Sample records for lake bacterioplankton reveals

  1. Unusual bacterioplankton community structure in ultra-oligotrophic Crater Lake

    USGS Publications Warehouse

    Urbach, Ena; Vergin, Kevin L.; Morse, Ariel

    2001-01-01

    The bacterioplankton assemblage in Crater Lake, Oregon (U.S.A.), is different from communities found in other oxygenated lakes, as demonstrated by four small subunit ribosomal ribonucleic acid (SSU rRNA) gene clone libraries and oligonucleotide probe hybridization to RNA from lake water. Populations in the euphotic zone of this deep (589 m), oligotrophic caldera lake are dominated by two phylogenetic clusters of currently uncultivated bacteria: CL120-10, a newly identified cluster in the verrucomicrobiales, and ACK4 actinomycetes, known as a minor constituent of bacterioplankton in other lakes. Deep-water populations at 300 and 500 m are dominated by a different pair of uncultivated taxa: CL500-11, a novel cluster in the green nonsulfur bacteria, and group I marine crenarchaeota. b-Proteobacteria, dominant in most other freshwater environments, are relatively rare in Crater Lake (<=16% of nonchloroplast bacterial rRNA at all depths). Other taxa identified in Crater Lake libraries include a newly identified candidate bacterial division, ABY1, and a newly identified subcluster, CL0-1, within candidate division OP10. Probe analyses confirmed vertical stratification of several microbial groups, similar to patterns observed in open-ocean systems. Additional similarities between Crater Lake and ocean microbial populations include aphotic zone dominance of group I marine crenarchaeota and green nonsulfur bacteria. Comparison of Crater Lake to other lakes studied by rRNA methods suggests that selective factors structuring Crater Lake bacterioplankton populations may include low concentrations of available trace metals and dissolved organic matter, chemistry of infiltrating hydrothermal waters, and irradiation by high levels of ultraviolet light.

  2. Temporal patterns of phyto- and bacterioplankton and their relationships with environmental factors in Lake Taihu, China.

    PubMed

    Su, Xiaomei; Steinman, Alan D; Xue, Qingju; Zhao, Yanyan; Tang, Xiangming; Xie, Liqiang

    2017-10-01

    Phytoplankton and bacterioplankton are integral components of aquatic food webs and play essential roles in the structure and function of freshwater ecosystems. However, little is known about how phyto- and bacterioplankton may respond synchronously to changing environmental conditions. Thus, we analyzed simultaneously the composition and structure of phyto- and bacterioplankton on a monthly basis over 12 months in cyanobacteria-dominated areas of Lake Taihu and compared their responses to changes in environmental factors. Metric multi-dimensional scaling (mMDS) revealed that the temporal variations of phyto- and bacterioplankton were significant. Time lag analysis (TLA) indicated that the temporal pattern of phytoplankton tended to exhibit convergent dynamics while bacterioplankton showed highly stable or stochastic variation. A significant directional change was found for bacterioplankton at the genus level and the slopes (rate of change) and regression R 2 (low stochasticity or stability) were greater if Cyanobacteria were included, suggesting a higher level of instability in the bacterial community at lower taxonomy level. Consequently, phytoplankton responded more rapidly to the change in environmental conditions than bacterioplankton when analyzed at the phylum level, while bacterioplankton were more sensitive at the finer taxonomic resolution in Lake Taihu. Redundancy analysis (RDA) results showed that environmental variables collectively explained 51.0% variance of phytoplankton and 46.7% variance of bacterioplankton, suggesting that environmental conditions have a significant influence on the temporal variations of phyto- and bacterioplankton. Furthermore, variance partitioning indicated that the bacterial community structure was largely explained by water temperature and nitrogen, suggesting that these factors were the primary drivers shaping bacterioplankton. Copyright © 2017. Published by Elsevier Ltd.

  3. Effects of nutrients on specific growth rate of bacterioplankton in oligotrophic lake water cultures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coveney, M.F.; Wetzel, R.G.

    The effects of organic and inorganic nutrient additions on the specific growth rates of bacterioplankton in oligotrophic lake water cultures were investigated. Lake water was first passed through 0.8-{mu}m-pore-size filters (prescreening) to remove bacterivores and to minimize confounding effects of algae. Specific growth rates were calculated from changes in both bacterial cell numbers and biovolumes over 36 h. Gross specific growth rates in unmanipulated control samples were estimated through separate measurements of grazing losses by use of penicillin. The addition of mixed organic substrates alone to prescreened water did not significantly increase bacterioplankton specific growth rates. The addition of inorganicmore » phosphorus alone significantly increased one or both specific growth rates in three of four experiments, and one experiment showed a secondary stimulation by organic substrates. The stimulatory effects of phosphorus addition were greatest concurrently with the highest alkaline phosphatase activity in the lake water. Because bacteria have been shown to dominate inorganic phosphorus uptake in other P-deficient systems, the demonstration that phosphorus, rather than organic carbon, can limit bacterioplankton growth suggests direct competition between phytoplankton and bacterioplankton for inorganic phosphorus.« less

  4. Flavobacteria Blooms in Four Eutrophic Lakes: Linking Population Dynamics of Freshwater Bacterioplankton to Resource Availability▿ †

    PubMed Central

    Eiler, Alexander; Bertilsson, Stefan

    2007-01-01

    Heterotrophic bacteria are major contributors to biogeochemical cycles and influence water quality. Still, the lack of representative isolates and the few quantitative surveys leave the ecological role and significance of single bacterial populations to be revealed. Here we analyzed the diversity and dynamics of freshwater Flavobacteria populations in four eutrophic temperate lakes. From each lake, clone libraries were constructed using primers specific for either the class Flavobacteria or Bacteria. Sequencing of 194 Flavobacteria clones from 8 libraries revealed a diverse freshwater Flavobacteria community and distinct differences among lakes. Abundance and seasonal dynamics of Flavobacteria were assessed by quantitative PCR with class-specific primers. In parallel, the dynamics of individual populations within the Flavobacteria community were assessed with terminal restriction fragment length polymorphism analysis using identical primers. The contribution of Flavobacteria to the total bacterioplankton community ranged from 0.4 to almost 100% (average, 24%). Blooms where Flavobacteria represented more than 30% of the bacterioplankton were observed at different times in the four lakes. In general, high proportions of Flavobacteria appeared during episodes of high bacterial production. Phylogenetic analyses combined with Flavobacteria community fingerprints suggested dominance of two Flavobacteria lineages. Both drastic alterations in total Flavobacteria and in community composition of this class significantly correlated with bacterial production, emphasizing that resource availability is an important driver of heterotrophic bacterial succession in eutrophic lakes. PMID:17435002

  5. Nearly a decade-long repeatable seasonal diversity patterns of bacterioplankton communities in the eutrophic Lake Donghu (Wuhan, China)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Qingyun; Stegen, James C.; Yu, Yuhe

    Uncovering which environmental factors have the greatest influence on community diversity patterns and how ecological processes govern community turnover are key questions related to understanding community assembly mechanisms. Although we have good understanding of plant and animal community assembly, the mechanisms regulating diversity patterns of aquatic bacterial communities in lake ecosystems remains poorly understood. Here we present nearly a decade-long time-series study of bacterioplankton communities from the eutrophic Lake Donghu (Wuhan, China) using 16S rRNA gene amplicon sequencing. We found strong repeatable seasonal patterns for the overall community, common (detected in more than 50% samples) and dominant bacterial taxa (relativemore » abundance > 1%). Moreover, community composition tracked the seasonal temperature gradient, indicating that temperature is an important environmental factor controlling observed diversity patterns. Total phosphorus also contributed significantly to the seasonal shifts in bacterioplankton composition. However, any spatial pattern across the main lake areas was overwhelmed by temporal variability in this eutrophic lake system. Phylogenetic analysis further indicated that 75%-82% of community turnover was governed by homogeneous selection, suggesting that the bacterioplankton communities are mainly controlled by niche-based processes. However, dominant niches available within seasons might be occupied by similar combinations of bacterial taxa with modest dispersal rates throughout this lake system. This study gives us important insights into community assembly and seasonal turnover of lake bacterioplankton, it may be also useful to predict temporal patterns of other planktonic communities.« less

  6. Contrasting patterns of free-living bacterioplankton diversity in macrophyte-dominated versus phytoplankton blooming regimes in Dianchi Lake, a shallow lake in China

    NASA Astrophysics Data System (ADS)

    Wang, Yujing; Li, Huabing; Xing, Peng; Wu, Qinglong

    2017-03-01

    Freshwater shallow lakes typically exhibit two alternative stable states under certain nutrient loadings: macrophyte-dominated and phytoplankton-dominated water regimes. An ecosystem regime shift from macrophytes to phytoplankton blooming typically reduces the number of species of invertebrates and fishes and results in the homogenization of communities in freshwater lakes. We investigated how microbial biodiversity has responded to a shift of the ecosystem regime in Dianchi Lake, which was previously fully covered with submerged macrophytes but currently harbors both ecological states. We observed marked divergence in the diversity and community composition of bacterioplankton between the two regimes. Although species richness, estimated as the number of operational taxonomic units and phylogenetic diversity (PD), was higher in the phytoplankton dominated ecosystem after this shift, the dissimilarity of bacterioplankton community across space decreased. This decrease in beta diversity was accompanied by loss of planktonic bacteria unique to the macrophyte-dominated ecosystem. Mantel tests between bacterioplankton community distances and Euclidian distance of environmental parameters indicated that this reduced bacterial community differentiation primarily reflected the loss of environmental niches, particularly in the macrophyte regime. The loss of this small-scale heterogeneity in bacterial communities should be considered when assessing long-term biodiversity changes in response to ecosystem regime conversions in freshwater lakes.

  7. Seasonal dynamics of bacterioplankton community in a large, shallow, highly dynamic freshwater lake.

    PubMed

    Kong, Zhaoyu; Kou, Wenbo; Ma, Yantian; Yu, Haotian; Ge, Gang; Wu, Lan

    2018-05-23

    The spatio-temporal shifts of bacterioplankton community can mirror their transition of functional traits in aquatic ecosystem. However, our understanding of spatio-temporal variation of bacterioplankton community composition structure (BCCs) within large, shallow and highly dynamic freshwater lake is still elusive. Here we examined the seasonal and spatial variability of BCCs in the Poyang Lake by 16S rRNA gene amplicon sequencing to explore how hydrological changes affect the BCCs. Principal coordinate analysis showed that the BCCs varied significantly among four sampling seasons, but not spatially. The seasonal changes of BCCs were mainly attributed to the differences between autumn and spring/winter. Higher alpha diversity indices were observed in autumn. Redundancy analysis indicated that the BCCs co-variated with water level, pH, temperature, total phosphorus, ammoniacal nitrogen, electrical conductivity, total nitrogen, and turbidity. Among them, water level was the key determinant separating autumn BCCs from the BCCs in other seasons. A significant lower relative abundance of Burkholderiales (betI and betVII) and a higher relative abundance of Actinomycetales (acI, acTH1 and acTH2) were found in autumn than in other seasons. Overall, our results suggest that water level changes associated with pH, temperature and nutrient status shaped the seasonal patterns of BCCs in the Poyang Lake.

  8. Freshwater bacterioplankton richness in oligotrophic lakes depends on nutrient availability rather than on species–area relationships

    PubMed Central

    Logue, Jürg Brendan; Langenheder, Silke; Andersson, Anders F; Bertilsson, Stefan; Drakare, Stina; Lanzén, Anders; Lindström, Eva S

    2012-01-01

    A central goal in ecology is to grasp the mechanisms that underlie and maintain biodiversity and patterns in its spatial distribution can provide clues about those mechanisms. Here, we investigated what might determine the bacterioplankton richness (BR) in lakes by means of 454 pyrosequencing of the 16S rRNA gene. We further provide a BR estimate based upon a sampling depth and accuracy, which, to our knowledge, are unsurpassed for freshwater bacterioplankton communities. Our examination of 22 669 sequences per lake showed that freshwater BR in fourteen nutrient-poor lakes was positively influenced by nutrient availability. Our study is, thus, consistent with the finding that the supply of available nutrients is a major driver of species richness; a pattern that may well be universally valid to the world of both micro- and macro-organisms. We, furthermore, observed that BR increased with elevated landscape position, most likely as a consequence of differences in nutrient availability. Finally, BR decreased with increasing lake and catchment area that is negative species–area relationships (SARs) were recorded; a finding that re-opens the debate about whether positive SARs can indeed be found in the microbial world and whether positive SARs can in fact be pronounced as one of the few ‘laws' in ecology. PMID:22170419

  9. An association network analysis among microeukaryotes and bacterioplankton reveals algal bloom dynamics.

    PubMed

    Tan, Shangjin; Zhou, Jin; Zhu, Xiaoshan; Yu, Shichen; Zhan, Wugen; Wang, Bo; Cai, Zhonghua

    2015-02-01

    Algal blooms are a worldwide phenomenon and the biological interactions that underlie their regulation are only just beginning to be understood. It is established that algal microorganisms associate with many other ubiquitous, oceanic organisms, but the interactions that lead to the dynamics of bloom formation are currently unknown. To address this gap, we used network approaches to investigate the association patterns among microeukaryotes and bacterioplankton in response to a natural Scrippsiella trochoidea bloom. This is the first study to apply network approaches to bloom dynamics. To this end, terminal restriction fragment (T-RF) length polymorphism analysis showed dramatic changes in community compositions of microeukaryotes and bacterioplankton over the blooming period. A variance ratio test revealed significant positive overall associations both within and between microeukaryotic and bacterioplankton communities. An association network generated from significant correlations between T-RFs revealed that S. trochoidea had few connections to other microeukaryotes and bacterioplankton and was placed on the edge. This lack of connectivity allowed for the S. trochoidea sub-network to break off from the overall network. These results allowed us to propose a conceptual model for explaining how changes in microbial associations regulate the dynamics of an algal bloom. In addition, key T-RFs were screened by principal components analysis, correlation coefficients, and network analysis. Dominant T-RFs were then identified through 18S and 16S rRNA gene clone libraries. Results showed that microeukaryotes clustered predominantly with Dinophyceae and Perkinsea while the majority of bacterioplankton identified were Alphaproteobacteria, Gammaproteobacteria, and Bacteroidetes. The ecologi-cal roles of both were discussed in the context of these findings. © 2014 Phycological Society of America.

  10. Network analysis reveals seasonal variation of co-occurrence correlations between Cyanobacteria and other bacterioplankton.

    PubMed

    Zhao, Dayong; Shen, Feng; Zeng, Jin; Huang, Rui; Yu, Zhongbo; Wu, Qinglong L

    2016-12-15

    Association network approaches have recently been proposed as a means for exploring the associations between bacterial communities. In the present study, high-throughput sequencing was employed to investigate the seasonal variations in the composition of bacterioplankton communities in six eutrophic urban lakes of Nanjing City, China. Over 150,000 16S rRNA sequences were derived from 52 water samples, and correlation-based network analyses were conducted. Our results demonstrated that the architecture of the co-occurrence networks varied in different seasons. Cyanobacteria played various roles in the ecological networks during different seasons. Co-occurrence patterns revealed that members of Cyanobacteria shared a very similar niche and they had weak positive correlations with other phyla in summer. To explore the effect of environmental factors on species-species co-occurrence networks and to determine the most influential environmental factors, the original positive network was simplified by module partitioning and by calculating module eigengenes. Module eigengene analysis indicated that temperature only affected some Cyanobacteria; the rest were mainly affected by nitrogen associated factors throughout the year. Cyanobacteria were dominant in summer which may result from strong co-occurrence patterns and suitable living conditions. Overall, this study has improved our understanding of the roles of Cyanobacteria and other bacterioplankton in ecological networks. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Landscape-scale spatial abundance distributions discriminate core from random components of boreal lake bacterioplankton.

    PubMed

    Niño-García, Juan Pablo; Ruiz-González, Clara; Del Giorgio, Paul A

    2016-12-01

    Aquatic bacterial communities harbour thousands of coexisting taxa. To meet the challenge of discriminating between a 'core' and a sporadically occurring 'random' component of these communities, we explored the spatial abundance distribution of individual bacterioplankton taxa across 198 boreal lakes and their associated fluvial networks (188 rivers). We found that all taxa could be grouped into four distinct categories based on model statistical distributions (normal like, bimodal, logistic and lognormal). The distribution patterns across lakes and their associated river networks showed that lake communities are composed of a core of taxa whose distribution appears to be linked to in-lake environmental sorting (normal-like and bimodal categories), and a large fraction of mostly rare bacteria (94% of all taxa) whose presence appears to be largely random and linked to downstream transport in aquatic networks (logistic and lognormal categories). These rare taxa are thus likely to reflect species sorting at upstream locations, providing a perspective of the conditions prevailing in entire aquatic networks rather than only in lakes. © 2016 John Wiley & Sons Ltd/CNRS.

  12. Phylotype Dynamics of Bacterial P Utilization Genes in Microbialites and Bacterioplankton of a Monomictic Endorheic Lake.

    PubMed

    Valdespino-Castillo, Patricia M; Alcántara-Hernández, Rocío J; Merino-Ibarra, Martín; Alcocer, Javier; Macek, Miroslav; Moreno-Guillén, Octavio A; Falcón, Luisa I

    2017-02-01

    Microbes can modulate ecosystem function since they harbor a vast genetic potential for biogeochemical cycling. The spatial and temporal dynamics of this genetic diversity should be acknowledged to establish a link between ecosystem function and community structure. In this study, we analyzed the genetic diversity of bacterial phosphorus utilization genes in two microbial assemblages, microbialites and bacterioplankton of Lake Alchichica, a semiclosed (i.e., endorheic) system with marked seasonality that varies in nutrient conditions, temperature, dissolved oxygen, and water column stability. We focused on dissolved organic phosphorus (DOP) utilization gene dynamics during contrasting mixing and stratification periods. Bacterial alkaline phosphatases (phoX and phoD) and alkaline beta-propeller phytases (bpp) were surveyed. DOP utilization genes showed different dynamics evidenced by a marked change within an intra-annual period and a differential circadian pattern of expression. Although Lake Alchichica is a semiclosed system, this dynamic turnover of phylotypes (from lake circulation to stratification) points to a different potential of DOP utilization by the microbial communities within periods. DOP utilization gene dynamics was different among genetic markers and among assemblages (microbialite vs. bacterioplankton). As estimated by the system's P mass balance, P inputs and outputs were similar in magnitude (difference was <10 %). A theoretical estimation of water column P monoesters was used to calculate the potential P fraction that can be remineralized on an annual basis. Overall, bacterial groups including Proteobacteria (Alpha and Gamma) and Bacteroidetes seem to be key participants in DOP utilization responses.

  13. Bacterioplankton communities of Crater Lake, OR: Dynamic changes with euphotic zone food web structure and stable deep water populations

    USGS Publications Warehouse

    Urbach, E.; Vergin, K.L.; Larson, G.L.; Giovannoni, S.J.

    2007-01-01

    The distribution of bacterial and archaeal species in Crater Lake plankton varies dramatically over depth and with time, as assessed by hybridization of group-specific oligonucleotides to RNA extracted from lakewater. Nonmetric, multidimensional scaling (MDS) analysis of relative bacterial phylotype densities revealed complex relationships among assemblages sampled from depth profiles in July, August and September of 1997 through 1999. CL500-11 green nonsulfur bacteria (Phylum Chloroflexi) and marine Group I crenarchaeota are consistently dominant groups in the oxygenated deep waters at 300 and 500 m. Other phylotypes found in the deep waters are similar to surface and mid-depth populations and vary with time. Euphotic zone assemblages are dominated either by ??-proteobacteria or CL120-10 verrucomicrobia, and ACK4 actinomycetes. MDS analyses of euphotic zone populations in relation to environmental variables and phytoplankton and zooplankton population structures reveal apparent links between Daphnia pulicaria zooplankton population densities and microbial community structure. These patterns may reflect food web interactions that link kokanee salmon population densities to community structure of the bacterioplankton, via fish predation on Daphnia with cascading consequences to Daphnia bacterivory and predation on bacterivorous protists. These results demonstrate a stable bottom-water microbial community. They also extend previous observations of food web-driven changes in euphotic zone bacterioplankton community structure to an oligotrophic setting. ?? 2007 Springer Science+Business Media B.V.

  14. Do neighboring lakes share common taxa of bacterioplankton? Comparison of 16S rDNA fingerprints and sequences from three geographic regions.

    PubMed

    Lindström, E S; Leskinen, E

    2002-07-01

    Bacterioplankton community composition was studied in 12 lakes in three different geographic regions in Scandinavia using denaturing gradient gel electrophoresis (DGGE) and sequencing of 16S rDNA. Area-specific abundant taxa were found in the lakes in two of the regions. In the region of Uppland the lakes had an alpha-proteobacterium, belonging to the subgroup Alpha V in common. The Alpha V bacteria appeared to be favored by neutral or higher pH values. The lakes in Lappland were found to harbor Actinobacteria, which appeared to be favored in bog lakes. No abundant taxon was found to be in common for the lakes in Svalbard, the third region studied.

  15. Bacterioplankton Community Dynamics and Nutrient Availability in a Shallow Well Mixed Estuary of the Northern Gulf of Mexico.

    NASA Astrophysics Data System (ADS)

    Hoch, M. P.

    2016-02-01

    Sabine Lake Estuary is a shallow, well mixed, tidal lagoon of the Northern Gulf of Mexico. This study defines the bacterioplankton community composition and factors that may influence its variation in Sabine Lake Estuary. Twenty physicochemical parameters, phytoplankton photopigments, and bacterial 16SrDNA sequences were analyzed seasonally from twelve sites ranging from the inflows of Sabine and Neches Rivers to the Sabine Pass outflow. Photopigments were used to estimate phytoplankton groups via CHEMTAX, and bacterioplankton 16SrDNA sequences of 97% similarity were quantified and taxa identified. Nutrient availability experiments were conducted on bacterioplankton. Notable seasonal differences were seen in six of the ten most common (>3% of total sequences) classes of bacterioplankton. Canonical correspondence analysis (CCA) of common classes was used to explore physiochemical parameters and phytoplankton groups influencing variation in the bacterioplankton. Alphaproteobacteria were most abundant throughout the year. Opitutae, Actinobacteria, Sphingobacteria, and Beta-proteobacteria were strongly influenced by conditions with higher TDN, DOC, turbidity, and Chlorophytes during winter when high river discharges reduced salinity. Planctomycetacia were most prevalent during spring and coincide with predominance of Cryptophytes. In summer and fall the aforementioned classes decline, and there is an increase in Synechococcophycideae. Nitrogen was least available to bacterioplankton during summer and fall. Clearer, warmer and more saline conditions with lower DOC reflect tidal movement of seawater into the estuary when river discharges were low, conditions favorable for Synechococcophycidea. Seasonal fluctuations in physicochemical conditions and certain phytoplankton groups influence the variation in the bacterioplankton community in Sabine Lake Estuary.

  16. Changes in bacterioplankton community structure during early lake ontogeny resulting from the retreat of the Greenland Ice Sheet

    PubMed Central

    Peter, Hannes; Jeppesen, Erik; De Meester, Luc; Sommaruga, Ruben

    2018-01-01

    Retreating glaciers and ice sheets are among the clearest signs of global climate change. One consequence of glacier retreat is the formation of new meltwater-lakes in previously ice-covered terrain. These lakes provide unique opportunities to understand patterns in community organization during early lake ontogeny. Here, we analyzed the bacterial community structure and diversity in six lakes recently formed by the retreat of the Greenland Ice Sheet (GrIS). The lakes represented a turbidity gradient depending on their past and present connectivity to the GrIS meltwaters. Bulk (16S rRNA genes) and putatively active (16S rRNA) fractions of the bacterioplankton communities were structured by changes in environmental conditions associated to the turbidity gradient. Differences in community structure among lakes were attributed to both, rare and abundant community members. Further, positive co-occurrence relationships among phylogenetically closely related community members dominate in these lakes. Our results show that environmental conditions along the turbidity gradient structure bacterial community composition, which shifts during lake ontogeny. Rare taxa contribute to these shifts, suggesting that the rare biosphere has an important ecological role during early lakes ontogeny. Members of the rare biosphere may be adapted to the transient niches in these nutrient poor lakes. The directionality and phylogenetic structure of co-occurrence relationships indicate that competitive interactions among closely related taxa may be important in the most turbid lakes. PMID:29087379

  17. Changes in bacterioplankton community structure during early lake ontogeny resulting from the retreat of the Greenland Ice Sheet.

    PubMed

    Peter, Hannes; Jeppesen, Erik; De Meester, Luc; Sommaruga, Ruben

    2017-10-31

    Retreating glaciers and ice sheets are among the clearest signs of global climate change. One consequence of glacier retreat is the formation of new meltwater-lakes in previously ice-covered terrain. These lakes provide unique opportunities to understand patterns in community organization during early lake ontogeny. Here, we analyzed the bacterial community structure and diversity in six lakes recently formed by the retreat of the Greenland Ice Sheet (GrIS). The lakes represented a turbidity gradient depending on their past and present connectivity to the GrIS meltwaters. Bulk (16S rRNA genes) and putatively active (16S rRNA) fractions of the bacterioplankton communities were structured by changes in environmental conditions associated to the turbidity gradient. Differences in community structure among lakes were attributed to both, rare and abundant community members. Further, positive co-occurrence relationships among phylogenetically closely related community members dominate in these lakes. Our results show that environmental conditions along the turbidity gradient structure bacterial community composition, which shifts during lake ontogeny. Rare taxa contribute to these shifts, suggesting that the rare biosphere has an important ecological role during early lakes ontogeny. Members of the rare biosphere may be adapted to the transient niches in these nutrient poor lakes. The directionality and phylogenetic structure of co-occurrence relationships indicate that competitive interactions among closely related taxa may be important in the most turbid lakes.The ISME Journal advance online publication, 31 October 2017; doi:10.1038/ismej.2017.191.

  18. Estimating Bacterioplankton Production by Measuring [3H]thymidine Incorporation in a Eutrophic Swedish Lake

    PubMed Central

    Bell, Russell T.; Ahlgren, Gunnel M.; Ahlgren, Ingemar

    1983-01-01

    Bacterioplankton abundance, [3H]thymidine incorporation, 14CO2 uptake in the dark, and fractionated primary production were measured on several occasions between June and August 1982 in eutrophic Lake Norrviken, Sweden. Bacterioplankton abundance and carbon biomass ranged from 0.5 × 109 to 2.4 × 109 cells liter−1 and 7 to 47 μg of C liter−1, respectively. The average bacterial cell volume was 0.185 μm3. [3H]thymidine incorporation into cold-trichloroacetic acid-insoluble material ranged from 12 × 10−12 to 200 × 10−12 mol liter−1 h−1. Bacterial carbon production rates were estimated to be 0.2 to 7.1 μg of C liter−1 h−1. Bacterial production estimates from [3H]thymidine incorporation and 14CO2 uptake in the dark agreed when activity was high but diverged when activity was low and when blue-green algae (cyanobacteria) dominated the phytoplankton. Size fractionation indicated negligible uptake of [3H]thymidine in the >3-μm fraction during a chrysophycean bloom in early June. We found that >50% of the 3H activity was in the >3-μm fraction in late August; this phenomenon was most likely due to Microcystis spp., their associated bacteria, or both. Over 60% of the 14CO2 uptake in the dark was attributed to algae on each sampling occasion. Algal exudate was an important carbon source for planktonic bacteria. Bacterial production was roughly 50% of primary production. PMID:16346304

  19. Covariance of bacterioplankton composition and environmental variables in a temperate delta system

    USGS Publications Warehouse

    Stepanauskas, R.; Moran, M.A.; Bergamaschi, B.A.; Hollibaugh, J.T.

    2003-01-01

    We examined seasonal and spatial variation in bacterioplankton composition in the Sacramento-San Joaquin River Delta (CA) using terminal restriction fragment length polymorphism (T-RFLP) analysis. Cloned 16S rRNA genes from this system were used for putative identification of taxa dominating the T-RFLP profiles. Both cloning and T-RFLP analysis indicated that Actinobacteria, Verrucomicrobia, Cytophaga-Flavobacterium and Proteobacteria were the most abundant bacterioplankton groups in the Delta. Despite the broad variety of sampled habitats (deep water channels, lakes, marshes, agricultural drains, freshwater and brackish areas), and the spatial and temporal differences in hydrology, temperature and water chemistry among the sampling campaigns, T-RFLP electropherograms from all samples were similar, indicating that the same bacterioplankton phylotypes dominated in the various habitats of the Delta throughout the year. However, principal component analysis (PCA) and partial least-squares regression (PLS) of T-RFLP profiles revealed consistent grouping of samples on a seasonal, but not a spatial, basis. ??-Proteobacteria related to Ralstonia, Actinobacteria related to Microthrix, and ??-Proteobacteria identical to the environmental Clone LD12 had the highest relative abundance in summer/fall T-RFLP profiles and were associated with low river flow, high pH, and a number of optical and chemical characteristics of dissolved organic carbon (DOC) indicative of an increased proportion of phytoplankton-produced organic material as opposed to allochthonous, terrestrially derived organic material. On the other hand, Geobacter-related ??-Proteobacteria showed a relative increase in abundance in T-RFLP analysis during winter/spring, and probably were washed out from watershed soils or sediment. Various phylotypes associated with the same phylogenetic division, based on tentative identification of T-RFLP fragments, exhibited diverse seasonal patterns, suggesting that ecological

  20. Sources of carbon and sulfur nutrition for consumers in three meromictic lakes of New York State

    NASA Technical Reports Server (NTRS)

    Fry, B.; Hayes, J. M. (Principal Investigator)

    1986-01-01

    The trophic importance of bacterioplankton as a source of carbon and sulfur nutrition for consumers in meromictic lakes was tested using stable carbon (delta 13C) and sulfur (delta 34S) isotopic measurements. Studies in three lakes near Syracuse, New York, showed that most consumers ultimately derive their C and S nutrition from a mixture of terrestrial detritus, phytoplankton, and littoral vegetation, rather than from bacterioplankton. Food webs in these meromictic lakes are thus similar to those in other lakes that lack dense populations of bacterioplankton.

  1. Effect of signal compounds and incubation conditions on the culturability of freshwater bacterioplankton.

    PubMed

    Bruns, Alke; Nübel, Ulrich; Cypionka, Heribert; Overmann, Jörg

    2003-04-01

    The effect of signal compounds and of different incubation conditions on the culturability (i.e., the fraction of all cells capable of growth) of natural bacterioplankton from the eutrophic lake Zwischenahner Meer was investigated over a period of 20 months. Numbers of growing cells were determined by the most-probable-number technique in liquid media containing low concentrations (10 micro M) of the signal compounds N-(oxohexanoyl)-DL-homoserine lactone, N-(butyryl)-DL-homoserine lactone, cyclic AMP (cAMP), or ATP. cAMP was the most effective signal compound, leading to significantly increased cultivation efficiencies of up to 10% of the total bacterial counts. Microautoradiography with [2,8-(3)H]cAMP, combined with fluorescence in situ hybridization, demonstrated that cAMP was taken up by 18% of all cells. The bacterial cAMP uptake systems had a very low K(m) value of bacterioplankton assemblage. Sequence comparison revealed that two members of the Actinomycetales which reached high numbers in the natural bacterioplankton assemblage could actually be enriched by our cultivation approach.

  2. Interactions between hydrology and water chemistry shape bacterioplankton biogeography across boreal freshwater networks

    PubMed Central

    Niño-García, Juan Pablo; Ruiz-González, Clara; del Giorgio, Paul A

    2016-01-01

    Disentangling the mechanisms shaping bacterioplankton communities across freshwater ecosystems requires considering a hydrologic dimension that can influence both dispersal and local sorting, but how the environment and hydrology interact to shape the biogeography of freshwater bacterioplankton over large spatial scales remains unexplored. Using Illumina sequencing of the 16S ribosomal RNA gene, we investigate the large-scale spatial patterns of bacterioplankton across 386 freshwater systems from seven distinct regions in boreal Québec. We show that both hydrology and local water chemistry (mostly pH) interact to shape a sequential structuring of communities from highly diverse assemblages in headwater streams toward larger rivers and lakes dominated by fewer taxa. Increases in water residence time along the hydrologic continuum were accompanied by major losses of bacterial richness and by an increased differentiation of communities driven by local conditions (pH and other related variables). This suggests that hydrology and network position modulate the relative role of environmental sorting and mass effects on community assembly by determining both the time frame for bacterial growth and the composition of the immigrant pool. The apparent low dispersal limitation (that is, the lack of influence of geographic distance on the spatial patterns observed at the taxonomic resolution used) suggests that these boreal bacterioplankton communities derive from a shared bacterial pool that enters the networks through the smallest streams, largely dominated by mass effects, and that is increasingly subjected to local sorting of species during transit along the hydrologic continuum. PMID:26849312

  3. Interactions between hydrology and water chemistry shape bacterioplankton biogeography across boreal freshwater networks.

    PubMed

    Niño-García, Juan Pablo; Ruiz-González, Clara; Del Giorgio, Paul A

    2016-07-01

    Disentangling the mechanisms shaping bacterioplankton communities across freshwater ecosystems requires considering a hydrologic dimension that can influence both dispersal and local sorting, but how the environment and hydrology interact to shape the biogeography of freshwater bacterioplankton over large spatial scales remains unexplored. Using Illumina sequencing of the 16S ribosomal RNA gene, we investigate the large-scale spatial patterns of bacterioplankton across 386 freshwater systems from seven distinct regions in boreal Québec. We show that both hydrology and local water chemistry (mostly pH) interact to shape a sequential structuring of communities from highly diverse assemblages in headwater streams toward larger rivers and lakes dominated by fewer taxa. Increases in water residence time along the hydrologic continuum were accompanied by major losses of bacterial richness and by an increased differentiation of communities driven by local conditions (pH and other related variables). This suggests that hydrology and network position modulate the relative role of environmental sorting and mass effects on community assembly by determining both the time frame for bacterial growth and the composition of the immigrant pool. The apparent low dispersal limitation (that is, the lack of influence of geographic distance on the spatial patterns observed at the taxonomic resolution used) suggests that these boreal bacterioplankton communities derive from a shared bacterial pool that enters the networks through the smallest streams, largely dominated by mass effects, and that is increasingly subjected to local sorting of species during transit along the hydrologic continuum.

  4. Fish-mediated changes in bacterioplankton community composition: an in situ mesocosm experiment

    NASA Astrophysics Data System (ADS)

    Luo, Congqiang; Yi, Chunlong; Ni, Leyi; Guo, Longgen

    2017-06-01

    We characterized variations in bacterioplankton community composition (BCC) in mesocosms subject to three different treatments. Two groups contained fish (group one: Cyprinus carpio; group two: Hypophthalmichthys molitrix); and group three, the untreated mesocosm, was the control. Samples were taken seven times over a 49-day period, and BCC was analyzed by PCR-denaturing gradient gel electrophoresis (DGGE) and real-time quantitative PCR (qPCR). Results revealed that introduction of C. carpio and H. molitrix had a remarkable impact on the composition of bacterioplankton communities, and the BCC was significantly different between each treatment. Sequencing of DGGE bands revealed that the bacterioplankton community in the different treatment groups was consistent at a taxonomic level, but differed in its abundance. H. molitrix promoted the richness of Alphaproteobacteria and Actinobacteria, while more bands affiliated to Cyanobacteria were detected inC. carpio mesocosms. The redundancy analysis (RDA) result demonstrated that the BCC was closely related to the bottom-up (total phosphorus, chlorophyll a, phytoplankton biomass) and top-down forces (biomass of copepods and cladocera) in C. carpio and control mesocosms, respectively. We found no evidence for top-down regulation of BCC by zooplankton in H. molitrix mesocosms, while grazing by protozoa (heterotrophic nanoflagellates, ciliates) became the major way to regulate BCC. Total bacterioplankton abundances were significantly higher in C. carpio mesocosms because of high nutrient concentration and suspended solids. Our study provided insights into the relationship between fish and bacterioplankton at species level, leading to a deep understanding of the function of the microbial loop and the aquatic ecosystem.

  5. Fish-mediated changes in bacterioplankton community composition: an in situ mesocosm experiment

    NASA Astrophysics Data System (ADS)

    Luo, Congqiang; Yi, Chunlong; Ni, Leyi; Guo, Longgen

    2018-03-01

    We characterized variations in bacterioplankton community composition (BCC) in mesocosms subject to three different treatments. Two groups contained fish (group one: Cyprinus carpio; group two: Hypophthalmichthys molitrix); and group three, the untreated mesocosm, was the control. Samples were taken seven times over a 49-d period, and BCC was analyzed by PCR-denaturing gradient gel electrophoresis (DGGE) and real-time quantitative PCR (qPCR). Results revealed that introduction of C. carpio and H. molitrix had a remarkable impact on the composition of bacterioplankton communities, and the BCC was significantly different between each treatment. Sequencing of DGGE bands revealed that the bacterioplankton community in the different treatment groups was consistent at a taxonomic level, but differed in its abundance. H. molitrix promoted the richness of Alphaproteobacteria and Actinobacteria, while more bands affiliated to Cyanobacteria were detected in C. carpio mesocosms. The redundancy analysis (RDA) result demonstrated that the BCC was closely related to the bottom-up (total phosphorus, chlorophyll a, phytoplankton biomass) and top-down forces (biomass of copepods and cladocera) in C. carpio and control mesocosms, respectively. We found no evidence for top-down regulation of BCC by zooplankton in H. molitrix mesocosms, while grazing by protozoa (heterotrophic nanoflagellates, ciliates) became the major way to regulate BCC. Total bacterioplankton abundances were significantly higher in C. carpio mesocosms because of high nutrient concentration and suspended solids. Our study provided insights into the relationship between fish and bacterioplankton at species level, leading to a deep understanding of the function of the microbial loop and the aquatic ecosystem.

  6. Diurnal variation in bacterioplankton composition and DNA damage in the microbial community from an Andean oligotrophic lake.

    PubMed

    Fernández-Zenoff, María V; Estévez, María C; Farías, María E

    2014-01-01

    Laguna Azul is an oligotrophic lake situated at 4,560 m above sea level and subject to a high level of solar radiation. Bacterioplankton community composition (BCC) was analysed by denaturing gradient gel electrophoresis and the impact of solar ultraviolet radiation was assessed by measuring cyclobutane pyrimidine dimers (CPD). Furthermore, pure cultures of Acinetobacter johnsonii A2 and Rhodococcus sp. A5 were exposed simultaneously and CPD accumulation was studied. Gel analyses generated a total of 7 sequences belonging to Alpha-proteobacteria (1 band), Beta-proteobacteria (1 band), Bacteroidetes (2 bands), Actinobacteria (1 band), and Firmicutes (1 band). DGGE profiles showed minimal changes in BCC and no CPD was detected even though a high level of damage was found in biodosimeters. A. johnsonii A2 showed low level of DNA damage while Rhodococcus sp. A5 exhibited high resistance since no CPD were detected under natural UV-B exposure, suggesting that the bacterial community is well adapted to this highly solar irradiated environment. Copyright © 2014 Asociación Argentina de Microbiología. Publicado por Elsevier España. All rights reserved.

  7. Phylogenetic comparisons of a coastal bacterioplankton community with its counterparts in open ocean and freshwater systems.

    PubMed

    Rappé; Vergin; Giovannoni

    2000-09-01

    In order to extend previous comparisons between coastal marine bacterioplankton communities and their open ocean and freshwater counterparts, here we summarize and provide new data on a clone library of 105 SSU rRNA genes recovered from seawater collected over the western continental shelf of the USA in the Pacific Ocean. Comparisons to previously published data revealed that this coastal bacterioplankton clone library was dominated by SSU rRNA gene phylotypes originally described from surface waters of the open ocean, but also revealed unique SSU rRNA gene lineages of beta Proteobacteria related to those found in clone libraries from freshwater habitats. beta Proteobacteria lineages common to coastal and freshwater samples included members of a clade of obligately methylotrophic bacteria, SSU rRNA genes affiliated with Xylophilus ampelinus, and a clade related to the genus Duganella. In addition, SSU rRNA genes were recovered from such previously recognized marine bacterioplankton SSU rRNA gene clone clusters as the SAR86, SAR11, and SAR116 clusters within the class Proteobacteria, the Roseobacter clade of the alpha subclass of the Proteobacteria, the marine group A/SAR406 cluster, and the marine Actinobacteria clade. Overall, these results support and extend previous observations concerning the global distribution of several marine planktonic prokaryote SSU rRNA gene phylotypes, but also show that coastal bacterioplankton communities contain SSU rRNA gene lineages (and presumably bacterioplankton) shown previously to be prevalent in freshwater habitats.

  8. Elevated pCO2 enhances bacterioplankton removal of organic carbon

    PubMed Central

    James, Anna K.; Passow, Uta; Brzezinski, Mark A.; Parsons, Rachel J.; Trapani, Jennifer N.; Carlson, Craig A.

    2017-01-01

    Factors that affect the removal of organic carbon by heterotrophic bacterioplankton can impact the rate and magnitude of organic carbon loss in the ocean through the conversion of a portion of consumed organic carbon to CO2. Through enhanced rates of consumption, surface bacterioplankton communities can also reduce the amount of dissolved organic carbon (DOC) available for export from the surface ocean. The present study investigated the direct effects of elevated pCO2 on bacterioplankton removal of several forms of DOC ranging from glucose to complex phytoplankton exudate and lysate, and naturally occurring DOC. Elevated pCO2 (1000–1500 ppm) enhanced both the rate and magnitude of organic carbon removal by bacterioplankton communities compared to low (pre-industrial and ambient) pCO2 (250 –~400 ppm). The increased removal was largely due to enhanced respiration, rather than enhanced production of bacterioplankton biomass. The results suggest that elevated pCO2 can increase DOC consumption and decrease bacterioplankton growth efficiency, ultimately decreasing the amount of DOC available for vertical export and increasing the production of CO2 in the surface ocean. PMID:28257422

  9. Non-random assembly of bacterioplankton communities in the subtropical north pacific ocean.

    PubMed

    Eiler, Alexander; Hayakawa, Darin H; Rappé, Michael S

    2011-01-01

    The exploration of bacterial diversity in the global ocean has revealed new taxa and previously unrecognized metabolic potential; however, our understanding of what regulates this diversity is limited. Using terminal restriction fragment length polymorphism (T-RFLP) data from bacterial small-subunit ribosomal RNA genes we show that, independent of depth and time, a large fraction of bacterioplankton co-occurrence patterns are non-random in the oligotrophic North Pacific subtropical gyre (NPSG). Pair-wise correlations of all identified operational taxonomic units (OTUs) revealed a high degree of significance, with 6.6% of the pair-wise co-occurrences being negatively correlated and 20.7% of them being positive. The most abundant OTUs, putatively identified as Prochlorococcus, SAR11, and SAR116 bacteria, were among the most correlated OTUs. As expected, bacterial community composition lacked statistically significant patterns of seasonality in the mostly stratified water column except in a few depth horizons of the sunlit surface waters, with higher frequency variations in community structure apparently related to populations associated with the deep chlorophyll maximum. Communities were structured vertically into epipelagic, mesopelagic, and bathypelagic populations. Permutation-based statistical analyses of T-RFLP data and their corresponding metadata revealed a broad range of putative environmental drivers controlling bacterioplankton community composition in the NPSG, including concentrations of inorganic nutrients and phytoplankton pigments. Together, our results suggest that deterministic forces such as environmental filtering and interactions among taxa determine bacterioplankton community patterns, and consequently affect ecosystem functions in the NPSG.

  10. Soils associated to different tree communities do not elicit predictable responses in lake bacterial community structure and function.

    PubMed

    Ruiz-González, Clara; Archambault, Esther; Laforest-Lapointe, Isabelle; Del Giorgio, Paul A; Kembel, Steven W; Messier, Christian; Nock, Charles A; Beisner, Beatrix E

    2018-06-14

    Freshwater bacterioplankton communities are influenced by the inputs of material and bacteria from the surrounding landscape, yet few studies have investigated how different terrestrial inputs affect bacterioplankton. We examined whether the addition of soils collected under various tree species combinations differentially influences lake bacterial communities. Lake water was incubated for 6 days following addition of five different soils. We assessed the taxonomic composition (16S rRNA gene sequencing) and metabolic activity (Biolog Ecoplates) of lake bacteria with and without soil addition, and compared these to initial soil communities. Soil bacterial assemblages showed a strong influence of tree composition, but such community differences were not reflected in the structure of lake communities that developed during the experiment. Bacterial taxa showing the largest abundance increases during incubation were initially present in both lake water and across most soils, and were related to Cytophagales, Burkholderiales and Rhizobiales. No clear metabolic profiles based on inoculum source were found, yet soil-amended communities used 60% more substrate than non-inoculated communities. Overall, we show that terrestrial inputs influence aquatic communities by stimulating the growth and activity of certain ubiquitous taxa distributed across the terrestrial-aquatic continuum, yet different forest soils did not cause predictable changes in lake bacterioplankton assemblages.

  11. Direct and indirect effects of vertical mixing, nutrients and ultraviolet radiation on the bacterioplankton metabolism in high-mountain lakes from southern Europe

    NASA Astrophysics Data System (ADS)

    Durán, C.; Medina-Sánchez, J. M.; Herrera, G.; Villar-Argaiz, M.; Villafañe, V. E.; Helbling, E. W.; Carrillo, P.

    2014-05-01

    led to higher HBP. Consequently, EOC satisfied BCD in the clear lakes, particularly in the clearest one [LC]. Our results suggest that the higher vulnerability of bacteria to the damaging effects of UVR may be particularly accentuated in the opaque lakes and further recognizes the relevance of light exposure history and biotic interactions on bacterioplankton metabolism when coping with fluctuating radiation and nutrient inputs.

  12. Bacterioplankton carbon cycling along the Subtropical Frontal Zone off New Zealand

    NASA Astrophysics Data System (ADS)

    Baltar, Federico; Stuck, Esther; Morales, Sergio; Currie, Kim

    2015-06-01

    Marine heterotrophic bacterioplankton (Bacteria and Archaea) play a central role in ocean carbon cycling. As such, identifying the factors controlling these microbial populations is crucial to fully understanding carbon fluxes. We studied bacterioplankton activities along a transect crossing three water masses (i.e., Subtropical waters [STW], Sub-Antarctic waters [SAW] and neritic waters [NW]) with contrasting nutrient regimes across the Subtropical Frontal Zone. In contrast to bacterioplankton production and community respiration, bacterioplankton respiration increased in the offshore SAW, causing a seaward increase in the contribution of bacteria to community respiration (from 7% to 100%). Cell-specific bacterioplankton respiration also increased in SAW, but cell-specific production did not, suggesting that prokaryotic cells in SAW were investing more energy towards respiration than growth. This was reflected in a 5-fold decline in bacterioplankton growth efficiency (BGE) towards SAW. One way to explain this decrease in BGE could be due to the observed reduction in phytoplankton biomass (and presumably organic matter concentration) towards SAW. However, this would not explain why bacterioplankton respiration was highest in SAW, where phytoplankton biomass was lowest. Another factor affecting BGE could be the iron limitation characteristic of high-nutrient low-chlorophyll (HNLC) regions like SAW. Our field-study based evidences would agree with previous laboratory experiments in which iron stress provoked a decrease in BGE of marine bacterial isolates. Our results suggest that there is a strong gradient in bacterioplankton carbon cycling rates along the Subtropical Frontal Zone, mainly due to the HNLC conditions of SAW. We suggest that Fe-induced reduction of BGE in HNLC regions like SAW could be relevant in marine carbon cycling, inducing bacterioplankton to act as a link or a sink of organic carbon by impacting on the quantity of organic carbon they incorporate

  13. Discordance Between Resident and Active Bacterioplankton in Free-Living and Particle-Associated Communities in Estuary Ecosystem.

    PubMed

    Li, Jia-Ling; Salam, Nimaichand; Wang, Pan-Deng; Chen, Lin-Xing; Jiao, Jian-Yu; Li, Xin; Xian, Wen-Dong; Han, Ming-Xian; Fang, Bao-Zhu; Mou, Xiao-Zhen; Li, Wen-Jun

    2018-03-16

    Bacterioplankton are the major driving force for biogeochemical cycles in estuarine ecosystems, but the communities that mediate these processes are largely unexplored. We sampled in the Pearl River Estuary (PRE) to examine potential differences in the taxonomic composition of resident (DNA-based) and active (RNA-based) bacterioplankton communities in free-living and particle-associated fractions. MiSeq sequencing data showed that the overall bacterial diversity in particle-associated fractions was higher than in free-living communities. Further in-depth analyses of the sequences revealed a positive correlation between resident and active bacterioplankton communities for the particle-associated fraction but not in the free-living fraction. However, a large overlapping of OTUs between free-living and particle-associated communities in PRE suggested that the two fractions may be actively exchanged. We also observed that the positive correlation between resident and active communities is more prominent among the abundant OTUs (relative abundance > 0.2%). Further, the results from the present study indicated that low-abundance bacterioplankton make an important contribution towards the metabolic activity in PRE.

  14. Proteomic-based stable isotope probing reveals taxonomically Distinct Patterns in Amino Acid Assimilation by Coastal Marine Bacterioplankton

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryson, Samuel; Li, Zhou; Pett-Ridge, Jennifer

    Heterotrophic marine bacterioplankton are a critical component of the carbon cycle, processing nearly a quarter of annual global primary production, yet defining how substrate utilization preferences and resource partitioning structure these microbial communities remains a challenge. In this study, we utilized proteomics-based stable isotope probing (proteomic SIP) to characterize the assimilation of amino acids by coastal marine bacterioplankton populations. We incubated microcosms of seawater collected from Newport, OR and Monterey Bay, CA with 1 M 13C-amino acids for 15 and 32 hours. Subsequent analysis of 13C incorporation into protein biomass quantified the frequency and extent of isotope enrichment for identifiedmore » proteins. Using these metrics we tested whether amino acid assimilation patterns were different for specific bacterioplankton populations. Proteins associated with Rhodobacterales and Alteromonadales tended to have a significantly high number of tandem mass spectra from 13C-enriched peptides, while Flavobacteriales and SAR11 proteins generally had significantly low numbers of 13C-enriched spectra. Rhodobacterales proteins associated with amino acid transport and metabolism had an increased frequency of 13C-enriched spectra at time-point 2, while Alteromonadales ribosomal proteins were 13C- enriched across time-points. Overall, proteomic SIP facilitated quantitative comparisons of dissolved free amino acids assimilation by specific taxa, both between sympatric populations and between protein functional groups within discrete populations, allowing an unprecedented examination of population-level metabolic responses to resource acquisition in complex microbial communities.« less

  15. Proteomic-based stable isotope probing reveals taxonomically Distinct Patterns in Amino Acid Assimilation by Coastal Marine Bacterioplankton

    DOE PAGES

    Bryson, Samuel; Li, Zhou; Pett-Ridge, Jennifer; ...

    2016-04-26

    Heterotrophic marine bacterioplankton are a critical component of the carbon cycle, processing nearly a quarter of annual global primary production, yet defining how substrate utilization preferences and resource partitioning structure these microbial communities remains a challenge. In this study, we utilized proteomics-based stable isotope probing (proteomic SIP) to characterize the assimilation of amino acids by coastal marine bacterioplankton populations. We incubated microcosms of seawater collected from Newport, OR and Monterey Bay, CA with 1 M 13C-amino acids for 15 and 32 hours. Subsequent analysis of 13C incorporation into protein biomass quantified the frequency and extent of isotope enrichment for identifiedmore » proteins. Using these metrics we tested whether amino acid assimilation patterns were different for specific bacterioplankton populations. Proteins associated with Rhodobacterales and Alteromonadales tended to have a significantly high number of tandem mass spectra from 13C-enriched peptides, while Flavobacteriales and SAR11 proteins generally had significantly low numbers of 13C-enriched spectra. Rhodobacterales proteins associated with amino acid transport and metabolism had an increased frequency of 13C-enriched spectra at time-point 2, while Alteromonadales ribosomal proteins were 13C- enriched across time-points. Overall, proteomic SIP facilitated quantitative comparisons of dissolved free amino acids assimilation by specific taxa, both between sympatric populations and between protein functional groups within discrete populations, allowing an unprecedented examination of population-level metabolic responses to resource acquisition in complex microbial communities.« less

  16. Bacterioplankton Populations within the Oxygen Minimum Zone of the Sargasso Sea

    NASA Astrophysics Data System (ADS)

    Schuler, G.; Parsons, R. J.; Johnson, R. J.

    2016-02-01

    Oxygen minimum zones are present throughout the world's oceans, and occur at depths between 200 to 1000m. Heterotrophic bacteria reduce the dissolved oxygen within this layer through respiration, while metabolizing falling particles. This report studied the bacterioplankton in the oxygen minimum zone at the BATS (Bermuda Atlantic Times-series Study) site from July 2014 until November 2014. Total bacterioplankton populations were enumerated through direct counts. In the transitional zone (400m-800m) of the oxygen minimum zone, a secondary bacterioplankton peak formed. This study used FISH (Fluorescent in situ hybridization) and CARD-FISH (Catalyzed Reporter Deposition-Fluorescent in situ hybridization) to enumerate specific bacterial and archaeal taxa. Crenarchaeota (including Thaumarchaeota) increased in abundance within the upper oxycline. Thaumarchaeota have the ammonia monooxygenase gene that oxidizes ammonium into nitrite in low oxygen conditions. Amplification of the amoA gene confirmed that ammonia oxidizing archaea (AOA) were present within the OMZ. Using Terminal Restriction Fragment Length Polymorphism (T-RFLP), the bacterial community structure showed high similarity based depth zones (0-80m, 160-600m, and 800-4500m). Niskin experiments determined that water collected at 800m had an exponential increase in bacterioplankton over time. While experimental design did not allow for oxygen levels to be maintained, the bacterioplankton community was predominantly bacteria with eubacteria positive cells making up 89.3% of the of the total bacterioplankton community by day 34. Improvements to the experimental design are required to determine which specific bacterial taxa caused this increase at 800m. This study suggests that there are factors other than oxygen influencing bacterioplankton populations at the BATS site, and more analysis is needed once the BATS data is available to determine the key drivers of bacterioplankton dynamics within the BATS OMZ.

  17. Effects of floodgates operation on nitrogen transformation in a lake based on structural equation modeling analysis.

    PubMed

    Zhu, Longji; Zhou, Haixuan; Xie, Xinyu; Li, Xueke; Zhang, Duoying; Jia, Liming; Wei, Qingbin; Zhao, Yue; Wei, Zimin; Ma, Yingying

    2018-08-01

    Floodgates operation is one of the primary means of flood control in lake development. However, knowledge on the linkages between floodgates operation and nitrogen transformation during the flood season is limited. In this study, water samples from six sampling sites along Lake Xingkai watershed were collected before and after floodgates operation. The causal relationships between environmental factors, bacterioplankton community composition and nitrogen fractions were determined during flood season. We found that concentrations of nitrogen fractions decreased significantly when the floodgates were opened, while the concentrations of total nitrogen (TN) and NO 3 - increased when the floodgates had been shut for a period. Further, we proposed a possible mechanism that the influence of floodgates operation on nitrogen transformation was largely mediated through changes in dissolved organic matter, dissolved oxygen and bacterioplankton community composition as revealed by structural equation modeling (SEM). We conclude that floodgates operation has a high risk for future eutrophication of downstream watershed, although it can reduce nitrogen content temporarily. Therefore, the environmental impacts of floodgates operation should be carefully evaluated before the floodwaters were discharged into downstream watershed. Copyright © 2018. Published by Elsevier B.V.

  18. Response of Bacterioplankton Communities to Cadmium Exposure in Coastal Water Microcosms with High Temporal Variability

    PubMed Central

    Wang, Kai; Xiong, Jinbo; Chen, Xinxin; Zheng, Jialai; Hu, Changju; Yang, Yina; Zhu, Jianlin

    2014-01-01

    Multiple anthropogenic disturbances to bacterial diversity have been investigated in coastal ecosystems, in which temporal variability in the bacterioplankton community has been considered a ubiquitous process. However, far less is known about the temporal dynamics of a bacterioplankton community responding to pollution disturbances such as toxic metals. We used coastal water microcosms perturbed with 0, 10, 100, and 1,000 μg liter−1 of cadmium (Cd) for 2 weeks to investigate temporal variability, Cd-induced patterns, and their interaction in the coastal bacterioplankton community and to reveal whether the bacterial community structure would reflect the Cd gradient in a temporally varying system. Our results showed that the bacterioplankton community structure shifted along the Cd gradient consistently after a 4-day incubation, although it exhibited some resistance to Cd at low concentration (10 μg liter−1). A process akin to an arms race between temporal variability and Cd exposure was observed, and the temporal variability overwhelmed Cd-induced patterns in the bacterial community. The temporal succession of the bacterial community was correlated with pH, dissolved oxygen, NO3−-N, NO2−-N, PO43−-P, dissolved organic carbon, and chlorophyll a, and each of these parameters contributed more to community variance than Cd did. However, elevated Cd levels did decrease the temporal turnover rate of community. Furthermore, key taxa, affiliated to the families Flavobacteriaceae, Rhodobacteraceae, Erythrobacteraceae, Piscirickettsiaceae, and Alteromonadaceae, showed a high frequency of being associated with Cd levels during 2 weeks. This study provides direct evidence that specific Cd-induced patterns in bacterioplankton communities exist in highly varying manipulated coastal systems. Future investigations on an ecosystem scale across longer temporal scales are needed to validate the observed pattern. PMID:25326310

  19. Structuring of Bacterioplankton Diversity in a Large Tropical Bay

    PubMed Central

    Gregoracci, Gustavo B.; Nascimento, Juliana R.; Cabral, Anderson S.; Paranhos, Rodolfo; Valentin, Jean L.; Thompson, Cristiane C.; Thompson, Fabiano L.

    2012-01-01

    Structuring of bacterioplanktonic populations and factors that determine the structuring of specific niche partitions have been demonstrated only for a limited number of colder water environments. In order to better understand the physical chemical and biological parameters that may influence bacterioplankton diversity and abundance, we examined their productivity, abundance and diversity in the second largest Brazilian tropical bay (Guanabara Bay, GB), as well as seawater physical chemical and biological parameters of GB. The inner bay location with higher nutrient input favored higher microbial (including vibrio) growth. Metagenomic analysis revealed a predominance of Gammaproteobacteria in this location, while GB locations with lower nutrient concentration favored Alphaproteobacteria and Flavobacteria. According to the subsystems (SEED) functional analysis, GB has a distinctive metabolic signature, comprising a higher number of sequences in the metabolism of phosphorus and aromatic compounds and a lower number of sequences in the photosynthesis subsystem. The apparent phosphorus limitation appears to influence the GB metagenomic signature of the three locations. Phosphorus is also one of the main factors determining changes in the abundance of planktonic vibrios, suggesting that nutrient limitation can be observed at community (metagenomic) and population levels (total prokaryote and vibrio counts). PMID:22363639

  20. Heterogeneity of interactions of microbial communities in regions of Taihu Lake with different nutrient loadings: A network analysis.

    PubMed

    Cao, Xinyi; Zhao, Dayong; Xu, Huimin; Huang, Rui; Zeng, Jin; Yu, Zhongbo

    2018-06-11

    To investigate the differences in the interactions of microbial communities in two regions in Taihu Lake with different nutrient loadings [Meiliang Bay (MLB) and Xukou Bay (XKB)], water samples were collected and both intra- and inter-kingdom microbial community interactions were examined with network analysis. It is demonstrated that all of the bacterioplankton, microeukaryotes and inter-kingdom communities networks in Taihu Lake were non-random. For the networks of bacterioplankton and inter-kingdom community in XKB, higher clustering coefficient and average degree but lower average path length indexes were observed, indicating the nodes in XKB were more clustered and closely connected with plenty edges than those of MLB. The bacterioplankton and inter-kingdom networks were considerably larger and more complex with more module hubs and connectors in XKB compared with those of MLB, whereas the microeukaryotes networks were comparable and had no module hubs or connectors in the two lake zones. The phyla of Acidobacteria, Cyanobacteria and Planctomycetes maintained greater cooperation with other phyla in XKB, rather than competition. The relationships between microbial communities and environmental factors in MLB were weaker. Compared with the microbial community networks of XKB, less modules in networks of MLB were significantly correlated with total phosphorous and total nitrogen.

  1. Distinct Seasonal Patterns of Bacterioplankton Abundance and Dominance of Phyla α-Proteobacteria and Cyanobacteria in Qinhuangdao Coastal Waters Off the Bohai Sea

    PubMed Central

    He, Yaodong; Sen, Biswarup; Zhou, Shuangyan; Xie, Ningdong; Zhang, Yongfeng; Zhang, Jianle; Wang, Guangyi

    2017-01-01

    Qinhuangdao coastal waters in northern China are heavily impacted by anthropogenic and natural activities, and we anticipate a direct influence of the impact on the bacterioplankton abundance and diversity inhabiting the adjacent coastal areas. To ascertain the anthropogenic influences, we first evaluated the seasonal abundance patterns and diversity of bacterioplankton in the coastal areas with varied levels of natural and anthropogenic activities and then analyzed the environmental factors which influenced the abundance patterns. Results indicated distinct patterns in bacterioplankton abundance across the warm and cold seasons in all stations. Total bacterial abundance in the stations ranged from 8.67 × 104 to 2.08 × 106 cells/mL and had significant (p < 0.01) positive correlation with total phosphorus (TP), which indicated TP as the key monitoring parameter for anthropogenic impact on nutrients cycling. Proteobacteria and Cyanobacteria were the most abundant phyla in the Qinhuangdao coastal waters. Redundancy analysis revealed significant (p < 0.01) influence of temperature, dissolved oxygen and chlorophyll a on the spatiotemporal abundance pattern of α-Proteobacteria and Cyanobacteria groups. Among the 19 identified bacterioplankton subgroups, α-Proteobacteria (phylum Proteobacteria) was the dominant one followed by Family II (phylum Cyanobacteria), representing 19.1–55.2% and 2.3–54.2% of total sequences, respectively. An inverse relationship (r = -0.82) was observed between the two dominant subgroups, α-Proteobacteria and Family II. A wide range of inverse Simpson index (10.2 to 105) revealed spatial heterogeneity of bacterioplankton diversity likely resulting from the varied anthropogenic and natural influences. Overall, our results suggested that seasonal variations impose substantial influence on shaping bacterioplankton abundance patterns. In addition, the predominance of only a few cosmopolitan species in the Qinhuangdao coastal wasters was

  2. Bacterioplankton: A Sink for Carbon in a Coastal Marine Plankton Community

    NASA Astrophysics Data System (ADS)

    Ducklow, Hugh W.; Purdie, Duncan A.; Leb. Williams, Peter J.; Davies, John M.

    1986-05-01

    Recent determinations of high production rates (up to 30 percent of primary production in surface waters) implicate free-living marine bacterioplankton as a link in a ``microbial loop'' that supplements phytoplankton as food for herbivores. An enclosed water column of 300 cubic meters was used to test the microbial loop hypothesis by following the fate of carbon-14--labeled bacterioplankton for over 50 days. Only 2 percent of the label initially fixed from carbon-14--labeled glucose by bacteria was present in larger organisms after 13 days, at which time about 20 percent of the total label added remained in the particulate fraction. Most of the label appeared to pass directly from particles smaller than 1 micrometer (heterotrophic bacterioplankton and some bacteriovores) to respired labeled carbon dioxide or to regenerated dissolved organic carbon-14. Secondary (and, by implication, primary) production by organisms smaller than 1 micrometer may not be an important food source in marine food chains. Bacterioplankton can be a sink for carbon in planktonic food webs and may serve principally as agents of nutrient regeneration rather than as food.

  3. Spatially uniform but temporally variable bacterioplankton in a semi-enclosed coastal area.

    PubMed

    Meziti, Alexandra; Kormas, Konstantinos A; Moustaka-Gouni, Maria; Karayanni, Hera

    2015-07-01

    Studies focusing on the temporal and spatial dynamics of bacterioplankton communities within littoral areas undergoing direct influences from the coast are quite limited. In addition, they are more complicated to resolve compared to communities in the open ocean. In order to elucidate the effects of spatial vs. temporal variability on bacterial communities in a highly land-influenced semi-enclosed gulf, surface bacterioplankton communities from five coastal sites in Igoumenitsa Gulf (Ionian Sea, Greece) were analyzed over a nine-month period using 16S rDNA 454-pyrosequencing. Temporal differences were more pronounced than spatial ones, with lower diversity indices observed during the summer months. During winter and early spring, bacterial communities were dominated by SAR11 representatives, while this pattern changed in May when they were abruptly replaced by members of Flavobacteriales, Pseudomonadales, and Alteromonadales. Additionally, correlation analysis showed high negative correlations between the presence of SAR11 OTUs in relation to temperature and sunlight that might have driven, directly or indirectly, the disappearance of these OTUs in the summer months. The dominance of SAR11 during the winter months further supported the global distribution of the clade, not only in the open-sea, but also in coastal systems. This study revealed that specific bacteria exhibited distinct succession patterns in an anthropogenic-impacted coastal system. The major bacterioplankton component was represented by commonly found marine bacteria exhibiting seasonal dynamics, while freshwater and terrestrial-related phylotypes were absent. Copyright © 2015 Elsevier GmbH. All rights reserved.

  4. Siderophore production by bacterioplankton in enriched seawater incubations

    NASA Astrophysics Data System (ADS)

    Gledhill, M.; McCormack, P.; Worsfold, P. J.

    2003-04-01

    Iron is known to limit primary productivity in about 40 % of the worlds oceans. However the role of Fe in controlling bacterioplankton productivity is still a subject of debate, as carbon is also likely to be a significant limiting factor. Furthermore bacterioplankton are thought to have evolved a high affinity Fe transport mechanism utilising siderophores, which would enable acquisition even in the most Fe limited regions of the ocean. However, it is not yet certain if or how such a mechanism is employed in the oceans. Progress in this research area has been hindered by the lack of sufficiently sensitive analytical techniques for the determination of siderophores. We have recently developed a novel, highly sensitive technique for the detection of siderophore type compounds using electrospray ionisation - mass spectrometry (ESI-MS). Coupling of the technique with high performance liquid chromatography (HPLC) has allowed us to separate and identify siderophore type compounds present in complex mixtures at low concentrations (pM), thus allowing us to work with natural assemblages of bacteria in seawater. In this presentation we report on results obtained from incubations of natural bacterioplankton assemblages using coastal seawater from the English Channel. Known and unknown siderophores were identified in incubations carried out with additions of carbon, nitrogen and phosphorous. Iron speciation in the incubations was modified through the presence or absence of the chelating agent ethylenediamine-N,N-diacetic acid. Results show that different siderophores are produced under different conditions, probably a reflection of the type of bacterioplankton best able to exploit the incubation conditions. The results will be discussed with respect to their relevance to the marine environment.

  5. Seismic Data Reveal Lake-Level Changes in Lake Issyk-Kul, Kyrgyzstan

    NASA Astrophysics Data System (ADS)

    Gebhardt, C.; Spiess, V.; Keil, H.; Sauermilch, I.; Oberhänsli, H.; Abdrakhmatov, K.; De Batist, M. A.; Naudts, L.; De Mol, L.

    2013-12-01

    Lake Issyk-Kul is located in an intramontane basin of the Tien Shan, Kyrgyzstan, Central Asia, at 1607 m above sea level. It has formed in a tectonically active region with W-E striking major thrust zones both N and S of the lake. The lake is elongated with 180 km in W-E and 60 km in S-N direction and a water depth of roughly 670 m at its central plain. With a surface area of 6232 km2 and a total water colume of around 1736 km3, Lake Issyk-Kul is the second largest lake in the higher altitudes (De Batist et al., 2002). Two large delta areas have formed at the E and W end. Steep slopes at both the N and S shore separate rather narrow, shallow shelf areas from the central deeper plain. First seismic data of lake Issyk-Kul were acquired in 1982 by the Moscow University with a total of 31 profiles across the lake. In 1997 and 2001, a second and third seismic survey of the lake were carried out by the group of Marc De Batist (Ghent, Belgium) in cooperation with the Royal Museum of Central Africa (Tervuren, Belgium) and the SBRAS (Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia) using a sparker system with a single-channel streamer. These surveys were recently completed by a fourth expedition carried out by the University of Bremen in April 2013. During this expedition, 33 additional profiles were acquired with an airgun and a multi-channel streamer. The sparker surveys mostly cover the delta and shelf areas in high detail, while the airgun survey covers the deeper parts of the lake with penetration beyond the first multiple. Bathymetry data reveal that at the delta areas, the shelf is divided into two parts. The shallower comprises the part down to 110 m water depth with an average inclination of 0.5°, while the deeper part reaches from 110 m to 300 m water depth with an average slope inclination of 1°. Incised paleo-river channels of up to 2-3 km width and 50 m depth are visible both on the eastern and western shelf, but are limited to the

  6. Distribution, Community Composition, and Potential Metabolic Activity of Bacterioplankton in an Urbanized Mediterranean Sea Coastal Zone

    PubMed Central

    Richa, Kumari; Balestra, Cecilia; Piredda, Roberta; Benes, Vladimir; Borra, Marco; Passarelli, Augusto; Margiotta, Francesca; Saggiomo, Maria; Biffali, Elio; Sanges, Remo; Scanlan, David J.

    2017-01-01

    ABSTRACT Bacterioplankton are fundamental components of marine ecosystems and influence the entire biosphere by contributing to the global biogeochemical cycles of key elements. Yet, there is a significant gap in knowledge about their diversity and specific activities, as well as environmental factors that shape their community composition and function. Here, the distribution and diversity of surface bacterioplankton along the coastline of the Gulf of Naples (GON; Italy) were investigated using flow cytometry coupled with high-throughput sequencing of the 16S rRNA gene. Heterotrophic bacteria numerically dominated the bacterioplankton and comprised mainly Alphaproteobacteria, Gammaproteobacteria, and Bacteroidetes. Distinct communities occupied river-influenced, coastal, and offshore sites, as indicated by Bray-Curtis dissimilarity, distance metric (UniFrac), linear discriminant analysis effect size (LEfSe), and multivariate analyses. The heterogeneity in diversity and community composition was mainly due to salinity and changes in environmental conditions across sites, as defined by nutrient and chlorophyll a concentrations. Bacterioplankton communities were composed of a few dominant taxa and a large proportion (92%) of rare taxa (here defined as operational taxonomic units [OTUs] accounting for <0.1% of the total sequence abundance), the majority of which were unique to each site. The relationship between 16S rRNA and the 16S rRNA gene, i.e., between potential metabolic activity and abundance, was positive for the whole community. However, analysis of individual OTUs revealed high rRNA-to-rRNA gene ratios for most (71.6% ± 16.7%) of the rare taxa, suggesting that these low-abundance organisms were potentially active and hence might be playing an important role in ecosystem diversity and functioning in the GON. IMPORTANCE The study of bacterioplankton in coastal zones is of critical importance, considering that these areas are highly productive and

  7. Diversity of bacterioplankton in coastal seawaters of Fildes Peninsula, King George Island, Antarctica.

    PubMed

    Zeng, Yin-Xin; Yu, Yong; Qiao, Zong-Yun; Jin, Hai-Yan; Li, Hui-Rong

    2014-02-01

    The bacterioplankton not only serves critical functions in marine nutrient cycles, but can also serve as indicators of the marine environment. The compositions of bacterial communities in the surface seawater of Ardley Cove and Great Wall Cove were analyzed using a 16S rRNA multiplex 454 pyrosequencing approach. Similar patterns of bacterial composition were found between the two coves, in which Bacteroidetes, Alphaproteobacteria, and Gammaproteobacteria were the dominant members of the bacterioplankton communities. In addition, a large fraction of the bacterial sequence reads (on average 5.3 % per station) could not be assigned below the domain level. Compared with Ardley Cove, Great Wall Cove showed higher chlorophyll and particulate organic carbon concentrations and exhibited relatively lower bacterial richness and diversity. Inferred metabolisms of summer bacterioplankton in the two coves were characterized by chemoheterotrophy and photoheterotrophy. Results suggest that some cosmopolitan species (e.g., Polaribacter and Sulfitobacter) belonging to a few bacterial groups that usually dominate in marine bacterioplankton communities may have similar ecological functions in similar marine environments but at different geographic locations.

  8. Bacterial and Phytoplankton Responses to Nutrient Amendments in a Boreal Lake Differ According to Season and to Taxonomic Resolution

    PubMed Central

    Peura, Sari; Eiler, Alexander; Hiltunen, Minna; Nykänen, Hannu; Tiirola, Marja; Jones, Roger I.

    2012-01-01

    Nutrient limitation and resource competition in bacterial and phytoplankton communities may appear different when considering different levels of taxonomic resolution. Nutrient amendment experiments conducted in a boreal lake on three occasions during one open water season revealed complex responses in overall bacterioplankton and phytoplankton abundance and biovolume. In general, bacteria were dominant in spring, while phytoplankton was clearly the predominant group in autumn. Seasonal differences in the community composition of bacteria and phytoplankton were mainly related to changes in observed taxa, while the differences across nutrient treatments within an experiment were due to changes in relative contributions of certain higher- and lower-level phylogenetic groups. Of the main bacterioplankton phyla, only Actinobacteria had a treatment response that was visible even at the phylum level throughout the season. With increasing resolution (from 75 to 99% sequence similarity) major responses to nutrient amendments appeared using 454 pyrosequencing data of 16S rRNA amplicons. This further revealed that OTUs (defined by 97% sequence similarity) annotated to the same highly resolved freshwater groups appeared to occur during different seasons and were showing treatment-dependent differentiation, indicating that OTUs within these groups were not ecologically coherent. Similarly, phytoplankton species from the same genera responded differently to nutrient amendments even though biovolumes of the majority of taxa increased when both nitrogen and phosphorus were added simultaneously. The bacterioplankton and phytoplankton community compositions showed concurrent trajectories that could be seen in synchronous succession patterns over the season. Overall, our data revealed that the response of both communities to nutrient changes was highly dependent on season and that contradictory results may be obtained when using different taxonomic resolutions. PMID:22715392

  9. Distribution, Community Composition, and Potential Metabolic Activity of Bacterioplankton in an Urbanized Mediterranean Sea Coastal Zone.

    PubMed

    Richa, Kumari; Balestra, Cecilia; Piredda, Roberta; Benes, Vladimir; Borra, Marco; Passarelli, Augusto; Margiotta, Francesca; Saggiomo, Maria; Biffali, Elio; Sanges, Remo; Scanlan, David J; Casotti, Raffaella

    2017-09-01

    Bacterioplankton are fundamental components of marine ecosystems and influence the entire biosphere by contributing to the global biogeochemical cycles of key elements. Yet, there is a significant gap in knowledge about their diversity and specific activities, as well as environmental factors that shape their community composition and function. Here, the distribution and diversity of surface bacterioplankton along the coastline of the Gulf of Naples (GON; Italy) were investigated using flow cytometry coupled with high-throughput sequencing of the 16S rRNA gene. Heterotrophic bacteria numerically dominated the bacterioplankton and comprised mainly Alphaproteobacteria , Gammaproteobacteria , and Bacteroidetes Distinct communities occupied river-influenced, coastal, and offshore sites, as indicated by Bray-Curtis dissimilarity, distance metric (UniFrac), linear discriminant analysis effect size (LEfSe), and multivariate analyses. The heterogeneity in diversity and community composition was mainly due to salinity and changes in environmental conditions across sites, as defined by nutrient and chlorophyll a concentrations. Bacterioplankton communities were composed of a few dominant taxa and a large proportion (92%) of rare taxa (here defined as operational taxonomic units [OTUs] accounting for <0.1% of the total sequence abundance), the majority of which were unique to each site. The relationship between 16S rRNA and the 16S rRNA gene, i.e., between potential metabolic activity and abundance, was positive for the whole community. However, analysis of individual OTUs revealed high rRNA-to-rRNA gene ratios for most (71.6% ± 16.7%) of the rare taxa, suggesting that these low-abundance organisms were potentially active and hence might be playing an important role in ecosystem diversity and functioning in the GON. IMPORTANCE The study of bacterioplankton in coastal zones is of critical importance, considering that these areas are highly productive and anthropogenically

  10. Niche specialization of bacteria in permanently ice-covered lakes of the McMurdo Dry Valleys, Antarctica.

    PubMed

    Kwon, Miye; Kim, Mincheol; Takacs-Vesbach, Cristina; Lee, Jaejin; Hong, Soon Gyu; Kim, Sang Jong; Priscu, John C; Kim, Ok-Sun

    2017-06-01

    Perennially ice-covered lakes in the McMurdo Dry Valleys, Antarctica, are chemically stratified with depth and have distinct biological gradients. Despite long-term research on these unique environments, data on the structure of the microbial communities in the water columns of these lakes are scarce. Here, we examined bacterial diversity in five ice-covered Antarctic lakes by 16S rRNA gene-based pyrosequencing. Distinct communities were present in each lake, reflecting the unique biogeochemical characteristics of these environments. Further, certain bacterial lineages were confined exclusively to specific depths within each lake. For example, candidate division WM88 occurred solely at a depth of 15 m in Lake Fryxell, whereas unknown lineages of Chlorobi were found only at a depth of 18 m in Lake Miers, and two distinct classes of Firmicutes inhabited East and West Lobe Bonney at depths of 30 m. Redundancy analysis revealed that community variation of bacterioplankton could be explained by the distinct conditions of each lake and depth; in particular, assemblages from layers beneath the chemocline had biogeochemical associations that differed from those in the upper layers. These patterns of community composition may represent bacterial adaptations to the extreme and unique biogeochemical gradients of ice-covered lakes in the McMurdo Dry Valleys. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  11. Flow cytometric monitoring of bacterioplankton phenotypic diversity predicts high population-specific feeding rates by invasive dreissenid mussels.

    PubMed

    Props, Ruben; Schmidt, Marian L; Heyse, Jasmine; Vanderploeg, Henry A; Boon, Nico; Denef, Vincent J

    2018-02-01

    Species invasion is an important disturbance to ecosystems worldwide, yet knowledge about the impacts of invasive species on bacterial communities remains sparse. Using a novel approach, we simultaneously detected phenotypic and derived taxonomic change in a natural bacterioplankton community when subjected to feeding pressure by quagga mussels, a widespread aquatic invasive species. We detected a significant decrease in diversity within 1 h of feeding and a total diversity loss of 11.6 ± 4.1% after 3 h. This loss of microbial diversity was caused by the selective removal of high nucleic acid populations (29 ± 5% after 3 h). We were able to track the community diversity at high temporal resolution by calculating phenotypic diversity estimates from flow cytometry (FCM) data of minute amounts of sample. Through parallel FCM and 16S rRNA gene amplicon sequencing analysis of environments spanning a broad diversity range, we showed that the two approaches resulted in highly correlated diversity measures and captured the same seasonal and lake-specific patterns in community composition. Based on our results, we predict that selective feeding by invasive dreissenid mussels directly impacts the microbial component of the carbon cycle, as it may drive bacterioplankton communities toward less diverse and potentially less productive states. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  12. Microbial communities reflect temporal changes in cyanobacterial composition in a shallow ephemeral freshwater lake

    PubMed Central

    Woodhouse, Jason Nicholas; Kinsela, Andrew Stephen; Collins, Richard Nicholas; Bowling, Lee Chester; Honeyman, Gordon L; Holliday, Jon K; Neilan, Brett Anthony

    2016-01-01

    The frequency of freshwater cyanobacterial blooms is at risk of increasing as a consequence of climate change and eutrophication of waterways. It is increasingly apparent that abiotic data are insufficient to explain variability within the cyanobacterial community, with biotic factors such as heterotrophic bacterioplankton, viruses and protists emerging as critical drivers. During the Australian summer of 2012–2013, a bloom that occurred in a shallow ephemeral lake over a 6-month period was comprised of 22 distinct cyanobacteria, including Microcystis, Dolichospermum, Oscillatoria and Sphaerospermopsis. Cyanobacterial cell densities, bacterial community composition and abiotic parameters were assessed over this period. Alpha-diversity indices and multivariate analysis were successful at differentiating three distinct bloom phases and the contribution of abiotic parameters to each. Network analysis, assessing correlations between biotic and abiotic variables, reproduced these phases and assessed the relative importance of both abiotic and biotic factors. Variables possessing elevated betweeness centrality included temperature, sodium and operational taxonomic units belonging to the phyla Verrucomicrobia, Planctomyces, Bacteroidetes and Actinobacteria. Species-specific associations between cyanobacteria and bacterioplankton, including the free-living Actinobacteria acI, Bacteroidetes, Betaproteobacteria and Verrucomicrobia, were also identified. We concluded that changes in the abundance and nature of freshwater cyanobacteria are associated with changes in the diversity and composition of lake bacterioplankton. Given this, an increase in the frequency of cyanobacteria blooms has the potential to alter nutrient cycling and contribute to long-term functional perturbation of freshwater systems. PMID:26636552

  13. Interactive network configuration maintains bacterioplankton community structure under elevated CO2 in a eutrophic coastal mesocosm experiment

    NASA Astrophysics Data System (ADS)

    Lin, Xin; Huang, Ruiping; Li, Yan; Li, Futian; Wu, Yaping; Hutchins, David A.; Dai, Minhan; Gao, Kunshan

    2018-01-01

    There is increasing concern about the effects of ocean acidification on marine biogeochemical and ecological processes and the organisms that drive them, including marine bacteria. Here, we examine the effects of elevated CO2 on the bacterioplankton community during a mesocosm experiment using an artificial phytoplankton community in subtropical, eutrophic coastal waters of Xiamen, southern China. Through sequencing the bacterial 16S rRNA gene V3-V4 region, we found that the bacterioplankton community in this high-nutrient coastal environment was relatively resilient to changes in seawater carbonate chemistry. Based on comparative ecological network analysis, we found that elevated CO2 hardly altered the network structure of high-abundance bacterioplankton taxa but appeared to reassemble the community network of low abundance taxa. This led to relatively high resilience of the whole bacterioplankton community to the elevated CO2 level and associated chemical changes. We also observed that the Flavobacteria group, which plays an important role in the microbial carbon pump, showed higher relative abundance under the elevated CO2 condition during the early stage of the phytoplankton bloom in the mesocosms. Our results provide new insights into how elevated CO2 may influence bacterioplankton community structure.

  14. Magnitude and regulation of bacterioplankton respiratory quotient across freshwater environmental gradients

    PubMed Central

    Berggren, Martin; Lapierre, Jean-François; del Giorgio, Paul A

    2012-01-01

    Bacterioplankton respiration (BR) may represent the largest single sink of organic carbon in the biosphere and constitutes an important driver of atmospheric carbon dioxide (CO2) emissions from freshwaters. Complete understanding of BR is precluded by the fact that most studies need to assume a respiratory quotient (RQ; mole of CO2 produced per mole of O2 consumed) to calculate rates of BR. Many studies have, without clear support, assumed a fixed RQ around 1. Here we present 72 direct measurements of bacterioplankton RQ that we carried out in epilimnetic samples of 52 freshwater sites in Québec (Canada), using O2 and CO2 optic sensors. The RQs tended to converge around 1.2, but showed large variability (s.d.=0.45) and significant correlations with major gradients of ecosystem-level, substrate-level and bacterial community-level characteristics. Experiments with natural bacterioplankton using different single substrates suggested that RQ is intimately linked to the elemental composition of the respired compounds. RQs were on average low in net autotrophic systems, where bacteria likely were utilizing mainly reduced substrates, whereas we found evidence that the dominance of highly oxidized substrates, for example, organic acids formed by photo-chemical processes, led to high RQ in the more heterotrophic systems. Further, we suggest that BR contributes to a substantially larger share of freshwater CO2 emissions than presently believed based on the assumption that RQ is ∼1. Our study demonstrates that bacterioplankton RQ is not only a practical aspect of BR determination, but also a major ecosystem state variable that provides unique information about aquatic ecosystem functioning. PMID:22094347

  15. Occurrence and expression of gene transfer agent genes in marine bacterioplankton.

    PubMed

    Biers, Erin J; Wang, Kui; Pennington, Catherine; Belas, Robert; Chen, Feng; Moran, Mary Ann

    2008-05-01

    Genes with homology to the transduction-like gene transfer agent (GTA) were observed in genome sequences of three cultured members of the marine Roseobacter clade. A broader search for homologs for this host-controlled virus-like gene transfer system identified likely GTA systems in cultured Alphaproteobacteria, and particularly in marine bacterioplankton representatives. Expression of GTA genes and extracellular release of GTA particles ( approximately 50 to 70 nm) was demonstrated experimentally for the Roseobacter clade member Silicibacter pomeroyi DSS-3, and intraspecific gene transfer was documented. GTA homologs are surprisingly infrequent in marine metagenomic sequence data, however, and the role of this lateral gene transfer mechanism in ocean bacterioplankton communities remains unclear.

  16. Coral and macroalgal exudates vary in neutral sugar composition and differentially enrich reef bacterioplankton lineages

    PubMed Central

    Nelson, Craig E; Goldberg, Stuart J; Wegley Kelly, Linda; Haas, Andreas F; Smith, Jennifer E; Rohwer, Forest; Carlson, Craig A

    2013-01-01

    Increasing algal cover on tropical reefs worldwide may be maintained through feedbacks whereby algae outcompete coral by altering microbial activity. We hypothesized that algae and coral release compositionally distinct exudates that differentially alter bacterioplankton growth and community structure. We collected exudates from the dominant hermatypic coral holobiont Porites spp. and three dominant macroalgae (one each Ochrophyta, Rhodophyta and Chlorophyta) from reefs of Mo'orea, French Polynesia. We characterized exudates by measuring dissolved organic carbon (DOC) and fractional dissolved combined neutral sugars (DCNSs) and subsequently tracked bacterioplankton responses to each exudate over 48 h, assessing cellular growth, DOC/DCNS utilization and changes in taxonomic composition (via 16S rRNA amplicon pyrosequencing). Fleshy macroalgal exudates were enriched in the DCNS components fucose (Ochrophyta) and galactose (Rhodophyta); coral and calcareous algal exudates were enriched in total DCNS but in the same component proportions as ambient seawater. Rates of bacterioplankton growth and DOC utilization were significantly higher in algal exudate treatments than in coral exudate and control incubations with each community selectively removing different DCNS components. Coral exudates engendered the smallest shift in overall bacterioplankton community structure, maintained high diversity and enriched taxa from Alphaproteobacteria lineages containing cultured representatives with relatively few virulence factors (VFs) (Hyphomonadaceae and Erythrobacteraceae). In contrast, macroalgal exudates selected for less diverse communities heavily enriched in copiotrophic Gammaproteobacteria lineages containing cultured pathogens with increased VFs (Vibrionaceae and Pseudoalteromonadaceae). Our results demonstrate that algal exudates are enriched in DCNS components, foster rapid growth of bacterioplankton and select for bacterial populations with more potential VFs than

  17. Crater Lake revealed

    USGS Publications Warehouse

    Ramsey, David W.; Dartnell, Peter; Bacon, Charles R.; Robinson, Joel E.; Gardner, James V.

    2003-01-01

    Around 500,000 people each year visit Crater Lake National Park in the Cascade Range of southern Oregon. Volcanic peaks, evergreen forests, and Crater Lake’s incredibly blue water are the park’s main attractions. Crater Lake partially fills the caldera that formed approximately 7,700 years ago by the eruption and subsequent collapse of a 12,000-foot volcano called Mount Mazama. The caldera-forming or climactic eruption of Mount Mazama drastically changed the landscape all around the volcano and spread a blanket of volcanic ash at least as far away as southern Canada.Prior to the climactic event, Mount Mazama had a 400,000 year history of cone building activity like that of other Cascade volcanoes such as Mount Shasta. Since the climactic eruption, there have been several less violent, smaller postcaldera eruptions within the caldera itself. However, relatively little was known about the specifics of these eruptions because their products were obscured beneath Crater Lake’s surface. As the Crater Lake region is still potentially volcanically active, understanding past eruptive events is important to understanding future eruptions, which could threaten facilities and people at Crater Lake National Park and the major transportation corridor east of the Cascades.Recently, the lake bottom was mapped with a high-resolution multibeam echo sounder. The new bathymetric survey provides a 2m/pixel view of the lake floor from its deepest basins virtually to the shoreline. Using Geographic Information Systems (GIS) applications, the bathymetry data can be visualized and analyzed to shed light on the geology, geomorphology, and geologic history of Crater Lake.

  18. Climate-related changes of soil characteristics affect bacterial community composition and function of high altitude and latitude lakes.

    PubMed

    Rofner, Carina; Peter, Hannes; Catalán, Núria; Drewes, Fabian; Sommaruga, Ruben; Pérez, María Teresa

    2017-06-01

    Lakes at high altitude and latitude are typically unproductive ecosystems where external factors outweigh the relative importance of in-lake processes, making them ideal sentinels of climate change. Climate change is inducing upward vegetation shifts at high altitude and latitude regions that translate into changes in the pools of soil organic matter. Upon mobilization, this allochthonous organic matter may rapidly alter the composition and function of lake bacterial communities. Here, we experimentally simulate this potential climate-change effect by exposing bacterioplankton of two lakes located above the treeline, one in the Alps and one in the subarctic region, to soil organic matter from below and above the treeline. Changes in bacterial community composition, diversity and function were followed for 72 h. In the subarctic lake, soil organic matter from below the treeline reduced bulk and taxon-specific phosphorus uptake, indicating that bacterial phosphorus limitation was alleviated compared to organic matter from above the treeline. These effects were less pronounced in the alpine lake, suggesting that soil properties (phosphorus and dissolved organic carbon availability) and water temperature further shaped the magnitude of response. The rapid bacterial succession observed in both lakes indicates that certain taxa directly benefited from soil sources. Accordingly, the substrate uptake profiles of initially rare bacteria (copiotrophs) indicated that they are one of the main actors cycling soil-derived carbon and phosphorus. Our work suggests that climate-induced changes in soil characteristics affect bacterioplankton community structure and function, and in turn, the cycling of carbon and phosphorus in high altitude and latitude aquatic ecosystems. © 2016 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  19. BACTERIOPLANKTON DYNAMICS IN A SUBTROPICAL ESTUARY: EVIDENCE FOR SUBSTRATE LIMITATION

    EPA Science Inventory

    Bacterioplankton abundance and metabolic characteristics were measured along a transect in Pensacola Bay, Florida, USA, to examine the factors that control microbial water column processes in this subtropical estuary. The microbial measures included 3 H-L-leucine incorporation, e...

  20. Coastal Bacterioplankton Community Dynamics in Response to a Natural Disturbance

    PubMed Central

    Rappé, Michael S.

    2013-01-01

    In order to characterize how disturbances to microbial communities are propagated over temporal and spatial scales in aquatic environments, the dynamics of bacterial assemblages throughout a subtropical coastal embayment were investigated via SSU rRNA gene analyses over an 8-month period, which encompassed a large storm event. During non-perturbed conditions, sampling sites clustered into three groups based on their microbial community composition: an offshore oceanic group, a freshwater group, and a distinct and persistent coastal group. Significant differences in measured environmental parameters or in the bacterial community due to the storm event were found only within the coastal cluster of sampling sites, and only at 5 of 12 locations; three of these sites showed a significant response in both environmental and bacterial community characteristics. These responses were most pronounced at sites close to the shoreline. During the storm event, otherwise common bacterioplankton community members such as marine Synechococcus sp. and members of the SAR11 clade of Alphaproteobacteria decreased in relative abundance in the affected coastal zone, whereas several lineages of Gammaproteobacteria, Betaproteobacteria, and members of the Roseobacter clade of Alphaproteobacteria increased. The complex spatial patterns in both environmental conditions and microbial community structure related to freshwater runoff and wind convection during the perturbation event leads us to conclude that spatial heterogeneity was an important factor influencing both the dynamics and the resistance of the bacterioplankton communities to disturbances throughout this complex subtropical coastal system. This heterogeneity may play a role in facilitating a rapid rebound of regions harboring distinctly coastal bacterioplankton communities to their pre-disturbed taxonomic composition. PMID:23409156

  1. Diversity in UV sensitivity and recovery potential among bacterioneuston and bacterioplankton isolates.

    PubMed

    Santos, A L; Lopes, S; Baptista, I; Henriques, I; Gomes, N C M; Almeida, A; Correia, A; Cunha, A

    2011-04-01

    To assess the variability in UV-B (280-320 nm) sensitivity of selected bacterial isolates from the surface microlayer and underlying water of the Ria de Aveiro (Portugal) estuary and their ability to recover from previous UV-induced stress. Bacterial suspensions were exposed to UV-B radiation (3·3 W m⁻²). Effects on culturability and activity were assessed from colony counts and (3) H-leucine incorporation rates, respectively. Among the tested isolates, wide variability in UV-B-induced inhibition of culturability (37·4-99·3%) and activity (36·0-98·0%) was observed. Incubation of UV-B-irradiated suspensions under reactivating regimes (UV-A, 3·65 W m⁻²; photosynthetic active radiation, 40 W m⁻²; dark) also revealed diversity in the extent of recovery from UV-B stress. Trends of enhanced resistance of culturability (up to 15·0%) and enhanced recovery in activity (up to 52·0%) were observed in bacterioneuston isolates. Bacterioneuston isolates were less sensitive and recovered more rapidly from UV-B stress than bacterioplankton isolates, showing enhanced reduction in their metabolism during the irradiation period and decreased culturability during the recovery process compared to bacterioplankton. UV exposure can affect the diversity and activity of microbial communities by selecting UV-resistant strains and alter their metabolic activity towards protective strategies. © 2011 The Authors. Letters in Applied Microbiology © 2011 The Society for Applied Microbiology.

