Sample records for lake basin eastern

  1. Potential strategies for recovery of lake whitefish and lake herring stocks in eastern Lake Erie

    USGS Publications Warehouse

    Oldenburg, K.; Stapanian, M.A.; Ryan, P.A.; Holm, E.

    2007-01-01

    Lake Erie sustained large populations of ciscoes (Salmonidae: Coregoninae) 120 years ago. By the end of the 19th century, abundance of lake whitefish (Coregonus clupeaformis) had declined drastically. By 1925, the lake herring (a cisco) population (Coregonus artedii) had collapsed, although a limited lake herring fishery persisted in the eastern basin until the 1950s. In the latter part of the 20th century, the composition of the fish community changed as oligotrophication proceeded. Since 1984, a limited recovery of lake whitefish has occurred, however no recovery was evident for lake herring. Current ecological conditions in Lake Erie probably will not inhibit recovery of the coregonine species. Recovery of walleye (Sander vitreus) and efforts to rehabilitate the native lake trout (Salvelinus namaycush) in Lake Erie will probably assist recovery because these piscivores reduce populations of alewife (Alosa psuedoharengus) and rainbow smelt (Osmerus mordax), which inhibit reproductive success of coregonines. Although there are considerable spawning substrates available to coregonine species in eastern Lake Erie, eggs and fry would probably be displaced by storm surge from most shoals. Site selection for stocking or seeding of eggs should consider the reproductive life cycle of the stocked fish and suitable protection from storm events. Two potential sites in the eastern basin have been identified. Recommended management procedures, including commercial fisheries, are suggested to assist in recovery. Stocking in the eastern basin of Lake Erie is recommended for both species, as conditions are adequate and the native spawning population in the eastern basin is low. For lake herring, consideration should be given to match ecophenotypes as much as possible. Egg seeding is recommended. Egg seeding of lake whitefish should be considered initially, with fingerling or yearling stocking suggested if unsuccessful. Spawning stocks of whitefish in the western basin of Lake

  2. Spatiotemporal Variability of Great Lakes Basin Snow Cover Ablation Events

    NASA Astrophysics Data System (ADS)

    Suriano, Z. J.; Leathers, D. J.

    2017-12-01

    In the Great Lakes basin of North America, annual runoff is dominated by snowmelt. This snowmelt-induced runoff plays an important role within the hydrologic cycle of the basin, influencing soil moisture availability and driving the seasonal cycle of spring and summer Lake levels. Despite this, relatively little is understood about the patterns and trends of snow ablation event frequency and magnitude within the Great Lakes basin. This study uses a gridded dataset of Canadian and United States surface snow depth observations to develop a regional climatology of snow ablation events from 1960-2009. An ablation event is defined as an inter-diurnal snow depth decrease within an individual grid cell. A clear seasonal cycle in ablation event frequency exists within the basin and peak ablation event frequency is latitudinally dependent. Most of the basin experiences peak ablation frequency in March, while the northern and southern regions of the basin experience respective peaks in April and February. An investigation into the inter-annual frequency of ablation events reveals ablation events significantly decrease within the northeastern and northwestern Lake Superior drainage basins and significantly increase within the eastern Lake Huron and Georgian Bay drainage basins. In the eastern Lake Huron and Georgian Bay drainage basins, larger ablation events are occurring more frequently, and a larger impact to the hydrology can be expected. Trends in ablation events are attributed primarily to changes in snowfall and snow depth across the region.

  3. Paleolimnology of Lake Tubutulik, an iron-meromictic Eocene Lake, eastern Seward Peninsula, Alaska

    USGS Publications Warehouse

    Dickinson, K.A.

    1988-01-01

    Sideritic lacustrine mudstone was found in drill core from a uranium deposit in the Death Valley area in the eastern part of the Seward Peninsula, Alaska. The precursor sediments for this rock were deposited in an unusual "iron-meromictic" Eocene lake, herein named Lake Tubutulik, which occupied part of the Boulder Creek basin, a structural graben that is probably a southern extension of the larger Death Valley basin. The Boulder Creek basin is bounded on the west by granite of the Late Cretaceous Darby Pluton, on the east by Precambrian to Paleozoic metasedimentary rocks. The lake basin was formed by basaltic flows that dammed the river valley of the ancestral Tubutulik River in early Eocene time. Lake Tubutulik contained a nearshore facies of fine-grained organic mud and an offshore facies of laminated sideritic mud. The offshore (profundal) laminated mudstone consists of alternating layers of authigenic siderite and detrital layers containing mostly quartz and clay minerals. Both lacustrine facies contain turbidities. The lacustrine sediments graded laterally into an onshore facies of colluvial and fluvial sandstone, paludal mudstone, and coal. The ancient lake apparently occupied a small deep basin in a tectonically active area of high relief. Meromixus was probably stabilized by reduced iron and bicarbonate dissolved in the monimolimnion. The intensity of meromixus decreased as the lake became shallower from sediment filling. The source of the iron, abundant in the monimolimnion of Lake Tubutulik, was probably the Eocene basalt. Based on carbon isotope analysis of the siderite, the dissolved bicarbonate in the profundal facies was largely inorganic. Sideritic carbon in one sample from the onshore paludal facies has an isotopic signature (??13C = +16.9) consistent with residual carbon formed during methanogenic fermentation. ?? 1988.

  4. Estimated flood flows in the Lake Tahoe basin, California and Nevada

    USGS Publications Warehouse

    Crompton, E. James; Hess, Glen W.; Williams, Rhea P.

    2002-01-01

    Lake Tahoe, the largest alpine lake in North America, covers about 192 square miles (mi2) of the 506-mi2 Lake Tahoe Basin, which straddles the border between California and Nevada (Fig. 1). In cooperation with the Nevada Department of Transportation (NDOT), the U.S. Geological Survey (USGS) estimates the flood frequencies of the streams that enter the lake. Information about potential flooding of these streams is used by NDOT in the design and construction of roads and highways in the Nevada portion of the basin. The stream-monitoring network in the Lake Tahoe Basin is part of the Lake Tahoe Interagency Monitoring Program (LTIMP), which combines the monitoring and research efforts of various Federal, State, and regional agencies, including both USGS and NDOT. The altitude in the basin varies from 6,223 feet (ft) at the lake's natural rim to over 10,000 ft along the basin's crest. Precipitation ranges from 40 inches per year (in/yr) on the eastern side to 90 in/yr on the western side (Crippen and Pavelka, 1970). Most of the precipitation comes during the winter months as snow. Precipitation that falls from June through September accounts for less than 20 percent of the annual total.

  5. Lake level and climate records of the last 90 ka from the Northern Basin of Lake Van, eastern Turkey

    NASA Astrophysics Data System (ADS)

    Çağatay, M. N.; Öğretmen, N.; Damcı, E.; Stockhecke, M.; Sancar, Ü.; Eriş, K. K.; Özeren, S.

    2014-11-01

    Sedimentary, geochemical and mineralogical analyses of the ICDP cores recovered from the Northern Basin (NB) of Lake Van provide evidence of lake level and climatic changes related to orbital and North Atlantic climate system over the last 90 ka. High lake levels are generally observed during the interglacial and interstadial periods, which are marked by deposition of varved sediments with high total organic carbon (TOC), total inorganic carbon (TIC), low detrital influx (high Ca/F) and high δ18O and δ13C values of authigenic carbonate. During the glacial and stadial periods of 71-58 ka BP (Marine Isotope Stage 4, MIS4) and end of last glaciation-deglaciation (30-14.5 ka BP; MIS3) relatively low lake levels prevailed, and grey homogeneous to faintly laminated clayey silts were deposited at high sedimentation and low organic productivity rates. Millennial-scale variability of the proxies during 60-30 ka BP (MIS3 is correlated with the Dansgaard-Oeschger (D-O)) and Holocene abrupt climate events in the Atlantic. These events are characterized by laminated sediments, with high TOC, TIC, Ca/Fe, δ18O and δ13C values. The Lake Van NB records correlate well in the region with the climate records from the lakes Zeribar and Urmia in Iran and the Sofular Cave in NW Anatolia, but are in general in anti-phase to those from the Dead Sea Basin (Lake Lisan) in the Levant. The relatively higher δ18O values (0 to -0.4‰) for the interglacial and interstadial periods in the Lake Van NB section are due to the higher temperature and seasonality of precipitation and higher evaporation, whereas the lower values (-0.8 to -2‰) during the glacial and stadial periods are caused mainly by relative decrease in both temperature and seasonality of precipitation. The high δ18O values (up to 4.2‰) during the Younger Dryas, together with the presence of dolomite and low TOC contents, supports evaporative conditions and low lake level. A gradual decrease in the δ18O values from an

  6. The potential of Lake Karakul in the eastern Pamirs as a long-term climate archive

    NASA Astrophysics Data System (ADS)

    Mischke, S.; Rajabov, I.; Mustaeva, N.; Zhang, C.; Boomer, I.; Sherlock, S. C.; Myrbo, A.; Noren, A.; Brady, K.; Herzschuh, U.; Schudack, M. E.; Ito, E.

    2008-12-01

    Lake Karakul is a large closed-basin lake in the eastern Pamirs (NE Tajikistan) at an altitude of 3930 m. The lake fills a large basin about 45 km in diameter which may originate from a meteorite impact in the late Neogene. Exposed lake sediments at the northwestern shore 20 m above the lake display a bizarre Yardang relief indicating higher water levels in the past. Eroded remnants of lake, playa and fluvial sediments can be found on the northeastern slopes of the basin 200 m above the lake but their depositional age remains unknown. A field survey of the Lake Karakul region was conducted in July 2008 as a first attempt to evaluate the potential of the lake as a long-term climate archive in Central Asia. Sediment samples from the lake's bottom, water samples from the lake and inflowing streams, aquatic and terrestrial plant samples, and rock samples were collected to enable an interdisciplinary investigation of the lake and its catchment. A 1.04 m sediment core was obtained near the centre of the more shallow and flat eastern sub-basin of the lake at 19 m water depth. Corresponding to the lack of outlet and the resulting high pH (9.1) and electrical conductivity of the lake (10.3 mS/cm), fine aragonite needles constitute most of the sediments. Additionally, ostracod shells, aquatic plant fragments, detrital grains and Radix (Gastropoda) shells were recorded. First results of AMS 14C dating and ostracod analysis will be used to infer the environmental and climatic evolution of Lake Karakul in the Late Holocene.

  7. Neodymium Isotope Variations in Late Quaternary Carbonate Lake Sediments, Owens Valley, Eastern California.

    NASA Astrophysics Data System (ADS)

    Minervini, J. M.; Stewart, B. W.

    2001-12-01

    Owens Lake is situated in a mostly-closed basin fed by water and sediments derived primarily from the eastern Sierra Nevada range. Chemical and sedimentological variations in USGS Owens Lake Core OL-92, which extends back 800 ka, have been shown to be sensitive tracers of Great Basin paleoclimate. Here we report preliminary neodymium (Nd) isotope data from core OL-92 to investigate sediment provenance, the chemical behavior of rare earth elements (REE) in non-marine systems, and possible climate-related shifts in weathering patterns of the eastern Sierra Nevada during the last glacial-interglacial transition. Neodymium isotopic analyses were carried out on the carbonate fraction of sediment samples ranging in age from 16.8 to 6.9 ka from Owens Lake core OL-92. Samples were treated with ammonium acetate to remove exchangeable cations from coexisting silicate material, and subsequently leached with 8% acetic acid to dissolve carbonate minerals. Based on the mass of sediment leached with acetic acid, the fraction of carbonate (relative to clastic silicate material) increases from 6.6 to 66.5% over the 10 ka period represented by these samples. This increase in carbonate reflects desiccation of the Owens Lake basin; as streamwater flow is reduced, the lake spends a greater proportion of its time saturated in carbonate minerals, and clastic input might also be reduced. Concentrations of Nd in Owens Lake carbonate range from 7 to 170 ppm, values that are 2-1000 times higher than marine planktonic foraminifera (e.g., Vance and Burton, 1999, EPSL 173, 365). In general, high concentrations of Nd in Owens Lake carbonate are associated with older sediment samples with lower carbonate fractions. The decrease in Nd concentration over this time period could be a result of extraction of Nd from lake waters by precipitation of carbonate as desiccation proceeded. Epsilon-Nd values of Owens Lake carbonate range from -5.3 to -6.5, and are consistent with eastern Sierra Nevada

  8. Regional groundwater-flow model of the Lake Michigan Basin in support of Great Lakes Basin water availability and use studies

    USGS Publications Warehouse

    Feinstein, D.T.; Hunt, R.J.; Reeves, H.W.

    2010-01-01

    A regional groundwater-flow model of the Lake Michigan Basin and surrounding areas has been developed in support of the Great Lakes Basin Pilot project under the U.S. Geological Survey's National Water Availability and Use Program. The transient 2-million-cell model incorporates multiple aquifers and pumping centers that create water-level drawdown that extends into deep saline waters. The 20-layer model simulates the exchange between a dense surface-water network and heterogeneous glacial deposits overlying stratified bedrock of the Wisconsin/Kankakee Arches and Michigan Basin in the Lower and Upper Peninsulas of Michigan; eastern Wisconsin; northern Indiana; and northeastern Illinois. The model is used to quantify changes in the groundwater system in response to pumping and variations in recharge from 1864 to 2005. Model results quantify the sources of water to major pumping centers, illustrate the dynamics of the groundwater system, and yield measures of water availability useful for water-resources management in the region. This report is a complete description of the methods and datasets used to develop the regional model, the underlying conceptual model, and model inputs, including specified values of material properties and the assignment of external and internal boundary conditions. The report also documents the application of the SEAWAT-2000 program for variable-density flow; it details the approach, advanced methods, and results associated with calibration through nonlinear regression using the PEST program; presents the water-level, drawdown, and groundwater flows for various geographic subregions and aquifer systems; and provides analyses of the effects of pumping from shallow and deep wells on sources of water to wells, the migration of groundwater divides, and direct and indirect groundwater discharge to Lake Michigan. The report considers the role of unconfined conditions at the regional scale as well as the influence of salinity on groundwater flow

  9. A previously unrecognized path of early Holocene base flow and elevated discharge from Lake Minong to Lake Chippewa across eastern Upper Michigan

    USGS Publications Warehouse

    Loope, Walter L.; Jol, Harry M.; Fisher, Timothy G.; Blewett, William L.; Loope, Henry M.; Legg, Robert J.

    2014-01-01

    It has long been hypothesized that flux of fresh meltwater from glacial Lake Minong in North America's Superior Basin to the North Atlantic Ocean triggered rapid climatic shifts during the early Holocene. The spatial context of recent support for this idea demands a reevaluation of the exit point of meltwater from the Superior Basin. We used ground penetrating radar (GPR), foundation borings from six highway bridges, a GIS model of surface topography, geologic maps, U.S. Department of Agriculture–Natural Resources Conservation Service soils maps, and well logs to investigate the possible linkage of Lake Minong with Lake Chippewa in the Lake Michigan Basin across eastern Upper Michigan. GPR suggests that a connecting channel lies buried beneath the present interlake divide at Danaher. A single optical age hints that the channel aggraded to 225 m as elevated receipt of Lake Agassiz meltwater in the Superior Basin began to wane <10.6 ka. The large supply of sediment required to accommodate aggradation was immediately available at the channel's edge in the littoral shelves of abandoned Lake Algonquin and in distal parts of post-Algonquin fans. As discharge decreased further, the aggraded channel floor was quickly breached and interbasin flow to Lake Chippewa was restored. Basal radiocarbon ages on wood from small lakes along the discharge path and a GIS model of Minong's shoreline are consistent with another transgression of Minong after ca. 9.5 ka. At the peak of the latter transgression, the southeastern rim of the Superior Basin (Nadoway Drift Barrier) failed, ending Lake Minong. Upon Minong's final drop, aggradational sediments were deposited at Danaher, infilling the prior breach.

  10. Fluvial sediment study of Fishtrap and Dewey Lakes drainage basins, Kentucky - Virginia

    USGS Publications Warehouse

    Curtis, William F.; Flint, Russell F.; George, Frederick H.; Santos, John F.

    1978-01-01

    Fourteen drainage basins above Fishtrap and Dewey Lakes in the Levisa Fork and Johns Creek drainage basins of eastern Kentucky and southwestern Virginia were studied to determine sedimentation rates and origin of sediment entering the two lakes. The basins ranged in size from 1.68 to 297 square miles. Sediment yields ranged from 2,890 to 21,000 tons per square mile where surface-mining techniques predominated, and from 732 to 3 ,470 tons per square mile where underground mining methods predominated. Yields, in terms of tons per acre-foot of runoff, ranged from 2.2 to 15 for surface-mined areas, and from 0.5 to 2.7 for underground-mined areas. Water and sediment discharges from direct runoff during storms were compared for selected surface-mined and underground-mined areas. Data points of two extensively surface-mined areas, one from the current project and one from a previous project in Beaver Creek basin, McCreary County, Kentucky, grouped similarly in magnitude and by season. Disturbed areas from mining activities determined from aerial photographs reached 17 percent in one study area where extensive surface mining was being practiced. For most areas where underground mining was practiced, percentage disturbed area was almost negligible. Trap efficiency of Fishtrap Lake was 89 percent, and was 62 percent for Dewey Lake. Average annual deposition rates were 464 and 146 acre-feet for Fishtrap and Dewey Lakes, respectively. The chemical quality of water in the Levisa Fork basin has been altered by man 's activities. (Woodard-USGS)

  11. Nahcolite and halite deposition through time during the saline mineral phase of Eocene Lake Uinta, Piceance Basin, western Colorado

    USGS Publications Warehouse

    Johnson, Ronald C.; Brownfield, Michael E.

    2013-01-01

    Halite and the sodium bicarbonate mineral nahcolite were deposited during the saline phase of Eocene Lake Uinta in the Piceance Basin, western Colorado. Variations in the area of saline mineral deposition through time were interpreted from studies of core and outcrop. Saline minerals were extensively leached by groundwater, so the original extent of saline deposition was estimated from the distribution of empty vugs and collapse breccias. Vugs and breccias strongly influence groundwater movement, so determining where leaching has occurred is an important consideration for in-situ oil shale extraction methods currently being developed. Lake Uinta formed when two smaller fresh water lakes, one in the Uinta Basin of eastern Utah and the other in the Piceance Basin of western Colorado, expanded and coalesced across the Douglas Creek arch, an area of comparatively low subsidence rates. Salinity increased shortly after this expansion, but saline mineral deposition did not begin until later, after a period of prolonged infilling created broad lake-margin shelves and a comparatively small deep central lake area. These shelves probably played a critical role in brine evolution. A progression from disseminated nahcolite and nahcolite aggregates to bedded nahcolite and ultimately to bedded nahcolite and halite was deposited in this deep lake area during the early stages of saline deposition along with rich oil shale that commonly shows signs of slumping and lateral transport. The area of saline mineral and rich oil shale deposition subsequently expanded, in part due to infilling of the compact deep area, and in part because of an increase in water flow into Lake Uinta, possibly due to outflow from Lake Gosiute to the north. Finally, as Lake Uinta in the Piceance Basin was progressively filled from north to south by volcano-clastic sediment, the saline depocenter was pushed progressively southward, eventually covering much of the areas that had previously been marginal shelves

  12. Spatiotemporal patterns of precipitation extremes in the Poyang Lake basin, China: Changing properties and causes

    NASA Astrophysics Data System (ADS)

    Xiao, M.

    2016-12-01

    Under the background of climate change, extensive attentions have been paid on the increased extreme precipitation from the public and government. To analyze the influences of large-scale climate indices on the precipitation extremes, the spatiotemporal patterns of precipitation extremes in the Poyang Lake basin have been investigated using the Bayesian hierarchical method. The seasonal maximum one-day precipitation amount (Rx1day) was used to represent the seasonal precipitation extremes. Results indicated that spring Rx1day was affected by El Niño/Southern Oscillation (ENSO) and North Atlantic Oscillation (NAO), a positive ENSO event in the same year tends to decrease the spring Rx1day in the northern part of Poyang Lake Basin while increase the spring Rx1day in southeastern Poyang Lake Basin, a positive NAO events in the same year tends to increase the spring Rx1day in the southwest and northwest part of Poyang Lake basin while decrease the spring Rx1day in the eastern part of Poyang Lake basin; summer Rx1day was affected by Indian Ocean Dipole (IOD), positive IOD events in the same year tend to increase the summer Rx1day of northern Poyang Lake basin while decrease summer Rx1day of southern Poyang Lake basin; autumn Rx1day was affected by ENSO, positive ENSO events in the same year tend to mainly increase the autumn Rx1day in the west part of Poyang Lake basin; winter Rx1day was mainly affected by the NAO, positive NAO events in the same year tend to mainly increase the winter Rx1day of southern Poyang Lake basin, while positive NAO events in the previous year tend to mainly increase the winter Rx1day in the central and northeast part of Poyang Lake basin. It is considered that the region with the negative vertical velocity is dominated by more precipitation and vice versa. Furthermore, field patterns of 500 hPa vertical velocity anomalies related to each climate index have further corroborated the influences of climate indices on the seasonal Rx1day, and

  13. The relationship between the abundance of smallmouth bass and double-crested cormorants in the eastern basin of Lake Ontario

    USGS Publications Warehouse

    Lantry, B.F.; Eckert, T.H.; Schneider, C.P.; Chrisman, J.R.

    2002-01-01

    Available population and diet data on double-crested cormorant (Phalacrocorax auritus) and smallmouth bass (Micropterus dolomieui) numbers, demographics, and exploitation rates were synthesized to examine the relationship between cormorant and smallmouth bass abundance in the U.S. waters of the eastern basin of Lake Ontario. It was found that after the number of cormorants nesting on Little Galloo Island in New York exceeded 3,500 pairs in 1989, survival of young smallmouth bass, not yet of legal size for the sport harvest (< 305 mm), began to decline. Despite production of strong year classes in 1987 and 1988, abundance of smallmouth bass measured from gill net surveys declined to its lowest level by 1995 and remained there through 1998. Stable or increasing catch and harvest rates in other local fisheries along the U.S. shore suggested that declines in smallmouth bass abundance in the eastern basin were not related to water quality. Stable or increasing growth rates for smallmouth bass age 2 and older since the 1980s further indicated that food resource limitation was also not the cause for declines in abundance. Comparisons of estimates of size and age-specific predation on smallmouth bass by cormorants with projected smallmouth bass population size indicated that much of the increased mortality on young smallmouth bass, could be explained by cormorant predation.

  14. Complex postglacial recolonization inferred from population genetic structure of mottled sculpin Cottus bairdii in tributaries of eastern Lake Michigan, U.S.A.

    PubMed

    Homola, J J; Ruetz, C R; Kohler, S L; Thum, R A

    2016-11-01

    This study used analyses of the genetic structure of a non-game fish species, the mottled sculpin Cottus bairdii to hypothesize probable recolonization routes used by cottids and possibly other Laurentian Great Lakes fishes following glacial recession. Based on samples from 16 small streams in five major Lake Michigan, U.S.A., tributary basins, significant interpopulation differentiation was documented (overall F ST = 0·235). Differentiation was complex, however, with unexpectedly high genetic similarity among basins as well as occasionally strong differentiation within basins, despite relatively close geographic proximity of populations. Genetic dissimilarities were identified between eastern and western populations within river basins, with similarities existing between eastern and western populations across basins. Given such patterns, recolonization is hypothesized to have occurred on three occasions from more than one glacial refugium, with a secondary vicariant event resulting from reduction in the water level of ancestral Lake Michigan. By studying the phylogeography of a small, non-game fish species, this study provides insight into recolonization dynamics of the region that could be difficult to infer from game species that are often broadly dispersed by humans. © 2016 The Fisheries Society of the British Isles.

  15. Surficial deposits in the Bear Lake Basin

    USGS Publications Warehouse

    Reheis, Marith C.; Laabs, Benjamin J.C.; Forester, Richard M.; McGeehin, John P.; Kaufman, Darrell S.; Bright, Jordon

    2005-01-01

    Mapping and dating of surficial deposits in the Bear Lake drainage basin were undertaken to provide a geologic context for interpretation of cores taken from deposits beneath Bear Lake, which sometimes receives water and sediment from the glaciated Bear River and sometimes only from the small drainage basin of Bear Lake itself. Analyses of core sediments by others are directed at (1) constructing a high-resolution climate record for the Bear Lake area during the late Pleistocene and Holocene, and (2) investigating the sources and weathering history of sediments in the drainage basin. Surficial deposits in the upper Bear River and Bear Lake drainage basins are different in their overall compositions, although they do overlap. In the upper Bear River drainage, Quaternary deposits derived from glaciation of the Uinta Range contain abundant detritus weathered from Precambrian quartzite, whereas unglaciated tributaries downstream mainly contribute finer sediment weathered from much younger, more friable sedimentary rocks. In contrast, carbonate rocks capped by a carapace of Tertiary sediments dominate the Bear Lake drainage basin.

  16. Climate-driven changes in grassland vegetation, snow cover, and lake water of the Qinghai Lake basin

    NASA Astrophysics Data System (ADS)

    Wang, Xuelu; Liang, Tiangang; Xie, Hongjie; Huang, Xiaodong; Lin, Huilong

    2016-07-01

    Qinghai Lake basin and the lake have undergone significant changes in recent decades. We examine MODIS-derived grassland vegetation and snow cover of the Qinghai Lake basin and their relations with climate parameters during 2001 to 2010. Results show: (1) temperature and precipitation of the Qinghai Lake basin increased while evaporation decreased; (2) most of the grassland areas improved due to increased temperature and growing season precipitation; (3) weak relations between snow cover and precipitation/vegetation; (4) a significantly negative correlation between lake area and temperature (r=-0.9, p<0.05) and (5) a positive relation between lake level (lake-level difference) and temperature (precipitation). Compared with Namco Lake (located in the inner Tibetan Plateau) where the primary water source of lake level increases was the accelerated melt of glacier/perennial snow cover in the lake basin, for the Qinghai Lake, however, it was the increased precipitation. Increased precipitation explained the improvement of vegetation cover in the Qinghai Lake basin, while accelerated melt of glacier/perennial snow cover was responsible for the degradation of vegetation cover in Namco Lake basin. These results suggest different responses to the similar warming climate: improved (degraded) ecological condition and productive capacity of the Qinghai Lake basin (Namco Lake basin).

  17. [Landscape pattern and its vulnerability of Nansihu Lake basin during 1980-2015.

    PubMed

    Xui, Yan; Sun, Xiao Yin; Zhang, Da Zhi; Shan, Rui Feng; Liu, Fei

    2018-02-01

    Landscape pattern and its vulnerability have direct impacts on ecological environment in the basin. In order to protect the ecological security in Nansihu Lake basin, we analyzed the changes of landscape pattern based on seven sets of land use data (1980-2015), with landscape adaptability index (LAI) and landscape sensitivity index (LSI) being used to build the landscape vulnerability index (LVI). The spatial distribution and changes of LVI were analyzed. Results showed that the percentage of arable land areas decreased by 4.6% and construction land areas increased by 39.7% from 1980 to 2015. Other land use types showed fluctuating changes. The areas of forest land, grassland, and unused land decreased while water area increased. The arable land was the dominant land use type from 1980 to 2015 in this area. The degree of fragmentation of arable land and water area in the basin increased, whereas other land use types decreased. The fragmentation of whole basin decreased, but connectivity among landscape types enhanced. The irregularity and complexity of landscape pattern decreased, but diversity and evenness of landscape pattern displayed an increasing trend. With respect to LVI in different periods, the eastern part of the basin was higher than the western part, while the northern part was higher than the southern part. The spatial distribution of LVI was related to topography, layout of landscape types and change of land use. The LVI of Nansihu Lake basin showed a decline trend during 1980-2015. In the eastern part of the basin, higher level of LVI gradually dispersed and was replaced by lower level. In the northwest, the recovery of LVI was obvious. In the south and southwest parts, LVI was consistently low.

  18. In-Lake Processes Offset Increased Terrestrial Inputs of Dissolved Organic Carbon and Color to Lakes

    PubMed Central

    Köhler, Stephan J.; Kothawala, Dolly; Futter, Martyn N.; Liungman, Olof; Tranvik, Lars

    2013-01-01

    Increased color in surface waters, or browning, can alter lake ecological function, lake thermal stratification and pose difficulties for drinking water treatment. Mechanisms suggested to cause browning include increased dissolved organic carbon (DOC) and iron concentrations, as well as a shift to more colored DOC. While browning of surface waters is widespread and well documented, little is known about why some lakes resist it. Here, we present a comprehensive study of Mälaren, the third largest lake in Sweden. In Mälaren, the vast majority of water and DOC enters a western lake basin, and after approximately 2.8 years, drains from an eastern basin. Despite 40 years of increased terrestrial inputs of colored substances to western lake basins, the eastern basin has resisted browning over this time period. Here we find the half-life of iron was far shorter (0.6 years) than colored organic matter (A420 ; 1.7 years) and DOC as a whole (6.1 years). We found changes in filtered iron concentrations relate strongly to the observed loss of color in the western basins. In addition, we observed a substantial shift from colored DOC of terrestrial origin, to less colored autochthonous sources, with a substantial decrease in aromaticity (-17%) across the lake. We suggest that rapid losses of iron and colored DOC caused the limited browning observed in eastern lake basins. Across a wider dataset of 69 Swedish lakes, we observed greatest browning in acidic lakes with shorter retention times (< 1.5 years). These findings suggest that water residence time, along with iron, pH and colored DOC may be of central importance when modeling and projecting changes in brownification on broader spatial scales. PMID:23976946

  19. 78 FR 9883 - Lake Tahoe Basin Federal Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-12

    ... Lake Tahoe Basin Federal Advisory Committee AGENCY: Forest Service, USDA. ACTION: Notice; Solicitation of nominees to the Lake Tahoe Basin Federal Advisory Committee. SUMMARY: In accordance with the...) announces solicitation of nominees to fill vacancies on the Lake Tahoe Basin Federal Advisory Committee...

  20. Deglaciation, lake levels, and meltwater discharge in the Lake Michigan basin

    USGS Publications Warehouse

    Colman, Steven M.; Clark, J.A.; Clayton, L.; Hansel, A.K.; Larsen, C.E.

    1994-01-01

    The deglacial history of the Lake Michigan basin, including discharge and routing of meltwater, is complex because of the interaction among (1) glacial retreats and re-advances in the basin (2) the timing of occupation and the isostatic adjustment of lake outlets and (3) the depositional and erosional processes that left evidence of past lake levels. In the southern part of the basin, a restricted area little affected by differential isostasy, new studies of onshore and offshore areas allow refinement of a lake-level history that has evolved over 100 years. Important new data include the recognition of two periods of influx of meltwater from Lake Agassiz into the basin and details of the highstands gleaned from sedimentological evidence. Major disagreements still persist concerning the exact timing and lake-level changes associated with the Algonquin phase, approximately 11,000 BP. A wide variety of independent data suggests that the Lake Michigan Lobe was thin, unstable, and subject to rapid advances and retreats. Consequently, lake-level changes were commonly abrupt and stable shorelines were short-lived. The long-held beliefs that the southern part of the basin was stable and separated from deformed northern areas by a hinge-line discontinuity are becoming difficult to maintain. Numerical modeling of the ice-earth system and empirical modeling of shoreline deformation are both consistent with observed shoreline tilting in the north and with the amount and pattern of modern deformation shown by lake-level gauges. New studies of subaerial lacustrine features suggest the presence of deformed shorelines higher than those originally ascribed to the supposed horizontal Glenwood level. Finally, the Lake Michigan region as a whole appears to behave in a similar manner to other areas, both local (other Great Lakes) and regional (U.S. east coast), that have experienced major isostatic changes. Detailed sedimentological and dating studies of field sites and additional

  1. Stratigraphic framework and lake level history of Lake Kivu, East African Rift

    NASA Astrophysics Data System (ADS)

    Wood, Douglas A.; Scholz, Christopher A.

    2017-10-01

    Sediment cores and seismic reflection data acquired from the eastern basin of Lake Kivu, Rwanda reveal extensive limnologic variations due to changes in regional climate and basin structure. The eastern basin of the lake contains a sedimentary wedge which is > 1.5 km in thickness on its western side, and basal sediments are estimated to be at least 1.5 million years old. Sediments are likely to be thicker and older than this in the northern, Congolese basin of the lake. Above the ∼300 m iosbath only a thin layer of Holocene sediments are observed indication that this may have been the lake's high stand prior to that time. There are at least three erosional unconformities interpreted as desiccation or near-desiccation events which are estimated to have occurred at ∼475 ka, ∼100 ka, and ∼20 ka; the two most recent of these low stages likely developed during the African Megadrought and Last Glacial Maximum (LGM) periods. Following the LGM, the water levels rose to form a ∼100 m deep lake with its surface ∼370 m below the current lake level. The lake remained near that level for several thousand years and during this time the Virunga Volcanic Province expanded. At ∼12.2 ka a change to wetter climate conditions rapidly filled the lake to spill out of the Bukavu Bay basin southward toward Lake Tanganyika. Tephra sampled from the cores show that there have been at least 24 large local volcanic events since the early Holocene lake transgression.

  2. Hydrogeologic comparison of an acidic-lake basin with a neutral-lake basin in the West-Central Adirondack Mountains, New York

    USGS Publications Warehouse

    Peters, N.E.; Murdoch, Peter S.

    1985-01-01

    Two small headwater lake basins that receive similar amounts of acidic atmospheric deposition have significantly different lake outflow pH values; pH at Panther Lake (neutral) ranges from about 4.7 to 7; that at Woods Lake (acidic) ranges from about 4.3 to 5. A hydrologic analysis, which included monthly water budgets, hydrograph analysis, examination of flow duration and runoff recession curves, calculation of ground-water storage, and an analysis of lateral flow capacity of the soil, indicates that differences in lakewater pH can be attributed to differences in the ground-water contribution to the lakes. A larger percentage of the water discharged from the neutral lake is derived from ground water than that from the acidic lake. Ground water has a higher pH resulting from a sufficiently long residence time for neutralizing chemical reactions to occur with the till. The difference in ground-water contribution is attributed to a more extensive distribution of thick till (<3m) in the neutral-lake basin than in the acidic-lake basin; average thickness of till in the neutral-lake basin is 24m whereas that in the other is 2.3m. During the snowmelt period, as much as three months of accumulated precipitation may be released within two weeks causing the lateral flow capacity of the deeper mineral soil to be exceeded in the neutral-lake basin. This excess water moves over and through the shallow acidic soil horizons and causes the lakewater pH to decrease during snowmelt.Two small headwater lake basins that receive similar amounts of acidic atmospheric deposition have significantly different lake outflow pH values; pH at Panther Lake (neutral) ranges from about 4. 7 to 7; that at Woods Lake (acidic) ranges from about 4. 3 to 5. A hydrologic analysis, which included monthly water budgets, hydrograph analysis, examination of flow duration and runoff recession curves, calculation of ground-water storage, and an analysis of lateral flow capacity of the soil, indicates that

  3. Summit Lake landslide and geomorphic history of Summit Lake basin, northwestern Nevada

    USGS Publications Warehouse

    Curry, B. Brandon; Melhorn, W.N.

    1990-01-01

    The Summit Lake landslide, northwestern Nevada, composed of Early Miocene pyroclastic debris, Ashdown Tuff, and basalt and rhyolite of the Black Rock Range, blocked the upper Soldier Creek-Snow Creek drainage and impounded Summit Lake sometimes prior to 7840 yr B.P. The slide covers 8.2 km2 and has geomorphic features characteristic of long run-out landslides, such as lobate form, longitudinal and transverse ridges, low surface gradient (7.1 ??), and preservation of original stratigraphic position of transported blocks. However, estimated debris volume is the smallest reported (2.5 ?? 105 m3) for a landslide of this type. The outflow channel of the Summit Lake basin was a northward-flowing stream valley entrenched by Mahogany Creek. Subsequent negative tectonic adjustment of the basin by about 35 m, accompanied by concommitant progradation of a prominent alluvial fan deposited by Mahogany Creek, argues for a probable diversion of drainage from the Alvord basin southward into the Lahontan basin. The landslide occurred while the creek flowed southward, transferring about 147 km2 of watershed from the Lahontan basin back to the Alvord basin. Overflow northward occurred during high stands of Pluvial Lake Parman in the basin; otherwise, under drier climates, the Summit Lake basin has been closed. Within large depressions on the slide surface, the ca. 6800 yr old Mazama Bed and other sediments have buried a weakly developed soil. Disseminated humus in the soil yields an age of 7840 ?? 310 yr B.P. Absence of older tephra (such as St. Helens M) brackets the slide age between 7840 and 19,000 yr B.P. Projectile points found on the highest strandlines of Pluvial Lake Parman suggest a ca 8700 yr B.P. age by correlation with cultural artifacts and radiocarbon ages from nearby Last Supper Cave, Nevada. Organic matter accumulation in landslide soils suggests ages ranging from 9100 to 16,250 yr B.P. Estimation of the age of the slide from morphologic data for the isolated Summit

  4. Drainage areas in the Vermillion River basin in eastern South Dakota

    USGS Publications Warehouse

    Benson, Rick D.; Freese, M.D.; Amundson, Frank D.

    1988-01-01

    Above-normal precipitation in the northern portion of the Vermillion River basin from 1982 through 1987 caused substantial rises in lake levels in the Lake Thompson chain of lakes, resulting in discharge from Lake Thompson to the East Fork Vermillion River. Prior to 1986, the Lake Thompson chain of lakes was thought to be a noncontributing portion of the Vermillion River basin. To better understand surface drainage, the map delineates all named stream basins, and all unnamed basins larger than approximately 10 sq mi within the Vermillion River basin in South Dakota and lists by stream name the area of each basin. Stream drainage basins were delineated by visual interpretation of contour information of U.S. Geological Survey 7 1/2 minute topographic maps. Two tables list areas of drainage basins and reaches, as well as drainage areas above gaging stations. (USGS)

  5. Clustered, rectangular lakes of the Canadian Old Crow Basin

    NASA Astrophysics Data System (ADS)

    Allenby, Richard J.

    1989-12-01

    This paper investigates the origin and development of the tightly clustered lakes within the Old Crow and Bluefish basins utilizing Landsat imagery, SEASAT Synthetic Aperture Radar (SAR), and the available scientific literature. The Old Crow Basin and the smaller, neighboring, Bluefish Basin are located in the northwest Yukon Territory of Canada, 150 km south of the Beaufort Sea and just east of the Canadian-Alaskan border. Both basins, situated in Pleistocene lake deposits of sand, gravel, silt, and peat, are characterized by numerous, densely clustered, rectangular or arrowhead-shaped, shallow lakes with linear shore lines. The straight edges of these lakes exhibit strong, nearly orthogonal, preferred alignments directed northwest and northeast. These lakes evidently originated as relatively small thaw or thermokarst lakes that subsequently coalesced into larger lakes with edges and orientations controlled by a fracture pattern in the consolidated, underlying rocks-possibly the Old Crow Granite. The fracture pattern may be the result of horizontal tertiary or later compressional forces along the Kaltag/Porcupine Fault or it may have originated in the relatively undeformed, consolidated, basinal sediments as a result of downwarping and subsequent uplifting. The lake forming process is ongoing with new lakes being formed to replace older lakes in all stages of being obliterated.

  6. Extent of Pleistocene lakes in the western Great Basin

    USGS Publications Warehouse

    Reheis, Marith C.

    1999-01-01

    During the Pliocene to middle Pleistocene, pluvial lakes in the western Great Basin repeatedly rose to levels much higher than those of the well-documented late Pleistocene pluvial lakes, and some presently isolated basins were connected. Sedimentologic, geomorphic, and chronologic evidence at sites shown on the map indicates that Lakes Lahontan and Columbus-Rennie were as much as 70 m higher in the early-middle Pleistocene than during their late Pleistocene high stands. Lake Lahontan at its 1400-m shoreline level would submerge present-day Reno, Carson City, and Battle Mountain, and would flood other now-dry basins. To the east, Lakes Jonathan (new name), Diamond, Newark, and Hubbs also reached high stands during the early-middle(?) Pleistocene that were 25-40 m above their late Pleistocene shorelines; at these very high levels, the lakes became temporarily or permanently tributary to the Humboldt River and hence to Lake Lahontan. Such a temporary connection could have permitted fish to migrate from the Humboldt River southward into the presently isolated Newark Valley and from Lake Lahontan into Fairview Valley. The timing of drainage integration also provides suggested maximum ages for fish to populate the basins of Lake Diamond and Lake Jonathan. Reconstructing and dating these lake levels also has important implications for paleoclimate, tectonics, and drainage evolution in the western Great Basin. For example, shorelines in several basins form a stair-step sequence downward with time from the highest levels, thought to have formed at about 650 ka, to the lowest, formed during the late Pleistocene. This descending sequence indicates progressive drying of pluvial periods, possibly caused by uplift of the Sierra Nevada and other western ranges relative to the western Great Basin. However, these effects cannot account for the extremely high lake levels during the early middle Pleistocene; rather, these high levels were probably due to a combination of increased

  7. Coastal Changes, Eastern Lake Michigan, 1970-74.

    DTIC Science & Technology

    1981-01-01

    an effective shore protection agent during the stormiest months of January, February, and March. Till and mixed till bluffs tended to erode less than...final report of a 4-year study of 17 profile lines located along the eastern shore of Lake Michigan. The work v-as carried out under the coastal...26 5 Sediment statistics sum~mary, eastern Lake Michigan (October 1973 to December 1974

  8. Estimation of shallow ground-water recharge in the Great Lakes basin

    USGS Publications Warehouse

    Neff, B.P.; Piggott, A.R.; Sheets, R.A.

    2006-01-01

    This report presents the results of the first known integrated study of long-term average ground-water recharge to shallow aquifers (generally less than 100 feet deep) in the United States and Canada for the Great Lakes, upper St. Lawrence, and Ottawa River Basins. The approach used was consistent throughout the study area and allows direct comparison of recharge rates in disparate parts of the study area. Estimates of recharge are based on base-flow estimates for streams throughout the Great Lakes Basin and the assumption that base flow in a given stream is equal to the amount of shallow ground-water recharge to the surrounding watershed, minus losses to evapotranspiration. Base-flow estimates were developed throughout the study area using a single model based on an empirical relation between measured base-flow characteristics at streamflow-gaging stations and the surficial-geologic materials, which consist of bedrock, coarse-textured deposits, fine-textured deposits, till, and organic matter, in the surrounding surface-water watershed. Model calibration was performed using base-flow index (BFI) estimates for 959 stations in the U.S. and Canada using a combined 28,784 years of daily streamflow record determined using the hydrograph-separation software program PART. Results are presented for watersheds represented by 8-digit hydrologic unit code (HUC, U.S.) and tertiary (Canada) watersheds. Recharge values were lowest (1.6-4.0 inches/year) in the eastern Lower Peninsula of Michigan; southwest of Green Bay, Wisconsin; in northwestern Ohio; and immediately south of the St. Lawrence River northeast of Lake Ontario. Recharge values were highest (12-16.8 inches/year) in snow shadow areas east and southeast of each Great Lake. Further studies of deep aquifer recharge and the temporal variability of recharge would be needed to gain a more complete understanding of ground-water recharge in the Great Lakes Basin.

  9. Sedimentary facies and depositional environments of early Mesozoic Newark Supergroup basins, eastern North America

    USGS Publications Warehouse

    Smoot, J.P.

    1991-01-01

    The early Mesozoic Newark Supergroup consists of continental sedimentary rocks and basalt flows that occupy a NE-trending belt of elongate basins exposed in eastern North America. The basins were filled over a period of 30-40 m.y. spanning the Late Triassic to Early Jurassic, prior to the opening of the north Atlantic Ocean. The sedimentary rocks are here divided into four principal lithofacies. The alluvial-fan facies includes deposits dominated by: (1) debris flows; (2) shallow braided streams; (3) deeper braided streams (with trough crossbeds); or (4) intense bioturbation or hyperconcentrated flows (tabular, unstratified muddy sandstone). The fluvial facies include deposits of: (1) shallow, ephemeral braided streams; (2) deeper, flashflooding, braided streams (with poor sorting and crossbeds); (3) perennial braided rivers; (4) meandering rivers; (5) meandering streams (with high suspended loads); (6) overbank areas or local flood-plain lakes; or (7) local streams and/or colluvium. The lacustrine facies includes deposits of: (1) deep perennial lakes; (2) shallow perennial lakes; (3) shallow ephemeral lakes; (4) playa dry mudflats; (5) salt-encrusted saline mudflats; or (6) vegetated mudflats. The lake margin clastic facies includes deposits of: (1) birdfoot deltas; (2) stacked Gilbert-type deltas; (3) sheet deltas; (4) wave-reworked alluvial fans; or (5) wave-sorted sand sheets. Coal deposits are present in the lake margin clastic and the lacustrine facies of Carnian age (Late Triassic) only in basins of south-central Virginia and North and South Carolina. Eolian deposits are known only from the basins in Nova Scotia and Connecticut. Evaporites (and their pseudomorphs) occur mainly in the northern basins as deposits of saline soils and less commonly of saline lakes, and some evaporite and alkaline minerals present in the Mesozoic rocks may be a result of later diagenesis. These relationships suggest climatic variations across paleolatitudes, more humid to the

  10. Geochemical evolution of groundwater in the Mud Lake area, eastern Idaho, USA

    USGS Publications Warehouse

    Rattray, Gordon W.

