in Romania. The method is described by comparison with Romanian legislation for risk and vulnerability assessment, which specifies that the landslide hazard is to be assessed, using an average hazard factor Km, obtained from various other factors. Following the employed example, it is observed that using the Km factor there is an inconsistent distribution of the polygonal surfaces corresponding to different landslide

  3. Lateral blasts at Mount St. Helens and hazard zonation

    USGS Publications Warehouse

    Crandell, D.R.; Hoblitt, R.P.

    1986-01-01

    Lateral blasts at andesitic and dacitic volcanoes can produce a variety of direct hazards, including ballistic projectiles which can be thrown to distances of at least 10 km and pyroclastic density flows which can travel at high speed to distances of more than 30 km. Indirect effect that may accompany such explosions include wind-borne ash, pyroclastic flows formed by the remobilization of rock debris thrown onto sloping ground, and lahars. Two lateral blasts occurred at a lava dome on the north flank of Mount St. Helens about 1200 years ago; the more energetic of these threw rock debris northeastward across a sector of about 30?? to a distance of at least 10 km. The ballistic debris fell onto an area estimated to be 50 km2, and wind-transported ash and lapilli derived from the lateral-blast cloud fell on an additional lobate area of at least 200 km2. In contrast, the vastly larger lateral blast of May 18, 1980, created a devastating pyroclastic density flow that covered a sector of as much as 180??, reached a maximum distance of 28 km, and within a few minutes directly affected an area of about 550 km2. The May 18 lateral blast resulted from the sudden, landslide-induced depressurization of a dacite cryptodome and the hydrothermal system that surrounded it within the volcano. We propose that lateral-blast hazard assessments for lava domes include an adjoining hazard zone with a radius of at least 10 km. Although a lateral blast can occur on any side of a dome, the sector directly affected by any one blast probably will be less than 180??. Nevertheless, a circular hazard zone centered on the dome is suggested because of the difficulty of predicting the direction of a lateral blast. For the purpose of long-term land-use planning, a hazard assessment for lateral blasts caused by explosions of magma bodies or pressurized hydrothermal systems within a symmetrical volcano could designate a circular potential hazard area with a radius of 35 km centered on the volcano

  4. Preliminary volcano hazard assessment for the Emmons Lake volcanic center, Alaska

    USGS Publications Warehouse

    Waythomas, Christopher; Miller, Thomas P.; Mangan, Margaret T.

    2006-01-01

    The Emmons Lake volcanic center is a large stratovolcano complex on the Alaska Peninsula near Cold Bay, Alaska. The volcanic center includes several ice- and snow-clad volcanoes within a nested caldera structure that hosts Emmons Lake and truncates a shield-like ancestral Mount Emmons edifice. From northeast to southwest, the main stratovolcanoes of the center are: Pavlof Sister, Pavlof, Little Pavlof, Double Crater, Mount Hague, and Mount Emmons. Several small cinder cones and vents are located on the floor of the caldera and on the south flank of Pavlof Volcano. Pavlof Volcano, in the northeastern part of the center, is the most historically active volcano in Alaska (Miller and others, 1998) and eruptions of Pavlof pose the greatest hazards to the region. Historical eruptions of Pavlof Volcano have been small to moderate Strombolian eruptions that produced moderate amounts of near vent lapilli tephra fallout, and diffuse ash plumes that drifted several hundreds of kilometers from the vent. Cold Bay, King Cove, Nelson Lagoon, and Sand Point have reported ash fallout from Pavlof eruptions. Drifting clouds of volcanic ash produced by eruptions of Pavlof would be a major hazard to local aircraft and could interfere with trans-Pacific air travel if the ash plume achieved flight levels. During most historical eruptions of Pavlof, pyroclastic material erupted from the volcano has interacted with the snow and ice on the volcano producing volcanic mudflows or lahars. Lahars have inundated most of the drainages heading on the volcano and filled stream valleys with variable amounts of coarse sand, gravel, and boulders. The lahars are often hot and would alter or destroy stream habitat for many years following the eruption. Other stratocones and vents within the Emmons Lake volcanic center are not known to have erupted in the past 300 years. However, young appearing deposits and lava flows suggest there may have been small explosions and minor effusive eruptive activity

  5. Imbalance in Groundwater-Surface Water Interactions and its Relationship to the Coastal Zone Hazards

    NASA Astrophysics Data System (ADS)

    Kontar, Y. A.; Ozorovich, Y. R.; Salokhiddinov, A. T.

    2011-12-01

    We report here some efforts and results in studying the imbalance in groundwater-surface water interactions and processes of groundwater-surface water interactions and groundwater flooding creating hazards in the coastal zones. Hazards, hydrological and geophysical risk analysis related to imbalance in groundwater-surface water interactions and groundwater flooding have been to a large extent under-emphasized for coastal zone applications either due to economical limitations or underestimation of significance of imbalance in groundwater-surface water interactions. This is particularly true for tsunamis creating salt water intrusion to coastal aquifers, even though most tsunami hazard assessments have in the past relied on scenario or deterministic type models, and to increasing mineralization of potable water because of intensive water diversions and also the abundance of highly toxic pollutants (mainly pesticides) in water, air and food, which contribute to the deterioration of the coastal population's health. In the wake of pressing environmental and economic issues, it is of prime importance for the scientific community to shed light onto the great efforts by hydrologists and geophysicists to quantify conceptual uncertainties and to provide quality assurances of potential coastal zone hazard evaluation and prediction under conditions of imbalance in groundwater-surface water interactions. This paper proposes consideration of two case studies which are important and significant for future understanding of a concept of imbalance in groundwater-surface water interactions and development and essential for feasibility studies of hazards in the coastal zone. The territory of the Aral Sea Region in Central Asia is known as an ecological disaster coastal zone. It is now obvious that, in order to provide reasonable living conditions to the coastal zone population, it is first of all necessary to drastically improve the quality of the water dedicated to human needs. Due

  6. Quantifying potential tsunami hazard in the Puysegur subduction zone, south of New Zealand

    USGS Publications Warehouse

    Hayes, G.P.; Furlong, K.P.

    2010-01-01

    Studies of subduction zone seismogenesis and tsunami potential, particularly of large subduction zones, have recently seen a resurgence after the great 2004 earthquake and tsunami offshore of Sumatra, yet these global studies have generally neglected the tsunami potential of small subduction zones such as the Puysegur subduction zone, south of New Zealand. Here, we study one such relatively small subduction zone by analysing the historical seismicity over the entire plate boundary region south of New Zealand, using these data to determine the seismic moment deficit of the subduction zone over the past ~100 yr. Our calculations indicate unreleased moment equivalent to a magnitude Mw 8.3 earthquake, suggesting this subduction zone has the potential to host a great, tsunamigenic event. We model this tsunami hazard and find that a tsunami caused by a great earthquake on the Puysegur subduction zone would pose threats to the coasts of southern and western South Island, New Zealand, Tasmania and southeastern Australia, nearly 2000 km distant. No claim to original US government works Geophysical Journal International ?? 2010 RAS.

  7. Lahar—River of volcanic mud and debris

    USGS Publications Warehouse

    Major, Jon J.; Pierson, Thomas C.; Vallance, James W.

    2018-05-09

    Lahar, an Indonesian word for volcanic mudflow, is a mixture of water, mud, and volcanic rock flowing swiftly along a channel draining a volcano. Lahars can form during or after eruptions, or even during periods of inactivity. They are among the greatest threats volcanoes pose to people and property. Lahars can occur with little to no warning, and may travel great distances at high speeds, destroying or burying everything in their paths.Lahars form in many ways. They commonly occur when eruptions melt snow and ice on snow-clad volcanoes; when rains fall on steep slopes covered with fresh volcanic ash; when crater lakes, volcano glaciers or lakes dammed by volcanic debris suddenly release water; and when volcanic landslides evolve into flowing debris. Lahars are especially likely to occur at erupting or recently active volcanoes.Because lahars are so hazardous, U.S. Geological Survey scientists pay them close attention. They study lahar deposits and limits of inundation, model flow behavior, develop lahar-hazard maps, and work with community leaders and governmental authorities to help them understand and minimize the risks of devastating lahars.

  8. Earth Girl Volcano: An Interactive Casual Game about Complex Volcanic Hazards

    NASA Astrophysics Data System (ADS)

    Kerlow, I.

    2017-12-01

    Earth Girl Volcano is an interactive casual strategy game for disaster preparedness. The project is designed for mainstream audiences, particularly for children, as an engaging and fun way to learn about volcano hazards, monitoring, and mitigation strategies. The game is deceptively simple but it provides a toolbox to address practically all volcanic hazards ranging from gas and ash fall to pyroclastic flows, lava and lahars. This presentation shows the basic dynamic to explore the area, assess the risk, choose the best-suited tools and execute a mitigation strategy within the available budget. This game is a real-time simulation of a crowd evacuation that allows players to intervene before and during the disaster.

  9. Identifying Alteration and Water on MT. Baker, WA with Geophysics: Implications for Volcanic Landslide Hazards

    NASA Astrophysics Data System (ADS)

    Finn, C.; Deszcz-Pan, M.; Bedrosian, P.; Minsley, B. J.

    2016-12-01

    Helicopter magnetic and electromagnetic (HEM) data, along with rock property measurements, local ground-based gravity, time domain electromagnetic (TEM) and nuclear magnetic resonance (NMR) data help identify alteration and water-saturated zones on Mount Baker, Washington. Hydrothermally altered rocks, particularly if water-saturated, can weaken volcanic edifices, increasing the potential for catastrophic sector collapses that can lead to far traveled and destructive debris flows. At Mount Baker volcano, collapses of hydrothermally altered rocks from the edifice have generated numerous debris flows that constitute their greatest volcanic hazards. Critical to quantifying this hazard is knowledge of the three-dimensional distribution of pervasively altered rock, shallow groundwater and ice that plays an important role in transforming debris avalanches to far traveled lahars. The helicopter geophysical data, combined with geological mapping and rock property measurements, indicate the presence of localized zones of less than 100 m thickness of water-saturated hydrothermally altered rock beneath Sherman Crater and the Dorr Fumarole Fields at Mt. Baker. New stochastic inversions of the HEM data indicate variations in resistivity in inferred perched aquifers—distinguishing between fresh and saline waters, possibly indicating the influence of nearby alteration and/or hydrothermal systems on water quality. The new stochastic results better resolve ice thickness than previous inversions, and also provide important estimates of uncertainty on ice thickness and other parameters. New gravity data will help constrain the thickness of the ice and alteration. Nuclear magnetic resonance data indicate that the hydrothermal clays contain 50% water with no evidence for water beneath the ice. The HEM data identify water-saturated fresh volcanic rocks from the surface to the detection limit ( 100 m) over the entire summit of Mt. Baker. Localized time domain EM soundings indicate that

  10. Eruption-related lahars and sedimentation response downstream of Mount Hood: Field guide to volcaniclastic deposits along the Sandy River, Oregon

    USGS Publications Warehouse

    Pierson, Tom C.; Scott, William E.; Vallance, James W.; Pringle, Patrick T.; O'Connor, Jim; Dorsey, Rebecca; Madin, Ian

    2009-01-01

    Late Holocene dome-building eruptions at Mount Hood during the Timberline and Old Maid eruptive periods resulted in numerous dome-collapse pyroclastic flows and lahars that moved large volumes of volcaniclastic sediment into temporary storage in headwater canyons of the Sandy River. During each eruptive period, accelerated sediment loading to the river through erosion and remobilization of volcanic fragmental debris resulted in very high sediment-transport rates in the Sandy River during rain- and snowmelt-induced floods. Large sediment loads in excess of the river's transport capacity led to channel aggradation, channel widening, and change to a braided channel form in the lowermost reach of the river, between 61 and 87 km downstream from the volcano. The post-eruption sediment load moved as a broad bed-material wave, which in the case of the Old Maid eruption took ~2 decades to crest 83 km downstream. Maximum post-eruption aggradation levels of at least 28 and 23 m were achieved in response to Timberline and Old Maid eruptions. In each case, downstream aggradation cycles were initiated by lahars, but the bulk of the aggradation was achieved by fluvial sediment transport and deposition. When the high rates of sediment supply began to diminish, the river degraded, incising the channel fills and forming progressively lower sets of degradational terraces. A variety of debris-flow, hyperconcentrated-flow, and fluvial (upper and lower flow regime) deposits record the downstream passage of the sediment waves that were initiated by these eruptions. The deposits also presage a hazard that may be faced by communities along the Sandy River when volcanic activity at Mount Hood resumes.

  11. Tsunami Hazard Assessment of Coastal South Africa Based on Mega-Earthquakes of Remote Subduction Zones

    NASA Astrophysics Data System (ADS)

    Kijko, Andrzej; Smit, Ansie; Papadopoulos, Gerassimos A.; Novikova, Tatyana

    2018-04-01

    After the mega-earthquakes and concomitant devastating tsunamis in Sumatra (2004) and Japan (2011), we launched an investigation into the potential risk of tsunami hazard to the coastal cities of South Africa. This paper presents the analysis of the seismic hazard of seismogenic sources that could potentially generate tsunamis, as well as the analysis of the tsunami hazard to coastal areas of South Africa. The subduction zones of Makran, South Sandwich Island, Sumatra, and the Andaman Islands were identified as possible sources of mega-earthquakes and tsunamis that could affect the African coast. Numerical tsunami simulations were used to investigate the realistic and worst-case scenarios that could be generated by these subduction zones. The simulated tsunami amplitudes and run-up heights calculated for the coastal cities of Cape Town, Durban, and Port Elizabeth are relatively small and therefore pose no real risk to the South African coast. However, only distant tsunamigenic sources were considered and the results should therefore be viewed as preliminary.

  12. Tsunami Hazard Assessment of Coastal South Africa Based on Mega-Earthquakes of Remote Subduction Zones

    NASA Astrophysics Data System (ADS)

    Kijko, Andrzej; Smit, Ansie; Papadopoulos, Gerassimos A.; Novikova, Tatyana

    2017-11-01

    After the mega-earthquakes and concomitant devastating tsunamis in Sumatra (2004) and Japan (2011), we launched an investigation into the potential risk of tsunami hazard to the coastal cities of South Africa. This paper presents the analysis of the seismic hazard of seismogenic sources that could potentially generate tsunamis, as well as the analysis of the tsunami hazard to coastal areas of South Africa. The subduction zones of Makran, South Sandwich Island, Sumatra, and the Andaman Islands were identified as possible sources of mega-earthquakes and tsunamis that could affect the African coast. Numerical tsunami simulations were used to investigate the realistic and worst-case scenarios that could be generated by these subduction zones. The simulated tsunami amplitudes and run-up heights calculated for the coastal cities of Cape Town, Durban, and Port Elizabeth are relatively small and therefore pose no real risk to the South African coast. However, only distant tsunamigenic sources were considered and the results should therefore be viewed as preliminary.

  13. Volcanic hazard map for Telica, Cerro Negro and El Hoyo volcanoes, Nicaragua

    NASA Astrophysics Data System (ADS)

    Asahina, T.; Navarro, M.; Strauch, W.

    2007-05-01

    A volcano hazard study was conducted for Telica, Cerro Negro and El Hoyo volcanoes, Nicaragua, based on geological and volcanological field investigations, air photo analyses, and numerical eruption simulation. These volcanoes are among the most active volcanoes of the country. This study was realized 2004-2006 through technical cooperation of Japan International Cooperation Agency (JICA) with INETER, upon the request of the Government of Nicaragua. The resulting volcanic hazard map on 1:50,000 scale displays the hazards of lava flow, pyroclastic flows, lahars, tephra fall, volcanic bombs for an area of 1,300 square kilometers. The map and corresponding GIS coverage was handed out to Central, Departmental and Municipal authorities for their use and is included in a National GIS on Georisks developed and maintained by INETER.

  14. Hazard map for volcanic ballistic impacts at El Chichón volcano (Mexico)

    NASA Astrophysics Data System (ADS)

    Alatorre-Ibarguengoitia, Miguel; Ramos-Hernández, Silvia; Jiménez-Aguilar, Julio

    2014-05-01

    The 1982 eruption of El Chichón Volcano in southeastern Mexico had a strong social and environmental impact. The eruption resulted in the worst volcanic disaster in the recorded history of Mexico, causing about 2,000 casualties, displacing thousands, and producing severe economic losses. Even when some villages were relocated after the 1982 eruption, many people still live and work in the vicinities of the volcano and may be affected in the case of a new eruption. The hazard map of El Chichón volcano (Macías et al., 2008) comprises pyroclastic flows, pyroclastic surges, lahars and ash fall but not ballistic projectiles, which represent an important threat to people, infrastructure and vegetation in the case of an eruption. In fact, the fatalities reported in the first stage of the 1982 eruption were caused by roof collapse induced by ashfall and lithic ballistic projectiles. In this study, a general methodology to delimit the hazard zones for volcanic ballistic projectiles during volcanic eruptions is applied to El Chichón volcano. Different scenarios are defined based on the past activity of the volcano and parameterized by considering the maximum kinetic energy associated with ballistic projectiles ejected during previous eruptions. A ballistic model is used to reconstruct the "launching" kinetic energy of the projectiles observed in the field. The maximum ranges expected for the ballistics in the different explosive scenarios defined for El Chichón volcano are presented in a ballistic hazard map which complements the published hazard map. These maps assist the responsible authorities to plan the definition and mitigation of restricted areas during volcanic crises.

  15. Stratigraphic And Lithofacies Study Of Distal Rain-Triggered Lahars: The Case Of West Coast Of Ecuador

    NASA Astrophysics Data System (ADS)

    Mulas, M.; Chunga, K.; Peña Carpio, E.; Falquez Torres, D. A.; Alcivar, R., Sr.; Lopez Coronel, M. C.

    2015-12-01

    The central zone of the coast of Ecuador at the north of Manabí Province, on the area comprised between Salango and Jama communities, is characterized by the presence of whitish to grey, centimeters to meters thick, consolidated to loose distal ash deposits. Recent archeological studies on Valdivia (3500 BC) and Manteña (800-1500 AC - Harris et al. 2004) civilizations remains link this deposits with the intense eruptive phases that afflicted Ecuador 700-900 years ago (Usselman, 2006). Stratigraphic evidences and bibliographic datations of paleosols (Estrada, 1962; Mothes and Hall, 2008), allowed to estimate that these deposits are linked with the 800 BP eruption of Quilotoa and the following eruptions of Cotopaxi. According to the Smith and Lowe classification (1991), the deposits outcropping on the coast (located at a distance greater than 160 km from the volcanic vents), varied from whitish to grey, loose to weakly consolidated, massive to weakly stratified, centimeters to meters thick, coarse to fine ash matrix layers (diluite streamflow facies) to massive, large angular to sub-rounded siltitic blocks-rich and coarse to medium ash matrix deposits (debris flow facies). These types of lithofacies are associated to a rain-triggered lahar (De Belizal et al., 2013). The presence in some stratigraphic sections of sharp contacts, laminated layers of very fine ash, and also cm-thick sand and silt layers between the ash beds of the same deposits permit to understand that the different pulses were generated in short periods and after a long period. Structures like water pipes imply that the lahar went into the sea (Schneider, 2004), and allow the reconstruction of the paleotopographic condition during the emplacement of these deposits. This study focuses on the characterization of these types of deposits, permit to understand the kind of risk that may affect the towns located on the coast of Ecuador after VEI 4 to 6 eruptions on short time and within years.

  16. Insights into lahar deposition processes in the Curah Lengkong (Semeru Volcano, Indonesia) using photogrammetry-based geospatial analysis, near-surface geophysics and CFD modelling

    NASA Astrophysics Data System (ADS)

    Gomez, C.; Lavigne, F.; Sri Hadmoko, D.; Wassmer, P.

    2018-03-01

    Semeru Volcano is an active stratovolcano located in East Java (Indonesia), where historic lava flows, occasional pyroclastic flows and vulcanian explosions (on average every 5 min to 15 min) generate a stock of material that is remobilized by lahars, mostly occurring during the rainy season between October and March. Every year, several lahars flow down the Curah Lengkong Valley on the South-east flank of the volcano, where numerous lahar studies have been conducted. In the present contribution, the objective was to study the spatial distribution of boulder-size clasts and try to understand how this distribution relates to the valley morphology and to the dynamic and deposition dynamic of lahars. To achieve this objective, the method relies on a combination of (1) aerial photogrammetry-derived geospatial data on boulders' distribution, (2) ground penetrating radar data collected along a 2 km series of transects and (3) a CFD model of flow to analyse the results from the deposits. Results show that <1 m diameter boulders are evenly distributed along the channel, but that lava flow deposits visible at the surface of the river bed and SABO dams increase the concentration of clasts upstream of their position. Lateral input of boulders from collapsing lava-flow deposits can bring outsized clasts in the system that tend to become trapped at one location. Finally, the comparison between the CFD simulation and previous research using video imagery of lahars put the emphasis the fact that there is no direct link between the sedimentary units observed in the field and the flow that deposited them. Both grain size, flow orientation, matrix characteristics can be very different in a deposit for one single flow, even in confined channels like the Curah Lengkong.

  17. Holocene lahars and their byproducts along the historical path of the White River between Mount Rainier and Seattle: Geological Society of America Field Trip

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, T A; Zehfuss, P H; Atwater, B F

    2003-10-16

    Clay-poor lahars of late Holocene age from Mount Rainier change down the White River drainage into lahar-derived fluvial and deltaic deposits that filled an arm of Puget Sound between the sites of Auburn and Seattle, 110-150 km downvalley from the volcano's summit. Lahars in the debris-flow phase left cobbly and bouldery deposits on the walls of valleys within 70 km of the summit. At distances of 80-110 km, transitional (hyperconcentrated) flows deposited pebbles and sand that coat terraces in a gorge incised into glacial drift and the mid-Holocene Osceola Mudflow. On the broad, level floor of the Kent valley atmore » 110-130 km, lahars in the runout or streamflow phase deposited mostly sand-size particles that locally include the trunks of trees probably entrained by the flows. Beyond 130 km, in the Duwamish valley of Tukwila and Seattle, laminated andesitic sand derived from Mount Rainier built a delta northward across the Seattle fault. This distal facies, warped during an earthquake in A.D. 900-930, rests on estuarine mud at depths as great as 20 m. The deltaic filling occurred in episodes that appear to overlap in time with the lahars. As judged from radiocarbon ages of twigs and logs, at least three episodes of distal deposition postdate the Osceola Mudflow. One of these episodes occurred about 2200-2800 cal yr B.P., and two others occurred 1700-1000 cal yr B.P. The most recent episode ended by about the time of the earthquake of A.D. 900-930. The delta's northward march to Seattle averaged between 6 and 14 m/yr in the late Holocene.« less

  18. Preliminary volcano-hazard assessment for Mount Spurr Volcano, Alaska

    USGS Publications Warehouse

    Waythomas, Christopher F.; Nye, Christopher J.

    2001-01-01

    Mount Spurr volcano is an ice- and snow-covered stratovolcano complex located in the north-central Cook Inlet region about 100 kilometers west of Anchorage, Alaska. Mount Spurr volcano consists of a breached stratovolcano, a lava dome at the summit of Mount Spurr, and Crater Peak vent, a small stratocone on the south flank of Mount Spurr volcano. Historical eruptions of Crater Peak occurred in 1953 and 1992. These eruptions were relatively small but explosive, and they dispersed volcanic ash over areas of interior, south-central, and southeastern Alaska. Individual ash clouds produced by the 1992 eruption drifted east, north, and south. Within a few days of the eruption, the south-moving ash cloud was detected over the North Atlantic. Pyroclastic flows that descended the south flank of Crater Peak during both historical eruptions initiated volcanic-debris flows or lahars that formed temporary debris dams across the Chakachatna River, the principal drainage south of Crater Peak. Prehistoric eruptions of Crater Peak and Mount Spurr generated clouds of volcanic ash, pyroclastic flows, and lahars that extended to the volcano flanks and beyond. A flank collapse on the southeast side of Mount Spurr generated a large debris avalanche that flowed about 20 kilometers beyond the volcano into the Chakachatna River valley. The debris-avalanche deposit probably formed a large, temporary debris dam across the Chakachatna River. The distribution and thickness of volcanic-ash deposits from Mount Spurr volcano in the Cook Inlet region indicate that volcanic-ash clouds from most prehistoric eruptions were as voluminous as those produced by the 1953 and 1992 eruptions. Clouds of volcanic ash emitted from the active vent, Crater Peak, would be a major hazard to all aircraft using Ted Stevens Anchorage International Airport and other local airports and, depending on wind direction, could drift a considerable distance beyond the volcano. Ash fall from future eruptions could disrupt many

  19. A combined approach to physical vulnerability of large cities exposed to natural hazards - the case study of Arequipa, Peru

    NASA Astrophysics Data System (ADS)

    Thouret, Jean-Claude; Ettinger, Susanne; Zuccaro, Giulio; Guitton, Mathieu; Martelli, Kim; Degregorio, Daniela; Nardone, Stefano; Santoni, Olivier; Magill, Christina; Luque, Juan Alexis; Arguedas, Ana

    2013-04-01

    Arequipa, the second largest city in Peru with almost one million inhabitants, is exposed to various natural hazards, such as earthquakes, landslides, flash floods, and volcanic eruptions. This study focuses on the vulnerability and response of housing, infrastructure and lifelines in Arequipa to flash floods and eruption induced hazards, notably lahars from El Misti volcano. We propose a combined approach for assessing physical vulnerability in a large city based on: (1) remote sensing utilizing high-resolution imagery (SPOT5, Google Earth Pro, Bing, Pléïades) to map the distribution and type of land use, properties of city blocks in terms of exposure to the hazard (elevation above river level, distance to channel, impact angle, etc.); (2) in situ survey of buildings and critical infrastructure (e.g., bridges) and strategic resources (e.g., potable water, irrigation, sewage); (3) information gained from interviews with engineers involved in construction works, previous crises (e.g., June 2001 earthquake) and risk mitigation in Arequipa. Remote sensing and mapping at the scale of the city has focused on three pilot areas, along the perennial Rio Chili valley that crosses the city and oasis from north to south, and two of the east-margin tributaries termed Quebrada (ravine): San Lazaro crossing the northern districts and Huarangal crossing the northeastern districts. Sampling of city blocks through these districts provides varying geomorphic, structural, historical, and socio-economic characteristics for each sector. A reconnaissance survey included about 900 edifices located in 40 city blocks across districts of the pilot areas, distinct in age, construction, land use and demographics. A building acts as a structural system and its strength and resistance to flashfloods and lahars therefore highly depends on the type of construction and the used material. Each building surveyed was assigned to one of eight building categories based on physical criteria (dominant

  20. Hazards in volcanic arcs

    NASA Astrophysics Data System (ADS)

    Sparks, S. R.

    2008-12-01

    Volcanic eruptions in arcs are complex natural phenomena, involving the movement of magma to the Earth's surface and interactions with the surrounding crust during ascent and with the surface environment during eruption, resulting in secondary hazards. Magma changes its properties profoundly during ascent and eruption and many of the underlying processes of heat and mass transfer and physical property changes that govern volcanic flows and magmatic interactions with the environment are highly non-linear. Major direct hazards include tephra fall, pyroclastic flows from explosions and dome collapse, volcanic blasts, lahars, debris avalanches and tsunamis. There are also health hazards related to emissions of gases and very fine volcanic ash. These hazards and progress in their assessment are illustrated mainly from the ongoing eruption of the Soufriere Hills volcano. Montserrat. There are both epistemic and aleatory uncertainties in the assessment of volcanic hazards, which can be large, making precise prediction a formidable objective. Indeed in certain respects volcanic systems and hazardous phenomena may be intrinsically unpredictable. As with other natural phenomena, predictions and hazards inevitably have to be expressed in probabilistic terms that take account of these uncertainties. Despite these limitations significant progress is being made in the ability to anticipate volcanic activity in volcanic arcs and, in favourable circumstances, make robust hazards assessments and predictions. Improvements in monitoring ground deformation, gas emissions and seismicity are being combined with more advanced models of volcanic flows and their interactions with the environment. In addition more structured and systematic methods for assessing hazards and risk are emerging that allow impartial advice to be given to authorities during volcanic crises. There remain significant issues of how scientific advice and associated uncertainties are communicated to provide effective

  1. System for ranking relative threats of U.S. volcanoes

    USGS Publications Warehouse

    Ewert, J.W.

    2007-01-01

    A methodology to systematically rank volcanic threat was developed as the basis for prioritizing volcanoes for long-term hazards evaluations, monitoring, and mitigation activities. A ranking of 169 volcanoes in the United States and the Commonwealth of the Northern Mariana Islands (U.S. volcanoes) is presented based on scores assigned for various hazard and exposure factors. Fifteen factors define the hazard: Volcano type, maximum known eruptive explosivity, magnitude of recent explosivity within the past 500 and 5,000 years, average eruption-recurrence interval, presence or potential for a suite of hazardous phenomena (pyroclastic flows, lahars, lava flows, tsunami, flank collapse, hydrothermal explosion, primary lahar), and deformation, seismic, or degassing unrest. Nine factors define exposure: a measure of ground-based human population in hazard zones, past fatalities and evacuations, a measure of airport exposure, a measure of human population on aircraft, the presence of power, transportation, and developed infrastructure, and whether or not the volcano forms a significant part of a populated island. The hazard score and exposure score for each volcano are multiplied to give its overall threat score. Once scored, the ordered list of volcanoes is divided into five overall threat categories from very high to very low. ?? 2007 ASCE.

  2. Simulation of three lahars in the Mount St Helens area, Washington using a one-dimensional, unsteady-state streamflow model

    USGS Publications Warehouse

    Laenen, Antonius; Hansen, R.P.

    1988-01-01

    A one-dimensional, unsteady-state, open-channel model was used to analytically reproduce three lahar events. Factors contributing to the success of the modeling were: (1) the lahars were confined to a channel, (2) channel roughness was defined by field information, and (3) the volume of the flow remained relatively unchanged for the duration of the peak. Manning 's 'n ' values used in computing conveyance in the model were subject to the changing rheology of the debris flow and were calculated from field cross-section information (velocities used in these calculations were derived from super-elevation or run-up formulas). For the events modeled in this exercise, Manning 's 'n ' calculations ranged from 0.020 to 0.099. In all lahar simulations, the rheology of the flow changed in a downstream direction during the course of the event. Chen 's 'U ', the mudflow consistency index, changed approximately an order of magnitude for each event. The ' u ' values ranged from 5-2,260 kg/m for three events modeled. The empirical approach adopted in this paper is useful as a tool to help predict debris-flow behavior, but does not lead to understanding the physical processes of debris flows. (Author 's abstract)

  3. Lahars in and around the Taipei basin: Implications for the activity of the Shanchiao fault

    NASA Astrophysics Data System (ADS)

    Song, Sheng-Rong; Chen, Tsu-Mo; Tsao, Shuhjong; Chen, Huei-Fen; Liu, Huan-Chi

    2007-11-01

    In the last decade, more than 21 deep geological cores have been drilled in the Taipei basin to obtain a firmer grasp of its basic geology and engineering properties prior to the construction of new infrastructure. Thirteen of those cores contain lahar deposits, with the number of layers varying from one to three and the thickness of each layer varying from several to over 100 m. Based on their occurrence, petrology and geochemistry, it has been determined that the deposits originated from the southern slope of the Tatun Volcano Group (TVG). K-Ar age dating has shown that the lower layer of lahars was deposited less than 0.4 Ma, and this is clearly correlated to outcrops in the Kauntu, Chengtzeliao and Shihtzutao areas. These findings may well suggest that the Taipei basin has been formed in last 0.4 Ma and that the Shanchiao normal fault commenced its activity within this period. The surface trace and the activity of the Shanchiao normal fault have also been inferred and subsequently defined from stratigraphic data derived from these cores.

  4. The Olmsted fault zone, southernmost Illinois: A key to understanding seismic hazard in the northern new Madrid seismic zone

    USGS Publications Warehouse

    Bexfield, C.E.; McBride, J.H.; Pugin, Andre J.M.; Nelson, W.J.; Larson, T.H.; Sargent, S.L.

    2005-01-01

    Geological deformation in the northern New Madrid seismic zone, near Olmsted, Illinois (USA), is analyzed using integrated compressional-wave (P) and horizontally polarized-wave (SH) seismic reflection and regional and dedicated borehole information. Seismic hazards are of special concern because of strategic facilities (e.g., lock and dam sites and chemical plants on the Ohio River near its confluence with the Mississippi River) and because of alluvial soils subject to high amplification of earthquake shock. We use an integrated approach starting with lower resolution, but deeper penetration, P-wave reflection profiles to identify displacement of Paleozoic bedrock. Higher resolution, but shallower penetration, SH-wave images show deformation that has propagated upward from bedrock faults into Pleistocene loess. We have mapped an intricate zone more than 8 km wide of high-angle faults in Mississippi embayment sediments localized over Paleozoic bedrock faults that trend north to northeast, parallel to the Ohio River. These faults align with the pattern of epicenters in the New Madrid seismic zone. Normal and reverse offsets along with positive flower structures imply a component of strike-slip; the current stress regime favors right-lateral slip on northeast-trending faults. The largest fault, the Olmsted fault, underwent principal displacement near the end of the Cretaceous Period 65 to 70 million years ago. Strata of this age (dated via fossil pollen) thicken greatly on the downthrown side of the Olmsted fault into a locally subsiding basin. Small offsets of Tertiary and Quaternary strata are evident on high-resolution SH-wave seismic profiles. Our results imply recent reactivation and possible future seismic activity in a critical area of the New Madrid seismic zone. This integrated approach provides a strategy for evaluating shallow seismic hazard-related targets for engineering concerns. ?? 2005 Elsevier B.V. All rights reserved.

  5. Digital Data for Volcano Hazards at Newberry Volcano, Oregon

    USGS Publications Warehouse

    Schilling, S.P.; Doelger, S.; Sherrod, D.R.; Mastin, L.G.; Scott, W.E.

    2008-01-01

    Newberry volcano is a broad shield volcano located in central Oregon, the product of thousands of eruptions, beginning about 600,000 years ago. At least 25 vents on the flanks and summit have been active during the past 10,000 years. The most recent eruption 1,300 years ago produced the Big Obsidian Flow. Thus, the volcano's long history and recent activity indicate that Newberry will erupt in the future. Newberry Crater, a volcanic depression or caldera has been the focus of Newberry's volcanic activity for at least the past 10,000 years. Newberry National Volcanic Monument, which is managed by the U.S. Forest Service, includes the caldera and extends to the Deschutes River. Newberry volcano is quiet. Local earthquake activity (seismicity) has been trifling throughout historic time. Subterranean heat is still present, as indicated by hot springs in the caldera and high temperatures encountered during exploratory drilling for geothermal energy. The report USGS Open-File Report 97-513 (Sherrod and others, 1997) describes the kinds of hazardous geologic events that might occur in the future at Newberry volcano. A hazard-zonation map is included to show the areas that will most likely be affected by renewed eruptions. When Newberry volcano becomes restless, the eruptive scenarios described herein can inform planners, emergency response personnel, and citizens about the kinds and sizes of events to expect. The geographic information system (GIS) volcano hazard data layers used to produce the Newberry volcano hazard map in USGS Open-File Report 97-513 are included in this data set. Scientists at the USGS Cascades Volcano Observatory created a GIS data layer to depict zones subject to the effects of an explosive pyroclastic eruption (tephra fallout, pyroclastic flows, and ballistics), lava flows, volcanic gasses, and lahars/floods in Paulina Creek. A separate GIS data layer depicts drill holes on the flanks of Newberry Volcano that were used to estimate the probability

  6. Seismic hazard and risk assessment in the intraplate environment: The New Madrid seismic zone of the central United States

    USGS Publications Warehouse

    Wang, Z.

    2007-01-01

    Although the causes of large intraplate earthquakes are still not fully understood, they pose certain hazard and risk to societies. Estimating hazard and risk in these regions is difficult because of lack of earthquake records. The New Madrid seismic zone is one such region where large and rare intraplate earthquakes (M = 7.0 or greater) pose significant hazard and risk. Many different definitions of hazard and risk have been used, and the resulting estimates differ dramatically. In this paper, seismic hazard is defined as the natural phenomenon generated by earthquakes, such as ground motion, and is quantified by two parameters: a level of hazard and its occurrence frequency or mean recurrence interval; seismic risk is defined as the probability of occurrence of a specific level of seismic hazard over a certain time and is quantified by three parameters: probability, a level of hazard, and exposure time. Probabilistic seismic hazard analysis (PSHA), a commonly used method for estimating seismic hazard and risk, derives a relationship between a ground motion parameter and its return period (hazard curve). The return period is not an independent temporal parameter but a mathematical extrapolation of the recurrence interval of earthquakes and the uncertainty of ground motion. Therefore, it is difficult to understand and use PSHA. A new method is proposed and applied here for estimating seismic hazard in the New Madrid seismic zone. This method provides hazard estimates that are consistent with the state of our knowledge and can be easily applied to other intraplate regions. ?? 2007 The Geological Society of America.

  7. Conceptual Development of a National Volcanic Hazard Model for New Zealand

    NASA Astrophysics Data System (ADS)

    Stirling, Mark; Bebbington, Mark; Brenna, Marco; Cronin, Shane; Christophersen, Annemarie; Deligne, Natalia; Hurst, Tony; Jolly, Art; Jolly, Gill; Kennedy, Ben; Kereszturi, Gabor; Lindsay, Jan; Neall, Vince; Procter, Jonathan; Rhoades, David; Scott, Brad; Shane, Phil; Smith, Ian; Smith, Richard; Wang, Ting; White, James D. L.; Wilson, Colin J. N.; Wilson, Tom

    2017-06-01

    We provide a synthesis of a workshop held in February 2016 to define the goals, challenges and next steps for developing a national probabilistic volcanic hazard model for New Zealand. The workshop involved volcanologists, statisticians, and hazards scientists from GNS Science, Massey University, University of Otago, Victoria University of Wellington, University of Auckland, and University of Canterbury. We also outline key activities that will develop the model components, define procedures for periodic update of the model, and effectively articulate the model to end-users and stakeholders. The development of a National Volcanic Hazard Model is a formidable task that will require long-term stability in terms of team effort, collaboration and resources. Development of the model in stages or editions that are modular will make the process a manageable one that progressively incorporates additional volcanic hazards over time, and additional functionalities (e.g. short-term forecasting). The first edition is likely to be limited to updating and incorporating existing ashfall hazard models, with the other hazards associated with lahar, pyroclastic density currents, lava flow, ballistics, debris avalanche, and gases/aerosols being considered in subsequent updates.

  8. Perspectives on earthquake hazards in the New Madrid seismic zone, Missouri

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thenhaus, P.C.

    1990-01-01

    A sequence of three great earthquakes struck the Central United States during the winter of 1811-12 in the area of New Madrid, Missouri. They are considered to be the greatest earthquakes in the conterminous U.S. because they were felt and caused damage at far greater distances than any other earthquakes in US history. In contrast to California, where earthquakes are felt frequently, the damaging earthquakes that have occurred in the Eastern US are generally regarded as only historical phenomena. A fundamental problem in the Eastern US, therefore, is that the earthquake hazard is not generally considered today in land-use andmore » civic planning. This article offers perspectives on the earthquake hazard of the New Madrid seismic zone through discussions of the geology of the Mississippi Embayment, the historical earthquakes that have occurred there, the earthquake risk, and the tools that geoscientists have to study the region. The so-called earthquake hazard is defined by the characterization of the physical attributes of the geological structures that cause earthquakes, the estimation of the recurrence times of the earthquakes, their potential size, and the expected ground motions. The term earthquake risk, on the other hand, refers to aspects of the expected damage to manmade structures and to lifelines as a result of the earthquake hazard.« less

  9. The use of Near-surface Geophysics in Evaluating and Assessing Natural Hazards

    NASA Astrophysics Data System (ADS)

    Pellerin, L.

    2007-12-01

    The list of natural hazards that transform the physical environmental is extensive: earthquakes, tsunamis, floods, volcanoes, lahars, landslides and debris flows, avalanches, karst/cavern collapse, heavy-metal contamination, permafrost, liquefaction, and magnetic storms. Because these events or conditions can have significant negative impact on health and infrastructure, the need for knowledge about and education of natural hazards is important. Near-surface geophysics can contribute in significant ways to both the knowledge base and wider understanding of these hazards. The discipline encompasses a wide range of methodologies, some of which are described below. A post-tsunami helicopter electromagnetic (EM) survey along the coasts of Aceh, northern Sumatra was used to discriminate between fresh-water and saltwater aquifers., saltwater intrusion occurred close to the coast as a result of the tsunami and deep saltwater occurrences particularly around 30 m depth were mapped up to several kilometers inland. Based on the survey results recommendations were made to locate shallow hand-dug wells and medium depth (60m) water wells. Utilizing airborne EM and magnetic measurements, a detailed assessment of the internal distribution of altered zones within an active volcano; Mount Rainier (NW USA) showed that alteration is much more restricted than had been inferred from surficial exposures alone. The study also suggested that the collapse of fresh, unaltered portions of the volcano is possible, and no flank of the volcano can be considered immune from lahars during eruption. Ground penetrating radar (GPR) has been used worldwide in a variety of applications from geotechnical investigations related to geologic hazards. These include assessment of transportation infrastructure, which maybe be damaged due to a natural hazard, study of the movement of rock glaciers in the Swiss Alps, and search and recovery of avalanche victims. Permafrost is widespread in polar areas and cold

  10. Induction Hazard Assessment: The Variability of Geoelectric Responses During Geomagnetic Storms Within Common Hazard Zones

    NASA Astrophysics Data System (ADS)

    Cuttler, S. W.; Love, J. J.; Swidinsky, A.

    2017-12-01

    Geomagnetic field data obtained through the INTERMAGNET program are convolved with four validated EarthScope USArray impedances to estimate the geoelectric variations throughout the duration of a geomagnetic storm. A four day long geomagnetic storm began on June 22, 2016, and was recorded at the Brandon (BRD), Manitoba and Fredericksburg (FRD), Virginia magnetic observatories over four days. Two impedance tensors corresponding to each magnetic observatory produce extremely different responses, despite being within close geographical proximity. Estimated time series of the geoelectric field throughout the duration of the geomagnetic storm were calculated, providing an understanding of how the geoelectric field differs across small geographic distances within the same geomagnetic hazard zones derived from prior geomagnetic hazard assessment. We show that the geoelectric response of two sites within 200km of one another can differ by up to two orders of magnitude (4245 mV/km at one location and 38 mV/km at another location 125km away). In addition, we compare these results with estimations of the geoelectric field generated from synthetic 1-dimensional resistivity models commonly used to represent large geographic regions when assessing geomagnetically induced current (GIC) hazards. This comparison shows that estimations of the geomagnetic field from these models differ greatly from estimations produced from Earthscope USArray sites (1205 mV/km in the 1D and 4245 mV/km in the 3D case in one example). This study demonstrates that the application of uniform 1-dimensional resistivity models of the subsurface to wide geographic regions is insufficient to predict the geoelectric hazard at a given location. Furthermore an evaluation of the 3-dimensional resistivity distribution at a given location is necessary to produce a reliable estimation of how the geoelectric field evolves over the course of a geomagnetic storm.

  11. Impacts of river-bed aggradation and lahar activity downstream of Santiaguito Volcano, Guatemala: a Landsat Thematic Mapper perspective

    NASA Astrophysics Data System (ADS)

    Flynn, L. P.; Harris, A. J.; Davies, M. A.; Vallence, J. W.; Rose, W. I.

    2002-12-01

    Lava extrusion at Santiaguito volcano, Guatemala and rainfall runoff cause lahars and river-bed aggradation downstream of the volcano. We present a method that uses vegetation indices extracted from Landsat Thematic Mapper (TM) data to identify zones of impact. The method differentiates vegetation-free and vegetated pixels, constrains areas affected by aggradation, and generates catchment-wide aggradation maps. Application of the technique to 22 TM images acquired between 1987 and 2000 helped us to measure, map and track temporal and spatial variations in the area of lahar impact and river aggradation. To verify our TM-based analyses we carried out 3 field campaigns between 2000 and 2002, during which we focused on a segment of aggraded river beds ~8 km from Santiaguito. We then used our TM and field-based studies to document and validate changes at this location, as follows: (1) Time varying effects of aggradation. The main river to head at Santiaguito is R¡o Nima II. The TM analysis indicated development of a new channel cutting across farm land on the western edge of R¡o Nima II between 1996 and 2000. Field checking showed that development of an aggraded, convex, bed profile caused channels to flow westward away from the aggraded river-channel system. (2) Emplacement of lava flows. The TM time series indicated that a new lava flow extended into the upper reaches of the Rio Nima I during 1996 and triggered aggradation. Field checking confirmed that a new supply of volcaniclastic material had extended aggradation into this previously unaffected drainage. (3) River capture. Capture of R¡o Nima I by R¡o Samal has increased aggradation of along new sections of R¡o Samal , an effect evident in our TM mapping. Field checking showed that, although R¡o Samala does not head at Santiaguito, the new supply of material from R¡o Nima I triggered rapid aggradation of R¡o Samal after 1996.

  12. Seismic hazard maps for Haiti

    USGS Publications Warehouse

    Frankel, Arthur; Harmsen, Stephen; Mueller, Charles; Calais, Eric; Haase, Jennifer

    2011-01-01

    We have produced probabilistic seismic hazard maps of Haiti for peak ground acceleration and response spectral accelerations that include the hazard from the major crustal faults, subduction zones, and background earthquakes. The hazard from the Enriquillo-Plantain Garden, Septentrional, and Matheux-Neiba fault zones was estimated using fault slip rates determined from GPS measurements. The hazard from the subduction zones along the northern and southeastern coasts of Hispaniola was calculated from slip rates derived from GPS data and the overall plate motion. Hazard maps were made for a firm-rock site condition and for a grid of shallow shear-wave velocities estimated from topographic slope. The maps show substantial hazard throughout Haiti, with the highest hazard in Haiti along the Enriquillo-Plantain Garden and Septentrional fault zones. The Matheux-Neiba Fault exhibits high hazard in the maps for 2% probability of exceedance in 50 years, although its slip rate is poorly constrained.

  13. Scenario based tsunami wave height estimation towards hazard evaluation for the Hellenic coastline and examples of extreme inundation zones in South Aegean

    NASA Astrophysics Data System (ADS)

    Melis, Nikolaos S.; Barberopoulou, Aggeliki; Frentzos, Elias; Krassanakis, Vassilios

    2016-04-01

    A scenario based methodology for tsunami hazard assessment is used, by incorporating earthquake sources with the potential to produce extreme tsunamis (measured through their capacity to cause maximum wave height and inundation extent). In the present study we follow a two phase approach. In the first phase, existing earthquake hazard zoning in the greater Aegean region is used to derive representative maximum expected earthquake magnitude events, with realistic seismotectonic source characteristics, and of greatest tsunamigenic potential within each zone. By stacking the scenario produced maximum wave heights a global maximum map is constructed for the entire Hellenic coastline, corresponding to all expected extreme offshore earthquake sources. Further evaluation of the produced coastline categories based on the maximum expected wave heights emphasizes the tsunami hazard in selected coastal zones with important functions (i.e. touristic crowded zones, industrial zones, airports, power plants etc). Owing to its proximity to the Hellenic Arc, many urban centres and being a popular tourist destination, Crete Island and the South Aegean region are given a top priority to define extreme inundation zoning. In the second phase, a set of four large coastal cities (Kalamata, Chania, Heraklion and Rethymno), important for tsunami hazard, due i.e. to the crowded beaches during the summer season or industrial facilities, are explored towards preparedness and resilience for tsunami hazard in Greece. To simulate tsunamis in the Aegean region (generation, propagation and runup) the MOST - ComMIT NOAA code was used. High resolution DEMs for bathymetry and topography were joined via an interface, specifically developed for the inundation maps in this study and with similar products in mind. For the examples explored in the present study, we used 5m resolution for the topography and 30m resolution for the bathymetry, respectively. Although this study can be considered as

  14. Explosion impacts during transport of hazardous cargo: GIS-based characterization of overpressure impacts and delineation of flammable zones for ammonia.

    PubMed

    Inanloo, Bahareh; Tansel, Berrin

    2015-06-01

    The aim of this research was to investigate accidental releases of ammonia followed by an en-route incident in an attempt to further predict the consequences of hazardous cargo accidents. The air dispersion model Areal Locations of Hazardous Atmospheres (ALOHA) was employed to track the probable outcomes of a hazardous material release of a tanker truck under different explosion scenarios. The significance of identification of the flammable zones was taken into consideration; in case the flammable vapor causes an explosion. The impacted areas and the severity of the probable destructions were evaluated for an explosion by considering the overpressure waves. ALOHA in conjunction with ArcGIS was used to delineate the flammable and overpressure impact zones for different scenarios. Based on the results, flammable fumes were formed in oval shapes having a chief axis along the wind direction at the time of release. The expansions of the impact areas under the overpressure value which can lead to property damage for 2 and 20 tons releases, under very stable and unstable atmospheric conditions were estimated to be around 1708, 1206; 3742, 3527 feet, respectively, toward the wind direction. A sensitivity analysis was done to assess the significance of wind speed on the impact zones. The insight provided by this study can be utilized by decision makers in transportation of hazardous materials as a guide for possible rerouting, rescheduling, or limiting the quantity of hazardous cargo to reduce the possible impacts after hazardous cargo accidents during transport. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Lava Flow Hazard Assessment, as of August 2007, for Kilauea East Rift Zone Eruptions, Hawai`i Island

    USGS Publications Warehouse

    Kauahikaua, Jim

    2007-01-01

    The most recent episode in the ongoing Pu'u 'O'o-Kupaianaha eruption of Kilauea Volcano is currently producing lava flows north of the east rift zone. Although they pose no immediate threat to communities, changes in flow behavior could conceivably cause future flows to advance downrift and impact communities thus far unaffected. This report reviews lava flow hazards in the Puna District and discusses the potential hazards posed by the recent change in activity. Members of the public are advised to increase their general awareness of these hazards and stay up-to-date on current conditions.

  16. Postglacial volcanic deposits at Glacier Peak, Washington, and potential hazards from future eruptions; a preliminary report

    USGS Publications Warehouse

    Beget, J.E.

    1982-01-01

    Eruptions and other geologic events at Glacier Peak volcano in northern Washington have repeatedly affected areas near the volcano as well as areas far downwind and downstream. This report describes the evidence of this activity preserved in deposits on the west and east flanks of the volcano. On the west side of Glacier Peak the oldest postglacial deposit is a large, clayey mudflow which traveled at least 35 km down the White Chuck River valley sometime after 14,000 years ago. Subsequent large explosive eruptions produced lahars and at least 10 pyroclastic-flow deposits, including a semiwelded vitric tuff in the White Chuck River valley. These deposits, known collectively as the White Chuck assemblage, form a valley fill which is locally preserved as far as 100 km downstream from the volcano in the Stillaguamish River valley. At least some of the assemblage is about 11,670-11,500 radiocarbon years old. A small clayey lahar, containing reworked blocks of the vitric tuff, subsequently traveled at least 15 km down the White Chuck River. This lahar is overlain by lake sediments containing charred wood which is about 5,500 years old. A 150-m-thick assemblage of pyroclastic-flow deposits and lahars, called the Kennedy Creek assemblage, is in part about 5,500-5,100 radiocarbon years old. Lithic lahars from this assemblage extend at least 100 km downstream in the Skagit River drainage. The younger lahar assemblages, each containing at least three lahars and reaching at least 18 km downstream from Glacier Peak in the White Chuck River valley, are about 2,800 and 1,800 years old, respectively. These are postdated by a lahar containing abundant oxyhornblende dacite, which extends at least 30 km to the Sauk River. A still younger lahar assemblage that contains at least five lahars, and that also extends at least 30 km to the Sauk River, is older than a mature forest growing on its surface. At least one lahar and a flood deposit form a low terrace at the confluence of the

  17. Eruption-triggered avalanche, flood, and lahar at Mount St. Helens - Effects of winter snowpack

    USGS Publications Warehouse

    Waitt, R.B.; Pierson, T.C.; MacLeod, N.S.; Janda, R.J.; Voight, B.; Holcomb, R.T.

    1983-01-01

    An explosive eruption of Mount St. Helens on 19 March 1982 had substantial impact beyond the vent because hot eruption products interacted with a thick snowpack. A blast of hot pumice, dome rocks, and gas dislodged crater-wall snow that avalanched through the crater and down the north flank. Snow in the crater swiftly melted to form a transient lake, from which a destructive flood and lahar swept down the north flank and the North Fork Toutle River.

  18. The Danger Zone for Noise Hazards Around the Black Hawk Helicopter.

    PubMed

    Jones, Heath G; Greene, Nathaniel T; Chen, Michael R; Azcona, Cierrah M; Archer, Brandon J; Reeves, Efrem R

    2018-06-01

    During ground operations, rotary-wing aircraft engines and subsystems produce noise hazards that place airfield personnel at risk for hearing damage. The noise exposure levels outside the aircraft during various operating conditions, and the distances from aircraft at which they drop to safe levels, are not readily available. The current study measured noise levels at various positions around the UH-60 Black Hawk helicopter for three operating conditions typically used when the aircraft is on the ground. Microphones were positioned systematically around the helicopter and A-weighted sound pressure levels (SPLs) were computed from the recordings. In addition, the 85-dBA SPL contour around the aircraft was mapped. The resulting A-weighted SPLs and contour mapping were used to determine the noise hazard area around the helicopter. Measurements reported here show noise levels of 105 dB or greater in all operating conditions. The fueling location at the left rear of the aircraft near the auxiliary power unit (APU) is the area of greatest risk for noise-induced hearing loss (NIHL). Additionally, sound field contours indicate noise hazard areas (>85 dBA SPL) can extend beyond 100 ft from the helicopter. This report details the areas of greatest risk for auditory injury around the UH-60 Black Hawk helicopter. Our findings suggest the area of hazardous noise levels around the aircraft can extend to neighboring aircraft, particularly on the side of the aircraft where the APU is located. Hearing protection should be worn whenever the aircraft is operating, even if working at a distance.Jones HG, Greene NT, Chen MR, Azcona CM, Archer BJ, Reeves ER. The danger zone for noise hazards around the Black Hawk helicopter. Aerosp Med Hum Perform. 2018; 89(6):547-551.

  19. Interrelations among pyroclastic surge, pyroclastic flow, and lahars in Smith Creek valley during first minutes of 18 May 1980 eruption of Mount St. Helens, USA

    USGS Publications Warehouse

    Brantley, S.R.; Waitt, R.B.

    1988-01-01

    A devastating pyroclastic surge and resultant lahars at Mount St. Helens on 18 May 1980 produced several catastrophic flowages into tributaries on the northeast volcano flank. The tributaries channeled the flows to Smith Creek valley, which lies within the area devastated by the surge but was unaffected by the great debris avalanche on the north flank. Stratigraphy shows that the pyroclastic surge preceded the lahars; there is no notable "wet" character to the surge deposits. Therefore the lahars must have originated as snowmelt, not as ejected water-saturated debris that segregated from the pyroclastic surge as has been inferred for other flanks of the volcano. In stratigraphic order the Smith Creek valley-floor materials comprise (1) a complex valley-bottom facies of the pyroclastic surge and a related pyroclastic flow, (2) an unusual hummocky diamict caused by complex mixing of lahars with the dry pyroclastic debris, and (3) deposits of secondary pyroclastic flows. These units are capped by silt containing accretionary lapilli, which began falling from a rapidly expanding mushroom-shaped cloud 20 minutes after the eruption's onset. The Smith Creek valley-bottom pyroclastic facies consists of (a) a weakly graded basal bed of fines-poor granular sand, the deposit of a low-concentration lithic pyroclastic surge, and (b) a bed of very poorly sorted pebble to cobble gravel inversely graded near its base, the deposit of a high-concentration lithic pyroclastic flow. The surge apparently segregated while crossing the steep headwater tributaries of Smith Creek; large fragments that settled from the turbulent surge formed a dense pyroclastic flow along the valley floor that lagged behind the front of the overland surge. The unusual hummocky diamict as thick as 15 m contains large lithic clasts supported by a tough, brown muddy sand matrix like that of lahar deposits upvalley. This unit contains irregular friable lenses and pods meters in diameter, blocks incorporated from

  20. RiskScape Volcano: Development of a risk assessment tool for volcanic hazards

    NASA Astrophysics Data System (ADS)

    Deligne, Natalia; King, Andrew; Jolly, Gill; Wilson, Grant; Wilson, Tom; Lindsay, Jan

    2013-04-01

    RiskScape is a multi-hazard risk assessment tool developed by GNS Science and the National Institute of Water and Atmospheric Research Ltd. (NIWA) in New Zealand that models the risk and impact of various natural hazards on a given built environment. RiskScape has a modular structure: the hazard module models hazard exposure (e.g., ash thickness at a given location), the asset module catalogues assets (built environment, infrastructure, and people) and their attributes exposed to the hazard, and the vulnerability module models the consequences of asset exposure to the hazard. Hazards presently included in RiskScape are earthquakes, river floods, tsunamis, windstorms, and ash from volcanic eruptions (specifically from Ruapehu). Here we present our framework for incorporating other volcanic hazards (e.g., pyroclastic density currents, lava flows, lahars, ground deformation) into RiskScape along with our approach for assessing asset vulnerability. We also will discuss the challenges of evaluating risk for 'point source' (e.g., stratovolcanoes) vs 'diffuse' (e.g., volcanic fields) volcanism using Ruapehu and the Auckland volcanic field as examples. Once operational, RiskScape Volcano will be a valuable resource both in New Zealand and internationally as a practical tool for evaluating risk and also as an example for how to predict the consequences of volcanic eruptions on both rural and urban environments.

  1. Volcano hazard mitigation program in Indonesia

    USGS Publications Warehouse

    Sudradjat, A.

    1990-01-01

    Volcanological investigations in Indonesia were started in the 18th century, when Valentijn in 1726 prepared a chronological report of the eruption of Banda Api volcno, Maluku. Modern and intensive volcanological studies did not begin until the catastrophic eruption of Kelut volcano, East Java, in 1919. The eruption took 5,011 lives and destroyed thousands of acres of coffee plantation. An eruption lahar generated by the crater lake water mixed with volcanic eruptions products was the cause of death for a high number of victims. An effort to mitigate the danger from volcanic eruption was first initiated in 1921 by constructing a tunnel to drain the crater lake water of Kelut volcano. At the same time a Volcanological Survey was established by the government with the responsibility of seeking every means for minimizing the hazard caused by volcanic eruption. 