  2. Temporal Dynamics of the Microbial Community Composition with a Focus on Toxic Cyanobacteria and Toxin Presence during Harmful Algal Blooms in Two South German Lakes

    PubMed Central

    Scherer, Pia I.; Millard, Andrew D.; Miller, Andreas; Schoen, Renate; Raeder, Uta; Geist, Juergen; Zwirglmaier, Katrin

    2017-01-01

    Bacterioplankton plays an essential role in aquatic ecosystems, and cyanobacteria are an influential part of the microbiome in many water bodies. In freshwaters used for recreational activities or drinking water, toxic cyanobacteria cause concerns due to the risk of intoxication with cyanotoxins, such as microcystins. In this study, we aimed to unmask relationships between toxicity, cyanobacterial community composition, and environmental factors. At the same time, we assessed the correlation of a genetic marker with microcystin concentration and aimed to identify the main microcystin producer. We used Illumina MiSeq sequencing to study the bacterioplankton in two recreational lakes in South Germany. We quantified a microcystin biosynthesis gene (mcyB) using qPCR and linked this information with microcystin concentration to assess toxicity. Microcystin biosynthesis gene (mcyE)-clone libraries were used to determine the origin of microcystin biosynthesis genes. Bloom toxicity did not alter the bacterial community composition, which was highly dynamic at the lowest taxonomic level for some phyla such as Cyanobacteria. At the OTU level, we found distinctly different degrees of temporal variation between major bacteria phyla. Cyanobacteria and Bacteroidetes showed drastic temporal changes in their community compositions, while the composition of Actinobacteria remained rather stable in both lakes. The bacterial community composition of Alpha- and Beta-proteobacteria remained stable over time in Lake Klostersee, but it showed temporal variations in Lake Bergknappweiher. The presence of potential microcystin degraders and potential algicidal bacteria amongst prevalent Bacteroidetes and Alphaproteobacteria implied a role of those co-occurring heterotrophic bacteria in cyanobacterial bloom dynamics. Comparison of both lakes studied revealed a large shared microbiome, which was shaped toward the lake specific community composition by environmental factors. Microcystin

  3. Snowmelt-driven changes in dissolved organic matter and bacterioplankton communities in the Heilongjiang watershed of China.

    PubMed

    Qiu, Linlin; Cui, Hongyang; Wu, Junqiu; Wang, Baijie; Zhao, Yue; Li, Jiming; Jia, Liming; Wei, Zimin

    2016-06-15

    Bacterioplankton plays a significant role in the circulation of materials and ecosystem function in the biosphere. Dissolved organic matter (DOM) from dead plant material and surface soil leaches into water bodies when snow melts. In our study, water samples from nine sampling sites along the Heilongjiang watershed were collected in February and June 2014 during which period snowmelt occurred. The goal of this study was to characterize changes in DOM and bacterioplankton community composition (BCC) associated with snowmelt, the effects of DOM, environmental and geographical factors on the distribution of BCC and interactions of aquatic bacterioplankton populations with different sources of DOM in the Heilongjiang watershed. BCC was measured by denaturing gradient gel electrophoresis (DGGE). DOM was measured by excitation-emission matrix (EEM) fluorescence spectroscopy. Bacterioplankton exhibited a distinct seasonal change in community composition due to snowmelt at all sampling points except for EG. Redundancy analysis (RDA) indicated that BCC was more closely related to DOM (Components 1 and 4, dissolved organic carbon, biochemical oxygen demand and chlorophyll a) and environmental factors (water temperature and nitrate nitrogen) than geographical factors. Furthermore, DOM had a greater impact on BCC than environmental factors (29.80 vs. 15.90% of the variation). Overall, spring snowmelt played an important role in altering the quality and quantity of DOM and BCC in the Heilongjiang watershed. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Otoliths reveal a diverse age structure for humper lake trout in Lake Superior

    USGS Publications Warehouse

    Burnham-Curtis, Mary K.; Bronte, Charles R.

    1996-01-01

    Humpers are one of at least three morphological variants of wild lake trout Salvelinus namaycush that maintain self-sustaining populations in Lake Superior. In an early study, bumpers from Isle Royale were shown to have a sharply truncated age distribution that was attributed to high mortality after age 11, but we suspected that these fish were underaged. In August of 1989 and 1992 we collected spawning humper lake trout from the same area and estimated their ages using both scales and sagittal otoliths. Humpers in our sample ranged from 5 to 13 years, based on scale annuli, but counts of sagitta annuli revealed ages of 8 to 28 years. Individual discrepancies between ages from scales and sagittae varied from –2 to 20 years, but differences between scale and otolith ages did not increase with individual age. We applied the von Bertalanffy growth model to the humper length-at-age data to indirectly assess the accuracy of aging estimates. The model significantly overestimated mean asymptotic length when scale ages were used, but the mean asymptotic length estimate was more similar to observed lengths when sagitta ages were used. Our results corroborate evidence that bumpers in Lake Superior grow more slowly and mature at a smaller size than lean lake trout; however, the age composition of bumpers is more diverse than previously thought. This particular population experiences little or no exploitation; the presence of older fish provides one standard by which the success of lake trout rehabilitation programs can be evaluated and emphasizes the need for accurate aging techniques.

  5. Habitat filtering of bacterioplankton communities above polymetallic nodule fields and sediments in the Clarion-Clipperton zone of the Pacific Ocean.

    PubMed

    Lindh, Markus V; Maillot, Brianne M; Smith, Craig R; Church, Matthew J

    2018-04-01

    Deep-sea mining of commercially valuable polymetallic nodule fields will generate a seabed sediment plume into the water column. Yet, the response of bacterioplankton communities, critical in regulating energy and matter fluxes in marine ecosystems, to such disturbances is unknown. Metacommunity theory, traditionally used in general ecology for macroorganisms, offers mechanistic understanding on the relative role of spatial differences compared with local environmental conditions (habitat filtering) for community assembly. We examined bacterioplankton metacommunities using 16S rRNA amplicons from the Clarion-Clipperton Zone (CCZ) in the eastern Pacific Ocean and in global ocean transect samples to determine sensitivity of these assemblages to environmental perturbations. Habitat filtering was the main assembly mechanism of bacterioplankton community composition in the epi- and mesopelagic waters of the CCZ and the Tara Oceans transect. Bathy- and abyssopelagic bacterioplankton assemblages were mainly assembled by undetermined metacommunity types or neutral and dispersal-driven patch-dynamics for the CCZ and the Malaspina transect. Environmental disturbances may alter the structure of upper-ocean microbial assemblages, with potentially even more substantial, yet unknown, impact on deep-sea communities. Predicting such responses in bacterioplankton assemblage dynamics can improve our understanding of microbially-mediated regulation of ecosystem services in the abyssal seabed likely to be exploited by future deep-sea mining operations. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.

  6. Watershed-Induced Limnological and Microbial Status in Two Oligotrophic Andean Lakes Exposed to the Same Climatic Scenario

    PubMed Central

    Echeverría-Vega, Alex; Chong, Guillermo; Serrano, Antonio E.; Guajardo, Mariela; Encalada, Olga; Parro, Victor; Blanco, Yolanda; Rivas, Luis; Rose, Kevin C.; Moreno-Paz, Mercedes; Luque, José A.; Cabrol, Nathalie A.; Demergasso, Cecilia S.

    2018-01-01

    Laguna Negra and Lo Encañado are two oligotrophic Andean lakes forming part of the system fed by meltwater from distinct glacial tongues of the Echaurren glacier in central Chile, which is in a recession period. The recent increase in temperature and decline in precipitation have led to an increase of glacial meltwater and sediments entering these lakes. Although the lacustrine systems are also hydrogeologically connected, the limnology of the lakes is strongly controlled by the surface processes related to the respective sub-watersheds and hydrology. Watershed characteristics (area and length, slope, lithology, resistance to erosion, among others) affect the chemical and physical characteristics of both lakes (e.g., nutrient concentration and turbidity). We studied physical and chemical variables and performed 16S rRNA amplicon sequencing to determine the specific microbial signature of the lakes. The transparency, temperature, turbidity and concentrations of chlorophyll-a, dissolved organic matter, nutrients and the total number of cells, revealed the different status of both lakes at the time of sampling. The predominant bacterial groups in both lakes were Proteobacteria, Verrucomicrobia, and Bacteroidetes. Interestingly, the contribution of phototrophs was significantly higher in LN compared to LE (13 and 4% respectively) and the major fraction corresponded to Anoxygenic Phototrophs (AP) represented by Chloroflexi, Alpha, and Betaproteobacteria. Multivariate analyses showed that the nutrient levels and the light availability of both lakes, which finally depend on the hydrological characteristics of the respective watersheds, explain the differential community composition/function. The abundance of a diverse photoheterotrophic bacterioplankton community suggests that the ability to utilize solar energy along with organic and inorganic substrates is a key function in these oligotrophic mountain lakes. PMID:29556224

  7. Watershed-Induced Limnological and Microbial Status in Two Oligotrophic Andean Lakes Exposed to the Same Climatic Scenario.

    PubMed

    Echeverría-Vega, Alex; Chong, Guillermo; Serrano, Antonio E; Guajardo, Mariela; Encalada, Olga; Parro, Victor; Blanco, Yolanda; Rivas, Luis; Rose, Kevin C; Moreno-Paz, Mercedes; Luque, José A; Cabrol, Nathalie A; Demergasso, Cecilia S

    2018-01-01

    Laguna Negra and Lo Encañado are two oligotrophic Andean lakes forming part of the system fed by meltwater from distinct glacial tongues of the Echaurren glacier in central Chile, which is in a recession period. The recent increase in temperature and decline in precipitation have led to an increase of glacial meltwater and sediments entering these lakes. Although the lacustrine systems are also hydrogeologically connected, the limnology of the lakes is strongly controlled by the surface processes related to the respective sub-watersheds and hydrology. Watershed characteristics (area and length, slope, lithology, resistance to erosion, among others) affect the chemical and physical characteristics of both lakes (e.g., nutrient concentration and turbidity). We studied physical and chemical variables and performed 16S rRNA amplicon sequencing to determine the specific microbial signature of the lakes. The transparency, temperature, turbidity and concentrations of chlorophyll-a, dissolved organic matter, nutrients and the total number of cells, revealed the different status of both lakes at the time of sampling. The predominant bacterial groups in both lakes were Proteobacteria, Verrucomicrobia, and Bacteroidetes. Interestingly, the contribution of phototrophs was significantly higher in LN compared to LE (13 and 4% respectively) and the major fraction corresponded to Anoxygenic Phototrophs (AP) represented by Chloroflexi, Alpha, and Betaproteobacteria. Multivariate analyses showed that the nutrient levels and the light availability of both lakes, which finally depend on the hydrological characteristics of the respective watersheds, explain the differential community composition/function. The abundance of a diverse photoheterotrophic bacterioplankton community suggests that the ability to utilize solar energy along with organic and inorganic substrates is a key function in these oligotrophic mountain lakes.

  8. Diel fluctuations in the abundance and community diversity of coastal bacterioplankton assemblages over a tidal cycle.

    PubMed

    Olapade, Ola A

    2012-01-01

    The diel change in abundance and community diversity of the bacterioplankton assemblages within the Pacific Ocean at a fixed location in Monterey Bay, California (USA) were examined with several culture-independent (i.e., nucleic acid staining, fluorescence in situ hybridization {FISH}, and 16S ribosomal RNA gene libraries) approaches over a tidal cycle. FISH analyses revealed the quantitative predominance of bacterial members belonging to the Cytophaga-Flavobacterium cluster as well as two Proteobacteria (α- and γ-) subclasses within the bacterioplankton assemblages, especially during high tide (HT) and outgoing tide (OT) than the other tidal events. While the clone libraries showed that majority of the sequences were similar to the 16S rRNA gene sequences of unknown bacteria (32% to 73%), however, the operational taxonomic units from members of the α-Proteobacteria, Bacteroidetes, Firmicutes, and Cyanobacteria were also well represented during the four tidal events examined. Comparatively, sequence diversity was highest in OT, lowest in low tide, and very similar between HT and incoming tide. The results indicate that the dynamics of bacterial occurrence and diversity appeared to be more pronounced during HT and OT, further indicative of the ecological importance of several environmental variables including temperature, light intensity, and nutrient availability that are also concurrently fluctuating during these tidal events in marine systems.

  9. Future volcanic lake research: revealing secrets from poorly studied lakes

    NASA Astrophysics Data System (ADS)

    Rouwet, D.; Tassi, F.; Mora-Amador, R. A.

    2012-04-01

    Volcanic lake research boosted after the 1986 Lake Nyos lethal gas burst, a limnic rather than volcanic event. This led to the formation of the IAVCEI-Commission on Volcanic Lakes, which grew out into a multi-disciplinary scientific community since the 1990's. At Lake Nyos, a degassing pipe is functional since 2001, and two additional pipes were added in 2011, aimed to prevent further limnic eruption events. There are between 150 and 200 volcanic lakes on Earth. Some acidic crater lakes topping active magmatic-hydrothermal systems are monitored continuously or discontinuously. Such detailed studies have shown their usefulness in volcanic surveillance (e.g. Ruapehu, Yugama-Kusatsu-Shiran, Poás). Others are "Nyos-type" lakes, with possible gas accumulation in bottom waters and thus potentially hazardous. "Nyos-type" lakes tend to remain stably stratified in tropical and sub-tropical climates (meromictic), leading to long-term gas build-up and thus higher potential risk. In temperate climates, such lakes tend to turn over in winter (monomictic), and thus liberating its gas charge yearly. We line out research strategies for the different types of lakes. We believe a complementary, multi-disciplinary approach (geochemistry, geophysics, limnology, biology, statistics, etc.) will lead to new insights and ideas, which can be the base for future following-up and monitoring. After 25 years of pioneering studies on rather few lakes, the scientific community should be challenged to study the many poorly studied volcanic lakes, in order to better constrain the related hazard, based on probabilistic approaches.

  10. Bacterioplankton diversity and community composition in the Southern Lagoon of Venice.

    PubMed

    Simonato, Francesca; Gómez-Pereira, Paola R; Fuchs, Bernhard M; Amann, Rudolf

    2010-04-01

    The Lagoon of Venice is a large water basin that exchanges water with the Northern Adriatic Sea through three large inlets. In this study, the 16S rRNA approach was used to investigate the bacterial diversity and community composition within the southern basin of the Lagoon of Venice and at one inlet in October 2007 and June 2008. Comparative sequence analysis of 645 mostly partial 16S rRNA gene sequences indicated high diversity and dominance of Alphaproteobacteria, Gammaproteobacteria and Bacteroidetes at the lagoon as well as at the inlet station, therefore pointing to significant mixing. Many of these sequences were close to the 16S rRNA of marine, often coastal, bacterioplankton, such as the Roseobacter clade, the family Vibrionaceae, and class Flavobacteria. Sequences of Actinobacteria were indicators of a freshwater input. The composition of the bacterioplankton was quantified by catalyzed reporter deposition fluorescence in situ hybridization (CARD-FISH) with a set of rRNA-targeted oligonucleotide probes. CARD-FISH counts corroborated the dominance of members of the phyla Alphaproteobacteria, Gammaproteobacteria and Bacteroidetes. When assessed by a probe set for the quantification of selected clades within Alphaproteobacteria and Gammaproteobacteria, bacterioplankton composition differed between October 2007 and June 2008, and also between the inlet and the lagoon. In particular, members of the readily culturable copiotrophic gammaproteobacterial genera Vibrio, Alteromonas and Pseudoalteromonas were enriched in the southern basin of the Lagoon of Venice. Interestingly, the alphaproteobacterial SAR11 clade and related clusters were also present in high abundances at the inlet and within the lagoon, which was indicative of inflow of water from the open sea.

  11. Sensitivity of bacterioplankton nitrogen metabolism to eutrophication in sub-tropical coastal waters of Key West, Florida.

    PubMed

    Hoch, Matthew P; Dillon, Kevin S; Coffin, Richard B; Cifuentes, Luis A

    2008-05-01

    Expression of intracellular ammonium assimilation enzymes were used to assess the response of nitrogen (N) metabolism in bacterioplankton to N-loading of sub-tropical coastal waters of Key West, Florida. Specific activities of glutamine synthetase (GS) and total glutamate dehydrogenase (GDHT) were measured on the bacterial size fraction (<0.8 microm) to assess N-deplete versus N-replete metabolic states, respectively. Enzyme results were compared to concentrations of dissolved organic matter and nutrients and to the biomass and production of phytoplankton and bacteria. Concentrations of dissolved inorganic N (DIN), dissolved organic N (DON), and dissolved organic carbon (DOC) positively correlated with specific activities of GDHT and negatively correlated with that of GS. Total dissolved N (TDN) concentration explained 81% of variance in bacterioplankton GDHT:GS activity ratio. The GDHT:GS ratio, TDN, DOC, and bacterial parameters decreased in magnitude along a tidally dynamic trophic gradient from north of Key West to south at the reef tract, which is consistent with the combined effects of localized coastal eutrophication and tidal exchange of seawater from the Southwest Florida Shelf and Florida Strait. The N-replete bacterioplankton north of Key West can regenerate ammonium which sustains primary production transported south to the reef. The range in GDHT:GS ratios was 5-30 times greater than that for commonly used indicators of planktonic eutrophication, which emphasizes the sensitivity of bacterioplankton N-metabolism to changes in N-bioavailability caused by nutrient pollution in sub-tropical coastal waters and utility of GDHT:GS ratio as an bioindicator of N-replete conditions.

  12. From Bacteria to Piscivorous Fish: Estimates of Whole-Lake and Component-Specific Metabolism with an Ecosystem Approach

    PubMed Central

    Cremona, Fabien; Kõiv, Toomas; Kisand, Veljo; Laas, Alo; Zingel, Priit; Agasild, Helen; Feldmann, Tõnu; Järvalt, Ain; Nõges, Peeter; Nõges, Tiina

    2014-01-01

    The influence of functional group specific production and respiration patterns on a lake's metabolic balance remains poorly investigated to date compared to whole-system estimates of metabolism. We employed a summed component ecosystem approach for assessing lake-wide and functional group-specific metabolism (gross primary production (GPP) and respiration (R)) in shallow and eutrophic Lake Võrtsjärv in central Estonia during three years. Eleven functional groups were considered: piscivorous and benthivorous fish; phyto-, bacterio-, proto- and metazooplankton; benthic macroinvertebrates, bacteria and ciliates; macrophytes and their associated epiphytes. Metabolism of these groups was assessed by allometric equations coupled with daily records of temperature and hydrology of the lake and measurements of food web functional groups biomass. Results revealed that heterotrophy dominated most of the year, with a short autotrophic period observed in late spring. Most of the metabolism of the lake could be attributed to planktonic functional groups, with phytoplankton contributing the highest share (90% of GPP and 43% of R). A surge of protozooplankton and bacterioplankton populations forming the microbial loop caused the shift from auto- to heterotrophy in midsummer. Conversely, the benthic functional groups had overall a very small contribution to lake metabolism. We validated our ecosystem approach by comparing the GPP and R with those calculated from O2 measurements in the lake. Our findings are also in line with earlier productivity studies made with 14C or chlorophyll a (chl-a) based equations. Ideally, the ecosystem approach should be combined with diel O2 approach for investigating critical periods of metabolism shifts caused by dynamics in food-web processes. PMID:25014117

  13. How interactions between top-down and bottom-up controls on carbon cycling affect fluxes within and from lakes

    NASA Astrophysics Data System (ADS)

    Sadro, S.; Piovia-Scott, J.; Nelson, C.; Sickman, J. O.; Knapp, R.

    2017-12-01

    While the role of inland waters in global carbon cycling has grown clearer in recent decades, the extent to which top-down and bottom-up mechanisms interact to regulate dynamics at the catchment scale is not well understood. The degree to which lakes process, export, or store terrestrial carbon is influenced by hydrological variability, variation in the magnitude of terrestrial organic matter (t-OM) entering a system, the efficiency with which such material is metabolized by bacterioplankton, the extent to which it is incorporated into secondary consumer biomass, and by the effects of food-web structure, such as the presence or absence of top predators. However, how these processes interact to mediate carbon fluxes between terrestrial, aquatic, and atmospheric reservoirs remains unclear. We develop a conceptual model that explores how interactions among these factors ultimately affects carbon dynamics using data from lakes located in the Sierra Nevada mountains of California. The Sierra are an excellent system for studies of carbon cycling because elevation-induced landscape gradients in soil development and vegetation cover provide large natural variation in terrestrial inputs to lakes, while variation in confounding factors such as lake morphometry or trophic state is comparatively small. Dissolved organic carbon concentrations increase 100 fold in lakes spanning the alpine to montane elevation gradient found in the Sierra, and fluorescence characteristics reflect an increasingly terrestrial signature with decreasing elevation. Bacterioplankton make up a large proportion of total ecosystem metabolism in these systems, and their metabolic efficiency is tightly coupled to the composition of dissolved organic matter. Stable isotope food web data (δ13C, Δ14C, and δ2H) and measurements of pCO2 from lakes indicate the magnitude of allochthony, rates if carbon cycling, and ecosystem heterotrophy all increase with the increasingly terrestrial signature of dissolved

  14. INFLUENCE OF LIGHT ON BACTERIOPLANKTON PRODUCTION AND RESPIRATION IN A SUBTROPICAL CORAL REEF

    EPA Science Inventory

    The influence of sunlight on bacterioplankton production (14C-leucine (Leu) and 3H-thymidine (TdR) incorporation; changes in cell abundances) and O2 consumption was investigated in a shallow subtropical coral reef located near Key Largo, Florida. Quartz (light) and opaque (dark) ...

  15. Linking Compositional and Functional Predictions to Decipher the Biogeochemical Significance in DFAA Turnover of Abundant Bacterioplankton Lineages in the North Sea.

    PubMed

    Wemheuer, Bernd; Wemheuer, Franziska; Meier, Dimitri; Billerbeck, Sara; Giebel, Helge-Ansgar; Simon, Meinhard; Scherber, Christoph; Daniel, Rolf

    2017-11-05

    Deciphering the ecological traits of abundant marine bacteria is a major challenge in marine microbial ecology. In the current study, we linked compositional and functional predictions to elucidate such traits for abundant bacterioplankton lineages in the North Sea. For this purpose, we investigated entire and active bacterioplankton composition along a transect ranging from the German Bight to the northern North Sea by pyrotag sequencing of bacterial 16S rRNA genes and transcripts. Functional profiles were inferred from 16S rRNA data using Tax4Fun. Bacterioplankton communities were dominated by well-known marine lineages including clusters/genera that are affiliated with the Roseobacter group and the Flavobacteria . Variations in community composition and function were significantly explained by measured environmental and microbial properties. Turnover of dissolved free amino acids (DFAA) showed the strongest correlation to community composition and function. We applied multinomial models, which enabled us to identify bacterial lineages involved in DFAA turnover. For instance, the genus Planktomarina was more abundant at higher DFAA turnover rates, suggesting its vital role in amino acid degradation. Functional predictions further indicated that Planktomarina is involved in leucine and isoleucine degradation. Overall, our results provide novel insights into the biogeochemical significance of abundant bacterioplankton lineages in the North Sea.

  16. Marine bacterioplankton community turnover within seasonally hypoxic waters of a subtropical sound: Devil's Hole, Bermuda.

    PubMed

    Parsons, Rachel J; Nelson, Craig E; Carlson, Craig A; Denman, Carmen C; Andersson, Andreas J; Kledzik, Andrew L; Vergin, Kevin L; McNally, Sean P; Treusch, Alexander H; Giovannoni, Stephen J

    2015-10-01

    Understanding bacterioplankton community dynamics in coastal hypoxic environments is relevant to global biogeochemistry because coastal hypoxia is increasing worldwide. The temporal dynamics of bacterioplankton communities were analysed throughout the illuminated water column of Devil's Hole, Bermuda during the 6-week annual transition from a strongly stratified water column with suboxic and high-pCO2 bottom waters to a fully mixed and ventilated state during 2008. A suite of culture-independent methods provided a quantitative spatiotemporal characterization of bacterioplankton community changes, including both direct counts and rRNA gene sequencing. During stratification, the surface waters were dominated by the SAR11 clade of Alphaproteobacteria and the cyanobacterium Synechococcus. In the suboxic bottom waters, cells from the order Chlorobiales prevailed, with gene sequences indicating members of the genera Chlorobium and Prosthecochloris--anoxygenic photoautotrophs that utilize sulfide as a source of electrons for photosynthesis. Transitional zones of hypoxia also exhibited elevated levels of methane- and sulfur-oxidizing bacteria relative to the overlying waters. The abundance of both Thaumarcheota and Euryarcheota were elevated in the suboxic bottom waters (> 10(9) cells l(-1)). Following convective mixing, the entire water column returned to a community typical of oxygenated waters, with Euryarcheota only averaging 5% of cells, and Chlorobiales and Thaumarcheota absent. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  17. Transient changes in bacterioplankton communities induced by the submarine volcanic eruption of El Hierro (Canary Islands).

    PubMed

    Ferrera, Isabel; Arístegui, Javier; González, José M; Montero, María F; Fraile-Nuez, Eugenio; Gasol, Josep M

    2015-01-01

    The submarine volcanic eruption occurring near El Hierro (Canary Islands) in October 2011 provided a unique opportunity to determine the effects of such events on the microbial populations of the surrounding waters. The birth of a new underwater volcano produced a large plume of vent material detectable from space that led to abrupt changes in the physical-chemical properties of the water column. We combined flow cytometry and 454-pyrosequencing of 16S rRNA gene amplicons (V1-V3 regions for Bacteria and V3-V5 for Archaea) to monitor the area around the volcano through the eruptive and post-eruptive phases (November 2011 to April 2012). Flow cytometric analyses revealed higher abundance and relative activity (expressed as a percentage of high-nucleic acid content cells) of heterotrophic prokaryotes during the eruptive process as compared to post-eruptive stages. Changes observed in populations detectable by flow cytometry were more evident at depths closer to the volcano (~70-200 m), coinciding also with oxygen depletion. Alpha-diversity analyses revealed that species richness (Chao1 index) decreased during the eruptive phase; however, no dramatic changes in community composition were observed. The most abundant taxa during the eruptive phase were similar to those in the post-eruptive stages and to those typically prevalent in oceanic bacterioplankton communities (i.e. the alphaproteobacterial SAR11 group, the Flavobacteriia class of the Bacteroidetes and certain groups of Gammaproteobacteria). Yet, although at low abundance, we also detected the presence of taxa not typically found in bacterioplankton communities such as the Epsilonproteobacteria and members of the candidate division ZB3, particularly during the eruptive stage. These groups are often associated with deep-sea hydrothermal vents or sulfur-rich springs. Both cytometric and sequence analyses showed that once the eruption ceased, evidences of the volcano-induced changes were no longer observed.

  18. Transient Changes in Bacterioplankton Communities Induced by the Submarine Volcanic Eruption of El Hierro (Canary Islands)

    PubMed Central

    Ferrera, Isabel; Arístegui, Javier; González, José M.; Montero, María F.; Fraile-Nuez, Eugenio; Gasol, Josep M.

    2015-01-01

    The submarine volcanic eruption occurring near El Hierro (Canary Islands) in October 2011 provided a unique opportunity to determine the effects of such events on the microbial populations of the surrounding waters. The birth of a new underwater volcano produced a large plume of vent material detectable from space that led to abrupt changes in the physical-chemical properties of the water column. We combined flow cytometry and 454-pyrosequencing of 16S rRNA gene amplicons (V1–V3 regions for Bacteria and V3–V5 for Archaea) to monitor the area around the volcano through the eruptive and post-eruptive phases (November 2011 to April 2012). Flow cytometric analyses revealed higher abundance and relative activity (expressed as a percentage of high-nucleic acid content cells) of heterotrophic prokaryotes during the eruptive process as compared to post-eruptive stages. Changes observed in populations detectable by flow cytometry were more evident at depths closer to the volcano (~70–200 m), coinciding also with oxygen depletion. Alpha-diversity analyses revealed that species richness (Chao1 index) decreased during the eruptive phase; however, no dramatic changes in community composition were observed. The most abundant taxa during the eruptive phase were similar to those in the post-eruptive stages and to those typically prevalent in oceanic bacterioplankton communities (i.e. the alphaproteobacterial SAR11 group, the Flavobacteriia class of the Bacteroidetes and certain groups of Gammaproteobacteria). Yet, although at low abundance, we also detected the presence of taxa not typically found in bacterioplankton communities such as the Epsilonproteobacteria and members of the candidate division ZB3, particularly during the eruptive stage. These groups are often associated with deep-sea hydrothermal vents or sulfur-rich springs. Both cytometric and sequence analyses showed that once the eruption ceased, evidences of the volcano-induced changes were no longer observed

  19. Differential Response of High-Elevation Planktonic Bacterial Community Structure and Metabolism to Experimental Nutrient Enrichment

    PubMed Central

    Nelson, Craig E.; Carlson, Craig A.

    2011-01-01

    Nutrient enrichment of high-elevation freshwater ecosystems by atmospheric deposition is increasing worldwide, and bacteria are a key conduit for the metabolism of organic matter in these oligotrophic environments. We conducted two distinct in situ microcosm experiments in a high-elevation lake (Emerald Lake, Sierra Nevada, California, USA) to evaluate responses in bacterioplankton growth, carbon utilization, and community structure to short-term enrichment by nitrate and phosphate. The first experiment, conducted just following ice-off, employed dark dilution culture to directly assess the impact of nutrients on bacterioplankton growth and consumption of terrigenous dissolved organic matter during snowmelt. The second experiment, conducted in transparent microcosms during autumn overturn, examined how bacterioplankton in unmanipulated microbial communities responded to nutrients concomitant with increasing phytoplankton-derived organic matter. In both experiments, phosphate enrichment (but not nitrate) caused significant increases in bacterioplankton growth, changed particulate organic stoichiometry, and induced shifts in bacterial community composition, including consistent declines in the relative abundance of Actinobacteria. The dark dilution culture showed a significant increase in dissolved organic carbon removal in response to phosphate enrichment. In transparent microcosms nutrient enrichment had no effect on concentrations of chlorophyll, carbon, or the fluorescence characteristics of dissolved organic matter, suggesting that bacterioplankton responses were independent of phytoplankton responses. These results demonstrate that bacterioplankton communities in unproductive high-elevation habitats can rapidly alter their taxonomic composition and metabolism in response to short-term phosphate enrichment. Our results reinforce the key role that phosphorus plays in oligotrophic lake ecosystems, clarify the nature of bacterioplankton nutrient limitation, and

  20. Porewater salinity reveals past lake-level changes in Lake Van, the Earth's largest soda lake.

    PubMed

    Tomonaga, Yama; Brennwald, Matthias S; Livingstone, David M; Kwiecien, Olga; Randlett, Marie-Ève; Stockhecke, Mona; Unwin, Katie; Anselmetti, Flavio S; Beer, Jürg; Haug, Gerald H; Schubert, Carsten J; Sturm, Mike; Kipfer, Rolf

    2017-03-22

    In closed-basin lakes, sediment porewater salinity can potentially be used as a conservative tracer to reconstruct past fluctuations in lake level. However, until now, porewater salinity profiles did not allow quantitative estimates of past lake-level changes because, in contrast to the oceans, significant salinity changes (e.g., local concentration minima and maxima) had never been observed in lacustrine sediments. Here we show that the salinity measured in the sediment pore water of Lake Van (Turkey) allows straightforward reconstruction of two major transgressions and a major regression that occurred during the last 250 ka. We observed strong changes in the vertical salinity profiles of the pore water of the uppermost 100 m of the sediments in Lake Van. As the salinity balance of Lake Van is almost at steady-state, these salinity changes indicate major lake-level changes in the past. In line with previous studies on lake terraces and with seismic and sedimentological surveys, we identify two major transgressions of up to +105 m with respect to the current lake level at about 135 ka BP and 248 ka BP starting at the onset of the two previous interglacials (MIS5e and MIS7), and a major regression of about -200 m at about 30 ka BP during the last ice age.

  1. Selective consumption and metabolic allocation of terrestrial and algal carbon determine allochthony in lake bacteria.

    PubMed

    Guillemette, François; Leigh McCallister, S; Del Giorgio, Paul A

    2016-06-01

    Here we explore strategies of resource utilization and allocation of algal versus terrestrially derived carbon (C) by lake bacterioplankton. We quantified the consumption of terrestrial and algal dissolved organic carbon, and the subsequent allocation of these pools to bacterial growth and respiration, based on the δ(13)C isotopic signatures of bacterial biomass and respiratory carbon dioxide (CO2). Our results confirm that bacterial communities preferentially remove algal C from the terrestrially dominated organic C pool of lakes, but contrary to current assumptions, selectively allocate this autochthonous substrate to respiration, whereas terrestrial C was preferentially allocated to biosynthesis. The results provide further evidence of a mechanism whereby inputs of labile, algal-derived organic C may stimulate the incorporation of a more recalcitrant, terrestrial C pool. This mechanism resulted in a counterintuitive pattern of high and relatively constant levels of allochthony (~76%) in bacterial biomass across lakes that otherwise differ greatly in productivity and external inputs.

  2. Selective consumption and metabolic allocation of terrestrial and algal carbon determine allochthony in lake bacteria

    PubMed Central

    Guillemette, François; Leigh McCallister, S; del Giorgio, Paul A

    2016-01-01

    Here we explore strategies of resource utilization and allocation of algal versus terrestrially derived carbon (C) by lake bacterioplankton. We quantified the consumption of terrestrial and algal dissolved organic carbon, and the subsequent allocation of these pools to bacterial growth and respiration, based on the δ13C isotopic signatures of bacterial biomass and respiratory carbon dioxide (CO2). Our results confirm that bacterial communities preferentially remove algal C from the terrestrially dominated organic C pool of lakes, but contrary to current assumptions, selectively allocate this autochthonous substrate to respiration, whereas terrestrial C was preferentially allocated to biosynthesis. The results provide further evidence of a mechanism whereby inputs of labile, algal-derived organic C may stimulate the incorporation of a more recalcitrant, terrestrial C pool. This mechanism resulted in a counterintuitive pattern of high and relatively constant levels of allochthony (~76%) in bacterial biomass across lakes that otherwise differ greatly in productivity and external inputs. PMID:26623544

  3. BACTERIOPLANKTON DYNAMICS IN PENSACOLA BAY, FL, USA: ROLE OF PHYTOPLANKTON AND DETRIAL CARBON SOURCES

    EPA Science Inventory

    Bacterioplankton Dynamics in Pensacola Bay, FL, USA: Role of Phytoplankton and Detrital Carbon Sources (Abstract). To be presented at the16th Biennial Conference of the Estuarine Research Foundation, ERF 2001: An Estuarine Odyssey, 4-8 November 2001, St. Pete Beach, FL. 1 p. (ER...

  4. BACTERIOPLANKTON DYNAMICS IN NORTHERN SAN FRANCISCO BAY: ROLE OF PARTICLE ASSOCIATION AND SEASONAL FRESHWATER FLOW

    EPA Science Inventory

    Bacterioplankton abundance and metabolic characteristics were observed in northern San Francisco Bay, California, during spring and summer 1996 at three sites: Central Bay, Suisun Bay, and the Sacramento River. These sites spanned a salinity gradient from marine to freshwater, an...

  5. Heterotrophic bacterioplankton control on organic and inorganic carbon cycle in stratified and non-stratified lakes of NW Russia

    NASA Astrophysics Data System (ADS)

    Shirokova, Liudmila; Vorobjeva, Taissia; Zabelina, Svetlana; Moreva, Olga; Klimov, Sergey; Shorina, Natalja; Chupakov, Artem; Pokrovsky, Oleg; Audry, Stephan; Viers, Jerome

    2010-05-01

    Lakes of boreal zone regulate the fate of dissolved carbon, nutrients and trace metals during their transport from the watershed to the ocean. Study of primary production - mineralization processes in the context of carbon biogeochemical cycle allows determination of the rate and mechanisms of phytoplankton biomass production and its degradation via aquatic heterotrophic bacteria. In particular, comparative study of vertical distribution of Dissolved Organic Carbon (DOC) in stratified and non-stratified lakes allows establishing the link between biological and chemical aspects of the carbon cycle which, in turns, determines an environmental stability and recovering potential of the entire ecosystem. In order to better understand the biogeochemical mechanisms that control dissolved organic and inorganic carbon migration in surface boreal waters, we studied in 2007-2009 two strongly stratified lakes (15-20 m deep) and two shallow lakes (2-4 m deep) in the Arkhangelsk region (NW Russia, White Sea basin). We conducted natural experiments of the lake water incubation for measurements of the intensity of production/mineralization processes and we determined vertical concentration of DOC during four basic hydrological seasons (winter and summer stratification, and spring and autumn lake overturn). Our seasonal studies of production/mineralization processes demonstrated high intensity of organic matter formation during summer period and significant retard of these processes during winter stagnation. During spring period, there is a strong increase of bacterial destruction of the allochtonous organic matter that is being delivered to the lake via terrigenous input. During autumn overturn, there is a decrease of the activity of phytoplankton, and the degradation of dead biomass by active bacterial community. Organic matter destruction processes are the most active in Svyatoe lake, whereas in the Beloe lake, the rate of organic matter production is significantly higher than

  6. Metagenomics Reveals a Novel Virophage Population in a Tibetan Mountain Lake

    PubMed Central

    Oh, Seungdae; Yoo, Dongwan; Liu, Wen-Tso

    2016-01-01

    Virophages are parasites of giant viruses that infect eukaryotic organisms and may affect the ecology of inland water ecosystems. Despite the potential ecological impact, limited information is available on the distribution, diversity, and hosts of virophages in ecosystems. Metagenomics revealed that virophages were widely distributed in inland waters with various environmental characteristics including salinity and nutrient availability. A novel virophage population was overrepresented in a planktonic microbial community of the Tibetan mountain lake, Lake Qinghai. Our study identified coccolithophores and coccolithovirus-like phycodnaviruses in the same community, which may serve as eukaryotic and viral hosts of the virophage population, respectively. PMID:27151658

  7. [Relationships between the Biomass and Production of Bacterio- and Phytoplanktonic Communities].

    PubMed

    Aponasenko, A D; Shchur, L A

    2016-01-01

    Quantitative ratios of the biomasses of bacterio- and phytoplankton, interrelation of their production characteristics, and association of the functional characteristics with environmental factors were studied for Lake Khanka, the Yenisei River and the Krasnoyarsk Reservoir. The ratio between the biomasses of bacterioplankton (Bb) and phytoplankton (Bp) in these water bodies was shown to vary within the range exceeding three orders of magnitude. Bacterioplankton biomass was relatively stable and varied from sample to sample by an order of magnitude. In more than 50% of the samples (total sample number, 495), bacterioplankton biomass exceeded that of the phytoplankton. The average Bb/Bp ratios for Lake Khanka, Yenisei River, and Krasnoyarsk Reservoir were 5.1, 2, and 1.4, respectively. Increased Bb/Bp ratios were found to correlate with elevated specific (per unit biomass) phytoplankton production. This finding indicated additional supply of biogenic elements to phytoplankton due to their recycling by bacterial communities. The ratio between bacterioplankton and phytoplankton production for Lake Khanka varied from year to year (0.07 to 0.76). For the Yenisei River and the Krasnoyarsk Reservoir these ratios were on average 0.19 and 0.27, respectively. According to the literature data for other water bodies, bacterial production may reach from 10 to over 100% of the primary production. The equilibrium density of bacterioplankton (maximal density of the population) in Lake Khanka was ~1.5 times higher than in the Yenisei River and the Krasnoyarsk Reservoir due to higher content of suspended mineral matter and associated organo-mineral detritus in the lake. The interaction between dissolved organic compounds sorbed of the surface of mineral particles results in chemical alteration of biochemically stable substrate into compounds which may be assimilated by aquatic micoorganisms.

  8. Metabolic Roles of Uncultivated Bacterioplankton Lineages in the Northern Gulf of Mexico “Dead Zone”

    PubMed Central

    Seitz, Kiley W.; Temperton, Ben; Gillies, Lauren E.; Rabalais, Nancy N.; Henrissat, Bernard; Mason, Olivia U.

    2017-01-01

    ABSTRACT Marine regions that have seasonal to long-term low dissolved oxygen (DO) concentrations, sometimes called “dead zones,” are increasing in number and severity around the globe with deleterious effects on ecology and economics. One of the largest of these coastal dead zones occurs on the continental shelf of the northern Gulf of Mexico (nGOM), which results from eutrophication-enhanced bacterioplankton respiration and strong seasonal stratification. Previous research in this dead zone revealed the presence of multiple cosmopolitan bacterioplankton lineages that have eluded cultivation, and thus their metabolic roles in this ecosystem remain unknown. We used a coupled shotgun metagenomic and metatranscriptomic approach to determine the metabolic potential of Marine Group II Euryarchaeota, SAR406, and SAR202. We recovered multiple high-quality, nearly complete genomes from all three groups as well as candidate phyla usually associated with anoxic environments—Parcubacteria (OD1) and Peregrinibacteria. Two additional groups with putative assignments to ACD39 and PAUC34f supplement the metabolic contributions by uncultivated taxa. Our results indicate active metabolism in all groups, including prevalent aerobic respiration, with concurrent expression of genes for nitrate reduction in SAR406 and SAR202, and dissimilatory nitrite reduction to ammonia and sulfur reduction by SAR406. We also report a variety of active heterotrophic carbon processing mechanisms, including degradation of complex carbohydrate compounds by SAR406, SAR202, ACD39, and PAUC34f. Together, these data help constrain the metabolic contributions from uncultivated groups in the nGOM during periods of low DO and suggest roles for these organisms in the breakdown of complex organic matter. PMID:28900024

  9. The Diversity of the Limnohabitans Genus, an Important Group of Freshwater Bacterioplankton, by Characterization of 35 Isolated Strains

    PubMed Central

    Kasalický, Vojtěch; Jezbera, Jan; Hahn, Martin W.; Šimek, Karel

    2013-01-01

    Bacteria of the genus Limnohabitans, more precisely the R-BT lineage, have a prominent role in freshwater bacterioplankton communities due to their high rates of substrate uptake and growth, growth on algal-derived substrates and high mortality rates from bacterivory. Moreover, due to their generally larger mean cell volume, compared to typical bacterioplankton cells, they contribute over-proportionally to total bacterioplankton biomass. Here we present genetic, morphological and ecophysiological properties of 35 bacterial strains affiliated with the Limnohabitans genus newly isolated from 11 non-acidic European freshwater habitats. The low genetic diversity indicated by the previous studies using the ribosomal SSU gene highly contrasted with the surprisingly rich morphologies and different patterns in substrate utilization of isolated strains. Therefore, the intergenic spacer between 16S and 23S rRNA genes was successfully tested as a fine-scale marker to delineate individual lineages and even genotypes. For further studies, we propose the division of the Limnohabitans genus into five lineages (provisionally named as LimA, LimB, LimC, LimD and LimE) and also additional sublineages within the most diversified lineage LimC. Such a delineation is supported by the morphology of isolated strains which predetermine large differences in their ecology. PMID:23505469

  10. Distribution of bacterioplankton with active metabolism in waters of the St. Anna Trough, Kara Sea, in autumn 2011

    NASA Astrophysics Data System (ADS)

    Mosharova, I. V.; Mosharov, S. A.; Ilinskiy, V. V.

    2017-01-01

    The distribution of bacterioplankton with active electron transport chains, as well as bacteria with intact cell membranes, was investigated for the first time in the region of St. Anna Trough in the Kara Sea. The average number of bacteria with active electron transport chains in the waters of the St. Anna Trough was 15.55 × 103 cells mL-1 (the limits of variation were 1.06-92.17 × 103 cells mL-1). The average number of bacteria with intact membranes was 33.46 × 103 cells mL-1 (the limits of variation were 6.78 to 103.18 × 103 cells mL-1). Almost all bacterioplankton microorganisms in the studied area were potentially viable, and the average share of bacteria with intact membranes was 92.1% of the total number of bacterioplankton (TNB) (the limits of variation were 76.2 to 98.4%). The share of bacteria with active metabolisms was 38.2% of the TNB (the limits of variation were 5.6-93.4%). The shares of the bacteria with active metabolisms were maximum in areas with the most stable environmental conditions (on the shelf and in deep water), whereas on the slope, where the gradients of water temperature and salinity were maximum, these values were lower.

  11. Metabolic Roles of Uncultivated Bacterioplankton Lineages in the Northern Gulf of Mexico "Dead Zone".

    PubMed

    Thrash, J Cameron; Seitz, Kiley W; Baker, Brett J; Temperton, Ben; Gillies, Lauren E; Rabalais, Nancy N; Henrissat, Bernard; Mason, Olivia U

    2017-09-12

    Marine regions that have seasonal to long-term low dissolved oxygen (DO) concentrations, sometimes called "dead zones," are increasing in number and severity around the globe with deleterious effects on ecology and economics. One of the largest of these coastal dead zones occurs on the continental shelf of the northern Gulf of Mexico (nGOM), which results from eutrophication-enhanced bacterioplankton respiration and strong seasonal stratification. Previous research in this dead zone revealed the presence of multiple cosmopolitan bacterioplankton lineages that have eluded cultivation, and thus their metabolic roles in this ecosystem remain unknown. We used a coupled shotgun metagenomic and metatranscriptomic approach to determine the metabolic potential of Marine Group II Euryarchaeota , SAR406, and SAR202. We recovered multiple high-quality, nearly complete genomes from all three groups as well as candidate phyla usually associated with anoxic environments- Parcubacteria (OD1) and Peregrinibacteria Two additional groups with putative assignments to ACD39 and PAUC34f supplement the metabolic contributions by uncultivated taxa. Our results indicate active metabolism in all groups, including prevalent aerobic respiration, with concurrent expression of genes for nitrate reduction in SAR406 and SAR202, and dissimilatory nitrite reduction to ammonia and sulfur reduction by SAR406. We also report a variety of active heterotrophic carbon processing mechanisms, including degradation of complex carbohydrate compounds by SAR406, SAR202, ACD39, and PAUC34f. Together, these data help constrain the metabolic contributions from uncultivated groups in the nGOM during periods of low DO and suggest roles for these organisms in the breakdown of complex organic matter. IMPORTANCE Dead zones receive their name primarily from the reduction of eukaryotic macrobiota (demersal fish, shrimp, etc.) that are also key coastal fisheries. Excess nutrients contributed from anthropogenic activity

  12. Acoustic telemetry reveals large-scale migration patterns of walleye in Lake Huron

    USGS Publications Warehouse

    Hayden, Todd A.; Holbrook, Christopher; Fielder, David G.; Vandergoot, Christopher S.; Bergstedt, Roger A.; Dettmers, John M.; Krueger, Charles C.; Cooke, Steven J.

    2014-01-01

    Fish migration in large freshwater lacustrine systems such as the Laurentian Great Lakes is not well understood. The walleye (Sander vitreus) is an economically and ecologically important native fish species throughout the Great Lakes. In Lake Huron walleye has recently undergone a population expansion as a result of recovery of the primary stock, stemming from changing food web dynamics. During 2011 and 2012, we used acoustic telemetry to document the timing and spatial scale of walleye migration in Lake Huron and Saginaw Bay. Spawning walleye (n = 199) collected from a tributary of Saginaw Bay were implanted with acoustic tags and their migrations were documented using acoustic receivers (n = 140) deployed throughout U.S. nearshore waters of Lake Huron. Three migration pathways were described using multistate mark-recapture models. Models were evaluated using the Akaike Information Criterion. Fish sex did not influence migratory behavior but did affect migration rate and walleye were detected on all acoustic receiver lines. Most (95%) tagged fish migrated downstream from the riverine tagging and release location to Saginaw Bay, and 37% of these fish emigrated from Saginaw Bay into Lake Huron. Remarkably, 8% of walleye that emigrated from Saginaw Bay were detected at the acoustic receiver line located farthest from the release location more than 350 km away. Most (64%) walleye returned to the Saginaw River in 2012, presumably for spawning. Our findings reveal that fish from this stock use virtually the entirety of U.S. nearshore waters of Lake Huron.

  13. Acoustic telemetry reveals large-scale migration patterns of walleye in Lake Huron.

    PubMed

    Hayden, Todd A; Holbrook, Christopher M; Fielder, David G; Vandergoot, Christopher S; Bergstedt, Roger A; Dettmers, John M; Krueger, Charles C; Cooke, Steven J

    2014-01-01

    Fish migration in large freshwater lacustrine systems such as the Laurentian Great Lakes is not well understood. The walleye (Sander vitreus) is an economically and ecologically important native fish species throughout the Great Lakes. In Lake Huron walleye has recently undergone a population expansion as a result of recovery of the primary stock, stemming from changing food web dynamics. During 2011 and 2012, we used acoustic telemetry to document the timing and spatial scale of walleye migration in Lake Huron and Saginaw Bay. Spawning walleye (n = 199) collected from a tributary of Saginaw Bay were implanted with acoustic tags and their migrations were documented using acoustic receivers (n = 140) deployed throughout U.S. nearshore waters of Lake Huron. Three migration pathways were described using multistate mark-recapture models. Models were evaluated using the Akaike Information Criterion. Fish sex did not influence migratory behavior but did affect migration rate and walleye were detected on all acoustic receiver lines. Most (95%) tagged fish migrated downstream from the riverine tagging and release location to Saginaw Bay, and 37% of these fish emigrated from Saginaw Bay into Lake Huron. Remarkably, 8% of walleye that emigrated from Saginaw Bay were detected at the acoustic receiver line located farthest from the release location more than 350 km away. Most (64%) walleye returned to the Saginaw River in 2012, presumably for spawning. Our findings reveal that fish from this stock use virtually the entirety of U.S. nearshore waters of Lake Huron.

  14. Lake Bacterial Assemblage Composition Is Sensitive to Biological Disturbance Caused by an Invasive Filter Feeder

    PubMed Central

    Carrick, Hunter J.; Cavaletto, Joann; Chiang, Edna; Johengen, Thomas H.; Vanderploeg, Henry A.

    2017-01-01

    ABSTRACT One approach to improve forecasts of how global change will affect ecosystem processes is to better understand how anthropogenic disturbances alter bacterial assemblages that drive biogeochemical cycles. Species invasions are important contributors to global change, but their impacts on bacterial community ecology are rarely investigated. Here, we studied direct impacts of invasive dreissenid mussels (IDMs), one of many invasive filter feeders, on freshwater lake bacterioplankton. We demonstrated that direct effects of IDMs reduced bacterial abundance and altered assemblage composition by preferentially removing larger and particle-associated bacteria. While this increased the relative abundances of many free-living bacterial taxa, some were susceptible to filter feeding, in line with efficient removal of phytoplankton cells of <2 μm. This selective removal of particle-associated and larger bacteria by IDMs altered inferred bacterial functional group representation, defined by carbon and energy source utilization. Specifically, we inferred an increased relative abundance of chemoorganoheterotrophs predicted to be capable of rhodopsin-dependent energy generation. In contrast to the few previous studies that have focused on the longer-term combined direct and indirect effects of IDMs on bacterioplankton, our study showed that IDMs act directly as a biological disturbance to which freshwater bacterial assemblages are sensitive. The negative impacts on particle-associated bacteria, which have been shown to be more active than free-living bacteria, and the inferred shifts in functional group representation raise the possibility that IDMs may directly alter bacterially mediated ecosystem functions. IMPORTANCE Freshwater bacteria play fundamental roles in global elemental cycling and are an intrinsic part of local food webs. Human activities are altering freshwater environments, and much has been learned regarding the sensitivity of bacterial assemblages to a

  15. Lake Bacterial Assemblage Composition Is Sensitive to Biological Disturbance Caused by an Invasive Filter Feeder.

    PubMed

    Denef, Vincent J; Carrick, Hunter J; Cavaletto, Joann; Chiang, Edna; Johengen, Thomas H; Vanderploeg, Henry A

    2017-01-01

    One approach to improve forecasts of how global change will affect ecosystem processes is to better understand how anthropogenic disturbances alter bacterial assemblages that drive biogeochemical cycles. Species invasions are important contributors to global change, but their impacts on bacterial community ecology are rarely investigated. Here, we studied direct impacts of invasive dreissenid mussels (IDMs), one of many invasive filter feeders, on freshwater lake bacterioplankton. We demonstrated that direct effects of IDMs reduced bacterial abundance and altered assemblage composition by preferentially removing larger and particle-associated bacteria. While this increased the relative abundances of many free-living bacterial taxa, some were susceptible to filter feeding, in line with efficient removal of phytoplankton cells of <2 μm. This selective removal of particle-associated and larger bacteria by IDMs altered inferred bacterial functional group representation, defined by carbon and energy source utilization. Specifically, we inferred an increased relative abundance of chemoorganoheterotrophs predicted to be capable of rhodopsin-dependent energy generation. In contrast to the few previous studies that have focused on the longer-term combined direct and indirect effects of IDMs on bacterioplankton, our study showed that IDMs act directly as a biological disturbance to which freshwater bacterial assemblages are sensitive. The negative impacts on particle-associated bacteria, which have been shown to be more active than free-living bacteria, and the inferred shifts in functional group representation raise the possibility that IDMs may directly alter bacterially mediated ecosystem functions. IMPORTANCE Freshwater bacteria play fundamental roles in global elemental cycling and are an intrinsic part of local food webs. Human activities are altering freshwater environments, and much has been learned regarding the sensitivity of bacterial assemblages to a variety of

  16. Lake Bacterial Assemblage Composition Is Sensitive to Biological Disturbance Caused by an Invasive Filter Feeder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denef, Vincent J.; Carrick, Hunter J.; Cavaletto, Joann

    One approach to improve forecasts of how global change will affect ecosystem processes is to better understand how anthropogenic disturbances alter bacterial assemblages that drive biogeochemical cycles. Species invasions are important contributors to global change, but their impacts on bacterial community ecology are rarely investigated. Here, we studied direct impacts of invasive dreissenid mussels (IDMs), one of many invasive filter feeders, on freshwater lake bacterioplankton. We demonstrated that direct effects of IDMs reduced bacterial abundance and altered assemblage composition by preferentially removing larger and particle-associated bacteria. While this increased the relative abundances of many free-living bacterial taxa, some were susceptiblemore » to filter feeding, in line with efficient removal of phytoplankton cells of <2 μm. This selective removal of particle-associated and larger bacteria by IDMs altered inferred bacterial functional group representation, defined by carbon and energy source utilization. Specifically, we inferred an increased relative abundance of chemoorganoheterotrophs predicted to be capable of rhodopsin-dependent energy generation. In contrast to the few previous studies that have focused on the longer-term combined direct and indirect effects of IDMs on bacterioplankton, our study showed that IDMs act directly as a biological disturbance to which freshwater bacterial assemblages are sensitive. The negative impacts on particle-associated bacteria, which have been shown to be more active than free-living bacteria, and the inferred shifts in functional group representation raise the possibility that IDMs may directly alter bacterially mediated ecosystem functions.Freshwater bacteria play fundamental roles in global elemental cycling and are an intrinsic part of local food webs. Human activities are altering freshwater environments, and much has been learned regarding the sensitivity of bacterial assemblages to a variety of

  17. Lake Bacterial Assemblage Composition Is Sensitive to Biological Disturbance Caused by an Invasive Filter Feeder

    DOE PAGES

    Denef, Vincent J.; Carrick, Hunter J.; Cavaletto, Joann; ...

    2017-05-31

    One approach to improve forecasts of how global change will affect ecosystem processes is to better understand how anthropogenic disturbances alter bacterial assemblages that drive biogeochemical cycles. Species invasions are important contributors to global change, but their impacts on bacterial community ecology are rarely investigated. Here, we studied direct impacts of invasive dreissenid mussels (IDMs), one of many invasive filter feeders, on freshwater lake bacterioplankton. We demonstrated that direct effects of IDMs reduced bacterial abundance and altered assemblage composition by preferentially removing larger and particle-associated bacteria. While this increased the relative abundances of many free-living bacterial taxa, some were susceptiblemore » to filter feeding, in line with efficient removal of phytoplankton cells of <2 μm. This selective removal of particle-associated and larger bacteria by IDMs altered inferred bacterial functional group representation, defined by carbon and energy source utilization. Specifically, we inferred an increased relative abundance of chemoorganoheterotrophs predicted to be capable of rhodopsin-dependent energy generation. In contrast to the few previous studies that have focused on the longer-term combined direct and indirect effects of IDMs on bacterioplankton, our study showed that IDMs act directly as a biological disturbance to which freshwater bacterial assemblages are sensitive. The negative impacts on particle-associated bacteria, which have been shown to be more active than free-living bacteria, and the inferred shifts in functional group representation raise the possibility that IDMs may directly alter bacterially mediated ecosystem functions.Freshwater bacteria play fundamental roles in global elemental cycling and are an intrinsic part of local food webs. Human activities are altering freshwater environments, and much has been learned regarding the sensitivity of bacterial assemblages to a variety of

  18. Acoustic Telemetry Reveals Large-Scale Migration Patterns of Walleye in Lake Huron

    PubMed Central

    Hayden, Todd A.; Holbrook, Christopher M.; Fielder, David G.; Vandergoot, Christopher S.; Bergstedt, Roger A.; Dettmers, John M.; Krueger, Charles C.; Cooke, Steven J.

    2014-01-01

    Fish migration in large freshwater lacustrine systems such as the Laurentian Great Lakes is not well understood. The walleye (Sander vitreus) is an economically and ecologically important native fish species throughout the Great Lakes. In Lake Huron walleye has recently undergone a population expansion as a result of recovery of the primary stock, stemming from changing food web dynamics. During 2011 and 2012, we used acoustic telemetry to document the timing and spatial scale of walleye migration in Lake Huron and Saginaw Bay. Spawning walleye (n = 199) collected from a tributary of Saginaw Bay were implanted with acoustic tags and their migrations were documented using acoustic receivers (n = 140) deployed throughout U.S. nearshore waters of Lake Huron. Three migration pathways were described using multistate mark-recapture models. Models were evaluated using the Akaike Information Criterion. Fish sex did not influence migratory behavior but did affect migration rate and walleye were detected on all acoustic receiver lines. Most (95%) tagged fish migrated downstream from the riverine tagging and release location to Saginaw Bay, and 37% of these fish emigrated from Saginaw Bay into Lake Huron. Remarkably, 8% of walleye that emigrated from Saginaw Bay were detected at the acoustic receiver line located farthest from the release location more than 350 km away. Most (64%) walleye returned to the Saginaw River in 2012, presumably for spawning. Our findings reveal that fish from this stock use virtually the entirety of U.S. nearshore waters of Lake Huron. PMID:25506913

  19. Influence of macrophyte decomposition on growth rate and community structure of okefenokee swamp bacterioplankton.

    PubMed

    Murray, R E; Hodson, R E

    1986-02-01

    Dissolved substances released during decomposition of the white water lily (Nymphaea odorata) can alter the growth rate of Okefenokee Swamp bacterioplankton. In microcosm experiments dissolved compounds released from senescent Nymphaea leaves caused a transient reduction in the abundance and activity of water column bacterioplankton, followed by a period of intense bacterial growth. Rates of [H]thymidine incorporation and turnover of dissolved d-glucose were depressed by over 85%, 3 h after the addition of Nymphaea leachates to microcosms containing Okefenokee Swamp water. Bacterial activity subsequently recovered; after 20 h [H]thymidine incorporation in leachate-treated microcosms was 10-fold greater than that in control microcosms. The recovery of activity was due to a shift in the composition of the bacterial population toward resistance to the inhibitory compounds present in Nymphaea leachates. Inhibitory compounds released during the decomposition of aquatic macrophytes thus act as selective agents which alter the community structure of the bacterial population with respect to leachate resistance. Soluble compounds derived from macrophyte decomposition influence the rate of bacterial secondary production and the availability of microbial biomass to microconsumers.

  20. Influence of macrophyte decomposition on growth rate and community structure of Okefenokee Swamp bacterioplankton

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murray, R.E.; Hodson, R.E.

    1986-02-01

    Dissolved substances released during decomposition of the white water lily (Nymphaea odorata) can alter the growth rate of Okefenokee Swamp bacterioplankton. In microcosm experiments dissolved compounds released bacterioplankton, followed by a period of intense bacterial growth. Rates of (/sup 3/H)thymidine incorporation and turnover of dissolved D-glucose were depressed by over 85%, 3 h after the addition of Nymphaea leachates to microcosms containing Okefenokee Swamp water. Bacterial activity subsequently recovered; after 20 h (/sup 3/H)thymidine incorporation in leachate-treated microcosms was 10-fold greater than that in control microcosms. The recovery of activity was due to a shift in the composition of themore » bacterial population toward resistance to the inhibitory compounds present in Nymphaea leachates. Inhibitory compounds released during the decomposition of aquatic macrophytes thus act as selective agents which alter the community structure of the bacterial population with respect to leachate resistance. Soluble compounds derived from macrophyte decomposition influence the rate of bacterial secondary production and the availability of microbial biomass to microconsumers.« less

  1. Seasonality Affects the Diversity and Composition of Bacterioplankton Communities in Dongjiang River, a Drinking Water Source of Hong Kong.

    PubMed

    Sun, Wei; Xia, Chunyu; Xu, Meiying; Guo, Jun; Sun, Guoping

    2017-01-01

    Water quality ranks the most vital criterion for rivers serving as drinking water sources, which periodically changes over seasons. Such fluctuation is believed associated with the state shifts of bacterial community within. To date, seasonality effects on bacterioplankton community patterns in large rivers serving as drinking water sources however, are still poorly understood. Here we investigated the intra-annual bacterial community structure in the Dongjiang River, a drinking water source of Hong Kong, using high-throughput pyrosequencing in concert with geochemical property measurements during dry, and wet seasons. Our results showed that Proteobacteria, Actinobacteria , and Bacteroidetes were the dominant phyla of bacterioplankton communities, which varied in composition, and distribution from dry to wet seasons, and exhibited profound seasonal changes. Actinobacteria, Bacteroidetes , and Cyanobacteria seemed to be more associated with seasonality that the relative abundances of Actinobacteria , and Bacteroidetes were significantly higher in the dry season than those in the wet season ( p < 0.01), while the relative abundance of Cyanobacteria was about 10-fold higher in the wet season than in the dry season. Temperature and [Formula: see text]-N concentration represented key contributing factors to the observed seasonal variations. These findings help understand the roles of various bacterioplankton and their interactions with the biogeochemical processes in the river ecosystem.

  2. Response of marine bacterioplankton pH homeostasis gene expression to elevated CO2

    NASA Astrophysics Data System (ADS)

    Bunse, Carina; Lundin, Daniel; Karlsson, Christofer M. G.; Akram, Neelam; Vila-Costa, Maria; Palovaara, Joakim; Svensson, Lovisa; Holmfeldt, Karin; González, José M.; Calvo, Eva; Pelejero, Carles; Marrasé, Cèlia; Dopson, Mark; Gasol, Josep M.; Pinhassi, Jarone

    2016-05-01

    Human-induced ocean acidification impacts marine life. Marine bacteria are major drivers of biogeochemical nutrient cycles and energy fluxes; hence, understanding their performance under projected climate change scenarios is crucial for assessing ecosystem functioning. Whereas genetic and physiological responses of phytoplankton to ocean acidification are being disentangled, corresponding functional responses of bacterioplankton to pH reduction from elevated CO2 are essentially unknown. Here we show, from metatranscriptome analyses of a phytoplankton bloom mesocosm experiment, that marine bacteria responded to lowered pH by enhancing the expression of genes encoding proton pumps, such as respiration complexes, proteorhodopsin and membrane transporters. Moreover, taxonomic transcript analysis showed that distinct bacterial groups expressed different pH homeostasis genes in response to elevated CO2. These responses were substantial for numerous pH homeostasis genes under low-chlorophyll conditions (chlorophyll a <2.5 μg l-1) however, the changes in gene expression under high-chlorophyll conditions (chlorophyll a >20 μg l-1) were low. Given that proton expulsion through pH homeostasis mechanisms is energetically costly, these findings suggest that bacterioplankton adaptation to ocean acidification could have long-term effects on the economy of ocean ecosystems.

  3. Bacterioplankton in antarctic ocean waters during late austral winter: abundance, frequency of dividing cells, and estimates of production.

    PubMed

    Hanson, R B; Shafer, D; Ryan, T; Pope, D H; Lowery, H K

    1983-05-01

    Bacterioplankton productivity in Antarctic waters of the eastern South Pacific Ocean and Drake Passage was estimated by direct counts and frequency of dividing cells (FDC). Total bacterioplankton assemblages were enumerated by epifluorescent microscopy. The experimentally determined relationship between in situ FDC and the potential instantaneous growth rate constant (mu) is best described by the regression equation ln mu = 0.081 FDC - 3.73. In the eastern South Pacific Ocean, bacterioplankton abundance (2 x 10 to 3.5 x 10 cells per ml) and FDC (11%) were highest at the Polar Front (Antarctic Convergence). North of the Subantarctic Front, abundance and FDC were between 1 x 10 to 2 x 10 cells per ml and 3 to 5%, respectively, and were vertically homogeneous to a depth of 600 m. In Drake Passage, abundance (10 x 10 cells per ml) and FDC (16%) were highest in waters south of the Polar Front and near the sea ice. Subantarctic waters in Drake Passage contained 4 x 10 cells per ml with 4 to 5% FDC. Instantaneous growth rate constants ranged between 0.029 and 0.088 h. Using estimates of potential mu and measured standing stocks, we estimated productivity to range from 0.62 mug of C per liter . day in the eastern South Pacific Ocean to 17.1 mug of C per liter . day in the Drake Passage near the sea ice.

  4. De novo synthesis and functional analysis of the phosphatase-encoding gene acI-B of uncultured Actinobacteria from Lake Stechlin (NE Germany).

    PubMed

    Srivastava, Abhishek; McMahon, Katherine D; Stepanauskas, Ramunas; Grossart, Hans-Peter

    2015-12-01

    The National Center for Biotechnology Information [http://www.ncbi.nlm.nih.gov/guide/taxonomy/] database enlists more than 15,500 bacterial species. But this also includes a plethora of uncultured bacterial representations. Owing to their metabolism, they directly influence biogeochemical cycles, which underscores the the important status of bacteria on our planet. To study the function of a gene from an uncultured bacterium, we have undertaken a de novo gene synthesis approach. Actinobacteria of the acI-B subcluster are important but yet uncultured members of the bacterioplankton in temperate lakes of the northern hemisphere such as oligotrophic Lake Stechlin (NE Germany). This lake is relatively poor in phosphate (P) and harbors on average ~1.3 x 10 6 bacterial cells/ml, whereby Actinobacteria of the ac-I lineage can contribute to almost half of the entire bacterial community depending on seasonal variability. Single cell genome analysis of Actinobacterium SCGC AB141-P03, a member of the acI-B tribe in Lake Stechlin has revealed several phosphate-metabolizing genes. The genome of acI-B Actinobacteria indicates potential to degrade polyphosphate compound. To test for this genetic potential, we targeted the exoP-annotated gene potentially encoding polyphosphatase and synthesized it artificially to examine its biochemical role. Heterologous overexpression of the gene in Escherichia coli and protein purification revealed phosphatase activity. Comparative genome analysis suggested that homologs of this gene should be also present in other Actinobacteria of the acI lineages. This strategic retention of specialized genes in their genome provides a metabolic advantage over other members of the aquatic food web in a P-limited ecosystem. [Int Microbiol 2016; 19(1):39-47]. Copyright© by the Spanish Society for Microbiology and Institute for Catalan Studies.

  5. Fine-scale acoustic telemetry reveals unexpected lake trout, Salvelinus namaycush, spawning habitats in northern Lake Huron, North America

    USGS Publications Warehouse

    Binder, Thomas; Farha, Steve A.; Thompson, Henry T.; Holbrook, Christopher; Bergstedt, Roger A.; Riley, Stephen; Bronte, Charles R.; He, Ji; Krueger, Charles C.

    2018-01-01

    Previous studies of lake trout, Salvelinus namaycush, spawning habitat in the Laurentian Great Lakes have used time- and labour-intensive survey methods and have focused on areas with historic observations of spawning aggregations and on habitats prejudged by researchers to be suitable for spawning. As an alternative, we used fine-scale acoustic telemetry to locate, describe and compare lake trout spawning habitats. Adult lake trout were implanted with acoustic transmitters and tracked during five consecutive spawning seasons in a 19–27 km2 region of the Drummond Island Refuge, Lake Huron, using the VEMCO Positioning System. Acoustic telemetry revealed discrete areas of aggregation on at least five reefs in the study area, subsequently confirmed by divers to contain deposited eggs. Notably, several identified spawning sites would likely not have been discovered using traditional methods because either they were too small and obscure to stand out on a bathymetric map or because they did not conform to the conceptual model of spawning habitat held by many biologists. Our most unique observation was egg deposition in gravel and rubble substrates located at the base of and beneath overhanging edges of large boulders. Spawning sites typically comprised <10% of the reef area and were used consistently over the 5-year study. Evaluation of habitat selection from the perspective of fish behaviour through use of acoustic transmitters offers potential to expand current conceptual models of critical spawning habitat.

  6. A close link between bacterial community composition and environmental heterogeneity in maritime Antarctic lakes.

    PubMed

    Villaescusa, Juan A; Casamayor, Emilio O; Rochera, Carlos; Velázquez, David; Chicote, Alvaro; Quesada, Antonio; Camacho, Antonio

    2010-06-01

    Seven maritime Antarctic lakes located on Byers Peninsula (Livingston Island, South Shetland Islands) were surveyed to determine the relationship between planktonic bacterial community composition and environmental features. Specifically, the extent to which factors other than low temperature determine the composition of bacterioplankton assemblages of maritime Antarctic lakes was evaluated. Both deep and shallow lakes in the central plateau of the Peninsula, as well as a coastal lake, were studied in order to fully account for the environmental heterogeneity of the Peninsula's lakes. The results showed that shallow coastal lakes display eutrophic conditions, mainly due to the influence of marine animals, whereas plateau lakes are generally deeper and most are oligotrophic, with very limited inputs of nutrients and organic matter. Meso-eutrophic shallow lakes are also present on the Peninsula; they contain microbial mats and a higher trophic status because of the biologically mediated active nutrient release from the sediments. Diversity studies of the lakes' planktonic bacterial communities using molecular techniques showed that bacterial diversity is lower in eutrophic than in oligotrophic lakes. The former also differed in community composition with respect to dominant taxa. Multivariate statistical analyses of environmental data yielded the same clustering of lakes as obtained based on the DGGE band pattern after DNA extraction and amplification of 16S rRNA gene fragments. Thus, even in extremely cold lakes, the bacterial community composition parallels other environmental factors, such as those related to trophic status. This correspondence is not only mediated by the influence of marine fauna but also by processes including sediment and ice melting dynamics. The bacterial community can therefore be considered to be equally representative as environmental abiotic variables in demonstrating the environmental heterogeneity among maritime Antarctic lakes.

  7. Chloroflexi CL500-11 Populations That Predominate Deep-Lake Hypolimnion Bacterioplankton Rely on Nitrogen-Rich Dissolved Organic Matter Metabolism and C1 Compound Oxidation.

    PubMed

    Denef, Vincent J; Mueller, Ryan S; Chiang, Edna; Liebig, James R; Vanderploeg, Henry A

    2015-12-18

    The Chloroflexi CL500-11 clade contributes a large proportion of the bacterial biomass in the oxygenated hypolimnia of deep lakes worldwide, including the world's largest freshwater system, the Laurentian Great Lakes. Traits that allow CL500-11 to thrive and its biogeochemical role in these environments are currently unknown. Here, we found that a CL500-11 population was present mostly in offshore waters along a transect in ultraoligotrophic Lake Michigan (a Laurentian Great Lake). It occurred throughout the water column in spring and only in the hypolimnion during summer stratification, contributing up to 18.1% of all cells. Genome reconstruction from metagenomic data suggested an aerobic, motile, heterotrophic lifestyle, with additional energy being gained through carboxidovory and methylovory. Comparisons to other available streamlined freshwater genomes revealed that the CL500-11 genome contained a disproportionate number of cell wall/capsule biosynthesis genes and the most diverse spectrum of genes involved in the uptake of dissolved organic matter (DOM) substrates, particularly peptides. In situ expression patterns indicated the importance of DOM uptake and protein/peptide turnover, as well as type I and type II carbon monoxide dehydrogenase and flagellar motility. Its location in the water column influenced its gene expression patterns the most. We observed increased bacteriorhodopsin gene expression and a response to oxidative stress in surface waters compared to its response in deep waters. While CL500-11 carries multiple adaptations to an oligotrophic lifestyle, its investment in motility, its large cell size, and its distribution in both oligotrophic and mesotrophic lakes indicate its ability to thrive under conditions where resources are more plentiful. Our data indicate that CL500-11 plays an important role in nitrogen-rich DOM mineralization in the extensive deep-lake hypolimnion habitat. Copyright © 2016, American Society for Microbiology. All

  8. Phylogenetic shifts of bacterioplankton community composition along the Pearl Estuary: the potential impact of hypoxia and nutrients

    PubMed Central

    Liu, Jiwen; Fu, Bingbing; Yang, Hongmei; Zhao, Meixun; He, Biyan; Zhang, Xiao-Hua

    2015-01-01

    The significance of salinity in shaping bacterial communities dwelling in estuarine areas has been well documented. However, the influences of other environmental factors such as dissolved oxygen and nutrients in determining distribution patterns of both individual taxa and bacterial communities inhabited local estuarine regions remain elusive. Here, bacterioplankton community structures of surface and bottom waters from eight sites along the Pearl Estuary were characterized with 16S rRNA gene pyrosequencing. The results showed significant differences of bacterioplankton community between freshwater and saltwater sites, and further between surface and bottom waters of saltwater sites. Synechococcus dominated the surface water of saltwater sites while Oceanospirillales, SAR11 and SAR406 were prevalent in the bottom water. Betaproteobacteria was abundant in freshwater sites, with no significant difference between water layers. Occurrence of phylogenetic shifts in taxa affiliated to the same clade was also detected. Dissolved oxygen explained most of the bacterial community variation in the redundancy analysis targeting only freshwater sites, whereas nutrients and salinity explained most of the variation across all samples in the Pearl Estuary. Methylophilales (mainly PE2 clade) was positively correlated to dissolved oxygen, whereas Rhodocyclales (mainly R.12up clade) was negatively correlated. Moreover, high nutrient inputs to the freshwater area of the Pearl Estuary have shifted the bacterial communities toward copiotrophic groups, such as Sphingomonadales. The present study demonstrated that the overall nutrients and freshwater hypoxia play important roles in determining bacterioplankton compositions and provided insights into the potential ecological roles of specific taxa in estuarine environments. PMID:25713564

  9. Nuclear markers reveal that inter-lake cichlids' similar morphologies do not reflect similar genealogy.

    PubMed

    Kassam, Daud; Seki, Shingo; Horic, Michio; Yamaoka, Kosaku

    2006-08-01

    The apparent inter-lake morphological similarity among East African Great Lakes' cichlid species/genera has left evolutionary biologists asking whether such similarity is due to sharing of common ancestor or mere convergent evolution. In order to answer such question, we first used Geometric Morphometrics, GM, to quantify morphological similarity and then subsequently used Amplified Fragment Length Polymorphism, AFLP, to determine if similar morphologies imply shared ancestry or convergent evolution. GM revealed that not all presumed morphological similar pairs were indeed similar, and the dendrogram generated from AFLP data indicated distinct clusters corresponding to each lake and not inter-lake morphological similar pairs. Such results imply that the morphological similarity is due to convergent evolution and not shared ancestry. The congruency of GM and AFLP generated dendrograms imply that GM is capable of picking up phylogenetic signal, and thus GM can be potential tool in phylogenetic systematics.

  10. Coastal lake sediments reveal 5500 years of tsunami history in south central Chile

    NASA Astrophysics Data System (ADS)

    Kempf, Philipp; Moernaut, Jasper; Van Daele, Maarten; Vandoorne, Willem; Pino, Mario; Urrutia, Roberto; De Batist, Marc

    2017-04-01

    We present an exceptionally long and continuous coastal lacustrine record of ∼5500 years from Lake Huelde on the west coast of Chiloé Island in south central Chile. The study area is located within the rupture zone of the giant 1960 CE Great Chilean Earthquake (MW 9.5). The subsequent earthquake-induced tsunami inundated Lake Huelde and deposited mud rip-up clasts, massive sand and a mud cap in the lake. Long sediment cores from 8 core sites within Lake Huelde reveal 16 additional sandy layers in the 5500 year long record. The sandy layers share sedimentological similarities with the deposit of the 1960 CE tsunami and other coastal lake tsunami deposits elsewhere. On the basis of general and site-specific criteria we interpret the sandy layers as tsunami deposits. Age-control is provided by four different methods, 1) 210Pb-dating, 2) the identification of the 137Cs-peak, 3) an infrared stimulated luminescence (IRSL) date and 4) 22 radiocarbon dates. The ages of each tsunami deposit are modelled using the Bayesian statistic tools of OxCal and Bacon. The record from Lake Huelde matches the 8 regionally known tsunami deposits from documented history and geological evidence from the last ∼2000 years without over- or underrepresentation. We extend the existing tsunami history by 9 tsunami deposits. We discuss the advantages and disadvantages of various sedimentary environments for tsunami deposition and preservation, e.g. we find that Lake Huelde is 2-3 times less sensitive to relative sea-level change in comparison to coastal marshes in the same region.

  11. Molecular analyses reveal high species diversity of trematodes in a sub-Arctic lake

    USGS Publications Warehouse

    Soldánová, Miroslava; Georgieva, Simona; Roháčováa, Jana; Knudsen, Rune; Kuhn, Jesper A.; Henriksen, Eirik H.; Siwertsson, Anna; Shaw, Jenny C.; Kuris, Armand M.; Amundsen, Per-Arne; Scholz, Tomáš; Lafferty, Kevin D.; Kostadinova, Aneta

    2017-01-01

    To identify trematode diversity and life-cycles in the sub-Arctic Lake Takvatn, Norway, we characterised 120 trematode isolates from mollusc first intermediate hosts, metacercariae from second intermediate host fishes and invertebrates, and adults from fish and invertebrate definitive hosts, using molecular techniques. Phylogenies based on nuclear and/or mtDNA revealed high species richness (24 species or species-level genetic lineages), and uncovered trematode diversity (16 putative new species) from five families typical in lake ecosystems (Allocreadiidae, Diplostomidae, Plagiorchiidae, Schistosomatidae and Strigeidae). Sampling potential invertebrate hosts allowed matching of sequence data for different stages, thus achieving molecular elucidation of trematode life-cycles and exploration of host-parasite interactions. Phylogenetic analyses also helped identify three major mollusc intermediate hosts (Radix balthica, Pisidium casertanum and Sphaerium sp.) in the lake. Our findings increase the known trematode diversity at the sub-Arctic Lake Takvatn, showing that digenean diversity is high in this otherwise depauperate sub-Arctic freshwater ecosystem, and indicating that sub-Arctic and Arctic ecosystems may be characterised by unique trematode assemblages.

  12. Culture-based Identification Of Microcystin-Degrading Bacteria In the Sandusky Bay and Maumee Bay of Lake Erie

    NASA Astrophysics Data System (ADS)

    Ormiston, A.; Mou, X.

    2012-12-01

    Harmful cyanobacteria blooms (cyanoHABs) are a serious issue that affects wildlife, human health, recreation and local economics worldwide. CyanoHABs produce cyanotoxins, such as microcystins (MCs) that lead to skin irritation, illness and liver tumors. Bacterially mediated degradation of MCs plays a key role to transform these toxic substrates to less harmful metabolites in natural environments. However, only a few Sphingomonos species have been isolated for degradation of MCs and many of which are from other habitats such as water plants. This project aims to isolate and identify bacteria that can degrade MC-LR and MC-RR, two major forms of MCs found during cyanoHABs in Lake Erie. Water samples were collected from the surface of Sandusky Bay and Maumee Bay of Lake Erie and immediately filtered through 3.0 -μm-pore-size membrane filters to obtain bacterioplankton fraction. The filtrates were amended with excessive inorganic nitrogen and phosphorus compounds and incubated in the dark for a week to purposely establish a carbon-limited condition. Afterwards, enrichment microcosms were established in flasks filled with pre-incubated bacterioplankton and single MC compounds (final concentration 10 μM). Once cell growth was confirmed by flow cytometry-based cell counting, bacterial cells in enriched microcosms were transferred onto solid surfaces, i.e., GFF filter and noble agar for colony isolation. Obtained single colonies were inoculated in defined liquid media with MCs as single carbon source. DNA was extracted from each purified isolate and analyzed by restriction fragment length polymorphism analysis (RFLP). A total of 18 different RFLP banding patterns were found, indicating MC-degrading bacteria may be heterogeneous in studied water samples. 16S rRNA genes of selected bacterial isolates were PCR amplified and sequenced for taxonomic identification. Our results demonstrated that MCs can be degraded by multiple bacterial species in Lake Erie. Future directions

  13. Diazotrophic bacterioplankton in a coral reef lagoon: phylogeny, diel nitrogenase expression and response to phosphate enrichment.

    PubMed

    Hewson, Ian; Moisander, Pia H; Morrison, Amanda E; Zehr, Jonathan P

    2007-05-01

    We investigated diazotrophic bacterioplankton assemblage composition in the Heron Reef lagoon (Great Barrier Reef, Australia) using culture-independent techniques targeting the nifH fragment of the nitrogenase gene. Seawater was collected at 3 h intervals over a period of 72 h (i.e. over diel as well as tidal cycles). An incubation experiment was also conducted to assess the impact of phosphate (PO(4)3*) availability on nifH expression patterns. DNA-based nifH libraries contained primarily sequences that were most similar to nifH from sediment, microbial mat and surface-associated microorganisms, with a few sequences that clustered with typical open ocean phylotypes. In contrast to genomic DNA sequences, libraries prepared from gene transcripts (mRNA amplified by reverse transcription-polymerase chain reaction) were entirely cyanobacterial and contained phylotypes similar to those observed in open ocean plankton. The abundance of Trichodesmium and two uncultured cyanobacterial phylotypes from previous studies (group A and group B) were studied by quantitative-polymerase chain reaction in the lagoon samples. These were detected as transcripts, but were not detected in genomic DNA. The gene transcript abundance of these phylotypes demonstrated variability over several diel cycles. The PO(4)3* enrichment experiment had a clearer pattern of gene expression over diel cycles than the lagoon sampling, however PO(4)3* additions did not result in enhanced transcript abundance relative to control incubations. The results suggest that a number of diazotrophs in bacterioplankton of the reef lagoon may originate from sediment, coral or beachrock surfaces, sloughing into plankton with the flooding tide. The presence of typical open ocean phylotype transcripts in lagoon bacterioplankton may indicate that they are an important component of the N cycle of the coral reef.

  14. Free-Living and Particle-Associated Bacterioplankton in Large Rivers of the Mississippi River Basin Demonstrate Biogeographic Patterns

    PubMed Central

    Millar, Justin J.; Payne, Jason T.; Ochs, Clifford A.

    2014-01-01

    The different drainage basins of large rivers such as the Mississippi River represent interesting systems in which to study patterns in freshwater microbial biogeography. Spatial variability in bacterioplankton communities in six major rivers (the Upper Mississippi, Missouri, Illinois, Ohio, Tennessee, and Arkansas) of the Mississippi River Basin was characterized using Ion Torrent 16S rRNA amplicon sequencing. When all systems were combined, particle-associated (>3 μm) bacterial assemblages were found to be different from free-living bacterioplankton in terms of overall community structure, partly because of differences in the proportional abundance of sequences affiliated with major bacterial lineages (Alphaproteobacteria, Cyanobacteria, and Planctomycetes). Both particle-associated and free-living communities ordinated by river system, a pattern that was apparent even after rare sequences or those affiliated with Cyanobacteria were removed from the analyses. Ordination of samples by river system correlated with environmental characteristics of each river, such as nutrient status and turbidity. Communities in the Upper Mississippi and the Missouri and in the Ohio and the Tennessee, pairs of rivers that join each other, contained similar taxa in terms of presence-absence data but differed in the proportional abundance of major lineages. The most common sequence types detected in particle-associated communities were picocyanobacteria in the Synechococcus/Prochlorococcus/Cyanobium (Syn/Pro) clade, while free-living communities also contained a high proportion of LD12 (SAR11/Pelagibacter)-like Alphaproteobacteria. This research shows that while different tributaries of large river systems such as the Mississippi River harbor distinct bacterioplankton communities, there is also microhabitat variation such as that between free-living and particle-associated assemblages. PMID:25217018

  15. Analysis of Composition and Structure of Coastal to Mesopelagic Bacterioplankton Communities in the Northern Gulf of Mexico

    PubMed Central

    King, Gary M.; Smith, Conor B.; Tolar, Bradley; Hollibaugh, James T.

    2013-01-01

    16S rRNA gene amplicons were pyrosequenced to assess bacterioplankton community composition, diversity, and phylogenetic community structure for 17 stations in the northern Gulf of Mexico (nGoM) sampled in March 2010. Statistical analyses showed that samples from depths ≤100 m differed distinctly from deeper samples. SAR 11 α-Proteobacteria and Bacteroidetes dominated communities at depths ≤100 m, which were characterized by high α-Proteobacteria/γ-Proteobacteria ratios (α/γ > 1.7). Thaumarchaeota, Firmicutes, and δ-Proteobacteria were relatively abundant in deeper waters, and α/γ ratios were low (<1). Canonical correlation analysis indicated that δ- and γ-Proteobacteria, Thaumarchaeota, and Firmicutes correlated positively with depth; α-Proteobacteria and Bacteroidetes correlated positively with temperature and dissolved oxygen; Actinobacteria, β-Proteobacteria, and Verrucomicrobia correlated positively with a measure of suspended particles. Diversity indices did not vary with depth or other factors, which indicated that richness and evenness elements of bacterioplankton communities might develop independently of nGoM physical-chemical variables. Phylogenetic community structure as measured by the net relatedness (NRI) and nearest taxon (NTI) indices also did not vary with depth. NRI values indicated that most of the communities were comprised of OTUs more distantly related to each other in whole community comparisons than expected by chance. NTI values derived from phylogenetic distances of the closest neighbor for each OTU in a given community indicated that OTUs tended to occur in clusters to a greater extent than expected by chance. This indicates that “habitat filtering” might play an important role in nGoM bacterioplankton species assembly, and that such filtering occurs throughout the water column. PMID:23346078

  16. The green impact: bacterioplankton response toward a phytoplankton spring bloom in the southern North Sea assessed by comparative metagenomic and metatranscriptomic approaches

    PubMed Central

    Wemheuer, Bernd; Wemheuer, Franziska; Hollensteiner, Jacqueline; Meyer, Frauke-Dorothee; Voget, Sonja; Daniel, Rolf

    2015-01-01

    Phytoplankton blooms exhibit a severe impact on bacterioplankton communities as they change nutrient availabilities and other environmental factors. In the current study, the response of a bacterioplankton community to a Phaeocystis globosa spring bloom was investigated in the southern North Sea. For this purpose, water samples were taken inside and reference samples outside of an algal spring bloom. Structural changes of the bacterioplankton community were assessed by amplicon-based analysis of 16S rRNA genes and transcripts generated from environmental DNA and RNA, respectively. Several marine groups responded to bloom presence. The abundance of the Roseobacter RCA cluster and the SAR92 clade significantly increased in bloom presence in the total and active fraction of the bacterial community. Functional changes were investigated by direct sequencing of environmental DNA and mRNA. The corresponding datasets comprised more than 500 million sequences across all samples. Metatranscriptomic data sets were mapped on representative genomes of abundant marine groups present in the samples and on assembled metagenomic and metatranscriptomic datasets. Differences in gene expression profiles between non-bloom and bloom samples were recorded. The genome-wide gene expression level of Planktomarina temperata, an abundant member of the Roseobacter RCA cluster, was higher inside the bloom. Genes that were differently expressed included transposases, which showed increased expression levels inside the bloom. This might contribute to the adaptation of this organism toward environmental stresses through genome reorganization. In addition, several genes affiliated to the SAR92 clade were significantly upregulated inside the bloom including genes encoding for proteins involved in isoleucine and leucine incorporation. Obtained results provide novel insights into compositional and functional variations of marine bacterioplankton communities as response to a phytoplankton bloom. PMID

  17. Influence of Macrophyte Decomposition on Growth Rate and Community Structure of Okefenokee Swamp Bacterioplankton

    PubMed Central

    Murray, Robert E.; Hodson, Robert E.

    1986-01-01

    Dissolved substances released during decomposition of the white water lily (Nymphaea odorata) can alter the growth rate of Okefenokee Swamp bacterioplankton. In microcosm experiments dissolved compounds released from senescent Nymphaea leaves caused a transient reduction in the abundance and activity of water column bacterioplankton, followed by a period of intense bacterial growth. Rates of [3H]thymidine incorporation and turnover of dissolved d-glucose were depressed by over 85%, 3 h after the addition of Nymphaea leachates to microcosms containing Okefenokee Swamp water. Bacterial activity subsequently recovered; after 20 h [3H]thymidine incorporation in leachate-treated microcosms was 10-fold greater than that in control microcosms. The recovery of activity was due to a shift in the composition of the bacterial population toward resistance to the inhibitory compounds present in Nymphaea leachates. Inhibitory compounds released during the decomposition of aquatic macrophytes thus act as selective agents which alter the community structure of the bacterial population with respect to leachate resistance. Soluble compounds derived from macrophyte decomposition influence the rate of bacterial secondary production and the availability of microbial biomass to microconsumers. Images PMID:16346986

  18. The microbial plankton of Lake Fryxell, southern Victoria Land, Antarctica during the summers of 1992 and 1994

    USGS Publications Warehouse

    Laybourn-Parry, J.; James, M.R.; McKnight, Diane M.; Priscu, J.; Spaulding, S.A.; Shiel, R.

    1997-01-01

    Samples collected from Lake Fryxell, southern Victoria Land, Antarctica in January 1992 and 1994 were analysed for the abundance of bacterioplankton and the diversity and abundance of protistan plankton. At the times of sampling, 14 ciliate species and 10 species of autotrophic flagellate were recorded. The samples contained two species of rotifer (Philodina spp.), which formed the first record of planktonic metazoans in the Dry Valley lakes of this region of Antarctica. Bacterial concentrations ranged between 1.0 and 3.8 x 108 l-1 in the upper oxic waters increasing to 20 x 08 l-1 in the anoxic waters. Heterotrophic flagellates decreased in abundance down the oxygenated water column, disappearing completely at 9 m, and ranged between 0.28 and 7.39 x 105 l-1 in abundance. Autotrophic flagellates were much more abundant exhibiting a number of distinct peaks down the water column (1.89 25.3 x 108 l-1). The ciliated protozoa were very abundant (up to 7720 l-1) in relation to flagellate and bacterial numbers, typical of oligotrophic lakes world-wide. The distribution of the protistan plankton showed marked zonation, probably in response to the differing salinity and temperature gradients in the water column. Possible trophic interactions are discussed and comparisons with other continental Antarctic lakes made.

  19. Microplastic pollution in lakes and lake shoreline sediments - A case study on Lake Bolsena and Lake Chiusi (central Italy).