    2015-01-01

    Groundwater with elevated dissolved-solids concentrations—containing large concentrations of chloride, sodium, sulfate, and calcium—is present in the Mud Lake area of Eastern Idaho. The source of these solutes is unknown; however, an understanding of the geochemical sources and processes controlling their presence in groundwater in the Mud Lake area is needed to better understand the geochemical sources and processes controlling the water quality of groundwater at the Idaho National Laboratory. The geochemical sources and processes controlling the water quality of groundwater in the Mud Lake area were determined by investigating the geology, hydrology, land use, and groundwater geochemistry in the Mud Lake area, proposing sources for solutes, and testing the proposed sources through geochemical modeling with PHREEQC. Modeling indicated that sources of water to the eastern Snake River Plain aquifer were groundwater from the Beaverhead Mountains and the Camas Creek drainage basin; surface water from Medicine Lodge and Camas Creeks, Mud Lake, and irrigation water; and upward flow of geothermal water from beneath the aquifer. Mixing of groundwater with surface water or other groundwater occurred throughout the aquifer. Carbonate reactions, silicate weathering, and dissolution of evaporite minerals and fertilizer explain most of the changes in chemistry in the aquifer. Redox reactions, cation exchange, and evaporation were locally important. The source of large concentrations of chloride, sodium, sulfate, and calcium was evaporite deposits in the unsaturated zone associated with Pleistocene Lake Terreton. Large amounts of chloride, sodium, sulfate, and calcium are added to groundwater from irrigation water infiltrating through lake bed sediments containing evaporite deposits and the resultant dissolution of gypsum, halite, sylvite, and bischofite.

  11. 75 FR 6348 - Lake Tahoe Basin Federal Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-09

    ... DEPARTMENT OF AGRICULTURE Forest Service Lake Tahoe Basin Federal Advisory Committee AGENCY: Forest Service, USDA. ACTION: Notice of meeting. SUMMARY: The Lake Tahoe Basin Federal Advisory Committee... Federal Interagency Partnership on the Lake Tahoe Region and other matters raised by the Secretary. DATES...

  12. Fish losses to double-crested cormorant predation in Eastern Lake Ontario, 1992-97

    USGS Publications Warehouse

    Ross, Robert M.; Johnson, James H.

    1999-01-01

    We examined 4,848 regurgitated digestive pellets of double-crested cormorants (Phalacrocorax auritus) over a 6-year period (1992–97) to estimate annual predation on sport and other fishes in the eastern basin of Lake Ontario. We found more than 51,000 fish of 28 species. Using a model that incorporates annual colony nest counts; fledgling production rates; adult, immature, and young-of-year residence times (seasonal); estimates of mean number of fish per pellet and mean fish size; and a fecal pathway correction factor (4.0 percent), we estimate total annual number of fish consumed by cormorants in the eastern basin of Lake Ontario to range from 37 million to 128 million fish for 1993–97. This fish loss equates to an estimated 0.93 million to 3.21 million kg (mean 2.07 million kg) of fish consumed per year, principally alewife (Alosa pseudoharengus, 42.3 percent) and yellow perch (Perca flavescens, 18.4 percent). Forage fish (alewife, cyprinids, trout-perch [Percopsis omiscomaycus], and other minor components) accounted for 65 percent of the diet, and panfish contributed 34 percent of the diet for the 5-year period. Game fish were minor components of the diet, in view of an average estimated annual consumption of 900,000 smallmouth bass (Micropterus dolomieui, 1.1 percent) and 168,000 salmonines (mostly lake trout, Salvelinus namaycush, 0.2 percent). Cormorant predation on lake trout fingerlings stocked in May 1993 and June 1994 was estimated through the use of coded wire tag recoveries from pellets collected on Little Galloo Island 1 and 4 days after stocking events. We estimated losses of 13.6 percent and 8.8 percent, respectively, of the fish stocked for the two events, an average of 11.2 percent. Such losses may be reduced through alteration of existing stocking practices.

  13. Hydrogeology of the Lake Tahoe Basin, California and Nevada

    USGS Publications Warehouse

    Plume, Russell W.; Tumbusch, Mary L.; Welborn, Toby L.

    2009-01-01

    Ground water in the Lake Tahoe basin is the primary source of domestic and municipal water supply and an important source of inflow to Lake Tahoe. Over the past 30-40 years, Federal, State, and local agencies, and research institutions have collected hydrologic data to quantify the ground-water resources in the Lake Tahoe basin. These data are dispersed among the various agencies and institutions that collected the data and generally are not available in a format suitable for basin-wide assessments. To successfully and efficiently manage the ground-water resources throughout the Lake Tahoe basin, the U.S. Geological Survey (USGS) in cooperation with the U.S. Forest Service (USFS) compiled and evaluated the pertinent geologic, geophysical, and hydrologic data, and built a geodatabase incorporating the consolidated and standardized data for the Lake Tahoe basin that is relevant for examining the extent and characteristics of the hydrogeologic units that comprise the aquifers. The geodatabase can be accessed at http://water.usgs.gov/lookup/getspatial?SIM3063.

  14. 76 FR 7809 - Lake Tahoe Basin Federal Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-11

    ... DEPARTMENT OF AGRICULTURE Forest Service Lake Tahoe Basin Federal Advisory Committee AGENCY: Forest Service, USDA. ACTION: Notice of meeting. SUMMARY: The Lake Tahoe Basin Federal Advisory Committee will hold a meeting on February 28, 2011 at the Lake Tahoe Community College, Aspen Room, 1 College...

  15. 76 FR 15935 - Lake Tahoe Basin Federal Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-22

    ... DEPARTMENT OF AGRICULTURE Forest Service Lake Tahoe Basin Federal Advisory Committee AGENCY: Forest Service, USDA. ACTION: Notice of meeting. SUMMARY: The Lake Tahoe Federal Advisory Committee (LTFAC) will hold meetings on March 31, 2011, April 6, 2011, and April 19, 2011 at the Lake Tahoe Basin...

  16. Changes in the dreissenid community in the lower Great Lakes with emphasis on southern Lake Ontario

    USGS Publications Warehouse

    Mills, Edward L.; Chrisman, Jana R.; Baldwin, Brad; Owens, Randall W.; O'Gorman, Robert; Howell, Todd; Roseman, Edward F.; Raths, Melinda K.

    1999-01-01

    A field study was conducted in the lower Great Lakes to assess changes in spatial distribution and population structure of dreissenid mussel populations. More specifically, the westward range expansion of quagga mussel into western Lake Erie and toward Lake Huron was investigated and the shell size, density, and biomass of zebra and quagga mussel with depth in southern Lake Ontario in 1992 and 1995 were compared. In Lake Erie, quagga mussel dominated the dreissenid community in the eastern basin and zebra mussel dominated in the western basin. In southern Lake Ontario, an east to west gradient was observed with the quagga mussel dominant at western sites and zebra mussel dominant at eastern locations. Mean shell size of quagga mussel was generally larger than that of zebra mussel except in western Lake Erie and one site in eastern Lake Erie. Although mean shell size and our index of numbers and biomass of both dreissenid species increased sharply in southern Lake Ontario between 1992 and 1995, the increase in density and biomass was much greater for quagga mussels over the 3-year period. In 1995, zebra mussels were most abundant at 15 to 25 m whereas the highest numbers and biomass of quagga mussel were at 35 to 45 m. The quagga mussel is now the most abundant dreissenid in areas of southern Lake Ontario where the zebra mussel was once the most abundant dreissenid; this trend parallels that observed for dreissenid populations in the Dneiper River basin in the Ukraine.

  17. Biological structure and dynamics of fish assemblages in tributaries of eastern Lake Ontario

    USGS Publications Warehouse

    McKenna, James E.; Munawar, M.

    2003-01-01

    Interest in effective management of Great Lakes natural resources and restoration of native populations has stimulated interest in the conditions and ecological role of tributaries in the Great Lakes ecosystem. Rivers of Lake Ontario's eastern basin provide an excellent opportunity to examine important tributaries and their relationship to Lake Ontario. This paper reports on the results of an investigation of fish assemblage structure in lower reaches of the Salmon and Oswego Rivers and at their interfaces with Lake Ontario. These two systems represent conditions near the end points on a continuum from highly disturbed to pristine. They are also of great interest to resource managers for their important fisheries and other economic values. The objective was to identify distinct fish assemblages within these systems and relate their characteristics to biotic and abiotic conditions in an attempt to determine factors responsible for structuring and maintaining those species assemblages. This information is intended to provide baseline information for monitoring the status of these rivers and coastal systems and to aid in the development of models of ecological health.

  18. Drainage water phosphorus losses in the great lakes basin

    USDA-ARS?s Scientific Manuscript database

    The great lakes are one of the most important fresh water resources on the planet. While forestry is a primary land use throughout much of the great lakes basin, there are portions of the basin, such as much of the land that drains directly to Lake Erie, that are primarily agricultural. The primary ...

  19. Contrasting PCB bioaccumulation patterns among Lake Huron lake trout reflect basin-specific ecology.

    PubMed

    Paterson, Gordon; Ryder, Mark; Drouillard, Ken G; Haffner, G Douglas

    2016-01-01

    This study collected multiple age classes of lake trout from Lake Huron's Main Basin, Georgian Bay, and North Channel regions to compare and contrast top predator polychlorinated biphenyl (PCB) bioaccumulation patterns in separate compartments of the same ecosystem. Sum PCB concentrations were highest for Main Basin (260 ± 24.9 ng g(-1) wet wt) fish, followed by Georgian Bay (74.6 ± 16.2 ng g(-1) ) and North Channel (42.0 ± 3.3 ng g(-1)) fish. Discriminant functions analysis of lake trout PCB profiles and stable carbon (δ(13)C) and nitrogen (δ(15)N) isotope values clearly distinguished fish by location, indicating high degrees of basin fidelity throughout their lifetimes in addition to highly contrasting PCB bioaccumulation profiles. These unique profiles were not attributable to significant differences in lake trout lipid contents (p = 0.856) or trophic position (δ(15)N; p = 0.334), with rainbow smelt representing the primary prey across the basins. Furthermore, significant differences were observed among the basins for the relationships between PCB biomagnification factors and hydrophobicity. An empirical model for predicting PCB biomagnification in Lake Huron lake trout indicated that basin-specific population growth rates and prey abundances were significant for explaining these contrasting patterns of PCB bioaccumulation. The results of the present study are fundamental for understanding the role of ecology in legacy persistent organic pollutant (POP) bioaccumulation. Specifically, ecosystem characteristics such as prey abundances, foraging ecology, and ultimately consumer growth can regulate the variability of legacy POP bioaccumulation as observed within and among a wide range of freshwater ecosystems. © 2015 SETAC.

  20. Water quality in the eastern Iowa basins

    USGS Publications Warehouse

    Kalkhoff, Stephen J.; Barnes, Kimberlee K.; Becher, Kent D.; Savoca, Mark E.; Schnoebelen, Douglas J.; Sadorf, Eric M.; Porter, Stephen D.; Sullivan, Daniel J.; Creswell, John

    2001-01-01

    The Eastern Iowa Basins Study Unit includes the Wapsipinicon, Cedar, Iowa, and Skunk River basins and covers approximately 19,500 square miles in eastern Iowa and southern Minnesota. More than 90 percent of the land in the study unit is used for agricultural purposes. Forested areas account for only 4 percent of the land area.

  1. 75 FR 13252 - Lake Tahoe Basin Federal Advisory Committee (LTFAC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-19

    ... DEPARTMENT OF AGRICULTURE Forest Service Lake Tahoe Basin Federal Advisory Committee (LTFAC) AGENCY: Forest Service, USDA. ACTION: Notice of meeting. SUMMARY: The Lake Tahoe Basin Federal Advisory... Lake Tahoe, CA 96150. This Committee, established by the Secretary of Agriculture on December 15, 1998...

  2. 77 FR 73411 - Lake Tahoe Basin Federal Advisory Committee (LTBFAC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-10

    ... DEPARTMENT OF AGRICULTURE Forest Service Lake Tahoe Basin Federal Advisory Committee (LTBFAC) AGENCY: Forest Service, USDA. ACTION: Notice of meeting. SUMMARY: The Lake Tahoe Basin Federal Advisory Committee will meet in South Lake Tahoe, California. This Committee, established by the Secretary of...

  3. 76 FR 67132 - Lake Tahoe Basin Federal Advisory Committee (LTFAC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-31

    ... DEPARTMENT OF AGRICULTURE Forest Service Lake Tahoe Basin Federal Advisory Committee (LTFAC) AGENCY: Forest Service, USDA. ACTION: Notice of meeting. SUMMARY: The Lake Tahoe Federal Advisory Committee will hold a meeting on November 18, 2011 at the Lake Tahoe Basin Management Unit, 35 College Drive...

  4. 76 FR 23276 - Lake Tahoe Basin Federal Advisory Committee (LTFAC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-26

    ... DEPARTMENT OF AGRICULTURE Forest Service Lake Tahoe Basin Federal Advisory Committee (LTFAC) AGENCY: Forest Service, USDA. ACTION: Notice of meeting. SUMMARY: The Lake Tahoe Basin Federal Advisory... Interagency Partnership on the Lake Tahoe Region and other matters raised by the Secretary. DATES: The meeting...

  5. 77 FR 42696 - Lake Tahoe Basin Federal Advisory Committee (LTFAC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-20

    ... DEPARTMENT OF AGRICULTURE Forest Service Lake Tahoe Basin Federal Advisory Committee (LTFAC) AGENCY: Forest Service, USDA. ACTION: Notice of meeting. SUMMARY: The Lake Tahoe Federal Advisory Committee will hold a meeting on August 9, 2012 at the Lake Tahoe Basin Management Unit, 35 College Drive...

  6. Secondary Pollutants in the Lake Tahoe Basin, USA

    NASA Astrophysics Data System (ADS)

    Zielinska, B.; Bytnerowicz, A.; Gertler, A.; McDaniel, M.; Burley, J. D.

    2013-12-01

    Lake Tahoe, located at 6,225 ft. (1,897 m) in the Sierra Nevada mountain range, is the largest alpine lake in North America. Known for the clarity of its water and the panorama of surrounding mountains on all sides, Lake Tahoe is a prime tourist attraction in the California - Nevada area. However, the Lake Tahoe Basin is facing significant problems in air quality and declining water clarity. In July 21 - 26, 2012, we conducted a field study in the Basin designed to characterize the precursors and pathways of secondary pollutant formation, including ozone, secondary organic aerosol (SOA) and ammonium nitrate. Four strategic sampling sites were selected inside the Basin; two of these sites were located at high elevation (one each on the western and eastern sides of the Basin) and two were positioned near the Lake level. Ozone and NO/NO2 concentrations were continuously measured. With a resolution of several hours over a 6-day sampling period we collected canister samples for detailed speciation of volatile organic compounds (VOC), 2,4-dinitrophenylhydrazine (DNPH) impregnated Sep-Pak cartridges for analysis of carbonyl compounds and honeycomb denuder/filter pack samples for measurement of concentrations of ammonia, nitrous acid, nitric acid, and fine particulate ammonium nitrate. We also collected PM2.5 Teflon and quartz filter samples for measurements of mass, organic and elemental carbon (OC/EC) concentrations and speciation of organic compounds. Whereas the concentrations of lower molecular weight (mw) C2 - C3 hydrocarbons were generally the highest in all sampling sites, ranging from 25 to 76% of the total measured VOC (over 70 species from C2 to C10), the concentrations of biogenic hydrocarbons, isoprene and α-pinene were significant, ranging from 1.4 to 26% and 1.5 to 30%, respectively, of the total VOC, depending on the site and sampling period. For comparison, the sum of benzene, toluene, ethylbenzene and xylenes (BTEX) constituted from 2.5 to 37% of the

  7. Hydrologic analysis of two headwater lake basins of differing lake pH in the west-central Adirondack Mountains of New York

    USGS Publications Warehouse

    Murdoch, Peter S.; Peters, N.E.; Newton, R.M.

    1987-01-01

    Hydrologic analysis of two headwater lake basins in the Adirondack Mountains, New York, during 1980-81 indicates that the degree of neutralization of acid precipitation is controlled by the groundwater contribution to the lake. According to flow-duration analyses, daily mean outflow/unit area from the neutral lake (Panther Lake, pH 5-7) was more sustained and contained a higher percentage of groundwater than that of the acidic lake (Woods Lake, pH 4-5). Outflow recession rates and maximum base-flow rates, derived from individual recession curves, were 3.9 times and 1.5 times greater, respectively, in the neutral-lake basin than in the acidic-lake basin. Groundwater contribution to lake outflow was also calculated from a lake-water budget; the groundwater contribution to the neutral lake was about 10 times greater than that to the acidic lake. Thick sandy till forms the groundwater reservoir and the major recharge area in both basins but covers 8.5 times more area in the neutral-lake basin than in the acidic-lake basin. More groundwater storage within the neutral basin provides longer contact time with neutralizing minerals and more groundwater discharge. As a result, the neutral lake has relatively high pH and alkalinity, and more net cation transport. (USGS)

  8. 76 FR 61074 - Lake Tahoe Basin Federal Advisory Committee (LTFAC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-03

    ... DEPARTMENT OF AGRICULTURE Forest Service Lake Tahoe Basin Federal Advisory Committee (LTFAC) AGENCY: Forest Service, USDA. ACTION: Notice of meeting. SUMMARY: The Lake Tahoe Federal Advisory Committee will hold a meeting on October 21 or 24, 2011 at the Lake Tahoe Basin Management Unit, 35 College...

  9. 76 FR 62038 - Lake Tahoe Basin Federal Advisory Committee (LTFAC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-06

    ... DEPARTMENT OF AGRICULTURE Forest Service Lake Tahoe Basin Federal Advisory Committee (LTFAC) AGENCY: Forest Service, USDA. ACTION: Notice of meeting cancellation. SUMMARY: The Lake Tahoe Federal Advisory Committee meeting that was to be held on October 21 or 24, 2011 at the Lake Tahoe Basin Management...

  10. Estimates of long-term water total phosphorus (TP) concentrations in three large shallow lakes in the Yangtze River basin, China.

    PubMed

    Wu, Pan; Qin, Boqiang; Yu, Ge

    2016-03-01

    The shallow lakes in the eastern China developed on alluvial plains with high-nutrient sediments, and most overflow into the Yangtze River with short hydraulic residence times, whereas they become eutrophic over long time periods. Assuming strong responses to hydrogeological changes in the basin, we attempted to determine the dynamic eutrophication history of these lakes. Although evaluation models for internal total phosphorus (TP) loading are widely used for deep lakes in Europe and North America, the accuracy of these models for shallow lakes that have smaller water volumes controlled by the geometrical morphology and greater basin area of alluvial plains is unknown. To describe the magnitude of changes in velocity of trophic state for the studied shallow lakes, we first evaluated the P retention model in relation to the major forces driving lake morphology, basin climate, and external discharge and then used the model to estimate changes in TP in three large shallow lakes (Taihu, Chao, and Poyang) over 60 years (1950-2009 AD). The observed levels of TP were verified against the relative error of the three lakes (<6.43 %) and Nash-Sutcliffe coefficients (0.67-0.75). The results showed that the predicted TP concentrations largely increased with hydraulic residence time, especially in extreme drought years, with a generally rising trend in trophic status. The simulated trophic state index showed that lakes Taihu and Poyang became eutrophic in the 1990s, whereas Lake Chao became eutrophic in the 1980s; lakes Taihu and Chao ultimately became hypereutrophic in the 2000s. The analysis suggested that the tropic status of the shallow lakes was affected by both the hydroclimate and geological sedimentation of the Yangtze River basin. This work will contribute to the development of an internal P loading model for further evaluating trophic states.

  11. Proposed Great Salt Lake Basin Hydrologic Observatory

    NASA Astrophysics Data System (ADS)

    Johnson, W. P.; Tarboton, D. G.

    2004-12-01

    The dynamic physiography and population growth within the Great Salt Lake Basin provide the opportunity to observe climate and human-induced land-surface changes affecting water availability, water quality, and water use, thereby making the Great Salt Lake Basin a microcosm of contemporary water resource issues and an excellent site to pursue interdisciplinary and integrated hydrologic science. Important societal concerns center on: How do climate variability and human-induced landscape changes affect hydrologic processes, water quality and availability, and aquatic ecosystems over a range of scales? What are the resource, social, and economic consequences of these changes? The steep topography and large climatic gradients of the Great Salt Lake Basin yield hydrologic systems that are dominated by non-linear interactions between snow deposition and snow melt in the mountains, stream flow and groundwater recharge in the mid-elevations, and evaporative losses from the desert floor at lower elevations. Because the Great Salt Lake Basin terminates in a closed basin lake, it is uniquely suited to closing the water, solute, and sediment balances in a way that is rarely possible in a watershed of a size sufficient for coupling to investigations of atmospheric processes. Proposed infrastructure will include representative densely instrumented focus areas that will be nested within a basin-wide network, thereby quantifying fluxes, residence times, pathways, and storage volumes over a range of scales and land uses. The significant and rapid ongoing urbanization presents the opportunity for observations that quantify the interactions among hydrologic processes, human induced changes and social and economic dynamics. One proposed focus area will be a unique, highly instrumented mountain-to-basin transect that will quantify hydrologic processes extending from the mountain ridge top to the Great Salt Lake. The transect will range in elevation from about 1200 m to 3200 m, with a

  12. Impacts of Recent Wetting on Snow Processes and Runoff Generation in a Terminal Lake Basin, Devils Lake, North Dakota.

    NASA Astrophysics Data System (ADS)

    Mahmood, T. H.; Van Hoy, D.

    2016-12-01

    The Devils Lake Basin, only terminal lake basin in North America, drains to a terminal lake called Devils Lake. Terminal lakes are susceptible to climate and land use changes as their water levels fluctuate to these changes. The streamflow from the headwater catchments of the Devils Lake basin exerts a strong control on the water level of the lake. Since, the mid-1980s, the Devils Lake Basin as well as other basins in the northern Great Plains have faced a large and abrupt surge in precipitation regime resulting in a series of wetter climatic condition and flooding around the Devils Lake area. Nevertheless, the impacts of the recent wetting on snow processes such as snow accumulations, blowing snow transport, in-transit sublimation, frozen soil infiltration and snowmelt runoff generations in a headwater catchment of the Devils Lake basin are poorly understood. In this study, I utilize a physically-based, distributed cold regions hydrological model to simulate the hydrological responses in the Mauvais Coulee basin that drains to Devils Lake. The Mauvais Coulee basin ( 1072 km2), located in the north-central North Dakota, is set in a gently rolling landscape with low relief ( 220 m) and an average elevation of 500 m. Major land covers are forest areas in turtle mountains ( 10%) and crops ( 86%), with wheat ( 25%) and canola ( 20%) as the major crops. The model set up includes ten sub-basins, each of which is divided into several hydrological response units (HRUs): riparian forest, river channel, reservoir, wheat, canola, other crops, and marsh. The model is parameterized using local and regional measurements and the findings from previous scientific studies. The model is evaluated against streamflow observations at the Mauvais Coulee gauge (USGS) during 1994-2013 periods using multiple performance criteria. Finally, the impacts of recent increases in precipitation on hydrologic responses are investigated using modeled hydrologic processes.

  13. Eolian transport, saline lake basins, and groundwater solutes

    USGS Publications Warehouse

    Wood, Warren W.; Sanford, Ward E.

    1995-01-01

    Eolian processes associated with saline lakes are shown to be important in determining solute concentration in groundwater in arid and semiarid areas. Steady state mass balance analyses of chloride in the groundwater at Double Lakes, a saline lake basin in the southern High Plains of Texas, United States, suggest that approximately 4.5 × 105 kg of chloride is removed from the relatively small (4.7 km2) basin floor each year by deflation. This mass enters the groundwater down the wind gradient from the lake, degrading the water quality. The estimates of mass transport were independently determined by evaluation of solutes in the unsaturated zone and by solute mass balance calculations of groundwater flux. Transport of salts from the lake was confirmed over a short term (2 years) by strategically placed dust collectors. Results consistent with those at Double Lake were obtained from dune surfaces collected upwind and downwind from a sabkha near the city of Abu Dhabi in the United Arab Emirates. The eolian transport process provides an explanation of the degraded groundwater quality associated with the 30–40 saline lake basins on the southern half of the southern High Plains of Texas and New Mexico and in many other arid and semiarid areas.

  14. Basin-scale simulation of current and potential climate changed hydrologic conditions in the Lake Michigan Basin, United States

    USGS Publications Warehouse

    Christiansen, Daniel E.; Walker, John F.; Hunt, Randall J.

    2014-01-01

    The Great Lakes Restoration Initiative (GLRI) is the largest public investment in the Great Lakes in two decades. A task force of 11 Federal agencies developed an action plan to implement the initiative. The U.S. Department of the Interior was one of the 11 agencies that entered into an interagency agreement with the U.S. Environmental Protection Agency as part of the GLRI to complete scientific projects throughout the Great Lakes basin. The U.S. Geological Survey, a bureau within the Department of the Interior, is involved in the GLRI to provide scientific support to management decisions as well as measure progress of the Great Lakes basin restoration efforts. This report presents basin-scale simulated current and forecast climatic and hydrologic conditions in the Lake Michigan Basin. The forecasts were obtained by constructing and calibrating a Precipitation-Runoff Modeling System (PRMS) model of the Lake Michigan Basin; the PRMS model was calibrated using the parameter estimation and uncertainty analysis (PEST) software suite. The calibrated model was used to evaluate potential responses to climate change by using four simulated carbon emission scenarios from eight general circulation models released by the World Climate Research Programme’s Coupled Model Intercomparison Project phase 3. Statistically downscaled datasets of these scenarios were used to project hydrologic response for the Lake Michigan Basin. In general, most of the observation sites in the Lake Michigan Basin indicated slight increases in annual streamflow in response to future climate change scenarios. Monthly streamflows indicated a general shift from the current (2014) winter-storage/snowmelt-pulse system to a system with a more equally distributed hydrograph throughout the year. Simulated soil moisture within the basin illustrates that conditions within the basin are also expected to change on a monthly timescale. One effect of increasing air temperature as a result of the changing

  15. Internal loading of phosphate in Lake Erie Central Basin.

    PubMed

    Paytan, Adina; Roberts, Kathryn; Watson, Sue; Peek, Sara; Chuang, Pei-Chuan; Defforey, Delphine; Kendall, Carol

    2017-02-01

    After significant reductions in external phosphorus (P) loads, and subsequent water quality improvements in the early 1980s, the water quality of Lake Erie has declined considerably over the past decade. The frequency and magnitude of harmful algal blooms (primarily in the western basin) and the extent of hypoxic bottom waters in the central basin have increased. The decline in ecosystem health, despite meeting goals for external P loads, has sparked a renewed effort to understand P cycling in the lake. We use pore-water P concentration profiles and sediment cores incubation experiments to quantify the P flux from Lake Erie central basin sediments. In addition, the oxygen isotopes of phosphate were investigated to assess the isotopic signature of sedimentary phosphate inputs relative to the isotopic signature of phosphate in lake water. Extrapolating the total P sediment flux based on the pore-water profiles to the whole area of the central basin ranged from 300 to 1250metric tons per year and using the flux based on core incubation experiments an annual flux of roughly 2400metric tons of P is calculated. These estimates amount to 8-20% of the total external input of P to Lake Erie. The isotopic signature of phosphate in the extractable fraction of the sediments (~18‰) can explain the non-equilibrium isotope values of dissolved phosphate in the deep water of the central basin of Lake Erie, and this is consistent with sediments as an important internal source of P in the Lake. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Historical Orthoimagery of the Lake Tahoe Basin

    USGS Publications Warehouse

    Soulard, Christopher E.; Raumann, Christian G.

    2008-01-01

    The U.S. Geological Survey (USGS) Western Geographic Science Center has developed a series of historical digital orthoimagery (HDO) datasets covering part or all of the Lake Tahoe Basin. Three datasets are available: (A) 1940 HDOs for the southern Lake Tahoe Basin, (B) 1969 HDOs for the entire Lake Tahoe Basin, and (C) 1987 HDOs for the southern Lake Tahoe Basin. The HDOs (for 1940, 1969, and 1987) were compiled photogrammically from aerial photography with varying scales, camera characteristics, image quality, and capture dates. The resulting datasets have a 1-meter horizontal resolution. Precision-corrected Ikonos multispectral satellite imagery was used as a substitute for HDOs/DOQs for the 2002 imagery date, but these data are not available for download in this series due to licensing restrictions. The projection of the HDO data is set to UTM Zone 10, NAD 1983. The data for each of the three available dates are clipped into files that spatially approximate the 3.75-minute USGS quarter quadrangles (roughly 3,000 to 4,000 hectares), and have roughly 100 pixels (or 100 meters) of overlap to facilitate combining the files into larger regions without data gaps. The files are named after 3.75-minute USGS quarter quadrangles that cover the same general spatial extent. These files are available in the ERDAS Imagine (.img) format.

  17. Lake overspill and onset of fluvial incision in the Iranian Plateau: Insights from the Mianeh Basin

    NASA Astrophysics Data System (ADS)

    Heidarzadeh, Ghasem; Ballato, Paolo; Hassanzadeh, Jamshid; Ghassemi, Mohammad R.; Strecker, Manfred R.

    2017-07-01

    Orogenic plateaus represent a prime example of the interplay between surface processes, climate, and tectonics. This kind of an interplay is thought to be responsible for the formation, preservation, and, ultimately, the destruction of a typical elevated, low-internal relief plateau landscape. Here, we document the timing of intermontane basin filling associated with the formation of a low-relief plateau morphology, followed by basin opening and plateau-flank incision in the northwestern Iranian Plateau of the Arabia-Eurasia collision zone. Our new U-Pb zircon ages from intercalated volcanic ashes in exposed plateau basin-fill sediments from the most external plateau basin (Mianeh Basin) document that the basin was internally drained at least between ∼7 and 4 Ma, and that from ∼5 to 4 Ma it was characterized by an ∼2-km-high and ∼0.5-km-deep lake (Mianeh paleolake), most likely as a result of wetter climatic conditions. At the same time, the eastern margin of the Mianeh Basin (and, therefore, of the Iranian Plateau) experienced limited tectonic activity, as documented by onlapping sediments and smoothed topography. The combination of high lake level and subdued topography at the plateau margin led to lake overspill, which resulted in the cutting of an ∼1-km-deep bedrock gorge (Amardos) by the Qezel-Owzan River (QOR) beginning at ∼4 Ma. This was associated with the incision of the plateau landscape and the establishment of fluvial connectivity with the Caspian Sea. Overall, our study emphasizes the interplay between surface and tectonic processes in forming, maintaining, and destroying orogenic plateau morphology, the transitional nature of orogenic plateau landscapes on timescales of 106 yr, and, finally, the role played by overspilling in integrating endorheic basins.

  18. Tectonic evolution of Honey Lake basin, northeastern California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagner, D.L.; Saucedo, G.J.; Grose, T.L.T.

    New geologic mapping in northeastern California provides additional data on the age and tectonic evolution of the Honey Lake Basin. Rhylitic ash flow tuffs of latest Oligocene to early Miocene age (30 to 22 Ma) occur in the Fort Sage Mountains and in the Sierra Nevada but are not apparent in wells drilled in the Honey Lake basin. Though other interpretations can be made, the authors take this as evidence that the basin did not exist at that time. Volcanic rocks as old as 12 Ma do occur in the basin indicating initiation in mid-Miocene time probably as a grabenmore » due to block faulting. Syntectonic andesitic and basaltic volcanism occurred along faults bounding the Sierra Nevada block at 9 to 10 Ma. Lava issuing from these fractures flowed westward along Tertiary drainages indicating that the Sierran block had been uplifted and tilted westward. Andesites erupted during this time north and east of the basin are lithologically distinct from Sierran andesites. Strike-slip faulting began to dominate the tectonic setting of the region during late Pliocene and Quaternary time with the development of the Honey Lake Fault Zone. Holocene strike-slip displacement is indicated by offsets of the 12,000 year old Lake Lahontan shoreline and deposits containing a 7,000 year old ash.« less

  19. Dissolved organic carbon export and internal cycling in small, headwater lakes

    USGS Publications Warehouse

    Stets, Edward G.; Striegl, Robert G.; Aiken, George R.

    2010-01-01

    Carbon (C) cycling in freshwater lakes is intense but poorly integrated into our current understanding of overall C transport from the land to the oceans. We quantified dissolved organic carbon export (DOCX) and compared it with modeled gross DOC mineralization (DOCR) to determine whether hydrologic or within-lake processes dominated DOC cycling in a small headwaters watershed in Minnesota, USA. We also used DOC optical properties to gather information about DOC sources. We then compared our results to a data set of approximately 1500 lakes in the Eastern USA (Eastern Lake Survey, ELS, data set) to place our results in context of lakes more broadly. In the open-basin lakes in our watershed (n = 5), DOCX ranged from 60 to 183 g C m−2 lake area yr−1, whereas DOCR ranged from 15 to 21 g C m−2 lake area yr−1, emphasizing that lateral DOC fluxes dominated. DOCX calculated in our study watershed clustered near the 75th percentile of open-basin lakes in the ELS data set, suggesting that these results were not unusual. In contrast, DOCX in closed-basin lakes (n = 2) was approximately 5 g C m−2 lake area yr−1, whereas DOCR was 37 to 42 g C m−2 lake area yr−1, suggesting that internal C cycling dominated. In the ELS data set, median DOCX was 32 and 12 g C m−2 yr−1 in open-basin and closed-basin lakes, respectively. Although not as high as what was observed in our study watershed, DOCX is an important component of lake C flux more generally, particularly in open-basin lakes.

  20. 78 FR 70012 - Lake Tahoe Basin Management Unit, California, Land Management Plan Revision

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-22

    ... DEPARTMENT OF AGRICULTURE Forest Service Lake Tahoe Basin Management Unit, California, Land Management Plan Revision AGENCY: Lake Tahoe Basin Management Unit, Forest Service, USDA. ACTION: Notice of... for the Lake Tahoe Basin Management Unit (LTBMU) Land Management Plan Revision available for the 60...

  1. How wet is wet? Strontium isotopes as paleo-lake level indicators in the Chew Bahir basin (S-Ethiopia)

    NASA Astrophysics Data System (ADS)

    Junginger, A.; Vonhof, H.; Foerster, V. E.; Asrat, A.; Cohen, A. S.; Lamb, H. F.; Schaebitz, F.; Trauth, M. H.

    2016-12-01

    A major challenge in paleo-anthropology is to understand the impact of climatic changes on human evolution. The Hominin Sites and Paleo-lakes Drilling Project (HSPDP) is currently meeting that challenge by providing records that cover the last 3.7 Ma of paleoenvironmental change all located in close proximity to key paleo-anthropological findings in East Africa. One of the cored climatic archives comes from the dried up Chew Bahir basin in southern Ethiopia, where duplicate sediment cores, each 280 m long, are expected to provide valuable insights about East African environmental variability during the last >500 ka. The lake basins in the eastern branch of the East African Rift System today contain mainly shallow and alkaline lakes. However, paleo-shorelines in the form of wave cut notches, shell beds, and beach ridges are common morphological evidences for deep freshwater lakes that have filled the basins up to their overflow level during pronounced humid episodes, such as the African Humid Period (AHP, 15-5 ka). Unfortunately, further back in time, many of those morphological features disappear due to erosion and the estimation of paleo-water depths depend merely on qualitative proxies from core analyses. We here present a new method that shows high potential to translate qualitative proxy signals from sediment core analyses to quantitative climate signals in the Ethiopian Rift. The method aims at water level reconstruction of multiple paleo-lake episodes in the Chew Bahir basin using strontium isotope ratios (87Sr/86Sr, SIR) in lacustrine fossils and microfossils. SIR preserved in lacustrine fossils reflect the lithology of the drained catchment. The catchment of Chew Bahir consists mainly of Precambrian basement rocks producing high SIR in the lake waters. During humid periods, its catchment enlarged when higher elevated paleo-lakes Abaya, Chamo and Awassa were cascading down into Chew Bahir. These basins drain mainly volcanic rocks producing low SIR. First

  2. Measurements of Ozone Precursors in the Lake Tahoe Basin, USA

    NASA Astrophysics Data System (ADS)

    Zielinska, B.; Bytnerowicz, A.; Gertler, A.; McDaniel, M.; Rayne, S.; Burley, J. D.

    2014-12-01

    Lake Tahoe, located at 6,225 ft. (1,897 m) in the Sierra Nevada mountain range, is the largest alpine lake in North America. Known for the clarity of its water and the panorama of surrounding mountains on all sides, Lake Tahoe is a prime tourist attraction in the California - Nevada area. However, the Lake Tahoe Basin is facing significant environmental pollution problems, including declining water clarity and air quality issues. During the period of July 21 - 26, 2012, we conducted a field study in the Basin designed to characterize the precursors and pathways of secondary pollutant formation, including ozone and secondary organic aerosol (SOA). Four sites were selected; two were located at high elevations (one each on the western and eastern sides of the Basin) and two were positioned near the Lake level. Ozone and NO/NO2 concentrations were continuously measured. With a resolution of several hours over a 6-day sampling period canister samples were collected for detailed speciation of volatile organic compounds (VOC), 2,4-dinitrophenylhydrazine (DNPH) impregnated Sep-Pak cartridges for analysis of carbonyl compounds, PM2.5 Teflon and quartz filter samples for determination of mass, organic and elemental carbon (OC/EC) concentrations and speciation of organic compounds. Whereas the concentrations of lower molecular weight (mw) C2 - C3 hydrocarbons were generally the highest at all sampling sites, ranging from 25 to 76% of the total measured VOC (over 70 species from C2 to C10), the concentrations of biogenic hydrocarbons, isoprene and α-pinene were significant, ranging from 1.4 to 26% and 1.5 to 30%, respectively, of the total VOC. For comparison, the sum of benzene, toluene, ethylbenzene and xylenes (BTEX) constituted from 2.5 to 37% of the total VOC. All four sites showed maximum ozone concentrations in the range of 60 ppb. However, the lower sites show a pronounced diurnal pattern (i.e. maximum concentrations during the daytime hours, 0900 to 1700, with

  3. Regionalization of precipitation characteristics in Iran's Lake Urmia basin

    NASA Astrophysics Data System (ADS)

    Fazel, Nasim; Berndtsson, Ronny; Uvo, Cintia Bertacchi; Madani, Kaveh; Kløve, Bjørn

    2018-04-01

    Lake Urmia in northwest Iran, once one of the largest hypersaline lakes in the world, has shrunk by almost 90% in area and 80% in volume during the last four decades. To improve the understanding of regional differences in water availability throughout the region and to refine the existing information on precipitation variability, this study investigated the spatial pattern of precipitation for the Lake Urmia basin. Daily rainfall time series from 122 precipitation stations with different record lengths were used to extract 15 statistical descriptors comprising 25th percentile, 75th percentile, and coefficient of variation for annual and seasonal total precipitation. Principal component analysis in association with cluster analysis identified three main homogeneous precipitation groups in the lake basin. The first sub-region (group 1) includes stations located in the center and southeast; the second sub-region (group 2) covers mostly northern and northeastern part of the basin, and the third sub-region (group 3) covers the western and southern edges of the basin. Results of principal component (PC) and clustering analyses showed that seasonal precipitation variation is the most important feature controlling the spatial pattern of precipitation in the lake basin. The 25th and 75th percentiles of winter and autumn are the most important variables controlling the spatial pattern of the first rotated principal component explaining about 32% of the total variance. Summer and spring precipitation variations are the most important variables in the second and third rotated principal components, respectively. Seasonal variation in precipitation amount and seasonality are explained by topography and influenced by the lake and westerly winds that are related to the strength of the North Atlantic Oscillation. Despite using incomplete time series with different lengths, the identified sub-regions are physically meaningful.

  4. Diatom assemblage responses to changing environment in the conspicuously eutrophic Kiuruvesi lake route, central-eastern Finland

    NASA Astrophysics Data System (ADS)

    Tammelin, Mira; Kauppila, Tommi

    2016-04-01

    Lakes and their water quality have been affected by anthropogenic actions for centuries. The most intensive changes have often occurred since the mid-19th century. Industrialization, modern agriculture, forest ditching and artificial lowering of water level are examples of these changes that have usually resulted in the deterioration of lake water quality. Many organisms, such as diatoms, are sensitive to these changes in their environmental conditions. Therefore, a marked species turnover is often seen between the pre and post human impact diatom assemblages. This turnover can be rapidly assessed simultaneously from many lakes by using multivariate methods and top-bottom sampling. Our study area consists of three adjacent lake routes in the grass cultivation and dairy production area of central-eastern Finland, where slash-and-burn cultivation and artificial water level lowering were common practice during the past centuries. The centermost Iisalmi lake route is particularly interesting because of the conspicuously eutrophic lakes in its Kiuruvesi subroute. We used the top-bottom approach to sample pre and post human impact samples from 47 lakes (50 sampling sites) located in the three lake routes. In addition, stratigraphic samples from the long cores of three lakes (one larger central basin and two small upstream lakes) in the Kiuruvesi subroute were studied in more detail. Multivariate methods were used to assess diatom assemblage change within the long cores and between the pre-disturbance and modern samples. The results indicate that most study lakes have undergone a marked shift in their diatom assemblages since the onset of human impact in the area. The lake routes are characterized by differing pre-impact diatom assemblages. However, human influence has reduced their natural variation. Similar diatom species are common in the modern samples of the heavily impacted lakes in all three lake routes. The detailed examination of the diatom assemblage turnover in

  5. Report to Congress: Combined Sewer Overflows into the Great Lakes Basin

    EPA Pesticide Factsheets

    This report assesses the implementation status of long-term CSO control plans (LTCPs) in the Great Lakes Basin. The report also summarizes existing information on the occurrence and volume of discharges from CSOs in the Great Lakes Basin during 2014.

  6. Early Holocene Great Salt Lake

    USGS Publications Warehouse

    Oviatt, Charles G.; Madsen, David B.; Miller, David; Thompson, Robert S.; McGeehin, John P.

    2015-01-01

    Shorelines and surficial deposits (including buried forest-floor mats and organic-rich wetland sediments) show that Great Salt Lake did not rise higher than modern lake levels during the earliest Holocene (11.5–10.2 cal ka BP; 10–9 14C ka BP). During that period, finely laminated, organic-rich muds (sapropel) containing brine-shrimp cysts and pellets and interbedded sodium-sulfate salts were deposited on the lake floor. Sapropel deposition was probably caused by stratification of the water column — a freshwater cap possibly was formed by groundwater, which had been stored in upland aquifers during the immediately preceding late-Pleistocene deep-lake cycle (Lake Bonneville), and was actively discharging on the basin floor. A climate characterized by low precipitation and runoff, combined with local areas of groundwater discharge in piedmont settings, could explain the apparent conflict between evidence for a shallow lake (a dry climate) and previously published interpretations for a moist climate in the Great Salt Lake basin of the eastern Great Basin.

  7. Lake Chad, Chad as seen from STS-66

    NASA Image and Video Library

    1994-11-14

    This oblique view of Lake Chad was taken by the STS-66 crew in November 1994. This lake lies mainly in the Republic of Chad and partly in Nigeria, Cameroon and Niger. The size of Lake Chad varies seasonally and is actually divided into north and south basins; neither of which is generally more than 25 feet (7.6 meters) deep. In this photograph, all the water appears to be located in the southern basin with the northern and eastern edges of both basins covered with sand dunes which have invaded the area where the water once stood. The prevailing wind direction can be seen from the agriculture burning in both basins to be from the east.

  8. Modelling nutrient fluxes from diffuse and point emissions to river loads: the Estonian part of the transboundary Lake Peipsi/Chudskoe drainage basin (Russia/Estonia/Latvia).

    PubMed

    Mourad, D; van der Perk, M

    2004-01-01

    First results are presented of a large-scale GIS-based nutrient transport modelling for the 1985-1999 period in the Estonian part of the transboundary drainage basin of Lake Peipsi (Estonian)/Chudskoe (Russian), one of the largest lakes in Europe, shared by Russia and Estonia. Although the lake is relatively undisturbed by human pollution, it is vulnerable for eutrophication by increased river loads, as shown in the past, when the north-eastern part of the former Soviet Union suffered from intensive agriculture. The collapse of the Soviet Union caused a dramatic decline in fertilizer application rates and widespread abandonment of agricultural land. Although concentration measurements and modelling results indicate a general decrease in nutrient loads, modelling is complicated by the transfer of nutrients from diffuse emissions, which is strongly governed by retention and assumed periodic release from storages within the river basin, like the root zone, tile drains, ditches, channels, bed sediments, floodplains and lakes. Modelling diffuse emission contribution to river loads can be improved by better knowledge about the spatial and temporal distribution of this retention and release within the drainage basin.