  2. Impact of type of the roof rocks on location and range of endogenous fires particular hazard zone by in goaf with caving

    NASA Astrophysics Data System (ADS)

    Tutak, Magdalena; Brodny, Jarosław

    2018-01-01

    Hazard of endogenous fires is one of the basic and common presented occupational safety hazards in coal mine in Poland and in the world. This hazard means possibility of coal self-ignition as the result of its self-heating process in mining heading or its surrounding. In underground coal-mining during ventilating of operating longwalls takes place migration of parts of airflow to goaf with caving. In a case when in these goaf a coal susceptible to self-ignition occurs, then the airflow through these goaf may influence on formation of favorable conditions for coal oxidation and subsequently to its self-heating and self-ignition. Endogenous fire formed in such conditions can pose a serious hazards for the crew and for continuity of operation of mining plant. From the practical point of view a very significant meaning has determination of the zone in the goaf with caving, in which necessary conditions for occurence of endogenous fire are fulfilled. In the real conditions determination of such a zone is practically impossible. The main aim of the analysis was to determine the impact of type of the roof rocks forming the goaf on the location and range of endogenous fires particular hazard zone by in these goaf. For determined mining-geological conditions, the critical value of velocity of airflow and oxygen concentration in goaf, conditioning initiation of coal oxidation process were determined.

  3. Tsunami hazard map in eastern Bali

    NASA Astrophysics Data System (ADS)

    Afif, Haunan; Cipta, Athanasius

    2015-04-01

    Bali is a popular tourist destination both for Indonesian and foreign visitors. However, Bali is located close to the collision zone between the Indo-Australian Plate and Eurasian Plate in the south and back-arc thrust off the northern coast of Bali resulted Bali prone to earthquake and tsunami. Tsunami hazard map is needed for better understanding of hazard level in a particular area and tsunami modeling is one of the most reliable techniques to produce hazard map. Tsunami modeling conducted using TUNAMI N2 and set for two tsunami sources scenarios which are subduction zone in the south of Bali and back thrust in the north of Bali. Tsunami hazard zone is divided into 3 zones, the first is a high hazard zones with inundation height of more than 3m. The second is a moderate hazard zone with inundation height 1 to 3m and the third is a low tsunami hazard zones with tsunami inundation heights less than 1m. Those 2 scenarios showed southern region has a greater potential of tsunami impact than the northern areas. This is obviously shown in the distribution of the inundated area in the south of Bali including the island of Nusa Penida, Nusa Lembongan and Nusa Ceningan is wider than in the northern coast of Bali although the northern region of the Nusa Penida Island more inundated due to the coastal topography.

  4. Tsunami hazard map in eastern Bali

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Afif, Haunan, E-mail: afif@vsi.esdm.go.id; Cipta, Athanasius; Australian National University, Canberra

    Bali is a popular tourist destination both for Indonesian and foreign visitors. However, Bali is located close to the collision zone between the Indo-Australian Plate and Eurasian Plate in the south and back-arc thrust off the northern coast of Bali resulted Bali prone to earthquake and tsunami. Tsunami hazard map is needed for better understanding of hazard level in a particular area and tsunami modeling is one of the most reliable techniques to produce hazard map. Tsunami modeling conducted using TUNAMI N2 and set for two tsunami sources scenarios which are subduction zone in the south of Bali and backmore » thrust in the north of Bali. Tsunami hazard zone is divided into 3 zones, the first is a high hazard zones with inundation height of more than 3m. The second is a moderate hazard zone with inundation height 1 to 3m and the third is a low tsunami hazard zones with tsunami inundation heights less than 1m. Those 2 scenarios showed southern region has a greater potential of tsunami impact than the northern areas. This is obviously shown in the distribution of the inundated area in the south of Bali including the island of Nusa Penida, Nusa Lembongan and Nusa Ceningan is wider than in the northern coast of Bali although the northern region of the Nusa Penida Island more inundated due to the coastal topography.« less

  5. Seismogenic zones and attenuation laws for probabilistic seismic hazard assessment in low deformation area =

    NASA Astrophysics Data System (ADS)

    Le Goff, Boris

    Seismic Hazard Analysis (PSHA), rather than the subjective methodologies that are currently used. This study focuses particularly in the definition of the seismic sources, through the seismotectonic zoning, and the determination of historical earthquake location. An important step in the Probabilistic Seismic Hazard Analysis consists in defining the seismic source model. Such a model expresses the association of the seismicity characteristics with the tectonically-active geological structures evidenced by seismotectonic studies. Given that most of the faults, in low seismic regions, are not characterized well enough, the source models are generally defined as areal zones, delimited with finite boundary polygons, within which the seismicity and the geological features are deemed homogeneous (e.g., focal depth, seismicity rate). Besides the lack of data (short period of instrumental seismicity), such a method generates different problems for regions with low seismic activity: 1) a large sensitivity of resulting hazard maps to the location of zone boundaries, while these boundaries are set by expert decisions; 2) the zoning cannot represent any variability or structural complexity in seismic parameters; 3) the seismicity rate is distributed throughout the zone and the location of the determinant information used for its calculation is lost. We investigate an alternative approach to model the seismotectonic zoning, with three main objectives: 1) obtaining a reproducible method that 2) preserves the information on the sources and extent of the uncertainties, so as to allow to propagate them (through Ground Motion Prediction Equations on to the hazard maps), and that 3) redefines the seismic source concept to debrief our knowledge on the seismogenic structures and the clustering. To do so, the Bayesian methods are favored. First, a generative model with two zones, differentiated by two different surface activity rates, was developed, creating synthetic catalogs drawn

  6. 78 FR 12595 - Safety Zone for Ice Conditions; Baltimore Captain of the Port Zone

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-25

    ... 1625-AA00 Safety Zone for Ice Conditions; Baltimore Captain of the Port Zone AGENCY: Coast Guard, DHS... protect mariners from the hazards associated with ice in the navigable waterways. DATES: This rule has... vessels against the hazards associated with ice on navigable waters. Such hazards include vessels becoming...

  7. A New Two-phase Flow Model Applied to the 2007 Crater Lake Break-out Lahar, Mt. Ruapehu, New Zealand

    NASA Astrophysics Data System (ADS)

    Sheridan, M. F.; Cordoba, G.; Pitman, E.; Cronin, S. J.; Procter, J.

    2010-12-01

    The 2007 Crater Lake break-out lahar, Mt. Ruapehu, New Zealand, is a complex but well-characterized natural debris flow that follows an intricate course over an array of topographic features (see Manville et al., this conference). Detailed digital terrain data (DEM) and accurate flow characterization allow us to test our computational model with an unusually high level of control for such a large natural flood wave. The new two-phase flow code is imbedded within the TITAN2D framework (Patra et al. 2005) that is widely used in hazard assessment for both dry (granular) and wet (debris flow) flows (Murcia et al., 2010). Because TITAN2D is actually valid for dry flows (avalanches) we developed a new two-phase model based on balance laws for mass and momentum for each phase. The granular material is assumed to obey a Coulomb constitutive relation and the fluid is assumed to be inviscid. The Darcy-Weisbach formulation is used to account for bed friction, and a phenomenological drag coefficient mediates the momentum exchange between phases. The resulting system of 6 partial differential equations are depth averaged and correspond to the Savage and Hutter model in the limit of no fluid, and to the typical shallow water solutions (Ortiz, et al., 2005) for pure water. This model is capable of simulating particle volumetric fractions as dilute as 0.001 and as concentrated as 0.55. To confirm the usefulness of the new code for complex flows we used data from four observation stations at Ruapehu located at runout distances of 2 km, 5 km, 7 km and 9 km. The specific flow data that we compare with the model outcomes include: 1) arrival time of the flood front, 2) maximum flood depth, and 3) flow velocity. The computed values for these flow characteristics are all within about ± 10% of the observed figures. References: Manville, V., et al., 2010, Anatomy of a basin break-out flood: The 2007 Crater Lake break-out lahar, Mt. Ruapehu, New Zealand, this conference. Murcia, H

  8. Safety Zones

    EPA Pesticide Factsheets

    These are established primarily to reduce the accidental spread of hazardous substances by workers or equipment from contaminated areas to clean areas. They include the exclusion (hot) zone, contamination reduction (warm) zone, and support (cold) zone.

  9. Hazard zoning around electric substations of petrochemical industries by stimulation of extremely low-frequency magnetic fields.

    PubMed

    Hosseini, Monireh; Monazzam, Mohammad Reza; Farhang Matin, Laleh; Khosroabadi, Hossein

    2015-05-01

    Electromagnetic fields in recent years have been discussed as one of the occupational hazards at workplaces. Hence, control and assessment of these physical factors is very important to protect and promote the health of employees. The present study was conducted to determine hazard zones based on assessment of extremely low-frequency magnetic fields at electric substations of a petrochemical complex in southern Iran, using the single-axis HI-3604 device. In measurement of electromagnetic fields by the single-axis HI-3604 device, the sensor screen should be oriented in a way to be perpendicular to the field lines. Therefore, in places where power lines are located in different directions, it is required to keep the device towards three axes of x, y, and z. For further precision, the measurements should be repeated along each of the three axes. In this research, magnetic field was measured, for the first time, in three axes of x, y, and z whose resultant value was considered as the value of magnetic field. Measurements were done based on IEEE std 644-1994. Further, the spatial changes of the magnetic field surrounding electric substations were stimulated using MATLAB software. The obtained results indicated that the maximum magnetic flux density was 49.90 μT recorded from boiler substation, while the minimum magnetic flux density of 0.02 μT was measured at the control room of the complex. As the stimulation results suggest, the spaces around incoming panels, transformers, and cables were recognized as hazardous zones of indoor electric substations. Considering the health effects of chronic exposure to magnetic fields, it would be possible to minimize exposure to these contaminants at workplaces by identification of risky zones and observation of protective considerations.

  10. Perspectives on earthquake hazards in the New Madrid seismic zone, Missouri

    USGS Publications Warehouse

    Thenhaus, P.C.

    1990-01-01

    A sequence of three great earthquakes struck the Central United States during the winter of 1811-1812 in the area of New Madrid, Missouri. they are considered to be the greatest earthquakes in the conterminous U.S because they were felt and caused damage at far greater distances than any other earthquakes in U.S history. The large population currently living within the damage area of these earthquakes means that widespread destruction and loss of life is likely if the sequence were repeated. In contrast to California, where the earthquakes are felt frequently, the damaging earthquakes that have occurred in the Easter U.S-in 155 (Cape Ann, Mass.), 1811-12 (New Madrid, Mo.), 1886 (Charleston S.C) ,and 1897 (Giles County, Va.- are generally regarded as only historical phenomena (fig. 1). The social memory of these earthquakes no longer exists. A fundamental problem in the Eastern U.S, therefore, is that the earthquake hazard is not generally considered today in land-use and civic planning. This article offers perspectives on the earthquake hazard of the New Madrid seismic zone through discussions of the geology of the Mississippi Embayment, the historical earthquakes that have occurred there, the earthquake risk, and the "tools" that geoscientists have to study the region. The so-called earthquake hazard is defined  by the characterization of the physical attributes of the geological structures that cause earthquakes, the estimation of the recurrence times of the earthquakes, the estimation of the recurrence times of the earthquakes, their potential size, and the expected ground motions. the term "earthquake risk," on the other hand, refers to aspects of the expected damage to manmade strctures and to lifelines as a result of the earthquake hazard.  

  11. Volcanic hazards on the Island of Hawaii

    USGS Publications Warehouse

    Mullineaux, Donal Ray; Peterson, Donald W.

    1974-01-01

    Volcanic hazards on the Island of Hawaii have been determined to be chiefly products of eruptions: lava flows, falling fragments, gases, and particle-and-gas clouds. Falling fragments and particle-and-gas clouds can be substantial hazards to life, but they are relatively rare. Lava flows are the chief hazard to property; they are frequent and cover broad areas. Rupture, subsidence, earthquakes, and sea waves (tsunamis) caused by eruptions are minor hazards; those same events caused by large-scale crustal movements, however, are major hazards to both life and property. Volcanic hazards are greatest on Mauna Loa and Kilauea, and the risk is highest along the rift zones of those volcanoes. The hazards are progressively less severe on Hualalai, Mauna Kea, and Kohala volcanoes. Some risk from earthquakes extends across the entire island, and the risk from tsunamis is high all along the coast. The island has been divided into geographic zones of different relative risk for each volcanic hazard, and for all those hazards combined. Each zone is assigned a relative risk for that area as a whole; the degree of risk varies within the zones, however, and in some of them the risk decreases gradationally across the entire zone. Moreover, the risk in one zone may be locally as great or greater than that at some points in the zone of next higher overall risk. Nevertheless, the zones can be highly useful for land-use planning. Planning decisions to which the report is particularly applicable include the selection of kinds of structures and kinds of land use that are appropriate for the severity and types of hazards present. For example, construction of buildings that can resist a lava flow is generally not feasible, but it is both feasible and desirable to build structures that can resist falling rock fragments, earthquakes, and tsunamis in areas where risk from those hazards is relatively high. The report can also be used to select sites where overall risk is relatively low, to

  12. Sinkhole Susceptibility Hazard Zones Using GIS and Analytical Hierarchical Process (ahp): a Case Study of Kuala Lumpur and Ampang Jaya

    NASA Astrophysics Data System (ADS)

    Rosdi, M. A. H. M.; Othman, A. N.; Zubir, M. A. M.; Latif, Z. A.; Yusoff, Z. M.

    2017-10-01

    Sinkhole is not classified as new phenomenon in this country, especially surround Klang Valley. Since 1968, the increasing numbers of sinkhole incident have been reported in Kuala Lumpur and the vicinity areas. As the results, it poses a serious threat for human lives, assets and structure especially in the capital city of Malaysia. Therefore, a Sinkhole Hazard Model (SHM) was generated with integration of GIS framework by applying Analytical Hierarchical Process (AHP) technique in order to produced sinkhole susceptibility hazard map for the particular area. Five consecutive parameters for main criteria each categorized by five sub classes were selected for this research which is Lithology (LT), Groundwater Level Decline (WLD), Soil Type (ST), Land Use (LU) and Proximity to Groundwater Wells (PG). A set of relative weights were assigned to each inducing factor and computed through pairwise comparison matrix derived from expert judgment. Lithology and Groundwater Level Decline has been identified gives the highest impact to the sinkhole development. A sinkhole susceptibility hazard zones was classified into five prone areas namely very low, low, moderate, high and very high hazard. The results obtained were validated with thirty three (33) previous sinkhole inventory data. This evaluation shows that the model indicates 64 % and 21 % of the sinkhole events fall within high and very high hazard zones respectively. Based on this outcome, it clearly represents that AHP approach is useful to predict natural disaster such as sinkhole hazard.

  13. RiskScape: a new tool for comparing risk from natural hazards (Invited)

    NASA Astrophysics Data System (ADS)

    Stirling, M. W.; King, A.

    2010-12-01

    The Regional RiskScape is New Zealand’s joint venture between GNS Science & NIWA, and represents a comprehensive and easy-to-use tool for multi-hazard-based risk and impact analysis. It has basic GIS functionality, in that it has Import/Export functions to use with GIS software. Five natural hazards have been implemented in Riskscape to date: Flood (river), earthquake, volcano (ash), tsunami and wind storm. The software converts hazard exposure information into the likely impacts for a region, for example, damage and replacement costs, casualties, economic losses, disruption, and number of people affected. It therefore can be used to assist with risk management, land use planning, building codes and design, risk identification, prioritization of risk-reduction/mitigation, determination of “best use” risk-reduction investment, evacuation and contingency planning, awareness raising, public information, realistic scenarios for exercises, and hazard event response. Three geographically disparate pilot regions have been used to develop and triall Riskscape in New Zealand, and each region is exposed to a different mix of natural hazards. Future (phase II) development of Riskscape will include the following hazards: Landslides (both rainfall and earthquake triggered), storm surges, pyroclastic flows and lahars, and climate change effects. While Riskscape developments have thus far focussed on scenario-based risk, future developments will advance the software into providing probabilistic-based solutions.

  14. Aftereffects of Subduction-Zone Earthquakes: Potential Tsunami Hazards along the Japan Sea Coast.

    PubMed

    Minoura, Koji; Sugawara, Daisuke; Yamanoi, Tohru; Yamada, Tsutomu

    2015-10-01

    The 2011 Tohoku-Oki Earthquake is a typical subduction-zone earthquake and is the 4th largest earthquake after the beginning of instrumental observation of earthquakes in the 19th century. In fact, the 2011 Tohoku-Oki Earthquake displaced the northeast Japan island arc horizontally and vertically. The displacement largely changed the tectonic situation of the arc from compressive to tensile. The 9th century in Japan was a period of natural hazards caused by frequent large-scale earthquakes. The aseismic tsunamis that inflicted damage on the Japan Sea coast in the 11th century were related to the occurrence of massive earthquakes that represented the final stage of a period of high seismic activity. Anti-compressive tectonics triggered by the subduction-zone earthquakes induced gravitational instability, which resulted in the generation of tsunamis caused by slope failing at the arc-back-arc boundary. The crustal displacement after the 2011 earthquake infers an increased risk of unexpected local tsunami flooding in the Japan Sea coastal areas.

  15. Thermal state of the Explorer segment of the Cascadia subduction zone: Implications for seismic and tsunami hazards

    NASA Astrophysics Data System (ADS)

    Gao, Dawei; Wang, Kelin; Davis, Earl E.; Jiang, Yan; Insua, Tania L.; He, Jiangheng

    2017-04-01

    The Explorer segment of northernmost Cascadia is an end-member "warm" subduction zone with very young incoming plate and slow-convergence rate. Understanding the megathrust earthquake potential of this type of subduction zone is of both geodynamic and societal importance. Available geodetic observations indicate that the subduction megathrust of the Explorer segment is currently locked to some degree, but the downdip extent of the fault area that is potentially seismogenic is not known. Here we construct finite-element models to estimate the thermally allowed megathrust seismogenic zone, using available knowledge of regional plate kinematics, structural data, and heat flow observations as constraints. Despite ambiguities in plate interface geometry constrained by hypocenter locations of low-frequency earthquakes beneath Vancouver Island, the thermal models suggest a potential rupture zone of ˜60 km downdip width located fully offshore. Using dislocation modeling, we further illustrate that a rupture zone of this size, even with a conservative assumption of ˜100 km strike length, can cause significant tsunami-genic deformation. Future seismic and tsunami hazard assessment in northern Cascadia must take the Explorer segment into account.

  16. Schoolyard Volcanoes: A Unit in Volcanology and Hazards

    NASA Astrophysics Data System (ADS)

    Lechner, H. N.; Gochis, E. E.; Brill, K. A.

    2014-12-01

    How do you teach volcanology and volcanic hazards to students when there is no volcano nearby? You bring the volcano to them! At Michigan Technological University we have developed a four-lesson-unit for middle and high school students which incorporates virtual, analogue and numerical models to increase students' interests in geosciences while simultaneously expanding the community of earth-science-literate individuals necessary for a disaster resilient society. The unit aims to build on students' prior geoscience knowledge by examining the physical properties that influence volcanic eruptions and introduces them to challenges and methods of communicating hazards and risk. Lesson one engages students in a series of hands-on investigations that explore the "3-Vs" of volcanology: Viscosity, Volatiles and Volume. The students learn about the relationship between magma composition and viscosity and the influence on eruption style, behavior and morphology of different volcanoes. Lesson two uses an analogue model of a volcano to demonstrate the forces involved in an explosive eruption and associated hazards. Students think critically about the factors that affect hazards and risk as well as the variables (such as topography) that affect the eruption and the hazard. During lesson three students use Google Earth for a virtual field trip to Pacaya volcano, Guatemala to examine changes in the landscape over time and other evidence of volcanic activity to make interpretations about the volcano. The final lesson has the students use numerical models and GIS to create hazard maps based on probabilistic lahar scenarios. Throughout the unit students are engaged in an inquiry-based exploration that covers several Next Generation Science Standards (NGSS) content and practices. This four lesson unit has been field tested in two school districts and during a summer engineering program. Results from student work and post-surveys show that this strategy raises interests in and

  17. Studying geodesy and earthquake hazard in and around the New Madrid Seismic Zone

    USGS Publications Warehouse

    Boyd, Oliver Salz; Magistrale, Harold

    2011-01-01

    Workshop on New Madrid Geodesy and the Challenges of Understanding Intraplate Earthquakes; Norwood, Massachusetts, 4 March 2011 Twenty-six researchers gathered for a workshop sponsored by the U.S. Geological Survey (USGS) and FM Global to discuss geodesy in and around the New Madrid seismic zone (NMSZ) and its relation to earthquake hazards. The group addressed the challenge of reconciling current geodetic measurements, which show low present-day surface strain rates, with paleoseismic evidence of recent, relatively frequent, major earthquakes in the region. The workshop presentations and conclusions will be available in a forthcoming USGS open-file report (http://pubs.usgs.gov).

  18. An analysis of seismic hazard in the Upper Rhine Graben enlightened by the example of the New Madrid seismic zone.

    NASA Astrophysics Data System (ADS)

    Doubre, Cécile; Masson, Frédéric; Mazzotti, Stéphane; Meghraoui, Mustapha

    2014-05-01

    Seismic hazard in the "stable" continental regions and low-level deformation zones is one of the most difficult issues to address in Earth sciences. In these zones, instrumental and historical seismicity are not well known (sparse seismic networks, seismic cycle too long to be covered by the human history, episodic seismic activity) and many active structures remain poorly characterized or unknown. This is the case of the Upper Rhine Graben, the central segment of the European Cenozoic rift system (ECRIS) of Oligocene age, which extends from the North Sea through Germany and France to the Mediterranean coast over a distance of some 1100 km. Even if this region has already experienced some destructive earthquakes, its present-day seismicity is moderate and the deformation observed by geodesy is very small (below the current measurement accuracy). The strain rate does not exceed 10-10 and paleoseismic studies indicate an average return period of 2.5 to 3 103 ka for large earthquakes. The largest earthquake known for this zone is the 1356 Basel earthquake, with a magnitude generally estimated about 6.5 (Meghraoui et al., 2001) but recently re-evaluated between 6.7 and 7.1 (Fäh et al et al., 2009). A comparison of the Upper Rhine Graben with equivalent regions around the world could help improve our evaluation of seismic hazard of this region. This is the case of the New Madrid seismic zone, one of the best studied intraplate system in central USA, which experienced an M 7.0 - 7.5 earthquake in 1811-1812 and shares several characteristics with the Upper Rhine Graben, i.e. the general framework of inherited geological structures (reactivation of a failed rift / graben), seismicity patterns (spatial variability of small and large earthquakes), the null or low rate of deformation, and the location in a "stable" continental interior. Looking at the Upper Rhine Graben as an analogue of the New Madrid seismic zone, we can re-evaluate its seismic hazard and consider the

  19. Vadose Zone Monitoring as a Key to Groundwater Protection from Pollution Hazard

    NASA Astrophysics Data System (ADS)

    Dahan, Ofer

    2016-04-01

    Minimization subsurface pollution is much dependent on the capability to provide real-time information on the chemical and hydrological properties of the percolating water. Today, most monitoring programs are based on observation wells that enable data acquisitions from the saturated part of the subsurface. Unfortunately, identification of pollutants in well water is clear evidence that the contaminants already crossed the entire vadose-zone and accumulated in the aquifer water to detectable concentration. Therefore, effective monitoring programs that aim at protecting groundwater from pollution hazard should include vadose zone monitoring technologies that are capable to provide real-time information on the chemical composition of the percolating water. Obviously, identification of pollution process in the vadose zone may provide an early warning on potential risk to groundwater quality, long before contaminates reach the water-table and accumulate in the aquifers. Since productive agriculture must inherently include down leaching of excess lower quality water, understanding the mechanisms controlling transport and degradation of pollutants in the unsaturated is crucial for water resources management. A vadose-zone monitoring system (VMS), which was specially developed to enable continuous measurements of the hydrological and chemical properties of percolating water, was used to assess the impact of various agricultural setups on groundwater quality, including: (a) intensive organic and conventional greenhouses, (b) citrus orchard and open field crops , and (c) dairy farms. In these applications frequent sampling of vadose zone water for chemical and isotopic analysis along with continuous measurement of water content was used to assess the link between agricultural setups and groundwater pollution potential. Transient data on variation in water content along with solute breakthrough at multiple depths were used to calibrate flow and transport models. These models

  20. Swift snowmelt and floods (lahars) caused by great pyroclastic surge at Mount St Helens volcano, Washington, 18 May 1980

    USGS Publications Warehouse

    Waitt, R.B.

    1989-01-01

    The initial explosions at Mount St. Helens, Washington, on the moring of 18 May 1980 developed into a huge pyroclastic surge that generated catastrophic floods off the east and west flanks of the volcano. Near-source surge deposits on the east and west were lithic, sorted, lacking in accretionary lapilli and vesiculated ash, not plastered against upright obstacles, and hot enough to char wood - all attributes of dry pyroclastic surge. Material deposited at the surge base on steep slopes near the volcano transformed into high-concentration lithic pyroclastic flows whose deposits contain charred wood and other features indicating that these flows were hot and dry. Stratigraphy shows that even the tail of the surge had passed the east and west volcano flanks before the geomorphically distinct floods (lahars) arrived. This field evidence undermines hypotheses that the turbulent surge was itself wet and that its heavy components segregated out to transform directly into lahars. Nor is there evidence that meters-thick snow-slab avalanches intimately mixed with the surge to form the floods. The floods must have instead originated by swift snowmelt at the base of a hot and relatively dry turbulent surge. Impacting hot pyroclasts probably transferred downslope momentum to the snow surface and churned snow grains into the surge base. Melting snow and accumulating hot surge debris may have moved initially as thousands of small thin slushflows. As these flows removed the surface snow and pyroclasts, newly uncovered snow was partly melted by the turbulent surge base; this and accumulating hot surge debris in turn began flowing, a self-sustaining process feeding the initial flows. The flows thus grew swiftly over tens of seconds and united downslope into great slushy ejecta-laden sheetfloods. Gravity accelerated the floods to more than 100 km/h as they swept down and off the volcano flanks while the snow component melted to form great debris-rich floods (lahars) channeled into

  1. Major Holocene block-and-ash fan at the western slope of ice-capped Pico de Orizaba volcano, México: Implications for future hazards

    NASA Astrophysics Data System (ADS)

    Siebe, Claus; Abrams, Michael; Sheridan, Michael F.

    1993-12-01

    A major block-and-ash fan extends more than 14 km westward from the summit of Pico de Orizaba volcano in the eastern part of the Trans-Mexican Volcanic Belt. Radiocarbon dating of charcoal within the fan deposits yielded Holocene ages that range between 4040 ± 80 and 4660 ± 100 y.B.P. Stratigraphical, sedimentological, geochemical, and scanning electron microscope studies indicate that this fan originated within a relatively short time-span by multiple volcanic explosions at the summit crater. This activity produced a series of pyroclastic flows (mainly block-and-ash flows) and lahars which were channelized by a glacial cirque and connecting U-shaped valleys as they descended toward the base of the volcano. A recurrence of a similar eruption today would pose severe hazards to the population of more than 50,000 people, who live in a potentially dangerous zone. A detailed reconstruction of the sequence of events that led to the formation of the block-and-ash fan is presented to help mitigate the risk. Special attention is given to the effects of an ice-cap and the role of pre-existing glacial morphology on the distribution of products from such an eruption.

  2. 76 FR 1362 - Safety Zone; Ice Conditions for the Baltimore Captain of Port Zone

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-10

    ...-AA00 Safety Zone; Ice Conditions for the Baltimore Captain of Port Zone AGENCY: Coast Guard, DHS... protect mariners from the hazards associated with ice in the navigable waterways. DATES: This rule is... necessary to protect persons and vessels against the hazards associated with ice on navigable waters. Such...

  3. Assessment of Debris Flow Potential Hazardous Zones Using Numerical Models in the Mountain Foothills of Santiago, Chile

    NASA Astrophysics Data System (ADS)

    Celis, C.; Sepulveda, S. A.; Castruccio, A.; Lara, M.

    2017-12-01

    Debris and mudflows are some of the main geological hazards in the mountain foothills of Central Chile. The risk of flows triggered in the basins of ravines that drain the Andean frontal range into the capital city, Santiago, increases with time due to accelerated urban expansion. Susceptibility assessments were made by several authors to detect the main active ravines in the area. Macul and San Ramon ravines have a high to medium debris flow susceptibility, whereas Lo Cañas, Apoquindo and Las Vizcachas ravines have a medium to low debris flow susceptibility. This study emphasizes in delimiting the potential hazardous zones using the numerical simulation program RAMMS-Debris Flows with the Voellmy model approach, and the debris-flow model LAHARZ. This is carried out by back-calculating the frictional parameters in the depositional zone with a known event as the debris and mudflows in Macul and San Ramon ravines, on May 3rd, 1993, for the RAMMS approach. In the same scenario, we calibrate the coefficients to match conditions of the mountain foothills of Santiago for the LAHARZ model. We use the information obtained for every main ravine in the study area, mainly for the similarity in slopes and material transported. Simulations were made for the worst-case scenario, caused by the combination of intense rainfall storms, a high 0°C isotherm level and material availability in the basins where the flows are triggered. The results show that the runout distances are well simulated, therefore a debris-flow hazard map could be developed with these models. Correlation issues concerning the run-up, deposit thickness and transversal areas are reported. Hence, the models do not represent entirely the complexity of the phenomenon, but they are a reliable approximation for preliminary hazard maps.

  4. Enriquillo–Plantain Garden fault zone in Jamaica: paleoseismology and seismic hazard

    USGS Publications Warehouse

    Koehler, R.D.; Mann, P.; Prentice, Carol S.; Brown, L.; Benford, B.; Grandison-Wiggins, M.

    2013-01-01

    The countries of Jamaica, Haiti, and the Dominican Republic all straddle the Enriquillo–Plantain Garden fault zone ( EPGFZ), a major left-lateral, strike-slip fault system bounding the Caribbean and North American plates. Past large earthquakes that destroyed the capital cities of Kingston, Jamaica (1692, 1907), and Port-au-Prince, Haiti (1751, 1770), as well as the 2010 Haiti earthquake that killed more than 50,000 people, have heightened awareness of seismic hazards in the northern Caribbean. We present here new geomorphic and paleoseismic information bearing on the location and relative activity of the EPGFZ, which marks the plate boundary in Jamaica. Documentation of a river bank exposure and several trenches indicate that this fault is active and has the potential to cause major destructive earthquakes in Jamaica. The results suggest that the fault has not ruptured the surface in at least 500 yr and possibly as long as 28 ka. The long period of quiescence and subdued geomorphic expression of the EPGFZ indicates that it may only accommodate part of the ∼7–9 mm=yr plate deformation rate measured geodetically and that slip may be partitioned on other undocumented faults. Large uncertainties related to the neotectonic framework of Jamaica remain and more detailed fault characterization studies are necessary to accurately assess seismic hazards.

  5. Destructive Interactions Between Mitigation Strategies and the Causes of Unexpected Failures in Natural Hazard Mitigation Systems

    NASA Astrophysics Data System (ADS)

    Day, S. J.; Fearnley, C. J.

    2013-12-01

    Large investments in the mitigation of natural hazards, using a variety of technology-based mitigation strategies, have proven to be surprisingly ineffective in some recent natural disasters. These failures reveal a need for a systematic classification of mitigation strategies; an understanding of the scientific uncertainties that affect the effectiveness of such strategies; and an understanding of how the different types of strategy within an overall mitigation system interact destructively to reduce the effectiveness of the overall mitigation system. We classify mitigation strategies into permanent, responsive and anticipatory. Permanent mitigation strategies such as flood and tsunami defenses or land use restrictions, are both costly and 'brittle': when they malfunction they can increase mortality. Such strategies critically depend on the accuracy of the estimates of expected hazard intensity in the hazard assessments that underpin their design. Responsive mitigation strategies such as tsunami and lahar warning systems rely on capacities to detect and quantify the hazard source events and to transmit warnings fast enough to enable at risk populations to decide and act effectively. Self-warning and voluntary evacuation is also usually a responsive mitigation strategy. Uncertainty in the nature and magnitude of the detected hazard source event is often the key scientific obstacle to responsive mitigation; public understanding of both the hazard and the warnings, to enable decision making, can also be a critical obstacle. Anticipatory mitigation strategies use interpretation of precursors to hazard source events and are used widely in mitigation of volcanic hazards. Their critical limitations are due to uncertainties in time, space and magnitude relationships between precursors and hazard events. Examples of destructive interaction between different mitigation strategies are provided by the Tohoku 2011 earthquake and tsunami; recent earthquakes that have impacted

  6. CPT site characterization for seismic hazards in the New Madrid seismic zone

    USGS Publications Warehouse

    Liao, T.; Mayne, P.W.; Tuttle, M.P.; Schweig, E.S.; Van Arsdale, R.B.

    2002-01-01

    A series of cone penetration tests (CPTs) were conducted in the vicinity of the New Madrid seismic zone in central USA for quantifying seismic hazards, obtaining geotechnical soil properties, and conducting studies at liquefaction sites related to the 1811-1812 and prehistoric New Madrid earthquakes. The seismic piezocone provides four independent measurements for delineating the stratigraphy, liquefaction potential, and site amplification parameters. At the same location, two independent assessments of soil liquefaction susceptibility can be made using both the normalized tip resistance (qc1N) and shear wave velocity (Vs1). In lieu of traditional deterministic approaches, the CPT data can be processed using probability curves to assess the level and likelihood of future liquefaction occurrence. ?? 2002 Elsevier Science Ltd. All rights reserved.

  7. The 1945 Balochistan earthquake and probabilistic tsunami hazard assessment for the Makran subduction zone

    NASA Astrophysics Data System (ADS)

    Höchner, Andreas; Babeyko, Andrey; Zamora, Natalia

    2014-05-01

    Iran and Pakistan are countries quite frequently affected by destructive earthquakes. For instance, the magnitude 6.6 Bam earthquake in 2003 in Iran with about 30'000 casualties, or the magnitude 7.6 Kashmir earthquake 2005 in Pakistan with about 80'000 casualties. Both events took place inland, but in terms of magnitude, even significantly larger events can be expected to happen offshore, at the Makran subduction zone. This small subduction zone is seismically rather quiescent, but a tsunami caused by a thrust event in 1945 (Balochistan earthquake) led to about 4000 casualties. Nowadays, the coastal regions are more densely populated and vulnerable to similar events. Additionally, some recent publications raise the question of the possiblity of rare but huge magnitude 9 events at the Makran subduction zone. We first model the historic Balochistan event and its effect in terms of coastal wave heights, and then generate various synthetic earthquake and tsunami catalogs including the possibility of large events in order to asses the tsunami hazard at the affected coastal regions. Finally, we show how an effective tsunami early warning could be achieved by the use of an array of high-precision real-time GNSS (Global Navigation Satellite System) receivers along the coast.

  8. Numerical modeling of marine Gravity data for tsunami hazard zone mapping

    NASA Astrophysics Data System (ADS)

    Porwal, Nipun

    2012-07-01

    Tsunami is a series of ocean wave with very high wavelengths ranges from 10 to 500 km. Therefore tsunamis act as shallow water waves and hard to predict from various methods. Bottom Pressure Recorders of Poseidon class considered as a preeminent method to detect tsunami waves but Acoustic Modem in Ocean Bottom Pressure (OBP) sensors placed in the vicinity of trenches having depth of more than 6000m fails to propel OBP data to Surface Buoys. Therefore this paper is developed for numerical modeling of Gravity field coefficients from Bureau Gravimetric International (BGI) which do not play a central role in the study of geodesy, satellite orbit computation, & geophysics but by mathematical transformation of gravity field coefficients using Normalized Legendre Polynomial high resolution ocean bottom pressure (OBP) data is generated. Real time sea level monitored OBP data of 0.3° by 1° spatial resolution using Kalman filter (kf080) for past 10 years by Estimating the Circulation and Climate of the Ocean (ECCO) has been correlated with OBP data from gravity field coefficients which attribute a feasible study on future tsunami detection system from space and in identification of most suitable sites to place OBP sensors near deep trenches. The Levitus Climatological temperature and salinity are assimilated into the version of the MITGCM using the ad-joint method to obtain the sea height segment. Then TOPEX/Poseidon satellite altimeter, surface momentum, heat, and freshwater fluxes from NCEP reanalysis product and the dynamic ocean topography DOT_DNSCMSS08_EGM08 is used to interpret sea-bottom elevation. Then all datasets are associated under raster calculator in ArcGIS 9.3 using Boolean Intersection Algebra Method and proximal analysis tools with high resolution sea floor topographic map. Afterward tsunami prone area and suitable sites for set up of BPR as analyzed in this research is authenticated by using Passive microwave radiometry system for Tsunami Hazard Zone

  9. Mount Baker lahars and debris flows, ancient, modern, and future

    USGS Publications Warehouse

    Tucker, David S; Scott, Kevin M.; Grossman, Eric E.; Linneman, Scott

    2014-01-01

    Holocene lahars and large debris flows (>106 m3) have left recognizable deposits in the Middle Fork Nooksack valley. A debris flow in 2013 resulting from a landslide in a Little Ice Age moraine had an estimated volume of 100,000 m3, yet affected turbidity for the entire length of the river, and produced a slug of sediment that is currently being reworked and remobilized in the river system. Deposits of smaller-volume debris flows, deposited as terraces in the upper valley, may be entirely eroded within a few years. Consequently, the geologic record of small debris flows such as those that occurred in 2013 is probably very fragmentary. Small debris flows may still have significant impacts on hydrology, biology, and human uses of rivers downstream. Impacts include the addition of waves of fine sediment to stream loads, scouring or burying salmon-spawning gravels, forcing unplanned and sudden closure of municipal water intakes, damaging or destroying trail crossings, extending river deltas into estuaries, and adding to silting of harbors near river mouths.

  10. Towards a Proactive Risk Mitigation Strategy at La Fossa Volcano, Vulcano Island

    NASA Astrophysics Data System (ADS)

    Biass, S.; Gregg, C. E.; Frischknecht, C.; Falcone, J. L.; Lestuzzi, P.; di Traglia, F.; Rosi, M.; Bonadonna, C.

    2014-12-01

    A comprehensive risk assessment framework was built to develop proactive risk reduction measures for Vulcano Island, Italy. This framework includes identification of eruption scenarios; probabilistic hazard assessment, quantification of hazard impacts on the built environment, accessibility assessment on the island and risk perception study. Vulcano, a 21 km2 island with two primary communities host to 900 permanent residents and up to 10,000 visitors during summer, shows a strong dependency on the mainland for basic needs (water, energy) and relies on a ~2 month tourism season for its economy. The recent stratigraphy reveals a dominance of vulcanian and subplinian eruptions, producing a range of hazards acting at different time scales. We developed new methods to probabilistically quantify the hazard related to ballistics, lahars and tephra for all eruption styles. We also elaborated field- and GIS- based methods to assess the physical vulnerability of the built environment and created dynamic models of accessibility. Results outline the difference of hazard between short and long-lasting eruptions. A subplinian eruption has a 50% probability of impacting ~30% of the buildings within days after the eruption, but the year-long damage resulting from a long-lasting vulcanian eruption is similar if tephra is not removed from rooftops. Similarly, a subplinian eruption results in a volume of 7x105 m3 of material potentially remobilized into lahars soon after the eruption. Similar volumes are expected for a vulcanian activity over years, increasing the hazard of small lahars. Preferential lahar paths affect critical infrastructures lacking redundancy, such as the road network, communications systems, the island's only gas station, and access to the island's two evacuation ports. Such results from hazard, physical and systemic vulnerability help establish proactive volcanic risk mitigation strategies and may be applicable in other island settings.

  11. Washington Tsunami Hazard Mitigation Program

    NASA Astrophysics Data System (ADS)

    Walsh, T. J.; Schelling, J.

    2012-12-01

    Washington State has participated in the National Tsunami Hazard Mitigation Program (NTHMP) since its inception in 1995. We have participated in the tsunami inundation hazard mapping, evacuation planning, education, and outreach efforts that generally characterize the NTHMP efforts. We have also investigated hazards of significant interest to the Pacific Northwest. The hazard from locally generated earthquakes on the Cascadia subduction zone, which threatens tsunami inundation in less than hour following a magnitude 9 earthquake, creates special problems for low-lying accretionary shoreforms in Washington, such as the spits of Long Beach and Ocean Shores, where high ground is not accessible within the limited time available for evacuation. To ameliorate this problem, we convened a panel of the Applied Technology Council to develop guidelines for construction of facilities for vertical evacuation from tsunamis, published as FEMA 646, now incorporated in the International Building Code as Appendix M. We followed this with a program called Project Safe Haven (http://www.facebook.com/ProjectSafeHaven) to site such facilities along the Washington coast in appropriate locations and appropriate designs to blend with the local communities, as chosen by the citizens. This has now been completed for the entire outer coast of Washington. In conjunction with this effort, we have evaluated the potential for earthquake-induced ground failures in and near tsunami hazard zones to help develop cost estimates for these structures and to establish appropriate tsunami evacuation routes and evacuation assembly areas that are likely to to be available after a major subduction zone earthquake. We intend to continue these geotechnical evaluations for all tsunami hazard zones in Washington.

  12. Burial of Emperor Augustus' villa at Somma Vesuviana (Italy) by post-79 AD Vesuvius eruptions and reworked (lahars and stream flow) deposits

    NASA Astrophysics Data System (ADS)

    Perrotta, Annamaria; Scarpati, Claudio; Luongo, Giuseppe; Aoyagi, Masanori

    2006-11-01

    A new archaeological site of Roman Age has been recently found engulfed in the products of Vesuvius activity at Somma Vesuviana, on the northern flank of the Somma-Vesuvius, 5 km from the vent. A 9 m deep, 30 by 35 m trench has revealed a monumental edifice tentatively attributed to the Emperor Augustus. Different than Pompeii and Herculaneum sites which were completely buried in the catastrophic eruption of 79 AD, this huge roman villa survived the effects of the 79 AD plinian eruption as suggested by stratigraphic and geochronologic data. It was later completely engulfed in the products of numerous explosive volcanic eruptions ranging from 472 AD to 1631 AD, which were separated by reworked material and paleosols. The exposed burial sequence is comprised of seven stratigraphic units. Four units are composed exclusively of pyroclastic products each emplaced during a unique explosive event. Two units are composed of volcaniclastic material (stream flow and lahars) emplaced during quiescent periods of the volcano. Finally, one unit is composed of both pyroclastic and volcaniclastic deposits. One of the more relevant volcanological results of this study is the detailed reconstruction of the destructive events that buried the Emperor Augustus' villa. Stratigraphic evidence shows the absence of any deposit associated with the 79 AD eruption at this site and that the building was extensively damaged (sacked) before it was engulfed by the products of subsequent volcanic eruptions and lahars. The products of the 472 AD eruption lie directly on the roman structures. They consist of scoria fall layers intercalated with massive and stratified pyroclastic density current deposits that caused limited damage to the structure. The impact on the building of penecontemporaneous lahars was more important; these caused the collapse of some structures. The remaining part of the building was subsequently entombed by the products of explosive eruptions (e.g. 512/536 eruption, 1631

  13. Comparision of the different probability distributions for earthquake hazard assessment in the North Anatolian Fault Zone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yilmaz, Şeyda, E-mail: seydayilmaz@ktu.edu.tr; Bayrak, Erdem, E-mail: erdmbyrk@gmail.com; Bayrak, Yusuf, E-mail: bayrak@ktu.edu.tr

    In this study we examined and compared the three different probabilistic distribution methods for determining the best suitable model in probabilistic assessment of earthquake hazards. We analyzed a reliable homogeneous earthquake catalogue between a time period 1900-2015 for magnitude M ≥ 6.0 and estimated the probabilistic seismic hazard in the North Anatolian Fault zone (39°-41° N 30°-40° E) using three distribution methods namely Weibull distribution, Frechet distribution and three-parameter Weibull distribution. The distribution parameters suitability was evaluated Kolmogorov-Smirnov (K-S) goodness-of-fit test. We also compared the estimated cumulative probability and the conditional probabilities of occurrence of earthquakes for different elapsed timemore » using these three distribution methods. We used Easyfit and Matlab software to calculate these distribution parameters and plotted the conditional probability curves. We concluded that the Weibull distribution method was the most suitable than other distribution methods in this region.« less

  14. 78 FR 45938 - Final Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-30

    ...] Final Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Final notice. SUMMARY: Flood hazard determinations, which may include additions or modifications of Base Flood Elevations (BFEs), base flood depths, Special Flood Hazard Area (SFHA) boundaries or zone designations, or...

  15. Progress made in understanding Mount Rainier's hazards

    USGS Publications Warehouse

    Sisson, T.W.; Vallance, J.W.; Pringle, P.T.

    2001-01-01

    At 4392 m high, glacier-clad Mount Rainier dominates the skyline of the southern Puget Sound region and is the centerpiece of Mount Rainier National Park. About 2.5 million people of the greater Seattle-Tacoma metropolitan area can see Mount Rainier on clear days, and 150,000 live in areas swept by lahars and floods that emanated from the volcano during the last 6,000 years (Figure 1). These lahars include the voluminous Osceola Mudflow that floors the lowlands south of Seattle and east of Tacoma, and which was generated by massive volcano flank-collapse. Mount Rainier's last eruption was a light dusting of ash in 1894; minor pumice last erupted between 1820 and 1854; and the most recent large eruptions we know of were about 1100 and 2300 years ago, according to reports from the U.S. Geological Survey.

  16. 78 FR 14584 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-06

    ...; Internal Agency Docket No. FEMA-B-1296] Proposed Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Notice. SUMMARY: Comments are requested on proposed flood hazard..., Special Flood Hazard Area (SFHA) boundary or zone designation, or regulatory floodway on the Flood...

  17. Downstream aggradation owing to lava dome extrusion and rainfall runoff at Volcán Santiaguito, Guatemala

    USGS Publications Warehouse

    Harris, Andrew J. L.; Vallance, James W.; Kimberly, Paul; Rose, William I.; Matías, Otoniel; Bunzendahl, Elly; Flynn, Luke P.; Garbeil, Harold

    2006-01-01

    Persistent lava extrusion at the Santiaguito dome complex (Guatemala) results in continuous lahar activity and river bed aggradation downstream of the volcano. We present a simple method that uses vegetation indices extracted from Landsat Thematic Mapper (TM) data to map impacted zones. Application of this technique to a time series of 21 TM images acquired between 1987 and 2000 allow us to map, measure, and track temporal and spatial variations in the area of lahar impact and river aggradation.In the proximal zone of the fluvial system, these data show a positive correlation between extrusion rate at Santiaguito (E), aggradation area 12 months later (Aprox), and rainfall during the intervening 12 months (Rain12): Aprox=3.92+0.50 E+0.31 ln(Rain12) (r2=0.79). This describes a situation in which an increase in sediment supply (extrusion rate) and/or a means to mobilize this sediment (rainfall) results in an increase in lahar activity (aggraded area). Across the medial zone, we find a positive correlation between extrusion rate and/or area of proximal aggradation and medial aggradation area (Amed): Amed=18.84-0.05 Aprox - 6.15 Rain12 (r2=0.85). Here the correlation between rainfall and aggradation area is negative. This describes a situation in which increased sediment supply results in an increase in lahar activity but, because it is the zone of transport, an increase in rainfall serves to increase the transport efficiency of rivers flowing through this zone. Thus, increased rainfall flushes the medial zone of sediment.These quantitative data allow us to empirically define the links between sediment supply and mobilization in this fluvial system and to derive predictive relationships that use rainfall and extrusion rates to estimate aggradation area 12 months hence.

  18. Informing hazardous zones for on-board maritime hydrogen liquid and gas systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blaylock, Myra L.; Pratt, Joseph William; Bran Anleu, Gabriela A.

    The significantly higher buoyancy of hydrogen compared to natural gas means that hazardous zones defined in the IGF code may be inaccurate if applied to hydrogen. This could place undue burden on ship design or could lead to situations that are unknowingly unsafe. We present dispersion analyses to examine three vessel case studies: (1) abnormal external vents of full blowdown of a liquid hydrogen tank due to a failed relief device in still air and with crosswind; (2) vents due to naturally-occurring boil-off of liquid within the tank; and (3) a leak from the pipes leading into the fuel cellmore » room. The size of the hydrogen plumes resulting from a blowdown of the tank depend greatly on the wind conditions. It was also found that for normal operations releasing a small amount of "boil- off" gas to regulate the pressure in the tank does not create flammable concentrations.« less

  19. Maps Showing Seismic Landslide Hazards in Anchorage, Alaska

    USGS Publications Warehouse

    Jibson, Randall W.; Michael, John A.

    2009-01-01

    The devastating landslides that accompanied the great 1964 Alaska earthquake showed that seismically triggered landslides are one of the greatest geologic hazards in Anchorage. Maps quantifying seismic landslide hazards are therefore important for planning, zoning, and emergency-response preparation. The accompanying maps portray seismic landslide hazards for the following conditions: (1) deep, translational landslides, which occur only during great subduction-zone earthquakes that have return periods of =~300-900 yr; (2) shallow landslides for a peak ground acceleration (PGA) of 0.69 g, which has a return period of 2,475 yr, or a 2 percent probability of exceedance in 50 yr; and (3) shallow landslides for a PGA of 0.43 g, which has a return period of 475 yr, or a 10 percent probability of exceedance in 50 yr. Deep, translational landslide hazard zones were delineated based on previous studies of such landslides, with some modifications based on field observations of locations of deep landslides. Shallow-landslide hazards were delineated using a Newmark-type displacement analysis for the two probabilistic ground motions modeled.

  20. Final Report: Seismic Hazard Assessment at the PGDP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhinmeng

    2007-06-01

    Selecting a level of seismic hazard at the Paducah Gaseous Diffusion Plant for policy considerations and engineering design is not an easy task because it not only depends on seismic hazard, but also on seismic risk and other related environmental, social, and economic issues. Seismic hazard is the main focus. There is no question that there are seismic hazards at the Paducah Gaseous Diffusion Plant because of its proximity to several known seismic zones, particularly the New Madrid Seismic Zone. The issues in estimating seismic hazard are (1) the methods being used and (2) difficulty in characterizing the uncertainties ofmore » seismic sources, earthquake occurrence frequencies, and ground-motion attenuation relationships. This report summarizes how input data were derived, which methodologies were used, and what the hazard estimates at the Paducah Gaseous Diffusion Plant are.« less

  1. Crash characteristics at work zones.

    DOT National Transportation Integrated Search

    2002-01-01

    Work zones tend to cause hazardous conditions for drivers and construction workers since they generate conflicts between construction activities and traffic. A clear understanding of the characteristics of work zone crashes will enhance the selection...

  2. Preliminary volcano-hazard assessment for Akutan Volcano east-central Aleutian Islands, Alaska

    USGS Publications Warehouse

    Waythomas, Christopher F.; Power, John A.; Richter, Donlad H.; McGimsey, Robert G.

    1998-01-01

    Akutan Volcano is a 1100-meter-high stratovolcano on Akutan Island in the east-central Aleutian Islands of southwestern Alaska. The volcano is located about 1238 kilometers southwest of Anchorage and about 56 kilometers east of Dutch Harbor/Unalaska. Eruptive activity has occurred at least 27 times since historical observations were recorded beginning in the late 1700?s. Recent eruptions produced only small amounts of fine volcanic ash that fell primarily on the upper flanks of the volcano. Small amounts of ash fell on the Akutan Harbor area during eruptions in 1911, 1948, 1987, and 1989. Plumes of volcanic ash are the primary hazard associated with eruptions of Akutan Volcano and are a major hazard to all aircraft using the airfield at Dutch Harbor or approaching Akutan Island. Eruptions similar to historical Akutan eruptions should be anticipated in the future. Although unlikely, eruptions larger than those of historical time could generate significant amounts of volcanic ash, fallout, pyroclastic flows, and lahars that would be hazardous to life and property on all sectors of the volcano and other parts of the island, but especially in the major valleys that head on the volcano flanks. During a large eruption an ash cloud could be produced that may be hazardous to aircraft using the airfield at Cold Bay and the airspace downwind from the volcano. In the event of a large eruption, volcanic ash fallout could be relatively thick over parts of Akutan Island and volcanic bombs could strike areas more than 10 kilometers from the volcano.

  3. Long-range hazard assessment of volcanic ash dispersal for a Plinian eruptive scenario at Popocatépetl volcano (Mexico): implications for civil aviation safety

    NASA Astrophysics Data System (ADS)

    Bonasia, Rosanna; Scaini, Chiara; Capra, Lucia; Nathenson, Manuel; Siebe, Claus; Arana-Salinas, Lilia; Folch, Arnau

    2014-01-01

    Popocatépetl is one of Mexico's most active volcanoes threatening a densely populated area that includes Mexico City with more than 20 million inhabitants. The destructive potential of this volcano is demonstrated by its Late Pleistocene-Holocene eruptive activity, which has been characterized by recurrent Plinian eruptions of large magnitude, the last two of which destroyed human settlements in pre-Hispanic times. Popocatépetl's reawakening in 1994 produced a crisis that culminated with the evacuation of two villages on the northeastern flank of the volcano. Shortly after, a monitoring system and a civil protection contingency plan based on a hazard zone map were implemented. The current volcanic hazards map considers the potential occurrence of different volcanic phenomena, including pyroclastic density currents and lahars. However, no quantitative assessment of the tephra hazard, especially related to atmospheric dispersal, has been performed. The presence of airborne volcanic ash at low and jet-cruise atmospheric levels compromises the safety of aircraft operations and forces re-routing of aircraft to prevent encounters with volcanic ash clouds. Given the high number of important airports in the surroundings of Popocatépetl volcano and considering the potential threat posed to civil aviation in Mexico and adjacent regions in case of a Plinian eruption, a hazard assessment for tephra dispersal is required. In this work, we present the first probabilistic tephra dispersal hazard assessment for Popocatépetl volcano. We compute probabilistic hazard maps for critical thresholds of airborne ash concentrations at different flight levels, corresponding to the situation defined in Europe during 2010, and still under discussion. Tephra dispersal mode is performed using the FALL3D numerical model. Probabilistic hazard maps are built for a Plinian eruptive scenario defined on the basis of geological field data for the "Ochre Pumice" Plinian eruption (4965 14C yr BP

  4. Landslides in Nicaragua - Mapping, Inventory, Hazard Assessment, Vulnerability Reduction, and Forecasting Attempts

    NASA Astrophysics Data System (ADS)

    Dévoli, G.; Strauch, W.; Álvarez, A.; Muñoz, A.; Kjekstad, O.

    2009-04-01

    access, manage, update and distribute in a short time to all sectors and users; and finally, the need of a comprehensive understanding of landslide processes. Many efforts have been made in the last 10 years to gain a more comprehensive and predictive understanding of landslide processes in Nicaragua. Since 1998, landslide inventory GIS based maps have been produced in different areas of the country, as part of international and multidisciplinary development projects. Landslide susceptibility and hazard maps are available now at INETEŔs Website for all municipalities of the country. The insights on landslide hazard have been transmitted to governmental agencies, local authorities, NGÓs, international agencies to be used in measures for risk reduction. A massive application example was the integration of hazard assessment studies in a large house building program in Nicaragua. Hazards of landslides, and other dangerous phenomena, were evaluated in more than 90 house building projects, each with 50 - 200 houses to be build, sited mainly in rural areas of the country. For more than 7000 families, this program could finally assure that their new houses were build in safe areas. Attempts have been made to develop a strategy for early warning of landslides in Nicaragua. First approaches relied on precipitation gauges with satellite based telemetry which were installed in some Nicaraguan volcanoes where lahars occur frequently. The occurrence of lahars in certain gullies could be detected by seismic stations. A software system gave acoustic alarm at INETEŔs Monitoring Centre when certain trigger levels of the accumulated precipitation were reached. The monitoring and early warning for all areas under risk would have required many rain gauges. A new concept is tested which uses near real time precipitation estimates from NOAA meteorological satellite data. A software system sends out alarm messages if strong or long lasting rains are observed over certain landslide "hot spots

  5. Hazard maps of Colima volcano, Mexico

    NASA Astrophysics Data System (ADS)

    Suarez-Plascencia, C.; Nunez-Cornu, F. J.; Escudero Ayala, C. R.

    2011-12-01

    (rockfall) and pyroclastic flows, b) Hazard map of lahars and debris flow, and c) Hazard map of ash-fall. The cartographic and database information obtained will be the basis for updating the Operational Plan of the Colima Volcano by the State Civil & Fire Protection Unit of Jalisco, Mexico, and the urban development plans of surrounding municipalities, in order to reduce their vulnerability to the hazards of the volcanic activity.

  6. Seismic hazard assessment of the Province of Murcia (SE Spain): analysis of source contribution to hazard

    NASA Astrophysics Data System (ADS)

    García-Mayordomo, J.; Gaspar-Escribano, J. M.; Benito, B.

    2007-10-01

    A probabilistic seismic hazard assessment of the Province of Murcia in terms of peak ground acceleration (PGA) and spectral accelerations [SA( T)] is presented in this paper. In contrast to most of the previous studies in the region, which were performed for PGA making use of intensity-to-PGA relationships, hazard is here calculated in terms of magnitude and using European spectral ground-motion models. Moreover, we have considered the most important faults in the region as specific seismic sources, and also comprehensively reviewed the earthquake catalogue. Hazard calculations are performed following the Probabilistic Seismic Hazard Assessment (PSHA) methodology using a logic tree, which accounts for three different seismic source zonings and three different ground-motion models. Hazard maps in terms of PGA and SA(0.1, 0.2, 0.5, 1.0 and 2.0 s) and coefficient of variation (COV) for the 475-year return period are shown. Subsequent analysis is focused on three sites of the province, namely, the cities of Murcia, Lorca and Cartagena, which are important industrial and tourism centres. Results at these sites have been analysed to evaluate the influence of the different input options. The most important factor affecting the results is the choice of the attenuation relationship, whereas the influence of the selected seismic source zonings appears strongly site dependant. Finally, we have performed an analysis of source contribution to hazard at each of these cities to provide preliminary guidance in devising specific risk scenarios. We have found that local source zones control the hazard for PGA and SA( T ≤ 1.0 s), although contribution from specific fault sources and long-distance north Algerian sources becomes significant from SA(0.5 s) onwards.