    PubMed

    Fischer, Elke Kerstin; Paglialonga, Lisa; Czech, Elisa; Tamminga, Matthias

    2016-06-01

    Rivers and effluents have been identified as major pathways for microplastics of terrestrial sources. Moreover, lakes of different dimensions and even in remote locations contain microplastics in striking abundances. This study investigates concentrations of microplastic particles at two lakes in central Italy (Lake Bolsena, Lake Chiusi). A total number of six Manta Trawls have been carried out, two of them one day after heavy winds occurred on Lake Bolsena showing effects on particle distribution of fragments and fibers of varying size categories. Additionally, 36 sediment samples from lakeshores were analyzed for microplastic content. In the surface waters 2.68 to 3.36 particles/m(3) (Lake Chiusi) and 0.82 to 4.42 particles/m(3) (Lake Bolsena) were detected, respectively. Main differences between the lakes are attributed to lake characteristics such as surface and catchment area, depth and the presence of local wind patterns and tide range at Lake Bolsena. An event of heavy winds and moderate rainfall prior to one sampling led to an increase of concentrations at Lake Bolsena which is most probable related to lateral land-based and sewage effluent inputs. The abundances of microplastic particles in sediments vary from mean values of 112 (Lake Bolsena) to 234 particles/kg dry weight (Lake Chiusi). Lake Chiusi results reveal elevated fiber concentrations compared to those of Lake Bolsena what might be a result of higher organic content and a shift in grain size distribution towards the silt and clay fraction at the shallow and highly eutrophic Lake Chiusi. The distribution of particles along different beach levels revealed no significant differences. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Microbial Diversity and Cyanobacterial Production in Dziani Dzaha Crater Lake, a Unique Tropical Thalassohaline Environment

    PubMed Central

    Carré, Claire; Cellamare, Maria; Duval, Charlotte; Intertaglia, Laurent; Lavergne, Céline; Roques, Cécile

    2017-01-01

    This study describes, for the first time, the water chemistry and microbial diversity in Dziani Dzaha, a tropical crater lake located on Mayotte Island (Comoros archipelago, Western Indian Ocean). The lake water had a high level of dissolved matter and high alkalinity (10.6–14.5 g L-1 eq. CO32-, i.e. 160–220 mM compare to around 2–2.5 in seawater), with salinity up to 52 psu, 1.5 higher than seawater. Hierarchical clustering discriminated Dziani Dzaha water from other alkaline, saline lakes, highlighting its thalassohaline nature. The phytoplankton biomass was very high, with a total chlorophyll a concentration of 524 to 875 μg chl a L-1 depending on the survey, homogeneously distributed from surface to bottom (4 m). Throughout the whole water column the photosynthetic biomass was dominated (>97% of total biovolume) by the filamentous cyanobacteria Arthrospira sp. with a straight morphotype. In situ daily photosynthetic oxygen production ranged from 17.3 to 22.2 g O2 m-2 d-1, consistent with experimental production / irradiance measurements and modeling. Heterotrophic bacterioplankton was extremely abundant, with cell densities up to 1.5 108 cells mL-1 in the whole water column. Isolation and culture of 59 Eubacteria strains revealed the prevalence of alkaliphilic and halophilic organisms together with taxa unknown to date, based on 16S rRNA gene analysis. A single cloning-sequencing approach using archaeal 16S rDNA gene primers unveiled the presence of diverse extremophilic Euryarchaeota. The water chemistry of Dziani Dzaha Lake supports the hypothesis that it was derived from seawater and strongly modified by geological conditions and microbial activities that increased the alkalinity. Dziani Dzaha has a unique consortium of cyanobacteria, phytoplankton, heterotrophic Eubacteria and Archaea, with very few unicellular protozoa, that will deserve further deep analysis to unravel its uncommon diversity. A single taxon, belonging to the genus Arthrospira, was

  1. Simulating 2,368 temperate lakes reveals weak coherence in stratification phenology

    USGS Publications Warehouse

    Read, Jordan S.; Winslow, Luke A.; Hansen, Gretchen J. A.; Van Den Hoek, Jamon; Hanson, Paul C.; Bruce, Louise C; Markfort, Corey D.

    2014-01-01

    Changes in water temperatures resulting from climate warming can alter the structure and function of aquatic ecosystems. Lake-specific physical characteristics may play a role in mediating individual lake responses to climate. Past mechanistic studies of lake-climate interactions have simulated generic lake classes at large spatial scales or performed detailed analyses of small numbers of real lakes. Understanding the diversity of lake responses to climate change across landscapes requires a hybrid approach that couples site-specific lake characteristics with broad-scale environmental drivers. This study provides a substantial advancement in lake ecosystem modeling by combining open-source tools with freely available continental-scale data to mechanistically model daily temperatures for 2,368 Wisconsin lakes over three decades (1979-2011). The model accurately predicted observed surface layer temperatures (RMSE: 1.74°C) and the presence/absence of stratification (81.1% agreement). Among-lake coherence was strong for surface temperatures and weak for the timing of stratification, suggesting individual lake characteristics mediate some - but not all - ecologically relevant lake responses to climate.

  2. Dynamics and estimates of growth and loss rates of bacterioplankton in a temperate freshwater system.

    PubMed

    Jugnia, Louis-B; Sime-Ngando, Télesphore; Gilbert, Daniel

    2006-10-01

    The growth rate and losses of bacterioplankton in the epilimnion of an oligo-mesotrophic reservoir were simultaneously estimated using three different methods for each process. Bacterial production was determined by means of the tritiated thymidine incorporation method, the dialysis bag method and the dilution method, while bacterial mortality was assessed with the dilution method, the disappearance of thymidine-labeled natural cells and ingestion of fluorescent bacterial tracers by heterotrophic flagellates. The different methods used to estimate bacterial growth rates yielded similar results. On the other hand, the mortality rates obtained with the dilution method were significantly lower than those obtained with the use of thymidine-labeled natural cells. The bacterial ingestion rate by flagellates accounted on average for 39% of total bacterial mortality estimated by the dilution method, but this value fell to 5% when the total mortality was measured by the thymidine-labeling method. Bacterial abundance and production varied in opposite phase to flagellate abundance and the various bacterial mortality rates. All this points to the critical importance of methodological aspects in the elaboration of quantitative models of matter and energy flows over the time through microbial trophic networks in aquatic systems, and highlights the role of bacterioplankton as a source of carbon for higher trophic levels in the studied system.

  3. High similarity between bacterioneuston and airborne bacterial community compositions in a high mountain lake area.

    PubMed

    Hervas, Anna; Casamayor, Emilio O

    2009-02-01

    The bacterioneuston (bacteria inhabiting the air-water interface) is poorly characterized and possibly forms a unique community in the aquatic environment. In high mountain lakes, the surface film is subjected to extreme conditions of life, suggesting the development of a specific and adapted bacterioneuston community. We have studied the surface film of a remote high mountain lake in the Pyrenees by cloning the PCR-amplified 16S rRNA gene and comparing with bacteria present in underlying waters (UW), and airborne bacteria from the dust deposited on the top of the snow pack. We did not detect unusual taxa in the neuston but rather very common and widespread bacterial groups. Betaproteobacteria and Actinobacteria accounted for >75% of the community composition. Other minor groups were Gammaproteobacteria (between 8% and 12%), Alphaproteobacteria (between 1% and 5%), and Firmicutes (1%). However, we observed segregated populations in neuston and UW for the different clades within each of the main phylogenetic groups. The soil bacterium Acinetobacter sp. was only detected in the snow-dust sample. Overall, higher similarities were found between bacterioneuston and airborne bacteria than between the former and bacterioplankton. The surface film in high mountain lakes appears as a direct interceptor of airborne bacteria useful for monitoring long-range bacterial dispersion.

  4. Coastal bacterioplankton community diversity along a latitudinal gradient in Latin America by means of V6 tag pyrosequencing.

    PubMed

    Thompson, Fabiano L; Bruce, Thiago; Gonzalez, Alessandra; Cardoso, Alexander; Clementino, Maysa; Costagliola, Marcela; Hozbor, Constanza; Otero, Ernesto; Piccini, Claudia; Peressutti, Silvia; Schmieder, Robert; Edwards, Robert; Smith, Mathew; Takiyama, Luis Roberto; Vieira, Ricardo; Paranhos, Rodolfo; Artigas, Luis Felipe

    2011-02-01

    The bacterioplankton diversity of coastal waters along a latitudinal gradient between Puerto Rico and Argentina was analyzed using a total of 134,197 high-quality sequences from the V6 hypervariable region of the small-subunit ribosomal RNA gene (16S rRNA) (mean length of 60 nt). Most of the OTUs were identified into Proteobacteria, Bacteriodetes, Cyanobacteria, and Actinobacteria, corresponding to approx. 80% of the total number of sequences. The number of OTUs corresponding to species varied between 937 and 1946 in the seven locations. Proteobacteria appeared at high frequency in the seven locations. An enrichment of Cyanobacteria was observed in Puerto Rico, whereas an enrichment of Bacteroidetes was detected in the Argentinian shelf and Uruguayan coastal lagoons. The highest number of sequences of Actinobacteria and Acidobacteria were obtained in the Amazon estuary mouth. The rarefaction curves and Good coverage estimator for species diversity suggested a significant coverage, with values ranging between 92 and 97% for Good coverage. Conserved taxa corresponded to aprox. 52% of all sequences. This study suggests that human-contaminated environments may influence bacterioplankton diversity.

  5. The bacterial community composition of the surface microlayer in a high mountain lake.

    PubMed

    Hörtnagl, Paul; Pérez, Maria Teresa; Zeder, Michael; Sommaruga, Ruben

    2010-09-01

    The existence of bacterioneuston in aquatic ecosystems is well established, but little is known about its composition and dynamics, particularly in lakes. The bacterioneuston underlies extreme conditions at the air-water boundary, which may influence its dynamics in a different way compared with the bacterioplankton. In this study, we assessed quantitative changes in major bacterial groups of the surface microlayer (SML) (upper 900 microm) and the underlying water (ULW) (0.2-0.5 m depth) of an alpine lake during two consecutive ice-free seasons. Analysis of the bacterial community composition was done using catalyzed reporter deposition FISH with oligonucleotide probes. In addition, several physicochemical parameters were measured to characterize these two water layers. Dissolved organic carbon was consistently enriched in the SML and the dissolved organic matter pool presented clear signals of photodegradation and photobleaching. The water temperature was generally colder in the SML than in the subsurface. The bacterial community of the SML and the ULW was dominated by Betaproteobacteria and Actinobacteria. The bacterial community composition was associated with different combinations of physicochemical factors in these two layers, but temporal changes showed similar trends in both layers over the two seasons. Our results identify the SML of alpine lakes as a microhabitat where specific bacterial members such as of Betaproteobacteria seem to be efficient colonizers.

  6. Differential Growth Response of Colony-Forming α- and γ-Proteobacteria in Dilution Culture and Nutrient Addition Experiments from Lake Kinneret (Israel), the Eastern Mediterranean Sea, and the Gulf of Eilat†

    PubMed Central

    Pinhassi, Jarone; Berman, Tom

    2003-01-01

    Even though it is widely accepted that bacterioplankton growth in lakes and marine ecosystems is determined by the trophic status of the systems, knowledge of the relationship between nutrient concentrations and growth of particular bacterial species is almost nonexistent. To address this question, we performed a series of culture experiments with water from Lake Kinneret (Israel), the eastern Mediterranean Sea, and the Gulf of Eilat (northern Red Sea). In the initial water samples, the proportion of CFU was typically <0.002% of the 4′,6′-diamidino-2-phenylindole (DAPI) counts. During incubation until the early stationary phase, the proportion of CFU increased to 20% of the DAPI counts and to 2 to 15% of the DAPI counts in unenriched lake water and seawater dilution cultures, respectively. Sequencing of the 16S ribosomal DNA of colony-forming bacteria in these cultures consistently revealed an abundance of α-proteobacteria, but notable phylogenetic differences were found at the genus level. Marine dilution cultures were dominated by bacteria in the Roseobacter clade, while lake dilution cultures were dominated by bacteria affiliated with the genera Sphingomonas and Caulobacter. In nutrient (glucose, ammonium, phosphate) addition experiments the CFU comprised 20 to 83% of the newly grown cells. In these incubation experiments fast-growing γ-proteobacteria dominated; in the marine experiments primarily different Vibrio and Alteromonas species appeared, while in the lake water experiments species of the genera Shewanella, Aeromonas, and Rheinheimera grew. These results suggest that major, but different, γ-proteobacterial genera in both freshwater and marine environments have a preference for elevated concentrations of nutrients and easily assimilated organic carbon sources but are selectively outcompeted by α-proteobacteria in the presence of low nutrient concentrations. PMID:12513996

  7. Away from darkness: a review on the effects of solar radiation on heterotrophic bacterioplankton activity

    PubMed Central

    Ruiz-González, Clara; Simó, Rafel; Sommaruga, Ruben; Gasol, Josep M.

    2013-01-01

    Heterotrophic bacterioplankton are main consumers of dissolved organic matter (OM) in aquatic ecosystems, including the sunlit upper layers of the ocean and freshwater bodies. Their well-known sensitivity to ultraviolet radiation (UVR), together with some recently discovered mechanisms bacteria have evolved to benefit from photosynthetically available radiation (PAR), suggest that natural sunlight plays a relevant, yet difficult to predict role in modulating bacterial biogeochemical functions in aquatic ecosystems. Three decades of experimental work assessing the effects of sunlight on natural bacterial heterotrophic activity reveal responses ranging from high stimulation to total inhibition. In this review, we compile the existing studies on the topic and discuss the potential causes underlying these contrasting results, with special emphasis on the largely overlooked influences of the community composition and the previous light exposure conditions, as well as the different temporal and spatial scales at which exposure to solar radiation fluctuates. These intricate sunlight-bacteria interactions have implications for our understanding of carbon fluxes in aquatic systems, yet further research is necessary before we can accurately evaluate or predict the consequences of increasing surface UVR levels associated with global change. PMID:23734148

  8. High-Frequency Observations of Temperature and Dissolved Oxygen Reveal Under-Ice Convection in a Large Lake

    NASA Astrophysics Data System (ADS)

    Yang, Bernard; Young, Joelle; Brown, Laura; Wells, Mathew

    2017-12-01

    Detailed observations of thermal structure over an entire winter in a large lake reveal the presence of large (10-20 m) overturns under the ice, driven by diurnal solar heating. Convection can occur in the early winter, but the most vigorous convection occurred near the end of winter. Both periods are when our lake ice model suggest thinner ice that would have been transparent. This under-ice convection led to a deepening of the mixed layer over time, consistent with previous short-term studies. During periods of vigorous convection under the ice at the end of winter, the dissolved oxygen had become supersaturated from the surface to 23 m below the surface, suggesting abundant algal growth. Analysis of our high-frequency observations over the entire winter of 2015 using the Thorpe-scale method quantified the scale of mixing. Furthermore, it revealed that changes in oxygen concentrations are closely related to the intensity of mixing.

  9. A karstic origin for the north polar lakes reveals a soluble Titan

    NASA Astrophysics Data System (ADS)

    Dhingra, Rajani; Barnes, Jason W.; Radebaugh, Jani; Hedman, Matthew M.

    2017-10-01

    We quantitatively test the karst hypothesis for the formation of Titan's lakes by comparing their morphometry to that of terrestrial karst lakes.Titan is the only place in our solar system other than the Earth known to harbor stable surface liquids. While much has been studied and predicted about the liquid composition and distribution, the origin of the lake basins remains unknown. We use spatial regularity derived from the morphology of these lakes to test the hypothesis that they could be karstic in origin. Earth’s karstic lakes are closed depressions that form when the bedrock is dissolved. Karstic depressions have several distinct features, such as their elongation index and their diameter distributions. These are lognormal, a relationship that holds under the assumption that these lakes originated and evolved over a comparatively short period of time. Furthermore, the spread in sizes of depressions is small, indicating tightly constrained formation processes. In our study, we use statistics to ascertain whether Titan’s lakes follow similar karstic geomorphometric patterns. Cassini RADAR and ISS observations of Titan’s north pole show that the equivalent radii of 224 lakes indeed follow a lognormal distribution just like Earth’s karstic lakes, thus suggesting Earth-like processes may be forming Titan’s lakes.

  10. DNA from lake sediments reveals long-term ecosystem changes after a biological invasion.

    PubMed

    Ficetola, Gentile Francesco; Poulenard, Jérôme; Sabatier, Pierre; Messager, Erwan; Gielly, Ludovic; Leloup, Anouk; Etienne, David; Bakke, Jostein; Malet, Emmanuel; Fanget, Bernard; Støren, Eivind; Reyss, Jean-Louis; Taberlet, Pierre; Arnaud, Fabien

    2018-05-01

    What are the long-term consequences of invasive species? After invasion, how long do ecosystems require to reach a new equilibrium? Answering these questions requires long-term, high-resolution data that are vanishingly rare. We combined the analysis of environmental DNA extracted from a lake sediment core, coprophilous fungi, and sedimentological analyses to reconstruct 600 years of ecosystem dynamics on a sub-Antarctic island and to identify the impact of invasive rabbits. Plant communities remained stable from AD 1400 until the 1940s, when the DNA of invasive rabbits was detected in sediments. Rabbit detection corresponded to abrupt changes of plant communities, with a continuous decline of a dominant plant species. Furthermore, erosion rate abruptly increased with rabbit abundance. Rabbit impacts were very fast and were stronger than the effects of climate change during the 20th century. Lake sediments can allow an integrated temporal analysis of ecosystems, revealing the impact of invasive species over time and improving our understanding of underlying mechanisms.

  11. Gut content microbiota of introduced bigheaded carps (Hypophthalmichthys spp.) inhabiting the largest shallow lake in Central Europe.

    PubMed

    Borsodi, Andrea K; Szabó, Attila; Krett, Gergely; Felföldi, Tamás; Specziár, András; Boros, Gergely

    2017-01-01

    Studying the microbiota in the alimentary tract of bigheaded carps (Hypophthalmichthys spp.) gained special interest recently, as these types of investigations on non-native fish species may lead to a better understanding of their ecological role and feeding habits in an invaded habitat. For microbiological examinations, bigheaded carp gut contents and water column samples from Lake Balaton (Hungary) were collected from spring to autumn in 2013. Denaturing Gradient Gel Electrophoresis (DGGE) and pyrosequencing of the 16S rRNA gene were performed to reveal the composition. According to the DGGE patterns, bacterial communities of water samples separated clearly from that of the intestines. Moreover, the bacterial communities in the foreguts and hindguts were also strikingly dissimilar. Based on pyrosequencing, both foregut and hindgut samples were predominated by the fermentative genus Cetobacterium (Fusobacteria). The presence of some phytoplankton taxa and the high relative abundance of cellulose-degrading bacteria in the guts suggest that intestinal microbes may have an important role in digesting algae and making them utilizable for bigheaded carps that lack cellulase enzyme. In turn, the complete absence of typical heterotrophic freshwater bacteria in all studied sections of the intestines indicated that bacterioplankton probably has a negligible role in the nutrition of bigheaded carps. Copyright © 2016 Elsevier GmbH. All rights reserved.

  12. Plankton assembly in an ultra-oligotrophic Antarctic lake over the summer transition from the ice-cover to ice-free period: A size spectra approach

    NASA Astrophysics Data System (ADS)

    Rochera, Carlos; Quesada, Antonio; Toro, Manuel; Rico, Eugenio; Camacho, Antonio

    2017-03-01

    Lakes from the Antarctic maritime region experience climate change as a main stressor capable of modifying their plankton community structure and function, essentially because summer temperatures are commonly over the freezing point and the lake's ice cap thaws. This study was conducted in such seasonally ice-covered lake (Lake Limnopolar, Byers Peninsula, Livingston Is., Antarctica), which exhibits a microbial dominated pelagic food web. An important feature is also the occurrence of benthic mosses (Drepanocladus longifolius) covering the lake bottom. Plankton dynamics were investigated during the ice-thawing transition to the summer maximum. Both bacterioplankton and viral-like particles were higher near the lake's bottom, suggesting a benthic support. When the lake was under dim conditions because of the snow-and-ice cover, autotrophic picoplankters dominated at deep layers. The taxa-specific photopigments indicated dominance of picocyanobacteria among them when the light availability was lower. By contrast, larger and less edible phytoplankton dominated at the onset of the ice melting. The plankton size spectra were fitted to the continuous model of Pareto distribution. Spectra evolved similarly at two sampled depths, in surface and near the bottom, with slopes increasing until mid-January. However, slopes were less steep (i.e., size classes more uniformly distributed) at the bottom, thus denoting a more efficient utilization of resources. These findings suggest that microbial loop pathways in the lake are efficiently channelized during some periods to the metazoan production (mainly the copepod Boeckella poppei). Our results point to that trophic interactions may still occur in these lakes despite environmental harshness. This results of interest in a framework of increasing temperatures that may reduce the climatic restrictions and therefore stimulate biotic interactions.

  13. Co-occurrence Analysis of Microbial Taxa in the Atlantic Ocean Reveals High Connectivity in the Free-Living Bacterioplankton

    PubMed Central

    Milici, Mathias; Deng, Zhi-Luo; Tomasch, Jürgen; Decelle, Johan; Wos-Oxley, Melissa L.; Wang, Hui; Jáuregui, Ruy; Plumeier, Iris; Giebel, Helge-Ansgar; Badewien, Thomas H.; Wurst, Mascha; Pieper, Dietmar H.; Simon, Meinhard; Wagner-Döbler, Irene

    2016-01-01

    We determined the taxonomic composition of the bacterioplankton of the epipelagic zone of the Atlantic Ocean along a latitudinal transect (51°S–47°N) using Illumina sequencing of the V5-V6 region of the 16S rRNA gene and inferred co-occurrence networks. Bacterioplankon community composition was distinct for Longhurstian provinces and water depth. Free-living microbial communities (between 0.22 and 3 μm) were dominated by highly abundant and ubiquitous taxa with streamlined genomes (e.g., SAR11, SAR86, OM1, Prochlorococcus) and could clearly be separated from particle-associated communities which were dominated by Bacteroidetes, Planktomycetes, Verrucomicrobia, and Roseobacters. From a total of 369 different communities we then inferred co-occurrence networks for each size fraction and depth layer of the plankton between bacteria and between bacteria and phototrophic micro-eukaryotes. The inferred networks showed a reduction of edges in the deepest layer of the photic zone. Networks comprised of free-living bacteria had a larger amount of connections per OTU when compared to the particle associated communities throughout the water column. Negative correlations accounted for roughly one third of the total edges in the free-living communities at all depths, while they decreased with depth in the particle associated communities where they amounted for roughly 10% of the total in the last part of the epipelagic zone. Co-occurrence networks of bacteria with phototrophic micro-eukaryotes were not taxon-specific, and dominated by mutual exclusion (~60%). The data show a high degree of specialization to micro-environments in the water column and highlight the importance of interdependencies particularly between free-living bacteria in the upper layers of the epipelagic zone. PMID:27199970

  14. Hydrologic support of carbon dioxide flux revealed by whole-lake carbon budgets

    USGS Publications Warehouse

    Stets, E.G.; Striegl, Robert G.; Aiken, G.R.; Rosenberry, D.O.; Winter, T.C.

    2009-01-01

    Freshwater lakes are an important component of the global carbon cycle through both organic carbon (OC) sequestration and carbon dioxide (CO 2) emission. Most lakes have a net annual loss of CO2 to the atmosphere and substantial current evidence suggests that biologic mineralization of allochthonous OC maintains this flux. Because net CO 2 flux to the atmosphere implies net mineralization of OC within the lake ecosystem, it is also commonly assumed that net annual CO2 emission indicates negative net ecosystem production (NEP). We explored the relationship between atmospheric CO2 emission and NEP in two lakes known to have contrasting hydrologie characteristics and net CO2 emission. We calculated NEP for calendar year 2004 using whole-lake OC and inorganic carbon (IC) budgets, NEPoc and NEPIC, respectively, and compared the resulting values to measured annual CO 2 flux from the lakes. In both lakes, NEPIc and NEP Ic were positive, indicating net autotrophy. Therefore CO2 emission from these lakes was apparently not supported by mineralization of allochthonous organic material. In both lakes, hydrologie CO2 inputs, as well as CO2 evolved from netcalcite precipitation, could account for the net CO2 emission. NEP calculated from diel CO2 measurements was also affected by hydrologie inputs of CO2. These results indicate that CO2 emission and positive NEP may coincide in lakes, especially in carbonate terrain, and that all potential geologic, biogeochemical, and hydrologie sources of CO2 need to be accounted for when using CO2 concentrations to infer lake NEP. Copyright 2009 by the American Geophysical Union.

  15. N2 Fixation by Unicellular Bacterioplankton from the Atlantic and Pacific Oceans: Phylogeny and In Situ Rates

    PubMed Central

    Falcón, Luisa I.; Carpenter, Edward J.; Cipriano, Frank; Bergman, Birgitta; Capone, Douglas G.

    2004-01-01

    N2-fixing proteobacteria (α and γ) and unicellular cyanobacteria are common in both the tropical North Atlantic and Pacific oceans. In near-surface waters proteobacterial nifH transcripts were present during both night and day while unicellular cyanobacterial nifH transcripts were present during the nighttime only, suggesting separation of N2 fixation and photosynthesis by unicellular cyanobacteria. Phylogenetic relationships among unicellular cyanobacteria from both oceans were determined after sequencing of a conserved region of 16S ribosomal DNA (rDNA) of cyanobacteria, and results showed that they clustered together, regardless of the ocean of origin. However, sequencing of nifH transcripts of unicellular cyanobacteria from both oceans showed that they clustered separately. This suggests that unicellular cyanobacteria from the tropical North Atlantic and subtropical North Pacific share a common ancestry (16S rDNA) and that potential unicellular N2 fixers have diverged (nifH). N2 fixation rates for unicellular bacterioplankton (including small cyanobacteria) from both oceans were determined in situ according to the acetylene reduction and 15N2 protocols. The results showed that rates of fixation by bacterioplankton can be almost as high as those of fixation by the colonial N2-fixing marine cyanobacteria Trichodesmium spp. in the tropical North Atlantic but that rates are much lower in the subtropical North Pacific. PMID:14766553

  16. Community assembly processes underlying phytoplankton and bacterioplankton across a hydrologic change in a human-impacted river.

    PubMed

    Isabwe, Alain; Yang, Jun R; Wang, Yongming; Liu, Lemian; Chen, Huihuang; Yang, Jun

    2018-07-15

    Although the influence of microbial community assembly processes on aquatic ecosystem function and biodiversity is well known, the processes that govern planktonic communities in human-impacted rivers remain largely unstudied. Here, we used multivariate statistics and a null model approach to test the hypothesis that environmental conditions and obstructed dispersal opportunities, dictate a deterministic community assembly for phytoplankton and bacterioplankton across contrasting hydrographic conditions in a subtropical mid-sized river (Jiulong River, southeast China). Variation partitioning analysis showed that the explanatory power of local environmental variables was larger than that of the spatial variables for both plankton communities during the dry season. During the wet season, phytoplankton community variation was mainly explained by local environmental variables, whereas the variance in bacterioplankton was explained by both environmental and spatial predictors. The null model based on Raup-Crick coefficients for both planktonic groups suggested little evidences of the stochastic processes involving dispersal and random distribution. Our results showed that hydrological change and landscape structure act together to cause divergence in communities along the river channel, thereby dictating a deterministic assembly and that selection exceeds dispersal limitation during the dry season. Therefore, to protect the ecological integrity of human-impacted rivers, watershed managers should not only consider local environmental conditions but also dispersal routes to account for the effect of regional species pool on local communities. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Catchment tracers reveal discharge, recharge and sources of groundwater-borne pollutants in a novel lake modelling approach

    NASA Astrophysics Data System (ADS)

    Kristensen, Emil; Madsen-Østerbye, Mikkel; Massicotte, Philippe; Pedersen, Ole; Markager, Stiig; Kragh, Theis

    2018-02-01

    groundwater discharge sites located mainly in the eastern part of the lake with a single site in the southern part. Observations from the eastern part of the lake revealed an impermeable clay layer that promotes discharge during heavy precipitation events, which would otherwise be difficult to identify using traditional hydrological methods. In comparison to the lake concentrations, high tracer concentrations in the southern part showed that only a smaller fraction of water could originate from this area, thereby confirming the model results. A Euclidean cluster analysis of δ18O isotopes identified recharge sites corresponding to areas adjacent to drainage channels, and a cluster analysis of the microbially influenced FDOM component C4 further identified five sites that showed a tendency towards high groundwater recharge rate. In conclusion, it was found that this methodology can be applied to smaller lakes within a short time frame, providing useful information regarding the WRT of the lake and more importantly the groundwater recharge and discharge sites around the lake. Thus, it is a tool for specific management of the catchment.

  18. Lake Granbury and Lake Whitney Assessment Initiative Final Scientific/Technical Report Summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harris, B. L.; Roelke, Daniel; Brooks, Bryan

    A team of Texas AgriLife Research, Baylor University and University of Texas at Arlington researchers studied the biology and ecology of Prymnesium parvum (golden algae) in Texas lakes using a three-fold approach that involved system-wide monitoring, experimentation at the microcosm and mesocosm scales, and mathematical modeling. The following are conclusions, to date, regarding this organism's ecology and potential strategies for mitigation of blooms by this organism. In-lake monitoring revealed that golden algae are present throughout the year, even in lakes where blooms do not occur. Compilation of our field monitoring data with data collected by Texas Parks and Wildlife andmore » Brazos River Authority (a period spanning a decade) revealed that inflow and salinity variables affect bloom formations. Thresholds for algae populations vary per lake, likely due to adaptations to local conditions, and also to variations in lake-basin morphometry, especially the presence of coves that may serve as hydraulic storage zones for P. parvum populations. More specifically, our in-lake monitoring showed that the highly toxic bloom that occurred in Lake Granbury in the winter of 2006/2007 was eliminated by increased river inflow events. The bloom was flushed from the system. The lower salinities that resulted contributed to golden algae not blooming in the following years. However, flushing is not an absolute requirement for bloom termination. Laboratory experiments have shown that growth of golden algae can occur at salinities ~1-2 psu but only when temperatures are also low. This helps to explain why blooms are possible during winter months in Texas lakes. Our in-lake experiments in Lake Whitney and Lake Waco, as well as our laboratory experiments, revealed that cyanobacteria, or some other bacteria capable of producing algicides, were able to prevent golden algae from blooming. Identification of this organism is a high priority as it may be a key to managing golden algae

  19. Ultrastructural and Single-Cell-Level Characterization Reveals Metabolic Versatility in a Microbial Eukaryote Community from an Ice-Covered Antarctic Lake

    PubMed Central

    Li, Wei; Podar, Mircea

    2016-01-01

    ABSTRACT The McMurdo Dry Valleys (MCM) of southern Victoria Land, Antarctica, harbor numerous ice-covered bodies of water that provide year-round liquid water oases for isolated food webs dominated by the microbial loop. Single-cell microbial eukaryotes (protists) occupy major trophic positions within this truncated food web, ranging from primary producers (e.g., chlorophytes, haptophytes, and cryptophytes) to tertiary predators (e.g., ciliates, dinoflagellates, and choanoflagellates). To advance the understanding of MCM protist ecology and the roles of MCM protists in nutrient and energy cycling, we investigated potential metabolic strategies and microbial interactions of key MCM protists isolated from a well-described lake (Lake Bonney). Fluorescence-activated cell sorting (FACS) of enrichment cultures, combined with single amplified genome/amplicon sequencing and fluorescence microscopy, revealed that MCM protists possess diverse potential metabolic capabilities and interactions. Two metabolically distinct bacterial clades (Flavobacteria and Methylobacteriaceae) were independently associated with two key MCM lake microalgae (Isochrysis and Chlamydomonas, respectively). We also report on the discovery of two heterotrophic nanoflagellates belonging to the Stramenopila supergroup, one of which lives as a parasite of Chlamydomonas, a dominate primary producer in the shallow, nutrient-poor layers of the lake. IMPORTANCE Single-cell eukaryotes called protists play critical roles in the cycling of organic matter in aquatic environments. In the ice-covered lakes of Antarctica, protists play key roles in the aquatic food web, providing the majority of organic carbon to the rest of the food web (photosynthetic protists) and acting as the major consumers at the top of the food web (predatory protists). In this study, we utilized a combination of techniques (microscopy, cell sorting, and genomic analysis) to describe the trophic abilities of Antarctic lake protists and

  20. Ultrastructural and Single-Cell-Level Characterization Reveals Metabolic Versatility in a Microbial Eukaryote Community from an Ice-Covered Antarctic Lake.

    PubMed

    Li, Wei; Podar, Mircea; Morgan-Kiss, Rachael M

    2016-06-15

    The McMurdo Dry Valleys (MCM) of southern Victoria Land, Antarctica, harbor numerous ice-covered bodies of water that provide year-round liquid water oases for isolated food webs dominated by the microbial loop. Single-cell microbial eukaryotes (protists) occupy major trophic positions within this truncated food web, ranging from primary producers (e.g., chlorophytes, haptophytes, and cryptophytes) to tertiary predators (e.g., ciliates, dinoflagellates, and choanoflagellates). To advance the understanding of MCM protist ecology and the roles of MCM protists in nutrient and energy cycling, we investigated potential metabolic strategies and microbial interactions of key MCM protists isolated from a well-described lake (Lake Bonney). Fluorescence-activated cell sorting (FACS) of enrichment cultures, combined with single amplified genome/amplicon sequencing and fluorescence microscopy, revealed that MCM protists possess diverse potential metabolic capabilities and interactions. Two metabolically distinct bacterial clades (Flavobacteria and Methylobacteriaceae) were independently associated with two key MCM lake microalgae (Isochrysis and Chlamydomonas, respectively). We also report on the discovery of two heterotrophic nanoflagellates belonging to the Stramenopila supergroup, one of which lives as a parasite of Chlamydomonas, a dominate primary producer in the shallow, nutrient-poor layers of the lake. Single-cell eukaryotes called protists play critical roles in the cycling of organic matter in aquatic environments. In the ice-covered lakes of Antarctica, protists play key roles in the aquatic food web, providing the majority of organic carbon to the rest of the food web (photosynthetic protists) and acting as the major consumers at the top of the food web (predatory protists). In this study, we utilized a combination of techniques (microscopy, cell sorting, and genomic analysis) to describe the trophic abilities of Antarctic lake protists and their potential

  1. Ultrastructural and Single-Cell-Level Characterization Reveals Metabolic Versatility in a Microbial Eukaryote Community from an Ice-Covered Antarctic Lake

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Wei; Podar, Mircea; Morgan-Kiss, Rachael M.

    The McMurdo Dry Valleys (MCM) of southern Victoria Land, Antarctica, harbor numerous ice-covered bodies of water that provide year-round liquid water oases for isolated food webs dominated by the microbial loop. Single-cell microbial eukaryotes (protists) occupy major trophic positions within this truncated food web, ranging from primary producers (e.g., chlorophytes, haptophytes, and cryptophytes) to tertiary predators (e.g., ciliates, dinoflagellates, and choanoflagellates). To advance the understanding of MCM protist ecology and the roles of MCM protists in nutrient and energy cycling, we investigated potential metabolic strategies and microbial interactions of key MCM protists isolated from a well-described lake (Lake Bonney). Fluorescence-activatedmore » cell sorting (FACS) of enrichment cultures, combined with single amplified genome/amplicon sequencing and fluorescence microscopy, revealed that MCM protists possess diverse potential metabolic capabilities and interactions. Two metabolically distinct bacterial clades (FlavobacteriaandMethylobacteriaceae) were independently associated with two key MCM lake microalgae (IsochrysisandChlamydomonas, respectively). We also report on the discovery of two heterotrophic nanoflagellates belonging to the Stramenopila supergroup, one of which lives as a parasite ofChlamydomonas, a dominate primary producer in the shallow, nutrient-poor layers of the lake. Single-cell eukaryotes called protists play critical roles in the cycling of organic matter in aquatic environments. In the ice-covered lakes of Antarctica, protists play key roles in the aquatic food web, providing the majority of organic carbon to the rest of the food web (photosynthetic protists) and acting as the major consumers at the top of the food web (predatory protists). In this study, we utilized a combination of techniques (microscopy, cell sorting, and genomic analysis) to describe the trophic abilities of Antarctic lake protists and their potential

  2. Ultrastructural and Single-Cell-Level Characterization Reveals Metabolic Versatility in a Microbial Eukaryote Community from an Ice-Covered Antarctic Lake

    DOE PAGES

    Li, Wei; Podar, Mircea; Morgan-Kiss, Rachael M.

    2016-04-15

    The McMurdo Dry Valleys (MCM) of southern Victoria Land, Antarctica, harbor numerous ice-covered bodies of water that provide year-round liquid water oases for isolated food webs dominated by the microbial loop. Single-cell microbial eukaryotes (protists) occupy major trophic positions within this truncated food web, ranging from primary producers (e.g., chlorophytes, haptophytes, and cryptophytes) to tertiary predators (e.g., ciliates, dinoflagellates, and choanoflagellates). To advance the understanding of MCM protist ecology and the roles of MCM protists in nutrient and energy cycling, we investigated potential metabolic strategies and microbial interactions of key MCM protists isolated from a well-described lake (Lake Bonney). Fluorescence-activatedmore » cell sorting (FACS) of enrichment cultures, combined with single amplified genome/amplicon sequencing and fluorescence microscopy, revealed that MCM protists possess diverse potential metabolic capabilities and interactions. Two metabolically distinct bacterial clades (FlavobacteriaandMethylobacteriaceae) were independently associated with two key MCM lake microalgae (IsochrysisandChlamydomonas, respectively). We also report on the discovery of two heterotrophic nanoflagellates belonging to the Stramenopila supergroup, one of which lives as a parasite ofChlamydomonas, a dominate primary producer in the shallow, nutrient-poor layers of the lake. Single-cell eukaryotes called protists play critical roles in the cycling of organic matter in aquatic environments. In the ice-covered lakes of Antarctica, protists play key roles in the aquatic food web, providing the majority of organic carbon to the rest of the food web (photosynthetic protists) and acting as the major consumers at the top of the food web (predatory protists). In this study, we utilized a combination of techniques (microscopy, cell sorting, and genomic analysis) to describe the trophic abilities of Antarctic lake protists and their potential

  3. Quantification of Carbon and Phosphorus Co-Limitation in Bacterioplankton: New Insights on an Old Topic

    PubMed Central

    Dorado-García, Irene; Medina-Sánchez, Juan Manuel; Herrera, Guillermo; Cabrerizo, Marco J.; Carrillo, Presentación

    2014-01-01

    Because the nature of the main resource that limits bacterioplankton (e.g. organic carbon [C] or phosphorus [P]) has biogeochemical implications concerning organic C accumulation in freshwater ecosystems, empirical knowledge is needed concerning how bacteria respond to these two resources, available alone or together. We performed field experiments of resource manipulation (2×2 factorial design, with the addition of C, P, or both combined) in two Mediterranean freshwater ecosystems with contrasting trophic states (oligotrophy vs. eutrophy) and trophic natures (autotrophy vs. heterotrophy, measured as gross primary production:respiration ratio). Overall, the two resources synergistically co-limited bacterioplankton, i.e. the magnitude of the response of bacterial production and abundance to the two resources combined was higher than the additive response in both ecosystems. However, bacteria also responded positively to single P and C additions in the eutrophic ecosystem, but not to single C in the oligotrophic one, consistent with the value of the ratio between bacterial C demand and algal C supply. Accordingly, the trophic nature rather than the trophic state of the ecosystems proves to be a key feature determining the expected types of resource co-limitation of bacteria, as summarized in a proposed theoretical framework. The actual types of co-limitation shifted over time and partially deviated (a lesser degree of synergism) from the theoretical expectations, particularly in the eutrophic ecosystem. These deviations may be explained by extrinsic ecological forces to physiological limitations of bacteria, such as predation, whose role in our experiments is supported by the relationship between the dynamics of bacteria and bacterivores tested by SEMs (structural equation models). Our study, in line with the increasingly recognized role of freshwater ecosystems in the global C cycle, suggests that further attention should be focussed on the biotic interactions that

  4. Drivers of coastal bacterioplankton community diversity and structure along a nutrient gradient in the East China Sea

    NASA Astrophysics Data System (ADS)

    He, Jiaying; Wang, Kai; Xiong, Jinbo; Guo, Annan; Zhang, Demin; Fei, Yuejun; Ye, Xiansen

    2017-04-01

    Anthropogenic nutrient discharge poses widespread threats to coastal ecosystems and has increased environmental gradients from coast to sea. Bacterioplankton play crucial roles in coastal biogeochemical cycling, and a variety of factors affect bacterial community diversity and structure. We used 16S rRNA gene pyrosequencing to investigate the spatial variation in bacterial community composition (BCC) across five sites on a coast-offshore gradient in the East China Sea. Overall, bacterial alpha-diversity did not differ across sites, except that richness and phylogenetic diversity were lower in the offshore sites, and the highest alpha-diversity was found in the most landward site, with Chl-a being the main factor. BCCs generally clustered into coastal and offshore groups. Chl-a explained 12.3% of the variation in BCCs, more than that explained by either the physicochemical (5.7%) or spatial (8.5%) variables. Nutrients (particularly nitrate and phosphate), along with phytoplankton abundance, were more important than other physicochemical factors, co-explaining 20.0% of the variation in BCCs. Additionally, a series of discriminant families (primarily affiliated with Gammaproteobacteria and Alphaproteobacteria), whose relative abundances correlated with Chl-a, DIN, and phosphate concentrations, were identified, implying their potential to indicate phytoplankton blooms and nutrient enrichment in this marine ecosystem. This study provides insight into bacterioplankton response patterns along a coast-offshore gradient, with phytoplankton abundance increasing in the offshore sites. Time-series sampling across multiple transects should be performed to determine the seasonal and spatial patterns in bacterial diversity and community structure along this gradient.

  5. Drivers of coastal bacterioplankton community diversity and structure along a nutrient gradient in the East China Sea

    NASA Astrophysics Data System (ADS)

    He, Jiaying; Wang, Kai; Xiong, Jinbo; Guo, Annan; Zhang, Demin; Fei, Yuejun; Ye, Xiansen

    2018-03-01

    Anthropogenic nutrient discharge poses widespread threats to coastal ecosystems and has increased environmental gradients from coast to sea. Bacterioplankton play crucial roles in coastal biogeochemical cycling, and a variety of factors affect bacterial community diversity and structure. We used 16S rRNA gene pyrosequencing to investigate the spatial variation in bacterial community composition (BCC) across five sites on a coast-offshore gradient in the East China Sea. Overall, bacterial alpha-diversity did not differ across sites, except that richness and phylogenetic diversity were lower in the offshore sites, and the highest alpha-diversity was found in the most landward site, with Chl-a being the main factor. BCCs generally clustered into coastal and offshore groups. Chl-a explained 12.3% of the variation in BCCs, more than that explained by either the physicochemical (5.7%) or spatial (8.5%) variables. Nutrients (particularly nitrate and phosphate), along with phytoplankton abundance, were more important than other physicochemical factors, co-explaining 20.0% of the variation in BCCs. Additionally, a series of discriminant families (primarily affiliated with Gammaproteobacteria and Alphaproteobacteria), whose relative abundances correlated with Chl-a, DIN, and phosphate concentrations, were identified, implying their potential to indicate phytoplankton blooms and nutrient enrichment in this marine ecosystem. This study provides insight into bacterioplankton response patterns along a coast-offshore gradient, with phytoplankton abundance increasing in the offshore sites. Time-series sampling across multiple transects should be performed to determine the seasonal and spatial patterns in bacterial diversity and community structure along this gradient.

  6. Diurnal sampling reveals significant variation in CO2 emission from a tropical productive lake.

    PubMed

    Reis, P C J; Barbosa, F A R

    2014-08-01

    It is well accepted in the literature that lakes are generally net heterotrophic and supersaturated with CO2 because they receive allochthonous carbon inputs. However, autotrophy and CO2 undersaturation may happen for at least part of the time, especially in productive lakes. Since diurnal scale is particularly important to tropical lakes dynamics, we evaluated diurnal changes in pCO2 and CO2 flux across the air-water interface in a tropical productive lake in southeastern Brazil (Lake Carioca) over two consecutive days. Both pCO2 and CO2 flux were significantly different between day (9:00 to 17:00) and night (21:00 to 5:00) confirming the importance of this scale for CO2 dynamics in tropical lakes. Net heterotrophy and CO2 outgassing from the lake were registered only at night, while significant CO2 emission did not happen during the day. Dissolved oxygen concentration and temperature trends over the diurnal cycle indicated the dependence of CO2 dynamics on lake metabolism (respiration and photosynthesis). This study indicates the importance of considering the diurnal scale when examining CO2 emissions from tropical lakes.

  7. Overdeepened glacigenic landforms in Lake Thun (Switzerland) revealed by a multichannel reflection seismic survey

    NASA Astrophysics Data System (ADS)

    Fabbri, Stefano; Herwegh, Marco; Schlunegger, Fritz; Hübscher, Christian; Weiss, Benedikt J.; Schmelzbach, Cédric; Horstmeyer, Heinrich; Buechi, Marius W.; Anselmetti, Flavio S.

    2016-04-01

    Recently acquired high-resolution multibeam bathymetry, in combination with a 2D multichannel reflection seismic campaign on perialpine Lake Thun (Switzerland) reveals new insights into the diverse geometry of the lake basin and a so far unknown subaquatic moraine crest with unprecedented clarity. These new data will improve our comprehension concerning the retreat phases of the Aare glacier, the morphology of its proximal deposits and the facies architecture of the subglacial units. The overdeepened basin of Lake Thun was formed by a combination of tectonically predefined weak zones and glacial erosion during the last glacial periods. The new data indicate that below the outermost edge of a morphologically distinct platform in the south eastern part of the lake basin, a ridge structure marked by strong reflection amplitudes occurs. This structure is interpreted as a subaquatic terminal moraine crest, most likely created by a slightly advancing or stagnant grounded Aare glacier during its major retreating phase. The terminal moraine smoothly transforms downstream into well distinguishable foresets with internally recognisable layering, which dip steeply towards the deepest part of the basin, eventually transforming into bottomsets. This depositional sequence formed by the fore- and bottomsets represents ˜50% of the overall sediment volume that fills the basin and was deposited while the glacier was stagnant, interpreted to represent a rather short period of time of a few hundreds of years. This sequence is overlain by lacustrine deposits formed by late-glacial and Holocene laminated muds comprising intercalated turbidites (Wirth et al. 2011). Little is known about the exact timing and behaviour of retreating glaciers between their recessional phase from the Alpine foreland to the deglaciation of the inner-Alpine ice cap, mostly due to the lack of well-developed moraines that indicate glacial stabilization or slight readvance. Findings from pollen analyses by

  8. Hydrogeologic Controls on Lake Level at Mountain Lake, Virginia

    NASA Astrophysics Data System (ADS)

    Roningen, J. M.; Burbey, T. J.

    2011-12-01

    Mountain Lake in Giles County, Virginia has a documented history of severe natural lake-level changes involving groundwater seepage that extend over the past 4200 years. Featured in the 1986 movie Dirty Dancing, the natural lake dried up completely in September 2008 and levels have not yet recovered. A hydrogeologic investigation was undertaken in an effort to determine the factors influencing lake level changes. A daily water balance, dipole-dipole electrical resistivity surveying, well logging and chemical sampling have shed light on: 1) the influence of a fault not previously discussed in literature regarding the lake, 2) the seasonal response to precipitation of a forested first-order drainage system in fractured rock, and 3) the possibility of flow pathways related to karst features. Geologic controls on lake level were investigated using several techniques. Geophysical surveys using dipole-dipole resistivity located possible subsurface flowpaths both to and from the lake. Well logs, lineament analysis, and joint sampling were used to assess structural controls on lake hydrology. Major ions were sampled at wells, springs, streams, and the lake to evaluate possible mixing of different sources of water in the lake. Groundwater levels were monitored for correlation to lake levels, rainfall events, and possible seismic effects. The hydrology of the lake was quantified with a water balance on a daily time step. Results from the water balance indicate steady net drainage and significant recharge when vegetation is dormant, particularly during rain-on-snow melt events. The resistivity survey reveals discrete areas that represent flow pathways from the lake, as well as flowpaths to springs upgradient of the lake located in the vicinity of the fault. The survey also suggests that some flowpaths may originate outside of the topographic watershed of the lake. Chemical evidence indicates karst may underlie the lakebed. Historical data suggest that artificial intervention

  9. Energetic differences between bacterioplankton trophic groups and coral reef resistance

    PubMed Central

    McDole Somera, Tracey; Bailey, Barbara; Barott, Katie; Grasis, Juris; Hatay, Mark; Hilton, Brett J.; Hisakawa, Nao; Nosrat, Bahador; Nulton, James; Silveira, Cynthia B.; Sullivan, Chris; Brainard, Russell E.; Rohwer, Forest

    2016-01-01

    Coral reefs are among the most productive and diverse marine ecosystems on the Earth. They are also particularly sensitive to changing energetic requirements by different trophic levels. Microbialization specifically refers to the increase in the energetic metabolic demands of microbes relative to macrobes and is significantly correlated with increasing human influence on coral reefs. In this study, metabolic theory of ecology is used to quantify the relative contributions of two broad bacterioplankton groups, autotrophs and heterotrophs, to energy flux on 27 Pacific coral reef ecosystems experiencing human impact to varying degrees. The effective activation energy required for photosynthesis is lower than the average energy of activation for the biochemical reactions of the Krebs cycle, and changes in the proportional abundance of these two groups can greatly affect rates of energy and materials cycling. We show that reef-water communities with a higher proportional abundance of microbial autotrophs expend more metabolic energy per gram of microbial biomass. Increased energy and materials flux through fast energy channels (i.e. water-column associated microbial autotrophs) may dampen the detrimental effects of increased heterotrophic loads (e.g. coral disease) on coral reef systems experiencing anthropogenic disturbance. PMID:27097927

  10. Energetic differences between bacterioplankton trophic groups and coral reef resistance.

    PubMed

    McDole Somera, Tracey; Bailey, Barbara; Barott, Katie; Grasis, Juris; Hatay, Mark; Hilton, Brett J; Hisakawa, Nao; Nosrat, Bahador; Nulton, James; Silveira, Cynthia B; Sullivan, Chris; Brainard, Russell E; Rohwer, Forest

    2016-04-27

    Coral reefs are among the most productive and diverse marine ecosystems on the Earth. They are also particularly sensitive to changing energetic requirements by different trophic levels. Microbialization specifically refers to the increase in the energetic metabolic demands of microbes relative to macrobes and is significantly correlated with increasing human influence on coral reefs. In this study, metabolic theory of ecology is used to quantify the relative contributions of two broad bacterioplankton groups, autotrophs and heterotrophs, to energy flux on 27 Pacific coral reef ecosystems experiencing human impact to varying degrees. The effective activation energy required for photosynthesis is lower than the average energy of activation for the biochemical reactions of the Krebs cycle, and changes in the proportional abundance of these two groups can greatly affect rates of energy and materials cycling. We show that reef-water communities with a higher proportional abundance of microbial autotrophs expend more metabolic energy per gram of microbial biomass. Increased energy and materials flux through fast energy channels (i.e. water-column associated microbial autotrophs) may dampen the detrimental effects of increased heterotrophic loads (e.g. coral disease) on coral reef systems experiencing anthropogenic disturbance. © 2016 The Author(s).

  11. The influence of dissolved organic carbon on bacterial phosphorus uptake and bacteria-phytoplankton dynamics in two Minnesota lakes

    USGS Publications Warehouse

    Stets, E.G.; Cotner, J.B.

    2008-01-01

    The balance of production in any ecosystem is dependent on the flow of limiting nutrients into either the autotrophic or heterotrophic components of the food web. To understand one of the important controls on the flow of inorganic nutrients between phytoplankton and bacterioplankton in lakes, we manipulated dissolved organic carbon (DOC) in two lakes of different trophic status. We hypothesized that labile DOC additions would increase bacterial phosphorus (P) uptake and decrease the response of phytoplankton to nutrient additions. Supplemental nutrients and carbon (C), nitrogen (N, 1.6 ??mol NH4Cl L-1 d-1), P (0.1 ??mol KH 2PO4 L-1 d-1), and DOC (glucose, 15 ??mol C L-1 d-1) were added twice daily to 8-liter experimental units. We tested the effect of added DOC on chlorophyll concentration, bacterial production, biomass, and P uptake using size-fractionated 33P-PO4 uptake. In the oligotrophic lake, DOC additions stimulated bacterial production and increased bacterial biomass-specific P uptake. Bacteria consumed added DOC, and chlorophyll concentrations were significantly lower in carboys receiving DOC additions. In the eutrophic lake, DOC additions had less of a stimulatory effect on bacterial production and biomass-specific P uptake. DOC accumulated over the time period, and there was little evidence for a DOC-induced decrease in phytoplankton biomass. Bacterial growth approached the calculated ??max and yet did not accumulate biomass, indicating significant biomass losses, which may have constrained bacterial DOC consumption. Excess bacterial DOC consumption in oligotrophic lakes may result in greater bacterial P affinity and enhanced nutrient uptake by the heterotrophic compartment of the food web. On the other hand, constraints on bacterial biomass accumulation in eutrophic lakes, from either viral lysis or bacterial grazing, can allow labile DOC to accumulate, thereby negating the effect of excess DOC on the planktonic food web. ?? 2008, by the American

  12. Long-term citizen-collected data reveal geographical patterns and temporal trends in lake water clarity

    USGS Publications Warehouse

    Lottig, Noah R.; Wagner, Tyler; Henry, Emily N.; Cheruvelil, Kendra Spence; Webster, Katherine E.; Downing, John A.; Stow, Craig A.

    2014-01-01

    We compiled a lake-water clarity database using publically available, citizen volunteer observations made between 1938 and 2012 across eight states in the Upper Midwest, USA. Our objectives were to determine (1) whether temporal trends in lake-water clarity existed across this large geographic area and (2) whether trends were related to the lake-specific characteristics of latitude, lake size, or time period the lake was monitored. Our database consisted of >140,000 individual Secchi observations from 3,251 lakes that we summarized per lake-year, resulting in 21,020 summer averages. Using Bayesian hierarchical modeling, we found approximately a 1% per year increase in water clarity (quantified as Secchi depth) for the entire population of lakes. On an individual lake basis, 7% of lakes showed increased water clarity and 4% showed decreased clarity. Trend direction and strength were related to latitude and median sample date. Lakes in the southern part of our study-region had lower average annual summer water clarity, more negative long-term trends, and greater inter-annual variability in water clarity compared to northern lakes. Increasing trends were strongest for lakes with median sample dates earlier in the period of record (1938–2012). Our ability to identify specific mechanisms for these trends is currently hampered by the lack of a large, multi-thematic database of variables that drive water clarity (e.g., climate, land use/cover). Our results demonstrate, however, that citizen science can provide the critical monitoring data needed to address environmental questions at large spatial and long temporal scales. Collaborations among citizens, research scientists, and government agencies may be important for developing the data sources and analytical tools necessary to move toward an understanding of the factors influencing macro-scale patterns such as those shown here for lake water clarity.

  13. Long-Term Citizen-Collected Data Reveal Geographical Patterns and Temporal Trends in Lake Water Clarity

    PubMed Central

    Lottig, Noah R.; Wagner, Tyler; Norton Henry, Emily; Spence Cheruvelil, Kendra; Webster, Katherine E.; Downing, John A.; Stow, Craig A.

    2014-01-01

    We compiled a lake-water clarity database using publically available, citizen volunteer observations made between 1938 and 2012 across eight states in the Upper Midwest, USA. Our objectives were to determine (1) whether temporal trends in lake-water clarity existed across this large geographic area and (2) whether trends were related to the lake-specific characteristics of latitude, lake size, or time period the lake was monitored. Our database consisted of >140,000 individual Secchi observations from 3,251 lakes that we summarized per lake-year, resulting in 21,020 summer averages. Using Bayesian hierarchical modeling, we found approximately a 1% per year increase in water clarity (quantified as Secchi depth) for the entire population of lakes. On an individual lake basis, 7% of lakes showed increased water clarity and 4% showed decreased clarity. Trend direction and strength were related to latitude and median sample date. Lakes in the southern part of our study-region had lower average annual summer water clarity, more negative long-term trends, and greater inter-annual variability in water clarity compared to northern lakes. Increasing trends were strongest for lakes with median sample dates earlier in the period of record (1938–2012). Our ability to identify specific mechanisms for these trends is currently hampered by the lack of a large, multi-thematic database of variables that drive water clarity (e.g., climate, land use/cover). Our results demonstrate, however, that citizen science can provide the critical monitoring data needed to address environmental questions at large spatial and long temporal scales. Collaborations among citizens, research scientists, and government agencies may be important for developing the data sources and analytical tools necessary to move toward an understanding of the factors influencing macro-scale patterns such as those shown here for lake water clarity. PMID:24788722

  14. Basin-floor Lake Bonneville stratigraphic section as revealed in paleoseismic trenches at the Baileys Lake site, West Valley fault zone, Utah

    USGS Publications Warehouse

    Hylland, Michael D.; DuRoss, Christopher B.; McDonald, Greg N.; Olig, Susan S.; Oviatt, Charles G.; Mahan, Shannon; Crone, Anthony J.; Personius, Stephen

    2012-01-01

     Recent paleoseismic trenching on the Granger fault of the West Valley fault zone in Salt Lake County, Utah, exposed a nearly complete section of late Pleistocene Lake Bonneville deposits, and highlights challenges related to accurate interpretation of basin-floor stratigraphy in the absence of numerical age constraints. We used radiocarbon and luminescence dating as well as ostracode biostratigraphy to provide chronostratigraphic control on the Lake Bonneville section exposed at the Baileys Lake trench site. The fault trenches exposed folded and faulted pre- to post- Bonneville sediments, including about 0.7 m of pre-Bonneville wetland/fluvial-marsh deposits, a nearly complete Bonneville section 2.5–4.0 m thick, and 0.4–1.0 m of post-Bonneville deposits consisting primarily of loess with minor scarp-derived colluvium. The relatively thin Bonneville section compares favorably with basin-floor Bonneville sections documented in boreholes and seismic reflection profiles beneath Great Salt Lake. Distinctive features of the Bonneville section at the Baileys Lake site include a sequence of turbidites in the upper part of the Bonneville transgressive deposits, evidence for an earthquake during Provo-shoreline time that disturbed lake-bottom sediments and destroyed any stratigraphic signature of the Bonneville Flood, tufa deposition associated with Gilbert-phase shoreline transgression, and stratigraphic evidence for two Gilbert transgressions across the site.

  15. Delineation of sympatric morphotypes of lake trout in Lake Superior

    USGS Publications Warehouse

    Moore, Seth A.; Bronte, Charles R.

    2001-01-01

    Three morphotypes of lake trout Salvelinus namaycush are recognized in Lake Superior: lean, siscowet, and humper. Absolute morphotype assignment can be difficult. We used a size-free, whole-body morphometric analysis (truss protocol) to determine whether differences in body shape existed among lake trout morphotypes. Our results showed discrimination where traditional morphometric characters and meristic measurements failed to detect differences. Principal components analysis revealed some separation of all three morphotypes based on head and caudal peduncle shape, but it also indicated considerable overlap in score values. Humper lake trout have smaller caudal peduncle widths to head length and depth characters than do lean or siscowet lake trout. Lean lake trout had larger head measures to caudal widths, whereas siscowet had higher caudal peduncle to head measures. Backward stepwise discriminant function analysis retained two head measures, three midbody measures, and four caudal peduncle measures; correct classification rates when using these variables were 83% for leans, 80% for siscowets, and 83% for humpers, which suggests the measures we used for initial classification were consistent. Although clear ecological reasons for these differences are not readily apparent, patterns in misclassification rates may be consistent with evolutionary hypotheses for lake trout within the Laurentian Great Lakes.

  16. Genetic variability among lake whitefish from Isle Royale and the Upper Great Lakes

    USGS Publications Warehouse

    Stott, Wendylee; Todd, Thomas N.; Kallemeyn, Larry

    2004-01-01

    The coregonine fishes from Isle Royale National Park represent a unique group that has escaped the successional changes observed elsewhere in North America. Analysis of microsatellite DNA loci revealed significant genetic differences among samples of lake whitefish (Coregonus clupeaformis) from Isle Royale, Lake Superior, and Lake Huron. The amount of genetic variation observed is consistent with that seen in other studies of whitefishes from North America. The lake whitefish from Isle Royale had previously been assigned sub-species status, but no evidence was found to support this. The effects of common ancestry and demographics both play a role in determining the relatedness of the populations. As with other fish species from Isle Royale and the upper Great Lakes, the lake whitefish have their origins in the Mississippi refugium.

  17. Lake water quality mapping from LANDSAT

    NASA Technical Reports Server (NTRS)

    Scherz, J. P.

    1977-01-01

    The lakes in three LANDSAT scenes were mapped by the Bendix MDAS multispectral analysis system. Field checking the maps by three separate individuals revealed approximately 90-95% correct classification for the lake categories selected. Variations between observers was about 5%. From the MDAS color coded maps the lake with the worst algae problem was easily located. This lake was closely checked and a pollution source of 100 cows was found in the springs which fed this lake. The theory, lab work and field work which made it possible for this demonstration project to be a practical lake classification procedure are presented.

  18. Assessing Climate Change Within Lake Champlain

    NASA Astrophysics Data System (ADS)

    Leibensperger, E. M.; Pierce, W.; Mihuc, T.; Myers, L.

    2016-12-01

    Lake Champlain is experiencing environmental stresses that have caused statistically significant biological, chemical, and physical trends. Such trends have already impacted management strategies within the Lake Champlain basin, which lies within the states of New York and Vermont and province of Quebec. A long-term monitoring program initiated in 1992 has revealed warming of upwards of 0.7°C per decade within certain regions of the lake; much faster than observed local atmospheric warming. Here we analyze the observed lake warming in the context of atmospheric variability and assess its uncertainty given monitoring frequency (biweekly to monthly), variable seasonal and hourly observation timing, and synoptic variability of lake dynamics. To address these issues, we use observations from a June-October 2016 deployment of a data buoy on Lake Champlain containing a 1-meter spaced thermistor chain and surface weather station. These new observations, and reanalysis of intensive monitoring during a campaign in 1993, indicate that synoptic variability of lake thermal structure lowers confidence in trends derived from infrequent observations. However, principal component analysis of lake thermal structure reveals two primary modes of variability that are predictable from atmospheric conditions, presenting an opportunity to improve interpretation of existing and future observations.

  19. Coherent monsoonal changes in the northern tropics revealed by Chadian lakes (L. Chad and Yoa) sedimentary archives during the African Humid Period

    NASA Astrophysics Data System (ADS)

    Sylvestre, Florence; Kroepelin, Stefan; Pierre, Deschamps; Christine, Cocquyt; Nicolas, Waldmann; Kazuyo, Tachikawa; Amaral Paula, Do; Doriane, Delanghe; Guillaume, Jouve; Edouard, Bard; Camille, Bouchez; Jean-Claude, Doumnang; Jean-Charles, Mazur; Martin, Melles; Guillemette, Menot; Frauke, Rostek; Nicolas, Thouveny; Volkner, Wennrich

    2016-04-01

    In northern African tropics, it is now well established that the Last Glacial Maximum (LGM) was extremely dry followed by a wetter Holocene. Numerous palaeolake records reveal a fairly consistent pattern of a moister early Holocene resulting in a green Sahara followed by the onset of aridification about 4000 years ago. These palaeoenvironmental conditions are deciphered from several continental records distributed over the sub-Saharan zone and including diverse environments. However, pronounced differences in the timing and amplitude of these moisture changes inferred from sedimentary records point to both regional climatic variability change and site-specific influences of local topographic-hydrogeological factors which biased the evolution of water balance reconstructed from individual lacustrine archives. Here we present hydrological reconstructions from Chadian lakes, i.e. Lake Chad (c. 13°N) and Lake Yoa (19°N). Because of their location, both records allow to reconstruct lake level fluctuations and environmental changes according to a gradient from Sahelian to Saharan latitudes. Whereas Lake Chad is considered as a good sensor of climatic changes because of its large drainage basin covering 610,000 km2 in the Sudanian belt, Lake Yoa logs the northern precipitation changes in the Sahara. Combining sedimentological (laser diffraction grain size) and geochemical (XRF analysis) data associated with bio-indicators proxies (diatoms, pollen), we compare lake-level fluctuations and environmental changes during the last 12,000 years. After the hyperarid Last Glacial Maximum period during which dunes covered the Lake Chad basin, both lake records indicate an onset of more humid conditions between 12.5-11 ka cal BP. These resulted in lacustrine transgressions approaching their maximum extension at c. 10.5 ka cal BP. The lacustrine phase was probably interrupted by a relatively short drying event occurring around 8.2 ka cal BP which is well-defined in Lake Yoa by

  20. Lake trout spawning habitat in the Six Fathom Bank-Yankee Reef lake trout sanctuary, Lake Huron

    USGS Publications Warehouse

    Edsall, Thomas A.; Brown, Charles L.; Kennedy, Gregory W.; Poe, Thomas P.

    1992-01-01

    Attempts to reestablish self-sustaining stocks of lake trout (Salvelinus namaycush) in the lower four Great Lakes, where the species was extinguished in the 1950s and 1960s, have been largely unsuccessful. To avoid many of the problems believed to be contributing to this failure, the fishery management community recently established several sanctuaries in the offshore waters of the Great Lakes where the development and protection of self-sustaining stocks of lake trout would be a primary management objective. One of these, the Six Fathom Bank-Yankee Reef sanctuary, was created in the south-central portion of Lake Huron. This sanctuary covers 168,000 ha and includes the shallower portions of the Six Fathom and Ipperwash scarps, which are major bathymetric features in the southern half of the lake. Historical accounts describe Six Fathom Bank as the most important lake trout spawning ground in the lake. Here we present the results of lake bed surveys conducted in the sanctuary with side-scan sonar, underwater videocamera systems, and a small research submarine. Our observations of the lake bed are consistent with what is known of the bedrock stratigraphy, glacial history, and karst geomorphology of the Lake Huron basin. Most of the loose rock we found seemed to be derived from local carbonate bedrock formations, although non-carbonate rock probably from Precambrian sources to the north was also present in some areas. Much of the bedrock and loose rock displayed karst solution features described for the Bruce Peninsula on the Ontario shoreline. Our surveys revealed substantial areas of lake bed at water depths of 20–36 m that resembled suitable spawning and fry production habitat for the shallow-water strains of lake trout that are the focus of the rehabilitation effort. Low mid-lake nutrient levels documented recently by others and the extremely high abundance of Mysis relicta (an important item in the diet of young lake trout) that we documented on Yankee Reef

  1. Temporal and vertical distributions of bacterioplankton at the Gray's Reef National Marine Sanctuary.

    PubMed

    Lu, Xinxin; Sun, Shulei; Zhang, Yu-Qin; Hollibaugh, James T; Mou, Xiaozhen

    2015-02-01

    Large spatial scales and long-term shifts of bacterial community composition (BCC) in the open ocean can often be reliably predicted based on the dynamics of physical-chemical variables. The power of abiotic factors in shaping BCC on shorter time scales in shallow estuarine mixing zones is less clear. We examined the diurnal variation in BCC at different water depths in the spring and fall of 2011 at a station in the Gray's Reef National Marine Sanctuary (GRNMS). This site is located in the transition zone between the estuarine plume and continental shelf waters of the South Atlantic Bight. A total of 234,516 pyrotag sequences of bacterial 16S rRNA genes were recovered; they were taxonomically affiliated with >200 families of 23 bacterial phyla. Nonmetric multidimensional scaling analysis revealed significant differences in BCC between spring and fall samples, likely due to seasonality in the concentrations of dissolved organic carbon and nitrate plus nitrite. Within each diurnal sampling, BCC differed significantly by depth only in the spring and differed significantly between day and night only in the fall. The former variation largely tracked changes in light availability, while the latter was most correlated with concentrations of polyamines and chlorophyll a. Our results suggest that at the GRNMS, a coastal mixing zone, diurnal variation in BCC is attributable to the mixing of local and imported bacterioplankton rather than to bacterial growth in response to environmental changes. Our results also indicate that, like members of the Roseobacter clade, SAR11 bacteria may play an important role in processing dissolved organic material in coastal oceans. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  2. Using Satellite Imagery to Monitor the Major Lakes; Case Study Lake Hamun

    NASA Astrophysics Data System (ADS)

    Norouzi, H.; Islam, R.; Bah, A.; AghaKouchak, A.

    2015-12-01

    Proper lakes function can ease the impact of floods and drought especially in arid and semi-arid regions. They are important environmentally and can directly affect human lives. Better understanding of the effect of climate change and human-driven changes on lakes would provide invaluable information for policy-makers and local people. As part of a comprehensive study, we aim to monitor the land-cover/ land-use changes in the world's major lakes using satellite observations. As a case study, Hamun Lake which is a pluvial Lake, also known as shallow Lake, located on the south-east of Iran and adjacent to Afghanistan, and Pakistan borders is investigated. The Lake is the main source of resources (agriculture, fishing and hunting) for the people around it and politically important in the region since it is shared among three different countries. The purpose of the research is to find the Lake's area from 1972 to 2015 and to see if any drought or water resources management has affected the lake. Analyzing satellites imagery from Landsat shows that the area of the Lake changes seasonally and intra-annually. Significant seasonal effects are found in 1975,1977, 1987, 1993, 1996, 1998, 2000, 2009 and 2011, as well as, substantial amount of shallow water is found throughout the years. The precipitation records as well as drought historical records are studied for the lake's basin. Meteorological studies suggest that the drought, decrease of rainfalls in the province and the improper management of the Lake have caused environmental, economic and geographical consequences. The results reveal that lake has experienced at least two prolong dryings since 1972 which drought cannot solely be blamed as main forcing factor.Proper lakes function can ease the impact of floods and drought especially in arid and semi-arid regions. They are important environmentally and can directly affect human lives. Better understanding of the effect of climate change and human-driven changes on lakes

  3. Characterization of Lake Michigan coastal lakes using zooplankton assemblages

    USGS Publications Warehouse

    Whitman, Richard L.; Nevers, Meredith B.; Goodrich, Maria L.; Murphy, Paul C.; Davis, Bruce M.

    2004-01-01

    Zooplankton assemblages and water quality were examined bi-weekly from 17 April to 19 October 1998 in 11 northeastern Lake Michigan coastal lakes of similar origin but varied in trophic status and limnological condition. All lakes were within or adjacent to Sleeping Bear Dunes National Lakeshore, Michigan. Zooplankton (principally microcrustaceans and rotifers) from triplicate Wisconsin net (80 I?m) vertical tows taken at each lake's deepest location were analyzed. Oxygen-temperature-pH-specific conductivity profiles and surface water quality were concurrently measured. Bray-Curtis similarity analysis showed small variations among sample replicates but large temporal differences. The potential use of zooplankton communities for environmental lake comparisons was evaluated by means of BIOENV (Primer 5.1) and principal component analyses. Zooplankton analyzed at the lowest identified taxonomic level yielded greatest sensitivity to limnological variation. Taxonomic and ecological aggregations of zooplankton data performed comparably, but less well than the finest taxonomic analysis. Secchi depth, chlorophyll a, and sulfate concentrations combined to give the best correlation with patterns of variation in the zooplankton data set. Principal component analysis of these variables revealed trophic status as the most influential major limnological gradient among the study lakes. Overall, zooplankton abundance was an excellent indicator of variation in trophic status.

  4. Population-structure and genetic diversity in a haplochromine cichlid fish [corrected] of a satellite lake of Lake Victoria.

    PubMed

    Abila, Romulus; Barluenga, Marta; Engelken, Johannes; Meyer, Axel; Salzburger, Walter

    2004-09-01

    The approximately 500 species of the cichlid fish species flock of Lake Victoria, East Africa, have evolved in a record-setting 100,000 years and represent one of the largest adaptive radiations. We examined the population structure of the endangered cichlid species Xystichromis phytophagus from Lake Kanyaboli, a satellite lake to Lake Victoria in the Kenyan Yala wetlands. Two sets of molecular markers were analysed--sequences of the mitochondrial control region as well as six microsatellite loci--and revealed surprisingly high levels of genetic variability in this species. Mitochondrial DNA sequences failed to detect population structuring among the three sample populations. A model-based population assignment test based on microsatellite data revealed that the three populations most probably aggregate into a larger panmictic population. However, values of population pairwise FST indicated moderate levels of genetic differentiation for one population. Eleven distinct mitochondrial haplotypes were found among 205 specimens of X. phytophagus, a relatively high number compared to the total number of 54 haplotypes that were recovered from hundreds of specimens of the entire cichlid species flock of Lake Victoria. Most of the X. phytophagus mitochondrial DNA haplotypes were absent from the main Lake Victoria, corroborating the putative importance of satellite lakes as refugia for haplochromine cichlids that went extinct from the main lake in the last decades and possibly during the Late Pleistocene desiccation of Lake Victoria.

  5. Influence of salinity on bacterioplankton communities from the Brazilian rain forest to the coastal Atlantic Ocean.

    PubMed

    Silveira, Cynthia B; Vieira, Ricardo P; Cardoso, Alexander M; Paranhos, Rodolfo; Albano, Rodolpho M; Martins, Orlando B

    2011-03-09

    Planktonic bacteria are recognized as important drivers of biogeochemical processes in all aquatic ecosystems, however, the taxa that make up these communities are poorly known. The aim of this study was to investigate bacterial communities in aquatic ecosystems at Ilha Grande, Rio de Janeiro, Brazil, a preserved insular environment of the Atlantic rain forest and how they correlate with a salinity gradient going from terrestrial aquatic habitats to the coastal Atlantic Ocean. We analyzed chemical and microbiological parameters of water samples and constructed 16S rRNA gene libraries of free living bacteria obtained at three marine (two coastal and one offshore) and three freshwater (water spring, river, and mangrove) environments. A total of 836 sequences were analyzed by MOTHUR, yielding 269 freshwater and 219 marine operational taxonomic units (OTUs) grouped at 97% stringency. Richness and diversity indexes indicated that freshwater environments were the most diverse, especially the water spring. The main bacterial group in freshwater environments was Betaproteobacteria (43.5%), whereas Cyanobacteria (30.5%), Alphaproteobacteria (25.5%), and Gammaproteobacteria (26.3%) dominated the marine ones. Venn diagram showed no overlap between marine and freshwater OTUs at 97% stringency. LIBSHUFF statistics and PCA analysis revealed marked differences between the freshwater and marine libraries suggesting the importance of salinity as a driver of community composition in this habitat. The phylogenetic analysis of marine and freshwater libraries showed that the differences in community composition are consistent. Our data supports the notion that a divergent evolutionary scenario is driving community composition in the studied habitats. This work also improves the comprehension of microbial community dynamics in tropical waters and how they are structured in relation to physicochemical parameters. Furthermore, this paper reveals for the first time the pristine

  6. Influence of Salinity on Bacterioplankton Communities from the Brazilian Rain Forest to the Coastal Atlantic Ocean

    PubMed Central

    Silveira, Cynthia B.; Vieira, Ricardo P.; Cardoso, Alexander M.; Paranhos, Rodolfo; Albano, Rodolpho M.; Martins, Orlando B.

    2011-01-01

    . Furthermore, this paper reveals for the first time the pristine bacterioplankton communities in a tropical island at the South Atlantic Ocean. PMID:21408023

  7. Patterns of organochlorine contamination in lake trout from Wisconsin waters of the Great Lakes

    USGS Publications Warehouse

    Miller, Michael A.; Madenjian, Charles P.; Masnado, Robert G.

    1992-01-01

    To investigate spatial and temporal patterns of organochlorine contamination in lake trout from Wisconsin waters of the Great Lakes, we examined laboratory contaminant analysis data of muscle tissue samples from Lake Michigan (n=317) and Lake Superior (n=53) fish. Concentrations of polychlorinated biphenyls (PCBs), chlordane, and dieldrin, reported as mg/kg wet weight in 620 mm to 640 mm mean length Lake Michigan lake trout, decreased over time. Mean total PCB concentration declined exponentially from 9.7 in 1975 to 1.9 in 1990. Total chlordane concentration declined 63 percent from 0.48 in 1983 to 0.18 in 1990, and dieldrin declined 52 percent during this same period, from 0.21 to 0.10. The bioaccumulation rate of PCBs is significantly lower for lake trout inhabiting Lake Michigan's midlake reef complex, compared to lake trout from the nearshore waters of western Lake Michigan. Organochlorine compound concentrations were greater in Lake Michigan lake trout than Lake Superior fish. Lake Superior lean lake trout and siscowet exhibited similar rates of PCB bioaccumulation despite major differneces in muscle tissue lipid content between the two subspecies. The lack of a significant difference in the PCB bioaccumulation rates of lean trout and siscowet suggests that lipid content may not be an important factor influencing PCB bioaccumulation in lake trout, within the range of lipid concentrations observed. Relative concentrations of the various organochlorine contaminants found in lake trout were highly correlated, suggesting similar mass balance processes for these compounds. Evidence presented revealing spatial and temporal patterns of organochlorine contamination may be of value in reestablishing self-sustaining populations of lake trout in Lake Michigan.

  8. Eurytemora carolleeae in the Laurentian Great Lakes revealed by phylogenetic and morphological analysis

    USGS Publications Warehouse

    Vasquez, Adrian A.; Hudson, Patrick L.; Fujimoto, Masanori; Keeler, Kevin M.; Armenio, Patricia M.; Ram, Jeffrey L.

    2016-01-01

    In the Laurentian Great Lakes, specimens of Eurytemora have been reported asEurytemora affinis since its invasion in the late 1950s. During an intensive collection of aquatic invertebrates for morphological and molecular identification in Western Lake Erie in 2012-2013, several specimens of Eurytemora were collected. Analysis of these specimens identified them as the recently described species Eurytemora carolleeaeAlekseev and Souissi 2011. This result led us to assess E. carolleeae’s identifying features, geographic distribution and historical presence in the Laurentian Great Lakes in view of its recent description in 2011. Cytochrome oxidase I (COI) DNA sequences ofEurytemora specimens were identified as closer (2 - 4% different) to recently describedE. carolleeae than to most E. affinis sequences (14% different). Eurytemora from other areas of the Great Lakes and from North American rivers as far west as South Dakota (Missouri River) and east to Delaware (Christina River) also keyed to E. carolleeae. Morphological analysis of archival specimens from 1962 and from all the Great Lakes was identified as E. carolleeae. Additionally, Eurytemora drawings in previous publications were reassessed to determine if the species was E. carolleeae and are reported here. Additional morphological characters that may distinguish North AmericanE. carolleeae from other taxa are also described. We conclude that E. carolleeae is the correct name for the species of Eurytemora that has inhabited the Great Lakes since its invasion, as established by both morphological and COI sequence comparisons to reference keys and sequence databases in present and archival specimens.

  9. Fat content of the flesh of siscowets and lake trout from Lake Superior

    USGS Publications Warehouse

    Eschmeyer, Paul H.; Phillips, Arthur M.

    1965-01-01

    Samples of flesh were excised from the middorsal region of 67 siscowets (Salvelinus namaycush siscowet) and 46 lake trout (Salvelinus n. namaycush) collected from Lake Superior. Chemical analysis of the samples revealed a range in fat content (dry weight) of 32.5 to 88.8 per cent in siscowets and 6.6 to 52.3 per cent in lake trout. Percentage fat increased progressively with increase in length of fish in both forms, but the average rate of increase was far greater for siscowets than for lake trout at lengths between 12 and 20 inches. Despite substantial individual variation, the percentage fat in the two forms was widely different and without overlap at all comparable lengths. The range in iodine number of the fat was 100 to 160 for siscowets and 103 to 161 for lake trout; average values were generally lower for siscowets than for lake trout among fish of comparable length. Percentage fat and relative weight were not correlated significantly in either subspecies. The fat content of flesh samples from a distinctive subpopulation of Lake Superior lake trout known as 'humpers' was more closely similar to that of typical lean lake trout than to siscowets, but the rate of increase in fat with increasing length was greater than for lean lake trout. Flesh samples from hatchery-reared stocks of lake trout, hybrid lake trout X siscowets, and siscowets tended to support the view that the wide difference in fat content between siscowets and lake trout is genetically determined.

  10. Seasonal and spatial community dynamics in the meromictic Lake Cadagno.

    PubMed

    Bosshard, P P; Stettler, R; Bachofen, R

    2000-09-01

    The seasonal and spatial variations in the community structure of bacterioplankton in the meromictic alpine Lake Cadagno were examined by temporal temperature gradient gel electrophoresis (TTGE) of PCR-amplified 16S rDNA fragments. Two different amplifications were performed, one specific for the domain Bacteria (Escherichia coli positions 8-536) and another specific for the family Chromatiaceae (E. coli positions 8-1005). The latter was followed by semi-nested reamplification with the bacterial primer set, allowing comparison of the two PCR approaches by TTGE. The TTGE patterns of samples from the chemocline and the anoxic monimolimnion were essentially identical, whereas the oxic mixolimnion displayed distinctively different banding patterns. For samples from the chemocline and the monimolimnion, dominant bands in the Bacteria-specific TTGE profiles comigrated with bands obtained by the semi-nested PCR approach specific for Chromatiaceae. This observation suggested that Chromatiaceae are in high abundance in the anoxic water layer. All dominant bands were excised and sequenced. Changes in the community structure, as indicated by changes in the TTGE profiles, were observed in samples taken at different times of the year. In the chemocline, Chomatium okenii was dominant in the summer months, whereas Amoebobacter purpureus populations dominated in autumn and winter. This change was confirmed by fluorescent in situ hybridization.

  11. The Pattern of Change in the Abundances of Specific Bacterioplankton Groups Is Consistent across Different Nutrient-Enriched Habitats in Crete

    PubMed Central

    Fodelianakis, Stilianos; Papageorgiou, Nafsika; Pitta, Paraskevi; Kasapidis, Panagiotis; Karakassis, Ioannis

    2014-01-01

    A common source of disturbance for coastal aquatic habitats is nutrient enrichment through anthropogenic activities. Although the water column bacterioplankton communities in these environments have been characterized in some cases, changes in α-diversity and/or the abundances of specific taxonomic groups across enriched habitats remain unclear. Here, we investigated the bacterial community changes at three different nutrient-enriched and adjacent undisturbed habitats along the north coast of Crete, Greece: a fish farm, a closed bay within a town with low water renewal rates, and a city port where the level of nutrient enrichment and the trophic status of the habitat were different. Even though changes in α-diversity were different at each site, we observed across the sites a common change pattern accounting for most of the community variation for five of the most abundant bacterial groups: a decrease in the abundance of the Pelagibacteraceae and SAR86 and an increase in the abundance of the Alteromonadaceae, Rhodobacteraceae, and Cryomorphaceae in the impacted sites. The abundances of the groups that increased and decreased in the impacted sites were significantly correlated (positively and negatively, respectively) with the total heterotrophic bacterial counts and the concentrations of dissolved organic carbon and/or dissolved nitrogen and chlorophyll α, indicating that the common change pattern was associated with nutrient enrichment. Our results provide an in situ indication concerning the association of specific bacterioplankton groups with nutrient enrichment. These groups could potentially be used as indicators for nutrient enrichment if the pattern is confirmed over a broader spatial and temporal scale by future studies. PMID:24747897

  12. Lake-level frequency analysis for Devils Lake, North Dakota

    USGS Publications Warehouse

    Wiche, Gregg J.; Vecchia, Aldo V.

    1996-01-01

    Two approaches were used to estimate future lake-level probabilities for Devils Lake. The first approach is based on an annual lake-volume model, and the second approach is based on a statistical water mass-balance model that generates seasonal lake volumes on the basis of seasonal precipitation, evaporation, and inflow. Autoregressive moving average models were used to model the annual mean lake volume and the difference between the annual maximum lake volume and the annual mean lake volume. Residuals from both models were determined to be uncorrelated with zero mean and constant variance. However, a nonlinear relation between the residuals of the two models was included in the final annual lakevolume model.Because of high autocorrelation in the annual lake levels of Devils Lake, the annual lake-volume model was verified using annual lake-level changes. The annual lake-volume model closely reproduced the statistics of the recorded lake-level changes for 1901-93 except for the skewness coefficient. However, the model output is less skewed than the data indicate because of some unrealistically large lake-level declines. The statistical water mass-balance model requires as inputs seasonal precipitation, evaporation, and inflow data for Devils Lake. Analysis of annual precipitation, evaporation, and inflow data for 1950-93 revealed no significant trends or long-range dependence so the input time series were assumed to be stationary and short-range dependent.Normality transformations were used to approximately maintain the marginal probability distributions; and a multivariate, periodic autoregressive model was used to reproduce the correlation structure. Each of the coefficients in the model is significantly different from zero at the 5-percent significance level. Coefficients relating spring inflow from one year to spring and fall inflows from the previous year had the largest effect on the lake-level frequency analysis.Inclusion of parameter uncertainty in the model

  13. Lake-level frequency analysis for Devils Lake, North Dakota

    USGS Publications Warehouse

    Wiche, Gregg J.; Vecchia, Aldo V.

    1995-01-01

    Two approaches were used to estimate future lake-level probabilities for Devils Lake. The first approach is based on an annual lake-volume model, and the second approach is based on a statistical water mass-balance model that generates seasonal lake volumes on the basis of seasonal precipitation, evaporation, and inflow.Autoregressive moving average models were used to model the annual mean lake volume and the difference between the annual maximum lake volume and the annual mean lake volume. Residuals from both models were determined to be uncorrelated with zero mean and constant variance. However, a nonlinear relation between the residuals of the two models was included in the final annual lake-volume model.Because of high autocorrelation in the annual lake levels of Devils Lake, the annual lakevolume model was verified using annual lake-level changes. The annual lake-volume model closely reproduced the statistics of the recorded lake-level changes for 1901-93 except for the skewness coefficient However, the model output is less skewed than the data indicate because of some unrealistically large lake-level declines.The statistical water mass-balance model requires as inputs seasonal precipitation, evaporation, and inflow data for Devils Lake. Analysis of annual precipitation, evaporation, and inflow data for 1950-93 revealed no significant trends or long-range dependence so the input time series were assumed to be stationary and short-range dependent.Normality transformations were used to approximately maintain the marginal probability distributions; and a multivariate, periodic autoregressive model was used to reproduce the correlation structure. Each of the coefficients in the model is significantly different from zero at the 5-percent significance level. Coefficients relating spring inflow from one year to spring and fall inflows from the previous year had the largest effect on the lake-level frequency analysis.Inclusion of parameter uncertainty in the model

  14. Life history of the lake herring (Leucichthys artedi Le Sueur) of Lake Huron as revealed by its scales, with a critique of the scale method

    USGS Publications Warehouse

    Van Oosten, John

    1928-01-01

    This study shows that the structural characters of the scales of the coregonid fishes of Lake Huron are so clearly recognizable as to permit their use by the scale method. It shows, further, that the fundamental assumptions underlying the scale method are warranted in so far as they apply to the lake herring (Leucichthys artedi Le Sueur). The scale method is therefore valid when applied in a study fo the life history of the lake herring. The life history of the lake herring that occur in Lake Huron is described in detail in this paper for the first time.

  15. Sexual difference in PCB concentrations of lake trout (Salvelinus namaycush) from Lake Ontario

    USGS Publications Warehouse

    Madenjian, Charles P.; Keir, Michael J.; Whittle, D. Michael; Noguchi, George E.

    2010-01-01

    We determined polychlorinated biphenyl (PCB) concentrations in 61 female lake trout (Salvelinus namaycush) and 71 male lake trout from Lake Ontario (Ontario, Canada and New York, United States). To estimate the expected change in PCB concentration due to spawning, PCB concentrations in gonads and in somatic tissue of lake trout were also determined. In addition, bioenergetics modeling was applied to investigate whether gross growth efficiency (GGE) differed between the sexes. Results showed that, on average, males were 22% higher in PCB concentration than females in Lake Ontario. Results from the PCB determinations of the gonads and somatic tissues revealed that shedding of the gametes led to 3% and 14% increases in PCB concentration for males and females, respectively. Therefore, shedding of the gametes could not explain the higher PCB concentration in male lake trout. According to the bioenergetics modeling results, GGE of males was about 2% higher than adult female GGE, on average. Thus, bioenergetics modeling could not explain the higher PCB concentrations exhibited by the males. Nevertheless, a sexual difference in GGE remained a plausible explanation for the sexual difference in PCB concentrations of the lake trout.

  16. Stratigraphic framework and lake level history of Lake Kivu, East African Rift

    NASA Astrophysics Data System (ADS)

    Wood, Douglas A.; Scholz, Christopher A.

    2017-10-01

    Sediment cores and seismic reflection data acquired from the eastern basin of Lake Kivu, Rwanda reveal extensive limnologic variations due to changes in regional climate and basin structure. The eastern basin of the lake contains a sedimentary wedge which is > 1.5 km in thickness on its western side, and basal sediments are estimated to be at least 1.5 million years old. Sediments are likely to be thicker and older than this in the northern, Congolese basin of the lake. Above the ∼300 m iosbath only a thin layer of Holocene sediments are observed indication that this may have been the lake's high stand prior to that time. There are at least three erosional unconformities interpreted as desiccation or near-desiccation events which are estimated to have occurred at ∼475 ka, ∼100 ka, and ∼20 ka; the two most recent of these low stages likely developed during the African Megadrought and Last Glacial Maximum (LGM) periods. Following the LGM, the water levels rose to form a ∼100 m deep lake with its surface ∼370 m below the current lake level. The lake remained near that level for several thousand years and during this time the Virunga Volcanic Province expanded. At ∼12.2 ka a change to wetter climate conditions rapidly filled the lake to spill out of the Bukavu Bay basin southward toward Lake Tanganyika. Tephra sampled from the cores show that there have been at least 24 large local volcanic events since the early Holocene lake transgression.

  17. Lake Vostok: An earthly analogue for the geomicrobiology on Europa

    NASA Astrophysics Data System (ADS)

    Priscu, J. C.; Christner, B. C.

    2007-12-01

    The recent discovery of more than 150 subglacial lakes beneath the Antarctic ice sheet has important implications in our search for liquid water and associated life on other icy worlds. The largest of these lakes is Lake Vostok, which has a surface area of 14000 square km and a depth of 1000 m, making it one of the largest lakes on Earth. Although we have yet to sample directly the liquid water from any of the Antarctic subglacial lakes, refrozen lakewater (accretion ice) has been sampled just above the surface of Lake Vostok. Genomic and geochemical analysis of this ice reveals that the surface lake water supports a microbial assemblage with a density approaching 1000 cells per milliliter. Sequencing and phylogenetic analysis of the 900 to 1000 base pair small subunit rRNA gene sequences obtained revealed a low diversity of clones that classify within the beta, gamma and delta subdivisions of the phylum Proteobacteria. Nearest phylogenetic neighbor analysis of these gene sequences imply that the lake contains an aerobic and anaerobic consortium of bacteria with metabolisms dedicated to iron and sulfur respiration or oxidation indicating that these metals play a role in the bioenergetics of microorganisms that occur in Lake Vostok. Sequence analysis further revealed that heterotrophic life in the lake can be sustained by chemolithotrophic production of new carbon supplemented by dissolved organic carbon released from the overlying ice sheet. Data obtained from orbiters have revealed that a deep ocean of liquid water lies under a thick chaotic ice cover on Europa where organic matter derived from comets and oxidants provided by radiation from Jupiter's magnetosphere may provide a habitat for life and a reservoir of endogenous and exogenous substances much like we observe in Lake Vostok. Future studies of Antarctic subglacial lake environments will play a crucial role in our understanding of life on Europa and other frozen worlds.

  18. Reconstruction of glacier variability from lake sediments reveals dynamic Holocene climate in Svalbard

    NASA Astrophysics Data System (ADS)

    van der Bilt, Willem G. M.; Bakke, Jostein; Vasskog, Kristian; D'Andrea, William J.; Bradley, Raymond S.; Ólafsdóttir, Sædis

    2015-10-01

    The Arctic is warming faster than anywhere else on Earth. Holocene proxy time-series are increasingly used to put this amplified response in perspective by understanding Arctic climate processes beyond the instrumental period. However, available datasets are scarce, unevenly distributed and often of coarse resolution. Glaciers are sensitive recorders of climate shifts and variations in rock-flour production transfer this signal to the lacustrine sediment archives of downstream lakes. Here, we present the first full Holocene record of continuous glacier variability on Svalbard from glacier-fed Lake Hajeren. This reconstruction is based on an undisturbed lake sediment core that covers the entire Holocene and resolves variability on centennial scales owing to 26 dating points. A toolbox of physical, geochemical (XRF) and magnetic proxies in combination with multivariate statistics has allowed us to fingerprint glacier activity in addition to other processes affecting the sediment record. Evidence from variations in sediment density, validated by changes in Ti concentrations, reveal glaciers remained present in the catchment following deglaciation prior to 11,300 cal BP, culminating in a Holocene maximum between 9.6 and 9.5 ka cal BP. Correspondence with freshwater pulses from Hudson Strait suggests that Early Holocene glacier advances were driven by the melting Laurentide Ice Sheet (LIS). We find that glaciers disappeared from the catchment between 7.4 and 6.7 ka cal BP, following a late Hypsithermal. Glacier reformation around 4250 cal BP marks the onset of the Neoglacial, supporting previous findings. Between 3380 and 3230 cal BP, we find evidence for a previously unreported centennial-scale glacier advance. Both events are concurrent with well-documented episodes of North Atlantic cooling. We argue that this brief forcing created suitable conditions for glaciers to reform in the catchment against a background of gradual orbital cooling. These findings highlight the

  19. Great Salt Lake Microbial Communities: The Foundation of a Terminal Lake Ecosystem

    NASA Astrophysics Data System (ADS)

    Baxter, B. K.; Acord, M.; Riddle, M. R.; Avery, B.