  9. The Impact of Meteorology on Ozone Levels in the Lake Tahoe Basin

    NASA Astrophysics Data System (ADS)

    Theiss, Sandra

    The Lake Tahoe Basin is located on the California-Nevada border and occasionally experiences elevated levels of ozone exceeding the 70 ppb California Air Resources Board (CARB) ambient air quality standard (8-hour average). Previous studies indicate that both the local generation of ozone in the Basin and long-range transport from out-of-Basin sources are important in contributing to ozone exceedances, but little is known about the impact of meteorology on the distribution of ozone source regions. In order to develop a better understanding of the factors affecting ozone levels and sources in the Lake Tahoe Basin, this study combines observational data from a 2010 and 2012 summer field campaigns, HYSPLIT back trajectories, and WRF model output to examine the meteorological influences of ozone transport in the topographically complex Lake Tahoe Basin. Findings from the field work portions of this study include enhanced background ozone levels at higher elevations, the local circulation pattern of lake breezes occurring at Lake level sites, and an indication that ozone precursors are coming off the Lake. Our analysis also showed that if transport of ozone does occur, it is more likely to come from the San Joaquin Valley to the south rather than originate in the large cities to the west, such as Sacramento and San Francisco. Analysis of modeled PBL schemes as compared with observational data showed that the ACM2 PBL scheme best represented the geographical domain. The ACM2 PBL scheme was then used to show wind circulation patterns in the Lake Tahoe Basin and concluded that there is decent vertical mixing over the Basin and no indication of ozone transport from the west however some indication of transport from the east. Overall this study concludes that transport from the west is less significant than transport from the south and east, and that transport only influences ozone values at higher elevations. Within the Basin itself (at lower elevations), local factors

  10. Chemical quality of surface waters in Devils Lake basin, North Dakota

    USGS Publications Warehouse

    Swenson, Herbert; Colby, Bruce R.

    1955-01-01

    Devils Lake basin, a closed basin in northeastern North Dakota, covers about 3,900 square miles of land, the topography of which is morainal and of glacial origin. In this basin lies a chain of waterways, which begins with the Sweetwater group and extends successively through Mauvais Coulee, Devils Lake, East Bay Devils Lake, and East Devils Lake, to Stump Lake. In former years when lake levels were high, Mauvais Coulee drained the Sweetwater group and discharged considerable water into Devils Lake. Converging coulees also transported excess water to Stump Lake. For at least 70 years prior to 1941, Mauvais Coulee flowed only intermittently, and the levels of major lakes in this region gradually declined. Devils Lake, for example, covered an area of about 90,000 acres in 1867 but had shrunk to approximately 6,500 acres by 1941. Plans to restore the recreational appeal of Devils Lake propose the dilution and eventual displacement of the brackish lake water by fresh water that would be diverted from the Missouri River. Freshening of the lake water would permit restocking Devils Lake with fish. Devils and Stump Lake have irregular outlines and numerous windings and have been described as lying in the valley of a preglacial river, the main stem and tributaries of which are partly filled with drift. Prominent morainal hills along the south shore of Devils Lake contrast sharply with level farmland to the north. The mean annual temperature of Devils Lake basin ranges between 36 ? and 42 ? F. Summer temperatures above 100 ? F and winter temperatures below -30 ? Fare not uncommon. The annual precipitation for 77 years at the city of Devils Lake averaged 17.5 inches. Usually, from 75 to 80 percent of the precipitation in the basin falls during the growing season, April to September. From 1867 to 1941 the net fall of the water surface of Devils Lake was about 38 feet. By 1951 the surface had risen fully 14 feet from its lowest altitude, 1,400.9 feet. Since 1951, the level has

  11. Surface ozone in the Lake Tahoe Basin

    Treesearch

    Joel D. Burley; Sandra Theiss; Andrzej Bytnerowicz; Alan Gertler; Susan Schilling; Barbara Zielinska

    2015-01-01

    Surface ozone (O3) concentrations were measured in and around the Lake Tahoe Basin using both active monitors (2010) and passive samplers (2002, 2010). The 2010 data from active monitors indicate average summertime diurnal maxima of approximately 50–55 ppb. Some site-to-site variability is observed within the Basin during the well-mixed hours of...

  12. The Effectiveness of Cattlemans Detention Basin, South Lake Tahoe, California

    USGS Publications Warehouse

    Green, Jena M.

    2006-01-01

    Lake Tahoe (Nevada-California) has been designated as an 'outstanding national water resource' by the U.S. Environmental Protection Agency, in part, for its exceptional clarity. Water clarity in Lake Tahoe, however, has been declining at a rate of about one foot per year for more than 35 years. To decrease the amount of sediment and nutrients delivered to the lake by way of alpine streams, wetlands and stormwater detention basins have been installed at several locations around the lake. Although an improvement in stormwater and snowmelt runoff quality has been measured, the effectiveness of the detention basins for increasing the clarity of Lake Tahoe needs further study. It is possible that poor ground-water quality conditions exist beneath the detention basins and adjacent wetlands and that the presence of the basins has altered ground-water flow paths to nearby streams. A hydrogeochemical and ground-water flow modeling study was done at Cattlemans detention basin, situated adjacent to Cold Creek, a tributary to Lake Tahoe, to determine whether the focusing of storm and snowmelt runoff into a confined area has (1) modified the ground-water flow system beneath the detention basin and affected transport of sediment and nutrients to nearby streams and (2) provided an increased source of solutes which has changed the distribution of nutrients and affected nutrient transport rates beneath the basin. Results of slug tests and ground-water flow modeling suggest that ground water flows unrestricted northwest across the detention basin through the meadow. The modeling also indicates that seasonal flow patterns and flow direction remain similar from year to year under transient conditions. Model results imply that about 34 percent (0.004 ft3/s) of the total ground water within the model area originates from the detention basin. Of the 0.004 ft3/s, about 45 percent discharges to Cold Creek within the modeled area downstream of the detention basin. The remaining 55 percent

  13. Distribution and abundance of burrowing mayflies (Hexagenia spp.) in Lake Erie, 1997-2005

    USGS Publications Warehouse

    Krieger, K.A.; Bur, M.T.; Ciborowski, J.J.H.; Barton, D.R.; Schloesser, D.W.

    2007-01-01

    Burrowing mayflies (Hexagenia limbata and H. rigida) recolonized sediments of the western basin of Lake Erie in the 1990s following decades of pollution abatement. We predicted that Hexageniawould also disperse eastward or expand from existing localized populations and colonize large regions of the other basins. We sampled zoobenthos in parts of the western and central basins yearly from 1997–2005, along the north shore of the eastern basin in 2001–2002, and throughout the lake in 2004. In the island area of the western basin, Hexagenia was present at densities ≤1,278 nymphs/m2and exhibited higher densities in odd years than even years. By contrast, Hexagenia became more widespread in the central basin from 1997–2000 at densities ≤48 nymphs/m2 but was mostly absent from 2001–2005. Nymphs were found along an eastern basin transect at densities ≤382/m2 in 2001 and 2002. During the 2004 lake-wide survey, Hexagenia was found at 63 of 89 stations situated throughout the western basin (≤1,636 nymphs/m2, mean = 195 nymphs/m2, SE = 32, N = 89) but at only 7 of 112 central basin stations, all near the western edge of the basin (≤708 nymphs/m2), and was not found in the eastern basin. Hexagenia was found at 2 of 62 stations (≤91 nymphs/m2) in harbors, marinas, and tributaries along the south shore of the central basin in 2005. Oxygen depletion at the sediment-water interface and cool temperatures in the hypolimnion are probably the primary factors preventing successful establishment throughout much of the central basin. Hexagenia can be a useful indicator of lake quality where its distribution and abundance are limited by anthropogenic causes.

  14. Potential sources of precipitation in Lake Baikal basin

    NASA Astrophysics Data System (ADS)

    Shukurov, K. A.; Mokhov, I. I.

    2017-11-01

    Based on the data of long-term measurements at 23 meteorological stations in the Russian part of the Lake Baikal basin the probabilities of daily precipitation with different intensity and their contribution to the total precipitation are estimated. Using the trajectory model HYSPLIT_4 for each meteorological station for the period 1948-2016 the 10-day backward trajectories of air parcels, the height of these trajectories and distribution of specific humidity along the trajectories are calculated. The average field of power of potential sources of daily precipitation (less than 10 mm) for all meteorological stations in the Russian part of the Lake Baikal basin was obtained using the CWT (concentration weighted trajectory) method. The areas have been identified from which within 10 days water vapor can be transported to the Lake Baikal basin, as well as regions of the most and least powerful potential sources. The fields of the mean height of air parcels trajectories and the mean specific humidity along the trajectories are compared with the field of mean power of potential sources.

  15. Physical characteristics of stream subbasins in the Hawk Creek-Yellow Medicine River basin, southwestern Minnesota and eastern South Dakota

    USGS Publications Warehouse

    Sanocki, Christopher A.

    1996-01-01

    Data that describe the physical characteristics of stream subbasins upstream from selected sites on streams in the Hawk Creek-Yellow Medicine River Basin, located in southwestern Minnesota and eastern South Dakota are presented in this report. The physical characteristics are the drainage area of the subbasin, the percentage area of the subbasin covered only by lakes, the percentage area of the subbasin covered by both lakes and wetlands, the main-channel length, and the main-channel slope. Stream sites include outlets of subbasins of at least 5 square miles, outlets of sewage treatment plants, and locations of U.S. Geological Survey low-flow, high-flow, and continuous-record gaging stations.

  16. Pacific salmonines in the Great Lakes Basin

    USGS Publications Warehouse

    Claramunt, Randall M.; Madenjian, Charles P.; Clapp, David; Taylor, William W.; Lynch, Abigail J.; Léonard, Nancy J.

    2012-01-01

    Pacific salmon (genus Oncorhynchus) are a valuable resource, both within their native range in the North Pacific rim and in the Great Lakes basin. Understanding their value from a biological and economic perspective in the Great Lakes, however, requires an understanding of changes in the ecosystem and of management actions that have been taken to promote system stability, integrity, and sustainable fisheries. Pacific salmonine introductions to the Great Lakes are comprised mainly of Chinook salmon, coho salmon, and steelhead and have accounted for 421, 177, and 247 million fish, respectively, stocked during 1966-2007. Stocking of Pacific salmonines has been effective in substantially reducing exotic prey fish abundances in several of the Great Lakes (e.g., lakes Michigan, Huron, and Ontario). The goal of our evaluation was to highlight differences in management strategies and perspectives across the basin, and to evaluate policies for Pacific salmonine management in the Great Lakes. Currently, a potential conflict exists between Pacific salmonine management and native fish rehabilitation goals because of the desire to sustain recreational fisheries and to develop self-sustaining populations of stocked Pacific salmonines in the Great Lakes. We provide evidence that suggests Pacific salmonines have not only become naturalized to the food webs of the Great Lakes, but that their populations (specifically Chinook salmon) may be fluctuating in concert with specific prey (i.e., alewives) whose populations are changing relative to environmental conditions and ecosystem disturbances. Remaining questions, however, are whether or not “natural” fluctuations in predator and prey provide enough “stability” in the Great Lakes food webs, and even more importantly, would a choice by managers to attempt to reduce the severity of predator-prey oscillations be antagonistic to native fish restoration efforts. We argue that, on each of the Great Lakes, managers are pursuing

  17. Peat accumulation in drained thermokarst lake basins in continuous, ice-rich permafrost, northern Seward Peninsula, Alaska

    USGS Publications Warehouse

    Jones, Miriam C.; Grosse, Guido; Jones, Benjamin M.; Anthony, Katey Walter

    2012-01-01

    Thermokarst lakes and peat-accumulating drained lake basins cover a substantial portion of Arctic lowland landscapes, yet the role of thermokarst lake drainage and ensuing peat formation in landscape-scale carbon (C) budgets remains understudied. Here we use measurements of terrestrial peat thickness, bulk density, organic matter content, and basal radiocarbon age from permafrost cores, soil pits, and exposures in vegetated, drained lake basins to characterize regional lake drainage chronology, C accumulation rates, and the role of thermokarst-lake cycling in carbon dynamics throughout the Holocene on the northern Seward Peninsula, Alaska. Most detectable lake drainage events occurred within the last 4,000 years with the highest drainage frequency during the medieval climate anomaly. Peat accumulation rates were highest in young (50–500 years) drained lake basins (35.2 g C m−2 yr−1) and decreased exponentially with time since drainage to 9 g C m−2 yr−1 in the oldest basins. Spatial analyses of terrestrial peat depth, basal peat radiocarbon ages, basin geomorphology, and satellite-derived land surface properties (Normalized Difference Vegetation Index (NDVI); Minimum Noise Fraction (MNF)) from Landsat satellite data revealed significant relationships between peat thickness and mean basin NDVI or MNF. By upscaling observed relationships, we infer that drained thermokarst lake basins, covering 391 km2 (76%) of the 515 km2 study region, store 6.4–6.6 Tg organic C in drained lake basin terrestrial peat. Peat accumulation in drained lake basins likely serves to offset greenhouse gas release from thermokarst-impacted landscapes and should be incorporated in landscape-scale C budgets.

  18. Radionuclides in the Great Lakes basin.

    PubMed Central

    Ahier, B A; Tracy, B L

    1995-01-01

    The Great Lakes basin is of radiologic interest due to the large population within its boundaries that may be exposed to various sources of ionizing radiation. Specific radionuclides of interest in the basin arising from natural and artificial sources include 3H, 14C, 90Sr, 129I, 131I, 137Cs, 222Rn, 226Ra, 235U, 238U, 239Pu, and 241Am. The greatest contribution to total radiation exposure is the natural background radiation that provides an average dose of about 2.6 mSv/year to all basin residents. Global fallout from atmospheric nuclear weapons tests conducted before 1963 has resulted in the largest input of anthropogenic radioactivity into the lakes. Of increasing importance is the radionuclide input from the various components of the nuclear fuel cycle. Although the dose from these activities is currently very low, it is expected to increase if there is continued growth of the nuclear industry. In spite of strict regulations on design and operation of nuclear power facilities, the potential exists for a serious accident as a result of the large inventories of radionuclides contained in the reactor cores; however, these risks are several orders of magnitude less than the risks from other natural and man-made hazards. An area of major priority over the next few decades will be the management of the substantial amounts of radioactive waste generated by nuclear fuel cycle activities. Based on derived risk coefficients, the theoretical incidence of fatal and weighted nonfatal cancers and hereditary defects in the basin's population, attributable to 50 years of exposure to natural background radiation, is conservatively estimated to be of the order of 3.4 x 10(5) cases. The total number of attributable health effects to the year 2050 from fallout radionuclides in the Great Lakes basin is of the order of 5.0 x 10(3). In contrast, estimates of attributable health effects from 50 years of exposure to current nuclear fuel cycle effluent in the basin are of the order of 2

  19. 77 FR 2948 - Lake Tahoe Basin Federal Advisory Committee (LTFAC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-20

    ... DEPARTMENT OF AGRICULTURE Forest Service Lake Tahoe Basin Federal Advisory Committee (LTFAC) AGENCY: Forest Service, USDA. ACTION: Notice of meeting. SUMMARY: The Lake Tahoe Federal Advisory... Interagency Partnership on the Lake Tahoe Region and other matters raised by the Secretary. DATES: The meeting...

  20. 77 FR 11485 - Lake Tahoe Basin Federal Advisory Committee (LTFAC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-27

    ... DEPARTMENT OF AGRICULTURE Forest Service Lake Tahoe Basin Federal Advisory Committee (LTFAC) AGENCY: Forest Service, USDA. ACTION: Notice of meeting. SUMMARY: The Lake Tahoe Federal Advisory... Federal Interagency Partnership on the Lake Tahoe Region and other matters raised by the Secretary. DATES...

  1. 76 FR 39068 - Lake Tahoe Basin Federal Advisory Committee (LTFAC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-05

    ... DEPARTMENT OF AGRICULTURE Forest Service Lake Tahoe Basin Federal Advisory Committee (LTFAC) AGENCY: Forest Service, USDA. ACTION: Notice of meeting. SUMMARY: The Lake Tahoe Federal Advisory... of the Federal Interagency Partnership on the Lake Tahoe Region and other matters raised by the...

  2. 77 FR 29314 - Lake Tahoe Basin Federal Advisory Committee (LTFAC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-17

    ... DEPARTMENT OF AGRICULTURE Forest Service Lake Tahoe Basin Federal Advisory Committee (LTFAC) AGENCY: Forest Service, USDA. ACTION: Notice of meeting. SUMMARY: The Lake Tahoe Federal Advisory... Federal Interagency Partnership on the Lake Tahoe Region and other matters raised by the Secretary. DATES...

  3. 76 FR 46269 - Lake Tahoe Basin Federal Advisory Committee (LTFAC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-02

    ... DEPARTMENT OF AGRICULTURE Forest Service Lake Tahoe Basin Federal Advisory Committee (LTFAC) AGENCY: Forest Service, USDA. ACTION: Notice of meeting. SUMMARY: The Lake Tahoe Federal Advisory... of the Federal Interagency Partnership on the Lake Tahoe Region and other matters raised by the...

  4. Seismic investigation of Lake Issyk-Kul, Kyrgyzstan

    NASA Astrophysics Data System (ADS)

    Gebhardt, C.; Naudts, L.; De Mol, L.; De Batist, M.

    2012-04-01

    Lake Issyk-Kul is located in an intramontane basin of the Tien Shan mountains in Kyrgyzstan, Central Asia. It has formed in a tectonically active region with W-E striking major thrust zones north and south of the lake. The lake's modern surface level is at 1607 m above sea level, maximum depth in the central basin of the lake is roughly 670 m, and the total water volume is around 1736 km3. The lake is elongated with 180 km in west-east and 60 km in south-north direction. With a surface area of 6232 km2, Lake Issyk-Kul is the second largest lake in the higher altitudes. The lake is characterized by two large delta areas at its western and eastern end, with the deltaic area being as wide as up to 60 km in the eastern and 40 km in the western part, and by steep slopes at the northern and southern shore with only a rather narrow shallower shelf area. The lake contains the sediments of the past up to several million years, and has been proposed as a future target for deep drilling within ICDP. Three seismic surveys by Russian and Belgian groups in 1982, 1997 and 2001 revealed a thick sediment infill in Lake Issyk-Kul. At both the western and the eastern end of the lake, large delta systems were formed by actual and previous inlets, namely the Tyup and Djyrgalan rivers in the eastern part of the lake (still active) and the Chu River at the western end (currently bypassing the lake). Large sub-aquatic channel systems are visible in the lake's bathymetry in the shallower part of the delta systems close to the river mouths. They were quite likely formed by these rivers during a former lake level lowstand. The delta system consists of stacked prograding delta lobes with a characteristic topset-foreset-bottomset configuration. These lobes together with sub-aerial terraces found at several spots around the lake witness lake level fluctuations of up to >400 m. The sediments in the central plain of Lake Issyk-Kul are mainly well-layered with many turbiditic sequences

  5. Evaluation of the lake macroinvertebrate integrity index (LMII) and alternate indices for eastern U.S. lakes and reservoirs

    EPA Science Inventory

    We applied the Lake Macroinvertebrate Integrity Index (LMII) to 69 lakes and reservoirs across the eastern United States. Genus-level sub-littoral benthos samples, collected by EPA Regions 2 and 3 in 2007, were used to calcualte LMII scores for each lake. We investigated relation...

  6. Valuing wetland attributes in the Lake Champlain Basin

    Treesearch

    Donald F. Dennis; Walter F. Kuentzel

    1998-01-01

    This research explores the use of conjoint analysis to assess and understand wetland values. A conjoint rating survey was designed and mailed to landowners in the Laplatte River Basin (Lake Champlain) in Vermont. Landowners rated options to protect wetlands that varied by the wetland's ability to decrease pollutants entering Lake Champlain, value in providing food...

  7. Carbonate replacement of lacustrine gypsum deposits in two Neogene continental basins, eastern Spain

    NASA Astrophysics Data System (ADS)

    Anadón, P.; Rosell, L.; Talbot, M. R.

    1992-07-01

    Bedded nonmarine gypsum deposits in the Miocene Teruel and Cabriel basins, eastern Spain, are partly replaced by carbonate. The Libros gypsum (Teruel Graben) is associated with fossiliferous carbonate wackestones and finely laminated, organic matter-rich mudstones which accumulated under anoxic conditions in a meromictic, permanent lake. The gypsum is locally pseudomorphed by aragonite or, less commonly, replaced by calcite. Low δ 13C values indicate that sulphate replacement resulted from bacterial sulphate reduction processes that were favoured by anacrobic conditions and abundant labile organic matter in the sediments. Petrographic evidence and oxygen isotopic composition suggest that gypsum replacement by aragonite occurred soon after deposition. A subsequent return to oxidising conditions caused some aragonite to be replaced by diagenetic gypsum. Native sulphur is associated with some of these secondary gypsum occurrences. The Los Ruices sulphate deposits (Cabriel Basin) contain beds of clastic and selenitic gypsum which are associated with limestones and red beds indicating accumulation in a shallow lake. Calcite is the principal replacement mineral. Bacterial sulphate reduction was insignificant in this basin because of a scarcity of organic matter. Stable isotope composition of diagenetic carbonate indicates that gypsum replacement occurred at shallow burial depths due to contact with dilute groundwaters of meteoric origin. Depositional environment evidently has a major influence upon the diagenetic history of primary sulphate deposits. The quantity of preserved organic matter degradable by sulphate-reducing bacteria is of particular importance and, along with groundwater composition, is the main factor controlling the mechanism of gypsum replacement by carbonate.

  8. Estimation of Sediment Sources Using Selected Chemical Tracers in the Perry Lake and Lake Wabaunsee Basins, Northeast Kansas

    USGS Publications Warehouse

    Juracek, Kyle E.; Ziegler, Andrew C.

    2007-01-01

    In Kansas and nationally, stream and lake sediment is a primary concern as related to several important issues including water quality and reservoir water-storage capacity. The ability to achieve meaningful decreases in sediment loads to reservoirs requires a determination of the relative importance of sediment sources within the contributing basins. To investigate sources of sediment within the Perry Lake and Lake Wabaunsee Basins of northeast Kansas, representative samples of channel-bank sources, surface-soil sources (cropland and grassland), and reservoir bottom sediment were collected, analyzed, and compared. Subbasins sampled within the Perry Lake Basin included Atchison County Lake, Banner Creek Reservoir, Gregg Creek, Mission Lake, and Walnut Creek. The samples were sieved to isolate the less than 63-micron fraction (that is, the silt and clay) and analyzed for selected nutrients (total nitrogen and total phosphorus), organic and total carbon, 25 trace elements, and the radionuclide cesium-137 (137Cs). To determine which of the 30 constituents provided the best ability to discriminate between channel-bank and surface-soil sources in the two basins, four selection criteria were used. To be selected, it was required that the candidate constituent (1) was detectable, (2) had concentrations or activities that varied substantially and consistently between the sources, (3) had concentration or activity ranges that did not overlap between the sources, and (4) had concentration or activity differences between the sources that were statistically significant. On the basis of the four selection criteria, total nitrogen (TN), total phosphorus (TP), total organic carbon (TOC), and 137Cs were selected. Of the four selected constituents, 137Cs likely is the most reliable indicator of sediment source because it is known to be conservative in the environment. Trace elements were not selected because concentrations in the channel-bank and surface-soil sources generally were

  9. Neotectonic Studies of the Lake Ohrid Basin (FYROM/Albania)

    NASA Astrophysics Data System (ADS)

    Nadine, H.; Liermann, A.; Glasmacher, U. A.; Reicherter, K. R.

    2010-12-01

    The Lake Ohrid Basin located on 693 m a.s.l. at the south-western border of Macedonia (FYROM) with Albania is a suitable location for neotectonic studies. The lake is set in an extensional basin-and-range-like situation, which is influenced by the roll-back and detachment of the subducted slab of the Northern Hellenic Trench. The seismicity record of the area lists frequent shallow earthquakes with magnitudes of up to 6.6, which classifies the region as one of the highest risk areas for Macedonia and Albania. A multidisciplinary approach was chosen to reveal the stress history of the region. Tectonic morphology, paleostress analysis, remote sensing and geophysical investigations have been taken out to trace the landscape evolution. Furthermore, apatite fission-track (A-FT) analysis and t-T-path modelling was performed to constrain the thermal history and the exhumation rates. The deformation history of the basin can be divided in three major phases. This idea is also supported by paleostress data collected around the lake: 1. NW-SE shortening from Late Cretaceous to Miocene with compression, thrusting and uplift; 2. Uplift and diminishing compression in Late Miocene causing strike-slip and normal faulting; 3. Vertical uplift and E-W extension from Pliocene to present associated with local subsidence and (half-) graben formation. The initiation of the Ohrid Basin can be dated to Late Miocene to Pliocene. The morphology of the basin itself shows features, which characterize the area as an active seismogenic landscape. The elongated NS-trending basin is limited by the steep flanks of Galicica and Mokra Mountains to the E and W, which are tectonically controlled by normal faulting. This is expressed in linear step-like fault scarps on land with heights between 2 and 35 m. The faults have lengths between 10 and 20 km and consist of several segments. Post-glacial bedrock fault scarps at Lake Ohrid are long-lived expressions of repeated surface faulting in tectonically

  10. Human-mediated and natural dispersal of an invasive fish in the eastern Great Lakes.

    PubMed

    Johansson, Mattias L; Dufour, Bradley A; Wellband, Kyle W; Corkum, Lynda D; MacIsaac, Hugh J; Heath, Daniel D

    2018-06-01

    The globally invasive Round Goby (Neogobius melanostomus) was introduced to the Great Lakes around 1990, spreading widely and becoming the dominant benthic fish in many areas. The speed and scope of this invasion is remarkable and calls into question conventional secondary spread models and scenarios. We utilized nine microsatellites to identify large-scale genetic structure in Round Goby populations in the eastern Great Lakes, and assessed the role of colonization vs. secondary transport and dispersal in developing this structure. We identified three clusters, corresponding with Lake Huron, eastern Lake Erie, and western Lake Erie plus eastern Lake Ontario, along with three highly divergent populations. Bottleneck analysis identified founder effects in two divergent populations. Regression analyses of isolation by distance and allelic richness vs. distance from the initial invasion site were consistent with limited migration. However, some populations in eastern Lake Erie and Lake Ontario showed anomalously low genetic distance from the original site of colonization, consistent with secondary transport of large numbers of individuals via ballast water. We conclude that genetic structure of Round Goby in the Great Lakes principally resulted from long-distance secondary transport via ballast water with additional movement of individual via bait buckets and natural dispersal. The success of Round Gobies represents an interesting model for colonization characterization; however, those same attributes present significant challenges for conservation and fisheries management. Current management likely prevents many new species from arriving in the Great Lakes, but fails to address the transport of species within the lakes after they arrive; this is an issue of clear and pressing importance.

  11. Lake Pontchartrain Basin: bottom sediments and related environmental resources

    USGS Publications Warehouse

    Manheim, Frank T.; Hayes, Laura

    2002-01-01

    Lake Pontchartrain is the largest estuary southern Louisiana. It is an important recreational, commercial, and environmental resource for New Orleans and southwestern Louisiana. This publication is part of a 5-year cooperative program led by the USGS on the geological framework and sedimentary processes of the Lake Pontchartrain Basin.This presentation is divided into two main parts:- Scientific Research and Assessments- Multimedia Tools and Regional ResourcesThe scientific sections include historical information on the area; shipboard, field, and remote sensing studies; and a comprehensive sediment database with geological and chemical discussions of the region.The multimedia and resources sections include Geographic Information System (GIS) tools and data, a video demonstrating vibracore sampling techniques in Lake Pontchartrain, and abstracts from four Basics of the Basin symposia.

  12. Mono Lake, California

    NASA Image and Video Library

    2017-03-24

    In eastern California, along the western edge of the Great Basin, sits Mono Lake. This is a salty remnant of a wetter era. Estimates are that the lake existed for at least 760,000 years. Now surrounded by mountain ranges, however, Mono Lake has no outlet; water entering the lake can only evaporate away, so Mono Lake is saltier than the ocean. South of the lake appear some of the geologic features known as Mono Craters. Geologists estimate that the Mono Craters last erupted about 650 years ago. The image was acquired July 7, 2016, covers an area of 22.6 by 34 km, and is located at 37.9 degrees north, 119 degrees west. http://photojournal.jpl.nasa.gov/catalog/PIA21518

  13. Hydrocarbon potential of Central Monagas, Eastern Venezuela Basin, Venezuela

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barrios, F.; Daza, J.; Iusco, G.

    1996-08-01

    The Central Monagas area is part of the foreland sub-basin located on the southern flank of the Eastern Venezuela Basin. The sedimentary column of the Central Monagas is at least 7500 in thick and consists of Mesozoic (Cretaceous) and Cenozoic rocks. Interpretations of 60 regional seismic sections have been integrated with data from 12 existing wells, which cover an area of 1200 km{sup 2}. From these interpretations, basin-wide structure and interval isopach maps were constructed in order to aid the depiction of the basin architecture and tectonic history. The sub-basin developed on the southern flank of the Eastern Venezuela Basinmore » is tightly linked to its evolution from a Mesozoic extensional regime into a Cenozoic compressional and strike-slip stage. The basin formed in the Middle Mesozoic by crustal extension of a rifting process. Regional northward tilting of the slab continued during the Late Cretaceous. Finally, the transpression of the Caribbean Plate during the Oligocene-Neogene induced the overprint of compressional deformation associated with the deposition of a foredeep wedge. Geochemical source rock analysis gave an average of 1.2 TOC, and R{sub o} of 0.66 indicating a mature, marine source. The modeling of the hydrocarbon generative history of the basin indicates that the oil migration started in the Middle Miocene, after the trap was formed. Analysis and mapping of reservoir rocks and seal rocks defined the effective area limits of these critical factors. The main play in the area is the extension of the Lower Oficina Formation which is the proven petroleum target in the Eastern Venezuela Basin.« less

  14. National water-quality assessment of the Lake Erie-Lake St. Clair Basin, Michigan, Indiana, Ohio, Pennsylvania, and New York; environmental and hydrologic setting

    USGS Publications Warehouse

    Casey, G.D.; Myers, Donna N.; Finnegan, D.P.; ,

    1998-01-01

    The Lake Erie-Lake St. Clair Basin covers approximately 22,300 mi ?(square miles) in parts of Indiana, Michigan, Ohio, Pennsylvania, and New York. Situated in two major physiographic provinces, the Appalachian Plateaus and the Central Lowland, the basin includes varied topographic and geomorphic features that affect the hydrology. As of 1990, the basin was inhabited by approximately 10.4 million people. Lake effect has a large influence on the temperature and precipitation of the basin, especially along the leeward southeast shore of Lake Erie. Mean annual precipitation generally increases from west to east, ranging from 31.8 inches at Detroit, Mich., to 43.8 inches at Erie, Pa. The rocks that underlie the Lake Erie-Lake St. Clair Basin range in age from Cambrian through Pennsylvanian, but only Silurian through Pennsylvanian rocks are part of the shallow ground-water flow system. The position of the basin on the edge of the Michigan and Appalachian Basins is responsible for the large range in geologic time of the exposed rocks. Rock types range from shales, siltstones, and mudstones to coarse-grained sandstones and conglomerates. Carbonate rocks consisting of limestones, dolomites, and calcareous shales also underlie the basin. All the basin is overlain by Pleistocene deposits- till, fine-grained stratified sediments, and coarse-grained stratified sediments-most of Wisconsinan age. A system of buried river valleys filled with various lacustrine, alluvial, and coarse glacial deposits is present in the basin. The soils of the Lake Erie-Lake St. Clair Basin consist of two dominant soil orders: Alfisols and Inceptisols. Four other soil orders in the basin (Mollisols, Histisols, Entisols, and Spodosols) are of minor significance, making up less than 8 percent of the total area. The estimated water use for the Lake Erie-Lake St. Clair Basin for 1990 was 10,649 Mgal/d (million gallons per day). Power generation accounted for about 77 percent of total water withdrawals for

  15. Geomorphic and land cover identification of dust sources in the eastern Great Basin of Utah, U.S.A.

    NASA Astrophysics Data System (ADS)

    Hahnenberger, Maura; Nicoll, Kathleen

    2014-01-01

    This study identifies anthropogenically disturbed areas and barren playa surfaces as the two primary dust source types that repeatedly contribute to dust storm events in the eastern Great Basin of western Utah, U.S.A. This semi-arid desert region is an important contributor to dust production in North America, with this study being the first to specifically identify and characterize regional dust sources. From 2004 to 2010, a total of 51 dust event days (DEDs) affected the air quality in Salt Lake City, UT. MODIS satellite imagery during 16 of these DEDs was analyzed to identify dust plumes, and assess the characteristics of dust source areas. A total of 168 plumes were identified, and showed mobilization of dust from Quaternary deposits located within the Bonneville Basin. This analysis identifies 4 major and 5 secondary source areas for dust in this region, which produce dust primarily during the spring and fall months and during moderate or greater drought conditions, with a Palmer Drought Index (PDI) of - 2 or less. The largest number of observed dust plumes (~ 60% of all plumes) originated from playas (ephemeral lakes) and are classified as barren land cover with a silty clay soil sediment surface. Playa surfaces in this region undergo numerous recurrent anthropogenic disturbances, including military operations and anthropogenic water withdrawal. Anthropogenic disturbance is necessary to produce dust from the vegetated landscape in the eastern Great Basin, as evidenced by the new dust source active from 2008 to 2010 in the area burned by the 2007 Milford Flat Fire; this fire was the largest in Utah's history due to extensive cover of invasive cheatgrass (Bromus tectorum) along with drought conditions. However, dust mobilization from the Milford Flat Burned Area was limited to regions that had been significantly disturbed by post-fire land management techniques that consisted of seeding, followed by chaining or tilling of the soil. Dust storms in the eastern

  16. Direct and indirect evidence for earthquakes; an example from the Lake Tahoe Basin, California-Nevada

    NASA Astrophysics Data System (ADS)

    Maloney, J. M.; Noble, P. J.; Driscoll, N. W.; Kent, G.; Schmauder, G. C.

    2012-12-01

    High-resolution seismic CHIRP data can image direct evidence of earthquakes (i.e., offset strata) beneath lakes and the ocean. Nevertheless, direct evidence often is not imaged due to conditions such as gas in the sediments, or steep basement topography. In these cases, indirect evidence for earthquakes (i.e., debris flows) may provide insight into the paleoseismic record. The four sub-basins of the tectonically active Lake Tahoe Basin provide an ideal opportunity to image direct evidence for earthquake deformation and compare it to indirect earthquake proxies. We present results from high-resolution seismic CHIRP surveys in Emerald Bay, Fallen Leaf Lake, and Cascade Lake to constrain the recurrence interval on the West Tahoe Dollar Point Fault (WTDPF), which was previously identified as potentially the most hazardous fault in the Lake Tahoe Basin. Recently collected CHIRP profiles beneath Fallen Leaf Lake image slide deposits that appear synchronous with slides in other sub-basins. The temporal correlation of slides between multiple basins suggests triggering by events on the WTDPF. If correct, we postulate a recurrence interval for the WTDPF of ~3-4 k.y., indicating that the WTDPF is near its seismic recurrence cycle. In addition, CHIRP data beneath Cascade Lake image strands of the WTDPF that offset the lakefloor as much as ~7 m. The Cascade Lake data combined with onshore LiDAR allowed us to map the geometry of the WTDPF continuously across the southern Lake Tahoe Basin and yielded an improved geohazard assessment.

  17. [Ecological risk assessment of Taihu Lake basin based on landscape pattern].

    PubMed

    Xie, Xiao Ping; Chen, Zhi Cong; Wang, Fang; Bai, Mao Wei; Xu, Wen Yang

    2017-10-01

    Taihu Lake basin was selected as the study site. Based on the landscape data of 2000, 2005, 2010 and 2015, the Markov and CLUE-S models were used to simulate the landscape types with different scenarios in 2030, and landscape ecological risk index was constructed. The shift of gravity center and spatial statistics were used to reveal landscape ecological risk of Taihu Lake basin with temporal and spatial characteristics. The results showed that the ecological risk mainly was at medium and low levels in Taihu Lake basin, and the higher ecological risk areas were mainly distributed at the Taihu Lake area during 2000 to 2015, and the low ecological risk was transferred from the southwest and south of Taihu Lake to the developed areas in the northern part of Taihu Lake area. Spatial analysis showed that landscape ecological risk had negative correlation with natural factors, which was weakened gradually, while the correlation with socioeconomic factors trended to become stronger, with human disturbance affecting the landscape ecological risk significantly. The impact of socioeconomic factors on landscape ecological risks differed in different urbanization stages. In the developing area, with the economic development, the landscape was increasingly fragmented and the ecological risk was correspondingly increased. While in the developed area, with the further development of the economy, the aggregation index was increased, and fragmentation and separation indexes were decreased, ecological construction was restored, and the landscape ecological risk began to decline. CLUE-S model simulation showed that the ecological risk of Taihu Lake basin would be reduced in future, mainly on the low and relatively low levels. Taihu Lake area, both in history and the future, is a high ecological risk zone, and its management and protection should be strengthened.

  18. A 150 year precipitation record preserved in lake sediments of Lake Gahai in the Qaidam Basin, northwest China

    NASA Astrophysics Data System (ADS)

    Li, X.

    2012-12-01

    A 150 year precipitation record preserved in lake sediments of Lake Gahai in the Qaidam Basin, northwest China Li Xiangzhong a, Liu Weiguoa, b a State Key Laboratory of Loess and Quaternary Geology, IEE, CAS, Xi'an, 710075, China b School of Human Settlement and Civil Engineering, Xi'an Jiaotong University, Xi'an, 710049, China Abstract Usually, the oxygen isotopic compositions of ostracods from the lake sediments are interpreted as changes in effective precipitation, temperature and evaporation/input water ratio in a sub-arid or arid area. Here, we compare a 150-year-long oxygen-isotope record that was derived from ostracod carbonate from the sediment core (in a seven-year resolution) of Lake Gahai in the Qaidam Basin with meteorological data (precipitation) and tree-ring evidence for changing precipitation. Our results show that the increased precipitation accompanied a shift to less positive δ18O values in the lake water, and hence of the ostracod shells, whereas decreased precipitation coincides with the opposite in Lake Gahai over the past ~150 years. The sole occurrence of the ostracod E. mareotica also indicates that the lake's salinity may have experienced no marked change over the past 150 years. Therefore, we conclude that the oxygen isotopic compositions of ostracod shells can be used to indicate changes in precipitation for paleoclimatic reconstruction over a short time scale in Lake Gahai. Keywords: oxygen isotope; ostracod; precipitation; Lake Gahai, Qaidam Basin

  19. Groundwater quality in the Eastern Lake Ontario Basin of New York, 2008

    USGS Publications Warehouse

    Risen, Amy J.; Reddy, James E.

    2011-01-01

    Water samples were collected from nine production wells and nine private residential wells in the Eastern Lake Ontario Basin of New York from August through October 2008 and analyzed to characterize the chemical quality of groundwater. The wells were selected to provide adequate spatial coverage of the 3,225-square-mile study area; areas of greatest groundwater use were emphasized. Eight of the 18 wells sampled, were screened in sand and gravel aquifers, and 10 were finished in bedrock aquifers. The samples were collected and processed by standard U.S. Geological Survey procedures and were analyzed for 223 physical properties and constituents, including major ions, nutrients, trace elements, radon-222, pesticides, volatile organic compounds (VOCs), and indicator bacteria. Water quality in the study area is generally good, but concentrations of some constituents exceeded current or proposed Federal or New York State drinking-water standards; these were: color (2 samples), pH (1 sample), sodium (5 samples), chloride (1 sample), aluminum (2 samples), iron (5 unfiltered samples), manganese (3 samples), radon-222 (13 samples), and bacteria (4 samples). Dissolved-oxygen concentrations in samples from wells finished in sand and gravel [median 3.8 milligrams per liter (mg/L)] were greater than those from wells finished in bedrock (median less than 0.7 mg/L). The pH of all samples was typically neutral or slightly basic (median 7.4); the median water temperature was 11.3 degrees Celsius. The ions with the highest concentrations were bicarbonate (median 174 mg/L) and calcium (median 24.1 mg/L). Groundwater in the basin ranges from soft to moderately hard [less than or equal to 120 mg/L as CaCO3] and median hardness was 90 mg/L as CaCO3. Concentrations of nitrate plus nitrite in samples from sand and gravel wells (median concentration 0.42 mg/L as nitrogen) were generally higher than those in samples from bedrock wells (median <0.04 mg/L as nitrogen). The trace elements with

  20. The seismic stratigraphy of Okanagan Lake, British Columbia; a record of rapid deglaciation in a deep 'fiord-lake' basin

    NASA Astrophysics Data System (ADS)

    Eyles, Nicholas; Mullins, Henry T.; Hine, Albert C.

    1991-09-01

    This paper presents the first detailed data regarding the newly discovered deep infill of Okanagan Lake. Okanagan Lake (50°00'N, 119°30'W) is 120 km long, ˜ 3-5 km wide and occupies a glacially overdeepened bedrock basin in the southern interior of British Columbia. This basin, and other elongate lakes of the region (e.g. Shuswap, Kootenay, Kalamalka, Canim and Mahood lakes), mark the site of westward flowing ice streams within successive Cordilleran ice sheets. An air gun seismic survey of Okanagan Lake shows that the bedrock floor is nearly 650 m below sea-level, more than 2000 m below the rim of the surrounding plateau. The maximum thickness of Pleistocene sediment in Okanagan Lake basin approaches 800 m. Forty-six seismic reflection traverses and an axial profile show a relatively simple stratigraphy composed of three seismic sequences argued to be no older than the last glacial cycle (< 30 ka). A discontinuous basal unit (sequence I) characterized by large-scale diffractions, and up to 460 m thick, infills the narrow, V-shaped bedrock floor of the basin and is interpreted as a boulder gravel deposited by subglacial meltwaters. Overlying seismic sequence II is composed of two sub-sequences. Sub-sequence IIa is a chaotic to massive facies up to 736 m thick. Lakeshore exposures close to where this unit reaches lake level show deformed and chaotically-bedded glaciolacustrine silts containing gravel lens and large ice-rafted boulders. The surface topography of this sub-sequence is irregular and in general mimics the form of the underlying bedrock as a result of compaction. This sequence passes laterally into stratified facies (sub-sequence IIb) at the northern end of the basin. Seismic sequence II appears to record rapid ice-proximal dumping of glaciolacustrine silt as the Okanagan glacier backwasted upvalley in a deep lake. A thin (60 m max.) laminated seismic sequence (III) drapes the hummocky surface of sequence II and represents postglacial sedimentation

  1. Subsurface Constraints on Late Cenozoic Basin Geometry in Northern Fish Lake Valley and Displacement Transfer Along the Northern Fish Lake Valley Fault Zone, Western Nevada

    NASA Astrophysics Data System (ADS)

    Mueller, N.; Kerstetter, S. R.; Katopody, D. T.; Oldow, J. S.

    2016-12-01

    The NW-striking, right-oblique Fish Lake Valley fault zone (FLVFZ) forms the northern segment of the longest active structure in the western Great Basin; the Death Valley - Furnace Creek - Fish Lake Valley fault system. Since the mid-Miocene, 50 km of right-lateral displacement is documented on the southern FLVFZ and much of that displacement was and is transferred east and north on active WNW left-lateral faults. Prior to the Pliocene, displacement was transferred east and north on a low-angle detachment. Displacement on the northern part of the FLVFZ continues and is transferred to a fanned array of splays striking (west to east) WNW, NNW, ENE and NNE. To determine the displacement budget on these structures, we conducted a gravity survey to determine subsurface basin morphology and its relation to active faults. Over 2450 stations were collected and combined with existing PACES and proprietary data for a total of 3388 stations. The data were terrain corrected and reduced to a 2.67 g/cm3 density to produce a residual complete Bouguer anomaly. The eastern part of northern Fish Lake Valley is underlain by several prominent gravity lows forming several sub-basins with maximum RCBA values ranging from -24 to -28 mGals. The RCBA was inverted for depth using Geosoft Oasis Montaj GM-SYS 3D modeling software. Density values for the inversion were constrained by lithologic and density logs from wells that penetrate the entire Cenozoic section into the Paleozoic basement. Best fitting gravity measurements taken at the wellheads yielded an effective density of 2.4 g/cm3 for the basin fill. Modeled basement depths range between 2.1 to 3 km. The sub-basins form an arc opening to the NW and are bounded by ENE and NNE faults in the south and NS to NNW in the north. At the northern end of the valley, the faults merge with ENE left-lateral strike slip faults of the Mina deflection, which carries displacement to NW dextral strike-slip faults of the central Walker Lane.

  2. Genetic structure of lake whitefish, Coregonus clupeaformis, populations in the northern main basin of Lake Huron

    USGS Publications Warehouse

    Stott, Wendylee; Ebener, Mark P.; Mohr, Lloyd; Schaeffer, Jeff; Roseman, Edward F.; Harford, William J.; Johnson, James E.; Fietsch, Cherie-Lee

    2012-01-01

    Genetic analysis of spawning lake whitefish (Coregonus clupeaformis) from six sites in the main basin of Lake Huron was conducted to determine population structure. Samples from fisheryindependent assessment surveys in the northwest main basin were analyzed to determine the relative contributions of lake whitefish genetic populations. Genetic population structure was identified using data from seven microsatellite DNA loci. One population was identified at Manitoulin Island, one to two were observed in the east-central main basin (Fishing Island and Douglas Point), and one to two populations were found in the northwest (Thunder Bay and Duncan Bay). The genetic identity of collections from Duncan Bay and Thunder Bay was not consistent among methods used to analyze population structure. Low genetic distances suggested that they comprised one population, but genic differences indicated that they may constitute separate populations. Simulated data indicated that the genetic origins of samples from a mixed-fishery could be accurately identified, but accuracy could be improved by incorporating additional microsatellite loci. Mixture analysis and individual assignment tests performed on mixed-stock samples collected from the western main basin suggested that genetic populations from the east-central main basin contributed less than those from the western main basin and that the proportional contribution of each baseline population was similar in each assessment sample. Analysis of additional microsatellite DNA loci may be useful to help improve the precision of the estimates, thus increasing our ability to manage and protect this valuable resource.