  7. Probabilistic Seismic Hazard Assessment of the Chiapas State (SE Mexico)

    NASA Astrophysics Data System (ADS)

    Rodríguez-Lomelí, Anabel Georgina; García-Mayordomo, Julián

    2015-04-01

    The Chiapas State, in southeastern Mexico, is a very active seismic region due to the interaction of three tectonic plates: Northamerica, Cocos and Caribe. We present a probabilistic seismic hazard assessment (PSHA) specifically performed to evaluate seismic hazard in the Chiapas state. The PSHA was based on a composited seismic catalogue homogenized to Mw and was used a logic tree procedure for the consideration of different seismogenic source models and ground motion prediction equations (GMPEs). The results were obtained in terms of peak ground acceleration as well as spectral accelerations. The earthquake catalogue was compiled from the International Seismological Center and the Servicio Sismológico Nacional de México sources. Two different seismogenic source zones (SSZ) models were devised based on a revision of the tectonics of the region and the available geomorphological and geological maps. The SSZ were finally defined by the analysis of geophysical data, resulting two main different SSZ models. The Gutenberg-Richter parameters for each SSZ were calculated from the declustered and homogenized catalogue, while the maximum expected earthquake was assessed from both the catalogue and geological criteria. Several worldwide and regional GMPEs for subduction and crustal zones were revised. For each SSZ model we considered four possible combinations of GMPEs. Finally, hazard was calculated in terms of PGA and SA for 500-, 1000-, and 2500-years return periods for each branch of the logic tree using the CRISIS2007 software. The final hazard maps represent the mean values obtained from the two seismogenic and four attenuation models considered in the logic tree. For the three return periods analyzed, the maps locate the most hazardous areas in the Chiapas Central Pacific Zone, the Pacific Coastal Plain and in the Motagua and Polochic Fault Zone; intermediate hazard values in the Chiapas Batholith Zone and in the Strike-Slip Faults Province. The hazard decreases

  8. Improving work zone safety through speed management.

    DOT National Transportation Integrated Search

    2013-06-01

    Safety hazards are increased in highway work zones as the dynamics of a work zone introduce a constantly changing : environment with varying levels of risk. Excessive speeding through work and maintenance zones is a common occurrence : which elevates...

  9. Environmental Assessment: Apalachicola National Forest Helicopter Landing Zones Florida

    DTIC Science & Technology

    2003-12-01

    25 3.12 Hazardous Waste/ Materials ...37 4.11 Hazardous Waste/ Materials .................................................................. 38 4.11.1 Proposed Action Alterative...26 Apalachicola Helicopter Landing Zones 3.12 Hazardous Waste/ Materials No hazardous substances or petroleum substances are generated, stored

  10. The Prodigies of The Albano Lake During Roman Age and Natural Hazard Assessment At Roma, Italy.

    NASA Astrophysics Data System (ADS)

    Funiciello, R.; Giordano, G.; de Rita, D.

    Roma is built just 20 km to the northwest of the Pleistocene Colli Albani volcano, but is believed not exposed to relevant natural hazards, except for the Tiber river flood- ings, and local amplification of seismic waves from distal earthquakes. This belief has generally induced modern historians and geologists to discard as SmythologicalT the & cedil;many references to natural prodigies that are reported by many Roman-age historians. Recent studies have demonstrated that the Albano maar, the youngest volcanic cen- tre of the Colli Albani volcano and presently filled by a 175 m deep lake, protracted its activity to the Holocene triggering several catastrophic lahar events, likely related to lake withdrawal, the deposits of which are exposed to the southwest of Roma and reach its periphery. This finding youngs the history of the volcano and makes it rele- vant to pre-historic settlements, which ScarefullyT avoided the Albano maar slopes up & cedil;to the Bronze age. What is still unknown, though, is whether the lake experienced such fluctuations and overspills during historic times. Several Roman authors such as Ti- tus Livius, Dionigi d'Alicarnasso, Plutarco, Germanico, and many others wrote about the then well known 398 BC prodigious event, when, during the war between Roma and the Etruscan city of Veio, the gods anger caused the sudden rise and overspill of the Albano lake, reported as unrelated to climatic events, and the destructive flooding of the countryside. After that event Romans actually built a tunnel-drain which still operates regulating the lake level at 293 m a.s.l., 70 m below the maar rim elevation. Should those chronicles be truthful, we can join the geologic observation of Holocene lahar deposits from lake withdrawal with historical lake withdrawals, reassessing the natural hazard for the city of Roma under a point of view never explored before. This paper carefully explores the historical credibility of the 398 BC lake overspill event and its

  11. Projecting community changes in hazard exposure to support long-term risk reduction: A case study of tsunami hazards in the U.S. Pacific Northwest

    USGS Publications Warehouse

    Sleeter, Benjamin M.; Wood, Nathan J.; Soulard, Christopher E.; Wilson, Tamara

    2017-01-01

    Tsunamis have the potential to cause considerable damage to communities along the U.S. Pacific Northwest coastline. As coastal communities expand over time, the potential societal impact of tsunami inundation changes. To understand how community exposure to tsunami hazards may change in coming decades, we projected future development (i.e. urban, residential, and rural), households, and residents over a 50-year period (2011–2061) along the Washington, Oregon, and northern California coasts. We created a spatially explicit, land use/land cover, state-and-transition simulation model to project future developed land use based on historical development trends. We then compared our development projection results to tsunami-hazard zones associated with a Cascadia subduction zone (CSZ) earthquake. Changes in tsunami-hazard exposure by 2061 were estimated for 50 incorporated cities, 7 tribal reservations, and 17 counties relative to current (2011) estimates. Across the region, 2061 population exposure in tsunami-hazard zones was projected to increase by 3880 households and 6940 residents. The top ten communities with highest population exposure to CSZ-related tsunamis in 2011 are projected to remain the areas with the highest population exposure by 2061. The largest net population increases in tsunami-hazard zones were projected in the unincorporated portions of several counties, including Skagit, Coos, and Humboldt. Land-change simulation modeling of projected future development serves as an exploratory tool aimed at helping local governments understand the hazard-exposure implications of community growth and to include this knowledge in risk-reduction planning.

  12. Application of LANDSAT data to delimitation of avalanche hazards in Montane Colorado

    NASA Technical Reports Server (NTRS)

    Knepper, D. H., Jr. (Principal Investigator)

    1977-01-01

    The author has identified the following significant results. Many avalanche hazard zones can be identified on LANDSAT imagery, but not consistently over a large region. Therefore, regional avalanche hazard mapping, using LANDSAT imagery, must draw on additional sources of information. A method was devised that depicts three levels of avalanche hazards according to three corresponding levels of certainty that active avalanches occur. The lowest level, potential avalanche hazards, was defined by delineating slopes steep enough to support avalanches at elevations where snowfall was likely to be sufficient to produce a thick snowpack. The intermediate level of avalanche hazard was interpreted as avalanche hazard zones. These zones have direct and indirect indicators of active avalanche activity and were interpreted from LANDSAT imagery. The highest level of known or active avalanche hazards was compiled from existing maps. Some landslides in Colorado were identified and, to a degree, delimited on LANDSAT imagery, but the conditions of their identification were highly variable. Because of local topographic, geologic, structural, and vegetational variations, there was no unique landslide spectral appearance.

  13. The enormous Chillos Valley Lahar: An ash-flow-generated debris flow from Cotopaxi Volcano, Ecuador

    USGS Publications Warehouse

    Mothes, P.A.; Hall, M.L.; Janda, R.J.

    1998-01-01

    The Chillos Valley Lahar (CVL), the largest Holocene debris flow in area and volume as yet recognized in the northern Andes, formed on Cotopaxi volcano's north and northeast slopes and descended river systems that took it 326 km north-northwest to the Pacific Ocean and 130+ km east into the Amazon basin. In the Chillos Valley, 40 km downstream from the volcano, depths of 80-160 m and valley cross sections up to 337000m2 are observed, implying peak flow discharges of 2.6-6.0 million m3/s. The overall volume of the CVL is estimated to be ???3.8 km3. The CVL was generated approximately 4500 years BP by a rhyolitic ash flow that followed a small sector collapse on the north and northeast sides of Cotopaxi, which melted part of the volcano's icecap and transformed rapidly into the debris flow. The ash flow and resulting CVL have identical components, except for foreign fragments picked up along the flow path. Juvenile materials, including vitric ash, crystals, and pumice, comprise 80-90% of the lahar's deposit, whereas rhyolitic, dacitic, and andesitic lithics make up the remainder. The sand-size fraction and the 2- to 10-mm fraction together dominate the deposit, constituting ???63 and ???15 wt.% of the matrix, respectively, whereas the silt-size fraction averages less than ???10 wt.% and the clay-size fraction less than 0.5 wt.%. Along the 326-km runout, these particle-size fractions vary little, as does the sorting coefficient (average = 2.6). There is no tendency toward grading or improved sorting. Limited bulking is recognized. The CVL was an enormous non-cohesive debris flow, notable for its ash-flow origin and immense volume and peak discharge which gave it characteristics and a behavior akin to large cohesive mudflows. Significantly, then, ash-flow-generated debris flows can also achieve large volumes and cover great areas; thus, they can conceivably affect large populated regions far from their source. Especially dangerous, therefore, are snowclad volcanoes

  14. Quaternary geology and geologic hazards of the West Desert Hazardous Industry Area, Tooele County, Utah

    USGS Publications Warehouse

    Solomon, Barry J.; Black, Bill D.; ,

    1990-01-01

    The study of Quaternary geology provides information to evaluate geologic conditions and identify geologic constraints on construction in the West Desert Hazardous Industry Area (WDHIA). The WDHIA includes portions of the Great Salt Lake Desert to the west, underlain by several thousand feet of sediments capped by saline mudflats, and Ripple Valley to the east, separated from the Desert by the Grayback Hills and underlain by several hundred feet of sediments in the Cedar Mountains piedmont zone. Quaternary surficial units include marginal, shore-zone, and deep-water lacustrine sediments deposited in Pleistocene Lake Bonneville; eolian deposits; and alluvial sediments. The level of Lake Bonneville underwent major oscillations resulting in the creation of four basin-wide shorelines, three of which are recognized in the WDHIA. Geologic hazards in the WDHIA include the possible contamination of ground water in basin-fill aquifers, debris flows and flash floods in the piedmont zone, and earthquakes and related hazards. Numerous factors contribute to unsafe foundation conditions. Silty and sandy sediments may be subject to liquefaction or hydrocompaction, clayey sediments and mud flats of the Great Salt Lake Desert may be subject to shrinking or swelling, and gypsiferous dunes and salt flats are subject to subsidence due to dissolution.

  15. Documentation for Initial Seismic Hazard Maps for Haiti

    USGS Publications Warehouse

    Frankel, Arthur; Harmsen, Stephen; Mueller, Charles; Calais, Eric; Haase, Jennifer

    2010-01-01

    In response to the urgent need for earthquake-hazard information after the tragic disaster caused by the moment magnitude (M) 7.0 January 12, 2010, earthquake, we have constructed initial probabilistic seismic hazard maps for Haiti. These maps are based on the current information we have on fault slip rates and historical and instrumental seismicity. These initial maps will be revised and improved as more data become available. In the short term, more extensive logic trees will be developed to better capture the uncertainty in key parameters. In the longer term, we will incorporate new information on fault parameters and previous large earthquakes obtained from geologic fieldwork. These seismic hazard maps are important for the management of the current crisis and the development of building codes and standards for the rebuilding effort. The boundary between the Caribbean and North American Plates in the Hispaniola region is a complex zone of deformation. The highly oblique ~20 mm/yr convergence between the two plates (DeMets and others, 2000) is partitioned between subduction zones off of the northern and southeastern coasts of Hispaniola and strike-slip faults that transect the northern and southern portions of the island. There are also thrust faults within the island that reflect the compressional component of motion caused by the geometry of the plate boundary. We follow the general methodology developed for the 1996 U.S. national seismic hazard maps and also as implemented in the 2002 and 2008 updates. This procedure consists of adding the seismic hazard calculated from crustal faults, subduction zones, and spatially smoothed seismicity for shallow earthquakes and Wadati-Benioff-zone earthquakes. Each one of these source classes will be described below. The lack of information on faults in Haiti requires many assumptions to be made. These assumptions will need to be revisited and reevaluated as more fieldwork and research are accomplished. We made two sets of

  16. Preliminary volcano-hazard assessment for Augustine Volcano, Alaska

    USGS Publications Warehouse

    Waythomas, Christopher F.; Waitt, Richard B.

    1998-01-01

    Augustine Volcano is a 1250-meter high stratovolcano in southwestern Cook Inlet about 280 kilometers southwest of Anchorage and within about 300 kilometers of more than half of the population of Alaska. Explosive eruptions have occurred six times since the early 1800s (1812, 1883, 1935, 1964-65, 1976, and 1986). The 1976 and 1986 eruptions began with an initial series of vent-clearing explosions and high vertical plumes of volcanic ash followed by pyroclastic flows, surges, and lahars on the volcano flanks. Unlike some prehistoric eruptions, a summit edifice collapse and debris avalanche did not occur in 1812, 1935, 1964-65, 1976, or 1986. However, early in the 1883 eruption, a portion of the volcano summit broke loose forming a debris avalanche that flowed to the sea. The avalanche initiated a small tsunami reported on the Kenai Peninsula at English Bay, 90 kilometers east of the volcano. Plumes of volcanic ash are a major hazard to jet aircraft using Anchorage International and other local airports. Ashfall from future eruptions could disrupt oil and gas operations and shipping activities in Cook Inlet. Eruptions similar to the historical and prehistoric eruptions are likely in Augustine's future.

  17. 49 CFR 172.313 - Poisonous hazardous materials.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... TABLE, SPECIAL PROVISIONS, HAZARDOUS MATERIALS COMMUNICATIONS, EMERGENCY RESPONSE INFORMATION, TRAINING... 1,000 kg (2,205 pounds) or more aggregate gross weight of the material in non-bulk packages marked... aggregate gross weight; and (ii) For different materials in both Hazard Zones A and B, with the...

  18. Tsunami risk zoning in south-central Chile

    NASA Astrophysics Data System (ADS)

    Lagos, M.

    2010-12-01

    The recent 2010 Chilean tsunami revealed the need to optimize methodologies for assessing the risk of disaster. In this context, modern techniques and criteria for the evaluation of the tsunami phenomenon were applied in the coastal zone of south-central Chile as a specific methodology for the zoning of tsunami risk. This methodology allows the identification and validation of a scenario of tsunami hazard; the spatialization of factors that have an impact on the risk; and the zoning of the tsunami risk. For the hazard evaluation, different scenarios were modeled by means of numerical simulation techniques, selecting and validating the results that better fit with the observed tsunami data. Hydrodynamic parameters of the inundation as well as physical and socioeconomic vulnerability aspects were considered for the spatialization of the factors that affect the tsunami risk. The tsunami risk zoning was integrated into a Geographic Information System (GIS) by means of multicriteria evaluation (MCE). The results of the tsunami risk zoning show that the local characteristics and their location, together with the concentration of poverty levels, establish spatial differentiated risk levels. This information builds the basis for future applied studies in land use planning that tend to minimize the risk levels associated to the tsunami hazard. This research is supported by Fondecyt 11090210.

  19. Recent Findings on Tsunami Hazards in the Makran Subduction Zone, NW Indian Ocean

    NASA Astrophysics Data System (ADS)

    Heidarzadeh, M.; Satake, K.

    2014-12-01

    We present recent findings on tsunami hazards in the Makran subduction zone (MSZ), NW Indian Ocean, based on the results of tsunami source analyses for two Makran tsunamis of 1945 and 2013. A re-analysis of the source of the 27 November 1945 tsunami in the MSZ showed that the slip needs to be extended to deep waters around the depth contour of 3000 m in order to reproduce the observed tide gauge waveforms at Karachi and Mumbai. On the other hand, coastal uplift report at Ormara (Pakistan) implies that the source fault needs to be extended inland. In comparison to other existing fault models, our fault model is longer and includes a heterogeneous slip with larger maximum slip. The recent tsunami on 24 September 2013 in the Makran region was triggered by an inland Mw 7.7 earthquake. While the main shock and all aftershocks were located inland, a tsunami with a dominant period of around 12 min was recorded on tide gauges and a DART station. We examined different possible sources for this tsunami including a mud volcano, a mud/shale diapir, and a landslide/slump through numerical modeling. Only a submarine slump with a source dimension of 10-15 km and a thickness of around 100 m, located 60-70 km offshore Jiwani (Pakistan) at the water depth of around 2000m, was able to reasonably reproduce the observed tsunami waveforms. In terms of tsunami hazards, analyses of the two tsunamis provide new insights: 1) large runup heights can be generated in the coastal areas due to slip in deep waters, and 2) even an inland earthquake may generate tsunamigenic submarine landslides.

  20. Evidence of Enhanced Subrosion in a Fault Zone and Characterization of Hazard Zones with Elastic Parameters derived from SH-wave reflection Seismics and VSP

    NASA Astrophysics Data System (ADS)

    Wadas, S. H.; Tanner, D. C.; Tschache, S.; Polom, U.; Krawczyk, C. M.

    2017-12-01

    Subrosion, the dissolution of soluble rocks, e.g., sulfate, salt, or carbonate, requires unsaturated water and fluid pathways that enable the water to flow through the subsurface and generate cavities. Over time, different structures can occur that depend on, e.g., rock solubility, flow rate, and overburden type. The two main structures are sinkholes and depressions. To analyze the link between faults, groundwater flow, and soluble rocks, and to determine parameters that are useful to characterize hazard zones, several shear-wave (SH) reflection seismic profiles were surveyed in Thuringia in Germany, where Permian sulfate rocks and salt subcrop close to the surface. From the analysis of the seismic sections we conclude that areas affected by tectonic deformation phases are prone to enhanced subrosion. The deformation of fault blocks leads to the generation of a damage zone with a dense fracture network. This increases the rock permeability and thus serves as a fluid pathway for, e.g., artesian-confined groundwater. The more complex the fault geometry and the more interaction between faults, the more fractures are generated, e.g., in a strike slip-fault zone. The faults also act as barriers for horizontal groundwater flow perpendicular to the fault surfaces and as conduits for groundwater flow along the fault strike. In addition, seismic velocity anomalies and attenuation of seismic waves are observed. Low velocities <200 m/s and high attenuation may indicate areas affected by subrosion. Other parameters that characterize the underground stability are the shear modulus and the Vp/Vs ratio. The data revealed zones of low shear modulus <100 MPa and high Vp/Vs ratio >2.5, which probably indicate unstable areas due to subrosion. Structural analysis of S-wave seismics is a valuable tool to detect near-surface faults in order to determine whether or not an area is prone to subrosion. The recognition of even small fault blocks can help to better understand the hydrodynamic

  1. Long-range hazard assessment of volcanic ash dispersal for a Plinian eruptive scenario at Popocatépetl volcano (Mexico): implications for civil aviation safety

    USGS Publications Warehouse

    Bonasia, Rosanna; Scaini, Chirara; Capra, Lucia; Nathenson, Manuel; Siebe, Claus; Arana-Salinas, Lilia; Folch, Arnau

    2013-01-01

    Popocatépetl is one of Mexico’s most active volcanoes threatening a densely populated area that includes Mexico City with more than 20 million inhabitants. The destructive potential of this volcano is demonstrated by its Late Pleistocene–Holocene eruptive activity, which has been characterized by recurrent Plinian eruptions of large magnitude, the last two of which destroyed human settlements in pre-Hispanic times. Popocatépetl’s reawakening in 1994 produced a crisis that culminated with the evacuation of two villages on the northeastern flank of the volcano. Shortly after, a monitoring system and a civil protection contingency plan based on a hazard zone map were implemented. The current volcanic hazards map considers the potential occurrence of different volcanic phenomena, including pyroclastic density currents and lahars. However, no quantitative assessment of the tephra hazard, especially related to atmospheric dispersal, has been performed. The presence of airborne volcanic ash at low and jet-cruise atmospheric levels compromises the safety of aircraft operations and forces re-routing of aircraft to prevent encounters with volcanic ash clouds. Given the high number of important airports in the surroundings of Popocatépetl volcano and considering the potential threat posed to civil aviation in Mexico and adjacent regions in case of a Plinian eruption, a hazard assessment for tephra dispersal is required. In this work, we present the first probabilistic tephra dispersal hazard assessment for Popocatépetl volcano. We compute probabilistic hazard maps for critical thresholds of airborne ash concentrations at different flight levels, corresponding to the situation defined in Europe during 2010, and still under discussion. Tephra dispersal mode is performed using the FALL3D numerical model. Probabilistic hazard maps are built for a Plinian eruptive scenario defined on the basis of geological field data for the “Ochre Pumice” Plinian eruption (4965 14C

  2. Integrating volcanic hazard data in a systematic approach to develop volcanic hazard maps in the Lesser Antilles

    NASA Astrophysics Data System (ADS)

    Lindsay, Jan M.; Robertson, Richard E. A.

    2018-04-01

    We report on the process of generating the first suite of integrated volcanic hazard zonation maps for the islands of Dominica, Grenada (including Kick 'em Jenny and Ronde/Caille), Nevis, Saba, St. Eustatius, St. Kitts, Saint Lucia and St Vincent in the Lesser Antilles. We developed a systematic approach that accommodated the range in prior knowledge of the volcanoes in the region. A first-order hazard assessment for each island was used to develop one or more scenario(s) of likely future activity, for which scenario-based hazard maps were generated. For the most-likely scenario on each island we also produced a poster-sized integrated volcanic hazard zonation map, which combined the individual hazardous phenomena depicted in the scenario-based hazard maps into integrated hazard zones. We document the philosophy behind the generation of this suite of maps, and the method by which hazard information was combined to create integrated hazard zonation maps, and illustrate our approach through a case study of St. Vincent. We also outline some of the challenges we faced using this approach, and the lessons we have learned by observing how stakeholders have interacted with the maps over the past 10 years. Based on our experience, we recommend that future map makers involve stakeholders in the entire map generation process, especially when making design choices such as type of base map, use of colour and gradational boundaries, and indeed what to depict on the map. We also recommend careful consideration of how to evaluate and depict offshore hazard of island volcanoes, and recommend computer-assisted modelling of all phenomena to generate more realistic hazard footprints. Finally, although our systematic approach to integrating individual hazard data into zones generally worked well, we suggest that a better approach might be to treat the integration of hazards on a case-by-case basis to ensure the final product meets map users' needs. We hope that the documentation of

  3. 75 FR 5511 - Safety Zone; AICW Closure Safety Zone for Ben Sawyer Bridge Replacement Project, Sullivan's...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-03

    ...-AA00 Safety Zone; AICW Closure Safety Zone for Ben Sawyer Bridge Replacement Project, Sullivan's Island... replacement of the old and new approach spans of the Ben Sawyer Swing Bridge. This regulation is necessary to... proposed rulemaking (NPRM) with respect to this rule because hazards associated with the bridge replacement...

  4. Maps showing seismic landslide hazards in Anchorage, Alaska

    USGS Publications Warehouse

    Jibson, Randall W.

    2014-01-01

    The devastating landslides that accompanied the great 1964 Alaska earthquake showed that seismically triggered landslides are one of the greatest geologic hazards in Anchorage. Maps quantifying seismic landslide hazards are therefore important for planning, zoning, and emergency-response preparation. The accompanying maps portray seismic landslide hazards for the following conditions: (1) deep, translational landslides, which occur only during great subduction-zone earthquakes that have return periods of =300-900 yr; (2) shallow landslides for a peak ground acceleration (PGA) of 0.69 g, which has a return period of 2,475 yr, or a 2 percent probability of exceedance in 50 yr; and (3) shallow landslides for a PGA of 0.43 g, which has a return period of 475 yr, or a 10 percent probability of exceedance in 50 yr. Deep, translational landslide hazards were delineated based on previous studies of such landslides, with some modifications based on field observations of locations of deep landslides. Shallow-landslide hazards were delineated using a Newmark-type displacement analysis for the two probabilistic ground motions modeled.

  5. Intensified coastal development in beach-nourishment zones

    NASA Astrophysics Data System (ADS)

    Lazarus, E.; Armstrong, S.; Limber, P. W.; Goldstein, E. B.; Ballinger, R.

    2016-12-01

    Population density, housing development, and property values in coastal counties along the U.S. Atlantic and Gulf Coasts continue to rise despite increasing hazard from storm impacts. Beach nourishment, a method for mitigating coastal storm damage or chronic erosion by deliberately replacing sand on an eroded beach, has been the leading form of coastal protection in the U.S. since the 1970s. However, investment in hazard protection can have the unintended consequence of encouraging development in places especially vulnerable to damage. To quantitatively compare development in nourishing and non-nourishing zones, we examine the parcel-scale housing stock of all shorefront single-family homes in the state of Florida. We find that houses in nourishing zones are significantly larger and more numerous than in non-nourishing zones. Florida represents both an advanced case of coastal risk and an exemplar of ubiquitous, fundamental challenges in coastal management. The predominance of larger homes in nourishing zones indicates a positive feedback between nourishment and development that is compounding coastal risk in zones already characterized by high vulnerability. We offer that this phenomenon represents a variant of Jevons' paradox, a theoretical argument from environmental economics in which more efficient use of a resource spurs an increase in its consumption. Here, we suggest reductions in coastal risk through hazard protection are ultimately offset or reversed by increased coastal development.

  6. Probabilistic Seismic Hazard Maps for Ecuador

    NASA Astrophysics Data System (ADS)

    Mariniere, J.; Beauval, C.; Yepes, H. A.; Laurence, A.; Nocquet, J. M.; Alvarado, A. P.; Baize, S.; Aguilar, J.; Singaucho, J. C.; Jomard, H.

    2017-12-01

    A probabilistic seismic hazard study is led for Ecuador, a country facing a high seismic hazard, both from megathrust subduction earthquakes and shallow crustal moderate to large earthquakes. Building on the knowledge produced in the last years in historical seismicity, earthquake catalogs, active tectonics, geodynamics, and geodesy, several alternative earthquake recurrence models are developed. An area source model is first proposed, based on the seismogenic crustal and inslab sources defined in Yepes et al. (2016). A slightly different segmentation is proposed for the subduction interface, with respect to Yepes et al. (2016). Three earthquake catalogs are used to account for the numerous uncertainties in the modeling of frequency-magnitude distributions. The hazard maps obtained highlight several source zones enclosing fault systems that exhibit low seismic activity, not representative of the geological and/or geodetical slip rates. Consequently, a fault model is derived, including faults with an earthquake recurrence model inferred from geological and/or geodetical slip rate estimates. The geodetical slip rates on the set of simplified faults are estimated from a GPS horizontal velocity field (Nocquet et al. 2014). Assumptions on the aseismic component of the deformation are required. Combining these alternative earthquake models in a logic tree, and using a set of selected ground-motion prediction equations adapted to Ecuador's different tectonic contexts, a mean hazard map is obtained. Hazard maps corresponding to the percentiles 16 and 84% are also derived, highlighting the zones where uncertainties on the hazard are highest.

  7. Active Work Zone Safety Using Emerging Technologies 2017.

    DOT National Transportation Integrated Search

    2017-07-01

    Highway construction work zones are hazardous environments characterized by a dynamic and limited work space. A host of interactions between workers, passing commuter vehicles, and moving construction equipment occurs in highway work zones fostering ...

  8. Integrated geomorphologic and GIS analysis for the assessment of erosion zones and its relationship with hazardous zones in the Zacatecas and Guadalupe quadrangles, Mexico

    NASA Astrophysics Data System (ADS)

    Escalona-Alcázar, F. d. J.; Escobedo-Arellano, B.; Castillo-Félix, B.; Carrillo-Castillo, C.; García-Sandoval, P.; Gurrola-Menchaca, L. L.; Núñez-Peña, E. P.; Esparza-Martínez, A.; Bluhm-Gutiérrez, J.; Guijarro-Rodríguez, C. J.

    2012-04-01

    rainy season; whereas in medium erosion zones it occurs if the road cuts or cliffs are steep. The rocks varying from loose to moderately consolidated, as well as the artificial fillings and talus deposits, are easily or difficultly eroded according with the erosion zones proposed in our model. The effects observed are fractured roads and house walls, removal of soil underneath the buildings, gullies formation, and slope instability. The model defines areas where the erosion effects can be related to the development of hazardous zones. This model gives criteria for land use planning and urban development.

  9. Fuel conditioning facility zone-to-zone transfer administrative controls.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pope, C. L.

    2000-06-21

    The administrative controls associated with transferring containers from one criticality hazard control zone to another in the Argonne National Laboratory (ANL) Fuel Conditioning Facility (FCF) are described. FCF, located at the ANL-West site near Idaho Falls, Idaho, is used to remotely process spent sodium bonded metallic fuel for disposition. The process involves nearly forty widely varying material forms and types, over fifty specific use container types, and over thirty distinct zones where work activities occur. During 1999, over five thousand transfers from one zone to another were conducted. Limits are placed on mass, material form and type, and container typesmore » for each zone. Ml material and containers are tracked using the Mass Tracking System (MTG). The MTG uses an Oracle database and numerous applications to manage the database. The database stores information specific to the process, including material composition and mass, container identification number and mass, transfer history, and the operators involved in each transfer. The process is controlled using written procedures which specify the zone, containers, and material involved in a task. Transferring a container from one zone to another is called a zone-to-zone transfer (ZZT). ZZTs consist of four distinct phases, select, request, identify, and completion.« less

  10. Community exposure to tsunami hazards in Hawai‘i

    USGS Publications Warehouse

    Jones, Jamie L.; Jamieson, Matthew R.; Wood, Nathan J.

    2016-06-17

    Community exposure to tsunamis in Hawai‘i varies considerably—some communities may experience great losses that reflect only a small part of their community and others may experience relatively small losses that devastate them. Among the 91 communities and 4 counties, Urban Honolulu has the highest number of people and businesses in the extreme tsunami-inundation zone, and Hanalei has the highest percentages of its people and businesses in this zone. Urban Honolulu has the highest combination of the number and percentage of people, businesses, and facilities in the hazard zone. This report will further the dialogue on societal risk to tsunami hazards in Hawai‘i and help identify future preparedness, mitigation, response, and recovery planning needs within coastal communities and economic sectors of the State of Hawaii. 

  11. Coulomb Stress Change and Seismic Hazard of Rift Zones in Southern Tibet after the 2015 Mw7.8 Nepal Earthquake and Its Mw7.3 Aftershock

    NASA Astrophysics Data System (ADS)

    Dai, Z.; Zha, X.; Lu, Z.

    2015-12-01

    In southern Tibet (30~34N, 80~95E), many north-trending rifts, such as Yadong-Gulu and Lunggar rifts, are characterized by internally drained graben or half-graben basins bounded by active normal faults. Some developed rifts have become a portion of important transportation lines in Tibet, China. Since 1976, eighty-seven >Mw5.0 earthquakes have happened in the rift regions, and fifty-five events have normal faulting focal mechanisms according to the GCMT catalog. These rifts and normal faults are associated with both the EW-trending extension of the southern Tibet and the convergence between Indian and Tibet. The 2015 Mw7.8 Nepal great earthquake and its Mw7.3 aftershock occurred at the main Himalayan Thrust zone and caused tremendous damages in Kathmandu region. Those earthquakes will lead to significant viscoelastic deformation and stress changes in the southern Tibet in the future. To evaluate the seismic hazard in the active rift regions in southern Tibet, we modeled the slip distribution of the 2015 Nepal great earthquakes using the InSAR displacement field from the ALOS-2 satellite SAR data, and calculated the Coulomb failure stress (CFS) on these active normal faults in the rift zones. Because the estimated CFS depends on the geometrical parameters of receiver faults, it is necessary to get the accurate fault parameters in the rift zones. Some historical earthquakes have been studied using the field data, teleseismic data and InSAR observations, but results are in not agreement with each other. In this study, we revaluated the geometrical parameters of seismogenic faults occurred in the rift zones using some high-quality coseismic InSAR observations and teleseismic body-wave data. Finally, we will evaluate the seismic hazard in the rift zones according to the value of the estimated CFS and aftershock distribution.

  12. Active crustal deformation of the El Salvador Fault Zone (ESFZ) using GPS data: Implications in seismic hazard assessment

    NASA Astrophysics Data System (ADS)

    Staller, Alejandra; Benito, Belen; Jesús Martínez-Díaz, José; Hernández, Douglas; Hernández-Rey, Román; Alonso-Henar, Jorge

    2014-05-01

    El Salvador, Central America, is part of the Chortis block in the northwestern boundary of the Caribbean plate. This block is interacting with a diffuse triple junction point with the Cocos and North American plates. Among the structures that cut the Miocene to Pleistocene volcanic deposits stands out the El Salvador Fault Zone (ESFZ): It is oriented in N90º-100ºE direction, and it is composed of several structural segments that deform Quaternary deposits with right-lateral and oblique slip motions. The ESFZ is seismically active and capable of producing earthquakes such as the February 13, 2001 with Mw 6.6 (Martínez-Díaz et al., 2004), that seriously affected the population, leaving many casualties. This structure plays an important role in the tectonics of the Chortis block, since its motion is directly related to the drift of the Caribbean plate to the east and not with the partitioning of the deformation of the Cocos subduction (here not coupled) (Álvarez-Gómez et al., 2008). Together with the volcanic arc of El Salvador, this zone constitutes a weakness area that allows the motion of forearc block toward the NW. The geometry and the degree of activity of the ESFZ are not studied enough. However their knowledge is essential to understand the seismic hazard associated to this important seismogenic structure. For this reason, since 2007 a GPS dense network was established along the ESFZ (ZFESNet) in order to obtain GPS velocity measurements which are later used to explain the nature of strain accumulation on major faults along the ESFZ. The current work aims at understanding active crustal deformation of the ESFZ through kinematic model. The results provide significant information to be included in a new estimation of seismic hazard taking into account the major structures in ESFZ.

  13. Perception of Natural Hazards and Risk among University of Washington Students

    NASA Astrophysics Data System (ADS)

    Herr, K.; Brand, B.; Hamlin, N.; Ou, J.; Thomas, B.; Tudor, E.

    2012-12-01

    Familiarity with a given population's perception of natural hazards and the threats they present is vital for the development of effective education prior to and emergency management response after a natural event. While much work has been done in other active tectonic regions, perception of natural hazards and risk among Pacific Northwest (PNW) residents is poorly constrained. The objective of this work is to assess the current perception of earthquake and volcanic hazards and risk in the PNW, and to better understand the factors which drive the public's behavior concerning preparedness and response. We developed a survey to assess the knowledge of natural hazards common to the region, their perception of risk concerning these hazards, and their level of preparedness should a natural hazard occur. The survey was distributed to University of Washington students and employees via an internet link as part of a class project in 'Living with Volcanoes' (ESS 106) in March of 2012, which returned more than 900 responses. The UW student population was chosen as our first "population" to assess because of their uniqueness as a large, semi-transient population (typical residence of less than 5 years). Only 50% of participants correctly reported their proximity to an active volcano, indicating either lack of knowledge of active volcanoes in the region or poor spatial awareness. When asked which area were most at risk to lahars, respondents indicated that all areas close to the hazard source, including topographically elevated regions, were at a higher risk than more distal and low-lying localities that are also at high risk, indicating a lack of knowledge concerning the topographic dependency of this hazard. Participants perceived themselves to be able to cope better with an earthquake than a volcanic event. This perception may be due to lack of knowledge of volcanic hazards and their extent or due to a false sense of security concerning earthquakes fostered by regular

  14. Variations in population vulnerability to tectonic and landslide-related tsunami hazards in Alaska

    USGS Publications Warehouse

    Wood, Nathan J.; Peters, Jeff

    2015-01-01

    Effective tsunami risk reduction requires an understanding of how at-risk populations are specifically vulnerable to tsunami threats. Vulnerability assessments primarily have been based on single hazard zones, even though a coastal community may be threatened by multiple tsunami sources that vary locally in terms of inundation extents and wave arrival times. We use the Alaskan coastal communities of Cordova, Kodiak, Seward, Valdez, and Whittier (USA), as a case study to explore population vulnerability to multiple tsunami threats. We use anisotropic pedestrian evacuation models to assess variations in population exposure as a function of travel time out of hazard zones associated with tectonic and landslide-related tsunamis (based on scenarios similar to the 1964 M w9.2 Good Friday earthquake and tsunami disaster). Results demonstrate that there are thousands of residents, employees, and business customers in tsunami hazard zones associated with tectonically generated waves, but that at-risk individuals will likely have sufficient time to evacuate to high ground before waves are estimated to arrive 30–60 min after generation. Tsunami hazard zones associated with submarine landslides initiated by a subduction zone earthquake are smaller and contain fewer people, but many at-risk individuals may not have enough time to evacuate as waves are estimated to arrive in 1–2 min and evacuations may need to occur during earthquake ground shaking. For all hazard zones, employees and customers at businesses far outnumber residents at their homes and evacuation travel times are highest on docks and along waterfronts. Results suggest that population vulnerability studies related to tsunami hazards should recognize non-residential populations and differences in wave arrival times if emergency managers are to develop realistic preparedness and outreach efforts.

  15. Geoelectric hazard assessment: the differences of geoelectric responses during magnetic storms within common physiographic zones

    NASA Astrophysics Data System (ADS)

    Cuttler, Stephen W.; Love, Jeffrey J.; Swidinsky, Andrei

    2018-03-01

    Geomagnetic field data obtained through the INTERMAGNET program are convolved with with magnetotelluric surface impedance from four EarthScope USArray sites to estimate the geoelectric variations throughout the duration of a magnetic storm. A duration of time from June 22, 2016, to June 25, 2016, is considered which encompasses a magnetic storm of moderate size recorded at the Brandon, Manitoba and Fredericksburg, Virginia magnetic observatories over 3 days. Two impedance sites were chosen in each case which represent different responses while being within close geographic proximity and within the same physiographic zone. This study produces estimated time series of the geoelectric field throughout the duration of a magnetic storm, providing an understanding of how the geoelectric field differs across small geographic distances within the same physiographic zone. This study shows that the geoelectric response of two sites within 200 km of one another can differ by up to two orders of magnitude (4484 mV/km at one site and 41 mV/km at another site 125 km away). This study demonstrates that the application of uniform 1-dimensional conductivity models of the subsurface to wide geographic regions is insufficient to predict the geoelectric hazard at a given site. This necessitates that an evaluation of the 3-dimensional conductivity distribution at a given location is necessary to produce a reliable estimation of how the geoelectric field evolves over the course of a magnetic storm.

  16. Geoelectric hazard assessment: the differences of geoelectric responses during magnetic storms within common physiographic zones

    USGS Publications Warehouse

    Cuttler, Stephen W.; Love, Jeffrey J.; Swidinsky, Andrei

    2018-01-01

    Geomagnetic field data obtained through the INTERMAGNET program are convolved with with magnetotelluric surface impedance from four EarthScope USArray sites to estimate the geoelectric variations throughout the duration of a magnetic storm. A duration of time from June 22, 2016, to June 25, 2016, is considered which encompasses a magnetic storm of moderate size recorded at the Brandon, Manitoba and Fredericksburg, Virginia magnetic observatories over 3 days. Two impedance sites were chosen in each case which represent different responses while being within close geographic proximity and within the same physiographic zone. This study produces estimated time series of the geoelectric field throughout the duration of a magnetic storm, providing an understanding of how the geoelectric field differs across small geographic distances within the same physiographic zone. This study shows that the geoelectric response of two sites within 200 km of one another can differ by up to two orders of magnitude (4484 mV/km at one site and 41 mV/km at another site 125 km away). This study demonstrates that the application of uniform 1-dimensional conductivity models of the subsurface to wide geographic regions is insufficient to predict the geoelectric hazard at a given site. This necessitates that an evaluation of the 3-dimensional conductivity distribution at a given location is necessary to produce a reliable estimation of how the geoelectric field evolves over the course of a magnetic storm.

  17. A new view into the Cascadia subduction zone and volcanic arc: Implications for earthquake hazards along the Washington margin

    USGS Publications Warehouse

    Parsons, T.; Trehu, A.M.; Luetgert, J.H.; Miller, K.; Kilbride, F.; Wells, R.E.; Fisher, M.A.; Flueh, E.; ten Brink, Uri S.; Christensen, N.I.

    1998-01-01

    In light of suggestions that the Cascadia subduction margin may pose a significant seismic hazard for the highly populated Pacific Northwest region of the United States, the U.S. Geological Survey (USGS), the Research Center for Marine Geosciences (GEOMAR), and university collaborators collected and interpreted a 530-km-long wide-angle onshore-offshore seismic transect across the subduction zone and volcanic arc to study the major structures that contribute to seismogenic deformation. We observed (1) an increase in the dip of the Juan de Fuca slab from 2°–7° to 12° where it encounters a 20-km-thick block of the Siletz terrane or other accreted oceanic crust, (2) a distinct transition from Siletz crust into Cascade arc crust that coincides with the Mount St. Helens seismic zone, supporting the idea that the mafic Siletz block focuses seismic deformation at its edges, and (3) a crustal root (35–45 km deep) beneath the Cascade Range, with thinner crust (30–35 km) east of the volcanic arc beneath the Columbia Plateau flood basalt province. From the measured crustal structure and subduction geometry, we identify two zones that may concentrate future seismic activity: (1) a broad (because of the shallow dip), possibly locked part of the interplate contact that extends from ∼25 km depth beneath the coastline to perhaps as far west as the deformation front ∼120 km offshore and (2) a crustal zone at the eastern boundary between the Siletz terrane and the Cascade Range.

  18. Natural Hazards In Mexico City

    NASA Astrophysics Data System (ADS)

    Torres-Vera, M.

    2001-12-01

    Around the world more than 300 natural disasters occur each year, taking about 250,000 lives and directly affecting more than 200 million people. Natural hazards are complex and vary greatly in their frequency, speed of onset, duration and area affected. They are distinguished from extreme natural events, which are much more common and widespread, by their potential impacts on human societies. A natural disaster is the occurrence of a natural hazard on a large scale, involving great damage and, particularly in developing countries, great loss of life. The Basin of Mexico, whose central and southwestern parts are occupied by the urban area of Mexico City at the average altitude of 2,240 m above the sea level, is located on the southern edge of the Southern Plateau Central, on a segment of the Trans-Mexican Neovolcanic Belt that developed during Pliocene-Holocene times. The Basin of Mexico is a closed basin, which was created with the closing of the former Valley of Mexico because of basaltic-andesitic volcanism that formed the Sierra de Chichinautzin south of the city. The south-flowing drainage was obstructed and prompted the development of a lake that became gradually filled with sediments during the last 700,000 years. The lake fill accumulated unconformably over a terrain of severely dissected topography, which varies notably in thickness laterally. The major part of the urban area of Mexico City is built over these lake deposits, whereas the rest is built over alluvial material that forms the transition zone between the lake deposits and what constitutes the basement for the basin fill. In the present study, the effect of rain, fire and earthquakes onto Mexico City is evaluated. Rain risk was calculated using the most dangerous flood paths. The fire risk zones were determined by defining the vegetation areas with greater probability to catch fires. Earthquake hazards were determined by characterization of the zones that are vulnerable to damages produced by

  19. Morphological changes at Colima volcano caused the 2015 Hurricane Patricia investigated by repeated drone surveys and time lapse cameras

    NASA Astrophysics Data System (ADS)

    Walter, Thomas R.; Navarro, Carlos; Arambula, Raul; Salzer, Jackie; Reyes, Gabriel

    2016-04-01

    Colima is one of the most active volcanoes in Latin America, with frequent dome building eruptions and pyroclastic flow hazards. In July 2015 Colima had a new climax of eruptive activity, profoundly changing the summit morphology and redistributing volcanic ashes to the lower volcano apron. These unconsolidated ashes are prone to be mobilized by rainfall events, and therefore required close monitoring. A major hurricane then had landfall in western Mexico in October 2015, accumulating c. 450 mm of rainfall at a meteorological station at Nevado de Colima (3461 m) and immense lahar and ash deposit mobilization from Colima Volcano. Hurricane Patricia was the largest ever recorded category 5 storm, directly crossing the state of Colima. Due to the successful scientific advice and civil protection no human losses were directly associated to this lahar hazards. We have conducted drone overflight in profound valleys that directed the pyroclastic flows and lahars two days before and three days after the hurricane. Over 8,000 close range aerial photographs could be recorded, along with GPS locations of ground stations. Images were processed using the structure from motion methodology, and digital elevation models compared. Erosion locally exceeded 10 m vertically and caused significant landscape change. Mass mobilization unloaded the young pyroclastic deposits and led to significant underground heat loss and water boiling in the affected areas. We also firstly report the use of camera array set-ups along the same valley to monitor lahar deposition and erosion from different perspectives. Combining these photos using photogrammetric techniques allow time series of digital elevation change studies at the deepening erosional ravines, with large potential for future geomorphic monitoring. This study shows that photo monitoring is very useful for studying the link of volcano landscape evolution and hydrometerological extremes and for rapid assessment of indirect volcanic hazards.

  20. Probabilistic versus deterministic hazard assessment in liquefaction susceptible zones

    NASA Astrophysics Data System (ADS)

    Daminelli, Rosastella; Gerosa, Daniele; Marcellini, Alberto; Tento, Alberto

    2015-04-01

    Probabilistic seismic hazard assessment (PSHA), usually adopted in the framework of seismic codes redaction, is based on Poissonian description of the temporal occurrence, negative exponential distribution of magnitude and attenuation relationship with log-normal distribution of PGA or response spectrum. The main positive aspect of this approach stems into the fact that is presently a standard for the majority of countries, but there are weak points in particular regarding the physical description of the earthquake phenomenon. Factors like site effects, source characteristics like duration of the strong motion and directivity that could significantly influence the expected motion at the site are not taken into account by PSHA. Deterministic models can better evaluate the ground motion at a site from a physical point of view, but its prediction reliability depends on the degree of knowledge of the source, wave propagation and soil parameters. We compare these two approaches in selected sites affected by the May 2012 Emilia-Romagna and Lombardia earthquake, that caused widespread liquefaction phenomena unusually for magnitude less than 6. We focus on sites liquefiable because of their soil mechanical parameters and water table level. Our analysis shows that the choice between deterministic and probabilistic hazard analysis is strongly dependent on site conditions. The looser the soil and the higher the liquefaction potential, the more suitable is the deterministic approach. Source characteristics, in particular the duration of strong ground motion, have long since recognized as relevant to induce liquefaction; unfortunately a quantitative prediction of these parameters appears very unlikely, dramatically reducing the possibility of their adoption in hazard assessment. Last but not least, the economic factors are relevant in the choice of the approach. The case history of 2012 Emilia-Romagna and Lombardia earthquake, with an officially estimated cost of 6 billions

  1. The Unexpected Awakening of Chaitén Volcano, Chile

    NASA Astrophysics Data System (ADS)

    Carn, Simon A.; Pallister, John S.; Lara, Luis; Ewert, John W.; Watt, Sebastian; Prata, Alfred J.; Thomas, Ronald J.; Villarosa, Gustavo

    2009-06-01

    On 2 May 2008, a large eruption began unexpectedly at the inconspicuous Chaitén volcano in Chile's southern volcanic zone. Ash columns abruptly jetted from the volcano into the stratosphere, followed by lava dome effusion and continuous low-altitude ash plumes [Lara, 2009]. Apocalyptic photographs of eruption plumes suffused with lightning were circulated globally. Effects of the eruption were extensive. Floods and lahars inundated the town of Chaitén, and its 4625 residents were evacuated. Widespread ashfall and drifting ash clouds closed regional airports and cancelled hundreds of domestic flights in Argentina and Chile and numerous international flights [Guffanti et al., 2008]. Ash heavily affected the aquaculture industry in the nearby Gulf of Corcovado, curtailed ecotourism, and closed regional nature preserves. To better prepare for future eruptions, the Chilean government has boosted support for monitoring and hazard mitigation at Chaitén and at 42 other highly hazardous, active volcanoes in Chile.

  2. The Unexpected Awakening of Chaitén Volcano, Chile

    USGS Publications Warehouse

    Carn, Simon A.; Zogorski, John S.; Lara, Luis; Ewert, John W.; Watt, Sebastian; Prata, Alfred J.; Thomas, Ronald J.; Villarosa, Gustavo

    2009-01-01

    On 2 May 2008, a large eruption began unexpectedly at the inconspicuous Chaitén volcano in Chile's southern volcanic zone. Ash columns abruptly jetted from the volcano into the stratosphere, followed by lava dome effusion and continuous low-altitude ash plumes [Lara, 2009]. Apocalyptic photographs of eruption plumes suffused with lightning were circulated globally. Effects of the eruption were extensive. Floods and lahars inundated the town of Chaitén, and its 4625 residents were evacuated. Widespread ashfall and drifting ash clouds closed regional airports and cancelled hundreds of domestic flights in Argentina and Chile and numerous international flights [Guffanti et al., 2008]. Ash heavily affected the aquaculture industry in the nearby Gulf of Corcovado, curtailed ecotourism, and closed regional nature preserves. To better prepare for future eruptions, the Chilean government has boosted support for monitoring and hazard mitigation at Chaitén and at 42 other highly hazardous, active volcanoes in Chile.

  3. Crash characteristics at work zones

    DOT National Transportation Integrated Search

    2001-05-01

    Work zones tend to cause hazardous conditions for vehicle drivers and construction workers since they generate conflicts between construction activities and the traffic, and therefore aggravate the existing traffic conditions.

  4. Volcan Baru: Eruptive History and Volcano-Hazards Assessment

    USGS Publications Warehouse

    Sherrod, David R.; Vallance, James W.; Tapia Espinosa, Arkin; McGeehin, John P.

    2008-01-01

    Volcan Baru is a potentially active volcano in western Panama, about 35 km east of the Costa Rican border. The volcano has had four eruptive episodes during the past 1,600 years, including its most recent eruption about 400?500 years ago. Several other eruptions occurred in the prior 10,000 years. Several seismic swarms in the 20th century and a recent swarm in 2006 serve as reminders of a restless tectonic terrane. Given this history, Volcan Baru likely will erupt again in the near or distant future, following some premonitory period of seismic activity and subtle ground deformation that may last for days or months. Future eruptions will likely be similar to past eruptions?explosive and dangerous to those living on the volcano?s flanks. Outlying towns and cities could endure several years of disruption in the wake of renewed volcanic activity. Described in this open-file report are reconnaissance mapping and stratigraphic studies, radiocarbon dating, lahar-inundation modeling, and hazard-analysis maps. Existing data have been compiled and included to make this report as comprehensive as possible. The report is prepared in coooperation with National Secretariat for Science, Technology and Innovation (SENACYT) of the Republic of Panama and the U.S. Agency for International Development (USAID).

  5. The 2011-2012 eruption of Cordón Caulle volcano (Southern Andes): Evolution, crisis management and current hazards

    NASA Astrophysics Data System (ADS)

    Silva Parejas, C.; Lara, L. E.; Bertin, D.; Amigo, A.; Orozco, G.

    2012-04-01

    A new kind of integrated approach was for first time achieved during the eruptive crisis of Cordón Caulle volcano (Southern Andes, 40.59°S, 72.12°W) in Chile. The monitoring network of SERNAGEOMIN around the volcano detected the increasing precursory seismicity, alerting the imminence of an eruption about 5 hours before its onset, on June 4, 2011. In addition, SERNAGEOMIN generated daily forecasts of tephra dispersal and fall (ASHFALL advection-diffusion model), and prepared simulations of areas affected by the possible occurrence of lahars and pyroclastic flows. Models were improved with observed effects on the field and satellite imagery, resulting in a good correlation. The information was timely supplied to the authorities as well as recommendations in order to better precise the vulnerable areas. Eruption has initially occurred from a couple of overlapped cones located along the eastern fault scarp of the Pleistocene-Holocene extensional graben of Cordón Caulle. Eruptive products have virtually the same bulk composition as those of the historical 1921 and 1960 eruptions, corresponding to phenocryst-poor rhyodacites (67-70 % SiO2). During the first eruptive stage, a ca. 15-km strong Plinian column lasting 27 hours emitted 0.2-0.4 km3 of magma (DRE). Thick tephra deposits have been accumulated in Chile and Argentina, whereas fine particles and aerosols dispersion disrupted air navigation across the Southern Hemisphere. The second ongoing eruptive stage, which started in mid-June, has been characterized by lava emission already covering a total area comparable to the 1960 lava flows with a total estimated volume <0.25 km3 (at the end of December 2011). Weak but persistent plumes have caused preventive flight suspensions in Chile and Argentina until the end of the year. Main current hazards at Cordón Caulle volcano are fine tephra fallout, secondary lahars, minor explosions and lava flow front collapse. Even if this case can be considered successful from the

  6. Kauai Test Facility hazards assessment document

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swihart, A

    1995-05-01

    The Department of Energy Order 55003A requires facility-specific hazards assessment be prepared, maintained, and used for emergency planning purposes. This hazards assessment document describes the chemical and radiological hazards associated with the Kauai Test Facility, Barking Sands, Kauai, Hawaii. The Kauai Test Facility`s chemical and radiological inventories were screened according to potential airborne impact to onsite and offsite individuals. The air dispersion model, ALOHA, estimated pollutant concentrations downwind from the source of a release, taking into consideration the toxicological and physical characteristics of the release site, the atmospheric conditions, and the circumstances of the release. The greatest distance to themore » Early Severe Health Effects threshold is 4.2 kilometers. The highest emergency classification is a General Emergency at the {open_quotes}Main Complex{close_quotes} and a Site Area Emergency at the Kokole Point Launch Site. The Emergency Planning Zone for the {open_quotes}Main Complex{close_quotes} is 5 kilometers. The Emergency Planning Zone for the Kokole Point Launch Site is the Pacific Missile Range Facility`s site boundary.« less

  7. Subduction zone locking, strain partitioning, intraplate deformation and their implications to Seismic Hazards in South America

    NASA Astrophysics Data System (ADS)

    Galgana, G. A.; Mahdyiar, M.; Shen-Tu, B.; Pontbriand, C. W.; Klein, E.; Wang, F.; Shabestari, K.; Yang, W.

    2014-12-01

    We analyze active crustal deformation in South America (SA) using published GPS observations and historic seismicity along the Nazca Trench and the active Ecuador-Colombia-Venezuela Plate boundary Zone. GPS-constrained kinematisc models that incorporate block and continuum techniques are used to assess patterns of regional tectonic deformation and its implications to seismic potential. We determine interplate coupling distributions, fault slip-rates, and intraplate crustal strain rates in combination with historic earthquakes within 40 seismic zones crust to provide moment rate constraints. Along the Nazca subduction zone, we resolve a series of highly coupled patches, interpreted as high-friction producing "asperities" beneath the coasts of Ecuador, Peru and Chile. These include areas responsible for the 2010 Mw 8.8 Maule Earthquake and the 2014 Mw 8.2 Iquique Earthquake. Predicted tectonic block motions and fault slip rates reveal that the northern part of South America deforms rapidly, with crustal fault slip rates as much as ~20 mm/a. Fault slip and locking patterns reveal that the Oca Ancón-Pilar-Boconó fault system plays a key role in absorbing most of the complex eastward and southward convergence patterns in northeastern Colombia and Venezuela, while the near-parallel system of faults in eastern Colombia and Ecuador absorb part of the transpressional motion due to the ~55 mm/a Nazca-SA plate convergence. These kinematic models, in combination with historic seismicity rates, provide moment deficit rates that reveal regions with high seismic potential, such as coastal Ecuador, Bucaramanga, Arica and Antofagasta. We eventually use the combined information from moment rates and fault coupling patterns to further constrain stochastic seismic hazard models of the region by implementing realistic trench rupture scenarios (see Mahdyiar et al., this volume).

  8. Post Eruption Hazards at Mt. Pinatubo, Philippines

    NASA Technical Reports Server (NTRS)

    Mouginis-Mark, Peter J.

    2004-01-01

    Our project focused on the investigation of the post-eruption hazards at Mt. Pinatubo (Philippines) using remote sensing data, and field observations of the 1991 eruption deposits. Through the use of multiple satellite images, field work, and the 1996/2000 PacRim data sets, we conducted studies of the co- and post-eruption hazards of the volcano due to erosion and re-deposition of the extensive pyroclastic flow deposits. A major part of this project was the assembly and analysis of a database of over 50 high resolution (1 - 50 m/pixel) images that will facilitate this study. We collected Ikonos, SPOT, SIR-C/X-SAR, Landsat, ERS, RADARSAT, and ASTER images of the area around Mt. Pinatubo. An example of the changes that could be seen in these data is shown. Our investigation focused on a retrospective analysis of the erosion, redeposition, and re-vegetation of the 1991 pyroclastic flow deposits of Mt. Pinatubo. The primary geologic goal of our work was the analysis of the spatial distribution and volume change of the sources and sinks of materials associated with mudflow ('lahar') events. This included the measurement of river valley gradients and cross-sections using TOPSAR digital elevation data, as we are participating in the PacRim 2000 deployment to the Philippines specifically so that we can collect a second set of TOPSAR data that can then be used to create a topographic difference image of the volcano. The main results from this multi-sensor study have been published as Torres et al.. A discussion of the methodology that we used to assemble an appropriate database was included in Mouginis-Mark and Domergue-Schmidt. As part of an educational outreach effort, we also helped the Philippine Institute of Volcanology and Seismology (PHIVOLCS) in the Philippines to use NASA data to study Mt. Pinatubo and other Filipino volcanoes.

  9. The Ongoing 2011 Eruption of Cordón Caulle (Southern Andes) and its Related Hazards

    NASA Astrophysics Data System (ADS)

    Amigo, A.; Lara, L. E.; Silva, C.; Orozco, G.; Bertin, D.