    2006-12-01

    Great Salt Lake (GSL) is a natural hypersaline ecosystem and a terminal lake of substantial size. The dramatic fluctuation in water levels and salinity creates an ecological backdrop selective for organisms with a high degree of adaptability. At the macro level, the biodiversity of the GSL ecosystem is simple, due to the limitations of an extreme saline environment: Birds eat the two invertebrates of the lake, and the invertebrates eat phytoplankton. However, analysis of the microbial level reveals an enormous diversity of species interacting with one another and the ecosystem as a whole. Our cultivation, biochemical tests, microscopy and DNA sequencing yielded data on dozens of isolates. These data demonstrate novel species, and possibly genera, living in the lake. In addition, we have discovered viruses (bacteriophage) that prey on the microorganisms. Preliminary data on bacteria dwelling in the gut of the brine shrimp, Artemia franciscana, link these prokaryotic organisms to the food chain for the first time. All of these results taken together open the door for the discussion of the significance of the microbial level of terminal lake ecosystem, particularly in light of lake water contamination and bioremediation possibilities.

  20. Are all temperate lakes eutrophying in a warmer world?

    NASA Astrophysics Data System (ADS)

    Paltsev, A.; Creed, I. F.

    2017-12-01

    Freshwater lakes are at risk of eutrophication due to climate change and intensification of human activities on the planet. In relatively undisturbed areas of the temperate forest biome, lakes are "sentinels" of the effects of rising temperatures. We hypothesise that rising temperatures are driving a shift from nutrient-poor oligotrophic states to nutrient-rich eutrophic states. To test this hypothesis, we examined a time series of satellite based chlorophyll-a (a proxy of algal biomass) of 12,000+ lakes over 30 years in the Canadian portion of the Laurentian Great Lakes basin. From the time series, non-stationary trends (detected by Mann-Kendall analysis) and stationary cycles (revealed through Morlet wavelet analysis) were removed, and the standard deviation (SD) of the remaining residuals was used as an indicator of lake stability. Four classes of lake stability were identified: (1) stable (SD is consistently low); (2) destabilizing (SD increases over time); (3) unstable (SD is consistently high); and (4) stabilizing lakes (SD decreases over time). Stable lakes were either oligotrophic or eutrophic indicating the presence of two stable states in the region. Destabilizing lakes were shifting from oligotrophic to lakes with a higher trophic status (indicating eutrophication), unstable lakes were mostly mesotrophic, and stabilizing lakes were shifting from eutrophic to the lakes with lower trophic status (indicating oligotrophication). In contrast to common expectations, while many lakes (2142) were shifting from oligotrophic to eutrophic states, more lakes (3199) were showing the opposite trend and shifting from eutrophic to oligotrophic states. This finding reveals a complexity of lake responses to rising temperatures and the need to improve understanding of why some lakes shift while others do not. Future work is focused on exploring the interactive effects of global, regional, and local drivers of lake trophic states.

  1. An evaluation of lake trout reproductive habitat on Clay Banks Reef, northwestern Lake Michigan

    USGS Publications Warehouse

    Edsall, Thomas A.; Holey, Mark E.; Manny, Bruce A.; Kennedy, Gregory W.

    1995-01-01

    The extinction of the native populations of lake trout (Salvelinus namaycush) in Lake Michigan in about 1956 has been followed by a decades-long attempt to reestablish self-sustaining populations of this valuable species in habitats it formerly occupied throughout the lake. One of the most recent management strategies designed to facilitate recovery was to make a primary management objective the establishment of sanctuaries where stocked lake trout could be protected and self-sustaining populations reestablished. In the present study we employed habitat survey and mapping techniques, field and laboratory bioassays, egg traps, sediment traps, and gill nets to examine the potential for successful natural reproduction by stocked lake trout on Clay Banks Reef in the Door-Kewaunee sanctuary in Wisconsin waters of Lake Michigan. Our study revealed (1) there was suitable habitat on the reef to support the production of viable fry, (2) spawner abundance on the reef was the highest recorded in the great lakes, and (3) eggs taken from spawners on the reef and held on the reef in plexiglas incubators hatched and produced fry that survived through swim-up. We conclude that Clay Banks Reef has the potential to support successful natural reproduction by stocked lake trout.

  2. ERTS-1 views the Great Lakes

    NASA Technical Reports Server (NTRS)

    Lyons, W. A.; Pease, S. R.

    1973-01-01

    The meteorological content of ERTS images, particularly mesoscale effects of the Great Lakes and air pollution dispersion is summarized. Summertime lake breeze frontal clouds and various winter lake-effect convection patterns and snow squalls are revealed in great detail. A clear-cut spiral vortex over southern Lake Michigan is related to a record early snow storm in the Chicago area. Marked cloud changes induced by orographic and frictional effects on Lake Michigan's lee shore snow squalls are seen. The most important finding, however, is a clear-cut example of alterations in cumulus convection by anthropogenic condensation and/or ice nuclei from northern Indiana steel mills during a snow squall situation. Jet aircraft condensation trails are also found with surprising frequency.

  3. DNA barcoding of schistosome cercariae reveals a novel sub-lineage within Schistosoma rodhaini from Ngamba Island Chimpanzee Sanctuary, Lake Victoria.

    PubMed

    Standley, C J; Stothard, J R

    2012-10-01

    While Schistosoma rodhaini is typically considered a parasite of small mammals and is very scantly distributed in the Lake Victoria basin, it is known to hybridize with the more widespread Schistosoma mansoni, the causative agent of intestinal schistosomiasis. As part of broader parasitological and malacological surveys for S. mansoni across Lake Victoria, schistosome cercariae were harvested from a field-caught Biomphalaria choanomphala taken on Ngamba Island Chimpanzee Sanctuary, Uganda. Upon DNA barcoding, these cercariae were found to be a mixture of both S. rodhaini and S. mansoni, with further phylogenetic analysis revealing a hitherto unknown sub-lineage within S. rodhaini. Despite repeated sampling for eggs and miracidia from both chimpanzees and staff on Ngamba Island Sanctuary, detection of S. rodhaini within local definitive hosts awaits additional efforts, which should be mindful of a potential host role of spotted-necked otters.

  4. Continuous gravity measurements reveal a low-density lava lake at Kīlauea Volcano, Hawai‘i

    USGS Publications Warehouse

    Carbone, Daniele; Poland, Michael P.; Patrick, Matthew R.; Orr, Tim R.

    2013-01-01

    On 5 March 2011, the lava lake within the summit eruptive vent at Kīlauea Volcano, Hawai‘i, began to drain as magma withdrew to feed a dike intrusion and fissure eruption on the volcanoʼs east rift zone. The draining was monitored by a variety of continuous geological and geophysical measurements, including deformation, thermal and visual imagery, and gravity. Over the first ∼14 hours of the draining, the ground near the eruptive vent subsided by about 0.15 m, gravity dropped by more than 100 μGal, and the lava lake retreated by over 120 m. We used GPS data to correct the gravity signal for the effects of subsurface mass loss and vertical deformation in order to isolate the change in gravity due to draining of the lava lake alone. Using a model of the eruptive vent geometry based on visual observations and the lava level over time determined from thermal camera data, we calculated the best-fit lava density to the observed gravity decrease — to our knowledge, the first geophysical determination of the density of a lava lake anywhere in the world. Our result, 950 +/- 300 kg m-3, suggests a lava density less than that of water and indicates that Kīlaueaʼs lava lake is gas-rich, which can explain why rockfalls that impact the lake trigger small explosions. Knowledge of such a fundamental material property as density is also critical to investigations of lava-lake convection and degassing and can inform calculations of pressure change in the subsurface magma plumbing system.

  5. Benthic Archives Reveal Recurrence and Dominance of Toxigenic Cyanobacteria in a Eutrophic Lake over the Last 220 Years.

    PubMed

    Legrand, Benjamin; Lamarque, Amélie; Sabart, Marion; Latour, Delphine

    2017-09-04

    Akinetes are resistant cells which have the ability to persist in sediment for several decades. We have investigated the temporal distribution of akinetes of two species, Dolichospermum macrosporum and Dolichospermum flos-aquae , in a sediment core sampled in Lake Aydat (France), which covers 220 years. The upper part, from 1907 to 2016, the number of akinetes fluctuated but stayed at high concentrations, especially for D. macrosporum in surface sediment (with the maximal value close to 6.10⁵ akinetes g DW -1 of sediment), suggesting a recurrence of blooms of this species which was probably closely related to anthropic eutrophication since the 1960s. Before 1907, the abundance of akinetes of both species was very low, suggesting only a modest presence of these cyanobacteria. In addition, the percentage of intact akinetes was different for each species, suggesting different ecological processes in the water column. This percentage also decreased with depth, revealing a reduction in germination potential over time. In addition, biosynthetic genes of anatoxin-a ( anaC ) and microcystin ( mcyA ) were detected. First results show a high occurrence of mcyA all down the core. In contrast, anaC gene was mostly detected in the surface sediment (since the 1980s), revealing a potentially more recent occurrence of this cyanotoxin in Lake Aydat which may be associated with the recurrence of blooms of D. macrosporum and thus with anthropic activities.

  6. Heritage strain and diet of wild young of year and yearling lake trout in the main basin of Lake Huron

    USGS Publications Warehouse

    Roseman, E.F.; Stott, W.; O'Brien, T. P.; Riley, S.C.; Schaeffer, J.S.

    2009-01-01

    Restoration of lake trout Salvelinus namaycush stocks in Lake Huron is a fish community objective developed to promote sustainable fish communities in the lake. Between 1985 and 2004, 12.65 million lake trout were stocked into Lake Huron representing eight different genetic strains. Collections of bona fide wild fish in USGS surveys have increased in recent years and this study examined the ancestry and diet of fish collected between 2004 and 2006 to explore the ecological role they occupy in Lake Huron. Analysis of microsatellite DNA revealed that both pure strain and inter-strain hybrids were observed, and the majority of fish were classified as Seneca Lake strain or Seneca Lake hybrids. Diets of 50 wild age-0 lake trout were examined. Mysis, chironomids, and zooplankton were common prey items of wild age-0 lake trout. These results indicate that stocked fish are successfully reproducing in Lake Huron indicating a level of restoration success. However, continued changes to the benthic macroinvertebrate community, particularly declines of Mysis, may limit growth and survival of wild fish and hinder restoration efforts.

  7. The endemic mollusks reveal history of the long-lived Pliocene Lake Slavonia in NW Croatia

    NASA Astrophysics Data System (ADS)

    Mandic, Oleg; Kurečić, Tomislav; Neubauer, Thomas A.; Harzhauser, Mathias

    2015-04-01

    The present investigation deals with the fossil mollusk record of the long-lived Pliocene Lake Slavonia settled in the southern Pannonian Basin. The samples originate from Vukomeričke gorice, a low hill-range situated north of the Kupa River in the area between the towns of Zagreb, Sisak and Karlovac in NW Croatia. Representing the SW margin of the Lake Slavonia the freshwater deposits alternate there with the alluvial series, providing altogether about 400-m-thick, Pliocene continental succession, known in literature by informal name Paludina beds (acc. to a junior synonym of Viviparus). The endemic fauna of the Lake Slavonia became particularly well-known in the late 19th century after Melchior Neumayr demonstrated that the gradual evolutionary change of the mollusk phenotypes toward more complex morphology represents a function of adaptation to environmental change in the paleolake. Even Charles Darwin commented that result as by far the best case which I have ever met with, showing the direct influence of the conditions of life on the organization. The deposition in the Lake Slavonia (~4.5 to ~1.8 Ma) coincides with the Pliocene Climate Optimum (PCO), but captures also the transition into the Pleistocene climate marked by the initial Ice Age pulse at 2.59 Ma. The increase of polar temperatures resulted during PCO in a significant melting of the ice caps leading to a global sea level rise tentatively getting up to 25 m higher than today. Coincidence of the climate and geodynamic settings in southeastern Europe provided conditions supporting extended settlement of lacustrine environments including Lake Slavonia, Lake Kosovo, Lake Transylvania and Lake Dacia, all characterized by explosive adaptive radiations of viviparid snails. In particular, the latter adaptive radiations resulted in the regional phylostratigraphy of Lake Slavonia Viviparus species enabling excellent stratigraphic control for the investigated deposits. Hence, based on this evidence, the

  8. A field reciprocal transplant experiment reveals asymmetric costs of migration between lake and river ecotypes of three-spined sticklebacks (Gasterosteus aculeatus).

    PubMed

    Kaufmann, J; Lenz, T L; Kalbe, M; Milinski, M; Eizaguirre, C

    2017-05-01

    Theory of local adaptation predicts that nonadapted migrants will suffer increased costs compared to local residents. Ultimately this process can result in the reduction of gene flow and culminate in speciation. Here, we experimentally investigated the relative fitness of migrants in foreign habitats, focusing on diverging lake and river ecotypes of three-spined sticklebacks. A reciprocal transplant experiment performed in the field revealed asymmetric costs of migration: whereas mortality of river fish was increased under lake conditions, lake migrants suffered from reduced growth relative to river residents. Selection against migrants thus involved different traits in each habitat but generally contributed to bidirectional reduction in gene flow. Focusing particularly on the parasitic environments, migrant fish differed from resident fish in the parasite community they harboured. This pattern correlated with both cellular phenotypes of innate immunity as well as with allelic variation at the genes of the major histocompatibility complex. In addition to showing the costs of migration in three-spined sticklebacks, this study highlights the role of asymmetric selection particularly from parasitism in genotype sorting and in the emergence of local adaptation. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  9. Genetic assessment of strain-specific sources of lake trout recruitment in the Great Lakes

    USGS Publications Warehouse

    Page, Kevin S.; Scribner, Kim T.; Bennett, Kristine R.; Garzel, Laura M.; Burnham-Curtis, Mary K.

    2003-01-01

    Populations of wild lake trout Salvelinus namaycush have been extirpated from nearly all their historical habitats across the Great Lakes. Efforts to restore self-sustaining lake trout populations in U.S. waters have emphasized the stocking of coded-wire-tagged juveniles from six hatchery strains (Seneca Lake, Lewis Lake, Green Lake, Apostle Islands, Isle Royale, and Marquette) into vacant habitats. Strain-specific stocking success has historically been based on estimates of the survival and catch rates of coded-wire-tagged adults returning to spawning sites. However, traditional marking methods and estimates of relative strain abundance provide no means of assessing strain fitness (i.e., the realized contributions to natural recruitment) except by assuming that young-of-the-year production is proportional to adult spawner abundance. We used microsatellite genetic data collected from six hatchery strains with likelihood-based individual assignment tests (IA) and mixed-stock analysis (MSA) to identify the strain composition of young of the year recruited each year. We show that strain classifications based on IA and MSA were concordant and that the accuracy of both methods varied based on strain composition. Analyses of young-of-the-year lake trout samples from Little Traverse Bay (Lake Michigan) and Six Fathom Bank (Lake Huron) revealed that strain contributions differed significantly from estimates of the strain composition of adults returning to spawning reefs. The Seneca Lake strain contributed the majority of juveniles produced on Six Fathom Bank and more young of the year than expected within Little Traverse Bay. Microsatellite markers provided a method for accurately classifying the lake trout hatchery strains used for restoration efforts in the Great Lakes and for assessment of strain-specific reproductive success.

  10. Long livestock farming history and human landscape shaping revealed by lake sediment DNA.

    PubMed

    Giguet-Covex, Charline; Pansu, Johan; Arnaud, Fabien; Rey, Pierre-Jérôme; Griggo, Christophe; Gielly, Ludovic; Domaizon, Isabelle; Coissac, Eric; David, Fernand; Choler, Philippe; Poulenard, Jérôme; Taberlet, Pierre

    2014-01-01

    The reconstruction of human-driven, Earth-shaping dynamics is important for understanding past human/environment interactions and for helping human societies that currently face global changes. However, it is often challenging to distinguish the effects of the climate from human activities on environmental changes. Here we evaluate an approach based on DNA metabarcoding used on lake sediments to provide the first high-resolution reconstruction of plant cover and livestock farming history since the Neolithic Period. By comparing these data with a previous reconstruction of erosive event frequency, we show that the most intense erosion period was caused by deforestation and overgrazing by sheep and cowherds during the Late Iron Age and Roman Period. Tracking plants and domestic mammals using lake sediment DNA (lake sedDNA) is a new, promising method for tracing past human practices, and it provides a new outlook of the effects of anthropogenic factors on landscape-scale changes.

  11. Do Patterns of Bacterial Diversity along Salinity Gradients Differ from Those Observed for Macroorganisms?

    PubMed Central

    Zhang, Yong; Shen, Ji; van der Gast, Christopher; Hahn, Martin W.; Wu, Qinglong

    2011-01-01

    It is widely accepted that biodiversity is lower in more extreme environments. In this study, we sought to determine whether this trend, well documented for macroorganisms, also holds at the microbial level for bacteria. We used denaturing gradient gel electrophoresis (DGGE) with phylum-specific primers to quantify the taxon richness (i.e., the DGGE band numbers) of the bacterioplankton communities of 32 pristine Tibetan lakes that represent a broad salinity range (freshwater to hypersaline). For the lakes investigated, salinity was found to be the environmental variable with the strongest influence on the bacterial community composition. We found that the bacterial taxon richness in freshwater habitats increased with increasing salinity up to a value of 1‰. In saline systems (systems with >1‰ salinity), the expected decrease of taxon richness along a gradient of further increasing salinity was not observed. These patterns were consistently observed for two sets of samples taken in two different years. A comparison of 16S rRNA gene clone libraries revealed that the bacterial community of the lake with the highest salinity was characterized by a higher recent accelerated diversification than the community of a freshwater lake, whereas the phylogenetic diversity in the hypersaline lake was lower than that in the freshwater lake. These results suggest that different evolutionary forces may act on bacterial populations in freshwater and hypersaline lakes on the Tibetan Plateau, potentially resulting in different community structures and diversity patterns. PMID:22125616

  12. Asynchrony in the inter-annual recruitment of lake whitefish Coregonus clupeaformis in the Great Lakes region

    USGS Publications Warehouse

    Zischke, Mitchell T.; Bunnell, David B.; Troy, Cary D.; Berglund, Eric K.; Caroffino, David C.; Ebener, Mark P.; He, Ji X.; Sitar, Shawn P.; Hook, Tomas O.

    2017-01-01

    Spatially separated fish populations may display synchrony in annual recruitment if the factors that drive recruitment success, particularly abiotic factors such as temperature, are synchronised across broad spatial scales. We examined inter-annual variation in recruitment among lake whitefish (Coregonus clupeaformis) populations in lakes Huron, Michigan and Superior using fishery-dependent and -independent data from 1971 to 2014. Relative year-class strength (RYCS) was calculated from catch-curve residuals for each year class across multiple sampling years. Pairwise comparison of RYCS among datasets revealed no significant associations either within or between lakes, suggesting that recruitment of lake whitefish is spatially asynchronous. There was no consistent correlation between pairwise agreement and the distance between datasets, and models to estimate the spatial scale of recruitment synchrony did not fit well to these data. This suggests that inter-annual recruitment variation of lake whitefish is asynchronous across broad spatial scales in the Great Lakes. While our method primarily evaluated year-to-year recruitment variation, it is plausible that recruitment of lake whitefish varies at coarser temporal scales (e.g. decadal). Nonetheless, our findings differ from research on some other Coregonus species and suggest that local biotic or density-dependent factors may contribute strongly to lake whitefish recruitment rather than inter-annual variability in broad-scale abiotic factors.

  13. The widespread influence of Great Lakes microseisms across the United States revealed by the 2014 polar vortex

    USGS Publications Warehouse

    Anthony, Robert E.; Ringler, Adam; Wilson, David

    2018-01-01

    During the winter of 2014, a weak polar vortex brought record cold temperatures to the north‐central (“Midwest”) United States, and the Great Lakes reached the highest extent of ice coverage (92.5%) since 1979. This event shut down the generation of seismic signals caused by wind‐driven wave action within the lakes (termed “lake microseisms”), giving an unprecedented opportunity to isolate and characterize these novel signals through comparison with nonfrozen time periods. Using seismic records at 72 broadband stations, we observe Great Lakes microseism signals at distances >300 km from the lakes. In contrast to conventional oceanic microseisms, there is no clear relationship between the frequency content of the seismic signals (observed from ~0.5–5‐s period) and the dominant swell period or resonance periods of the lakes based on their bathymetric profiles. Thus, the exact generation mechanism is not readily explained by conventional microseism theory and warrants further investigation.

  14. Benthic-planktonic coupling, regime shifts, and whole-lake primary production in shallow lakes.

    PubMed

    Genkai-Kato, Motomi; Vadeboncoeur, Yvonne; Liboriussen, Lone; Jeppesen, Erik

    2012-03-01

    Alternative stable states in shallow lakes are typically characterized by submerged macrophyte (clear-water state) or phytoplankton (turbid state) dominance. However, a clear-water state may occur in eutrophic lakes even when macrophytes are absent. To test whether sediment algae could cause a regime shift in the absence of macrophytes, we developed a model of benthic (periphyton) and planktonic (phytoplankton) primary production using parameters derived from a shallow macrophyte-free lake that shifted from a turbid to a clear-water state following fish removal (biomanipulation). The model includes a negative feedback effect of periphyton on phosphorus (P) release from sediments. This in turn induces a positive feedback between phytoplankton production and P release. Scenarios incorporating a gradient of external P loading rates revealed that (1) periphyton and phytoplankton both contributed substantially to whole-lake production over a broad range of external P loading in a clear-water state; (2) during the clear-water state, the loss of benthic production was gradually replaced by phytoplankton production, leaving whole-lake production largely unchanged; (3) the responses of lakes to biomanipulation and increased external P loading were both dependent on lake morphometry; and (4) the capacity of periphyton to buffer the effects of increased external P loading and maintain a clear-water state was highly sensitive to relationships between light availability at the sediment surface and the of P release. Our model suggests a mechanism for the persistence of alternative states in shallow macrophyte-free lakes and demonstrates that regime shifts may trigger profound changes in ecosystem structure and function.

  15. Model-Data Fusion to Test Hypothesized Drivers of Lake Carbon Cycling Reveals Importance of Physical Controls

    NASA Astrophysics Data System (ADS)

    Hararuk, Oleksandra; Zwart, Jacob A.; Jones, Stuart E.; Prairie, Yves; Solomon, Christopher T.

    2018-03-01

    Formal integration of models and data to test hypotheses about the processes controlling carbon dynamics in lakes is rare, despite the importance of lakes in the carbon cycle. We built a suite of models (n = 102) representing different hypotheses about lake carbon processing, fit these models to data from a north-temperate lake using data assimilation, and identified which processes were essential for adequately describing the observations. The hypotheses that we tested concerned organic matter lability and its variability through time, temperature dependence of biological decay, photooxidation, microbial dynamics, and vertical transport of water via hypolimnetic entrainment and inflowing density currents. The data included epilimnetic and hypolimnetic CO2 and dissolved organic carbon, hydrologic fluxes, carbon loads, gross primary production, temperature, and light conditions at high frequency for one calibration and one validation year. The best models explained 76-81% and 64-67% of the variability in observed epilimnetic CO2 and dissolved organic carbon content in the validation data. Accurately describing C dynamics required accounting for hypolimnetic entrainment and inflowing density currents, in addition to accounting for biological transformations. In contrast, neither photooxidation nor variable organic matter lability improved model performance. The temperature dependence of biological decay (Q10) was estimated at 1.45, significantly lower than the commonly assumed Q10 of 2. By confronting multiple models of lake C dynamics with observations, we identified processes essential for describing C dynamics in a temperate lake at daily to annual scales, while also providing a methodological roadmap for using data assimilation to further improve understanding of lake C cycling.

  16. Stable Isotopes Reveal Nitrogen Loading to Lake Tanganyika from Remote Shoreline Villages

    NASA Astrophysics Data System (ADS)

    Kelly, Brianne; Mtiti, Emmanuel; McIntyre, Peter B.; Vadeboncoeur, Yvonne

    2017-02-01

    Access to safe water is an ongoing challenge in rural areas in Tanzania where communities often lack access to improved sanitation. Methods to detect contamination of surface water bodies, such as monitoring nutrient concentrations and bacterial counts, are time consuming and results can be highly variable in space and time. On the northeast shore of Lake Tanganyika, Tanzania, the low population density coupled with the high potential for dilution in the lake necessitates the development of a sensitive method for detecting contamination in order to avoid human health concerns. We investigated the potential use of nitrogen and carbon stable isotopes of snail tissues to detect anthropogenic nutrient loading along the northeast shore of Lake Tanganyika. δ15N of snails was positively related to human population size in the nearest village, but only for villages with >4000 inhabitants. The areal footprint of villages within their watershed was also significantly correlated with snail δ15N, while agricultural land use and natural vegetation were not. Dissolved nutrient concentrations were not significantly different between village and reference sites. Our results indicate that nitrogen isotopes provide a sensitive index of local nutrient loading that can be used to monitor contamination of oligotrophic aquatic environments with low surrounding population densities.

  17. Sulfur-Oxidizing Bacteria in Soap Lake (Washington State), a Meromictic, Haloalkaline Lake with an Unprecedented High Sulfide Content▿

    PubMed Central

    Sorokin, Dimitry Y.; Foti, Mirjam; Pinkart, Holly C.; Muyzer, Gerard

    2007-01-01

    Culture-dependent and -independent techniques were used to study the diversity of chemolithoautotrophic sulfur-oxidizing bacteria in Soap Lake (Washington State), a meromictic, haloalkaline lake containing an unprecedentedly high sulfide concentration in the anoxic monimolimnion. Both approaches revealed the dominance of bacteria belonging to the genus Thioalkalimicrobium, which are common inhabitants of soda lakes. A dense population of Thioalkalimicrobium (up to 107 cells/ml) was found at the chemocline, which is characterized by a steep oxygen-sulfide gradient. Twelve Thioalkalimicrobium strains exhibiting three different phenotypes were isolated in pure culture from various locations in Soap Lake. The isolates fell into two groups according to 16S rRNA gene sequence analysis. One of the groups was closely related to T. cyclicum, which was isolated from Mono Lake (California), a transiently meromictic, haloalkaline lake. The second group, consisting of four isolates, was phylogenetically and phenotypically distinct from known Thioalkalimicrobium species and unique to Soap Lake. It represented a new species, for which we suggest the name Thioalkalimicrobium microaerophilum sp. nov. PMID:17114324

  18. Biomarkers and Metabolic Patterns in the Sediments of Evolving Glacial Lakes as a Proxy for Planetary Lake Exploration.

    PubMed

    Parro, Víctor; Blanco, Yolanda; Puente-Sánchez, Fernando; Rivas, Luis A; Moreno-Paz, Mercedes; Echeverría, Alex; Chong-Díaz, Guillermo; Demergasso, Cecilia; Cabrol, Nathalie A

    2018-05-01

    Oligotrophic glacial lakes in the Andes Mountains serve as models to study the effects of climate change on natural biological systems. The persistent high UV regime and evolution of the lake biota due to deglaciation make Andean lake ecosystems potential analogues in the search for life on other planetary bodies. Our objective was to identify microbial biomarkers and metabolic patterns that represent time points in the evolutionary history of Andean glacial lakes, as these may be used in long-term studies as microscale indicators of climate change processes. We investigated a variety of microbial markers in shallow sediments from Laguna Negra and Lo Encañado lakes (Región Metropolitana, Chile). An on-site immunoassay-based Life Detector Chip (LDChip) revealed the presence of sulfate-reducing bacteria, methanogenic archaea, and exopolymeric substances from Gammaproteobacteria. Bacterial and archaeal 16S rRNA gene sequences obtained from field samples confirmed the results from the immunoassays and also revealed the presence of Alpha-, Beta-, Gamma-, and Deltaproteobacteria, as well as cyanobacteria and methanogenic archaea. The complementary immunoassay and phylogenetic results indicate a rich microbial diversity with active sulfate reduction and methanogenic activities along the shoreline and in shallow sediments. Sulfate inputs from the surrounding volcanic terrains during deglaciation may explain the observed microbial biomarker and metabolic patterns, which differ with depth and between the two lakes. A switch from aerobic and heterotrophic metabolisms to anaerobic ones such as sulfate reduction and methanogenesis in the shallow shores likely reflects the natural evolution of the lake sediments due to deglaciation. Hydrodynamic deposition of sediments creates compartmentalization (e.g., sediments with different structure and composition surrounded by oligotrophic water) that favors metabolic transitions. Similar phenomena would be expected to occur on other

  19. Joint analysis of deformation, gravity, and lava lake elevation reveals temporal variations in lava lake density at Kilauea Volcano, Hawaii

    NASA Astrophysics Data System (ADS)

    Carbone, Daniele; Poland, Michael; Patrick, Matthew

    2015-04-01

    We find a tight correlation between (i) changes in lava level within the summit eruptive vent at Kilauea Volcano, Hawaii, observed for at least 2 years since early 2011, and (ii) ground deformation in the vicinity of the vent. The observed correlation indicates that changing pressure within the shallow magma reservoir feeding the lava lake influences both deformation and lava level. However, those two parameters are related to chamber pressure through different properties, namely, the density of the lava filling the vent (for the lava level) and the size/position of the reservoir plus the elastic parameters of the host rock (for the deformation). Joint analyses in the time and frequency domains of lava level (determined from thermal camera imagery of the lava lake) and tilt measured on a borehole instrument (~2 km from the summit vent) reveal a good correlation throughout the studied period. The highest correlation occurs over periods ranging between 1 and 20 days. The ratio between lava level and tilt is not constant over time, however. Using data from a continuously recording gravimeter located near the rim of the summit eruptive vent, we demonstrate that the tilt-lava level ratio is controlled by the fluctuations in the density of the lava inside the vent (i.e., its degree of vesicularity). A second continuous gravimeter was installed near the summit eruptive vent in 2014, providing a new observation point for gravity change associated with summit lava lave activity to test models developed from the previously existing instrument. In addition, a continuous gravimeter was installed on the rim of the Puu Oo eruptive vent on Kilauea's East Rift Zone in 2013. Puu Oo is connected via the subvolcanic magma plumbing system to the summit eruptive vent and often deforms in concert with the summit. This growing network of continuously recording gravimeters at Kilauea can be used to examine correlations in gravity change associated with variations in eruptive activity

  20. Glaciers, Glacial lakes and Glacial Lake Outburst Floods in the Koshi Basin

    NASA Astrophysics Data System (ADS)

    Shrestha, F.; Gao, X.; Khanal, N. R.; Maharjan, S. B.; Bajracharya, S. R.; Shrestha, R. B.; Lizong, W.; Mool, P. K.

    2016-12-01

    Glacier is a vital water resources for mountain communities. Recession in glacier area either increased the glacial lake size or develop a new lake. The consequences of these changes in lake has become one of the major issue in the management of GLOF risk. This paper presents the distribution of, and changes in, glaciers, glacial lakes in the Koshi basin and also looks at past GLOF events that have occurred in the basin and their distance of impact. Data on the number of glaciers and glacial lakes and their areas were generated for the years 1977, 1990, 2000, and 2010 using Landsat images. The study revealed that there were a total of 845 glaciers (Nepal side) and 2,168 glacial lakes (Nepal and China side) with a total area of 1,103 km2 and 127.608 km2 in 2010. The number of glacier increased by 15% (109) and area decreased by 26% (396 km2) over 33 years. In case of glacier lakes, the number and area increased from 1,160 to 2,168 and from 94.444 km2 to 127.608 km2 during 33 years with an overall growth rates of 86.9% and 35.1%. A large number of glacial lakes are small in size (≤ 0.1 km2). End moraine dammed lakes with area ≥ 0.1 km2 were selected to analyse the change characteristics of glacial lakes. The results show that there were 134 lakes ≥ 0.1 km2 in 2010; these lakes had a total area of 43.06 km2 in 1997, increased to 64.35 km2 in 2010. The distribution of lakes on the north side of the Himalayas (in China) was three times higher than on the south side of the Himalayas (in Nepal). Comparing the mean growth rate in area and length for the 33 years, the growth rate on the north side was found to be a little slower than that on the south side. This relationship did not hold true for length change in the different periods. The study identified 42 rapidly growing large lakes that are dangerous in terms of GLOF risk. In the past, 18 GLOF events have been reported. The downstream distance impacted by those events was up to 90 km. Among them, 13 GLOF events

  1. Annually-layered lake sediments reveal strongly increased release of persistent chemicals due to accelerated glacier melting

    NASA Astrophysics Data System (ADS)

    Anselmetti, Flavio S.; Blüthgen, Nancy; Bogdal, Christian; Schmid, Peter

    2010-05-01

    Melting glaciers may represent a secondary source of chemical pollutants that have previously been incorporated and stored in the ice. Of particular concern are persistent organic pollutants (POPs), such as the insecticide dichlorodiphenyl trichloroethane (DDT) and industrial chemicals like polychlorinated biphenyls (PCBs), which are hazardous environmental contaminants due to their persistent, bioaccumulative and toxic properties. They were introduced in the 1930s and eventually banned in the 1970s. After release into the environment these chemicals were atmospherically transported to even remote areas such as the Alps and were deposited and stored in glaciers. Ongoing drastic glacier melting due to global warming, which is expected to further accelerate, implies the significance of studying the fate of these 'legacy pollutants'. Proglacial lake sediments provide well-dated and high-resolution archives to reconstruct timing and quantities of such a potentially hazardous remobilization. The goal of this study is to reconstruct the historical inputs of POPs into remote alpine lakes and to investigate the accelerated release of POPs from melting glaciers. Due to their lipophilic character, these chemicals exhibit a high tendency to adsorb to particles whereas concentrations in water are expected to be low. Therefore, quantitative determination in annually-layered lake sediment provides an excellent way to investigate the temporal trend of inputs into lakes that act as particle sinks. For this purpose, sediment cores were sampled from proglacial lakes in the Bernese Alps (Switzerland), which are exclusively fed by glacial melt waters. For comparison, cores were also taken from nearby high-alpine lakes located in non-glaciated catchments, which only should record the initial atmospheric fall-out. Sediment layers were dated by annual varve counting and radionuclide measurements; they cover the time period from the mid 20th century to today. The measured time series of

  2. The People's Lake

    ERIC Educational Resources Information Center

    Carlson, Karen Townsend

    1975-01-01

    Citizen action to stop the disposal of taconite tailings into Lake Superior was unsuccessful when the courts settled in the favor of industry. Although citizen research revealed a form of asbestos, as well as other toxic chemicals in the discharged wastes, company representatives stated that there were no health hazards. (MA)

  3. The Terrestrial Paleoclimatic Record of the Late Quaternary as Revealed by Drilling Lake Titicaca, Peru/Bolivia

    NASA Astrophysics Data System (ADS)

    Baker, P. A.; Fritz, S. C.; Seltzer, G. O.; Ballantyne, A. P.; Rigsby, C. A.

    2004-12-01

    Seven drill cores were recovered from Lake Titicaca during the NSF/ICDP/DOSECC drilling expedition of 2001; our most detailed multi-proxy analyses have been done on Core 2B raised from 232 m water depth in the central basin of the lake. This site was drilled to 139 mblf with 141 m of total sediment recovered (101%). The recovered sediments consist of two main lithologies, organic- and inorganic-carbon-rich (often-laminated) muds that alternate with detrital-rich muds. These lithologies represent respectively low and high lakestand deposits. Proxies for water level include planktic-to-benthic diatom ratio, sedimentary carbonate content, and stable isotopic ratio of organic carbon. There are six highstand intervals separated by five lowstand intervals indicating that the level and volume of Lake Titicaca underwent several large changes during the late Quaternary. We infer from high values of magnetic susceptibility in most highstand muds that glacial advances in the surrounding Andes coincided with periods of relative wetness. During the most recent lowstand, in the early and middle Holocene, Lake Titicaca fell to 85 m below its modern level, salinity increased several-fold, and the downstream Salar de Uyuni desiccated. By contrast, throughout the LGM from ca. 25,000 cal BP to 15,000 cal BP, Lake Titicaca was deep and fresh, and overflowed southward to the Salar de Uyuni. Prior to the LGM, back to ca. 53,000 BP, the lake was predominantly fresh and overflowing. Pulses of increased benthic diatom abundance and inorganic carbon concentration during that time were likely due to episodes of downslope transport. We believe (based on U-Th dates of authigenic carbonate layers) that the penultimate lowstand of Lake Titicaca (seismic evidence indicates a lake level 200 m lower than today) was coincident with MIS 5. We recovered sediments recording three older lowstands, each separated by periods in which the lake freshened dramatically and when glaciers apparently advanced in

  4. Eutrophication in Poyang Lake (Eastern China) over the Last 300 Years in Response to Changes in Climate and Lake Biomass

    PubMed Central

    Liao, Mengna; Yu, Ge; Guo, Ya

    2017-01-01

    Poyang Lake is suffering from persistent eutrophication, which is degrading the local ecosystem. A better understanding of the mechanisms that drive eutrophication in lake systems is essential to fight the ongoing deterioration. In this study, hydraulic residence time (HRT) was used to evaluate Poyang Lake’s trophic state. A hydrology and ecosystem forced model was constructed to simulate long-term changes in algae and aquatic plant biomass and total phosphorous (TP). A comparison analysis revealed that between 1812 and 1828 (i.e., a consistent-change stage), climate and hydrology were the main driving forces, while algae and aquatic plant biomass contributed only 20.9% to the trophic changes in Poyang Lake. However, between 1844 and 1860 the biomass predominated contributing 63.6%. This could be attributed to nutrient absorption by algae and aquatic plants. A correlation analysis of the water TP and algae and aquatic plant biomass revealed a strong positive relationship. However, the algae and aquatic plant growth rate tended to decline after the biomass reached half of the maximum. This research reconstructs the long-term trophic evolution of Poyang Lake and provides a better understanding of the relationship between climatic and hydrological changes and lake ecosystems. PMID:28046083

  5. The Widespread Influence of Great Lakes Microseisms Across the Midwestern United States Revealed by the 2014 Polar Vortex

    NASA Astrophysics Data System (ADS)

    Anthony, R. E.; Ringler, A. T.; Wilson, D. C.

    2018-04-01

    During the winter of 2014, a weak polar vortex brought record cold temperatures to the north-central ("Midwest") United States, and the Great Lakes reached the highest extent of ice coverage (92.5%) since 1979. This event shut down the generation of seismic signals caused by wind-driven wave action within the lakes (termed "lake microseisms"), giving an unprecedented opportunity to isolate and characterize these novel signals through comparison with nonfrozen time periods. Using seismic records at 72 broadband stations, we observe Great Lakes microseism signals at distances >300 km from the lakes. In contrast to conventional oceanic microseisms, there is no clear relationship between the frequency content of the seismic signals (observed from 0.5-5-s period) and the dominant swell period or resonance periods of the lakes based on their bathymetric profiles. Thus, the exact generation mechanism is not readily explained by conventional microseism theory and warrants further investigation.

  6. Genetic models reveal historical patterns of sea lamprey population fluctuations within Lake Champlain

    PubMed Central

    Azodi, Christina B.; Sheldon, Sallie P.; Trombulak, Stephen C.; Ardren, William R.

    2015-01-01

    The origin of sea lamprey (Petromyzon marinus) in Lake Champlain has been heavily debated over the past decade. Given the lack of historical documentation, two competing hypotheses have emerged in the literature. First, it has been argued that the relatively recent population size increase and concomitant rise in wounding rates on prey populations are indicative of an invasive population that entered the lake through the Champlain Canal. Second, recent genetic evidence suggests a post-glacial colonization at the end of the Pleistocene, approximately 11,000 years ago. One limitation to resolving the origin of sea lamprey in Lake Champlain is a lack of historical and current measures of population size. In this study, the issue of population size was explicitly addressed using nuclear (nDNA) and mitochondrial DNA (mtDNA) markers to estimate historical demography with genetic models. Haplotype network analysis, mismatch analysis, and summary statistics based on mtDNA noncoding sequences for NCI (479 bp) and NCII (173 bp) all indicate a recent population expansion. Coalescent models based on mtDNA and nDNA identified two potential demographic events: a population decline followed by a very recent population expansion. The decline in effective population size may correlate with land-use and fishing pressure changes post-European settlement, while the recent expansion may be associated with the implementation of the salmonid stocking program in the 1970s. These results are most consistent with the hypothesis that sea lamprey are native to Lake Champlain; however, the credibility intervals around parameter estimates demonstrate that there is uncertainty regarding the magnitude and timing of past demographic events. PMID:26539334

  7. Glacier, Glacial Lake, and Ecological Response Dynamics of the Imja Glacier-Lake-Moraine System, Nepal

    NASA Astrophysics Data System (ADS)

    Kargel, J. S.; Shugar, D. H.; Leonard, G. J.; Haritashya, U. K.; Harrison, S.; Shrestha, A. B.; Mool, P. K.; Karki, A.; Regmi, D.

    2016-12-01

    Glacier response dynamics—involving a host of processes—produce a sequence of short- to long-term delayed responses to any step-wise, oscillating, or continuous trending climatic perturbation. We present analysis of Imja Lake, Nepal and examine its thinning and retreat and a sequence of the detachment of tributaries; the inception and growth of Imja Lake and concomitant glacier retreat, thinning, and stagnation, and relationships to lake dynamics; the response dynamics of the ice-cored moraine; the development of the local ecosystem; prediction of short-term dynamical responses to lake lowering (glacier lake outburst flood—GLOF—mitigation); and prospects for coming decades. The evolution of this glacier system provides a case study by which the global record of GLOFs can be assessed in terms of climate change attribution. We define three response times: glacier dynamical response time (for glacier retreat, thinning, and slowing of ice flow), limnological response time (lake growth), and GLOF trigger time (for a variety of hazardous trigger events). Lake lowering (to be completed in August 2016; see AGU abstract by D. Regmi et al.) will reduce hazards, but we expect that the elongation of the lake and retreat of the glacier will continue for decades after a pause in 2016-2017. The narrowing of the moraine dam due to thaw degradation of the ice-cored end moraine means that the hazard due to Imja Lake will soon again increase. We examine both long-term response dynamics, and two aspects of Himalayan glaciers that have very rapid responses: the area of Imja Lake fluctuates seasonally and even with subseasonal weather variations in response to changes in lake temperature and glacier meltback; and as known from other studies, glacier flow speed can vary between years and even on shorter timescales. The long-term development and stabilization of glacial moraines and small lacustrine plains in drained lake basins impacts the development of local ecosystems

  8. Comparison among the microbial communities in the lake, lake wetland, and estuary sediments of a plain river network.

    PubMed

    Huang, Wei; Chen, Xing; Wang, Kun; Chen, Junyi; Zheng, Binghui; Jiang, Xia

    2018-06-10

    Sediment microbial communities from plain river networks exert different effects on pollutant transformation and migration in lake basins. In this study, we examined millions of Illumina reads (16S rRNA gene amplicons) to compare lake, lake wetland, and estuary bacterial communities through a technically consistent approach. Results showed that bacterial communities in the sampled lake sediments had the highest alpha-diversity (Group B), than in sampled lake wetland sediments and estuary sediments. Proteobacteria was the most abundant (more than 30%) phyla in all the sediments. The lake sediments had more Nitrospirae (1.63%-11.75%) and Acidobacteria (3.46%-10.21%) than the lake wetland and estuary sediments, and estuary sediments had a greater abundance of the phylum Firmicutes (mean of 22.30%). Statistical analysis (LEfSe) revealed that lake wetland sediments contained greater abundances of the class Anaerolineaceae, orders Xanthomonadales, Pseudomonadales, and genera Flavobacterium, Acinetobacter. The lake sediments had a distinct community of diverse primary producers, such as phylum Acidobacteria, order Ignavibacteriales, and families Nitrospiraceae, Hydrogenophilaceae. Total phosphorus and organic matter were the main factors influencing the bacterial communities in sediments from several parts of the lake wetland and river estuary (p < .05). The novel insights into basin pollution control in plain river networks may be obtained from microbial distribution in sediments from different basin regions. © 2018 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  9. Network Skewness Measures Resilience in Lake Ecosystems

    NASA Astrophysics Data System (ADS)

    Langdon, P. G.; Wang, R.; Dearing, J.; Zhang, E.; Doncaster, P.; Yang, X.; Yang, H.; Dong, X.; Hu, Z.; Xu, M.; Yanjie, Z.; Shen, J.

    2017-12-01

    Changes in ecosystem resilience defy straightforward quantification from biodiversity metrics, which ignore influences of community structure. Naturally self-organized network structures show positive skewness in the distribution of node connections. Here we test for skewness reduction in lake diatom communities facing anthropogenic stressors, across a network of 273 lakes in China containing 452 diatom species. Species connections show positively skewed distributions in little-impacted lakes, switching to negative skewness in lakes associated with human settlement, surrounding land-use change, and higher phosphorus concentration. Dated sediment cores reveal a down-shifting of network skewness as human impacts intensify, and reversal with recovery from disturbance. The appearance and degree of negative skew presents a new diagnostic for quantifying system resilience and impacts from exogenous forcing on ecosystem communities.

  10. Amino acid composition reveals functional diversity of zooplankton in tropical lakes related to geography, taxonomy and productivity.

    PubMed

    Aranguren-Riaño, Nelson J; Guisande, Cástor; Shurin, Jonathan B; Jones, Natalie T; Barreiro, Aldo; Duque, Santiago R

    2018-07-01

    Variation in resource use among species determines their potential for competition and co-existence, as well as their impact on ecosystem processes. Planktonic crustaceans consume a range of micro-organisms that vary among habitats and species, but these differences in resource consumption are difficult to characterize due to the small size of the organisms. Consumers acquire amino acids from their diet, and the composition of tissues reflects both the use of different resources and their assimilation in proteins. We examined the amino acid composition of common crustacean zooplankton from 14 tropical lakes in Colombia in three regions (the Amazon floodplain, the eastern range of the Andes, and the Caribbean coast). Amino acid composition varied significantly among taxonomic groups and the three regions. Functional richness in amino acid space was greatest in the Amazon, the most productive region, and tended to be positively related to lake trophic status, suggesting the niche breadth of the community could increase with ecosystem productivity. Functional evenness increased with lake trophic status, indicating that species were more regularly distributed within community-wide niche space in more productive lakes. These results show that zooplankton resource use in tropical lakes varies with both habitat and taxonomy, and that lake productivity may affect community functional diversity and the distribution of species within niche space.

  11. Microplastic contamination in Lake Winnipeg, Canada.

    PubMed

    Anderson, Philip J; Warrack, Sarah; Langen, Victoria; Challis, Jonathan K; Hanson, Mark L; Rennie, Michael D

    2017-06-01

    Microplastics are an emerging contaminant of concern in aquatic ecosystems. To better understand microplastic contamination in North American surface waters, we report for the first time densities of microplastics in Lake Winnipeg, the 11th largest freshwater body in the world. Samples taken 2014 to 2016 revealed similar or significantly greater microplastic densities in Lake Winnipeg compared with those reported in the Laurentian Great Lakes. Plastics in the lake were largely of secondary origin, overwhelmingly identified as fibres. We detected significantly greater densities of microplastics in the north basin compared to the south basin of the lake in 2014, but not in 2015 or 2016. Mean lake-wide densities across all years were comparable and not statistically different. Scanning electron microscopy with energy dispersive X-ray spectroscopy indicated that 23% of isolated particles on average were not plastic. While the ecological impact of microplastics on aquatic ecosystems is still largely unknown, our study contributes to the growing evidence that microplastic contamination is widespread even around sparsely-populated freshwater ecosystems, and provides a baseline for future study and risk assessments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Evidence of Lake Trout reproduction at Lake Michigan's mid-lake reef complex

    USGS Publications Warehouse

    Janssen, J.; Jude, D.J.; Edsall, T.A.; Paddock, R.W.; Wattrus, N.; Toneys, M.; McKee, P.

    2006-01-01

    The Mid-Lake Reef Complex (MLRC), a large area of deep (> 40 m) reefs, was a major site where indigenous lake trout (Salvelinus namaycush) in Lake Michigan aggregated during spawning. As part of an effort to restore Lake Michigan's lake trout, which were extirpated in the 1950s, yearling lake trout have been released over the MLRC since the mid-1980s and fall gill net censuses began to show large numbers of lake trout in spawning condition beginning about 1999. We report the first evidence of viable egg deposition and successful lake trout fry production at these deep reefs. Because the area's existing bathymetry and habitat were too poorly known for a priori selection of sampling sites, we used hydroacoustics to locate concentrations of large fish in the fall; fish were congregating around slopes and ridges. Subsequent observations via unmanned submersible confirmed the large fish to be lake trout. Our technological objectives were driven by biological objectives of locating where lake trout spawn, where lake trout fry were produced, and what fishes ate lake trout eggs and fry. The unmanned submersibles were equipped with a suction sampler and electroshocker to sample eggs deposited on the reef, draw out and occasionally catch emergent fry, and collect egg predators (slimy sculpin Cottus cognatus). We observed slimy sculpin to eat unusually high numbers of lake trout eggs. Our qualitative approaches are a first step toward quantitative assessments of the importance of lake trout spawning on the MLRC.

  13. 77 FR 41686 - Safety Zone; Sheffield Lake Fireworks, Lake Erie, Sheffield Lake, OH

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-16

    ...-AA00 Safety Zone; Sheffield Lake Fireworks, Lake Erie, Sheffield Lake, OH AGENCY: Coast Guard, DHS. ACTION: Temporary final rule. SUMMARY: The Coast Guard is establishing a temporary safety zone on Lake Erie, Sheffield Lake, OH. This safety zone is intended to restrict vessels from a portion of Lake Erie...

  14. Flow Sorting of Marine Bacterioplankton after Fluorescence In Situ Hybridization

    PubMed Central

    Sekar, Raju; Fuchs, Bernhard M.; Amann, Rudolf; Pernthaler, Jakob

    2004-01-01

    We describe an approach to sort cells from coastal North Sea bacterioplankton by flow cytometry after in situ hybridization with rRNA-targeted horseradish peroxidase-labeled oligonucleotide probes and catalyzed fluorescent reporter deposition (CARD-FISH). In a sample from spring 2003 >90% of the cells were detected by CARD-FISH with a bacterial probe (EUB338). Approximately 30% of the microbial assemblage was affiliated with the Cytophaga-Flavobacterium lineage of the Bacteroidetes (CFB group) (probe CF319a), and almost 10% was targeted by a probe for the β-proteobacteria (probe BET42a). A protocol was optimized to detach cells hybridized with EUB338, BET42a, and CF319a from membrane filters (recovery rate, 70%) and to sort the cells by flow cytometry. The purity of sorted cells was >95%. 16S rRNA gene clone libraries were constructed from hybridized and sorted cells (S-EUB, S-BET, and S-CF libraries) and from unhybridized and unsorted cells (UNHYB library). Sequences related to the CFB group were significantly more frequent in the S-CF library (66%) than in the UNHYB library (13%). No enrichment of β-proteobacterial sequence types was found in the S-BET library, but novel sequences related to Nitrosospira were found exclusively in this library. These bacteria, together with members of marine clade OM43, represented >90% of the β-proteobacteria in the water sample, as determined by CARD-FISH with specific probes. This illustrates that a combination of CARD-FISH and flow sorting might be a powerful approach to study the diversity and potentially the activity and the genomes of different bacterial populations in aquatic habitats. PMID:15466568

  15. Eruptive behavior of the Marum/Mbwelesu lava lake, Vanuatu and comparisons with lava lakes on Earth and Io

    NASA Astrophysics Data System (ADS)

    Radebaugh, Jani; Lopes, Rosaly M.; Howell, Robert R.; Lorenz, Ralph D.; Turtle, Elizabeth P.

    2016-08-01

    Observations from field remote sensing of the morphology, kinematics and temperature of the Marum/Mbwelesu lava lake in the Vanuatu archipelago in 2014 reveal a highly active, vigorously erupting lava lake. Active degassing and fountaining observed at the 50 m lava lake led to large areas of fully exposed lavas and rapid ( 5 m/s) movement of lava from the centers of upwelling outwards to the lake margins. These rapid lava speeds precluded the formation of thick crust; there was never more than 30% non-translucent crust. The lava lake was observed with several portable, handheld, low-cost, near-infrared imagers, all of which measured temperatures near 1000 °C and one as high as 1022 °C, consistent with basaltic temperatures. Fine-scale structure in the lava fountains and cooled crust was visible in the near infrared at 5 cm/pixel from 300 m above the lake surface. The temperature distribution across the lake surface is much broader than at more quiescent lava lakes, peaking 850 °C, and is attributed to the highly exposed nature of the rapidly circulating lake. This lava lake has many characteristics in common with other active lava lakes, such as Erta Ale in Ethiopia, being confined, persistent and high-temperature; however it was much more active than is typical for Erta Ale, which often has > 90% crust. Furthermore, it is a good analogue for the persistent, high-temperature lava lakes contained within volcanic depressions on Jupiter's moon Io, such as Pele, also believed from spacecraft and ground-based observations to exhibit similar behavior of gas emission, rapid overturn and fountaining.

  16. Lake trout rehabilitation in Lake Ontario

    USGS Publications Warehouse

    Elrod, Joseph H.; O'Gorman, Robert; Schneider, Clifford P.; Eckert, Thomas H.; Schaner, Ted; Bowlby, James N.; Schleen, Larry P.

    1995-01-01

    Attempts to maintain the native lake trout (Salvelinus namaycush) population in Lake Ontario by stocking fry failed and the species was extirpated by the 1950s. Hatchery fish stocked in the 1960s did not live to maturity because of sea lamprey (Petromyzon marinus) predation and incidental commercial harvest. Suppression of sea lampreys began with larvicide treatments of Lake Ontario tributaries in 1971 and was enhanced when the tributaries of Oneida Lake and Lake Erie were treated in the 1980s. Annual stocking of hatchery fish was resumed with the 1972 year class and peaked at about 1.8 million yearlings and 0.3 million fingerlings from the 1985–1990 year classes. Survival of stocked yearlings declined over 50% in the 1980 s and was negatively correlated with the abundance of lake trout > 550 mm long (r = −0.91, P < 0.01, n = 12). A slot length limit imposed by the State of New York for the 1988 fishing season reduced angler harvest. Angler harvest in Canadian waters was 3 times higher in eastern Lake Ontario than in western Lake Ontario. For the 1977–1984 year classes, mean annual survival rate of lake trout age 6 and older was 0.45 (range: 0.35–0.56). In U.S. waters during 1985–1992, the total number of lake trout harvested by anglers was about 2.4 times greater than that killed by sea lampreys. The number of unmarked lake trout < 250 mm long in trawl catches in 1978–1992 was not different from that expected due to loss of marks and failure to apply marks at the hatchery, and suggested that recruitment of naturally-produced fish was nil. However, many of the obstacles which may have impeded lake trout rehabilitation in Lake Ontario during the 1980s are slowly being removed, and there are signs of a general ecosystem recovery. Significant recruitment of naturally produced lake trout by the year 2000, one interim objective of the rehabilitation plan for the Lake, may be achieved.

  17. Lake level variability in Silver Lake, Michigan: a response to fluctuations in lake levels of Lake Michigan

    USGS Publications Warehouse

    Fisher, Timothy G.; Loope, Walter L.

    2004-01-01

    Sediment from Silver Lake, Michigan, can be used to constrain the timing and elevation of Lake Michigan during the Nipissing transgression. Silver Lake is separated from Lake Michigan by a barrier/dune complex and the Nipissing, Calumet, and Glenwood shorelines of Lake Michigan are expressed landward of this barrier. Two Vibracores were taken from the lake in February 2000 and contain pebbly sand, sand, buried soils, marl, peat, and sandy muck. It is suggested here that fluctuations in the level of Lake Michigan are reflected in Silver Lake since the Chippewa low phase, and possibly at the end of the Algonquin phase. An age of 12,490 B.P. (10,460±50 14C yrs B.P.) on wood from a buried Entisol may record the falling Algonquin phase as the North Bay outlet opened. A local perched water table is indicated by marl deposited before 7,800 B.P. and peat between 7,760-7,000 B.P. when Lake Michigan was at the low elevation Chippewa phase. Continued deepening of the lake is recorded by the transition from peat to sandy muck at 7,000 B.P. in the deeper core, and with the drowning of an Inceptisol nearly 3 m higher at 6,410 B.P. in the shallower core. A rising groundwater table responding to a rising Lake Michigan base level during the Nipissing transgression, rather than a response to mid-Holocene climate change, explains deepening of Silver Lake. Sandy muck was deposited continually in Silver Lake between Nipissing and modern time. Sand lenses within the muck are presumed to be eolian in origin, derived from sand dunes advancing into the lake on the western side of the basin.

  18. A linked lake system beneath Thwaites Glacier, West Antarctica reveals an efficient mechanism for subglacial water flow.

    NASA Astrophysics Data System (ADS)

    Smith, B. E.; Gourmelen, N.; Huth, A.; Joughin, I. R.

    2016-12-01

    In this presentation we show the results of a multi-sensor survey of a system of subglacial lakes beneath Thwaites Glacier, West Antarctica. This is the first substantial active (meaning draining or filling on annual time scales) lake system detected under the fast-flowing glaciers of the Amundsen Coast. Altimetry data show that over the 2013 calendar year, four subglacial lakes drained, essentially simultaneously, with the bulk of the drainage taking place over the course the first three months of the year. The largest of the lakes appears to have drained around 3.7 km3 of water, with the others each draining less than 1 km3. The high-resolution radar surveys conducted in this area by NASA's IceBridge program allow detailed analysis of the subglacial hydrologic potential, which shows that the potential map in this area is characterized by small closed basins that should not, under the common assumption that water flow is directed down the gradient of the hydropotential, allow long-range water transport. The lakes' discharge demonstrates that, at least in some cases, water can flow out of apparently closed hydropotential basins. Combining a basal-flow routing map with a map of basal melt production suggests that the largest drainage event could recur as often as every 22 years, provided that overflow or leakage of mapped hydropotential basins allows melt water transport to refill the lake. An analysis of ice-surface speed records both around the lakes and at the Thwaites grounding line shows small changes in ice speed, but none clearly associated with the drainage event, suggesting that, at least in this area where subglacial melt is abundant, the addition of further water to the subglacial hydrologic system need not have any significant effect on ice flow. It is likely that the main impact of the lake system on the glacier is that as an efficient mechanism to remove meltwater from the system, it drains water that would otherwise flow through less efficient

  19. Influence of permafrost on lake terraces of Lake Heihai (NE Tibetan Plateau)

    NASA Astrophysics Data System (ADS)

    Lockot, Gregori; Hartmann, Kai; Wünnemann, Bernd

    2013-04-01

    The Tibetan Plateau (TP) is one of the key regions for climatic global change. Besides the poles the TP is the third highest storage of frozen water in glaciers. Here global warming is three times higher than in the rest of the world. Additionally the TP provides water for billions of people and influences the moisture availability from the Indian and East Asian monsoon systems. During the Holocene extent and intensity of the monsoonal systems changed. Hence, in the last decades, a lot of work was done to reconstruct timing and frequency of monsoonal moisture, to understand the past and give a better forecast for the future. Comparative workings often show very heterogeneous patterns of timing and frequency of the Holocene precipitation and temperature maximum, emphasizing the local importance of catchment dynamics. In this study we present first results of lake Heihai (36°N, 93°15'E, 4500m a.s.l.), situated at the north-eastern border of the TP. The lake is surrounded by a broad band of near-shore lake sediments, attesting a larger lake extent in the past. These sediments were uplifted by permafrost, reaching nowadays heights ca. +8 meters above present lake level. Due to the uplift one of the main inflows was blocked and the whole hydrology of the catchment changed. To quantify the uplift of permafrost Hot Spot Analysis were accomplished at a DEM of the near-shore area. As a result regions of high permafrost uplift and those which mirror the original height of lake ground were revealed. The most obvious uplift took place in the northern and western part of the lake, where the four uplift centers are located. In contrast the southern and eastern areas show a rather degraded pattern (probably by fluvial erosion, thermokarst, etc.). The ancient lake bottom, without permafrost uplift was estimated to be 4-6 meters above the modern lake level. For a better understanding of permafrost interaction inside the terrace bodies a 5m sediment profile was sampled and

  20. Gas-driven lava lake fluctuations at Erta 'Ale volcano (Ethiopia) revealed by MODIS measurements

    NASA Astrophysics Data System (ADS)

    Vergniolle, Sylvie; Bouche, Emmanuella

    2016-09-01

    The long-lived lava lake of Erta 'Ale volcano (Ethiopia) is remotely monitored by moderate resolution imaging spectroradiometers (MODIS) installed on satellites. The Normalised Thermal Index (NTI) (Wright et al. Remote Sens Environ 82:135-155 2002) is shown to be proportional to the volume of the lava lake based on visual observations. The lava lake's variable level can be plausibly related to a stable foam, i.e. a mixture composed of densely packed non-coalescing bubbles in suspension within a liquid. This foam is trapped at the top of the magma reservoir, and its thickness changes in response to the gas flux feeding the foam being successively turned on and off. The temporal evolution of the foam thickness, and the resulting variation of the volume of the lava lake, is calculated numerically by assuming that the gas flux feeding the foam, initially constant and homogeneous since December 9, 2002, is suddenly stopped on December 13, 2002 and not restarted before May 2003. The best fit between the theoretical foam thickness and the level of the lava lake deduced from the NTI provides an estimate of both the reservoir radius, 155-170 m, and the gas flux feeding the foam, 5.5×10-3-7.2×10-3 m 3 s -1 when existing. This is in agreement with previous estimates from acoustic measurements (Bouche et al. Earth Planet Sci Lett 295:37-48 2010). The very good agreement between the theoretical foam thickness and that deduced from MODIS data shows for the first time the existence of a regime based on the behaviour of a stable foam, whose spreading towards the conduit ("wide" conduit condition), can explain the long-lived activity. Our predictive model, which links the gas flux at the vent to the foam spreading, could potentially be used on any volcano with a long-lived activity. The underlying gas flux and the horizontal surface area of the magma reservoir can then be deduced by combining modelling to continuous measurements of gas flux. The lava lake, when high, often shows

  1. Genetic diversity of wild and hatchery lake trout populations: Relevance for management and restoration in the Great Lakes

    USGS Publications Warehouse

    Page, K.S.; Scribner, K.T.; Burnham-Curtis, M.

    2004-01-01

    The biological diversity of lake trout Salvelinus namaycush in the upper Great Lakes was historically high, consisting of many recognizable morphological types and discrete spawning populations. During the 1950s and 1960s, lake trout populations were extirpated from much of the Great Lakes primarily as a result of overfishing and predation by the parasitic sea lamprey Petromyzon marinus. Investigations of how genetic diversity is partitioned among remnant wild lake trout populations and hatchery broodstocks have been advocated to guide lake trout management and conservation planning. Using microsatellite genetic markers, we estimated measures of genetic diversity and the apportionment of genetic variance among 6 hatchery broodstocks and 10 wild populations representing three morphotypes (lean, humper, and siscowet). Analyses revealed that different hatchery broodstocks and wild populations contributed disproportionally to the total levels of genetic diversity. The genetic affinities of hatchery lake trout reflected the lake basins of origin of the wild source populations. The variance in allele frequency over all sampled extant wild populations was apportioned primarily on the basis of morphotype (??MT = 0.029) and secondarily among geographically dispersed populations within each morphotype (??ST = 0.024). The findings suggest that the genetic divergence reflected in recognized morphotypes and the associated ecological and physiological specialization occurred prior to the partitioning of large proglacial lakes into the Great Lakes or as a consequence of higher contemporary levels of gene flow within than among morphotypes. Information on the relative contributions of different broodstocks to total gene diversity within the regional hatchery program can be used to prioritize the broodstocks to be retained and to guide future stocking strategies. The findings highlight the importance of ecological and phenotypic diversity in Great Lakes fish communities and

  2. A New Holocene Lake Sediment Archive from Samoa (Tropical South Pacific) Reveals Millennial Scale Changes in Hydroclimate.

    NASA Astrophysics Data System (ADS)

    Sear, D. A.; Hassall, J. D.; Langdon, P. G.; Croudace, I. W. C.; Maloney, A. E.; Sachs, J. P.

    2015-12-01

    El Niño-Southern Oscillation (ENSO) is the strongest source of interannual climate variability on the planet. Its behaviour leads to major hydro-climate impacts around the world, including flooding, drought, and altering cyclone frequency. Simulating ENSO behaviour is difficult using climate models, as it is a complex non-linear system, and hence predicting its future variability under changing climate is challenging. Using palaeoclimate data thus allows an insight into long-term ENSO behaviour against a range of different forcings throughout the Holocene. To date long, coherent, high resolution records from lake sediment archives have been limited to the Pacific Rim. We present new data from the closed crater Lake Lanoto'o, on Upolu Island, Samoa, located within the tropical South Pacific. The lake sediment record extends back into the early Holocene with an average sedimentation rate 0.4mm a-1. We demonstrate a strong correspondence between precipitation at the study site and measures of the Southern Oscillation Index (SOI)1. We compare geochemical proxies of precipitation to a long-term reconstruction of the SOI2. The resulting proxy SOI record extends over the last 9000 years, revealing scales of change in ENSO that match those recorded from sites located on the Pacific rim3,4. A major period of La-Nina dominance occurs around 4.5ka BP before abruptly switching to El-Nino dominance around 3.2ka. Thereafter, phases of El-Nino - La Nina dominance, alternate every c. 400yrs. The results point to prolonged phases of enhanced or reduced precipitation - conditions that may influence future population resilience to climate change, and may also have been triggers for the colonisation of more remote eastern Polynesia. 1. http://www.cgd.ucar.edu/cas/catalog/climind/SOI.signal.annstd.ascii. 2. Yan, H. et al. (2011) Nature Geoscience, 4, p.611. 3. Conroy J. L. et al. (2008) Quaternary Science Reviews, 27, p.1166 4. Moy, C. M. et al. (2002) Nature, 420, p.162

  3. Lake whitefish and lake herring population structure and niche in ten south-central Ontario lakes

    USGS Publications Warehouse

    Carl, Leon M.; McGuiness, Fiona

    2006-01-01

    This study compares simple fish communities of ten oligotrophic lakes in south-central Ontario. Species densities and population size structure vary significantly among these lake communities depending on fish species present beyond the littoral zone. Lake whitefish are fewer and larger in the presence of lake herring than in their absence. Diet analysis indicates that lake whitefish shift from feeding on both plankton and benthic prey when lake herring are absent to a primarily benthic feeding niche in the presence of lake herring. When benthic round whitefish are present, lake whitefish size and density decline and they move lower in the lake compared to round whitefish. Burbot are also fewer and larger in lakes with lake herring than in lakes without herring. Burbot, in turn, appear to influence the population structure of benthic coregonine species. Lower densities of benthic lake whitefish and round whitefish are found in lakes containing large benthic burbot than in lakes with either small burbot or where burbot are absent. Predation on the pelagic larvae of burbot and lake whitefish by planktivorous lake herring alters the size and age structure of these populations. As life history theory predicts, those species with poor larval survival appear to adopt a bet-hedging life history strategy of long-lived individuals as a reproductive reserve.

  4. Fine-scale ignimbrite morphology revealed in LiDAR at Crater Lake, OR

    NASA Astrophysics Data System (ADS)

    Robinson, J. E.; Bacon, C. R.; Wright, H. M.

    2011-12-01

    Mount Mazama erupted ~7,700 years ago resulting in the collapse of Crater Lake caldera, ash fall across the Pacific Northwest, and emplacement of compositionally zoned ignimbrite. Early climactic ignimbrite contains uniform rhyodacitic pumice and traveled far from the vent, whereas late, less mobile ignimbrite is dominated by crystal-rich andesitic scoria and mafic crystal mush. Funded by the USGS, NPS, and FHWA, the DOGAMI-led Oregon LiDAR Consortium contracted with Watershed Services to collect ~800 km2 of LiDAR over Crater Lake National Park from Aug 2010 to Sept 2010. Ground laser returns have an average density of 1.63 returns/m2 over the heavily forested area of interest. The data have a lateral RMSE and vertical accuracy of 0.05 m. A bare earth terrain model allows a virtual removal of the forest, revealing fine-scale surface morphology, notably in the climactic ignimbrite. Secondary pyroclastic flows, explosion craters, erosion by water, and compaction-related deformation modified the originally smooth ignimbrite surface. Distinct pyroclastic flow fronts are evident in the LiDAR in Annie Creek valley. Leveed flows stand approximately 5 m above the lower ignimbrite surface, and individual toes are about 1-2 m high. Preliminary field checking indicates that rhyodacitic pumice dominates the lower ignimbrite surface, but the leveed flows are a subequal mix of locally oxidized rhyodacitic pumice and andesitic scoria. We hypothesize that these deposits were secondary pyroclastic flows formed by gravitational failure of late ignimbrite. In the Castle Creek valley, is a 2-meter collapse scarp that may have spawned a small secondary pyroclastic flow; several such headwall scarps are present in Sand Creek valley. Differential compaction features are common in many thick ignimbrites. We suggest this caused the deformation of the ignimbrite apparent in the LiDAR. In Annie Creek valley are a series of flow parallel asymmetric ridges, with shallower slopes toward the

  5. The sediment record of Lake Ohrid (Albania/Macedonia)

    NASA Astrophysics Data System (ADS)

    Vogel, H.; Wagner, B.; Sulpizio, R.; Zanchetta, G.; Schouten, S.; Leng, M. J.; Wessels, M.; Nowaczyk, N.; Hilgers, A.

    2009-12-01

    Lake Ohrid, a transboundary lake shared by the former Yugoslav Republic of Macedonia and the Republic of Albania is with its likely Pliocene age, considered to be the oldest existing lake in Europe. Since 2004 numerous sediment successions have been recovered from Lake Ohrid in order to investigate modern and past sedimentation patterns, to establish a tephrostratigraphic and chronological framework, and to infer past climatic and environmental changes. Frequent occurrences of well-dated tephra and cryptotephra layers as well as radiocarbon, electron spin resonance, and luminescence dating allowed the establishment of a chronological framework for the recovered sediment successions. These data revealed that the sediment successions recovered so far in part reach well back into MIS 6. Despite distinct spatial heterogeneity in sediment composition, Lake Ohrid appears to have reacted uniformly to climatic forcing on changes in catchment configuration, limnology and hydrology in the past as evidenced by contemporaneous changes in sediment composition in successions from different parts of the lake basin. The interplay of climatic forced factors has varied significantly in the course of the last glacial-interglacial cycle and led to distinctly different sediment characteristics during glacial and interglacial phases at Lake Ohrid. Beside this general pattern tied to high amplitude climate fluctuations, short-term climatic fluctuations of reduced amplitude are also recorded in the sediment successions and generally well correlated to other paleoclimate records in the Mediterranean. Initial quantitative inferences of past lake surface temperatures using the TEX86 paleothermometer revealed c. 5-6°C lower temperatures in the glacial compared with the interglacial periods. The reconstructed glacial and interglacial temperatures from Lake Ohrid correspond relatively well with temperature anomalies derived from sea surface temperature reconstructions in the marine (-4°C) and

  6. Is Lake Chabot Eutrophic?

    NASA Astrophysics Data System (ADS)

    Pellegrini, K.; Logan, J.; Esterlis, P.; Lew, A.; Nguyen, M.

    2013-12-01

    Introduction/Abstract: Lake Chabot is an integral part of the East Bay watershed that provides habitats for animals and recreation for humans year-round. Lake Chabot has been in danger of eutrophication due to excessive dumping of phosphorous and nitrogen into the water from the fertilizers of nearby golf courses and neighboring houses. If the lake turned out to be eutrophified, it could seriously impact what is currently the standby emergency water supply for many Castro Valley residents. Eutrophication is the excessive richness of nutrients such as nitrogen and phosphorus in a lake, usually as a result of runoff. This buildup of nutrients causes algal blooms. The algae uses up most of the oxygen in the water, and when it dies, it causes the lake to hypoxify. The fish in the lake can't breathe, and consequently suffocate. Other oxygen-dependant aquatic creatures die off as well. Needless to say, the eutrophication of a lake is bad news for the wildlife that lives in or around it. The level of eutrophication in our area in Northern California tends to increase during the late spring/early summer months, so our crew went out and took samples of Lake Chabot on June 2. We focused on the area of the lake where the water enters, known on the map as Honker Bay. We also took readings a ways down in deeper water for comparison's sake. Visually, the lake looked in bad shape. The water was a murky green that glimmered with particulate matter that swirled around the boat as we went by. In the Honker Bay region where we focused our testing, there were reeds bathed in algae that coated the surface of the lake in thick, swirling patterns. Surprisingly enough, however, our test results didn't reveal any extreme levels of phosphorous or nitrogen. They were slightly higher than usual, but not by any significant amount. The levels we found were high enough to stimulate plant and algae growth and promote eutrophication, but not enough to do any severe damage. After a briefing with a

  7. Evidence for early hunters beneath the Great Lakes.

    PubMed

    O'Shea, John M; Meadows, Guy A

    2009-06-23

    Scholars have hypothesized that the poorly understood and rarely encountered archaeological sites from the terminal Paleoindian and Archaic periods associated with the Lake Stanley low water stage (10,000-7,500 BP) are lost beneath the modern Great Lakes. Acoustic and video survey on the Alpena-Amberley ridge, a feature that would have been a dry land corridor crossing the Lake Huron basin during this time period, reveals the presence of a series of stone features that match, in form and location, structures used for caribou hunting in both prehistoric and ethnographic times. These results present evidence for early hunters on the Alpena-Amberley corridor, and raise the possibility that intact settlements and ancient landscapes are preserved beneath Lake Huron.

  8. Evidence for early hunters beneath the Great Lakes

    PubMed Central

    O'Shea, John M.; Meadows, Guy A.

    2009-01-01

    Scholars have hypothesized that the poorly understood and rarely encountered archaeological sites from the terminal Paleoindian and Archaic periods associated with the Lake Stanley low water stage (10,000–7,500 BP) are lost beneath the modern Great Lakes. Acoustic and video survey on the Alpena-Amberley ridge, a feature that would have been a dry land corridor crossing the Lake Huron basin during this time period, reveals the presence of a series of stone features that match, in form and location, structures used for caribou hunting in both prehistoric and ethnographic times. These results present evidence for early hunters on the Alpena-Amberley corridor, and raise the possibility that intact settlements and ancient landscapes are preserved beneath Lake Huron. PMID:19506245

  9. Human land uses enhance sediment denitrification and N2O production in Yangtze lakes primarily by influencing lake water quality

    NASA Astrophysics Data System (ADS)

    Liu, W.; Yao, L.; Wang, Z.; Xiong, Z.; Liu, G.

    2015-10-01

    Sediment denitrification in lakes alleviates the effects of eutrophication through the removal of nitrogen to the atmosphere as N2O and N2. However, N2O contributes notably to the greenhouse effect and global warming. Human land uses (e.g. agricultural and urban areas) strongly affect lake water quality and sediment characteristics, which, in turn, may regulate lake sediment denitrification and N2O production. In this study, we investigated sediment denitrification and N2O production and their relationships to within-lake variables and watershed land uses in 20 lakes from the Yangtze River basin in China. The results indicated that both lake water quality and sediment characteristics were significantly influenced by watershed land uses. N2O production rates increased with increasing background denitrification rates. Background denitrification and N2O production rates were positively related to water nitrogen concentrations but were not significantly correlated with sediment characteristics and plant community structure. A significant positive relationship was observed between background denitrification rate and percentage of human-dominated land uses (HDL) in watersheds. Structural equation modelling revealed that the indirect effects of HDL on sediment denitrification and N2O production in Yangtze lakes were mediated primarily through lake water quality. Our findings also suggest that although sediments in Yangtze lakes can remove large quantities of nitrogen through denitrification, they may also be an important source of N2O, especially in lakes with high nitrogen content.

  10. Exploration of Microbial Diversity and Community Structure of Lonar Lake: The Only Hypersaline Meteorite Crater Lake within Basalt Rock

    PubMed Central

    Paul, Dhiraj; Kumbhare, Shreyas V.; Mhatre, Snehit S.; Chowdhury, Somak P.; Shetty, Sudarshan A.; Marathe, Nachiket P.; Bhute, Shrikant; Shouche, Yogesh S.

    2016-01-01

    Lonar Lake is a hypersaline and hyperalkaline soda lake and the only meteorite impact crater in the world situated in basalt rocks. Although culture-dependent studies have been reported, a comprehensive understanding of microbial community composition and structure in Lonar Lake remains elusive. In the present study, microbial community structure associated with Lonar Lake sediment and water samples was investigated using high-throughput sequencing. Microbial diversity analysis revealed the existence of diverse, yet largely consistent communities. Proteobacteria (30%), Actinobacteria (24%), Firmicutes (11%), and Cyanobacteria (5%) predominated in the sequencing survey, whereas Bacteroidetes (1.12%), BD1-5 (0.5%), Nitrospirae (0.41%), and Verrucomicrobia (0.28%) were detected in relatively minor abundances in the Lonar Lake ecosystem. Within the Proteobacteria phylum, the Gammaproteobacteria represented the most abundantly detected class (21–47%) within sediment samples, but only a minor population in the water samples. Proteobacteria and Firmicutes were found at significantly higher abundance (p ≥ 0.05) in sediment samples, whereas members of Actinobacteria, Candidate division TM7 and Cyanobacteria (p ≥ 0.05) were significantly abundant in water samples. Compared to the microbial communities of other hypersaline soda lakes, those of Lonar Lake formed a distinct cluster, suggesting a different microbial community composition and structure. Here we report for the first time, the difference in composition of indigenous microbial communities between the sediment and water samples of Lonar Lake. An improved census of microbial community structure in this Lake ecosystem provides a foundation for exploring microbial biogeochemical cycling and microbial function in hypersaline lake environments. PMID:26834712

  11. Linking egg thiamine and fatty acid concentrations of Lake Michigan lake trout with early life stage mortality.

    PubMed

    Czesny, Sergiusz; Dettmers, John M; Rinchard, Jacques; Dabrowski, Konrad

    2009-12-01

    The natural reproduction of lake trout Salvelinus namaycush in Lake Michigan is thought to be compromised by nutritional deficiency associated with inadequate levels of thiamine (vitamin B1) in their eggs. However, mortality driven by thiamine deficiency (commonly referred to as early mortality syndrome [EMS]) is not the only significant cause of low lake trout survival at early life stages. In this study, we sought to better understand the combined effects of variable levels of thiamine and fatty acids in lake trout eggs on prehatch, posthatch, and swim-up-stage mortality. We sampled the eggs of 29 lake trout females from southwestern Lake Michigan. The concentrations of free thiamine and its vitamers (e.g., thiamine monophosphate [TMP] and thiamine pyrophosphate [TPP]) as well as fatty acid profiles were determined in sampled eggs. Fertilized eggs and embryos were monitored through the advanced swim-up stage (1,000 degree-days). Three distinct periods of mortality were identified: prehatch (0-400 degree-days), immediately posthatch (401-600 degree-days), and swim-up (601-1,000 degree-days). Stepwise multiple regression analysis revealed (1) that cis-7-hexadecenoic acid in both neutral lipids (NL) and phospholipids (PL) correlated with prehatch mortality, (2) that docosapentaenoic acid in PL and docosahexaenoic acid in NL correlated with posthatch mortality, and (3) that total lipids, TPP, and palmitoleic acid in NL, linoleic acid, and palmitic acid in PL correlated with the frequency of EMS. These results indicate the complexity of early life stage mortality in lake trout and suggest that inadequate levels of key fatty acids in eggs, along with variable thiamine content, contribute to the low survival of lake trout progeny in Lake Michigan.

  12. Conditions affecting the release of phosphorus from surface lake sediments.

    PubMed

    Christophoridis, Christophoros; Fytianos, Konstantinos

    2006-01-01

    Laboratory studies were conducted to determine the effect of pH and redox conditions, as well as the effect of Fe, Mn, Ca, Al, and organic matter, on the release of ortho-phosphates in lake sediments taken from Lakes Koronia and Volvi (Northern Greece). Results were evaluated in combination with experiments to determine P fractionation in the sediment. The study revealed the major effect of redox potential and pH on the release of P from lake sediments. Both lakes showed increased release rates under reductive conditions and high pH values. The fractionation experiments revealed increased mobility of the reductive P fraction as well as of the NaOH-P fraction, indicating participation of both fractions in the overall release of sediment-bound P, depending on the prevailing environmental conditions. The results were assessed in combination with the release patterns of Fe, Mn, Ca, Al, and organic matter, enabling the identification of more specific processes of P release for each lake. The basic release patterns included the redox induced reductive dissolution of P-bearing metal oxides and the competitive exchange of phosphate anions with OH- at high pH values. The formation of an oxidized surface microlayer under oxic conditions acted as a protective film, preventing further P release from the sediments of Lake Volvi, while sediments from Lake Koronia exhibited a continuous and increased tendency to release P under various physicochemical conditions, acting as a constant source of internal P loading.

  13. Ecological regime shifts and changes of lake ecosystem service in a shallow Yangtze lake (Taibai Lake, China) over the past 150 years

    NASA Astrophysics Data System (ADS)

    Dong, X.; Xu, M.; Yang, X.

    2017-12-01

    Shallow lakes provide a range of ecosystem services such as water supply, biodiversity, aquaculture, tourism, shipping and flood regulation. Over recent decades, many lakes have become severely deteriorated due to a coupled natural and human disturbance. Given the limited monitoring records, however, we still have little knowledge on how, when and why those lake experienced ecological status shifts, and how the lake ecosystem service changed. Paleolimnological techniques were widely used in understanding the historical environmental and ecological changes. Here, we chose a typical eutrophic shallow lake, Taibai Lake, and acquired geochemistry proxies, grain size, diatom, cladocera and chironomid from a 210Pb and 137Cs dated sediment core. Document records and monitoring data are also included as important marks of social and environmental change. A T-test based algorithm of STARS reveal at least two ecological shifts, respectively in the 1960s and the 1990s. The sudden shift in the 1960s is supposed to be influenced by a dam and sluice construction in the 1950s and another shift in the 1990s should be a critical transition due to the alternation of ecosystem structure for higher fishery production. Correspondingly, lake ecosystem service (LES) also experienced significant changes. Prior to 1930s, different types of LES kept relatively stable with low values. With the dam construction in the 1960s, the changed hydrological condition led to gradual increases in both regulation and provision service. However, with much effort on fishery and reclamation, the regulation service of the lake decreased, exhibiting a tradeoff among LES. After 1990s, with intense aquaculture, most types of LSE suffered a further decrease. The long-term records exhibited that ecosystem services in primary productivity and biodiversity maintenance increased (synergies) whereas services in water-purification and climate regulating decreased significantly (tradeoffs) since 1950s, when local

  14. Isotopic fingerprints of anthropogenic molybdenum in lake sediments.

    PubMed

    Chappaz, Anthony; Lyons, Timothy W; Gordon, Gwyneth W; Anbar, Ariel D

    2012-10-16

    We measured the molybdenum isotope compositions (δ(98)Mo) of well-dated sediment cores from two lakes in eastern Canada in an effort to distinguish between natural and anthropogenic contributions to these freshwater aquatic systems. Previously, Chappaz et al. (1) ascribed pronounced 20th-century Mo concentration enrichments in these lakes to anthropogenic inputs. δ(98)Mo values in the deeper sediments (reflecting predominantly natural Mo sources) differ dramatically between the two lakes: -0.32 ± 0.17‰ for oxic Lake Tantare and +0.64 ± 0.09‰ for anoxic Lake Vose. Sediment layers previously identified as enriched in anthropogenic Mo, however, reveal significant δ(98)Mo shifts of ± 0.3‰, resulting in isotopically heavier values of +0.05 ± 0.18‰ in Lake Tantare and lighter values of +0.31 ± 0.03‰ in Lake Vose. We argue that anthropogenic Mo modifies the isotopic composition of the recent sediments, and we determine δ(98)Mo(anthropogenic) values of 0.1 ± 0.1‰ (Lake Vose) and 0.2 ± 0.2‰ (Lake Tantare). These calculated inputs are consistent with the δ(98)Mo of molybdenite (MoS(2)) likely delivered to the lakes via smelting of porphyry copper deposits (Lake Vose) or through combustion of coal and oil also containing Mo (Lake Tantare). Our results confirm the utility of Mo isotopes as a promising fingerprint of human impacts and perhaps the specific sources of contamination. Importantly, the magnitudes of the anthropogenic inputs are large enough, relative to the natural Mo cycles in each lake, to have an impact on the microbiological communities.

  15. Shifts in river-floodplain relationship reveal the impacts of river regulation: A case study of Dongting Lake in China

    NASA Astrophysics Data System (ADS)

    Lu, Cai; Jia, Yifei; Jing, Lei; Zeng, Qing; Lei, Jialin; Zhang, Shuanghu; Lei, Guangchun; Wen, Li

    2018-04-01

    Better understanding of the dynamics of hydrological connectivity between river and floodplain is essential for the ecological integrity of river systems. In this study, we proposed a regime-switch modelling (RSM) framework, which integrates change point analysis with dynamic linear regression, to detect and date change points in linear regression, and to quantify the relative importance of natural variations and anthropogenic disturbances. The approach was applied to the long-term hydrological time series to investigate the evolution of river-floodplain relation in Dongting Lake in the last five decades, during which the Yangtze River system experienced unprecedented anthropogenic manipulations. Our results suggested that 1) there were five distinct regimes during which the influence of inflows and local climate on lake water level changed significantly. The detected change points were well corresponding to the major events occurred upon the Yangtze; 2) although the importance of inflows from the Yangtze was greater than that of the tributaries flows over the five regimes, the relative contribution gradually decreased from regime 1 to regime 5. The weakening of hydrological forcing from the Yangtze was mainly attributed to the reduction in channel capacity resulting from sedimentation in the outfalls and water level dropping caused by river bed scour in the mainstream; 3) the effects of local climate was much smaller than these of inflows; and 4) since the operation of The Three Gorges Dam in 2006, the river-floodplain relationship entered a new equilibrium in that all investigated variables changed synchronously in terms of direction and magnitude. The results from this study reveal the mechanisms underlying the alternated inundation regime in Dongting Lake. The identified change points, some of which have not been previously reported, will allow a reappraisal of the current dam and reservoir operation strategies not only for flood/drought risk management but

  16. Using diets to reveal overlap and egg predation among benthivorous fishes in Lake Michigan

    USGS Publications Warehouse

    Mychek-Londer, Justin G.; Bunnell, David B.; Stott, Wendylee; Diana, James S.; French, John R. P.; Chriscinske, Margret

    2013-01-01

    Ecological stability in the Laurentian Great Lakes has been altered by nonindigenous species, such as the Round Goby Neogobius melanostomus and dreissenid mussels, and by declines in native amphipods Diporeia spp. We evaluated whether these changes could influence diet overlap between three benthivorous fishes (Slimy Sculpin Cottus cognatus, Deepwater Sculpin Myoxocephalus thompsonii, and Round Goby) and whether predation on eggs of native species was occurring. We examined diets of fish collected at depths of 69–128 m in Lake Michigan offshore of Frankfort and Muskegon, Michigan, and Two Rivers and Sturgeon Bay, Wisconsin, during January–May 2009 and 2010. Important prey (by dry weight proportion and by percent frequency of occurrence) for Slimy Sculpin were Mysis (0.34; 45%), Diporeia (0.16; 34%), and Limnocalanus macrurus (0.22; 68%); important prey for Deepwater Sculpin were Mysis (0.74; 92%) and Diporeia (0.16; 54%). Round Goby consumed mainly bivalves (i.e., dreissenids: 0.68; 95%) and Mysis (0.15; 37%). The two sculpin species consumed the eggs of Bloaters Coregonus hoyi (Slimy Sculpin: 0.04, 11%; Deepwater Sculpin: 0.02, 7%) and the eggs of Deepwater Sculpin (Slimy Sculpin: 0.03, 13%; Deepwater Sculpin: 0.05, 16%) during February–May at all sites. Round Goby also consumed eggs of these species but at lower levels (≤0.01; <1%). Diet overlap was identified between sculpin species at Frankfort and Sturgeon Bay, suggesting possible interspecific competition, but their diets did not overlap at Two Rivers; diet overlap was never observed between Round Goby and either sculpin species. Given that (1) diet overlap varied by site and (2) diet proportions varied spatially more than temporally, benthivores appear to be exhibiting localized responses to recent ecological changes. Overall, these results reveal that egg predation and interspecific competition could be important interactions to consider in future examinations of the population dynamics of these

  17. Diagram of Lake Stratification on Mars

    NASA Image and Video Library

    2017-06-01

    This diagram presents some of the processes and clues related to a long-ago lake on Mars that became stratified, with the shallow water richer in oxidants than deeper water was. The sedimentary rocks deposited within a lake in Mars' Gale Crater more than three billion years ago differ from each other in a pattern that matches what is seen in lakes on Earth. As sediment-bearing water flows into a lake, bedding thickness and particle size progressively decrease as sediment is deposited in deeper and deeper water as seen in examples of thick beds (PIA19074) from shallowest water, thin beds (PIA19075) from deeper water and even thinner beds (PIA19828) from deepest water. At sites on lower Mount Sharp, inside the crater, measurements of chemical and mineral composition by NASA's Curiosity Mars rover reveal a clear correspondence between the physical characteristics of sedimentary rock from different parts of the lake and how strongly oxidized the sediments were. Rocks with textures indicating that the sediments were deposited near the edge of a lake have more strongly oxidized composition than rocks with textures indicating sedimentation in deep water. For example, the iron mineral hematite is more oxidized than the iron mineral magnetite. An explanation for why such chemical stratification occurs in a lake is that the water closer to the surface is more exposed to oxidizing effects of oxygen in the atmosphere and ultraviolet light. On Earth, a stratified lake with a distinct boundary between oxidant-rich shallows and oxidant-poor depths provides a diversity of environments suited to different types of microbes. If Mars has ever hosted microbial live, the stratified lake at Gale Crater may have similarly provided a range of different habitats for life. https://photojournal.jpl.nasa.gov/catalog/PIA21500

  18. Temporal 222Rn distributions to reveal groundwater discharge into desert lakes: Implication of water balance in the Badain Jaran Desert, China

    NASA Astrophysics Data System (ADS)

    Luo, Xin; Jiao, Jiu Jimmy; Wang, Xu-sheng; Liu, Kun

    2016-03-01

    How lake systems are maintained and water is balanced in the lake areas in the Badain Jaran Desert (BJD), northeast of China have been debated for about a decade. In this study, continuous 222Rn measurement is used to quantify groundwater discharge into two representative fresh and brine water lakes in the desert using a steady-state mass-balance model. Two empirical equations are used to calculate atmospheric evasion loss crossing the water-air interface of the lakes. Groundwater discharge rates yielded from the radon mass balance model based on the two empirical equations are well correlated and of almost the same values, confirming the validity of the model. The fresh water and brine lakes have a daily averaged groundwater discharge rate of 7.6 ± 1.7 mm d-1 and 6.4 ± 1.8 mm d-1, respectively. The temporal fluctuations of groundwater discharge show similar patterns to those of the lake water level, suggesting that the lakes are recharged from nearby groundwater. Assuming that all the lakes have the same discharge rate as the two studied lakes, total groundwater discharge into all the lakes in the desert is estimated to be 1.59 × 105 m3 d-1. A conceptual model of water balance within a desert lake catchment is proposed to characterize water behaviors within the catchment. This study sheds lights on the water balance in the BJD and is of significance in sustainable regional water resource utilization in such an ecologically fragile area.

  19. Aquatic insect community of lake, Phulbari anua in Cachar, Assam.

    PubMed

    Gupta, Susmita; Narzary, Rupali

    2013-05-01

    An investigation on the water quality and aquatic insect community of an oxbow lake (Phulbari anua) of south Assam, North-East India was carried out during February to April, 2010. Aquatic insect community of the oxbow lake was represented by 9 species belonging to 9 families and 4 orders during the study period. Order Ephemeroptera and Hemiptera were found to be dominant. Record of 5 species and 5 families from the order Hemiptera showed that this is the largest order in terms of aquatic insect diversity of the lake. Computation of dominance status of different species of aquatic insects of the lake based on Engelmann's Scale revealed that Anisops lundbladiana and Cloeon sp. were eudominant in the system. The Shannon- Weiner's Diversity Index (H') and Shannon evenness values (J') were found to range from 0.3-0.69 and 0.53 -0.97, respectively indicating perturbation of the system. Again in terms of physico-chemical properties of water the lake is in a satisfactory condition where all the parameters are well within the range of IS 10500. The DO values were found to range from 6.8 to 14.8 mgl(-1). Free CO2 fluctuated from 1 to 4.98 mgl(-1) and nitrate in water ranged from 0.4 to 2.1 mgl(-1). Margalef's water quality index values of most of the samplings also indicated clean water condition of the lake. Correlation coefficient analyses of the environmental variables, aquatic insect diversity and density of the lake revealed that aquatic insect diversity of the lake is mainly governed by dissolved oxygen, nitrate, and free carbon dioxide.