  3. Climatology and potential effects of an emergency outlet, Devils Lake Basin, North Dakota

    USGS Publications Warehouse

    Wiche, Gregg J.; Vecchia, Aldo V.; Osborne, Leon; Fay, James T.

    2000-01-01

    The Devils Lake Basin is a 3,810-square-mile subbasin in the Red River of the North Basin.  At an elevation of about 1,447 feet above sea level, Devils Lake begins to spill into Stump Lake; and at an elevation of about 1,459 feet above sea level, the combined lakes begin to spill through Tolna Coulee into the Sheyenne River. Since the end of glaciation about 10,000 years ago, Devils Lake has fluctuated between spilling and being dry.  Research by the North Dakota Geological Survey indicates Devils Lake has overflowed into the Sheyenne River at least twice during the past 4,000 years and has spilled into the Stump Lakes several times (Bluemle, 1991; Murphy and others, 1997).  John Bluemle, North Dakota State Geologist, concluded the natural condition for Devils Lake is either rising or falling, and the lake should not be expected to remain at any elevation for a long period of time. Recent conditions indicate the lake is in a rising phase.  The lake rose 24.7 feet from February 1993 to August 1999, and flood damages in the Devils Lake Basin have exceeded $300 million.  These damages, and the potential for additional damages, have led to an effort to develop an outlet to help control lake levels.  Therefore, current and accurate climatologic and hydrologic data are needed to assess the viability of the various options to reduce flood damages at Devils Lake.

  4. Evolution of Late Miocene to Contemporary Displacement Transfer Between the Northern Furnace Creek and Southern Fish Lake Valley Fault Zones and the Central Walker Lane, Western Great Basin, Nevada

    NASA Astrophysics Data System (ADS)

    Oldow, J. S.; Geissman, J. W.

    2013-12-01

    Late Miocene to contemporary displacement transfer from the north Furnace Creek (FCF) and southern Fish Lake Valley (FLVF) faults to structures in the central Walker Lane was and continues to be accommodated by a belt of WNW-striking left-oblique fault zones in the northern part of the southern Walker Lane. The WNW fault zones are 2-9 km wide belts of anastomosing fault strands that intersect the NNW-striking FCF and southern FLVF in northern Death Valley and southern Fish Lake Valley, respectively. The WNW fault zones extend east for over 60 km where they merge with a 5-10 km wide belt of N10W striking faults that marks the eastern boundary of the southern Walker Lane. Left-oblique displacement on WNW faults progressively decreases to the east, as motion is successively transferred northeast on NNE-striking faults. NNE faults localize and internally deform extensional basins that each record cumulative net vertical displacements of between 3.0 and 5.2 km. The transcurrent faults and associated basins decrease in age from south to north. In the south, the WNW Sylvania Mountain fault system initiated left-oblique motion after 7 Ma but does not have evidence of contemporary displacement. Farther north, the left-oblique motion on the Palmetto Mountain fault system initiated after 6.0 to 4.0 Ma and has well-developed scarps in Quaternary deposits. Cumulative left-lateral displacement for the Sylvania Mountain fault system is 10-15 km, and is 8-12 km for the Palmetto fault system. The NNE-striking faults that emanate from the left-oblique faults merge with NNW transcurrent faults farther north in the eastern part of the Mina deflection, which links the Owens Valley fault of eastern California to the central Walker Lane. Left-oblique displacement on the Sylvania Mountain and Palmetto Mountain fault zones deformed the Furnace Creek and Fish Lake Valley faults. Left-oblique motion on Sylvania Mountain fault deflected the FCF into the 15 km wide Cucomungo Canyon restraining

  5. The status of Limnocalanus macrurus (Copepoda: Calanoida: Centropagidae) in Lake Erie

    USGS Publications Warehouse

    Kane, Douglas D.; Gannon, John E.; Culver, David A.

    2004-01-01

    The calanoid copepod Limnocalanus macrurus showed large declines in abundance and a narrowing of spatial distribution with the onset of cultural eutrophication and increases in rainbow smelt (Osmerus mordax) abundances in Lake Erie in the mid 20th century. Since 1995, however, Limnocalanus macrurus appears to have repopulated in western Lake Erie to levels of abundance that have not been observed since the late 1930s. We hypothesize that phosphorus abatement and the subsequent decrease in low dissolved oxygen events have assisted this resurgence. However, Limnocalanus macrurusabundances have not increased in the central and eastern basins, even though water quality has improved there too. High densities of rainbow smelt and associated smelt predation pressure in the central and eastern basins may be responsible for the low numbers in these basins.

  6. Geologic structure of the eastern mare basins. [lunar basalts

    NASA Technical Reports Server (NTRS)

    Dehon, R. A.; Waskom, J. D.

    1976-01-01

    The thickness of mare basalts in the eastern maria are estimated and isopachs of the basalts are constructed. Sub-basalt basin floor topography is determined, and correlations of topographic variations of the surface with variations in basalt thickness or basin floor topography are investigated.

  7. Active intra-basin faulting in the Northern Basin of Lake Malawi from seismic reflection data

    NASA Astrophysics Data System (ADS)

    Shillington, D. J.; Chindandali, P. R. N.; Scholz, C. A.; Ebinger, C. J.; Onyango, E. A.; Peterson, K.; Gaherty, J. B.; Nyblade, A.; Accardo, N. J.; McCartney, T.; Oliva, S. J.; Kamihanda, G.; Ferdinand, R.; Salima, J.; Mruma, A. H.

    2016-12-01

    Many questions remain about the development and evolution of fault systems in weakly extended rifts, including the relative roles of border faults and intra-basin faults, and segmentation at various scales. The northern Lake Malawi (Nyasa) rift in the East African Rift System is an early stage rift exhibiting pronounced tectonic segmentation, which is defined by 100-km-long border faults. The basins also contain a series of intrabasinal faults and associated synrift sediments. The occurrence of the 2009 Karonga Earthquake Sequence on one of these intrabasinal faults indicates that some of them are active. Here we present new multichannel seismic reflection data from the Northern Basin of the Malawi Rift collected in 2015 as a part of the SEGMeNT (Study of Extension and maGmatism in Malawi aNd Tanzania) project. This rift basin is bound on its east side by the west-dipping Livingstone border fault. Over 650 km of seismic reflection profiles were acquired in the Northern Basin using a 500 to 1540 cu in air gun array and a 1200- to 1500-m seismic streamer. Dip lines image a series of north-south oriented west-dipping intra-basin faults and basement reflections up to 5 s twtt near the border fault. Cumulative offsets on intra-basin faults decrease to the west. The largest intra-basin fault has a vertical displacement of >2 s two-way travel time, indicating that it has accommodated significant total extension. Some of these intra-basin faults offset the lake bottom and the youngest sediments by up to 50 s twtt ( 37 m), demonstrating they are still active. The two largest intra-basin faults exhibit the largest offsets of young sediments and also correspond to the area of highest seismicity based on analysis of seismic data from the 89-station SEGMeNT onshore/offshore network (see Peterson et al, this session). Fault patterns in MCS profiles vary along the basin, suggesting a smaller scale of segmentation of faults within the basin; these variations in fault patterns

  8. Artificial Post mining lakes - a challenge for the integration in natural hydrography and river basin management

    NASA Astrophysics Data System (ADS)

    Fleischhammel, Petra; Schoenheinz, Dagmar; Grünewald, Uwe

    2010-05-01

    In terms of the European Water Framework Directive (WFD), post mining lakes are artificial water bodies (AWB). The sustainable integration of post mining lakes in the groundwater and surface water landscape and their consideration in river basin management plans have to be linked with various (geo)hydrological, hydro(geo)chemical, technological and socioeconomic issues. The Lower Lusatian lignite mining district in eastern Germany is part of the major river basins of river Elbe and river Oder. Regionally, the mining area is situated in the sub-basins of river Spree and Schwarze Elster. After the cessation of mining activities and thereby of the artificially created groundwater drawdown in numerous mining pits, a large number of post mining lakes are evolving as consequence of natural groundwater table recovery. The lakes' designated uses vary from water reservoirs to landscape, recreation or fish farming lakes. Groundwater raise is not only substantial for the lake filling, but also for the area rehabilitation and a largely self regulated water balance in post mining landscapes. Since the groundwater flow through soil and dump sites being affected by the former mining activities, groundwater experiences various changes in its hydrochemical properties as e.g. mineralization and acidification. Consequently, downstream located groundwater fed running and standing water bodies will be affected too. Respective the European Water Framework Directive, artificial post mining lakes are not allowed to cause significant adverse impacts on the good ecological status/potential of downstream groundwater and surface water bodies. The high sulphate concentrations of groundwater fed mining lakes which reach partly more than 1,000 mg/l are e.g. damaging concrete constructures in downstream water bodies thereby representing threats for hydraulic facilities and drinking water supply. Due to small amounts of nutrients, the lakes are characterised by oligo¬trophic to slightly

  9. Groundwater quality in the Lake Champlain and Susquehanna River basins, New York, 2014

    USGS Publications Warehouse

    Scott, Tia-Marie; Nystrom, Elizabeth A.; Reddy, James E.

    2016-11-04

    In a study conducted by the U.S. Geological Survey in cooperation with the New York State Department of Environmental Conservation, groundwater samples were collected from 6 production wells and 7 domestic wells in the Lake Champlain Basin and from 11 production wells and 9 domestic wells in the Susquehanna River Basin in New York. All samples were collected from June through December 2014 to characterize groundwater quality in these basins. The samples were collected and processed using standard procedures of the U.S. Geological Survey and were analyzed for 148 physiochemical properties and constituents, including dissolved gases, major ions, nutrients, trace elements, pesticides, volatile organic compounds, radionuclides, and indicator bacteria.The Lake Champlain Basin study area covers the 3,050 square miles of the basin in northeastern New York; the remaining part of the basin is in Vermont and Canada. Of the 13 wells sampled in the Lake Champlain Basin, 6 are completed in sand and gravel, and 7 are completed in bedrock. Groundwater in the Lake Champlain Basin was generally of good quality, although properties and concentrations of some constituents— fluoride, iron, manganese, dissolved solids, sodium, radon-222, total coliform bacteria, fecal coliform bacteria, and Escherichia coli bacteria—sometimes equaled or exceeded primary, secondary, or proposed drinking-water standards. The constituent most frequently detected in concentrations exceeding drinking-water standards (5 of 13 samples) was radon-222.The Susquehanna River Basin study area covers the entire 4,522 square miles of the basin in south-central New York; the remaining part of the basin is in Pennsylvania. Of the 20 wells sampled in the Susquehanna River Basin, 11 are completed in sand and gravel, and 9 are completed in bedrock. Groundwater in the Susquehanna River Basin was generally of good quality, although properties and concentrations of some constituents—pH, chloride, sodium, dissolved

  10. Lake Level Changes in the Mono Basin During the Last Deglacial Period

    NASA Astrophysics Data System (ADS)

    Wang, X.; Ali, G.; Hemming, S. R.; Zimmerman, S. R. H.; Stine, S. W.; Hemming, G.

    2014-12-01

    Mono Basin, located in the southwestern corner of the US Great Basin, has long been known to have experienced large lake level changes, particularly during the last deglaciation. But until recently it was not possible to establish a reliable lake level time series. We discovered many visually clean, white, shiny, dense calcite samples in the basin, associated with tufa deposits from high terraces. Their low thorium, but high uranium contents allow precise and reproducible U/Th age determinations. A highly resolved history of a minimum lake level through the last deglaciation can therefore be inferred based on sample locations and their ages. We found that the lake level reached ~2030 m asl at ~20.4 ka, evidenced by calcite coatings on a tufa mound at the upper Wilson Creek. The lake then rose to ~2075 m by ~19.1 ka, shown by calcite cements on conglomerates from the Hansen Cut terrace. The lake climbed to at least ~2140 m at ~15.9 ka, indicated by beach calcites from the east Sierra slope. Such timing of the highest lake stand, occurring within Heinrich Stadial 1, is reinforced by U/Th dates on calcite coatings from widespread locations in the basin, including the Bodie Hills and Cowtrack Mountains. The lake then dropped rapidly to ~2075 m at ~14.5 ka. It stood near this height over the next ~300 years, evidenced by a few-centimeter thick, laminated calcite rims on the Goat Ranch tufa mounds. It subsequently plunged to ~2007 m at ~13.8 ka, indicated by calcite coatings from cemetery road tufa mounds. The lake level came back to ~2030 m at ~12.9 ka, as seen in upper Wilson Creek tufa mounds. The lake level had a few fluctuations within the Younger Dryas, and even shot up to ~2075 m at ~12.0 ka. It then fell to levels in accord with Holocene climatic conditions. Relative to the present lake level of ~1950 m, Mono Lake broadly stood high during Heinrich Stadial 1 and Younger Dryas, when the climate was extremely cold over the North Atlantic, and the Asian monsoon was

  11. Temporal coherence of two alpine lake basins of the Colorado Front Range, USA

    USGS Publications Warehouse

    Baron, Jill S.; Caine, N.

    2000-01-01

    1. Knowledge of synchrony in trends is important to determining regional responses of lakes to disturbances such as atmospheric deposition and climate change. We explored the temporal coherence of physical and chemical characteristics of two series of mostly alpine lakes in nearby basins of the Colorado Rocky Mountains. Using year-to-year variation over a 10-year period, we asked whether lakes more similar in exposure to the atmosphere be-haved more similarly than those with greater influence of catchment or in-lake processes.2. The Green Lakes Valley and Loch Vale Watershed are steeply incised basins with strong altitudinal gradients. There are glaciers at the heads of each catchment. The eight lakes studied are small, shallow and typically ice-covered for more than half the year. Snowmelt is the dominant hydrological event each year, flushing about 70% of the annual discharge from each lake between April and mid-July. The lakes do not thermally stratify during the period of open water. Data from these lakes included surface water temper-ature, sulphate, nitrate, calcium, silica, bicarbonate alkalinity and conductivity.3. Coherence was estimated by Pearson's correlation coefficient between lake pairs for each of the different variables. Despite close geographical proximity, there was not a strong direct signal from climatic or atmospheric conditions across all lakes in the study. Individual lake characteristics overwhelmed regional responses. Temporal coherence was higher for lakes within each basin than between basins and was highest for nearest neighbours.4. Among the Green Lakes, conductivity, alkalinity and temperature were temporally coherent, suggesting that these lakes were sensitive to climate fluctuations. Water tem-perature is indicative of air temperature, and conductivity and alkalinity concentrations are indicative of dilution from the amount of precipitation flushed through by snowmelt.5. In Loch Vale, calcium, conductivity, nitrate, sulphate and

  12. Response of North American Great Basin Lakes to Dansgaard-Oeschger oscillations

    USGS Publications Warehouse

    Benson, L.; Lund, S.; Negrini, R.; Linsley, B.; Zic, M.

    2003-01-01

    We correlate oscillations in the hydrologic and/or cryologic balances of four Great Basin surface-water systems with Dansgaard-Oeschger (D-O) events 2-12. This correlation is relatively strong at the location of the magnetic signature used to link the lake records, but becomes less well constrained with distance/time from the signature. Comparison of proxy glacial and hydrologic records from Owens and Pyramid lakes indicates that Sierran glacial advances occurred during times of relative dryness. If our hypothesized correlation between the lake-based records and the GISP2 ??18O record is correct, it suggests that North Atlantic D-O stades were associated with relatively cold and dry conditions and that interstades were associated with relatively warm and wet conditions throughout the Great Basin between 50,500 and 27,000 GISP2yr B.P. The Great Basin lacustrine climate records reinforce the hypothesis that D-O events affected the climate throughout much of the Northern Hemisphere during marine isotope stages 2 and 3. However, the absolute phasing between lake-size and ice-core ??18O records remains difficult to determine.

  13. Pluvial lakes in the Great Basin of the western United States: a view from the outcrop

    USGS Publications Warehouse

    Reheis, Marith C.; Adams, Kenneth D.; Oviatt, Charles G.; Bacon, Steven N.

    2014-01-01

    Paleo-lakes in the western United States provide geomorphic and hydrologic records of climate and drainage-basin change at multiple time scales extending back to the Miocene. Recent reviews and studies of paleo-lake records have focused on interpretations of proxies in lake sediment cores from the northern and central parts of the Great Basin. In this review, emphasis is placed on equally important studies of lake history during the past ∼30 years that were derived from outcrop exposures and geomorphology, in some cases combined with cores. Outcrop and core records have different strengths and weaknesses that must be recognized and exploited in the interpretation of paleohydrology and paleoclimate. Outcrops and landforms can yield direct evidence of lake level, facies changes that record details of lake-level fluctuations, and geologic events such as catastrophic floods, drainage-basin changes, and isostatic rebound. Cores can potentially yield continuous records when sampled in stable parts of lake basins and can provide proxies for changes in lake level, water temperature and chemistry, and ecological conditions in the surrounding landscape. However, proxies such as stable isotopes may be influenced by several competing factors the relative effects of which may be difficult to assess, and interpretations may be confounded by geologic events within the drainage basin that were unrecorded or not recognized in a core. The best evidence for documenting absolute lake-level changes lies within the shore, nearshore, and deltaic sediments that were deposited across piedmonts and at the mouths of streams as lake level rose and fell. We review the different shorezone environments and resulting deposits used in such reconstructions and discuss potential estimation errors. Lake-level studies based on deposits and landforms have provided paleohydrologic records ranging from general changes during the past million years to centennial-scale details of fluctuations during the

  14. The Lake Albert Rift (uganda, East African Rift System): Deformation, Basin and Relief Evolution Since 17 Ma

    NASA Astrophysics Data System (ADS)

    Brendan, Simon; François, Guillocheau; Cécile, Robin; Olivier, Dauteuil; Thierry, Nalpas; Martin, Pickford; Brigitte, Senut; Philippe, Lays; Philippe, Bourges; Martine, Bez

    2016-04-01

    .5 Ma: Rift stage 1 (subsidence rate: > 500m/Ma up to 600-800 m/Ma; sedimentation rate: 2.4 km3/Ma) - Rifting climax; - 2.5-0.4 Ma: uplift of the Ruwenzori Mountains and shifting from an alluvial system to a network of bedrock river incision - Rift Stage 2 (subsidence rate: 450 to 250 m/Ma; sedimentation rate: 1.5 km3/Ma); - 0.4-0 Ma: long wavelength downwarping of the Tanzanian Craton, initiation of the Lake Victoria trough, drainage network inversion and uplift of the present-day Ugandan escarpment (normal faulting motion of the border faults) with formation of perched valleys associated to the Lower Pleistocene (2.5-0.4 Ma) rivers network. At larger scale, comparison of the Lake Albert Rift evolution with the data available in the basins of both eastern and western branches of the East African Rift System shows that most of the sedimentary basins experienced the same geometrical evolution from large basins with limited fault controls during Late Miocene to narrow true rift in Late Pleistocene (e.g. Northern and Central Kenyan Basins), in agreement with the volcanism distribution, large (width >100 km) during the Miocene times, narrower (width x10 km) from Late Pliocene to Pleistocene times and today limited to narrow rifts.

  15. Ground-Water Hydrology of the Upper Klamath Basin, Oregon and California

    USGS Publications Warehouse

    Gannett, Marshall W.; Lite, Kenneth E.; La Marche, Jonathan L.; Fisher, Bruce J.; Polette, Danial J.

    2007-01-01

    The upper Klamath Basin spans the California-Oregon border from the flank of the Cascade Range eastward to the Basin and Range Province, and encompasses the Klamath River drainage basin above Iron Gate Dam. Most of the basin is semiarid, but the Cascade Range and uplands in the interior and eastern parts of the basin receive on average more than 30 inches of precipitation per year. The basin has several perennial streams with mean annual discharges of hundreds of cubic feet per second, and the Klamath River at Iron Gate Dam, which represents drainage from the entire upper basin, has a mean annual discharge of about 2,100 cubic feet per second. The basin once contained three large lakes: Upper and Lower Klamath Lakes and Tule Lake, each of which covered areas of 100 to 150 square miles, including extensive marginal wetlands. Lower Klamath Lake and Tule Lake have been mostly drained, and the former lake beds are now cultivated. Upper Klamath Lake remains, and is an important source of irrigation water. Much of the wetland surrounding Upper Klamath Lake has been diked and drained, although efforts are underway to restore large areas. Upper Klamath Lake and the remaining parts of Lower Klamath and Tule Lakes provide important wildlife habitat, and parts of each are included in the Klamath Basin National Wildlife Refuges Complex. The upper Klamath Basin has a substantial regional ground-water flow system. The late Tertiary to Quaternary volcanic rocks that underlie the region are generally permeable, with transmissivity estimates ranging from 1,000 to 100,000 feet squared per day, and compose a system of variously interconnected aquifers. Interbedded with the volcanic rocks are late Tertiary sedimentary rocks composed primarily of fine-grained lake sediments and basin-filling deposits. These sedimentary deposits have generally low permeability, are not good aquifers, and probably restrict ground-water movement in some areas. The regional ground-water system is underlain

  16. Preliminary Cosmogenic Surface Exposure Ages on Laurentide Ice-sheet Retreat and Opening of the Eastern Lake Agassiz Outlets

    NASA Astrophysics Data System (ADS)

    Leydet, D.; Carlson, A. E.; Sinclair, G.; Teller, J. T.; Breckenridge, A. J.; Caffee, M. W.; Barth, A. M.

    2015-12-01

    The chronology for the eastern outlets of glacial Lake Agassiz holds important consequences for the cause of Younger Dryas cold event during the last deglaciation. Eastward routing of Lake Agassiz runoff was originally hypothesized to have triggered the Younger Dryas. However, currently the chronology of the eastern outlets is only constrained by minimum-limiting radiocarbon ages that could suggest the eastern outlets were still ice covered at the start of the Younger Dryas at ~12.9 ka BP, requiring a different forcing of this abrupt climate event. Nevertheless, the oldest radiocarbon ages are still consistent with an ice-free eastern outlet at the start of the Younger Dryas. Here we will present preliminary 10-Be cosmogenic surface exposure ages from the North Lake, Flat Rock Lake, glacial Lake Kaministiquia, and Lake Nipigon outlets located near Thunder Bay, Ontario. These ages will date the timing of the deglaciation of the Laurentide ice sheet in the eastern outlet region of glacial Lake Agassiz. This will provide an important constraint for the hypothesized freshwater forcing of the cause of Younger Dryas cold event.

  17. Ecological risk assessment of Grass Carp (Ctenopharyngodon idella) for the Great Lakes Basin

    USGS Publications Warehouse

    Kolar, Cynthia S.; Cudmore, Becky

    2017-01-01

    Grass Carp (Ctenopharyngodon idella) is an herbivorous, freshwater fish that was first introduced in the United States in the early 1960s for use in biological control of aquatic vegetation. It has since escaped and dispersed through the Mississippi River basin towards the Great Lakes. To characterize the risk of Grass Carp to the Great Lakes basin, a binational ecological risk assessment of Grass Carp was conducted.This risk assessment covered both triploid (sterile) and diploid (fertile) Grass Carp and assessed the likelihood of arrival, survival, establishment, and spread, and the magnitude of the ecological consequences within 5, 10, 20 and 50 years from 2014 (i.e., the baseline year) to the connected Great Lakes basin (defined as the Great Lakes basin and its tributaries to the first impassable barrier; risk was assessed based on current climate conditions and at the individual lake scale but does not address a finer geographical scale (e.g., bay or sub-region).For triploid Grass Carp, the probability of occurrence (likelihood of arrival, survival, and spread) was assessed, and for diploid Grass Carp the probability of introduction (likelihood of arrival, survival, establishment and spread) was assessed.

  18. Links related to the Western Lake Erie Basin

    EPA Pesticide Factsheets

    Western Lake Erie Basin, near Toledo (Ohio) of the Urban Waters Federal Partnership (UWFP) reconnects urban communities with their waterways by improving coordination among federal agencies and collaborating with community-led efforts

  19. Late Quaternary stratigraphy, sedimentology, and geochemistry of an underfilled lake basin in the Puna (north-west Argentina)

    USGS Publications Warehouse

    McGlue, Michael M.; Cohen, Andrew S.; Ellis, Geoffrey S.; Kowler, Andrew L.

    2013-01-01

    Depositional models of ancient lakes in thin-skinned retroarc foreland basins rarely benefit from appropriate Quaternary analogues. To address this, we present new stratigraphic, sedimentological and geochemical analyses of four radiocarbon-dated sediment cores from the Pozuelos Basin (PB; northwest Argentina) that capture the evolution of this low-accommodation Puna basin over the past ca. 43 cal kyr. Strata from the PB are interpreted as accumulations of a highly variable, underfilled lake system represented by lake-plain/littoral, profundal, palustrine, saline lake and playa facies associations. The vertical stacking of facies is asymmetric, with transgressive and thin organic-rich highstand deposits underlying thicker, organic-poor regressive deposits. The major controls on depositional architecture and basin palaeogeography are tectonics and climate. Accommodation space was derived from piggyback basin-forming flexural subsidence and Miocene-Quaternary normal faulting associated with incorporation of the basin into the Andean hinterland. Sediment and water supply was modulated by variability in the South American summer monsoon, and perennial lake deposits correlate in time with several well-known late Pleistocene wet periods on the Altiplano/Puna plateau. Our results shed new light on lake expansion–contraction dynamics in the PB in particular and provide a deeper understanding of Puna basin lakes in general.

  20. Structural Evolution of central part of the Tuzgolu (Salt Lake) Basin, Central Anatolia, Turkey

    NASA Astrophysics Data System (ADS)

    Ada, M.; Cemen, I.; Çaptuğ, A.; Demirci, M.; Engin, C.

    2017-12-01

    The Tuzgolu Basin in Central Anatolia, Turkey, covers low-relief areas located between the Pontide Mountains to the North and Tauride Mountains to the South. The basin started to form as a rift basin during the Late Maastrichtian. The main Tuzgolu-Aksaray fault zone on the eastern margin of the basin and the northwest trending Yeniceoba and Cihanbeyli fault zones on the western margin of the basin were probably developed during that time. The basin has also experienced westward extension in response to westward escape of the Anatolian plate since Late Miocene. Several geologic studies have been conducted in the Tuz Gölü (Salt Lake) Basin and surrounding areas to determine structural and tectono-stratigraphic development of the basin. However, there are still many questions regarding the structural evolution of the basin. The main purpose of this study is to investigate the structural evolution of the central Tuzgolu Basin based on the structural interpretation of available 2-D seismic reflection profiles, well log analysis and construction of structural cross sections. The cross-sections will be based on depth converted seismic lines to determine structural geometry of the faults and folds. A preliminary Petrel project has been prepared using available seismic profiles. Our preliminary structural interpretations suggest that a well-developed rollover anticline was developed with respect to the westward extension in Central Anatolia. The rollover anticline is faulted in its crest area by both down-to-the west and down-to-the east normal faults. The geometry of the main boundary fault at depth still remains in question. We anticipate that this question will be resolved based on depth converted structural cross-sections and their restoration.

  1. Meetings and Events about Western Lake Erie Basin

    EPA Pesticide Factsheets

    Western Lake Erie Basin, near Toledo (Ohio), Louisiana of the Urban Waters Federal Partnership (UWFP) reconnects urban communities with their waterways by improving coordination among federal agencies and collaborating with community-led efforts

  2. Mercury accumulation in Devils Lake, North Dakota effects of environmental variation in closed-basin lakes on mercury chronologies

    USGS Publications Warehouse

    Lent, R.M.; Alexander, C.R.

    1997-01-01

    Sediment cores were collected from lakes in the Devils Lake Basin in North Dakota to determine if mercury (Hg) accumulation chronologies from sediment-core data are good indicators of variations in Hg accumulation rates in saline lakes. Sediment cores from Creel Bay and Main Bay, Devils Lake were selected for detailed analysis and interpretation. The maximum Hg concentration in the Creel Bay core was 0.15 micrograms per gram at 8 to 9 centimeters. The maximum Hg concentration in the Main Bay core was 0.07 micrograms per gram at 5 to 7 centimeters. The general decreases in Hg concentrations with depth are attributed to historic variations in atmospheric Hg deposition rate. Hg stratigraphies combined with 210Pb and 137Cs dating analyses yield Hg chronologies that indicate a general increase in Hg accumulation rates in Devils Lake since the middle of the 19th century. Mean modern Hg accumulation rates in Creel Bay were 4.9 nanograms per square centimeter per year, and rates in Main Bay were 1.8 nanograms per square centimeter per year. Mean preindustrial Hg accumulation rates in Creel Bay were 1.2 nanograms per square centimeter per year, and rates in Main Bay were 1.6 nanograms per square centimeter per year. Relatively low Hg concentrations in recent sediments in the Devils Lake Basin, along with similarities in Hg accumulation rates between lakes in the Devils Lake Basin and other lakes in the northern interior of North America, indicate that local sources of Hg are not important sources of Hg. Results of the study indicate that accurate Hg chronologies are discernible in sediment cores collected from saline lakes. However, spatial and temporal variations in lake level and water chemistry common to saline lakes make interpretation of radioisotopic and geochemical chronologies difficult. Hg geochemistry in Devils Lake, and presumably in other saline lakes, is dynamic. The results of this study indicate that the absolute amount of sediment transported to Devils Lake

  3. Glaciers, Glacial lakes and Glacial Lake Outburst Floods in the Koshi Basin

    NASA Astrophysics Data System (ADS)

    Shrestha, F.; Gao, X.; Khanal, N. R.; Maharjan, S. B.; Bajracharya, S. R.; Shrestha, R. B.; Lizong, W.; Mool, P. K.

    2016-12-01

    Glacier is a vital water resources for mountain communities. Recession in glacier area either increased the glacial lake size or develop a new lake. The consequences of these changes in lake has become one of the major issue in the management of GLOF risk. This paper presents the distribution of, and changes in, glaciers, glacial lakes in the Koshi basin and also looks at past GLOF events that have occurred in the basin and their distance of impact. Data on the number of glaciers and glacial lakes and their areas were generated for the years 1977, 1990, 2000, and 2010 using Landsat images. The study revealed that there were a total of 845 glaciers (Nepal side) and 2,168 glacial lakes (Nepal and China side) with a total area of 1,103 km2 and 127.608 km2 in 2010. The number of glacier increased by 15% (109) and area decreased by 26% (396 km2) over 33 years. In case of glacier lakes, the number and area increased from 1,160 to 2,168 and from 94.444 km2 to 127.608 km2 during 33 years with an overall growth rates of 86.9% and 35.1%. A large number of glacial lakes are small in size (≤ 0.1 km2). End moraine dammed lakes with area ≥ 0.1 km2 were selected to analyse the change characteristics of glacial lakes. The results show that there were 134 lakes ≥ 0.1 km2 in 2010; these lakes had a total area of 43.06 km2 in 1997, increased to 64.35 km2 in 2010. The distribution of lakes on the north side of the Himalayas (in China) was three times higher than on the south side of the Himalayas (in Nepal). Comparing the mean growth rate in area and length for the 33 years, the growth rate on the north side was found to be a little slower than that on the south side. This relationship did not hold true for length change in the different periods. The study identified 42 rapidly growing large lakes that are dangerous in terms of GLOF risk. In the past, 18 GLOF events have been reported. The downstream distance impacted by those events was up to 90 km. Among them, 13 GLOF events

  4. Selected satellite data on snow and ice in the Great Lakes basin 1972-73 /IFYGL/. [International Field Year for Great Lakes

    NASA Technical Reports Server (NTRS)

    Wiesnet, D. R.; Mcginnis, D. F.; Forsyth, D. G.

    1974-01-01

    Three snow-extent maps of the Lake Ontario drainage basin were prepared from NOAA-2 satellite visible band images during the International Field Year for the Great Lakes. These maps are discussed and the satellite data are evaluated for snow-extent mapping. The value of ERTS-1 imagery and digital data is also discussed in relation to the Lake Ontario basin studies. ERTS-1 MSS data are excellent for ice identification and analysis but are not useful for forecasting where timely receipt of data is imperative. NOAA-2 VHRR data are timely but the lower resolution of the VHRR makes identification of certain ice features difficult. NOAA-2 VHRR is well suited for snow-extent maps and thermal maps of large areas such as the 19,000 sq-km Lake Ontario basin.

  5. Hexabromocyclododecane Flame Retardant Isomers in Sediments from Detroit River and Lake Erie of the Laurentian Great Lakes of North America.

    PubMed

    Letcher, Robert J; Lu, Zhe; Chu, Shaogang; Haffner, G Douglas; Drouillard, Ken; Marvin, Christopher H; Ciborowski, Jan J H

    2015-07-01

    Sediments collected in 2004 from along the Detroit River (n = 19) and across all of Lake Erie (n = 18) were analyzed for isomers of the flame retardant chemical, hexabromocyclododecane (HBCD), using liquid chromatography-tandem mass spectrometry. Sediment samples had ΣHBCD concentrations ranging from not detected to 1.6 ng/g d.w. γ-HBCD (56 %-100 % of ΣHBCDs) was the predominate isomer, observed in 7 of 19 samples from the Detroit River and 6 of 18 samples from Lake Erie (all within the western basin). α-HBCD was found in 4 Detroit River and 2 Lake Erie western basin sites, while β-HBCD was only in two Detroit River samples. High ΣHBCD concentrations (>100 ng/g d.w.) were found in two sludge samples from two Windsor, ON, wastewater treatment plants that feed into the Detroit River upstream. HBCD contamination into the Detroit River is a major input vector into Lake Erie and with an apparent sediment dilution effect moving towards the eastern basin.

  6. Regional nitrogen budget of the Lake Victoria Basin, East Africa: syntheses, uncertainties and perspectives

    NASA Astrophysics Data System (ADS)

    Zhou, Minghua; Brandt, Patric; Pelster, David; Rufino, Mariana C.; Robinson, Timothy; Butterbach-Bahl, Klaus

    2014-10-01

    Using the net anthropogenic nitrogen input (NANI) approach we estimated the N budget for the Lake Victoria Basin in East Africa. The NANI of the basin ranged from 887 to 3008 kg N km-2 yr-1 (mean: 1827 kg N km-2 yr-1) for the period 1995-2000. The net nitrogen release at basin level is due primarily to livestock and human consumption of feed and foods, contributing between 69% and 85%. Atmospheric oxidized N deposition contributed approximately 14% to the NANI of the Lake Victoria Basin, while either synthetic N fertilizer imports or biological N fixations only contributed less than 6% to the regional NANI. Due to the low N imports of feed and food products (<20 kg N km-2 yr-1), nitrogen release to the watershed must be derived from the mining of soil N stocks. The fraction of riverine N export to Lake Victoria accounted for 16%, which is much lower than for watersheds located in Europe and USA (25%). A significant reduction of the uncertainty of our N budget estimate for Lake Victoria Basin would be possible if better data on livestock systems and riverine N export were available. Our study indicates that at present soil N mining is the main source of nitrogen in the Lake Victoria Basin. Thus, sustainable N management requires increasing agricultural N inputs to guarantee food security and rehabilitation and protection of soils to minimize environmental costs. Moreover, to reduce N pollution of the lake, improving management of human and animal wastes needs to be carefully considered in future.

  7. Lake trout status in the main basin of Lake Huron, 1973-2010

    USGS Publications Warehouse

    He, Ji X.; Ebener, Mark P.; Riley, Stephen C.; Cottrill, Adam; Kowalski, Adam; Koproski, Scott; Mohr, Lloyd; Johnson, James E.

    2012-01-01

    We developed indices of lake trout Salvelinus namaycush status in the main basin of Lake Huron (1973-2010) to understand increases in the relative abundance of wild year-classes during 1995-2010. Sea lamprey Petromyzon marinus wounds per 100 lake trout declined from 23.63 in 2000 to 5.86-10.64 in 2002-2010. The average age-7 lake trout catch per effort per recruitment (CPE/R; fish•305mof gill net-1•million stocked yearlings-1) increased from 0.56 for the 1973-1990 year-classes to 0.92 for the 1991-2001 year-classes. Total CPE (fish/305 m of gill net) declined from 16.4 fish in 1996 to 4.1 fish in 2010, but the percentage of age-5 and younger lake trout steadily decreased from more than 70% before 1996 to less than 10% by 2009. The modal age in gill-net catches increased from age 5 before 1996 to age 7 by 2005. The average adult CPE increased from 2.8 fish/305 m of gill net during 1978-1995 to 5.34 fish/305 m of gill net during 1996-2010. The 1995-2010 year-classes of wild fish weremore abundant than previous year-classes and were associated with the relatively high adult abundance during 1996-2010. Until the 2002 year-class, there was no decline in age-7 CPE/R; until 2008, there was no decline in adult CPE. Low survival of the 2002 and 2003 year-classes of stocked fish was related to the event of alewife Alosa pseudoharengus population collapse in 2003-2004. Lake trout in the main basin of Lake Huron are undergoing a transition from a hatchery stock to a wild stock, accompanied by an increased uncertainty in delayed recruitment. Future management should pay more attention to the protection of wild recruitment and the abundance of the spawning stock.

  8. Mladotice Lake, Czechia: The unique genesis and evolution of the lake basin

    NASA Astrophysics Data System (ADS)

    Janský, Bohumír; Šobr, Miroslav; Kliment, Zdeněk; Chalupová, Dagmar

    2016-04-01

    The Mladotice Lake is a lake of unique genetic type in Czechia. In May 1872 a landslide as a result an extreme rainfall event occurred in western Czechia, blocking the Mladoticky stream valley and creating the Mladotice Lake. The 1952 and 1975 air images document that collective farming had a great impact on the lake basin evolution when balks and field terraces were removed and fields were made much larger. Because of this change in land use we expected higher soil erosion and a related increase in the sedimentation rate. First bathymetric measurements of the newly created lake were carried out in 1972 and were repeated in 1999, in 2003 and in 2014. Our analysis of the sedimentary record aims to identify the sediment stratigraphy, its basic physical and chemical properties, isotope content and thin sections yield a detailed temporal resolution of the sedimentation chronology. In some areas a sediment thickness of 4 m was detected. Hence, the average sedimentation rate is from 2.2 to 2.7 cm per year. KEY WORDS: Mladotice Lake - extreme rainfall event - landslide - land use changes - flood events - bathymetric measurements - sedimentation dynamics - stratigraphy and geochemistry of lake sediments - analyses of isotopes - sedimentation rates.

  9. 75 FR 1408 - Pick-Sloan Missouri Basin Program, Eastern and Western Division Proposed Project Use Power Rate

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-11

    ... of Proposed Pick-Sloan Missouri Basin Program, Eastern and Western Divisions, Project Use Power Rate...) for Project Use Power for the Pick-Sloan Missouri Basin Program (P-SMBP), Eastern and Western... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Pick-Sloan Missouri Basin Program, Eastern and...

  10. 75 FR 22423 - Pick-Sloan Missouri Basin Program, Eastern and Western Division Proposed Project Use Power Rate

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-28

    ...: Reopening of comment period for review of the Pick-Sloan Missouri Basin Program, Eastern and Western... reopening the comment period for the Pick-Sloan Missouri Basin Program, Eastern and Western Division... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Pick-Sloan Missouri Basin Program, Eastern and...

  11. Anatomy of the Midcontinent Rift beneath Lake Superior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, M.D.; McGinnis, L.D.; Ervin, C.P.

    1994-09-01

    The structure and geometry of the 1.1-b.y.-old Midcontinent Rift system under Lake Superior is interpreted from 20 seismic reflection profiles recorded during the early and mid-1980s. The seismic data reveal that rift basins under Lake Superior are variable in depth and are partially filled with Keweenawan age sediments to depths of 7 km or more and volcanic flows to depths of 36 km. These rift basins form a continuous and sinuous feature that widens in the Allouez Basin and Marquette Basin in the western and central lake and narrows between White Ridge and the Porcupine Mountains. The rift basin bendsmore » southeast around the Keweenaw Peninsula, widens to about 100 km as it extends into the eastern half of Lake Superior, and exists the lake with its axis in the vicinity of Au Sable Point in Pictured Rocks National Lake Shore, about 50 km northeast of Munising, Michigan. The axis of the rift may exit the western end of the lake near Chequamegon Bay in Wisconsin. However, lack of data in that area limits interpretation at this time. Prior to late-stage reverse-faulting, a continuous basin of more uniform thickness was present beneath the lake. Crustal extension during rifting of approximately 50 km was followed by plate convergence and crustal shortening of approximately 30 km, with the major component of thrust from the southeast. Crustal shortening occurred after development of rift grabens and their filling with lava flows, but before deposition of the final sag basin sediments. Integration of information obtained from outcrops with data reported here indicates that the Lake Superior section of the rift is associated with as many as three major boundary faults.« less

  12. Assessment of Appalachian Basin Oil and Gas Resources: Utica-Lower Paleozoic Total Petroleum System

    USGS Publications Warehouse

    Ryder, Robert T.

    2008-01-01

    The Utica-Lower Paleozoic Total Petroleum System (TPS) is an important TPS identified in the 2002 U.S. Geological Survey (USGS) assessment of undiscovered, technically recoverable oil and gas resources in the Appalachian basin province (Milici and others, 2003). The TPS is named for the Upper Ordovician Utica Shale, which is the primary source rock, and for multiple lower Paleozoic sandstone and carbonate units that are the important reservoirs. Upper Cambrian through Upper Silurian petroleum-bearing strata that constitute the Utica-Lower Paleozoic TPS thicken eastward from about 2,700 ft at the western margin of the Appalachian basin to about 12,000 ft at the thrust-faulted eastern margin of the Appalachian basin. The Utica-Lower Paleozoic TPS covers approximately 170,000 mi2 of the Appalachian basin from northeastern Tennessee to southeastern New York and from central Ohio to eastern West Virginia. The boundary of the TPS is defined by the following geologic features: (1) the northern boundary (from central Ontario to northeastern New York) extends along the outcrop limit of the Utica Shale-Trenton Limestone; (2) the northeastern boundary (from southeastern New York, through southeastern Pennsylvania-western Maryland-easternmost West Virginia, to northern Virginia) extends along the eastern limit of the Utica Shale-Trenton Limestone in the thrust-faulted eastern margin of the Appalachian basin; (3) the southeastern boundary (from west-central and southwestern Virginia to eastern Tennessee) extends along the eastern limit of the Trenton Limestone in the thrust-faulted eastern margin of the Appalachian basin; (4) the southwestern boundary (from eastern Tennessee, through eastern Kentucky, to southwestern Ohio) extends along the approximate facies change from the Trenton Limestone with thin black shale interbeds (on the east) to the equivalent Lexington Limestone without black shale interbeds (on the west); (5) the northern part of the boundary in southwestern Ohio

  13. Graphical user interface for accessing water-quality data for the Devils Lake basin, North Dakota

    USGS Publications Warehouse

    Ryberg, Karen R.; Damschen, William C.; Vecchia, Aldo V.

    2005-01-01

    Maintaining the quality of surface waters in the Devils Lake Basin in North Dakota is important for protecting the agricultural resources, fisheries, waterfowl and wildlife habitat, and recreational value of the basin. The U.S. Geological Survey, in cooperation with local, State, and Federal agencies, has collected and analyzed water-quality samples from streams and lakes in the basin since 1957, and the North Dakota Department of Health has collected and analyzed water-quality samples from lakes in the basin since 2001. Because water-quality data for the basin are important for numerous reasons, a graphical user interface was developed to access, view, and download the historical data for the basin. The interface is a web-based application that is available to the public and includes data through water year 2003. The interface will be updated periodically to include data for subsequent years.

  14. Sedimentation and subsidence patterns in the central and north basins of Lake Baikal from seismic stratigraphy

    USGS Publications Warehouse

    Moore, T.C.; Klitgord, Kim D.; Golmshtok, A.J.; Weber, E.

    1997-01-01

    Comparison of sedimentation patterns, basement subsidence, and faulting histories in the north and central basins of Lake Baikal aids in developing an interbasinal seismic stratigraphy that reveals the early synrift evolution of the central portion of the Baikal rift, a major continental rift system. Although there is evidence that the central and northern rift basins evolved at approximately the same time, their sedimentation histories are markedly different. Primary sediment sources for the initial rift phase were from the east flank of the rift; two major deltas developed adjacent to the central basin: the Selenga delta at the south end and the Barguzin delta at the north end. The Barguzin River system, located at the accommodation zone between the central and north basins, also fed into the southern part of the north basin and facilitated the stratigraphic linkage of the two basins. A shift in the regional tectonic environment in the mid Pliocene(?) created a second rift phase distinguished by more rapid subsidence and sediment accumulation in the north basin and by increased subsidence and extensive faulting in the central basin. The Barguzin delta ceased formation and parts of the old delta system were isolated within the north basin and on Academic Ridge. These isolated deltaic deposits provide a model for the development of hydrocarbon plays within ancient rift systems. In this second tectonic phase, the dominant sediment fill in the deeper and more rapidly subsiding north basin shifted from the flexural (eastern) margin to axial transport from the Upper Angara River at the north end of the basin.