    2011-12-01

    On June 4, 2011, at 18:45 UTC, Cordón Caulle volcano (Southern Andes, 40.52S, 72.14W) erupted explosively after 51 years of quiescence. The last eruption occurred in 1960 and was triggered by the great Mw 9.5 Chile earthquake. The ongoing eruption started after 2 months of increased shallow seismicity as recorded by OVDAS (the volcano observatory at Sernageomin). This close monitoring effort allowed a timely eruption forecast with at least 3 hours of warning, which facilitated the crisis response. In addition to this successful performance, for the first time in Chile volcanic hazards were assessed in advance supporting the emergency management. In particular, tephra dispersal was daily forecasted using the ASHFALL advection-diffusion model and potential lahars and PDC impact zones were delineated according to numerical approaches. The first eruptive stage lasted 27 hours. It was characterized by ca. 15-km strong Plinian-like column, associated with the emission of 0.2 - 0.4 km3 of magma (DRE). Tephra fallout mostly occurred in Chile and Argentina, although fine particles and aerosols circumnavigated the globe twice, causing disruptions on air navigation across the Southern Hemisphere. The second ongoing eruptive stage has been characterized by persistent weak plumes and lava emission at effusion rates in the range of 20 and 60 m3/s, which total volume is estimated <0.20 km3 (at the end of July 2011). Eruptive products have virtually the same bulk composition as those of the historical 1921 and 1960 eruptions, corresponding to phenocryst-poor rhyodacites (67 - 70% SiO2) for what a pre-eruptive temperature of ca. 920C could be inferred. In contrast to the previous eruptive cycles, the ongoing eruption has not evolved (at the time of writing) as a fissure eruption although the vent is atop of fault scarp that borders the Pleistocene-Holocene extensional graben of the Cordón Caulle. This episode is a good case of successful eruption forecast and hazards assessment

  10. Seismic Hazard Legislation in California: Challenges and Changes

    NASA Astrophysics Data System (ADS)

    Testa, S. M.

    2015-12-01

    Seismic hazards in California are legislatively controlled by three specific Acts: the Field Act of 1933; the Alquist-Priolo Earthquake Fault Zoning Act (AP) of 1975; and the Seismic Hazards Mapping Act (SHMA) of 1980. The Field Act recognized the need for earthquake resistant construction for California schools and banned unreinforced masonry buildings, and imposed structural design under seismic conditions. The AP requires the California Geological Survey (CGS) to delineate "active fault zones" for general planning and mitigation by various state and local agencies. Under the AP, surface and near-surface faults are presumed active (about 11,000 years before present) unless proven otherwise; and can only be mitigated by avoidance (setback zones). The SHMA requires that earthquake-induced landslides, liquefaction zones, high ground accelerations, tsunamis and seiches similarly be demarcated on CGS-issued maps. Experience over the past ~45 years and related technological advances now show that more than ~95 percent of seismically induced damage and loss of life stems from high ground accelerations, from related ground deformation and from catastrophic structural failure, often far beyond State-mapped AP zones. The SHMA therefore enables the engineering community to mitigate natural hazards from a holistic standpoint that considers protection of public health, safety and welfare. In conformance with the SHMA, structural design and related planning and building codes focus on acceptable risk for natural hazards with a typical recurrence of ~100 yrs to a few thousand years. This contrasts with the current AP "total avoidance" for surface-fault rupture that may have occurred within the last 11,000 years. Accordingly, avoidance may be reasonable for well expressed surface faults in high-density urban areas or where relative fault activity is uncertain. However, in the interest of overall public, health and safety, and for consistency with the SHMA and

  11. Influence of potential sea level rise on societal vulnerability to hurricane storm-surge hazards, Sarasota County, Florida

    USGS Publications Warehouse

    Frazier, T.G.; Wood, N.; Yarnal, B.; Bauer, D.H.

    2010-01-01

    Although the potential for hurricanes under current climatic conditions continue to threaten coastal communities, there is concern that climate change, specifically potential increases in sea level, could influence the impacts of future hurricanes. To examine the potential effect of sea level rise on community vulnerability to future hurricanes, we assess variations in socioeconomic exposure in Sarasota County, FL, to contemporary hurricane storm-surge hazards and to storm-surge hazards enhanced by sea level rise scenarios. Analysis indicates that significant portions of the population, economic activity, and critical facilities are in contemporary and future hurricane storm-surge hazard zones. The addition of sea level rise to contemporary storm-surge hazard zones effectively causes population and asset (infrastructure, natural resources, etc) exposure to be equal to or greater than what is in the hazard zone of the next higher contemporary Saffir-Simpson hurricane category. There is variability among communities for this increased exposure, with greater increases in socioeconomic exposure due to the addition of sea level rise to storm-surge hazard zones as one progresses south along the shoreline. Analysis of the 2050 comprehensive land use plan suggests efforts to manage future growth in residential, economic and infrastructure development in Sarasota County may increase societal exposure to hurricane storm-surge hazards. ?? 2010 Elsevier Ltd.

  12. Influence of potential sea level rise on societal vulnerability to hurricane storm-surge hazards, Sarasota County, Florida

    USGS Publications Warehouse

    Frazier, Tim G.; Wood, Nathan; Yarnal, Brent; Bauer, Denise H.

    2010-01-01

    Although the potential for hurricanes under current climatic conditions continue to threaten coastal communities, there is concern that climate change, specifically potential increases in sea level, could influence the impacts of future hurricanes. To examine the potential effect of sea level rise on community vulnerability to future hurricanes, we assess variations in socioeconomic exposure in Sarasota County, FL, to contemporary hurricane storm-surge hazards and to storm-surge hazards enhanced by sea level rise scenarios. Analysis indicates that significant portions of the population, economic activity, and critical facilities are in contemporary and future hurricane storm-surge hazard zones. The addition of sea level rise to contemporary storm-surge hazard zones effectively causes population and asset (infrastructure, natural resources, etc) exposure to be equal to or greater than what is in the hazard zone of the next higher contemporary Saffir–Simpson hurricane category. There is variability among communities for this increased exposure, with greater increases in socioeconomic exposure due to the addition of sea level rise to storm-surge hazard zones as one progresses south along the shoreline. Analysis of the 2050 comprehensive land use plan suggests efforts to manage future growth in residential, economic and infrastructure development in Sarasota County may increase societal exposure to hurricane storm-surge hazards.

  13. Width of surface rupture zone for thrust earthquakes: implications for earthquake fault zoning

    NASA Astrophysics Data System (ADS)

    Boncio, Paolo; Liberi, Francesca; Caldarella, Martina; Nurminen, Fiia-Charlotta

    2018-01-01

    The criteria for zoning the surface fault rupture hazard (SFRH) along thrust faults are defined by analysing the characteristics of the areas of coseismic surface faulting in thrust earthquakes. Normal and strike-slip faults have been deeply studied by other authors concerning the SFRH, while thrust faults have not been studied with comparable attention. Surface faulting data were compiled for 11 well-studied historic thrust earthquakes occurred globally (5.4 ≤ M ≤ 7.9). Several different types of coseismic fault scarps characterize the analysed earthquakes, depending on the topography, fault geometry and near-surface materials (simple and hanging wall collapse scarps, pressure ridges, fold scarps and thrust or pressure ridges with bending-moment or flexural-slip fault ruptures due to large-scale folding). For all the earthquakes, the distance of distributed ruptures from the principal fault rupture (r) and the width of the rupture zone (WRZ) were compiled directly from the literature or measured systematically in GIS-georeferenced published maps. Overall, surface ruptures can occur up to large distances from the main fault ( ˜ 2150 m on the footwall and ˜ 3100 m on the hanging wall). Most of the ruptures occur on the hanging wall, preferentially in the vicinity of the principal fault trace ( > ˜ 50 % at distances < ˜ 250 m). The widest WRZ are recorded where sympathetic slip (Sy) on distant faults occurs, and/or where bending-moment (B-M) or flexural-slip (F-S) fault ruptures, associated with large-scale folds (hundreds of metres to kilometres in wavelength), are present. A positive relation between the earthquake magnitude and the total WRZ is evident, while a clear correlation between the vertical displacement on the principal fault and the total WRZ is not found. The distribution of surface ruptures is fitted with probability density functions, in order to define a criterion to remove outliers (e.g. 90 % probability of the cumulative distribution

  14. Swiss Re Global Flood Hazard Zones: Know your flood risk

    NASA Astrophysics Data System (ADS)

    Vinukollu, R. K.; Castaldi, A.; Mehlhorn, J.

    2012-12-01

    Floods, among all natural disasters, have a great damage potential. On a global basis, there is strong evidence of increase in the number of people affected and economic losses due to floods. For example, global insured flood losses have increased by 12% every year since 1970 and this is expected to further increase with growing exposure in the high risk areas close to rivers and coastlines. Recently, the insurance industry has been surprised by the large extent of losses, because most countries lack reliable hazard information. One example has been the 2011 Thailand floods where millions of people were affected and the total economic losses were 30 billion USD. In order to assess the flood risk across different regions and countries, the flood team at Swiss Re based on a Geomorphologic Regression approach, developed in house and patented, produced global maps of flood zones. Input data for the study was obtained from NASA's Shuttle Radar Topographic Mission (SRTM) elevation data, Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation Model (GDEM) and HydroSHEDS. The underlying assumptions of the approach are that naturally flowing rivers shape their channel and flood plain according to basin inherent forces and characteristics and that the flood water extent strongly depends on the shape of the flood plain. On the basis of the catchment characteristics, the model finally calculates the probability of a location to be flooded or not for a defined return period, which in the current study was set to 100 years. The data is produced at a 90-m resolution for latitudes 60S to 60N. This global product is now used in the insurance industry to inspect, inform and/or insure the flood risk across the world.

  15. Multi-Hazard Vulnerability Assessment Along the Coast of Visakhapatnam, North-East Coast of India

    NASA Astrophysics Data System (ADS)

    Vivek, G.; Grinivasa Kumar, T.

    2016-08-01

    The current study area is coastal zone of Visakhapatnam, district of Andhra Pradesh along the coast of India. This area is mostly vulnerable to many disasters such as storms, cyclone, flood, tsunami and erosion. This area is considered as cyclone prone area because of frequently occurrence of the cyclones in this area. Recently the two tropical cyclones that formed in the Bay of Bengal are Hudhud (October 13, 2014) and Phylin (October 11, 2013), has caused devastating impacts on the eastern coast and shows that the country has lack of preparedness to cyclone, storm surge and related natural hazards. The multi-hazard vulnerability maps prepared here are a blended and combined overlay of multiple hazards those affecting the coastal zone. The present study aims to develop a methodology for coastal multi-hazard vulnerability assessment. This study carried out using parameters like probability of coastal slope, tsunami arrival height, future sea level rise, coastal erosion and tidal range. The multi-hazard vulnerability maps prepared by overlaying of multi hazards those affecting the coastal zone. Multi-hazard vulnerability maps further reproduced as risk maps with the land use information. The decision making tools presented here can provide a useful information during the disaster for the evacuation process and to evolve a management strategy.

  16. Assessing community vulnerabilities to natural hazards on the Island of Hawaii

    NASA Astrophysics Data System (ADS)

    Nishioka, Chris; Delparte, Donna

    2010-05-01

    The island of Hawaii is susceptible to numerous natural hazards such as tsunamis, flooding, lava flow, earthquakes, hurricanes, landslides, wildfires and storm surge. The impact of a natural disaster on the island's communities has the potential to endanger peoples' lives and threaten critical infrastructure, homes, businesses and economic drivers such as tourism. A Geographic Information System (GIS) has the ability to assess community vulnerabilities by examining the spatial relationships between hazard zones, socioeconomic infrastructure and demographic data. By drawing together existing datasets, GIS was used to examine a number of community vulnerabilities. Key areas of interest were government services, utilities, property assets, industry and transportation. GIS was also used to investigate population dynamics in hazard zones. Identification of community vulnerabilities from GIS analysis can support mitigation measures and assist planning and response measures to natural hazards.

  17. Dust Hazard Management in the Outer Solar System

    NASA Technical Reports Server (NTRS)

    Seal, David A.

    2012-01-01

    Most robotic missions to the outer solar system must grapple with the hazards posed by the dusty rings of the gas giants. Early assessments of these hazards led simply to ring avoidance due to insufficient data and high uncertainties on the dust population present in such rings. Recent approaches, principal among them the Cassini dust hazard management strategy, provide useful results from detailed modeling of spacecraft vulnerabilities and dust hazard regions, which along with the range of mission trajectories are used to to assess the risks posed by each passage through a zone of potential hazard. This paper shows the general approach used to implement the analysis for Cassini, with recommendations for future outer planet missions.

  18. Seismic Landslide Hazard for the City of Berkeley, California

    USGS Publications Warehouse

    Miles, Scott B.; Keefer, David K.

    2001-01-01

    This map describes the possible hazard from earthquake-induced landslides for the city of Berkeley, CA. The hazard depicted by this map was modeled for a scenario corresponding to an M=7.1 earthquake on the Hayward, CA fault. This scenario magnitude is associated with complete rupture of the northern and southern segments of the Hayward fault, an event that has an estimated return period of about 500 years. The modeled hazard also corresponds to completely saturated ground-water conditions resulting from an extreme storm event or series of storm events. This combination of earthquake and ground-water scenarios represents a particularly severe state of hazard for earthquake-induced landslides. For dry ground-water conditions, overall hazard will be less, while relative patterns of hazard are likely to change. Purpose: The map is intended as a tool for regional planning. Any site-specific planning or analysis should be undertaken with the assistance of a qualified geotechnical engineer. This hazard map should not be used as a substitute to the State of California Seismic Hazard Zones map for the same area. (See California Department of Conservation, Division of Mines and Geology, 1999). As previously noted for maps of this type by Wieczorek and others (1985), this map should not be used as a basis to determine the absolute risk from seismically triggered landslides at any locality, as the sole justification for zoning or rezoning any parcel, for detailed design of any lifeline, for site-specific hazard-reduction planning, or for setting or modifying insurance rates.

  19. 76 FR 55908 - Underground Injection Control Program; Hazardous Waste Injection Restrictions; Petition for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-09

    ... of an exemption to the land disposal restrictions, under the 1984 Hazardous and Solid Waste... Waste Injection Restrictions; Petition for Exemption--Class I Hazardous Waste Injection; Great Lakes... from the injection zone for as long as the waste remains hazardous. This final decision allows the...

  20. 78 FR 23246 - Underground Injection Control Program; Hazardous Waste Injection Restrictions; Petition for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-18

    ... exemption to the land disposal Restrictions, under the 1984 Hazardous and Solid Waste [[Page 23247... Waste Injection Restrictions; Petition for Exemption--Class I Hazardous Waste Injection; BASF... from the injection zone for as long as the waste remains hazardous. This final decision allows the...

  1. 77 FR 26755 - Underground Injection Control Program; Hazardous Waste Injection Restrictions; Petition for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-07

    ... reissuance of an exemption to the land disposal Restrictions, under the 1984 Hazardous and Solid Waste... Waste Injection Restrictions; Petition for Exemption--Class I Hazardous Waste Injection; Diamond... from the injection zone for as long as the waste remains hazardous. This final decision allows the...

  2. Coastal Hazards: Hurricanes, Tsunamis, Coastal Erosion.

    ERIC Educational Resources Information Center

    Vandas, Steve

    1998-01-01

    Details an ocean-based lesson and provides background information on the designation of 1998 as the "Year of the Ocean" by the United Nations. Contains activities on the poster insert that can help raise student awareness of coastal-zone hazards. (DDR)

  3. 75 FR 76328 - Security Zone; Vessels Carrying Hazardous Cargo, Sector Columbia River Captain of the Port Zone

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-08

    ... petroleum gas, ammonium nitrate and associated mixtures, anhydrous ammonia, and chlorine. The security zones... general regulations in 33 CFR part 165, subpart D, no person or vessel may enter or remain in a security.... Subpart D of 33 CFR part 165 contains additional provisions applicable to a security zone created by this...

  4. Understanding earthquake hazards in urban areas - Evansville Area Earthquake Hazards Mapping Project

    USGS Publications Warehouse

    Boyd, Oliver S.

    2012-01-01

    The region surrounding Evansville, Indiana, has experienced minor damage from earthquakes several times in the past 200 years. Because of this history and the proximity of Evansville to the Wabash Valley and New Madrid seismic zones, there is concern among nearby communities about hazards from earthquakes. Earthquakes currently cannot be predicted, but scientists can estimate how strongly the ground is likely to shake as a result of an earthquake and are able to design structures to withstand this estimated ground shaking. Earthquake-hazard maps provide one way of conveying such information and can help the region of Evansville prepare for future earthquakes and reduce earthquake-caused loss of life and financial and structural loss. The Evansville Area Earthquake Hazards Mapping Project (EAEHMP) has produced three types of hazard maps for the Evansville area: (1) probabilistic seismic-hazard maps show the ground motion that is expected to be exceeded with a given probability within a given period of time; (2) scenario ground-shaking maps show the expected shaking from two specific scenario earthquakes; (3) liquefaction-potential maps show how likely the strong ground shaking from the scenario earthquakes is to produce liquefaction. These maps complement the U.S. Geological Survey's National Seismic Hazard Maps but are more detailed regionally and take into account surficial geology, soil thickness, and soil stiffness; these elements greatly affect ground shaking.

  5. California's Vulnerability to Volcanic Hazards: What's at Risk?

    NASA Astrophysics Data System (ADS)

    Mangan, M.; Wood, N. J.; Dinitz, L.

    2015-12-01

    California is a leader in comprehensive planning for devastating earthquakes, landslides, floods, and tsunamis. Far less attention, however, has focused on the potentially devastating impact of volcanic eruptions, despite the fact that they occur in the State about as frequently as the largest earthquakes on the San Andreas Fault Zone. At least 10 eruptions have occurred in the past 1,000 years—most recently in northern California (Lassen Peak 1914 to 1917)—and future volcanic eruptions are inevitable. The likelihood of renewed volcanism in California is about one in a few hundred to one in a few thousand annually. Eight young volcanoes, ranked as Moderate to Very High Threat [1] are dispersed throughout the State. Partially molten rock (magma) resides beneath at least seven of these—Medicine Lake Volcano, Mount Shasta, Lassen Volcanic Center, Clear Lake Volcanic Field, Long Valley Volcanic Region, Coso Volcanic Field, and Salton Buttes— causing earthquakes, toxic gas emissions, hydrothermal activity, and (or) ground deformation. Understanding the hazards and identifying what is at risk are the first steps in building community resilience to volcanic disasters. This study, prepared in collaboration with the State of California Governor's Office of Emergency Management and the California Geological Survey, provides a broad perspective on the State's exposure to volcano hazards by integrating mapped volcano hazard zones with geospatial data on at-risk populations, infrastructure, and resources. The study reveals that ~ 16 million acres fall within California's volcano hazard zones, along with ~ 190 thousand permanent and 22 million transitory populations. Additionally, far-field disruption to key water delivery systems, agriculture, utilities, and air traffic is likely. Further site- and sector-specific analyses will lead to improved hazard mitigation efforts and more effective disaster response and recovery. [1] "Volcanic Threat and Monitoring Capabilities

  6. Probabilistic earthquake hazard analysis for Cairo, Egypt

    NASA Astrophysics Data System (ADS)

    Badawy, Ahmed; Korrat, Ibrahim; El-Hadidy, Mahmoud; Gaber, Hanan

    2016-04-01

    Cairo is the capital of Egypt and the largest city in the Arab world and Africa, and the sixteenth largest metropolitan area in the world. It was founded in the tenth century (969 ad) and is 1046 years old. It has long been a center of the region's political and cultural life. Therefore, the earthquake risk assessment for Cairo has a great importance. The present work aims to analysis the earthquake hazard of Cairo as a key input's element for the risk assessment. The regional seismotectonics setting shows that Cairo could be affected by both far- and near-field seismic sources. The seismic hazard of Cairo has been estimated using the probabilistic seismic hazard approach. The logic tree frame work was used during the calculations. Epistemic uncertainties were considered into account by using alternative seismotectonics models and alternative ground motion prediction equations. Seismic hazard values have been estimated within a grid of 0.1° × 0.1 ° spacing for all of Cairo's districts at different spectral periods and four return periods (224, 615, 1230, and 4745 years). Moreover, the uniform hazard spectra have been calculated at the same return periods. The pattern of the contour maps show that the highest values of the peak ground acceleration is concentrated in the eastern zone's districts (e.g., El Nozha) and the lowest values at the northern and western zone's districts (e.g., El Sharabiya and El Khalifa).

  7. Evaluating tsunami hazards from debris flows

    USGS Publications Warehouse

    Watts, P.; Walder, J.S.; ,

    2003-01-01

    Debris flows that enter water bodies may have significant kinetic energy, some of which is transferred to water motion or waves that can impact shorelines and structures. The associated hazards depend on the location of the affected area relative to the point at which the debris flow enters the water. Three distinct regions (splash zone, near field, and far field) may be identified. Experiments demonstrate that characteristics of the near field water wave, which is the only coherent wave to emerge from the splash zone, depend primarily on debris flow volume, debris flow submerged time of motion, and water depth at the point where debris flow motion stops. Near field wave characteristics commonly may be used as & proxy source for computational tsunami propagation. This result is used to assess hazards associated with potential debris flows entering a reservoir in the northwestern USA. ?? 2003 Millpress,.

  8. NWS Offshore Marine Forecasts by Zone

    Science.gov Websites

    Beach Hazards Rip Currents Hypothermia Hurricanes Thunderstorms Lightning Coastal Flooding Tsunamis 406 page is also available in a text version. Similar webpages for Coastal/Great Lakes Forecasts by Zone

  9. Coastal/Great Lakes Forecasts by Zone

    Science.gov Websites

    Hazards Rip Currents Hypothermia Hurricanes Thunderstorms Lightning Coastal Flooding Tsunamis 406 EPIRB's Coastal/Great Lakes Forecasts by Zone >>Click on the area of interest below<< Coastal and

  10. Analysis of Vulnerability Around The Colima Volcano, MEXICO

    NASA Astrophysics Data System (ADS)

    Carlos, S. P.

    2001-12-01

    The Colima volcano located in the western of the Trasmexican Volcanic Belt, in the central portion of the Colima Rift Zone, between the Mexican States of Jalisco and Colima. The volcano since January of 1998 presents a new activity, which has been characterized by two stages: the first one was an effusive phase that begin on 20 November 1998 and finish by the middle of January 1999. On February 10of 1999 a great explosion in the summit marked the beginning of an explosive phase, these facts implies that the eruptive process changes from an effusive model to an explosive one. Suárez-Plascencia et al, 2000, present hazard maps to ballistic projectiles, ashfalls and lahars for this scenario. This work presents the evaluation of the vulnerability in the areas identified as hazardous in the maps for ballistic, ashfalls and lahars, based on the economic elements located in the middle and lower sections of the volcano building, like agriculture, forestry, agroindustries and communication lines (highways, power, telephonic, railroad, etc). The method is based in Geographic Information Systems, using digital cartography scale 1:50,000, digital orthophotos from the Instituto Nacional de Estadística, Geografía e Informática, SPOT and Landsat satellite images from 1997 and 2000 in the bands 1, 2 and 3. The land use maps obtained for 1997 and 2000, were compared with the land use map reported by Suárez in 1992, from these maps an increase of the 5 porcent of the sugar cane area and corn cultivations were observed compared of those of 1990 (1225.7 km2) and a decrease of the forest surface, moving the agricultural limits uphill, and showing also some agave cultivation in the northwest and north hillslopes of the Nevado de Colima. This increment of the agricultural surface results in bigger economic activity in the area, which makes that the vulnerability also be increased to different volcanic products emitted during this phase of activity. The degradation of the soil by the

  11. Lahar-hazard zonation for San Miguel volcano, El Salvador

    USGS Publications Warehouse

    Major, J.J.; Schilling, S.P.; Pullinger, C.R.; Escobar, C.D.; Chesner, C.A.; Howell, M.M.

    2001-01-01

    San Miguel volcano, also known as Chaparrastique, is one of many volcanoes along the volcanic arc in El Salvador. The volcano, located in the eastern part of the country, rises to an altitude of about 2130 meters and towers above the communities of San Miguel, El Transito, San Rafael Oriente, and San Jorge. In addition to the larger communities that surround the volcano, several smaller communities and coffee plantations are located on or around the flanks of the volcano, and the PanAmerican and coastal highways cross the lowermost northern and southern flanks of the volcano. The population density around San Miguel volcano coupled with the proximity of major transportation routes increases the risk that even small volcano-related events, like landslides or eruptions, may have significant impact on people and infrastructure. San Miguel volcano is one of the most active volcanoes in El Salvador; it has erupted at least 29 times since 1699. Historical eruptions of the volcano consisted mainly of relatively quiescent emplacement of lava flows or minor explosions that generated modest tephra falls (erupted fragments of microscopic ash to meter sized blocks that are dispersed into the atmosphere and fall to the ground). Little is known, however, about prehistoric eruptions of the volcano. Chemical analyses of prehistoric lava flows and thin tephra falls from San Miguel volcano indicate that the volcano is composed dominantly of basalt (rock having silica content

  12. Incorporating climate change and morphological uncertainty into coastal change hazard assessments

    USGS Publications Warehouse

    Baron, Heather M.; Ruggiero, Peter; Wood, Nathan J.; Harris, Erica L.; Allan, Jonathan; Komar, Paul D.; Corcoran, Patrick

    2015-01-01

    Documented and forecasted trends in rising sea levels and changes in storminess patterns have the potential to increase the frequency, magnitude, and spatial extent of coastal change hazards. To develop realistic adaptation strategies, coastal planners need information about coastal change hazards that recognizes the dynamic temporal and spatial scales of beach morphology, the climate controls on coastal change hazards, and the uncertainties surrounding the drivers and impacts of climate change. We present a probabilistic approach for quantifying and mapping coastal change hazards that incorporates the uncertainty associated with both climate change and morphological variability. To demonstrate the approach, coastal change hazard zones of arbitrary confidence levels are developed for the Tillamook County (State of Oregon, USA) coastline using a suite of simple models and a range of possible climate futures related to wave climate, sea-level rise projections, and the frequency of major El Niño events. Extreme total water levels are more influenced by wave height variability, whereas the magnitude of erosion is more influenced by sea-level rise scenarios. Morphological variability has a stronger influence on the width of coastal hazard zones than the uncertainty associated with the range of climate change scenarios.

  13. Earthquake Hazard and Risk in New Zealand

    NASA Astrophysics Data System (ADS)

    Apel, E. V.; Nyst, M.; Fitzenz, D. D.; Molas, G.

    2014-12-01

    To quantify risk in New Zealand we examine the impact of updating the seismic hazard model. The previous RMS New Zealand hazard model is based on the 2002 probabilistic seismic hazard maps for New Zealand (Stirling et al., 2002). The 2015 RMS model, based on Stirling et al., (2012) will update several key source parameters. These updates include: implementation a new set of crustal faults including multi-segment ruptures, updating the subduction zone geometry and reccurrence rate and implementing new background rates and a robust methodology for modeling background earthquake sources. The number of crustal faults has increased by over 200 from the 2002 model, to the 2012 model which now includes over 500 individual fault sources. This includes the additions of many offshore faults in northern, east-central, and southwest regions. We also use the recent data to update the source geometry of the Hikurangi subduction zone (Wallace, 2009; Williams et al., 2013). We compare hazard changes in our updated model with those from the previous version. Changes between the two maps are discussed as well as the drivers for these changes. We examine the impact the hazard model changes have on New Zealand earthquake risk. Considered risk metrics include average annual loss, an annualized expected loss level used by insurers to determine the costs of earthquake insurance (and premium levels), and the loss exceedance probability curve used by insurers to address their solvency and manage their portfolio risk. We analyze risk profile changes in areas with large population density and for structures of economic and financial importance. New Zealand is interesting in that the city with the majority of the risk exposure in the country (Auckland) lies in the region of lowest hazard, where we don't have a lot of information about the location of faults and distributed seismicity is modeled by averaged Mw-frequency relationships on area sources. Thus small changes to the background rates

  14. Earthquake Hazard and Risk in Alaska

    NASA Astrophysics Data System (ADS)

    Black Porto, N.; Nyst, M.

    2014-12-01

    Alaska is one of the most seismically active and tectonically diverse regions in the United States. To examine risk, we have updated the seismic hazard model in Alaska. The current RMS Alaska hazard model is based on the 2007 probabilistic seismic hazard maps for Alaska (Wesson et al., 2007; Boyd et al., 2007). The 2015 RMS model will update several key source parameters, including: extending the earthquake catalog, implementing a new set of crustal faults, updating the subduction zone geometry and reoccurrence rate. First, we extend the earthquake catalog to 2013; decluster the catalog, and compute new background rates. We then create a crustal fault model, based on the Alaska 2012 fault and fold database. This new model increased the number of crustal faults from ten in 2007, to 91 faults in the 2015 model. This includes the addition of: the western Denali, Cook Inlet folds near Anchorage, and thrust faults near Fairbanks. Previously the subduction zone was modeled at a uniform depth. In this update, we model the intraslab as a series of deep stepping events. We also use the best available data, such as Slab 1.0, to update the geometry of the subduction zone. The city of Anchorage represents 80% of the risk exposure in Alaska. In the 2007 model, the hazard in Alaska was dominated by the frequent rate of magnitude 7 to 8 events (Gutenberg-Richter distribution), and large magnitude 8+ events had a low reoccurrence rate (Characteristic) and therefore didn't contribute as highly to the overall risk. We will review these reoccurrence rates, and will present the results and impact to Anchorage. We will compare our hazard update to the 2007 USGS hazard map, and discuss the changes and drivers for these changes. Finally, we will examine the impact model changes have on Alaska earthquake risk. Consider risk metrics include average annual loss, an annualized expected loss level used by insurers to determine the costs of earthquake insurance (and premium levels), and the

  15. Seismic Hazard Analysis for Armenia and its Surrounding Areas

    NASA Astrophysics Data System (ADS)

    Klein, E.; Shen-Tu, B.; Mahdyiar, M.; Karakhanyan, A.; Pagani, M.; Weatherill, G.; Gee, R. C.

    2017-12-01

    The Republic of Armenia is located within the central part of a large, 800 km wide, intracontinental collision zone between the Arabian and Eurasian plates. Active deformation occurs along numerous structures in the form of faulting, folding, and volcanism distributed throughout the entire zone from the Bitlis-Zargos suture belt to the Greater Caucasus Mountains and between the relatively rigid Back Sea and Caspian Sea blocks without any single structure that can be claimed as predominant. In recent years, significant work has been done on mapping active faults, compiling and reviewing historic and paleoseismological studies in the region, especially in Armenia; these recent research contributions have greatly improved our understanding of the seismogenic sources and their characteristics. In this study we performed a seismic hazard analysis for Armenia and its surrounding areas using the latest detailed geological and paleoseismological information on active faults, strain rates estimated from kinematic modeling of GPS data and all available historic earthquake data. The seismic source model uses a combination of characteristic earthquake and gridded seismicity models to take advantage of the detailed knowledge of the known faults while acknowledging the distributed deformation and regional tectonic environment of the collision zone. In addition, the fault model considers earthquake ruptures that include single and multi-segment or fault rupture scenarios with earthquakes that can rupture any part of a multiple segment fault zone. The ground motion model uses a set of ground motion prediction equations (GMPE) selected from a pool of GMPEs based on the assessment of each GMPE against the available strong motion data in the region. The hazard is computed in the GEM's OpenQuake engine. We will present final hazard results and discuss the uncertainties associated with various input data and their impact on the hazard at various locations.

  16. St. Louis Area Earthquake Hazards Mapping Project

    USGS Publications Warehouse

    Williams, Robert A.; Steckel, Phyllis; Schweig, Eugene

    2007-01-01

    St. Louis has experienced minor earthquake damage at least 12 times in the past 200 years. Because of this history and its proximity to known active earthquake zones, the St. Louis Area Earthquake Hazards Mapping Project will produce digital maps that show variability of earthquake hazards in the St. Louis area. The maps will be available free via the internet. They can be customized by the user to show specific areas of interest, such as neighborhoods or transportation routes.

  17. Video Games in Volcanic Hazard Communications: Methods & Issues

    NASA Astrophysics Data System (ADS)

    Mani, Lara; Cole, Paul; Stewart, Iain

    2016-04-01

    eruptions (1902 &1979), which are reproduced based on historical data and personal accounts of the eruptions. Through a series of interactive scenes, each of the principal hazardous phenomena associated with La Soufriere - pyroclastic flows & surges, ash fall and lahars - are visualised and explained. The game concludes with a quiz in which players are required to answer questions are based on information provided throughout the game. The St. Vincent's Volcano game was trialled in St. Vincent during a volcano awareness education week in April 2015. The presentation will share reflections on how this type of interactive tool can be tested and implemented, and explore the issues and challenges with using video games in a dynamic environment.

  18. Hydrologic testing of tight zones in southeastern New Mexico.

    USGS Publications Warehouse

    Dennehy, K.F.; Davis, P.A.

    1981-01-01

    Increased attention is being directed toward the investigation of tight zones in relation to the storage and disposal of hazardous wastes. Shut-in tests, slug tests, and pressure-slug tests are being used at the proposed Waste Isolation Pilot Plant site, New Mexico, to evaluate the fluid-transmitting properties of several zones above the proposed repository zone. All three testing methods were used in various combinations to obtain values for the hydraulic properties of the test zones. Multiple testing on the same zone produced similar results. -from Authors

  19. Rainfall-runoff properties of tephra: Simulated effects of grain-size and antecedent rainfall

    NASA Astrophysics Data System (ADS)

    Jones, Robbie; Thomas, Robert E.; Peakall, Jeff; Manville, Vern

    2017-04-01

    Rain-triggered lahars (RTLs) are a significant and often persistent secondary volcanic hazard at many volcanoes around the world. Rainfall on unconsolidated volcaniclastic material is the primary initiation mechanism of RTLs: the resultant flows have the potential for large runout distances (> 100 km) and present a substantial hazard to downstream infrastructure and communities. RTLs are frequently anticipated in the aftermath of eruptions, but the pattern, timing and scale of lahars varies on an eruption-by-eruption and even catchment-by-catchment basis. This variability is driven by a set of local factors including the grain size distribution, thickness, stratigraphy and spatial distribution of source material in addition to topography, vegetation coverage and rainfall conditions. These factors are often qualitatively discussed in RTL studies based on post-eruption lahar observations or instrumental detections. Conversely, this study aims to move towards a quantitative assessment of RTL hazard in order to facilitate RTL predictions and forecasts based on constrained rainfall, grain size distribution and isopach data. Calibrated simulated rainfall and laboratory-constructed tephra beds are used within a repeatable experimental set-up to isolate the effects of individual parameters and to examine runoff and infiltration processes from analogous RTL source conditions. Laboratory experiments show that increased antecedent rainfall and finer-grained surface tephra individually increase runoff rates and decrease runoff lag times, while a combination of these factors produces a compound effect. These impacts are driven by increased residual moisture content and decreased permeability due to surface sealing, and have previously been inferred from downstream observations of lahars but not identified at source. Water and sediment transport mechanisms differ based on surface grain size distribution: a fine-grained surface layer displayed airborne remobilisation

  20. Probabilistic Seismic Hazard Assessment for Northeast India Region

    NASA Astrophysics Data System (ADS)

    Das, Ranjit; Sharma, M. L.; Wason, H. R.

    2016-08-01

    Northeast India bounded by latitudes 20°-30°N and longitudes 87°-98°E is one of the most seismically active areas in the world. This region has experienced several moderate-to-large-sized earthquakes, including the 12 June, 1897 Shillong earthquake ( M w 8.1) and the 15 August, 1950 Assam earthquake ( M w 8.7) which caused loss of human lives and significant damages to buildings highlighting the importance of seismic hazard assessment for the region. Probabilistic seismic hazard assessment of the region has been carried out using a unified moment magnitude catalog prepared by an improved General Orthogonal Regression methodology (Geophys J Int, 190:1091-1096, 2012; Probabilistic seismic hazard assessment of Northeast India region, Ph.D. Thesis, Department of Earthquake Engineering, IIT Roorkee, Roorkee, 2013) with events compiled from various databases (ISC, NEIC,GCMT, IMD) and other available catalogs. The study area has been subdivided into nine seismogenic source zones to account for local variation in tectonics and seismicity characteristics. The seismicity parameters are estimated for each of these source zones, which are input variables into seismic hazard estimation of a region. The seismic hazard analysis of the study region has been performed by dividing the area into grids of size 0.1° × 0.1°. Peak ground acceleration (PGA) and spectral acceleration ( S a) values (for periods of 0.2 and 1 s) have been evaluated at bedrock level corresponding to probability of exceedance (PE) of 50, 20, 10, 2 and 0.5 % in 50 years. These exceedance values correspond to return periods of 100, 225, 475, 2475, and 10,000 years, respectively. The seismic hazard maps have been prepared at the bedrock level, and it is observed that the seismic hazard estimates show a significant local variation in contrast to the uniform hazard value suggested by the Indian standard seismic code [Indian standard, criteria for earthquake-resistant design of structures, fifth edition, Part

  1. Building a risk-targeted regional seismic hazard model for South-East Asia

    NASA Astrophysics Data System (ADS)

    Woessner, J.; Nyst, M.; Seyhan, E.

    2015-12-01

    The last decade has tragically shown the social and economic vulnerability of countries in South-East Asia to earthquake hazard and risk. While many disaster mitigation programs and initiatives to improve societal earthquake resilience are under way with the focus on saving lives and livelihoods, the risk management sector is challenged to develop appropriate models to cope with the economic consequences and impact on the insurance business. We present the source model and ground motions model components suitable for a South-East Asia earthquake risk model covering Indonesia, Malaysia, the Philippines and Indochine countries. The source model builds upon refined modelling approaches to characterize 1) seismic activity from geologic and geodetic data on crustal faults and 2) along the interface of subduction zones and within the slabs and 3) earthquakes not occurring on mapped fault structures. We elaborate on building a self-consistent rate model for the hazardous crustal fault systems (e.g. Sumatra fault zone, Philippine fault zone) as well as the subduction zones, showcase some characteristics and sensitivities due to existing uncertainties in the rate and hazard space using a well selected suite of ground motion prediction equations. Finally, we analyze the source model by quantifying the contribution by source type (e.g., subduction zone, crustal fault) to typical risk metrics (e.g.,return period losses, average annual loss) and reviewing their relative impact on various lines of businesses.

  2. Kernel Smoothing Methods for Non-Poissonian Seismic Hazard Analysis

    NASA Astrophysics Data System (ADS)

    Woo, Gordon

    2017-04-01

    For almost fifty years, the mainstay of probabilistic seismic hazard analysis has been the methodology developed by Cornell, which assumes that earthquake occurrence is a Poisson process, and that the spatial distribution of epicentres can be represented by a set of polygonal source zones, within which seismicity is uniform. Based on Vere-Jones' use of kernel smoothing methods for earthquake forecasting, these methods were adapted in 1994 by the author for application to probabilistic seismic hazard analysis. There is no need for ambiguous boundaries of polygonal source zones, nor for the hypothesis of time independence of earthquake sequences. In Europe, there are many regions where seismotectonic zones are not well delineated, and where there is a dynamic stress interaction between events, so that they cannot be described as independent. From the Amatrice earthquake of 24 August, 2016, the subsequent damaging earthquakes in Central Italy over months were not independent events. Removing foreshocks and aftershocks is not only an ill-defined task, it has a material effect on seismic hazard computation. Because of the spatial dispersion of epicentres, and the clustering of magnitudes for the largest events in a sequence, which might all be around magnitude 6, the specific event causing the highest ground motion can vary from one site location to another. Where significant active faults have been clearly identified geologically, they should be modelled as individual seismic sources. The remaining background seismicity should be modelled as non-Poissonian using statistical kernel smoothing methods. This approach was first applied for seismic hazard analysis at a UK nuclear power plant two decades ago, and should be included within logic-trees for future probabilistic seismic hazard at critical installations within Europe. In this paper, various salient European applications are given.

  3. The ASTER Volcano Archive (AVA): High Spatial Resolution Global Monitoring of Volcanic Eruptions

    NASA Astrophysics Data System (ADS)

    Linick, J. P.; Pieri, D. C.; Davies, A. G.; Reath, K.; Mars, J. C.; Hubbard, B. E.; Sanchez, R. M.; Tan, H. L.

    2017-12-01

    The ASTER Volcano Archive (AVA) is a data system focused on collecting and cataloguing higher level remote sensing data products for all Holocene volcanoes over the last several decades, producing volcanogenic science products for global detection, mapping, and modeling of effusive eruptions at high spatial resolution, and providing rapid bulk dissemination of relevant data products to the science community at large. Space-based optical platforms such as ASTER, EO-1, and Landsat, are a critical component for global monitoring systems to provide the capability for volcanic hazard assessment and modeling, and are a vital addition to in-situ measurements. The AVA leverages these instruments for the automated generation of lava flow emplacement maps, sulfur dioxide monitoring, thermal anomaly detection, and modeling of integrated thermal emission across the world's volcanoes. Additionally, we provide slope classified alteration and lahar inundation maps with potential inundation zones for certain relevant volcanoes. We explore the AVA's data product retrieval API, and describe how scientists can rapidly retrieve bulk products using the AVA platform with a focus on practical applications for both general analysis and hazard response.

  4. Geospatial Approach on Landslide Hazard Zonation Mapping Using Multicriteria Decision Analysis: A Study on Coonoor and Ooty, Part of Kallar Watershed, The Nilgiris, Tamil Nadu

    NASA Astrophysics Data System (ADS)

    Rahamana, S. Abdul; Aruchamy, S.; Jegankumar, R.

    2014-12-01

    Landslides are one of the critical natural phenomena that frequently lead to serious problems in hilly area, resulting to loss of human life and property, as well as causing severe damage to natural resources. The local geology with high degree of slope coupled with high intensity of rainfall along with unplanned human activities of the study area causes many landslides in this region. The present study area is more attracted by tourist throughout the year, so this area must be considered for preventive measures. Geospatial based Multicriteria decision analysis (MCDA) technique is increasingly used for landslide vulnerability and hazard zonation mapping. It enables the integration of different data layers with different levels of uncertainty. In this present study, it is used analytic hierarchy process (AHP) method to prepare landslide hazard zones of the Coonoor and Ooty, part of Kallar watershed, The Nilgiris, Tamil Nadu. The study was carried out using remote sensing data, field surveys and geographic information system (GIS) tools. The ten factors that influence landslide occurrence, such as elevation, slope aspect, slope angle, drainage density, lineament density, soil, precipitation, land use/land cover (LULC), distance from road and NDVI were considered. These factors layers were extracted from the various related spatial data's. These factors were evaluated, and then, the individual factor weight and class weight were assigned to each of the related factors. The Landslide Hazard Zone Index (LHZI) was calculated using Multicriteria decision analysis (MCDA) the technique based on the assigned weight and the rating is given by the Analytical Hierarchy Process (AHP) method. The final cumulative map of the study area was categorized into four hazard zones and classified as zone I to IV. There are 3.56% of the area comes under the hazard zone IV fallowed by 48.19% of the area comes under zone III, 43.63 % of the area in zone II and 4.61% of the area comes hazard

  5. Active crustal deformation of the El Salvador Fault Zone by integrating geodetic, seismological and geological data: application in seismic hazard assessment

    NASA Astrophysics Data System (ADS)

    Staller, A.; Benito, B.; Martínez-Díaz, J.; Hernández, D.; Hernández-Rey, R.

    2013-05-01

    El Salvador, Central America, is part of the Chortis block in the northwestern boundary of the Caribbean plate. This block is interacting with a diffuse triple junction point with the Cocos and North American plates. Among the structures that cut the Miocene to Pleistocene volcanic deposits stands out the El Salvador Fault Zone (ESFZ): It is oriented in N90-100E direction, and it is composed of several structural segments that deform Quaternary deposits with right-lateral and oblique slip motions. The ESFZ is seismically active and capable of producing earthquakes such as the February 13, 2001 with Mw 6.6 (Martínez-Díaz et al., 2004), that seriously affected the population, leaving many casualties. This structure plays an important role in the tectonics of the Chortis block, since its motion is directly related to the drift of the Caribbean plate to the east and not with the partitioning of the deformation of the Cocos subduction (here not coupled) (Álvarez-Gómez et al., 2008). Together with the volcanic arc of El Salvador, this zone constitutes a weakness area that allows the motion of forearc block toward the NW. The geometry and the degree of activity of the ESFZ are not studied enough. However their knowledge is essential to understand the seismic hazard associated to this important seismogenic structure. For this reason, since 2007 a GPS dense network was established along the ESFZ (ZFESNet) in order to obtain GPS velocity measurements which are later used to explain the nature of strain accumulation on major faults along the ESFZ. The current work aims at understanding active crustal deformation of the ESFZ through kinematic model. The results provide significant information to be included in a new estimation of seismic hazard taking into account the major structures in ESFZ.

  6. Geological hazard monitoring system in Georgia

    NASA Astrophysics Data System (ADS)

    Gaprindashvili, George

    2017-04-01

    Georgia belongs to one of world's most complex mountainous regions according to the scale and frequency of Geological processes and damage caused to population, farmlands, and Infrastructure facilities. Geological hazards (landslide, debrisflow/mudflow, rockfall, erosion and etc.) are affecting many populated areas, agricultural fields, roads, oil and gas pipes, high-voltage electric power transmission towers, hydraulic structures, and tourist complexes. Landslides occur almost in all geomorphological zones, resulting in wide differentiation in the failure types and mechanisms and in the size-frequency distribution. In Georgia, geological hazards triggered by: 1. Activation of highly intense earthquakes; 2. Meteorological events provoking the disaster processes on the background of global climatic change; 3. Large-scale Human impact on the environment. The prediction and monitoring of Geological Hazards is a very wide theme, which involves different researchers from different spheres. Geological hazard monitoring is essential to prevent and mitigate these hazards. In past years in Georgia several monitoring system, such as Ground-based geodetic techniques, Debrisflow Early Warning System (EWS) were installed on high sensitive landslide and debrisflow areas. This work presents description of Geological hazard monitoring system in Georgia.

  7. Fatal accidents in nighttime vs. daytime highway construction work zones.

    PubMed

    Arditi, David; Lee, Dong-Eun; Polat, Gul

    2007-01-01

    Awareness about worker safety in nighttime construction has been a major concern because it is believed that nighttime construction creates hazardous work conditions. However, only a few studies provide valuable comparative information about accident characteristics of nighttime and daytime highway construction activities. This study investigates fatal accidents that occurred in Illinois highway work zones in the period 1996-2001 in order to determine the safety differences between nighttime and daytime highway construction. The lighting and weather conditions were included into the study as control parameters to see their effects on the frequency of fatal accidents occurring in work zones. According to this study, there is evidence that nighttime construction is more hazardous than daytime construction. The inclusion of a weather parameter into the analysis has limited effect on this finding. The study justifies establishing an efficient work zone accident reporting system and taking all necessary measures to enhance safety in nighttime work zones.

  8. 76 FR 27253 - Safety Zone; Catawba Island Club Fireworks, Catawba Island Club, Port Clinton, OH

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-11

    ...-AA00 Safety Zone; Catawba Island Club Fireworks, Catawba Island Club, Port Clinton, OH AGENCY: Coast... zone in the Captain of the Port Detroit Zone on Lake Erie, Port Clinton, Ohio. This zone is intended to... temporary safety zone is necessary to protect spectators and vessels from the hazards associated with...

  9. Subduction zone and crustal dynamics of western Washington; a tectonic model for earthquake hazards evaluation

    USGS Publications Warehouse

    Stanley, Dal; Villaseñor, Antonio; Benz, Harley

    1999-01-01

    The Cascadia subduction zone is extremely complex in the western Washington region, involving local deformation of the subducting Juan de Fuca plate and complicated block structures in the crust. It has been postulated that the Cascadia subduction zone could be the source for a large thrust earthquake, possibly as large as M9.0. Large intraplate earthquakes from within the subducting Juan de Fuca plate beneath the Puget Sound region have accounted for most of the energy release in this century and future such large earthquakes are expected. Added to these possible hazards is clear evidence for strong crustal deformation events in the Puget Sound region near faults such as the Seattle fault, which passes through the southern Seattle metropolitan area. In order to understand the nature of these individual earthquake sources and their possible interrelationship, we have conducted an extensive seismotectonic study of the region. We have employed P-wave velocity models developed using local earthquake tomography as a key tool in this research. Other information utilized includes geological, paleoseismic, gravity, magnetic, magnetotelluric, deformation, seismicity, focal mechanism and geodetic data. Neotectonic concepts were tested and augmented through use of anelastic (creep) deformation models based on thin-plate, finite-element techniques developed by Peter Bird, UCLA. These programs model anelastic strain rate, stress, and velocity fields for given rheological parameters, variable crust and lithosphere thicknesses, heat flow, and elevation. Known faults in western Washington and the main Cascadia subduction thrust were incorporated in the modeling process. Significant results from the velocity models include delineation of a previously studied arch in the subducting Juan de Fuca plate. The axis of the arch is oriented in the direction of current subduction and asymmetrically deformed due to the effects of a northern buttress mapped in the velocity models. This

  10. Stakeholder perspectives on land-use strategies for adapting to climate-change-enhanced coastal hazards: Sarasota, Florida

    USGS Publications Warehouse

    Frazier, Tim G.; Wood, Nathan; Yarnal, Brent

    2010-01-01

    Sustainable land-use planning requires decision makers to balance community growth with resilience to natural hazards. This balance is especially difficult in many coastal communities where planners must grapple with significant growth projections, the persistent threat of extreme events (e.g., hurricanes), and climate-change-driven sea level rise that not only presents a chronic hazard but also alters the spatial extent of sudden-onset hazards such as hurricanes. We examine these stressors on coastal, long-term land-use planning by reporting the results of a one-day community workshop held in Sarasota County, Florida that included focus groups and participatory mapping exercises. Workshop participants reflected various political agendas and socioeconomic interests of five local knowledge domains: business, environment, emergency management and infrastructure, government, and planning. Through a series of alternating domain-specific focus groups and interactive plenary sessions, participants compared the county 2050 comprehensive land-use plan to maps of contemporary hurricane storm-surge hazard zones and projected storm-surge hazard zones enlarged by sea level rise scenarios. This interactive, collaborative approach provided each group of domain experts the opportunity to combine geographically-specific, scientific knowledge on natural hazards and climate change with local viewpoints and concerns. Despite different agendas, interests, and proposed adaptation strategies, there was common agreement among participants for the need to increase community resilience to contemporary hurricane storm-surge hazards and to explore adaptation strategies to combat the projected, enlarged storm-surge hazard zones.

  11. 33 CFR 156.230 - Factors considered in designating lightering zones.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Factors considered in designating... Lightering of Oil and Hazardous Material Cargoes § 156.230 Factors considered in designating lightering zones. The following factors are considered in designating a lightering zone: (a) The findings of the...

  12. 33 CFR 156.230 - Factors considered in designating lightering zones.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Factors considered in designating... Lightering of Oil and Hazardous Material Cargoes § 156.230 Factors considered in designating lightering zones. The following factors are considered in designating a lightering zone: (a) The findings of the...

  13. 33 CFR 156.230 - Factors considered in designating lightering zones.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Factors considered in designating... Lightering of Oil and Hazardous Material Cargoes § 156.230 Factors considered in designating lightering zones. The following factors are considered in designating a lightering zone: (a) The findings of the...

  14. 33 CFR 156.230 - Factors considered in designating lightering zones.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Factors considered in designating... Lightering of Oil and Hazardous Material Cargoes § 156.230 Factors considered in designating lightering zones. The following factors are considered in designating a lightering zone: (a) The findings of the...

  15. 33 CFR 156.230 - Factors considered in designating lightering zones.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Factors considered in designating... Lightering of Oil and Hazardous Material Cargoes § 156.230 Factors considered in designating lightering zones. The following factors are considered in designating a lightering zone: (a) The findings of the...

  16. Probabilistic Appraisal of Earthquake Hazard Parameters Deduced from a Bayesian Approach in the Northwest Frontier of the Himalayas

    NASA Astrophysics Data System (ADS)

    Yadav, R. B. S.; Tsapanos, T. M.; Bayrak, Yusuf; Koravos, G. Ch.

    2013-03-01

    A straightforward Bayesian statistic is applied in five broad seismogenic source zones of the northwest frontier of the Himalayas to estimate the earthquake hazard parameters (maximum regional magnitude M max, β value of G-R relationship and seismic activity rate or intensity λ). For this purpose, a reliable earthquake catalogue which is homogeneous for M W ≥ 5.0 and complete during the period 1900 to 2010 is compiled. The Hindukush-Pamir Himalaya zone has been further divided into two seismic zones of shallow ( h ≤ 70 km) and intermediate depth ( h > 70 km) according to the variation of seismicity with depth in the subduction zone. The estimated earthquake hazard parameters by Bayesian approach are more stable and reliable with low standard deviations than other approaches, but the technique is more time consuming. In this study, quantiles of functions of distributions of true and apparent magnitudes for future time intervals of 5, 10, 20, 50 and 100 years are calculated with confidence limits for probability levels of 50, 70 and 90 % in all seismogenic source zones. The zones of estimated M max greater than 8.0 are related to the Sulaiman-Kirthar ranges, Hindukush-Pamir Himalaya and Himalayan Frontal Thrusts belt; suggesting more seismically hazardous regions in the examined area. The lowest value of M max (6.44) has been calculated in Northern-Pakistan and Hazara syntaxis zone which have estimated lowest activity rate 0.0023 events/day as compared to other zones. The Himalayan Frontal Thrusts belt exhibits higher earthquake magnitude (8.01) in next 100-years with 90 % probability level as compared to other zones, which reveals that this zone is more vulnerable to occurrence of a great earthquake. The obtained results in this study are directly useful for the probabilistic seismic hazard assessment in the examined region of Himalaya.

  17. A Case Study of Geologic Hazards Affecting School Buildings: Evaluating Seismic Structural Vulnerability and Landslide Hazards at Schools in Aizawl, India

    NASA Astrophysics Data System (ADS)

    Perley, M. M.; Guo, J.

    2016-12-01

    India's National School Safety Program (NSSP) aims to assess all government schools in earthquake prone regions of the country. To supplement the Mizoram State Government's recent survey of 141 government schools, we screened an additional 16 private and 4 government schools for structural vulnerabilities due to earthquakes, as well as landslide hazards, in Mizoram's capital of Aizawl. We developed a geomorphologically derived landslide susceptibility matrix, which was cross-checked with Aizawl Municipal Corporation's landslide hazard map (provided by Lettis Consultants International), to determine the geologic hazards at each school. Our research indicates that only 7% of the 22 assessed school buildings are located within low landslide hazard zones; 64% of the school buildings, with approximately 9,500 students, are located within very high or high landslide hazard zones. Rapid Visual Screening (RVS) was used to determine the structural earthquake vulnerability of each school building. RVS is an initial vulnerability assessment procedure used to inventory and rank buildings that may be hazardous during an earthquake. Our study indicates that all of the 22 assessed school buildings have a damageability rating of Grade 3 or higher on the 5-grade EMS scale, suggesting a significant vulnerability and potential for damage in buildings, ranging from widespread cracking of columns and beam column joints to collapse. Additionally, 86% of the schools we visited had reinforced concrete buildings constructed before Aizawl's building regulations were passed in 2007, which can be assumed to lack appropriate seismic reinforcement. Using our findings, we will give recommendations to the Government of Mizoram to prevent unnecessary loss of life by minimizing each school's landslide risk and ensuring schools are earthquake-resistant.

  18. A New Seismic Hazard Model for Mainland China

    NASA Astrophysics Data System (ADS)

    Rong, Y.; Xu, X.; Chen, G.; Cheng, J.; Magistrale, H.; Shen, Z. K.

    2017-12-01

    We are developing a new seismic hazard model for Mainland China by integrating historical earthquake catalogs, geological faults, geodetic GPS data, and geology maps. To build the model, we construct an Mw-based homogeneous historical earthquake catalog spanning from 780 B.C. to present, create fault models from active fault data, and derive a strain rate model based on the most complete GPS measurements and a new strain derivation algorithm. We divide China and the surrounding regions into about 20 large seismic source zones. For each zone, a tapered Gutenberg-Richter (TGR) magnitude-frequency distribution is used to model the seismic activity rates. The a- and b-values of the TGR distribution are calculated using observed earthquake data, while the corner magnitude is constrained independently using the seismic moment rate inferred from the geodetically-based strain rate model. Small and medium sized earthquakes are distributed within the source zones following the location and magnitude patterns of historical earthquakes. Some of the larger earthquakes are distributed onto active faults, based on their geological characteristics such as slip rate, fault length, down-dip width, and various paleoseismic data. The remaining larger earthquakes are then placed into the background. A new set of magnitude-rupture scaling relationships is developed based on earthquake data from China and vicinity. We evaluate and select appropriate ground motion prediction equations by comparing them with observed ground motion data and performing residual analysis. To implement the modeling workflow, we develop a tool that builds upon the functionalities of GEM's Hazard Modeler's Toolkit. The GEM OpenQuake software is used to calculate seismic hazard at various ground motion periods and various return periods. To account for site amplification, we construct a site condition map based on geology. The resulting new seismic hazard maps can be used for seismic risk analysis and management.

  19. 75 FR 41760 - Safety Zone; Transformers 3 Movie Filming, Chicago River, Chicago, IL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-19

    ...-AA00 Safety Zone; Transformers 3 Movie Filming, Chicago River, Chicago, IL AGENCY: Coast Guard, DHS... vessels from the hazards associated with the filming of the major motion picture, Transformers 3. The... Safety Zone; Transformers 3 Movie Filming, Chicago River, Chicago, IL (a) Location. The safety zone will...

  20. 77 FR 38492 - Safety Zone; Olcott Fireworks, Lake Ontario, Olcott, NY

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-28

    ... 1625-AA00 Safety Zone; Olcott Fireworks, Lake Ontario, Olcott, NY AGENCY: Coast Guard, DHS. ACTION... the Olcott fireworks on July 3, 2012. The safety zone is necessary to protect participants, spectators, and vessels from the hazards associated with a firework display. [[Page 38493

  1. 77 FR 30451 - Safety Zone; Olcott Fireworks, Lake Ontario, Olcott, NY

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-23

    ...-AA00 Safety Zone; Olcott Fireworks, Lake Ontario, Olcott, NY AGENCY: Coast Guard, DHS. ACTION: Notice... Ontario during the Olcott fireworks display. The safety zone established by this proposed rule is necessary to protect spectators, participants, and vessels from the hazards associated with firework display...

  2. Study on the Distribution of Geological Hazards Based on Fractal Characteristics - a Case Study of Dachuan District

    NASA Astrophysics Data System (ADS)

    Wang, X.; Liu, H.; Yao, K.; Wei, Y.