  20. 2016 Lake Michigan Lake Trout Working Group Report

    USGS Publications Warehouse

    Madenjian, Charles P.; Breidert, Brian; Boyarski, David; Bronte, Charles R.; Dickinson, Ben; Donner, Kevin; Ebener, Mark P.; Gordon, Roger; Hanson, Dale; Holey, Mark; Janssen, John; Jonas, Jory; Kornis, Matthew; Olsen, Erik; Robillard, Steve; Treska, Ted; Weldon, Barry; Wright, Greg D.

    2017-01-01

    This report provides a review on the progression of lake trout rehabilitation towards meeting the Salmonine Fish Community Objectives (FCOs) for Lake Michigan (Eshenroder et. al. 1995) and the interim goal and evaluation objectives articulated in A Fisheries Management Implementation Strategy for the Rehabilitation of Lake Trout in Lake Michigan (Dexter et al. 2011); we also include data describing lake trout stocking and mortality to portray the present state of progress towards lake trout rehabilitation.

  1. Recent Warming of Lake Kivu

    PubMed Central

    Katsev, Sergei; Aaberg, Arthur A.; Crowe, Sean A.; Hecky, Robert E.

    2014-01-01

    Lake Kivu in East Africa has gained notoriety for its prodigious amounts of dissolved methane and dangers of limnic eruption. Being meromictic, it is also expected to accumulate heat due to rising regional air temperatures. To investigate the warming trend and distinguish between atmospheric and geothermal heating sources, we compiled historical temperature data, performed measurements with logging instruments, and simulated heat propagation. We also performed isotopic analyses of water from the lake's main basin and isolated Kabuno Bay. The results reveal that the lake surface is warming at the rate of 0.12°C per decade, which matches the warming rates in other East African lakes. Temperatures increase throughout the entire water column. Though warming is strongest near the surface, warming rates in the deep waters cannot be accounted for solely by propagation of atmospheric heat at presently assumed rates of vertical mixing. Unless the transport rates are significantly higher than presently believed, this indicates significant contributions from subterranean heat sources. Temperature time series in the deep monimolimnion suggest evidence of convection. The progressive deepening of the depth of temperature minimum in the water column is expected to accelerate the warming in deeper waters. The warming trend, however, is unlikely to strongly affect the physical stability of the lake, which depends primarily on salinity gradient. PMID:25295730

  2. Recent warming of lake Kivu.

    PubMed

    Katsev, Sergei; Aaberg, Arthur A; Crowe, Sean A; Hecky, Robert E

    2014-01-01

    Lake Kivu in East Africa has gained notoriety for its prodigious amounts of dissolved methane and dangers of limnic eruption. Being meromictic, it is also expected to accumulate heat due to rising regional air temperatures. To investigate the warming trend and distinguish between atmospheric and geothermal heating sources, we compiled historical temperature data, performed measurements with logging instruments, and simulated heat propagation. We also performed isotopic analyses of water from the lake's main basin and isolated Kabuno Bay. The results reveal that the lake surface is warming at the rate of 0.12°C per decade, which matches the warming rates in other East African lakes. Temperatures increase throughout the entire water column. Though warming is strongest near the surface, warming rates in the deep waters cannot be accounted for solely by propagation of atmospheric heat at presently assumed rates of vertical mixing. Unless the transport rates are significantly higher than presently believed, this indicates significant contributions from subterranean heat sources. Temperature time series in the deep monimolimnion suggest evidence of convection. The progressive deepening of the depth of temperature minimum in the water column is expected to accelerate the warming in deeper waters. The warming trend, however, is unlikely to strongly affect the physical stability of the lake, which depends primarily on salinity gradient.

  3. Contaminants in American alligator eggs from Lake Apopka, Lake Griffin, and Lake Okeechobee, Florida

    USGS Publications Warehouse

    Heinz, Gary H.; Percival, H. Franklin; Jennings, Michael L.

    1991-01-01

    Residues of organochlorine pesticides, polychlorinated biphenyls (PCBs), and 16 elements were measured in American alligator (Alligator mississippiensis) eggs collected in 1984 from Lakes Apopka, Griffin, and Okeechobee in central and south Florida. Organochlorine pesticides were highest in eggs from Lake Apopka. None of the elements appeared to be present at harmful concentrations in eggs from any of the lakes. A larger sample of eggs was collected in 1985, but only from Lakes Griffin, a lake where eggs were relatively clean, and Apopka, where eggs were most contaminated. In 1985, hatching success of artificially incubated eggs was lower for Lake Apopka, and several organochlorine pesticides were higher than in eggs from Lake Griffin. However, within Lake Apopka, higher levels of pesticides in chemically analyzed eggs were not associated with reduced hatching success of the remaining eggs in the clutch. Therefore, it did not appear that any of the pesticides we measured were responsible for the reduced hatching success of Lake Apopka eggs.

  4. Presence of Potential Toxin-Producing Cyanobacteria in an Oligo-Mesotrophic Lake in Baltic Lake District, Germany: An Ecological, Genetic and Toxicological Survey

    PubMed Central

    Dadheech, Pawan K.; Selmeczy, Géza B.; Vasas, Gábor; Padisák, Judit; Arp, Wolfgang; Tapolczai, Kálmán; Casper, Peter; Krienitz, Lothar

    2014-01-01

    Massive developments of potentially toxic cyanobacteria in Lake Stechlin, an oligo-mesotrophic lake in the Baltic Lake District of Germany raised concerns about toxic contamination of these important ecosystems. Field samples in the phase of mass developments of cyanobacteria were used for genetic and toxicological analyses. Microcystins and microcystin genes were detected in field samples of the lake for the first time. However, the toxins were not produced by the dominant taxa (Dolichospermum circinale and Aphanizomenon flos-aquae) but by taxa, which were present only in low biomass in the samples (Microcystis cf. aeruginosa and Planktothrix rubescens). The phytoplankton successions during the study period revealed an increase of cyanobacterial populations. The findings contribute to the changes that have been investigated in Lake Stechlin since the mid-1990s. The possible reasons behind these developments may be climate change, special weather conditions and an increased nutrient pool. PMID:25268981

  5. Live/Dead Comparisons of Ostracodes in Temperate Lakes Reveal Evidence of Human Impact and Provides a Tool to Measure the Progress of Remediation Efforts

    NASA Astrophysics Data System (ADS)

    Spergel, J.; Kimball, K. C.; Fitzpatrick, S. A.; Michelson, A. V.; Leonard-Pingel, J.

    2015-12-01

    Lake ecosystems face a multitude of environmental threats including: eutrophication, overfishing, and heavy metal pollution. Tools to identify lakes impacted by human activity and quantify that impact are needed to combat their environmental degradation. One such promising tool has been the comparison between living communities and associated time-averaged death assemblages of mollusks in marine environments. Here we extend the reach of such live/dead comparisons using ostracodes in temperate lakes. We sampled six lakes in Wisconsin for living communities and associated death assemblages of ostracodes: two lakes impacted by human activity, two relatively "pristine" lakes, and two remediated lakes. We took sixteen grab samples of the upper centimeter of sediment in each lake, capturing simultaneously living benthic ostracodes and discarded valves of dead ostracodes. We found that impacted lakes had lower live/dead fidelity in taxonomic composition and rank-order abundance distributions and greater within-lake variation in death assemblages than "pristine" lakes. Additionally, the living communities in the impacted lakes tended to be lower in species richness and have lower evenness than "pristine" lakes. Remediated lakes displayed similar live/dead fidelity in taxonomic composition and rank-abundance distributions to "pristine" lakes and had lower within-lake variation in death assemblages than impacted lakes. Remediated lakes also contained living communities that tended to be richer and more even than impacted lakes. The lower live/dead fidelity of ostracodes in impacted lakes indicate live/dead ostracode comparisons can provide a tool to identify lake ecosystems impacted by humans. The similar results of remediated and "pristine" lakes indicate remediation efforts in these lakes have been successful in alleviating environmental impact detrimental to ostracode communities. This result indicates live/dead comparisons of ostracodes can be a useful tool to monitor

  6. What caused the decline of China's largest freshwater lake? Attribution analysis on Poyang Lake water level variations in recent years

    NASA Astrophysics Data System (ADS)

    Ye, Xuchun; Xu, Chong-Yu; Zhang, Qi

    2017-04-01

    In recent years, dramatic decline of water level of the Poyang Lake, China's largest freshwater lake, has raised wide concerns about the water security and wetland ecosystem. This remarkable hydrological change coincided with several factors like the initial operation of the Three Gorges Dam (TGD) in 2003, the big change of lake bottom topography due to extensive sand mining in the lake since 2000, and also climate change and other human activities in the Yangtze River basin may add to this complexity. Questions raised to what extent that the lake hydrological changes is caused by climate change and/or human activities. In this study, quantitative assessment was conducted to clarify the magnitude and mechanism of specific influencing factors on recent lake decline (2003-2014), with reference to the period of 1980-1999. The attempts were achieved through the reconstruction of lake water level scenarios by the framework of neural network. Major result indicates that the effect of lake bottom topography change due to sand mining activities has became the dominant factor for the recent lake decline, especially in winter season with low water level. However, the effect of TGD regulation shows strong seasonal features, its effect can accounts for 33%-42% of the average water level decline across the lake during the impoundment period of September-October. In addition, the effect of climate change and other human activities over the Yangtze River basin needs to be highly addressed, which is particularly prominent on reducing lake water level during the summer flood season and autumn recession period. The result also revealed that due to different mechanism, the responses of the lake water level to the three influencing factors are not consistent and show great spatial and temporal differences.

  7. Ocean time-series reveals recurring seasonal patterns of virioplankton dynamics in the northwestern Sargasso Sea.

    PubMed

    Parsons, Rachel J; Breitbart, Mya; Lomas, Michael W; Carlson, Craig A

    2012-02-01

    There are an estimated 10(30) virioplankton in the world oceans, the majority of which are phages (viruses that infect bacteria). Marine phages encompass enormous genetic diversity, affect biogeochemical cycling of elements, and partially control aspects of prokaryotic production and diversity. Despite their importance, there is a paucity of data describing virioplankton distributions over time and depth in oceanic systems. A decade of high-resolution time-series data collected from the upper 300 m in the northwestern Sargasso Sea revealed recurring temporal and vertical patterns of virioplankton abundance in unprecedented detail. An annual virioplankton maximum developed between 60 and 100 m during periods of summer stratification and eroded during winter convective mixing. The timing and vertical positioning of this seasonal pattern was related to variability in water column stability and the dynamics of specific picophytoplankton and heterotrophic bacterioplankton lineages. Between 60 and 100 m, virioplankton abundance was negatively correlated to the dominant heterotrophic bacterioplankton lineage SAR11, as well as the less abundant picophytoplankton, Synechococcus. In contrast, virioplankton abundance was positively correlated to the dominant picophytoplankton lineage Prochlorococcus, and the less abundant alpha-proteobacteria, Rhodobacteraceae. Seasonally, virioplankton abundances were highly synchronous with Prochlorococcus distributions and the virioplankton to Prochlorococcus ratio remained remarkably constant during periods of water column stratification. The data suggest that a significant fraction of viruses in the mid-euphotic zone of the subtropical gyres may be cyanophages and patterns in their abundance are largely determined by Prochlorococcus dynamics in response to water column stability. This high-resolution, decadal survey of virioplankton abundance provides insight into the possible controls of virioplankton dynamics in the open ocean.

  8. Ocean time-series reveals recurring seasonal patterns of virioplankton dynamics in the northwestern Sargasso Sea

    PubMed Central

    Parsons, Rachel J; Breitbart, Mya; Lomas, Michael W; Carlson, Craig A

    2012-01-01

    There are an estimated 1030 virioplankton in the world oceans, the majority of which are phages (viruses that infect bacteria). Marine phages encompass enormous genetic diversity, affect biogeochemical cycling of elements, and partially control aspects of prokaryotic production and diversity. Despite their importance, there is a paucity of data describing virioplankton distributions over time and depth in oceanic systems. A decade of high-resolution time-series data collected from the upper 300 m in the northwestern Sargasso Sea revealed recurring temporal and vertical patterns of virioplankton abundance in unprecedented detail. An annual virioplankton maximum developed between 60 and 100 m during periods of summer stratification and eroded during winter convective mixing. The timing and vertical positioning of this seasonal pattern was related to variability in water column stability and the dynamics of specific picophytoplankton and heterotrophic bacterioplankton lineages. Between 60 and 100 m, virioplankton abundance was negatively correlated to the dominant heterotrophic bacterioplankton lineage SAR11, as well as the less abundant picophytoplankton, Synechococcus. In contrast, virioplankton abundance was positively correlated to the dominant picophytoplankton lineage Prochlorococcus, and the less abundant alpha-proteobacteria, Rhodobacteraceae. Seasonally, virioplankton abundances were highly synchronous with Prochlorococcus distributions and the virioplankton to Prochlorococcus ratio remained remarkably constant during periods of water column stratification. The data suggest that a significant fraction of viruses in the mid-euphotic zone of the subtropical gyres may be cyanophages and patterns in their abundance are largely determined by Prochlorococcus dynamics in response to water column stability. This high-resolution, decadal survey of virioplankton abundance provides insight into the possible controls of virioplankton dynamics in the open ocean

  9. Sanctuaries for lake trout in the Great Lakes

    USGS Publications Warehouse

    Stanley, Jon G.; Eshenroder, Randy L.; Hartman, Wilbur L.

    1987-01-01

    Populations of lake trout, severely depleted in Lake Superior and virtually extirpated from the other Great Lakes because of sea lamprey predation and intense fishing, are now maintained by annual plantings of hatchery-reared fish in Lakes Michigan, Huron, and Ontario and parts of Lake Superior. The extensive coastal areas of the Great Lakes and proximity to large populations resulted in fishing pressure on planted lake trout heavy enough to push annual mortality associated with sport and commercial fisheries well above the critical level needed to reestablish self-sustaining stocks. The interagency, international program for rehabilitating lake trout includes controlling sea lamprey abundance, stocking hatchery-reared lake trout, managing the catch, and establishing sanctuaries where harvest is prohibited. Three lake trout sanctuaries have been established in Lake Michigan: the Fox Island Sanctuary of 121, 500 ha, in the Chippewa-Ottawa Treaty fishing zone in the northern region of the lake; the Milwaukee Reef Sanctuary of 160, 000 ha in midlake, in boundary waters of Michigan and Wisconsin; and Julian's Reef Sanctuary of 6, 500 ha, in Illinois waters. In northern Lake Huron, Drummond Island Sanctuary of 55, 000 ha is two thirds in Indian treaty-ceded waters in Michigan and one third in Ontario waters of Canada. A second sanctuary, Six Fathom Bank-Yankee Reef Sanctuary, in central Lake Huron contains 168, 000 ha. Sanctuary status for the Canadian areas remains to be approved by the Provincial government. In Lake Superior, sanctuaries protect the spawning grounds of Gull Island Shoal (70, 000 ha) and Devils Island Shoal (44, 000 ha) in Wisconsin's Apostle Island area. These seven sanctuaries, established by the several States and agreed upon by the States, Indian tribes, the U.S. Department of the Interior, and the Province of Ontario, contribute toward solving an interjurisdictional fishery problem.

  10. Level, source identification, and risk analysis of heavy metal in surface sediments from river-lake ecosystems in the Poyang Lake, China.

    PubMed

    Zhang, Hua; Jiang, Yinghui; Ding, Mingjun; Xie, Zhenglei

    2017-09-01

    The concentrations, sources, and risks of heavy metals (Fe, Al, Mn, Cr, Co, Ni, Cu, Zn, As, Cd, W, Pb, and Tl) in sediments in five river-lake ecosystems in the Poyang Lake region were studied. The concentrations of the heavy metals varied spatially, with most of the highest concentrations in the Raohe river-lake ecosystem (RH). All heavy metals except As, Cd, W, and Tl were enriched in sediments possessing high total organic carbon contents or in finer sediments. Based on enrichment factors and statistical methods, it was found that Cd in sediments in the Xiushui (XS), Ganjiang (GJ), Xinjiang (XJ) river-lake ecosystems, and RH; Mn in the XS, GJ, and RH; and W in the XS and GJ were greatly affected by anthropogenic inputs. Moreover, the origins of Cu, Zn, and As require more attention due to the high concentrations found. The high enrichment factor of Cd in the sediments indicated that this metal might cause significant pollution in the environment. The results of the modified potential ecological risk index revealed that the XS, GJ, RH, and XJ were at considerable ecological risk, while the sediments in the Fuhe river-lake ecosystem (FH) were at moderate ecological risk, with Cd contributing the highest proportion of risk. The hazard score fundamentally validated the modified potential ecological risk analysis and revealed a mean toxicity of 57.80% to the benthic organisms in the RH.

  11. Water quality of Lake Austin and Town Lake, Austin, Texas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrews, F.L.; Wells, F.C.; Shelby, W.J.

    1988-01-01

    Lake Austin and Town Lake are impoundments on the Colorado River in Travis County, central Texas, and are a source of water for municipal industrial water supplies, electrical-power generation, and recreation for more than 500,000 people in the Austin metropolitan area. Small vertical temperature variations in both lakes were attributed to shallow depths in the lakes and short retention times of water in the lakes during the summer months. The largest areal variations in dissolved oxygen generally occur in Lake Austin during the summer as a result of releases of water from below the thermocline in Lake Travis. Except formore » iron, manganese, and mercury, dissolved concentrations of trace elements in water collected from Lake Austin and Town Lake did not exceed the primary or secondary drinking water standards set by the US Environmental Protection Agency. Little or no effect of stormwater runoff on temperature, dissolved oxygen, or minor elements could be detected in either Lake Austin or Town Lake. Little seasonal or areal variation was noted in nitrogen concentrations in Lake Austin or Town lake. Total phosphorus concentrations generally were small in both lakes. Increased concentrations of nitrogen and phosphorus were detected after storm runoff inflow in Town Lake, but not in Lake Austin; densities of fecal-coliform bacteria increased in Lake Austin and Town Lake, but were substantially greater in Town Lake than in Lake Austin. 18 refs., 38 figs., 59 tabs.« less

  12. A caveat regarding diatom-inferred nitrogen concentrations in oligotrophic lakes

    USGS Publications Warehouse

    Arnett, Heather A.; Saros, Jasmine E.; Mast, M. Alisa

    2012-01-01

    Atmospheric deposition of reactive nitrogen (Nr) has enriched oligotrophic lakes with nitrogen (N) in many regions of the world and elicited dramatic changes in diatom community structure. The lakewater concentrations of nitrate that cause these community changes remain unclear, raising interest in the development of diatom-based transfer functions to infer nitrate. We developed a diatom calibration set using surface sediment samples from 46 high-elevation lakes across the Rocky Mountains of the western US, a region spanning an N deposition gradient from very low to moderate levels (<1 to 3.2 kg Nr ha−1 year−1 in wet deposition). Out of the fourteen measured environmental variables for these 46 lakes, ordination analysis identified that nitrate, specific conductance, total phosphorus, and hypolimnetic water temperature were related to diatom distributions. A transfer function was developed for nitrate and applied to a sedimentary diatom profile from Heart Lake in the central Rockies. The model coefficient of determination (bootstrapping validation) of 0.61 suggested potential for diatom-inferred reconstructions of lakewater nitrate concentrations over time, but a comparison of observed versus diatom-inferred nitrate values revealed the poor performance of this model at low nitrate concentrations. Resource physiology experiments revealed that nitrogen requirements of two key taxa were opposite to nitrate optima defined in the transfer function. Our data set reveals two underlying ecological constraints that impede the development of nitrate transfer functions in oligotrophic lakes: (1) even in lakes with nitrate concentrations below quantification (<1 μg L−1), diatom assemblages were already dominated by species indicative of moderate N enrichment; (2) N-limited oligotrophic lakes switch to P limitation after receiving only modest inputs of reactive N, shifting the controls on diatom species changes along the length of the nitrate gradient. These

  13. Glacial lake evolution in the southeastern Tibetan Plateau and the cause of rapid expansion of proglacial lakes linked to glacial-hydrogeomorphic processes

    NASA Astrophysics Data System (ADS)

    Song, Chunqiao; Sheng, Yongwei; Ke, Linghong; Nie, Yong; Wang, Jida

    2016-09-01

    Glacial lakes, as an important component of the cryosphere in the southeastern Tibetan Plateau (SETP) in response to climate change, pose significant threats to the downstream lives and properties of people, engineering construction, and ecological environment via outburst floods, yet we currently have limited knowledge of their distribution, evolution, and the driving mechanism of rapid expansions due to the low accessibility and harsh natural conditions. By integrating optical imagery, satellite altimetry and digital elevation model (DEM), this study presents a regional-scale investigation of glacial lake dynamics across two river basins of the SETP during 1988-2013 and further explores the glacial-hydrogeomorphic process of rapidly expanding lakes. In total 1278 and 1396 glacial lakes were inventoried in 1988 and 2013, respectively. Approximately 92.4% of the lakes in 2013 are not in contact with modern glaciers, and the remaining 7.6% includes 27 (1.9%) debris-contact lakes (in contact with debris-covered ice) and 80 (5.7%) cirque lakes. In categorizing lake variations, we found that debris-contact proglacial lakes experienced much more rapid expansions (∼75%) than cirque lakes (∼7%) and non-glacier-contact lakes (∼3%). To explore the cause of rapid expansion for these debris-contact lakes, we further investigated the mass balance of parent glaciers and elevation changes in lake surfaces and debris-covered glacier tongues using time-series Landsat images, ICESat altimetry, and DEM. Results reveal that the upstream expansion of debris-contact proglacial lakes was not directly associated with rising water levels but with a geomorphological alternation of upstream lake basins caused by melting-induced debris subsidence at glacier termini. This suggests that the hydrogeomorphic process of glacier thinning and retreat, in comparison with direct glacial meltwater alone, may have played a dominant role in the recent glacial lake expansion observed across the

  14. Ikaite precipitation by mixing of shoreline springs and lake water, Mono Lake, California, USA

    NASA Astrophysics Data System (ADS)

    Bischoff, James L.; Stine, Scott; Rosenbauer, Robert J.; Fitzpatrick, John A.; Stafford, Thomas W., Jr.

    1993-08-01

    Metastable ikaite (CaCO 3·6H 2O) forms abundantly during winter months along the south shoreline of Mono Lake where shoreline springs mix with lake water. Ikaite precipitates because of its decreased solubility at low temperature and because of orthophosphate-ion inhibition of calcite and aragonite. During the spring some of the ikaite is transformed to anhydrous CaCO 3 and is incorporated into tufa, but most is dispersed by wave action into the lake where it reacts to form gaylussite (Na 2Ca(CO 3) 2· 5H 2O). Spring waters have low pH values, are dominantly Ca-Na-HCO 3, have low radiocarbon activities, and are mixtures of deep-seated geothermal and cold groundwaters. Chemical modeling reveals that precipitation of CaCO 3 can occur over a broad range of mixtures of spring and lake water with a maximum production occurring at 96% spring water and 4% lake water. Under these conditions all the Ca and a significant fraction of the CO 3 of the precipitate is spring supplied. A radiocarbon age of 19,580 years obtained on a natural ikaite sample supports this conclusion. With the springs supplying a large and probably variable portion of the carbonate, and with apparent 14C age of the carbonate varying from spring to spring, tufa of similar actual antiquity may yield significantly different 14C dates, making tufa at this location unsuitable for absolute age dating by the radiocarbon method.

  15. Ikaite precipitation by mixing of shoreline springs and lake water, Mono Lake, California, USA

    USGS Publications Warehouse

    Bischoff, J.L.; Stine, S.; Rosenbauer, R.J.; Fitzpatrick, J.A.; Stafford, Thomas W.

    1993-01-01

    Metastable ikaite (CaCO3??6H2O) forms abundantly during winter months along the south shoreline of Mono Lake where shoreline springs mix with lake water. Ikaite precipitates because of its decreased solubility at low temperature and because of orthophosphate-ion inhibition of calcite and aragonite. During the spring some of the ikaite is transformed to anhydrous CaCO3 and is incorporated into tufa, but most is dispersed by wave action into the lake where it reacts to form gaylussite (Na2Ca(CO3)2?? 5H2O). Spring waters have low pH values, are dominantly Ca-Na-HCO3, have low radiocarbon activities, and are mixtures of deep-seated geothermal and cold groundwaters. Chemical modeling reveals that precipitation of CaCO3 can occur over a broad range of mixtures of spring and lake water with a maximum production occurring at 96% spring water and 4% lake water. Under these conditions all the Ca and a significant fraction of the CO3 of the precipitate is spring supplied. A radiocarbon age of 19,580 years obtained on a natural ikaite sample supports this conclusion. With the springs supplying a large and probably variable portion of the carbonate, and with apparent 14C age of the carbonate varying from spring to spring, tufa of similar actual antiquity may yield significantly different 14C dates, making tufa at this location unsuitable for absolute age dating by the radiocarbon method. ?? 1993.

  16. Trends in evaporation of a large subtropical lake

    NASA Astrophysics Data System (ADS)

    Hu, Cheng; Wang, Yongwei; Wang, Wei; Liu, Shoudong; Piao, Meihua; Xiao, Wei; Lee, Xuhui

    2017-07-01

    How rising temperature and changing solar radiation affect evaporation of natural water bodies remains poor understood. In this study, evaporation from Lake Taihu, a large (area 2400 km2) freshwater lake in the Yangtze River Delta, China, was simulated by the CLM4-LISSS offline lake model and estimated with pan evaporation data. Both methods were calibrated against lake evaporation measured directly with eddy covariance in 2012. Results show a significant increasing trend of annual lake evaporation from 1979 to 2013, at a rate of 29.6 mm decade-1 according to the lake model and 25.4 mm decade-1 according to the pan method. The mean annual evaporation during this period shows good agreement between these two methods (977 mm according to the model and 1007 mm according to the pan method). A stepwise linear regression reveals that downward shortwave radiation was the most significant contributor to the modeled evaporation trend, while air temperature was the most significant contributor to the pan evaporation trend. Wind speed had little impact on the modeled lake evaporation but had a negative contribution to the pan evaporation trend offsetting some of the temperature effect. Reference evaporation was not a good proxy for the lake evaporation because it was on average 20.6 % too high and its increasing trend was too large (56.5 mm decade-1).

  17. Trophic status and assessment of non-point nutrient enrichment of Lake Crescent Olympic National Park

    USGS Publications Warehouse

    Boyle, Terence P.; Beeson, David R.

    1991-01-01

    A limited effort study was conducted in Lake Crescent, Olympic National Park to determine the trophic status and assess whether non-point nutrients were leaching into the lake and affecting biological resources. The concentration of chlorophyll a, total nitrogen concentration, and Secchi disk transparency used as parameters of the Trophic Status Index revealed that Lake Crescent in Olympic National Park was in the oligotrophic range. Evaluation of the nitrogen to phosphorous ration revealed that nitrogen was the nutrient limiting to overall lake productivity. Single species and community bioassays indicated that other nutrients, possibly iron, had some secondary control over community composition of the algal community. Assessment of six near-shore sites for the presence and effects of non-point nutrients revealed that La Poel Point which formerly was the site of a resort had slightly higher algal bioassay and periphyton response than the other sites. No conditions that would require immediate action by resource management of Olympic National Park were identified. The general recommendations for a long term lake monitoring plan are discussed.

  18. Glacial lakes of the Central and Patagonian Andes

    NASA Astrophysics Data System (ADS)

    Wilson, Ryan; Glasser, Neil F.; Reynolds, John M.; Harrison, Stephan; Anacona, Pablo Iribarren; Schaefer, Marius; Shannon, Sarah

    2018-03-01

    The prevalence and increased frequency of high-magnitude Glacial Lake Outburst Floods (GLOFs) in the Chilean and Argentinean Andes suggests this region will be prone to similar events in the future as glaciers continue to retreat and thin under a warming climate. Despite this situation, monitoring of glacial lake development in this region has been limited, with past investigations only covering relatively small regions of Patagonia. This study presents new glacial lake inventories for 1986, 2000 and 2016, covering the Central Andes, Northern Patagonia and Southern Patagonia. Our aim was to characterise the physical attributes, spatial distribution and temporal development of glacial lakes in these three sub-regions using Landsat satellite imagery and image datasets available in Google Earth and Bing Maps. Glacial lake water volume was also estimated using an empirical area-volume scaling approach. Results reveal that glacial lakes across the study area have increased in number (43%) and areal extent (7%) between 1986 and 2016. Such changes equate to a glacial lake water volume increase of 65 km3 during the 30-year observation period. However, glacial lake growth and emergence was shown to vary sub-regionally according to localised topography, meteorology, climate change, rate of glacier change and the availability of low gradient ice areas. These and other factors are likely to influence the occurrence of GLOFs in the future. This analysis represents the first large-scale census of glacial lakes in Chile and Argentina and will allow for a better understanding of lake development in this region, as well as, providing a basis for future GLOF risk assessments.

  19. Nonlinear Dynamics of the Nearshore Boundary Layer of a Large Lake (Lake Geneva)

    NASA Astrophysics Data System (ADS)

    Cimatoribus, Andrea A.; Lemmin, U.; Bouffard, D.; Barry, D. A.

    2018-02-01

    We examine nearshore and pelagic current variability in Lake Geneva, a large and deep lake in western Europe, using observations from several measurement locations and a three-dimensional numerical model for the period 2014-2016. Linear internal seiche modes excited by wind forcing clearly appear as peaks in the energy spectra for measurements in offshore locations. In contrast, spectra from the nearshore data, where currents interact with the lake bed, reveal a negligible contribution of internal seiches to the total kinetic energy. A similar contrast is seen in the spectra obtained from the numerical model at the same locations. Comparing the contribution of the different terms in the vertically averaged momentum equation from the modeling results shows that the nonlinear advective term dominates in the nearshore boundary layer. Its contribution decays with distance from shore. The width of this nearshore boundary layer, which may extend for several kilometers, seems to be mainly determined by local topography. Both field measurements and modeling results indicate that nonlinear dynamics are of primary importance in the nearshore boundary layer.

  20. Evidence of offshore lake trout reproduction in Lake Huron

    USGS Publications Warehouse

    DeSorcie, Timothy J.; Bowen, Charles A.

    2003-01-01

    Six Fathom Bank-Yankee Reef, an offshore reef complex, was an historically important spawning area believed to represent some of the best habitat for the rehabilitation of lake trout Salvelinus namaycush in Lake Huron. Since 1986, lake trout have been stocked on these offshore reefs to reestablish self-sustaining populations. We sampled with beam trawls to determine the abundance of naturally reproduced age-0 lake trout on these offshore reefs during May-July in 1994-1998 and 2000-2002. In total, 123 naturally reproduced lake trout fry were caught at Six Fathom Bank, and 2 naturally reproduced lake trout fry were caught at nearby Yankee Reef. Our findings suggest that this region of Lake Huron contains suitable habitat for lake trout spawning and offers hope that lake trout rehabilitation can be achieved in the main basin of Lake Huron.

  1. Annual time-series analysis of aqueous eDNA reveals ecologically relevant dynamics of lake ecosystem biodiversity

    PubMed Central

    Bista, Iliana; Carvalho, Gary R.; Walsh, Kerry; Seymour, Mathew; Hajibabaei, Mehrdad; Lallias, Delphine; Christmas, Martin; Creer, Simon

    2017-01-01

    The use of environmental DNA (eDNA) in biodiversity assessments offers a step-change in sensitivity, throughput and simultaneous measures of ecosystem diversity and function. There remains, however, a need to examine eDNA persistence in the wild through simultaneous temporal measures of eDNA and biota. Here, we use metabarcoding of two markers of different lengths, derived from an annual time series of aqueous lake eDNA to examine temporal shifts in ecosystem biodiversity and in an ecologically important group of macroinvertebrates (Diptera: Chironomidae). The analyses allow different levels of detection and validation of taxon richness and community composition (β-diversity) through time, with shorter eDNA fragments dominating the eDNA community. Comparisons between eDNA, community DNA, taxonomy and UK species abundance data further show significant relationships between diversity estimates derived across the disparate methodologies. Our results reveal the temporal dynamics of eDNA and validate the utility of eDNA metabarcoding for tracking seasonal diversity at the ecosystem scale. PMID:28098255

  2. Annual time-series analysis of aqueous eDNA reveals ecologically relevant dynamics of lake ecosystem biodiversity

    NASA Astrophysics Data System (ADS)

    Bista, Iliana; Carvalho, Gary R.; Walsh, Kerry; Seymour, Mathew; Hajibabaei, Mehrdad; Lallias, Delphine; Christmas, Martin; Creer, Simon

    2017-01-01

    The use of environmental DNA (eDNA) in biodiversity assessments offers a step-change in sensitivity, throughput and simultaneous measures of ecosystem diversity and function. There remains, however, a need to examine eDNA persistence in the wild through simultaneous temporal measures of eDNA and biota. Here, we use metabarcoding of two markers of different lengths, derived from an annual time series of aqueous lake eDNA to examine temporal shifts in ecosystem biodiversity and in an ecologically important group of macroinvertebrates (Diptera: Chironomidae). The analyses allow different levels of detection and validation of taxon richness and community composition (β-diversity) through time, with shorter eDNA fragments dominating the eDNA community. Comparisons between eDNA, community DNA, taxonomy and UK species abundance data further show significant relationships between diversity estimates derived across the disparate methodologies. Our results reveal the temporal dynamics of eDNA and validate the utility of eDNA metabarcoding for tracking seasonal diversity at the ecosystem scale.

  3. Buried soils in a perched dunefield as indicators of late holecene lake-level change in the Lake Superior basin

    USGS Publications Warehouse

    Anderton, John B.; Loope, Walter L.

    1995-01-01

    A stratigraphic analysis of buried soils within the Grand Sable Dunes, a dune field perched 90 m above the southern shore of Lake Superior, reveals a history of eolian activity apparently linked with lake-level fluctuations over the last 5500 yr. A relative rise in the water plane of the Nipissing Great Lakes initially destabilized the lakeward bluff face of the Grand Sable plateau between 5400 and 4600 14C yr B.P. This led to the burial of the Sable Creek soil by eolian sediments derived from the bluff face. Subsequent episodes of eolian activity appear to be tied to similar destabilizing events; high lake levels may have initiated at least four and perhaps eleven episodes of dune building as expressed by soil burials within the dunes. Intervening low lake levels probably correlate with soil profile development, which varies from the well-developed Sable Creek Spodosol catena to thin organic layers containing in-place stumps and tree trunks. Paleoecological reconstructions available for the area do not imply enough climatic change to account for the episodic dune activity. Burial of soils by fine-fraction sediments links dune-building episodes with destabilization of the lower lake-facing bluff, which is rich in fines.

  4. Antarctic subglacial lake exploration: first results and future plans

    PubMed Central

    Siegert, Martin J.; Priscu, John C.; Wadham, Jemma L.; Lyons, W. Berry

    2016-01-01

    After more than a decade of planning, three attempts were made in 2012–2013 to access, measure in situ properties and directly sample subglacial Antarctic lake environments. First, Russian scientists drilled into the top of Lake Vostok, allowing lake water to infiltrate, and freeze within, the lower part of the ice-core borehole, from which further coring would recover a frozen sample of surface lake water. Second, UK engineers tried unsuccessfully to deploy a clean-access hot-water drill, to sample the water column and sediments of subglacial Lake Ellsworth. Third, a US mission successfully drilled cleanly into subglacial Lake Whillans, a shallow hydraulically active lake at the coastal margin of West Antarctica, obtaining samples that would later be used to prove the existence of microbial life and active biogeochemical cycling beneath the ice sheet. This article summarizes the results of these programmes in terms of the scientific results obtained, the operational knowledge gained and the engineering challenges revealed, to collate what is known about Antarctic subglacial environments and how to explore them in future. While results from Lake Whillans testify to subglacial lakes as being viable biological habitats, the engineering challenges to explore deeper more isolated lakes where unique microorganisms and climate records may be found, as exemplified in the Lake Ellsworth and Vostok missions, are considerable. Through international cooperation, and by using equipment and knowledge of the existing subglacial lake exploration programmes, it is possible that such environments could be explored thoroughly, and at numerous sites, in the near future. PMID:26667917

  5. Antarctic subglacial lake exploration: first results and future plans.

    PubMed

    Siegert, Martin J; Priscu, John C; Alekhina, Irina A; Wadham, Jemma L; Lyons, W Berry

    2016-01-28

    After more than a decade of planning, three attempts were made in 2012-2013 to access, measure in situ properties and directly sample subglacial Antarctic lake environments. First, Russian scientists drilled into the top of Lake Vostok, allowing lake water to infiltrate, and freeze within, the lower part of the ice-core borehole, from which further coring would recover a frozen sample of surface lake water. Second, UK engineers tried unsuccessfully to deploy a clean-access hot-water drill, to sample the water column and sediments of subglacial Lake Ellsworth. Third, a US mission successfully drilled cleanly into subglacial Lake Whillans, a shallow hydraulically active lake at the coastal margin of West Antarctica, obtaining samples that would later be used to prove the existence of microbial life and active biogeochemical cycling beneath the ice sheet. This article summarizes the results of these programmes in terms of the scientific results obtained, the operational knowledge gained and the engineering challenges revealed, to collate what is known about Antarctic subglacial environments and how to explore them in future. While results from Lake Whillans testify to subglacial lakes as being viable biological habitats, the engineering challenges to explore deeper more isolated lakes where unique microorganisms and climate records may be found, as exemplified in the Lake Ellsworth and Vostok missions, are considerable. Through international cooperation, and by using equipment and knowledge of the existing subglacial lake exploration programmes, it is possible that such environments could be explored thoroughly, and at numerous sites, in the near future. © 2015 The Author(s).

  6. Late Glacial lakes - uniform or contrasting ecosystems?

    NASA Astrophysics Data System (ADS)

    Zawiska, Izabela; Rzodkiewicz, Monika; Noryśkiewicz, Agnieszka M.; Obremska, Milena; Ott, Florian; Kramkowski, Mateusz; Słowiński, Michał; Błaszkiewicz, Mirosław; Brauer, Achim

    2015-04-01

    Climate changes are one of the most investigated topic in paleolimnology. The Late Glacial and Early Holocene time are specially interesting as than most abrupt changes happened. Lake sediments are known to be great source of information of the past environments. They are functioning as natural archives because in them preserve animal and plants remains. In this study we investigated three cores of the biogenic sediments from the lakes located in close vicinity in Tuchola Forest (Northern Poland): paleolake Trzechowskie, Lake Czechowskie-deepest part and Lake Czechowskie-bay. We made Cladocera, diatom and pollen analysis, the chronology was determined by varve counting, Laacher See Tephra (12,880 yrs BP) and 14C dating. The aim of our research was to find out the response of zooplankton, phytoplankton, lake and catchment vegetation to abrupt climate changes. We were interested in similarities and differences between those three locations in response of entire communities but also species composition. The preliminary results revealed that the Cladocera, diatoms and plants communities were sensitive to climatic shifts and it is well shown in the results of ordination method (PCA). However in the Cladocera and diatoms assemblages, which reflect well lake environment conditions, the dominant species and total number of species present, were different in all three locations. Especially great difference was noted between paleolake Trzechowskie and Lake Czechowskie (core from the deepest part). The results of our research shows that in Late Glacial time landscape in Lake Czechowskie region (Tuchola Forest, Northern Poland) had mosaic character. Local factors such as relief, edaphic conditions strongly modified type of vegetation and in close vicinity existed lakes that had very diverse environments.

  7. Lake Nasser and Toshka Lakes, Egypt

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Lake Nasser (center) and the Toshka Lakes (center left) glow emerald green and black in this MODIS true-color image acquired March 8, 2002. Located on and near the border of Egypt and Norther Sudan, these lakes are an oasis of water in between the Nubian (lower right) and Libyan Deserts (upper left). Also visible are the Red Sea (in the upper right) and the Nile River (running north from Lake Nasser). Credit: Jacques Descloitres, MODIS Land Rapid Response Team, NASA/GSFC

  8. Palaeoenvironmental evolution of Lake Gacko (Southern Bosnia and Herzegovina): Impact of the Middle Miocene Climatic Optimum on the Dinaride Lake System

    PubMed Central

    Mandic, Oleg; de Leeuw, Arjan; Vuković, Boško; Krijgsman, Wout; Harzhauser, Mathias; Kuiper, Klaudia F.

    2011-01-01

    In the Early to Middle Miocene, a series of lakes, collectively termed the Dinaride Lake System (DLS), spread out across the north-western part of the Dinaride–Anatolian continental block. Its deposits, preserved in numerous intra-montane basins, allow a glimpse into the palaeoenvironmental, palaeobiogeographic and geodynamic evolution of the region. Lake Gacko, situated in southern Bosnia and Herzegovina, is one of the constituent lakes of the DLS, and its deposits are excellently exposed in the Gračanica open-cast coal-mine. A detailed study of the sedimentary succession that addresses facies, sediment petrography, geophysical properties, and fossil mollusc palaeoecology reveals repetitive changes in lake level. These are interpreted to reflect changes in the regional water budget. First-order chronologic constraints arise from the integration of radio-isotopic and palaeomagnetic data. 40Ar/39Ar measurements on feldspar crystals from a tephra bed in the upper part of the sedimentary succession indicate a 15.31 ± 0.16 Ma age for this level. The reversed magnetic polarity signal that characterises the larger part of the investigated section correlates to chron C5Br of the Astronomically Tuned Neogene Timescale. Guided by these chronologic data and a detailed cyclostratigraphic analysis, the observed variations in lake-level, evident as two ~ 40-m and seven ~ 10-m scale transgression–regression cycles, are tuned to ~ 400-kyr and ~ 100-kyr eccentricity cycles. From the tuning, it can be inferred that the sediments in the Gacko Basin accumulated between ~ 15.8 and ~ 15.2 Ma. The economically valuable lignite accumulations in the lower part of the succession are interpreted to indicate the development of swamp forests in conjunction with lake-level falls corresponding to ~ 100-kyr eccentricity minima. Pedogenesis, rhizoliths and palustrine carbonate breccias in the upper part of the section reveal long-term aridity coinciding with a ~ 400-kyr

  9. Sedimentary chronology reinterpreted from Changshou Lake of the Three Gorges Reservoir Area reveals natural and anthropogenic controls on sediment production.

    PubMed

    Anjum, Raheel; Tang, Qiang; Collins, Adrian L; Gao, Jinzhang; Long, Yi; Zhang, Xinbao; He, Xiubin; Shi, Zhonglin; Wen, Anbang; Wei, Jie

    2018-04-17

    Sedimentary archives preserved in geomorphic sinks provide records of historical sediment dynamics and its related natural and anthropogenic controls. This study reinterpreted sedimentary processes in Changshou Lake of the Three Gorges Reservoir Area in China by combining a rainfall erosivity index with multiple tracing proxies, and the impacts of natural and anthropogenic drivers on sediment production were also explored. Erosive rainfalls with low frequency and large magnitude in the rainy season contribute to a substantial proportion of annual total rainfall, which thus can be used to infer erosion and sediment yield events. The sedimentary chronology was determined by comparing rainfall erosivity index with depth distribution of 137 Cs and absolute particle size, which revealed annual sedimentation rates ranging from 1.1 to 2.3 cm a -1 . The multi-proxy dating index and variation of sedimentation rate divided the sediment profile into three major periods. The reference period (1956-1982) displays low variability of TOC, TN, trace metal concentrations, and mean sedimentation rate. In the stressed period (1982-1998), industrial and sewerage discharge led to input and deposition of TOC, TN, and trace metals (e.g., Cd, Co, Cu, Cr, and Ni). The highest annual sediment accumulation rate of 2.3 cm a -1 may be ascribed to the 1982 big flood event. In the present period (1998-2013), increased TOC, TN and decreased trace metals in the top layers of the sediment core indicated changes in lake ecology. Fish farming promoted algal growth and primary productivity which caused eutrophication until 2004-2005. The reduced mean sedimentation rate of 1.7 cm a -1 between 1998 and 2004, and thereafter, may be attributed to soil and water conservation and reforestation policies implemented in the Longxi catchment. Human activities such as deforestation, cultural and industrial revolution, and lake eutrophication associated with fish farming since 1989, therefore led to

  10. Eutrophication exacerbates the impact of climate warming on lake methane emission.

    PubMed

    Sepulveda-Jauregui, Armando; Hoyos-Santillan, Jorge; Martinez-Cruz, Karla; Walter Anthony, Katey M; Casper, Peter; Belmonte-Izquierdo, Yadira; Thalasso, Frédéric

    2018-04-27

    Net methane (CH 4 ) emission from lakes depends on two antagonistic processes: CH 4 production (methanogenesis) and CH 4 oxidation (methanotrophy). It is unclear how climate warming will affect the balance between these processes, particularly among lakes of different trophic status. Here we show that methanogenesis is more sensitive to temperature than methanotrophy, and that eutrophication magnifies this temperature sensitivity. Using laboratory incubations of water and sediment from ten tropical, temperate and subarctic lakes with contrasting trophic states, ranging from oligotrophic to hypereutrophic, we explored the temperature sensitivity of methanogenesis and methanotrophy. We found that both processes presented a higher temperature sensitivity in tropical lakes, followed by temperate, and subarctic lakes; but more importantly, we found that eutrophication triggered a higher temperature sensitivity. A model fed by our empirical data revealed that increasing lake water temperature by 2 °C leads to a net increase in CH 4 emissions by 101-183% in hypereutrophic lakes and 47-56% in oligotrophic lakes. We conclude that climate warming will tilt the CH 4 balance towards higher lake emission and that this impact will be exacerbated by the eutrophication of the lakes. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Diversity of bacterioplankton in the surface seawaters of Drake Passage near the Chinese Antarctic station.

    PubMed

    Xing, Mengxin; Li, Zhao; Wang, Wei; Sun, Mi

    2015-07-01

    The determination of relative abundances and distribution of different bacterial groups is a critical step toward understanding the functions of various bacteria and its surrounding environment. Few studies focus on the taxonomic composition and functional diversity of microbial communities in Drake Passage. In this study, marine bacterioplankton communities from surface seawaters at five locations in Drake Passage were examined by 16S rRNA gene sequence analyses. The results indicated that psychrophilic bacteria were the most abundant group in Drake Passage, and mainly made up of Bacillus, Aeromonas, Psychrobacter, Pseudomonas and Halomonas. Diversity analysis showed that surface seawater communities had no significant correlation with latitudinal gradient. Additionally, a clear difference among five surface seawater communities was evident, with 1.8% OTUs (only two) belonged to Bacillus consistent across five locations and 71% OTUs (80) existed in only one location. However, the few cosmopolitans had the largest population sizes. Our results support the hypothesis that the dominant bacterial groups appear to be analogous between geographical sites, but significant differences may be detected among rare bacterial groups. The microbial diversity of surface seawaters would be liable to be affected by environmental factors. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Lake whitefish diet, condition, and energy density in Lake Champlain and the lower four Great Lakes following dreissenid invasions

    USGS Publications Warehouse

    Herbst, Seth J.; Marsden, J. Ellen; Lantry, Brian F.

    2013-01-01

    Lake Whitefish Coregonus clupeaformis support some of the most valuable commercial freshwater fisheries in North America. Recent growth and condition decreases in Lake Whitefish populations in the Great Lakes have been attributed to the invasion of the dreissenid mussels, zebra mussels Dreissena polymorpha and quagga mussels D. bugensis, and the subsequent collapse of the amphipod, Diporeia, a once-abundant high energy prey source. Since 1993, Lake Champlain has also experienced the invasion and proliferation of zebra mussels, but in contrast to the Great Lakes, Diporeia were not historically abundant. We compared the diet, condition, and energy density of Lake Whitefish from Lake Champlain after the dreissenid mussel invasion to values for those of Lake Whitefish from Lakes Michigan, Huron, Erie, and Ontario. Lake Whitefish were collected using gill nets and bottom trawls, and their diets were quantified seasonally. Condition was estimated using Fulton's condition factor (K) and by determining energy density. In contrast to Lake Whitefish from some of the Great Lakes, those from Lake Champlain Lake Whitefish did not show a dietary shift towards dreissenid mussels, but instead fed primarily on fish eggs in spring, Mysis diluviana in summer, and gastropods and sphaeriids in fall and winter. Along with these dietary differences, the condition and energy density of Lake Whitefish from Lake Champlain were high compared with those of Lake Whitefish from Lakes Michigan, Huron, and Ontario after the dreissenid invasion, and were similar to Lake Whitefish from Lake Erie; fish from Lakes Michigan, Huron, and Ontario consumed dreissenids, whereas fish from Lake Erie did not. Our comparisons of Lake Whitefish populations in Lake Champlain to those in the Great Lakes indicate that diet and condition of Lake Champlain Lake Whitefish were not negatively affected by the dreissenid mussel invasion.

  13. Microbial ecology of soda lakes: investigating sulfur and nitrogen cycling at Mono Lake, CA, USA

    NASA Astrophysics Data System (ADS)

    Fairbanks, D.; Phillips, A. A.; Wells, M.; Bao, R.; Fullerton, K. M.; Stamps, B. W.; Speth, D. R.; Johnson, H.; Sessions, A. L.

    2017-12-01

    Soda lakes represent unique ecosystems characterized by extremes of pH, salinity and distinct geochemical cycling. Despite these extreme conditions, soda lakes are important repositories of biological adaptation and have a highly functional microbial system. We investigated the biogeochemical cycling of sulfur and nitrogen compounds in Mono Lake, California, located east of the Sierra Nevada mountains. Mono lake is characterized by hyperalkaline, hypersaline and high sulfate concentrations and can enter prolonged periods of meromixis due to freshwater inflow. Typically, the microbial sulfur cycle is highly active in soda lakes with both oxidation and reduction of sulfur compounds. However, the biological sulfur cycle is connected to many other main elemental cycles such as carbon, nitrogen and metals. Here we investigated the interaction between sulfur and nitrogen cycling in Mono lake using a combination of molecular, isotopic, and geochemical observations to explore the links between microbial phylogenetic composition and functionality. Metagenomic and 16S rRNA gene amplicon sequencing were determined at two locations and five depths in May 2017. 16S rRNA gene amplicon sequencing analysis revealed organisms capable of both sulfur and nitrogen cycling. The relative abundance and distribution of functional genes (dsrA, soxAB, nifH, etc) were also determined. These genetic markers indicate the potential in situ relevance of specific carbon, nitrogen, and sulfur pathways in the water column prior to the transition to meromictic stratification. However, genes for sulfide oxidation, denitrification, and ammonification were present. Genome binning guided by the most abundant dsrA sequences, GC content, and abundance with depth identified a Thioalkalivibrio paradoxus bin containing genes capable of sulfur oxidation, denitrification, and nitrate reduction. The presence of a large number of sulfur and nitrogen cycling genes associated with Thioalkalivibrio paradoxus

  14. Diet of Mysis diluviana reveals seasonal patterns of omnivory and consumption of invasive species in offshore Lake Michigan

    USGS Publications Warehouse

    O'Malley, Brian P.; Bunnell, David B.

    2014-01-01

    Recent changes in Lake Michigan’s lower trophic levels were hypothesized to have influenced the diet of omnivorous Mysis diluviana. In this study, the stomach contents of Mysis were examined from juvenile and adults collected monthly (April–October) from a 110-m bottom depth site to describe their seasonal diet in LakeMichigan during 2010. Diatoms were the most common prey item ingested, followed by calanoid copepods, and chrysophytes. Dreissenid veligers were documented in mysid diets for the first time in the Great Lakes, and Cercopagis pengoi were not only consumed but even preferred by adults in summer. Diet proportions by weight were dominated by calanoids, although diets showed a marked shift toward cladocerans in autumn. Juvenile and adult Mysis selected primarily for cladoceran prey but also selected for some calanoid copepod taxa. Comparing available Mysis diet data from 1985 to 2010 indicated generally fewer cladocerans and rotifers per gut and less consistent differences in copepods and Peridinium consumed. The seasonal composition of phyto- and zooplankton prey documented herein should be useful to those seeking to understand the trophic role of Mysis in offshore food webs, but caution should be expressed when generalizing similarities in Mysis diets across other lakes because Lake Michigan’s population seems relatively more herbivorous.

  15. Holocene evolution of the River Nile drainage system as revealed from the Lake Dendi sediment record, central Ethiopian highlands

    NASA Astrophysics Data System (ADS)

    Wagner, B.; Viehberg, F. A.; Wennrich, V.; Junginger, A.; Kolvenbach, A.; Rethemeyer, J.; Schaebitz, F.; Schmiedl, G. H.

    2015-12-01

    A 12 m long sediment sequence from Dendi Crater lakes, located on the central Ethiopian Plateau, was analysed with sedimentological and geochemical methods to reconstruct the regional environmental history. Bulk organic carbon samples from 23 horizons throughout the sequence were used for AMS radiocarbon dating and indicate that the sediment sequence spans the last ca. 12 cal kyr BP. Microscope analyses and sedimentological data reveal three tephra layers, of which the most prominent layer with a thickness of ~2 m was deposited at 10.2 cal kyr BP and probably originates from an eruption of the Wenchi crater 12 km to the west of the Dendi lakes. Sedimentological data of the pelagic deposits indicate shifts in erosion and rainfall throughout the record. A decrease in Ca and Sr at 11.6 cal kyr BP is related to the shift of less humid condition during the Younger Dryas (YD) to the return to full humid conditions of the African Humid Period (AHP). Single thin horizons with high carbonate content or high Ti and K imply that short spells of dry conditions and significantly increased rainfall superimpose the generally more humid conditions during the AHP. The end of the AHP is gradual. Relatively stable and less humid conditions characterised the Dendi Crater lakes until around 3.9 cal kyr BP. A highly variable increase in clastic matter over the last 1500 years indicates higher erosion due to short-term variations in precipitation within the Dendi catchment. Overall, the sediment record suggests moderate change of precipitation during the Holocene, which is probably due to their exposed location in the Ethiopian highlands. The data from the Dendi Crater lakes show, in concert with other records from the Nile catchment and the Eastern Mediterranean Sea (EMS), that the Blue Nile provided the main freshwater source for maintaining EMS stratification and sapropel S1 formation between ca. 10.0 and 8.7 cal kyr BP. Subsequent aridification is recorded from equatorial East Africa

  16. Seismic investigation of Lake Issyk-Kul, Kyrgyzstan

    NASA Astrophysics Data System (ADS)

    Gebhardt, C.; Naudts, L.; De Mol, L.; De Batist, M.

    2012-04-01

    Lake Issyk-Kul is located in an intramontane basin of the Tien Shan mountains in Kyrgyzstan, Central Asia. It has formed in a tectonically active region with W-E striking major thrust zones north and south of the lake. The lake's modern surface level is at 1607 m above sea level, maximum depth in the central basin of the lake is roughly 670 m, and the total water volume is around 1736 km3. The lake is elongated with 180 km in west-east and 60 km in south-north direction. With a surface area of 6232 km2, Lake Issyk-Kul is the second largest lake in the higher altitudes. The lake is characterized by two large delta areas at its western and eastern end, with the deltaic area being as wide as up to 60 km in the eastern and 40 km in the western part, and by steep slopes at the northern and southern shore with only a rather narrow shallower shelf area. The lake contains the sediments of the past up to several million years, and has been proposed as a future target for deep drilling within ICDP. Three seismic surveys by Russian and Belgian groups in 1982, 1997 and 2001 revealed a thick sediment infill in Lake Issyk-Kul. At both the western and the eastern end of the lake, large delta systems were formed by actual and previous inlets, namely the Tyup and Djyrgalan rivers in the eastern part of the lake (still active) and the Chu River at the western end (currently bypassing the lake). Large sub-aquatic channel systems are visible in the lake's bathymetry in the shallower part of the delta systems close to the river mouths. They were quite likely formed by these rivers during a former lake level lowstand. The delta system consists of stacked prograding delta lobes with a characteristic topset-foreset-bottomset configuration. These lobes together with sub-aerial terraces found at several spots around the lake witness lake level fluctuations of up to >400 m. The sediments in the central plain of Lake Issyk-Kul are mainly well-layered with many turbiditic sequences

  17. Spatial patterns in PCB concentrations of Lake Michigan lake trout

    USGS Publications Warehouse

    Madenjian, Charles P.; DeSorcie, Timothy J.; Stedman, Ralph M.; Brown, Edward H.; Eck, Gary W.; Schmidt, Larry J.; Hesselberg, Robert J.; Chernyak, Sergei M.; Passino-Reader, Dora R.

    1999-01-01

    Most of the PCB body burden in lake trout (Salvelinus namaycush) of the Great Lakes is from their food. PCB concentrations were determined in lake trout from three different locations in Lake Michigan during 1994–1995, and lake trout diets were analyzed at all three locations. The PCB concentrations were also determined in alewife (Alosa pseudoharengus), rainbow smelt (Osmerus mordax), bloater (Coregonus hoyi), slimy sculpin (Cottus cognatus), and deepwater sculpin (Myoxocephalus thompsoni), five species of prey fish eaten by lake trout in Lake Michigan, at three nearshore sites in the lake. Despite the lack of significant differences in the PCB concentrations of alewife, rainbow smelt, bloater, slimy sculpin, and deepwater sculpin from the southeastern nearshore site near Saugatuck (Michigan) compared with the corresponding PCB concentrations from the northwestern nearshore site near Sturgeon Bay (Wisconsin), PCB concentrations in lake trout at Saugatuck were significantly higher than those at Sturgeon Bay. The difference in the lake trout PCB concentrations between Saugatuck and Sturgeon Bay could be explained by diet differences. The diet of lake trout at Saugatuck was more concentrated in PCBs than the diet of Sturgeon Bay lake trout, and therefore lake trout at Saugatuck were more contaminated in PCBs than Sturgeon Bay lake trout. These findings were useful in interpreting the long-term monitoring series for contaminants in lake trout at both Saugatuck and the Wisconsin side of the lake.

  18. Potential strategies for recovery of lake whitefish and lake herring stocks in eastern Lake Erie

    USGS Publications Warehouse

    Oldenburg, K.; Stapanian, M.A.; Ryan, P.A.; Holm, E.

    2007-01-01

    Lake Erie sustained large populations of ciscoes (Salmonidae: Coregoninae) 120 years ago. By the end of the 19th century, abundance of lake whitefish (Coregonus clupeaformis) had declined drastically. By 1925, the lake herring (a cisco) population (Coregonus artedii) had collapsed, although a limited lake herring fishery persisted in the eastern basin until the 1950s. In the latter part of the 20th century, the composition of the fish community changed as oligotrophication proceeded. Since 1984, a limited recovery of lake whitefish has occurred, however no recovery was evident for lake herring. Current ecological conditions in Lake Erie probably will not inhibit recovery of the coregonine species. Recovery of walleye (Sander vitreus) and efforts to rehabilitate the native lake trout (Salvelinus namaycush) in Lake Erie will probably assist recovery because these piscivores reduce populations of alewife (Alosa psuedoharengus) and rainbow smelt (Osmerus mordax), which inhibit reproductive success of coregonines. Although there are considerable spawning substrates available to coregonine species in eastern Lake Erie, eggs and fry would probably be displaced by storm surge from most shoals. Site selection for stocking or seeding of eggs should consider the reproductive life cycle of the stocked fish and suitable protection from storm events. Two potential sites in the eastern basin have been identified. Recommended management procedures, including commercial fisheries, are suggested to assist in recovery. Stocking in the eastern basin of Lake Erie is recommended for both species, as conditions are adequate and the native spawning population in the eastern basin is low. For lake herring, consideration should be given to match ecophenotypes as much as possible. Egg seeding is recommended. Egg seeding of lake whitefish should be considered initially, with fingerling or yearling stocking suggested if unsuccessful. Spawning stocks of whitefish in the western basin of Lake

  19. Development of a zoning-based environmental-ecological-coupled model for lakes to assess lake restoration effect

    NASA Astrophysics Data System (ADS)

    Xu, Mengjia; Zou, Changxin; Zhao, Yanwei

    2017-04-01

    Environmental/ecological models are widely used for lake management as they provide a means to understand physical, chemical and biological processes in highly complex ecosystems. Most research focused on the development of environmental (water quality) and ecological models, separately. Limited studies were developed to couple the two models, and in these limited coupled models, a lake was regarded as a whole for analysis (i.e., considering the lake to be one well-mixed box), which was appropriate for small-scale lakes and was not sufficient to capture spatial variations within middle-scale or large-scale lakes. This paper seeks to establish a zoning-based environmental-ecological-coupled model for a lake. The Baiyangdian Lake, the largest freshwater lake in Northern China, was adopted as the study case. The coupled lake models including a hydrodynamics and water quality model established by MIKE21 and a compartmental ecological model used STELLA software have been established for middle-sized Baiyangdian Lake to realize the simulation of spatial variations of ecological conditions. On the basis of the flow field distribution results generated by MIKE21 hydrodynamics model, four water area zones were used as an example for compartmental ecological model calibration and validation. The results revealed that the developed coupled lake models can reasonably reflected the changes of the key state variables although there remain some state variables that are not well represented by the model due to the low quality of field monitoring data. Monitoring sites in a compartment may not be representative of the water quality and ecological conditions in the entire compartment even though that is the intention of compartment-based model design. There was only one ecological observation from a single monitoring site for some periods. This single-measurement issue may cause large discrepancies particularly when sampled site is not representative of the whole compartment. The

  20. Glacial lake inventory and lake outburst potential in Uzbekistan.

    PubMed

    Petrov, Maxim A; Sabitov, Timur Y; Tomashevskaya, Irina G; Glazirin, Gleb E; Chernomorets, Sergey S; Savernyuk, Elena A; Tutubalina, Olga V; Petrakov, Dmitriy A; Sokolov, Leonid S; Dokukin, Mikhail D; Mountrakis, Giorgos; Ruiz-Villanueva, Virginia; Stoffel, Markus

    2017-08-15

    Climate change has been shown to increase the number of mountain lakes across various mountain ranges in the World. In Central Asia, and in particular on the territory of Uzbekistan, a detailed assessment of glacier lakes and their evolution over time is, however lacking. For this reason we created the first detailed inventory of mountain lakes of Uzbekistan based on recent (2002-2014) satellite observations using WorldView-2, SPOT5, and IKONOS imagery with a spatial resolution from 2 to 10m. This record was complemented with data from field studies of the last 50years. The previous data were mostly in the form of inventories of lakes, available in Soviet archives, and primarily included localized in-situ data. The inventory of mountain lakes presented here, by contrast, includes an overview of all lakes of the territory of Uzbekistan. Lakes were considered if they were located at altitudes above 1500m and if lakes had an area exceeding 100m 2 . As in other mountain regions of the World, the ongoing increase of air temperatures has led to an increase in lake number and area. Moreover, the frequency and overall number of lake outburst events have been on the rise as well. Therefore, we also present the first outburst assessment with an updated version of well-known approaches considering local climate features and event histories. As a result, out of the 242 lakes identified on the territory of Uzbekistan, 15% are considered prone to outburst, 10% of these lakes have been assigned low outburst potential and the remainder of the lakes have an average level of outburst potential. We conclude that the distribution of lakes by elevation shows a significant influence on lake area and hazard potential. No significant differences, by contrast, exist between the distribution of lake area, outburst potential, and lake location with respect to glaciers by regions. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Monitoring and assessment of anthropogenic activities in mountain lakes: a case of the Fifth Triglav Lake in the Julian Alps.

    PubMed

    Ravnikar, Tina; Bohanec, Marko; Muri, Gregor

    2016-04-01

    The Fifth Triglav Lake is a remote mountain lake in the Julian Alps. The area of the Julian Alps where the lake is situated is protected by law and lies within the Triglav National Park. Mountain lakes in Slovenia were considered for a long time as pristine, unpolluted lakes, but analyses in the last decade revealed considerable human impact even in such remote places. Eutrophication or excessive accumulation of nutrients is the main problem of most lakes in the temperate climatic zone, also in Slovenia. Since the introduction of fish in 1991, the lake is going through a series of changes for which we do not know exactly where they lead, so the monitoring and assessment of anthropogenic activities are of great importance. For this purpose, a qualitative multiattribute decision model was developed with DEX method to assess ecological effects on the lake. The extent of the ecological effects on the lake is assessed using four main parameters: the trophic state, lake characteristics, environmental parameters, and anthropogenic stressors. Dependence of environmental impact on various external factors beyond human control, such as temperature, precipitation, retention time, and factors on which we have influence, such as the amount of wastewater and the presence of fish in the lake, were also evaluated. The following data were measured: chlorophyll a, nutrients, TP, oxygen, C/N ratio, nutrients in sediment, temperature, precipitation, retention time, and volume. We made assumptions about fish and wastewater, which we could not measure. The main contributions of this work are the designed model and the obtained findings for the Fifth Triglav Lake that can help not only scientists in understanding the complexity of lake-watershed systems and interactions among system components but also local authorities to manage and monitor the lake aquatic environment in an effective and efficient way. The model is flexible and can be also used for other lakes, assuming that the used

  2. Anaerobic Oxidation of Methane in a French meromictic lake (Lake Pavin): Who is responsible?

    NASA Astrophysics Data System (ADS)

    Grossi, V.; Attard, E.; Birgel, D.; Schaeffer, P.; Jézéquel, D.; Lehours, A.

    2012-12-01

    Methane is an important greenhouse gas and its biogeochemical cycle is of primary significance to the global carbon cycle. The Anaerobic Oxidation of Methane (AOM) has been estimated to be responsible for >90% of methane consumption. This biogeochemical process has been increasingly documented during the last two decades but the underlying microbial processes and their key agents remain incompletely understood. Freshwater lakes account for 2-10% of the total emissions of methane and are therefore an important part of the global methane cycle. Lake Pavin is a French meromictic crater lake with unusual hydrological characteristics: its morphology (depth >92m, mean diameter 750m) induce that waters below 60m are never mixed with overlying waters and remain permanently anoxic. The deep anoxic waters of Lake Pavin contain high concentrations (i.e. 4 mM) of methane but, contrary to other aquatic systems, almost no methane escapes from the lake. Previous biogeochemical and modeling studies suggest that methane is preferentially consumed within the oxic-anoxic transition zone (ca. 55-60 m depth) but that ca. 30% of methane oxidation occurs in the anoxic part of the lake. Phylogenetic (16S rRNA) analyses showed that ANME generally involved in AOM (ANME-1, -2 and -3) are not present in Lake Pavin. Other archaeal groups that do not have any cultured representatives so far appear well represented in the anoxic parts of the lake but their implication in AOM is not demonstrated. The analysis of lipid biomarkers using GC-MS and LC-MS revealed the presence of a low diversity of archaeal-specific biomarkers in the superficial sediments and in the anoxic waters of the lake. Archaeol and caldarcheaol (GDGT-0) are the two main archaeal core lipids detected; other biomarkers generally present in ANME such as pentamethylicosane or hydroxyarchaeol are not present. However, the stable carbon isotopic composition of archaeol (δ13C = -18‰) and of the biphytane chain of GDGT-0 (δ13C

  3. Biomarkers in Lake Van sediments reveal dry conditions in eastern Anatolia during 110.000-10.000 years B.P.

    NASA Astrophysics Data System (ADS)

    Randlett, Marie-Eve; Bechtel, Achim; van der Meer, Marcel T. J.; Peterse, Francien; Litt, Thomas; Pickarski, Nadine; Kwiecien, Ola; Stockhecke, Mona; Wehrli, Bernhard; Schubert, Carsten J.

    2017-02-01

    Lipid biomarkers were analyzed in Lake Van sediments covering the last 600 ka, with a focus on the period between 110 and 10 ka, when a broad maximum in pore water salinity as a relict from the past suggests dry conditions. The occurrence and distribution of biomarkers indicative for terrestrial plants (long-chain n-alkane C29), haptophyte algae (methyl alkenones C37) and halophilic archaea (archaeol) all point toward a dry climate in Lake Van region during this time interval. The hydrogen isotopic composition of C29 n-alkanes (δDC29) and C37 alkenones (δDC37) is enriched between MIS 4 and MIS 2, which is interpreted as a decrease in the regional ratio of precipitation to evaporation. Similarly, the low abundance of the acyclic glycerol dialkyl glycerol tetraether GDGT-0 relative to archaeol, quantified by the Archaeol and Caldarchaeol Ecometric (ACE) is assumed to reflect the presence of halophilic euryarchaeota adapted to high salinity water. The climate around Lake Van appears in phase with the Yammouneh basin 800 km southwest and Lake Urmia 250 km southeast of Lake Van over the last two glacial periods. The results highlight the potential of combining ACE, δDC29, and δDC37 for reconstructing salinity changes and regional precipitation to evaporation ratio from lake sediments.

  4. Progress toward lake trout restoration in Lake Michigan

    USGS Publications Warehouse

    Holey, Mark E.; Rybicki, Ronald W.; Eck, Gary W.; Brown, Edward H.; Marsden, J. Ellen; Lavis, Dennis S.; Toneys, Michael L.; Trudeau, Tom N.; Horrall, Ross M.

    1995-01-01

    Progress toward lake trout restoration in Lake Michigan is described through 1993. Extinction of the native lake trout fishery by sea lamprey predation, augmented by exploitation and habitat destruction, resulted in an extensive stocking program of hatchery-reared lake trout that began in 1965. Sea lamprey abundance was effectively controlled using selective chemical toxicants. The initial stocking produced a measurable wild year class of lake trout by 1976 in Grand Traverse Bay, but failed to continue probably due to excessive exploitation. The overall lack of successful reproduction lakewide by the late 1970s led to the development and implementation in 1985 of a focused inter-agency lakewide restoration plan by a technical committee created through the Lake Committee structure of the Great Lakes Fishery Commission. Strategies implemented in 1985 by the plan included setting a 40% total mortality goal lakewide, creating two large refuges designed to encompass historically the most productive spawning habitat and protect trout stocked over their home range, evaluating several lake trout strains, and setting stocking priorities throughout the lake. Target levels for stocking in the 1985 Plan have never been reached, and are much less than the estimated lakewide recruitment of yearlings by the native lake trout stocks. Since 1985, over 90% of the available lake trout have been stocked over the best spawning habitat, and colonization of the historically productive offshore reefs has occurred. Concentrations of spawning lake trout large enough for successful reproduction, based on observations of successful hatchery and wild stocks, have developed at specific reefs. Continued lack of recruitment at these specific sites suggests that something other than stotk abundance has limited success. Poor survival of lake trout eggs, assumed to be related to contaminant burden, occurred in the late 1970s and early 1980s, but survival has since increased to equal survival in the

  5. Early warnings of hazardous thunderstorms over Lake Victoria

    NASA Astrophysics Data System (ADS)

    Thiery, Wim; Gudmundsson, Lukas; Bedka, Kristopher; Semazzi, Fredrick H. M.; Lhermitte, Stef; Willems, Patrick; van Lipzig, Nicole P. M.; Seneviratne, Sonia I.

    2017-07-01

    Weather extremes have harmful impacts on communities around Lake Victoria in East Africa. Every year, intense nighttime thunderstorms cause numerous boating accidents on the lake, resulting in thousands of deaths among fishermen. Operational storm warning systems are therefore crucial. Here we complement ongoing early warning efforts based on numerical weather prediction, by presenting a new satellite data-driven storm prediction system, the prototype Lake Victoria Intense storm Early Warning System (VIEWS). VIEWS derives predictability from the correlation between afternoon land storm activity and nighttime storm intensity on Lake Victoria, and relies on logistic regression techniques to forecast extreme thunderstorms from satellite observations. Evaluation of the statistical model reveals that predictive power is high and independent of the type of input dataset. We then optimise the configuration and show that false alarms also contain valuable information. Our results suggest that regression-based models that are motivated through process understanding have the potential to reduce the vulnerability of local fishing communities around Lake Victoria. The experimental prediction system is publicly available under the MIT licence at http://github.com/wthiery/VIEWS.

  6. Tsunami history of an Oregon coastal lake reveals a 4600 yr record of great earthquakes on the Cascadia subduction zone

    USGS Publications Warehouse

    Kelsey, H.M.; Nelson, A.R.; Hemphill-Haley, E.; Witter, R.C.

    2005-01-01

    Bradley Lake, on the southern Oregon coastal plain, records local tsunamis and seismic shaking on the Cascadia subduction zone over the last 7000 yr. Thirteen marine incursions delivered landward-thinning sheets of sand to the lake from nearshore, beach, and dune environments to the west. Following each incursion, a slug of marine water near the bottom of the freshwater lake instigated a few-year-to-several-decade period of a brackish (??? 4??? salinity) lake. Four additional disturbances without marine incursions destabilized sideslopes and bottom sediment, producing a suspension deposit that blanketed the lake bottom. Considering the magnitude and duration of the disturbances necessary to produce Bradley Lake's marine incursions, a local tsunami generated by a great earthquake on the Cascadia subduction zone is the only accountable mechanism. Extreme ocean levels must have been at least 5-8 m above sea level, and the cumulative duration of each marine incursion must have been at least 10 min. Disturbances without marine incursions require seismic shaking as well. Over the 4600 yr period when Bradley Lake was an optimum tsunami recorder, tsunamis from Cascadia plate-boundary earthquakes came in clusters. Between 4600 and 2800 cal yr B.P., tsunamis occurred at the average frequency of ??? 3-4 every 1000 yr. Then, starting ???2800 cal yr B.P., there was a 930-1260 yr interval with no tsunamis. That gap was followed by a ???1000 yr period with 4 tsunamis. In the last millennium, a 670-750 yr gap preceded the A.D. 1700 earthquake and tsunami. The A.D. 1700 earthquake may be the first of a new cluster of plate-boundary earthquakes and accompanying tsunamis. Local tsunamis entered Bradley Lake an average of every 390 yr, whereas the portion of the Cascadia plate boundary that underlies Bradley Lake ruptured in a great earthquake less frequently, about once every 500 yr. Therefore, the entire length of the subduction zone does not rupture in every earthquake, and Bradley

  7. Radio-echo sounding of 'active' Antarctic subglacial lakes

    NASA Astrophysics Data System (ADS)

    Siegert, M. J.; Ross, N.; Blankenship, D. D.; Young, D. A.; Greenbaum, J. S.; Richter, T.; Rippin, D. M.; Le Brocq, A. M.; Wright, A.; Bingham, R.; Corr, H.; Ferraccioli, F.; Jordan, T. A.; Smith, B. E.; Payne, A. J.; Dowdeswell, J. A.; Bamber, J. L.

    2013-12-01

    Repeat-pass satellite altimetry has revealed 124 discrete surface height changes across the Antarctic Ice Sheet, interpreted to be caused by subglacial lake discharges (surface lowering) and inputs (surface uplift). Few of these active lakes have been confirmed by radio-echo sounding (RES) despite several attempts, however. Over the last 5 years, major geophysical campaigns have acquired RES data from several 'active' lake sites, including the US-UK-Australian ICECAP programme in East Antactica and the UK survey of the Institute Ice Stream in West Antarctica. In the latter case, a targeted RES survey of one 'active' lake was undertaken. RES evidence of the subglacial bed beneath 'active' lakes in both East and West Antarctica will be presented, and the evidence for pooled subglacial water from these data will be assessed. Based on this assessment, the nature of 'active' subglacial lakes, and their associated hydrology and relationship with surrounding topography will be discussed, as will the likelihood of further 'active' lakes in Antarctica. Hydraulic potential map of the Byrd Glacier catchment with contours at 5 MPa intervals. Predicted subglacial flowpaths are shown in blue. Subglacial lakes known from previous geophysical surveys are shown as black triangles while the newly discovered 'Three-tier lakes' are shown in dashed black outline. Surface height change features within the Byrd subglacial catchment are shown in outline and are shaded to indicate whether they were rising or falling during the ICESat campaign. Those features are labelled in-line with the numbering system of Smith et al. (J. Glac. 2009).

  8. Lake trout rehabilitation in Lake Huron

    USGS Publications Warehouse

    Eshenroder, Randy L.; Payne, N. Robert; Johnson, James E.; Bowen, Charles; Ebener, Mark P.

    1995-01-01

    Efforts to restore lake trout (Salvelinus namaycush) in Lake Huron after their collapse in the 1940s were underway in the early 1970s with completion of the first round of lampricide applications in tributary streams and the stocking of several genotypes. We assess results of rehabilitation and establish a historical basis for comparison by quantifying the catch of spawning lake trout from Michigan waters in 1929-1932. Sixty-eight percent of this catch occurred in northern waters (MH-1) and most of the rest (15%) was from remote reefs in the middle of the main basin. Sea lampreys (Petromyzon marinus) increased in the early 1980s in the main basin and depressed spawning populations of lake trout. This increase was especially severe in northern waters and appeared to be associated with untreated populations in the St. Marys River. Excessive commercial fishing stemming from unresolved treaty rights also contributed to loss of spawning fish in northern Michigan waters. Seneca-strain lake trout did not appear to be attacked by sea lampreys until they reached a size > 532 mm. At sizes > 632 mm, Seneca trout were 40-fold more abundant than the Marquette strain in matched-planting experiments. Natural reproduction past the fry stage has occurred in Thunder Bay and South Bay, but prospects for self-sustaining populations of lake trout in the main basin are poor because sea lampreys are too abundant, only one side of the basin is stocked, and stocking is deferred to allow commercial gillnetting in areas where most of the spawning occurred historically. Backcross lake trout, a lake trout x splake (s. Fontinalis x s. Namaycush) hybrid, did not reproduce in Georgian Bay, but this genotype is being replaced with pure-strain lake trout, whose early performance appears promising.

  9. Discovery of relict subglacial lakes and their geometry and mechanism of drainage

    PubMed Central

    Livingstone, Stephen J.; Utting, Daniel J.; Ruffell, Alastair; Clark, Chris D.; Pawley, Steven; Atkinson, Nigel; Fowler, Andrew C.

    2016-01-01

    Recent proxy measurements reveal that subglacial lakes beneath modern ice sheets periodically store and release large volumes of water, providing an important but poorly understood influence on contemporary ice dynamics and mass balance. This is because direct observations of how lake drainage initiates and proceeds are lacking. Here we present physical evidence of the mechanism and geometry of lake drainage from the discovery of relict subglacial lakes formed during the last glaciation in Canada. These palaeo-subglacial lakes comprised shallow (<10 m) lenses of water perched behind ridges orientated transverse to ice flow. We show that lakes periodically drained through channels incised into bed substrate (canals). Canals sometimes trend into eskers that represent the depositional imprint of the last high-magnitude lake outburst. The subglacial lakes and channels are preserved on top of glacial lineations, indicating long-term re-organization of the subglacial drainage system and coupling to ice flow. PMID:27292049

  10. Long-term records reveal decoupling of nitrogen and phosphorus cycles in a large, urban lake in response to an extreme rainfall event

    NASA Astrophysics Data System (ADS)

    Corman, J. R.; Loken, L. C.; Oliver, S. K.; Collins, S.; Butitta, V.; Stanley, E. H.

    2017-12-01

    Extreme events can play powerful roles in shifting ecosystem processes. In lakes, heavy rainfall can transport large amounts of particulates and dissolved nutrients into the water column and, potentially, alter biogeochemical cycling. However, the impacts of extreme rainfall events are often difficult to study due to a lack of long-term records. In this paper, we combine daily discharge records with long-term lake water quality information collected by the North Temperate Lakes Long-Term Ecological Research (NTL LTER) site to investigate the impacts of extreme events on nutrient cycling in lakes. We focus on Lake Mendota, an urban lake within the Yahara River Watershed in Madison, Wisconsin, USA, where nutrient data are available at least seasonally from 1995 - present. In June 2008, precipitation amounts in the Yahara watershed were 400% above normal values, triggering the largest discharge event on record for the 40 years of monitoring at the streamgage station; hence, we are able to compare water quality records before and after this event as a case study of how extreme rain events couple or decouple lake nutrient cycling. Following the extreme event, the lake-wide mass of nitrogen and phosphorus increased in the summer of 2008 by 35% and 21%, respectively, shifting lake stoichiometry by increasing N:P ratios (Figure 1). Nitrogen concentrations remained elevated longer than phosphorus, suggesting (1) that nitrogen inputs into the lake were sustained longer than phosphorus (i.e., a "smear" versus "pulse" loading of nitrogen versus phosphorus, respectively, in response to the extreme event) and/or (2) that in-lake biogeochemical processing was more efficient at removing phosphorus compared to nitrogen. While groundwater loading data are currently unavailable to test the former hypothesis, preliminary data from surficial nitrogen and phosphorus loading to Lake Mendota (available for 2011 - 2013) suggest that nitrogen removal efficiency is less than phosphorus

  11. Small lakes in big landscape: Multi-scale drivers of littoral ecosystem in alpine lakes.

    PubMed

    Zaharescu, Dragos G; Burghelea, Carmen I; Hooda, Peter S; Lester, Richard N; Palanca-Soler, Antonio

    2016-05-01

    In low nutrient alpine lakes, the littoral zone is the most productive part of the ecosystem, and it is a biodiversity hotspot. It is not entirely clear how the scale and physical heterogeneity of surrounding catchment, its ecological composition, and larger landscape gradients work together to sustain littoral communities. A total of 113 alpine lakes from the central Pyrenees were surveyed to evaluate the functional connectivity between littoral zoobenthos and landscape physical and ecological elements at geographical, catchment and local scales, and to ascertain how they affect the formation of littoral communities. At each lake, the zoobenthic composition was assessed together with geolocation, catchment hydrodynamics, geomorphology and topography, riparian vegetation composition, the presence of trout and frogs, water pH and conductivity. Multidimensional fuzzy set models integrating benthic biota and environmental variables revealed that at geographical scale, longitude unexpectedly surpassed altitude and latitude in its effect on littoral ecosystem. This reflects a sharp transition between Atlantic and Mediterranean climates and suggests a potentially high horizontal vulnerability to climate change. Topography (controlling catchment type, snow coverage and lakes connectivity) was the most influential catchment-scale driver, followed by hydrodynamics (waterbody size, type and volume of inflow/outflow). Locally, riparian plant composition significantly related to littoral community structure, richness and diversity. These variables, directly and indirectly, create habitats for aquatic and terrestrial stages of invertebrates, and control nutrient and water cycles. Three benthic associations characterised distinct lakes. Vertebrate predation, water conductivity and pH had no major influence on littoral taxa. This work provides exhaustive information from relatively pristine sites, and unveils a strong connection between littoral ecosystem and catchment

  12. Evolution of alkaline lakes - Lake Van case study

    NASA Astrophysics Data System (ADS)

    Tillman Meyer, Felix; Viehberg, Finn; Bahroun, Sonya; Wolf, Annabel; Immenhauser, Adrian; Kwiecien, Ola

    2017-04-01

    Lake Van in Eastern Anatolia (Turkey) is the largest terminal soda lake on Earth. The lake sedimentary profile covers ca. 600 ka (Stockhecke et al. 2014) Based on lithological changes, the presence of freshwater microfossils and close-to-freshwater pH value in the pore water, members of ICDP PALEOVAN concluded that Lake Van might have started as an open lake. Here we show paleontological and geochemical evidence in favour of this idea and constrain the time, when Lake Van likely transformed into a closed lake. Additionally we provide the first conceptual model of how this closure may have happened. Our archives of choice are inorganic and biogenic carbonates, separated by wet sieving. We identified microfossil assemblages (fraction > 125 µm) and performed high-resolution oxygen isotope (delta18O) and elemental (Mg/Ca, Sr/Ca) analyses of the fraction < 63 µm assuming that it represents only carbonates precipitating in the water column. Microfossil assemblage consists of three different species of ostracods (Candona spp, Loxoconcha sp, Amnicythere spp.), diatoms, gastropods and bivalves. Brakish-water ostracods, Loxoconcha sp and Amnicythere sp occur more often after 530 ka. Additionaly, Loxoconcha sp is a shallow-water species relaying on plants growing in the photic zone as food supply. These two aspects point to an increasing salinity in a shallowing lake. The delta18O values of inorganic carbonates are relatively low during the initial phase of Lake Van and increase abruptly (ca. 7‰) after 530 ka BP. At approximately the same time combination of Sr/Ca and Mg/Ca data suggest first occurrence of aragonite. Again, these findings suggest geochemical changes of the lake water concurrent with transition documented by microfossils. Comparison between Lake Van and Lake Ohrid (Lacey et al. 2016) delta18O data, precludes regional climate change (e.g.: increased evaporation) as the main driver of observed changes. With no evidence for increased volcanic or tectonic

  13. Embryotoxicity of an extract from Great Lakes lake trout to rainbow trout and lake trout

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, P.J.; Tillitt, D.E.

    1995-12-31

    Aquatic ecosystems such as the Great Lakes are known to be contaminated with chemicals that are toxic to fish. However, the role of these contaminants in reproductive failures of fishes, such as lake trout recruitment, has remained controvertible. It was the objective to evaluate dioxin-like embryotoxicity of a complex mixture of chemicals and predict their potential to cause the lack of recruitment in Great Lakes lake trout. Graded doses of a complex environmental extract were injected into eggs of both rainbow trout and lake trout. The extract was obtained from whole adult lake trout collected from Lake Michigan in 1988.more » The extract was embryotoxic in rainbow trout, with LD50 values for Arlee strain and Erwin strain of 33 eggEQ and 14 eggEQ respectively. The LOAEL for hemorrhaging, yolk-sac edema, and craniofacial deformities in rainbow trout were 2, 2, and 4 eggEQ, respectively. Subsequent injections of the extract into lake trout eggs were likewise embryotoxic, with an LD50 value of 7 eggEQ. The LOAEL values for the extract in lake trout for hemorrhaging, yolk-sac edema, and craniofacial deformities were 0.1, 1, and 2 eggEQ, respectively. The current levels of contaminants in lake trout eggs are above the threshold for hemorrhaging and yolk-sac edema. The results also support the use of an additive model of toxicity to quantify PCDDs, PCDFs, Non-o-PCBs, and Mono-o-PCBs in relation to early life stage mortality in Lake Michigan lake trout.« less

  14. Discovery of lake-effect clouds on Titan

    USGS Publications Warehouse

    Brown, M.E.; Schaller, E.L.; Roe, H.G.; Chen, C.; Roberts, J.; Brown, R.H.; Baines, K.H.; Clark, R.N.

    2009-01-01

    Images from instruments on Cassini as well as from telescopes on the ground reveal the presence of sporadic small-scale cloud activity in the cold late-winter north polar region of Saturn's large moon Titan. These clouds lie underneath the previously discovered uniform polar cloud attributed to a quiescent ethane cloud at ???40 km and appear confined to the same latitudes as those of the largest known hydrocarbon lakes at the north pole of Titan. The physical properties of these clouds suggest that they are due to methane convection and condensation. Such convection could be caused by a process in some ways analogous to terrestrial lake-effect clouds. The lakes on Titan could be a key connection between the surface and the meteorological cycle. ?? 2009 by the American Geophysical Union.

  15. Decline of lake herring (Coregonus artedii) in Lake Superior: an analysis of the Wisconsin herring fishery, 1936-78

    USGS Publications Warehouse

    Selgeby, James H.

    1982-01-01

    Annual harvests of lake herring (Coregonus artedii) in American waters of Lake Superior declined from an average of 2 million kg in 1936–62 to less than 25 000 kg in 1978. Analysis of commercial fishing records revealed that the sequential overexploitation of discrete unit stocks caused the collapse of the herring population in Wisconsin waters. In each of six major spawning areas, catch exceeded the productive capacity of the stock and the stock failed. Because stocks in the six areas were exploited sequentially, mostly in groups of two or three simultaneously, the demise of the stocks was not readily apparent until the last two failed in the early 1960s. After the collapse of the last major spawning stock, the fishery dwindled but may have continued to overexploit the remaining small stocks. The residual populations were apparently able only to replace themselves. Some form of density-independent mortality was apparently operating to prevent their recovery during the 1960s and 1970s.Key words: lake herring, overfishing, Lake Superior

  16. Schlumberger soundings near Medicine Lake, California

    USGS Publications Warehouse

    Zohdy, A.A.R.; Bisdorf, R.J.

    1990-01-01

    The use of direct current resistivity soundings to explore the geothermal potential of the Medicine Lake area in northern California proved to be challenging because of high contact resistances and winding roads. Deep Schlumberger soundings were made by expanding current electrode spacings along the winding roads. Corrected sounding data were interpreted using an automatic interpretation method. Forty-two maps of interpreted resistivity were calculated for depths extending from 20 to 1000 m. Computer animation of these 42 maps revealed that: 1) certain subtle anomalies migrate laterallly with depth and can be traced to their origin, 2) an extensive volume of low-resistivity material underlies the survey area, and 3) the three areas (east of Bullseye Lake, southwest of Glass Mountain, and northwest of Medicine Lake) may be favorable geothermal targets. Six interpreted resistivity maps and three cross-sections illustrate the above findings. -from Authors

  17. Lake trout in northern Lake Huron spawn on submerged drumlins

    USGS Publications Warehouse

    Riley, Stephen C.; Binder, Thomas; Wattrus, Nigel J.; Faust, Matthew D.; Janssen, John; Menzies, John; Marsden, J. Ellen; Ebener, Mark P.; Bronte, Charles R.; He, Ji X.; Tucker, Taaja R.; Hansen, Michael J.; Thompson, Henry T.; Muir, Andrew M.; Krueger, Charles C.

    2014-01-01

    Recent observations of spawning lake trout Salvelinus namaycush near Drummond Island in northern Lake Huron indicate that lake trout use drumlins, landforms created in subglacial environments by the action of ice sheets, as a primary spawning habitat. From these observations, we generated a hypothesis that may in part explain locations chosen by lake trout for spawning. Most salmonines spawn in streams where they rely on streamflows to sort and clean sediments to create good spawning habitat. Flows sufficient to sort larger sediment sizes are generally lacking in lakes, but some glacial bedforms contain large pockets of sorted sediments that can provide the interstitial spaces necessary for lake trout egg incubation, particularly if these bedforms are situated such that lake currents can penetrate these sediments. We hypothesize that sediment inclusions from glacial scavenging and sediment sorting that occurred during the creation of bedforms such as drumlins, end moraines, and eskers create suitable conditions for lake trout egg incubation, particularly where these bedforms interact with lake currents to remove fine sediments. Further, these bedforms may provide high-quality lake trout spawning habitat at many locations in the Great Lakes and may be especially important along the southern edge of the range of the species. A better understanding of the role of glacially-derived bedforms in the creation of lake trout spawning habitat may help develop powerful predictors of lake trout spawning locations, provide insight into the evolution of unique spawning behaviors by lake trout, and aid in lake trout restoration in the Great Lakes.

  18. Microbial Community Structure in Lake and Wetland Sediments from a High Arctic Polar Desert Revealed by Targeted Transcriptomics

    PubMed Central

    Stoeva, Magdalena K.; Aris-Brosou, Stéphane; Chételat, John; Hintelmann, Holger; Pelletier, Philip; Poulain, Alexandre J.

    2014-01-01

    While microbial communities play a key role in the geochemical cycling of nutrients and contaminants in anaerobic freshwater sediments, their structure and activity in polar desert ecosystems are still poorly understood, both across heterogeneous freshwater environments such as lakes and wetlands, and across sediment depths. To address this question, we performed targeted environmental transcriptomics analyses and characterized microbial diversity across three depths from sediment cores collected in a lake and a wetland, located on Cornwallis Island, NU, Canada. Microbial communities were characterized based on 16S rRNA and two functional gene transcripts: mcrA, involved in archaeal methane cycling and glnA, a bacterial housekeeping gene implicated in nitrogen metabolism. We show that methane cycling and overall bacterial metabolic activity are the highest at the surface of lake sediments but deeper within wetland sediments. Bacterial communities are highly diverse and structured as a function of both environment and depth, being more diverse in the wetland and near the surface. Archaea are mostly methanogens, structured by environment and more diverse in the wetland. McrA transcript analyses show that active methane cycling in the lake and wetland corresponds to distinct communities with a higher potential for methane cycling in the wetland. Methanosarcina spp., Methanosaeta spp. and a group of uncultured Archaea are the dominant methanogens in the wetland while Methanoregula spp. predominate in the lake. PMID:24594936

  19. Supraglacial lakes on Himalayan debris-covered glacier (Invited)

    NASA Astrophysics Data System (ADS)

    Sakai, A.; Fujita, K.