  15. Metagenomics Analysis of Microorganisms in Freshwater Lakes of the Amazon Basin.

    PubMed

    Toyama, Danyelle; Kishi, Luciano Takeshi; Santos-Júnior, Célio Dias; Soares-Costa, Andrea; de Oliveira, Tereza Cristina Souza; de Miranda, Fernando Pellon; Henrique-Silva, Flávio

    2016-12-22

    The Amazon Basin is the largest hydrographic basin on the planet, and the dynamics of its aquatic microorganisms strongly impact global biogeochemical cycles. However, it remains poorly studied. This metagenome project was performed to obtain a snapshot of prokaryotic microbiota from four important lakes in the Amazon Basin. Copyright © 2016 Toyama et al.

  16. Water storage capacity of natural wetland depressions in the Devils Lake basin of North Dakota

    USGS Publications Warehouse

    Ludden, A.P.; Frink, D.L.; Johnson, D.H.

    1983-01-01

    Photogrammetric mapping techniques were used to derive the water storage capacities of natural wetland depressions other than lakes in the Devils Lake Basin of North Dakota. Results from sample quarter-section areas were expanded to the entire basin. Depressions in the Devils Lake Basin have a maximum storage capacity of nearly 811,000 cubic dekameters (657,000 acre-feet). The depressions store about 72 percent of the total runoff volume from a 2-year-frequency runoff and about 41 percent of the total runoff volume from a 100-year-frequency runoff.

  17. The geometry of pull-apart basins in the southern part of Sumatran strike-slip fault zone

    NASA Astrophysics Data System (ADS)

    Aribowo, Sonny

    2018-02-01

    Models of pull-apart basin geometry have been described by many previous studies in a variety tectonic setting. 2D geometry of Ranau Lake represents a pull-apart basin in the Sumatran Fault Zone. However, there are unclear geomorphic traces of two sub-parallel overlapping strike-slip faults in the boundary of the lake. Nonetheless, clear geomorphic traces that parallel to Kumering Segment of the Sumatran Fault are considered as inactive faults in the southern side of the lake. I demonstrate the angular characteristics of the Ranau Lake and Suoh complex pull-apart basins and compare with pull-apart basin examples from published studies. I use digital elevation model (DEM) image to sketch the shape of the depression of Ranau Lake and Suoh Valley and measure 2D geometry of pull-apart basins. This study shows that Ranau Lake is not a pull-apart basin, and the pull-apart basin is actually located in the eastern side of the lake. Since there is a clear connection between pull-apart basin and volcanic activity in Sumatra, I also predict that the unclear trace of the pull-apart basin near Ranau Lake may be covered by Ranau Caldera and Seminung volcanic products.

  18. Exploring elements that influence stewardship in the eastern Lake Ontario dune and wetland area

    Treesearch

    Diane Kuehn; James Smahol

    2010-01-01

    Th e Eastern Lake Ontario Dune and Wetland Area (ELODWA) is a 17-mile stretch of sand dunes, wetlands, and woodlands along the eastern shore of Lake Ontario in New York State. Reductions in negative, visitor-caused impacts on the dunes (e.g., trampling of dune vegetation and sand erosion) are thought to be due in part to the extensive visitor education efforts of...

  19. Does behavioural thermoregulation underlie seasonal movements in Lake Erie walleye?

    USGS Publications Warehouse

    Raby, Graham D.; Vandergoot, Christopher; Hayden, Todd A.; Faust, Matthew D.; Kraus, Richard T.; Dettmers, John M.; Cooke, Steven J.; Zhao, Yingming; Fisk, Aaron T.; Krueger, Charles C.

    2018-01-01

    Thermoregulation is presumed to be a widespread determinant of behaviour in fishes, but has not often been investigated as a mechanism shaping long-distance migrations. We used acoustic telemetry and animal-borne thermal loggers to test the hypothesis that seasonal migration in adult walleye (Sander vitreus) in Lake Erie is size- and (or) sex-specific and related to behavioural thermoregulation. Female walleye migrated out of the warm, shallow western basin earlier than did males and were 1.8 times more likely to be detected on acoustic receivers in the deeper and cooler eastern basin. The few fish that remained in the western basin were restricted to a smaller range of higher temperatures (≥20 °C) than those that migrated to the central and eastern basins (∼16–21 °C). However, temperature records from walleye in the central basin were nearly indistinguishable from those in the eastern basin, suggesting thermal preferences alone could not explain migration to the eastern basin. As such, our effort to understand the mechanisms that cause migratory behaviours has generated mixed evidence on the role of temperature and that factors like foraging opportunities may have synergistic roles in the migration.

  20. 78 FR 69363 - Lake Tahoe Basin Management Unit, California, Heavenly Mountain Resort Epic Discovery Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-19

    ... DEPARTMENT OF AGRICULTURE Forest Service Lake Tahoe Basin Management Unit, California, Heavenly Mountain Resort Epic Discovery Project AGENCY: Lake Tahoe Basin Management Unit, Forest Service, USDA...: The Epic Discovery Project is intended to enhance summer activities in response to the USDA Forest...

  1. Chemical quality of surface waters in Devils Lake basin North Dakota, 1952-60

    USGS Publications Warehouse

    Mitten, Hugh T.; Scott, C.H.; Rosene, Philip G.

    1968-01-01

    Above-normal precipitation in 1954, 1956, and 1957 caused the water surface of Devils Lake to rise to an altitude of 1,419.3 feet, its highest in 40 years. Nearly all the water entering the lake flowed through Big Coulee, and about three-fourths of that inflow was at rates greater than 100 cubic feet per second. At these rates, the inflow contained less than 600 ppm (parts per million) dissolved solids and was of the calcium bicarbonate type.Because the inflow was more dilute than the lake water, the dissolved solids in the lake decreased from 8,680 ppm in 1952 to about 6,000 ppm in 1956 and 1957. Subsequently, however, they increased to slightly more than 8,000 ppm and averaged 6,800 ppm for the 1954-60 period. Sodium and sulfate were the principal dissolved constituents in the lake water. Although the concentration of dissolved solids varied significantly from time to time, the relative proportions of the chief constituents remained nearly the same.Water flowed from Devils Lake to Mission Bay in 1956,1957, and 1958, and some flowed from Mission Bay into East Bay. However, no water moved between East Devils Lake, western Stump Lake, and eastern Stump Lake during 1952-60; these lakes received only local runoff, and the variations in their water volume caused only minor variations in dissolved solids. For the periods sampled, concentrations averaged 60,700 ppm for East Devils Lake, 23,100 ppm for western Stump Lake, and 127,000 ppm for eastern Stump Lake.Sodium and sulfate were the chief dissolved constituents in all the lakes of the Devils Lake chain. Water in eastern Stump Lake was saturated with sodium sulfate and precipitated large quantities of granular, hydrated sodium sulfate crystals on the lakebed and shore in fall and winter. A discontinuous layer of consolidated sodium sulfate crystals formed a significant part of the bed throughout the year.Measured concentrations! of zinc, iron, manganese, fluoride, arsenic, boron, copper, and lead were not high enough

  2. Dune-dammed lakes of the Nebraska Sand Hills: Geologic setting and paleoclimatic implications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loope, D.B.; Swinehart, J.B.

    1992-01-01

    Within the western half of this grass-stabilized dunefield, about 1,000 interdune lakes are grouped into two clusters here named the Blue and Birdwood lake basins. In the lake basins, those parts of the valley not filled by dune sand are occupied by modern lakes and Holocene lake sediments. The Blue Creek dam is mounded transverse to flow; spill-over of the lake basin takes place over bedrock on the east side of the dam when lake level is 2 m higher than present. The permeability of dune sand prevents massive overflow, and thereby contributes to the integrity and longevity of themore » dam. Preserved lake sediments in the basin indicate that Blue Creek was obstructed prior to 13,000 yr BP, probably during glacial maximum (18,000 yr BP). Extensive peats dated at 1,500-1,000 yr BP lie directly on fluvial sand and gravel along the Calamus River, a stream that presently discharges a nearly constant 350 cfs. These sediments indicate blockage of streams also took place when linear dunes were active in the eastern Sand Hills in Late Holocene time. With the onset of an arid episode, dunes forming an interfluves curtail the severity of runoff events. As the regional water table drops, drainages go dry and dunes move uncontested into blocking positions. Although drainages of the eastern Sand Hills appear to have repeatedly broken through sand-blocked channels, the Blue and Birdwood lake basins are still blocked by Late Pleistocene dune dams. The repeated episodes of stream blockage and interbedded lake sediments and dune sands behind the extant dams record several strong fluctuations in Holocene climate. Recently proposed climatic models indicate that the northward flow of warm, moist air from the Gulf of Mexico is enhanced when the Gulf's surface temperature is low and the Bermuda high is intensified and in a western position. When the Bermuda high moves eastward, the core of the North American continent becomes desiccated.« less

  3. Derivation of Lake Areas and Elevations for the Mackenzie Basin Using Satellite Remote Sensing

    NASA Technical Reports Server (NTRS)

    Birkett, Charon; Kite, Geoff

    1997-01-01

    Modelling hydrological processes in large watersheds flowing to the Arctic ocean is one step towards larger-scale modelling of the global water and energy cycles. Models of the Mackenzie River Basin (Northern Canada) are currently available but omit explicit routing of river flows through the three main lakes - Athabasca, Great Slave Lake and Great Bear Lake (Kite et al, 1994). These lakes occupy an area of 65,000 sq km but little gauge information is available. The levels of the lakes are only measured at a few points on the circumferences and river flows are only measured downstream. The hydraulic relationships between level/discharge and level/area/volume are uncertain. It has been previously shown that satellite remote sensing can be utilised in providing measurements of both lake surface area using imaging techniques and lake level using radar altimetry (Birkett, 1994). Here, we explore the application of these techniques to derive the lake levels and areas for the Mackenzie Basin lakes.

  4. Identification, movement, growth, mortality, and exploitation of walleye stocks in Lake St. Clair and the western basin of Lake Erie

    USGS Publications Warehouse

    Haas, Robert C.; Fabrizio, Mary C.; Todd, Thomas N.

    1988-01-01

    The harvest of walleye by sport and commercial fisheries in lakes St. Clair and Erie is under a cooperative management program involving several states and two countries. In this report we present the results of a long-term tag-recapture study as well as corroborative evidence of stock discreteness fromstudies of population characteristics such as growth and allelic frequencies of walleye in these waters. Walleye were tagged in the spring from 1975-87 in lakes St. Clair and Erie. Tag-recapture data indicate a general tendency for walleye to move northward after tagging. Walleye tagged in Lake St. Clair had higher recovery rates and lower survival rates than walleye tagged in Lake Erie. A reward-tag study in Lake St. Clair provided an estimate of a non-reporting rate of approximately 33% which is comparable to rates in the literature for other species. Data from the Ontario commercial (gill-net) fishery, Michigan Department of Natural Resources trap-net surveys, and sport fisheries from western Lake Erie and Lake St. Clair were analyzed with a catch-at-age model which permitted estimation of population abundance (12.2 to 34.5 million fish), fishing mortality rate (0.19 to 0.37), and annual survival rate (0.57 to 0.68). It appears that exploitation rates for the sport fishery in the western basin exceeded those of the commercial fishery from 1978-82. In recent years (1983-87), exploitation rates were comparable. Average abundance and catch of walleye in the western basin were 12.2 million and 3.4 million fish in 1978-82; average abundance and catch in 1983-87 were 34.5 and 5.2 million fish. We found good agreement between the estimate of the harvest from creel surveys and that from the catch-at-age model for Lake Erie. Walleye abundance and harvest in Lake St. Clair were 10% of the values for the western basin of Lake Erie. Two discrete stocks were delineated be analysis of allelic frequencies of samples from Lake St. Clair and Lake Erie spawning populations. These

  5. A mathematical model of a shallow and eutrophic lake (the Keszthely Basin, Lake Balaton) and simulation of restorative manipulations.

    PubMed

    Sagehashi, M; Sakoda, A; Suzuki, M

    2001-05-01

    Concern about the overall management of lakes has been growing, and a lake ecological model provides the guidelines necessary for such management. In this study, an ecological model describing the ecosystem of the Keszthely Basin, Lake Balaton, Hungary, one of the typical shallow and eutrophic lakes, was proposed. This model includes three types of zooplankton and two types of fish as well as two types of algae and nutrients. Parameters concerning the algae and fish were estimated based on observations in the basin between 1991 and 1995. The other parameters and the structure of the model were determined by our previous study. The parameters of the model were calibrated with the Monte Carlo technique, and its predictability was confirmed. The effects on the basin's ecosystem of three restorative manipulations, namely a biomanipulation, reduction of loading phosphorus, and dredging the sediment, were assessed by simulation studies using the proposed model. The simulation results indicated that a biomanipulation that removed 90% of the bream should suppress the growth of algae temporarily through bottom-up regulation; however, this effect seemed to not be perpetuated in this basin. The reduction of loading phosphorus seemed to be the most effective means to suppress algal growth, while dredging of sediment seemed to be the most desirable restoration method from the standpoint of the overall management of the lake, because it was expected to accelerate the growth of fish population as well as to suppress algal growth. Furthermore, the algal growth suppression mechanism of the dredging was discussed on the basis of the model calculations.

  6. Stable isotope (O and C) and pollen trends in eastern Lake Erie, evidence for a locally-induced climatic reversal of Younger Dryas age in the Great Lakes basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, C.F.M.; Anderson, T.W.

    A cool period from about 11000 to 10500 BP (11 to 10.5 ka) is recognized in pollen records from the southern Great Lakes area by the return of Picea and Abies dominance and by the persistence of herbs. The area of cooling appears centred on the Upper Great Lakes. A high-resolution record (ca. 9 mm/y) from a borehole in eastern Lake Erie reveals, in the same time interval, this pollen anomaly, isotope evidence of melt-water presence (a-3 per mil shift in {delta} {sup 18}O and a + 1.1 per mil shift in {delta}{sup 13}C), increased sand, and reduced detrital calcitemore » content, all suggesting concurrent cooling of Lake Erie. The onset of cooling is mainly attributed to the effect of enhanced meltwater inflow on the relatively large upstream Main Lake Agassiz. Termination of the cooling coincides with drainage of Lake Algonquin, and is attributed to loss of its cooling effectiveness associated with a substantial reduction in its surface area. It is hypothesized that that the cold extra in-flow effectively prolonged the seasonal presence of lake ice and the period of spring overturn in Lake Algonquin. The deep mixing would have greatly increased the thermal conductive capacity of this extensive lake, causing suppression of summer surface lakewater temperatures and reduction of onshore growing-degree days. Alternatively, a rapid flow of meltwater, buoyed on sediment-charged (denser) lakewater, may have kept the lake surface cold in summer. Other factors such as wind-shifted pollen deposition and possible effects from the Younger Dryas North Atlantic cooling could have contributed to the Great Lakes climatic reversal, but further studies are needed to resolve their relative significance. 51 refs., 5 figs.« less

  7. Impact of Urbanization on Precipitation Distribution and Intensity over Lake Victoria Basin

    NASA Astrophysics Data System (ADS)

    Gudoshava, M.; Semazzi, F. H. M.

    2014-12-01

    In this study, sensitivity simulations on the impact of rapid urbanization over Lake Victoria Basin in East Africa were done using a Regional Climate Model (RegCM4.4-rc29) with the Hostetler lake model activated. The simulations were done for the rainy seasons that is the long rains (March-April-May) and short rains (October-November-December). Africa is projected to have a surge in urbanization with an approximate rate of 590% in 2030 over their 2000 levels. The Northern part of Lake Victoria Basin and some parts of Rwanda and Burundi are amongst the regions with high urbanization projections. Simulations were done with the land cover for 2000 and the projected 2030 urbanization levels. The results showed that increasing the urban fraction over the northern part of the basin modified the physical parameters such as albedo, moisture and surface energy fluxes, aerodynamic roughness and surface emissivity, thereby altering the precipitation distribution, intensity and frequency in the region. The change in the physical parameters gave a response of an average increase in temperature of approximately 2oC over the urbanized region. A strong convergence zone was formed over the urbanized region and thereby accelerating the lake-breeze front towards the urbanized region center. Precipitation in the urbanized region and regions immediate to the area increased by approximately 4mm/day, while drying up the southern (non-urbanized) side of the basin. The drying up of the southern side of the basin could be a result of divergent flow and subsidence that suppresses vertical development of storms.

  8. Drainage divides, Massachusetts; Blackstone and Thames River basins

    USGS Publications Warehouse

    Krejmas, Bruce E.; Wandle, S. William

    1982-01-01

    Drainage boundaries for selected subbasins of the Blackstone and Thames River basins in eastern Hampden, eastern Hampshire, western Norfolk, southern Middlesex, and southern Worcester Counties, Massachusetts, are delineated on 12 topographic quadrangle maps at a scale of 1:24,000. Drainage basins are shown for all U.S. Geological Survey data-collection sites and for mouths of major rivers. Drainage basins are shown for the outlets of lakes or ponds and for streams where the drainage area is greater than 3 square miles. Successive sites along watercourses are indicated where the intervening area is at least 6 miles on tributary streams or 15 square miles along the Blackstone River, French River, or Quinebaug River. (USGS)

  9. A SCREENING-LEVEL MODEL EVALUATION OF ATRAZINE IN THE LAKE MICHIGAN BASIN

    EPA Science Inventory

    Atrazine, a widely used herbicide in the agricultural regions of the Lake Michigan basin, was selected as a priority toxic chemical study in the United States Environmental Protection Agency (U.S. EPA) - sponsored Lake Michigan Mass Balance Project.

  10. Palynological correlation of Atokan and lower desmoinesian (Pennsylvanian) strata between the Illinois basin and the Forest City basin in Eastern Kansas

    USGS Publications Warehouse

    Peppers, R.A.; Brady, L.L.

    2007-01-01

    Palynological correlation is made between Atokan and lower Desmoinesian strata in the Illinois basin an the Forest City basin in eastern Kansas. Spore data from previous studies of coals in the Illinois basin and other coal basins are compared with data from spore assemblages in coal and carbonaceous shale bands in a core drilled in Leavenworth County, Kansas. Correlations are based on first and/or last occurrences of 31 species common to the Illinois basin and eastern Kansas and on significant increases or decreases in abundance of several of those taxa. The oldest coal, which is 26 ft (8 m) above the top of the Mississippian, is early Atokan (early Westphalian B) in age and is approximately equivalent to the Bell coal bed in the Illinois basin. The Riverton coal bed at the top of the studied interval in Kansas is early Desmoinesian (early Westphalian D) and correlates with about the Lewisport coal bed in the Illinois basin. Three coal beds near the base of the Pennsylvanian in three cores drilled in Cherokee County, Kansas, which were also studied, range in age from late Atokan to early Desmoinesian. As in other coal basins, Lycospora, borne by lycopod trees, greatly dominates the lower and middle Atokan spore assemblages in coals and shale, but spores from ferns, especially tree ferns, significantly increase in abundance in the upper Atokan and lower Desmoinesian. The pattern of change of dominance among Lycosporapellucida, L. granulata, and L, micropapillata in middle Atokan (Westphalian B-C transition) that has been demonstrated earlier in the Illinois basin and eastern Kentucky and Tennessee, also occurs in eastern Kansas. At least 10 species of spores, which appeared in the middle Atokan in other parts of the equatorial coal belt, also appeared at this time in eastern Kansas. Most of these species have their affinities with the ferns, which were adapted to drier habitats than lycopods. Thus, the climate may have become a little drier in the equatorial coal

  11. Consumptive Water-Use Coefficients for the Great Lakes Basin and Climatically Similar Areas

    USGS Publications Warehouse

    Shaffer, Kimberly H.; Runkle, Donna L.

    2007-01-01

    Consumptive water use is the portion of water withdrawn (for a particular use) that is evaporated, transpired, incorporated into products or crops, consumed by humans or livestock, or otherwise removed from the immediate water environment. This report, which is organized by water?use categories, includes consumptive?use coefficients for the Great Lakes Basin (including Canada) and for areas climatically similar to the Great Lakes Basin. This report also contains an annotated bibliography of consumptive water?use coefficients. Selected references are listed for consumptive?use data from elsewhere in the world. For the industrial water?use category, the median consumptive?use coefficients were 10 percent for the Great Lakes Basin, climatically similar areas, and the world; the 25th and 75th percentiles for these geographic areas were comparable within 6 percent. The combined domestic and public?supply consumptive?use statistics (median, 25th and 75th percentiles) were between 10 to 20 percent for the various geographic areas. Although summary statistics were similar for coefficients in the livestock and irrigation water?use categories for the Great Lakes Basin and climatically similar areas, statistic values for the world on a whole were substantially lower (15 to 28 percent lower). Commercial and thermoelectric power consumptive?use coefficient statistics (median, 25th, and 75th percentile) also were comparable for the Great Lakes Basin and climatically similar areas, within 2 percent. References for other countries were not found for commercial and thermoelectric power water?use categories. The summary statistics for the mining consumptive?use coefficients varied, likely because of differences in types of mining, processes, or equipment.

  12. The Great Lakes Hydrography Dataset: Consistent, binational watersheds for the Laurentian Great Lakes Basin

    EPA Science Inventory

    Ecosystem-based management of the Laurentian Great Lakes, which spans both the United States and Canada, is hampered by the lack of consistent binational watersheds for the entire Basin. Using comparable data sources and consistent methods we developed spatially equivalent waters...

  13. 77 FR 21522 - Lake Tahoe Basin Management Unit and Tahoe National Forest, CA; Calpeco 625 and 650 Electrical...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-10

    ... DEPARTMENT OF AGRICULTURE Forest Service Lake Tahoe Basin Management Unit and Tahoe National... hereby given that the USDA Forest Service (USFS), Lake Tahoe Basin Management Unit (LTBMU), together with... reliable electrical transmission system for the north Lake Tahoe area, while accommodating currently...

  14. Transient groundwater-lake interactions in a continental rift: Sea of Galilee, Israel

    USGS Publications Warehouse

    Hurwitz, S.; Stanislavsky, E.; Lyakhovsky, V.; Gvirtzman, H.

    2000-01-01

    The Sea of Galilee, located in the northern part of the Dead Sea rift, is currently an intermediate fresh-water lake. It is postulated that during a short highstand phase of former Lake Lisan in the late Pleistocene, saline water percolated into the subsurface. Since its recession from the Kinarot basin and the instantaneous formation of the fresh-water lake (the Sea of Galilee), the previously intruded brine has been flushed backward toward the lake. Numerical simulations solving the coupled equations of fluid flow and of solute and heat transport are applied to examine the feasibility of this hypothesis. A sensitivity analysis shows that the major parameters controlling basin hydrodynamics are lake-water salinity, aquifer permeability, and aquifer anisotropy. Results show that a highstand period of 3000 yr in Lake Lisan was sufficient for saline water to percolate deep into the subsurface. Because of different aquifer permeabilities on both sides of the rift, brine percolated into a aquifers on the western margin, whereas percolation was negligible on the eastern side. In the simulation, after the occupation of the basin by the Sea of Galilee, the invading saline water was leached backward by a topography-driven flow. It is suggested that the percolating brine on the western side reacted with limestone at depth to form epigenetic dolomite at elevated temperatures. Therefore, groundwater discharging along the western shores of the Sea of Galilee has a higher calcium to magnesium ratio than groundwater on the eastern side.

  15. The use of total lake-surface area as an indicator of climatic change: Examples from the Lahontan basin

    USGS Publications Warehouse

    Benson, L.V.; Paillet, Frederick L.

    1989-01-01

    Variation in the size of lakes in the Lahontan basin is topographically constrained. River diversion also has played a major role in regulating lake size in Lahontan subbasins. The proper gage of lake response to change in the hydrologic balance is neither lake depth (level) nor lake volume but instead lake-surface area. Normalization of surface area is necessary when comparing surface areas of lakes in basins having different topographies. To a first approximation, normalization can be accomplished by dividing the paleosurface area of a lake by its mean-historical, reconstructed surface area. ?? 1989.

  16. Outdoor recreation opportunities and land use change in Vermont's Lake Champlain Basin

    Treesearch

    John J. Lindsay

    1995-01-01

    Outdoor recreation resources are eroding in Vermont's Lake Champlain Basin due to urban expansion. This study measured urban growth in the Basin and identified critical areas for open space protection. The study's hypothesis, that there was no difference between the Champlain Basin and other parts of urbanizing New England that have lost outdoor recreation...

  17. The Lake Tahoe Basin Land Use Simulation Model

    USGS Publications Warehouse

    Forney, William M.; Oldham, I. Benson

    2011-01-01

    This U.S. Geological Survey Open-File Report describes the final modeling product for the Tahoe Decision Support System project for the Lake Tahoe Basin funded by the Southern Nevada Public Land Management Act and the U.S. Geological Survey's Geographic Analysis and Monitoring Program. This research was conducted by the U.S. Geological Survey Western Geographic Science Center. The purpose of this report is to describe the basic elements of the novel Lake Tahoe Basin Land Use Simulation Model, publish samples of the data inputs, basic outputs of the model, and the details of the Python code. The results of this report include a basic description of the Land Use Simulation Model, descriptions and summary statistics of model inputs, two figures showing the graphical user interface from the web-based tool, samples of the two input files, seven tables of basic output results from the web-based tool and descriptions of their parameters, and the fully functional Python code.

  18. Genetic features of petroleum systems in rift basins of eastern China

    USGS Publications Warehouse

    Qiang, J.; McCabe, P.J.

    1998-01-01

    Most oil-bearing basins in eastern China are Mesozoic-Cenozoic continental rifts which have played a habitat for oil and gas in China. Investigation of the petroleum systems may give a better understanding of the oil and gas habitats in these basins. Of the essential elements of the petroleum system, the source rock is the most important in rift basins. However, rift tectonic evolution controls all the essential elements and processes nevessary for a petroleum system. A four stage evolution model is suggested for the controls in the rift basin. A rift basin may consist of sub-basins, depressions, sub-depressions, and major, moderate, and minor uplifts. A depression or sub-depression has its own depocentre (mainly occupied by source rock) and all kinds of lacustrine sediments, and thus has all the essential elements of a petroleum system. However, only those depressions or sub-depressions which are rich in organic matter and deeply buried to generate oil and gas form petroleum systems. Immature oil, another characteristic, complicates the petroleum system in the rift basins. Three types of oil and gas habitats are described as a result of this analysis of the petroleum systems of the 26 largest oil and gas fields discovered in eastern China rift basins: uplifts between oil source centres are the most prospective areas for oil and gas accumulations, slopes connecting oil source centres and uplifts are the second, and the third type is subtle traps in the soil source centre.Most oil-bearing basins in eastern China are Mesozoic-Cenozoic continental rifts which have played a habitat for oil and gas in China. Investigation of the petroleum systems may give a better understanding of the oil and gas habitats in these basins. Of the essential elements of the petroleum system, the source rock is the most important in rift basins. However, rift tectonic evolution controls all the essential elements and processes necessary for a petroleum system. A four stage evolution model

  19. Lake-level variation in the Lahontan basin for the past 50,000 years

    USGS Publications Warehouse

    Benson, L.V.; Thompson, R.S.

    1987-01-01

    Selected radiocarbon data on surficial materials from the Lahontan basin, Nevada and California, provide a chronology of lake-level variation for the past 50,000 yr. A moderate-sized lake connected three western Lahontan subbasins (the Smoke Creek-Black Rock Desert subbasin, the Pyramid Lake subbasin, and the Winnemucca Dry Lake subbasin) from about 45,000 to 16,500 yr B.P. Between 50,000 and 45,000 yr B.P., Walker Lake rose to its sill level in Adrian Valley and spilled to the Carson Desert subbasin. By 20,000 yr B.P., lake level in the western Lahontan subbasins had risen to about 1265 m above sea level, where it remained for 3500 yr. By 16,000 yr B.P., lake level in the western Lahontan subbasins had fallen to 1240 m. This recession appears synchronous with a desiccation of Walker Lake; however, whether the Walker Lake desiccation resulted from climate change or from diversion of the Walker River is not known. From about 15,000 to 13,500 yr B.P., lake level rapidly rose, so that Lake Lahontan was a single body of water by 14,000 yr B.P. The lake appears to have reached a maximum highstand altitude of 1330 m by 13,500 yr B.P., a condition that persisted until about 12,500 yr B.P., at which time lake level fell ???100 m. No data exist that indicate the level of lakes in the various subbasins between 12,000 and 10,000 yr B.P. During the Holocene, the Lahontan basin was the site of shallow lakes, with many subbasins being the site of one or more periods of desiccation. The shape of the lake-level curve for the three western subbasins indicates that past changes in the hydrologic balance (and hence climate) of the Lahontan basin were large in magnitude and took place in a rapid step-like manner. The rapid changes in lake level are hypothesized to have resulted from changes in the mean position of the jet stream, as it was forced north or south by the changing size and shape of the continental ice sheet. ?? 1987.

  20. Using hydrogeologic data to evaluate geothermal potential in the eastern Great Basin

    USGS Publications Warehouse

    Masbruch, Melissa D.; Heilweil, Victor M.; Brooks, Lynette E.

    2012-01-01

    In support of a larger study to evaluate geothermal resource development of high-permeability stratigraphic units in sedimentary basins, this paper integrates groundwater and thermal data to evaluate heat and fluid flow within the eastern Great Basin. Previously published information from a hydrogeologic framework, a potentiometric-surface map, and groundwater budgets was compared to a surficial heat-flow map. Comparisons between regional groundwater flow patterns and surficial heat flow indicate a strong spatial relation between regional groundwater movement and surficial heat distribution. Combining aquifer geometry and heat-flow maps, a selected group of subareas within the eastern Great Basin are identified that have high surficial heat flow and are underlain by a sequence of thick basin-fill deposits and permeable carbonate aquifers. These regions may have potential for future geothermal resources development.

  1. Drainage reversals in Mono Basin during the late pliocene and Pleistocene

    USGS Publications Warehouse

    Reheis, M.C.; Stine, S.; Sarna-Wojcicki, A. M.

    2002-01-01

    Mono Basin, on the eastern flank of the central Sierra Nevada, is the highest of the large hydrographically closed basins in the Basin and Range province. We use geomorphic features, shoreline deposits, and basalt-filled paleochannels to reconstruct an early to middle Pleistocene record of shorelines and changing spillways of Lake Russell in Mono Basin. During this period of time, Lake Russell repeatedly attained altitudes between 2205 and 2280 m-levels far above the present surface of Mono Lake (~1950 m) and above its last overflow level (2188 m). The spill point of Lake Russell shifted through time owing to late Tertiary and Quaternary faulting and volcanism. During the early Pleistocene, the lake periodically discharged through the Mount Hicks spillway on the northeastern rim of Mono Basin and flowed northward into the Walker Lake drainage basin via the East Walker River. Paleochannels recording such discharge were incised prior to 1.6 Ma, possibly between 1.6 and 1.3 Ma, and again after 1.3 Ma (ages of basaltic flows that plugged the paleochannels). Faulting in the Adobe Hills on the southeastern margin of the basin eventually lowered the rim in this area to below the altitude of the Mount Hicks spillway. Twice after 0.76 Ma, and possibly as late as after 0.1 Ma, Lake Russell discharged southward through the Adobe Hills spillway into the Owens-Death Valley system of lakes. This study supports a pre-Pleistocene aquatic connection through Mono Basin between the hydrologically distinct Lahontan and Owens-Death Valley systems, as long postulated by biologists, and also confirms a probable link during the Pleistocene for species adapted to travel upstream in fast-flowing water.

  2. Geographical distributions of lake trout strains stocked in Lake Ontario

    USGS Publications Warehouse

    Elrod, Joseph H.; O'Gorman, Robert; Schneider, Clifford P.; Schaner, Ted

    1996-01-01

    Geographical distributions of lake trout (Salvelinus namaycush) stocked at seven locations in U.S. waters and at four locations in Canadian waters of Lake Ontario were determined from fish caught with gill nets in September in 17 areas of U.S. waters and at 10 fixed locations in Canadian waters in 1986-95. For fish of a given strain stocked at a given location, geographical distributions were not different for immature males and immature females or for mature males and mature females. The proportion of total catch at the three locations nearest the stocking location was higher for mature fish than for immature fish in all 24 available comparisons (sexes combined) and was greater for fish stocked as yearlings than for those stocked as fingerlings in all eight comparisons. Mature fish were relatively widely dispersed from stocking locations indicating that their tendency to return to stocking locations for spawning was weak, and there was no appreciable difference in this tendency among strains. Mature lake trout were uniformly distributed among sampling locations, and the strain composition at stocking locations generally reflected the stocking history 5 to 6 years earlier. Few lake trout moved across Lake Ontario between the north and south shores or between the eastern outlet basin and the main lake basin. Limited dispersal from stocking sites supports the concept of stocking different genetic strains in various parts of the lake with the attributes of each strain selected to match environmental conditions in the portion of the lake where it is stocked.

  3. Relationship between deep structure and oil-gas in the eastern Tarim Basin

    NASA Astrophysics Data System (ADS)

    Yu, Changqing; Qu, Chen; Han, Jianguang

    2017-04-01

    The Tarim Basin is a large composite superimposed basin which developed in the Presinian continental basement. It is an important area for oil and gas replacement in China. In the eastern part of Tarim Basin, the exploration and research degree is very low and less system, especially in the study of tectonic evolution and physical property change. Basing on the study of geophysics, drilling and regional geological data in this area, analysis of comprehensive geophysical, geological and geophysical analysis comparison are lunched by new methods and new technology of geophysical exploration. Fault, tectonic evolution and change of deep character in the eastern Tarim Basin are analyzed in system. Through in-depth study and understanding of the deep structure and physical changes of the eastern region, we obtain the fault characteristics in the study area and the deep structure and physical change maps to better guide the oil and gas exploration in this area. The east area is located in the eastern Tarim Basin, west from the Garr Man depression, Well Kunan 1 - Well Gucheng 4 line to the East, north to Kuruketage uplift group near Qunke 1 wells, south to Cherchen fault zone, east to Lop Nor depression, an area of about 9 * 104 square kilometres, Including the East of Garr Man sag, Yingjisu depression, Kongquehe slope, Tadong low uplift and the Lop Nor uplift, five two grade tectonic units. The east area of Tarim is belonging to Tarim plate. It changes with the evolution of the Tarim plate. The Tarim plate is closely related to the collision between the Yining - the Junggar plate, the Siberia plate and the southern Qiangtang - the central Kunlun plate. Therefore, it creates a complex tectonic pattern in the eastern Tarim basin. Earth electromagnetic, gravity, deep seismic and other geophysical data are processed by a new generation of geophysical information theory and method, including multi-scale inversion of potential field inversion (Hou and Yang, 2011), 3D

  4. The Tiberias Basin salt deposits and their effects on lake salinity

    NASA Astrophysics Data System (ADS)

    Inbar, Nimrod; Rosenthal, Eliahu; Möller, Peter; Yellin-Dror, Annat; Guttman, Josef; Siebert, Christian; Magri, Fabien

    2015-04-01

    Lake Tiberias is situated in one of the pull-apart basins comprising the Dead Sea transform. The Tiberias basin extends along the northern boundary of the Lower Jordan Rift Valley (LJRV) which is known for its massive salt deposits, mostly at its southern end, at the Dead Sea basin. Nevertheless, prior to the drilling of Zemah-1 wildcat, drilled close to the southern shores of Lake Tiberias, the Tiberias Basin was considered rather shallow and free of salt deposits (Starinsky, 1974). In 1983, Zemah-1 wildcat penetrated 2.8 km thick sequence of sedimentary and magmatic rocks of which 980m are salt deposits (Marcus et al., 1984). Recent studies, including the presented geophysical investigations, lay out the mechanisms of salt deposition in the Tiberias basin and estimate its abundance. Supported by seismic data, our interpreted cross-sections display relatively thick salt deposits distributed over the entire basin. Since early days of hydrological research in the area, saline springs are known to exist at Lake Tiberias' surroundings. Water temperatures in some of the springs indicate their origin to be at depths of 2-3 km (Simon and Mero, 1992). In the last decade, several studies suggested that the salinity of springs may be attributed, at least partially, to the Zemah-1 salt deposits. Chemical justification was attributed to post-halite minerals which were thought to be present among those deposits. This hypothesis was never verified. Moreover, Möller et al. (2011) presented a calculation contradicting this theory. In addition to the geophysical investigations, numerical models of thermally driven flow, examine the possible fluid dynamics developing near salt deposits below the lake and their interactions with springs along the lakeshore (Magri et al., 2015). It is shown that leached halite is too heavy to reach the surface. However, salt diffusing from shallow salt crest may locally reach the western side of the lakeshore. References Magri, F., N. Inbar

  5. Phosphorus Export Model Development in a Terminal Lake Basin using Concentration-Streamflow Relationship

    NASA Astrophysics Data System (ADS)

    Jeannotte, T.; Mahmood, T. H.; Matheney, R.; Hou, X.

    2017-12-01

    Nutrient export to streams and lakes by anthropogenic activities can lead to eutrophication and degradation of surface water quality. In Devils Lake, ND, the only terminal lake in the Northern Great Plains, the algae boom is of great concern due to the recent increase in streamflow and consequent rise in phosphorus (P) export from prairie agricultural fields. However, to date, very few studies explored the concentration (c) -streamflow (q) relationship in the headwater catchments of the Devils Lake basin. A robust watershed-scale quantitative framework would aid understanding of the c-q relationship, simulating P concentration and load. In this study, we utilize c-q relationships to develop a simple model to estimate phosphorus concentration and export from two headwater catchments of different size (Mauvais Coulee: 1032 km2 and Trib 3: 160 km2) draining to Devils Lake. Our goal is to link the phosphorus export model with a physically based hydrologic model to identify major drivers of phosphorus export. USGS provided the streamflow measurements, and we collected water samples (filtered and unfiltered) three times daily during the spring snowmelt season (March 31, 2017- April 12, 2017) at the outlets of both headwater catchments. Our results indicate that most P is dissolved and very little is particulate, suggesting little export of fine-grained sediment from agricultural fields. Our preliminary analyses in the Mauvais Coulee catchment show a chemostatic c-q relationship in the rising limb of the hydrograph, while the recession limb shows a linear and positive c-q relationship. The poor correlation in the rising limb of the hydrograph suggests intense flushing of P by spring snowmelt runoff. Flushing then continues in the recession limb of the hydrograph, but at a more constant rate. The estimated total P load for the Mauvais Coulee basin is 193 kg/km2, consistent with other catchments of similar size across the Red River of the North basin to the east. We expect

  6. Holocene aeolian activity in the Gonghe Basin, north-eastern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Stauch, Georg; Lai, Zhongping; Lehmkuhl, Frank; Schulte, Philipp

    2016-04-01

    The Gonghe Basin is located on the north-eastern edge of Tibetan Plateau and has a mean altitude of 3000 m asl. With a size of 20.000 km² it is the largest intramontane Basin on the north-eastern Plateau. The well-studied Qinghai Basin is situated north of the Basin, while the drier central Plateau is further south-west. Previous research indicated an early onset of the aeolian accumulation in the Qinghai Basin at around 18 ka while in the areas further to the south-west aeolian archives date back only to the beginning of the Holocene. First new OSL ages from aeolian sand and loess indicate a intermediate timing of the aeolian accumulation in the Gonghe Basin at the transition from the late glacial to the Holocene. Late glacial and early Holocene ages of aeolian sediments were hitherto associated with wetter climate conditions caused by the strengthening of the Asian summer monsoon. Higher moisture availability resulted in an increased vegetation cover, leading to the permanent stabilization of the aeolian sediments. Under glacial climate conditions a constant remobilization of the sediments can be assumed. The new OSL ages from the Gonghe Basin indicate a progressive shift of the monsoonal strength in westward directions during the late glacial until the early Holocene.

  7. Customizing WRF-Hydro for the Laurentian Great Lakes Basin

    NASA Astrophysics Data System (ADS)

    Gronewold, A.; Pei, L.; Gochis, D.; Mason, L.; Sampson, K. M.; Dugger, A. L.; Read, L.; McCreight, J. L.; Xiao, C.; Lofgren, B. M.; Anderson, E. J.; Chu, P. Y.

    2017-12-01

    To advance the state of the art in regional hydrological forecasting, and to align with operational deployment of the National Water Model, a team of scientists has been customizing WRF-Hydro (the Weather Research and Forecasting model - Hydrological modeling extension package) to the entirety (including binational land and lake surfaces) of the Laurentian Great Lakes basin. Objectives of this customization project include opererational simulation and forecasting of the Great Lakes water balance and, in the short-term, research-oriented insights into modeling one- and two-way coupled lake-atmosphere and near-shore processes. Initial steps in this project have focused on overcoming inconsistencies in land surface hydrographic datasets between the United States and Canada. Improvements in the model's current representation of lake physics and stream routing are also critical components of this effort. Here, we present an update on the status of this project, including a synthesis of offline tests with WRF-Hydro based on the newly developed Great Lakes hydrographic data, and an assessment of the model's ability to simulate seasonal and multi-decadal hydrological response across the Great Lakes.

  8. Using multi-source satellite data for lake level modelling in ungauged basins: A case study for Lake Turkana, East Africa

    USGS Publications Warehouse

    Velpuri, N.M.; Senay, G.B.; Asante, K.O.

    2011-01-01

    Managing limited surface water resources is a great challenge in areas where ground-based data are either limited or unavailable. Direct or indirect measurements of surface water resources through remote sensing offer several advantages of monitoring in ungauged basins. A physical based hydrologic technique to monitor lake water levels in ungauged basins using multi-source satellite data such as satellite-based rainfall estimates, modelled runoff, evapotranspiration, a digital elevation model, and other data is presented. This approach is applied to model Lake Turkana water levels from 1998 to 2009. Modelling results showed that the model can reasonably capture all the patterns and seasonal variations of the lake water level fluctuations. A composite lake level product of TOPEX/Poseidon, Jason-1, and ENVISAT satellite altimetry data is used for model calibration (1998-2000) and model validation (2001-2009). Validation results showed that model-based lake levels are in good agreement with observed satellite altimetry data. Compared to satellite altimetry data, the Pearson's correlation coefficient was found to be 0.81 during the validation period. The model efficiency estimated using NSCE is found to be 0.93, 0.55 and 0.66 for calibration, validation and combined periods, respectively. Further, the model-based estimates showed a root mean square error of 0.62 m and mean absolute error of 0.46 m with a positive mean bias error of 0.36 m for the validation period (2001-2009). These error estimates were found to be less than 15 % of the natural variability of the lake, thus giving high confidence on the modelled lake level estimates. The approach presented in this paper can be used to (a) simulate patterns of lake water level variations in data scarce regions, (b) operationally monitor lake water levels in ungauged basins, (c) derive historical lake level information using satellite rainfall and evapotranspiration data, and (d) augment the information provided by the

  9. An Archaeological Inventory of Portions of the Devils Lake Basin, Benson, Eddy, Nelson, and Ramsey Counties, North Dakota

    DTIC Science & Technology

    1989-01-18

    INVENTORY O: PORTIONS OF THE DEVILS LAKE BASIN , I BENSON, EDDY, NELSON, AND RAMSEY COUNTIES, NORTH DAKOTA By: 5 MERVIN G. FLOODMAN, M.A. Submitted By...had a geomorphological study conducted for the Devils Lake Basin , to interpret the Pleistocene and Holocene development of the landscape, and assess...investigations, in an attempt to make broad statements about the location of cultural resources within the Devils Lake Basin . None of the historic sites

  10. Northern Great Basin Seasonal Lakes: Vulnerability to Climate Change.

    NASA Astrophysics Data System (ADS)

    Russell, M.; Eitel, J.

    2017-12-01

    Seasonal alkaline lakes in southeast Oregon, northeast California, and northwest Nevada serve as important habitat for migrating birds utilizing the Pacific Flyway, as well as local plant and animal communities. Despite their ecological importance, and anecdotal suggestions that these lakes are becoming less reliable, little is known about the vulnerability of these lakes to climate change. Our research seeks to understand the vulnerability of Northern Great Basin seasonal lakes to climate change. For this, we will be using historical information from the European Space Agency's Global Surface Water Explorer and the University of Idaho's gridMET climate product, to build a model that allows estimating surface water extent and timing based on climate variables. We will then utilize downscaled future climate projections to model surface water extent and timing in the coming decades. In addition, an unmanned aerial system (UAS) will be utilized at a subset of dried basins to obtain precise 3D bathymetry and calculate water volume hypsographs, a critical factor in understanding the likelihood of water persistence and biogeochemical habitat suitability. These results will be incorporated into decision support tools that land managers can utilize in water conservation, wildlife management, and climate mitigation actions. Future research may pair these forecasts with animal movement data to examine fragmentation of migratory corridors and species-specific impacts.

  11. [Genetic Differentiation of Sockeye Salmon Oncorhynchus nerka from Kamchatka River Basin and the Lake-River Systems of the West Coast of the Bering Sea as Inferred from Data on Single Nucleotide Polymorphism].