    2018-04-01

    It is a complicated process to analyze the cause of geological hazard. Through the analysis function of GIS software, 250 landslides were randomly selected from 395 landslide hazards in the study area, superimposed with the types of landforms, annual rainfall and vegetation coverage respectively. It used box dimension method of fractal dimension theory to study the fractal characteristics of spatial distribution of landslide disasters in Dachuan district, and analyse the statistical results. Research findings showed that the The fractal dimension of the landslides in the Dachuan area is 0.9114, the correlation coefficient is 0.9627, and it has high autocorrelation. Zoning statistics according to various natural factors, the fractal dimension between landslide hazard points and deep hill, middle hill area is strong as well as the area whose average annual rainfall is 1050 mm-1250 mm and vegetation coverage is 30 %-60 %. Superposition of the potential hazard distribution map of single influence factors to get the potential hazard zoning of landslides in the area. Verifying the potential hazard zoning map of the potential landslides with 145 remaining disaster points, among them, there are 74 landslide hazard points in high risk area, accounting for 51.03 % of the total. There are 59 landslides in the middle risk area, accounting for 40.69 % of the total, and 12 in the low risk area, accounting for 8.28 % of the total. The matching degree of the verifying result and the potential hazard zoning is high. Therefore, the fractal dimension value divided the degree of geological disaster susceptibility can be described the influence degree of each influence factor to geological disaster point more intuitively, it also can divide potential disaster risk areas and provide visual data support for effective management of geological disasters.

  3. Natural hazard risk assessment and management in the Matter valley, Swiss Alps

    NASA Astrophysics Data System (ADS)

    Herz, T.; King, L.; Philippi, S.

    2003-04-01

    The Matter valley has a length of about 40 km and is surrounded by some of the highest peaks of the Alps resulting in extreme altitudinal differences and a continental character of the climate. These climatic conditions cause a high glacier equilibrium line and therefore a periglacial belt of a large vertical extend. Due to the high relief energy, all kinds of natural hazards typical for high mountain environments occur. The steep western slopes are dominated by rockfalls, slope instabilities in bedrock and avalanches. A widespread cover of unconsolidated sediments on the eastern slopes induces landslides and debris flows, which often reach down to the valley bottom where they can dam up the river. Increasing population and modern land use forms required a more and more sensitive attitude towards natural hazard potentials in this endangered area. Assessment and management of natural hazard risks have been much improved during the last fifteen years and increasing amounts of money are spent each year in order to safeguard settlements, traffic lines, and other objects of the technical infrastructure. Numerous investigations concerning natural hazard risks have been made and the results are considered in the actual land use planning of the Canton. The planning law of the Canton Valais defines risk zones as areas, which are endangered by natural hazards like avalanches, rockfalls, landslides and floodings. Risk assessment is done by overview maps (scale 1:25,000) which are specified by detailed risk analyses consisting of registers and detailed maps (scale 1:2,000 to 1:10,000). These analyses are integrated in the land zoning by defining zones of high, medium and low danger, associated with corresponding prohibitions, restrictions and conditions for utilisation. At present, the incorporation of the avalanche and rockfall register in local zoning plans is completed in most communities of the Canton Valais. An additional inventory of 200 slope instabilities was

  4. 77 FR 35857 - Safety Zone, Fireworks Display, Lake Superior; Duluth, MN

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-15

    ... 1625-AA00 Safety Zone, Fireworks Display, Lake Superior; Duluth, MN AGENCY: Coast Guard, DHS. ACTION... of Lake Superior during the Duluth Fourth Fest fireworks display. This temporary safety zone is necessary to protect spectators and vessels from the hazards associated with fireworks displays. DATES: This...

  5. Lava inundation zone maps for Mauna Loa, Island of Hawaiʻi, Hawaii

    USGS Publications Warehouse

    Trusdell, Frank A.; Zoeller, Michael H.

    2017-10-12

    Lava flows from Mauna Loa volcano, on the Island of Hawaiʻi, constitute a significant hazard to people and property. This report addresses those lava flow hazards, mapping 18 potential lava inundation zones on the island.

  6. The Zoning of Forest Fire Potential of Gulestan Province Forests Using Granular Computing and MODIS Images

    NASA Astrophysics Data System (ADS)

    Jalilzadeh Shadlouei, A.; Delavar, M. R.

    2013-09-01

    There are many vegetation in Iran. This is because of extent of Iran and its width. One of these vegetation is forest vegetation most prevalent in Northern provinces named Guilan, Mazandaran, Gulestan, Ardebil as well as East Azerbaijan. These forests are always threatened by natural forest fires so much so that there have been reports of tens of fires in recent years. Forest fires are one of the major environmental as well as economic, social and security concerns in the world causing much damages. According to climatology, forest fires are one of the important factors in the formation and dispersion of vegetation. Also, regarding the environment, forest fires cause the emission of considerable amounts of greenhouse gases, smoke and dust into the atmosphere which in turn causes the earth temperature to rise up and are unhealthy to humans, animals and vegetation. In agriculture droughts are the usual side effects of these fires. The causes of forest fires could be categorized as either Human or Natural Causes. Naturally, it is impossible to completely contain forest fires; however, areas with high potentials of fire could be designated and analysed to decrease the risk of fires. The zoning of forest fire potential is a multi-criteria problem always accompanied by inherent uncertainty like other multi-criteria problems. So far, various methods and algorithm for zoning hazardous areas via Remote Sensing (RS) and Geospatial Information System (GIS) have been offered. This paper aims at zoning forest fire potential of Gulestan Province of Iran forests utilizing Remote Sensing, Geospatial Information System, meteorological data, MODIS images and granular computing method. Granular computing is part of granular mathematical and one way of solving multi-criteria problems such forest fire potential zoning supervised by one expert or some experts , and it offers rules for classification with the least inconsistencies. On the basis of the experts' opinion, 6 determinative

  7. Probabilistic seismic hazard analysis for Sumatra, Indonesia and across the Southern Malaysian Peninsula

    USGS Publications Warehouse

    Petersen, M.D.; Dewey, J.; Hartzell, S.; Mueller, C.; Harmsen, S.; Frankel, A.D.; Rukstales, K.

    2004-01-01

    The ground motion hazard for Sumatra and the Malaysian peninsula is calculated in a probabilistic framework, using procedures developed for the US National Seismic Hazard Maps. We constructed regional earthquake source models and used standard published and modified attenuation equations to calculate peak ground acceleration at 2% and 10% probability of exceedance in 50 years for rock site conditions. We developed or modified earthquake catalogs and declustered these catalogs to include only independent earthquakes. The resulting catalogs were used to define four source zones that characterize earthquakes in four tectonic environments: subduction zone interface earthquakes, subduction zone deep intraslab earthquakes, strike-slip transform earthquakes, and intraplate earthquakes. The recurrence rates and sizes of historical earthquakes on known faults and across zones were also determined from this modified catalog. In addition to the source zones, our seismic source model considers two major faults that are known historically to generate large earthquakes: the Sumatran subduction zone and the Sumatran transform fault. Several published studies were used to describe earthquakes along these faults during historical and pre-historical time, as well as to identify segmentation models of faults. Peak horizontal ground accelerations were calculated using ground motion prediction relations that were developed from seismic data obtained from the crustal interplate environment, crustal intraplate environment, along the subduction zone interface, and from deep intraslab earthquakes. Most of these relations, however, have not been developed for large distances that are needed for calculating the hazard across the Malaysian peninsula, and none were developed for earthquake ground motions generated in an interplate tectonic environment that are propagated into an intraplate tectonic environment. For the interplate and intraplate crustal earthquakes, we have applied ground

  8. Seismic hazard estimation of northern Iran using smoothed seismicity

    NASA Astrophysics Data System (ADS)

    Khoshnevis, Naeem; Taborda, Ricardo; Azizzadeh-Roodpish, Shima; Cramer, Chris H.

    2017-07-01

    This article presents a seismic hazard assessment for northern Iran, where a smoothed seismicity approach has been used in combination with an updated seismic catalog and a ground motion prediction equation recently found to yield good fit with data. We evaluate the hazard over a geographical area including the seismic zones of Azerbaijan, the Alborz Mountain Range, and Kopeh-Dagh, as well as parts of other neighboring seismic zones that fall within our region of interest. In the chosen approach, seismic events are not assigned to specific faults but assumed to be potential seismogenic sources distributed within regular grid cells. After performing the corresponding magnitude conversions, we decluster both historical and instrumental seismicity catalogs to obtain earthquake rates based on the number of events within each cell, and smooth the results to account for the uncertainty in the spatial distribution of future earthquakes. Seismicity parameters are computed for each seismic zone separately, and for the entire region of interest as a single uniform seismotectonic region. In the analysis, we consider uncertainties in the ground motion prediction equation, the seismicity parameters, and combine the resulting models using a logic tree. The results are presented in terms of expected peak ground acceleration (PGA) maps and hazard curves at selected locations, considering exceedance probabilities of 2 and 10% in 50 years for rock site conditions. According to our results, the highest levels of hazard are observed west of the North Tabriz and east of the North Alborz faults, where expected PGA values are between about 0.5 and 1 g for 10 and 2% probability of exceedance in 50 years, respectively. We analyze our results in light of similar estimates available in the literature and offer our perspective on the differences observed. We find our results to be helpful in understanding seismic hazard for northern Iran, but recognize that additional efforts are necessary to

  9. Using video games for volcanic hazard education and communication: an assessment of the method and preliminary results

    NASA Astrophysics Data System (ADS)

    Mani, Lara; Cole, Paul D.; Stewart, Iain

    2016-07-01

    This paper presents the findings from a study aimed at understanding whether video games (or serious games) can be effective in enhancing volcanic hazard education and communication. Using the eastern Caribbean island of St. Vincent, we have developed a video game - St. Vincent's Volcano - for use in existing volcano education and outreach sessions. Its twin aims are to improve residents' knowledge of potential future eruptive hazards (ash fall, pyroclastic flows and lahars) and to integrate traditional methods of education in a more interactive manner. Here, we discuss the process of game development including concept design through to the final implementation on St. Vincent. Preliminary results obtained from the final implementation (through pre- and post-test knowledge quizzes) for both student and adult participants provide indications that a video game of this style may be effective in improving a learner's knowledge. Both groups of participants demonstrated a post-test increase in their knowledge quiz score of 9.3 % for adults and 8.3 % for students and, when plotted as learning gains (Hake, 1998), show similar overall improvements (0.11 for adults and 0.09 for students). These preliminary findings may provide a sound foundation for the increased integration of emerging technologies within traditional education sessions. This paper also shares some of the challenges and lessons learnt throughout the development and testing processes and provides recommendations for researchers looking to pursue a similar study.

  10. Computerized Workstation for Tsunami Hazard Monitoring

    NASA Astrophysics Data System (ADS)

    Lavrentiev-Jr, Mikhail; Marchuk, Andrey; Romanenko, Alexey; Simonov, Konstantin; Titov, Vasiliy

    2010-05-01

    We present general structure and functionality of the proposed Computerized Workstation for Tsunami Hazard Monitoring (CWTHM). The tool allows interactive monitoring of hazard, tsunami risk assessment, and mitigation - at all stages, from the period of strong tsunamigenic earthquake preparation to inundation of the defended coastal areas. CWTHM is a software-hardware complex with a set of software applications, optimized to achieve best performance on hardware platforms in use. The complex is calibrated for selected tsunami source zone(s) and coastal zone(s) to be defended. The number of zones (both source and coastal) is determined, or restricted, by available hardware resources. The presented complex performs monitoring of selected tsunami source zone via the Internet. The authors developed original algorithms, which enable detection of the preparation zone of the strong underwater earthquake automatically. For the so-determined zone the event time, magnitude and spatial location of tsunami source are evaluated by means of energy of the seismic precursors (foreshocks) analysis. All the above parameters are updated after each foreshock. Once preparing event is detected, several scenarios are forecasted for wave amplitude parameters as well as the inundation zone. Estimations include the lowest and the highest wave amplitudes and the least and the most inundation zone. In addition to that, the most probable case is calculated. In case of multiple defended coastal zones, forecasts and estimates can be done in parallel. Each time the simulated model wave reaches deep ocean buoys or tidal gauge, expected values of wave parameters and inundation zones are updated with historical events information and pre-calculated scenarios. The Method of Splitting Tsunami (MOST) software package is used for mathematical simulation. The authors suggest code acceleration for deep water wave propagation. As a result, performance is 15 times faster compared to MOST, original version

  11. Event probabilities and impact zones for hazardous materials accidents on railroads

    DOT National Transportation Integrated Search

    1983-11-01

    Procedures are presented for evaluating the probability and impacts of hazardous material accidents in rail transportation. The significance of track class for accident frequencies and of train speed for accident severity is quantified. Special atten...

  12. Update of map the volcanic hazard in the Ceboruco volcano, Nayarit, Mexico

    NASA Astrophysics Data System (ADS)

    Suarez-Plascencia, C.; Camarena-Garcia, M. A.; Nunez-Cornu, F. J.

    2012-12-01

    (Hibiscus sabdariffa). Recently it has established tomato and green pepper crops in greenhouses. The regional commercial activities are concentrated in the localities of Ixtlán, Jala and Ahuacatlán. The updated hazard maps are: a) Hazard map of pyroclastic flows, b) Hazard map of lahars and debris flow, and c) Hazard map of ash-fall. The cartographic and database information obtained will be the basis for updating the Operational Plan of the Ceboruco Volcano by the State Civil & Fire Protection Unit of Nayarit, Mexico, and the urban development plans of surrounding municipalities, in order to reduce their vulnerability to the hazards of the volcanic activity.

  13. Unexpected earthquake hazard revealed by Holocene rupture on the Kenchreai Fault (central Greece): Implications for weak sub-fault shear zones

    NASA Astrophysics Data System (ADS)

    Copley, Alex; Grützner, Christoph; Howell, Andy; Jackson, James; Penney, Camilla; Wimpenny, Sam

    2018-03-01

    High-resolution elevation models, palaeoseismic trenching, and Quaternary dating demonstrate that the Kenchreai Fault in the eastern Gulf of Corinth (Greece) has ruptured in the Holocene. Along with the adjacent Pisia and Heraion Faults (which ruptured in 1981), our results indicate the presence of closely-spaced and parallel normal faults that are simultaneously active, but at different rates. Such a configuration allows us to address one of the major questions in understanding the earthquake cycle, specifically what controls the distribution of interseismic strain accumulation? Our results imply that the interseismic loading and subsequent earthquakes on these faults are governed by weak shear zones in the underlying ductile crust. In addition, the identification of significant earthquake slip on a fault that does not dominate the late Quaternary geomorphology or vertical coastal motions in the region provides an important lesson in earthquake hazard assessment.

  14. Water Induced Hazard Mapping in Nepal: A Case Study of East Rapti River Basin

    NASA Astrophysics Data System (ADS)

    Neupane, N.

    2010-12-01

    This paper presents illustration on typical water induced hazard mapping of East Rapti River Basin under the DWIDP, GON. The basin covers an area of 2398 sq km. The methodology includes making of base map of water induced disaster in the basin. Landslide hazard maps were prepared by SINMAP approach. Debris flow hazard maps were prepared by considering geology, slope, and saturation. Flood hazard maps were prepared by using two approaches: HEC-RAS and Satellite Imagery Interpretation. The composite water-induced hazard maps were produced by compiling the hazards rendered by landslide, debris flow, and flood. The monsoon average rainfall in the basin is 1907 mm whereas maximum 24 hours precipitation is 456.8 mm. The peak discharge of the Rapati River in the year of 1993 at station was 1220 cu m/sec. This discharge nearly corresponds to the discharge of 100-year return period. The landslides, floods, and debris flows triggered by the heavy rain of July 1993 claimed 265 lives, affected 148516 people, and damaged 1500 houses in the basin. The field investigation and integrated GIS interpretation showed that the very high and high landslide hazard zones collectively cover 38.38% and debris flow hazard zone constitutes 6.58%. High flood hazard zone occupies 4.28% area of the watershed. Mitigation measures are recommendated according to Integrated Watershed Management Approach under which the non-structural and structural measures are proposed. The non-structural measures includes: disaster management training, formulation of evacuation system (arrangement of information plan about disaster), agriculture management practices, protection of water sources, slope protections and removal of excessive bed load from the river channel. Similarly, structural measures such as dike, spur, rehabilitation of existing preventive measures and river training at some locations are recommendated. The major factors that have contributed to induce high incidences of various types of mass

  15. 78 FR 21136 - Changes in Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-09

    ... zone designations, or the regulatory floodway (hereinafter referred to as flood hazard determinations), as shown on the Flood Insurance Rate Maps (FIRMs), and where applicable, in the supporting Flood... appeals to the Chief Executive Officer of the community as listed in the table below. FOR FURTHER...

  16. 78 FR 35300 - Changes in Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-12

    ... zone designations, or the regulatory floodway (hereinafter referred to as flood hazard determinations), as shown on the Flood Insurance Rate Maps (FIRMs), and where applicable, in the supporting Flood... appeals to the Chief Executive Officer of the community as listed in the table below. FOR FURTHER...

  17. Exploring uncertainties in probabilistic seismic hazard estimates for Quito

    NASA Astrophysics Data System (ADS)

    Beauval, Celine; Yepes, Hugo; Audin, Laurence; Alvarado, Alexandra; Nocquet, Jean-Mathieu

    2016-04-01

    In the present study, probabilistic seismic hazard estimates at 475 years return period for Quito, capital city of Ecuador, show that the crustal host zone is the only source zone that determines the city's hazard levels for such return period. Therefore, the emphasis is put on identifying the uncertainties characterizing the host zone, i.e. uncertainties in the recurrence of earthquakes expected in the zone and uncertainties on the ground motions that these earthquakes may produce. As the number of local strong-ground motions is still scant, ground-motion prediction equations are imported from other regions. Exploring recurrence models for the host zone based on different observations and assumptions, and including three GMPE candidates (Akkar and Bommer 2010, Zhao et al. 2006, Boore and Atkinson 2008), we obtain a significant variability on the estimated acceleration at 475 years (site coordinates: -78.51 in longitude and -0.2 in latitude, VS30 760 m/s): 1) Considering historical earthquake catalogs, and relying on frequency-magnitude distributions where rates for magnitudes 6-7 are extrapolated from statistics of magnitudes 4.5-6.0 mostly in the 20th century, the acceleration at the PGA varies between 0.28g and 0.55g with a mean value around 0.4g. The results show that both the uncertainties in the GMPE choice and in the seismicity model are responsible for this variability. 2) Considering slip rates inferred form geodetic measurements across the Quito fault system, and assuming that most of the deformation occurs seismically (conservative hypothesis), leads to a much greater range of accelerations, 0.43 to 0.73g for the PGA (with a mean of 0.55g). 3) Considering slip rates inferred from geodetic measurements, and assuming that 50% only of the deformation is released in earthquakes (partially locked fault, model based on 15 years of GPS data), leads to a range of accelerations 0.32g to 0.58g for the PGA, with a mean of 0.42g. These accelerations are in agreement

  18. Cascadia Subduction Zone

    USGS Publications Warehouse

    Frankel, Arthur D.; Petersen, Mark D.

    2008-01-01

    The geometry and recurrence times of large earthquakes associated with the Cascadia Subduction Zone (CSZ) were discussed and debated at a March 28-29, 2006 Pacific Northwest workshop for the USGS National Seismic Hazard Maps. The CSZ is modeled from Cape Mendocino in California to Vancouver Island in British Columbia. We include the same geometry and weighting scheme as was used in the 2002 model (Frankel and others, 2002) based on thermal constraints (Fig. 1; Fluck and others, 1997 and a reexamination by Wang et al., 2003, Fig. 11, eastern edge of intermediate shading). This scheme includes four possibilities for the lower (eastern) limit of seismic rupture: the base of elastic zone (weight 0.1), the base of transition zone (weight 0.2), the midpoint of the transition zone (weight 0.2), and a model with a long north-south segment at 123.8? W in the southern and central portions of the CSZ, with a dogleg to the northwest in the northern portion of the zone (weight 0.5). The latter model was derived from the approximate average longitude of the contour of the 30 km depth of the CSZ as modeled by Fluck et al. (1997). A global study of the maximum depth of thrust earthquakes on subduction zones by Tichelaar and Ruff (1993) indicated maximum depths of about 40 km for most of the subduction zones studied, although the Mexican subduction zone had a maximum depth of about 25 km (R. LaForge, pers. comm., 2006). The recent inversion of GPS data by McCaffrey et al. (2007) shows a significant amount of coupling (a coupling factor of 0.2-0.3) as far east as 123.8? West in some portions of the CSZ. Both of these lines of evidence lend support to the model with a north-south segment at 123.8? W.

  19. Volcanic hazard at Vesuvius: An analysis for the revision of the current emergency plan

    NASA Astrophysics Data System (ADS)

    Rolandi, G.

    2010-01-01

    Mt Somma-Vesuvius is a composite volcano on the southern margin of the Campanian Plain which has been active since 39 ka BP and which poses a hazard and risk for the people living around its base. The volcano last erupted in 1944, and since this date has been in repose. As the level of volcanic risk perception is very high in the scientific community, in 1995 a hazard and risk evaluation, and evacuation plan, was published by the Italian Department of Civil Protection ( Dipartimento della Protezione Civile) . The plan considered the response to a worst-case scenario, taken to be a subplinian eruption on the scale of the 1631 AD eruption, and based on a volcanological reconstruction of this eruption, assumes that a future eruption will be preceded by about two weeks of ground uplift at the volcano's summit, and about one week of locally perceptible seismic activity. Moreover, by analogy with the 1631 events, the plan assumes that ash fall and pyroclastic flow should be recognized as the primary volcanic hazard. To design the response to this subplinian eruption, the emergency plan divided the Somma-Vesuvius region into three hazard zones affected by pyroclastic flows (Red Zone), tephra fall (Yellow and Green Zone), and floods (Blue Zone). The plan at present is the subject of much controversy, and, in our opinion, several assumptions need to be modified according to the following arguments: a) For the precursory unrest problem, recent scientific studies show that at present neither forecast capability is realistic, so that the assumption that a future eruption will be preceded by about two weeks of forecasts need to be modified; b) Regarding the exposure of the Vesuvius region to flow phenomena, the Red Zone presents much inconsistency near the outer border as it has been defined by the administrative limits of the eighteen municipality area lying on the volcano. As this outer limit shows no uniformity, a pressing need exists to define appropriately the flow hazard

  20. Understanding Seismotectonic Aspects of Central and South American Subduction Zones

    NASA Astrophysics Data System (ADS)

    Vargas-Jiménez, Carlos A.; Monsalve-Jaramillo, Hugo; Huérfano, Victor

    2004-10-01

    The Circum-Pacific, and particularly the Central and South America, subduction zones are complex structures that are subject to frequent, large-magnitude earthquakes, volcanic activity, tsunamis, and geological hazards. Among these natural hazards, earthquakes produce the most significant social and economic impacts in Latin America, and the subduction zones therefore demand constant vigilance and intensive study. The American continent has witnessed serveral earthquakes that rank among the most destrive in the world. Earthquakes such as the ones that occurred in Colombia-Ecuador [Mw = 8.9, 1906], Chile [Mw = 9.6, 1960; Mw = 8.9, 1995], Mexico [Mw = 9.6, 1985], and Peru [Mw = 8.0, 2001], as well as a number of destuctive events related to crustal fault systems and volcanic eruptions [e.g., Soufrière, El Ruiz, Galeras, ect.], have produced significant human and economic loss.The latent seismic hazards in the Caribbean, and Central and South America demand from the regional Earth sciences community accurate models to explain the mechanisms of these natural phenomena.

  1. 77 FR 38482 - Safety Zone; Oswego Independence Celebration Fireworks, Oswego Harbor, Oswego, NY

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-28

    ...-AA00 Safety Zone; Oswego Independence Celebration Fireworks, Oswego Harbor, Oswego, NY AGENCY: Coast... Oswego Harbor during the Oswego Independence Celebration Fireworks display. This temporary safety zone is necessary to protect spectators and vessels from the hazards associated with a fireworks display. DATES...

  2. USGS National Seismic Hazard Maps

    USGS Publications Warehouse

    Frankel, A.D.; Mueller, C.S.; Barnhard, T.P.; Leyendecker, E.V.; Wesson, R.L.; Harmsen, S.C.; Klein, F.W.; Perkins, D.M.; Dickman, N.C.; Hanson, S.L.; Hopper, M.G.

    2000-01-01

    The U.S. Geological Survey (USGS) recently completed new probabilistic seismic hazard maps for the United States, including Alaska and Hawaii. These hazard maps form the basis of the probabilistic component of the design maps used in the 1997 edition of the NEHRP Recommended Provisions for Seismic Regulations for New Buildings and Other Structures, prepared by the Building Seismic Safety Council arid published by FEMA. The hazard maps depict peak horizontal ground acceleration and spectral response at 0.2, 0.3, and 1.0 sec periods, with 10%, 5%, and 2% probabilities of exceedance in 50 years, corresponding to return times of about 500, 1000, and 2500 years, respectively. In this paper we outline the methodology used to construct the hazard maps. There are three basic components to the maps. First, we use spatially smoothed historic seismicity as one portion of the hazard calculation. In this model, we apply the general observation that moderate and large earthquakes tend to occur near areas of previous small or moderate events, with some notable exceptions. Second, we consider large background source zones based on broad geologic criteria to quantify hazard in areas with little or no historic seismicity, but with the potential for generating large events. Third, we include the hazard from specific fault sources. We use about 450 faults in the western United States (WUS) and derive recurrence times from either geologic slip rates or the dating of pre-historic earthquakes from trenching of faults or other paleoseismic methods. Recurrence estimates for large earthquakes in New Madrid and Charleston, South Carolina, were taken from recent paleoliquefaction studies. We used logic trees to incorporate different seismicity models, fault recurrence models, Cascadia great earthquake scenarios, and ground-motion attenuation relations. We present disaggregation plots showing the contribution to hazard at four cities from potential earthquakes with various magnitudes and

  3. 77 FR 29251 - Safety Zone; Carnival Fireworks Display, Nantasket Beach, Hull, MA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-17

    ...-AA00 Safety Zone; Carnival Fireworks Display, Nantasket Beach, Hull, MA AGENCY: Coast Guard, DHS... zone on the navigable waters off of Nantasket Beach in the vicinity of Hull, MA for a Carnival... spectators and vessels from the hazards associated with fireworks displays. Discussion of Proposed Rule Hull...

  4. 76 FR 37647 - Safety Zone; Missouri River From the Border Between Montana and North Dakota

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-28

    ... destruction, loss or injury due to hazards associated with rising flood water. Operation in this zone is... vessels from destruction, loss or injury due to the hazards associated with rising flood water. The... destruction, loss or injury due to the hazards associated with rising flood water. If you are a small business...

  5. Social vulnerability as a contributing factor to disasters in Central America: A case study at San Vicente volcano, El Salvador

    NASA Astrophysics Data System (ADS)

    Bowman, L. J.; Henquinet, K. B.; Gierke, J. S.; Rose, W. I.

    2012-12-01

    El Salvador's geographic location on the Pacific Ring of Fire at the juncture of the Caribbean and Cocos plates exposes its population to various natural hazards, including volcanic eruptions (e.g., Santa Ana in 2005), earthquakes (e.g., January 13 and February 13, 2001), and landslides and flooding due to tropical rainfall events (e.g., Hurricane Mitch in 1998, Hurricane Stan in 2005). Such hazards can be devastating anywhere, but the condition of social vulnerability in which many Salvadorans currently live exacerbates the impacts of these hazards. Aspects contributing to most rural Salvadorans being marginalized include a colonial history marked by ethnic discrimination and laws prohibiting land ownership, lack of access to desirable land in an agrarian society, a poor education system, global economic policies that foster inequality, political marginalization, a bloody civil conflict, and rampant criminality and violence. In November 2009, an extreme rainfall event triggered landslides and lahars killing over 200 people at San Vicente volcano. This disaster brought to light weaknesses in disaster preparedness and response plans. Despite the existence of recent hazard maps and lahar inundation models (2001), and the occurrence of a similar, deadly event in 1934, the population appeared to be unaware of the risk, and lacked the organization and decision-making protocols to adequately deal with the emergency. Therefore, in the aftermath of the 2009 lahars, much of the focus on disaster risk reduction (DRR) initiatives has been aimed at the communities affected by this most recent event. Our study examines root causes of social vulnerability and assesses the apparent impacts of these interventions on the population, including individual's perceptions regarding these risk-reducing interventions. Two years after the event, though aid abounds, many people remain vulnerable to hazards in this area. Semi-structured interviews were completed with survivors of the 2009

  6. Probabilistic Tsunami Hazard Analysis

    NASA Astrophysics Data System (ADS)

    Thio, H. K.; Ichinose, G. A.; Somerville, P. G.; Polet, J.

    2006-12-01

    The recent tsunami disaster caused by the 2004 Sumatra-Andaman earthquake has focused our attention to the hazard posed by large earthquakes that occur under water, in particular subduction zone earthquakes, and the tsunamis that they generate. Even though these kinds of events are rare, the very large loss of life and material destruction caused by this earthquake warrant a significant effort towards the mitigation of the tsunami hazard. For ground motion hazard, Probabilistic Seismic Hazard Analysis (PSHA) has become a standard practice in the evaluation and mitigation of seismic hazard to populations in particular with respect to structures, infrastructure and lifelines. Its ability to condense the complexities and variability of seismic activity into a manageable set of parameters greatly facilitates the design of effective seismic resistant buildings but also the planning of infrastructure projects. Probabilistic Tsunami Hazard Analysis (PTHA) achieves the same goal for hazards posed by tsunami. There are great advantages of implementing such a method to evaluate the total risk (seismic and tsunami) to coastal communities. The method that we have developed is based on the traditional PSHA and therefore completely consistent with standard seismic practice. Because of the strong dependence of tsunami wave heights on bathymetry, we use a full waveform tsunami waveform computation in lieu of attenuation relations that are common in PSHA. By pre-computing and storing the tsunami waveforms at points along the coast generated for sets of subfaults that comprise larger earthquake faults, we can efficiently synthesize tsunami waveforms for any slip distribution on those faults by summing the individual subfault tsunami waveforms (weighted by their slip). This efficiency make it feasible to use Green's function summation in lieu of attenuation relations to provide very accurate estimates of tsunami height for probabilistic calculations, where one typically computes

  7. Reducing risk where tectonic plates collide—U.S. Geological Survey subduction zone science plan

    USGS Publications Warehouse

    Gomberg, Joan S.; Ludwig, Kristin A.; Bekins, Barbara; Brocher, Thomas M.; Brock, John C.; Brothers, Daniel; Chaytor, Jason D.; Frankel, Arthur; Geist, Eric L.; Haney, Matt; Hickman, Stephen H.; Leith, William S.; Roeloffs, Evelyn A.; Schulz, William H.; Sisson, Thomas W.; Wallace, Kristi; Watt, Janet; Wein, Anne M.

    2017-06-19

    The U.S. Geological Survey (USGS) serves the Nation by providing reliable scientific information and tools to build resilience in communities exposed to subduction zone earthquakes, tsunamis, landslides, and volcanic eruptions. Improving the application of USGS science to successfully reduce risk from these events relies on whole community efforts, with continuing partnerships among scientists and stakeholders, including researchers from universities, other government labs and private industry, land-use planners, engineers, policy-makers, emergency managers and responders, business owners, insurance providers, the media, and the general public.Motivated by recent technological advances and increased awareness of our growing vulnerability to subduction-zone hazards, the USGS is uniquely positioned to take a major step forward in the science it conducts and products it provides, building on its tradition of using long-term monitoring and research to develop effective products for hazard mitigation. This science plan provides a blueprint both for prioritizing USGS science activities and for delineating USGS interests and potential participation in subduction zone science supported by its partners.The activities in this plan address many USGS stakeholder needs:High-fidelity tools and user-tailored information that facilitate increasingly more targeted, neighborhood-scale decisions to mitigate risks more cost-effectively and ensure post-event operability. Such tools may include maps, tables, and simulated earthquake ground-motion records conveying shaking intensity and frequency. These facilitate the prioritization of retrofitting of vulnerable infrastructure;Information to guide local land-use and response planning to minimize development in likely hazardous zones (for example, databases, maps, and scenario documents to guide evacuation route planning in communities near volcanoes, along coastlines vulnerable to tsunamis, and built on landslide-prone terrain);New tools

  8. 78 FR 67086 - Safety Zone, Submarine Cable Replacement Operations, Kent Island Narrows; Queen Anne's County, MD

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-08

    ... 1625-AA00 Safety Zone, Submarine Cable Replacement Operations, Kent Island Narrows; Queen Anne's County... Guard proposes to establish a temporary safety zone encompassing certain waters of Kent Island Narrows... potential safety hazards associated with the bridge project. Entry into this zone would be prohibited unless...

  9. 76 FR 62692 - Atlantic Ocean off Wallops Island and Chincoteague Inlet, Virginia; Danger Zone

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-11

    ... Administration, Goddard Space Flight Center, Wallops Flight Facility conducts rocket-launching operations. The proposed amendment is necessary to protect the public from hazards associated with the rocket-launching... permanent danger zone is necessary to protect the public from hazards associated with rocket-launching...

  10. Volcanic hazard management in dispersed volcanism areas

    NASA Astrophysics Data System (ADS)

    Marrero, Jose Manuel; Garcia, Alicia; Ortiz, Ramon

    2014-05-01

    Traditional volcanic hazard methodologies were developed mainly to deal with the big stratovolcanoes. In such type of volcanoes, the hazard map is an important tool for decision-makers not only during a volcanic crisis but also for territorial planning. According to the past and recent eruptions of a volcano, all possible volcanic hazards are modelled and included in the hazard map. Combining the hazard map with the Event Tree the impact area can be zoned and defining the likely eruptive scenarios that will be used during a real volcanic crisis. But in areas of disperse volcanism is very complex to apply the same volcanic hazard methodologies. The event tree do not take into account unknown vents, because the spatial concepts included in it are only related with the distance reached by volcanic hazards. The volcanic hazard simulation is also difficult because the vent scatter modifies the results. The volcanic susceptibility try to solve this problem, calculating the most likely areas to have an eruption, but the differences between low and large values obtained are often very small. In these conditions the traditional hazard map effectiveness could be questioned, making necessary a change in the concept of hazard map. Instead to delimit the potential impact areas, the hazard map should show the expected behaviour of the volcanic activity and how the differences in the landscape and internal geo-structures could condition such behaviour. This approach has been carried out in La Palma (Canary Islands), combining the concept of long-term hazard map with the short-term volcanic scenario to show the expected volcanic activity behaviour. The objective is the decision-makers understand how a volcanic crisis could be and what kind of mitigation measurement and strategy could be used.

  11. 76 FR 38020 - Safety Zone; Bay Point Fireworks, Bay Point Marina; Marblehead, OH

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-29

    ...-AA00 Safety Zone; Bay Point Fireworks, Bay Point Marina; Marblehead, OH AGENCY: Coast Guard, DHS... from portions of Lake Erie for the Bay Point Fireworks. This temporary safety zone is necessary to protect spectators and vessels from the hazards associated with fireworks displays. DATES: This regulation...

  12. 40 CFR 264.278 - Unsaturated zone monitoring.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... or operator must monitor the soil and soil-pore liquid to determine whether hazardous constituents... unsaturated zone monitoring system that includes soil monitoring using soil cores and soil-pore liquid... the quality of background soil-pore liquid quality and the chemical make-up of soil that has not been...

  13. 40 CFR 264.278 - Unsaturated zone monitoring.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... or operator must monitor the soil and soil-pore liquid to determine whether hazardous constituents... unsaturated zone monitoring system that includes soil monitoring using soil cores and soil-pore liquid... the quality of background soil-pore liquid quality and the chemical make-up of soil that has not been...

  14. 40 CFR 264.278 - Unsaturated zone monitoring.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... or operator must monitor the soil and soil-pore liquid to determine whether hazardous constituents... unsaturated zone monitoring system that includes soil monitoring using soil cores and soil-pore liquid... the quality of background soil-pore liquid quality and the chemical make-up of soil that has not been...

  15. 40 CFR 264.278 - Unsaturated zone monitoring.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... or operator must monitor the soil and soil-pore liquid to determine whether hazardous constituents... unsaturated zone monitoring system that includes soil monitoring using soil cores and soil-pore liquid... the quality of background soil-pore liquid quality and the chemical make-up of soil that has not been...

  16. 40 CFR 264.278 - Unsaturated zone monitoring.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... or operator must monitor the soil and soil-pore liquid to determine whether hazardous constituents... unsaturated zone monitoring system that includes soil monitoring using soil cores and soil-pore liquid... the quality of background soil-pore liquid quality and the chemical make-up of soil that has not been...

  17. 75 FR 69032 - Naval Surface Warfare Center, Potomac River, Dahlgren, VA; Danger Zone

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-10

    ... hazardous operations such as firing large and small caliber guns and projectiles, aerial bombing, use of... protect the public from hazardous operations such as firing large and small caliber guns and projectiles... zone to include firing of large or small caliber guns and projectiles, aerial bombing, use of directed...

  18. VOLCWORKS: A suite for optimization of hazards mapping

    NASA Astrophysics Data System (ADS)

    Delgado Granados, H.; Ramírez Guzmán, R.; Villareal Benítez, J. L.; García Sánchez, T.

    2012-04-01

    Making hazards maps is a process linking basic science, applied science and engineering for the benefit of the society. The methodologies for hazards maps' construction have evolved enormously together with the tools that allow the forecasting of the behavior of the materials produced by different eruptive processes. However, in spite of the development of tools and evolution of methodologies, the utility of hazards maps has not changed: prevention and mitigation of volcanic disasters. Integration of different tools for simulation of different processes for a single volcano is a challenge to be solved using software tools including processing, simulation and visualization techniques, and data structures in order to build up a suit that helps in the construction process starting from the integration of the geological data, simulations and simplification of the output to design a hazards/scenario map. Scientific visualization is a powerful tool to explore and gain insight into complex data from instruments and simulations. The workflow from data collection, quality control and preparation for simulations, to achieve visual and appropriate presentation is a process that is usually disconnected, using in most of the cases different applications for each of the needed processes, because it requires many tools that are not built for the solution of a specific problem, or were developed by research groups to solve particular tasks, but disconnected. In volcanology, due to its complexity, groups typically examine only one aspect of the phenomenon: ash dispersal, laharic flows, pyroclastic flows, lava flows, and ballistic projectile ejection, among others. However, when studying the hazards associated to the activity of a volcano, it is important to analyze all the processes comprehensively, especially for communication of results to the end users: decision makers and planners. In order to solve this problem and connect different parts of a workflow we are developing the

  19. 78 FR 46810 - Safety Zone; Motion Picture Filming; Chicago River; Chicago, IL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-02

    ...-AA00 Safety Zone; Motion Picture Filming; Chicago River; Chicago, IL AGENCY: Coast Guard, DHS. ACTION... portion of the Chicago River due to the filming of a motion picture. These temporary safety zones are..., rigging, and other hazards involved in the filming of a motion picture. DATES: This rule will be enforced...

  20. Stratigraphic framework of Holocene volcaniclastic deposits, Akutan Volcano, east-central Aleutian Islands, Alaska

    USGS Publications Warehouse

    Waythomas, C.F.

    1999-01-01

    Akutan Volcano is one of the most active volcanoes in the Aleutian arc, but until recently little was known about its history and eruptive character. Following a brief but sustained period of intense seismic activity in March 1996, the Alaska Volcano Observatory began investigating the geology of the volcano and evaluating potential volcanic hazards that could affect residents of Akutan Island. During these studies new information was obtained about the Holocene eruptive history of the volcano on the basis of stratigraphic studies of volcaniclastic deposits and radiocarbon dating of associated buried soils and peat. A black, scoria-bearing, lapilli tephra, informally named the 'Akutan tephra,' is up to 2 m thick and is found over most of the island, primarily east of the volcano summit. Six radiocarbon ages on the humic fraction of soil A-horizons beneath the tephra indicate that the Akutan tephra was erupted approximately 1611 years B.P. At several locations the Akutan tephra is within a conformable stratigraphic sequence of pyroclastic-flow and lahar deposits that are all part of the same eruptive sequence. The thickness, widespread distribution, and conformable stratigraphic association with overlying pyroclastic-flow and lahar deposits indicate that the Akutan tephra likely records a major eruption of Akutan Volcano that may have formed the present summit caldera. Noncohesive lahar and pyroclastic-flow deposits that predate the Akutan tephra occur in the major valleys that head on the volcano and are evidence for six to eight earlier Holocene eruptions. These eruptions were strombolian to subplinian events that generated limited amounts of tephra and small pyroclastic flows that extended only a few kilometers from the vent. The pyroclastic flows melted snow and ice on the volcano flanks and formed lahars that traveled several kilometers down broad, formerly glaciated valleys, reaching the coast as thin, watery, hyperconcentrated flows or water floods. Slightly

  1. Disseminating Landslide Hazard Information for California Local Government

    NASA Astrophysics Data System (ADS)

    Wills, C. J.

    2010-12-01

    Since 1969, the California Geological Survey has produced numerous maps showing landslide features and delineating potential slope-stability problem areas. These maps have been provided to local governments to encourage consideration of landslide hazards in planning and development decisions. Maps produced from 1986 through 1995 under the Landslide Hazard Mapping Act were advisory only, and their use by local government was never consistent. By contrast, maps of Zones of Required Investigation for seismically induced landslides produced under the Seismic Hazard Zoning Act since 1997 come with detailed guidelines and legal requirements. A legislative act that required landslide hazards be mapped and hazard maps disseminated to local government proved ineffective in landslide hazard mitigation. A later act with requirements that the hazard zone maps be used by local government proved more effective. Planning scenarios have proven to be an effective way of transmitting scientific information about natural hazards to emergency response professionals. Numerous earthquake planning scenarios have been prepared and used as the basis for emergency response exercises. An advantage of scenarios that include loss estimates is that the effects can be put in units of measure that everyone understands, principally deaths and dollars. HAZUS software available from FEMA allows calculation of losses for earthquake scenarios, but similar methods for landslides have not been developed. As part of the USGS Multi-Hazard Demonstration Project, we have estimated the landslide losses for a major west-coast winter storm scenario by developing a system based loosely on HAZUS. Data on landslide damage in past storms has been sparse and inconsistent, but a few data sets are available. The most detailed and complete available data on landslide damage was gathered by the City of Los Angeles following the 1978 storms. We extrapolate from that data to the entire state by first generalizing a

  2. Reassessing the New Madrid Seismic Zone

    NASA Astrophysics Data System (ADS)

    Atkinson, Gail; Bakun, Bill; Bodin, Paul; Boore, David; Camer, Chris; Frankel, Art; Gasperini, Paulo; Gomberg, Joan; Hanks, Tom; Hermann, Bob; Hough, Susan; Johnston, Arch; Kenner, Shelley; Langston, Chuck; Linker, Mark; Mayne, Paul; Petersen, Mark; Powell, Christine; Prescott, Will; Schweig, Eugene; Segall, Paul; Stein, Seth; Stuart, Bill; Tuttle, Martitia; VanArsdale, Roy

    The central enigma of the mid-continent region in the United States known as the New Madrid seismic zone (NMSZ; Figure 1) involves the mechanisms that give rise to recurrent great earthquakes far from plate boundaries. Given the lack of significant topographic relief that is the hallmark of tectonic activity in most actively deforming regions, most of us feel a need to “pinch ourselves to see if we're dreaming” when confronted with evidence that, at some probability levels, the earthquake hazard throughout the NMSZ is comparable to that estimated for the San Francisco Bay region.Although assessing the hazard in the NMSZ is in many ways more challenging than in the western United States, and the uncertainties are much greater, careful scientific study has led to a consensus on the issues most critical to seismic hazard assessment.

  3. A Broadly-Based Training Program in Volcano Hazards Monitoring at the Center for the Study of Active Volcanoes

    NASA Astrophysics Data System (ADS)

    Thomas, D. M.; Bevens, D.

    2015-12-01

    The Center for the Study of Active Volcanoes, in cooperation with the USGS Volcano Hazards Program at HVO and CVO, offers a broadly based volcano hazards training program targeted toward scientists and technicians from developing nations. The program has been offered for 25 years and provides a hands-on introduction to a broad suite of volcano monitoring techniques, rather than detailed training with just one. The course content has evolved over the life of the program as the needs of the trainees have changed: initially emphasizing very basic monitoring techniques (e.g. precise leveling, interpretation of seismic drum records, etc.) but, as the level of sophistication of the trainees has increased, training in more advanced technologies has been added. Currently, topics of primary emphasis have included volcano seismology and seismic networks; acquisition and modeling of geodetic data; methods of analysis and monitoring of gas geochemistry; interpretation of volcanic deposits and landforms; training in LAHARZ, GIS mapping of lahar risks; and response to and management of volcanic crises. The course also provides training on public outreach, based on CSAV's Hawaii-specific hazards outreach programs, and volcano preparedness and interactions with the media during volcanic crises. It is an intensive eight week course with instruction and field activities underway 6 days per week; it is now offered in two locations, Hawaii Island, for six weeks, and the Cascades volcanoes of the Pacific Northwest, for two weeks, to enable trainees to experience field conditions in both basaltic and continental volcanic environments. The survival of the program for more than two decades demonstrates that a need for such training exists and there has been interaction and contribution to the program by the research community, however broader engagement with the latter continues to present challenges. Some of the reasons for this will be discussed.

  4. Seismic hazard assessment of the cultural heritage sites: A case study in Cappadocia (Turkey)

    NASA Astrophysics Data System (ADS)

    Seyrek, Evren; Orhan, Ahmet; Dinçer, İsmail

    2014-05-01

    Turkey is one of the most seismically active regions in the world. Major earthquakes with the potential of threatening life and property occur frequently here. In the last decade, over 50,000 residents lost their lives, commonly as a result of building failures in seismic events. The Cappadocia region is one of the most important touristic sites in Turkey. At the same time, the region has been included to the Word Heritage List by UNESCO at 1985 due to its natural, historical and cultural values. The region is undesirably affected by several environmental conditions, which are subjected in many previous studies. But, there are limited studies about the seismic evaluation of the region. Some of the important historical and cultural heritage sites are: Goreme Open Air Museum, Uchisar Castle, Ortahisar Castle, Derinkuyu Underground City and Ihlara Valley. According to seismic hazard zonation map published by the Ministry of Reconstruction and Settlement these heritage sites fall in Zone III, Zone IV and Zone V. This map show peak ground acceleration or 10 percent probability of exceedance in 50 years for bedrock. In this connection, seismic hazard assessment of these heritage sites has to be evaluated. In this study, seismic hazard calculations are performed both deterministic and probabilistic approaches with local site conditions. A catalog of historical and instrumental earthquakes is prepared and used in this study. The seismic sources have been identified for seismic hazard assessment based on geological, seismological and geophysical information. Peak Ground Acceleration (PGA) at bed rock level is calculated for different seismic sources using available attenuation relationship formula applicable to Turkey. The result of the present study reveals that the seismic hazard at these sites is closely matching with the Seismic Zonation map published by the Ministry of Reconstruction and Settlement. Keywords: Seismic Hazard Assessment, Probabilistic Approach

  5. 77 FR 40511 - Safety Zone; GR Symphony Fireworks Display, Kalamazoo Lake, Saugatuck, MI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-10

    ...-AA00 Safety Zone; GR Symphony Fireworks Display, Kalamazoo Lake, Saugatuck, MI AGENCY: Coast Guard, DHS... Kalamazoo Lake during the GR Symphony Fireworks display. This temporary safety zone is necessary to protect spectators and vessels from the hazards associated with a fireworks display. DATES: This rule will be...

  6. 76 FR 33643 - Safety Zone; Nicole Cerrito Birthday Fireworks, Detroit River, Detroit, MI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-09

    ...-AA00 Safety Zone; Nicole Cerrito Birthday Fireworks, Detroit River, Detroit, MI AGENCY: Coast Guard... Detroit River during the Nicole Cerrito Birthday Fireworks. This temporary safety zone is necessary to... hazards associated with maritime fireworks displays. Under 5 U.S.C. 553(d)(3), the Coast Guard finds that...

  7. 75 FR 22333 - Safety Zone; Michigan City Super Boat Grand Prix, Lake Michigan, Michigan City, IN

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-28

    ...-AA00 Safety Zone; Michigan City Super Boat Grand Prix, Lake Michigan, Michigan City, IN AGENCY: Coast... temporary safety zone on Lake Michigan near Michigan City, Indiana. This zone is intended to restrict... ensure the safety of vessels from the hazards associated with the Michigan City Super Boat Grand Prix...

  8. 77 FR 61721 - Atlantic Ocean off Wallops Island and Chincoteague Inlet, VA; Danger Zone

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-11

    ... classes of orbital rockets. This amendment increases the permanent danger zone to a 30 nautical mile sector and is necessary to protect the public from hazards associated with rocket-launching operations... danger zone to accommodate larger classes of orbital rockets. This amendment increases the permanent...

  9. [Relations of landslide and debris flow hazards to environmental factors].

    PubMed

    Zhang, Guo-ping; Xu, Jing; Bi, Bao-gui

    2009-03-01

    To clarify the relations of landslide and debris flow hazards to environmental factors is of significance to the prediction and evaluation of landslide and debris flow hazards. Base on the latitudinal and longitudinal information of 18431 landslide and debris flow hazards in China, and the 1 km x 1 km grid data of elevation, elevation difference, slope, slope aspect, vegetation type, and vegetation coverage, this paper analyzed the relations of landslide and debris flow hazards in this country to above-mentioned environmental factors by the analysis method of frequency ratio. The results showed that the landslide and debris flow hazards in China more occurred in lower elevation areas of the first and second transitional zones. When the elevation difference within a 1 km x 1 km grid cell was about 300 m and the slope was around 30 degree, there was the greatest possibility of the occurrence of landslide and debris hazards. Mountain forest land and slope cropland were the two land types the hazards most easily occurred. The occurrence frequency of the hazards was the highest when the vegetation coverage was about 80%-90%.

  10. Seismic Hazard Maps for Seattle, Washington, Incorporating 3D Sedimentary Basin Effects, Nonlinear Site Response, and Rupture Directivity

    USGS Publications Warehouse

    Frankel, Arthur D.; Stephenson, William J.; Carver, David L.; Williams, Robert A.; Odum, Jack K.; Rhea, Susan

    2007-01-01

    This report presents probabilistic seismic hazard maps for Seattle, Washington, based on over 500 3D simulations of ground motions from scenario earthquakes. These maps include 3D sedimentary basin effects and rupture directivity. Nonlinear site response for soft-soil sites of fill and alluvium was also applied in the maps. The report describes the methodology for incorporating source and site dependent amplification factors into a probabilistic seismic hazard calculation. 3D simulations were conducted for the various earthquake sources that can affect Seattle: Seattle fault zone, Cascadia subduction zone, South Whidbey Island fault, and background shallow and deep earthquakes. The maps presented in this document used essentially the same set of faults and distributed-earthquake sources as in the 2002 national seismic hazard maps. The 3D velocity model utilized in the simulations was validated by modeling the amplitudes and waveforms of observed seismograms from five earthquakes in the region, including the 2001 M6.8 Nisqually earthquake. The probabilistic seismic hazard maps presented here depict 1 Hz response spectral accelerations with 10%, 5%, and 2% probabilities of exceedance in 50 years. The maps are based on determinations of seismic hazard for 7236 sites with a spacing of 280 m. The maps show that the most hazardous locations for this frequency band (around 1 Hz) are soft-soil sites (fill and alluvium) within the Seattle basin and along the inferred trace of the frontal fault of the Seattle fault zone. The next highest hazard is typically found for soft-soil sites in the Duwamish Valley south of the Seattle basin. In general, stiff-soil sites in the Seattle basin exhibit higher hazard than stiff-soil sites outside the basin. Sites with shallow bedrock outside the Seattle basin have the lowest estimated hazard for this frequency band.

  11. Reduction of pediatric pedestrian hazardous road conditions in a school drop-off zone using video review.

    PubMed

    Abd El-Shafy, Ibrahim; Savino, Jillian; Christopherson, Nathan A M; Prince, Jose M

    2017-11-01

    In 2012, 76,000 pedestrians were struck by motor vehicles. This resulted in 20% of all pediatric mortalities between the ages of 5 and 15. We hypothesize that children are exposed to increased risk as pedestrians to motor vehicle injury when arriving to school and that identification of these hazards would improve targeting of injury prevention efforts. Within a county containing 355 public schools, we identified a primary school with 588 students located in an urban setting with concerns for a high-risk traffic environment. Field surveys observed traffic patterns and established an optimal surveillance period 30 minutes before school. Three observation periods, from two discreet and blinded locations, were conducted from January to March 2016. Videos were evaluated by two independent reviewers to identify and score quantifiable hazards. Three controlled observations were conducted on non-school days, followed by three post-intervention observations from October to December 2016. Comparison was made using Student's t test. Data was analyzed using SAS version 9.4 (SAS Institute Inc., Cary, NC). We identified nine safety hazards including double parking (29.3 ± 5.5), dropping off in a bus stop (23.3 ± 7.6), and jaywalking (9.3 ± 3.1). Combining all hazards seen in each observation resulted in an overall hazard average of 83.0 ± 3.6 events/period. Comparing control periods to school observation identified significantly increased hazard events on school days (p < 0.0001). Targeted safety intervention demonstrated a 26% reduction in hazard events (p < 0.0005). We identified the most common hazards associated with children arriving at a primary school in an urban setting, used our analysis to develop an intervention, and demonstrated the impact of our intervention. Our novel use of video review to identify hazards provides a metric against which the impact of pedestrian road safety interventions might be measured. Epidemiological, level II; Therapeutic, level IV.

  12. Earthquake Hazard Analysis Methods: A Review

    NASA Astrophysics Data System (ADS)

    Sari, A. M.; Fakhrurrozi, A.

    2018-02-01

    One of natural disasters that have significantly impacted on risks and damage is an earthquake. World countries such as China, Japan, and Indonesia are countries located on the active movement of continental plates with more frequent earthquake occurrence compared to other countries. Several methods of earthquake hazard analysis have been done, for example by analyzing seismic zone and earthquake hazard micro-zonation, by using Neo-Deterministic Seismic Hazard Analysis (N-DSHA) method, and by using Remote Sensing. In its application, it is necessary to review the effectiveness of each technique in advance. Considering the efficiency of time and the accuracy of data, remote sensing is used as a reference to the assess earthquake hazard accurately and quickly as it only takes a limited time required in the right decision-making shortly after the disaster. Exposed areas and possibly vulnerable areas due to earthquake hazards can be easily analyzed using remote sensing. Technological developments in remote sensing such as GeoEye-1 provide added value and excellence in the use of remote sensing as one of the methods in the assessment of earthquake risk and damage. Furthermore, the use of this technique is expected to be considered in designing policies for disaster management in particular and can reduce the risk of natural disasters such as earthquakes in Indonesia.

  13. The South Sandwich "Forgotten" Subduction Zone and Tsunami Hazard in the South Atlantic

    NASA Astrophysics Data System (ADS)

    Okal, E. A.; Hartnady, C. J. H.; Synolakis, C. E.

    2009-04-01

    While no large interplate thrust earthquakes are know at the "forgotten" South Sandwich subduction zone, historical catalogues include a number of events with reported magnitudes 7 or more. A detailed seismological study of the largest event (27 June 1929; M (G&R) = 8.3) is presented. The earthquake relocates 80 km North of the Northwestern corner of the arc and its mechanism, inverted using the PDFM method, features normal faulting on a steeply dipping fault plane (phi, delta, lambda = 71, 70, 272 deg. respectively). The seismic moment of 1.7*10**28 dyn*cm supports Gutenberg and Richter's estimate, and is 28 times the largest shallow CMT in the region. This event is interpreted as representing a lateral tear in the South Atlantic plate, comparable to similar earthquakes in Samoa and Loyalty, deemed "STEP faults" by Gover and Wortel [2005]. Hydrodynamic simulations were performed using the MOST method [Titov and Synolakis, 1997]. Computed deep-water tsunami amplitudes of 30cm and 20cm were found off the coast of Brazil and along the Gulf of Guinea (Ivory Coast, Ghana) respectively. The 1929 moment was assigned to the geometries of other know earthquakes in the region, namely outer-rise normal faulting events at the center of the arc and its southern extremity, and an interplate thrust fault at the Southern corner, where the youngest lithosphere is subducted. Tsunami hydrodynamic simulation of these scenarios revealed strong focusing of tsunami wave energy by the SAR, the SWIOR and the Agulhas Rise, in Ghana, Southern Mozambique and certain parts of the coast of South Africa. This study documents the potential tsunami hazard to South Atlantic shorelines from earthquakes in this region, principally normal faulting events.

  14. South Sandwich: The Forgotten Subduction Zone and Tsunami Hazard in the South Atlantic

    NASA Astrophysics Data System (ADS)

    Okal, E. A.; Hartnady, C. J.

    2008-12-01

    While no large interplate thrust earthquakes are known at the South Sandwich subduction zone, historical catalogues include a number of earthquakes with reported magnitudes of 7 or more. We present a detailed seismological study of the largest one (27 June 1929; M (G&R) = 8.3). The earthquake relocates 80 km North of the Northwestern corner of the arc. Its mechanism, inverted using the PDFM method, features normal faulting on a steeply dipping fault plane (phi, delta, lambda = 71, 70, 272 deg.). The seismic moment, 1.7 10**28 dyn*cm, supports Gutenberg and Richter's estimate, and is 28 times the largest shallow CMT in the region. The 1929 event is interpreted as representing a lateral tear in the South Atlantic plate, comparable to similar earthquakes in Samoa and Loyalty, deemed "STEP faults" by Gover and Wortel [2005]. Hydrodynamic simulations using the MOST method [Titov and Synolakis, 1997] suggest deep-water tsunami amplitudes reaching 30 cm off the coast of Brazil, where it should have had observable run-up, and 20 cm along the Gulf of Guinea (Ivory Coast, Ghana). We also simulate a number of potential sources obtained by assigning the 1929 moment to the geometries of other known earthquakes in the region, namely outer-rise normal faulting events at the center of the arc and its southern extremity, and an interplate thrust fault at the Southern corner, where the youngest lithosphere is subducted. A common feature of these models is the strong focusing of tsunami waves by the SAR, the SWIOR, and the Agulhas Rise, resulting in amplitudes always enhanced in Ghana, Southern Mozambique and certain parts of the coast of South Africa. This study documents the potential tsunami hazard to South Atlantic shorelines from earthquakes in this region, principally normal faulting events.

  15. 75 FR 17106 - Safety Zone; Red Bull Air Race, Detroit River, Detroit, MI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-05

    ...-AA00 Safety Zone; Red Bull Air Race, Detroit River, Detroit, MI AGENCY: Coast Guard, DHS. ACTION... Detroit River during the Red Bull Air Race. This temporary safety zone is necessary to protect spectators and vessels from the hazards associated with air races. DATES: Comments and related material must be...