    2013-12-01

    Debris-covered glaciers are common in many of the world's mountain ranges, including in the Himalayas. Himalayan debris-covered glacier also contain abundant glacial lakes, including both proglacial and supraglacial types. We have revealed that heat absorption through supraglacial lakes was about 7 times greater than that averaged over the whole debris-covered zone. The heat budget analysis elucidated that at least half of the heat absorbed through the water surface was released with water outflow from the lakes, indicating that the warm water enlarge englacial conduits and produce internal ablation. We observed some portions at debris-covered area has caved at the end of melting season, and ice cliff has exposed at the side of depression. Those depression has suggested that roof of expanded water channels has collapsed, leading to the formation of ice cliffs and new lakes, which would accelerate the ablation of debris-covered glaciers. Almost glacial lakes on the debris-covered glacier are partially surrounded by ice cliffs. We observed that relatively small lakes had non-calving, whereas, calving has occurred at supraglacial lakes with fetch larger than 80 m, and those lakes expand rapidly. In the Himalayas, thick sediments at the lake bottom insulates glacier ice and lake water, then the lake water tends to have higher temperature (2-4 degrees C). Therefore, thermal undercutting at ice cliff is important for calving processes in the glacial lake expansion. We estimated and subaqueous ice melt rates during the melt and freeze seasons under simple geomorphologic conditions. In particular, we focused on valley wind-driven water currents in various fetches during the melt season. Our results demonstrate that the subaqueous ice melt rate exceeds the ice-cliff melt rate above the water surface when the fetch is larger than 20 m with the water temperature of 2-4 degrees C. Calculations suggest that onset of calving due to thermal undercutting is controlled by water

  20. Lake sturgeon population characteristics in Rainy Lake, Minnesota and Ontario

    USGS Publications Warehouse

    Adams, W.E.; Kallemeyn, L.W.; Willis, D.W.

    2006-01-01

    Rainy Lake contains a native population of lake sturgeon Acipenser fulvescens that has been largely unstudied. The aims of this study were to document the population characteristics of lake sturgeon in Rainy Lake and to relate environmental factors to year-class strength for this population. Gill-netting efforts throughout the study resulted in the capture of 322 lake sturgeon, including 50 recaptures. Lake sturgeon in Rainy Lake was relatively plump and fast growing compared with a 32-population summary. Population samples were dominated by lake sturgeon between 110 and 150 cm total length. Age–structure analysis of the samples indicated few younger (<10 years) lake sturgeon, but the smallest gill net mesh size used for sampling was 102 mm (bar measure) and would not retain small sturgeon. Few lake sturgeon older than age 50 years were captured, and maximum age of sampled fish was 59 years. Few correlations existed between lake sturgeon year-class indices and both annual and monthly climate variables, except that mean June air temperature was positively correlated with year-class strength. Analysis of Rainy Lake water elevation and resulting lake sturgeon year-class strength indices across years yielded consistent but weak negative correlations between late April and early June, when spawning of lake sturgeon occurs. The baseline data collected in this study should allow Rainy Lake biologists to establish more specific research questions in the future.

  1. Inventory and recently increasing GLOF susceptibility of glacial lakes in Sikkim, Eastern Himalaya

    NASA Astrophysics Data System (ADS)

    Aggarwal, Suruchi; Rai, S. C.; Thakur, P. K.; Emmer, Adam

    2017-10-01

    Climatic changes alter the climate system, leading to a decrease of glacier mass volumes and swelling glacial lakes. This study provides a new inventory of glacial and high-altitude lakes for Sikkim, Eastern Himalaya, and evaluates the susceptibility of lakes to Glacial Lake Outburst Flood (GLOF). By using satellite data of high spatial resolution (5 m), we obtain 1104 glacial and high-altitude lakes with total area 30.498 km2, of which 472 have an area > 0.01 km2. Applying pre-defined GLOF susceptibility criteria on these 472 lakes yields 21 lakes susceptible to GLOF, which all increased in area from 1972-2015. Using Analytic Hierarchy Processes (AHP), the pairwise comparison matrix further reveals that 5 of these glacial lakes have low, 14 have medium and 2 have high GLOF susceptibility. Especially these 16 glacial lakes with high and medium GLOF susceptibility may threaten downstream communities and infrastructure and need further attention.

  2. Seasonal influence of scallop culture on nutrient flux, bacterial pathogens and bacterioplankton diversity across estuaries off the Bohai Sea Coast of Northern China.

    PubMed

    He, Yaodong; Sen, Biswarup; Shang, Junyang; He, Yike; Xie, Ningdong; Zhang, Yongfeng; Zhang, Jianle; Johnson, Zackary I; Wang, Guangyi

    2017-11-15

    In this study, we investigated the environmental impacts of scallop culture on two coastal estuaries adjacent the Bohai Sea including developing a quantitative PCR assay to assess the abundance of the bacterial pathogens Escherichia coli and Vibrio parahaemolyticus. Scallop culture resulted in a significant reduction of nitrogen, Chlorophyll a, and phosphorous levels in seawater during summer. The abundance of bacteria including V. parahaemolyticus varied significantly across estuaries and breeding seasons and was influenced by nitrate as well as nutrient ratios (Si/DIN, N/P). Bacterioplankton diversity varied across the two estuaries and seasons, and was dominated by Proteobacteria, Cyanobacteria, Actinobacteria, Bacteroidetes. Overall, this study suggests a significant influence of scallop culture on the ecology of adjacent estuaries and offers a sensitive tool for monitoring scallop contamination. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Bacterial community transcription patterns during a marine phytoplankton bloom.

    PubMed

    Rinta-Kanto, Johanna M; Sun, Shulei; Sharma, Shalabh; Kiene, Ronald P; Moran, Mary Ann

    2012-01-01

    Bacterioplankton consume a large proportion of photosynthetically fixed carbon in the ocean and control its biogeochemical fate. We used an experimental metatranscriptomics approach to compare bacterial activities that route energy and nutrients during a phytoplankton bloom compared with non-bloom conditions. mRNAs were sequenced from duplicate bloom and control microcosms 1 day after a phytoplankton biomass peak, and transcript copies per litre of seawater were calculated using an internal mRNA standard. Transcriptome analysis revealed a potential novel mechanism for enhanced efficiency during carbon-limited growth, mediated through membrane-bound pyrophosphatases [V-type H(+)-translocating; hppA]; bloom bacterioplankton participated less in this metabolic energy scavenging than non-bloom bacterioplankton, with possible implications for differences in growth yields on organic substrates. Bloom bacterioplankton transcribed more copies of genes predicted to increase cell surface adhesiveness, mediated by changes in bacterial signalling molecules related to biofilm formation and motility; these may be important in microbial aggregate formation. Bloom bacterioplankton also transcribed more copies of genes for organic acid utilization, suggesting an increased importance of this compound class in the bioreactive organic matter released during phytoplankton blooms. Transcription patterns were surprisingly faithful within a taxon regardless of treatment, suggesting that phylogeny broadly predicts the ecological roles of bacterial groups across 'boom' and 'bust' environmental backgrounds. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  4. The predominance of young carbon in Arctic whole-lake CH4 and CO2 emissions and implications for Boreal yedoma lakes.

    NASA Astrophysics Data System (ADS)

    Elder, C.; Xu, X.; Walker, J. C.; Walter Anthony, K. M.; Pohlman, J.; Arp, C. D.; Townsend-Small, A.; Hinkel, K. M.; Czimczik, C. I.

    2017-12-01

    ,400 14C-years for CO2-C. Seasonal differences in dissolved CH4 revealed a clear influence of trapped ebullition dissolving into the water below lake ice in Boreal, but not Arctic lakes. Together, our data demonstrate that regional surficial geology exerts a larger control than climate on C ages and gas emission pathways from lakes.

  5. Deep structure beneath Lake Ontario: Crustal-scale Grenville subdivisions

    USGS Publications Warehouse

    Forsyth, D. A.; Milkereit, B.; Zelt, Colin A.; White, D. J.; Easton, R. M.; Hutchinson, Deborah R.

    1994-01-01

    Lake Ontario marine seismic data reveal major Grenville crustal subdivisions beneath central and southern Lake Ontario separated by interpreted shear zones that extend to the lower crust. A shear zone bounded transition between the Elzevir and Frontenac terranes exposed north of Lake Ontario is linked to a seismically defined shear zone beneath central Lake Ontario by prominent aeromagnetic and gravity anomalies, easterly dipping wide-angle reflections, and fractures in Paleozoic strata. We suggest the central Lake Ontario zone represents crustal-scale deformation along an Elzevir–Frontenac boundary zone that extends from outcrop to the south shore of Lake Ontario.Seismic images from Lake Ontario and the exposed western Central Metasedimentary Belt are dominated by crustal-scale shear zones and reflection geometries featuring arcuate reflections truncated at their bases by apparent east-dipping linear reflections. The images show that zones analogous to the interpreted Grenville Front Tectonic Zone are also present within the Central Metasedimentary Belt and support models of northwest-directed crustal shortening for Grenvillian deep crustal deformation beneath most of southeastern Ontario.A Precambrian basement high, the Iroquoian high, is defined by a thinning of generally horizontal Paleozoic strata over a crestal area above the basement shear zone beneath central Lake Ontario. The Iroquoian high helps explain the peninsular extension into Lake Ontario forming Prince Edward County, the occurrence of Precambrian inlier outcrops in Prince Edward County, and Paleozoic fractures forming the Clarendon–Linden structure in New York.

  6. Limnology and fish ecology of sockeye salmon nursery lakes of the world

    USGS Publications Warehouse

    Hartman, Wilbur L.; Burgner, R.L.

    1972-01-01

    Many important, recently glaciated oligotrophic lakes that lie in coastal regions around the northern rim of the Pacific Ocean produce anadromous populations of sockeye salmon, Oncorhynchus nerka. This paper describes the limnology and fish ecology of two such lakes in British Columbia, five in Alaska, and one in Kamchatka. Then we discuss the following general topics: the biogenic eutrophication of nursery lakes from the nutrients released from salmon carcasses wherein during years of highest numbers of spawners, lake phosphate balances in Lakes Babine, Iliamna, and Dalnee are significantly affected; the use of nursery lakes by young sockeye that reveals five patterns related to size and configuration of lake basins and the distribution of spawning areas; the interactions between various life history stages of sockeye salmon and such resident predators, competitors, and prey as Arctic char, lake trout, Dolly Varden, cutthroat trout, lake whitefish, pygmy whitefish, pond smelt, sticklebacks, and sculpins; the self-regulation of sockeye salmon abundance in these nursery lakes as controlled by density-dependent processes; the interrelations between young sockeye salmon biomass and growth rates, and zooplankton abundance in Babine Lake; and finally, the diel, vertical, pelagial migratory behavior of young sockeye in Babine Lake and the new hypothesis dealing with bioenergetic conservation.

  7. Lake Level Variation in Small Lakes: Not a Clear Picture

    NASA Astrophysics Data System (ADS)

    Starratt, S.

    2017-12-01

    Lake level is a useful tool for identifying regional changes in precipitation and evaporation. Due to the volume of water in large lakes, they may only record large-scale changes in water balance, while smaller lakes may record more subtle variations. However, the record of water level in small lakes is affected by a number of factors including elevation, bathymetry, nutrient load, and aquatic macrophyte abundance. The latest Quaternary diatom records from three small lakes with areas of <10 ha (Hobart Lake, OR, 1458 masl; Swamp Lake, CA, 1554 masl; Favre Lake, NV, 2899 masl) and a larger lake (Medicine Lake, CA, 2036 masl, 154 ha) were compared in this study. All the lakes have a deep central basin (>10 m) surrounded by a shallow (1-2 m) shelf. Changes in the abundance of diatoms representing different life habits (benthic, tychoplanktic, planktic) were used to identify lake level variation. Benthic taxa dominate the assemblage when only the central basin is occupied. As the shallow shelf is flooded, the abundance of tychoplanktic taxa increases. Planktic taxa increase with the establishment of stratification. Favre Lake presents the clearest indication of initial lake level rise (7600-5750 cal yr BP) and intermittent flooding of the shelf for the remainder of the record. Stratification appears to become established only in the last few hundred years. Higher nutrient levels in the early part of the Hobart Lake record lead to a nearly monotypic planktic assemblage which is replaced by a tychoplanktic-dominated assemblage as the lake floods the shelf at about 3500 cal yr BP. The last 500 years is dominated by benthic taxa associated with aquatic macrophytes. The consistent presence of planktic taxa in the Swamp Lake record suggests that the lake was stratified during most of its history, although slight variations in the relative abundances of planktic and tychoplanktic groups occur. The Medicine Lake record shows a gradual increase in planktic species between 11

  8. Geologic and paleoseismic study of the Lavic Lake fault at Lavic Lake Playa, Mojave Desert, Southern California

    USGS Publications Warehouse

    Rymer, M.J.; Seitz, G.G.; Weaver, K.D.; Orgil, A.; Faneros, G.; Hamilton, J.C.; Goetz, C.

    2002-01-01

    Paleoseismic investigations of the Lavic Lake fault at Lavic Lake playa place constraints on the timing of a possible earlier earthquake along the 1999 Hector Mine rupture trace and reveal evidence of the timing of the penultimate earthquake on a strand of the Lavic Lake fault that did not rupture in 1999. Three of our four trenches, trenches A, B, and C, were excavated across the 1999 Hector Mine rupture; a fourth trench, D, was excavated across a vegetation lineament that had only minor slip at its southern end in 1999. Trenches A-C exposed strata that are broken only by the 1999 rupture; trench D exposed horizontal bedding that is locally warped and offset by faults. Stratigraphic evidence for the timing of an earlier earthquake along the 1999 rupture across Lavic Lake playa was not exposed. Thus, an earlier event, if there was one along that rupture trace, predates the lowest stratigraphic level exposed in our trenches. Radiocarbon dating of strata near the bottom of trenches constrains a possible earlier event to some time earlier than about 4950 B.C. Buried faults revealed in trench D are below a vegetation lineament at the ground surface. A depositional contact about 80 cm below the ground surface acts as the upward termination of fault breaks in trench D. Thus, this contact may be the event horizon for a surface-rupturing earthquake prior to 1999-the penultimate earthquake on the Lavic Lake fault. Radiocarbon ages of detrital charcoal samples from immediately below the event horizon indicate that the earthquake associated with the faulting occurred later than A.D. 260. An approximately 1300-year age difference between two samples at about the same stratigraphic level below the event horizon suggests the potential for a long residence time of detrital charcoal in the area. Coupled with a lack of bioturbation that could introduce young organic material into the stratigraphic section, the charcoal ages provide only a maximum bounding age; thus, the recognized

  9. Metagenomic study of red biofilms from Diamante Lake reveals ancient arsenic bioenergetics in haloarchaea.

    PubMed

    Rascovan, Nicolás; Maldonado, Javier; Vazquez, Martín P; Eugenia Farías, María

    2016-02-01

    Arsenic metabolism is proposed to be an ancient mechanism in microbial life. Different bacteria and archaea use detoxification processes to grow under high arsenic concentration. Some of them are also able to use arsenic as a bioenergetic substrate in either anaerobic arsenate respiration or chemolithotrophic growth on arsenite. However, among the archaea, bioenergetic arsenic metabolism has only been found in the Crenarchaeota phylum. Here we report the discovery of haloarchaea (Euryarchaeota phylum) biofilms forming under the extreme environmental conditions such as high salinity, pH and arsenic concentration at 4589 m above sea level inside a volcano crater in Diamante Lake, Argentina. Metagenomic analyses revealed a surprisingly high abundance of genes used for arsenite oxidation (aioBA) and respiratory arsenate reduction (arrCBA) suggesting that these haloarchaea use arsenic compounds as bioenergetics substrates. We showed that several haloarchaea species, not only from this study, have all genes required for these bioenergetic processes. The phylogenetic analysis of aioA showed that haloarchaea sequences cluster in a novel and monophyletic group, suggesting that the origin of arsenic metabolism in haloarchaea is ancient. Our results also suggest that arsenite chemolithotrophy likely emerged within the archaeal lineage. Our results give a broad new perspective on the haloarchaea metabolism and shed light on the evolutionary history of arsenic bioenergetics.

  10. Information Mining of Spatio-Temporal Evolution of Lakes Based on Multiple Dynamic Measurements

    NASA Astrophysics Data System (ADS)

    Feng, W.; Chen, J.

    2017-09-01

    Lakes are important water resources and integral parts of the natural ecosystem, and it is of great significance to study the evolution of lakes. The area of each lake increased and decreased at the same time in natural condition, only but the net change of lakes' area is the result of the bidirectional evolution of lakes. In this paper, considering the effects of net fragmentation, net attenuation, swap change and spatial invariant part in lake evolution, a comprehensive evaluation indexes of lake dynamic evolution were defined,. Such degree contains three levels of measurement: 1) the swap dynamic degree (SDD) reflects the space activity of lakes in the study period. 2) the attenuation dynamic degree (ADD) reflects the net attenuation of lakes into non-lake areas. 3) the fragmentation dynamic degree (FDD) reflects the trend of lakes to be divided and broken into smaller lakes. Three levels of dynamic measurement constitute the three-dimensional "Swap - attenuation - fragmentation" dynamic evolution measurement system of lakes. To show its effectiveness, the dynamic measurement was applied to lakes in Jianghan Plain, the middle Yangtze region of China for a more detailed analysis of lakes from 1984 to 2014. In combination with spatial-temporal location characteristics of lakes, the hidden information in lake evolution in the past 30 years can be revealed.

  11. 78 FR 53675 - Safety Zone; Lake Erie Heritage Foundation, Battle of Lake Erie Reenactment; Lake Erie, Put-in...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-30

    ...-AA00 Safety Zone; Lake Erie Heritage Foundation, Battle of Lake Erie Reenactment; Lake Erie, Put-in-Bay... temporary safety zone in the waters of Lake Erie in the vicinity of Put-In-Bay, OH. This safety zone is intended to restrict vessels from a portion of Lake Erie during Battle of Lake Erie Reenactment near Put-In...

  12. Amino acids in the Tagish Lake Meteorite

    NASA Technical Reports Server (NTRS)

    Kminek, G.; Botta, O.; Glavin, D. P.; Bada, J. L.

    2002-01-01

    High-performance liquid chromatography (HPLC) based amino acid analysis of a Tagish Lake meteorite sample recovered 3 months after the meteorite fell to Earth have revealed that the amino acid composition of Tagish Lake is strikingly different from that of the CM and CI carbonaceous chondrites. We found that the Tagish Lake meteorite contains only trace levels of amino acids (total abundance = 880 ppb), which is much lower than the total abundance of amino acids in the CI Orgueil (4100 ppb) and the CM Murchison (16 900 ppb). Because most of the same amino acids found in the Tagish Lake meteorite are also present in the Tagish Lake ice melt water, we conclude that the amino acids detected in the meteorite are terrestrial contamination. We found that the exposure of a sample of Murchison to cold water lead to a substantial reduction over a period of several weeks in the amount of amino acids that are not strongly bound to the meteorite matrix. However, strongly bound amino acids that are extracted by direct HCl hydrolysis are not affected by the leaching process. Thus even if there had been leaching of amino acids from our Tagish Lake meteorite sample during its 3 month residence in Tagish Lake ice and melt water, a Murchison type abundance of endogenous amino acids in the meteorite would have still been readily detectable. The low amino acid content of Tagish Lake indicates that this meteorite originated fiom a different type of parent body than the CM and CI chondrites. The parent body was apparently devoid of the reagents such as aldehyldes/ketones, HCN and ammonia needed for the effective abiotic synthesis of amino acids. Based on reflectance spectral measurements, Tagish Lake has been associated with P- or D-type asteroids. If the Tagish Lake meteorite was indeed derived fiom these types of parent bodies, our understanding of these primitive asteroids needs to be reevaluated with respect to their potential inventory of biologically important organic compounds.

  13. Nutrient dynamics in shallow lakes of Northern Greece.

    PubMed

    Petaloti, Christina; Voutsa, Dimitra; Samara, Constantini; Sofoniou, Mihalis; Stratis, Ioannis; Kouimtzis, Themistocles

    2004-01-01

    GOAL, SCOPE, BACKGROUND: Shallow lakes display a number of features that set them apart from the more frequently studied deeper systems. The majority of lakes in Northern Greece are small to moderate in size with a relatively low depth and are considered as sites of high value of the wetland habitat. However, the water quality of these lakes has only been evaluated segmentally and occasionally. The objectives of this study were to thoroughly investigate nitrogen and phosphorus speciation in lakes of a high ecological significance located in N. Greece, in order to evaluate their eutrophication status and possible nutrient limitation factors, and to investigate the main factors/sources that affect the water quality of these systems. An extensive survey was carried out during the period from 1998-1999. Water samples were collected on a monthly basis from lakes Koronia, Volvi, Doirani, Mikri Prespa and Megali Prespa located in N. Greece. Water quality parameters (temperature, dissolved oxygen, pH and conductivity), organic indices (COD, BOD5), and N- and P-species (NO3(-), NO2(-), NH4(+), and PO4(3-), Kieldahl nitrogen and acid-hydrolysable phosphorus) were determined according to standard methods for surface water. Statistical treatment of the data was employed. The physicochemical parameters determined in the lakes studied revealed a high temporal variation. The trophic state of the lakes ranged from meso- to hypertrophic. The nutrient limiting factor varied among lakes suggesting either P-limitation conditions or mixed conditions changing from P- to N-limitation throughout the year. Urban/industrial activities and agricultural runoff are the major factors affecting all lakes, although with a varying contribution. This lake-specific research offers valuable information about water quality and nutrient dynamics in lakes of significant ecological value located in N. Greece that can be useful for an effective pollution control/management of these systems. Due to the

  14. Recent dynamics of alpine lakes on the endorheic Changtang Plateau from multi-mission satellite data

    NASA Astrophysics Data System (ADS)

    Yang, Kehan; Yao, Fangfang; Wang, Jida; Luo, Jiancheng; Shen, Zhanfeng; Wang, Chao; Song, Chunqiao

    2017-09-01

    Monitoring of the alpine lakes on the endorheic Changtang Plateau is vitally important in understanding climate impacts on hydrological cycle. Existing studies have revealed an accelerated lake expansion on the Changtang Plateau during the 2000s compared with prior decades. However, the partial hiatus of recent Landsat archive affected the continuation of understanding the lake changes in the recent decade. Here we synergistically used imagery from Landsat and Huanjing satellites to enable a detailed monitoring of lake area dynamics on the Changtang Plateau. Our results present that lakes on the Changtang Plateau continued to expand at a rapid rate of 340.79 km2 yr-1 (1.06% yr-1, p < 0.05) from 2009 to 2014. Changes in endorheic (terminal) lakes contribute to 98% of the net expansion, suggesting that monitoring endorheic lake dynamics is of critical importance for understanding climate changes. Meanwhile, changes in saline lakes, which are mostly endorheic, account for 96% of the net expansion, implying that the proportion of freshwater storage on the Changtang Plateau is likely in decline. Rapid expansion occurred in both glacier-fed and non-glacier-fed lakes, with a rate of 224.94 km2 yr-1 (0.92% yr-1, p < 0.05) and 115.85 km2 yr-1 (1.47% yr-1, p = 0.08), respectively, indicating that glacier retreat alone may not fully explain the recent lake expansion. Intra-annual variations of the selected 24 large lakes fluctuated within 0.22-2.46% (in coefficient of variation) for glacier-fed lakes and 0.17-2.36% for non-glacier-fed lakes. Most of these lakes expanded during the unfrozen period (from May/June to October) and reached to their maximum extents in September or October. By spatially associating our revealed lake changes with climate variables, we observed that the recent lake expansion is more related to precipitation than to temperature, although future efforts are needed for a more comprehensive picture of the lake changing mechanisms.

  15. Lake-level variability and water availability in the Great Lakes

    USGS Publications Warehouse

    Wilcox, Douglas A.; Thompson, Todd A.; Booth, Robert K.; Nicholas, J.R.

    2007-01-01

    In this report, we present recorded and reconstructed (pre-historical) changes in water levels in the Great Lakes, relate them to climate changes of the past, and highlight major water-availability implications for storage, coastal ecosystems, and human activities. 'Water availability,' as conceptualized herein, includes a recognition that water must be available for human and natural uses, but the balancing of how much should be set aside for which use is not discussed. The Great Lakes Basin covers a large area of North America. The lakes capture and store great volumes of water that are critical in maintaining human activities and natural ecosystems. Water enters the lakes mostly in the form of precipitation and streamflow. Although flow through the connecting channels is a primary output from the lakes, evaporation is also a major output. Water levels in the lakes vary naturally on timescales that range from hours to millennia; storage of water in the lakes changes at the seasonal to millennial scales in response to lake-level changes. Short-term changes result from storm surges and seiches and do not affect storage. Seasonal changes are driven by differences in net basin supply during the year related to snowmelt, precipitation, and evaporation. Annual to millennial changes are driven by subtle to major climatic changes affecting both precipitation (and resulting streamflow) and evaporation. Rebounding of the Earth's surface in response to loss of the weight of melted glaciers has differentially affected water levels. Rebound rates have not been uniform across the basin, causing the hydrologic outlet of each lake to rise in elevation more rapidly than some parts of the coastlines. The result is a long-term change in lake level with respect to shoreline features that differs from site to site. The reconstructed water-level history of Lake Michigan-Huron over the past 4,700 years shows three major high phases from 2,300 to 3,300, 1,100 to 2,000, and 0 to 800

  16. Transient hydrogeological controls on the chemistry of a seepage lake

    USGS Publications Warehouse

    Krabbenhoft, David P.; Webster, Katherine E.

    1995-01-01

    A solute mass balance method was used to estimate groundwater inflow and outflow rates for Nevins Lake, Michigan, a seepage lake in the upper peninsula that historically has shown extremely variable water chemistry compared with most other seepage lakes. A 4-year study (1989–1992) of the hydrology and geochemistry of Nevins Lake and its contiguous groundwater system revealed that changes in the mass of dissolved solutes are the result of annual hydraulic gradient reversals. A pronounced acidification of Nevins Lake from 1986 to 1988 was likely caused by drought-induced diminished groundwater inflow rates. In this study, dissolved calcium (the major cation in water of Nevins Lake, groundwater, and precipitation) was used for estimating mass flow rates. During the 1989–1992 period, Nevins Lake showed a reproducible annual cycle in calcium mass. Immediately following spring snowmelt and the resulting hydraulic gradient reversal, the mass of dissolved calcium in the lake increases rapidly, and then it decreases steadily throughout the summer and early fall, at which time the lake becomes hydraulically mounded and receives no groundwater inflow. Groundwater flow rates estimated by the solute mass balance method are sensitive to assumed solute concentrations in discharging groundwater. Pore water samples from the lake bed are shown to be more representative of water discharging to the lake than are samples from piezometers near the lake shore, but spatial and temporal variability in pore water chemistry must be considered. Stable isotope analyses (18O and 2H) of lake water, groundwater, and pore water samples show that water discharging to Nevins Lake in the spring is entirely recycled lake water, and no groundwater derived from terrestrial recharge reaches the lake. The conceptual model formulated during this study linking lake chemistry and the contiguous groundwater system and general groundwater flow patterns surrounding highly transient lake systems are likely

  17. [Ecological compensation standard in Dongting Lake region of returning cropland to lake based on emergy analysis].

    PubMed

    Mao, De-Hua; Hu, Guang-Wei; Liu, Hui-Jie; Li, Zheng-Zui; Li, Zhi-Long; Tan, Zi-Fang

    2014-02-01

    The annual emergy and currency value of the main ecological service value of returning cropland to lake in Dongting Lake region from 1999 to 2010 was calculated based on emergy analysis. The calculation method of ecological compensation standard was established by calculating annual total emergy of ecological service function increment since the starting year of returning cropland to lake, and the annual ecological compensation standard and compensation area were analyzed from 1999 to 2010. The results indicated that ecological compensation standard from 1999 to 2010 was 40.31-86.48 yuan x m(-2) with the mean of 57.33 yuan x m(-2). The ecological compensation standard presented an increase trend year by year due to the effect of eco-recovery of returning cropland to lake. The ecological compensation standard in the research area presented a swift and steady growth trend after 2005 mainly due to the intensive economy development of Hunan Province, suggesting the value of natural ecological resources would increase along with the development of society and economy. Appling the emergy analysis to research the ecological compensation standard could reveal the dynamics of annual ecological compensation standard, solve the abutment problem of matter flow, energy flow and economic flow, and overcome the subjective and arbitrary of environment economic methods. The empirical research of ecological compensation standard in Dongting Lake region showed that the emergy analysis was feasible and advanced.

  18. Interaction of hydrological regime and vegetation in a seasonally flooded lake wetland (Poyang Lake) in China

    NASA Astrophysics Data System (ADS)

    Zhang, Qi

    2017-04-01

    Hydrological regime has been widely recognized as one of the major forces determining vegetation distribution in seasonally flooded wetlands. To explore the influences of hydrological conditions on the spatial distribution of wetland vegetation, an experimental transect in Poyang Lake wetland, the largest freshwater lake in China, was selected as a study area. In-situ high time frequency observations of climate, soil moisture, groundwater level and surface water level were simultaneously conducted. Vegetation was sampled periodically to obtain species composition, diversity and biomass. Results show that significant hydrological gradient exists along the experimental transect. Both groundwater level and soil moisture demonstrate high correlation with the distribution of different communities of vegetation. Above- and belowground biomass present Gaussian models along the gradient of groundwater depth in growing seasons. It was found that the optimal average groundwater depths for above- and belowground biomass are 0.8 m and 0.5 m, respectively. Numerical simulations using HYDRUS-1D further indicated that the groundwater depths had significant influences on the water usage by vegetation, which suggested the high dependence of wetland vegetation on groundwater, even in a wet climate zone such as Poyang Lake. The study revealed new knowledge on the interaction of hydrological regime and wetland vegetation, and provided scientific support for an integrated management of balancing wetland ecology and water resources development in Poyang Lake, and other lake floodplain wetlands, with strong human interferences.

  19. Lake Life.

    ERIC Educational Resources Information Center

    Ohrn, Deborah Gore, Ed.

    1993-01-01

    This quarterly publication of the State Historical Society of Iowa features articles and activities for elementary school students. This summer issue focuses on the topic of lake life. The issue includes the following features: (1) "Where the Lakes Are Map"; (2) "Letter from the Lake"; (3) "Lake People"; (4)…

  20. Increased piscivory by lake whitefish in Lake Huron

    USGS Publications Warehouse

    Pothoven, Steven A.; Madenjian, Charles P.

    2013-01-01

    We evaluated the diet of Lake Whitefish Coregonus clupeaformis in Lake Huron during 2002–2011 to determine the importance of Round Goby Neogobius melanostomus and other fish as prey items. Lake Whitefish that had reached approximately 400 mm in length incorporated fish into their diets. The overall percentage of adult Lake Whitefish in Lake Huron that had eaten fish increased from 10% in 2002–2006 to 20% in 2007–2011, with a corresponding decrease in the frequency of Lake Whitefish that ate Dreissena spp. from 52% to 33%. During 2002–2006, Round Goby (wet mass, 38%), sculpins (Cottidae) (34%), and Ninespine Stickleback Pungitius pungitius (18%) were the primary fish eaten, whereas Round Goby accounted for 92% of the fish eaten in 2007–2011. Overall, Round Goby were found in the fewest Lake Whitefish stomachs in the north region of Lake Huron (6%) and in the most in the central (23%) and south (19%) regions of the lake. In the central region, Round Goby were eaten during all seasons that were sampled (spring through fall). In the south region, Round Goby were eaten only in the winter and spring but not in the summer when Dreissena spp. and spiny water flea Bythotrephes longimanus dominated the diet. Based on the 2007–2011 diet composition, an individual Lake Whitefish would need to have increased their consumption relative to that in 1983–1994 by 6% in the north region, 12% in the central region, and 41% in the southern region in order to achieve the same growth that was observed before dreissenid mussels arrived. However, Lake Whitefish weight adjusted for length only increased by 2% between 2002–2006 and 2007–2011 in the central region, decreased by 4% in the northern region, and remained constant in the southern region. This suggests that a shift toward more frequent piscivory does not necessarily improve the condition of a generalist feeder like Lake Whitefish.

  1. Dreissenid mussels are not a "dead end" in Great Lakes food webs

    USGS Publications Warehouse

    Madenijan, Charles P.; Pothoven, Steven A.; Schneeberger, Philip J.; Ebener, Mark P.; Mohr, Lloyd C.; Nalepa, Thomas F.; Bence, James R.

    2010-01-01

    Dreissenid mussels have been regarded as a “dead end” in Great Lakes food webs because the degree of predation on dreissenid mussels, on a lakewide basis, is believed to be low. Waterfowl predation on dreissenid mussels in the Great Lakes has primarily been confined to bays, and therefore its effects on the dreissenid mussel population have been localized rather than operating on a lakewide level. Based on results from a previous study, annual consumption of dreissenid mussels by the round goby (Neogobius melanostomus) population in central Lake Erie averaged only 6 kilotonnes (kt; 1 kt = one thousand metric tons) during 1995–2002. In contrast, our coupling of lake whitefish (Coregonus clupeaformis) population models with a lake whitefish bioenergetics model revealed that lake whitefish populations in Lakes Michigan and Huron consumed 109 and 820 kt, respectively, of dreissenid mussels each year. Our results indicated that lake whitefish can be an important predator on dreissenid mussels in the Great Lakes, and that dreissenid mussels do not represent a “dead end” in Great Lakes food webs. The Lake Michigan dreissenid mussel population has been estimated to be growing more than three times faster than the Lake Huron dreissenid mussel population during the 2000s. One plausible explanation for the higher population growth rate in Lake Michigan would be the substantially higher predation rate by lake whitefish on dreissenid mussels in Lake Huron.

  2. Hydrocarbon lakes on Titan: Distribution and interaction with a porous regolith

    USGS Publications Warehouse

    Hayes, A.; Aharonson, O.; Callahan, P.; Elachi, C.; Gim, Y.; Kirk, R.; Lewis, K.; Lopes, R.; Lorenz, R.; Lunine, J.; Mitchell, Ken; Mitri, Giuseppe; Stofan, E.; Wall, S.

    2008-01-01

    Synthetic Aperture Radar (SAR) images of Titan's north polar region reveal quasi-circular to complex features which are interpreted to be liquid hydrocarbon lakes. We investigate methane transport in Titan's hydrologic cycle using the global distribution of lake features. As of May 2007, the SAR data set covers ???22% of the surface and indicates multiple lake morphologies which are correlated across the polar region. Lakes are limited to latitudes above 55??N and vary from <10 to more than 100,000 km2. The size and location of lakes provide constraints on parameters associated with subsurface transport. Using porous media properties inferred from Huygens probe observations, timescales for flow into and out of observed lakes are shown to be in the tens of years, similar to seasonal cycles. Derived timescales are compared to the time between collocated SAR observations in order to consider the role of subsurface transport in Titan's hydrologic cycle. Copyright 2008 by the American Geophysical Union.

  3. Holocene lake-level fluctuations of Lake Aricota, Southern Peru

    USGS Publications Warehouse

    Placzek, C.; Quade, Jay; Betancourt, J.L.

    2001-01-01

    Lacustrine deposits exposed around Lake Aricota, Peru (17?? 22???S), a 7.5-km2 lake dammed by debris flows, provide a middle to late Holocene record of lake-level fluctuations. Chronological context for shoreline deposits was obtained from radiocarbon dating of vascular plant remains and other datable material with minimal 14C reservoir effects (<350 yr). Diatomites associated with highstands several meters above the modern lake level indicate wet episodes. Maximum Holocene lake level was attained before 6100 14C yr B.P. and ended ???2700 14C yr B.P. Moderately high lake levels occurred at 1700 and 1300 14C yr B.P. The highstand at Lake Aricota during the middle Holocene is coeval with a major lowstand at Lake Titicaca (16?? S), which is only 130 km to the northeast and shares a similar climatology. Comparisons with other marine and terrestrial records highlight emerging contradictions over the nature of mid-Holocene climate in the central Andes. ?? 2001 University of Washington.

  4. Holocene Lake-Level Fluctuations of Lake Aricota, Southern Peru

    NASA Astrophysics Data System (ADS)

    Placzek, Christa; Quade, Jay; Betancourt, Julio L.

    2001-09-01

    Lacustrine deposits exposed around Lake Aricota, Peru (17° 22‧S), a 7.5-km2 lake dammed by debris flows, provide a middle to late Holocene record of lake-level fluctuations. Chronological context for shoreline deposits was obtained from radiocarbon dating of vascular plant remains and other datable material with minimal 14C reservoir effects (<350 yr). Diatomites associated with highstands several meters above the modern lake level indicate wet episodes. Maximum Holocene lake level was attained before 6100 14C yr B.P. and ended ∼2700 14C yr B.P. Moderately high lake levels occurred at 1700 and 1300 14C yr B.P. The highstand at Lake Aricota during the middle Holocene is coeval with a major lowstand at Lake Titicaca (16°S), which is only 130 km to the northeast and shares a similar climatology. Comparisons with other marine and terrestrial records highlight emerging contradictions over the nature of mid-Holocene climate in the central Andes.

  5. Holocene evolution of the Tonle Sap Lake: valley network infill and rates of sedimentation in Cambodia's Great Lake

    NASA Astrophysics Data System (ADS)

    Best, J.; Darby, S. E.; Langdon, P. G.; Hackney, C. R.; Leyland, J.; Parsons, D. R.; Aalto, R. E.; Marti, M.

    2017-12-01

    Tonle Sap Lake, the largest freshwater lake in SE Asia (c. 120km long and 35 km wide), is a vital ecosystem that provides 40-60% of the protein for the population of Cambodia. The lake is fed by flow from the Mekong River that causes the lake rise in level by c. 8m during monsoonal and cyclone-related floods, with drainage of the lake following the monsoon. Hydropower dam construction on the Mekong River has raised concerns as to the fragility of the Tonle Sap habitat due to any changing water levels and sedimentation rates within the lake. This paper details results of sub-bottom profiling surveys of Tonle Sap Lake in October 2014 that detailed the stratigraphy of the lake and assessed rates of infill. An Innomar Parametric Echo Sounder (PES) was used to obtain c. 250 km of sub-bottom profiles, with penetration up to 15m below the lake bed at a vertical resolution of c. 0.20m. These PES profiles were linked to cores from the north of the lake and previous literature. The PES profiles reveal a network of valleys, likely LGM, with relief up to c. 15-20m, that have been infilled by a suite of Holocene sediments. The valley surface is picked out as a strong reflector throughout the lake, and displays a series of valleys that are up to c. 15m deep and commonly 50-200m wide, although some of the largest valleys are 1.2km in width. Modelling of channel network incision during LGM conditions generates landscapes consistent with our field observations. The Tonle Sap valley network is infilled by sediments that show firstly fluvial and/or subaerial slope sedimentation, and then by extensive, parallel-bedded, lacustrine sedimentation. Lastly, the top c. 1m of sedimentation is marked by a distinct basal erosional surface that can be traced over much of the Tonle Sap Lake, and that is overlain by a series of parallel PES reflections. This upper sediment layer is interpreted to represent sedimentation in the Tonle Sap lake due to sediment suspension settling but after a period

  6. Reevaluation of lake trout and lake whitefish bioenergetics models

    USGS Publications Warehouse

    Madenjian, Charles P.; Pothoven, Steve A.; Kao, Yu-Chun

    2013-01-01

    Using a corrected algorithm for balancing the energy budget, we reevaluated the Wisconsin bioenergetics model for lake trout (Salvelinus namaycush) in the laboratory and for lake whitefish (Coregonus clupeaformis) in the laboratory and in the field. For lake trout, results showed that the bioenergetics model slightly overestimated food consumption by the lake trout when they were fed low and intermediate rations, whereas the model predicted food consumption by lake trout fed ad libitum without any detectable bias. The slight bias in model predictions for lake trout on restricted rations may have been an artifact of the feeding schedule for these fish, and we would therefore recommend application of the Wisconsin lake trout bioenergetics model to lake trout populations in the field without any revisions to the model. Use of the Wisconsin bioenergetics model for coregonids resulted in overestimation of food consumption by lake whitefish both in the laboratory and in the field by between 20 and 30%, on average. This overestimation of food consumption was most likely due to overestimation of respiration rate. We therefore adjusted the respiration component of the bioenergetics model to obtain a good fit to the observed consumption in our laboratory tanks. The adjusted model predicted the consumption in the laboratory and the field without any detectable bias. Until a detailed lake whitefish respiration study can be conducted, we recommend application of our adjusted version of the Wisconsin generalized coregonid bioenergetics model to lake whitefish populations in the field.

  7. Sub-decadal resolution in sediments of Late Miocene Lake Pannon reveals speciation of Cyprideis (Crustacea, Ostracoda).

    PubMed

    Gitter, Frank; Gross, Martin; Piller, Werner E

    2015-01-01

    Late Miocene "Lake Pannon" (~11.3 Ma) was a remnant of the Central Paratethyan Sea. Successive freshening and constantly changing environmental conditions, like oxygenation, nutrition and substrate led to a well-documented radiation in molluscs and ostracods. Among ostracods (small crustaceans), Cyprideis is one of the most common genera in "Lake Pannon", as well as in several other ancient lakes, showing numerous adaptations and speciations. Here, we present high-resolution data from an early transgression of "Lake Pannon" in the Eastern Styrian Basin (SE Austria). Mataschen clay pit is in the focus of geologic and paleontologic research since 20 years and its geologic and paleoecologic evolution is well-documented. We drilled five cores covering a ~2.3 m long section and completely sampled it in 5-mm thick intervals to reconstruct minute changes in the ostracod fauna over a transgression of a brackish water body. The dominant genus, Cyprideis, is represented by three species C. mataschensis, C. kapfensteinensis and C. ex gr. pannonica. Through morphometric analyses we highlight the variance of each taxon and suggest that there is no direct ecologic control on size or shape. Furthermore, we found a second, co-occurring morphotype of C. kapfensteinensis which is directly related to an elevation of salinities above 13 psu. The presence of two intermediate specimens between the two morphotypes in the sample directly below the first appearance of C. kapfensteinensis B leads us to the conclusion that we are facing a speciation event leading to four sympatric species of Cyprideis.

  8. Sub-Decadal Resolution in Sediments of Late Miocene Lake Pannon Reveals Speciation of Cyprideis (Crustacea, Ostracoda)

    PubMed Central

    Gross, Martin; Piller, Werner E.

    2015-01-01

    Late Miocene "Lake Pannon" (~11.3 Ma) was a remnant of the Central Paratethyan Sea. Successive freshening and constantly changing environmental conditions, like oxygenation, nutrition and substrate led to a well-documented radiation in molluscs and ostracods. Among ostracods (small crustaceans), Cyprideis is one of the most common genera in "Lake Pannon", as well as in several other ancient lakes, showing numerous adaptations and speciations. Here, we present high-resolution data from an early transgression of "Lake Pannon" in the Eastern Styrian Basin (SE Austria). Mataschen clay pit is in the focus of geologic and paleontologic research since 20 years and its geologic and paleoecologic evolution is well-documented. We drilled five cores covering a ~2.3 m long section and completely sampled it in 5-mm thick intervals to reconstruct minute changes in the ostracod fauna over a transgression of a brackish water body. The dominant genus, Cyprideis, is represented by three species C. mataschensis, C. kapfensteinensis and C. ex gr. pannonica. Through morphometric analyses we highlight the variance of each taxon and suggest that there is no direct ecologic control on size or shape. Furthermore, we found a second, co-occurring morphotype of C. kapfensteinensis which is directly related to an elevation of salinities above 13 psu. The presence of two intermediate specimens between the two morphotypes in the sample directly below the first appearance of C. kapfensteinensis B leads us to the conclusion that we are facing a speciation event leading to four sympatric species of Cyprideis. PMID:25902063

  9. Faulting along the southern margin of Reelfoot Lake, Tennessee

    USGS Publications Warehouse

    Van Arsdale, R.; Purser, J.; Stephenson, W.; Odum, J.

    1998-01-01

    The Reelfoot Lake basin, Tennessee, is structurally complex and of great interest seismologically because it is located at the junction of two seismicity trends of the New Madrid seismic zone. To better understand the structure at this location, a 7.5-km-long seismic reflection profile was acquired on roads along the southern margin of Reelfoot Lake. The seismic line reveals a westerly dipping basin bounded on the west by the Reelfoot reverse fault zone, the Ridgely right-lateral transpressive fault zone on the east, and the Cottonwood Grove right-lateral strike-slip fault in the middle of the basin. The displacement history of the Reelfoot fault zone appears to be the same as the Ridgely fault zone, thus suggesting that movement on these fault zones has been synchronous, perhaps since the Cretaceous. Since the Reelfoot and Ridgely fault systems are believed responsible for two of the mainshocks of 1811-1812, the fault history revealed in the Reelfoot Lake profile suggests that multiple mainshocks may be typical of the New Madrid seismic zone. The Ridgely fault zone consists of two northeast-striking faults that lie at the base of and within the Mississippi Valley bluff line. This fault zone has 15 m of post-Eocene, up-to-the-east displacement and appears to locally control the eastern limit of Mississippi River migration. The Cottonwood Grove fault zone passes through the center of the seismic line and has approximately 5 m up-to-the-east displacement. Correlation of the Cottonwood Grove fault with a possible fault scarp on the floor of Reelfoot Lake and the New Markham fault north of the lake suggests the Cottonwood Grove fault may change to a northerly strike at Reelfoot Lake, thereby linking the northeast-trending zones of seismicity in the New Madrid seismic zone.

  10. Monitoring the water balance of Lake Victoria, East Africa, from space

    NASA Astrophysics Data System (ADS)

    Swenson, Sean; Wahr, John

    2009-05-01

    SummaryUsing satellite gravimetric and altimetric data, we examine trends in water storage and lake levels of multiple lakes in the Great Rift Valley region of East Africa for the years 2003-2008. GRACE total water storage estimates reveal that water storage declined in much of East Africa, by as much as 60 {mm}/{year}, while altimetric data show that lake levels in some large lakes dropped by as much as 1-2 m. The largest declines occurred in Lake Victoria, the Earth's second largest freshwater body. Because the discharge from the outlet of Lake Victoria is used to generate hydroelectric power, the role of human management in the lake's decline has been questioned. By comparing catchment water storage trends to lake level trends, we confirm that climatic forcing explains only about 50decline. This analysis provides an independent means of assessing the relative impacts of climate and human management on the water balance of Lake Victoria that does not depend on observations of dam discharge, which may not be publically available. In the second part of the study, the individual components of the lake water balance are estimated. Satellite estimates of changes in lake level, precipitation, and evaporation are used with observed lake discharge to develop a parameterization for estimating subsurface inflows due to changes in groundwater storage estimated from satellite gravimetry. At seasonal timescales, this approach provides closure to Lake Victoria's water balance to within 17 {mm}/{month}. The third part of this study uses the water balance of a downstream water body, Lake Kyoga, to estimate the outflow from Lake Victoria remotely. Because Lake Kyoga is roughly 20 times smaller in area than Lake Victoria, its water balance is strongly influenced by inflow from Lake Victoria. Lake Kyoga has been shown to act as a linear reservoir, where its outflow is proportional to the height of the lake. This model can be used with satellite altimetric lake levels to estimate a

  11. Late Holocene lake-level fluctuations in Walker Lake, Nevada, USA

    USGS Publications Warehouse

    Yuan, F.; Linsley, B.K.; Howe, S.S.; Lund, S.P.; McGeehin, J.P.

    2006-01-01

    Walker Lake, a hydrologically closed, saline, and alkaline lake, is situated along the western margin of the Great Basin in Nevada of the western United States. Analyses of the magnetic susceptibility (??), total inorganic carbon (TIC), and oxygen isotopic composition (??18O) of carbonate sediments including ostracode shells (Limnocythere ceriotuberosa) from Walker Lake allow us to extend the sediment record of lake-level fluctuations back to 2700??years B.P. There are approximately five major stages over the course of the late Holocene hydrologic evolution in Walker Lake: an early lowstand (> 2400??years B.P.), a lake-filling period (??? 2400 to ??? 1000??years B.P.), a lake-level lowering period during the Medieval Warm Period (MWP) (??? 1000 to ??? 600??years B.P.), a relatively wet period (??? 600 to ??? 100??years B.P.), and the anthropogenically induced lake-level lowering period (< 100??years B.P.). The most pronounced lowstand of Walker Lake occurred at ??? 2400??years B.P., as indicated by the relatively high values of ??18O. This is generally in agreement with the previous lower resolution paleoclimate results from Walker Lake, but contrasts with the sediment records from adjacent Pyramid Lake and Siesta Lake. The pronounced lowstand suggests that the Walker River that fills Walker Lake may have partially diverted into the Carson Sink through the Adrian paleochannel between 2700 to 1400??years B.P. ?? 2006 Elsevier B.V. All rights reserved.

  12. [Ecosystem services valuation of Qinghai Lake].

    PubMed

    Jiang, Bo; Zhang, Lu; Ouyang, Zhi-yun

    2015-10-01

    Qinghai Lake is the largest inland and salt water lake in China, and provides important ecosystem services to beneficiaries. Economic valuation of wetland ecosystem services from Qinghai Lake can reveal the direct contribution of lake ecosystems to beneficiaries using economic data, which can advance the incorporation of wetland protection of Qinghai Lake into economic tradeoffs and decision analyses. In this paper, we established a final ecosystem services valuation system based on the underlying ecological mechanisms and regional socio-economic conditions. We then evaluated the eco-economic value provided by the wetlands at Qinghai Lake to beneficiaries in 2012 using the market value method, replacement cost method, zonal travel cost method, and contingent valuation method. According to the valuation result, the total economic values of the final ecosystem services provided by the wetlands at Qinghai Lake were estimated to be 6749.08 x 10(8) yuan RMB in 2012, among which the value of water storage service and climate regulation service were 4797.57 x 10(8) and 1929.34 x 10(8) yuan RMB, accounting for 71.1% and 28.6% of the total value, respectively. The economic value of the 8 final ecosystem services was ranked from greatest to lowest as: water storage service > climate regulation service > recreation and tourism service > non-use value > oxygen release service > raw material production service > carbon sequestration service > food production service. The evaluation result of this paper reflects the substantial value that the wetlands of Qinghai Lake provide to beneficiaries using monetary values, which has the potential to help increase wetland protection awareness among the public and decision-makers, and inform managers about ways to create ecological compensation incentives. The final ecosystem service evaluation system presented in this paper will offer guidance on separating intermediate services and final services, and establishing monitoring programs for

  13. Ecological tracers reveal resource convergence among prey fish species in a large lake ecosystem

    USGS Publications Warehouse

    Paterson, Gord; Rush, Scott A.; Arts, Michael T.; Drouillard, Ken G.; Haffner, G. Doug; Johnson, Tim B.; Lantry, Brian F.; Hebert, Craig E.; McGoldrick, Daryl J.; Backus, Sean M.; Fisk, Aaron T.

    2014-01-01

    5. These results indicate a temporal convergence of the food niche, whereas food partitioning has historically supported the coexistence of prey fish species in Lake Ontario. This convergence is consistent with changes in food-web processes associated with the invasion of dreissenid mussels.

  14. Bathythermal habitat use by strains of Great Lakes- and Finger Lakes-origin lake trout in Lake Huron after a change in prey fish abundance and composition

    USGS Publications Warehouse

    Bergstedt, Roger A.; Argyle, Ray L.; Krueger, Charles C.; Taylor, William W.

    2012-01-01

    A study conducted in Lake Huron during October 1998–June 2001 found that strains of Great Lakes-origin (GLO) lake trout Salvelinus namaycush occupied significantly higher temperatures than did Finger Lakes-origin (FLO; New York) lake trout based on data from archival (or data storage) telemetry tags that recorded only temperature. During 2002 and 2003, we implanted archival tags that recorded depth as well as temperature in GLO and FLO lake trout in Lake Huron. Data subsequently recorded by those tags spanned 2002–2005. Based on those data, we examined whether temperatures and depths occupied by GLO and FLO lake trout differed during 2002–2005. Temperatures occupied during those years were also compared with occupied temperatures reported for 1998–2001, before a substantial decline in prey fish biomass. Temperatures occupied by GLO lake trout were again significantly higher than those occupied by FLO lake trout. This result supports the conclusion of the previous study. The GLO lake trout also occupied significantly shallower depths than FLO lake trout. In 2002–2005, both GLO and FLO lake trout occupied significantly lower temperatures than they did in 1998–2001. Aside from the sharp decline in prey fish biomass between study periods, the formerly abundant pelagic alewife Alosa pseudoharengus virtually disappeared and the demersal round goby Neogobius melanostomus invaded the lake and became locally abundant. The lower temperatures occupied by lake trout in Lake Huron during 2002–2005 may be attributable to changes in the composition of the prey fish community, food scarcity (i.e., a retreat to cooler water could increase conversion efficiency), or both.

  15. Chemours Pompton Lakes Works Site, Pompton Lakes, NJ

    EPA Pesticide Factsheets

    E.I. DuPont De Nemours & Company is located at 2000 Cannonball Road, Pompton Lakes, New Jersey. The DuPont Pompton Lakes Works site (DuPont) occupies approximately 570 acres of land in Pompton Lakes and Wanaque.

  16. Food Web Topology in High Mountain Lakes.

    PubMed

    Sánchez-Hernández, Javier; Cobo, Fernando; Amundsen, Per-Arne

    2015-01-01

    Although diversity and limnology of alpine lake systems are well studied, their food web structure and properties have rarely been addressed. Here, the topological food webs of three high mountain lakes in Central Spain were examined. We first addressed the pelagic networks of the lakes, and then we explored how food web topology changed when benthic biota was included to establish complete trophic networks. We conducted a literature search to compare our alpine lacustrine food webs and their structural metrics with those of 18 published lentic webs using a meta-analytic approach. The comparison revealed that the food webs in alpine lakes are relatively simple, in terms of structural network properties (linkage density and connectance), in comparison with lowland lakes, but no great differences were found among pelagic networks. The studied high mountain food webs were dominated by a high proportion of omnivores and species at intermediate trophic levels. Omnivores can exploit resources at multiple trophic levels, and this characteristic might reduce competition among interacting species. Accordingly, the trophic overlap, measured as trophic similarity, was very low in all three systems. Thus, these alpine networks are characterized by many omnivorous consumers with numerous prey species and few consumers with a single or few prey and with low competitive interactions among species. The present study emphasizes the ecological significance of omnivores in high mountain lakes as promoters of network stability and as central players in energy flow pathways via food partitioning and enabling energy mobility among trophic levels.

  17. Seasonal Variations in Water Chemistry and Sediment Composition in Three Minnesota Lakes

    NASA Astrophysics Data System (ADS)

    Lascu, I.; Ito, E.; Banerjee, S.

    2006-12-01

    Variations in water chemistry, isotopic composition of dissolved inorganic carbon, sediment geochemistry and mineral magnetism were monitored for several months in three Minnesota lakes. Lake McCarrons, Deming Lake and Steel Lake are all small (<1 km2), deep (>16 m), stratified lakes that contain varved sediments for some time intervals or throughout. Deming Lake and Steel Lake are situated in north-central Minnesota, about 40 km apart, while Lake McCarrons is located in the heart of the Twin Cities and is heavily used for recreational purposes. The lakes have different mixing regimes (Steel is dimictic, Deming is meromictic and McCarrons is oligomictic) but all have well defined epilimnia and hypolimnia during the ice-free season. Water samples were collected bi-weekly from the epilimnia, upper and lower hypolimnia, while sediments were collected monthly from sediment traps placed in shallow and deep parts of the lakes. All lakes are moderately alkaline (80-280 ppm HCO3-) carbonate-producing systems, although calcite is being dissolved in the slightly acidic hypolimnetic waters of Deming Lake. The magnetic parameters reveal different distributions of the magnetic components in the three lakes, but all exhibit a general increase in the concentration of bacterial magnetosomes towards the end of summer. Differences in elemental concentrations, cation and anion profiles, and chemical behavior as the season progressed are also obvious among the three lakes. For the two lakes situated in the same climatic regime, this implies additional controls (besides climate) on water and sediment composition, such as local hydrology, substrate composition and biogeochemical in-lake processes.

  18. The Lake Victoria Intense Storm Early Warning System (VIEWS)

    NASA Astrophysics Data System (ADS)

    Thiery, Wim; Gudmundsson, Lukas; Bedka, Kristopher; Semazzi, Fredrick; Lhermitte, Stef; Willems, Patrick; van Lipzig, Nicole; Seneviratne, Sonia I.

    2017-04-01

    Weather extremes have harmful impacts on communities around Lake Victoria in East Africa. Every year, intense nighttime thunderstorms cause numerous boating accidents on the lake, resulting in thousands of deaths among fishermen. Operational storm warning systems are therefore crucial. Here we complement ongoing early warning efforts based on NWP, by presenting a new satellite data-driven storm prediction system, the prototype Lake Victoria Intense storm Early Warning System (VIEWS). VIEWS derives predictability from the correlation between afternoon land storm activity and nighttime storm intensity on Lake Victoria, and relies on logistic regression techniques to forecast extreme thunderstorms from satellite observations. Evaluation of the statistical model reveals that predictive power is high and independent of the input dataset. We then optimise the configuration and show that also false alarms contain valuable information. Our results suggest that regression-based models that are motivated through process understanding have the potential to reduce the vulnerability of local fishing communities around Lake Victoria. The experimental prediction system is publicly available under the MIT licence at http://github.com/wthiery/VIEWS.

  19. Dependence of Wetland Vegetation on Hydrological Regime in a Large Floodplain Lake (Poyang Lake) in the Middle Yangtze River

    NASA Astrophysics Data System (ADS)

    Zhang, Q.; Tan, Z.; Xu, X.

    2017-12-01

    Exemplified in the Yangtze River floodplain lake, Poyang Lake, investigations were carried out to examine the dependence of vegetation on hydrological variables. The Lake is one of the few lakes that remain naturally connected to the Yangtze River. The Lake surface expanses to 4000 km2 in wet seasons, and reduces to less than 1000 km2 in dry seasons, creating some 3000 km2 vital wetland habitats for many animals. Remote sensing was used to obtain the spatial distribution of wetland vegetations. A lake hydrodynamic model using MIKE 21 was employed to determine the variability of wetland inundation. In-situ high time frequency observations of climate, soil moisture, and groundwater depth were also conducted in a typical wetland transect of 1 km long. Vegetations were sampled periodically to obtain species composition, diversity and biomass. Results showed that the spatial distribution of vegetation highly depended on the inundation duration and depth. Optimal hydrological variables existed for the typical vegetations in Poyang Lake wetland. Numerical simulations using HYDRUS-1D further demonstrated that both groundwater depth and soil moisture had significant effects on the growth of vegetation and the water demand in terms of transpiration, even in a wet climate zone such as middle Yangtze River. It was found that the optimal groundwater depths existed for both above- and belowground biomass. Simulation scenarios indicated that climate changes and human modification of hydrology would affect the water usage of vegetation and may cause a strategic adaptation of the vegetation to the stressed hydrological conditions. The study revealed new knowledge on the high dependence of wetland vegetation on both surface water regime and groundwater depths, in wet climate zone. Outcomes of this study may provide support for an integrated management of balancing water resources development and wetland sustainability maintenance in Poyang Lake, and other floodplain wetlands, with

  20. Catchment and atmospheric effects on acidity of lakes in the northeastern United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, R.B.; Anderson, D.S.; Rhodes, T.E.

    1995-06-01

    Sedimentary evidence from 12 lakes in northeastern United States reveals that both catchment and atmospheric processes have caused changes in lake acidity. Diatom remains indicate pH 5.2 to 5.8 (one lake 6.8) for one to two centuries before impacts on the catchment by Euro-americans. These low-alkalinity lakes were very sensitive to altered fluxes of base cations and acids. Several lakes increased in pH by 0.2 to 0.6 unit in the 1800s and early 1900s when their catchments were logged. Re-acidification of some of the lakes was initially due to forest succession. Older sediment from one of the lakes also showsmore » alkalization by natural disturbance, and acidification paralleling forest succession. However, much of the recent acidification, to uniquely low levels by the 1970s is due to high sulfur deposition.« less

  1. Relationships between coastal bacterioplankton growth rates and biomass production: comparison of leucine and thymidine uptake with single-cell physiological characteristics.

    PubMed

    Franco-Vidal, Leticia; Morán, Xosé Anxelu G

    2011-02-01

    Specific growth rates of heterotrophic bacterioplankton have been frequently estimated from in situ bacterial production (BP) to biomass (BB) ratios, using a series of assumptions that may result in serious discrepancies with values obtained from predator-free cultures. Here, we used both types of approaches together with a comprehensive assessment of single-cell physiological characteristics (membrane integrity, nucleic acid content, and active respiration) of coastal bacterioplankton during a complete annual cycle (February 2007-January 2008) in the southern Bay of Biscay off Xixón, Spain. Both leucine and thymidine incorporation rates were used in conjunction with empirical tracer to carbon or cells conversion factors (eCFs) to accurately derive BP. Leu and TdR incorporation rates covaried year-round, as did the corresponding eCFs at 0 and 50 m depth. eCFs peaked in autumn, with mean annual values close to the theoretical ones (3.4 kg C mol Leu(-1) and 2.0 × 10(18) cells mol TdR(-1)). Bacterial abundance (0.2-1.5 × 10(6) cells L(-1)) showed a bimodal distribution with maxima in May and October and minima in March. Live (membrane-intact) cells dominated year-round (79-97%), with high nucleic acid cells (42-88%) and actively respiring bacteria (CTC+, 1-16%) showing distinct surface maxima in April and July, respectively. BB (557-1,558 mg C m(-2)) and BP (7-139 mg C m(-2) day(-1)) presented two distinct peaks in spring and autumn, both of similar size due to a strong upwelling event observed in September. Specific growth rates (0.35-3.8 day(-1)) were one order of magnitude higher in predator-free incubations than bacterial turnover rates derived from integrated BP:BB ratios (0.01-0.16 and 0.01-0.09 day(-1), for Leu and TdR, respectively) and were not correlated, probably due to a significant contribution of low activity cells to total standing stocks. The Leu:TdR molar ratio averaged for the water column (6.6-25.5) decreased significantly with higher integrated

  2. Spatial and temporal genetic diversity of lake whitefish (Coregonus clupeaformis (Mitchill)) from Lake Huron and Lake Erie

    USGS Publications Warehouse

    Stott, Wendylee; Ebener, Mark P.; Mohr, Lloyd; Hartman, Travis; Johnson, Jim; Roseman, Edward F.

    2013-01-01

    Lake whitefish (Coregonus clupeaformis (Mitchill)) are important commercially, culturally, and ecologically in the Laurentian Great Lakes. Stocks of lake whitefish in the Great Lakes have recovered from low levels of abundance in the 1960s. Reductions in abundance, loss of habitat and environmental degradation can be accompanied by losses of genetic diversity and overall fitness that may persist even as populations recover demographically. Therefore, it is important to be able to identify stocks that have reduced levels of genetic diversity. In this study, we investigated patterns of genetic diversity at microsatellite DNA loci in lake whitefish collected between 1927 and 1929 (historical period) and between 1997 and 2005 (contemporary period) from Lake Huron and Lake Erie. Genetic analysis of lake whitefish from Lakes Huron and Erie shows that the amount of population structuring varies from lake to lake. Greater genetic divergences among collections from Lake Huron may be the result of sampling scale, migration patterns and demographic processes. Fluctuations in abundance of lake whitefish populations may have resulted in periods of increased genetic drift that have resulted in changes in allele frequencies over time, but periodic genetic drift was not severe enough to result in a significant loss of genetic diversity. Migration among stocks may have decreased levels of genetic differentiation while not completely obscuring stock boundaries. Recent changes in spatial boundaries to stocks, the number of stocks and life history characteristics of stocks further demonstrate the potential of coregonids for a swift and varied response to environmental change and emphasise the importance of incorporating both spatial and temporal considerations into management plans to ensure that diversity is preserved.

  3. Analysis of seasonal characteristics of Sambhar Salt Lake, India, from digitized Space Shuttle photography

    NASA Technical Reports Server (NTRS)

    Lulla, Kamlesh P.; Helfert, Michael R.

    1989-01-01

    Sambhar Salt Lake is the largest salt lake (230 sq km) in India, situated in the northwest near Jaipur. Analysis of Space Shuttle photographs of this ephemeral lake reveals that water levels and lake basin land-use information can be extracted by both the digital and manual analysis techniques. Seasonal characteristics captured by the two Shuttle photos used in this study show that additional land use/cover categories can be mapped from the dry season photos. This additional information is essential for precise cartographic updates, and provides seasonal hydrologic profiles and inputs for potential mesoscale climate modeling. This paper extends the digitization and mensuration techniques originally developed for space photography and applied to other regions (e.g., Lake Chad, Africa, and Great Salt Lake, USA).

  4. Expansion of Dreissena into offshore waters of Lake Michigan and potential impacts on fish populations

    USGS Publications Warehouse

    Bunnell, D.B.; Madenjian, C.P.; Holuszko, J.D.; Adams, J.V.; French, J. R. P.

    2009-01-01

    Lake Michigan was invaded by zebra mussels (Dreissena polymorpha) in the late 1980s and then followed by quagga mussels (D. bugensis) around 1997. Through 2000, both species (herein Dreissena) were largely restricted to depths less than 50??m. Herein, we provide results of an annual lake-wide bottom trawl survey in Lake Michigan that reveal the relative biomass and depth distribution of Dreissena between 1999 and 2007 (although biomass estimates from a bottom trawl are biased low). Lake-wide mean biomass density (g/m2) and mean depth of collection revealed no trend between 1999 and 2003 (mean = 0.7??g/m2 and 37??m, respectively). Between 2004 and 2007, however, mean lake-wide biomass density increased from 0.8??g/m2 to 7.0??g/m2, because of increased density at depths between 30 and 110??m, and mean depth of collection increased from 42 to 77??m. This pattern was confirmed by a generalized additive model. Coincident with the Dreissena expansion that occurred beginning in 2004, fish biomass density (generally planktivores) declined 71% between 2003 and 2007. Current understanding of fish population dynamics, however, indicates that Dreissena expansion is not the primary explanation for the decline of fish, and we provide a species-specific account for more likely underlying factors. Nonetheless, future sampling and research may reveal a better understanding of the potential negative interactions between Dreissena and fish in Lake Michigan and elsewhere.

  5. Multi-technique characterisation of commercial alizarin-based lakes

    NASA Astrophysics Data System (ADS)

    Pronti, Lucilla; Mazzitelli, Jean-Baptiste; Bracciale, Maria Paola; Massini Rosati, Lorenzo; Vieillescazes, Cathy; Santarelli, Maria Laura; Felici, Anna Candida

    2018-07-01

    The characterization of ancient and modern alizarin-based lakes is a largely studied topic in the literature. Analytical data on contemporary alizarin-based lakes, however, are still poor, though of primary importance, since these lakes might be indeed present in contemporary and fake paintings as well as in retouchings. In this work we systematically investigate the chemical composition and the optical features of fifteen alizarin-based lakes, by a multi-analytical technique approach combining spectroscopic methods (i.e. Energy Dispersive X-ray Fluorescence Spectroscopy, EDXRF; Attenuated Total Reflectance Fourier-Transform Infrared Spectroscopy, ATR-FTIR; X-ray Powder Diffraction, XRD; UV induced fluorescence and reflectance spectroscopies) and chromatography (i.e. High-performance Liquid Chromatography coupled with a Photodiode Array Detector, HPLC-PDA). Most of the samples contain typical compounds from the natural roots of madder, as occurring in ancient and modern lakes, but in two samples (23600-Kremer-Pigmente and alizarin crimson-Zecchi) any anthraquinonic structures were identified, thus leading to hypothesize the presence of synthetic dyes. The detection of lucidin primeveroside and ruberythrique acid in some lakes suggest the use of Rubia tinctorum. One sample (23610-Kremer-Pigmente) presents alizarin as the sole compound, thereby revealing to be a synthetic dye. Moreover, gibbsite, alunite and kaolinite were found to be used as substrates and/or mordants. Visible absorption spectra of the anthraquinonic lakes show two main absorption bands at about 494-511 nm and 537-564 nm, along with a shoulder at about 473-479 nm in presence of high amounts of purpurin. Finally, from the results obtained by UV induced fluorescence spectroscopy it is possible to figure out that, although it is commonly assumed that the madder lake presents an orange-pink fluorescence, the inorganic compounds, added to the recipe, could induce a quenching phenomenon or an inhibition

  6. Anatomy of the Midcontinent Rift beneath Lake Superior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, M.D.; McGinnis, L.D.; Ervin, C.P.

    1994-09-01

    The structure and geometry of the 1.1-b.y.-old Midcontinent Rift system under Lake Superior is interpreted from 20 seismic reflection profiles recorded during the early and mid-1980s. The seismic data reveal that rift basins under Lake Superior are variable in depth and are partially filled with Keweenawan age sediments to depths of 7 km or more and volcanic flows to depths of 36 km. These rift basins form a continuous and sinuous feature that widens in the Allouez Basin and Marquette Basin in the western and central lake and narrows between White Ridge and the Porcupine Mountains. The rift basin bendsmore » southeast around the Keweenaw Peninsula, widens to about 100 km as it extends into the eastern half of Lake Superior, and exists the lake with its axis in the vicinity of Au Sable Point in Pictured Rocks National Lake Shore, about 50 km northeast of Munising, Michigan. The axis of the rift may exit the western end of the lake near Chequamegon Bay in Wisconsin. However, lack of data in that area limits interpretation at this time. Prior to late-stage reverse-faulting, a continuous basin of more uniform thickness was present beneath the lake. Crustal extension during rifting of approximately 50 km was followed by plate convergence and crustal shortening of approximately 30 km, with the major component of thrust from the southeast. Crustal shortening occurred after development of rift grabens and their filling with lava flows, but before deposition of the final sag basin sediments. Integration of information obtained from outcrops with data reported here indicates that the Lake Superior section of the rift is associated with as many as three major boundary faults.« less

  7. Movements of hatchery-reared lake trout in Lake Superior

    USGS Publications Warehouse

    Pycha, Richard L.; Dryer, William R.; King, George R.

    1965-01-01

    The history of stocking of lake trout (Salvelinus namaycush) in the Great Lakes is reviewed. The study of movements is based on capture of 24,275 fin-clipped lake trout taken in experimental gill nets and trawls and commercial gill nets. Yearling lake trout planted from shore dispersed to 15-fath (27-m) depths in 3A? hr. Most fish remained within 2 miles (3.2 km) of the planting site 2 months, but within 4 months some fish had moved as much as 17 miles (27 km). The highest abundance of planted lake trout was in areas 2-4 miles (3.2-6.4 km) from the planting site even 3 years after release. Distance moved and size of fish were not correlated. Dispersal of lake trout begins at planting and probably continues until the fish are mature. Most movement was eastward in southern Lake Superior and followed the counterclockwise surface currents. Movement is most rapid in areas of strong currents and slowest in areas of weak currents or eddies. Movement to areas west of the Keweenaw Peninsula was insignificant from plantings in Keweenaw Bay and nil from other plantings farther east. Lake trout planted in the eastern third of the lake dispersed more randomly than those planted farther west. Few fish moved farther offshore than the 50-fath (91-m) contour. Lake trout planted in Canadian waters made insignificant contributions to populations in US waters.

  8. Photochemical reactivities of dissolved organic matter (DOM) in a sub-alpine lake revealed by EEM-PARAFAC: An insight into the fate of allochthonous DOM in alpine lakes affected by climate change.

    PubMed

    Du, Yingxun; Zhang, Yuanyuan; Chen, Feizhou; Chang, Yuguang; Liu, Zhengwen

    2016-10-15

    Due to climate change, tree line advance is occurring in many alpine regions. Within the next 50 to 100years, alpine lake catchments are expected to develop increased vegetation cover similar to that of sub-alpine lake catchments which currently exist below the tree line. Such changes in vegetation could trigger increased allochthonous DOM inputs to alpine lakes. To understand the fate of allochthonous DOM in alpine lakes impacted by climate change, the photochemical reactivity of DOM in sub-alpine Lake Tiancai (located 200m below the tree line) was investigated by excitation emission matrix fluorescence combined with parallel factor analysis (EEM-PARAFAC) and UV-Vis spectra analysis. With photo-exposure, a decrease in apparent DOM molecular weight was observed and 32% DOM was photomineralized to CO2. Interestingly, the aromaticity of DOM increased after photodegradation, as evidenced by increases in both the specific UV absorbance at 254nm (SUVA254) and the humification index (HIX). Five EEM-PARAFAC components were identified, including four terrestrially-derived substances (C1, C2, C3 and C4; allochthonous) and one tryptophan-like substance (C5; autochthonous). Generally, allochthonous DOM represented by C2 and C3 exhibited greater photoreactivity than autochthonous DOM represented by C5. C4 was identified as a possible photoproduct with relatively high aromaticity and photorefractive tendencies and contributed to the observed increase in SUVA254 and HIX. UV light facilitated the photodegradation of DOM and had the greatest effect on the removal of C3. This study provides information on the transformation of EEM-PARAFAC components in a sub-alpine lake, which is important in understanding the fate of increased allochthonous DOM inputs to alpine lakes impacted by climate change. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Lake level fluctuations and catchment dynamics at Lake Ohrid (Macedonia, Albania) during MIS6 and MIS5

    NASA Astrophysics Data System (ADS)

    Francke, Alexander; Wagner, Bernd; Just, Janna; Sadori, Laura; Masi, Alessia; Vogel, Hendrik; Lindhorst, Katja; Krastel, Sebastian; Dosseto, Anthony; Rothacker, Leo; Leicher, Niklas; Gromig, Raphael

    2016-04-01

    Lake Ohrid, presumably the oldest lake of Europe located at the border of Macedonia and Albania, is about 30 km long, 15 km wide, and up to 290 m deep. In 2013, an ICDP deep drilling campaign was carried out under the umbrella of the Scientific Collaboration on Past Speciation Conditions in Lake Ohrid (SCOPSCO) project. At the main drill site (DEEP) in the central part of Lake Ohrid, the uppermost 568 m from a total sediment fill of ca. 700 m were recovered. Initial data from core catcher material indicate that the sediment sequence covers more than 1.2 million years. An age model, which is based on 11 tephrostratigragphic tie points and on tuning of biogeochemical proxy data versus orbital parameters reveals that that the upper 247 m of the DEEP site sequence cover the time period between 637 ka (MIS16) and the present. Inhere, we present sedimentological, (bio-)geochemical, environmental magnetic, and pollen data for the time period between MIS6 (191 ka) and MIS5 (71 ka). The data imply that MIS6 was one of the most severe glacial periods, while MIS5 was likely one of the more pronounced interglacial during the past 637 kyrs. The repercussions of these high amplitude climatic and environmental variations during this period are recorded in the sedimentological archive of Lake Ohrid. Previous studies based on hydro-acoustic and sediment core data from the northeastern part of the lake basin have shown that the lake level of Lake Ohrid was likely 60 m lower during MIS6. The ˜60 m lower lake level at Lake Ohrid during MIS6 can at least partly be explained by the ongoing subsidence, which persists in the basin until today. However, in the DEEP site sediments, the MIS6/MIS5 transition occurs at ca. 50 m sediment depth. This implies that climate-induced lake level fluctuation at Lake Ohrid are less severe compared for example to Lake Van (Turkey), were a 260 m lower lake level has been reported for the Younger Dryas. The imprint of the environmental variations between

  10. Discovery of a hypersaline subglacial lake complex beneath Devon Ice Cap, Canadian Arctic

    PubMed Central

    Blankenship, Donald D.; Schroeder, Dustin M.; Dowdeswell, Julian A.

    2018-01-01

    Subglacial lakes are unique environments that, despite the extreme dark and cold conditions, have been shown to host microbial life. Many subglacial lakes have been discovered beneath the ice sheets of Antarctica and Greenland, but no spatially isolated water body has been documented as hypersaline. We use radio-echo sounding measurements to identify two subglacial lakes situated in bedrock troughs near the ice divide of Devon Ice Cap, Canadian Arctic. Modeled basal ice temperatures in the lake area are no higher than −10.5°C, suggesting that these lakes consist of hypersaline water. This implication of hypersalinity is in agreement with the surrounding geology, which indicates that the subglacial lakes are situated within an evaporite-rich sediment unit containing a bedded salt sequence, which likely act as the solute source for the brine. Our results reveal the first evidence for subglacial lakes in the Canadian Arctic and the first hypersaline subglacial lakes reported to date. We conclude that these previously unknown hypersaline subglacial lakes may represent significant and largely isolated microbial habitats, and are compelling analogs for potential ice-covered brine lakes and lenses on planetary bodies across the solar system. PMID:29651462

  11. Energy density of lake whitefish Coregonus clupeaformis in Lakes Huron and Michigan

    USGS Publications Warehouse

    Pothoven, S.A.; Nalepa, T.F.; Madenjian, C.P.; Rediske, R.R.; Schneeberger, P.J.; He, J.X.

    2006-01-01

    We collected lake whitefish Coregonus clupeaformis off Alpena and Tawas City, Michigan, USA in Lake Huron and off Muskegon, Michigan USA in Lake Michigan during 2002–2004. We determined energy density and percent dry weight for lake whitefish from both lakes and lipid content for Lake Michigan fish. Energy density increased with increasing fish weight up to 800 g, and then remained relatively constant with further increases in fish weight. Energy density, adjusted for weight, was lower in Lake Huron than in Lake Michigan for both small (≤800 g) and large fish (>800 g). Energy density did not differ seasonally for small or large lake whitefish or between adult male and female fish. Energy density was strongly correlated with percent dry weight and percent lipid content. Based on data from commercially caught lake whitefish, body condition was lower in Lake Huron than Lake Michigan during 1981–2003, indicating that the dissimilarity in body condition between the lakes could be long standing. Energy density and lipid content in 2002–2004 in Lake Michigan were lower than data for comparable sized fish collected in 1969–1971. Differences in energy density between lakes were attributed to variation in diet and prey energy content as well as factors that affect feeding rates such as lake whitefish density and prey abundance.

  12. Red Hot: Determining the Physical Properties of Lava Lake Skin

    NASA Astrophysics Data System (ADS)

    Ford, C.; Lev, E.

    2015-12-01

    Lava lakes are the surface expression of conduits that bring magma to the mouth of a volcano from deep within the earth. Time-lapse footage from a thermal imaging camera at Halema'uma'u lake at Kilauea volcano, Hawaii was used to investigate the cooling rate of the lava lake's surface. The data was then combined with an analytical model of lava flow cooling to constrain the porosity of the lava lake skin. The data was processed to account for the influence that the camera's position relative to the lake had on the image geometry and the recorded temperature values. We examined lake cooling in two separate scenarios: First, we calculated the cooling rate of the skin immediately after large gas bubbles burst at the lake's surface. Second, the temperature of the skin was measured as a function of distance from molten spreading centers (cracks) on the surface, and then converted to cooling as a function of the skin's age using the local lake surface velocity. The resulting cooling time-series were compared against cooling curves produced by a model that simulates lava flow cooling based on a myriad of physical factors. We performed quantitative data analysis to determine the approximate porosity of the lava lake skin. Preliminary comparisons reveal that the calculated cooling rates most closely correspond to the cooling curves that were produced with a lava porosity value of at least 80%.

  13. Ninespine Stickleback Abundance in Lake Michigan Increases After Dreissenid Mussel Invasion

    USGS Publications Warehouse

    Madenjian, Charles P.; Bunnell, David B.; Gorman, Owen T.

    2010-01-01

    Based on data from our annual lakewide bottom trawl survey of Lake Michigan, we determined that density of ninespine sticklebacks Pungitius pungitius increased from an average of 0.234 kg/ha during 1973–1995 to an average of 1.318 kg/ha during 1996–2007. This greater-than-fivefold increase in density coincided with the dreissenid mussel invasion of Lake Michigan. Intervention analysis revealed that ninespine stickleback density in Lake Michigan significantly increased between the two time periods. In contrast, based on data from our annual bottom trawl survey of U.S. waters of Lake Superior, ninespine stickleback density decreased from an average of 0.133 kg/ha during 1978–1999 to an average of only 0.026 kg/ha during 2000–2007. This greater-than-fivefold density decrease, which was found to be significant via intervention analysis, coincided with population recovery for both lean and fat morphotypes of lake trout Salvelinus namaycush in Lake Superior. In contrast to Lake Michigan, dreissenid mussels have not invaded Lake Superior on a lakewide basis. Thus, a comparison of these two lakes indicated that the increase in ninespine stickleback abundance in Lake Michigan was most likely attributable to the dreissenid mussel invasion. In addition, based on our correlation analysis, alewives Alosa pseudoharengus did not have an adverse effect on ninespine stickleback abundance in Lake Michigan. Perhaps the recent increase in biomass of green algae Cladophora spp. associated with the dreissenid mussel invasion improved spawning habitat quality for ninespine sticklebacks and led to their stepwise abundance increase in Lake Michigan beginning in 1996

  14. Effects of lake trout refuges on lake whitefish and cisco in the Apostle Islands Region of Lake Superior

    USGS Publications Warehouse

    Zuccarino-Crowe , Chiara M.; Taylor, William W.; Hansen, Michael J.; Seider, Michael J.; Krueger, Charles C.

    2016-01-01

    Lake trout refuges in the Apostle Islands region of Lake Superior are analogous to the concept of marine protected areas. These refuges, established specifically for lake trout (Salvelinus namaycush) and closed to most forms of recreational and commercial fishing, were implicated as one of several management actions leading to successful rehabilitation of Lake Superior lake trout. To investigate the potential significance of Gull Island Shoal and Devils Island Shoal refuges for populations of not only lake trout but also other fish species, relative abundances of lake trout, lake whitefish (Coregonus clupeaformis), and cisco (Coregonus artedi) were compared between areas sampled inside versus outside of refuge boundaries. During 1982–2010, lake trout relative abundance was higher and increased faster inside the refuges, where lake trout fishing was prohibited, than outside the refuges. Over the same period, lake whitefish relative abundance increased faster inside than outside the refuges. Both evaluations provided clear evidence that refuges protected these species. In contrast, trends in relative abundance of cisco, a prey item of lake trout, did not differ significantly between areas inside and outside the refuges. This result did not suggest indirect or cascading refuge effects due to changes in predator levels. Overall, this study highlights the potential of species-specific refuges to benefit other fish species beyond those that were the refuges' original target. Improved understanding of refuge effects on multiple species of Great Lakes fishes can be valuable for developing rationales for refuge establishment and predicting associated fish community-level effects.

  15. Expanded spatial extent of the Medieval Climate Anomaly revealed in lake-sediment records across the boreal region in northwest Ontario.

    PubMed

    Laird, Kathleen R; Haig, Heather A; Ma, Susan; Kingsbury, Melanie V; Brown, Thomas A; Lewis, C F Michael; Oglesby, Robert J; Cumming, Brian F

    2012-09-01

    Multi-decadal to centennial-scale shifts in effective moisture over the past two millennia are inferred from sedimentary records from six lakes spanning a ~250 km region in northwest Ontario. This is the first regional application of a technique developed to reconstruct drought from drainage lakes (open lakes with surface outlets). This regional network of proxy drought records is based on individual within-lake calibration models developed using diatom assemblages collected from surface sediments across a water-depth gradient. Analysis of diatom assemblages from sediment cores collected close to the near-shore ecological boundary between benthic and planktonic diatom taxa indicated this boundary shifted over time in all lakes. These shifts are largely dependent on climate-driven influences, and can provide a sensitive record of past drought. Our lake-sediment records indicate two periods of synchronous signals, suggesting a common large-scale climate forcing. The first is a period of prolonged aridity during the Medieval Climate Anomaly (MCA, c. 900-1400 CE). Documentation of aridity across this region expands the known spatial extent of the MCA megadrought into a region that historically has not experienced extreme droughts such as those in central and western north America. The second synchronous period is the recent signal of the past ~100 years, which indicates a change to higher effective moisture that may be related to anthropogenic forcing on climate. This approach has the potential to fill regional gaps, where many previous paleo-lake depth methods (based on deeper centrally located cores) were relatively insensitive. By filling regional gaps, a better understanding of past spatial patterns in drought can be used to assess the sensitivity and realism of climate model projections of future climate change. This type of data is especially important for validating high spatial resolution, regional climate models. © 2012 Blackwell Publishing Ltd.

  16. Gas exchange on Mono Lake and Crowley Lake, California

    NASA Technical Reports Server (NTRS)

    Wanninkhof, Rik; Ledwell, James R.; Broecker, Wallace S.

    1987-01-01

    Gas exchange coefficients (k) have been determined for freshwater Crowley Lake and saline Mono Lake through the use of a man-made purposefully injected gas, SF6. The concentration decreased from an initial value of 40 to 4 pmol/L for Mono Lake and from 20 to 1 pmol/L for Crowley lake over a period of 6 wks. Wind-speed (u) records from anemometers on the shore of each lake made it possible to determine the relationship between k and u. The average u and k values for the experiment were identical for the two lakes, despite the large chemical differences. It is estimated that, for the u values observed over Mono Lake from July to December 1984, the exchange of CO2 occurred 2.5 times faster than without chemical enhancement. This is a factor of 4 lower than needed to explain the high invasion rate of C-14 produced by nuclear bomb tests.

  17. Lake

    ERIC Educational Resources Information Center

    Wien, Carol Anne

    2008-01-01

    The lake is blue black and deep. It is a glaciated finger lake, clawed out of rock when ice retracted across Nova Scotia in a northerly direction during the last ice age. The lake is narrow, a little over a mile long, and deep, 90 to 190 feet in places according to local lore, off the charts in others. The author loves to swim there, with a sense…

  18. Reconnaissance data on lakes in the Alpine Lakes Wilderness Area, Washington

    USGS Publications Warehouse

    Dethier, David P.; Heller, Paul L.; Safioles, Sally A.

    1979-01-01

    Sixty lakes in the Alpine Lakes Wilderness Area have been sampled from rubber rafts or helicopter to obtain information on their physical setting and on present water-quality conditions. The lakes are located near the crest of the Cascade Range in Chelan and King Counties, Washington. Basic data from these lakes will be useful for planners concerned with lake and wilderness management, and of interest to hikers and other recreationists who use the lakes.

  19. The evolution of a thermokarst-lake landscape: Late Quaternary permafrost degradation and stabilization in interior Alaska

    USGS Publications Warehouse

    Edwards, Mary E.; Grosse, Guido; Jones, Benjamin M.; McDowell, Patricia F.

    2016-01-01

    Thermokarst processes characterize a variety of ice-rich permafrost terrains and often lead to lake formation. The long-term evolution of thermokarst landscapes and the stability and longevity of lakes depend upon climate, vegetation and ground conditions, including the volume of excess ground ice and its distribution. The current lake status of thermokarst-lake landscapes and their future trajectories under climate warming are better understood in the light of their long-term development. We studied the lake-rich southern marginal upland of the Yukon Flats (northern interior Alaska) using dated lake-sediment cores, observations of river-cut exposures, and remotely-sensed data. The region features thick (up to 40 m) Quaternary deposits (mainly loess) that contain massive ground ice. Two of three studied lakes formed ~ 11,000–12,000 cal yr BP through inferred thermokarst processes, and fire may have played a role in initiating thermokarst development. From ~ 9000 cal yr BP, all lakes exhibited steady sedimentation, and pollen stratigraphies are consistent with regional patterns. The current lake expansion rates are low (0 to < 7 cm yr− 1 shoreline retreat) compared with other regions (~ 30 cm yr− 1 or more). This thermokarst lake-rich region does not show evidence of extensive landscape lowering by lake drainage, nor of multiple lake generations within a basin. However, LiDAR images reveal linear “corrugations” (> 5 m amplitude), deep thermo-erosional gullies, and features resembling lake drainage channels, suggesting that highly dynamic surface processes have previously shaped the landscape. Evidently, widespread early Holocene permafrost degradation and thermokarst lake initiation were followed by lake longevity and landscape stabilization, the latter possibly related to establishment of dense forest cover. Partial or complete drainage of three lakes in 2013 reveals that there is some contemporary landscape dynamism. Holocene landscape

  20. 75 FR 20920 - Safety Zone; Lake Havasu Grand Prix, Lake Havasu, AZ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-22

    ...-AA00 Safety Zone; Lake Havasu Grand Prix, Lake Havasu, AZ AGENCY: Coast Guard, DHS. ACTION: Temporary... of Lake Havasu on the Colorado River in Lake Havasu City, Arizona for the Lake Havasu Grand Prix... established in support of the Lake Havasu Grand Prix, a marine event that includes participating vessels...

  1. Water-Balance Model to Simulate Historical Lake Levels for Lake Merced, California

    NASA Astrophysics Data System (ADS)

    Maley, M. P.; Onsoy, S.; Debroux, J.; Eagon, B.

    2009-12-01

    Lake Merced is a freshwater lake located in southwestern San Francisco, California. In the late 1980s and early 1990s, an extended, severe drought impacted the area that resulted in significant declines in Lake Merced lake levels that raised concerns about the long-term health of the lake. In response to these concerns, the Lake Merced Water Level Restoration Project was developed to evaluate an engineered solution to increase and maintain Lake Merced lake levels. The Lake Merced Lake-Level Model was developed to support the conceptual engineering design to restore lake levels. It is a spreadsheet-based water-balance model that performs monthly water-balance calculations based on the hydrological conceptual model. The model independently calculates each water-balance component based on available climate and hydrological data. The model objective was to develop a practical, rule-based approach for the water balance and to calibrate the model results to measured lake levels. The advantage of a rule-based approach is that once the rules are defined, they enhance the ability to then adapt the model for use in future-case simulations. The model was calibrated to historical lake levels over a 70-year period from 1939 to 2009. Calibrating the model over this long historical range tested the model over a variety of hydrological conditions including wet, normal and dry precipitation years, flood events, and periods of high and low lake levels. The historical lake level range was over 16 feet. The model calibration of historical to simulated lake levels had a residual mean of 0.02 feet and an absolute residual mean of 0.42 feet. More importantly, the model demonstrated the ability to simulate both long-term and short-term trends with a strong correlation of the magnitude for both annual and seasonal fluctuations in lake levels. The calibration results demonstrate an improved conceptual understanding of the key hydrological factors that control lake levels, reduce uncertainty

  2. Larval dispersal underlies demographically important inter-system connectivity in a Great Lakes yellow perch (Perca flavescens) population

    USGS Publications Warehouse

    Brodnik, Reed M.; Fraker, Michael E.; Anderson, Eric J.; Carreon-Martinez, Lucia; DeVanna, Kristen M.; Heath, Dan D.; Reichert, Julie M.; Roseman, Edward F.; Ludsin, Stuart A.

    2016-01-01

    Ability to quantify connectivity among spawning subpopulations and their relative contribution of recruits to the broader population is a critical fisheries management need. By combining microsatellite and age information from larval yellow perch (Perca flavescens) collected in the Lake St. Clair – Detroit River system (SC-DRS) and western Lake Erie with a hydrodynamic backtracking approach, we quantified subpopulation structure, connectivity, and contributions of recruits to the juvenile stage in western Lake Erie during 2006-2007. After finding weak (yet stable) genetic structure between the SC-DRS and two western Lake Erie subpopulations, microsatellites also revealed measurable recruitment of SC-DRS larvae to the juvenile stage in western Lake Erie (17-21% during 2006-2007). Consideration of pre-collection larval dispersal trajectories, using hydrodynamic backtracking, increased estimated contributions to 65% in 2006 and 57% in 2007. Our findings highlight the value of complementing subpopulation discrimination methods with hydrodynamic predictions of larval dispersal by revealing the SC-DRS as a source of recruits to western Lake Erie and also showing that connectivity through larval dispersal can affect the structure and dynamics of large-lake fish populations.