    PubMed

    Khrustaleva, A M; Klovach, N V; Vedischeva, E V; Seeb, J E

    2015-10-01

    The variability of 45 single nucleotide polymorphism loci (SNP) was studied in sockeye salmon from the Kamchatka River basin and four lake-river systems of the west coast of the Bering Sea. Based on the genetic differentiation estimates for the largest sockeye salmon populations of Eastern Kamchatka and Chukotka, the examined samples were combined into two regional groups represented by the population of the Kamchatka River drainage, which included numerous local subpopulations and seasonal races, and the northern population grouping from the rivers of Olutorsko-Navarinsky raion, wherein the sockeye salmon from Maynypilginskaya Lake-River system was relatively isolated. Considerable divergence was observed between the island (Sarannoe Lake, Bering Island) and continental populations. Genetic heterogeneity was revealed and groups of early- and late-maturing individuals were isolated in the sample of late-run sockeye salmon from Kamchatka River. In Apuka River, subdivision of the spawning run into two genetically distinct spatial and temporal groupings was also observed. The results suggest that the differentiation of sockeye salmon samples by single nucleotide substitution frequencies was largely due to differences in the direction and strength of local selection at some loci in the population complexes and intrapopulation groupings from the examined river basins of Eastern Kamchatka, Chukotka, and Commander Islands.

  12. An Investigation of the Hydroclimate Variability of Eastern Africa

    NASA Astrophysics Data System (ADS)

    Smith, K. A.; Semazzi, F. H. M.

    2015-12-01

    The flow of the Victoria Nile, and the productivity of the dams along it, is determined by the level of Lake Victoria, which is primarily dictated by the rainfall and temperature variability over the Lake Victoria Basin. Notwithstanding the indisputable decline of water resources over the lake basin during the Long Rains of March - May, there is a strong indication based on IPCC climate projections that this trend, which has persisted for several decades, will reverse in the next few decades. This phenomenon has come to be known as the Eastern-Central African climate change paradox and could have profound implications on sustainable development for the next few decades in Lake Victoria Basin. The purpose of this study is to investigate the climate variability associated with the East African Climate Change Paradox for the recent decades. This research analyzes observations to understand the sources of variability and potential physical mechanisms related to the decline in precipitation over Eastern Africa. We then investigate the hydrological factors involved in the decline of Lake Victoria levels in the context of the decline in rainfall. While East Africa has been experiencing persistent decline of the Long Rains for multiple decades, this same decline is not seen in annual rainfall. The remaining seasons show an increase in rainfall which is compensating for the decline of the Long Rains. It is possible that the Long Rains season is shifting in such a way that the season starts earlier, in February, and ending sooner. The corresponding annual Lake Victoria levels modeled using observed rainfall do not decline in the recent decades, except when the Long Rains seasonal variability is considered without variability from other seasons. This shift could impact hydroelectric power planning on a monthly or seasonal time scale, and could potentially have a large impact on agriculture, since it would shift the growing season in the region.

  13. Late Cenozoic lacustrine and climatic environments at Tule Lake, northern Great Basin, USA

    USGS Publications Warehouse

    Platt, Bradbury J.

    1992-01-01

    Cores of lake sediment to a depth of 334 m in the town of Tulelake, Siskiyou County, northern California, document the late Cenozoic paleolimnologic and paleoclimatic history of the northwestern edge of the Great Basin. The cores have been dated by radiometric, tephrochronologic and paleomagnetic analyses. Lacustrine diatoms are abundant throughout the record and document a nearly continuous paleolimnologic history of the Tule Lake basin for the last 3 Myr. During most of this time, this basin (Tule Lake) was a relatively deep, extensive lake. Except for a drier (and cooler?) interval recorded by Fragilaria species about 2.4 Ma, the Pliocene is characterized by a dominance of planktonic Aulacoseira solida implying a warm monomictic lake under a climatic regime of low seasonality. Much of the Pleistocene is dominated by Stephanodiscus and Fragilaria species suggesting a cooler, often drier, and highly variable climate. Benthic diatoms typical of alkaline-enriched saline waters commonly appear after 1.0 Ma, and tephrochronology indicates slow deposition and possible hiatuses between about 0.6 and 0.2 Ma. The chronology of even-numbered oxygen isotope stages approximately matches fluctuations in the abundance of Fragilaria since 800 ka indicating that glacial periods were expressed as drier environments at Tule Lake. Glacial and interglacial environments since 150 ka were distinct from, and more variable than, those occurring earlier. The last full glacial period was very dry, but shortly thereafter Tule Lake became a deep, cool lacustrine system indicating a substantial increase in precipitation. Aulacoseira ambigua characterized the latest glacial and Holocene record of Tule Lake. Its distribution indicates that warmer and wetter climates began about 15 ka in this part of the Great Basin. Diatom concentration fluctuates at 41 000 year intervals between 3.0 and 2.5 Ma and at approximately 100 000 year intervals after 1.0 Ma. In the late Pliocene and early Pleistocene

  14. Jurassic Lake T'oo'dichi': a large alkaline, saline lake, Morrison Formation, eastern Colorado Plateau

    USGS Publications Warehouse

    Turner, C.E.; Fishman, N.S.

    1991-01-01

    Recognition of alkaline, saline-lake deposits in the Morrison Formation significantly alters interpretations of depositional environments of this formation, and it also has important implications for paleoclimatic interpretation. Late Jurassic climate was apparently much more arid than had previously been thought. In fact, sedimentologic evidence suggests that the lake basin was typically dry for extended periods and enjoyed only brief wet intervals. This conclusion has important consequences for environmental interpretation of the habitat that was favorable for large herbivorous dinosaurs, which thrived in the Late Jurassic. -from Authors

  15. Drastic lake level changes of Lake Van (eastern Turkey) during the past ca. 600 ka: climatic, volcanic and tectonic control

    NASA Astrophysics Data System (ADS)

    Cukur, D.; Krastel, S.; Schmincke, H.; Sumita, M.; Tomonaga, Y.; Damci, E.

    2013-12-01

    , some several meters thick, has drastically increased in the upper ca 100 m (the past ca. 230 ka). The highest density of excellent reflectors occurs in this interval. Tectonic activity evidenced by extensional and/or compressional faults across the basin margins may have also affected the lake level fluctuations in Lake Van. This series of reconstructions using seismic stratigraphy from this study enlighten the understanding of tectonically-active lacustrine basins and provide a model for similar basins elsewhere.

  16. Late quaternary geomorphology of the Great Salt Lake region, Utah, and other hydrographically closed basins in the western United States: A summary of observations

    NASA Technical Reports Server (NTRS)

    Currey, Donald R.

    1989-01-01

    Attributes of Quaternary lakes and lake basins which are often important in the environmental prehistory of semideserts are discussed. Basin-floor and basin-closure morphometry have set limits on paleolake sizes; lake morphometry and basin drainage patterns have influenced lacustrine processes; and water and sediment loads have influenced basin neotectonics. Information regarding inundated, runoff-producing, and extra-basin spatial domains is acquired directly from the paleolake record, including the littoral morphostratigraphic record, and indirectly by reconstruction. Increasingly detailed hypotheses regarding Lake Bonneville, the largest late Pleistocene paleolake in the Great Basin, are subjects for further testing and refinement. Oscillating transgression of Lake Bonneville began about 28,000 yr B.P.; the highest stage occurred about 15,000 yr B.P., and termination occurred abruptly about 13,000 yr B.P. A final resurgence of perennial lakes probably occurred in many subbasins of the Great Basin between 11,000 and 10,000 yr B.P., when the highest stage of Great Salt Lake (successor to Lake Bonneville) developed the Gilbert shoreline. The highest post-Gilbert stage of Great Salt Lake, which has been one of the few permanent lakes in the Great Basin during Holocene time, probably occurred between 3,000 and 2,000 yr B.P.

  17. A REGIONAL ECOLOGICAL ANALYSIS OF THE GREAT LAKES BASIN

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) and Natural Resources Canada: Canada Centre for Remote Sensing (CCRS) are conducting a cooperative research landscape ecological study of the Great Lakes Basin. The analyses will include the areas located along the border of the Unit...

  18. A LANDSCAPE ECOLOGY ANALYSIS OF THE GREAT LAKES BASIN

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) and Natural Resources Canada: Canada Centre for Remote Sensing (CCRS) are conducting a cooperative research landscape ecological study of the Great Lakes Basin. The analyses will include the areas located along the border of the Unit...

  19. Simulating Glacial Outburst Lake Releases for Suicide Basin, Mendenhall Glacier, Juneau, Alaska

    NASA Astrophysics Data System (ADS)

    Jacobs, A. B.; Moran, T.; Hood, E. W.

    2017-12-01

    Glacial Lake outbursts from Suicide Basin are recent phenomenon first characterized in 2011. The 2014 event resulted in record river stage and moderate flooding on the Mendenhall River in Juneau. Recognizing that these events can adversely impact residential areas of Juneau's Mendenhall Valley, the Alaska-Pacific River Forecast Center developed a real-time modeling technique capable of forecasting the timing and magnitude of the flood-wave crest due to releases from Suicide Basin. The 2014 event was estimated at about 37,000 acre feet with water levels cresting within 36 hours from the time the flood wave hit Mendenhall Lake. Given the magnitude of possible impacts to the public, accurate hydrological forecasting is essential for public safety and Emergency Managers. However, the data needed to effectively forecast magnitudes of specific jökulhlaup events are limited. Estimating this event as related to river stage depended upon three variables: 1) the timing of the lag between Suicide Basin water level declines and the related rise of Mendenhall Lake, 2) continuous monitoring of Mendenhall Lake water levels, and 3) estimating the total water volume stored in Suicide Basin. Real-time modeling of the event utilized a Time of Concentration hydrograph with independent power equations representing the rising and falling limbs of the hydrograph. The initial accuracy of the model — as forecasted about 24 hours prior to crest — resulted in an estimated crest within 0.5 feet of the actual with a timing error of about six hours later than the actual crest.

  20. Cretaceous combined structure in eastern Sichuan Basin, China

    NASA Astrophysics Data System (ADS)

    Wang, P.; Liu, S.

    2009-12-01

    Eastern Sichuan Basin is confined by two thin-skinned fold-thrust belt, NW-trending Southern Daba Shan (Shan=Mountain) (SDB) in the northeast and NNE- or NE-trending Western XueFeng Shan (WXF) in the southeast, which constitute two convergent salients convex to the inner basin respectively. Although many factors can lead to the formation of fold-thrust belt salients, the eastern Sichuan salients would be attributed to the combined structure (firstly nominated by Chinese geologist, Li Siguang), which means the interaction of two structural belts in the same period. By field surveying and geological map interpreting, we found that WXF deformation began in Late Jurassic along the eastern side of structral belt, where the synclines cored by Upper-Middle Jurassic rock. The initial time of SDB deformation remains poorly determined, however our palaeocurrent data of Lower Cretaceous rock in adjecent foreland basin indicate the provenance from northeast or east. Hence we considered the two fold-thrust belt started interactive in Late Jurassic and mainly combined during Cretaceous. In Early Cretaceous, the front belt of WXF salient arrived near KaiXian where NEE-trending arc-shape folds converged with the NWW-trending arc-shape folds of SDB.The two salients shaped like an westward "open mouth", east of which EW-trending folds of two structural belts juxtaposed. Particularly in the middle belt of WXF (FengJie - WuFeng) the earlier NEE-trending folds were refolded by later NNE-trending folds. We interpret the NEE-trending folds as the front belt of earlier (maybe Late Jurassic) WXF salient. When the two combined fold belts propagated westward together, the original NNE-trending front belt of WXF constrained by the front belt of SDB and formed the curved fold trend lines convex to NNW. Then as WXF deformation continued but SDB gradually terminated, the consequent NNE-trending folds could not be curved and would superpose on the earlier NEE-trending folds.In Late Cretaceous

  1. Response of the St. Joseph River to lake level changes during the last 12,000 years in the Lake Michigan basin

    USGS Publications Warehouse

    Kincare, K.A.

    2007-01-01

    The water level of the Lake Michigan basin is currently 177 m above sea level. Around 9,800 14C years B.P., the lake level in the Lake Michigan basin had dropped to its lowest level in prehistory, about 70 m above sea level. This low level (Lake Chippewa) had profound effects on the rivers flowing directly into the basin. Recent studies of the St. Joseph River indicate that the extreme low lake level rejuvenated the river, causing massive incision of up to 43 m in a valley no more than 1.6 km wide. The incision is seen 25 km upstream of the present shoreline. As lake level rose from the Chippewa low, the St. Joseph River lost competence and its estuary migrated back upstream. Floodplain and channel sediments partially refilled the recently excavated valley leaving a distinctly non-classical morphology of steep sides with a broad, flat bottom. The valley walls of the lower St. Joseph River are 12-18 m tall and borings reveal up to 30 m of infill sediment below the modern floodplain. About 3 ?? 108 m3 of sediment was removed from the St. Joseph River valley during the Chippewa phase lowstand, a massive volume, some of which likely resides in a lowstand delta approximately 30 km off-shore in Lake Michigan. The active floodplain below Niles, Michigan, is inset into an upper terrace and delta graded to the Calumet level (189 m) of Lake Chicago. In the lower portion of the terrace stratigraphy a 1.5-2.0 m thick section of clast-supported gravel marks the entry of the main St. Joseph River drainage above South Bend, Indiana, into the Lake Michigan basin. This gravel layer represents the consolidation of drainage that probably occurred during final melting out of ice-marginal kettle chains allowing stream piracy to proceed between Niles and South Bend. It is unlikely that the St. Joseph River is palimpsest upon a bedrock valley. The landform it cuts across is a glaciofluvial-deltaic feature rather than a classic unsorted moraine that would drape over pre-glacial topography

  2. Methane distribution and transportation in Lake Chaohu: a shallow eutrophic lake in Eastern China

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Shen, Q.

    2016-12-01

    Global warming and eutrophication are two world widely concerned environmental problems. Methane is the second important greenhouse gas, and lake has been proven as a quite important natural source of methane emission. More methane may emit from eutrophic lake due to the higher organic matter deposition in the lake sediment. Lake Chaohu is a large and shallow eutrophic lake in eastern China (N31°25' 31°43', E117°16' 117°05'), with an area of 770 km2 and a mean depth of 2.7 m. To examine methane distribution and transportation in this eutrophic lake, field study across different seasons was carried out with 20 study sites in the lake. Samples from the different water and sediment depth was collected using headspace bottle, and methane content was measured by gas chromatography using a flame ionization detector. The potential methane production in the sediment was examined by an indoor incubation experiment. Methane flux from sediment to the overlying water was calculated by Fick's law, and methane emission from surface to the air was calculated at the same time. The results indicates that more methane accumulated in the water of northwestern bay in this lake, and higher methane release rates was also found at this area. Methane increases gradually with depth in the top 10 cm in sediment cores, then it almost keeps at constant state in the deeper sediment. In the sediment from northwestern bay, more methane content and the higher potential methane production was found compared to the sediment from the east area of this lake.

  3. SWAT Model Configuration, Calibration and Validation for Lake Champlain Basin

    EPA Pesticide Factsheets

    The Soil and Water Assessment Tool (SWAT) model was used to develop phosphorus loading estimates for sources in the Lake Champlain Basin. This document describes the model setup and parameterization, and presents calibration results.

  4. Investigation of soil properties for identifying recharge characteristics in the Lake Chad Basin

    NASA Astrophysics Data System (ADS)

    Banks, M. L.; Ndunguru, G. G.; Adisa, S. J.; Lee, J.; Adegoke, J. O.; Goni, I. B.; Grindley, J.; Mulugeta, V.

    2009-12-01

    Lake Chad was once labeled as one of the largest fresh water lakes in the world, providing water and livelihood to over 20 million people. The lake is shared by six different countries; Chad Nigeria, Niger, Cameroon, Central African Republic, and Sudan. Since the 1970 to date, a significant decrease in the size of the lake has been observed with the use of satellite imagery. This shrinking of the lake has been blamed on global warming, population increase and poor water management by the agriculture industry for farming purpose for both plants and animals. While these can be all valid reasons for the decrease of Lake Chad, we see the need to examine environmental and hydrological evidence around the Lake Chad basin. This study was carried out from upper stream to lower stream leading from Kano to the Damatru region which is one of several water bodies that supply Lake Chad. Over seventy six sites were sampled for soil texture, bulk density and other physical properties to investigate recharge capacity of the basin especially along the stream. Soils were collected using a soil core and properly stored at 4 degrees Celsius. Soils were weighed and put to dry at 105 degrees for twenty four hours. Dry weight was recorded and bulk density was calculated. The wet sieve method was used to determine the particle size analysis. Soils were weighed to 10 grams and hydrogen peroxide added to separate particles. Samples were washed with water and put to dry overnight. Soils were reweighed and sieved to separate as course sand, fine sand and silt and clay. The data revealed that in the upstream, coarse sand continuously decreased while silt and clay continuously increased down toward the lake. At mid stream silt and clay had significantly higher values when compared to coarse sand and fine sand. In the lower stream, bulk density clearly decreased compared to the upper and mid streams. Correlations will be carried out to investigate the particle size analysis and bulk density with

  5. Impacts of Recent Climatic Wetting on Distributed Snow and Streamflow Responses in a Terminal Lake Basin.

    NASA Astrophysics Data System (ADS)

    Van Hoy, D.; Mahmood, T. H.; Jeannotte, T.; Todhunter, P. E.

    2017-12-01

    The recent shift in hydroclimatic conditions in the Northern Great Plains (NGP) has led to an increase in precipitation, rainfall rate, and wetland connectivity over the last few decades. These changes yield an integrated response resulting in high mean annual streamflow and subsequent flooding in many NGP basins such as the terminal Devils Lake Basin (DLB). In this study, we investigate the impacts of recent climatic wetting on distributed hydrologic responses such as snow processes and streamflow using a field-tested and physically-based cold region hydrologic model (CRHM). CHRM is designed for cold prairie regions and has modules to simulate major processes such as blowing snow transport, sublimation, interception, frozen soil infiltration, snowmelt and subsequent streamflow generation. Our modeling focuses on a tributary basin of the DLB known as the Mauvais Coulee Basin (MCB). Since there were no snow observations in the MCB, we conducted a detailed snow survey at distributed locations estimating snow depth, density, and snow water equivalent (SWE) using a prairie snow tube four times during winter of 2016-17. The MCB model was evaluated against distributed snow observations and streamflow measured at the basin outlet (USGS) for the year 2016-2017. Preliminary results indicate that the simulated SWEs at distributed locations and streamflow (NSE ≈ 0.70) are in good agreement with observations. The simulated SWE maps exhibit large spatiotemporal variation during 2016-17 winter due to spatial variability in precipitation, snow redistribution from stubble field to wooded areas, and snow accumulations in small depressions across the subbasins. The main source of snow appears to be the hills and ridges of the eastern and western edges of the basin, while the main sink is the large flat central valleys. The model will be used to examine the effect of recent changes to precipitation and temperature on snow processes and subsequent streamflow for 2004-2017 season. We

  6. 43 CFR 44.40 - How does the Department process payments for lands in the Redwood National Park or Lake Tahoe Basin?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... for lands in the Redwood National Park or Lake Tahoe Basin? 44.40 Section 44.40 Public Lands: Interior... Governments for Interest in Lands in the Redwood National Park Or Lake Tahoe Basin § 44.40 How does the Department process payments for lands in the Redwood National Park or Lake Tahoe Basin? This section...

  7. 43 CFR 44.40 - How does the Department process payments for lands in the Redwood National Park or Lake Tahoe Basin?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... for lands in the Redwood National Park or Lake Tahoe Basin? 44.40 Section 44.40 Public Lands: Interior... Governments for Interest in Lands in the Redwood National Park Or Lake Tahoe Basin § 44.40 How does the Department process payments for lands in the Redwood National Park or Lake Tahoe Basin? This section...

  8. 43 CFR 44.40 - How does the Department process payments for lands in the Redwood National Park or Lake Tahoe Basin?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... for lands in the Redwood National Park or Lake Tahoe Basin? 44.40 Section 44.40 Public Lands: Interior... Governments for Interest in Lands in the Redwood National Park Or Lake Tahoe Basin § 44.40 How does the Department process payments for lands in the Redwood National Park or Lake Tahoe Basin? This section...

  9. 43 CFR 44.40 - How does the Department process payments for lands in the Redwood National Park or Lake Tahoe Basin?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... for lands in the Redwood National Park or Lake Tahoe Basin? 44.40 Section 44.40 Public Lands: Interior... Governments for Interest in Lands in the Redwood National Park Or Lake Tahoe Basin § 44.40 How does the Department process payments for lands in the Redwood National Park or Lake Tahoe Basin? This section...

  10. 43 CFR 44.40 - How does the Department process payments for lands in the Redwood National Park or Lake Tahoe Basin?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... for lands in the Redwood National Park or Lake Tahoe Basin? 44.40 Section 44.40 Public Lands: Interior... Governments for Interest in Lands in the Redwood National Park Or Lake Tahoe Basin § 44.40 How does the Department process payments for lands in the Redwood National Park or Lake Tahoe Basin? This section...

  11. Watershed scale response to climate change--Trout Lake Basin, Wisconsin

    USGS Publications Warehouse

    Walker, John F.; Hunt, Randall J.; Hay, Lauren E.; Markstrom, Steven L.

    2012-01-01

    Fourteen basins for which the Precipitation Runoff Modeling System has been calibrated and evaluated were selected as study sites. Precipitation Runoff Modeling System is a deterministic, distributed parameter watershed model developed to evaluate the effects of various combinations of precipitation, temperature, and land use on streamflow and general basin hydrology. Output from five General Circulation Model simulations and four emission scenarios were used to develop an ensemble of climate-change scenarios for each basin. These ensembles were simulated with the corresponding Precipitation Runoff Modeling System model. This fact sheet summarizes the hydrologic effect and sensitivity of the Precipitation Runoff Modeling System simulations to climate change for the Trout River Basin at Trout Lake in northern Wisconsin.

  12. GREAT LAKES BASIN LAND-COVER DATA: ISSUES AND OPPORTUNITIES

    EPA Science Inventory

    The US Environmental Protection Agency (EPA) is developing a consistent land-cover (LC) data set for the entire 480,000 km2 Great Lakes Basin (GLB). The acquisition of consistent LC data has proven difficult both within the US and across GLB political boundaries due to disparate...

  13. Lake Murray, Fly and Strickland River Basins, Papua, New Guinea

    NASA Image and Video Library

    1991-12-01

    Lake Murray, a manmade reservoir, lies between the Fly and Strickland River Basins, Papua, New Guinea (7.0S, 141.5E). The region, photographed in sunglint, shows the water level in the reservoir and the full extent of the drainage basins of both river systems as the rivers meander through wide alluvial floodplains. Some forest clearing can be seen in places throughout the region, but most of the area remains in closed canopy forest.

  14. Nitrate Contamination in the groundwater of the Lake Acıgöl Basin, SW Turkey

    NASA Astrophysics Data System (ADS)

    Karaman, Muhittin; Budakoǧlu, Murat; Taşdelen, Suat

    2017-04-01

    The lacustrine Acıgöl basin, formed as an extensional half-graben, hosts various bodies of water, such as cold-hot springs, lakes, streams, and wells. The hydrologically closed basin contains a hypersaline lake (Lake Acıgöl) located in the southern part of the basin. The brackish springs and deep waters discharged along the Acıgöl fault zone in the southern part of the basin feed the hypersaline lake. Groundwater is used as drinking, irrigation, and domestic water in the closed Acıgöl Basin. Groundwater flows into the hypersaline lake from the highland. The Acıgöl basin hosts large plains (Hambat, Başmakçı, and Evciler). Waters in agricultural areas contain high amounts of nitrate; groundwater samples in agricultural areas contain nitrate levels higher than 10 mg/L. Nitrate concentrations in the groundwater samples varied from 0 to 487 mg/L (n=165); 25.4 % of the groundwater samples from the basin had nitrate concentrations above 10 mg/L (the WHO drinking guideline) and 52.2% of the groundwater samples from the basin had nitrate concentrations above 3.0 mg/L, and these high values were regarded as the result of human activity. The highest nitrate values were measured in the Hambat plain (480 and 100 mg/L) and Yirce Pinari spring (447 mg/L), which discharges along the Acıgöl fault zone in the southern part of the basin. The average multi-temporal nitrate concentration of the Yirce Pınarı spring was 3.3 mg/L. Extreme nitrate values were measured in the Yirce Pınarı spring during periods when sheep wool was washed (human activity). The lowest nitrate concentrations were observed in some springs that discharged along the Acıgöl fault zone in the southern part of the basin. Nitrate was not detected in deep groundwater discharged along the Acıgöl fault zone. Nitrate concentrations in deep groundwater and some springs discharged along the Acıgöl fault zone and those feeding the hypersaline lake were significantly affected by redox conditions

  15. Progress and plans of a remote sensing program for the International Field Year for the Great Lakes (IFYGL)

    NASA Technical Reports Server (NTRS)

    Polcyn, F. C.; Wagner, T. W. (Principal Investigator)

    1972-01-01

    The author has identified the following significant results. ERTS-1 coverage of the 32,000 square mile Lake Ontario Basin is being used to study short term and seasonal changes which affect many aspects of water problems in the Great Lakes. As part of the International Field Year for the Great Lakes (IFYGL), a coordinated, synoptic study of the Lake Ontario Basin, processed ERTS-1 imagery will contribute to the data base of synchronized observations being made by investigators from many U.S. and Canadian government agencies and universities. The first set of ERTS data has been received and will be processed shortly for parameters of hydrological and limnological significance such as land use, terrain features, and water quality. When complete, nine ERTS-1 frames recorded during a substantially clear period will provide coverage of the entire Basin. Seven frames show all but a small portion of the southern and eastern end of the Basin. Many drainage basin characteristics are clearly identifiable on the imagery.

  16. Aquatic vegetation in response to increased eutrophication and degraded light climate in Eastern Lake Taihu: Implications for lake ecological restoration.

    PubMed

    Zhang, Yunlin; Liu, Xiaohan; Qin, Boqiang; Shi, Kun; Deng, Jianming; Zhou, Yongqiang

    2016-04-04

    Terrestrial and aquatic ecosystem degradation is widely recognized as a major global environmental and development problem. Although great efforts have been made to prevent aquatic ecosystem degradation, the degree, extent and impacts of this phenomenon remain controversial and unclear, such as its driving mechanisms. Here, we present results from a 17-year field investigation (1998-2014) of water quality and a 12-year remote sensing mapping (2003-2014) of the aquatic vegetation presence frequency (VPF) in Eastern Lake Taihu, a macrophyte-dominated bay of Lake Taihu in China. In the past 17 years, nutrient concentrations and water level (WL) have significantly increased, but the Secchi disk depth (SDD) has significantly decreased. These changes were associated with increased lake eutrophication and a degraded underwater light climate that further inhibited the growth of aquatic vegetation. In Eastern Lake Taihu, increased nutrients, chlorophyll a and WL, and a decreased SDD were all significantly correlated with a decreased VPF. NH4(+)-N concentration and SDD/WL were the most important controlling factors for VPF. Therefore, increased anthropogenic nutrient inputs and a degraded underwater light climate surely result in a decreased VPF. These results elucidate the driving mechanism of aquatic vegetation degradation and will facilitate Lake Taihu ecological restoration.

  17. Aquatic vegetation in response to increased eutrophication and degraded light climate in Eastern Lake Taihu: Implications for lake ecological restoration

    NASA Astrophysics Data System (ADS)

    Zhang, Yunlin; Liu, Xiaohan; Qin, Boqiang; Shi, Kun; Deng, Jianming; Zhou, Yongqiang

    2016-04-01

    Terrestrial and aquatic ecosystem degradation is widely recognized as a major global environmental and development problem. Although great efforts have been made to prevent aquatic ecosystem degradation, the degree, extent and impacts of this phenomenon remain controversial and unclear, such as its driving mechanisms. Here, we present results from a 17-year field investigation (1998-2014) of water quality and a 12-year remote sensing mapping (2003-2014) of the aquatic vegetation presence frequency (VPF) in Eastern Lake Taihu, a macrophyte-dominated bay of Lake Taihu in China. In the past 17 years, nutrient concentrations and water level (WL) have significantly increased, but the Secchi disk depth (SDD) has significantly decreased. These changes were associated with increased lake eutrophication and a degraded underwater light climate that further inhibited the growth of aquatic vegetation. In Eastern Lake Taihu, increased nutrients, chlorophyll a and WL, and a decreased SDD were all significantly correlated with a decreased VPF. NH4+-N concentration and SDD/WL were the most important controlling factors for VPF. Therefore, increased anthropogenic nutrient inputs and a degraded underwater light climate surely result in a decreased VPF. These results elucidate the driving mechanism of aquatic vegetation degradation and will facilitate Lake Taihu ecological restoration.

  18. Tulare Lake Basin Hydrology and Hydrography: A Summary of the Movement of Water and Aquatic Species

    EPA Pesticide Factsheets

    Summary of the historic and current hydrology of the Tulare Lake Basin (Basin) describing past, present and potential future movement of water out of the Basin, and potential movement of bioiogical organisms and toxicants within and outside of the Basin.

  19. Acoustic architecture of glaciolacustrine sediments deformed during zonal stagnation of the Laurentide Ice Sheet; Mazinaw Lake, Ontario, Canada

    NASA Astrophysics Data System (ADS)

    Eyles, Nicholas; Doughty, Mike; Boyce, Joseph I.; Mullins, Henry T.; Halfman, John D.; Koseoglu, Berkant

    2003-03-01

    In North America, the last (Laurentide) Ice Sheet retreated from much of the Canadian Shield by 'zonal stagnation'. Masses of dead ice, severed from the main ice sheet by emerging bedrock highs, downwasted in situ within valleys and lake basins and were commonly buried by sediment. Consequently, the flat sediment floors of many valleys and lakes are now pitted by steep-sided, enclosed depressions (kettle basins) that record the melt of stagnant ice blocks and collapse of sediment. At Mazinaw Lake in eastern Ontario, Canada, high-resolution seismic reflection, magnetic and bathymetric surveys, integrated with onland outcrop and hammer seismic investigations, were conducted to identify the types of structural disturbance associated with the formation of kettle basins in glaciolacustrine sediments. Basins formed as a result of ice blocks being trapped within a regionally extensive proglacial lake (Glacial Lake Iroquois ˜12,500 to 11,400 years BP) that flooded eastern Ontario during deglaciation. Kettles occur within a thick (>30 m) succession of parallel, high-frequency acoustic facies consisting of rhythmically laminated (varved?) Iroquois silty-clays. Iroquois strata underlying and surrounding kettle basins show large-scale normal faults, fractures, rotational failures and incoherent chaotically bedded sediment formed by slumping and collapse. Mazinaw Lake lies along part of the Ottawa Graben and while neotectonic earthquake activity cannot be entirely dismissed, deformation is most likely to have occurred as a result of the rapid melt of buried ice blocks. Seismic data do not fully penetrate the entire basin sediment fill but the structure and topography of bedrock can be inferred from magnetometer data. The location and shape of buried ice masses was closely controlled by the graben-like form of the underlying bedrock surface.

  20. First evidence of grass carp recruitment in the Great Lakes Basin

    USGS Publications Warehouse

    Chapman, Duane C.; Davis, J. Jeremiah; Jenkins, Jill A.; Kocovsky, Patrick M.; Miner, Jeffrey G.; Farver, John; Jackson, P. Ryan

    2013-01-01

    We use aging techniques, ploidy analysis, and otolith microchemistry to assess whether four grass carp Ctenopharyngodon idella captured from the Sandusky River, Ohio were the result of natural reproduction within the Lake Erie Basin. All four fish were of age 1 +. Multiple lines of evidence indicate that these fish were not aquaculture-reared and that they were most likely the result of successful reproduction in the Sandusky River. First, at least two of the fish were diploid; diploid grass carp cannot legally be released in the Great Lakes Basin. Second, strontium:calcium (Sr:Ca) ratios were elevated in all four grass carp from the Sandusky River, with elevated Sr:Ca ratios throughout the otolith transect, compared to grass carp from Missouri and Arkansas ponds. This reflects the high Sr:Ca ratio of the Sandusky River, and indicates that these fish lived in a high-strontium environment throughout their entire lives. Third, Sandusky River fish were higher in Sr:Ca ratio variability than fish from ponds, reflecting the high but spatially and temporally variable strontium concentrations of southwestern Lake Erie tributaries, and not the stable environment of pond aquaculture. Fourth, Sr:Ca ratios in the grass carp from the Sandusky River were lower in their 2011 growth increment (a high water year) than the 2012 growth increment (a low water year), reflecting the observed inverse relationship between discharge and strontium concentration in these rivers. We conclude that these four grass carp captured from the Sandusky River are most likely the result of natural reproduction within the Lake Erie Basin.

  1. Geometry and kinematics of the eastern Lake Mead fault system in the Virgin Mountains, Nevada and Arizona

    USGS Publications Warehouse

    Beard, Sue; Campagna, David J.; Anderson, R. Ernest

    2010-01-01

    blocks and south-directed for strike-slip faults. Strike-slip faults are oblique to the extension direction due to structural inheritance from NE-striking fabrics in Proterozoic crystalline basement rocks.We hypothesize that (1) during early phases of deformation oblique extension was partitioned to form east-west–extended domains bounded by left-lateral faults of the Lake Mead fault system, from ca. 16 to 14 Ma. (2) Beginning ca. 13 Ma, increased south-directed shortening impinged on the Virgin Mountains and forced uplift, faulting, and overturning along the north and west side of the Virgin Mountains. (3) By ca. 10 Ma, initiation of the younger Hen Spring to Hamblin Bay fault segment of the Lake Mead fault system accommodated westward tectonic escape, and the focus of south-directed shortening transferred to the western Lake Mead region. The shift from early partitioned oblique extension to south-directed shortening may have resulted from initiation of right-lateral shear of the eastern Walker Lane to the west coupled with left-lateral shear along the eastern margin of the Great Basin.

  2. Important Conclusions on the Messinian Salinity Crisis Depositional History of the Eastern Mediterranean Basin

    NASA Astrophysics Data System (ADS)

    Gunes, Pinar; Aksu, Ali; Hall, Jeremy

    2017-04-01

    The interpretation of a comprehensive set of high-resolution multi-channel seismic reflection profiles, multibeam bathymetry data and the litho- and bio-stratigraphic information from exploration wells across the Antalya Basin and Florence Rise revealed important conclusions on the Miocene to Recent tectonic evolution and the Messinian Salinity Crisis depositional history of the eastern Mediterranean Basin. This study clearly demonstrated the presence of a 4-division Messinian evaporite stratigraphy in the eastern Mediterranean, similar to that observed in the western Mediterranean, suggesting the existence of a similar set of depositional processes across the Mediterranean during the Messinian Salinity Crisis. However, the stratigraphic and depositional similarities of the evaporites between the eastern and western basins do not necessitate synchroneity in their depositional histories. The fact that the only saline water source for the eastern Mediterranean is the Atlantic Ocean and that the Sicily sill creates a physical barrier between the eastern and western Mediterranean impose several critical conditions. A simple 2-D model is developed which satisfies these conditions. The synchroneity of evaporite deposition across the eastern and western basins broke down as the Sicily Gateway became largely subaerial during a period when the Calabrian Arc area experienced uplift associated with slab break-off: the Sicily sill must have remained within a "goldilocks" zone to allow the right amount of saline water inflow into the eastern Mediterranean so that evaporites (massive halite) could be deposited. During this time, the sea level in western Mediterranean was at the breach-level of the Sicily sill, thus no evaporite deposition took place there. The model suggests that the eastern and western basin margins experienced a nearly synchronized gypsum deposition associated with the initial drawdown of the Mediterranean level, followed by the resedimentation in the deep

  3. Late-Quaternary glacial to postglacial sedimentation in three adjacent fjord-lakes of the Québec North Shore (eastern Canadian Shield)

    NASA Astrophysics Data System (ADS)

    Poiré, Antoine G.; Lajeunesse, Patrick; Normandeau, Alexandre; Francus, Pierre; St-Onge, Guillaume; Nzekwe, Obinna P.

    2018-04-01

    High-resolution swath bathymetry imagery allowed mapping in great detail the sublacustrine geomorphology of lakes Pentecôte, Walker and Pasteur, three deep adjacent fjord-lakes of the Québec North Shore (eastern Canada). These sedimentary basins have been glacio-isostatically uplifted to form deep steep-sided elongated lakes. Their key geographical position and limnogeological characteristics typical of fjords suggest exceptional potential for long-term high-resolution paleoenvironmental reconstitutions. Acoustic subbottom profiles acquired using a bi-frequency Chirp echosounder (3.5 & 12 kHz), together with cm- and m-long sediment core data, reveal the presence of four acoustic stratigraphic units. The acoustic basement (Unit 1) represents the structural bedrock and/or the ice-contact sediments of the Laurentide Ice Sheet and reveals V-shaped bedrock valleys at the bottom of the lakes occupied by ice-loaded sediments in a basin-fill geometry (Unit 2). Moraines observed at the bottom of lakes and in their structural valleys indicate a deglaciation punctuated by short-term ice margin stabilizations. Following ice retreat and their isolation, the fjord-lakes were filled by a thick draping sequence of rhythmically laminated silts and clays (Unit 3) deposited during glaciomarine and/or glaciolacustrine settings. These sediments were episodically disturbed by mass-movements during deglaciation due to glacial-isostatic rebound. AMS 14C dating reveal that the transition between deglaciation of the lakes Pentecôte and Walker watersheds and the development of para- and post-glacial conditions occurred around 8000 cal BP. The development of the lake-head river delta plain during the Holocene provided a constant source of fluvial sediment supply to the lakes and the formation of turbidity current bedforms on the sublacustrine delta slopes. The upper sediment succession (i.e., ∼4-∼6.5 m) consists of a continuous para-to post-glacial sediment drape (Unit 4) that contains

  4. OVERVIEW OF VALVE TOWER FROM EASTERN SIDE OF BASIN SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OVERVIEW OF VALVE TOWER FROM EASTERN SIDE OF BASIN SHOWING BRIDGE SUPPORTS ON HILLTOP. VIEW FACING WEST - Schofield Barracks Military Reservation, Ku Tree Reservoir, Valve Tower, Kalakoa Stream, East Range, Wahiawa, Honolulu County, HI

  5. Discrimination among spawning concentrations of Lake Superior lake herring based on trace element profiles in sagittae

    USGS Publications Warehouse

    Bronte, Charles R.; Hesselberg, Robert J.; Shoesmith, John A.; Hoff, Michael H.

    1996-01-01

    Little is known about the stock structure of lake herring Coregonus artedi in Lake Superior, and recent increases in harvestable stock sizes has led to expanded exploitation in some areas. Research on marine teleosts has demonstrated that chemical differences in sagittal otoliths can be used for identification of fish stocks. We used plasma emission spectrophotometry to measure the concentrations of 10 trace elements in the sagittal otoliths from lake herring captured at eight spawning sites in Lake Superior and from Little Star Lake, an inland lake outside the Lake Superior basin. Discriminant function analysis indicated that elemental concentrations provided site-specific information but that considerable overlap existed among some locations, especially those in western Lake Superior. Correct classification rates varied from 12.0% to 86.1% and were generally higher for spawning locations from embayments in eastern Lake Superior and for the outgroup population from Little Star Lake. The results presented here demonstrate the potential usefulness of this technique for strictly freshwater species, especially those that live in highly oligotrophic waters such as Lake Superior.

  6. Trends in phosphorus loading to the western basin of Lake ...

    EPA Pesticide Factsheets

    Dave Dolan spent much of his career computing and compiling phosphorus loads to the Great Lakes. None of his work in this area has been more valuable than his continued load estimates to Lake Erie, which has allowed us to unambiguously interpret the cyanobacteria blooms and hypoxia development in the lake. To help understand the re-occurrence of cyanobacteria blooms in the Western Basin of Lake Erie, we have examined the phosphorus loading to the Western Basin over the past 15 years. Furthermore, we have examined the relative contributions from various tributaries and the Detroit River. On an annual basis the total phosphorus load has not exhibited a trend, other than being well correlated with flow from major tributaries. However, the dissolved reactive phosphorus (DRP) load has trended upward, returning to levels observed in the mid-1970s. This increase has largely been attributed to the increase in flow-weighted DRP concentration in the Maumee River. Over the period, about half of the phosphorus load comes from the Maumee River with the other half coming from the Detroit River; other tributaries contribute much small amounts to the load. Seasonal analysis shows the highest percentage of the load occurs in the spring during high flow events. We are very grateful to our friend Dave for making this type of analysis possible not applicable

  7. A Cultural Resources Inventory of Eastern Portions of Lake Sakakawea, North Dakota (Mercer and McLean Counties).

    DTIC Science & Technology

    1982-09-15

    34esources Inventory of Eastern Portions of Lake Sakakawee, North Dakota (Mercer and McLean August - September 1982 Counties ) 6. PERFORMING ORG. REPORT...of Lake Sakakawea (Mercer and McLean Counties ), North Dakota, Identif ied 56 sites. The site types include: stone circles (36), stone cairn (1), linear...9 A CULTURAL RESOURCES INVENTORY OF EASTERN PORTIONS OF LAUE SAKAKAWRA, NORTH DAKOTA (MERCER AND XcLEAN COUNTIES

  8. Moraine-dammed lake failures in Patagonia and assessment of outburst susceptibility in the Baker Basin

    NASA Astrophysics Data System (ADS)

    Iribarren Anacona, P.; Norton, K. P.; Mackintosh, A.

    2014-07-01

    Glacier retreat since the Little Ice Age has resulted in the development or expansion of hundreds of glacial lakes in Patagonia. Some of these lakes have produced large (≥106 m3) Glacial Lake Outburst Floods (GLOFs) damaging inhabited areas. GLOF hazard studies in Patagonia have been mainly based on the analysis of short-term series (≤50 years) of flood data and until now no attempt has been made to identify the relative susceptibility of lakes to failure. Power schemes and associated infrastructure are planned for Patagonian basins that have historically been affected by GLOFs, and we now require a thorough understanding of the characteristics of dangerous lakes in order to assist with hazard assessment and planning. In this paper, the conditioning factors of 16 outbursts from moraine dammed lakes in Patagonia were analysed. These data were used to develop a classification scheme designed to assess outburst susceptibility, based on image classification techniques, flow routine algorithms and the Analytical Hierarchy Process. This scheme was applied to the Baker Basin, Chile, where at least 7 moraine-dammed lakes have failed in historic time. We identified 386 moraine-dammed lakes in the Baker Basin of which 28 were classified with high or very high outburst susceptibility. Commonly, lakes with high outburst susceptibility are in contact with glaciers and have moderate (>8°) to steep (>15°) dam outlet slopes, akin to failed lakes in Patagonia. The proposed classification scheme is suitable for first-order GLOF hazard assessments in this region. However, rapidly changing glaciers in Patagonia make detailed analysis and monitoring of hazardous lakes and glaciated areas upstream from inhabited areas or critical infrastructure necessary, in order to better prepare for hazards emerging from an evolving cryosphere.

  9. Moraine-dammed lake failures in Patagonia and assessment of outburst susceptibility in the Baker Basin

    NASA Astrophysics Data System (ADS)

    Iribarren Anacona, P.; Norton, K. P.; Mackintosh, A.

    2014-12-01

    Glacier retreat since the Little Ice Age has resulted in the development or expansion of hundreds of glacial lakes in Patagonia. Some of these lakes have produced large (≥ 106 m3) Glacial Lake Outburst Floods (GLOFs) damaging inhabited areas. GLOF hazard studies in Patagonia have been mainly based on the analysis of short-term series (≤ 50 years) of flood data and until now no attempt has been made to identify the relative susceptibility of lakes to failure. Power schemes and associated infrastructure are planned for Patagonian basins that have historically been affected by GLOFs, and we now require a thorough understanding of the characteristics of dangerous lakes in order to assist with hazard assessment and planning. In this paper, the conditioning factors of 16 outbursts from moraine-dammed lakes in Patagonia were analysed. These data were used to develop a classification scheme designed to assess outburst susceptibility, based on image classification techniques, flow routine algorithms and the Analytical Hierarchy Process. This scheme was applied to the Baker Basin, Chile, where at least seven moraine-dammed lakes have failed in historic time. We identified 386 moraine-dammed lakes in the Baker Basin of which 28 were classified with high or very high outburst susceptibility. Commonly, lakes with high outburst susceptibility are in contact with glaciers and have moderate (> 8°) to steep (> 15°) dam outlet slopes, akin to failed lakes in Patagonia. The proposed classification scheme is suitable for first-order GLOF hazard assessments in this region. However, rapidly changing glaciers in Patagonia make detailed analysis and monitoring of hazardous lakes and glaciated areas upstream from inhabited areas or critical infrastructure necessary, in order to better prepare for hazards emerging from an evolving cryosphere.

  10. Changes in sediment volume in Alder Lake, Nisqually River Basin, Washington, 1945-2011

    USGS Publications Warehouse

    Czuba, Jonathan A.; Olsen, Theresa D.; Czuba, Christiana R.; Magirl, Christopher S.; Gish, Casey C.