  16. Probabilistic tsunami hazard assessment for the Makran region with focus on maximum magnitude assumption

    NASA Astrophysics Data System (ADS)

    Hoechner, Andreas; Babeyko, Andrey Y.; Zamora, Natalia

    2016-06-01

    Despite having been rather seismically quiescent for the last decades, the Makran subduction zone is capable of hosting destructive earthquakes and tsunami. In particular, the well-known thrust event in 1945 (Balochistan earthquake) led to about 4000 casualties. Nowadays, the coastal regions are more densely populated and vulnerable to similar events. Furthermore, some recent publications discuss rare but significantly larger events at the Makran subduction zone as possible scenarios. We analyze the instrumental and historical seismicity at the subduction plate interface and generate various synthetic earthquake catalogs spanning 300 000 years with varying magnitude-frequency relations. For every event in the catalogs we compute estimated tsunami heights and present the resulting tsunami hazard along the coasts of Pakistan, Iran and Oman in the form of probabilistic tsunami hazard curves. We show how the hazard results depend on variation of the Gutenberg-Richter parameters and especially maximum magnitude assumption.

  17. Probabilistic tsunami hazard assessment for the Makran region with focus on maximum magnitude assumption

    NASA Astrophysics Data System (ADS)

    Hoechner, A.; Babeyko, A. Y.; Zamora, N.

    2015-09-01

    Despite having been rather seismically quiescent for the last decades, the Makran subduction zone is capable of hosting destructive earthquakes and tsunami. In particular, the well-known thrust event in 1945 (Balochistan earthquake) led to about 4000 casualties. Nowadays, the coastal regions are more densely populated and vulnerable to similar events. Furthermore, some recent publications discuss rare but significantly larger events at the Makran subduction zone as possible scenarios. We analyze the instrumental and historical seismicity at the subduction plate interface and generate various synthetic earthquake catalogs spanning 300 000 years with varying magnitude-frequency relations. For every event in the catalogs we compute estimated tsunami heights and present the resulting tsunami hazard along the coasts of Pakistan, Iran and Oman in the form of probabilistic tsunami hazard curves. We show how the hazard results depend on variation of the Gutenberg-Richter parameters and especially maximum magnitude assumption.

  18. Seismic hazards at Kilauea and Mauna Loa volcanoes, Hawaii

    NASA Astrophysics Data System (ADS)

    Klein, Fred W.

    1994-04-01

    A significant seismic hazard exists in south Hawaii from large tectonic earthquakes that can reach magnitude 8 and intensity XII. This paper quantifies the hazard by estimating the horizontal peak ground acceleration (PGA) in south Hawaii which occurs with a 90% probability of not being exceeded during exposure times from 10 to 250 years. The largest earthquakes occur beneath active, unbuttressed and mobile flanks of volcanos in their shield building stage. The flanks are compressed and pushed laterally by rift zone intrusions. The largest earthquakes are thus not directly caused by volcanic activity. Historic earthquakes (since 1823) and the best Hawaiian Volcano Observatory catalog (since 1970) under the south side of the island define linear frequency-magnitude distributions that imply average recurrence intervals for M greater than 5.5 earthquakes of 3.4-5 years, for M greater than 7 events of 29-44 years, and for M greater than 8 earthquakes of 120-190 years. These estimated recurrences are compatable with the 107 year interval between the two major April 2, 1868 (M(approximately)7.9) and November 29, 1975 (M=7.2) earthquakes. Frequency-magnitude distributions define the activity levels of 19 different seismic source zones for probabilistic ground motion estimations. The available measurements of PGA (33 from 7 moderate earthquakes) are insufficient to define a new attenuation curve. We use the Boore et al. (1993) curve shifted upward by a factor of 1.2 to fit Hawaiian data. Amplification of sites on volcanic ash or unconsolidated soil are about two times those of hard lava sites. On a map for a 50 year exposure time with a 90% probability of not being exceeded, the peak ground accelerations are 1.0 g Kilauea's and Mauna Loa's mobile south flanks and 0.9 g in the Kaoiki seismic zone. This hazard from strong ground shaking is comparable to that near the San Andreas Fault in California or the subduction zone in the Gulf of Alaska.

  19. Back analysis of Swiss flood danger map to define local flood hazards

    NASA Astrophysics Data System (ADS)

    Choffet, Marc; Derron, Marc-Henri; Jaboyedoff, Michel; Leroi, Eric; Mayis, Arnaud

    2010-05-01

    The flood hazard maps for the entire Switzerland will be available at the end of 2011. Furthermore, the Swiss territory has been covered by aerial laser scanning (ALS) providing high resolution digital elevation model (DEM). This paper describes the development of a method for analyzing the local flood hazard based on Swiss hazard maps and HR-DEM. In their original state, Swiss hazard maps are constructed on the basis of an aggregation of information, a matrix intensity, and frequency. The degree of danger represented by the yellow, blue and red zones gives no information on the water level at each point of the territory. The developed method is based on a superposition of the danger map with the HR-DEM to determine the water level in a hazard area. To perform this method, (1) a triangulation is based on the intersection of the hazard map with the HR-DEM. It uses the limits of area where information is contrain. The hazard map perimeter and the boundaries of hazard areas give information on the widest possible overflow in case of flooding. It is also possible to associate it with a return period. (2) Based on these areas and the difference with the DEM, it is possible to calibrate the highest flood level and the extract water levels for the entire area. This analysis of existing documents opens up interesting perspectives for understanding how infrastructures are threatened by flood hazard by predicting water levels and potential damages to buildings while proposing remedial measures. Indeed, this method allows estimating the water level at each point of a building in case of flooding. It is designed to provide spatial information on water height levels; this offers a different approach of buildings in danger zones. Indeed, it is possible to discern several elements, such as areas of water accumulation involving longer flood duration, possible structural damages to buildings due to high hydrostatic pressure, determination of a local hazard, or the display of water

  20. 76 FR 75450 - Safety Zone; Container Crane Relocation, Cooper and Wando Rivers, Charleston, SC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-02

    ...-AA00 Safety Zone; Container Crane Relocation, Cooper and Wando Rivers, Charleston, SC AGENCY: Coast... moving safety zone around a barge transporting two container cranes on the Cooper and Wando Rivers during... from hazards associated with transporting the large cranes by barge. Persons and vessels are prohibited...

  1. 77 FR 42644 - Safety Zone; Canal Fest of the Tonawandas, Erie Canal, Tonawanda, NY

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-20

    .... ACTION: Temporary final rule. SUMMARY: The Coast Guard is establishing a temporary safety zone on the... Canal during the Canal Fest of the Tonawandas Fireworks display. This temporary safety zone is necessary to protect spectators and vessels from the hazards associated with a fireworks display. DATES: This...

  2. Necessary Conditions for Intraplate Seismic Zones in North America

    NASA Astrophysics Data System (ADS)

    Thomas, William A.; Powell, Christine A.

    2017-12-01

    The cause of intraplate seismic zones persists as an important scientific and societal question. Most intraplate earthquakes are concentrated in specific seismic zones along or adjacent to large-scale basement structures (e.g., rifts or sutures at ancient plate boundaries) within continental crust. The major intraplate seismic zones are limited to specific segments and are not distributed along the lengths of the ancient structures. We present a new hypothesis that major intraplate seismic zones are restricted to places where concentrated crustal deformation (CCD) is overprinted on large-scale basement structures. Examples where CCD affects the stability of specific parts of large-scale structures in response to present-day stress conditions include the most active seismic zones in central and eastern North America: Charlevoix, Eastern Tennessee, and New Madrid. Our hypothesis has important implications for the assessment of seismic hazards.

  3. Regional landslide hazard assesment for Kulon Progo Area, Central Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Karnawati, D.

    2009-12-01

    Karanganyar region is situated in a dynamic volcanic region in Java Island, where rain-induced landslides are frequent and widespread. Shallow-rapid earth slides triggered by heavy rainfall are the most common landslide type occurring on the steep slope and had resulted in major casualties, whilst deep soil creeping is more prominant on the gentle slope which creat a lot of damages on the houses and infrastructure. A landslide hazard assessment had been conducted to support the landslide mitigation program in this region. Such assessment was carried out by applying a semi qualitative approach (Analytical Hierarchical Process) where a weighting system was applied to assess the level of importance of each controlling parameter as suggested by Saaty (1980). Existing conditions of each controlling parameters were also assessed based on relative hierarchical system by applying scoring. Geographical Information System was used as a tool in such analysis and mapping process. The isohyet map was also prepared from statistical and spatial analyses on rain fall data. Finally, two different scenarios of landslide hazard maps were established, i.e. the scenario without any rainfall (Scenario 1) and with the reainfall (Scenario 2). It was found that the most susceptible zone of landslide was localised on the steep slope (with the inclination beyond 45o ) of jointed andesitic breccia, which was covered by thinck silty clay and situated close to the stream zone (Scenario 1). However from the hazard map and analysis on scenario 2, it can be identified that the susceptible zone expanded larger due to the rainfall, covering most region of the west-slope area of Lawu Volcano. Therefore, it can be concluded that the rainfall intensity is very crucial to induce the landslide not only in the most susceptible zone, but also in the larger area which also include the less susceptbile zone. This findings is also crucial to support the development of landslide spatial-early-warning system in

  4. Simulation Technology Laboratory Building 970 hazards assessment document

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, C.L.; Starr, M.D.

    1994-11-01

    The Department of Energy Order 5500.3A requires facility-specific hazards assessments be prepared, maintained, and used for emergency planning purposes. This hazards assessment document describes the chemical and radiological hazards associated with the Simulation Technology Laboratory, Building 970. The entire inventory was screened according to the potential airborne impact to onsite and offsite individuals. The air dispersion model, ALOHA, estimated pollutant concentrations downwind from the source of a release, taking into consideration the toxicological and physical characteristics of the release site, the atmospheric conditions, and the circumstances of the release. The greatest distances at which a postulated facility event will producemore » consequences exceeding the ERPG-2 and Early Severe Health Effects thresholds are 78 and 46 meters, respectively. The highest emergency classification is a Site Area Emergency. The Emergency Planning Zone is 100 meters.« less

  5. 78 FR 29020 - Safety Zone; Tennessee River, Mile 463.5 to 464.5; Chattanooga, TN

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-17

    ... hazards associated with the Riverbend Festival fireworks. Entry into this zone is prohibited unless... protect persons and vessels from potential safety hazards associated with the Riverbend Festival fireworks. The Riverbend Festival fireworks display takes place on the Tennessee River and is launched from the...

  6. Increasing seismicity in the U. S. midcontinent: Implications for earthquake hazard

    USGS Publications Warehouse

    Ellsworth, William L.; Llenos, Andrea L.; McGarr, Arthur F.; Michael, Andrew J.; Rubinstein, Justin L.; Mueller, Charles S.; Petersen, Mark D.; Calais, Eric

    2015-01-01

    Earthquake activity in parts of the central United States has increased dramatically in recent years. The space-time distribution of the increased seismicity, as well as numerous published case studies, indicates that the increase is of anthropogenic origin, principally driven by injection of wastewater coproduced with oil and gas from tight formations. Enhanced oil recovery and long-term production also contribute to seismicity at a few locations. Preliminary hazard models indicate that areas experiencing the highest rate of earthquakes in 2014 have a short-term (one-year) hazard comparable to or higher than the hazard in the source region of tectonic earthquakes in the New Madrid and Charleston seismic zones.

  7. Identification of erosional and inundation hazard zones in Ken-Betwa river linking area, India, using remote sensing and GIS.

    PubMed

    Avtar, Ram; Singh, Chander Kumar; Shashtri, Satayanarayan; Mukherjee, Saumitra

    2011-11-01

    Ken-Betwa river link is one of the pilot projects of the Inter Linking of Rivers program of Government of India in Bundelkhand Region. It will connect the Ken and Betwa rivers through a system of dams, reservoirs, and canals to provide storage for excess rainfall during the monsoon season and avoid floods. The main objective of this study is to identify erosional and inundation prone zones of Ken-Betwa river linking site in India using remote sensing and geographic information system tools. In this study, Landsat Thematic Mapper data of year 2005, digital elevation model from the Shuttle Radar Topographic Mission, and other ancillary data were analyzed to create various thematic maps viz. geomorphology, land use/land cover, NDVI, geology, soil, drainage density, elevation, slope, and rainfall. The integrated thematic maps were used for hazard zonation. This is based on categorizing the different hydrological and geomorphological processes influencing the inundation and erosion intensity. Result shows that the southern part of the study area which lies in Panna district of Madhya Pradesh, India, is more vulnerable than the other areas.

  8. Volcanic Ash Hazards and Risk in Argentina: Scientific and Social Collaborative Approaches.

    NASA Astrophysics Data System (ADS)

    Rovere, E. I., II; Violante, R. A.; Vazquez Herrera, M. D.; Martinez Fernandez, M. D. L. P.

    2015-12-01

    Due to the absence of alerts or volcanic impacts during 60 years (from 1932, Quizapu-Descabezado Grande -one of the major eruptions of the XX Century- until 1991 Hudson eruption) there was mild remembrance of volcanic hazards in the collective memory of the Argentina citizens. Since then and until April 2015, the social perception changed according to different factors: age, location, education, culture, vulnerability. This variability produces a maze of challenges that go beyond the scientific knowledge. Volcanic health hazards began to be understood in 2008 after the eruption of Chaiten volcano. The particle size of ashfall (<10 μ) and the silica composition were the main factors of concern on epidemiological monitoring. In 2011 the volcanic complex Puyehue - Cordon Caulle eruption produced ashfall through plumes that reached densely populated cities like San Carlos de Bariloche and Buenos Aires. Farther away in South Africa and New Zealand ash plumes forced airlines to cancel local and international flights for several weeks. The fear of another eruption did not wait long when Calbuco volcano started activity in April 2015, it came at a time when Villarrica volcano was also in an eruptive phase, and the SERNAGEOMIN Chile, through the Observatory OVDAS of the Southern Andes, faced multiple natural disasters at the same time, 3 volcanoes in activity, lahars, pyroclastic flows and floods in the North. In Argentina, critical infrastructure, farming, livestock and primary supplies were affected mainly in the western region. Copahue volcano, is increasing unstability on seismic and geochemistry data since 2012. Caviahue resort village, distant only 8 Km. from the active vent happens to be a high vulnerable location. In 2014 GEVAS (Geology, Volcanoes, Environment and Health) Network ARGENTINA Civil Association started collaborative activities with SEGEMAR and in 2015 with the IAPG (Geoethics, Argentina), intending to promote Best Practices in volcanic and geological

  9. Volcanically-Triggered Rainfall and the Effect on Volcanological Hazards at Soufriere Hills, Montserrat

    NASA Astrophysics Data System (ADS)

    Poulidis, Alexandros-Panagiotis; Renfrew, Ian; Matthews, Adrian

    2014-05-01

    Atmospheric flow simulations over and around the Soufriere Hills volcano in the island of Montserrat in the Caribbean are studied, through a series of numerical model experiments, in order to link interactions between the volcano and the atmosphere. A heated surface is added on the top of the mountain, in order to simulate the dome of an active volcano that is not undergoing an eruption. A series of simulations with different atmospheric conditions and control parameters for the volcano will be presented. Simulations are made using the Weather Research and Forecasting (WRF) model, with a high resolution digital elevation map of Montserrat. Simulations with an idealised topography have also been examined, in order for the results to have general applicability to similar-sized volcanoes located in the Tropics. The model was initialised with soundings from representative days of qualitatively different atmospheric conditions from the rainy season. The heated volcanic dome changes the orographic flow response significantly, depending upon the atmospheric conditions and the magnitude of the dome surface temperature anomaly. The flow regime and qualitative characteristic features, such orographic clouds and rainfall patterns, can all change significantly. For example, the orographic rainfall over the volcano can be significantly enhanced with increased dome temperatures. The implications of these changes on the eruptive behaviour of the volcano and resulting secondary volcanic hazards, such as lahars, will be discussed.

  10. 75 FR 34929 - Safety Zones: Neptune Deep Water Port, Atlantic Ocean, Boston, MA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-21

    ...-AA00 Safety Zones: Neptune Deep Water Port, Atlantic Ocean, Boston, MA AGENCY: Coast Guard, DHS. ACTION..., Boston, MA; Final Rule (USCG-2009-0589), to protect vessels from the hazard posed by the presence of the... read as follows: Sec. 165.T01-0542 Safety Zones: Neptune Deepwater Port, Atlantic Ocean, Boston, MA. (a...

  11. Seismic Hazard Maps for the Maltese Archipelago: Preliminary Results

    NASA Astrophysics Data System (ADS)

    D'Amico, S.; Panzera, F.; Galea, P. M.

    2013-12-01

    The Maltese islands form an archipelago of three major islands lying in the Sicily channel at about 140 km south of Sicily and 300 km north of Libya. So far very few investigations have been carried out on seismicity around the Maltese islands and no maps of seismic hazard for the archipelago are available. Assessing the seismic hazard for the region is currently of prime interest for the near-future development of industrial and touristic facilities as well as for urban expansion. A culture of seismic risk awareness has never really been developed in the country, and the public perception is that the islands are relatively safe, and that any earthquake phenomena are mild and infrequent. However, the Archipelago has been struck by several moderate/large events. Although recent constructions of a certain structural and strategic importance have been built according to high engineering standards, the same probably cannot be said for all residential buildings, many higher than 3 storeys, which have mushroomed rapidly in recent years. Such buildings are mostly of unreinforced masonry, with heavy concrete floor slabs, which are known to be highly vulnerable to even moderate ground shaking. We can surely state that in this context planning and design should be based on available national hazard maps. Unfortunately, these kinds of maps are not available for the Maltese islands. In this paper we attempt to compute a first and preliminary probabilistic seismic hazard assessment of the Maltese islands in terms of Peak Ground Acceleration (PGA) and Spectral Acceleration (SA) at different periods. Seismic hazard has been computed using the Esteva-Cornell (1968) approach which is the most widely utilized probabilistic method. It is a zone-dependent approach: seismotectonic and geological data are used coupled with earthquake catalogues to identify seismogenic zones within which earthquakes occur at certain rates. Therefore the earthquake catalogues can be reduced to the

  12. 77 FR 64411 - Safety Zone; Cooper T. Smith Fireworks Event; Mobile River; Mobile, AL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-22

    ... 1625-AA00 Safety Zone; Cooper T. Smith Fireworks Event; Mobile River; Mobile, AL AGENCY: Coast Guard.... Smith Fireworks Event. Entry into, transiting or anchoring in this zone is prohibited to all vessels... safety hazards associated with a fireworks display. B. Basis and Purpose Cooper T. Smith Corp. has hired...

  13. Assessment of seismic hazards along the northern Gulf of Aqaba

    NASA Astrophysics Data System (ADS)

    Abueladas, Abdel-Rahman Aqel

    Aqaba and Elat are very important port and recreation cities for the Hashemite Kingdom of Jordan and Israel, respectively. The two cities are the most susceptible to damage from a destructive future earthquake because they are located over the tectonically active Dead Sea transform fault (DST) that is the source of most of the major historical earthquakes in the region. The largest twentieth century earthquake on the DST, the magnitude Mw 7.2 Nuweiba earthquake of November 22, 1995, caused damage to structures in both cities. The integration of geological, geophysical, and earthquake engineering studies will help to assess the seismic hazards by determining the location and slip potential of active faults and by mapping areas of high liquefaction susceptibility. Ground Penetrating Radar (GPR) as a high resolution shallow geophysical tool was used to map the shallow active faults in Aqaba, Taba Sabkha area, and Elat. The GPR data revealed the onshore continuation of the Evrona, West Aqaba, Aqaba fault zones, and several transverse faults. The integration of offshore and onshore data confirm the extension of these faults along both sides of the Gulf of Aqaba. A 3D model of GPR data at one site in Aqaba indicates that the NW-trending transverse faults right laterally offset older than NE-trending faults. The most hazardous fault is the Evrona fault which extends north to the Tabs Sabkha. A geographic information system (GIS) database of the seismic hazard was created in order to facilitate the analyzing, manipulation, and updating of the input parameters. Liquefaction potential maps were created for the region based on analysis of borehole data. The liquefaction map shows high and moderate liquefaction susceptibility zones along the northern coast of the Gulf of Aqaba. In Aqaba several hotels are located within a high and moderate liquefaction zones. The Yacht Club, Aqaba, Ayla archaeological site, and a part of commercial area are also situated in a risk area. A part

  14. Using the New Two-Phase-Titan to Evaluate Potential Lahar Hazard at Villa la Angostura, Argentina

    NASA Astrophysics Data System (ADS)

    Sheridan, M. F.; Cordoba, G. A.; Viramonte, J. G.; Folch, A.; Villarosa, G.; Delgado, H.

    2013-05-01

    The 2011 eruption of Puyehue Volcano, located in the Cordon del Caulle volcanic complex, Chile, produced an ash plume that mainly affected downwind areas in Argentina. This plume forced air transport in the region to be closed for several weeks. Tephra fall deposits from this eruption affected many locations and pumice deposits on lakes killed most of the fish. As the ash emission occurred during the southern hemisphere winter (June), ash horizons were inter layered with layers of snow. This situation posed a potential threat for human settlements located downslope of the mountains. This was the case at Villa la Angostura, Neuquen province, Argentina, which sits on a series of fluvial deposits that originate in three major basins: Piedritas, Colorado, and Florencia. The Institute of Geological Survey of Argentina (SEGEMAR) estimated that the total accumulated deposit in each basin contains a ratio of approximately 30% ash and 70% snow. The CyTED-Ceniza Iberoamerican network worked together with Argentinean, Colombian and USA institutions in this hazard assessment. We used the program Two-Phase-Titan to model two scenarios in each of the basins. This computer code was developed at SUNY University at Buffalo supported by NSF Grant EAR 711497. Two-Phase-Titan is a new depth-averaged model for two phase flows that uses balance equations for multiphase mixtures. We evaluate the stresses using a Coulomb law for the solid phase and the typical hydraulic shallow water approach for the fluid phase. The linkage for compositions in the range between the pure end-member phases is accommodated by the inclusion of a phenomenological-based drag coefficient. The model is capable of simulating the whole range of particle volumetric fractions, from pure fluid flows to pure solid avalanches. The initial conditions, volume and solid concentration, required by Two-Phase-Titan were imposed using the SEGEMAR estimation of total deposited volume, assuming that the maximum volume that can

  15. Microzonation of Seismic Hazard Potential in Taipei, Taiwan

    NASA Astrophysics Data System (ADS)

    Liu, K. S.; Lin, Y. P.

    2017-12-01

    The island of Taiwan lies at the boundary between the Philippine Sea plate and the Eurasia plate. Accordingly, the majority of seismic energy release near Taiwan originates from the two subduction zones. It is therefore not surprising that Taiwan has repeatedly been struck by large earthquakes such as 1986 Hualien earthquake, 1999 Chi Chi and 2002 Hualien earthquake. Microzonation of seismic hazard potential becomes necessary in Taipei City for the Central Geological Survey announced the Sanchiao active fault as Category II. In this study, a catalog of more than 2000 shallow earthquakes occurred from 1900 to 2015 with Mw magnitudes ranging from 5.0 to 8.2, and 11 disastrous earthquakes occurred from 1683-1899, as well as Sanchiao active fault in the vicinity are used to estimate the seismic hazard potential in Taipei City for seismic microzonation. Furthermore, the probabilities of seismic intensity exceeding CWB intensity 5, 6, 7 and MMI VI, VII, VIII in 10, 30, and 50-year periods in the above areas are also analyzed for the seismic microzonation. Finally, by comparing with the seismic zoning map of Taiwan in current building code that was revised after 921 earthquakes, Results of this study will show which areas with higher earthquake hazard potential in Taipei City. They provide a valuable database for the seismic design of critical facilities. It will help mitigate Taipei City earthquake disaster loss in the future, as well as provide critical information for emergency response plans.

  16. Local to global: a collaborative approach to volcanic risk assessment

    NASA Astrophysics Data System (ADS)

    Calder, Eliza; Loughlin, Sue; Barsotti, Sara; Bonadonna, Costanza; Jenkins, Susanna

    2017-04-01

    Volcanic risk assessments at all scales present challenges related to the multitude of volcanic hazards, data gaps (hazards and vulnerability in particular), model representation and resources. Volcanic hazards include lahars, pyroclastic density currents, lava flows, tephra fall, ballistics, gas dispersal and also earthquakes, debris avalanches, tsunamis and more ... they can occur in different combinations and interact in different ways throughout the unrest, eruption and post-eruption period. Volcanoes and volcanic hazards also interact with other natural hazards (e.g. intense rainfall). Currently many hazards assessments consider the hazards from a single volcano but at national to regional scales the potential impacts of multiple volcanoes over time become important. The hazards that have the greatest tendency to affect large areas up to global scale are those transported in the atmosphere: volcanic particles and gases. Volcanic ash dispersal has the greatest potential to directly or indirectly affect the largest number of people worldwide, it is currently the only volcanic hazard for which a global assessment exists. The quantitative framework used (primarily at a regional scale) considers the hazard at a given location from any volcano. Flow hazards such as lahars and floods can have devastating impacts tens of kilometres from a source volcano and lahars can be devastating decades after an eruption has ended. Quantitative assessment of impacts is increasingly undertaken after eruptions to identify thresholds for damage and reduced functionality. Some hazards such as lava flows could be considered binary (totally destructive) but others (e.g. ash fall) have varying degrees of impact. Such assessments are needed to enhance available impact and vulnerability data. Currently, most studies focus on physical vulnerability but there is a growing emphasis on social vulnerability showing that it is highly variable and dynamic with pre-eruption socio

  17. Apparent stress, fault maturity and seismic hazard for normal-fault earthquakes at subduction zones

    USGS Publications Warehouse

    Choy, G.L.; Kirby, S.H.

    2004-01-01

    The behavior of apparent stress for normal-fault earthquakes at subduction zones is derived by examining the apparent stress (?? a = ??Es/Mo, where E s is radiated energy and Mo is seismic moment) of all globally distributed shallow (depth, ?? 1 MPa) are also generally intraslab, but occur where the lithosphere has just begun subduction beneath the overriding plate. They usually occur in cold slabs near trenches where the direction of plate motion across the trench is oblique to the trench axis, or where there are local contortions or geometrical complexities of the plate boundary. Lower ??a (< 1 MPa) is associated with events occurring at the outer rise (OR) complex (between the OR and the trench axis), as well as with intracrustal events occurring just landward of the trench. The average apparent stress of intraslab-normal-fault earthquakes is considerably higher than the average apparent stress of interplate-thrust-fault earthquakes. In turn, the average ?? a of strike-slip earthquakes in intraoceanic environments is considerably higher than that of intraslab-normal-fault earthquakes. The variation of average ??a with focal mechanism and tectonic regime suggests that the level of ?? a is related to fault maturity. Lower stress drops are needed to rupture mature faults such as those found at plate interfaces that have been smoothed by large cumulative displacements (from hundreds to thousands of kilometres). In contrast, immature faults, such as those on which intraslab-normal-fault earthquakes generally occur, are found in cold and intact lithosphere in which total fault displacement has been much less (from hundreds of metres to a few kilometres). Also, faults on which high ??a oceanic strike-slip earthquakes occur are predominantly intraplate or at evolving ends of transforms. At subduction zones, earthquakes occurring on immature faults are likely to be more hazardous as they tend to generate higher amounts of radiated energy per unit of moment than

  18. Objective rapid delineation of areas at risk from block-and-ash pyroclastic flows and surges

    USGS Publications Warehouse

    Widiwijayanti, C.; Voight, B.; Hidayat, D.; Schilling, S.P.

    2009-01-01

    Assessments of pyroclastic flow (PF) hazards are commonly based on mapping of PF and surge deposits and estimations of inundation limits, and/or computer models of varying degrees of sophistication. In volcanic crises a PF hazard map may be sorely needed, but limited time, exposures, or safety aspects may preclude fieldwork, and insufficient time or baseline data may be available for reliable dynamic simulations. We have developed a statistically constrained simulation model for block-and-ash type PFs to estimate potential areas of inundation by adapting methodology from Iverson et al. (Geol Soc America Bull 110:972-984, (1998) for lahars. The predictive equations for block-and-ash PFs are calibrated with data from several volcanoes and given by A = (0.05 to 0.1) V2/3, B = (35 to 40) V2/3, where A is cross-sectional area of inundation, B is planimetric area and V is deposit volume. The proportionality coefficients were obtained from regression analyses and comparison of simulations to mapped deposits. The method embeds the predictive equations in a GIS program coupled with DEM topography, using the LAHARZ program of Schilling (1998). Although the method is objective and reproducible, any PF hazard zone so computed should be considered as an approximate guide only, due to uncertainties on the coefficients applicable to individual PFs, the authenticity of DEM details, and the volume of future collapses. The statistical uncertainty of the predictive equations, which imply a factor of two or more in predicting A or B for a specified V, is superposed on the uncertainty of forecasting V for the next PF to descend a particular valley. Multiple inundation zones, produced by simulations using a selected range of volumes, partly accommodate these uncertainties. The resulting maps show graphically that PF inundation potentials are highest nearest volcano sources and along valley thalwegs, and diminish with distance from source and lateral distance from thalweg. The model does

  19. 75 FR 55477 - Safety Zone; Revolution 3 Triathlon, Lake Erie & Sandusky Bay, Cedar Point, OH

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-13

    ... necessary to protect participants of the swim portion of the triathlon race from potential hazards from... public interest because of the hazards associated with vessel operation in close proximity to swimming... and Purpose The temporary safety zone is necessary to ensure the safety of participants of the swim...

  20. Digital Data for Volcano Hazards in the Crater Lake Region, Oregon

    USGS Publications Warehouse

    Schilling, S.P.; Doelger, S.; Bacon, C.R.; Mastin, L.G.; Scott, K.E.; Nathenson, M.

    2008-01-01

    Crater Lake lies in a basin, or caldera, formed by collapse of the Cascade volcano known as Mount Mazama during a violent, climactic eruption about 7,700 years ago. This event dramatically changed the character of the volcano so that many potential types of future events have no precedent there. This potentially active volcanic center is contained within Crater Lake National Park, visited by 500,000 people per year, and is adjacent to the main transportation corridor east of the Cascade Range. Because a lake is now present within the most likely site of future volcanic activity, many of the hazards at Crater Lake are different from those at most other Cascade volcanoes. Also significant are many faults near Crater Lake that clearly have been active in the recent past. These faults, and historic seismicity, indicate that damaging earthquakes can occur there in the future. The USGS Open-File Report 97-487 (Bacon and others, 1997) describes the various types of volcano and earthquake hazards in the Crater Lake area, estimates of the likelihood of future events, recommendations for mitigation, and a map of hazard zones. The geographic information system (GIS) volcano hazard data layers used to produce the Crater Lake earthquake and volcano hazard map in USGS Open-File Report 97-487 are included in this data set. USGS scientists created one GIS data layer, c_faults, that delineates these faults and one layer, cballs, that depicts the downthrown side of the faults. Additional GIS layers chazline, chaz, and chazpoly were created to show 1)the extent of pumiceous pyroclastic-flow deposits of the caldera forming Mount Mazama eruption, 2)silicic and mafic vents in the Crater Lake region, and 3)the proximal hazard zone around the caldera rim, respectively.

  1. A Probabilistic Tsunami Hazard Study of the Auckland Region, Part I: Propagation Modelling and Tsunami Hazard Assessment at the Shoreline

    NASA Astrophysics Data System (ADS)

    Power, William; Wang, Xiaoming; Lane, Emily; Gillibrand, Philip

    2013-09-01

    Regional source tsunamis represent a potentially devastating threat to coastal communities in New Zealand, yet are infrequent events for which little historical information is available. It is therefore essential to develop robust methods for quantitatively estimating the hazards posed, so that effective mitigation measures can be implemented. We develop a probabilistic model for the tsunami hazard posed to the Auckland region of New Zealand from the Kermadec Trench and the southern New Hebrides Trench subduction zones. An innovative feature of our model is the systematic analysis of uncertainty regarding the magnitude-frequency distribution of earthquakes in the source regions. The methodology is first used to estimate the tsunami hazard at the coastline, and then used to produce a set of scenarios that can be applied to produce probabilistic maps of tsunami inundation for the study region; the production of these maps is described in part II. We find that the 2,500 year return period regional source tsunami hazard for the densely populated east coast of Auckland is dominated by events originating in the Kermadec Trench, while the equivalent hazard to the sparsely populated west coast is approximately equally due to events on the Kermadec Trench and the southern New Hebrides Trench.

  2. 2014 Update of the Pacific Northwest portion of the U.S. National Seismic Hazard Maps

    USGS Publications Warehouse

    Frankel, Arthur; Chen, Rui; Petersen, Mark; Moschetti, Morgan P.; Sherrod, Brian

    2015-01-01

    Several aspects of the earthquake characterization were changed for the Pacific Northwest portion of the 2014 update of the national seismic hazard maps, reflecting recent scientific findings. New logic trees were developed for the recurrence parameters of M8-9 earthquakes on the Cascadia subduction zone (CSZ) and for the eastern edge of their rupture zones. These logic trees reflect recent findings of additional M8 CSZ earthquakes using offshore deposits of turbidity flows and onshore tsunami deposits and subsidence. These M8 earthquakes each rupture a portion of the CSZ and occur in the time periods between M9 earthquakes that have an average recurrence interval of about 500 years. The maximum magnitude was increased for deep intraslab earthquakes. An areal source zone to account for the possibility of deep earthquakes under western Oregon was expanded. The western portion of the Tacoma fault was added to the hazard maps.

  3. 76 FR 18389 - Safety Zones; Charleston Race Week, Charleston Harbor, Charleston, SC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-04

    ... South Carolina Maritime Foundation, will be hosting three sailboat races commencing on April 14, 2011... the hazards associated with the sailboat races. Discussion of Rule The three temporary safety zones...

  4. Deterministic seismic hazard macrozonation of India

    NASA Astrophysics Data System (ADS)

    Kolathayar, Sreevalsa; Sitharam, T. G.; Vipin, K. S.

    2012-10-01

    Earthquakes are known to have occurred in Indian subcontinent from ancient times. This paper presents the results of seismic hazard analysis of India (6°-38°N and 68°-98°E) based on the deterministic approach using latest seismicity data (up to 2010). The hazard analysis was done using two different source models (linear sources and point sources) and 12 well recognized attenuation relations considering varied tectonic provinces in the region. The earthquake data obtained from different sources were homogenized and declustered and a total of 27,146 earthquakes of moment magnitude 4 and above were listed in the study area. The sesismotectonic map of the study area was prepared by considering the faults, lineaments and the shear zones which are associated with earthquakes of magnitude 4 and above. A new program was developed in MATLAB for smoothing of the point sources. For assessing the seismic hazard, the study area was divided into small grids of size 0.1° × 0.1° (approximately 10 × 10 km), and the hazard parameters were calculated at the center of each of these grid cells by considering all the seismic sources within a radius of 300 to 400 km. Rock level peak horizontal acceleration (PHA) and spectral accelerations for periods 0.1 and 1 s have been calculated for all the grid points with a deterministic approach using a code written in MATLAB. Epistemic uncertainty in hazard definition has been tackled within a logic-tree framework considering two types of sources and three attenuation models for each grid point. The hazard evaluation without logic tree approach also has been done for comparison of the results. The contour maps showing the spatial variation of hazard values are presented in the paper.

  5. Active fault databases and seismic hazard calculations: a compromise between science and practice. Review of case studies from Spain.

    NASA Astrophysics Data System (ADS)

    Garcia-Mayordomo, Julian; Martin-Banda, Raquel; Insua-Arevalo, Juan Miguel; Alvarez-Gomez, Jose Antonio; Martinez-Diaz, Jose Jesus

    2017-04-01

    Since the Quaternary Active Faults Database of Iberia (QAFI) was released in February 2012 a number of studies aimed at producing seismic hazard assessments have made use of it. We will present a summary of the shortcomings and advantages that were faced when QAFI was considered in different seismic hazard studies. These include the production of the new official seismic hazard map of Spain, performed in the view of the foreseen adoption of Eurocode-8 throughout 2017. The QAFI database was considered as a complementary source of information for designing the seismogenic source-zone models used in the calculations, and particularly for the estimation of maximum magnitude distribution in each zone, as well as for assigning the predominant rupture mechanism based on style of faulting. We will also review the different results obtained by other studies that considered QAFI faults as independent seismogenic-sources in opposition to source-zones, revealing, on one hand, the crucial importance of data-reliability and, on the other, the very much influence that ground motion attenuation models have on the actual impact of fault-sources on hazard results. Finally, we will present briefly the updated version of the database (QAFI v.3, 2015), which includes an original scheme for evaluating the reliability of fault seismic parameters specifically devised to facilitate decision-making to seismic hazard practitioners.

  6. Probabilistic seismic hazard maps for Sinai Peninsula, Egypt

    NASA Astrophysics Data System (ADS)

    Deif, A.; Abou Elenean, K.; El Hadidy, M.; Tealeb, A.; Mohamed, A.

    2009-09-01

    Sinai experienced the largest Egyptian earthquake with moment magnitude (Mw) 7.2 in 1995 in the Gulf of Aqaba, 350 km from Cairo. It is characterized by the presence of many tourist projects in addition to different natural resources. The aim of the current study is to present, for the first time, the probabilistic spectral hazard maps for Sinai. Revised earthquake catalogues for Sinai and its surroundings, from 112 BC to 2006 AD with magnitude equal or greater than 3.0, are used to calculate seismic hazard in the region of interest between 27°N and 31.5°N and 32°E and 36°E. We declustered these catalogues to include only independent events. The catalogues were tested for the completeness of different magnitude ranges. 28 seismic source zones are used to define the seismicity. The recurrence rates and the maximum earthquakes across these zones were also determined from these modified catalogues. Strong ground motion relations for rock are used to produce 5% damped spectral acceleration values for four different periods (0.2, 0.5, 1.0 and 2.0 s) to define the uniform response spectra at each site (grid of 0.2° × 0.2° all over the area). Maps showing spectral acceleration values at 0.2, 0.5, 1.0 and 2.0 s periods as well as peak ground acceleration (PGA) for the return period of 475 years (equivalent to 90% probability on non-exceedence in 50 years) are presented. In addition, Uniform Hazard Spectra (UHS) at 25 different periods for the four main cities (Hurghda, Sharm El-Sheikh, Nuweibaa and Suez) are graphed. The highest hazard is found in the Gulf of Aqaba with maximum spectral accelerations 356 cm s-2 at a period of 0.22 s for a return period of 475 years.

  7. Probabilistic seismic hazard assessments of Sabah, east Malaysia: accounting for local earthquake activity near Ranau

    NASA Astrophysics Data System (ADS)

    Khalil, Amin E.; Abir, Ismail A.; Ginsos, Hanteh; Abdel Hafiez, Hesham E.; Khan, Sohail

    2018-02-01

    Sabah state in eastern Malaysia, unlike most of the other Malaysian states, is characterized by common seismological activity; generally an earthquake of moderate magnitude is experienced at an interval of roughly every 20 years, originating mainly from two major sources, either a local source (e.g. Ranau and Lahad Dato) or a regional source (e.g. Kalimantan and South Philippines subductions). The seismicity map of Sabah shows the presence of two zones of distinctive seismicity, these zones are near Ranau (near Kota Kinabalu) and Lahad Datu in the southeast of Sabah. The seismicity record of Ranau begins in 1991, according to the international seismicity bulletins (e.g. United States Geological Survey and the International Seismological Center), and this short record is not sufficient for seismic source characterization. Fortunately, active Quaternary fault systems are delineated in the area. Henceforth, the seismicity of the area is thus determined as line sources referring to these faults. Two main fault systems are believed to be the source of such activities; namely, the Mensaban fault zone and the Crocker fault zone in addition to some other faults in their vicinity. Seismic hazard assessments became a very important and needed study for the extensive developing projects in Sabah especially with the presence of earthquake activities. Probabilistic seismic hazard assessments are adopted for the present work since it can provide the probability of various ground motion levels during expected from future large earthquakes. The output results are presented in terms of spectral acceleration curves and uniform hazard curves for periods of 500, 1000 and 2500 years. Since this is the first time that a complete hazard study has been done for the area, the output will be a base and standard for any future strategic plans in the area.

  8. A Bimodal Hybrid Model for Time-Dependent Probabilistic Seismic Hazard Analysis

    NASA Astrophysics Data System (ADS)

    Yaghmaei-Sabegh, Saman; Shoaeifar, Nasser; Shoaeifar, Parva

    2018-03-01

    The evaluation of evidence provided by geological studies and historical catalogs indicates that in some seismic regions and faults, multiple large earthquakes occur in cluster. Then, the occurrences of large earthquakes confront with quiescence and only the small-to-moderate earthquakes take place. Clustering of large earthquakes is the most distinguishable departure from the assumption of constant hazard of random occurrence of earthquakes in conventional seismic hazard analysis. In the present study, a time-dependent recurrence model is proposed to consider a series of large earthquakes that occurs in clusters. The model is flexible enough to better reflect the quasi-periodic behavior of large earthquakes with long-term clustering, which can be used in time-dependent probabilistic seismic hazard analysis with engineering purposes. In this model, the time-dependent hazard results are estimated by a hazard function which comprises three parts. A decreasing hazard of last large earthquake cluster and an increasing hazard of the next large earthquake cluster, along with a constant hazard of random occurrence of small-to-moderate earthquakes. In the final part of the paper, the time-dependent seismic hazard of the New Madrid Seismic Zone at different time intervals has been calculated for illustrative purpose.

  9. Toward Building a New Seismic Hazard Model for Mainland China

    NASA Astrophysics Data System (ADS)

    Rong, Y.; Xu, X.; Chen, G.; Cheng, J.; Magistrale, H.; Shen, Z.

    2015-12-01

    At present, the only publicly available seismic hazard model for mainland China was generated by Global Seismic Hazard Assessment Program in 1999. We are building a new seismic hazard model by integrating historical earthquake catalogs, geological faults, geodetic GPS data, and geology maps. To build the model, we construct an Mw-based homogeneous historical earthquake catalog spanning from 780 B.C. to present, create fault models from active fault data using the methodology recommended by Global Earthquake Model (GEM), and derive a strain rate map based on the most complete GPS measurements and a new strain derivation algorithm. We divide China and the surrounding regions into about 20 large seismic source zones based on seismotectonics. For each zone, we use the tapered Gutenberg-Richter (TGR) relationship to model the seismicity rates. We estimate the TGR a- and b-values from the historical earthquake data, and constrain corner magnitude using the seismic moment rate derived from the strain rate. From the TGR distributions, 10,000 to 100,000 years of synthetic earthquakes are simulated. Then, we distribute small and medium earthquakes according to locations and magnitudes of historical earthquakes. Some large earthquakes are distributed on active faults based on characteristics of the faults, including slip rate, fault length and width, and paleoseismic data, and the rest to the background based on the distributions of historical earthquakes and strain rate. We evaluate available ground motion prediction equations (GMPE) by comparison to observed ground motions. To apply appropriate GMPEs, we divide the region into active and stable tectonics. The seismic hazard will be calculated using the OpenQuake software developed by GEM. To account for site amplifications, we construct a site condition map based on geology maps. The resulting new seismic hazard map can be used for seismic risk analysis and management, and business and land-use planning.

  10. 75 FR 28769 - Safety Zone; Osage River, Mile 016.8 to 017.2

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-24

    ...-AA00 Safety Zone; Osage River, Mile 016.8 to 017.2 AGENCY: Coast Guard, DHS. ACTION: Notice of proposed... Osage River, Mile 016.8 to 017.2, extending the entire width of the river. This safety zone is needed to... between mile 016.8 and 017.2 on the Osage River. This event presents safety hazards to the navigation of...

  11. Probabilistic seismic hazard assessment of southern part of Ghana

    NASA Astrophysics Data System (ADS)

    Ahulu, Sylvanus T.; Danuor, Sylvester Kojo; Asiedu, Daniel K.

    2018-05-01

    This paper presents a seismic hazard map for the southern part of Ghana prepared using the probabilistic approach, and seismic hazard assessment results for six cities. The seismic hazard map was prepared for 10% probability of exceedance for peak ground acceleration in 50 years. The input parameters used for the computations of hazard were obtained using data from a catalogue that was compiled and homogenised to moment magnitude (Mw). The catalogue covered a period of over a century (1615-2009). The hazard assessment is based on the Poisson model for earthquake occurrence, and hence, dependent events were identified and removed from the catalogue. The following attenuation relations were adopted and used in this study—Allen (for south and eastern Australia), Silva et al. (for Central and eastern North America), Campbell and Bozorgnia (for worldwide active-shallow-crust regions) and Chiou and Youngs (for worldwide active-shallow-crust regions). Logic-tree formalism was used to account for possible uncertainties associated with the attenuation relationships. OpenQuake software package was used for the hazard calculation. The highest level of seismic hazard is found in the Accra and Tema seismic zones, with estimated peak ground acceleration close to 0.2 g. The level of the seismic hazard in the southern part of Ghana diminishes with distance away from the Accra/Tema region to a value of 0.05 g at a distance of about 140 km.

  12. Job Hazard Analyses for Musculoskeletal Disorder Risk Factors in Pressing Operations of Dry-cleaning Establishments.

    PubMed

    Park, Jung-Keun

    2016-12-01

    Job hazard analyses were conducted to assess exposure to musculoskeletal disorder (MSD) risk factors in seven workers of three dry-cleaning establishments. In accordance with the Washington State Ergonomics Rule, the analyses were performed in two separate steps: (1) observation and checklist approaches were made to identify a "caution zone job" in the seven workers' pressing operations across the three shops; and (2) detailed posture and motion analyses were undertaken to determine a "MSD hazard" in one worker's operation using a video technique. One "caution zone job" was identified and it was the pressing operation job in which five physical risk factors were found in the pressing operations. The detailed analyses confirmed that one "MSD hazard", i.e., awkward posture in shoulders, was prevalent in the pressing operations of the three dry-cleaning facilities. It would be desirable to reduce MSD risk factors including awkward shoulder posture in the dry-cleaning industry.

  13. Geocryological hazards and destructive exogenic geological processes on lines of linear constructions of tundra and forest-tundra zones of Western Siberia

    NASA Astrophysics Data System (ADS)

    Ospennikov, E. N.; Hilimonjuk, V. Z.

    2009-04-01

    Economic development of northern oil-and gas-bearing regions, even by application of shift method, is accompanied by a construction of the linear transport systems including automobile- and railways. Construction of such roads is connected with the risks caused by the whole complex of hazards, defined by the environmental features of the region, including flat surface with strong marshiness, development of a peat, fine-grained and easily eroded friable sedimentations, as well as by complicated geocryological conditions. Geocryological conditions of Western Siberia area are characterized by a rather high heterogeneity. This implies the strong variability of permafrost soils distribution, their thickness and continuity, depths of seasonal thawing and frost penetration, and also intact development of geocryological processes and phenomena. Thermokarst, thermo erosion and thermo-abrasion develop in the natural conditions. These processes are caused by partial degradation of permafrost. A frost heave also occurs during their seasonal or long-term freezing. Failure of an environment, which is always peculiar to construction of the roads, causes reorganization of geocryological systems that is accompanied by occurrence of dangerous geocryological processes, such as technogenic thermokarst (with formation of various negative forms of a relief: from fine subsidence up to small and average sized lakes), frost heave ground (with formation frost mound in height up to 0,5 - 1,5 meters and more), thermal erosion (gullies and ravines with volume of the born material up to several thousand cubic meters). Development of these destructive processes in a road stripes leads to emergencies owing to deformations and destructions of an earthen cloth, and to failure of natural tundra and forest-tundra ecosystems. The methodical approaches based on typification and zoning of the area by its environmental complex have been developed for an estimation of geocryological hazards at linear

  14. Coastal vulnerability: climate change and natural hazards perspectives

    NASA Astrophysics Data System (ADS)

    Romieu, E.; Vinchon, C.

    2009-04-01

    Introduction Studying coastal zones as a territorial concept (Integrated coastal zone management) is an essential issue for managers, as they have to consider many different topics (natural hazards, resources management, tourism, climate change…). The recent approach in terms of "coastal vulnerability" studies (since the 90's) is the main tool used nowadays to help them in evaluating impacts of natural hazards on coastal zones, specially considering climate change. This present communication aims to highlight the difficulties in integrating this concept in risk analysis as it is usually practiced in natural hazards sciences. 1) Coastal vulnerability as a recent issue The concept of coastal vulnerability mainly appears in the International panel on climate change works of 1992 (IPCC. 2001), where it is presented as essential for climate change adaptation. The concept has been defined by a common methodology which proposes the assessment of seven indicators, in regards to a sea level rise of 1m in 2100: people affected, people at risk, capital value at loss, land at loss, wetland at loss, potential adaptation costs, people at risk assuming this adaptation. Many national assessments have been implemented (Nicholls, et al. 1995) and a global assessment was proposed for three indicators (Nicholls, et al. 1999). The DINAS-Coast project reuses this methodology to produce the DIVA-tool for coastal managers (Vafeidis, et al. 2004). Besides, many other methodologies for national or regional coastal vulnerability assessments have been developed (review by (UNFCCC. 2008). The use of aggregated vulnerability indicators (including geomorphology, hydrodynamics, climate change…) is widespread: the USGS coastal vulnerability index is used worldwide and was completed by a social vulnerability index (Boruff, et al. 2005). Those index-based methods propose a vulnerability mapping which visualise indicators of erosion, submersion and/or socio economic sensibility in coastal zones

  15. 75 FR 63086 - Great Mississippi Balloon Race and Fireworks Safety Zone; Lower Mississippi River, Mile Marker...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-14

    ... flying hot air balloons transiting across the Lower Mississippi River. Entry into this zone is prohibited... mariners from the safety hazards associated with a fireworks display and low flying hot air balloons... mariners from the safety hazards associated with a fireworks display and low flying hot air balloons...

  16. Landing Hazard Avoidance Display

    NASA Technical Reports Server (NTRS)

    Abernathy, Michael Franklin (Inventor); Hirsh, Robert L. (Inventor)

    2016-01-01

    Landing hazard avoidance displays can provide rapidly understood visual indications of where it is safe to land a vehicle and where it is unsafe to land a vehicle. Color coded maps can indicate zones in two dimensions relative to the vehicles position where it is safe to land. The map can be simply green (safe) and red (unsafe) areas with an indication of scale or can be a color coding of another map such as a surface map. The color coding can be determined in real time based on topological measurements and safety criteria to thereby adapt to dynamic, unknown, or partially known environments.

  17. Approach to the vadose zone monitoring in hazardous and solid waste disposal facilities

    NASA Astrophysics Data System (ADS)

    Twardowska, Irena

    2004-03-01

    In the solid waste (SW)disposal sites, in particular at the unlined facilities, at the remediated or newly-constructed units equipped with novel protective/reactive permeable barriers or at lined facilities with leachate collection systems that are prone to failure, the vadose zone monitoring should comprise besides the natural soil layer beneath the landfill, also the anthropogenic vadose zone, i.e. the waste layer and pore solutions in the landfill. The vadose zone screening along the vertical profile of SW facilities with use of direct invasive soil-core and soil-pore liquid techniques shows vertical downward redistribution of inorganic (macroconstituents and heavy metals) and organic (PAHs) contaminant loads in water infiltrating through the waste layer. These loads can make ground water down-gradient of the dump unfit for any use. To avoid damage of protective/reactive permeable barriers and liners, an installation of stationary monitoring systems along the waste layer profile during the construction of a landfill, which are amenable to generate accurate data and information in a near-real time should be considered including:(i) permanent samplers of pore solution, with a periodic pump-induced transport of collected solution to the surface, preferably with instant field measurements;(ii)chemical sensors with continuous registration of critical parameters. These techniques would definitely provide an early alert in case when the chemical composition of pore solution percolating downward the waste profile shows unfavorable transformations, which indicate an excessive contaminant load approaching ground water. The problems concerning invasive and stationary monitoring of the vadose zone in SW disposal facilities will be discussed at the background of results of monitoring data and properties of permeable protective/reactive barriers considered for use.

  18. Hazardous Glaciers In Switzerland: A Statistical Analysis of Inventory Data

    NASA Astrophysics Data System (ADS)

    Raymond, M.; Funk, M.; Wegmann, M.

    Because of the recent increase in both occupation and economical activities in high mountain areas, a systematic overview of potential hazard zones of glaciers is needed to avoid the constuction of settlements and infrastructures in endangered areas in fu- ture. Historical informations about glacier disasters show that catastrophic events can happen repeatedly for the same causes and with the same dramatic consequences. Past catastrophic events are not only useful to identify potentially dangerous glaciers, but represent an indication of the kind of glacier hazards to expect for any given glacier. An inventory containing all known events having caused damages in the past has been compiled for Switzerland. Three different types of glacier hazards are distinguished , e.g. ice avalanches, glacier floods and glacier length changes.Hazardous glaciers have been identified in the alpine cantons of Bern, Grison, Uri, Vaud and Valais so far. The inventory data were analysed in terms of periodicity of different types of events as well as of damage occured.

  19. Probabilistic Seismic Hazard Analysis of Victoria, British Columbia, Canada: Considering an Active Leech River Fault

    NASA Astrophysics Data System (ADS)

    Kukovica, J.; Molnar, S.; Ghofrani, H.

    2017-12-01

    The Leech River fault is situated on Vancouver Island near the city of Victoria, British Columbia, Canada. The 60km transpressional reverse fault zone runs east to west along the southern tip of Vancouver Island, dividing the lithologic units of Jurassic-Cretaceous Leech River Complex schists to the north and Eocene Metchosin Formation basalts to the south. This fault system poses a considerable hazard due to its proximity to Victoria and 3 major hydroelectric dams. The Canadian seismic hazard model for the 2015 National Building Code of Canada (NBCC) considered the fault system to be inactive. However, recent paleoseismic evidence suggests there to be at least 2 surface-rupturing events to have exceeded a moment magnitude (M) of 6.5 within the last 15,000 years (Morell et al. 2017). We perform a Probabilistic Seismic Hazard Analysis (PSHA) for the city of Victoria with consideration of the Leech River fault as an active source. A PSHA for Victoria which replicates the 2015 NBCC estimates is accomplished to calibrate our PSHA procedure. The same seismic source zones, magnitude recurrence parameters, and Ground Motion Prediction Equations (GMPEs) are used. We replicate the uniform hazard spectrum for a probability of exceedance of 2% in 50 years for a 500 km radial area around Victoria. An active Leech River fault zone is then added; known length and dip. We are determining magnitude recurrence parameters based on a Gutenberg-Richter relationship for the Leech River fault from various catalogues of the recorded seismicity (M 2-3) within the fault's vicinity and the proposed paleoseismic events. We seek to understand whether inclusion of an active Leech River fault source will significantly increase the probabilistic seismic hazard for Victoria. Morell et al. 2017. Quaternary rupture of a crustal fault beneath Victoria, British Columbia, Canada. GSA Today, 27, doi: 10.1130/GSATG291A.1

  20. Thunderstorm hazards flight research: Storm hazards 1980 overview

    NASA Technical Reports Server (NTRS)

    Deal, P. L.; Keyser, G. L.; Fisher, B. D.; Crabill, N. L.

    1981-01-01

    A highly instrumented NASA F-106B aircraft, modified for the storm hazards mission and protected against direct lightning strikes, was used in conjunction with various ground based radar and lightning measurement systems to collect data during thunderstorm penetration flights. During 69 thunderstorm penetrations, there were 10 direct lightning strikes to the aircraft. No problems were encountered with any of the aircraft's systems as a result of the strikes and the research instrumentation performed as designed. Electromagnetic characteristics of nine strikes were recorded, and the results of other experiments confirm the theory that X-ray radiation and nitrous oxide gas are being produced by processes associated directly with thunderstorm electric fields and lightning discharges. A better understanding of aircraft lightning attachment mechanisms and strike zones is being accomplished by careful inspection, identification, and documentation of lightning attachment points and swept stroke paths following each strike to the aircraft.

  1. Seismic hazard in the Nation's breadbasket

    USGS Publications Warehouse

    Boyd, Oliver; Haller, Kathleen; Luco, Nicolas; Moschetti, Morgan P.; Mueller, Charles; Petersen, Mark D.; Rezaeian, Sanaz; Rubinstein, Justin L.

    2015-01-01

    The USGS National Seismic Hazard Maps were updated in 2014 and included several important changes for the central United States (CUS). Background seismicity sources were improved using a new moment-magnitude-based catalog; a new adaptive, nearest-neighbor smoothing kernel was implemented; and maximum magnitudes for background sources were updated. Areal source zones developed by the Central and Eastern United States Seismic Source Characterization for Nuclear Facilities project were simplified and adopted. The weighting scheme for ground motion models was updated, giving more weight to models with a faster attenuation with distance compared to the previous maps. Overall, hazard changes (2% probability of exceedance in 50 years, across a range of ground-motion frequencies) were smaller than 10% in most of the CUS relative to the 2008 USGS maps despite new ground motion models and their assigned logic tree weights that reduced the probabilistic ground motions by 5–20%.

  2. Advances in volcano monitoring and risk reduction in Latin America

    NASA Astrophysics Data System (ADS)

    McCausland, W. A.; White, R. A.; Lockhart, A. B.; Marso, J. N.; Assitance Program, V. D.; Volcano Observatories, L. A.

    2014-12-01

    We describe results of cooperative work that advanced volcanic monitoring and risk reduction. The USGS-USAID Volcano Disaster Assistance Program (VDAP) was initiated in 1986 after disastrous lahars during the 1985 eruption of Nevado del Ruiz dramatizedthe need to advance international capabilities in volcanic monitoring, eruption forecasting and hazard communication. For the past 28 years, VDAP has worked with our partners to improve observatories, strengthen monitoring networks, and train observatory personnel. We highlight a few of the many accomplishments by Latin American volcano observatories. Advances in monitoring, assessment and communication, and lessons learned from the lahars of the 1985 Nevado del Ruiz eruption and the 1994 Paez earthquake enabled the Servicio Geológico Colombiano to issue timely, life-saving warnings for 3 large syn-eruptive lahars at Nevado del Huila in 2007 and 2008. In Chile, the 2008 eruption of Chaitén prompted SERNAGEOMIN to complete a national volcanic vulnerability assessment that led to a major increase in volcano monitoring. Throughout Latin America improved seismic networks now telemeter data to observatories where the decades-long background rates and types of seismicity have been characterized at over 50 volcanoes. Standardization of the Earthworm data acquisition system has enabled data sharing across international boundaries, of paramount importance during both regional tectonic earthquakes and during volcanic crises when vulnerabilities cross international borders. Sharing of seismic forecasting methods led to the formation of the international organization of Latin American Volcano Seismologists (LAVAS). LAVAS courses and other VDAP training sessions have led to international sharing of methods to forecast eruptions through recognition of precursors and to reduce vulnerabilities from all volcano hazards (flows, falls, surges, gas) through hazard assessment, mapping and modeling. Satellite remote sensing data

  3. Transient Aseismic Slip in the Cascadia Subduction Zone: From Monitoring to Useful Real-time Hazards Information

    NASA Astrophysics Data System (ADS)

    Roeloffs, E. A.; Beeler, N. M.