  3. Holocene record of glacier variability from lake sediments reveals tripartite climate history for Svalbard

    NASA Astrophysics Data System (ADS)

    van der Bilt, Willem; Bakke, Jostein; Vasskog, Kristian; D`Andrea, William; Bradley, Raymond; Olafsdottir, Sædis

    2016-04-01

    The Arctic is responding sensitively to ongoing global climate change, warming and moistening faster than any other region on the planet. Holocene proxy paleoclimate time series are increasingly used to put this amplified response in perspective by understanding Arctic climate processes beyond the instrumental period. Glaciers rapidly respond to climate shifts as demonstrated by their current demise around the world. This response has a composite climate signature, marked by shifts in hydroclimate (winter precipitation) as well as (summer) temperature. Attendant changes in glacier size are recorded by variations in glacigenic rock flour that may be deposited in downstream lakes. Here, we present a Holocene reconstruction of glacier activity, based on sediments from Hajeren, a glacier-fed lake on northwest Spitsbergen in the High Arctic Svalbard archipelago. Owing to undisturbed sediments and robust age control, we could resolve variability on a sub-centennial scale. To ensure the accurate detection of glacier activity, we applied a toolbox of physical, magnetic and geochemical proxies in conjunction with multivariate statistics. Our findings indicate a three-stage Holocene climate history for Svalbard, driving by melt water pulses, episodic Atlantic cooling and a decline in orbitally driven summer insolation. Correspondence between inferred advances, including a Holocene glacier maximum around 9.5 ka BP, suggests forcing by the melting LIS during the Early Holocene. Following a late Holocene Thermal Maximum around 7.4 ka BP, glaciers disappeared from the catchment. Glaciers reformed around 4.2 ka BP during the regional onset of the Neoglacial, supporting previous findings. This transition did, however, not mark the onset of persistent glacier activity in the catchment, but a series of centennial-scale cycles of growth and decay, including events around 3.3 and 1.1 ka BP. As orbitally driven insolation declined towards the present, the glaciation threshold

  4. Food Web Topology in High Mountain Lakes

    PubMed Central

    Sánchez-Hernández, Javier; Cobo, Fernando; Amundsen, Per-Arne

    2015-01-01

    Although diversity and limnology of alpine lake systems are well studied, their food web structure and properties have rarely been addressed. Here, the topological food webs of three high mountain lakes in Central Spain were examined. We first addressed the pelagic networks of the lakes, and then we explored how food web topology changed when benthic biota was included to establish complete trophic networks. We conducted a literature search to compare our alpine lacustrine food webs and their structural metrics with those of 18 published lentic webs using a meta-analytic approach. The comparison revealed that the food webs in alpine lakes are relatively simple, in terms of structural network properties (linkage density and connectance), in comparison with lowland lakes, but no great differences were found among pelagic networks. The studied high mountain food webs were dominated by a high proportion of omnivores and species at intermediate trophic levels. Omnivores can exploit resources at multiple trophic levels, and this characteristic might reduce competition among interacting species. Accordingly, the trophic overlap, measured as trophic similarity, was very low in all three systems. Thus, these alpine networks are characterized by many omnivorous consumers with numerous prey species and few consumers with a single or few prey and with low competitive interactions among species. The present study emphasizes the ecological significance of omnivores in high mountain lakes as promoters of network stability and as central players in energy flow pathways via food partitioning and enabling energy mobility among trophic levels. PMID:26571235

  5. Long-term succession of aquatic plants reconstructed from palynological records in a shallow freshwater lake.

    PubMed

    Ge, Yawen; Zhang, Ke; Yang, Xiangdong

    2018-06-22

    Aquatic plants in shallow freshwater lakes play a key role in stabilizing ecological function and providing valuable ecosystem services, yet they are severely degraded worldwide. An improved understanding of long-term aquatic plant succession is critical to investigate the potential driving mechanisms and to facilitate ecological restoration. In this paper, we reconstructed changes in the aquatic plant community over the past century based on palynological records from Changdang Lake, Middle and Lower Yangtze River Basin (MLYB), China. Our results reveal that aquatic plants in Changdang Lake have undergone three clear phases: emergent macrophytes dominated the aquatic vegetation in the 1900s-1970s, submerged macrophytes in the 1970s-1990s, and floating macrophytes increasingly after the 1990s. Significant changes in the aquatic plant communities were caused by increasing anthropogenic pressures, such as damming and nutrient loading from agriculture, aquaculture, and urbanization after the Chinese economic reform. We argue that Changdang Lake is currently in a transition phase between a macrophyte-dominated state and an algae-dominated state. Our palynological record is different from many contemporary studies, which suggest submerged plants dominated most lakes in this region before the 1950s. We suggest that the return of the aquatic plants to their 1970s-1980s state would be a realistic target for lake restoration. Our results show that palynological records can reveal long-term dynamics of macrophytes in shallow lakes for sustainable lake restoration and management. Copyright © 2018. Published by Elsevier B.V.

  6. White Lake AOC

    EPA Pesticide Factsheets

    White Lake is in Muskegon County along the eastern shore of Lake Michigan. It was named an Area of Concern on the Great Lakes under the Great Lakes Water Quality Agreement of 1987 and delisted in 2014.

  7. Storm-induced redistribution of deepwater sediments in Lake Ontario

    USGS Publications Warehouse

    Halfman, J.D.; Dittman, D.E.; Owens, R.W.; Etherington, M.D.

    2006-01-01

    High-resolution seismic reflection profiles, side-scan sonar profiles, and surface sediment analyses for grain size (% sand, silt & clay), total organic carbon content, and carbonate content along shore-perpendicular transects offshore of Olcott and Rochester in Lake Ontario were utilized to investigate cm-thick sands or absence of deep-water postglacial sediments in water depths of 130 to 165 m. These deepwater sands were observed as each transect approached and occupied the "sills," identified by earlier researchers, between the three deepest basins of the lake. The results reveal thin (0 to 5-cm) postglacial sediments, lake floor lineations, and sand-rich, organic, and carbonate poor sediments at the deepwater sites (> 130 m) along both transects at depths significantly below wave base, epilimnetic currents, and internal wave activity. These sediments are anomalous compared to shallower sediments observed in this study and deeper sediments reported by earlier research, and are interpreted to indicate winnowing and resuspension of the postglacial muds. We hypothesize that the mid-lake confluence of the two-gyre surface current system set up by strong storm events extends down to the lake floor when the lake is isothermal, and resuspends and winnows lake floor sediment at these locations. Furthermore, we believe that sedimentation is more likely to be influenced by bottom currents at these at these sites than in the deeper basins because these sites are located on bathymetric highs between deeper depositional basins of the lake, and the bathymetric constriction may intensify any bottom current activity at these sites.

  8. A viable microbial community in a subglacial volcanic crater lake, Iceland.

    PubMed

    Gaidos, Eric; Lanoil, Brian; Thorsteinsson, Thorsteinn; Graham, Andrew; Skidmore, Mark; Han, Suk-Kyun; Rust, Terri; Popp, Brian

    2004-01-01

    We describe a viable microbial community in a subglacial lake within the Grímsvötn volcanic caldera, Iceland. We used a hot water drill to penetrate the 300-m ice shelf and retrieved lake water and volcanic tephra sediments. We also acquired samples of borehole water before and after penetration to the lake, overlying glacial ice and snow, and water from a nearby subaerial geothermal lake for comparative analyses. Lake water is at the freezing point and fresh (total dissolved solids = 260 mg L(-1)). Detectable numbers of cells were found in samples of the lake water column and tephra sediments: 2 x 10(4) ml(-1) and 4 x 10(7) g(-1), respectively. Plate counts document abundant cold-adapted cultivable organisms in the lake water, but not in the borehole (before penetration) or glacial ice. Denaturing gradient gel electrophoresis (DGGE) of 16S rRNA gene fragments amplified from genomic DNA extracted from Grímsvötn samples indicates that the lake community is distinct from the assemblages of organisms in borehole water (before penetration) and the overlying ice and snow. Sequencing of selected DGGE bands revealed that many sequences are highly similar to known psychrophilic organisms or cloned DNA from other cold environments. Significant uptake of 14C-labeled bicarbonate occurred in dark, low-temperature incubations of lake water samples, indicating the presence of autotrophs. Acetylene reduction assays under similar incubation conditions showed no significant nitrogen fixation potential by lake water samples. This may be a consequence of the inhibition of diazotrophy by nitrogen in the lake.

  9. In-lake Modeling Recommendation Report for Lake Champlain TMDL

    EPA Pesticide Factsheets

    This report describes the recommended modeling approach for the in-lake modeling component of the Lake Champlain TMDL project. The report was prepared by Tetra Tech, with input from the Lake Champlain modeling workgroup. (TetraTech, 2012b)

  10. An evaluation of restoration efforts in fishless lakes stocked with exotic trout

    USGS Publications Warehouse

    Drake, D.C.; Naiman, R.J.

    2000-01-01

    Detrimental effects of introduced fishes on native amphibian populations have prompted removal of introduced cutthroat (Oncorhynchus clarki), rainbow (Oncorhynchus mykiss), and brook trout (Salvelinus fontinalis) from naturally fishless lakes at Mt. Rainier National Park, Washington (U.S.A.). Using paleolimnological indicators (diatoms, invertebrates, and sediment characteristics) in eight 480-year-old sediment cores from eight lakes, we (1) derived estimates of baseline environmental conditions and natural variation, (2) assessed the effects of stocking naturally fishless lakes, and (3) determined whether lakes returned to predisturbance conditions after fish removal (restoration). Diatom floras were relatively stable between 315 and 90 years before present in all lakes; we used this time period to define lake-specific "baseline" conditions. Dissimilarity analyses of diatoms revealed sustained, dramatic changes in diatom floras that occurred approximately 80 years ago (when fish were introduced) in four of five stocked lakes, whereas the diatom floras in two unstocked lakes had not changed significantly in the last 315 years. Diatoms were not preserved in an eighth lake. State changes also occurred in two lakes over 200 years before European settlement of the Pacific Northwest. Preserved invertebrate densities fluctuated dramatically over time in all cores, providing a poor reference for assessing the effects of fishes. Nevertheless, fish-invertebrate interactions have been demonstrated in other paleolimnological studies and may be useful for lower-elevation or more productive lakes. Because diatom communities have not returned to predisturbance assemblages in restored lakes, even 20-30 years after fish removal, we conclude that Mt. Rainier lakes were not successfully restored by the removal of fishes.

  11. Water quality of Lake Austin and Town Lake, Austin, Texas

    USGS Publications Warehouse

    Andrews, Freeman L.; Wells, Frank C.; Shelby, Wanda J.; McPherson, Emma

    1988-01-01

    Water-quality data collected from Lake Austin and Town Lake, following runoff, generally were not adequate to fully determine the effects of runoff on the lakes. Data collection should not to be limited to fixed-station sampling following runoff, and both lakes need to be sampled simultaneously as soon as possible following significant precipitation.

  12. Bathymetry of Bonnie Doone Lake, Kornbow Lake, Mintz Pond, and Glenville Lake, Cumberland County, North Carolina, 1996-98

    USGS Publications Warehouse

    Giorgino, M.J.; Strain, R.E.

    1999-01-01

    Bathymetric surveys were conducted at four water-supply impoundments of Little Cross Creek in Cumberland County, North Carolina. The surveys were conducted in April 1996 at Mintz Pond and Glenville Lake, and in January 1998 at Bonnie Doone Lake and Kornbow Lake. The resulting bathymetric maps are the first to cover the entire range in depth for these reservoirs and provide a framework for future evaluations of bathymetry and storage capacity. Bathymetric maps were constructed from depth and position data collected at each reservoir. A boat-mounted, research-grade fathometer was used to record water depths with a vertical accuracy of 0.1 foot. At Mintz Pond and Glenville Lake, position was measured by using a wide-band laser tracking system interfaced with a total station survey instrument. This positioning method required multiple land-based control points to be established and was hampered by line-of-sight restrictions between the control points and the boat. At Bonnie Doone Lake and Kornbow Lake, a global positioning system was used to collect differentially corrected location data. This positioning method enabled more rapid data collection, eliminated the need for land-based control points, and provided improved data coverage. Spillway elevations range from 172.8 feet above mean sea level at Bonnie Doone Lake to 113.1 feet at Glenville Lake. Surface area and storage volume were computed for each reservoir and were related to water-surface elevations at 1-foot intervals. The combined surface acreage of the four Little Cross Creek reservoirs at their full-pool elevations is 120.97 acres, consisting of 21.20 acres at Bonnie Doone Lake, 47.09 acres at Kornbow Lake, 15.56 acres at Mintz Pond, and 37.12 acres at Glenville Lake. The four reservoirs have a combined usable storage capacity of 674.91 acre-feet, which is the sum of 127.93 acre-feet in Bonnie Doone Lake, 320.62 acre-feet in Kornbow Lake, 53.25 acre-feet in Mintz Pond, and 173.11 acre-feet in Glenville Lake.

  13. A comparative study of ancient environmental DNA to pollen and macrofossils from lake sediments reveals taxonomic overlap and additional plant taxa

    NASA Astrophysics Data System (ADS)

    Pedersen, Mikkel Winther; Ginolhac, Aurélien; Orlando, Ludovic; Olsen, Jesper; Andersen, Kenneth; Holm, Jakob; Funder, Svend; Willerslev, Eske; Kjær, Kurt H.

    2013-09-01

    We use 2nd generation sequencing technology on sedimentary ancient DNA (sedaDNA) from a lake in South Greenland to reconstruct the local floristic history around a low-arctic lake and compare the results with those previously obtained from pollen and macrofossils in the same lake. Thirty-eight of thirty-nine samples from the core yielded putative DNA sequences. Using a multiple assignment strategy on the trnL g-h DNA barcode, consisting of two different phylogenetic and one sequence similarity assignment approaches, thirteen families of plants were identified, of which two (Scrophulariaceae and Asparagaceae) are absent from the pollen and macrofossil records. An age model for the sediment based on twelve radiocarbon dates establishes a chronology and shows that the lake record dates back to 10,650 cal yr BP. Our results suggest that sedaDNA analysis from lake sediments, although taxonomically less detailed than pollen and macrofossil analyses can be a complementary tool for establishing the composition of both terrestrial and aquatic local plant communities and a method for identifying additional taxa.

  14. Angler effort and catch within a spatially complex system of small lakes.

    USGS Publications Warehouse

    Pope, Kevin L.; Chizinski, Christopher J.; Martin, Dustin R.; Barada, Tony J.; Schuckman, Jeffrey J.

    2014-01-01

    Spatial layout of waterbodies and waterbody size can affect a creel clerk’s ability to intercept anglers for interviews and to accurately count anglers, which will affect the accuracy and precision of estimates of effort and catch. This study aimed to quantify angling effort and catch across a spatially complex system of 19 small (<100 ha) lakes, the Fremont lakes. Total (±SE) angling effort (hours) on individual lakes ranged from 0 (0) to 7,137 (305). Bank anglers utilized 18 of the 19 lakes, and their mean (±SE) trip lengths (hours) ranged from 0.80 (0.31) to 7.75 (6.75), depending on the waterbody. In contrast, boat anglers utilized 14 of the 19 lakes, and their trip lengths ranged from 1.39 (0.24) to 4.25 (0.71), depending on the waterbody. The most sought fishes, as indexed by number of lakes on which effort was exerted, were anything (17 of 19 lakes), largemouth bassMicropterus salmoides (15 of 19 lakes), and channel catfish Ictalurus punctatus (13 of 19 lakes). Bluegill Lepomis machrochirus, crappie Pomoxis spp., and largemouth bass were caught most frequently across the lakes, but catch rates varied considerably by lake. Of the 1,138 parties interviewed, most parties (93%) visited a single lake but there were 77 (7%) parties that indicated that they had visited multiple lakes during a single day. The contingent of parties that visited more than one lake a day were primarily (87%) bank anglers.. The number of lake-to-lake connections made by anglers visiting more than one waterbody during a single day was related to catch rates and total angling effort. The greater resolution that was achieved with a lake specific creel survey at Fremont lakes revealed a system of lakes with a large degree of spatial variation in angler effort and catch that would be missed by a coarser, system-wide survey that did not differentiate individual lakes.

  15. Lake trout in the Great Lakes: Basin-wide stock collapse and binational restoration

    USGS Publications Warehouse

    Hansen, Michael J.; Taylor, William W.; Ferreri, C. Paola

    1999-01-01

    The lake trout (Salvelinus namaycush) was important to the human settlement of each of the Great Lakes, and underwent catastrophic collapses in each lake in the nineteenth and twentieth centuries. The timing of lake trout stock collapses were different in each lake, as were the causes of the collapses, and have been the subject of much scientific inquiry and debate. The purpose of this chapter is to summarize and review pertinent information relating historical changes in Great Lakes lake trout stocks, binational efforts to restore those stocks, and progress toward stock restoration. This presentation attempts to generalize patterns across the Great Lakes, rather than to focus within each lake. Lake specific analyses have been used to understand lake specific causes and effects, but there is continuing debate about some of these causes and effects. A basinwide review may suggest mechanisms for observed changes that are not evident by lake specific analysis.

  16. Whole-lake invasive crayfish removal and qualitative modeling reveal habitat-specific food web topology

    DOE PAGES

    Hansen, Gretchen J. A.; Tunney, Tyler D.; Winslow, Luke A.; ...

    2017-02-10

    Patterning of the presence/absence of food web linkages (hereafter topology) is a fundamental characteristic of ecosystems that can influence species responses to perturbations. However, the insight from food web topology into dynamic effects of perturbations on species is potentially hindered because most described topologies represent data integrated across spatial and temporal scales. We conducted a 10-year, whole-lake experiment in which we removed invasive rusty crayfish ( Orconectes rusticus) from a 64-ha north-temperate lake and monitored responses of multiple trophic levels. We compared species responses observed in two sub-habitats to the responses predicted from all topologies of an integrated, literature-informed basemore » food web model of 32 potential links. Out of 4.3 billion possible topologies, only 308,833 (0.0072%) predicted responses that qualitatively matched observed species responses in cobble habitat, and only 12,673 (0.0003%) matched observed responses in sand habitat. Furthermore, when constrained to predictions that both matched observed responses and were highly reliable (i.e., predictions were robust to link strength values), only 5040 (0.0001%) and 140 (0.000003%) topologies were identified for cobble and sand habitats, respectively. A small number of linkages were nearly always present in these valid, reliable networks in sand, while a greater variety of possible network configurations were possible in cobble. Direct links involving invasive rusty crayfish were more important in cobble, while indirect effects involving Lepomis spp. were more important in sand. Importantly, the importance of individual species linkages differed dramatically among cobble and sand sub-habitats within a single lake, even though species composition was identical. Furthermore the true topology of food webs is difficult to determine, constraining topologies to include spatial resolution that matches observed experimental outcomes may reduce possibilities

  17. Whole-lake invasive crayfish removal and qualitative modeling reveal habitat-specific food web topology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Gretchen J. A.; Tunney, Tyler D.; Winslow, Luke A.

    Patterning of the presence/absence of food web linkages (hereafter topology) is a fundamental characteristic of ecosystems that can influence species responses to perturbations. However, the insight from food web topology into dynamic effects of perturbations on species is potentially hindered because most described topologies represent data integrated across spatial and temporal scales. We conducted a 10-year, whole-lake experiment in which we removed invasive rusty crayfish ( Orconectes rusticus) from a 64-ha north-temperate lake and monitored responses of multiple trophic levels. We compared species responses observed in two sub-habitats to the responses predicted from all topologies of an integrated, literature-informed basemore » food web model of 32 potential links. Out of 4.3 billion possible topologies, only 308,833 (0.0072%) predicted responses that qualitatively matched observed species responses in cobble habitat, and only 12,673 (0.0003%) matched observed responses in sand habitat. Furthermore, when constrained to predictions that both matched observed responses and were highly reliable (i.e., predictions were robust to link strength values), only 5040 (0.0001%) and 140 (0.000003%) topologies were identified for cobble and sand habitats, respectively. A small number of linkages were nearly always present in these valid, reliable networks in sand, while a greater variety of possible network configurations were possible in cobble. Direct links involving invasive rusty crayfish were more important in cobble, while indirect effects involving Lepomis spp. were more important in sand. Importantly, the importance of individual species linkages differed dramatically among cobble and sand sub-habitats within a single lake, even though species composition was identical. Furthermore the true topology of food webs is difficult to determine, constraining topologies to include spatial resolution that matches observed experimental outcomes may reduce possibilities

  18. The Biogeography of Endorheic Soda Lakes in the Western United States

    NASA Astrophysics Data System (ADS)

    Stamps, B. W.; Petryshyn, V.; Johnson, H.; Berelson, W.; Nunn, H. S.; Stevenson, B. S.; Loyd, S. J.; Oremland, R. S.; Miller, L. G.; Rosen, M. R.; Corsetti, F. A.; Spear, J. R.

    2016-12-01

    Closed-basin (endorheic) soda lakes are of economic, social, and ecological importance. Shifts in global climate, which in turn affects local climate, significantly impact the distribution and diversity of microbial communities and lake ecologies. In California, the Mono Lake Basin (MLB) is especially fragile, as it has undergone a significant decline in lake level beginning in the early twentieth century due to both climatic effects and water diversion. The result is a lake with elevated salinity (60-90 g/L) and pH (9.8). The diversion of MLB water has created a unique lake environment dominated by a single macroeukaryote (Artemia monica) in which primary production is controlled at all depths by the microalgae Picocystis sp. In order to better understand the microbial diversity and functional potential of Mono Lake during an on-going drought and climatic upheaval, a combined geochemical, metagenomic, and metatranscriptomic study was undertaken. Members of The International GeoBiology course sampled the water column at multiple depths in the summer of 2016, during a large bloom of Picocystis. A mud spring from a volcanic island (Paoha) near the center of the lake was also sampled. The spring was recently submerged and interacts intermittently with Mono Lake, which may allow for mixing of microbial communities as lake levels fluctuate. Surface sediment samples were also taken from 7 m water depth. Finally, via SSU rRNA gene sequence analyses, the microbial communities of nearby soda lakes were compared in an attempt to place the Mono Lake community in the context of the overall regional biodiversity of endorheic soda lakes. Overall the microbial communities at Mono Lake were distinct both in the bacterial community composition and the abundance of Picocystis from those found at other sampled soda lakes or the surrounding rivers and springs. Our results reveal diverse microbial ecosystems at multiple lakes potentially at risk to continued climate change.

  19. GloboLakes: A global observatory of lake responses to environmental change.

    NASA Astrophysics Data System (ADS)

    Groom, Steve; Tyler, Andrew; Hunter, Peter; Spyrakos, Evangelos; Martinez-Vicente, Victor; Merchant, Chris; Cutler, Mark; Rowan, John; Dawson, Terry; Maberly, Stephen; Cavalho, Laurence; Elliot, Alex; Thackery, Stephen; Miller, Claire; Scott, Marian

    2014-05-01

    The world's freshwater ecosystems are vital components of the global biosphere, yet are vulnerable to climate and other human-induced change. There is increasing recognition that lakes play an important role in global biogeochemical cycling and provide key ecosystem services. However, our understanding of how lakes respond to environmental change at a global scale, and how this impacts on their status and function, is hampered by limited information on their chemical, physical and ecological condition. There are estimated to be over 300 million lakes globally, of which over 17,000 are greater than 10 km2 in surface area. These numbers have limited the systematic study of lake ecosystems. GloboLakes is a five-year UK research programme investigating the state of lakes and their response to climatic and other environmental drivers of change. It will establish a satellite-based observatory with archive and near-real time data processing to produce a time series of observed biogeochemical parameters and lake temperature for over 1000 lakes globally. This will be supported by linked ancillary data on climate and catchment land-use. The ability to monitor a large number of lakes consistently at high frequency and globally will facilitate a paradigm shift in our understanding of how lakes respond to environmental change at different spatial and temporal scales. A key requirement is to validate satellite retrieval algorithms and test the time-series of resulting lake properties such as chlorophyll-a by comparison with in situ data. To support the former extensive bio-optical and constituent data were taken in year 1 of the project in a number of UK lakes with a variety of trophic states. Furthermore, for wider validation activities GloboLakes has established the LIMNADES initiative to create a centralised database of ground bio-optical measurements of worldwide lakes through voluntary cooperation across the international scientific community. This presentation will

  20. Migration of 137Cs in tributaries, lake water and sediment of Lago Maggiore (Italy, Switzerland) - analysis and comparison with Lago di Lugano and other lakes.

    PubMed

    Putyrskaya, Victoria; Klemt, Eckehard; Röllin, Stefan

    2009-01-01

    This paper describes the behaviour of 137Cs in Lago Maggiore and other pre-alpine lakes as a consequence of atmospheric nuclear weapons testing fallout and the fallout from the nuclear accident in Chernobyl. It presents data on the 137Cs distribution in tributaries, lake water, bottom sediments and reveals the role of (137)Cs as a marker of the sedimentation processes. The run-off of 137Cs from the watershed to the lake is described with a simple compartment model. Measurements of the activity concentration of (137)Cs in sediments are compared with the output of a model (diffusion-convection type) which describes the input of 137Cs into and its vertical distribution within the sediment. Varying sedimentation rates (0.05-0.90g(cm2y)(-1)) in Lago Maggiore are compared with data of other authors. Sedimentation rates and total distribution coefficients (of about 10(5) Lkg(-1)) in Lago Maggiore are discussed and compared with those of Lago di Lugano, Lake Constance, and Lake Vorsee.

  1. Hydrothermal and tectonic activity in northern Yellowstone Lake, Wyoming

    USGS Publications Warehouse

    Johnson, S.Y.; Stephenson, W.J.; Morgan, L.A.; Shanks, Wayne C.; Pierce, K.L.

    2003-01-01

    been conducted in lakes in active volcanic areas. Our data reveal active geothermal features with unprecedented resolution and provide important analogues for recognition of comparable features and potential hazards in other subaqueous geothermal environments.

  2. Prevalence of the Chloroflexi-Related SAR202 Bacterioplankton Cluster throughout the Mesopelagic Zone and Deep Ocean†

    PubMed Central

    Morris, R. M.; Rappé, M. S.; Urbach, E.; Connon, S. A.; Giovannoni, S. J.

    2004-01-01

    Since their initial discovery in samples from the north Atlantic Ocean, 16S rRNA genes related to the environmental gene clone cluster known as SAR202 have been recovered from pelagic freshwater, marine sediment, soil, and deep subsurface terrestrial environments. Together, these clones form a major, monophyletic subgroup of the phylum Chloroflexi. While members of this diverse group are consistently identified in the marine environment, there are currently no cultured representatives, and very little is known about their distribution or abundance in the world's oceans. In this study, published and newly identified SAR202-related 16S rRNA gene sequences were used to further resolve the phylogeny of this cluster and to design taxon-specific oligonucleotide probes for fluorescence in situ hybridization. Direct cell counts from the Bermuda Atlantic time series study site in the north Atlantic Ocean, the Hawaii ocean time series site in the central Pacific Ocean, and along the Newport hydroline in eastern Pacific coastal waters showed that SAR202 cluster cells were most abundant below the deep chlorophyll maximum and that they persisted to 3,600 m in the Atlantic Ocean and to 4,000 m in the Pacific Ocean, the deepest samples used in this study. On average, members of the SAR202 group accounted for 10.2% (±5.7%) of all DNA-containing bacterioplankton between 500 and 4,000 m. PMID:15128540

  3. New permafrost is forming around shrinking Arctic lakes, but will it last?

    USGS Publications Warehouse

    Briggs, Martin A.; Walvoord, Michelle Ann; McKenzie, Jeffrey M.; Voss, Clifford I.; Day-Lewis, Frederick D.; Lane, John W.

    2014-01-01

    Widespread lake shrinkage in cold regions has been linked to climate warming and permafrost thaw. Permafrost aggradation, however, has been observed within the margins of recently receded lakes, in seeming contradiction of climate warming. Here permafrost aggradation dynamics are examined at Twelvemile Lake, a retreating lake in interior Alaska. Observations reveal patches of recently formed permafrost within the dried lake margin, colocated with discrete bands of willow shrub. We test ecological succession, which alters shading, infiltration, and heat transport, as the driver of aggradation using numerical simulation of variably saturated groundwater flow and heat transport with phase change (i.e., freeze-thaw). Simulations support permafrost development under current climatic conditions, but only when net effects of vegetation on soil conditions are incorporated, thus pointing to the role of ecological succession. Furthermore, model results indicate that permafrost aggradation is transitory with further climate warming, as new permafrost thaws within seven decades.

  4. Watershed vs. within-lake drivers of nitrogen: phosphorus dynamics in shallow lakes.

    PubMed

    Ginger, Luke J; Zimmer, Kyle D; Herwig, Brian R; Hanson, Mark A; Hobbs, William O; Small, Gaston E; Cotner, James B

    2017-10-01

    Research on lake eutrophication often identifies variables affecting amounts of phosphorus (P) and nitrogen (N) in lakes, but understanding factors influencing N:P ratios is important given its influence on species composition and toxin production by cyanobacteria. We sampled 80 shallow lakes in Minnesota (USA) for three years to assess effects of watershed size, proportion of watershed as both row crop and natural area, fish biomass, and lake alternative state (turbid vs. clear) on total N : total P (TN : TP), ammonium, total dissolved phosphorus (TDP), and seston stoichiometry. We also examined N:P stoichiometry in 20 additional lakes that shifted states during the study. Last, we assessed the importance of denitrification by measuring denitrification rates in sediment cores from a subset of 34 lakes, and by measuring seston δ 15 N in four additional experimental lakes before and after they were experimentally manipulated from turbid to clear states. Results showed alternative state had the largest influence on overall N:P stoichiometry in these systems, as it had the strongest relationship with TN : TP, seston C:N:P, ammonium, and TDP. Turbid lakes had higher N at given levels of P than clear lakes, with TN and ammonium 2-fold and 1.4-fold higher in turbid lakes, respectively. In lakes that shifted states, TN was 3-fold higher in turbid lakes, while TP was only 2-fold higher, supporting the notion N is more responsive to state shifts than is P. Seston δ 15 N increased after lakes shifted to clear states, suggesting higher denitrification rates may be important for reducing N levels in clear states, and potential denitrification rates in sediment cores were among the highest recorded in the literature. Overall, our results indicate lake state was a primary driver of N:P dynamics in shallow lakes, and lakes in clear states had much lower N at a given level of P relative to turbid lakes, likely due to higher denitrification rates. Shallow lakes are often

  5. Changes in Rongbuk lake and Imja lake in the Everest region of Himalaya

    NASA Astrophysics Data System (ADS)

    Chen, W.; Doko, T.; Liu, C.; Ichinose, T.; Fukui, H.; Feng, Q.; Gou, P.

    2014-12-01

    The Himalaya holds the world record in terms of range and elevation. It is one of the most extensively glacierized regions in the world except the Polar Regions. The Himalaya is a region sensitive to climate change. Changes in the glacial regime are indicators of global climate changes. Since the second half of the last century, most Himalayan glaciers have melted due to climate change. These changes directly affected the changes of glacial lakes in the Himalayan region due to the glacier retreat. New glacial lakes are formed, and a number of them have expanded in the Everest region of the Himalayas. This paper focuses on the two glacial lakes which are Imja Lake, located at the southern slope, and Rongbuk Lake, located at the northern slope in the Mt. Everest region, Himalaya to present the spatio-temporal changes from 1976 to 2008. Topographical conditions between two lakes were different (Kruskal-Wallis test, p < 0.05). Rongbuk Lake was located at 623 m higher than Imja Lake, and radiation of Rongbuk Lake was higher than the Imja Lake. Although size of Imja Lake was larger than the Rongbuk Lake in 2008, the growth speed of Rongbuk Lake was accelerating since 2000 and exceeds Imja Lake in 2000-2008. This trend of expansion of Rongbuk Lake is anticipated to be continued in the 21st century. Rongbuk Lake would be the biggest potential risk of glacial lake outburst flood (GLOF) at the Everest region of Himalaya in the future.

  6. 78 FR 17097 - Safety Zone; Lake Havasu Triathlon; Lake Havasu City, AZ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-20

    ...-AA00 Safety Zone; Lake Havasu Triathlon; Lake Havasu City, AZ AGENCY: Coast Guard, DHS. ACTION... waters of Lake Havasu and the London Bridge Channel for the Lake Havasu Triathlon. This temporary safety... participants. The waterside swim course consists of 1500 meters in Lake Havasu and the London Bridge Channel...

  7. Unconsolidated sediments at the bottom of Lake Vostok from seismic data

    USGS Publications Warehouse

    Filina, I.; Lukin, V.; Masolov, V.; Blankenship, D.

    2007-01-01

    Seismic soundings of Lake Vostok have been performed by the Polar Marine Geological Research Expedition in collaboration with the Russian Antarctic Expedition since the early 1990s. The seismograms recorded show at least two relatively closely spaced reflections associated with the lake bottom. These were initially interpreted as boundaries of a layer of unconsolidated sediments at the bottom of the lake. A more recent interpretation suggests that the observed reflections are side echoes from the rough lake bottom, and that there are no unconsolidated sediments at the bottom of the lake. The major goal of this paper is to reveal the nature of those reflections by testing three hypotheses of their origin. The results show that some of the reflections, but not all of them, are consistent with the hypothesis of a non-flat lake bottom along the source-receiver line (2D case). The reflections were also evaluated as side echoes from an adjacent sloping interface, but these tests implied unreasonably steep slopes (at least 8 degrees) at the lake bottom. The hypothesis that is the most compatible with seismic data is the presence of a widespread layer of unconsolidated sediments at the bottom of Lake Vostok. The modeling suggests the presence of a two hundred meter thick sedimentary layer with a seismic velocity of 1700 -1900 m/sec in the southern and middle parts of the lake. The sedimentary layer thickens in the northern basin to ~350 m

  8. Observations of the Winter Thermal Structure of Lake Superior

    NASA Astrophysics Data System (ADS)

    Titze, Daniel James

    Moored thermistor strings that span the water column have been deployed at up to seven locations throughout Lake Superior from 2005 through present, producing a unique year-round record of the thermal structure of a large lake. This extensive temperature record reveals significant interannual and spatial variability in Lake Superior's winter heat content, thermocline depth, and phenology. Of particular mention is a stark contrast in thermal structure between the cold, icy winter of 2009 and the much warmer winter of 2012, during which especially strong and weak negative stratification was observed, respectively. Significant interannual and spatial variability was also observed in Lake Superior ice cover, as shown through data extracted from Ice Mapping System satellite imagery (NOAA/NESDIS 2004). When water column heat content was estimated from temperature data and analyzed in concert with lake ice-cover data, it was found that ice cover can inhibit heat flux between the lake and the atmosphere, and that spatial variability in ice cover can translate into spatial variability in end-of-winter heat content. Such variability in end-of-winter heat content is found to be preserved through the spring warming season, and is strongly correlated with variability in the timing of the onset of summer stratification, with regions that have warmer end-of-winter water columns stratifying earlier than regions with colder end-of-winter water-columns.

  9. Characteristics and causal factors of hysteresis in the hydrodynamics of a large floodplain system: Poyang Lake (China)

    NASA Astrophysics Data System (ADS)

    Zhang, X. L.; Zhang, Q.; Werner, A. D.; Tan, Z. Q.

    2017-10-01

    A previous modeling study of the lake-floodplain system of Poyang Lake (China) revealed complex hysteretic relationships between stage, storage volume and surface area. However, only hypothetical causal factors were presented, and the reasons for the occurrence of both clockwise and counterclockwise hysteretic functions were unclear. The current study aims to address this by exploring further Poyang Lake's hysteretic behavior, including consideration of stage-flow relationships. Remotely sensed imagery is used to validate the water surface areas produced by hydrodynamic modeling. Stage-area relationships obtained using the two methods are in strong agreement. The new results reveal a three-phase hydrological regime in stage-flow relationships, which assists in developing improved physical interpretation of hysteretic stage-area relationships for the lake-floodplain system. For stage-area relationships, clockwise hysteresis is the result of classic floodplain hysteretic processes (e.g., restricted drainage of the floodplain during recession), whereas counterclockwise hysteresis derives from the river hysteresis effect (i.e., caused by backwater effects). The river hysteresis effect is enhanced by the time lag between the peaks of catchment inflow and Yangtze discharge (i.e., the so-called Yangtze River blocking effect). The time lag also leads to clockwise hysteresis in the relationship between Yangtze River discharge and lake stage. Thus, factors leading to hysteresis in other rivers, lakes and floodplains act in combination within Poyang Lake to create spatial variability in hydrological hysteresis. These effects dominate at different times, in different parts of the lake, and during different phases of the lake's water level fluctuations, creating the unique hysteretic hydrological behavior of Poyang Lake.

  10. Climate-induced changes in lake ecosystem structure inferred from coupled neo- and paleoecological approaches

    USGS Publications Warehouse

    Saros, Jasmine E.; Stone, Jeffery R.; Pederson, Gregory T.; Slemmons, Krista; Spanbauer, Trisha; Schliep, Anna; Cahl, Douglas; Williamson, Craig E.; Engstrom, Daniel R.

    2015-01-01

    Over the 20th century, surface water temperatures have increased in many lake ecosystems around the world, but long-term trends in the vertical thermal structure of lakes remain unclear, despite the strong control that thermal stratification exerts on the biological response of lakes to climate change. Here we used both neo- and paleoecological approaches to develop a fossil-based inference model for lake mixing depths and thereby refine understanding of lake thermal structure change. We focused on three common planktonic diatom taxa, the distributions of which previous research suggests might be affected by mixing depth. Comparative lake surveys and growth rate experiments revealed that these species respond to lake thermal structure when nitrogen is sufficient, with species optima ranging from shallower to deeper mixing depths. The diatom-based mixing depth model was applied to sedimentary diatom profiles extending back to 1750 AD in two lakes with moderate nitrate concentrations but differing climate settings. Thermal reconstructions were consistent with expected changes, with shallower mixing depths inferred for an alpine lake where treeline has advanced, and deeper mixing depths inferred for a boreal lake where wind strength has increased. The inference model developed here provides a new tool to expand and refine understanding of climate-induced changes in lake ecosystems.

  11. Analysis of bacterial communities associated with the benthic amphipod Diporeia in the Laurentian Great Lakes Basin.

    PubMed

    Winters, Andrew D; Marsh, Terence L; Brenden, Travis O; Faisal, Mohamed

    2015-01-01

    Bacterial communities play important roles in the biological functioning of crustaceans, yet little is known about their diversity, structure, and dynamics. This study was conducted to investigate the bacterial communities associated with the benthic amphipod Diporeia, an important component in the Great Lakes foodweb that has been declining over the past 3 decades. In this study, the combination of 16S rRNA gene sequencing and terminal restriction fragment length polymorphism revealed a total of 175 and 138 terminal restriction fragments (T-RFs) in Diporeia samples following treatment with the endonucleases HhaI and MspI, respectively. Relatively abundant and prevalent T-RFs were affiliated with the genera Flavobacterium and Pseudomonas and the class Betaproteobacteria. T-RFs affiliated with the order Rickettsiales were also detected. A significant difference in T-RF presence and abundance (P = 0.035) was detected among profiles generated for Diporeia collected from 4 sites in Lake Michigan. Comparison of profiles generated for Diporeia samples collected in 2 years from lakes Superior and Michigan showed a significant change in diversity for Lake Superior Diporeia but not Lake Michigan Diporeia. Profiles from one Lake Michigan site contained multiple unique T-RFs compared with other Lake Michigan Diporeia profiles, most notably one that represents the genus Methylotenera. This study generated the most extensive list of bacteria associated with Diporeia and sheds useful insights on the microbiome of Great Lakes Diporeia that may help to reveal potential causes of the decline of Diporeia populations.

  12. What do we know about Indonesian tropical lakes? Insights from high frequency measurement

    NASA Astrophysics Data System (ADS)

    Budi Santoso, Arianto; Triwisesa, Endra; Fakhrudin, Muh.; Harsono, Eko; Agita Rustini, Hadiid

    2018-02-01

    When measuring ecological variables in lakes, sampling frequency is critical in capturing an environmental pattern. Discrete sampling of traditional monitoring programs is likely to result in vital knowledge gaps in understanding any processes particularly those with fine temporal scale characteristics. The development of high frequency measurements offer a sophisticated range of information in recording any events in lakes at a finer time scale. We present physical indices of a tropical deep Lake Maninjau arrayed from OnLine Monitoring System (OLM). It is revealed that Lake Maninjau mostly has a diurnal thermal stratification pattern. The calculated lake stability (Schmidt stability), however, follows a seasonal pattern; low in December-January and around August, and high in May and September. Using a 3D numerical model simulation (ELCOM), we infer how wind and solar radiation intensity control lake’s temperature profiles. In this review, we highlight the needs of high frequency measurement establishment in Indonesian tropical lakes to better understand the unique processes and to support the authorities’ decision making in maximizing the provision of ecosystem services supplied by lakes and reservoirs.

  13. Competition between larval lake herring (Coregonus artedi) and lake whitefish (Coregonus clupeaformis) for zooplankton

    USGS Publications Warehouse

    Davis, Bruce M.; Todd, Thomas N.

    1998-01-01

    Diet and growth of larval lake herring (Coregonus artedi) and lake whitefish (Coregonus clupeaformis) were compared in mesocosm experiments in a small mesotrophic lake in southeastern Michigan. Fish were sampled from single-species and mixed assemblages in 2-m3 cages for 8 weeks during April and May. Both species initially ate mostly cyclopoid copepodites and small cladocerans (Bosmia spp.). Schoener's index of diet overlap showed considerable overlap (70-90%). Lake whitefish ate Daphnia spp. and adult copepods about 2 weeks earlier than did lake herring, perhaps related to their larger mean mouth gape. Lake whitefish were consistently larger than lake herring until the eighth week, especially in the sympatric treatments. Lake whitefish appeared to have a negative effect on the growth of lake herring, as lake herring in mixed-species treatments were smaller and weighed less than lake herring reared in single-species treatments. The diet similarities of lake whitefish and lake herring larvae could make them competitors for food in the Great Lakes. The greater initial size of lake whitefish could allow them to eat larger prey earlier and thereby limit availability of these prey to lake herring at a crucial period of development.

  14. The Morphometry of Lake Palmas, a Deep Natural Lake in Brazil

    PubMed Central

    Barroso, Gilberto F.; Gonçalves, Monica A.; Garcia, Fábio da C.

    2014-01-01

    Lake Palmas (A = 10.3km2) is located in the Lower Doce River Valley (LDRV), on the southeastern coast of Brazil. The Lake District of the LDRV includes 90 lakes, whose basic geomorphology is associated with the alluvial valleys of the Barreiras Formation (Cenozoic, Neogene) and with the Holocene coastal plain. This study aimed to investigate the relationship of morphometry and thermal pattern of a LDRV deep lake, Lake Palmas. A bathymetric survey carried out in 2011 and the analysis of hydrographic and wind data with a geographic information system allowed the calculation of several metrics of lake morphometry. The vertical profiling of physical and chemical variables in the water column during the wet/warm and dry/mild cold seasons of 2011 to 2013 has furnished a better understanding of the influence of the lake morphometry on its structure and function. The overdeepened basin has a subrectangular elongated shape and is aligned in a NW-SE direction in an alluvial valley with a maximum depth (Zmax) of 50.7m, a volume of 2.2×108 m3 (0.22km3) and a mean depth (Zmv) of 21.4m. These metrics suggest Lake Palmas as the deepest natural lake in Brazil. Water column profiling has indicated strong physical and chemical stratification during the wet/warm season, with a hypoxic/anoxic layer occupying one-half of the lake volume. The warm monomictic pattern of Lake Palmas, which is in an accordance to deep tropical lakes, is determined by water column mixing during the dry and mild cold season, especially under the influence of a high effective fetch associated with the incidence of cold fronts. Lake Palmas has a very long theoretical retention time, with a mean of 19.4 years. The changes observed in the hydrological flows of the tributary rivers may disturb the ecological resilience of Lake Palmas. PMID:25406062

  15. Embryotoxicity of Great Lakes lake trout extracts to developing rainbow trout

    USGS Publications Warehouse

    Wright, Peggy J.; Tillitt, Donald E.

    1999-01-01

    Planar halogenated hydrocarbons (PHHs), such as polychlorinated dibenzo-p-dioxins, dibenzofurans, and biphenyls are present in aquatic systems, and are known to produce adverse effects in fish. This study investigated the embryotoxicity of PHH mixtures through the nanoinjection of environmental extracts into newly fertilized eggs from two strains of rainbow trout. Organic extracts were obtained from whole adult lake trout collected from Lake Michigan in 1988 and Lake Superior in 1994. The graded doses of the final extracts used for injection were quantified as 2,3,7,8-tetrachlorodibenzo-p-dioxin toxic-equivalents (TEQs) based on the concentrations of dioxins, furans and non-o-PCBs in each, and as equivalent amounts found in the eggs of the original lake trout (eggEQ). Total TEQs in the lake trout were 14.7 pg TEQ/g in the Lake Michigan sample and 7.3 pg TEQ/g in the Lake Superior sample. The extract of the Lake Michigan lake trout was embryotoxic to rainbow trout; LD50 values were 35 eggEQ (15–90, 95% F.L.) in the Arlee strain and 14 eggEQ (5–99, 95% F.L.) in the Erwin strain of rainbow trout. The LD50 values of the Lake Michigan extract in either of these strains of rainbow trout fall within the actual range of TCDD LD50values based on TEQs. This indicates that an additive model of toxicity is appropriate to quantify PHHs in relation to early life stage mortality in fish. Gross lesions characteristic of exposure to PHHs (i.e. yolk-sac edema, craniofacial deformities, and hemorrhaging) increased in a dose-related manner. The lowest observable adverse effect concentrations (LOAEC) for these gross lesions and cumulative mortalities suggests that current concentrations of PHHs in lake trout from Lake Michigan are above a threshold for adverse effects and these compounds may have implications on the lack of recruitment in certain Great Lakes lake trout populations.

  16. Great Lakes

    NASA Image and Video Library

    2017-12-08

    Bands of lake effect snow drift eastward from the western Great Lakes in this true-color image captured by the NOAA/NASA Suomi NPP satellite's Visible Infrared Imaging Radiometer Suite (VIIRS) instrument on January 5, 2017. National Weather Service forecasters expect light to moderate lake effect snow showers to continue throughout the day today and into Saturday (1/7). Lake-effect snow forms when cold air passes over the warmer waters of a lake. This causes some lake water to evaporate into the air and warm it. This warmer, wetter air rises and cools as it moves away from the lake. When it cools, it releases that moisture and, if it’s cold enough, that moisture turns into snow. Although true-color images like this may appear to be photographs of Earth, they aren't. They are created by combining data from the three color channels on the VIIRS instrument sensitive to the red, green and blue (or RGB) wavelengths of light into one composite image. In addition, data from several other channels are often also included to cancel out or correct atmospheric interference that may blur parts of the image. Credit: NOAA/NASA/Suomi NPP via NOAA's Environmental Visualization Laboratory

  17. Lake Michigan lake trout PCB model forecast post audit

    EPA Science Inventory

    Scenario forecasts for total PCBs in Lake Michigan (LM) lake trout were conducted using the linked LM2-Toxics and LM Food Chain models, supported by a suite of additional LM models. Efforts were conducted under the Lake Michigan Mass Balance Study and the post audit represents th...

  18. Scenario analysis of the impacts of socioeconomic development on phosphorous export and loading from the Dongting Lake watershed, China.

    PubMed

    Hou, Ying; Chen, Weiping; Liao, Yuehua; Luo, Yueping

    2017-12-01

    Socioeconomic development in lake watersheds is closely related with lake nutrient pollution. As the second largest freshwater lake in China, the Dongting Lake has been experiencing an increase in nutrient loading and a growing risk of eutrophication. This study aimed to reveal the likely impacts of the socioeconomic development of the Dongting Lake watershed on the phosphorous pollution in the lake. We estimated the contributions from different sources and sub-watersheds to the total phosphorous (TP) export and loading from the Dongting Lake watershed under two most likely socioeconomic development scenarios. Moreover, we predicted the likely permissible and actual TP loadings to the Dongting Lake. Under both two scenarios, three secondary sub-watersheds-the upper and lower reaches of the Xiang River watershed and the Dongting Lake Area-are expected to dominate the contribution to the TP export from the Dongting Lake watershed in 2020. Three primary sub-watersheds-the Dongting Lake Area, the Xiang River, and the Yuan River watersheds-are predicted to be the major contributors to the TP loading from the entire watershed. The two scenarios are expected to have a slight difference in TP export and lake TP loading. Livestock husbandry is expected to be the predominant anthropogenic TP source in each of the sub-watersheds under both scenarios. Compared to 2010, permissible TP loading is not expected to increase but actual TP loading is predicted to grow significantly in 2020. Our study provides methodologies to identify the key sources and regions of lake nutrient loading from watersheds with complex socioeconomic context, and to reveal the potential influences of socioeconomic development on nutrient pollution in lake watersheds.

  19. Water-quality and lake-stage data for Wisconsin lakes, water year 2005

    USGS Publications Warehouse

    Rose, W.J.; Garn, H.S.; Goddard, G.L.; Marsh, S.B.; Olson, D.L.; Robertson, Dale M.

    2006-01-01

    The U.S. Geological Survey (USGS), in cooperation with local and other agencies, collects data at selected lakes throughout Wisconsin. These data, accumulated over many years, provide a data base for developing an improved understanding of the water quality of lakes. The purpose of this report is to provide information about the chemical and physical charac-teristics of Wisconsin lakes. Data that have been collected at specific lakes, and information to aid in the interpretation of those data, are included in this report. Data collected include measure-ments of in-lake water quality and lake stage. Time series graphs of Secchi depths, surface total phosphorus and chlorophyll a concentrations collected during non-frozen periods are included for all lakes. Graphs of vertical profiles of temperature, dissolved oxygen, pH, and specific conductance are included for sites where these parameters were measured. Descriptive infor-mation for each lake includes: location of the lake, area of the lake's watershed, period for which data are available, revisions to previously published records, and pertinent remarks.

  20. Glacier change and glacial lake outburst flood risk in the Bolivian Andes

    NASA Astrophysics Data System (ADS)

    Kougkoulos, Ioannis; Cook, Simon J.; Edwards, Laura A.; Dortch, Jason; Hoffmann, Dirk

    2017-04-01

    Glaciers of the Bolivian Andes represent an important water resource for Andean cities and mountain communities, yet relatively little work has assessed changes in their extent over recent decades. In many mountain regions, glacier recession has been accompanied by the development of proglacial lakes, which can pose a glacial lake outburst flood (GLOF) hazard. However, no studies have assessed the development of such lakes in Bolivia despite recent GLOF incidents here. Our mapping from satellite imagery reveals an overall areal shrinkage of 228.1 ± 22.8 km2 (43.1%) across the Bolivian Cordillera Oriental between 1986 and 2014. Shrinkage was greatest in the Tres Cruces region (47.3%), followed by the Cordillera Apolobamba (43.1%) and Cordillera Real (41.9%). A growing number of proglacial lakes have developed as glaciers have receded, in accordance with trends in most other deglaciating mountain ranges, although the number of ice-contact lakes has decreased. The reasons for this are unclear, but the pattern of lake change has varied significantly throughout the study period, suggesting that monitoring of future lake development is required as ice continues to recede. Ultimately, we use our 2014 database of proglacial lakes to assess GLOF risk across the Bolivian Andes. We identify 25 lakes that pose a potential GLOF threat to downstream communities and infrastructure. We suggest that further studies of potential GLOF impacts are urgently required.

  1. Glacier change and glacial lake outburst flood risk in the Bolivian Andes

    NASA Astrophysics Data System (ADS)

    Cook, Simon J.; Kougkoulos, Ioannis; Edwards, Laura A.; Dortch, Jason; Hoffmann, Dirk

    2016-10-01

    Glaciers of the Bolivian Andes represent an important water resource for Andean cities and mountain communities, yet relatively little work has assessed changes in their extent over recent decades. In many mountain regions, glacier recession has been accompanied by the development of proglacial lakes, which can pose a glacial lake outburst flood (GLOF) hazard. However, no studies have assessed the development of such lakes in Bolivia despite recent GLOF incidents here. Our mapping from satellite imagery reveals an overall areal shrinkage of 228.1 ± 22.8 km2 (43.1 %) across the Bolivian Cordillera Oriental between 1986 and 2014. Shrinkage was greatest in the Tres Cruces region (47.3 %), followed by the Cordillera Apolobamba (43.1 %) and Cordillera Real (41.9 %). A growing number of proglacial lakes have developed as glaciers have receded, in accordance with trends in most other deglaciating mountain ranges, although the number of ice-contact lakes has decreased. The reasons for this are unclear, but the pattern of lake change has varied significantly throughout the study period, suggesting that monitoring of future lake development is required as ice continues to recede. Ultimately, we use our 2014 database of proglacial lakes to assess GLOF risk across the Bolivian Andes. We identify 25 lakes that pose a potential GLOF threat to downstream communities and infrastructure. We suggest that further studies of potential GLOF impacts are urgently required.

  2. Will hypolimnetic waters become anoxic in all deep tropical lakes?

    PubMed Central

    Fukushima, Takehiko; Matsushita, Bunkei; Subehi, Luki; Setiawan, Fajar; Wibowo, Hendro

    2017-01-01

    To elucidate trends of hypolimnetic oxygen concentrations, vertical distributions of dissolved oxygen were measured in eight deep tropical bodies of water (one natural lake with two basins, five natural lakes, and one reservoir) in Indonesia. A comparison of those concentrations with previously reported data revealed that shoaling of hypolimnetic oxygen-deficient (around a few decimeters to a few meter per year) water had occurred in all of the lakes. Calculated areal hypolimnetic oxygen depletion rates were 0.046–5.9 g m−2 y−1. The oligomictic or meromictic characteristics of the bodies of water suppressed circulation and mixing in the hypolimnions and thus resulted in continuous shoaling of the uppermost oxygen-deficient layers. In some lakes, millions of fish sometimes died suddenly, probably owing to upward movement of oxygen-deficient water to near the surface during periods of strong winds. In the future, the rate of shoaling will be accelerated by human impacts in the basins and by climate warming, the influence of which has already been manifested by rising water temperatures in these lakes. Appropriate monitoring and discussions of future restoration challenges are urgently needed to prevent the hypolimnions of the lakes from becoming completely anoxic.

  3. A coupled lake-atmosphere model (CLAM) and its application to Lake Kinneret

    NASA Astrophysics Data System (ADS)

    Pan, Hai

    1999-08-01

    Kinneret is a 166-km2 lake located in Northern Israel, in the central part of the Jordan Valley, a corridor running from north to south, between the Galilee hills in the west and the Golan Heights in the east. Both the Galilee hills and the Golan Heights reach an elevation of about 400 m above mean sea level (MSL), and the lake is about -210 m (MSL). North of the lake is the mountainous area of the Hermon, culminating at about 2800 m (MSL). About 120 km south of it is the Dead Sea, which is about -410 m (MSL), and about 45 km west of it is the Mediterranean Sea. The complexity of the terrain, combined with relatively arid soil and various ground covers surrounding the lake, results in a very complicated system of atmospheric and lake processes. To understand this system, especially the processes affecting the atmosphere and lake dynamics and thermodynamics, and their effects on Lake Kinneret evaporation, a coupled lake-atmosphere model (CLAM) was developed and applied to the lake region. The CLAM is based on the Regional Atmospheric Modeling System (RAMS) and the oceanic S-coordinate Rutgers University Model (SCRUM). Energy, mass, and momentum are conserved at the interface between the atmosphere and the lake, and appropriate balance equations are applied there. In the atmospheric module, two nested grids are employed to simulate Northern Israel at a resolution of 4 x 4 km2, and the near-lake region at a resolution of 1 x 1 km 2. Synoptic conditions obtained from the National Meteorological Center (NMC) reanalysis are assimilated by the model. Soil moisture, which appears to have a significant impact on atmospheric circulation in this region, was transformed from the normalized difference vegetation index (NDVI). Observations collected during two summers above and inside the lake emphasize the good capability of CLAM to simulate surface fluxes and other microclimatic conditions, as well as lake temperature and currents. Although the lake is small (about 12-km wide

  4. Bathymetric Surveys of Lake Arthur and Raccoon Lake, Pennsylvania, June 2007

    USGS Publications Warehouse

    Hittle, Clinton D.; Ruby, A. Thomas

    2008-01-01

    In spring of 2007, bathymetric surveys of two Pennsylvania State Park lakes were performed to collect accurate data sets of lake-bed elevations and to develop methods and techniques to conduct similar surveys across the state. The lake-bed elevations and associated geographical position data can be merged with land-surface elevations acquired through Light Detection and Ranging (LIDAR) techniques. Lake Arthur in Butler County and Raccoon Lake in Beaver County were selected for this initial data-collection activity. In order to establish accurate water-surface elevations during the surveys, benchmarks referenced to NAVD 88 were established on land at each lake by use of differential global positioning system (DGPS) surveys. Bathymetric data were collected using a single beam, 210 kilohertz (kHz) echo sounder and were coupled with the DGPS position data utilizing a computer software package. Transects of depth data were acquired at predetermined intervals on each lake, and the shoreline was delineated using a laser range finder and compass module. Final X, Y, Z coordinates of the geographic positions and lake-bed elevations were referenced to NAD 83 and NAVD 88 and are available to create bathymetric maps of the lakes.

  5. Are lake sediments mere archives of degraded organic matter? - evidence of rapid biotic changes tracked in sediments of pre-alpine Lake Lunz, Austria

    NASA Astrophysics Data System (ADS)

    Hollaus, Lisa-Maria; Khan, Samiullah; Schelker, Jakob; Ejarque, Elisabet; Battin, Tom; Kainz, Martin

    2016-04-01

    Lake sediments are used as sentinels of changes in organic matter composition and dynamics within lakes and their catchments. In an effort to investigate how past and recent hydrological extreme events have affected organic matter composition in lake sediments, we investigated the biogeochemical composition of sediment cores and settling particles, using sediment traps in the pre-alpine, oligotrophic Lake Lunz, Austria. We assessed annual sedimentation rates using 137Cs and 210Pb, time integrated loads of settling particles, analyze stable carbon (δ13C) and nitrogen (δ15N) isotopes to track changes of carbon sources and trophic compositions, respectively, and use source-specific fatty acids as indicators of allochthonous, bacterial, and algal-derived organic matter. Preliminary results indicate that settling particles of Lake Lunz (33 m depth) contain high algae-derived organic matter, as assessed by long-chain polyunsaturated fatty acids (LC-PUFA), indicating low degradation of such labile organic matter within the water column of this lake. However, LC-PUFA decreased rapidly in sediment cores below the sediment-water interface. Concentrations of phosphorous remained stable throughout the sediment cores (40 cm), suggesting that past changes in climatic forcing did not alter the load of this limiting nutrient in lakes. Ongoing work reveals dramatic biotic changes within the top layers of the sediment cores as evidenced by high numbers of small-bodied cladocerans (e.g., Bosmina) and large-bodied zooplankton (e.g., Daphnia) are only detected at lower sediment layers. Current research on these lake sediments is aimed at investigating how organic matter sources changed during the past century as a result of recorded weather changes.

  6. Comparison of catch and lake trout bycatch in commercial trap nets and gill nets targeting lake whitefish in northern Lake Huron

    USGS Publications Warehouse

    Johnson, James E.; Ebener, Mark P.; Gebhardt, Kenneth; Bergstedt, Roger

    2004-01-01

    We compared seasonal lake whitefish catch rates, lake trout bycatch, and gearinduced lake trout mortality between commercial trap nets and gill nets in north-central Lake Huron. Onboard monitors recorded catches from 260 gill net and 96 trap net lifts from October 1998 through December 1999. Catch rates for lake whitefish were highest in fall for both gear types, reflecting proximity of spawning sites to the study area. Lake whitefish catch rates were also relatively high in spring but low in both gear types in summer. Lake trout were the principal bycatch species in both gears. The lake trout bycatch was lowest in both gear types in fall, highest in gill nets in spring, and highest in trap nets in summer. The ratio of lake trout to legal whitefish (the target species) was highest in summer and lowest in fall in both gear types. The high lake trout ratio in summer was due principally to low catch rates of lake whitefish. All but 3 of 186 live lake trout removed from trap net pots survived for at least two days of observation in laboratory tanks. Therefore, we estimated that post-release survival of trap netted lake trout that had not been entangled in the mesh was 98.4%. In addition, we accounted for stress-induced mortality for lake trout that were live at capture but entangled in the mesh of either gear type. Resulting estimates of lake trout survival were higher in trap nets (87.8%) than in gill nets (39.6%). The number of lake trout killed per lift was highest during summer in trap nets and during spring in gill nets. In trap nets, 85% of dead lake trout were observed to be entangled in the mesh of the pot or tunnels. Survival rates of lake trout in gill nets were higher in our study than reported by others, probably because our nets were hand lifted in a small boat. Our trap net-induced mortality estimates on lake trout were higher than those reported by others because we adjusted our estimates to account for post-release mortality caused by handling and

  7. Lake levels, streamflow, and surface-water quality in the Devils Lake area, North Dakota

    USGS Publications Warehouse

    Wiche, Gregg J.

    1996-01-01

    The Devils Lake Basin is a 3,810-square-mile (mi2) closed basin (fig. 1) in the Red River of the North Basin. About 3,320 mi2 of the total 3,810 mi2 is tributary to Devils Lake; the remainder is tributary to Stump Lake.Since glaciation, the lake level of Devils Lake has fluctuated from about 1,457 feet (ft) above sea level (asl), the natural spill elevation of the lake to the Sheyenne River, to 1,400 ft asl (Aronow, 1957). Although no documented records of lake levels are available before 1867, Upham (1895, p. 595), on the basis of tree-ring chronology, indicated that the lake level was 1,441 ft asl in 1830. Lake levels were recorded sporadically from 1867 to 1901 when the U.S. Geological Survey established a gaging station on Devils Lake. From 1867 to the present (1996), the lake level has fluctuated between a maximum of 1,438.4 ft asl in 1867 and a minimum of 1,400.9 ft asl in 1940 (fig. 2). On July 31, 1996, the lake level was 1,437.8 ft asl, about 15.2 ft higher than the level recorded in February 1993 and the highest level in about 120 years.Since 1993, the lake level of Devils Lake (fig. 2) has risen rapidly in response to above-normal precipitation from the summer of 1993 to the present, and 30,000 acres of land around the lake have been flooded. The above-normal precipitation also has caused flooding elsewhere in the Devils Lake Basin. State highways near Devils Lake are being raised, and some local roads have been closed because of flooding.In response to the flooding, the Devils Lake Basin Interagency Task Force, comprised of many State and Federal agencies, was formed in 1995 to find and propose intermediate (5 years or less) solutions to reduce the effects of high lake levels. In addition to various planning studies being conducted by Federal agencies, the North Dakota State Water Commission has implemented a project to store water on small tracts of land and in the chain of lakes (Sweetwater Lake, Morrison Lake, Dry Lake, Mikes Lake, Chain Lake

  8. Genetic diversity of Diporeia in the Great Lakes: comparison of Lake Superior to the other Great Lakes

    EPA Science Inventory

    Abundances of Diporeia have dropped drastically in the Great Lakes, except in Lake Superior, where data suggest that population counts actually have risen. Various ecological, environmental, or geographic hypotheses have been proposed to explain the greater abundance of Lake Supe...

  9. Water-quality and lake-stage data for Wisconsin lakes, water year 1996

    USGS Publications Warehouse

    ,

    1997-01-01

    The purpose of this report is to provide information about the physical and chemical characteristics of Wisconsin lakes. Data that have been collected at specific lakes, and information to aid in the interpretation of those data, are included in this report. Data collected includes measurements of lake stage and in-lake water quality. Graphs of Secchi depths, surface totalphosphorus and chlorophyll-a concentrations versus time are included for lakes with two or more years of data. Graphs of vertical profiles of temperature, dissolved oxygen, pH, and specific conductance are included for sites where these parameters were measured. Descriptive information for each lake includes: location of the lake, drainage area of the lake's watershed, period for which data are available, revisions to previously published records, and pertinent remarks. Additional data, such as streamflow and water quality in tributary and outlet streams of some of the lakes, are published in another volume: "Water Resources Data-Wisconsin, 1996."

  10. The Ecological History of Lake Ontario According to Phytoplankton

    NASA Astrophysics Data System (ADS)

    Allinger, L. E.; Reavie, E. D.

    2014-12-01

    Lake Ontario's water quality has fluctuated since European settlement and our understanding of the cause-and-effect linkages between observed ecosystem shifts and stressors are evolving and improving. Changes in the physical and chemical environment of the lake due to non-indigenous species, pollution, sedimentation, turbidity and climate change altered the pelagic primary producers, so algal assessments have been valuable for tracking long-term conditions. We present a chronological account of pelagic algal assessments and some nearshore areas to summarize past and present environmental conditions in Lake Ontario. This review particularly focuses on diatom-based assessments as their fossils in sediments have revealed the combined effects of environmental insults and recovery. This review recaps the long-term trends according to three unique regions: Hamilton Harbor, the main lake basin and the Bay of Quinte. We summarize pre-European settlement, eutrophication throughout most of the 20th century, subsequent water quality improvement due to nutrient reductions and filter-feeding dreissenid colonization and contemporary pelagic, shoreline and embayment impairments. Recent pelagic phytoplankton data suggest that although phytoplankton biovolume remains stable, species composition has shifted to an increase in spring eutrophic diatoms and summer blue-green algae. Continued monitoring and evaluation of historical data will assist in understanding and responding to the natural and anthropogenic drivers of Lake Ontario's environmental conditions. As such we have initiated a new paleolimnological investigation, supported by the Environmental Protection Agency-Great Lakes National Program Office, to reconstruct the long-term environmental history of Lake Ontario and will present preliminary results.

  11. Methane oxidation in anoxic lake waters

    NASA Astrophysics Data System (ADS)

    Su, Guangyi; Zopfi, Jakob; Niemann, Helge; Lehmann, Moritz

    2017-04-01

    Freshwater habitats such as lakes are important sources of methante (CH4), however, most studies in lacustrine environments so far provided evidence for aerobic methane oxidation only, and little is known about the importance of anaerobic oxidation of CH4 (AOM) in anoxic lake waters. In marine environments, sulfate reduction coupled to AOM by archaea has been recognized as important sinks of CH4. More recently, the discorvery of anaerobic methane oxidizing denitrifying bacteria represents a novel and possible alternative AOM pathway, involving reactive nitrogen species (e.g., nitrate and nitrite) as electron acceptors in the absence of oxygen. We investigate anaerobic methane oxidation in the water column of two hydrochemically contrasting sites in Lake Lugano, Switzerland. The South Basin displays seasonal stratification, the development of a benthic nepheloid layer and anoxia during summer and fall. The North Basin is permanently stratified with anoxic conditions below 115m water depth. Both Basins accumulate seasonally (South Basin) or permanently (North Basin) large amounts of CH4 in the water column below the chemocline, providing ideal conditions for methanotrophic microorganisms. Previous work revealed a high potential for aerobic methane oxidation within the anoxic water column, but no evidence for true AOM. Here, we show depth distribution data of dissolved CH4, methane oxidation rates and nutrients at both sites. In addition, we performed high resolution phylogenetic analyses of microbial community structures and conducted radio-label incubation experiments with concentrated biomass from anoxic waters and potential alternative electron acceptor additions (nitrate, nitrite and sulfate). First results from the unamended experiments revealed maximum activity of methane oxidation below the redoxcline in both basins. While the incubation experiments neither provided clear evidence for NOx- nor sulfate-dependent AOM, the phylogenetic analysis revealed the

  12. LakeMIP Kivu: Evaluating the representation of a large, deep tropical lake by a set of 1-dimensional lake models

    NASA Astrophysics Data System (ADS)

    Thiery, Wim; Stepanenko, Viktor; Darchambeau, François; Joehnk, Klaus; Martynov, Andrey; Mironov, Dmitrii; Perroud, Marjorie; van Lipzig, Nicole

    2013-04-01

    The African great lakes are of utmost importance for the local economy (fishing), as well as being essential to the survival of the local people. During the last decades, these lakes experienced fast changes in ecosystem structure and functioning and their future evolution is a major concern. In this study, for the first time a set of one-dimensional lake models are evaluated over East-Africa, in particular over Lake Kivu (2.28 °S; 28.98 °E). The unique limnology of meromictic Lake Kivu, with the importance of salinity and geothermal springs in a tropical high-altitude climate, presents a worthy challenge to the 1D-lake models currently involved in the Lake Model Intercomparison Project (LakeMIP). Furthermore, this experiment will serve as the basis for a future, more complex intercomparison, coupling lake models with atmospheric circulation models to analyse climate change effects on the lake. Meteorological observations from two automatic weather stations, one at Kamembe airport (Rwanda, 2003-2008), the other at ISP Bukavu (DRC, 2003-2011), are used to drive each of these models. For the evaluation, a unique dataset is used which contains over 150 temperature profiles recorded since 2002. The standard LakeMIP protocol is adapted to mirror the limnological conditions in Lake Kivu and to unify model parameters as far as possible. Since some lake models do not account for salinity and its effect upon lake stratification, two sets of simulations are performed with each model: one for the freshwater layer only (60 m) and one for the average lake depth (240 m) including salinity. Therewith, on the one hand it is investigated whether each model is able to reproduce the correct mixing regime in Lake Kivu and captures the controlling of this seasonality by the relative humidity, which constrains evaporation except during summer (JJA). On the other hand, the ability of different models to simulate salinity- and geothermal-induced effects upon deep water stratification is

  13. Planetary Lake Lander - A Robotic Sentinel to Monitor a Remote Lake

    NASA Technical Reports Server (NTRS)

    Pedersen, Liam; Smith, Trey; Lee, Susan; Cabrol, Nathalie; Rose, Kevin

    2012-01-01

    The Planetary Lake Lander Project is studying the impact of rapid deglaciation at a high altitude alpine lake in the Andes, where disrupted environmental, physical, chemical, and biological cycles result in newly emerging natural patterns. The solar powered Lake Lander robot is designed to monitor the lake system and characterize both baseline characteristics and impacts of disturbance events such as storms and landslides. Lake Lander must use an onboard adaptive science-on-the-fly approach to return relevant data about these events to mission control without exceeding limited energy and bandwidth resources. Lake Lander carries weather sensors, cameras and a sonde that is winched up and down the water column to monitor temperature, dissolved oxygen, turbidity and other water quality parameters. Data from Lake Lander is returned via satellite and distributed to an international team of scientists via web-based ground data systems. Here, we describe the Lake Lander Project scientific goals, hardware design, ground data systems, and preliminary data from 2011. The adaptive science-on-the-fly system will be described in future papers.

  14. Winter diet of lake herring (Coregonus artedi) in western Lake Superior

    USGS Publications Warehouse

    Link, Jason; Selgeby, James H.; Hoff, Michael H.; Haskell, Craig

    1995-01-01

    Lake herring (Coregonus artedi) and zooplankton samples were simultaneously collected through the ice in the Apostle Islands region of western Lake Superior to provide information on the winter feeding ecology of lake herring. Zooplankton constituted the entire diet of the 38 lake herring collected for this study. We found no evidence of piscivory, although it has been reported by anglers. Diet selectivities were calculated using a Wilcoxon signed-ranks test and showed a preference of lake herring for larger zooplankton, especially Diaptomus sicilis, whereas the smaller copepod,Cyclops bicuspidatus thomasi, and immature copepod stages were selected against. These data document that overwintering copepods are food for a broad size range of lake herring in winter.

  15. The Legacy of Arsenic Contamination from Giant Mine, Northern Canada: An Assessment of Impacts Based on Lake Water and Lake Sediment Core Analysis

    NASA Astrophysics Data System (ADS)

    Blais, J. M.; Korosi, J.

    2016-12-01

    The Giant Mine, which operated between 1948 and 2004 and located near the City of Yellowknife (Northwest Territories, Canada), has left a legacy of arsenic, antimony, and mercury contamination extending to the present day. Over 20,000 tonnes of arsenic trioxide dust was released from roaster stack emissions during its first 10 years of operations, leading to a significant contamination of the surrounding landscape. Here we present a summary of impacts by the recent contamination from Giant Mine on the surrounding region. A survey we conducted of 25 lakes of the region in 2010 revealed that most lake water within a 15 km radius of the roaster stack had arsenic concentrations in water > 10 mg/L, the standard for drinking water, with concentrations declining exponentially with increasing distance from the roaster stack. Sediment cores from lakes were collected near the Giant Mine roaster stack and radiometrically dated by 137Cs and excess 210Pb. Arsenic concentrations in these sediments increased by 1700% during the 1950s and 60s, consistent with the history of arsenic releases from roaster emissions. Correspondingly, pelagic diatoms and cladocerans were extirpated from one lake during this period, based on microfossil analysis of lake sediment deposits. Sediment core analysis further showed that this lake ecosystem has not recovered, even ten years after closure of the mine. Likely causes for the lack of recent recovery are explored with the use of sediment toxicity bioassays, using a novel paleo-ecotoxicological approach of using toxicity assessments of radiometrically dated lake sediment horizons.

  16. Mono Lake, California

    NASA Image and Video Library

    2017-03-24

    In eastern California, along the western edge of the Great Basin, sits Mono Lake. This is a salty remnant of a wetter era. Estimates are that the lake existed for at least 760,000 years. Now surrounded by mountain ranges, however, Mono Lake has no outlet; water entering the lake can only evaporate away, so Mono Lake is saltier than the ocean. South of the lake appear some of the geologic features known as Mono Craters. Geologists estimate that the Mono Craters last erupted about 650 years ago. The image was acquired July 7, 2016, covers an area of 22.6 by 34 km, and is located at 37.9 degrees north, 119 degrees west. http://photojournal.jpl.nasa.gov/catalog/PIA21518

  17. Synthetic Musk Fragrances in Lake Erie and Lake Ontario Sediment Cores

    PubMed Central

    Peck, Aaron M.; Linebaugh, Emily K.; Hornbuckle, Keri C.

    2009-01-01

    Two sediment cores collected from Lake Ontario and Lake Erie were sectioned, dated, and analyzed for five polycyclic musk fragrances and two nitro musk fragrances. The polycyclic musk fragrances were HHCB (Galaxolide), AHTN (Tonalide), ATII (Traseolide), ADBI (Celestolide), and AHMI (Phantolide). The nitro musk fragrances were musk ketone and musk xylene. Chemical analysis was performed by gas chromatography/mass spectrometry (GC/MS) and results from Lake Erie were confirmed using gas chromatography/triple-quadrupole mass spectrometry (GC/MS/MS). The chemical signals observed at the two sampling locations were different from each other due primarily to large differences in the sedimentation rates at the two sampling locations. HHCB was detected in the Lake Erie core while six compounds were detected in the Lake Ontario core. Using measured fragrance and 210Pb activity, the burden of synthetic musk fragrances estimated from these sediment cores is 1900 kg in Lake Erie and 18000 kg in Lake Ontario. The input of these compounds to the lakes is increasing. The HHCB accumulation rates in Lake Erie for 1979-2003 and 1990-2003 correspond to doubling times of 16 ± 4 yr and 8 ± 2 yr, respectively. The results reflect current U.S. production trends for the sum of all fragrance compounds. PMID:17007119

  18. Status of lake trout rehabilitation in the Northern Refuge of Lake Michigan

    USGS Publications Warehouse

    Madenjian, Charles P.; DeSorcie, Timothy J.

    1999-01-01

    The Northern Refuge in Lake Michigan was established in 1985 as part of a rehabilitation program to stock yearling lake trout Salvelinus namaycush in areas with the best potential for success. Stocking of hatchery-reared lake trout within the refuge began in 1986 at three reefs: Boulder Reef, Gull Island Reef, and Richards Reef. On each reef from 1991 to 1997 we conducted gill-net surveys during the fall spawning season to evaluate performance of adult lake trout, and we conducted beam trawl surveys for naturally reproduced age-0 lake trout in the spring. Criteria to evaluate performance included spawner density, growth, maturity, and mortality. We found no evidence of natural reproduction by lake trout from our surveys. Nevertheless, density of spawning lake trout on Boulder Reef (69 fish/305 m of gill net/night) and Gull Island Reef (34 fish/305 m of gill net/night) appeared to be sufficiently high to initiate a self-sustaining population. Growth and maturity rates of lake trout in the Northern Refuge were similar to those for lake trout stocked in the nearshore region of Lake Michigan. In the Northern Refuge, growth rate for the Marquette strain of lake trout was slightly higher than for the Lewis Lake strain. Annual mortality estimates from catch curve analyses ranged from 0.46 to 0.41, and therefore, these estimates approached a level that was considered to be sufficiently low to allow for a self-sustaining population. Thus, it appeared that the lack of evidence for natural reproduction by lake trout in the Northern Refuge should not be attributed to inability of the population to attain a sufficiently large stock of spawners.

  19. Water-Quality and Lake-Stage Data for Wisconsin Lakes, Water Year 2007

    USGS Publications Warehouse

    Wisconsin Water Science Center Lake-Studies Team: Rose, W. J.; Garn, H.S.; Goddard, G.L.; Marsh, S.B.; Olson, D.L.; Robertson, Dale M.

    2008-01-01

    The U.S. Geological Survey (USGS), in cooperation with local and other agencies, collects data at selected lakes throughout Wisconsin. These data, accumulated over many years, provide a data base for developing an improved understanding of the water quality of lakes. To make these data available to interested parties outside the USGS, the data are published annually in this report series. The locations of water-quality and lake-stage stations in Wisconsin for water year 2007 are shown in figure 1. A water year is the 12-month period from October 1 through September 30. It is designated by the calendar year in which it ends. Thus, the period October 1, 2005 through September 30, 2007 is called 'water year 2007.' The purpose of this report is to provide information about the chemical and physical characteristics of Wisconsin lakes. Data that have been collected at specific lakes, and information to aid in the interpretation of those data, are included in this report. Data collected include measurements of in-lake water quality and lake stage. Time series of Secchi depths, surface total phosphorus and chlorophyll a concentrations collected during non-frozen periods are included for all lakes. Graphs of vertical profiles of temperature, dissolved oxygen, pH, and specific conductance are included for sites where these parameters were measured. Descriptive information for each lake includes: location of the lake, area of the lake?s watershed, period for which data are available, revisions to previously published records, and pertinent remarks. Additional data, such as streamflow and water quality in tributary and outlet streams of some of the lakes, are published in another volume: 'Water Resources Data-Wisconsin, 2007.'

  20. Evidence of form II RubisCO (cbbM) in a perennially ice-covered Antarctic lake.

    PubMed

    Kong, Weidong; Dolhi, Jenna M; Chiuchiolo, Amy; Priscu, John; Morgan-Kiss, Rachael M

    2012-11-01

    The permanently ice-covered lakes of the McMurdo Dry Valleys, Antarctica, harbor microbially dominated food webs. These organisms are adapted to a variety of unusual environmental extremes, including low temperature, low light, and permanently stratified water columns with strong chemo- and oxy-clines. Owing to the low light levels during summer caused by thick ice cover as well as 6 months of darkness during the polar winter, chemolithoautotrophic microorganisms could play a key role in the production of new carbon for the lake ecosystems. We used clone library sequencing and real-time quantitative PCR of the gene encoding form II Ribulose 1, 5-bisphosphate carboxylase/oxygenase to determine spatial and seasonal changes in the chemolithoautotrophic community in Lake Bonney, a 40-m-deep lake covered by c. 4 m of permanent ice. Our results revealed that chemolithoautotrophs harboring the cbbM gene are restricted to layers just above the chemo- and oxi-cline (≤ 15 m) in the west lobe of Lake Bonney (WLB). Our data reveal that the WLB is inhabited by a unique chemolithoautotrophic community that resides in the suboxic layers of the lake where there are ample sources of alternative electron sources such as ammonium, reduced iron and reduced biogenic sulfur species. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  1. 42. Peaks of Otter, Abbott Lake. View across lake to ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    42. Peaks of Otter, Abbott Lake. View across lake to peaks of Outter Lodge, completed in 1964. Construction of the lake got underway in 1964. Looking east-northeast. - Blue Ridge Parkway, Between Shenandoah National Park & Great Smoky Mountains, Asheville, Buncombe County, NC

  2. INSECT SPECIES ON VEGETATION OF THE WHITE OAK LAKE BED, OAK RIDGE, TENNESSEE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howden, H.F.; Crossley, D.A. Jr.

    White Oak Lake, Oak Ridge, Tennessee, received lowlevel radioactive wastes from Oak Ridge National Laboratory for 12 years prior to draining in 1955. Studies on the insects inhabiting the vegetation on White Oak Lake bed revealed 401 species present during 1956 and 1957. Most numerous were members of the insect Orders Hymenoptera, Diptera, and Coleoptera. In the summer of 1956, the first summer following draining of the lake, there were relatively fewer species of insects represented by large numbers of individuals. In 1957, there were relatively more species of insects but fewer individuals were present. By the end of themore » summer of 1957, only two years after the lake was drained, the vegetation supported a rich and varied insect fauna. (C.H.)« less

  3. Glacial lake expansion in the central Himalayas by Landsat images, 1990-2010.

    PubMed

    Nie, Yong; Liu, Qiao; Liu, Shiyin

    2013-01-01

    Glacial lake outburst flood (GLOF) is a serious hazard in high, mountainous regions. In the Himalayas, catastrophic risks of GLOFs have increased in recent years because most Himalayan glaciers have experienced remarkable downwasting under a warming climate. However, current knowledge about the distribution and recent changes in glacial lakes within the central Himalaya mountain range is still limited. Here, we conducted a systematic investigation of the glacial lakes within the entire central Himalaya range by using an object-oriented image processing method based on the Landsat Thematic Mapper (TM) or Enhanced Thematic Mapper (ETM) images from 1990 to 2010. We extracted the lake boundaries for four time points (1990, 2000, 2005 and 2010) and used a time series inspection method combined with a consistent spatial resolution of Landsat images that consistently revealed lake expansion. Our results show that the glacial lakes expanded rapidly by 17.11% from 1990 to 2010. The pre-existing, larger glacial lakes, rather than the newly formed lakes, contributed most to the areal expansion. The greatest expansions occurred at the altitudinal zones between 4800 m and 5600 m at the north side of the main Himalayan range and between 4500 m and 5600 m at the south side, respectively. Based on the expansion rate, area and type of glacial lakes, we identified 67 rapidly expanding glacial lakes in the central Himalayan region that need to be closely monitored in the future. The warming and increasing amounts of light-absorbing constituents of snow and ice could have accelerated the melting that directly affected the glacial lake expansion. Across the main central Himalayas, glacial lakes at the north side show more remarkable expansion than those at the south side. An effective monitoring and warning system for critical glacial lakes is urgently needed.

  4. Glacial Lake Expansion in the Central Himalayas By Landsat Images, 1990-2010

    NASA Astrophysics Data System (ADS)

    Nie, Y.; Liu, Q.; Liu, S.

    2014-12-01

    Glacial lake outburst flood (GLOF) is a serious hazard in high, mountainous regions. In the Himalayas, catastrophic risks of GLOFs have increased in recent years because most Himalayan glaciers have experienced remarkable downwasting under a warming climate. However, current knowledge about the distribution and recent changes in glacial lakes within the central Himalaya mountain range is still limited. Here, we conducted a systematic investigation of the glacial lakes within the entire central Himalaya range by using an object-oriented image processing method based on the Landsat Thematic Mapper (TM) or Enhanced Thematic Mapper (ETM) images from 1990 to 2010. We extracted the lake boundaries for four time points (1990, 2000, 2005 and 2010) and used a time series inspection method combined with a consistent spatial resolution of Landsat images that consistently revealed lake expansion. Our results show that the glacial lakes expanded rapidly by 17.11% from 1990 to 2010. The pre-existing, larger glacial lakes, rather than the newly formed lakes, contributed most to the areal expansion. The greatest expansions occurred at the altitudinal zones between 4800 m and 5600 m at the north side of the main Himalayan range and between 4500 m and 5600 m at the south side, respectively. Based on the expansion rate, area and type of glacial lakes, we identified 67 rapidly expanding glacial lakes in the central Himalayan region that need to be closely monitored in the future. The warming and increasing amounts of light-absorbing constituents of snow and ice could have accelerated the melting that directly affected the glacial lake expansion. Across the main central Himalayas, glacial lakes at the north side show more remarkable expansion than those at the south side. An effective monitoring and warning system for critical glacial lakes is urgently needed.

  5. Citizen science datasets reveal drivers of spatial and temporal variation for anthropogenic litter on Great Lakes beaches.

    PubMed

    Vincent, Anna; Drag, Nate; Lyandres, Olga; Neville, Sarah; Hoellein, Timothy

    2017-01-15

    Accumulation of anthropogenic litter (AL) on marine beaches and its ecological effects have been a major focus of research. Recent studies suggest AL is also abundant in freshwater environments, but much less research has been conducted in freshwaters relative to oceans. The Adopt-a-BeachTM (AAB) program, administered by the Alliance for the Great Lakes, organizes volunteers to act as citizen scientists by collecting and maintaining data on AL abundance on Great Lakes beaches. Initial assessments of the AAB records quantified sources and abundance of AL on Lake Michigan beaches, and showed that plastic AL was >75% of AL on beaches across all five Great Lakes. However, AAB records have not yet been used to examine patterns of AL density and composition among beaches of all different substrate types (e.g., parks, rocky, sandy), across land-use categories (e.g., rural, suburban, urban), or among seasons (i.e., spring, summer, and fall). We found that most AL on beaches are consumer goods that most likely originate from beach visitors and nearby urban environments, rather than activities such as shipping, fishing, or illegal dumping. We also demonstrated that urban beaches and those with sand rather than rocks had higher AL density relative to other sites. Finally, we found that AL abundance is lowest during the summer, between the US holidays of Memorial Day (last Monday in May) and Labor Day (first Monday in September) at the urban beaches, while other beaches showed no seasonality. This research is a model for utilizing datasets collected by volunteers involved in citizen science programs, and will contribute to AL management by offering priorities for AL types and locations to maximize AL reduction. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Varved sediments from Lake Czechowskie (Poland) reveal gradual increase in Atlantic influence during the Holocene

    NASA Astrophysics Data System (ADS)

    Ott, Florian; Brauer, Achim; Słowiński, Michał; Wulf, Sabine; Putyrskaya, Victoria; Plessen, Birgit; Błaszkiewicz, Miroslaw

    2015-04-01

    Detailed micro-facies and geochemical analyses have been carried out for the predominantly varved Holocene sediment record of Lake Czechowskie (north-central Poland). The chronology has been established by a multiple dating approach comprising varve counting, AMS 14C dating, 137Cs activity concentration measurements and tephrochronology. The combination of independent dating techniques revealed well-constrained time scales even in phases lacking annual laminations and allows reliable high-resolution archive synchronization. Quantitative (varve thickness variations) and qualitative (sublayer structure) varve parameters as well as geochemical composition have been obtained to gain a comprehensive view of climatic and environmental evolution during the last 11500 years in northern Poland. Five major sedimentological changes have been identified, encompassing transitions from varved to non-varved sediments (and vice versa) at 10.100 and 7.300 cal a BP, respectively, changes in general varve pattern at 6.500 and 4.200 cal a BP and distinct increase of varve thickness accompanied by increased annual variability since 2.800 cal a BP. These changes reflect large-scale reorganization of the climate system throughout the Holocene with increasing influences of the North Atlantic climate system in Poland. Moreover, the observed changes suggest different thresholds and trigger mechanisms over the investigated time period. This study is a contribution to the Virtual Institute of Integrated Climate and Landscape Evolution Analyses - ICLEA - of the Helmholtz Association, grant number VH-VI-415.

  7. Sedimentological and geochemical characteristic of varved lake sediment of the Lake Jelonek (North Poland)

    NASA Astrophysics Data System (ADS)

    Kramkowski, M. A.; Filbrandt-Czaja, A.; Ott, F.; Slowinski, M. M.; Tjallingii, R.; Błaszkiewicz, M.; Brauer, A.

    2016-12-01

    Lake Jelonek is located in Northern Poland. The lake covers an area of 19,9 ha and has a maximum depth of 13,8 m. Three overlapping series of 14,3 m - long sediment records have been cored with an UWITEC 90 mm diameter piston corer from the deepest part of the lake. The cores were split in half, lithologically described, photographed and correlated with each other by 28 marker layers to construct a composite profile covering 1426cm. Here we present detailed varve micro-facies for different sediment intervals and the preliminary chronology based on AMS 14C dating of 10 terrestrial macro remains samples and the Askja AD-1875 tephra. Here we present initial results from thin section analyses for two intervals. First (I) the uppermost 0-256 cm and second (II) the interval from 768-1296 cm. Intercalated between these two varved interval is a thick section (512 cm) of homogeneous organic-ditomaceous sediments. We present varve micro-facies data in combination with µ-XRF element scanning for comprehensive reconstruction of the sedimentation processes in Lake Jelonek. Varve counting reveals that the lower floating varve interval covers the time period from 1850 - 10500 cal a BP, while the uppermost 256 cm varved sediments comprise ca 925 years (2008-1083 AD). The main goal is to synchronize the sediment record from Lake Jelonek with European and Worldly records, to achieve a comprehensive knowledge of landscape forming processes and to distinguish between local, regional and global impacts during the past. This study is a contribution to the Virtual Institute of Integrated Climate and Landscape Evolution Analysis -ICLEA- of the Helmholtz Association; grant number VH-VI-415, National Science Centre, Poland grant 2015/19/N/ST10/02655 and from the Science and Research Funds for 2015-2016 allocated to a co-financed international project, CONTRACT No. 3500/ICLEA/15/2016/0.

  8. Patterns of egg deposition by lake trout and lake whitefish at Tawas artificial Reef, Lake Huron, 1990-1993

    USGS Publications Warehouse

    Foster, N.R.; Kennedy, G.W.; Munawar, M.; Edsall, T.; Leach, J.

    1995-01-01

    In August 1987, the Michigan Department of Natural Resources (MDNR), with the help and co-sponsorship of Walleyes for Iosco County, constructed Tawas artificial reef to improve recreational fishing in Tawas Bay. Post-construction assessment in October, 1987, by the MDNR found twice as many adult lake trout in a gill net set on the reef as in a similar net set off the reef, indicating that lake trout already had begun to investigate this new habitat. Similar netting efforts in October 1989 caught three times as many adults on the reef as off it, even though the on-reef net was set for less than one third as long a period. Using a remotely operated vehicle (ROV), we detected prespawning aggregations of lake trout on the reef in fall 1989, and MDNR biologists set emergent fly traps on the reef in April-May 1990-1991. These fry traps captured several newly emerged lake trout and lake whitefish fry, demonstrating that eggs of both species has hatched successfully. Gill netting in 1992-1993 by U.S. Fish and Wildlife Service biologists netted large numbers of ripe lake trout in late October and ripe lake whitefish in early to mid-November. The purpose of this paper is to describe the relative quantities of eggs deposited and the spatial patterns of egg deposition by lake trout and lake whitefish at Tawas artificial reef during 1990-1993.

  9. Circulation patterns in active lava lakes

    NASA Astrophysics Data System (ADS)

    Redmond, T. C.; Lev, E.

    2014-12-01

    showed symmetrical peaks of acceleration and deceleration. In summary, extended observations at lava lakes reveal patterns of circulations at different time scales, yielding insight into different processes controlling the exchange of gas and fluids between the magma chamber and conduit, and the surface and atmosphere.

  10. Meteotsunamis in the Laurentian Great Lakes

    PubMed Central

    Bechle, Adam J.; Wu, Chin H.; Kristovich, David A. R.; Anderson, Eric J.; Schwab, David J.; Rabinovich, Alexander B.

    2016-01-01

    The generation mechanism of meteotsunamis, which are meteorologically induced water waves with spatial/temporal characteristics and behavior similar to seismic tsunamis, is poorly understood. We quantify meteotsunamis in terms of seasonality, causes, and occurrence frequency through the analysis of long-term water level records in the Laurentian Great Lakes. The majority of the observed meteotsunamis happen from late-spring to mid-summer and are associated primarily with convective storms. Meteotsunami events of potentially dangerous magnitude (height > 0.3 m) occur an average of 106 times per year throughout the region. These results reveal that meteotsunamis are much more frequent than follow from historic anecdotal reports. Future climate scenarios over the United States show a likely increase in the number of days favorable to severe convective storm formation over the Great Lakes, particularly in the spring season. This would suggest that the convectively associated meteotsunamis in these regions may experience an increase in occurrence frequency or a temporal shift in occurrence to earlier in the warm season. To date, meteotsunamis in the area of the Great Lakes have been an overlooked hazard. PMID:27883066

  11. Lake Powell

    NASA Image and Video Library

    2007-09-20

    The white ring around Lake Powell tells the story. The surface is down 98 feet. This is critical, because Powell, Lake Mead, and other lakes along the Colorado River provide water for millions of people in five states. We are in the eighth year of a drought on the Colorado River. This year was the driest year ever reported in Southern California, and there is a severe drought in Northern California, down to less than 30-percent of snow pack. This ASTER image of part of Lake Powell was acquired in 2001. The gray area depicts the shrunken, reduced 2007 lake extent compared to the extended, larger black area in 2001. The image covers an area of 24 x 30 km, and is centered near 37.1 degrees north latitude, 111.3 degrees west longitude. This image from NASA Terra satellite. http://photojournal.jpl.nasa.gov/catalog/PIA10614

  12. National Lakes Assessment: A Collaborative Survey of the Nation's Lakes

    EPA Science Inventory

    The National Lakes Assessment A Collaborative Survey of the Nation's Lakes presents the results of an unprecedented assessment of the nation’s lakes. This report is part of the National Aquatic Resource Surveys, a series of statistically based surveys designed to provide the pub...