    2012-01-01

    The Nisqually River drains the southwest slopes of Mount Rainier, a glaciated stratovolcano in the Cascade Range of western Washington. The Nisqually River was impounded behind Alder Dam when the dam was completed in 1945 and formed Alder Lake. This report quantifies the volume of sediment deposited by the Nisqually and Little Nisqually Rivers in their respective deltas in Alder Lake since 1945. Four digital elevation surfaces were generated from historical contour maps from 1945, 1956, and 1985, and a bathymetric survey from 2011. These surfaces were used to compute changes in sediment volume since 1945. Estimates of the volume of sediment deposited in Alder Lake between 1945 and 2011 were focused in three areas: (1) the Nisqually River delta, (2) the main body of Alder Lake, along a 40-meter wide corridor of the pre-dam Nisqually River, and (3) the Little Nisqually River delta. In each of these areas the net deposition over the 66-year period was 42,000,000 ± 4,000,000 cubic meters (m3), 2,000,000 ± 600,000 m3, and 310,000 ± 110,000 m3, respectively. These volumes correspond to annual rates of accumulation of 630,000 ± 60,000 m3/yr, 33,000 ± 9,000 m3/yr, and 4,700 ± 1,600 m3/yr, respectively. The annual sediment yield of the Nisqually (1,100 ± 100 cubic meters per year per square kilometer [(m3/yr)/km2]) and Little Nisqually River basins [70 ± 24 (m3/yr)/km2] provides insight into the yield of two basins with different land cover and geomorphic processes. These estimates suggest that a basin draining a glaciated stratovolcano yields approximately 15 times more sediment than a basin draining forested uplands in the Cascade Range. Given the cumulative net change in sediment volume in the Nisqually River delta in Alder Lake, the total capacity of Alder Lake since 1945 decreased about 3 percent by 1956, 8 percent by 1985, and 15 percent by 2011.

  11. Assessment of multiple sources of anthropogenic and natural chemical inputs to a morphologically complex basin, Lake Mead, USA

    USGS Publications Warehouse

    Rosen, Michael R.; Van Metre, P.C.

    2010-01-01

    Lakes with complex morphologies and with different geologic and land-use characteristics in their sub-watersheds could have large differences in natural and anthropogenic chemical inputs to sub-basins in the lake. Lake Mead in southern Nevada and northern Arizona, USA, is one such lake. To assess variations in chemical histories from 1935 to 1998 for major sub-basins of Lake Mead, four sediment cores were taken from three different parts of the reservoir (two from Las Vegas Bay and one from the Overton Arm and Virgin Basin) and analyzed for major and trace elements, radionuclides, and organic compounds. As expected, anthropogenic contaminant inputs are greatest to Las Vegas Bay reflecting inputs from the Las Vegas urban area, although concentrations are low compared to sediment quality guidelines and to other USA lakes. One exception to this pattern was higher Hg in the Virgin Basin core. The Virgin Basin core is located in the main body of the lake (Colorado River channel) and is influenced by the hydrology of the Colorado River, which changed greatly with completion of Glen Canyon Dam upstream in 1963. Major and trace elements in the core show pronounced shifts in the early 1960s and, in many cases, gradually return to concentrations more typical of pre-1960s by the 1980s and 1990s, after the filling of Lake Powell. The Overton Arm is the sub-basin least effected by anthropogenic contaminant inputs but has a complex 137Cs profile with a series of large peaks and valleys over the middle of the core, possibly reflecting fallout from nuclear tests in the 1950s at the Nevada Test Site. The 137Cs profile suggests a much greater sedimentation rate during testing which we hypothesize results from greatly increased dust fall on the lake and Virgin and Muddy River watersheds. The severe drought in the southwestern USA during the 1950s might also have played a role in variations in sedimentation rate in all of the cores. ?? 2009.

  12. Fisheries research and monitoring activities of the Lake Erie Biological Station, 2015

    USGS Publications Warehouse

    Bodamer Scarbro, Betsy L.; Edwards, W.H.; Kocovsky, Patrick M.; Kraus, Richard T.; Rogers, M. R.; Schoonyan, A. L.; Stewart, T. R.

    2016-01-01

    In 2015, the U.S. Geological Survey’s (USGS) Lake Erie Biological Station (LEBS) successfully completed large vessel surveys in all three of Lake Erie’s basins. Lake Erie Biological Station’s primary vessel surveys included the Western Basin Forage Fish Assessment and East Harbor Fish Community Assessment as well as contributing to the cooperative multi-agency Central Basin Hydroacoustics Assessment, the Eastern Basin Coldwater Community Assessment, and Lower Trophic Level Assessment (see Forage and Coldwater Task Group reports). In 2015, LEBS also initiated a Lake Erie Central Basin Trawling survey in response to the need for forage fish data from Management Unit 3 (as defined by the Yellow Perch Task Group). Results from these surveys contribute to Lake Erie Committee Fish Community Goals and Objectives. Our 2015 vessel operations were initiated in early April and continued into late November. During this time, crews of the R/V Muskie and R/V Bowfin deployed 121 bottom trawls covering 83.2 ha of lake-bottom and catching 105,600 fish totaling 4,065 kg during four separate trawl surveys in the western and central basins of Lake Erie. We deployed and lifted 9.5 km of gillnet, which caught an additional 805 fish, 100 (337 kg) of which were the native coldwater predators Lake Trout, Burbot, and Lake Whitefish (these data are reported in the 2016 Coldwater Task Group report). We also conducted 317 km of hydroacoustic survey transects (reported in the 2016 Forage Task Group report), collected 114 lower trophic (i.e. zooplankton and benthos) samples, and obtained 216 water quality observations (e.g., temperature profiles, and water samples). The LEBS also assisted CLC member agencies with the maintenance and expansion of GLATOS throughout all three Lake Erie sub-basins. Within the following report sections, we describe results from three trawl surveys – the spring and autumn Western Basin Forage Fish Assessment and the East Harbor Forage Fish Assessment – and

  13. The Upper Jurassic Stanleyville Group of the eastern Congo Basin: An example of perennial lacustrine system

    NASA Astrophysics Data System (ADS)

    Caillaud, Alexis; Blanpied, Christian; Delvaux, Damien

    2017-08-01

    The intracratonic Congo Basin, located in the Democratic Republic of Congo (DRC), is the largest sedimentary basin of Africa. The Jurassic strata outcrop along its eastern margin, south of Kisangani (formerly Stanleyville). In the last century, the Upper Jurassic Stanleyville Group was described as a lacustrine series containing a thin basal marine limestone designed as the ;Lime Fine; beds. Since the proposal of this early model, the depositional environment of the Stanleyville Group, and especially the possible marine incursion, has been debated, but without re-examining the existing cores, outcrop samples and historical fossils from the type location near Kisangani that are available at the Royal Museum for Central Africa (MRAC/KMMA, Tervuren, Belgium). In order to refine the former sedimentology, a series of nine exploration cores drilled in the Kisangani sub-basin have been described. This study aims at integrating sedimentary facies in existing sedimentary models and to discuss the hypothesis of the presence of Kimmeridgian marine deposits along the Congo River near Kisangani, a region which lies in the middle of the African continent. Eight facies have been identified, which permit a reinterpretation of the depositional environment and paleogeography of the Stanleyville Group. The base of the Stanleyville Group is interpreted to represent a conglomeratic fluvial succession, which filled an inherited Triassic paleotopography. Above these conglomerates, a transition to a typically lacustrine system is interpreted, which includes: (1) a basal profundal, sublittoral (brown to dark fine-grained siltstones with microbial carbonates, i.e., the ;Lime Fine; beds) and littoral lacustrine series; covered by (2) a sublittoral to profundal interval (brown to dark organic-rich, fine-grained siltstones), which corresponds to the maximum extent of the paleo-lake; and, finally (3) a shallow lacustrine series (greenish calcareous siltstones and sandstones with red siltstones

  14. Water Budgets of the Walker River Basin and Walker Lake, California and Nevada

    USGS Publications Warehouse

    Lopes, Thomas J.; Allander, Kip K.

    2009-01-01

    The Walker River is the main source of inflow to Walker Lake, a closed-basin lake in west-central Nevada. The only outflow from Walker Lake is evaporation from the lake surface. Between 1882 and 2008, upstream agricultural diversions resulted in a lake-level decline of more than 150 feet and storage loss of 7,400,000 acre-feet. Evaporative concentration increased dissolved solids from 2,500 to 17,000 milligrams per liter. The increase in salinity threatens the survival of the Lahontan cutthroat trout, a native species listed as threatened under the Endangered Species Act. This report describes streamflow in the Walker River basin and an updated water budget of Walker Lake with emphasis on the lower Walker River basin downstream from Wabuska, Nevada. Water budgets are based on average annual flows for a 30-year period (1971-2000). Total surface-water inflow to the upper Walker River basin upstream from Wabuska was estimated to be 387,000 acre-feet per year (acre-ft/yr). About 223,000 acre-ft/yr (58 percent) is from the West Fork of the Walker River; 145,000 acre-ft/yr (37 percent) is from the East Fork of the Walker River; 17,000 acre-ft/yr (4 percent) is from the Sweetwater Range; and 2,000 acre-ft/yr (less than 1 percent) is from the Bodie Mountains, Pine Grove Hills, and western Wassuk Range. Outflow from the upper Walker River basin is 138,000 acre-ft/yr at Wabuska. About 249,000 acre-ft/yr (64 percent) of inflow is diverted for irrigation, transpired by riparian vegetation, evaporates from lakes and reservoirs, and recharges alluvial aquifers. Stream losses in Antelope, Smith, and Bridgeport Valleys are due to evaporation from reservoirs and agricultural diversions with negligible stream infiltration or riparian evapotranspiration. Diversion rates in Antelope and Smith Valleys were estimated to be 3.0 feet per year (ft/yr) in each valley. Irrigated fields receive an additional 0.8 ft of precipitation, groundwater pumpage, or both for a total applied-water rate

  15. Substrate degradation and nutrient enrichment structuring macroinvertebrate assemblages in agriculturally dominated Lake Chaohu Basins, China.

    PubMed

    Zhang, You; Cheng, Long; Tolonen, Katri E; Yin, Hongbin; Gao, Junfeng; Zhang, Zhiming; Li, Kuanyi; Cai, Yongjiu

    2018-06-15

    Rapid agricultural development has induced severe environmental problems to freshwater ecosystems. In this study, we aimed to examine the structure and environmental determinants of macroinvertebrate assemblages in an agriculture dominated Lake Chaohu Basin, China. A cluster analysis of the macroinvertebrate communities identified four groups of sites that were characterized by significantly different macroinvertebrate species. These four groups of sites had concentric spatial distribution patterns that followed the variation in the environmental conditions from the less anthropogenically disturbed headwaters towards the more anthropogenically disturbed lower reaches of the rivers and the Lake Chaohu. Moreover, taxa richness decreased from the headwaters towards the Lake Chaohu. The increasing practice of agriculture has reduced the abundances and richness of pollution sensitive species while opposite effects on pollution tolerant species. The study identified substrate heterogeneity and nutrient concentrations as the key environmental factors regulating the changes in the macroinvertebrate communities. We propose that particular attentions should be paid to reduce the nutrient enrichment and habitat degradation in the Lake Chaohu Basin and similar agriculture dominated basins. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Paleohydrology of China Lake basin and the context of early human occupation in the northwestern Mojave Desert, USA

    NASA Astrophysics Data System (ADS)

    Rosenthal, Jeffrey S.; Meyer, Jack; Palacios-Fest, Manuel R.; Young, D. Craig; Ugan, Andrew; Byrd, Brian F.; Gobalet, Ken; Giacomo, Jason

    2017-07-01

    Considerable prior research has focused on the interconnected pluvial basins of Owens Lake and Searles Lake, resulting in a long record of paleohydrological change in the lower Owens River system. However, the published record is poorly resolved or contradictory for the period encompassing the terminal Pleistocene (22,000 to 11,600 cal BP) and early Holocene (11,600-8200 cal BP). This has resulted in conflicting interpretations about the timing of lacustrine high stands within the intermediate basin of China Lake, which harbors one of the most extensive records of early human occupation in the western Great Basin and California. Here, we report a broad range of radiocarbon-dated paleoenvironmental evidence, including lacustrine deposits and shoreline features, tufa outcrops, and mollusk, ostracode, and fish bone assemblages, as well as spring and other groundwater-related deposits (a.k.a. "black mats") from throughout China Lake basin, its outlet, and inflow drainages. Based on 98 radiocarbon dates, we develop independent evidence for five significant lake-level oscillations between 18,000 and 13,000 cal BP, and document the persistence of groundwater-fed wetlands from the beginning of the Younger Dryas through the early Holocene (12,900-8200 cal BP); including the transition from ground-water fed lake to freshwater marsh between about 13,000 and 12,600 cal BP. Results of this study support and refine existing evidence that shows rapid, high-amplitude oscillations in the water balance of the Owens River system during the terminal Pleistocene, and suggest widespread human use of China Lake basin began during the Younger Dryas.

  17. Evolution of the Lake Victoria basin in the context of coeval rift initiation in East Africa: a 3D numerical model approach

    NASA Astrophysics Data System (ADS)

    Wichura, Henry; Quinteros, Javier; Melnick, Daniel; Brune, Sascha; Schwanghart, Wolfgang; Strecker, Manfred R.

    2015-04-01

    Over the last four years sedimentologic and thermochronologic studies in the western and eastern branches of the Cenozoic East African Rift System (EARS) have supported the notion of a broadly contemporaneous onset of normal faulting and rift-basin formation in both segments. These studies support previous interpretations based on geophysical investigations from which an onset of rifting during the Paleogene had been postulated. In light of these studies we explore the evolution of the Lake Victoria basin, a shallow, unfaulted sedimentary basin centered between both branches of the EARS and located in the interior of the East African Plateau (EAP). We quantify the fluvial catchment evolution of the Lake Victoria basin and assess the topographic response of African crust to the onset of rifting in both branches. Furthermore, we evaluate and localize the nature of strain and flexural rift-flank uplift in both branches. We use a 3D numerical forward model that includes nonlinear temperature- and stress-dependent elasto-visco-plastic rheology. The model is able to reproduce the flexural response of variably thick lithosphere to rift-related deformation processes such as lithospheric thinning and asthenospheric upwelling. The model domain covers the entire EAP and integrates extensional processes in a heterogeneous, yet cold and thick cratonic block (Archean Tanzania craton), which is surrounded by mechanically weaker Proterozoic mobile belts, which are characterized by thinner lithosphere ("thin spots"). The lower limits of the craton (170 km) and the mobile belts (120 km) are simulated by different depths of the 1300 °C lithosphere-asthenosphere boundary. We assume a constant extension rate of 4 mm/a throughout the entire simulation of 30 Ma and neglect the effect of dynamic topography and magmatism. Even though the model setup is very simple and the resolution is not high enough to calculate realistic rift-flank uplift, it intriguingly reveals important topographic

  18. Geophysical anomalies and quartz microstructures, Eastern Warburton Basin, North-east South Australia: Tectonic or impact shock metamorphic origin?

    NASA Astrophysics Data System (ADS)

    Glikson, Andrew Y.; Uysal, I. Tonguç; Fitz Gerald, John D.; Saygin, Erdinc

    2013-03-01

    The Eastern Warburton Basin, Northeast South Australia, features major geophysical anomalies, including a magnetic high of near-200 nT centred on a 25 km-wide magnetic low (< 100 nT), interpreted in terms of a magmatic body below 6 km depth. A distinct seismic tomographic low velocity anomaly may reflect its thick (9.5 km) sedimentary section, high temperatures and possible deep fracturing. Scanning electron microscope (SEM) analyses of granites resolves microbreccia veins consisting of micron-scale particles injected into resorbed quartz grains. Planar and sub-planar elements in quartz grains (Qz/PE) occur in granites, volcanics and sediments of the > 30,000 km-large Eastern Warburton Basin. The Qz/PE include multiple intersecting planar to curved sub-planar elements with relic lamellae less than 2 μm wide with spacing of 4-5 μm. Qz/PE are commonly re-deformed, displaying bent and wavy patterns accompanied with fluid inclusions. U-stage measurements of a total of 243 planar sets in 157 quartz grains indicate dominance of ∏{10-12}, ω{10-13} and subsidiary §{11-22}, {22-41}, m{10-11} and x{51-61} planes. Transmission Electron Microscopy (TEM) analysis displays relic narrow ≤ 1 μm-wide lamellae and relic non-sub grain boundaries where crystal segments maintain optical continuity. Extensive sericite alteration of feldspar suggests hydrothermal alteration to a depth of 500 m below the unconformity which overlies the Qz/PE-bearing Warburton Basin terrain. The data are discussed in terms of (A) Tectonic-metamorphic deformation and (B) impact shock metamorphism producing planar deformation features (Qz/PDF). Deformed Qz/PE are compared to re-deformed Qz/PDFs in the Sudbury, Vredefort, Manicouagan and Charlevoix impact structures. A 4-5 km uplift of the Big Lake Granite Suite during 298-295 Ma is consistent with missing of upper Ordovician to Devonian strata and possible impact rebound. The occurrence of circular seismic tomography anomalies below the east

  19. Inventory and recently increasing GLOF susceptibility of glacial lakes in Sikkim, Eastern Himalaya

    NASA Astrophysics Data System (ADS)

    Aggarwal, Suruchi; Rai, S. C.; Thakur, P. K.; Emmer, Adam

    2017-10-01

    Climatic changes alter the climate system, leading to a decrease of glacier mass volumes and swelling glacial lakes. This study provides a new inventory of glacial and high-altitude lakes for Sikkim, Eastern Himalaya, and evaluates the susceptibility of lakes to Glacial Lake Outburst Flood (GLOF). By using satellite data of high spatial resolution (5 m), we obtain 1104 glacial and high-altitude lakes with total area 30.498 km2, of which 472 have an area > 0.01 km2. Applying pre-defined GLOF susceptibility criteria on these 472 lakes yields 21 lakes susceptible to GLOF, which all increased in area from 1972-2015. Using Analytic Hierarchy Processes (AHP), the pairwise comparison matrix further reveals that 5 of these glacial lakes have low, 14 have medium and 2 have high GLOF susceptibility. Especially these 16 glacial lakes with high and medium GLOF susceptibility may threaten downstream communities and infrastructure and need further attention.

  20. The Nahuel Niyeu basin: A Cambrian forearc basin in the eastern North Patagonian Massif

    NASA Astrophysics Data System (ADS)

    Greco, Gerson A.; González, Santiago N.; Sato, Ana M.; González, Pablo D.; Basei, Miguel A. S.; Llambías, Eduardo J.; Varela, Ricardo

    2017-11-01

    Early Paleozoic basement of the eastern North Patagonian Massif includes low- and high grade metamorphic units, which consist mainly of alternating paraderived metamorphic rocks (mostly derived from siliciclastic protoliths) with minor intercalations of orthoderived metamorphic rocks. In this contribution we provide a better understanding of the tectonic setting in which the protoliths of these units were formed, which adds to an earlier suggested idea. With this purpose, we studied the metasedimentary rocks of the low-grade Nahuel Niyeu Formation from the Aguada Cecilio area combining mapping and petrographic analysis with U-Pb geochronology and characterization of detrital zircon grains. The results and interpretations of this unit, together with published geological, geochronological and geochemical information, allow us to interpret the sedimentary and igneous protoliths of all metamorphic units from the massif as formed in a forearc basin at ∼520-510 Ma (Nahuel Niyeu basin). It probably was elongated in the ∼NW-SE direction, and would have received detritus from a proximal source area situated toward its northeastern side (present coordinates). The basin might be related to an extensional tectonic regime. Most likely source rocks were: (1) 520-510 Ma, acidic volcanic rocks (an active magmatic arc), (2) ∼555->520 Ma, acidic plutonic and volcanic rocks (earlier stages of the same arc), and (3) latest Ediacaran-Terreneuvian, paraderived metamorphic rocks (country rocks of the arc). We evaluate the Nahuel Niyeu basin considering the eastern North Patagonian Massif as an autochthonous part of South America, adding to the discussion of the origin of Patagonia.

  1. Simulations of cataclysmic outburst floods from Pleistocene Glacial Lake Missoula

    USGS Publications Warehouse

    Denlinger, Roger P.; O'Connell, D. R. H.

    2009-01-01

    Using a flow domain that we constructed from 30 m digital-elevation model data of western United States and Canada and a two-dimensional numerical model for shallow-water flow over rugged terrain, we simulated outburst floods from Pleistocene Glacial Lake Missoula. We modeled a large, but not the largest, flood, using initial lake elevation at 1250 m instead of 1285 m. Rupture of the ice dam, centered on modern Lake Pend Oreille, catastrophically floods eastern Washington and rapidly fills the broad Pasco, Yakima, and Umatilla Basins. Maximum flood stage is reached in Pasco and Yakima Basins 38 h after the dam break, whereas maximum flood stage in Umatilla Basin occurs 17 h later. Drainage of these basins through narrow Columbia gorge takes an additional 445 h. For this modeled flood, peak discharges in eastern Washington range from 10 to 20 × 106 m3/s. However, constrictions in Columbia gorge limit peak discharges to 6 m3/s and greatly extend the duration of flooding. We compare these model results with field observations of scabland distribution and high-water indicators. Our model predictions of the locations of maximum scour (product of bed shear stress and average flow velocity) match the distribution of existing scablands. We compare model peak stages to high-water indicators from the Rathdrum-Spokane valley, Walulla Gap, and along Columbia gorge. Though peak stages from this less-than-maximal flood model attain or exceed peak-stage indicators along Rathdrum-Spokane valley and along Columbia gorge, simulated peak stages near Walulla Gap are 10–40 m below observed peak-stage indicators. Despite this discrepancy, our match to field observations in most of the region indicates that additional sources of water other than Glacial Lake Missoula are not required to explain the Missoula floods.

  2. Last glacial maximum and Holocene lake levels of Owens Lake, eastern California, USA

    USGS Publications Warehouse

    Bacon, S.N.; Burke, R.M.; Pezzopane, S.K.; Jayko, A.S.

    2006-01-01

    Stratigraphic investigations of fluvio-deltaic and lacustrine sediments exposed in stream cuts, quarry walls, and deep trenches east of the Sierra Nevada in Owens Valley near Lone Pine, California have enabled the reconstruction of pluvial Owens Lake level oscillations. Age control for these sediments is from 22 radiocarbon (14C) dates and the identification and stratigraphic correlation of a tephra, which when plotted as a function of age versus altitude, define numerous oscillations in the level of pluvial Owens Lake during the latest Pleistocene and early Holocene. We have constructed a lake-level altitude curve for the time interval ???27,000 cal yr BP to present that is based on the integration of this new stratigraphic analysis with published surface stratigraphic data and subsurface core data. Pluvial Owens Lake regressed from its latest Pleistocene highstands from ???27,000 to ???15,300 cal yr BP, as recorded by ???15 m of down cutting of the sill from the altitudes of ???1160 to 1145 m. By ???11,600 cal yr BP, the lake had dropped ???45 m from the 1145 m sill. This lowstand was followed by an early Holocene transgression that attained a highstand near 1135 m before dropping to 1120 m at 7860-7650 cal yr BP that had not been recognized in earlier studies. The lake then lowered another ???30 m to shallow and near desiccation levels between ???6850 and 4300 cal yr BP. Fluvial cut-and-fill relations north of Lone Pine and well-preserved shoreline features at ???1108 m indicate a minor lake-level rise after 4300 cal yr BP, followed by alkaline and shallow conditions during the latest Holocene. The new latest Quaternary lake-level record of pluvial Owens Lake offers insight to the hydrologic balance along the east side of the southern Sierra Nevada and will assist regional paleoclimatic models for the western Basin and Range. ?? 2005 Elsevier Ltd. All rights reserved.

  3. Progress report: chemical character of surface waters in the Devils Lake Basin, North Dakota

    USGS Publications Warehouse

    Swenson, Herbert A.

    1950-01-01

    Devils Lake in northeastern North Dakota was at one time the most popular summer resort in the state. With decline in lake level the lake has become a shallow body pf vary saline water, which scenic value and recreational appeal completely destroyed. Under the Missouri River development program, it is proposed to restore the lake level to an altitude of 1,425 feet by diversion of Missouri River water. The chemical character of the water in Devils Lake and in other surface bodies in Devils Lake Basin is determined from the analyses of 95 samples. The physical and chemical properties of lake bed deposits are also shown. Lake water in the basin vary considerable in both concentration and composition, ranging from fresh bicarbonate waters of 300 parts per million dissolved solids to sulfate waters of over 100,000 parts per million of soluble salts. Twenty-four samples indicates the chemical character of water in the Red River of the North and its tributaries. The probable concentration of dissolved solids in water of Devils Lake at altitude 1,425 feet has been estimated as ranging from 3,000 to 7,600 parts per million. Final concentration will largely depend upon the percentage of deposited salts reentering solution and the quality of the inflow water. The possible effects of lake effluents on downstream developments, with particular reference to sanitation and pollution problems, are also discussed in this report.

  4. An agent-based model for water management and planning in the Lake Naivasha basin, Kenya

    NASA Astrophysics Data System (ADS)

    van Oel, Pieter; Mulatu, Dawit; Odongo, Vincent; Onyando, Japheth; Becht, Robert; van der Veen, Anne

    2013-04-01

    A variety of human and natural processes influence the ecological and economic state of the Lake Naivasha basin. The ecological wealth and recent economic developments in the area are strongly connected to Lake Naivasha which supports a rich variety of flora, mammal and bird species. Many human activities depend on clean freshwater from the lake whereas recently the freshwater availability of good quality is seriously influenced by water abstractions and the use of fertilizers in agriculture. Management alternatives include those aiming at limiting water abstractions and fertilizer use. A possible way to achieve reduced use of water and fertilizers is the introduction of Payment for Environmental Services (PES) schemes. As the Lake Naivasha basin and its population have experienced increasing pressures various disputes and disagreements have arisen about the processes responsible for the problems experienced, and the effectively of management alternatives. Beside conflicts of interest and disagreements on responsibilities there are serious factual disagreements. To share scientific knowledge on the effects of the socio-ecological system processes on the Lake Naivasha basin, tools may be used that expose information at temporal and spatial scales that are meaningful to stakeholders. In this study we use a spatially-explicit agent-based modelling (ABM) approach to depict the interactions between socio-economic and natural subsystems for supporting a more sustainable governance of the river basin resources. Agents consider alternative livelihood strategies and decide to go for the one they perceive as likely to be most profitable. Agents may predict and sense the availability of resources and also can observe economic performance achieved by neighbouring agents. Results are presented at the basin and subbasin level to provide relevant knowledge to Water Resources Users Associations which are important collective forums for water management through which PES schemes

  5. Basin-floor Lake Bonneville stratigraphic section as revealed in paleoseismic trenches at the Baileys Lake site, West Valley fault zone, Utah

    USGS Publications Warehouse

    Hylland, Michael D.; DuRoss, Christopher B.; McDonald, Greg N.; Olig, Susan S.; Oviatt, Charles G.; Mahan, Shannon; Crone, Anthony J.; Personius, Stephen

    2012-01-01

     Recent paleoseismic trenching on the Granger fault of the West Valley fault zone in Salt Lake County, Utah, exposed a nearly complete section of late Pleistocene Lake Bonneville deposits, and highlights challenges related to accurate interpretation of basin-floor stratigraphy in the absence of numerical age constraints. We used radiocarbon and luminescence dating as well as ostracode biostratigraphy to provide chronostratigraphic control on the Lake Bonneville section exposed at the Baileys Lake trench site. The fault trenches exposed folded and faulted pre- to post- Bonneville sediments, including about 0.7 m of pre-Bonneville wetland/fluvial-marsh deposits, a nearly complete Bonneville section 2.5–4.0 m thick, and 0.4–1.0 m of post-Bonneville deposits consisting primarily of loess with minor scarp-derived colluvium. The relatively thin Bonneville section compares favorably with basin-floor Bonneville sections documented in boreholes and seismic reflection profiles beneath Great Salt Lake. Distinctive features of the Bonneville section at the Baileys Lake site include a sequence of turbidites in the upper part of the Bonneville transgressive deposits, evidence for an earthquake during Provo-shoreline time that disturbed lake-bottom sediments and destroyed any stratigraphic signature of the Bonneville Flood, tufa deposition associated with Gilbert-phase shoreline transgression, and stratigraphic evidence for two Gilbert transgressions across the site.

  6. Modeling the Sedimentary Infill of Lakes in the East African Rift: A Case Study of Multiple versus Single Rift Basin Segments

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Scholz, C. A.

    2016-12-01

    The sedimentary basins in the East African Rift are considered excellent modern examples for investigating sedimentary infilling and evolution of extensional systems. Some lakes in the western branch of the rift have formed within single-segment systems, and include Lake Albert and Lake Edward. The largest and oldest lakes developed within multi-segment systems, and these include Lake Tanganyika and Lake Malawi. This research aims to explore processes of erosion and sedimentary infilling of the catchment area in single-segment rift (SSR) and multi-segment rift (MSR) systems. We consider different conditions of regional precipitation and evaporation, and assess the resulting facies architecture through forward modeling, using state-of-the-art commercial basin modeling software. Dionisos is a three-dimensional numerical stratigraphic forward modeling software program, which simulates basin-scale sediment transport based on empirical water- and gravity-driven diffusion equations. It was classically used to quantify the sedimentary architecture and basin infilling of both marine siliciclastic and carbonate environments. However, we apply this approach to continental rift basin environments. In this research, two scenarios are developed, one for a MSR and the other for a SSR. The modeled systems simulate the ratio of drainage area and lake surface area observed in modern Lake Tanganyika and Lake Albert, which are examples of MSRs and SSRs, respectively. The main parameters, such as maximum subsidence rate, water- and gravity-driven diffusion coefficients, rainfall, and evaporation, are approximated using these real-world examples. The results of 5 million year model runs with 50,000 year time steps show that MSRs are characterized by a deep water lake with relatively modest sediment accumulation, while the SSRs are characterized by a nearly overfilled lake with shallow water depths and thick sediment accumulation. The preliminary modeling results conform to the features

  7. Geochemical Evolution of Groundwater in the Medicine Lodge Creek Drainage Basin with Implications for the Eastern Snake River Plain Aquifer, Eastern Idaho

    NASA Astrophysics Data System (ADS)

    Ginsbach, M. L.; Rattray, G. W.; McCurry, M. O.; Welhan, J. A.

    2012-12-01

    The eastern Snake River Plain aquifer (ESRPA) is an unconfined, continuous aquifer located in a northeast-trending structural basin filled with basaltic lava flows and sedimentary interbeds in eastern Idaho. The ESPRA is not an inert transport system, as it acts as both a sink and source for solutes found in the water. More than 90% of the water recharged naturally to the ESRPA is from the surrounding mountain drainage basins. Consequently, in order to understand the natural geochemistry of water within the ESRPA, the chemistry of the groundwater from the mountain drainage basins must be characterized and the processes that control the chemistry need to be understood. The U.S. Geological Survey, in cooperation with the U.S. Department of Energy and Idaho State University, has been studying these mountain drainage basins to help understand the movement of waste solutes in the ESRPA at the Idaho National Laboratory (INL) in eastern Idaho. This study focuses on the Medicine Lodge Creek drainage basin, which originates in the Beaverhead Mountains, extends onto the eastern Snake River Plain, and contributes recharge to the ESRPA beneath the INL as underflow along the northeastern INL boundary. Water and rock samples taken from the Medicine Lodge Creek drainage basin were analyzed to better understand water/rock interactions occurring in this system and to define the groundwater geochemistry of this drainage basin. Water samples were collected at 10 locations in the drainage basin during June 2012: 6 groundwater wells used for agricultural irrigation or domestic use and 4 springs. These water samples were analyzed for major ions, nutrients, trace metals, isotopes, and dissolved gasses. Samples of rock representative of the basalt, rhyolite, and sediments that occur within the drainage basin also were collected. These samples were analyzed using x-ray diffraction and petrographic study to determine the mineralogical constituents of the rock and the presence and

  8. Assessing and addressing the re-eutrophication of Lake Erie: central basin hypoxia

    USGS Publications Warehouse

    Scavia, Donald; Allan, J. David; Arend, Kristin K.; Bartell, Steven; Beletsky, Dmitry; Bosch, Nate S.; Brandt, Stephen B.; Briland, Ruth D.; Daloğlu, Irem; DePinto, Joseph V.; Dolan, David M.; Evans, Mary Anne; Farmer, Troy M.; Goto, Daisuke; Han, Haejin; Höök, Tomas O.; Knight, Roger; Ludsin, Stuart A.; Mason, Doran; Michalak, Anna M.; Richards, R. Peter; Roberts, James J.; Rucinski, Daniel K.; Rutherford, Edward; Schwab, David J.; Sesterhenn, Timothy M.; Zhang, Hongyan; Zhou, Yuntao

    2014-01-01

    Relieving phosphorus loading is a key management tool for controlling Lake Erie eutrophication. During the 1960s and 1970s, increased phosphorus inputs degraded water quality and reduced central basin hypolimnetic oxygen levels which, in turn, eliminated thermal habitat vital to cold-water organisms and contributed to the extirpation of important benthic macroinvertebrate prey species for fishes. In response to load reductions initiated in 1972, Lake Erie responded quickly with reduced water-column phosphorus concentrations, phytoplankton biomass, and bottom-water hypoxia (dissolved oxygen 2) requires cutting total phosphorus loads by 46% from the 2003–2011 average or reducing dissolved reactive phosphorus loads by 78% from the 2005–2011 average. Reductions to these levels are also protective of fish habitat. We provide potential approaches for achieving those new loading targets, and suggest that recent load reduction recommendations focused on western basin cyanobacteria blooms may not be sufficient to reduce central basin hypoxia to 2000 km2.

  9. The role of Water Resources Users Associations in hydrological research: experiences from Lake Naivasha Basin, Kenya

    NASA Astrophysics Data System (ADS)

    Agol, D.

    2012-04-01

    This paper is based on recent studies in Lake Naivasha Basin that explored the ways in which locally based institutions namely the Water Resources Users Associations (WRUAs) are contributing to hydrological knowledge for decision-making processes. Lake Naivasha is a shallow freshwater body which is situated on the floor of Kenya's Rift Valley. It covers approximately 140 Km2 and supports a rich diversity of plants and animals. The Lake Naivasha Basin faces several challenges associated with over- population, urbanization and intensive agricultural activities. For example, the large-scale floricultural and horticultural export industries around the Lake have attracted thousands of migrants from different parts of Kenya who have settled around the Lake and exert a lot of pressure on its resources. The Lake Naivasha is one of the best examples in Kenya where the WRUAs development process has shown some progress. There are 12 WRUAS across the Lake Basin representing its various sub-catchments. In recent years, the role of WRUAs in the Lake has changed rapidly as they are no longer restricted to just resolving conflicts and fostering cooperation between water users. They now have an additional responsibility of collecting hydrological data within their respective sub-catchments. The majority of WRUA officials have been trained on how to collect data such as reading rain gauges, measuring stream flows, turbidity and sediment loads. The data collected are sent to the relevant government authorities for validation and interpretation and the information derived from this process is used to formulate important strategies such as water allocation plans. Using secondary data analysis, interviews and focus group discussions the study investigated how this new role of the WRUAs is changing the water resource management landscape in the Lake Naivasha Basin. In particular it presents key challenges and opportunities associated with attempts to build capacities of lower level

  10. Origin and evolution of Sariñena Lake (central Ebro Basin): A piping-based model

    NASA Astrophysics Data System (ADS)

    Castañeda, Carmen; Javier Gracia, F.; Rodríguez-Ochoa, Rafael; Zarroca, Mario; Roqué, Carles; Linares, Rogelio; Desir, Gloria

    2017-08-01

    The origin and nature of the numerous lakes in the central Ebro Basin have been interpreted according to the prevailing arid or semiarid conditions, the easily-eroded materials and the solubility of the gypsum- and/or carbonate-rich Tertiary/Cenozoic substratum, involving important dissolution (karstic) and/or aeolian deflation. However, the origin of Sariñena Lake, the largest in the central Ebro Basin, remains unknown since the typical lake-generating processes in the region are not applicable. This work provides significant clues to the genesis and evolution of Sariñena Lake in a regional context. The combination of geomorphological mapping and high resolution LiDAR data together with sedimentological observations, the characterisation of soils and sediments around the lake, and the application of high-resolution geophysical techniques suggest that piping is the major genetic process driving the evolution of the Sariñena depression and lake. Field evidence demonstrates that piping is, at present, the most important erosive process in the region, generating significant collapse and surface lowering. Sariñena Lake is located within a deep endorheic depression excavated from Na-rich Tertiary materials. This work hypothesises that once an early, fluvially-originated palustrine area had developed, the progressive lowering of the regional water table linked to regional fluvial incision favoured the establishment of a hydrological gradient high enough to trigger piping processes within the claystones and siltstones underlying the original palustrine area. The Quaternary evolution of the Sariñena lacustrine basin was then controlled by successive water table fluctuations, linked to different phases of incision and alluvial deposition in the surrounding fluvial systems. All the evidence supporting a piping-related origin for this lake, together with examples of lakes generated by similar processes in different contexts, is used to propose a new genetic type of

  11. River Inflows into Lakes: Basin Temperature Profiles Driven By Peeling Detrainment from Dense Underflows

    NASA Astrophysics Data System (ADS)

    Hogg, C. A. R.; Huppert, H. E.; Imberger, J.; Dalziel, S. B.

    2014-12-01

    Dense gravity currents from river inflows feed fluid into confined basins in lakes. Large inflows can influence temperature profiles in the basins. Existing parameterisations of the circulation and mixing of such inflows are often based on the entrainment of ambient fluid into the underflowing gravity currents. However, recent observations have suggested that uni-directional entrainment into a gravity current does not fully describe the transfer between such gravity currents and the ambient water. Laboratory experiments visualised peeling detrainment from the gravity current occurring when the ambient fluid was stratified. A theoretical model of the observed peeling detrainment was developed to predict the temperature profile in the basin. This new model gives a better approximation of the temperature profile observed in the experiments than the pre-existing entraining model. The model can now be developed such that it integrates into operational models of lake basins.

  12. Recovery of burrowing mayflies (Ephemeroptera: Ephemeridae: Hexagenia) in western Lake Erie

    USGS Publications Warehouse

    Krieger, Kenneth A.; Schloesser, Don W.; Manny, Bruce A.; Trisler, Carmen E.; Heady, Susan E.; Ciborowski, Jan J.H.; Muth, Kenneth M.

    1996-01-01

    Burrowing mayflies (Hexagenia spp.) are native to western Lake Erie and were abundant until the 1950s, when they disappeared due to degraded water and sediment quality. Nymphs were absent from the sediments of most of western Lake Erie after the 1950s, although small, widely disjunct populations apparently persisted near shore. Sediment samples collected in 1993 revealed several small populations near the western and southern shores and beyond the mouths of the Detroit and Maumee rivers. A larger population was found in the southern island area, but nymphs were absent in the middle of the basin. By 1995, nymphs had spread throughout the western half and eastern end of the basin but remained absent from the middle of the basin. These data indicate thatHexagenia began recolonizing nearshore areas before offshore areas. Increasingly large swarms of winged Hexagenia on shore and over the lake between 1992 and 1994 further indicate that mayflies are recolonizing the basin. Factors that have permitted Hexageniarecovery in western Lake Erie probably include improved sediment and water quality attributed to pollution abatement programs implemented after the early 1970s, and perhaps environmental changes in the early 1990s attributed to effects of the exotic zebra mussel (Dreissena polymorpha).

  13. Dynamic Change in Glacial Dammed Lake Behavior of Suicide Basin, Mendenhall Glacier, Juneau Alaska

    NASA Astrophysics Data System (ADS)

    Jacobs, A. B.; Moran, T.; Hood, E. W.

    2016-12-01

    Suicide Basin Jökulhlaups, since 2011, have resulted in moderate flooding on the Mendenhall Lake and River in Juneau, AK. At this time, the USGS recorded peak streamflow of 20,000 cfs in 2014, the highest flows officially reported by the USGS which was attributed to a Suicide Basin glacial-dammed lake release. However, the USGS estimated a peak flow of 27,000 cfs in 1961 and we suspect this event is partially the result of a glacial dammed lake release. From 2011 to 2015, data indicates that yearly outburst from Suicide Basin were the norm; however, in 2015 and 2016, multiple outbursts during the summer were observed suggesting a dynamic change in glacial behavior. For public safety and awareness, the University of Alaska Southeast and U.S. Geologic Survey began monitoring real-time Suicide Basin lake levels. A real-time model was developed by the National Weather Service Alaska-Pacific River Forecast Center capable of forecasting potential timing and magnitude of the flood-wave crest from this Suicide Basin release. However, the model now is being modified because data not previously available has become available and adapted to the change in state of glacial behavior. The importance of forecasting time and level of crest on the Mendenhall River system owing to these outbursts floods is an essential aid to emergency managers and the general public to provide impact decision support services (IDSS). The National Weather Service has been able to provide 36 to 24 hour forecasts for these large events, but with the change in glacial state on the Mendenhall Glacier, the success of forecasting these events is getting more challenging. We will show the success of the hydrologic model but at the same time show the challenges we have seen with the changing glacier dynamics.

  14. Estimation of sediment sources using selected chemical tracers in the Perry lake basin, Kansas, USA

    USGS Publications Warehouse

    Juracek, K.E.; Ziegler, A.C.

    2009-01-01

    The ability to achieve meaningful decreases in sediment loads to reservoirs requires a determination of the relative importance of sediment sources within the contributing basins. In an investigation of sources of fine-grained sediment (clay and silt) within the Perry Lake Basin in northeast Kansas, representative samples of channel-bank sources, surface-soil sources (cropland and grassland), and reservoir bottom sediment were collected, chemically analyzed, and compared. The samples were sieved to isolate the <63 ?? m fraction and analyzed for selected nutrients (total nitrogen and total phosphorus), organic and total carbon, 25 trace elements, and the radionuclide cesium-137 (137Cs). On the basis of substantial and consistent compositional differences among the source types, total nitrogen (TN), total phosphorus (TP), total organic carbon (TOC), and 137Cs were selected for use in the estimation of sediment sources. To further account for differences in particle-size composition between the sources and the reservoir bottom sediment, constituent ratio and clay-normalization techniques were used. Computed ratios included TOC to TN, TOC to TP, and TN to TP. Constituent concentrations (TN, TP, TOC) and activities (137Cs) were normalized by dividing by the percentage of clay. Thus, the sediment-source estimations involved the use of seven sediment-source indicators. Within the Perry Lake Basin, the consensus of the seven indicators was that both channel-bank and surface-soil sources were important in the Atchison County Lake and Banner Creek Reservoir subbasins, whereas channel-bank sources were dominant in the Mission Lake subbasin. On the sole basis of 137Cs activity, surface-soil sources contributed the most fine-grained sediment to Atchison County Lake, and channel-bank sources contributed the most fine-grained sediment to Banner Creek Reservoir and Mission Lake. Both the seven-indicator consensus and 137Cs indicated that channel-bank sources were dominant for

  15. Chlorinated hydrocarbon contamination in osprey eggs and nestlings from the Canadian Great Lakes basin, 1991-1995.

    PubMed

    Martin, Pamela A; De Solla, Shane R; Ewins, Peter

    2003-01-01

    Populations of osprey (Pandion haliaetus) in the Great Lakes basin declined dramatically during the 1950s-1970s due largely to adverse effects of persistent chlorinated hydrocarbons, ingested in their fish prey, on eggshell thickness and adult survival. Nevertheless, these contaminants were not measured in osprey tissues during the decades of decline on the Canadian Great Lakes. Between 1991 and 1995, we monitored recovering osprey populations on the Great Lakes, including Georgian Bay and the St. Marys River area on Lake Huron and the St. Lawrence Islands National Park, as well as at two inland sites within the basin. Current OC levels, even from the most contaminated lakes, were typically lower than those associated with reproductive effects. DDE levels in fresh eggs averaged 1.2-2.9 microg/g, well below the 4.2 microg/g level associated with significant eggshell thinning and shell breakage. Nevertheless, a proportion of eggs from all study areas did exceed this level. PCB levels in eggs seldom exceeded 5 microg/g except in one lake of high breeding density in the Kawartha Lakes inland study area, where the mean sum PCB level was 7.1 microg/g and the maximum concentration measured was 26.5 microg/g. On average, mean reproductive output (0.78-2.75 young per occupied nest) of breeding populations in Great Lakes basin study areas exceeded the threshold of 0.8 young thought necessary to maintain stable populations. We concluded that, although eggs and especially nestling plasma, are useful in reflecting local contaminant levels, ospreys are relatively insensitive, at least at the population level, to health effects of current levels of chlorinated hydrocarbons on the Canadian Great Lakes.

  16. Fisheries research and monitoring activities of the Lake Erie Biological Station, 2013

    USGS Publications Warehouse

    Kraus, Richard T.; Rogers, Mark W.; Kocovsky, Patrick; Edwards, William; Bodamer Scarbro, Betsy L.; Keretz, Kevin R.; Berkman, Stephanie A.