    2010-12-01

    The Cascadia subduction zone, extending from northern California to Vancouver Island, has a 10,000 year record of earthquakes > M8.5 at intervals of several hundred years, with the last major event (~M9) in 1700. Agencies in CA, OR, WA, and BC are raising public awareness of the hazards posed by a repeat Cascadia earthquake and its ensuing tsunami. Because most of the subduction interface is now seismically quiet, an interface event M6 or larger would generate intense public concern that it could be a potential foreshock of a great earthquake. Cascadia residents are also interested in the episodic tremor and slip (ETS) events that recur months to years apart: strong evidence implies these aseismic events represent accelerated interface slip downdip of the seismogenic zone. Simple mechanics implies ETS events temporarily increase the stressing rate on the locked zone. ETS events in northern Cascadia recur at fairly regular intervals and produced roughly similar patterns of deformation. However, an unusually large ETS event or increased interface seismicity would certainly prompt public officials and local residents to expect scientists to quickly determine the implications for a major Cascadia earthquake. Earthquake scientists generally agree that such “situations of concern” warrant close monitoring, but attempts to quantify potential probability changes are in very early stages. With >30 borehole strainmeters and >100 GPS stations of the NSF-funded Plate Boundary Observatory (PBO) in Cascadia, geodesists must develop a well-organized real-time monitoring scheme for interpreting aseismic deformation, with an accompanying public communication strategy. Two previously-exercised monitoring and communication protocols could be adapted for Cascadia. During the Parkfield, California, Earthquake Experiment, geodetic signals were assigned alert levels based on their rareness in the past record, on confirmation by more than one instrument, and on consistency with

  4. Rockfall hazard assessment, risk quantification, and mitigation options for reef cove resort development, False Cape, Queensland, Australia

    NASA Astrophysics Data System (ADS)

    Schlotfeldt, P.

    2009-04-01

    GIS and 2-D rock fall simulations were used as the primary tools during a rock fall hazard assessment and analyses for a major resort and township development near Cairns, Queensland in Australia. The methods used included 1) the development of a digital elevation model (DEM); undertaking rock fall trajectory analyses to determine the end points of rockfalls, the distribution of kinetic energy for identified rock fall runout Zones, and 3) undertaking event tree analyses based on a synthesis of all data in order to establish Zones with the highest risk of fatalities. This paper describes the methodology used and the results of this work. Recommendations to mitigate the hazard included having exclusions zones with no construction, scaling (including trim blasting), construction of berms and rockfall catch fences. Keywords: GIS, rockfall simulation, rockfall runout Zones, mitigation options INTRODUCTION False Cape is located on the east side of the Trinity inlet near Cairns (Figure 1). Construction is underway for a multi-million dollar development close the beach front. The development will ultimately cover about 1.5 km of prime coast line. The granite slopes above the development are steep and are covered with a number of large, potentially unstable boulders. Sheet jointing is present in the in-situ bedrock and these combined with other tectonic joint sets have provided a key mechanism for large side down slope on exposed bedrock. With each rock fall (evidence by boulders strew in gullies, over the lower parts of the slope, and on the beach) the failure mechanism migrates upslope. In order for the Developer to proceed with construction he needs to mitigate the identified rock fall hazard. The method used to study the hazard and key finding are presented in this paper. Discussion is provided in the conclusion on mitigation options. KEY METHODS USED TO STUDY THE HAZARD In summary the methods used to study the hazard for the False Cape project include; 1. The

  5. Global Assessment of Volcanic Debris Hazards from Space

    NASA Technical Reports Server (NTRS)

    Watters, Robert J.

    2003-01-01

    Hazard (slope stability) assessment for different sectors of volcano edifices was successfully obtained from volcanoes in North and South America. The assessment entailed Hyperion images to locate portions of the volcano that were hydrothermally altered to clay rich rocks with zones that were also rich in alunite and other minerals. The identified altered rock zones were field checked and sampled. The rock strength of these zones was calculated from the field and laboratory measurements. Volcano modeling utilizing the distinct element method and limit equilibrium technique, with the calculated strength data was used to assess stability and deformation of the edifice. Modeling results give indications of possible failure volumes, velocities and direction. The models show the crucial role hydrothermally weak rock plays in reducing the strength o the volcano edifice and the rapid identification of weak rock through remote sensing techniques. Volcanoes were assessed in the Cascade Range (USA), Mexico, and Chile (ongoing).

  6. 75 FR 35968 - Safety Zone; Fireworks Display in Stevenson, WA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-24

    ...-AA00 Safety Zone; Fireworks Display in Stevenson, WA AGENCY: Coast Guard, DHS. ACTION: Temporary final... safety of the maritime public during the fireworks display and will do so by prohibiting all persons and... with fireworks displays on navigable waters. Such hazards include premature detonations, dangerous...

  7. A New Database Dedicated to Volcanic Hazards and Risks: The atlas of Merapi Volcano, Indonesia

    NASA Astrophysics Data System (ADS)

    Lavigne, Franck; Surono, Dr; Mei, Estuning; de Belizal, Edouard; Cholik, Noer; Picquout, Adrien; Komorowski, Jean-Christophe; Morin, Julie; sri Hadmoko, Danang

    2014-05-01

    Merapi volcano is one of the most active volcanoes worldwide. Approximately 1.3 million people live within a radius 20 km from the summit. In the framework of both, the FP7 MIA VITA Project, and the SEDIMER Project funded by AXA Research Fund, we have built a database at the village scale, which includes the elements at risk and the local resources. This unique geospatial database was used to build a series of maps at the scale of the volcano, providing the core of the Merapi atlas. Designed by the French Laboratory of Physical Geography in Meudon (France) and the Center of Volcanology and Geological Hazards Mitigation in Bandung (Indonesia), this atlas provides a state of the art synthesis of knowledge on Merapi, from the reconstruction of past eruptions and assessment of volcanic hazards to the quantification of vulnerability and capacities. It is pertinent to a broad audience ranging from volcanologists to the Indonesian population interested to learn about their sacred volcano. The primary goal of this Atlas is to provide an essential blueprint for planners and public officials involved in long-term development as well as risk and crisis management. The atlas contains 63 color plates gathered in 6 chapters: the introduction summarises the geological context as well as the environmental and human context of Merapi volcano. The second chapter pertains to the geology, the past activity, and the volcanic hazards at Merapi. The third chapter is dedicated to the resources offered by the volcano, including agriculture, livestock, and sand mining activities. The fourth chapter focuses on vulnerability and capacities. The fifth chapter provides a reconstruction of the 2010 VEI 4 eruption of Merapi and its environmental consequences. The sixth chapter summarises the socio-economical impact of the eruption, including mapping of casualties, evacuation, building damage, and an assessment of air traffic disturbance. The seventh chapter focuses on rain-triggered lahar

  8. Documentation for the Southeast Asia seismic hazard maps

    USGS Publications Warehouse

    Petersen, Mark; Harmsen, Stephen; Mueller, Charles; Haller, Kathleen; Dewey, James; Luco, Nicolas; Crone, Anthony; Lidke, David; Rukstales, Kenneth

    2007-01-01

    The U.S. Geological Survey (USGS) Southeast Asia Seismic Hazard Project originated in response to the 26 December 2004 Sumatra earthquake (M9.2) and the resulting tsunami that caused significant casualties and economic losses in Indonesia, Thailand, Malaysia, India, Sri Lanka, and the Maldives. During the course of this project, several great earthquakes ruptured subduction zones along the southern coast of Indonesia (fig. 1) causing additional structural damage and casualties in nearby communities. Future structural damage and societal losses from large earthquakes can be mitigated by providing an advance warning of tsunamis and introducing seismic hazard provisions in building codes that allow buildings and structures to withstand strong ground shaking associated with anticipated earthquakes. The Southeast Asia Seismic Hazard Project was funded through a United States Agency for International Development (USAID)—Indian Ocean Tsunami Warning System to develop seismic hazard maps that would assist engineers in designing buildings that will resist earthquake strong ground shaking. An important objective of this project was to discuss regional hazard issues with building code officials, scientists, and engineers in Thailand, Malaysia, and Indonesia. The code communities have been receptive to these discussions and are considering updating the Thailand and Indonesia building codes to incorporate new information (for example, see notes from Professor Panitan Lukkunaprasit, Chulalongkorn University in Appendix A).

  9. SENSITIVE PARAMETER EVALUATION FOR A VADOSE ZONE FATE AND TRANSPORT MODEL

    EPA Science Inventory

    This report presents information pertaining to quantitative evaluation of the potential impact of selected parameters on output of vadose zone transport and fate models used to describe the behavior of hazardous chemicals in soil. The Vadose 2one Interactive Processes (VIP) model...

  10. 77 FR 59749 - Safety Zone; Submarine Cable Installation Project; Chicago River, Chicago, IL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-01

    ... lines. C. Discussion of Rule With the aforementioned hazards in mind, the Captain of the Port, Sector... significant effect on the human environment. This rule involves the establishment of a safety zone and...

  11. Planar seismic source characterization models developed for probabilistic seismic hazard assessment of Istanbul

    NASA Astrophysics Data System (ADS)

    Gülerce, Zeynep; Buğra Soyman, Kadir; Güner, Barış; Kaymakci, Nuretdin

    2017-12-01

    This contribution provides an updated planar seismic source characterization (SSC) model to be used in the probabilistic seismic hazard assessment (PSHA) for Istanbul. It defines planar rupture systems for the four main segments of the North Anatolian fault zone (NAFZ) that are critical for the PSHA of Istanbul: segments covering the rupture zones of the 1999 Kocaeli and Düzce earthquakes, central Marmara, and Ganos/Saros segments. In each rupture system, the source geometry is defined in terms of fault length, fault width, fault plane attitude, and segmentation points. Activity rates and the magnitude recurrence models for each rupture system are established by considering geological and geodetic constraints and are tested based on the observed seismicity that is associated with the rupture system. Uncertainty in the SSC model parameters (e.g., b value, maximum magnitude, slip rate, weights of the rupture scenarios) is considered, whereas the uncertainty in the fault geometry is not included in the logic tree. To acknowledge the effect of earthquakes that are not associated with the defined rupture systems on the hazard, a background zone is introduced and the seismicity rates in the background zone are calculated using smoothed-seismicity approach. The state-of-the-art SSC model presented here is the first fully documented and ready-to-use fault-based SSC model developed for the PSHA of Istanbul.

  12. Strength of plate coupling in the southern Ryukyu subduction zone

    NASA Astrophysics Data System (ADS)

    Doo, Wen-Bin; Lo, Chung-Liang; Wu, Wen-Nan; Lin, Jing-Yi; Hsu, Shu-Kun; Huang, Yin-Sheng; Wang, Hsueh-Fen

    2018-01-01

    Understanding the strength of a plate coupling is critical for assessing potential seismic and tsunamic hazards in subduction zones. The interaction between an overriding plate and the associated subducting plate can be used to evaluate the strength of plate coupling by examining the mantle lithospheric buoyancy. Here, we calculate the mantle lithosphere buoyancy across the northern portion of the southern Ryukyu subduction zone based on gravity modeling with the constraints from a newly derived P-wave seismic velocity model. The result indicates that the strength of the plate coupling in the study area is relatively strong, which is consistent with previous observations in the southernmost Ryukyu subduction zone. Because few large earthquakes (Mw > 7) have occurred in the southern Ryukyu subduction zone, a large amount of energy is locked and accumulated by plate coupling, that could be released in the near future.

  13. Airborne EM survey in volcanoes : Application to a volcanic hazards assessment

    NASA Astrophysics Data System (ADS)

    Mogi, T.

    2010-12-01

    Airborne electromagnetics (AEM) is a useful tool for investigating subsurface structures of volcanoes because it can survey large areas involving inaccessible areas. Disadvantages include lower accuracy and limited depth of investigation. AEM has been widely used in mineral exploration in frontier areas, and have been applying to engineering and environmental fields, particularly in studies involving active volcanoes. AEM systems typically comprise a transmitter and a receiver on an aircraft or in a towed bird, and although effective for surveying large areas, their penetration depth is limited because the distance between the transmitter and receiver is small and higher-frequency signals are used. To explore deeper structures using AEM, a semi-airborne system called GRounded Electrical source Airborne Transient ElectroMagnetics (GREATEM) has been developed. The system uses a grounded-electrical-dipole as the transmitter and generates horizontal electric fields. The GREATEM technology, first proposed by Mogi et al. (1998), has recently been improved and used in practical surveys (Mogi et al., 2009). The GREATEM survey system was developed to increase the depth of investigation possible using AEM. The method was tested in some volcanoes at 2004-2005. Here I will talk about some results of typical AEM surveys and GREATEM surveys in some volcanoes in Japan to mitigate hazards associated with volcano eruption. Geologic hazards caused by volcanic eruptions can be mitigated by a combination of prediction, preparedness and land-use control. Risk management depends on the identification of hazard zones and forecasting of eruptions. Hazard zoning involves the mapping of deposits which have formed during particular phases of volcanic activity and their extrapolation to identify the area which would be likely to suffer a similar hazard at some future time. The mapping is usually performed by surface geological surveys of volcanic deposits. Resistivity mapping by AEM is useful

  14. Three-dimensional displays for natural hazards analysis, using classified Landsat Thematic Mapper digital data and large-scale digital elevation models

    NASA Technical Reports Server (NTRS)

    Butler, David R.; Walsh, Stephen J.; Brown, Daniel G.

    1991-01-01

    Methods are described for using Landsat Thematic Mapper digital data and digital elevation models for the display of natural hazard sites in a mountainous region of northwestern Montana, USA. Hazard zones can be easily identified on the three-dimensional images. Proximity of facilities such as highways and building locations to hazard sites can also be easily displayed. A temporal sequence of Landsat TM (or similar) satellite data sets could also be used to display landscape changes associated with dynamic natural hazard processes.

  15. Managing the effects of accelerated glacial melting on volcanic collapse and debris flows: Planchon-Peteroa Volcano, Southern Andes

    NASA Astrophysics Data System (ADS)

    Tormey, Daniel

    2010-11-01

    Glaciated mountains are among the most sensitive environments to climatic changes, and recent work has shown that large-scale glacial melting, including at the end of the Pleistocene, caused a significant increase in the incidence of large volcanic sector collapse and debris flows on then-active volcanoes. With current accelerated rates of glacial melting, glaciated active volcanoes are at an increasing risk of sector collapse, debris flow and landslide. These catastrophic events are Earth's most damaging erosion phenomenon, causing extensive property damage and loss of life. This paper illustrates these effects in well-studied settings, focusing on the end-Pleistocene to Holocene glaciovolcanic growth and destruction of the cone of the active volcano Planchon-Peteroa in the Andean Southern Volcanic Zone at latitude 35° 15' S, along the border between Chile and Argentina. The development of the volcano over the last 14,000 years illustrates how glacial melting and magmatic activity can trigger landslides and sector collapses. Planchon had a large sector collapse that produced a highly mobile and erosive debris avalanche 11,000 years BP, and other slope instabilities during the end-Pleistocene/early Holocene deglaciation. The summit amphitheater left after the sector collapse was subject to alternating periods of glaciation and melting-induced lake formation. Breaching of the moraine dams then formed lahars and landslides originating at the western edge of the summit amphitheater, and the deposits are preserved along the western flank of the volcano. Deep incision of moraine deposits further down the western slope of the volcano indicates that the lahars and landslides were water-rich and had high erosive power. As illustrated by Planchon-Peteroa, the interplay among glacial growth and melting, magmatic activity, and slope stability is complex, but must be accounted for in volcanic hazard assessment. Planchon-Peteroa currently has the southernmost temperate zone

  16. Remote sensing and landslide hazard assessment

    NASA Technical Reports Server (NTRS)

    Mckean, J.; Buechel, S.; Gaydos, L.

    1991-01-01

    Remotely acquired multispectral data are used to improve landslide hazard assessments at all scales of investigation. A vegetation map produced from automated interpretation of TM data is used in a GIS context to explore the effect of vegetation type on debris flow occurrence in preparation for inclusion in debris flow hazard modeling. Spectral vegetation indices map spatial patterns of grass senescence which are found to be correlated with soil thickness variations on hillslopes. Grassland senescence is delayed over deeper, wetter soils that are likely debris flow source areas. Prediction of actual soil depths using vegetation indices may be possible up to some limiting depth greater than the grass rooting zone. On forested earthflows, the slow slide movement disrupts the overhead timber canopy, exposes understory vegetation and soils, and alters site spectral characteristics. Both spectral and textural measures from broad band multispectral data are successful at detecting an earthflow within an undisturbed old-growth forest.

  17. Seismic hazard in the South Carolina coastal plain: 2002 update of the USGS national seismic hazard maps

    USGS Publications Warehouse

    Cramer, C.H.; Mays, T.W.; ,

    2005-01-01

    The damaging 1886 moment magnitude ???7 Charleston, South Carolina earthquake is indicative of the moderately likely earthquake activity along this portion of the Atlantic Coast. A recurrence of such an earthquake today would have serious consequences for the nation. The national seismic hazard maps produced by the U.S. Geological Survey (USGS) provide a picture of the levels of seismic hazard across the nation based on the best and most current scientific information. The USGS national maps were updated in 2002 and will become part of the International Codes in 2006. In the past decade, improvements have occurred in the scientific understanding of the nature and character of earthquake activity and expected ground motions in the central and eastern U.S. The paper summarizes the new knowledge of expected earthquake locations, magnitudes, recurrence, and ground-motion decay with distance. New estimates of peak ground acceleration and 0.2 s and 1.0 s spectral acceleration are compared with those displayed in the 1996 national maps. The 2002 maps show increased seismic hazard in much of the coastal plain of South Carolina, but a decrease in long period (1 s and greater) hazard by up to 20% at distances of over 50 km from the Charleston earthquake zone. Although the national maps do not account for the effects of local or regional sediments, deep coastal-plain sediments can significally alter expected ground shaking, particularly at long period motions where it can be 100% higher than the national maps.

  18. 77 FR 53769 - Safety Zone; Liberty to Freedom Swims, Liberty Island, Upper Bay and Hudson River, NY

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-04

    ... 1625-AA00 Safety Zone; Liberty to Freedom Swims, Liberty Island, Upper Bay and Hudson River, NY AGENCY... September 5, 2012 and September 15, 2012 Liberty to Freedom swim events. This temporary safety zone is necessary to protect the maritime public and event participants from the hazards associated with swim events...

  19. Risk Assessment of Maize Drought Disaster in Agro-Pastoral Transitional Zone in North China

    NASA Astrophysics Data System (ADS)

    Jia, H.; Pan, D.

    2017-12-01

    Agricultural drought is one of the focuses of global concern and one of the natural disasters that affect the agriculture production mostly in China. Farming-pastoral zones in China are located in the monsoon fringe area, precipitation of which is extremely unstable, and drought occurs frequently. The agro-pastoral transitional zone in North China is one of the main producing areas of northern spring maize in northern China, and maize is the second largest grain crop in the region. An assessment of the risk of drought disaster in this region is therefore important in ensuring a reduction in such disasters and an increase in food security. A risk assessment model, EPIC (Environmental Policy Integrated Climate) model, for maize drought disasters based on the Erosion Productivity Impact Calculator crop model is proposed for areas with the topographic characteristics of agro-pastoral transitional zone in North China. The results showed that the hazard risk level for the maize zone of agro-pastoral transitional zone in North China is generally high. Most hazard index values were between 0.4 and 0.5, accounting for 48.77% of total study area. The high-risk areas were mainly distributed in Ordos Plateau (South of Inner Mongolia Autonomous region), South of Ningxia Hui Autonomous Region and Center of Gansu Province. These results provide a scientific basis and support for the reduction of agricultural drought disasters and an increase in food security in the agro-pastoral transitional zone in North China.

  20. 75 FR 38721 - Safety Zone; Munising 4th of July Fireworks, South Bay, Lake Superior, Munising, MI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-06

    ...-AA00 Safety Zone; Munising 4th of July Fireworks, South Bay, Lake Superior, Munising, MI AGENCY: Coast... portion of South Bay during the Munising 4th of July Fireworks display, July 4, 2010. This temporary... from hazards associated with the Munising 4th of July Fireworks display. Based on the explosive hazards...

  1. [THE STUDY OF MANIFESTATIONS OF ENVIRONMENTAL HAZARDS AT THE REGIONAL LEVEL].

    PubMed

    Shmandiy, V M; Kharlamova, E V; Rugas, T E

    2015-01-01

    Elaborated methodological approaches to the monitoring of the state of ecological safety are based on the use of systems analysis of conditions and consistent patterns of the formation of the ecological danger search for effective means and methods of safety management. Ecological hazard is considered as a hierarchical structure, consisting of types, classes, species and subsubspecies. In industrially developed regions the most significant are technogenic and sociogenic classes. The sociogenic class of danger was proved to be primary in its formation, as the level of environmental awareness is largely determined by the degree of impact on human health and environment, manifestations of the danger of other classes are depend on it. When analyzing the state of danger there was applied the anthropocentric approach. There was used an assembly of characteristics considering the health status of the population of the certain territory under the influence of factors of environmental hazard. On the base of the colligation of literature data and the results of own observations there was suggested a generalized index of the state of the population'S health in socio-economic areas, there were selected zones with differing level of the technogenic loads and also rural areas beyond objects of technogenic impact. On results of studies there was proved the relationship between the level of the environmental hazard and state of the population's in various socio-economic zones.

  2. The effectiveness of coral reefs for coastal hazard risk reduction and adaptation.

    PubMed

    Ferrario, Filippo; Beck, Michael W; Storlazzi, Curt D; Micheli, Fiorenza; Shepard, Christine C; Airoldi, Laura

    2014-05-13

    The world's coastal zones are experiencing rapid development and an increase in storms and flooding. These hazards put coastal communities at heightened risk, which may increase with habitat loss. Here we analyse globally the role and cost effectiveness of coral reefs in risk reduction. Meta-analyses reveal that coral reefs provide substantial protection against natural hazards by reducing wave energy by an average of 97%. Reef crests alone dissipate most of this energy (86%). There are 100 million or more people who may receive risk reduction benefits from reefs or bear hazard mitigation and adaptation costs if reefs are degraded. We show that coral reefs can provide comparable wave attenuation benefits to artificial defences such as breakwaters, and reef defences can be enhanced cost effectively. Reefs face growing threats yet there is opportunity to guide adaptation and hazard mitigation investments towards reef restoration to strengthen this first line of coastal defence.

  3. Comparison of Fuzzy-Based Models in Landslide Hazard Mapping

    NASA Astrophysics Data System (ADS)

    Mijani, N.; Neysani Samani, N.

    2017-09-01

    Landslide is one of the main geomorphic processes which effects on the development of prospect in mountainous areas and causes disastrous accidents. Landslide is an event which has different uncertain criteria such as altitude, slope, aspect, land use, vegetation density, precipitation, distance from the river and distance from the road network. This research aims to compare and evaluate different fuzzy-based models including Fuzzy Analytic Hierarchy Process (Fuzzy-AHP), Fuzzy Gamma and Fuzzy-OR. The main contribution of this paper reveals to the comprehensive criteria causing landslide hazard considering their uncertainties and comparison of different fuzzy-based models. The quantify of evaluation process are calculated by Density Ratio (DR) and Quality Sum (QS). The proposed methodology implemented in Sari, one of the city of Iran which has faced multiple landslide accidents in recent years due to the particular environmental conditions. The achieved results of accuracy assessment based on the quantifier strated that Fuzzy-AHP model has higher accuracy compared to other two models in landslide hazard zonation. Accuracy of zoning obtained from Fuzzy-AHP model is respectively 0.92 and 0.45 based on method Precision (P) and QS indicators. Based on obtained landslide hazard maps, Fuzzy-AHP, Fuzzy Gamma and Fuzzy-OR respectively cover 13, 26 and 35 percent of the study area with a very high risk level. Based on these findings, fuzzy-AHP model has been selected as the most appropriate method of zoning landslide in the city of Sari and the Fuzzy-gamma method with a minor difference is in the second order.

  4. Active tectonics of the Seattle fault and central Puget sound, Washington - Implications for earthquake hazards

    USGS Publications Warehouse

    Johnson, S.Y.; Dadisman, S.V.; Childs, J. R.; Stanley, W.D.

    1999-01-01

    We use an extensive network of marine high-resolution and conventional industry seismic-reflection data to constrain the location, shallow structure, and displacement rates of the Seattle fault zone and crosscutting high-angle faults in the Puget Lowland of western Washington. Analysis of seismic profiles extending 50 km across the Puget Lowland from Lake Washington to Hood Canal indicates that the west-trending Seattle fault comprises a broad (4-6 km) zone of three or more south-dipping reverse faults. Quaternary sediment has been folded and faulted along all faults in the zone but is clearly most pronounced along fault A, the northernmost fault, which forms the boundary between the Seattle uplift and Seattle basin. Analysis of growth strata deposited across fault A indicate minimum Quaternary slip rates of about 0.6 mm/yr. Slip rates across the entire zone are estimated to be 0.7-1.1 mm/yr. The Seattle fault is cut into two main segments by an active, north-trending, high-angle, strike-slip fault zone with cumulative dextral displacement of about 2.4 km. Faults in this zone truncate and warp reflections in Tertiary and Quaternary strata and locally coincide with bathymetric lineaments. Cumulative slip rates on these faults may exceed 0.2 mm/yr. Assuming no other crosscutting faults, this north-trending fault zone divides the Seattle fault into 30-40-km-long western and eastern segments. Although this geometry could limit the area ruptured in some Seattle fault earthquakes, a large event ca. A.D. 900 appears to have involved both segments. Regional seismic-hazard assessments must (1) incorporate new information on fault length, geometry, and displacement rates on the Seattle fault, and (2) consider the hazard presented by the previously unrecognized, north-trending fault zone.

  5. Probabilistic tsunami hazard assessment at Seaside, Oregon, for near-and far-field seismic sources

    USGS Publications Warehouse

    Gonzalez, F.I.; Geist, E.L.; Jaffe, B.; Kanoglu, U.; Mofjeld, H.; Synolakis, C.E.; Titov, V.V.; Areas, D.; Bellomo, D.; Carlton, D.; Horning, T.; Johnson, J.; Newman, J.; Parsons, T.; Peters, R.; Peterson, C.; Priest, G.; Venturato, A.; Weber, J.; Wong, F.; Yalciner, A.

    2009-01-01

    The first probabilistic tsunami flooding maps have been developed. The methodology, called probabilistic tsunami hazard assessment (PTHA), integrates tsunami inundation modeling with methods of probabilistic seismic hazard assessment (PSHA). Application of the methodology to Seaside, Oregon, has yielded estimates of the spatial distribution of 100- and 500-year maximum tsunami amplitudes, i.e., amplitudes with 1% and 0.2% annual probability of exceedance. The 100-year tsunami is generated most frequently by far-field sources in the Alaska-Aleutian Subduction Zone and is characterized by maximum amplitudes that do not exceed 4 m, with an inland extent of less than 500 m. In contrast, the 500-year tsunami is dominated by local sources in the Cascadia Subduction Zone and is characterized by maximum amplitudes in excess of 10 m and an inland extent of more than 1 km. The primary sources of uncertainty in these results include those associated with interevent time estimates, modeling of background sea level, and accounting for temporal changes in bathymetry and topography. Nonetheless, PTHA represents an important contribution to tsunami hazard assessment techniques; viewed in the broader context of risk analysis, PTHA provides a method for quantifying estimates of the likelihood and severity of the tsunami hazard, which can then be combined with vulnerability and exposure to yield estimates of tsunami risk. Copyright 2009 by the American Geophysical Union.

  6. Note on seismic hazard assessment using gradient of uplift velocities in the Turan block (Central Asia)

    NASA Astrophysics Data System (ADS)

    Jaboyedoff, M.; Derron, M.-H.; Manby, G. M.

    2005-01-01

    Uplift gradients can provide the location of highly strained zones, which can be considered to be seismic. The Turan block (Central Asia) contains zones with high gradient of uplift velocities, above the threshold 0.04mm km-1year-1. Some of these zones are associated with important seismic activity and others are not correlated with any recent important recorded earthquakes, however, recent faults scarps as well as diverted rivers may indicate a recent tectonic activity. This threshold of gradient is probably a significant rheologic property of the upper crust. On the basis of these considerations the Uzboy river area is proposed as a potential high seismic hazard zone.

  7. A portfolio approach to evaluating natural hazard mitigation policies: An Application to lateral-spread ground failure in Coastal California

    USGS Publications Warehouse

    Bernknopf, R.L.; Dinitz, L.B.; Rabinovici, S.J.M.; Evans, A.M.

    2001-01-01

    In the past, efforts to prevent catastrophic losses from natural hazards have largely been undertaken by individual property owners based on site-specific evaluations of risks to particular buildings. Public efforts to assess community vulnerability and encourage mitigation have focused on either aggregating site-specific estimates or adopting standards based upon broad assumptions about regional risks. This paper develops an alternative, intermediate-scale approach to regional risk assessment and the evaluation of community mitigation policies. Properties are grouped into types with similar land uses and levels of hazard, and hypothetical community mitigation strategies for protecting these properties are modeled like investment portfolios. The portfolios consist of investments in mitigation against the risk to a community posed by a specific natural hazard, and are defined by a community's mitigation budget and the proportion of the budget invested in locations of each type. The usefulness of this approach is demonstrated through an integrated assessment of earthquake-induced lateral-spread ground failure risk in the Watsonville, California area. Data from the magnitude 6.9 Loma Prieta earthquake of 1989 are used to model lateral-spread ground failure susceptibility. Earth science and economic data are combined and analyzed in a Geographic Information System (GIS). The portfolio model is then used to evaluate the benefits of mitigating the risk in different locations. Two mitigation policies, one that prioritizes mitigation by land use type and the other by hazard zone, are compared with a status quo policy of doing no further mitigation beyond that which already exists. The portfolio representing the hazard zone rule yields a higher expected return than the land use portfolio does: However, the hazard zone portfolio experiences a higher standard deviation. Therefore, neither portfolio is clearly preferred. The two mitigation policies both reduce expected losses

  8. Site specific probabilistic seismic hazard analysis at Dubai Creek on the west coast of UAE

    NASA Astrophysics Data System (ADS)

    Shama, Ayman A.

    2011-03-01

    A probabilistic seismic hazard analysis (PSHA) was conducted to establish the hazard spectra for a site located at Dubai Creek on the west coast of the United Arab Emirates (UAE). The PSHA considered all the seismogenic sources that affect the site, including plate boundaries such as the Makran subduction zone, the Zagros fold-thrust region and the transition fault system between them; and local crustal faults in UAE. PSHA indicated that local faults dominate the hazard. The peak ground acceleration (PGA) for the 475-year return period spectrum is 0.17 g and 0.33 g for the 2,475-year return period spectrum. The hazard spectra are then employed to establish rock ground motions using the spectral matching technique.

  9. Comments on potential geologic and seismic hazards affecting coastal Ventura County, California

    USGS Publications Warehouse

    Ross, Stephanie L.; Boore, David M.; Fisher, Michael A.; Frankel, Arthur D.; Geist, Eric L.; Hudnut, Kenneth W.; Kayen, Robert E.; Lee, Homa J.; Normark, William R.; Wong, Florence L.

    2004-01-01

    This report examines the regional seismic and geologic hazards that could affect proposed liquefied natural gas (LNG) facilities in coastal Ventura County, California. Faults throughout this area are thought to be capable of producing earthquakes of magnitude 6.5 to 7.5, which could produce surface fault offsets of as much as 15 feet. Many of these faults are sufficiently well understood to be included in the current generation of the National Seismic Hazard Maps; others may become candidates for inclusion in future revisions as research proceeds. Strong shaking is the primary hazard that causes damage from earthquakes and this area is zoned with a high level of shaking hazard. The estimated probability of a magnitude 6.5 or larger earthquake (comparable in size to the 2003 San Simeon quake) occurring in the next 30 years within 30 miles of Platform Grace is 50-60%; for Cabrillo Port, the estimate is a 35% likelihood. Combining these probabilities of earthquake occurrence with relationships that give expected ground motions yields the estimated seismic-shaking hazard. In parts of the project area, the estimated shaking hazard is as high as along the San Andreas Fault. The combination of long-period basin waves and LNG installations with large long-period resonances potentially increases this hazard.

  10. Dynamic model of forest area on flood zone of Padang City, West Sumatra Province-Indonesia

    NASA Astrophysics Data System (ADS)

    Dewata, Indang; Iswandi, U.

    2018-05-01

    The flood disaster has caused many harm to human life, and the change of watershed characteristic is one of the factors causing the flood disaster. The increase of deforestation due to the increase of water causes the occurrence of flood disaster in the rainy season. The research objective was to develop a dynamic model of forest on flood hazard zone using powersim 10.1. In model development, there are three scenarios: optimistic, moderate, and pessimistic. The study shows that in Padang there are about 13 percent of high flood hazard zones. Deforestation of 4.5 percent/year is one cause that may increased the flooding intensity in Padang. There will be 14 percent of total forest area when management policy of forest absence in 2050.

  11. Seattle - seeking balance between the Space Needle, Starbucks, the Seahawks, and subduction

    NASA Astrophysics Data System (ADS)

    Vidale, J. E.

    2012-12-01

    Seattle has rich natural hazards. Lahars from Mount Rainier flow from the south, volcanic ash drifts from the East, the South Whidbey Island fault lies north and east, the Cascadia subduction zone dives underfoot from the west, and the Seattle fault lies just below the surface. Past and future landslides are sprinkled democratically across the surface, and Lake Washington and Puget Sound are known to seiche. All are ultimately due to subduction tectonics. As in most tectonically-exposed cities, the hazards are due mainly (1) to the buildings predating the relatively recent revelation that faulting here is active, (2) transportation corridors built long ago that are aging without a good budget for renewal, and (3) the unknown unknowns. These hazards are hard to quantify. Only the largest earthquakes on the Cascadia megathrust have a 10,000-year history, and even for them the down-dip rupture limits, stress drop and attenuation have unacceptable uncertainty. For the threatening faults closer in the upper crust, written history is short, glacial erosion and blanketing preclude many geophysical investigations, and healthy forests frustrate InSAR. On the brighter side, the direct hazard of earthquake shaking is being addressed as well as it can be. The current seismic hazard estimate is derived by methods among the most sophisticated in the world. Logic trees informed by consensus forged from a series of workshops delineate the scenarios. Finite difference calculations that include the world-class deep and soggy basins project the shaking from fault to vulnerable city. One useful cartoon synthesizing the earthquake hazard, based on Art Frankel's report, is shown below. It illustrates that important areas will be strongly shaken, and issues remain to be addressed. Fortunately, with great coffee and good perspective, we are moving toward improved disaster preparedness and resilience.

  12. Assessment of tsunami hazard for coastal areas of Shandong Province, China

    NASA Astrophysics Data System (ADS)

    Feng, Xingru; Yin, Baoshu

    2017-04-01

    Shandong province is located on the east coast of China and has a coastline of about 3100 km. There are only a few tsunami events recorded in the history of Shandong Province, but the tsunami hazard assessment is still necessary as the rapid economic development and increasing population of this area. The objective of this study was to evaluate the potential danger posed by tsunamis for Shandong Province. The numerical simulation method was adopted to assess the tsunami hazard for coastal areas of Shandong Province. The Cornell multi-grid coupled tsunami numerical model (COMCOT) was used and its efficacy was verified by comparison with three historical tsunami events. The simulated maximum tsunami wave height agreed well with the observational data. Based on previous studies and statistical analyses, multiple earthquake scenarios in eight seismic zones were designed, the magnitudes of which were set as the potential maximum values. Then, the tsunamis they induced were simulated using the COMCOT model to investigate their impact on the coastal areas of Shandong Province. The numerical results showed that the maximum tsunami wave height, which was caused by the earthquake scenario located in the sea area of the Mariana Islands, could reach up to 1.39 m off the eastern coast of Weihai city. The tsunamis from the seismic zones of the Bohai Sea, Okinawa Trough, and Manila Trench could also reach heights of >1 m in some areas, meaning that earthquakes in these zones should not be ignored. The inundation hazard was distributed primarily in some northern coastal areas near Yantai and southeastern coastal areas of Shandong Peninsula. When considering both the magnitude and arrival time of tsunamis, it is suggested that greater attention be paid to earthquakes that occur in the Bohai Sea. In conclusion, the tsunami hazard facing the coastal area of Shandong Province is not very serious; however, disasters could occur if such events coincided with spring tides or other

  13. Airborne LiDAR analysis and geochronology of faulted glacial moraines in the Tahoe-Sierra frontal fault zone reveal substantial seismic hazards in the Lake Tahoe region, California-Nevada USA

    USGS Publications Warehouse

    Howle, James F.; Bawden, Gerald W.; Schweickert, Richard A.; Finkel, Robert C.; Hunter, Lewis E.; Rose, Ronn S.; von Twistern, Brent

    2012-01-01

    We integrated high-resolution bare-earth airborne light detection and ranging (LiDAR) imagery with field observations and modern geochronology to characterize the Tahoe-Sierra frontal fault zone, which forms the neotectonic boundary between the Sierra Nevada and the Basin and Range Province west of Lake Tahoe. The LiDAR imagery clearly delineates active normal faults that have displaced late Pleistocene glacial moraines and Holocene alluvium along 30 km of linear, right-stepping range front of the Tahoe-Sierra frontal fault zone. Herein, we illustrate and describe the tectonic geomorphology of faulted lateral moraines. We have developed new, three-dimensional modeling techniques that utilize the high-resolution LiDAR data to determine tectonic displacements of moraine crests and alluvium. The statistically robust displacement models combined with new ages of the displaced Tioga (20.8 ± 1.4 ka) and Tahoe (69.2 ± 4.8 ka; 73.2 ± 8.7 ka) moraines are used to estimate the minimum vertical separation rate at 17 sites along the Tahoe-Sierra frontal fault zone. Near the northern end of the study area, the minimum vertical separation rate is 1.5 ± 0.4 mm/yr, which represents a two- to threefold increase in estimates of seismic moment for the Lake Tahoe basin. From this study, we conclude that potential earthquake moment magnitudes (Mw) range from 6.3 ± 0.25 to 6.9 ± 0.25. A close spatial association of landslides and active faults suggests that landslides have been seismically triggered. Our study underscores that the Tahoe-Sierra frontal fault zone poses substantial seismic and landslide hazards.

  14. The effectiveness of coral reefs for coastal hazard risk reduction and adaptation

    PubMed Central

    Ferrario, Filippo; Beck, Michael W.; Storlazzi, Curt D.; Micheli, Fiorenza; Shepard, Christine C.; Airoldi, Laura

    2014-01-01

    The world’s coastal zones are experiencing rapid development and an increase in storms and flooding. These hazards put coastal communities at heightened risk, which may increase with habitat loss. Here we analyse globally the role and cost effectiveness of coral reefs in risk reduction. Meta-analyses reveal that coral reefs provide substantial protection against natural hazards by reducing wave energy by an average of 97%. Reef crests alone dissipate most of this energy (86%). There are 100 million or more people who may receive risk reduction benefits from reefs or bear hazard mitigation and adaptation costs if reefs are degraded. We show that coral reefs can provide comparable wave attenuation benefits to artificial defences such as breakwaters, and reef defences can be enhanced cost effectively. Reefs face growing threats yet there is opportunity to guide adaptation and hazard mitigation investments towards reef restoration to strengthen this first line of coastal defence. PMID:24825660

  15. The effectiveness of coral reefs for coastal hazard risk reduction and adaptation

    USGS Publications Warehouse

    Ferrario, Filippo; Beck, Michael W.; Storlazzi, Curt D.; Micheli, Fiorenza; Shepard, Christine C.; Airoldi, Laura

    2014-01-01

    The world’s coastal zones are experiencing rapid development and an increase in storms and flooding. These hazards put coastal communities at heightened risk, which may increase with habitat loss. Here we analyse globally the role and cost effectiveness of coral reefs in risk reduction. Meta-analyses reveal that coral reefs provide substantial protection against natural hazards by reducing wave energy by an average of 97%. Reef crests alone dissipate most of this energy (86%). There are 100 million or more people who may receive risk reduction benefits from reefs or bear hazard mitigation and adaptation costs if reefs are degraded. We show that coral reefs can provide comparable wave attenuation benefits to artificial defences such as breakwaters, and reef defences can be enhanced cost effectively. Reefs face growing threats yet there is opportunity to guide adaptation and hazard mitigation investments towards reef restoration to strengthen this first line of coastal defence.

  16. 77 FR 15260 - Safety Zone; San Francisco Fireworks Display, San Francisco, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-15

    ... Zone; San Francisco Fireworks Display, San Francisco, CA AGENCY: Coast Guard, DHS. ACTION: Notice of... Fireworks Display in the Captain of the Port, San Francisco area of responsibility during the dates and... hazards associated with the fireworks display. During the enforcement period, unauthorized persons or...

  17. Managing Long-term Risks from Natural Hazards in a Dynamic Volcanic and Institutional Environment: The Spirit Lake Story

    NASA Astrophysics Data System (ADS)

    Grant, G.; Major, J. J.; Lewis, S.

    2016-12-01

    The 18 May 1980 eruption of Mount St. Helens, Washington, spawned a massive (109 m3) debris avalanche, a violent and extensive pyroclastic density current, lahars, pyroclastic flows, and ashfall. It fundamentally transformed the proximal landscape, and created potential secondary hazards that remain legacies of the eruption over 35 years later. The debris avalanche raised the level of Spirit Lake—a picturesque lake at the foot of the volcano—by 60 m and blocked its outlet. Abruptly, the lake went from charming to menacing, capable of releasing a potentially catastrophic outburst flood (108 m3) that could transform into a massive (109 m3) debris flow if rising lake water breached the blockage. To reduce risk of an uncontrolled breach, and under Presidential emergency declaration, the U.S. Army Corps of Engineers (USACE) bored a 2,590-m-long outlet tunnel through bedrock within the U.S. Forest Service (USFS)-administered Mount St. Helens National Volcanic Monument. Drainage through the tunnel maintains a safe lake level below a geologic contact in the blockage where seepage erosion could result in failure. Although the tunnel has performed its mission for over 30 years, episodic deformation has reduced its outlet capacity, necessitating expensive (>$1 million) repairs and closures which temporarily caused precarious lake rises, and prompted re-examination of the strategy to maintain a safe lake level. Here we discuss how federal researchers (USFS and U.S. Geological Survey) interact with Monument and USFS land managers, USACE, the National Academy of Sciences, and the public at large to develop and evaluate, under Congressional mandate, alternative strategies for reducing the risk of catastrophic flooding. Amidst this nexus of institutions, agendas, and perspectives, set against the backdrop of a rapidly evolving landscape subject to a trio of hazards (eruptions, earthquakes, floods), competing interests, costs, and natural risks must be balanced and managed.

  18. Probabilistic seismic hazard analysis for a nuclear power plant site in southeast Brazil

    NASA Astrophysics Data System (ADS)

    de Almeida, Andréia Abreu Diniz; Assumpção, Marcelo; Bommer, Julian J.; Drouet, Stéphane; Riccomini, Claudio; Prates, Carlos L. M.

    2018-05-01

    A site-specific probabilistic seismic hazard analysis (PSHA) has been performed for the only nuclear power plant site in Brazil, located 130 km southwest of Rio de Janeiro at Angra dos Reis. Logic trees were developed for both the seismic source characterisation and ground-motion characterisation models, in both cases seeking to capture the appreciable ranges of epistemic uncertainty with relatively few branches. This logic-tree structure allowed the hazard calculations to be performed efficiently while obtaining results that reflect the inevitable uncertainty in long-term seismic hazard assessment in this tectonically stable region. An innovative feature of the study is an additional seismic source zone added to capture the potential contributions of characteristics earthquake associated with geological faults in the region surrounding the coastal site.

  19. Multi-hazards risk assessment at different levels

    NASA Astrophysics Data System (ADS)

    Frolova, N.; Larionov, V.; Bonnin, J.

    2012-04-01

    Natural and technological disasters are becoming more frequent and devastating. Social and economic losses due to those events increase annually, which is definitely in relation with evolution of society. Natural hazards identification and analysis, as well natural risk assessment taking into account secondary technological accidents are the first steps in prevention strategy aimed at saving lives and protecting property against future events. The paper addresses methodological issues of natural and technological integrated risk assessment and mapping at different levels [1, 2]. At the country level the most hazardous natural processes, which may results in fatalities, injuries and economic loss in the Russian Federation, are considered. They are earthquakes, landslides, mud flows, floods, storms, avalanches. The special GIS environment for the country territory was developed which includes information about hazards' level and reoccurrence, an impact databases for the last 20 years, as well as models for estimating damage and casualties caused by these hazards. Federal maps of seismic individual and collective risk, as well as multi-hazards natural risk maps are presented. The examples of regional seismic risk assessment taking into account secondary accidents at fire, explosion and chemical hazardous facilities and regional integrated risk assessment are given for the earthquake prone areas of the Russian Federation. The paper also gives examples of loss computations due to scenario earthquakes taking into account accidents trigged by strong events at critical facilities: fire and chemical hazardous facilities, including oil pipe lines routes located in the earthquake prone areas. The estimations of individual seismic risk obtained are used by EMERCOM of the Russian Federation, as well as by other federal and local authorities, for planning and implementing preventive measures, aimed at saving lives and protecting property against future disastrous events. The

  20. Preliminary Earthquake Hazard Map of Afghanistan

    USGS Publications Warehouse

    Boyd, Oliver S.; Mueller, Charles S.; Rukstales, Kenneth S.

    2007-01-01

    Introduction Earthquakes represent a serious threat to the people and institutions of Afghanistan. As part of a United States Agency for International Development (USAID) effort to assess the resource potential and seismic hazards of Afghanistan, the Seismic Hazard Mapping group of the United States Geological Survey (USGS) has prepared a series of probabilistic seismic hazard maps that help quantify the expected frequency and strength of ground shaking nationwide. To construct the maps, we do a complete hazard analysis for each of ~35,000 sites in the study area. We use a probabilistic methodology that accounts for all potential seismic sources and their rates of earthquake activity, and we incorporate modeling uncertainty by using logic trees for source and ground-motion parameters. See the Appendix for an explanation of probabilistic seismic hazard analysis and discussion of seismic risk. Afghanistan occupies a southward-projecting, relatively stable promontory of the Eurasian tectonic plate (Ambraseys and Bilham, 2003; Wheeler and others, 2005). Active plate boundaries, however, surround Afghanistan on the west, south, and east. To the west, the Arabian plate moves northward relative to Eurasia at about 3 cm/yr. The active plate boundary trends northwestward through the Zagros region of southwestern Iran. Deformation is accommodated throughout the territory of Iran; major structures include several north-south-trending, right-lateral strike-slip fault systems in the east and, farther to the north, a series of east-west-trending reverse- and strike-slip faults. This deformation apparently does not cross the border into relatively stable western Afghanistan. In the east, the Indian plate moves northward relative to Eurasia at a rate of about 4 cm/yr. A broad, transpressional plate-boundary zone extends into eastern Afghanistan, trending southwestward from the Hindu Kush in northeast Afghanistan, through Kabul, and along the Afghanistan-Pakistan border

  1. The 2013 eruption of Pavlof Volcano, Alaska: a spatter eruption at an ice- and snow-clad volcano

    USGS Publications Warehouse

    Waythomas, Christopher F.; Haney, Matthew M.; Fee, David; Schneider, David J.; Wech, Aaron G.

    2014-01-01

    The 2013 eruption of Pavlof Volcano, Alaska began on 13 May and ended 49 days later on 1 July. The eruption was characterized by persistent lava fountaining from a vent just north of the summit, intermittent strombolian explosions, and ash, gas, and aerosol plumes that reached as high as 8 km above sea level and on several occasions extended as much as 500 km downwind of the volcano. During the first several days of the eruption, accumulations of spatter near the vent periodically collapsed to form small pyroclastic avalanches that eroded and melted snow and ice to form lahars on the lower north flank of the volcano. Continued lava fountaining led to the production of agglutinate lava flows that extended to the base of the volcano, about 3–4 km beyond the vent. The generation of fountain-fed lava flows was a dominant process during the 2013 eruption; however, episodic collapse of spatter accumulations and formation of hot spatter-rich granular avalanches was a more efficient process for melting snow and ice and initiating lahars. The lahars and ash plumes generated during the eruption did not pose any serious hazards for the area. However, numerous local airline flights were cancelled or rerouted, and trace amounts of ash fall occurred at all of the local communities surrounding the volcano, including Cold Bay, Nelson Lagoon, Sand Point, and King Cove.

  2. 77 FR 30195 - Safety Zone; Flagship Niagara Mariners Ball Fireworks, Presque Isle Bay, Erie, PA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-22

    ... aforementioned hazards in mind, the Captain of the Port Buffalo has determined that this temporary safety zone is... are developed or adopted by voluntary consensus standards bodies. This rule does not use technical...

  3. New Approaches to Tsunami Hazard Mitigation Demonstrated in Oregon

    NASA Astrophysics Data System (ADS)

    Priest, G. R.; Rizzo, A.; Madin, I.; Lyles Smith, R.; Stimely, L.

    2012-12-01

    Oregon Department of Geology and Mineral Industries and Oregon Emergency Management collaborated over the last four years to increase tsunami preparedness for residents and visitors to the Oregon coast. Utilizing support from the National Tsunami Hazards Mitigation Program (NTHMP), new approaches to outreach and tsunami hazard assessment were developed and then applied. Hazard assessment was approached by first doing two pilot studies aimed at calibrating theoretical models to direct observations of tsunami inundation gleaned from the historical and prehistoric (paleoseismic/paleotsunami) data. The results of these studies were then submitted to peer-reviewed journals and translated into 1:10,000-12,000-scale inundation maps. The inundation maps utilize a powerful new tsunami model, SELFE, developed by Joseph Zhang at the Oregon Health & Science University. SELFE uses unstructured computational grids and parallel processing technique to achieve fast accurate simulation of tsunami interactions with fine-scale coastal morphology. The inundation maps were simplified into tsunami evacuation zones accessed as map brochures and an interactive mapping portal at http://www.oregongeology.org/tsuclearinghouse/. Unique in the world are new evacuation maps that show separate evacuation zones for distant versus locally generated tsunamis. The brochure maps explain that evacuation time is four hours or more for distant tsunamis but 15-20 minutes for local tsunamis that are invariably accompanied by strong ground shaking. Since distant tsunamis occur much more frequently than local tsunamis, the two-zone maps avoid needless over evacuation (and expense) caused by one-zone maps. Inundation mapping for the entire Oregon coast will be complete by ~2014. Educational outreach was accomplished first by doing a pilot study to measure effectiveness of various approaches using before and after polling and then applying the most effective methods. In descending order, the most effective

  4. Seismic hazard analysis for Jayapura city, Papua

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robiana, R., E-mail: robiana-geo104@yahoo.com; Cipta, A.

    Jayapura city had destructive earthquake which occurred on June 25, 1976 with the maximum intensity VII MMI scale. Probabilistic methods are used to determine the earthquake hazard by considering all possible earthquakes that can occur in this region. Earthquake source models using three types of source models are subduction model; comes from the New Guinea Trench subduction zone (North Papuan Thrust), fault models; derived from fault Yapen, TareraAiduna, Wamena, Memberamo, Waipago, Jayapura, and Jayawijaya, and 7 background models to accommodate unknown earthquakes. Amplification factor using geomorphological approaches are corrected by the measurement data. This data is related to rock typemore » and depth of soft soil. Site class in Jayapura city can be grouped into classes B, C, D and E, with the amplification between 0.5 – 6. Hazard maps are presented with a 10% probability of earthquake occurrence within a period of 500 years for the dominant periods of 0.0, 0.2, and 1.0 seconds.« less

  5. Seismic hazard analysis for Jayapura city, Papua

    NASA Astrophysics Data System (ADS)

    Robiana, R.; Cipta, A.

    2015-04-01

    Jayapura city had destructive earthquake which occurred on June 25, 1976 with the maximum intensity VII MMI scale. Probabilistic methods are used to determine the earthquake hazard by considering all possible earthquakes that can occur in this region. Earthquake source models using three types of source models are subduction model; comes from the New Guinea Trench subduction zone (North Papuan Thrust), fault models; derived from fault Yapen, TareraAiduna, Wamena, Memberamo, Waipago, Jayapura, and Jayawijaya, and 7 background models to accommodate unknown earthquakes. Amplification factor using geomorphological approaches are corrected by the measurement data. This data is related to rock type and depth of soft soil. Site class in Jayapura city can be grouped into classes B, C, D and E, with the amplification between 0.5 - 6. Hazard maps are presented with a 10% probability of earthquake occurrence within a period of 500 years for the dominant periods of 0.0, 0.2, and 1.0 seconds.

  6. 78 FR 20792 - Safety Zone; San Francisco Giants Fireworks Display, San Francisco, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-08

    ... Zone; San Francisco Giants Fireworks Display, San Francisco, CA AGENCY: Coast Guard, DHS. ACTION... Francisco Giants Fireworks Display in the Captain of the Port, San Francisco area of responsibility during... public from the hazards associated with the fireworks display. During the enforcement period...

  7. 77 FR 28771 - Safety Zone; San Francisco Giants Fireworks Display, San Francisco, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-16

    ... Zone; San Francisco Giants Fireworks Display, San Francisco, CA AGENCY: Coast Guard, DHS. ACTION... Francisco Giants Fireworks Display in the Captain of the Port, San Francisco area of responsibility during... public from the hazards associated with the fireworks display. During the enforcement period...

  8. Intensity Based Seismic Hazard Map of Republic of Macedonia

    NASA Astrophysics Data System (ADS)

    Dojcinovski, Dragi; Dimiskovska, Biserka; Stojmanovska, Marta

    2016-04-01

    The territory of the Republic of Macedonia and the border terrains are among the most seismically active parts of the Balkan Peninsula belonging to the Mediterranean-Trans-Asian seismic belt. The seismological data on the R. Macedonia from the past 16 centuries point to occurrence of very strong catastrophic earthquakes. The hypocenters of the occurred earthquakes are located above the Mohorovicic discontinuity, most frequently, at a depth of 10-20 km. Accurate short -term prognosis of earthquake occurrence, i.e., simultaneous prognosis of time, place and intensity of their occurrence is still not possible. The present methods of seismic zoning have advanced to such an extent that it is with a great probability that they enable efficient protection against earthquake effects. The seismic hazard maps of the Republic of Macedonia are the result of analysis and synthesis of data from seismological, seismotectonic and other corresponding investigations necessary for definition of the expected level of seismic hazard for certain time periods. These should be amended, from time to time, with new data and scientific knowledge. The elaboration of this map does not completely solve all issues related to earthquakes, but it provides basic empirical data necessary for updating the existing regulations for construction of engineering structures in seismically active areas regulated by legal regulations and technical norms whose constituent part is the seismic hazard map. The map has been elaborated based on complex seismological and geophysical investigations of the considered area and synthesis of the results from these investigations. There were two phases of elaboration of the map. In the first phase, the map of focal zones characterized by maximum magnitudes of possible earthquakes has been elaborated. In the second phase, the intensities of expected earthquakes have been computed according to the MCS scale. The map is prognostic, i.e., it provides assessment of the

  9. 77 FR 45490 - Safety Zone, Barrel Recovery, Lake Superior; Duluth, MN

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-01

    ... suspected to contain munitions waste materials which were dumped in the 1960's in a portion of Lake Superior... recreational vessels and marine traffic from any unknown hazards as well as provide a safe work zone for... Waterways Management, U.S. Coast Guard Marine Safety Unit Duluth; telephone number (218) 720- 5286...

  10. Potential geologic hazards on the eastern Gulf of Cadiz slope (SW Spain)

    USGS Publications Warehouse

    Baraza, J.; Ercilla, G.; Nelson, C.H.

    1999-01-01

    Geologic hazards resulting from sedimentary, oceanographic and tectonic processes affect more than one third of the offshore Gulf of Cadiz, and are identified by interpreting high-resolution seismic profiles and sonographs. Hazards of sedimentary origin include the occurrence of slope instability processes in the form of single or multiple slumps occupying up to 147 km2 mainly concentrated in the steeper, upper slope area. Besides the presence of steep slopes, the triggering of submarine landslides is probably due to seismic activity and favoured by the presence of biogenic gas within the sediment. Gassy sediments and associated seafloor pockmarks cover more than 240 km2 in the upper slope. Hazards from oceanographic processes result from the complex system of bottom currents created by the interaction of the strong Mediterranean Undercurrent and the rough seafloor physiography. The local intensification of bottom currents is responsible for erosive processes along more than 1900 km2 in the upper slope and in the canyons eroded in the central area of the slope, undermining slopes and causing instability. The strong bottom currents also create a mobile seafloor containing bedforms in an area of the Gulf that extends more than 2500 km2, mostly in the continental slope terraces. Hazards of tectonic origin are important because the Gulf of Cadiz straddles two major tectonic regions, the Azores-Gibraltar fracture zone and the Betic range, which results in diapir uplift over an area of more than 1000 km2, and in active seismicity with earthquakes of moderate magnitude. Also, tsunamis produced by strong earthquakes occur in the Gulf of Cadiz, and are related to the tectonic activity along the Azores-Gibraltar fracture zone.