  13. Variation laws and release characteristics of phosphorus on surface sediment of Dongting Lake.

    PubMed

    Zhu, Guangrui; Yang, Ying

    2018-05-01

    The variation trend and growth rate of P were analyzed by the concentration of the phosphorus fraction on surface sediment of Dongting Lake from 2012 to 2016, to reveal the cumulative effect of P in the actual environment. Meanwhile, the adsorption kinetics and adsorption isotherm were employed to examine the P-release possibility of sediment, which predicts the yearly released sediment phosphorus in Dongting Lake. The actual growth rate of TP (Total Phosphorus) is 53 mg·(kg·year) -1 in East Dongting Lake, 39 mg·(kg·year) -1 in South Dongting Lake, and 29 mg·(kg·year) -1 in West Dongting Lake, while the sum of the phosphorus fraction growth rates has little difference from the rate of TP in sediments of the three areas of Dongting Lake. Furthermore, the Elovich model and the Langmuir crossover-type equations are established to present the adsorption characteristic of sediment in Dongting Lake; the result shows that the sediments play a source role for phosphorus in East and South Dongting Lake from zero equilibrium phosphorus concentration (EPC 0 ) in the present situation, but an adsorption effect on TP is shown in West Dongting Lake. When the conditions of environment change are ignored, the maximum P-sorption level in sediments of East Dongting Lake will reach in 2040 according to the actual growth rate of sediments, while that in West Dongting Lake and South Dongting Lake will be in 2046 and 2061, respectively.

  14. Hydrology of the Lake Deaton and Lake Okahumpka area, Northeast Sumter County, Florida

    USGS Publications Warehouse

    Simonds, Edward P.; German, E.R.

    1980-01-01

    The Floridan aquifer in the Lake Deaton and Lake Okahumpka area is 50 to 130 feet below land surface. During the 16-year period 1963-78 lake evaporation exceeded rainfall by 0.4 inches. Drainage from Lake Deaton and its surrounding area goes into Chitty Chatty Creek and on the Hogeye Sink when the altitude of the potentiometric surface of the Floridan aquifer is low. During a higher altitude of the Floridan potentiometric surface, Hogeye Sink may discharge water; this water, along with the normal runoff, goes into Lake Okahumpka. Average lake fluctuation is 1.5 to 2.0 feet per year. Lake Deaton supports a large population of blue-green algae and Lake Okahumpka is choked with aquatic plants. The water quality of the two lakes differ, with Lake Deaton having a sodium chloride water and Lake Okahumpka having a calcium bicarbonate water. Analysis of water and bottom material samples showed that only cadmium and mercury exceeded the Florida Department of Environmental Regulation 's criteria for Class III waters; however, the amounts detected were at or slightly above the limits of the analytical method. (USGS)

  15. Miniature Cryogenic Valves for a Titan Lake Sampling System

    NASA Technical Reports Server (NTRS)

    Sherrit, Stewart; Zimmerman, Wayne; Takano, Nobuyuki; Avellar, Louisa

    2014-01-01

    The Cassini mission has revealed Titan to be one of the most Earthlike worlds in the Solar System complete with many of the same surface features including lakes, river channels, basins, and dunes. But unlike Earth, the materials and fluids on Titan are composed of cryogenic organic compounds with lakes of liquid methane and ethane. One of the potential mission concepts to explore Titan is to land a floating platform on one of the Titan Lakes and determine the local lake chemistry. In order to accomplish this within the expected mass volume and power budgets there is a need to pursue the development for a low power lightweight cryogenic valves which can be used along with vacuum lines to sample lake liquid and to distribute to various instruments aboard the Lander. To meet this need we have initiated the development of low power cryogenic valves and actuators based on a single crystal piezoelectric flextensional stacks produced by TRS Ceramics Inc. Since the origin of such high electromechanical properties of Relaxor-PT single crystals is due to the polarization rotation effect, (i.e., intrinsic contributions), the strain per volt decrease at cryogenic temperatures is much lower than in standard Lead Zirconate Titanate (PZT) ceramics. This makes them promising candidates for cryogenic actuators with regards to the stroke for a given voltage. This paper will present our Titan Lake Sampling and Sample Handling system design and the development of small cryogenic piezoelectric valves developed to meet the system specifications.

  16. Final Results From the Circumarctic Lakes Observation Network (CALON) Project

    NASA Astrophysics Data System (ADS)

    Hinkel, K. M.; Arp, C. D.; Eisner, W. R.; Frey, K. E.; Grosse, G.; Jones, B. M.; Kim, C.; Lenters, J. D.; Liu, H.; Townsend-Small, A.

    2015-12-01

    Since 2012, the physical and biogeochemical properties of ~60 lakes in northern Alaska have been investigated under CALON, a project to document landscape-scale variability of Arctic lakes in permafrost terrain. The network has ten nodes along two latitudinal transects extending inland 200 km from the Arctic Ocean. A meteorological station is deployed at each node and six representative lakes instrumented and continuously monitored, with winter and summer visits for synoptic assessment of lake conditions. Over the 4-year period, winter and summer climatology varied to create a rich range of lake responses over a short period. For example, winter 2012-13 was very cold with a thin snowpack producing thick ice across the region. Subsequent years had relatively warm winters, yet regionally variable snow resulted in differing gradients of ice thickness. Ice-out timing was unusually late in 2014 and unusually early in 2015. Lakes are typically well-mixed and largely isothermal, with minor thermal stratification occurring in deeper lakes during calm, sunny periods in summer. Lake water temperature records and morphometric data were used to estimate the ground thermal condition beneath 28 lakes. Application of a thermal equilibrium steady-state model suggests a talik penetrating the permafrost under many larger lakes, but lake geochemical data do not indicate a significant contribution of subpermafrost groundwater. Biogeochemical data reveal distinct spatial and seasonal variability in chlorophyll biomass, chromophoric dissolved organic carbon (CDOM), and major cations/anions. Generally, waters sampled beneath ice in April had distinctly higher concentrations of inorganic solutes and methane compared with August. Chlorophyll concentrations and CDOM absorption were higher in April, suggesting significant biological/biogeochemical activity under lake ice. Lakes are a positive source of methane in summer, and some also emit nitrous oxide and carbon dioxide. As part of the

  17. Strand-plain evidence for late Holocene lake-level variations in Lake Michigan

    USGS Publications Warehouse

    Thompson, T.A.; Baedke, S.J.

    1997-01-01

    Lake level is a primary control on shoreline behavior in Lake Michigan. The historical record from lake-level gauges is the most accurate source of information on past lake levels, but the short duration of the record does not permit the recognition of long-term patterns of lake-level change (longer than a decade or two). To extend the record of lake-level change, the internal architecture and timing of development of five strand plains of late Holocene beach ridges along the Lake Michigan coastline were studied. Relative lake-level curves for each site were constructed by determining the elevation of foreshore (swash zone) sediments in the beach ridges and by dating basal wetland sediments in the swales between ridges. These curves detect long-term (30+ yr) lake-level variations and differential isostatic adjustments over the past 4700 yr at a greater resolution than achieved by other studies. The average timing of beach-ridge development for all sites is between 29 and 38 yr/ridge. This correspondence occurs in spite of the embayments containing the strand plains being different in size, orientation, hydrographic regime, and available sediment type and caliber. If not coincidental, all sites responded to a lake-level fluctuation of a little more than three decades in duration and a range of 0.5 to 0.6 m. Most pronounced in the relative lake-level curves is a fluctuation of 120-180 yr in duration. This ???150 yr variation is defined by groups of four to six ridges that show a rise and fall in foreshore elevations of 0.5 to 1.5 m within the group. The 150 yr variation can be correlated between sites in the Lake Michigan basin. The ???30 and 150 yr fluctuations are superimposed on a long-term loss of water to the Lake Michigan basin and differential rates of isostatic adjustment.

  18. Tides and lake-level variations in the great Patagonian lakes: Observations, modelling and geophysical implications.

    NASA Astrophysics Data System (ADS)

    Marderwald, Eric; Richter, Andreas; Horwath, Martin; Hormaechea, Jose Luis; Groh, Andreas

    2016-04-01

    In Patagonia, the glacial-isostatic adjustment (GIA) to past ice-mass changes (Ivins & James 2004; Klemann et al. 2007) is of particular interest in the context of the determination of the complex regional rheology related to plate subduction in a triple-junction constellation. To further complicate the situation, GIA is overlaid with load deformation not only due to present ice mass changes but also due to water-level changes in the lakes surrounding the icefields and the ocean surrounding Patagonia. These elastic deformations affect the determination of glacial-isostatic uplift rates from GPS observations (Dietrich et al. 2010; Lange et al. 2014). Observations of lake tides and their comparison with the theoretical tidal signal have been used previously to validate predictions of ocean tidal loading and have revealed regional deviations from conventional global elastic earth models (Richter et al. 2009). In this work we investigate the tides and lake-level variations in Lago Argentino, Lago Viedma, Lago San Martín/O'Higgins and Lago Buenos Aires/General Carrera. This allows us to test, among other things, the validity of tidal loading models. We present pressure tide-gauge records from two sites in Lago Argentino extending over 2.5 years (Richter et al. 2015). These observations are complemented by lake-level records provided by the Argentine National Hydrometeorological Network. Based on these lake-level time series the principal processes affecting the lake level are identified and quantified. Lake-level changes reflecting variations in lake volume are dominated by a seasonal cycle exceeding 1 m in amplitude. Lake-volume changes occur in addition with a daily period in response to melt water influx from surrounding glaciers. In Lago Argentino sporadic lake-volume jumps are caused by bursting of the ice dam of Perito Moreno glacier. Water movements in these lakes are dominated by surface seiches reaching 20 cm in amplitude. A harmonic tidal analysis of the lake

  19. Integrating limnological characteristics of high mountain lakes into the landscape of a natural area

    USGS Publications Warehouse

    Larson, Gary L.; Wones, A.; McIntire, C.D.; Samora, B.

    1994-01-01

    A general conceptual watershed-lake model of the complex interactions among climatic conditions, watershed location and characteristics, lake morphology, and fish predation was used to evaluate limnological characteristics of high mountain lakes. Our main hypothesis was that decreasing elevation in mountainous terrain corresponds to an increase in diversity of watershed size and lake area, depth, temperature, nutrient concentrations, and productivity. A second hypothesis was that watershed location and aspect relative to climatic gradients within mountainous terrain influences the limnological characteristics of the lakes. We evaluated these hypotheses by examining watershed location, aspect and size; lake morphology; water quality; and phytoplankton and zooplankton community characteristics among high mountain forest and subalpine lakes in Mount Rainier National Park. Although many of the comparisons between all forest and subalpine lakes were statistically insignificant, the results revealed trends that were consistent with our hypotheses. The forest lake group included more lakes with larger watersheds, larger surface areas, greater depths, higher concentrations of nutrients, and higher algal biovolumes than did the group of subalpine lakes. Deep lakes, which were mostly of the forest lake type, exhibited thermal stratification and relatively high values of some of the water-quality variables near the lake bottoms. However, the highest near-surface water temperatures and phytoplankton densities and the taxonomic structures of the phytoplankton and zooplankton assemblages were more closely related to geographical location, which corresponded to a west-east climate gradient in the park, than to lake type. Some crustacean and rotifer taxa, however, were limited in distribution by lake type. Fish predation did not appear to play an important role in the structure of the crustacean zooplankton communities at the genus level with the exception of Mowich Lake, where

  20. Water-Quality and Lake-Stage Data for Wisconsin Lakes, Water Year 2006

    USGS Publications Warehouse

    Rose, W.J.; Garn, H.S.; Goddard, G.L.; Marsh, S.B.; Olson, D.L.; Robertson, Dale M.

    2007-01-01

    The U.S. Geological Survey (USGS), in cooperation with local and other agencies, collects data at selected lakes throughout Wisconsin. These data, accumulated over many years, provide a data base for developing an improved understanding of the water quality of lakes. To make these data available to interested parties outside the USGS, the data are published annually in this report series. The locations of water-quality and lake-stage stations in Wisconsin for water year 2006 are shown in figure 1. A water year is the 12-month period from October 1 through September 30. It is designated by the calendar year in which it ends. Thus, the period October 1, 2005 through September 30, 2006 is called 'water year 2006.' The purpose of this report is to provide information about the chemical and physical characteristics of Wisconsin lakes. Data that have been collected at specific lakes, and information to aid in the interpretation of those data, are included in this report. Data collected include measurements of in-lake water quality and lake stage. Time series of Secchi depths, surface total phosphorus and chlorophyll a concentrations collected during non-frozen periods are included for all lakes. Graphs of vertical profiles of temperature, dissolved oxygen, pH, and specific conductance are included for sites where these parameters were measured. Descriptive information for each lake includes: location of the lake, area of the lake's watershed, period for which data are available, revisions to previously published records, and pertinent remarks. Additional data, such as streamflow and water quality in tributary and outlet streams of some of the lakes, are published in another volume: 'Water Resources Data-Wisconsin, 2006.' Water-resources data, including stage and discharge data at most streamflow-gaging stations, are available through the World Wide Web on the Internet. The Wisconsin Water Science Center's home page is at http://wi.water.usgs.gov/. Information on the

  1. Diet and prey selection by Lake Superior lake trout during springs 1986-2001

    USGS Publications Warehouse

    Ray, B.A.; Hrabik, T.R.; Ebener, M.P.; Gorman, O.T.; Schreiner, D.R.; Schram, S.T.; Sitar, S.P.; Mattes, W.P.; Bronte, C.R.

    2007-01-01

    We describe the diet and prey selectivity of lean (Salvelinus namaycush namaycush) and siscowet lake trout (S. n. siscowet) collected during spring (April–June) from Lake Superior during 1986–2001. We estimated prey selectivity by comparing prey numerical abundance estimates from spring bottom trawl surveys and lake trout diet information in similar areas from spring gill net surveys conducted annually in Lake Superior. Rainbow smelt (Osmerus mordax) was the most common prey and was positively selected by both lean and siscowet lake trout throughout the study. Selection by lean lake trout for coregonine (Coregonus spp.) prey increased after 1991 and corresponded with a slight decrease in selection for rainbow smelt. Siscowet positively selected for rainbow smelt after 1998, a change that was coincident with the decrease in selection for this prey item by lean lake trout. However, diet overlap between lean and siscowet lake trout was not strong and did not change significantly over the study period. Rainbow smelt remains an important prey species for lake trout in Lake Superior despite declines in abundance.

  2. Biology, population structure, and estimated forage requirements of lake trout in Lake Michigan

    USGS Publications Warehouse

    Eck, Gary W.; Wells, LaRue

    1983-01-01

    Data collected during successive years (1971-79) of sampling lake trout (Salvelinus namaycush) in Lake Michigan were used to develop statistics on lake trout growth, maturity, and mortality, and to quantify seasonal lake trout food and food availability. These statistics were then combined with data on lake trout year-class strengths and age-specific food conversion efficiencies to compute production and forage fish consumption by lake trout in Lake Michigan during the 1979 growing season (i.e., 15 May-1 December). An estimated standing stock of 1,486 metric tons (t) at the beginning of the growing season produced an estimated 1,129 t of fish flesh during the period. The lake trout consumed an estimated 3,037 t of forage fish, to which alewives (Alosa pseudoharengus) contributed about 71%, rainbow smelt (Osmerus mordax) 18%, and slimy sculpins (Cottus cognatus) 11%. Seasonal changes in bathymetric distributions of lake trout with respect to those of forage fish of a suitable size for prey were major determinants of the size and species compositions of fish in the seasonal diet of lake trout.

  3. Morphology, volcanism, and mass wasting in Crater Lake, Oregon

    USGS Publications Warehouse

    Bacon, C.R.; Gardner, J.V.; Mayer, L.A.; Buktenica, M.W.; Dartnell, P.; Ramsey, D.W.; Robinson, J.E.

    2002-01-01

    Crater Lake was surveyed nearly to its shoreline by high-resolution multibeam echo sounding in order to define its geologic history and provide an accurate base map for research and monitoring surveys. The bathymetry and acoustic backscatter reveal the character of landforms and lead to a chronology for the concurrent filling of the lake and volcanism within the ca. 7700 calibrated yr B.P. caldera. The andesitic Wizard Island and central-plattform volcanoes are composed of sequences of lava deltas that record former lake levels and demonstrate simultaneous activity at the two vents. Wizard Island eruptions ceased when the lake was ~80 m lower than at present. Lava streams from prominent channels on the surface of the central platform descended to feed extensive subaqueous flow fields on the caldera floor. The Wizard Island and central-platform volcanoes, andesitic Merriam Cone, and a newly discovered probable lava flow on the eastern floor of the lake apparently date from within a few hundred years of caldera collapse, whereas a small rhydacite dome was emplaced on the flank of Wizard Island at ca. 4800 cal. yr B.P. Bedrock outcrops on the submerged caldera walls are shown in detail and, in some cases, can be correlated with exposed geologic units of Mount Mazama. Fragmental debris making up the walls elsewhere consists of narrow talus cones forming a dendritic pattern that leads to fewer, wider ridges downslope. Hummocky topography and scattered blocks up to ~280 m long below many of the embayments in the caldera wall mark debris-avalanche deposits that probably formed in single events and commonly are affected by secondary failures. The flat-floored, deep basins contain relatively fine-grained sediment transported from the debris aprons by sheet-flow turbidity currents. Crater Lake apparently filled rapidly (ca. 400-750 yr) until reaching a permeable layer above glaciated lava identified by the new survey in the northeast caldera wall at ~1845 m elevation

  4. Lakes and lake-like waters of the Hawaiian Archipelago

    USGS Publications Warehouse

    Maciolek, J.A.

    1982-01-01

    This summary of Hawaiian lacustrine limnology is based on 12 years of field and literature surveys of archipelagic inland waters. Lakes here are distinguished from other standing waters by limits on surface oceanic area (> 0.1 ha) and depth (> 2 m), and by the absence of flatural surface oceanic connection. A variety of extinct and existing water bodies, sometimes referred to as lakes, are noted. Six lakes are described. Five of them are in crater basins, 3 are freshwater, and 2 are elevated (highest = 3969 m). The scarcity of elevated lakes results from general permeability of the substrata. Among the 6 lakes, surface areas range from 0.22 to 88 ha and maximum depths from 3 to 248 m. Naturally occurring aquatic biota generally is low in species diversity except for phytoplankton; fishes and submersed vascular plants are absent. Two lowland lakes, freshwater Green (Wai a Pele) and saline Kauhak6, are described for the first time. Profundal Kauhak6, 248 m deep, has a surface area of only 0.35 ha, which results in an extraordinary relative depth of 370%. It is permanently stratified, a condition apparently due primarily to the unique morphometry of its basin. 

  5. Redox stratification of an ancient lake in Gale crater, Mars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hurowitz, Joel A.; Grotzinger, John P.; Fischer, Woodward W.

    In 2012, NASA’s Curiosity rover landed on Mars to assess its potential as a habitat for past life and investigate the paleoclimate record preserved by sedimentary rocks inside the ~150-kilometer-diameter Gale impact crater. Geological reconstructions from Curiosity rover data have revealed an ancient, habitable lake environment fed by rivers draining into the crater. We synthesize geochemical and mineralogical data from lake-bed mudstones collected during the first 1300 martian solar days of rover operations in Gale. We present evidence for lake redox stratification, established by depth-dependent variations in atmospheric oxidant and dissolved-solute concentrations. Paleoclimate proxy data indicate that a transition frommore » colder to warmer climate conditions is preserved in the stratigraphy. Lastly, a late phase of geochemical modification by saline fluids is recognized.« less

  6. Redox stratification of an ancient lake in Gale crater, Mars

    DOE PAGES

    Hurowitz, Joel A.; Grotzinger, John P.; Fischer, Woodward W.; ...

    2017-06-02

    In 2012, NASA’s Curiosity rover landed on Mars to assess its potential as a habitat for past life and investigate the paleoclimate record preserved by sedimentary rocks inside the ~150-kilometer-diameter Gale impact crater. Geological reconstructions from Curiosity rover data have revealed an ancient, habitable lake environment fed by rivers draining into the crater. We synthesize geochemical and mineralogical data from lake-bed mudstones collected during the first 1300 martian solar days of rover operations in Gale. We present evidence for lake redox stratification, established by depth-dependent variations in atmospheric oxidant and dissolved-solute concentrations. Paleoclimate proxy data indicate that a transition frommore » colder to warmer climate conditions is preserved in the stratigraphy. Lastly, a late phase of geochemical modification by saline fluids is recognized.« less

  7. Do invasive quagga mussels alter CO2 dynamics in the Laurentian Great Lakes?

    NASA Astrophysics Data System (ADS)

    Lin, Peng; Guo, Laodong

    2016-12-01

    The Laurentian Great Lakes have experienced unprecedented ecological and environmental changes, especially after the introduction of invasive quagga mussel (Dreissena rostriformis bugensis). While impacts on ecological functions have been widely recognized, the response of carbon dynamics to invasive species remains largely unknown. We report new CO2 data showing significant increases in pCO2 (up to 800 μatm in Lake Michigan) and CO2 emission fluxes in most of the Great Lakes compared to those prior to or during the early stage of the colonization of invasive quagga mussels. The increased CO2 supersaturation is most prominent in Lakes Huron and Michigan, followed by Lakes Ontario and Erie, but no evident change was observed in Lake Superior. This trend mirrors the infestation extent of invasive quagga mussels in the Great Lakes and is consistent with the decline in primary production and increase in water clarity observed pre- and post-Dreissena introduction, revealing a close linkage between invasive species and carbon dynamics. The Great Lakes have become a significant CO2 source to the atmosphere, emitting >7.7 ± 1.0 Tg-C annually, which is higher than the organic carbon burial rate in global inland-seas and attesting to the significant role of the Laurentian Great Lakes in regional/global CO2 budget and cycling.

  8. Lake Powell

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The white ring around Lake Powell tells the story. The surface is down 98 feet. This is critical, because Powell, Lake Mead, and other lakes along the Colorado River provide water for millions of people in five states. We are in the eighth year of a drought on the Colorado River. This year was the driest year ever reported in Southern California, and there is a severe drought in Northern California, down to less than 30-percent of snow pack. This ASTER image of part of Lake Powell was acquired in 2001. The gray area depicts the shrunken, reduced 2007 lake extent compared to the extended, larger black area in 2001.

    The image covers an area of 24 x 30 km, and is centered near 37.1 degrees north latitude, 111.3 degrees west longitude.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

  9. Composition Influences the Pathway but not the Outcome of the Metabolic Response of Bacterioplankton to Resource Shifts

    PubMed Central

    Comte, Jérôme; del Giorgio, Paul A.

    2011-01-01

    Bacterioplankton community metabolism is central to the functioning of aquatic ecosystems, and strongly reactive to changes in the environment, yet the processes underlying this response remain unclear. Here we explore the role that community composition plays in shaping the bacterial metabolic response to resource gradients that occur along aquatic ecotones in a complex watershed in Québec. Our results show that the response is mediated by complex shifts in community structure, and structural equation analysis confirmed two main pathways, one involving adjustments in the level of activity of existing phylotypes, and the other the replacement of the dominant phylotypes. These contrasting response pathways were not determined by the type or the intensity of the gradients involved, as we had hypothesized, but rather it would appear that some compositional configurations may be intrinsically more plastic than others. Our results suggest that community composition determines this overall level of community plasticity, but that composition itself may be driven by factors independent of the environmental gradients themselves, such that the response of bacterial communities to a given type of gradient may alternate between the adjustment and replacement pathways. We conclude that community composition influences the pathways of response in these bacterial communities, but not the metabolic outcome itself, which is driven by the environment, and which can be attained through multiple alternative configurations. PMID:21980410

  10. Ciscoes (Coregonus, subgenus Leucichthys) of the Laurentian Great Lakes and Lake Nipigon

    USGS Publications Warehouse

    Eshenroder, Randy L.; Vecsei, Paul; Gorman, Owen T.; Yule, Daniel; Pratt, Thomas C.; Mandrak, Nicholas E.; Bunnell, David B.; Muir, Andrew M.

    2016-01-01

    This study of the ciscoes (Coregonus, subgenus Leucichthys) of the Great Lakes and Lake Nipigon represents a furtherance through 2015 of field research initiated by Walter Koelz in 1917 and continued by Stanford Smith in the mid-1900s—a period spanning nearly a century. Like Koelz’s study, this work contains information on taxonomy, geographical distribution, ecology, and status of species (here considered forms). Of the seven currently recognized forms (C. artedi, C. hoyi, C. johannae, C. kiyi, C. nigripinnis, C. reighardi, and C. zenithicus) described by Koelz as major in his 1929 monograph, two (C. johannae and C. reighardi) are extinct. In addition, C. alpenae, described by Koelz but subsequently synonymized with C. zenithicus, although extinct, is recognized as valid making a total of eight major forms. Six of these forms, all but C. artedi and C. hoyi, have been lost from Lake Michigan, and seven have been lost from Lake Huron, leaving in Lake Huron only C. artedi and an introgressed deepwater form that we term a hybrid swarm. C. artedi appears, like its sister form C. alpenae, to have been lost from Lake Erie. Only C. artedi remains extant in Lake Ontario, its three sister forms (C. hoyi, C. kiyi, and C. reighardi) having disappeared long ago.Lakes Superior and Nipigon have retained their original species flocks consisting of four forms each: C. artedi, C. hoyi, and C. zenithicus in both lakes; C. kiyi in Lake Superior; and C. nigripinnis in Lake Nipigon. Morphological deviations from the morphotypes described by Koelz have been modest in contemporary samples. Overall, C. kiyi and C. artedi were the most morphologically stable forms while C. hoyi, C. nigripinnis, and C. zenithicus were the least stable. Although contemporary populations of C. artedi from Lakes Michigan and Huron are highly diverged from the morphotypes described by Koelz, the contemporary samples were of undescribed deep-bodied forms unlikely to have been sampled by Koelz because of

  11. Sedimentary constraints on late Quaternary lake-level fluctuations at Bear Lake, Utah and Idaho

    USGS Publications Warehouse

    Smoot, J.P.; Rosenbaum, J.G.

    2009-01-01

    A variety of sedimentological evidence was used to construct the lake-level history for Bear Lake, Utah and Idaho, for the past ???25,000 years. Shorelines provide evidence of precise lake levels, but they are infrequently preserved and are poorly dated. For cored sediment similar to that in the modern lake, grain-size distributions provide estimates of past lake depths. Sedimentary textures provide a highly sensitive, continuous record of lake-level changes, but the modern distribution of fabrics is poorly constrained, and many ancient features have no modern analog. Combining the three types of data yields a more robust lake-level history than can be obtained from any one type alone. When smooth age-depth models are used, lake-level curves from multiple cores contain inconsistent intervals (i.e., one record indicates a rising lake level while another record indicates a falling lake level). These discrepancies were removed and the multiple records were combined into a single lake-level curve by developing age-depth relations that contain changes in deposition rate (i.e., gaps) where indicated by sedimentological evidence. The resultant curve shows that, prior to 18 ka, lake level was stable near the modern level, probably because the lake was overflowing. Between ca. 17.5 and 15.5 ka, lake level was ???40 m below the modern level, then fluctuated rapidly throughout the post-glacial interval. Following a brief rise centered ca. 15 ka ( = Raspberry Square phase), lake level lowered again to 15-20 m below modern from ca. 14.8-11.8 ka. This regression culminated in a lowstand to 40 m below modern ca. 12.5 ka, before a rapid rise to levels above modern ca. 11.5 ka. Lake level was typically lower than present throughout the Holocene, with pronounced lowstands 15-20 m below the modern level ca. 10-9, 7.0, 6.5-4.5, 3.5, 3.0-2.5, 2.0, and 1.5 ka. High lake levels near or above the modern lake occurred ca. 8.5-8.0, 7.0-6.5, 4.5-3.5, 2.5, and 0.7 ka. This lake-level history

  12. Under trees and water at Crater Lake National Park, Oregon

    USGS Publications Warehouse

    Robinson, Joel E.; Bacon, Charles R.; Wayne, Chris

    2012-01-01

    Crater Lake partially fills the caldera that formed approximately 7,700 years ago during the eruption of a 12,000-ft-high volcano known as Mount Mazama. The caldera-forming, or climactic, eruption of Mount Mazama devastated the surrounding landscape, left a thick deposit of pumice and ash in adjacent valleys, and spread a blanket of volcanic ash as far away as southern Canada. Prior to the climactic event, Mount Mazama had a 400,000-year history of volcanic activity similar to other large Cascade volcanoes such as Mounts Shasta, Hood, and Rainier. Since the caldera formed, many smaller, less violent eruptions occurred at volcanic vents below Crater Lake's surface, including Wizard Island. A survey of Crater Lake National Park with airborne LiDAR (Light Detection And Ranging) resulted in a digital elevation map of the ground surface beneath the forest canopy. The average resolution is 1.6 laser returns per square meter yielding vertical and horizontal accuracies of ±5 cm. The map of the floor beneath the surface of the 1,947-ft-deep (593-m-deep) Crater Lake was developed from a multibeam sonar bathymetric survey and was added to the map to provide a continuous view of the landscape from the highest peak on Mount Scott to the deepest part of Crater Lake. Four enlarged shaded-relief views provide a sampling of features that illustrate the resolution of the LiDAR survey and illustrate its utility in revealing volcanic landforms and subtle features of the climactic eruption deposits. LiDAR's high precision and ability to "see" through the forest canopy reveal features that may not be easily recognized-even when walked over-because their full extent is hidden by vegetation, such as the 1-m-tall arcuate scarp near Castle Creek.

  13. Rapid warming of the world's lakes: Interdecadal variability and long-term trends from 1910-2009 using in situ and remotely sensed data

    NASA Astrophysics Data System (ADS)

    Lenters, J. D.; Read, J. S.; Sharma, S.; O'Reilly, C.; Hampton, S. E.; Gray, D.; McIntyre, P. B.; Hook, S. J.; Schneider, P.; Soylu, M. E.; Barabás, N.; Lofton, D. D.

    2014-12-01

    Global and regional changes in climate have important implications for terrestrial and aquatic ecosystems. Recent studies, for example, have revealed significant warming of inland water bodies throughout the world. To better understand the global patterns, physical mechanisms, and ecological implications of lake warming, an initiative known as the "Global Lake Temperature Collaboration" (GLTC) was started in 2010, with the objective of compiling and analyzing lake temperature data from numerous satellite and in situ records dating back at least 20-30 years. The GLTC project has now assembled data from over 300 lakes, with some in situ records extending back more than 100 years. Here, we present an analysis of the long-term warming trends, interdecadal variability, and a direct comparison between in situ and remotely sensed lake surface temperature for the 3-month summer period July-September (January-March for some lakes). The overall results show consistent, long-term trends of increasing summer-mean lake surface temperature across most but not all sites. Lakes with especially long records show accelerated warming in the most recent two to three decades, with almost half of the lakes warming at rates in excess of 0.5 °C per decade during the period 1985-2009, and a few even exceeding 1.0 °C per decade. Both satellite and in situ data show a similar distribution of warming trends, and a direct comparison at lake sites that have both types of data reveals a close correspondence in mean summer water temperature, interannual variability, and long-term trends. Finally, we examine standardized lake surface temperature anomalies across the full 100-year period (1910-2009), and in conjunction with similar timeseries of air temperature. The results reveal a close correspondence between summer air temperature and lake surface temperature on interannual and interdecadal timescales, but with many lakes warming more rapidly than the ambient air temperature over 25- to 100

  14. 77 FR 9652 - Proposed CERCLA Administrative Cost Recovery Settlement; Lake Linden Superfund Site in Lake...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-17

    ... Settlement; Lake Linden Superfund Site in Lake Linden, Houghton County, MI AGENCY: Environmental Protection... concerning the Lake Linden Superfund Site in Lake Linden, Houghton County, Michigan with Honeywell Specialty...-6609. Comments should reference the Lake Linden Superfund Site in Lake Linden, Houghton County...

  15. Long-term simulations of dissolved oxygen concentrations in Lake Trout lakes

    NASA Astrophysics Data System (ADS)

    Jabbari, A.; Boegman, L.; MacKay, M.; Hadley, K.; Paterson, A.; Jeziorski, A.; Nelligan, C.; Smol, J. P.

    2016-02-01

    Lake Trout are a rare and valuable natural resource that are threatened by multiple environmental stressors. With the added threat of climate warming, there is growing concern among resource managers that increased thermal stratification will reduce the habitat quality of deep-water Lake Trout lakes through enhanced oxygen depletion. To address this issue, a three-part study is underway, which aims to: analyze sediment cores to understand the past, develop empirical formulae to model the present and apply computational models to forecast the future. This presentation reports on the computational modeling efforts. To this end, a simple dissolved oxygen sub-model has been embedded in the one-dimensional bulk mixed-layer thermodynamic Canadian Small Lake Model (CSLM). This model is currently being incorporated into the Canadian Land Surface Scheme (CLASS), the primary land surface component of Environment Canada's global and regional climate modelling systems. The oxygen model was calibrated and validated by hind-casting temperature and dissolved oxygen profiles from two Lake Trout lakes on the Canadian Shield. These data sets include 5 years of high-frequency (10 s to 10 min) data from Eagle Lake and 30 years of bi-weekly data from Harp Lake. Initial results show temperature and dissolved oxygen was predicted with root mean square error <1.5 °C and <3 mgL-1, respectively. Ongoing work is validating the model, over climate-change relevant timescales, against dissolved oxygen reconstructions from the sediment cores and predicting future deep-water temperature and dissolved oxygen concentrations in Canadian Lake Trout lakes under future climate change scenarios. This model will provide a useful tool for managers to ensure sustainable fishery resources for future generations.

  16. A Dynamical Downscaling study over the Great Lakes Region Using WRF-Lake: Historical Simulation

    NASA Astrophysics Data System (ADS)

    Xiao, C.; Lofgren, B. M.

    2014-12-01

    As the largest group of fresh water bodies on Earth, the Laurentian Great Lakes have significant influence on local and regional weather and climate through their unique physical features compared with the surrounding land. Due to the limited spatial resolution and computational efficiency of general circulation models (GCMs), the Great Lakes are geometrically ignored or idealized into several grid cells in GCMs. Thus, the nested regional climate modeling (RCM) technique, known as dynamical downscaling, serves as a feasible solution to fill the gap. The latest Weather Research and Forecasting model (WRF) is employed to dynamically downscale the historical simulation produced by the Geophysical Fluid Dynamics Laboratory-Coupled Model (GFDL-CM3) from 1970-2005. An updated lake scheme originated from the Community Land Model is implemented in the latest WRF version 3.6. It is a one-dimensional mass and energy balance scheme with 20-25 model layers, including up to 5 snow layers on the lake ice, 10 water layers, and 10 soil layers on the lake bottom. The lake scheme is used with actual lake points and lake depth. The preliminary results show that WRF-Lake model, with a fine horizontal resolution and realistic lake representation, provides significantly improved hydroclimates, in terms of lake surface temperature, annual cycle of precipitation, ice content, and lake-effect snowfall. Those improvements suggest that better resolution of the lakes and the mesoscale process of lake-atmosphere interaction are crucial to understanding the climate and climate change in the Great Lakes region.

  17. Survival of lake trout eggs and fry reared in water from the upper Great Lakes

    USGS Publications Warehouse

    Mac, Michael J.; Edsall, Carol Cotant; Seelye, James G.

    1985-01-01

    As part of continuing studies of the reproductive failure of lake trout (Salvelinus namaycush) in Lake Michigan, we measured the survival of lake trout eggs and fry of different origins and reared in different environments. Eggs and milt were stripped from spawning lake trout collected in the fall of 1980 from southeastern Lake Michigan, northwestern Lake Huron, south central Lake Superior, and from hatchery brood stock. Eggs from all sources were incubated, and the newly hatched fry were reared for 139 days in lake water from each of the three upper Great Lakes and in well water. Survival of eggs to hatching at all sites was lowest for those from Lake Michigan (70% of fertilized eggs) and highest for eggs from Lake Superior (96%). Comparisons of incubation water from the different lakes indicated that hatching success of eggs from all sources was highest in Lake Huron water, and lowest in Lake Michigan water. The most notable finding was the nearly total mortality of fry from eggs of southeastern Lake Michigan lake trout. At all sites, the mean survival of Lake Michigan fry through 139 days after hatching was only 4% compared to near 50% for fry from the other three sources. In a comparison of the rearing sites, little influence of water quality on fry survival was found. Thus, the poor survival was associated with the source of eggs and sperm, not the water in which the fry were reared.

  18. Metal dynamics in Lake Vanda (Wright Valley, Antarctica)

    NASA Technical Reports Server (NTRS)

    Green, W. J.; Ferdelman, T. G.; Canfield, D. E.; DeVincenzi, D. L. (Principal Investigator)

    1989-01-01

    Data are reported for Mn, Fe, Co, Ni, Cu and Cd in the Onyx River, and for Mn, Co, Ni, Cu and Cd in Lake Vanda, a closed-basin Antarctic lake. Oxic water concentrations for Co, Ni, Cu and Cd were quite low and approximate pelagic ocean values. Scavenging of these metals by sinking particles is strongly indicated. Deep-lake profiles reveal a sharp peak in the concentrations of Mn, Fe and Co at the oxic-anoxic boundary at 60 m. Maxima for Ni, Cu and Cd occur higher in the water column, in the vicinity of a Mn submaximum, suggesting early release of these metals from sinking manganese oxide-coated particles. A rough steady-state model leads to the conclusion that there is a large downward flux of Mn into the deep lake and that this flux is sufficient to explain the annual loss of Co, Ni, Cu and Cd. A pronounced geochemical separation between Fe and Mn apparently occurs in this system--Fe being best lost in near-shore environments and Mn being lost in deeper waters. Comparison of metal residence times in Lake Vanda with those in the oceans shows that in both systems Mn, Fe and Co are much more reactive than Ni, Cu and Cd. Energetically favorable inclusion of the more highly charged metals, Mn(IV), Fe(III) and Co(III), into oxide-based lattices is a plausible explanation.

  19. Stable isotope (O and C) and pollen trends in eastern Lake Erie, evidence for a locally-induced climatic reversal of Younger Dryas age in the Great Lakes basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, C.F.M.; Anderson, T.W.

    A cool period from about 11000 to 10500 BP (11 to 10.5 ka) is recognized in pollen records from the southern Great Lakes area by the return of Picea and Abies dominance and by the persistence of herbs. The area of cooling appears centred on the Upper Great Lakes. A high-resolution record (ca. 9 mm/y) from a borehole in eastern Lake Erie reveals, in the same time interval, this pollen anomaly, isotope evidence of melt-water presence (a-3 per mil shift in {delta} {sup 18}O and a + 1.1 per mil shift in {delta}{sup 13}C), increased sand, and reduced detrital calcitemore » content, all suggesting concurrent cooling of Lake Erie. The onset of cooling is mainly attributed to the effect of enhanced meltwater inflow on the relatively large upstream Main Lake Agassiz. Termination of the cooling coincides with drainage of Lake Algonquin, and is attributed to loss of its cooling effectiveness associated with a substantial reduction in its surface area. It is hypothesized that that the cold extra in-flow effectively prolonged the seasonal presence of lake ice and the period of spring overturn in Lake Algonquin. The deep mixing would have greatly increased the thermal conductive capacity of this extensive lake, causing suppression of summer surface lakewater temperatures and reduction of onshore growing-degree days. Alternatively, a rapid flow of meltwater, buoyed on sediment-charged (denser) lakewater, may have kept the lake surface cold in summer. Other factors such as wind-shifted pollen deposition and possible effects from the Younger Dryas North Atlantic cooling could have contributed to the Great Lakes climatic reversal, but further studies are needed to resolve their relative significance. 51 refs., 5 figs.« less

  20. Response of the St. Joseph River to lake level changes during the last 12,000 years in the Lake Michigan basin

    USGS Publications Warehouse

    Kincare, K.A.

    2007-01-01

    The water level of the Lake Michigan basin is currently 177 m above sea level. Around 9,800 14C years B.P., the lake level in the Lake Michigan basin had dropped to its lowest level in prehistory, about 70 m above sea level. This low level (Lake Chippewa) had profound effects on the rivers flowing directly into the basin. Recent studies of the St. Joseph River indicate that the extreme low lake level rejuvenated the river, causing massive incision of up to 43 m in a valley no more than 1.6 km wide. The incision is seen 25 km upstream of the present shoreline. As lake level rose from the Chippewa low, the St. Joseph River lost competence and its estuary migrated back upstream. Floodplain and channel sediments partially refilled the recently excavated valley leaving a distinctly non-classical morphology of steep sides with a broad, flat bottom. The valley walls of the lower St. Joseph River are 12-18 m tall and borings reveal up to 30 m of infill sediment below the modern floodplain. About 3 ?? 108 m3 of sediment was removed from the St. Joseph River valley during the Chippewa phase lowstand, a massive volume, some of which likely resides in a lowstand delta approximately 30 km off-shore in Lake Michigan. The active floodplain below Niles, Michigan, is inset into an upper terrace and delta graded to the Calumet level (189 m) of Lake Chicago. In the lower portion of the terrace stratigraphy a 1.5-2.0 m thick section of clast-supported gravel marks the entry of the main St. Joseph River drainage above South Bend, Indiana, into the Lake Michigan basin. This gravel layer represents the consolidation of drainage that probably occurred during final melting out of ice-marginal kettle chains allowing stream piracy to proceed between Niles and South Bend. It is unlikely that the St. Joseph River is palimpsest upon a bedrock valley. The landform it cuts across is a glaciofluvial-deltaic feature rather than a classic unsorted moraine that would drape over pre-glacial topography

  1. The most acidified Austrian lake in comparison to a neutralized mining lake

    PubMed Central

    Moser, Michael; Weisse, Thomas

    2011-01-01

    This study investigated two mining lakes located in the north of Lower Austria. These lakes arose 45 years ago when open cast lignite mining ceased. The lakes are separated by a 7-m wide dam. Due to the oxidation of pyrite, both lakes have been acidified and exhibit iron, sulphate, and heavy metal concentrations several orders of magnitude higher than in circumneutral lakes. The water column of both lakes is divided into two layers by a pronounced chemocline. The smaller mining lake (AML), with pH close to of 2.6, is the most acidic lake in Austria, whereas flooding with stream water and by drainage from the surrounding fields neutralized the adjacent larger pit lake. The goal of our study was to investigate the effect of flooding on its physical, chemical and biological properties, in comparison to the pristine AML. Even relative to other extremely acidic lakes, the flora and fauna in the AML was reduced and composed of only two flagellate, one ciliate, and one rotifer species. The simplified pelagic food web in the mixolimnion consisted of heterotrophic bacteria, the mixotrophic flagellates Chlamydomonas acidophila and Ochromonas sp., the ciliate Oxytricha sp., and the rotifer Cephalodella sp. The latter two are as yet undescribed new species. The heliozoan Actinophrys sp. that may act as top predator occurred only in low abundance. The euglenid Lepocinclis buetschlii formed a stable deep chlorophyll maximum (DCM) at 7 m depth. Highest cell numbers of L. buetschlii in the DCM exceeded 108 L−1. The neutralized mining lake harboured higher plankton diversity similar to that of natural circumneutral lakes. A peak of at least 16 different phytoplankton taxa was observed during summer. The zooplankton consisted of several copepod species, daphnids and other cladocerans, and at least six different rotifer species. Several fish species occurred in the neutralized lake. Although the effect of non-permanent flooding was largely sustainable, interannual fluctuations of

  2. Evolution of Lake Turkana level at the end of the African Humid Period: modalities and forcings

    NASA Astrophysics Data System (ADS)

    Nutz, A.; Schuster, M.

    2015-12-01

    The African Humid Period (AHP), ca. 11,000 to 5,000 years ago, is a major phase that had significant impacts on the environments, ecosystems, and human occupation of Africa over several millennia. One of the most marked aspects stemming from an increase in rainfall during this climate period was the creation of numerous regional lakes and the recording of highstands for these waterbodies. The termination of the AHP is known to have been time-transgressive depending on the location, being either abrupt or gradual, thereby highlighting the complex interaction among multiple forcings and responses. Lake Turkana is one of the great lakes of the East African Rift where chronology of the AHP termination has already been investigated. In this study, the delta complex of the Turkwel River is analyzed using trajectory analysis in order to provide modalities of lake level decline during that time. Trajectories reveal six slightly descending (slope gradient: >0° to 0.4°) plateaus separated by four abrupt steps having higher slope gradients (1° to 3.8°). These abrupt steps reveal repeated short-lived strong increases in the rate of lake level decline that are superimposed on the relatively steady lake level decrease characterizing this period. This marks a stepwise forced regression at the end of the AHP in the Lake Turkana. We correlate the short-lived increases in the rate of lake level decline with short-lived abrupt decreases of solar irradiance. Through the termination of the AHP, the abrupt decreases in solar irradiance modulated the continuous precessional-based reduction of solar insulation that drastically impacted monsoon activity (i.e. rainfall) and led to variations in lake levels as a response. This suggests that short-term solar variability is able to modulate longer-term orbitally-driven climate trends having significant impacts in terms of hydrology and the regional continental environments.

  3. SCOPSCO - Scientific Collaboration On Past Speciation Conditions in Lake Ohrid

    NASA Astrophysics Data System (ADS)

    Wagner, B.; Wilke, T.; Grazhdani, A.; Kostoski, G.; Krastel, S.; Reicherter, K. R.; Zanchetta, G.

    2009-12-01

    Lake Ohrid is a transboundary lake with approximately two thirds of its surface area belonging to the Former Yugoslav Republic of Macedonia and about one third belonging to the Republic of Albania. With more than 210 endemic species described, the lake is a unique aquatic ecosystem and a hotspot of biodiversity. This importance was emphasized, when the lake was declared a UNESCO World Heritage Site in 1979. Though the lake is considered to be the oldest, continuously existing lake in Europe, the age and the origin of Lake Ohrid are not completely unravelled to date. Age estimations vary between one and ten million years and concentrate around two to five million years, and both marine and limnic origin is proposed. Extant sedimentary records from Lake Ohrid cover the last glacial/interglacial cycle and reveal that Lake Ohrid is a valuable archive of volcanic ash dispersal and climate change in the central northern Mediterranean region. These records, however, are too short to provide information about the age and origin of the lake and to unravel the mechanisms controlling the evolutionary development leading to the extraordinary high degree of endemism. Concurrent genetic brakes in several invertebrate groups indicate that major geological and/or environmental events must have shaped the evolutionary history of endemic faunal elements in Lake Ohrid. High-resolution hydroacoustic profiles taken between 2004 and 2008, and multichannel seismic (Mini-GI-Gun) studies in 2007 and 2008 demonstrate well the interplay between sedimentation and active tectonics and impressively prove the potential of Lake Ohrid for an ICDP drilling campaign. The maximal sediment thickness is c. 680 m in the central basin, where unconformities or erosional features are absent. Thus the complete history of the lake is likely recorded. A deep drilling in Lake Ohrid would help (i) to obtain more precise information about the age and origin of the lake, (ii) to unravel the seismotectonic history

  4. Water chemistry of Lake Quilotoa (Ecuador) and assessment of natural hazards

    NASA Astrophysics Data System (ADS)

    Aguilera, E.; Chiodini, G.; Cioni, R.; Guidi, M.; Marini, L.; Raco, B.

    2000-04-01

    A geochemical survey carried out in November 1993 revealed that Lake Quilotoa was composed by a thin (˜14 m) oxic epilimnion overlying a ˜200 m-thick anoxic hypolimnion. Dissolved CO2 concentrations reached 1000 mg/kg in the lower stratum. Loss of CO2 from epilimnetic waters, followed by calcite precipitation and a consequent lowering in density, was the apparent cause of the stratification. The Cl, SO4 and HCO3 contents of Lake Quilotoa are intermediate between those of acid-SO4-Cl Crater lakes and those of neutral-HCO3 Crater lakes, indicating that Lake Quilotoa has a 'memory' of the inflow and absorption of HC1- and S-bearing volcanic (magmatic) gases. The Mg/Ca ratios of the lake waters are governed by dissolution of local volcanic rocks or magmas, but K/Na ratios were likely modified by precipitation of alunite, a typical mineral in acid-SO4-Cl Crater lakes. The constant concentrations of several conservative chemical species from lake surface to lake bottom suggest that physical, chemical and biological processes did not have enough time, after the last overturn, to cause significant changes in the contents of these chemical species. This lapse of time might be relatively large, but it cannot be established on the basis of available data. Besides, the lake may not be close to steady state. Mixing of Lake Quilotoa waters could presently be triggered by either cooling epilimnetic waters by ˜4°C or providing heat to hypolimnetic waters or by seismic activity. Although Quilotoa lake contains a huge amount of dissolved CO2(˜3×1011 g), at present the risk of a dangerous limnic eruption seems to be nil even though some gas exsolution might occur if deep lake waters were brought to the surface. Carbon dioxide could build up to higher levels in deep waters than at present without any volcanic re-awakening, due to either a large inflow of relatively cool CO2-rich gases, or possibly a long interval between overturns. Periodical geochemical surveys of Lake Quilotoa

  5. Salting our freshwater lakes.

    PubMed

    Dugan, Hilary A; Bartlett, Sarah L; Burke, Samantha M; Doubek, Jonathan P; Krivak-Tetley, Flora E; Skaff, Nicholas K; Summers, Jamie C; Farrell, Kaitlin J; McCullough, Ian M; Morales-Williams, Ana M; Roberts, Derek C; Ouyang, Zutao; Scordo, Facundo; Hanson, Paul C; Weathers, Kathleen C

    2017-04-25

    The highest densities of lakes on Earth are in north temperate ecosystems, where increasing urbanization and associated chloride runoff can salinize freshwaters and threaten lake water quality and the many ecosystem services lakes provide. However, the extent to which lake salinity may be changing at broad spatial scales remains unknown, leading us to first identify spatial patterns and then investigate the drivers of these patterns. Significant decadal trends in lake salinization were identified using a dataset of long-term chloride concentrations from 371 North American lakes. Landscape and climate metrics calculated for each site demonstrated that impervious land cover was a strong predictor of chloride trends in Northeast and Midwest North American lakes. As little as 1% impervious land cover surrounding a lake increased the likelihood of long-term salinization. Considering that 27% of large lakes in the United States have >1% impervious land cover around their perimeters, the potential for steady and long-term salinization of these aquatic systems is high. This study predicts that many lakes will exceed the aquatic life threshold criterion for chronic chloride exposure (230 mg L -1 ), stipulated by the US Environmental Protection Agency (EPA), in the next 50 y if current trends continue.

  6. Emergency satellite observation and assessment of a glacier lake outburst flood in Bhutan

    NASA Astrophysics Data System (ADS)

    Nagai, Hiroto; Tadono, Takeo; Suzuki, Shinichi

    2016-04-01

    Following a glacial lake outburst flood (GLOF) on Jun. 28, 2015, in western Bhutan, the Japan Aerospace Exploration Agency performed an emergency observation on Jul. 2, 2015 using the Phased Array type L-band Synthetic Aperture Radar-2 (PALSAR-2) onboard the Advanced Land Observing Satellite-2 (ALOS-2, "DAICHI-2"). Based on a dataset generated from the Advanced Land Observing Satellite (ALOS) imagery, "The Glacial Lake Inventory of Bhutan using ALOS Data", the glacier lake that potentially contributed to this GLOF were identified at 28°4'7.7"N, 89°34'50.0"E, in a headwater of the Mo Chu river basin, western Bhutan. A post-event lake outline was delineated manually using the acquired PALSAR-2 image. Pre-event outlines were delineated from previously acquired PALSAR-2 images (Apr. 23, 2015), Landsat 8 (Mar. 8, 2015), and ALOS (Dec. 22, 2010). The differences between these outlines reveal a remarkable expansion (+48.0%) from Mar. 8 to Apr. 23, 2015, followed by a remarkable shrinkage (-52.9%) from Apr. 23 to Jul. 2, 2015. This result indicates the lake to be a highly likely source of the flood. Topographically, it is located at a glacier terminus, surrounded by a moraine. Differing backscatter patterns between successive PALSAR-2 images in a certain part of the moraine suggest that it underwent some collapse, possibly as a result of the GLOF. More detailed investigations, including field surveys, are necessary to fully reveal and understand this event.

  7. Morphometry and mixing regime of a tropical lake: Lake Nova (Southeastern Brazil).

    PubMed

    Gonçalves, Monica A; Garcia, Fábio C; Barroso, Gilberto F

    2016-09-01

    Lake Nova (15.5 km2) is the second largest lake in the Lower Doce River Valley (Southeastern Brazil). A better understanding of ecosystem structure and functioning requires knowledge about lake morphometry, given that lake basin form influences water column stratification. The present study aims to contribute to the understanding of relationship between morphometry and mixing patterns of deep tropical lakes in Brazil. Water column profiles of temperature and dissolved oxygen were taken on four sampling sites along the lake major axis during 2011, 2012 and 2013. The bathymetric survey was carried out in July 2011, along 131.7 km of hydrographic tracks yield 51,692 depth points. Morphometric features of lake size and form factors describe the relative deep subrectangular elongated basin with maximum length of 15.7 km, shoreline development index 5.0, volume of 0.23 km3, volume development of 1.3, and maximum, mean and relative depths of 33.9 m, 14.7 m and 0.7 %, respectively. The deep basin induces a monomictic pattern, with thermal stratification during the wet/warm season associated with anoxic bottom waters (1/3 of lake volume), and mixing during dry and cool season. Based on in situ measurements of tributary river discharges, theoretical retention time (RT) has been estimated in 13.4 years. The morphometry of Lake Nova promote long water RT and the warm monomictic mixing pattern, which is in accordance to the deep tropical lakes in Brazil.

  8. Lake Tahoe

    EPA Pesticide Factsheets

    Information on the Lake Tahoe watershed, EPA's protection efforts, water quality issues, effects of climate change, Lake Tahoe Total Maximum Daily Load (TMDL), EPA-sponsored projects, list of partner agencies.

  9. Predicting future glacial lakes in Austria using different modelling approaches

    NASA Astrophysics Data System (ADS)

    Otto, Jan-Christoph; Helfricht, Kay; Prasicek, Günther; Buckel, Johannes; Keuschnig, Markus

    2017-04-01

    Glacier retreat is one of the most apparent consequences of temperature rise in the 20th and 21th centuries in the European Alps. In Austria, more than 240 new lakes have formed in glacier forefields since the Little Ice Age. A similar signal is reported from many mountain areas worldwide. Glacial lakes can constitute important environmental and socio-economic impacts on high mountain systems including water resource management, sediment delivery, natural hazards, energy production and tourism. Their development significantly modifies the landscape configuration and visual appearance of high mountain areas. Knowledge on the location, number and extent of these future lakes can be used to assess potential impacts on high mountain geo-ecosystems and upland-lowland interactions. Information on new lakes is critical to appraise emerging threads and potentials for society. The recent development of regional ice thickness models and their combination with high resolution glacier surface data allows predicting the topography below current glaciers by subtracting ice thickness from glacier surface. Analyzing these modelled glacier bed surfaces reveals overdeepenings that represent potential locations for future lakes. In order to predict the location of future glacial lakes below recent glaciers in the Austrian Alps we apply different ice thickness models using high resolution terrain data and glacier outlines. The results are compared and validated with ice thickness data from geophysical surveys. Additionally, we run the models on three different glacier extents provided by the Austrian Glacier Inventories from 1969, 1998 and 2006. Results of this historical glacier extent modelling are compared to existing glacier lakes and discussed focusing on geomorphological impacts on lake evolution. We discuss model performance and observed differences in the results in order to assess the approach for a realistic prediction of future lake locations. The presentation delivers

  10. Geographical distributions of lake trout strains stocked in Lake Ontario

    USGS Publications Warehouse

    Elrod, Joseph H.; O'Gorman, Robert; Schneider, Clifford P.; Schaner, Ted

    1996-01-01

    Geographical distributions of lake trout (Salvelinus namaycush) stocked at seven locations in U.S. waters and at four locations in Canadian waters of Lake Ontario were determined from fish caught with gill nets in September in 17 areas of U.S. waters and at 10 fixed locations in Canadian waters in 1986-95. For fish of a given strain stocked at a given location, geographical distributions were not different for immature males and immature females or for mature males and mature females. The proportion of total catch at the three locations nearest the stocking location was higher for mature fish than for immature fish in all 24 available comparisons (sexes combined) and was greater for fish stocked as yearlings than for those stocked as fingerlings in all eight comparisons. Mature fish were relatively widely dispersed from stocking locations indicating that their tendency to return to stocking locations for spawning was weak, and there was no appreciable difference in this tendency among strains. Mature lake trout were uniformly distributed among sampling locations, and the strain composition at stocking locations generally reflected the stocking history 5 to 6 years earlier. Few lake trout moved across Lake Ontario between the north and south shores or between the eastern outlet basin and the main lake basin. Limited dispersal from stocking sites supports the concept of stocking different genetic strains in various parts of the lake with the attributes of each strain selected to match environmental conditions in the portion of the lake where it is stocked.

  11. Deglaciation, lake levels, and meltwater discharge in the Lake Michigan basin

    USGS Publications Warehouse

    Colman, Steven M.; Clark, J.A.; Clayton, L.; Hansel, A.K.; Larsen, C.E.

    1994-01-01

    The deglacial history of the Lake Michigan basin, including discharge and routing of meltwater, is complex because of the interaction among (1) glacial retreats and re-advances in the basin (2) the timing of occupation and the isostatic adjustment of lake outlets and (3) the depositional and erosional processes that left evidence of past lake levels. In the southern part of the basin, a restricted area little affected by differential isostasy, new studies of onshore and offshore areas allow refinement of a lake-level history that has evolved over 100 years. Important new data include the recognition of two periods of influx of meltwater from Lake Agassiz into the basin and details of the highstands gleaned from sedimentological evidence. Major disagreements still persist concerning the exact timing and lake-level changes associated with the Algonquin phase, approximately 11,000 BP. A wide variety of independent data suggests that the Lake Michigan Lobe was thin, unstable, and subject to rapid advances and retreats. Consequently, lake-level changes were commonly abrupt and stable shorelines were short-lived. The long-held beliefs that the southern part of the basin was stable and separated from deformed northern areas by a hinge-line discontinuity are becoming difficult to maintain. Numerical modeling of the ice-earth system and empirical modeling of shoreline deformation are both consistent with observed shoreline tilting in the north and with the amount and pattern of modern deformation shown by lake-level gauges. New studies of subaerial lacustrine features suggest the presence of deformed shorelines higher than those originally ascribed to the supposed horizontal Glenwood level. Finally, the Lake Michigan region as a whole appears to behave in a similar manner to other areas, both local (other Great Lakes) and regional (U.S. east coast), that have experienced major isostatic changes. Detailed sedimentological and dating studies of field sites and additional

  12. Is there a pattern to oxbow lake geomorphic evolution?

    NASA Astrophysics Data System (ADS)

    Dieras, P.; Constantine, J. A.

    2012-04-01

    Oxbow lakes are located along the floodplain corridor and created after meander cutoff. They are of high ecological value as they provide relatively calm wetlands which are regularly supplied with nutrients during floods. The persistence of oxbow lakes has been observed to vary from decades to several hundreds of years but little is known about the controls on their longevity. This study aims to ascertain if there is a common pattern in the water decrease of oxbow lakes and to define the controls on the lakes' longevity. The longevity of 37 oxbow lakes from 7 rivers from different parts of the world has been studied. The Towy River (Wales), the Ain River (France) and the Sacramento River (CA, USA) are largely dominated by oxbow lakes created after chute cutoff which is the incision of a chute across the floodplain; whereas the Mississippi River (MS, USA), the Kansas River (KS, USA), the Red River (MN, USA) and the Otter Tail River (MN, USA) show a large number of neck cutoffs which occur when two meanders migrate into one another. The water surface area decrease has been measured for all the sites using aerial photographs. Results revealed that the longevity of oxbow lakes is significantly affected by the type of cutoff. The lakes formed by chute cutoff lose very rapidly most of the water surface area of the initial channel as it is reduce by >80% within the first 10 to 30 years following cutoff for most sites. The water surface area of chute cutoff shows a logarithmic decrease with a fast decrease rate following cutoff, followed by a much slower loss of water surface area. The change in water decrease rate appears to be related to the moment of obstruction of the former channel entrance by sediment aggradation. In contrast, lakes formed by neck cutoff persist for much longer in the landscape and lose 40 to 60% within the first decades but then they maintain this water surface area for longer than a century. The cutoff process is therefore the main control on the

  13. 77 FR 39638 - Safety Zone; Barbara Harder Wedding Fireworks, Lake Erie, Lake View, NY

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-05

    ...-AA00 Safety Zone; Barbara Harder Wedding Fireworks, Lake Erie, Lake View, NY AGENCY: Coast Guard, DHS. ACTION: Temporary final rule. SUMMARY: The Coast Guard is establishing a temporary safety zone on Lake Erie, Lake View, NY. This safety zone is intended to restrict vessels from a portion of Lake Erie...

  14. Glacial Lake Expansion in the Central Himalayas by Landsat Images, 1990–2010

    PubMed Central

    Nie, Yong; Liu, Qiao; Liu, Shiyin

    2013-01-01

    Glacial lake outburst flood (GLOF) is a serious hazard in high, mountainous regions. In the Himalayas, catastrophic risks of GLOFs have increased in recent years because most Himalayan glaciers have experienced remarkable downwasting under a warming climate. However, current knowledge about the distribution and recent changes in glacial lakes within the central Himalaya mountain range is still limited. Here, we conducted a systematic investigation of the glacial lakes within the entire central Himalaya range by using an object-oriented image processing method based on the Landsat Thematic Mapper (TM) or Enhanced Thematic Mapper (ETM) images from 1990 to 2010. We extracted the lake boundaries for four time points (1990, 2000, 2005 and 2010) and used a time series inspection method combined with a consistent spatial resolution of Landsat images that consistently revealed lake expansion. Our results show that the glacial lakes expanded rapidly by 17.11% from 1990 to 2010. The pre-existing, larger glacial lakes, rather than the newly formed lakes, contributed most to the areal expansion. The greatest expansions occurred at the altitudinal zones between 4800 m and 5600 m at the north side of the main Himalayan range and between 4500 m and 5600 m at the south side, respectively. Based on the expansion rate, area and type of glacial lakes, we identified 67 rapidly expanding glacial lakes in the central Himalayan region that need to be closely monitored in the future. The warming and increasing amounts of light-absorbing constituents of snow and ice could have accelerated the melting that directly affected the glacial lake expansion. Across the main central Himalayas, glacial lakes at the north side show more remarkable expansion than those at the south side. An effective monitoring and warning system for critical glacial lakes is urgently needed. PMID:24376778

  15. Genetic diversity of lake whitefish in lakes Michigan and Huron: sampling, standardization, and research priorities

    USGS Publications Warehouse

    Stott, Wendylee; VanDeHey, Justin A.; Sloss, Brian L.

    2010-01-01

    We combined data from two laboratories to increase the spatial extent of a genetic data set for lake whitefish Coregonus clupeaformis from lakes Huron and Michigan and saw that genetic diversity was greatest between lakes, but that there was also structuring within lakes. Low diversity among stocks may be a reflection of relatively recent colonization of the Great Lakes, but other factors such as recent population fluctuation and localized stresses such as lamprey predation or heavy exploitation may also have a homogenizing effect. Our data suggested that there is asymmetrical movement of lake whitefish between Lake Huron and Lake Michigan; more genotypes associated with Lake Michigan were observed in Lake Huron. Adding additional collections to the calibrated set will allow further examination of diversity in other Great Lakes, answer questions regarding movement among lakes, and estimate contributions of stocks to commercial yields. As the picture of genetic diversity and population structure of lake whitefish in the Great Lakes region emerges, we need to develop methods to combine data types to help identify important areas for biodiversity and thus conservation. Adding genetic data to existing models will increase the precision of predictions of the impacts of new stresses and changes in existing pressures on an ecologically and commercially important species.

  16. Fish Lake, Utah - a promising long core site straddling the Great Basin to Colorado Plateau transition zone

    NASA Astrophysics Data System (ADS)

    Marchetti, D. W.; Abbott, M. B.; Bailey, C.; Wenrich, E.; Stoner, J. S.; Larsen, D. J.; Finkenbinder, M. S.; Anderson, L.; Brunelle, A.; Carter, V.; Power, M. J.; Hatfield, R. G.; Reilly, B.; Harris, M. S.; Grimm, E. C.; Donovan, J.

    2015-12-01

    Fish Lake (~7x1.5 km and 2696 m asl) is located on the Fish Lake Plateau in central Utah. The Lake occupies a NE-striking tectonic graben; one of a suite of grabens on the Plateau that cut 21-26 Ma volcanic rocks. The lake outflows via Lake Creek to the NE where it joins Sevenmile Creek to become the Fremont River, a tributary to the Colorado River. A bathymetric survey reveals a mean depth of 27 m and a max depth of 37.2 m. The lake bottom slopes from NW to SE with the deepest part near the SE wall, matching the topographic expression of the graben. Nearby Fish Lake Hightop (3545 m) was glaciated with an ice field and outlet glaciers. Exposure ages indicate moraine deposition during Pinedale (15-23 ka) and Bull Lake (130-150 ka) times. One outlet glacier at Pelican Canyon deposited moraines and outwash into the lake but the main basin of the lake was never glaciated. Gravity measurements indicate that lake sediments thicken toward the SE side of the lake and the thickest sediment package is modeled to be between 210 and 240 m. In Feb 2014 we collected cores from Fish Lake using a 9-cm diameter UWITECH coring system in 30.5 m of water. A composite 11.2-m-long core was constructed from overlapping 2 m drives that were taken in triplicate to ensure total recovery and good preservation. Twelve 14C ages and 3 tephra layers of known age define the age model. The oldest 14C age of 32.3±4.2 cal ka BP was taken from 10.6 m. Core lithology, CT scans, and magnetic susceptibility (ms) reveal three sediment packages: an organic-rich, low ms Holocene to post-glacial section, a fine-grained, minerogenic glacial section with high ms, and a short section of inferred pre-LGM sediment with intermediate composition. Extrapolating the age model to the maximum estimated sediment thicknesses suggest sediments may be older than 500-700 ka. Thus Fish Lake is an ideal candidate for long core retrieval as it likely contains paleoclimatic records extending over multiple glacial cycles.

  17. An evaluation of ERTS data for oceanographic uses through Great Lakes studies

    NASA Technical Reports Server (NTRS)

    Strong, A. E. (Principal Investigator); Stumpf, H. G.

    1974-01-01

    The author has identified the following significant results. Prevailing wind direction on Lake Michigan is southwesterly, although during winter northwesterly stresses are common. Along the western shore the current favors a northward direction. ERTS-1 observations indicate that the southward-flowing current along the Michigan shoreline of the thumb is only reversed by southerly resultant wind stress. Along the Canadian shoreline, a northward current was observed north of Kettle Point. ERTS-1 data also reveal that a preferred southward-flowing current is found along the Detroit shoreline of Lake St. Clair. Eastward flow of surface water from the shallow western basin of Lake Erie into the middle basin is most obvious during northwesterly and northerly wind stresses. The reverse wind direction especially east and southeasterly, appear to hold the effluents from the Detroit and Maumee Rivers in the western basin. Across-lake winds from the north and south induce eddy-like circulation in surface waters of Lake Ontario. Counterclockwise alongshore flow persists in the western basin under most wind conditions.

  18. [Characterizing chromophoric dissolved organic matter (CDOM) in Lake Honghu, Lake Donghu and Lake Liangzihu using excitation-emission matrices (EEMs) fluorescence and parallel factor analysis (PARAFAC)].

    PubMed

    Zhou, Yong-Qiang; Zhang, Yun-Lin; Niu, Cheng; Wang, Ming-Zhu

    2013-12-01

    Little is known about DOM characteristics in medium to large sized lakes located in the middle and lower reaches of Yangtze River, like Lake Honghu, Lake Donghu and Lake Liangzihu. Absorption, fluorescence and composition characteristics of chromophoric dissolved organic matter (CDOM) are presented using the absorption spectroscopy, the excitation-emission ma trices (EEMs) fluorescence and parallel factor analysis (PARAFAC) model based on the data collected in Sep-Oct. 2007 including 15, 9 and 10 samplings in Lake Honghu, Lake Donghu and Lake Liangzihu, respectively. CDOM absorption coefficient at 350 nm a(350) coefficient in Lake Honghu was significantly higher than those in Lake Donghu and Lake Liangzihu (t-test, p< 0. 001). A significant negative correlation was found between CDOM spectral slope in the wavelength range of 280-500 nm (S280-500) and a(350) (R2 =0. 781, p<0. 001). The mean value of S280-500 in Lake Honghu was significantly lower than those in Lake Donghu (t-test, pLake Liangzihu (t-test, p<0. 001). The mean value of spectral slope ratio SR in Lake Honghu was also significantly lower than those in Lake Donghu and Lake Liangzihu (t-test, p<0. 05). Two humic-like (C1, C2) and two protein-like fluorescent components (C3, C4) were identified by PARAFAC model, among which significant positive correlations were found between C1 and C2 (R2 =0. 884, p<0. 001), C3 and C4 (R2 =0. 677, p<0.001), respectively, suggesting that the sources of the two humic-like components as well as the two protein-like components were similar. However, no significant correlation has been found between those 4 fluorescent components and DOC concentration. Th e fluorescenceindices of FI255 (HIX), Fl265, FI310 (BIX) and Fl370 in Lake Donghu were all significantly higher than those in Lake Liangzihu (t-test, p <0.05) and Lake Honghu (t-test, p<0. 01), indicating that the eutrophication status in Lake Donghu was higher than Lake Honghu and Lake Liangzihu.

  19. Exploring trends, causes, and consequences of declining lipids in Lake Superior lake trout

    EPA Science Inventory

    The ability of lake trout to forage in deepwater habitats is facilitated by high lipid content, which affords buoyancy. In Lake Superior, lean lake trout historically occupied depths < 80 m, and siscowet lake trout occupied depths > 80 m. Siscowets have been known f...

  20. Genetic analysis across different spatial scales reveals multiple dispersal mechanisms for the invasive hydrozoan Cordylophora in the Great Lakes.

    PubMed

    Darling, John A; Folino-Rorem, Nadine C

    2009-12-01

    Discerning patterns of post-establishment spread by invasive species is critically important for the design of effective management strategies and the development of appropriate theoretical models predicting spatial expansion of introduced populations. The globally invasive colonial hydrozoan Cordylophora produces propagules both sexually and vegetatively and is associated with multiple potential dispersal mechanisms, making it a promising system to investigate complex patterns of population structure generated throughout the course of rapid range expansion. Here, we explore genetic patterns associated with the spread of this taxon within the North American Great Lakes basin. We collected intensively from eight harbours in the Chicago area in order to conduct detailed investigation of local population expansion. In addition, we collected from Lakes Michigan, Erie, and Ontario, as well as Lake Cayuga in the Finger Lakes of upstate New York in order to assess genetic structure on a regional scale. Based on data from eight highly polymorphic microsatellite loci we examined the spatial extent of clonal genotypes, assessed levels of neutral genetic diversity, and explored patterns of migration and dispersal at multiple spatial scales through assessment of population level genetic differentiation (pairwise F(ST) and factorial correspondence analysis), Bayesian inference of population structure, and assignment tests on individual genotypes. Results of these analyses indicate that Cordylophora populations in this region spread predominantly through sexually produced propagules, and that while limited natural larval dispersal can drive expansion locally, regional expansion likely relies on anthropogenic dispersal vectors.

  1. Great Lakes

    USGS Publications Warehouse

    Edsall, Thomas A.; Mac, Michael J.; Opler, Paul A.; Puckett Haecker, Catherine E.; Doran, Peter D.

    1998-01-01

    The Great Lakes region, as defined here, includes the Great Lakes and their drainage basins in Minnesota, Wisconsin, Illinois, Indiana, Ohio, Pennsylvania, and New York. The region also includes the portions of Minnesota, Wisconsin, and the 21 northernmost counties of Illinois that lie in the Mississippi River drainage basin, outside the floodplain of the river. The region spans about 9º of latitude and 20º of longitude and lies roughly halfway between the equator and the North Pole in a lowland corridor that extends from the Gulf of Mexico to the Arctic Ocean.The Great Lakes are the most prominent natural feature of the region (Fig. 1). They have a combined surface area of about 245,000 square kilometers and are among the largest, deepest lakes in the world. They are the largest single aggregation of fresh water on the planet (excluding the polar ice caps) and are the only glacial feature on Earth visible from the surface of the moon (The Nature Conservancy 1994a).The Great Lakes moderate the region’s climate, which presently ranges from subarctic in the north to humid continental warm in the south (Fig. 2), reflecting the movement of major weather masses from the north and south (U.S. Department of the Interior 1970; Eichenlaub 1979). The lakes act as heat sinks in summer and heat sources in winter and are major reservoirs that help humidify much of the region. They also create local precipitation belts in areas where air masses are pushed across the lakes by prevailing winds, pick up moisture from the lake surface, and then drop that moisture over land on the other side of the lake. The mean annual frost-free period—a general measure of the growing-season length for plants and some cold-blooded animals—varies from 60 days at higher elevations in the north to 160 days in lakeshore areas in the south. The climate influences the general distribution of wild plants and animals in the region and also influences the activities and distribution of the human

  2. Lakes, Lagerstaetten, and Evolution

    NASA Astrophysics Data System (ADS)

    Kordesch, E. G.; Park, L. E.

    2001-12-01

    The diversity of terrestrial systems is estimated to be greater than in the marine realm. However no hard data yet exists to substantiate this claim. Ancient lacustrine deposits may preserve an exceptionally diverse fossil fauna and aid in determining continental faunal diversities. Fossils preserved in lake deposits, especially those with exceptional preservation (i.e. Konservat Lagerstaetten), may represent a dependable method for determining species diversity changes in the terrestrial environment because of their faunal completeness. Important Konservat Lagerstaetten, such as the Green River Formation (US) and Messel (Germany), both Eocene in age, are found in lake sediments and show a remarkable faunal diversity for both vertebrates and invertebrates. To date information from nearly 25 lake lagerstaetten derived from different types of lake basins from the Carboniferous to the Miocene have been collected and described. Carboniferous sites derive from the cyclothems of Midcontinent of the US while many Cenozoic sites have been described from North and South America as well as Europe and Australia. Asian sites contain fossils from the Mesozoic and Cenozoic. With this data, insight into the evolutionary processes associated with lake systems can be examined. Do lakes act as unique evolutionary crucibles in contrast to marine systems? The speciation of cichlid fishes in present-day African lakes appears to be very high and is attributed to the diversity of environments found in large rift lakes. Is this true of all ancient lakes or just large rift lakes? The longevity of a lake system may be an important factor in allowing speciation and evolutionary processes to occur; marine systems are limited only in the existence of environments as controlled by tectonics and sea level changes, on the order of tens of millions of years. Rift lakes are normally the longest lived in the millions of years. Perhaps there are only certain types of lakes in which speciation of

  3. Suspended-sediment budget, flow distribution, and lake circulation for the Fox Chain of Lakes in Lake and McHenry Counties, Illinois, 1997-99

    USGS Publications Warehouse

    Schrader, David L.; Holmes, Robert R.

    2000-01-01

    The Fox Chain of Lakes is a glacial lake system in McHenry and Lake Counties in northern Illinois and southern Wisconsin. Sedimentation and nutrient overloading have occurred in the lake system since the first dam was built (1907) in McHenry to raise water levels in the lake system. Using data collected from December 1, 1997, to June 1, 1999, suspended-sediment budgets were constructed for the most upstream lake in the system, Grass Lake, and for the lakes downstream from Grass Lake. A total of 64,900 tons of suspended sediment entered Grass Lake during the study, whereas a total of 70,600 tons of suspended sediment exited the lake, indicating a net scour of 5,700 tons of sediment. A total of 44,100 tons of suspended sediment was measured exiting the Fox Chain of Lakes at Johnsburg, whereas 85,600 tons entered the system downstream from Grass Lake. These suspended-sediment loads indicate a net deposition of 41,500 tons downstream from Grass Lake, which represents a trapping efficiency of 48.5 percent. A large amount of recreational boating takes place on the Fox Chain of Lakes during summer months, and suspended-sediment load was observed to rise from 110 tons per day to 339 tons per day during the 1999 Memorial Day weekend (May 26 ?31, 1999). Presumably, this rise was the result of the boating traffic because no other hydrologic event is known to have occurred that might have caused the rise. This study covers a relatively short period and may not represent the long-term processes of the Fox Chain of Lakes system, although the sediment transport was probably higher than an average year. The bed sediments found on the bottom of the lakes are composed of mainly fine particles in the silt-clay range. The Grass Lake sediments were characterized as black peat with an organic content of between 9 and 18 percent, and the median particle size ranged from 0.000811 to 0.0013976 inches. Other bed material samples were collected at streamflow-gaging stations on the

  4. Changing abundance of Hexagenia mayfly nymphs in western Lake Erie of the Laurentian Great Lakes: Impediments to assessment of lake recovery?

    USGS Publications Warehouse

    Schloesser, D.W.; Nalepa, T.F.

    2001-01-01

    After an absence of 40 years, mayfly nymphs of the genus Hexagenia were found in sediments of western Lake Erie of the Laurentian Great Lakes in 1993 and, by 1997, were abundant enough to meet a mayfly-density management goal (ca. 350 nymphs m—2) based on pollution-abatement programs. We sampled nymphs in western Lake Erie and Lake St. Clair, located upstream of western Lake Erie, to determine the importance of seasonal abundance and life-history characteristics of nymphs (e.g., emergence and recruitment) on density estimates relative to the mayfly-density management goal. Two types of density patterns were observed: (1) densities were relatively high in spring and gradually decreased through late summer (observed in Lake Erie and Lake St. Clair in 1997 and Lake St. Clair in 1999) and (2) densities were relatively high in spring, gradually decreased to mid summer, abruptly decreased in mid summer, and then increased between summer and late fall (Lake Erie and Lake St. Clair in 1998 and Lake Erie in 1999). Length-frequency distributions of nymphs and observations of adults indicate that the primary cause for the two density patterns was attributed to failed (first pattern) and successful (second pattern) reproduction and emergence of nymphs into adults in mid summer. Gradual declines in densities were attributed to mortality of nymphs. Our results indicate that caution should be used when evaluating progress of pollution-abatement programs based on mayfly densities because recruitment success is variable both between and within years. Additionally, the interpretation of progress toward management goals, relative to the restoration of Hexagenia populations in the Great Lakes and possibly other water bodies throughout the world, is influenced by the number of years in which consequtive collections are made.

  5. 33 CFR 162.220 - Hoover Dam, Lake Mead, and Lake Mohave (Colorado River), Ariz.-Nev.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Hoover Dam, Lake Mead, and Lake... REGULATIONS § 162.220 Hoover Dam, Lake Mead, and Lake Mohave (Colorado River), Ariz.-Nev. (a) Lake Mead and... the axis of Hoover Dam and that portion of Lake Mohave (Colorado River) extending 4,500 feet...

  6. 33 CFR 162.220 - Hoover Dam, Lake Mead, and Lake Mohave (Colorado River), Ariz.-Nev.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Hoover Dam, Lake Mead, and Lake... REGULATIONS § 162.220 Hoover Dam, Lake Mead, and Lake Mohave (Colorado River), Ariz.-Nev. (a) Lake Mead and... the axis of Hoover Dam and that portion of Lake Mohave (Colorado River) extending 4,500 feet...

  7. 33 CFR 162.220 - Hoover Dam, Lake Mead, and Lake Mohave (Colorado River), Ariz.-Nev.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Hoover Dam, Lake Mead, and Lake... REGULATIONS § 162.220 Hoover Dam, Lake Mead, and Lake Mohave (Colorado River), Ariz.-Nev. (a) Lake Mead and... the axis of Hoover Dam and that portion of Lake Mohave (Colorado River) extending 4,500 feet...

  8. 33 CFR 162.220 - Hoover Dam, Lake Mead, and Lake Mohave (Colorado River), Ariz.-Nev.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Hoover Dam, Lake Mead, and Lake... REGULATIONS § 162.220 Hoover Dam, Lake Mead, and Lake Mohave (Colorado River), Ariz.-Nev. (a) Lake Mead and... the axis of Hoover Dam and that portion of Lake Mohave (Colorado River) extending 4,500 feet...

  9. Microbiota within the perennial ice cover of Lake Vida, Antarctica.

    PubMed

    Mosier, Annika C; Murray, Alison E; Fritsen, Christian H

    2007-02-01

    Lake Vida, located in the McMurdo Dry Valleys, Antarctica, is an 'ice-sealed' lake with approximately 19 m of ice covering a highly saline water column (approximately 245 ppt). The lower portions of the ice cover and the lake beneath have been isolated from the atmosphere and land for circa 2800 years. Analysis of microbial assemblages within the perennial ice cover of the lake revealed a diverse array of bacteria and eukarya. Bacterial and eukaryal denaturing gradient gel electrophoresis phylotype profile similarities were low (<59%) between all of the depths compared (five depths spanning 11 m of the ice cover), with the greatest differences occurring between surface and deep ice. The majority of bacterial 16S rRNA gene sequences in the surface ice were related to Actinobacteria (42%) while Gammaproteobacteria (52%) dominated the deep ice community. Comparisons of assemblage composition suggest differences in ice habitability and organismal origin in the upper and lower portions of ice cover. Specifically, the upper ice cover microbiota likely reflect the modern day transport and colonization of biota from the terrestrial landscape, whereas assemblages in the deeper ice are more likely to be persistent remnant biota that originated from the ancient liquid water column of the lake that froze.

  10. Lake Characteristics Influencing Spawning Success of Muskellunge in Northern Wisconsin Lakes

    Treesearch

    Ashley J. Rust; James S. Diana; Terry L. Margenau; Clayton J. Edwards

    2002-01-01

    We determined the physical, chemical, biological, and land use characteristics that distinguish northern Wisconsin lakes with self-sustaining populations of muskellunge Esox masquinongy from lakes where stocking is required to maintain populations. Lakes that supported self-sustaining muskellunge populations were characterized by fewer shoreline...

  11. Exploring the long-term balance between net precipitation and net groundwater exchange in Florida seepage lakes

    USGS Publications Warehouse

    Lee, Terrie M.; Sacks, Laura A.; Swancar, Amy

    2014-01-01

    The long-term balance between net precipitation and net groundwater exchange that maintains thousands of seepage lakes in Florida’s karst terrain is explored at a representative lake basin and then regionally for the State’s peninsular lake district. The 15-year water budget of Lake Starr includes El Niño Southern Oscillation (ENSO)-related extremes in rainfall, and provides the longest record of Bowen ratio energy-budget (BREB) lake evaporation and lake-groundwater exchanges in the southeastern United States. Negative net precipitation averaging -25 cm/yr at Lake Starr overturns the previously-held conclusion that lakes in this region receive surplus net precipitation. Net groundwater exchange with the lake was positive on average but too small to balance the net precipitation deficit. Groundwater pumping effects and surface-water withdrawals from the lake widened the imbalance. Satellite-based regional estimates of potential evapotranspiration at five large lakes in peninsular Florida compared well with basin-scale evaporation measurements from seven open-water sites that used BREB methods. The regional average lake evaporation estimated for Lake Starr during 1996-2011 was within 5 percent of its measured average, and regional net precipitation agreed within 10 percent. Regional net precipitation to lakes was negative throughout central peninsular Florida and the net precipitation deficit increased by about 20 cm from north to south. Results indicate that seepage lakes farther south on the peninsula receive greater net groundwater inflow than northern lakes and imply that northern lakes are in comparatively leakier hydrogeologic settings. Findings reveal the peninsular lake district to be more vulnerable than was previously realized to drier climate, surface-water withdrawals from lakes, and groundwater pumping effects.

  12. Evaluating COSMO's lake module (FLake) for an East-African lake using a comprehensive set of lake temperature profiles

    NASA Astrophysics Data System (ADS)

    Thiery, W.; Martynov, A.; Darchambeau, F.; Demuzere, M.; van Lipzig, N.

    2012-04-01

    The African great lakes are of utmost importance for the local economy (fishing), as well as being essential to the survival of the local people. During last decades, these lakes have been changing rapidly and their evolution is a major concern. Hence, it is important to correctly represent them in regional climate models for simulations over tropical Africa. However, so far lake models have been developed and tested primarily for boreal conditions. In this study, for the first time the freshwater lake model FLake is evaluated over East-Africa, more specifically over lake Kivu. Meteorological observations from January 2003 to December 2008 from an automatic weather station in Bukavu, DRC, are used to drive the standalone version of FLake. For the evaluation, a unique dataset is used which contains over 200 temperature profiles recorded since 2002. Results show that FLake in its default configuration is very successful at reproducing both the timing and magnitude of the seasonal cycle at 5 m depth. Flake captures that this seasonality is regulated by the water vapour pressure, which constrains evaporation except during summer (JJA). A positive bias of ~1 K is attributed to the driving data, which are collected in the city and are therefore expected to mirror higher temperatures and lower wind speeds compared to the lake surface. The evaluation also showed that driving FLake with Era-Interim from the nearest pixel does only slightly deteriorate the model performance. Using forcing fields from the Canadian Regional Climate Model, version 5 (CRCM5) simulation output gives similar performance as Era-Interim. Furthermore, a drawback of FLake is that it does not account for salinity and its effect upon lake stratification, and therefore requires artificial initial conditions for both lake depth and bottom temperature in order to reproduce the correct mixing regime in lake Kivu. Further research will therefore aim at improving FLake's representation of tropical lakes.

  13. Seasonal thermal ecology of adult walleye (Sander vitreus) in Lake Huron and Lake Erie.

    PubMed

    Peat, Tyler B; Hayden, Todd A; Gutowsky, Lee F G; Vandergoot, Christopher S; Fielder, David G; Madenjian, Charles P; Murchie, Karen J; Dettmers, John M; Krueger, Charles C; Cooke, Steven J

    2015-10-01

    The purpose of this study was to characterize thermal patterns and generate occupancy models for adult walleye from lakes Erie and Huron with internally implanted biologgers coupled with a telemetry study to assess the effects of sex, fish size, diel periods, and lake. Sex, size, and diel periods had no effect on thermal occupancy of adult walleye in either lake. Thermal occupancy differed between lakes and seasons. Walleye from Lake Erie generally experienced higher temperatures throughout the spring and summer months than did walleye in Lake Huron, due to limnological differences between the lakes. Tagged walleye that remained in Saginaw Bay, Lake Huron (i.e., adjacent to the release location), as opposed to those migrating to the main basin of Lake Huron, experienced higher temperatures, and thus accumulated more thermal units (the amount of temperature units amassed over time) throughout the year. Walleye that migrated toward the southern end of Lake Huron occupied higher temperatures than those that moved toward the north. Consequently, walleye that emigrated from Saginaw Bay experienced thermal environments that were more favorable for growth as they spent more time within their thermal optimas than those that remained in Saginaw Bay. Results presented in this paper provide information on the thermal experience of wild fish in a large lake, and could be used to refine sex- and lake-specific bioenergetics models of walleye in the Great Lakes to enable the testing of ecological hypotheses. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Seasonal thermal ecology of adult walleye (Sander vitreus) in Lake Huron and Lake Erie

    USGS Publications Warehouse

    Peat, Tyler B; Hayden, Todd A.; Gutowsky, Lee F G; Vandergoot, Christopher S.; Fielder, David G.; Madenjian, Charles P.; Murchie, Karen J; Dettmers, John M.; Krueger, Charles C.; Cooke, Steven J.

    2015-01-01

    The purpose of this study was to characterize thermal patterns and generate occupancy models for adult walleye from lakes Erie and Huron with internally implanted biologgers coupled with a telemetry study to assess the effects of sex, fish size, diel periods, and lake. Sex, size, and diel periods had no effect on thermal occupancy of adult walleye in either lake. Thermal occupancy differed between lakes and seasons. Walleye from Lake Erie generally experienced higher temperatures throughout the spring and summer months than did walleye in Lake Huron, due to limnological differences between the lakes. Tagged walleye that remained in Saginaw Bay, Lake Huron (i.e., adjacent to the release location), as opposed to those migrating to the main basin of Lake Huron, experienced higher temperatures, and thus accumulated more thermal units (the amount of temperature units amassed over time) throughout the year. Walleye that migrated toward the southern end of Lake Huron occupied higher temperatures than those that moved toward the north. Consequently, walleye that emigrated from Saginaw Bay experienced thermal environments that were more favorable for growth as they spent more time within their thermal optimas than those that remained in Saginaw Bay. Results presented in this paper provide information on the thermal experience of wild fish in a large lake, and could be used to refine sex- and lake-specific bioenergetics models of walleye in the Great Lakes to enable the testing of ecological hypotheses.

  15. Hydrology of Indiana lakes

    USGS Publications Warehouse

    Perrey, Joseph Irving; Corbett, Don Melvin

    1956-01-01

    The stabilization of lake levels often requires the construction of outlet control structures. A detailed study of past lake-level elevations and other hydologic date is necessary to establish a level that can be maintained and to determine the means necessary for maintaining the established level. Detailed lake-level records for 28 lakes are included in the report, and records for over 100 other lakes data are available in the U.S. Geological Survey Office, Indianapolis, Ind. Evaporation data from the four Class A evaporation station of the U. S. Weather Bureau have been compiled in this report. A table showing the established legal lake level and related data is included.

  16. First evidence of successful natural reproduction by planted lake trout in Lake Huron

    USGS Publications Warehouse

    Nester, Robert T.; Poe, Thomas P.

    1984-01-01

    Twenty-two lake trout (Salvelinus namaycush) swim-up fry, 24-27 mm long, were captured with emergent fry traps and a tow net in northwestern Lake Huron on a small nearshore reef off Alpena, Michigan, between May 10 and June 1, 1982. These catches represent the first evidence of successful production of swim-up fry by planted, hatchery-reared lake trout in Lake Huron since the lake trout rehabilitation program began in 1973.

  17. Estimation of lake water - groundwater interactions in meromictic mining lakes by modelling isotope signatures of lake water.

    PubMed

    Seebach, Anne; Dietz, Severine; Lessmann, Dieter; Knoeller, Kay

    2008-03-01

    A method is presented to assess lake water-groundwater interactions by modelling isotope signatures of lake water using meteorological parameters and field data. The modelling of delta(18)O and deltaD variations offers information about the groundwater influx into a meromictic Lusatian mining lake. Therefore, a water balance model is combined with an isotope water balance model to estimate analogies between simulated and measured isotope signatures within the lake water body. The model is operated with different evaporation rates to predict delta(18)O and deltaD values in a lake that is only controlled by weather conditions with neither groundwater inflow nor outflow. Comparisons between modelled and measured isotope values show whether the lake is fed by the groundwater or not. Furthermore, our investigations show that an adaptation of the Craig and Gordon model [H. Craig, L.I. Gordon. Deuterium and oxygen-18 variations in the ocean and the marine atmosphere. In Stable Isotopes in Oceanographic Studies and Paleotemperature, Spoleto, E. Tongiorgi (Ed.), pp. 9-130, Consiglio Nazionale delle Ricerche, Laboratorio di Geologia Nucleare, Pisa (1965).] to specific conditions in temperate regions seems necessary.

  18. 75 FR 13232 - Safety Zone; Lake Mead Intake Construction, Lake Mead, Boulder City, NV

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-19

    ...-AA00 Safety Zone; Lake Mead Intake Construction, Lake Mead, Boulder City, NV AGENCY: Coast Guard, DHS... waters of Lake Mead in support of the construction project for Lake Mead's Intake 3. This safety zone is... for the placement of an Intake Pipe from Lake Mead throughout 2010. This safety zone is necessary to...

  19. 78 FR 17869 - Safety Zone; Desert Storm Shootout; Lake Havasu, Lake Havasu City, AZ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-25

    ...-AA00 Safety Zone; Desert Storm Shootout; Lake Havasu, Lake Havasu City, AZ AGENCY: Coast Guard, DHS... navigable waters of the Colorado River in Lake Havasu, Lake Havasu City, Arizona in support of the Desert... Coast Guard to establish safety zones (33 U.S.C 1221 et seq.). Lake Racer LLC is sponsoring the Desert...

  20. Bioturbation enhances the aerobic respiration of lake sediments in warming lakes.

    PubMed

    Baranov, Viktor; Lewandowski, Jörg; Krause, Stefan

    2016-08-01

    While lakes occupy less than 2% of the total surface of the Earth, they play a substantial role in global biogeochemical cycles. For instance, shallow lakes are important sites of carbon metabolism. Aerobic respiration is one of the important drivers of the carbon metabolism in lakes. In this context, bioturbation impacts of benthic animals (biological reworking of sediment matrix and ventilation of the sediment) on sediment aerobic respiration have previously been underestimated. Biological activity is likely to change over the course of a year due to seasonal changes of water temperatures. This study uses microcosm experiments to investigate how the impact of bioturbation (by Diptera, Chironomidae larvae) on lake sediment respiration changes when temperatures increase. While at 5°C, respiration in sediments with and without chironomids did not differ, at 30°C sediment respiration in microcosms with 2000 chironomids per m(2) was 4.9 times higher than in uninhabited sediments. Our results indicate that lake water temperature increases could significantly enhance lake sediment respiration, which allows us to better understand seasonal changes in lake respiration and carbon metabolism as well as the potential impacts of global warming. © 2016 The Authors.