  11. Palaeotsunamis and tsunami hazards in the Eastern Mediterranean.

    PubMed

    England, Philip; Howell, Andrew; Jackson, James; Synolakis, Costas

    2015-10-28

    The dominant uncertainties in assessing tsunami hazard in the Eastern Mediterranean are attached to the location of the sources. Reliable historical reports exist for five tsunamis associated with earthquakes at the Hellenic plate boundary, including two that caused widespread devastation. Because most of the relative motion across this boundary is aseismic, however, the modern record of seismicity provides little or no information about the faults that are likely to generate such earthquakes. Independent geological and geophysical observations of two large historical to prehistorical earthquakes, in Crete and Rhodes, lead to a coherent framework in which large to great earthquakes occurred not on the subduction boundary, but on reverse faults within the overlying crust. We apply this framework to the less complete evidence from the remainder of the Hellenic plate boundary zone, identifying candidate sources for future tsunamigenic earthquakes. Each such source poses a significant hazard to the North African coast of the Eastern Mediterranean. Because modern rates of seismicity are irrelevant to slip on the tsunamigenic faults, and because historical and geological data are too sparse, there is no reliable basis for a probabilistic assessment of this hazard, and a precautionary approach seems advisable. © 2015 The Author(s).

  12. Considering potential seismic sources in earthquake hazard assessment for Northern Iran

    NASA Astrophysics Data System (ADS)

    Abdollahzadeh, Gholamreza; Sazjini, Mohammad; Shahaky, Mohsen; Tajrishi, Fatemeh Zahedi; Khanmohammadi, Leila

    2014-07-01

    Located on the Alpine-Himalayan earthquake belt, Iran is one of the seismically active regions of the world. Northern Iran, south of Caspian Basin, a hazardous subduction zone, is a densely populated and developing area of the country. Historical and instrumental documented seismicity indicates the occurrence of severe earthquakes leading to many deaths and large losses in the region. With growth of seismological and tectonic data, updated seismic hazard assessment is a worthwhile issue in emergency management programs and long-term developing plans in urban and rural areas of this region. In the present study, being armed with up-to-date information required for seismic hazard assessment including geological data and active tectonic setting for thorough investigation of the active and potential seismogenic sources, and historical and instrumental events for compiling the earthquake catalogue, probabilistic seismic hazard assessment is carried out for the region using three recent ground motion prediction equations. The logic tree method is utilized to capture epistemic uncertainty of the seismic hazard assessment in delineation of the seismic sources and selection of attenuation relations. The results are compared to a recent practice in code-prescribed seismic hazard of the region and are discussed in detail to explore their variation in each branch of logic tree approach. Also, seismic hazard maps of peak ground acceleration in rock site for 475- and 2,475-year return periods are provided for the region.

  13. Seismic Hazard Assessment for a Characteristic Earthquake Scenario: Probabilistic-Deterministic Method

    NASA Astrophysics Data System (ADS)

    mouloud, Hamidatou

    2016-04-01

    The objective of this paper is to analyze the seismic activity and the statistical treatment of seismicity catalog the Constantine region between 1357 and 2014 with 7007 seismic event. Our research is a contribution to improving the seismic risk management by evaluating the seismic hazard in the North-East Algeria. In the present study, Earthquake hazard maps for the Constantine region are calculated. Probabilistic seismic hazard analysis (PSHA) is classically performed through the Cornell approach by using a uniform earthquake distribution over the source area and a given magnitude range. This study aims at extending the PSHA approach to the case of a characteristic earthquake scenario associated with an active fault. The approach integrates PSHA with a high-frequency deterministic technique for the prediction of peak and spectral ground motion parameters in a characteristic earthquake. The method is based on the site-dependent evaluation of the probability of exceedance for the chosen strong-motion parameter. We proposed five sismotectonique zones. Four steps are necessary: (i) identification of potential sources of future earthquakes, (ii) assessment of their geological, geophysical and geometric, (iii) identification of the attenuation pattern of seismic motion, (iv) calculation of the hazard at a site and finally (v) hazard mapping for a region. In this study, the procedure of the earthquake hazard evaluation recently developed by Kijko and Sellevoll (1992) is used to estimate seismic hazard parameters in the northern part of Algeria.

  14. Sedimentology, Behavior, and Hazards of Debris Flows at Mount Rainier, Washington

    USGS Publications Warehouse

    Scott, K.M.; Vallance, J.W.; Pringle, P.T.

    1995-01-01

    middle segments of flow waves that begin and end as flood surges. Proximally, through the bulking of poorly sorted volcaniclastic debris on the flanks of the volcano, flow waves expand rapidly in volume by transforming from water surges through hyperconcentrated stream flow (20 to 60 percent sediment by volume) to debris flow. Distally, the transformations occur more slowly in reverse order - from debris flow, to hyperconcentrated flow, and finally to normal streamflow with less than 20 percent sediment by volume. During runout of the largest noncohesive flows, hyperconcentrated flow has continued for as much as 40 to 70 kilometers. Lahars (volcanic debris flows and their deposits) have occurred frequently at Mount Rainier over the past several thousand years, and generally they have not clustered within discrete eruptive periods as at Mount St. Helens. An exception is a period of large noncohesive flows during and after construction of the modern summit cone. Deposits from lahar-runout flows, the hyperconcentrated distal phases of lahars, document the frequency and extent of noncohesive lahars. These deposits also record the following transformations of debris flows: (1) the direct, progressive dilution of debris flow to hyperconcentrated flow, (2) deposition of successively finer grained lobes of debris until only the hyperconcentrated tail of the flow remains to continue downstream, and (3) dewatering of coarse debris flow deposits to yield fine-grained debris flow or hyperconcentrated flow. Three planning or design case histories represent different lengths of postglacial time. Case I is representative of large, infrequent (500 to 1,000 years on average) cohesive debris flows. These flows need to be considered in long-term planning in valleys around the volcano. Case II generalizes the noncohesive debris flows of intermediate size and recurrence (100 to 500 years). This case is appropriate for consideration in some structural design. Case III flows are

  15. Hazards mapping using local and scientific knowledge. A case in rural Mexico

    NASA Astrophysics Data System (ADS)

    Solis, B.; Bocco, G.

    2016-12-01

    Natural hazards in rural areas in developing countries usually affect poor peasants and their infrastructure. This poses a problem of social vulnerability that coupled to the risk may cause severe hazards. Research oriented to prevention and adaptation is crucial. Other studies have proved that local knowledge and peasant's perception on hazards is a valuable tool to tackle prevention and mitigation. In the valley of Huahua river, at the Pacific coast of Mexico, landslides have directly affected rural roads hampering communication between villages. In addition some of their deposits have changed the morphology of river channels, resulting in flooding and avalanches threatening rural life and assets. At least 21 landslides are still active in the area. In this research the leading questions are: how do people perceive landslides hazard? What is the knowledge possessed by villagers facing such hazards? Could scientific and local knowledge be coupled in a hybrid format to formulate an adequate hazards map? The investigation used ethnographic techniques (participant observation, semi-structured and structured interviews, and participatory mapping) and multivariate statistical approaches based on empirical data. We will present the preliminary results, based principally on interview data and a first hazard zoning of the lower valley of the Huahua River. Our results suggest that the approach can be used in this and similar areas in developing countries.

  16. The A.D. 1835 eruption of Volcán Cosigüina, Nicaragua: A guide for assessing local volcanic hazards

    USGS Publications Warehouse

    Scott, William E.; Gardner, Cynthia A.; Devoli, Graziella; Alvarez, Antonio

    2006-01-01

    The January 1835 eruption of Volcán Cosigüina in northwestern Nicaragua was one of the largest and most explosive in Central America since Spanish colonization. We report on the results of reconnaissance stratigraphic studies and laboratory work aimed at better defining the distribution and character of deposits emplaced by the eruption as a means of developing a preliminary hazards assessment for future eruptions. On the lower flanks of the volcano, a basal tephra-fall deposit comprises either ash and fine lithic lapilli or, locally, dacitic pumice. An overlying tephra-fall deposit forms an extensive blanket of brown to gray andesitic scoria that is 35–60 cm thick at 5–10 km from the summit-caldera rim, except southwest of the volcano, where it is considerably thinner. The scoria fall produced the most voluminous deposit of the eruption and underlies pyroclastic-surge and -flow deposits that chiefly comprise gray andesitic scoria. In northern and southeastern sectors of the volcano, these flowage deposits form broad fans and valley fills that locally reach the Gulf of Fonseca. An arcuate ridge 2 km west of the caldera rim and a low ridge east of the caldera deflected pyroclastic flows northward and southeastward. Pyroclastic flows did not reach the lower west and southwest flanks, which instead received thick, fine-grained, accretionary-lapilli–rich ashfall deposits that probably derived chiefly from ash clouds elutriated from pyroclastic flows. We estimate the total bulk volume of erupted deposits to be ∼6 km3. Following the eruption, lahars inundated large portions of the lower flanks, and erosion of deposits and creation of new channels triggered rapid alluviation. Pre-1835 eruptions are poorly dated; however, scoria-fall, pyroclastic-flow, and lahar deposits record a penultimate eruption of smaller magnitude than that of 1835. It occurred a few centuries earlier—perhaps in the fifteenth century. An undated sequence of thick tephra-fall deposits on

  17. Maritime Tsunami Hazard Assessment in California

    NASA Astrophysics Data System (ADS)

    Lynett, P. J.; Borrero, J. C.; Wilson, R. I.; Miller, K. M.

    2012-12-01

    The California tsunami program in cooperation with NOAA and FEMA has begun implementing a plan to increase awareness of tsunami generated hazards to the maritime community (both ships and harbor infrastructure) through the development of in-harbor hazard maps, offshore safety zones for boater evacuation, and associated guidance for harbors and marinas before, during and following tsunamis. The hope is that the maritime guidance and associated education and outreach program will help save lives and reduce exposure of damage to boats and harbor infrastructure. An important step in this process is to understand the causative mechanism for damage in ports and harbors, and then ensure that the models used to generate hazard maps are able to accurately simulate these processes. Findings will be used to develop maps, guidance documents, and consistent policy recommendations for emergency managers and port authorities and provide information critical to real-time decisions required when responding to tsunami alert notifications. Basin resonance and geometric amplification are two reasonably well understood mechanisms for local magnification of tsunami impact in harbors, and are generally the mechanisms investigated when estimating the tsunami hazard potential in a port or harbor. On the other hand, our understanding of and predictive ability for currents is lacking. When a free surface flow is forced through a geometric constriction, it is readily expected that the enhanced potential gradient will drive strong, possibly unstable currents and the associated turbulent coherent structures such as "jets" and "whirlpools"; a simple example would be tidal flow through an inlet channel. However, these fundamentals have not been quantitatively connected with respect to understanding tsunami hazards in ports and harbors. A plausible explanation for this oversight is the observation that these features are turbulent phenomena with spatial and temporal scales much smaller than that

  18. Volcano hazards in the San Salvador region, El Salvador

    USGS Publications Warehouse

    Major, J.J.; Schilling, S.P.; Sofield, D.J.; Escobar, C.D.; Pullinger, C.R.

    2001-01-01

    communities. Another concern is a landslide and an associated debris flow (a watery flow of mud, rock, and debris--also known as a lahar) that could occur during periods of no volcanic activity. An event of this type occurred in 1998 at Casita volcano in Nicaragua when extremely heavy rainfall from Hurricane Mitch triggered a landslide that moved down slope and transformed into a rapidly moving debris flow that destroyed two villages and killed more than 2000 people. Historical landslides up to a few hundred thousand cubic meters in volume have been triggered on San Salvador volcano by torrential rainstorms and earthquakes, and some have transformed into debris flows that have inundated populated areas down stream. Destructive rainfall- and earthquake-triggered landslides and debris flows on or near San Salvador volcano in September 1982 and January 2001 demonstrate that such mass movements in El Salvador have also been lethal. This report describes the kinds of hazardous events that occur at volcanoes in general and the kinds of hazardous geologic events that have occurred at San Salvador volcano in the past. The accompanying volcano-hazards-zonation maps show areas that are likely to be at risk when hazardous events occur again.

  19. The Pedestrian Evacuation Analyst: geographic information systems software for modeling hazard evacuation potential

    USGS Publications Warehouse

    Jones, Jeanne M.; Ng, Peter; Wood, Nathan J.

    2014-01-01

    Recent disasters such as the 2011 Tohoku, Japan, earthquake and tsunami; the 2013 Colorado floods; and the 2014 Oso, Washington, mudslide have raised awareness of catastrophic, sudden-onset hazards that arrive within minutes of the events that trigger them, such as local earthquakes or landslides. Due to the limited amount of time between generation and arrival of sudden-onset hazards, evacuations are typically self-initiated, on foot, and across the landscape (Wood and Schmidtlein, 2012). Although evacuation to naturally occurring high ground may be feasible in some vulnerable communities, evacuation modeling has demonstrated that other communities may require vertical-evacuation structures within a hazard zone, such as berms or buildings, if at-risk individuals are to survive some types of sudden-onset hazards (Wood and Schmidtlein, 2013). Researchers use both static least-cost-distance (LCD) and dynamic agent-based models to assess the pedestrian evacuation potential of vulnerable communities. Although both types of models help to understand the evacuation landscape, LCD models provide a more general overview that is independent of population distributions, which may be difficult to quantify given the dynamic spatial and temporal nature of populations (Wood and Schmidtlein, 2012). Recent LCD efforts related to local tsunami threats have focused on an anisotropic (directionally dependent) path distance modeling approach that incorporates travel directionality, multiple travel speed assumptions, and cost surfaces that reflect variations in slope and land cover (Wood and Schmidtlein, 2012, 2013). The Pedestrian Evacuation Analyst software implements this anisotropic path-distance approach for pedestrian evacuation from sudden-onset hazards, with a particular focus at this time on local tsunami threats. The model estimates evacuation potential based on elevation, direction of movement, land cover, and travel speed and creates a map showing travel times to safety (a

  20. Environmental hazards and distribution of radioactive black sand along the Rosetta coastal zone in Egypt using airborne spectrometric and remote sensing data.

    PubMed

    Kaiser, M F; Aziz, A M; Ghieth, B M

    2014-11-01

    High-resolution airborne gamma ray spectrometry, conducted in 2003, was used to estimate radioactive elements spatial abundance along the Rosetta coastal zone area. It was noticed that both Uranium and Thorium are concentrated in the black sand deposits along the beach. In contrary, Potassium was observed in high level abundance at the cultivated Nile Delta lands due to the accumulated usage of fertilizers. Exposure Rate (ER), Absorbed Dose Rate (ADR) and Annual Effective Dose Rate (AEDR) were calculated to evaluate the radiation background influence in human. Results indicated that the human body in the study sites is subjected to radiation hazards exceeds the accepted limit for long duration exposure. In addition, the areas covered by the highest concentration of Uranium and Thorium show the highest level of radiogenic heat production. Detection the environmental hazards of the radioactive black sands in the study site encouraged this research to monitor the spatial and temporal distribution of these sediments. The Landsat Thematic Mapper images acquired in 1990, 2003 and 2013 were analyzed using remote sensing image processing techniques. Image enhancements, classification and changes detection indicated a positive significant relationship between the patterns of coastline changes and distribution of the radioactive black sand in the study sites. The radioactive black sands are usually concentrated in the eroded areas. Therefore, in 1990 high concentration of the radioactive black sands were observed along the eastern and western flanks of the Rosetta promontory. Distribution of these sediments decreased due to the construction of the protective sea walls. Most of the radioactive black sands are transported toward the east in Abu Khashaba bay under the effect of the longshore currents and toward the west in Alexandria and Abu Quir bay under the action of the seasonal reverse currents. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Report: EPA Provided Quality and Timely Information on Hurricane Katrina Hazardous Material Releases and Debris Management

    EPA Pesticide Factsheets

    Report #2006-P-00023, May 2, 2006. After Hurricane Katrina, EPA was the agency with lead responsibility to prevent, minimize, or mitigate threats to public health and the environment caused by hazardous materials and oil spills in inland zones.

  2. [Comment on “Meeting the challenges of natural hazards in the wake of the tsunami disaster” by Soroosh Sorooshian] More on the challenges of natural hazards

    NASA Astrophysics Data System (ADS)

    Pierson, Thomaas C.

    In the 11 January 2005 issue of Eos, Soroosh Sorooshian offered cogent suggestions about how we, as professional scientists, might do more to make the world safer from natural hazards. Not explicitly mentioned was an additional important contribution we can make that requires no additional research. It is simply to more effectively apply what is already known by increasing public awareness of both the hazards themselves and the simple, life-saving responses to hazards that people can take without outside warning, direction, or assistance from public officials.For example, school children in many seismic areas are taught to duck immediately under desks or tables during earthquakes (“drop, cover, and hold on”). Similarly, people living in coastal areas along subduction zones can be taught that earthquakes may cause tsunamis and to respond to a felt earthquake by moving as quickly as possible to high ground or to inland areas and remaining there for a few hours.

  3. Desert dust hazards: A global review

    NASA Astrophysics Data System (ADS)

    Middleton, N. J.

    2017-02-01

    Dust storms originate in many of the world's drylands and frequently present hazards to human society, both within the drylands themselves but also outside drylands due to long-range transport of aeolian sediments. Major sources of desert dust include the Sahara, the Middle East, central and eastern Asia, and parts of Australia, but dust-raising occurs all across the global drylands and, on occasion, beyond. Dust storms occur throughout the year and they vary in frequency and intensity over a number of timescales. Long-range transport of desert dust typically takes place along seasonal transport paths. Desert dust hazards are here reviewed according to the three phases of the wind erosion system: where dust is entrained, during the transport phase, and on deposition. This paper presents a synthesis of these hazards. It draws on empirical examples in physical geography, medical geology and geomorphology to discuss case studies from all over the world and in various fields. These include accelerated soil erosion in agricultural zones - where dust storms represent a severe form of accelerated soil erosion - the health effects of air pollution caused by desert aerosols via their physical, chemical and biological properties, transport accidents caused by poor visibility during desert dust events, and impacts on electricity generation and distribution. Given the importance of desert dust as a hazard to human societies, it is surprising to note that there have been relatively few attempts to assess their impact in economic terms. Existing studies in this regard are also reviewed, but the wide range of impacts discussed in this paper indicates that desert dust storms deserve more attention in this respect.

  4. 78 FR 56151 - Safety Zone, North Atlantic Ocean; Virginia Beach, VA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-12

    ... final rule. SUMMARY: The Coast Guard is establishing a safety zone on the navigable waters of the North... life and property of the maritime public and spectators from the hazards associated with fireworks displays. DATES: This rule will be effective from 9:20 p.m. to 10:10 p.m. on September 12, 2013. ADDRESSES...

  5. Multi scale modelling of landslide hazard and risk assessment in data scarce area - a case study on Dhalai District, Tripura, India

    NASA Astrophysics Data System (ADS)

    Ghosh, Kapil; De, Sunil Kumar

    2017-04-01

    Successful landslide management plans and policy depends on in-depth knowledge about the hazard and associated risk. Thus, the present research is intended to present an integrated approach involving uses of geospatial technologies for landslide hazard and risk assessment at different scales (site specific to regional level). The landslide hazard map at regional scale (district level) is prepared by using weight-rating based method. To analyze landslide manifestation in the Dhalai district of Tripura different causative factor maps (lithology, road buffer, slope, relative relief, rainfall, fault buffer, landuse/landcover and drainage density) are derived. The analysis revealed that the geological structure and human interference have more influence than other considered factors on the landslide occurrences. The landslide susceptibility zonation map shows that about 1.64 and 16.68% of the total study area is falling under very high and high susceptibility zones respectively. The landslide risk assessment at district level is generated by integrating hazard scouring and resource damage potential scouring (fuzzy membership values) maps. The values of landslide risk matrix are varying within the range of 0.001 to 0.18 and the risk assessment map shows that only 0.45% (10.80 km2) of the district is under very high risk zone, whereas, about 50% pixels of existing road section are under very high to high level of landslide risk. The major part (94.06%) of the district is under very low to low risk zone. Landslide hazard and risk assessment at site specific level have been carried out through intensive field investigation in which it is found that the Ambassa landslide is located within 150 m buffer zone of fault line. Variation of geo-electrical resistivity (2.2Ωm to 31.4Ωm) indicates the complex geological character in this area. Based on the obtained geo-technical result which helps to identify the degree of risk to the existing resource, it is appropriate to

  6. Seismic hazard map of the western hemisphere

    USGS Publications Warehouse

    Shedlock, K.M.; Tanner, J.G.

    1999-01-01

    horizontal force a building should be able to withstand during an earthquake. This seismic hazard map of the Americas depicts the likely level of short-period ground motion from earthquakes in a fifty-year window. Short-period ground motions effect short-period structures (e.g., one-to-two story buildings). The largest seismic hazard values in the western hemisphere generally occur in areas that have been, or are likely to be, the sites of the largest plate boundary earthquakes. Although the largest earthquakes ever recorded are the 1960 Chile and 1964 Alaska subduction zone earthquakes, the largest seismic hazard (PGA) value in the Americas is in Southern California (U.S.), along the San Andreas fault.

  7. Potential flood hazard assessment by integration of ALOS PALSAR and ASTER GDEM: a case study for the Hoa Chau commune, Hoa Vang district, in central Vietnam

    NASA Astrophysics Data System (ADS)

    Huong, Do Thi Viet; Nagasawa, Ryota

    2014-01-01

    The potential flood hazard was assessed for the Hoa Chau commune in central Vietnam in order to identify the high flood hazard zones for the decision makers who will execute future rural planning. A new approach for deriving the potential flood hazard based on integration of inundation and flow direction maps is described. Areas inundated in the historical flood event of 2007 were extracted from Advanced Land Observing Satellite (ALOS) phased array L-band synthetic aperture data radar (PALSAR) images, while flow direction characteristics were derived from the ASTER GDEM to extract the depressed surfaces. Past flood experience and the flow direction were then integrated to analyze and rank the potential flood hazard zones. The land use/cover map extracted from LANDSAT TM and flood depth point records from field surveys were utilized to check the possibility of susceptible inundated areas, extracting data from ALOS PALSAR and ranking the potential flood hazard. The estimation of potential flood hazard areas revealed that 17.43% and 17.36% of Hoa Chau had high and medium potential flood hazards, respectively. The flow direction and ALOS PALSAR data were effectively integrated for determining the potential flood hazard when hydrological and meteorological data were inadequate and remote sensing images taken during flood times were not available or were insufficient.

  8. Assessing risk of navigational hazard from sea-level-related datum in the South West of Java Sea, Indonesia

    NASA Astrophysics Data System (ADS)

    Poerbandono

    2017-07-01

    This paper assesses the presence of navigational hazards due to underestimation of charted depths originated from an establishment of a sea-level-related reference plane, i.e. datum. The study domain is situated in one of Indonesia's densest marine traffic, SW Java Sea, Indonesia. The assessment is based on the comparison of the authorized Chart Datum (CD), being uniformly located at 0.6 m below Mean Sea Level (MSL), and a spatially varying Lowest Astronomical Tide (LAT) generated for the purpose of this research. Hazards are considered here as the deviation of LAT from CD and quantified as the ratio of LAT -CD deviation with respect to the allowable Total Vertical Uncertainty (TVU), i.e. the international standard for accuracy of depth information on nautical charts. Underestimation of charted depth is expected for the case that LAT falls below CD. Such a risk magnifies with decreasing depths, as well as the increasing volume of traffic and draught of the vessel. It is found that most of the domain is in the interior of risk-free zone from using uniform CD. As much as 0.08 and 0.19 parts of the area are in zones where the uncertainty of CD contributes respectively to 50% and 30% of Total Vertical Uncertainty. These are zones where the hazard of navigation is expected to increase due to underestimated lowest tidal level.

  9. The probability of laser caused ocular injury to the aircrew of undetected aircraft violating the exclusion zone about the airborne aura LIDAR.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Augustoni, Arnold L.

    2006-12-01

    The probability of a laser caused ocular injury, to the aircrew of an undetected aircraft entering the exclusion zone about the AURA LIDAR airborne platform with the possible violation of the Laser Hazard Zone boundary, was investigated and quantified for risk analysis and management.

  10. Climate Change, Degradation of Permafrost, and Hazards to Infrastructure in the Circumpolar Arctic.

    NASA Astrophysics Data System (ADS)

    Anisimov, O.

    2001-12-01

    Warming, thawing and disappearance of permafrost have accelerated in recent decades damaging engineered structures and raising public concerns. By the middle of the 21st century anthropogenic climate change may cause 2 to 3 C warming of the frozen ground, 10% to 16% reduction of the total permafrost area, 30% to 50% deepening of the active-layer thickness, and shifts between the permafrost zones due to cumulative effect of changing surface temperature, soil moisture, and vegetation. Such changes will have important implications for northern engineering and infrastructure built upon permafrost. The foundations supporting engineered structures are designed for the constant climatic conditions with construction-specific safety factor, which in the practice of the cold-region engineering varies typically from 5% to 60% with respect to the bearing capacity. In the zone of discontinuous permafrost a 2.0 C rise in air temperature may decrease the bearing capacity of frozen ground under buildings by more than a half. This may have important consequences for the infrastructure and particularly for residential buildings constructed in the permafrost zone between 1950 and 1990 in northern Russian cities Vorkuta, Yakytsk, Norylsk, and Magadan. Many of them are already weakened or damaged, which may in part be attributed to the effect of climate change. Susceptibility of permafrost to environmental hazards associated with thermokarst, ground settlement, and other destructive cryogenic processes may be crudely evaluated using the geocryological hazard index, which is the combination of the predicted for the future climate relative change in the active-layer thickness and the ground ice content. Predictive maps constructed for scenarios of climate change indicated that several population centers (Barrow, Inuvik), river terminals on the arctic coast of Russia (Salekhard, Igarka, Dudinka, Tiksi), and gas production complexes with associated infrastructure in northwest Siberia fall

  11. 77 FR 44470 - Safety Zone; Seafair Blue Angels Air Show Performance, Seattle, WA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-30

    ... 1625-AA00 Safety Zone; Seafair Blue Angels Air Show Performance, Seattle, WA AGENCY: Coast Guard, DHS... the safety hazards associated with the Seafair Blue Angels Air Show Performance which include low... Coast Guard is establishing this rule because the current regulation associated with the Seafair Blue...

  12. 75 FR 8005 - Safety Zone; Wicomico Community Fireworks, Great Wicomico River, Mila, VA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-23

    ...-AA00 Safety Zone; Wicomico Community Fireworks, Great Wicomico River, Mila, VA AGENCY: Coast Guard, DHS... the Great Wicomico River in the vicinity of Mila, VA in support of the Wicomico Community Fireworks... protect mariners from the hazards associated with fireworks displays. DATES: Comments and related material...

  13. Empirical Models of Zones Protecting Against Coal Dust Explosion

    NASA Astrophysics Data System (ADS)

    Prostański, Dariusz

    2017-09-01

    The paper presents predicted use of research' results to specify relations between volume of dust deposition and changes of its concentration in air. These were used to shape zones protecting against coal dust explosion. Methodology of research was presented, including methods of measurement of dust concentration as well as deposition. Measurements were taken in the Brzeszcze Mine within framework of MEZAP, co-financed by The National Centre for Research and Development (NCBR) and performed by the Institute of Mining Technology KOMAG, the Central Mining Institute (GIG) and the Coal Company PLC. The project enables performing of research related to measurements of volume of dust deposition as well as its concentration in air in protective zones in a number of mine workings in the Brzeszcze Mine. Developed model may be supportive tool in form of system located directly in protective zones or as operator tool warning about increasing hazard of coal dust explosion.

  14. Landslide hazard in Bukavu (DR Congo): a geomorphological assessment in a data-poor context

    NASA Astrophysics Data System (ADS)

    Dewitte, Olivier; Mugaruka Bibentyo, Toussaint; Kulimushi Matabaro, Sylvain; Balegamire, Clarisse; Basimike, Joseph; Delvaux, Damien; Dille, Antoine; Ganza Bamulezi, Gloire; Jacobs, Liesbet; Michellier, Caroline; Monsieurs, Elise; Mugisho Birhenjira, Espoir; Nshokano, Jean-Robert; Nzolang, Charles; Kervyn, François

    2017-04-01

    zones where landslides may occur as well as the runout zones. Rock fall hazard concerns a very small portion of the urban territory. The other three hazards are much more widely spread. For these three scenarios, the hazard is the highest in areas that cover about 5 to 10% of the urban territory. The maps are presented in four classes. They present an information that can be easily used for further risk analysis and/or urban planning purposes.

  15. Classification of residential areas according to physical vulnerability to natural hazards: a case study of Çanakkale, Turkey.

    PubMed

    Başaran-Uysal, Arzu; Sezen, Funda; Ozden, Süha; Karaca, Oznur

    2014-01-01

    The selection of new settlement areas and the construction of safe buildings, as well as rendering built-up areas safe, are of great importance in mitigating the damage caused by natural disasters. Most cities in Turkey are unprepared for natural hazards. In this paper, Çanakkale, located in a first-degree seismic zone and sprawled around the Sartçay Delta, is examined in terms of its physical vulnerability to natural hazards. Residential areas are analysed using GIS (geographic information system) and remote-sensing technologies in relation to selected indicators. Residential areas of the city are divided into zones according to an evaluation of geological characteristics, the built-up area's features, and urban infrastructure, and four risk zones are determined. The results of the analysis show that the areas of the city suitable for housing are very limited. In addition, the historical centre and the housing areas near Sartçay stream are shown to be most problematic in terms of natural disasters and sustainability. © 2014 The Author(s). Disasters © Overseas Development Institute, 2014.

  16. 78 FR 45061 - Safety Zone; Sister Bay Marina Fest Fireworks and Ski Show, Sister Bay, WI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-26

    ... involved in the ski show. C. Discussion of the Final Rule With the aforementioned hazards in mind, the... on the human environment. This rule involves the establishment of a safety zone and, therefore it is...

  17. Geospatial techniques for allocating vulnerability zoning of geohazards along the Karakorum Highway, Gilgit-Baltistan-Pakistan

    NASA Astrophysics Data System (ADS)

    Khan, K. M.; Rashid, S.; Yaseen, M.; Ikram, M.

    2016-12-01

    The Karakoram Highway (KKH) 'eighth wonder of the world', constructed and completed by the consent of Pakistan and China in 1979 as a Friendship Highway. It connect Gilgit-Baltistan, a strategically prominent region of Pakistan, with Xinjiang region in China. Due to manifold geology/geomorphology, soil formation, steep slopes, climate change well as unsustainable anthropogenic activities, still, KKH is remarkably vulnerable to natural hazards i.e. land subsistence, landslides, erosion, rock fall, floods, debris flows, cyclical torrential rainfall and snowfall, lake outburst etc. Most of the time these geohazard's damaging effects jeopardized the life in the region. To ascertain the nature and frequency of the disaster and vulnerability zoning, a rating and management (logistic) analysis were made to investigate the spatiotemporal sharing of the natural hazard. The substantial dynamics of the physiograpy, geology, geomorphology, soils and climate were carefully understand while slope, aspect, elevation, profile curvature and rock hardness was calculated by different techniques. To assess the nature and intensity geospatial analysis were conducted and magnitude of every factor was gauged by using logistic regression. Moreover, ever relative variable was integrated in the evaluation process. Logistic regression and geospatial techniques were used to map the geohazard vulnerability zoning (GVZ). The GVZ model findings were endorsed by the reviews of documented hazards in the current years and the precision was realized more than 88.1 %. The study has proved the model authentication by highlighting the comfortable indenture among the vulnerability mapping and past documented hazards. By using a receiver operating characteristic curve, the logistic regression model made satisfactory results. The outcomes will be useful in sustainable land use and infrastructure planning, mainly in high risk zones for reduceing economic damages and community betterment.

  18. Variations in City Exposure and Sensitivity to Tsunami Hazards in Oregon

    USGS Publications Warehouse

    Wood, Nathan

    2007-01-01

    occupied. The employee population in the tsunami-inundation zone is largely in accommodation and food services, retail trade, manufacturing, and arts and entertainment sectors. Results indicate that vulnerability, described here by exposure (the amount of assets in tsunami-prone areas) and sensitivity (the relative percentage of assets in tsunami-prone areas) varies considerably among 26 incorporated cities in Oregon. City exposure and sensitivity to tsunami hazards is highest in the northern portion of the coast. The City of Seaside in Clatsop County has the highest exposure, the highest sensitivity, and the highest combined relative exposure and sensitivity to tsunamis. Results also indicate that the amount of city assets in tsunami-prone areas is weakly related to the amount of a community's land in this zone; the percentage of a city's assets, however, is strongly related to the percentage of its land that is in the tsunami-prone areas. This report will further the dialogue on societal risk to tsunami hazards in Oregon and help identify future preparedness, mitigation, response, and recovery planning needs within coastal cities and economic sectors of the state of Oregon.

  19. The Role of Deposition in Limiting the Hazard Extent of Dense-Gas Plumes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dillon, M B

    2008-01-29

    Accidents involving release of large (multi-ton) quantities of toxic industrial chemicals often yield far fewer fatalities and causalities than standard, widely-used assessment and emergency response models predict. While recent work has suggested that models should incorporate the protection provided by buildings, more refined health effect methodologies, and more detailed consideration of the release process; investigations into the role of deposition onto outdoor surfaces has been lacking. In this paper, we examine the conditions under which dry deposition may significantly reduce the extent of the downwind hazard zone. We provide theoretical arguments that in congested environments (e.g. suburbs, forests), deposition tomore » vertical surfaces (such as building walls) may play a significant role in reducing the hazard zone extent--particularly under low-wind, stable atmospheric conditions which are often considered to be the worst-case scenario for these types of releases. Our analysis suggests that in these urban or suburban environments, the amount of toxic chemicals lost to earth's surface is typically a small fraction of overall depositional losses. For isothermal gases such as chlorine, the degree to which the chemicals stick to (or react with) surfaces (i.e. surface resistance) is demonstrated to be a key parameter controlling hazard extent (the maximum distance from the release at which hazards to human health are expected). This analysis does not consider the depositional effects associated with particulate matter or gases that undergo significant thermal change in the atmosphere. While no controlled experiments were available to validate our hypothesis, our analysis results are qualitatively consistent with the observed downwind extent of vegetation damage in two chlorine accidents.« less

  20. Kinematics of shallow backthrusts in the Seattle fault zone, Washington State

    USGS Publications Warehouse

    Pratt, Thomas L.; Troost, K.G.; Odum, Jackson K.; Stephenson, William J.

    2015-01-01

    Near-surface thrust fault splays and antithetic backthrusts at the tips of major thrust fault systems can distribute slip across multiple shallow fault strands, complicating earthquake hazard analyses based on studies of surface faulting. The shallow expression of the fault strands forming the Seattle fault zone of Washington State shows the structural relationships and interactions between such fault strands. Paleoseismic studies document an ∼7000 yr history of earthquakes on multiple faults within the Seattle fault zone, with some backthrusts inferred to rupture in small (M ∼5.5–6.0) earthquakes at times other than during earthquakes on the main thrust faults. We interpret seismic-reflection profiles to show three main thrust faults, one of which is a blind thrust fault directly beneath downtown Seattle, and four small backthrusts within the Seattle fault zone. We then model fault slip, constrained by shallow deformation, to show that the Seattle fault forms a fault propagation fold rather than the alternatively proposed roof thrust system. Fault slip modeling shows that back-thrust ruptures driven by moderate (M ∼6.5–6.7) earthquakes on the main thrust faults are consistent with the paleoseismic data. The results indicate that paleoseismic data from the back-thrust ruptures reveal the times of moderate earthquakes on the main fault system, rather than indicating smaller (M ∼5.5–6.0) earthquakes involving only the backthrusts. Estimates of cumulative shortening during known Seattle fault zone earthquakes support the inference that the Seattle fault has been the major seismic hazard in the northern Cascadia forearc in the late Holocene.

  1. Regional landslide-hazard assessment for Seattle, Washington, USA

    USGS Publications Warehouse

    Baum, R.L.; Coe, J.A.; Godt, J.W.; Harp, E.L.; Reid, M.E.; Savage, W.Z.; Schulz, W.H.; Brien, D.L.; Chleborad, A.F.; McKenna, J.P.; Michael, J.A.

    2005-01-01

    Landslides are a widespread, frequent, and costly hazard in Seattle and the Puget Sound area of Washington State, USA. Shallow earth slides triggered by heavy rainfall are the most common type of landslide in the area; many transform into debris flows and cause significant property damage or disrupt transportation. Large rotational and translational slides, though less common, also cause serious property damage. The hundreds of landslides that occurred during the winters of 1995-96 and 1996-97 stimulated renewed interest by Puget Sound communities in identifying landslide-prone areas and taking actions to reduce future landslide losses. Informal partnerships between the U.S. Geological Survey (USGS), the City of Seattle, and private consultants are focusing on the problem of identifying and mapping areas of landslide hazard as well as characterizing temporal aspects of the hazard. We have developed GIS-based methods to map the probability of landslide occurrence as well as empirical rainfall thresholds and physically based methods to forecast times of landslide occurrence. Our methods for mapping landslide hazard zones began with field studies and physically based models to assess relative slope stability, including the effects of material properties, seasonal groundwater levels, and rainfall infiltration. We have analyzed the correlation between historic landslide occurrence and relative slope stability to map the degree of landslide hazard. The City of Seattle is using results of the USGS studies in storm preparedness planning for emergency access and response, planning for development or redevelopment of hillsides, and municipal facility planning and prioritization. Methods we have developed could be applied elsewhere to suit local needs and available data.

  2. Volcano and earthquake hazards in the Crater Lake region, Oregon

    USGS Publications Warehouse

    Bacon, Charles R.; Mastin, Larry G.; Scott, Kevin M.; Nathenson, Manuel

    1997-01-01

    Crater Lake lies in a basin, or caldera, formed by collapse of the Cascade volcano known as Mount Mazama during a violent, climactic eruption about 7,700 years ago. This event dramatically changed the character of the volcano so that many potential types of future events have no precedent there. This potentially active volcanic center is contained within Crater Lake National Park, visited by 500,000 people per year, and is adjacent to the main transportation corridor east of the Cascade Range. Because a lake is now present within the most likely site of future volcanic activity, many of the hazards at Crater Lake are different from those at most other Cascade volcanoes. Also significant are many faults near Crater Lake that clearly have been active in the recent past. These faults, and historic seismicity, indicate that damaging earthquakes can occur there in the future. This report describes the various types of volcano and earthquake hazards in the Crater Lake area, estimates of the likelihood of future events, recommendations for mitigation, and a map of hazard zones. The main conclusions are summarized below.

  3. 75 FR 29660 - Safety Zone; Wicomico Community Fireworks, Great Wicomico River, Mila, VA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-27

    ...-AA00 Safety Zone; Wicomico Community Fireworks, Great Wicomico River, Mila, VA AGENCY: Coast Guard, DHS... the Great Wicomico River in the vicinity of Mila, VA in support of the Wicomico Community Fireworks... protect mariners from the hazards associated with fireworks displays. DATES: This rule is effective from 9...

  4. 78 FR 40394 - Safety Zone; Outer Banks Bluegrass Festival; Shallowbag Bay, Manteo, NC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-05

    ...-AA00 Safety Zone; Outer Banks Bluegrass Festival; Shallowbag Bay, Manteo, NC AGENCY: Coast Guard, DHS... Festival. This action is necessary to protect the life and property of the maritime public from the hazards... Shallowbag Bay River during the Outer Banks Bluegrass Festival Fireworks display. DATES: This rule is...

  5. Modeling of Marine Natural Hazards in the Lesser Antilles

    NASA Astrophysics Data System (ADS)

    Zahibo, Narcisse; Nikolkina, Irina; Pelinovsky, Efim

    2010-05-01

    . Nikolkina, Atmospheric Research. 84, 13 (2007). [7] Zahibo, N., Pelinovsky, E., Kurkin, A., and Nikolkina, I. Tsunami hazard for the French West Indies, Lesser Antilles. Integrated Coastal Zone Management (Ed. R. KRISHNAMURTHY). Re-search Publ., Singapore, 2008, 517-535.

  6. Hazardous Waste: Learn the Basics of Hazardous Waste

    MedlinePlus

    ... to set up a framework for the proper management of hazardous waste. Need More Information on Hazardous Waste? The RCRA Orientation Manual provides ... facility management standards, specific provisions governing hazardous waste management units ... information on the final steps in EPA’s hazardous waste ...

  7. Differences in experiences in rockfall hazard mapping in Switzerland and Principality of Andorra

    NASA Astrophysics Data System (ADS)

    Abbruzzese, J.; Labiouse, V.

    2009-04-01

    The need to cope with rockfall hazard and risk led many countries to adopt proper strategies for hazard mapping and risk management, based on their own social and political constraints. The experience of every single country in facing this challenge provides useful information and possible approaches to evaluate rockfall hazard and risk. More, with particular regard to the hazard mapping process, some important points are common to many methodologies in Europe, especially as for the use of rock fall intensity-frequency diagrams to define specific hazard levels. This aspect could suggest a starting point for comparing and possibly harmonising existing methodologies. On the other hand, the results obtained from methodologies used in different countries may be difficult to be compared, first because the existing national guidelines are established as a consequence of what has been learned in each country from dealing with past rockfall events. Particularly, diverse social and political considerations do influence the definition of the threshold values of the parameters which determine a given degree of hazard, and eventually the type of land-use accepted for each hazard level. Therefore, a change in the threshold values for rockfall intensity and frequency is already enough to produce completely different zoning results even if the same methodology is applied. In relation with this issue, the paper introduces some of the current challenges and difficulties in comparing hazard mapping results in Europe and, subsequently, in the chance to develop a common standard procedure to assess the rockfall hazard. The present work is part of an on-going research project whose aim is to improve methodologies for rockfall hazard and risk mapping at the local scale, in the framework of the European Project "Mountain Risks: from prediction to management and governance", funded by the European Commission. As a reference, two approaches will be considered, proposed in Switzerland and

  8. Simulation of tsunamis from great earthquakes on the cascadia subduction zone.

    PubMed

    Ng, M K; Leblond, P H; Murty, T S

    1990-11-30

    Large earthquakes occur episodically in the Cascadia subduction zone. A numerical model has been used to simulate and assess the hazards of a tsunami generated by a hypothetical earthquake of magnitude 8.5 associated with rupture of the northern sections of the subduction zone. Wave amplitudes on the outer coast are closely related to the magnitude of sea-bottom displacement (5.0 meters). Some amplification, up to a factor of 3, may occur in some coastal embayments. Wave amplitudes in the protected waters of Puget Sound and the Strait of Georgia are predicted to be only about one fifth of those estmated on the outer coast.

  9. A Dynamic Hydrology-Critical Zone Framework for Rainfall-triggered Landslide Hazard Prediction

    NASA Astrophysics Data System (ADS)

    Dialynas, Y. G.; Foufoula-Georgiou, E.; Dietrich, W. E.; Bras, R. L.

    2017-12-01

    Watershed-scale coupled hydrologic-stability models are still in their early stages, and are characterized by important limitations: (a) either they assume steady-state or quasi-dynamic watershed hydrology, or (b) they simulate landslide occurrence based on a simple one-dimensional stability criterion. Here we develop a three-dimensional landslide prediction framework, based on a coupled hydrologic-slope stability model and incorporation of the influence of deep critical zone processes (i.e., flow through weathered bedrock and exfiltration to the colluvium) for more accurate prediction of the timing, location, and extent of landslides. Specifically, a watershed-scale slope stability model that systematically accounts for the contribution of driving and resisting forces in three-dimensional hillslope segments was coupled with a spatially-explicit and physically-based hydrologic model. The landslide prediction framework considers critical zone processes and structure, and explicitly accounts for the spatial heterogeneity of surface and subsurface properties that control slope stability, including soil and weathered bedrock hydrological and mechanical characteristics, vegetation, and slope morphology. To test performance, the model was applied in landslide-prone sites in the US, the hydrology of which has been extensively studied. Results showed that both rainfall infiltration in the soil and groundwater exfiltration exert a strong control on the timing and magnitude of landslide occurrence. We demonstrate the extent to which three-dimensional slope destabilizing factors, which are modulated by dynamic hydrologic conditions in the soil-bedrock column, control landslide initiation at the watershed scale.

  10. Elevation uncertainty in coastal inundation hazard assessments

    USGS Publications Warehouse

    Gesch, Dean B.; Cheval, Sorin

    2012-01-01

    Coastal inundation has been identified as an important natural hazard that affects densely populated and built-up areas (Subcommittee on Disaster Reduction, 2008). Inundation, or coastal flooding, can result from various physical processes, including storm surges, tsunamis, intense precipitation events, and extreme high tides. Such events cause quickly rising water levels. When rapidly rising water levels overwhelm flood defenses, especially in heavily populated areas, the potential of the hazard is realized and a natural disaster results. Two noteworthy recent examples of such natural disasters resulting from coastal inundation are the Hurricane Katrina storm surge in 2005 along the Gulf of Mexico coast in the United States, and the tsunami in northern Japan in 2011. Longer term, slowly varying processes such as land subsidence (Committee on Floodplain Mapping Technologies, 2007) and sea-level rise also can result in coastal inundation, although such conditions do not have the rapid water level rise associated with other flooding events. Geospatial data are a critical resource for conducting assessments of the potential impacts of coastal inundation, and geospatial representations of the topography in the form of elevation measurements are a primary source of information for identifying the natural and human components of the landscape that are at risk. Recently, the quantity and quality of elevation data available for the coastal zone have increased markedly, and this availability facilitates more detailed and comprehensive hazard impact assessments.

  11. Type 1a endoleak following Zone 1 and Zone 2 thoracic endovascular aortic repair: effect of bird-beak configuration.

    PubMed

    Kudo, Tomoaki; Kuratani, Toru; Shimamura, Kazuo; Sakamoto, Tomohiko; Kin, Keiwa; Masada, Kenta; Shijo, Takayuki; Torikai, Kei; Maeda, Koichi; Sawa, Yoshiki

    2017-10-01

    Type 1a endoleak is one of the most severe complications after thoracic endovascular aortic repair (TEVAR), because it carries the risk of aortic rupture. The association between bird-beak configuration and Type 1a endoleak remains unclear. The purpose of this study was to analyse the predictors of Type 1a endoleak following Zone 1 and Zone 2 TEVAR, with a particular focus on the effect of bird-beak configuration. From April 2008 to July 2015, 105 patients (mean age 68.6 years) who underwent Zone 1 and 2 landing TEVAR were enrolled, with a mean follow-up period of 4.3 years. The patients were categorized into 2 groups, according to the presence (Group B, n = 32) or the absence (Group N, n = 73) of bird-beak configuration on the first postoperative multidetector computed tomography. The Kaplan-Meier event-free rate curve showed that Type 1a endoleak and bird-beak progression occurred less frequently in Group N than in Group B. Five-year freedom from Type 1a endoleak rates were 79.7% and 100% for Groups B and N, respectively (P = 0.007). Multivariable logistic regression analysis showed that dissecting aortic aneurysm (odds ratio 3.72, 95% confidence interval 1.30-11.0; P = 0.014) and shorter radius of inner curvature (odds ratio 1.09, 95% confidence interval 0.85-0.99; P = 0.025) were significant risk factors for bird-beak configuration. Multivariable Cox proportional hazard regression showed that Z-type stent graft (hazard ratio 2.69, 95% confidence interval 1.11-6.51; P = 0.030) was a significant risk factor for bird-beak progression. Appropriate stent grafts need to be chosen carefully to prevent Type 1a endoleak and bird-beak configuration after landing Zone 1 and 2 TEVAR. Patients with bird-beak configuration on early postoperative multidetector computed tomography require closer follow-up to screen for Type 1a endoleak. © The Author 2017. Published by Oxford University Press on behalf of the European Association for Cardio

  12. Olfactory functioning in Gulf War-era veterans: relationships to war-zone duty, self-reported hazards exposures, and psychological distress.

    PubMed

    Vasterling, Jennifer J; Brailey, Kevin; Tomlin, Holly; Rice, Janet; Sutker, Patricia B

    2003-03-01

    To explore possible neurotoxic sequelae of Gulf War (GW) participation, olfactory identification performance, neurocognitive functioning, health perceptions, and emotional distress were assessed in 72 veterans deployed to the GW and 33 military personnel activated during the GW but not deployed to the war zone. Findings revealed that war-zone-exposed veterans reported more concerns about health, cognitive functioning, and depression than did their counterparts who did not see war-zone duty. There was no evidence that performances on olfactory or neurocognitive measures were related to war-zone duty or to self-reported exposure to GW toxicants. However, symptoms of emotional distress were positively correlated with self-report of health and cognitive complaints. Results do not provide support for the hypothesis that objectively-measured sensory (i.e., olfactory) or cognitive deficits are related to war-zone participation but do underscore the increasingly demonstrated association between self-reported health concerns and symptoms of emotional distress.

  13. Transportation of Hazardous Materials Emergency Preparedness Hazards Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blanchard, A.

    This report documents the Emergency Preparedness Hazards Assessment (EPHA) for the Transportation of Hazardous Materials (THM) at the Department of Energy (DOE) Savannah River Site (SRS). This hazards assessment is intended to identify and analyze those transportation hazards significant enough to warrant consideration in the SRS Emergency Management Program.

  14. Health hazards in areas of military operations conducted in different climatic and sanitary conditions.

    PubMed

    Korzeniewski, Krzysztof

    2011-01-01

    This paper reviews the most common health hazards occurring among personnel of peacekeeping and stabilization missions functioning within armed conflicts in the contemporary world. Military operations have been executed in diverse climatic and sanitary conditions, which are frequently unfamiliar for their participants. Some of them, e.g. the UN peacekeeping missions in the Middle East (Lebanon, the Golan Heights), have been carried out in a relatively stable geopolitical environment; whereas, stabilization missions in Iraq and Afghanistan, which are actually combat activities, undoubtedly fall into the group of the most perilous military operations in the world. Hot or cold climate, poor sanitary and hygienic conditions along with warfare facilitate the occurrence of numerous diseases and body injuries not only among the local people but also among peacekeepers, who represent the population of immigrants. Health hazards which pose major epidemiological threats in combat zones are arthropod-borne, food and water-borne, respiratory tract diseases, sexually transmitted diseases, enzootic diseases, battle injuries, and non- -battle injuries, e.g. traffic accidents. Another considerable health problem are psychiatric disorders, which can either appear directly after the occurrence of a traumatic event in a combat zone or indirectly, after some time had elapsed. In addition to the health hazards listed above, environmental factors such as changeable weather conditions and local fauna may also be life threatening.

  15. 77 FR 56669 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-13

    ...Comments are requested on proposed flood hazard determinations, which may include additions or modifications of any Base Flood Elevation (BFE), base flood depth, Special Flood Hazard Area (SFHA) boundary or zone designation, or regulatory floodway on the Flood Insurance Rate Maps (FIRMs), and where applicable, in the supporting Flood Insurance Study (FIS) reports for the communities listed in the table below. The purpose of this notice is to seek general information and comment regarding the preliminary FIRM, and where applicable, the FIS report that the Federal Emergency Management Agency (FEMA) has provided to the affected communities. The FIRM and FIS report are the basis of the floodplain management measures that the community is required either to adopt or to show evidence of having in effect in order to qualify or remain qualified for participation in the National Flood Insurance Program (NFIP). In addition, the FIRM and FIS report, once effective, will be used by insurance agents and others to calculate appropriate flood insurance premium rates for new buildings and the contents of those buildings.

  16. Management of Hazardous Waste in Indonesia

    NASA Astrophysics Data System (ADS)

    Widyatmoko, H.

    2018-01-01

    Indonesia needs to build four Treatment Centrals for 229,907 tons per year produced hazardous waste. But almost all hazardous waste treatment is managed by just one company at present, namely PT. PPLI (Prasada Pamunah Limbah Industri). This research is based on collected data which identifies payback period of 0.69 years and rate of return 85 %. PT PPLI is located within the Cileungsi District of the Bogor Regency of West Java Province. Records from nearest rainfall station at Cibinong indicate that annual average rainfall for the site is about 3,600 mm. It is situated on hilly terrain and is characterized by steep slopes as well as has a very complex geological structure. The Tertiary sequence was folded to form an assymetric anticline with axis trend in an East-West direction. Three major faults cut the middle of the site in a North-South direction with a vertical displacement of about 1.5 meters and a zone width of 1 meter. The high concentration of Chemical Oxygen Demand (COD) 2500 ppm in Secondary Leachate Collection System (SLCS) indicate a possible failure of the Primary Leachate Clection System (PLCS), which need correct action to prevent groundwater contamination.

  17. A Conceptual Model of Future Volcanism at Medicine Lake Volcano, California - With an Emphasis on Understanding Local Volcanic Hazards

    NASA Astrophysics Data System (ADS)

    Molisee, D. D.; Germa, A.; Charbonnier, S. J.; Connor, C.

    2017-12-01

    Medicine Lake Volcano (MLV) is most voluminous of all the Cascade Volcanoes ( 600 km3), and has the highest eruption frequency after Mount St. Helens. Detailed mapping by USGS colleagues has shown that during the last 500,000 years MLV erupted >200 lava flows ranging from basalt to rhyolite, produced at least one ash-flow tuff, one caldera forming event, and at least 17 scoria cones. Underlying these units are 23 additional volcanic units that are considered to be pre-MLV in age. Despite the very high likelihood of future eruptions, fewer than 60 of 250 mapped volcanic units (MLV and pre-MLV) have been dated reliably. A robust set of eruptive ages is key to understanding the history of the MLV system and to forecasting the future behavior of the volcano. The goals of this study are to 1) obtain additional radiometric ages from stratigraphically strategic units; 2) recalculate recurrence rate of eruptions based on an augmented set of radiometric dates; and 3) use lava flow, PDC, ash fall-out, and lahar computational simulation models to assess the potential effects of discrete volcanic hazards locally and regionally. We identify undated target units (units in key stratigraphic positions to provide maximum chronological insight) and obtain field samples for radiometric dating (40Ar/39Ar and K/Ar) and petrology. Stratigraphic and radiometric data are then used together in the Volcano Event Age Model (VEAM) to identify changes in the rate and type of volcanic eruptions through time, with statistical uncertainty. These newly obtained datasets will be added to published data to build a conceptual model of volcanic hazards at MLV. Alternative conceptual models, for example, may be that the rate of MLV lava flow eruptions are nonstationary in time and/or space and/or volume. We explore the consequences of these alternative models on forecasting future eruptions. As different styles of activity have different impacts, we estimate these potential effects using simulation

  18. Toward Broadband Source Modeling for the Himalayan Collision Zone

    NASA Astrophysics Data System (ADS)

    Miyake, H.; Koketsu, K.; Kobayashi, H.; Sharma, B.; Mishra, O. P.; Yokoi, T.; Hayashida, T.; Bhattarai, M.; Sapkota, S. N.

    2017-12-01

    The Himalayan collision zone is characterized by the significant tectonic setting. There are earthquakes with low-angle thrust faulting as well as continental outerrise earthquakes. Recently several historical earthquakes have been identified by active fault surveys [e.g., Sapkota et al., 2013]. We here investigate source scaling for the Himalayan collision zone as a fundamental factor to construct source models toward seismic hazard assessment. As for the source scaling for collision zones, Yen and Ma [2011] reported the subduction-zone source scaling in Taiwan, and pointed out the non-self-similar scaling due to the finite crustal thickness. On the other hand, current global analyses of stress drop do not show abnormal values for the continental collision zones [e.g., Allmann and Shearer, 2009]. Based on the compile profiling of finite thickness of the curst and dip angle variations, we discuss whether the bending exists for the Himalayan source scaling and implications on stress drop that will control strong ground motions. Due to quite low-angle dip faulting, recent earthquakes in the Himalayan collision zone showed the upper bound of the current source scaling of rupture area vs. seismic moment (< Mw 8.0), and does not show significant bending of the source scaling. Toward broadband source modeling for ground motion prediction, we perform empirical Green's function simulations for the 2009 Butan and 2015 Gorkha earthquake sequence to quantify both long- and short-period source spectral levels.

  19. Hazard function theory for nonstationary natural hazards

    NASA Astrophysics Data System (ADS)

    Read, L.; Vogel, R. M.

    2015-12-01

    Studies from the natural hazards literature indicate that many natural processes, including wind speeds, landslides, wildfires, precipitation, streamflow and earthquakes, show evidence of nonstationary behavior such as trends in magnitudes through time. Traditional probabilistic analysis of natural hazards based on partial duration series (PDS) generally assumes stationarity in the magnitudes and arrivals of events, i.e. that the probability of exceedance is constant through time. Given evidence of trends and the consequent expected growth in devastating impacts from natural hazards across the world, new methods are needed to characterize their probabilistic behavior. The field of hazard function analysis (HFA) is ideally suited to this problem because its primary goal is to describe changes in the exceedance probability of an event over time. HFA is widely used in medicine, manufacturing, actuarial statistics, reliability engineering, economics, and elsewhere. HFA provides a rich theory to relate the natural hazard event series (x) with its failure time series (t), enabling computation of corresponding average return periods and reliabilities associated with nonstationary event series. This work investigates the suitability of HFA to characterize nonstationary natural hazards whose PDS magnitudes are assumed to follow the widely applied Poisson-GP model. We derive a 2-parameter Generalized Pareto hazard model and demonstrate how metrics such as reliability and average return period are impacted by nonstationarity and discuss the implications for planning and design. Our theoretical analysis linking hazard event series x, with corresponding failure time series t, should have application to a wide class of natural hazards.

  20. Hazard function theory for nonstationary natural hazards

    NASA Astrophysics Data System (ADS)

    Read, Laura K.; Vogel, Richard M.

    2016-04-01

    Impact from natural hazards is a shared global problem that causes tremendous loss of life and property, economic cost, and damage to the environment. Increasingly, many natural processes show evidence of nonstationary behavior including wind speeds, landslides, wildfires, precipitation, streamflow, sea levels, and earthquakes. Traditional probabilistic analysis of natural hazards based on peaks over threshold (POT) generally assumes stationarity in the magnitudes and arrivals of events, i.e., that the probability of exceedance of some critical event is constant through time. Given increasing evidence of trends in natural hazards, new methods are needed to characterize their probabilistic behavior. The well-developed field of hazard function analysis (HFA) is ideally suited to this problem because its primary goal is to describe changes in the exceedance probability of an event over time. HFA is widely used in medicine, manufacturing, actuarial statistics, reliability engineering, economics, and elsewhere. HFA provides a rich theory to relate the natural hazard event series (X) with its failure time series (T), enabling computation of corresponding average return periods, risk, and reliabilities associated with nonstationary event series. This work investigates the suitability of HFA to characterize nonstationary natural hazards whose POT magnitudes are assumed to follow the widely applied generalized Pareto model. We derive the hazard function for this case and demonstrate how metrics such as reliability and average return period are impacted by nonstationarity and discuss the implications for planning and design. Our theoretical analysis linking hazard random variable X with corresponding failure time series T should have application to a wide class of natural hazards with opportunities for future extensions.