    2014-01-01

    In 2013, the U.S. Geological Survey’s Lake Erie Biological Station successfully completed large vessel surveys in all three of Lake Erie’s basins. Lake Erie Biological Station’s primary vessel surveys included the Western Basin Forage Fish Assessment and East Harbor Forage Fish Assessment as well as contributing to the cooperative multi-agency Central Basin Hydroacoustics Assessment and the Eastern Basin Coldwater Community Assessment (see Forage Task Group and Coldwater Task Group reports, respectively). Further large vessel sampling included individual research data collection as well as assisting with University (e.g., University of Toledo) and agency (e.g., USFWS, USEPA) large vessel sampling needs. Our 2013 vessel operations began on April 4th and concluded on November 21 with a total of 77 large vessel sampling days (83 total days). During this time, crews of the R/V Muskie and R/V Bowfin deployed 174 trawls covering 147 km of lake-bottom, over 13 km of gillnet, collected hydroacoustic data that extended over 250 km of the central and eastern basins, and approximately 180 collective zooplankton, benthos, and water samples. 2013 was the first complete sampling year using the R/V Muskie. Technologies available on the new platform provided opportunities for LEBS to improve data sampling methods and results. An investment was made in mensuration gear for the trawls. This gear is attached to the trawl’s headrope, footrope, and wings; thus, allowing measurement of the area swept and conversion of catches to densities. Another improvement included real-time output of water parameter sonde profiles (e.g., temperature, dissolved oxygen). The ability to view profile data on a tablet allowed quick identification of thermoclines as well as the presence (or absence) of hypoxia. Minor modifications were made to survey designs relative to last year (see 2013 report), and thus, collection of long-term data from the R/V Muskie has commenced. One minor change was that

  17. High Genetic Diversity and Novelty in Eukaryotic Plankton Assemblages Inhabiting Saline Lakes in the Qaidam Basin

    PubMed Central

    Wang, Jiali; Wang, Fang; Chu, Limin; Wang, Hao; Zhong, Zhiping; Liu, Zhipei; Gao, Jianyong; Duan, Hairong

    2014-01-01

    Saline lakes are intriguing ecosystems harboring extremely productive microbial communities in spite of their extreme environmental conditions. We performed a comprehensive analysis of the genetic diversity (18S rRNA gene) of the planktonic microbial eukaryotes (nano- and picoeukaryotes) in six different inland saline lakes located in the Qaidam Basin. The novelty level are high, with about 11.23% of the whole dataset showing <90% identity to any previously reported sequence in GenBank. At least 4 operational taxonomic units (OTUs) in mesosaline lakes, while up to eighteen OTUs in hypersaline lakes show very low CCM and CEM scores, indicating that these sequences are highly distantly related to any existing sequence. Most of the 18S rRNA gene sequence reads obtained in investigated mesosaline lakes is closely related to Holozoa group (48.13%), whereas Stramenopiles (26.65%) and Alveolates (10.84%) are the next most common groups. Hypersaline lakes in the Qaidam Basin are also dominated by Holozoa group, accounting for 26.65% of the total number of sequence reads. Notably, Chlorophyta group are only found in high abundance in Lake Gasikule (28.00%), whereas less represented in other hypersaline lakes such as Gahai (0.50%) and Xiaochaidan (1.15%). Further analysis show that the compositions of planktonic eukaryotic assemblages are also most variable between different sampling sites in the same lake. Out of the parameters, four show significant correlation to this CCA: altitude, calcium, sodium and potassium concentrations. Overall, this study shows important gaps in the current knowledge about planktonic microbial eukaryotes inhabiting Qaidam Basin (hyper) saline water bodies. The identified diversity and novelty patterns among eukaryotic plankton assemblages in saline lake are of great importance for understanding and interpreting their ecology and evolution. PMID:25401703

  18. Late Quaternary tectonic activity and lake level change in the Rukwa Rift Basin

    NASA Astrophysics Data System (ADS)

    Delvaux, D.; Kervyn, F.; Vittori, E.; Kajara, R. S. A.; Kilembe, E.

    1998-04-01

    Interpretation of remotely sensed images and air photographs, compilation of geological and topographical maps, morphostructural and fault kinematic observations and 14C dating reveal that, besides obvious climatic influences, the lake water extent and sedimentation in the closed hydrological system of Lake Rukwa is strongly influenced by tectonic processes. A series of sandy ridges, palaeolacustrine terraces and palaeounderwater delta fans are related to an Early Holocene high lake level and subsequent progressive lowering. The maximum lake level was controlled by the altitude of the watershed between the Rukwa and Tanganyika hydrological systems. Taking as reference the present elevation of the palaeolacustrine terraces around Lake Rukwa, two orders of vertical tectonic movement are evidenced: i) a general uplift centred on the Rungwe Volcanic Province between the Rukwa and Malawi Rift Basins; and ii) a tectonic northeastward tilting of the entire Rukwa Rift Basin, including the depression and rift shoulders. This is supported by the observed hydromorphological evolution. Local uplift is also induced by the development of an active fault zone in the central part of the depression, in a prolongation of the Mbeya Range-Galula Fault system. The Ufipa and Lupa Border Faults, bounding the Rukwa depression on the southwestern and northeastern sides, respectively, exert passive sedimentation control only. They appear inactive or at least less active in the Late Quaternary than during the previous rifting stage. The main Late Quaternary tectonic activity is represented by dextral strike-slip movement along the Mbeya Range-Galula Fault system, in the middle of the Rukwa Rift Basin, and by normal dip-slip movements along the Kanda Fault, in the western rift shoulder.

  19. Remotely Sensed Based Lake/Reservoir Routing in Congo River Basin

    NASA Astrophysics Data System (ADS)

    Raoufi, R.; Beighley, E.; Lee, H.

    2017-12-01

    Lake and reservoir dynamics can influence local to regional water cycles but are often not well represented in hydrologic models. One challenge that limits their inclusion in models is the need for detailed storage-discharge behavior that can be further complicated in reservoirs where specific operation rules are employed. Here, the Hillslope River Routing (HRR) model is combined with a remotely sensed based Reservoir Routing (RR) method and applied to the Congo River Basin. Given that topographic data are often continuous over the entire terrestrial surface (i.e., does not differentiate between land and open water), the HRR-RR model integrates topographic derived river networks and catchment boundaries (e.g., HydroSHEDs) with water boundary extents (e.g., Global Lakes and Wetlands Database) to develop the computational framework. The catchments bordering lakes and reservoirs are partitioned into water and land portions, where representative flowpath characteristics are determined and vertical water balance and lateral routings is performed separately on each partition based on applicable process models (e.g., open water evaporation vs. evapotranspiration). To enable reservoir routing, remotely sensed water surface elevations and extents are combined to determine the storage change time series. Based on the available time series, representative storage change patterns are determined. Lake/reservoir routing is performed by combining inflows from the HRR-RR model and the representative storage change patterns to determine outflows. In this study, a suite of storage change patterns derived from remotely sensed measurements are determined representative patterns for wet, dry and average conditions. The HRR-RR model dynamically selects and uses the optimal storage change pattern for the routing process based on these hydrologic conditions. The HRR-RR model results are presented to highlight the importance of lake attenuation/routing in the Congo Basin.

  20. Aircraft measurements of nitrogen and phosphorus in and around the Lake Tahoe Basin: implications for possible sources of atmospheric pollutants to Lake Tahoe.

    PubMed

    Zhang, Qi; Carroll, John J; Dixon, Alan J; Anastasio, Cort

    2002-12-01

    Atmospheric deposition of nitrogen (N) and phosphorus (P) into Lake Tahoe appears to have been a major factor responsible for the shifting of the lake's nutrient response from N-limited to P-limited. To characterize atmospheric N and P in and around the Lake Tahoe Basin during summer, samples were collected using an instrumented aircraft flown over three locations: the Sierra Nevada foothills east of Sacramento ("low-Sierra"), further east and higher in the Sierra ("mid-Sierra"), and in the Tahoe Basin. Measurements were also made within the smoke plume downwind of an intense forest fire just outside the Tahoe Basin. Samples were collected using a denuder-filter pack sampling system (DFP) and analyzed for gaseous and water-soluble particle components including HNO3/ NO3-, NH3 /NH4+, organic N (ON), total N, SRP (soluble reactive phosphate) and total P. The average total gaseous and particulate N concentrations (+/- 1sigma) measured over the low- and mid-Sierra were 660 (+/- 270) and 630 (+/- 350) nmol N/m3-air, respectively. Total airborne N concentrations in the Tahoe samples were one-half to one-fifth of these values. The forest fire plume had the highest concentration of atmospheric N (860 nmol N/m3-air) and a greater contribution of organic N (ON) to the total N compared to nonsmoky conditions. Airborne P was rarely observed over the low- and mid-Sierra but was present at low concentrations over Lake Tahoe, with average +/- 1sigma) concentrations of 2.3 +/- 2.9 and 2.8 +/- 0.8 nmol P/m3-air under typical clear air and slightly smoky air conditions, respectively. Phosphorus in the forestfire plume was present at concentrations approximately 10 times greater than over the Tahoe Basin. P in these samples included both fine and coarse particulate phosphate as well as unidentified, possibly organic, gaseous P species. Overall, our results suggest that out-of-basin emissions could be significant sources of nitrogen to Lake Tahoe during the summer and that forest

  1. Phosphorus availability in Western Lake Erie Basin drainage waters: legacy evidence across spatial scales

    USDA-ARS?s Scientific Manuscript database

    The Western Lake Erie Basin (WLEB) was inundated with precipitation during June and July 2015 (2-3× greater than historical averages), which led to significant nutrient loading and the largest in-lake algal bloom on record. Using discharge and concentration data from three spatial scales (0.09 km2 t...

  2. Binational ecological risk assessment of bigheaded carps (Hypophthalmichthys spp.) for the Great Lakes Basin.

    USGS Publications Warehouse

    Cudmore, Becky; Mandrak, Nicholas E.; Dettmers, John M.; Chapman, Duane C.; Kolar, Cynthia S.

    2012-01-01

    Bigheaded carps (Bighead and Silver carps) are considered a potential threat to the Great Lakes basin. A binational ecological risk assessment was conducted to provide scientifically defensible advice for managers and decision-makers in Canada and the United States. This risk assessment looked at the likelihood of arrival, survival, establishment, and spread of bigheaded carps to obtain an overall probability of introduction. Arrival routes assessed were physical connections and human-mediated releases. The risk assessment ranked physical connections (specifically the Chicago Area Waterway System) as the most likely route for arrival into the Great Lakes basin. Results of the risk assessment show that there is enough food and habitat for bigheaded carp survival in the Great Lakes, especially in Lake Erie and productive embayments in the other lakes. Analyses of tributaries around the Canadian Great Lakes and the American waters of Lake Erie indicate that there are many suitable tributaries for bigheaded carp spawning. Should bigheaded carps establish in the Great Lakes, their spread would not likely be limited and several ecological consequences can be expected to occur. These consequences include competition for planktonic food leading to reduced growth rates, recruitment and abundance of planktivores. Subsequently this would lead to reduced stocks of piscivores and abundance of fishes with pelagic, early life stages. Overall risk is highest for lakes Michigan, Huron, and Erie, followed by Lake Ontario then Lake Superior. To avoid the trajectory of the invasion process and prevent or minimize anticipated consequences, it is important to continue to focus efforts on reducing the probability of introduction of these species at either the arrival, survival, establishment, or spread stage (depending on location).

  3. Water footprint concept for a sustainable water resources management in Urmia Lake basin, Iran

    NASA Astrophysics Data System (ADS)

    Jabbari, Anahita; Jarihani, Ben; Rezaie, Hossein; Aligholiniya, Tohid; Rasouli, Negar

    2015-04-01

    The fast shrinkage of Urmia Lake in West Azerbaijan, Iran is one of the most important environmental change hotspots. The dramatic water level reduction (up to 6 meters) has influential environmental, socio-economic and health impacts on Urmia plain and its habitants. The decline is generally blamed on a combination of drought, increased water diversion for irrigated agriculture within the lake's watershed and land use mismanagement. The Urmia Lake sub basins are the agricultural cores of the region and the agricultural activities are the major water consuming sections of the basin. Land use changes and mismanagement in the land use decisions and policies is one of the most important factors in lake shrinkage in recent decades. Fresh water is the main source of water for agricultural usages in the basin. So defining a more low water consuming land use pattern will put less pressure on limited water resources. The above mentioned fact in this study has been assessed through water footprint concept. The water footprint concept (as a quantitative measure showing the appropriation of natural resources) is a comprehensive indicator that can have a crucial role in efficient land use management. In order to evaluate the water use patterns, the water footprint of wheat (as a traditional crop) and apple (recently most popular) have been compared and the results have been discussed in the aspect of the impacts on Lake Urmia demands and its dramatic drying process. Results showed that, higher blue water consumption in such a regions that have severe blue water scarcity, is a major issue and the water consuming pattern must be modified to meet the lake demands. Lower blue water consumption through regionalizing crops for each area is an efficient solution to meet lake demands and consume lower amounts of blue water. So the proper land use practices can be an appropriate method to rescue the lake in a long time period.

  4. Latest Pannonian and Quaternary evolution at the transition between Eastern Alps and Pannonian Basin: new insights from geophysical, sedimentological and geochronological data

    NASA Astrophysics Data System (ADS)

    Zámolyi, A.; Salcher, B.; Draganits, E.; Exner, U.; Wagreich, M.; Gier, S.; Fiebig, M.; Lomax, J.; Surányi, G.; Diel, M.; Zámolyi, F.

    2017-07-01

    The transition zone between Eastern Alps and Pannonian Basin is a key area for the investigation of the interplay between regional uplift, local tectonic subsidence and depositional environment. Our study area, the western margin of the Little Hungarian Plain, is characterized by gentle hills, plateaus and depressions, of which several are filled by lakes—including one of Austria's largest and shallowest lakes, Lake Neusiedl. Geological investigation is hampered by the scarcity of outcrops, and thus direct observation of sedimentological or structural features is difficult. Despite a long research history in the area, a consistent landscape evolution model considering all relevant constraints is lacking so far. In this study, we apply multidisciplinary methods to decipher the complex tectonic and fluvial depositional evolution of the region. Local data from shallow-lake drilling and seismic investigation are combined with regional data from industrial seismics and core data to gain new insights into the latest Pannonian (Late Miocene) and Quaternary evolution. Shallow-lake seismic data show the erosionally truncated Pannonian sediments dipping and thickening toward southeast, toward the modern depocenter of the Little Hungarian Plain. Overlying Quaternary fluvial sediments show a very similar thickening trend except for the area on the plateau north of the lake indicating ongoing subsidence in major parts of the basin. Drill cores from locations along the lake seismic lines were analyzed concerning their age, mineralogy and heavy minerals and compared with outcrop samples from the surrounding plains and the plateau to derive indications on sediment provenance. A key observation is the apparent lack of a significant gravel layer on top of the tilted Pannonian sediments beneath Lake Neusiedl. Small-scale faults can be observed in the lake seismic sections along with key sedimentary features. Significant differences of the current elevation of the top Pannonian

  5. Collaborative modelling and integrated decision support system analysis of a developed terminal lake basin

    USGS Publications Warehouse

    Niswonger, Richard G.; Allander, Kip K.; Jeton, Anne E.

    2014-01-01

    A terminal lake basin in west-central Nevada, Walker Lake, has undergone drastic change over the past 90 yrs due to upstream water use for agriculture. Decreased inflows to the lake have resulted in 100 km2 decrease in lake surface area and a total loss of fisheries due to salinization. The ecologic health of Walker Lake is of great concern as the lake is a stopover point on the Pacific route for migratory birds from within and outside the United States. Stakeholders, water institutions, and scientists have engaged in collaborative modeling and the development of a decision support system that is being used to develop and analyze management change options to restore the lake. Here we use an integrated management and hydrologic model that relies on state-of-the-art simulation capabilities to evaluate the benefits of using integrated hydrologic models as components of a decision support system. Nonlinear feedbacks among climate, surface-water and groundwater exchanges, and water use present challenges for simulating realistic outcomes associated with management change. Integrated management and hydrologic modeling provides a means of simulating benefits associated with management change in the Walker River basin where drastic changes in the hydrologic landscape have taken place over the last century. Through the collaborative modeling process, stakeholder support is increasing and possibly leading to management change options that result in reductions in Walker Lake salt concentrations, as simulated by the decision support system.

  6. Hydroclimate-driven changes in the landscape structure of the terminal lakes and wetlands of the China's Heihe River Basin.

    PubMed

    Xiao, Shengchun; Xiao, Honglang; Peng, Xiaomei; Song, Xiang

    2015-01-01

    Changes in the landscape structure of terminal lakes and wetlands along inland rivers in arid areas are determined by the water balance in the river basins under the impacts of climate change and human activities. Studying the evolution of these landscapes and the mechanisms driving these changes is critical to the sustainable development of river basins. The terminal lakes and wetlands along the lower reaches of the Heihe River, an inland river in arid northwestern China, can be grouped into three types: runoff-recharged, groundwater-recharged, and precipitation-recharged. These water-recharge characteristics determine the degree to which the landscape structure of a terminal lake or wetland is impacted by climate change and human activities. An analysis of seven remote-sensing and hydroclimatic data sets for the Heihe River basin during the last 50 years indicates that hydrological changes in the basin caused by regional human activities were the primary drivers of the observed changes in the spatial and temporal landscape-structure patterns of the terminal lakes and wetlands of the Heihe River. In this warm, dry climatic context, the lakes and wetlands gradually evolved toward and maintained a landscape dominated by saline-alkaline lands and grasslands.

  7. Evidence of the Zanclean megaflood in the eastern Mediterranean Basin.

    PubMed

    Micallef, Aaron; Camerlenghi, Angelo; Garcia-Castellanos, Daniel; Cunarro Otero, Daniel; Gutscher, Marc-André; Barreca, Giovanni; Spatola, Daniele; Facchin, Lorenzo; Geletti, Riccardo; Krastel, Sebastian; Gross, Felix; Urlaub, Morelia

    2018-01-18

    The Messinian salinity crisis (MSC) - the most abrupt, global-scale environmental change since the end of the Cretaceous - is widely associated with partial desiccation of the Mediterranean Sea. A major open question is the way normal marine conditions were abruptly restored at the end of the MSC. Here we use geological and geophysical data to identify an extensive, buried and chaotic sedimentary body deposited in the western Ionian Basin after the massive Messinian salts and before the Plio-Quaternary open-marine sedimentary sequence. We show that this body is consistent with the passage of a megaflood from the western to the eastern Mediterranean Sea via a south-eastern Sicilian gateway. Our findings provide evidence for a large amplitude drawdown in the Ionian Basin during the MSC, support the scenario of a Mediterranean-wide catastrophic flood at the end of the MSC, and suggest that the identified sedimentary body is the largest known megaflood deposit on Earth.

  8. Deformation style and controlling geodynamic processes at the eastern Guadalquivir foreland basin (Southern Spain)

    NASA Astrophysics Data System (ADS)

    Marín-Lechado, C.; Pedrera, A.; Peláez, J. A.; Ruiz-Constán, A.; González-Ramón, A.; Henares, J.

    2017-06-01

    The tectonic structure of the Guadalquivir foreland basin becomes complex eastward evolving from a single depocenter to a compartmented basin. The deformation pattern within the eastern Guadalquivir foreland basin has been characterized by combining seismic reflection profiles, boreholes, and structural field data to output a 3-D model. High-dipping NNE-SSW to NE-SW trending normal and reverse fault arrays deform the Variscan basement of the basin. These faults generally affect Tortonian sediments, which show syntectonic features sealed by the latest Miocene units. Curved and S-shaped fault traces are abundant and caused by the linkage of nearby fault segments during lateral fault propagation. Preexisting faults were reactivated either as normal or reverse faults depending on their position within the foreland. At Tortonian time, reverse faults deformed the basin forebulge, while normal faults predominated within the backbulge. Along-strike variation of the Betic foreland basin geometry is supported by an increasing mechanical coupling of the two plates (Alborán Domain and Variscan basement) toward the eastern part of the cordillera. Thus, subduction would have progressed in the western Betics, while it would have failed in the eastern one. There, the initially subducted Iberian paleomargin (Nevado-Filábride Complex) was incorporated into the upper plate promoting the transmission of collision-related compressional stresses into the foreland since the middle Miocene. Nowadays, compression is still active and produces low-magnitude earthquakes likely linked to NNE-SSW to NE-SW preexiting faults reactivated with reverse oblique-slip kinematics. Seismicity is mostly concentrated around fault tips that are frequently curved in overstepping zones.

  9. Alburnoides manyasensis (Actinopterygii, Cyprinidae), a new species of cyprinid fish from Manyas Lake basin, Turkey

    PubMed Central

    Turan, Davut; Ekmekçi, F. Güler; Kaya, Cüneyt; Güçlü, S. Serkan

    2013-01-01

    Abstract Alburnoides manyasensis, sp. n., is described from the Koca Stream (Lake Manyas drainage, Marmara Sea basin) in Anatolia. It is distinguished from all species of Alburnoides in Turkey and adjacent regions, Alburnoides tzanevi (Rezovska [Rezve], Istranca and Terkos streams in the western Black Sea drainage), Alburnoides cf. smyrnae (Banaz Stream, a drainage of Büyük Menderes River, Aegean Sea basin), Alburnoides fasciatus (streams and rivers in the eastern Black Sea drainage) and Alburnoides eichwaldii (Kura and Aras rivers [a drainage of Kura River], Caspian Sea basin) by a combination of the following characters (none unique to the species):marked hump at nape, especially in specimens larger than 60 mm SL; partly developed ventral keel between pelvic fin and anal fin, scaleless 1/2 to 2/3 its length; body depth at dorsal-fin origin 29−32% SL; caudal peduncle depth 11−12% SL; 45–52+ 2–3 lateral-line scales; 9–12 scale rows between lateral line and dorsal-fin origin; 4–5 scale rows between lateral line and anal-fin origin, 10½–12½ branched anal-fin rays; 40–42 total vertebrae. PMID:23794819

  10. Identification and determination of the contribution of iron-steel manufacturing industry to sediment-associated polycyclic aromatic hydrocarbons (PAHs) in a large shallow lake of eastern China.

    PubMed

    Zhang, Liu; Bai, Ya-Shu; Wang, Ji-Zhong; Peng, Shu-Chuan; Chen, Tian-Hu; Yin, Da-Qiang

    2016-11-01

    Seventeen polycyclic aromatic hydrocarbon (PAH) compounds were determined in surface sediments collected from the Chaohu Lake (a large shallow lake in eastern China) and its tributaries. Both diagnostic ratios and a receptor model (positive matrix factorization, PMF) were applied to identify and determine the contribution of a local iron-steel manufacturing plant located in the Nanfei River (NFR) to the Chaohu Lake basin. The results show that sites located in the downstream of the steel plant contained concentrations of 17 PAH (Σ 17 PAH) approximately two orders of magnitudes higher than those from other sites. Five factors were identified by the PMF model, including industrial waste, wood/biomass burning, diagenetic origin, domestic coal combustion, and industrial combustion. Our findings suggest that sediments in the downstream of the plant and in the western part of the Chaohu Lake were predominantly affected by industrial coal combustion. A mixture of pyrolytic origins impacted urban sediments in the upstream of the plant, whereas diagenetic origins along with coal and biomass burning were suggested to influence the eastern part and rural tributaries of the lake. To assess the potential ecological risk and toxicity caused by the iron-steel plant, sediment toxicity was evaluated by the PMF model, sediment quality guideline, and toxic equivalent factors. All of the three approaches suggested PAH accumulation in the NFR sediments could produce significant adverse ecological effects and half of the sediment toxicity in the NFR may be attributed to the emissions from the iron-steel plant. Some rural locations also exhibited PAH concentrations above probable effects, most likely contributed by wood/biomass burning.

  11. Paleoecological inferences of recent alluvial damming of a lake basin due to retrogressive permafrost thaw slumping

    NASA Astrophysics Data System (ADS)

    Quinlan, R.; Delaney, S.; Lamoureux, S. F.; Kokelj, S. V.; Pisaric, M. F.

    2014-12-01

    Expected climate impacts of future warming in the Arctic include thawing of permafrost landscapes in northern latitudes. Thawing permafrost is expected to have major consequences on hydrological dynamics, which will affect the limnological conditions of Arctic lakes and ponds. In this study we obtained a sediment core from a small lake (informally named "FM1") near Fort McPherson, Northwest Territories, Canada, with a large retrogressive thaw slump (nearly 1 kilometre in diameter) within its catchment. A radiocarbon date from the base of the FM1 sediment core suggests the lake formed between 990-1160 Cal AD. The analysis of aerial photographs indicate the thaw slump initiated between 1970-1990, and sediment geochemistry analysis indicated major changes in sediment content at 54-cm sediment core depth. Analyses of subfossil midge (Chironomidae) fossils inferred that, pre-slump, lake FM1 was shallow with a large bog or wetland environment, with midge assemblages dominated by taxa such as Limnophyes and Parametriocnemus. Post-thaw midge assemblages were dominated by subfamily Chironominae (Tribe Tanytarsini and Tribe Chironomini) taxa, and the appearance of deepwater-associated taxa such as Sergentia suggests that lake FM1 deepened, possibly as a result of alluvial damming from slump materials washing into the lake near its outlet. Most recent stratigraphic intervals infer a reversion back to shallower conditions, with a slight recovery of bog or wetland-associated midge taxa, possibly due to rapid basin infilling from increased deposition rates of catchment-derived materials. Results emphasize that there may be a variety of different outcomes to Arctic lake and pond ecosystems as a result of permafrost thawing, contingent on system-specific characteristics such as slump location relative to the lake basin, and relative inflow and outflow locations within the lake basin.

  12. Simulation of daily streamflow for nine river basins in eastern Iowa using the Precipitation-Runoff Modeling System

    USGS Publications Warehouse

    Haj, Adel E.; Christiansen, Daniel E.; Hutchinson, Kasey J.

    2015-10-14

    The accuracy of Precipitation-Runoff Modeling System model streamflow estimates of nine river basins in eastern Iowa as compared to measured values at U.S. Geological Survey streamflow-gaging stations varied. The Precipitation-Runoff Modeling System models of nine river basins in eastern Iowa were satisfactory at estimating daily streamflow at 57 of the 79 calibration sites and 13 of the 14 validation sites based on statistical results. Unsatisfactory performance can be contributed to several factors: (1) low flow, no flow, and flashy flow conditions in headwater subbasins having a small drainage area; (2) poor representation of the groundwater and storage components of flow within a basin; (3) lack of accounting for basin withdrawals and water use; and (4) the availability and accuracy of meteorological input data. The Precipitation- Runoff Modeling System models of nine river basins in eastern Iowa will provide water-resource managers with a consistent and documented method for estimating streamflow at ungaged sites and aid in environmental studies, hydraulic design, water management, and water-quality projects.

  13. Sedimentary sequence evolution in a Foredeep basin: Eastern Venezuela

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bejarano, C.; Funes, D.; Sarzalho, S.

    1996-08-01

    Well log-seismic sequence stratigraphy analysis in the Eastern Venezuela Foreland Basin leads to study of the evolution of sedimentary sequences onto the Cretaceous-Paleocene passive margin. This basin comprises two different foredeep sub-basins: The Guarico subbasin to the west, older, and the Maturin sub-basin to the east, younger. A foredeep switching between these two sub-basins is observed at 12.5 m.y. Seismic interpretation and well log sections across the study area show sedimentary sequences with transgressive sands and coastal onlaps to the east-southeast for the Guarico sub-basin, as well as truncations below the switching sequence (12.5 m.y.), and the Maturin sub-basin showsmore » apparent coastal onlaps to the west-northwest, as well as a marine onlap (deeper water) in the west, where it starts to establish. Sequence stratigraphy analysis of these sequences with well logs allowed the study of the evolution of stratigraphic section from Paleocene to middle Miocene (68.0-12.0 m.y.). On the basis of well log patterns, the sequences were divided in regressive-transgressive-regressive sedimentary cycles caused by changes in relative sea level. Facies distributions were analyzed and the sequences were divided into simple sequences or sub- sequences of a greater frequencies than third order depositional sequences.« less

  14. Sediment Transforms Lake Michigan

    NASA Image and Video Library

    2011-01-11

    NASA image acquired December 17, 2010 In mid-December 2010, suspended sediments transformed the southern end of Lake Michigan. Ranging in color from brown to green, the sediment filled the surface waters along the southern coastline and formed a long, curving tendril extending toward the middle of the lake. The Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Aqua satellite captured these natural-color images on December 17, 2010 (top), and December 10, 2010 (bottom). Such sediment clouds are not uncommon in Lake Michigan, where winds influence lake circulation patterns. A scientificpaper published in 2007 described a model of the circulation, noting that while the suspended particles mostly arise from lake-bottom sediments along the western shoreline, they tend to accumulate on the eastern side. When northerly winds blow, two circulation gyres, rotating in opposite directions, transport sediment along the southern shoreline. As the northerly winds die down, the counterclockwise gyre predominates, and the smaller, clockwise gyre dissipates. Clear water—an apparent remnant of the small clockwise gyre—continues to interrupt the sediment plume. George Leshkevich, a researcher with the U.S. National Oceanic and Atmospheric Administration, explains that the wind-driven gyres erode lacustrine clay (very fine lakebed sediment) on the western shore before transporting it, along with re-suspended lake sediments, to the eastern shore. On the eastern side, the gyre encounters a shoreline bulge that pushes it toward the lake’s central southern basin, where it deposits the sediments. The sediment plume on December 17 followed a windy weather front in the region on December 16. NASA image courtesy MODIS Rapid Response Team at NASA GSFC. Caption by Michon Scott. Instrument: Aqua - MODIS NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard

  15. Groundwater flow in a closed basin with a saline shallow lake in a volcanic area: Laguna Tuyajto, northern Chilean Altiplano of the Andes.

    PubMed

    Herrera, Christian; Custodio, Emilio; Chong, Guillermo; Lambán, Luis Javier; Riquelme, Rodrigo; Wilke, Hans; Jódar, Jorge; Urrutia, Javier; Urqueta, Harry; Sarmiento, Alvaro; Gamboa, Carolina; Lictevout, Elisabeth

    2016-01-15

    Laguna Tuyajto is a small, shallow saline water lake in the Andean Altiplano of northern Chile. In the eastern side it is fed by springs that discharge groundwater of the nearby volcanic aquifers. The area is arid: rainfall does not exceed 200mm/year in the rainiest parts. The stable isotopic content of spring water shows that the recharge is originated mainly from winter rain, snow melt, and to a lesser extent from some short and intense sporadic rainfall events. Most of the spring water outflowing in the northern side of Laguna Tuyajto is recharged in the Tuyajto volcano. Most of the spring water in the eastern side and groundwater are recharged at higher elevations, in the rims of the nearby endorheic basins of Pampa Colorada and Pampa Las Tecas to the East. The presence of tritium in some deep wells in Pampa Colorada and Pampa Las Tecas indicates recent recharge. Gas emission in recent volcanoes increase the sulfate content of atmospheric deposition and this is reflected in local groundwater. The chemical composition and concentration of spring waters are the result of meteoric water evapo-concentration, water-rock interaction, and mainly the dissolution of old and buried evaporitic deposits. Groundwater flow is mostly shallow due to a low permeability ignimbrite layer of regional extent, which also hinders brine spreading below and around the lake. High deep temperatures near the recent Tuyajto volcano explain the high dissolved silica contents and the δ(18)O shift to heavier values found in some of the spring waters. Laguna Tuyajto is a terminal lake where salts cumulate, mostly halite, but some brine transfer to the Salar de Aguas Calientes-3 cannot be excluded. The hydrogeological behavior of Laguna Tuyajto constitutes a model to understand the functioning of many other similar basins in other areas in the Andean Altiplano. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Glof Study in Tawang River Basin, Arunachal Pradesh, India

    NASA Astrophysics Data System (ADS)

    Panda, R.; Padhee, S. K.; Dutta, S.

    2014-11-01

    Glacial lake outburst flood (GLOF) is one of the major unexpected hazards in the high mountain regions susceptible to climate change. The Tawang river basin in Arunachal Pradesh is an unexplored region in the Eastern Himalayas, which is impending to produce several upcoming hydro-electric projects (HEP). The main source of the river system is the snow melt in the Eastern Himalayas, which is composed of several lakes located at the snout of the glacier dammed by the lateral or end moraine. These lakes might prove as potential threat to the future scenario as they have a tendency to produce flash flood with large quantity of sediment load during outbursts. This study provides a methodology to detect the potential lakes as a danger to the HEP sites in the basin, followed by quantification of volume of discharge from the potential lake and prediction of hydrograph at the lake site. The remote location of present lakes induced the use of remote sensing data, which was fulfilled by Landsat-8 satellite imagery with least cloud coverage. Suitable reflectance bands on the basis of spectral responses were used to produce informational layers (NDWI, Potential snow cover map, supervised classification map) in GIS environment for discriminating different land features. The product obtained from vector overlay operation of these layers; representing possible water area, was further utilized in combination with Google earth to identify the lakes within the watershed. Finally those identified lakes were detected as potentially dangerous lakes based on the criteria of elevation, area, proximity from streamline, slope and volume of water held. HEC-RAS simulation model was used with cross sections from Google Earth and field survey as input to simulate dam break like situation; hydrodynamic channel routing of the outburst hydrograph along river reach was carried out to get the GLOF hydrograph at the project sites. It was concluded from the results that, the assessed GLOF would be a

  17. Drastic change in China's lakes and reservoirs over the past decades.

    PubMed

    Yang, Xiankun; Lu, Xixi

    2014-08-13

    Using remote sensing images, we provided the first complete picture of freshwater bodies in mainland China. We mapped 89,700 reservoirs, covering about 26,870 km(2) and approximately 185,000 lakes with a surface area of about 82,232 km(2). Despite relatively small surface area, the total estimated storage capacity of reservoirs (794 km(3)) is triple that of lakes (268 km(3)). Further analysis indicates that reservoir construction has made the river systems strongly regulated: only 6% of the assessed river basins are free-flowing; 20% of assessed river basins have enough cumulative reservoir capacity to store more than the entire annual river flow. Despite the existence of 2,721 lakes greater than 1 km(2), we found that about 50 lakes greater than km(2) have formed on the Tibetan Plateau resulting from climate change. More than 350 lakes of ≥1 km(2) vanished in four other major lake regions. Although the disappearance of lakes happened in the context of global climate change, it principally reflects the severe anthropogenic impacts on natural lakes, such as, the excessive plundering of water resources on the Inner Mongolia-Xinjiang Plateau and serious destruction (land reclamation and urbanization) on the eastern plains.

  18. Identifying Water Insecurity Hotspots in the Lake Victoria Basin of Eastern Africa

    NASA Astrophysics Data System (ADS)

    Pricope, N. G.; Shukla, S.; Linard, C.; Gaughan, A.

    2014-12-01

    The Lake Victoria Basin (LVB), one of Africa's most populated transboundary watersheds and home to more than 30 million inhabitants, is increasingly challenged by both water quality problems and water quantity shortages against a backdrop of climate variability and change; and other environmental challenges. As a result of pollution, droughts, more erratic rainfall, heightened demand for water for both consumption and agricultural needs as well as differences in water allocation among the riverine countries of Uganda, Tanzania, Kenya, Rwanda and Burundi, many parts of this region are already experiencing water scarcity on a recurrent basis. Furthermore, given projected annual population growth rates of 2.5 to 3.5% for the next 20 years, water shortages are likely to be exacerbated in the future. Analyzing historical changes in the water resources of this region is hence important to identify "hot spots" that might be most sensitive to future changes in climate and demography. In this presentation, we report the findings of a comprehensive analysis performed to (i) examine changes in water resources of LVB in recent decades and (ii) identify overlap between regions of significant changes in water resources with land cover changes and high population centers that are also projected to grow the fastest over the coming decades. We first utilize several satellite, stations and model(s) based climatic and hydrologic datasets to assess changes in water resources in this region. We then use a quality-controlled Moderate Resolution Imaging Spectroradiometer (MODIS) land cover product to identify areas of significant land cover changes. Simultaneously we use projections of gridded population density based on differential growth rates for rural and urban population to estimate fastest projected human population growth for 2030 and 2050 relative to 2010 data. Using the outcomes of these change analysis we identify water insecurity hotspots in the LVB.

  19. Importance of diffuse pollution control in the Patzcuaro Lake Basin in Mexico.

    PubMed

    Carro, Marco Mijangos; Dávila, Jorge Izurieta; Balandra, Antonieta Gómez; López, Rubén Hernández; Delgadillo, Rubén Huerto; Chávez, Javier Sánchez; Inclán, Luís Bravo

    2008-01-01

    In the catchment area of the Lake Patzcuaro in Central Mexico (933 km2) the apportionments of erosion, sediment, nutrients and pathogen coming from thirteen micro basins were estimated with the purpose of identifying critical areas in which best management practices need to be implemented in order to reduce their contribution to the lake pollution and eutrophication. The ArcView Generalized Watershed Loading Functions model (AV-GWLF) was applied to estimate the loads and sources of nutrients. The main results show that the total annual contribution of nitrogen from point sources were 491 tons and from diffuse pollution 2,065 tons, whereas phosphorus loads where 116 and 236 tons, respectively during a thirty year simulation period. Micro basins with predominant agricultural and animal farm land use (56% of the total area) accounts for a high percentage of nitrogen load 33% and phosphorus 52%. On the other hand, Patzcuaro and Quiroga micro basins which comprise approximately 10% of the total catchment area and are the most populated and visited towns by tourist 686,000 people every year, both contributes with 10.1% of the total nitrogen load and 3.2% of phosphorus. In terms of point sources of nitrogen and phosphorus the last towns contribute with 23.5% and 26.6% respectively. Under this situation the adoption of best management practices are an imperative task since the sedimentation and pollution in the lake has increased dramatically in the last twenty years. Copyright (c) IWA Publishing 2008.

  20. Review of fish diversity in the Lake Huron basin

    USGS Publications Warehouse

    Roseman, E.F.; Schaeffer, J.S.; Steen, P.J.

    2009-01-01

    Lake Huron has a rich aquatic habitat diversity that includes shallow embayments, numerous tributaries, shallow mid-lake reef complexes, archipelagos, and profundal regions. These habitats provide support for warm, cool, and cold water fish communities. Diversity of fishes in Lake Huron reflects post-glaciation colonization events, current climate conditions, accidental and intentional introductions of non-indigenous species, and extinctions. Most extinction events have been largely associated with habitat alterations, exploitation of fisheries, and interactions with non-indigenous species. The most recent historical survey of extirpated and imperiled species conducted in the late 1970s identified 79 fish species in Lake Huron proper and about 50 additional species in tributaries. Of those 129 species, 20 are now considered extirpated or imperiled. Extirpated species include Arctic grayling, paddlefish, weed shiner, deepwater cisco, blackfin cisco, shortnose cisco, and kiyi. Six species have declined appreciably due to loss of clear-water stream habitat: the river redhorse, river darter, black redhorse, pugnose shiner, lake chubsucker, redside dace, eastern sand darter, and channel darter. While numerous agencies, universities, and other organizations routinely monitor nearshore and offshore fish distribution and abundance, there is a need for more rigorous examination of the distribution and abundance of less-common species to better understand their ecology. This information is critical to the development of management plans aimed at ecosystem remediation and restoration.

  1. Cooperative water-resources monitoring in the St. Clair River/Lake St. Clair Basin, Michigan

    USGS Publications Warehouse

    Rheaume, Stephen J.; Neff, Brian P.; Blumer, Stephen P.

    2007-01-01

    As part of the Lake St. Clair Regional Monitoring Project, this report describes numerous cooperative water-resources monitoring efforts conducted in the St. Clair River/Lake St. Clair Basin over the last 100 years. Cooperative monitoring is a tool used to observe and record changes in water quantity and quality over time. This report describes cooperative efforts for monitoring streamflows and flood magnitudes, past and present water-quality conditions, significant human-health threats, and flow-regime changes that are the result of changing land use. Water-resources monitoring is a long-term effort that can be made cost-effective by leveraging funds, sharing data, and avoiding duplication of effort. Without long-term cooperative monitoring, future water-resources managers and planners may find it difficult to establish and maintain public supply, recreational, ecological, and esthetic water-quality goals for the St. Clair River/Lake St. Clair Basin.

  2. Biotic diversity interfaces with urbanization in the Lake Tahoe basin

    Treesearch

    Patricia N. Manley; Dennis D. Murphy; Lori A. Campbell; Kirsten E. Heckmann; Susan Merideth; Sean A. Parks; Monte P. Sanford; Matthew D. Schlesinger

    2006-01-01

    In the Lake Tahoe Basin, the retention of native ecosystems within urban areas may greatly enhance the landscape’s ability to maintain biotic diversity. Our study of plant, invertebrate and vertebrate species showed that many native species were present in remnant forest stands in developed areas; however, their richness and abundance declined in association with...

  3. Stable C, O and clumped isotope systematics and 14C geochronology of carbonates from the Quaternary Chewaucan closed-basin lake system, Great Basin, USA: Implications for paleoenvironmental reconstructions using carbonates

    NASA Astrophysics Data System (ADS)

    Hudson, Adam M.; Quade, Jay; Ali, Guleed; Boyle, Douglas; Bassett, Scott; Huntington, Katharine W.; De los Santos, Marie G.; Cohen, Andrew S.; Lin, Ke; Wang, Xiangfeng

    2017-09-01

    Isotopic compositions of lacustrine carbonates are commonly used for dating and paleoenvironmental reconstructions. Here we use carbonate δ13C and δ18O, clumped (Δ47), and 14C compositions to better understand the carbonate isotope system in closed-basin lakes and trace the paleohydrologic and temperature evolution in the Chewaucan closed-basin lake system, northern Great Basin, USA, over the Last Glacial/Holocene transition. We focus on shorezone tufas to establish that they form in isotopic equilibrium with lake water and DIC, they can be dated reliably using 14C, and their clumped isotope composition can be used to reconstruct past lake temperature. Calculations of the DIC budget and reservoir age for the lake indicate residence time is short, and dominated by exchange with atmospheric CO2 at all past lake levels. Modern lake DIC and shorezone tufas yield δ13C and 14C values consistent with isotopic equilibrium with recent fossil fuel and bomb-influenced atmospheric CO2, supporting these calculations. δ13C values of fossil tufas are also consistent with isotopic equilibrium with pre-industrial atmospheric CO2 at all shoreline elevations. This indicates that the 14C reservoir effect for this material is negligible. Clumped isotope (Δ47) results indicate shorezone tufas record mean annual lake temperature. Modern (average 13 ± 2 °C) and 18 ka BP-age tufas (average 6 ± 2 °C) have significantly different temperatures consistent with mean annual temperature lowering of 7 ± 3 °C (1 SE) under full glacial conditions. For shorezone tufas and other lake carbonates, including spring mounds, mollusk shells, and ostracod tests, overall δ13C and δ18O values co-vary according to the relative contribution of spring and lacustrine end member DIC and water compositions in the drainage system, but specific isotope values depend strongly upon sample context and are not well correlated with past lake depth. This contrasts with the interpretation that carbonate

  4. Stable C, O and clumped isotope systematics and 14C geochronology of carbonates from the Quaternary Chewaucan closed-basin lake system, Great Basin, USA: Implications for paleoenvironmental reconstructions using carbonates

    USGS Publications Warehouse

    Hudson, Adam; Quade, Jay; Ali, Guleed; Boyle, Douglas P.; Bassett, Scott; Huntington, Katharine W.; De los Santos, Marie G.; Cohen, Andrew S.; Lin, Ke; Wang, Xiangfeng

    2017-01-01

    Isotopic compositions of lacustrine carbonates are commonly used for dating and paleoenvironmental reconstructions. Here we use carbonate δ13C and δ18O, clumped (Δ47), and 14C compositions to better understand the carbonate isotope system in closed-basin lakes and trace the paleohydrologic and temperature evolution in the Chewaucan closed-basin lake system, northern Great Basin, USA, over the Last Glacial/Holocene transition. We focus on shorezone tufas to establish that they form in isotopic equilibrium with lake water and DIC, they can be dated reliably using 14C, and their clumped isotope composition can be used to reconstruct past lake temperature. Calculations of the DIC budget and reservoir age for the lake indicate residence time is short, and dominated by exchange with atmospheric CO2 at all past lake levels. Modern lake DIC and shorezone tufas yield δ13C and 14C values consistent with isotopic equilibrium with recent fossil fuel and bomb-influenced atmospheric CO2, supporting these calculations. δ13C values of fossil tufas are also consistent with isotopic equilibrium with pre-industrial atmospheric CO2 at all shoreline elevations. This indicates that the 14C reservoir effect for this material is negligible. Clumped isotope (Δ47) results indicate shorezone tufas record mean annual lake temperature. Modern (average 13 ± 2 °C) and 18 ka BP-age tufas (average 6 ± 2 °C) have significantly different temperatures consistent with mean annual temperature lowering of 7 ± 3 °C (1 SE) under full glacial conditions. For shorezone tufas and other lake carbonates, including spring mounds, mollusk shells, and ostracod tests, overall δ13C and δ18O values co-vary according to the relative contribution of spring and lacustrine end member DIC and water compositions in the drainage system, but specific isotope values depend strongly upon sample context and are not well correlated with past lake depth. This contrasts with the interpretation that carbonate

  5. Seismic architecture and lithofacies of turbidites in Lake Mead (Arizona and Nevada, U.S.A.), an analogue for topographically complex basins

    USGS Publications Warehouse

    Twichell, D.C.; Cross, V.A.; Hanson, A.D.; Buck, B.J.; Zybala, J.G.; Rudin, M.J.

    2005-01-01

    Turbidites, which have accumulated in Lake Mead since completion of the Hoover Dam in 1935, have been mapped using high-resolution seismic and coring techniques. This lake is an exceptional natural laboratory for studying fine-grained turbidite systems in complex topographic settings. The lake comprises four relatively broad basins separated by narrow canyons, and turbidity currents run the full length of the lake. The mean grain size of turbidites is mostly coarse silt, and the sand content decreases from 11-30% in beds in the easternmost basin nearest the source to 3-14% in the central basins to 1-2% in the most distal basin. Regionally, the seismic amplitude mimics the core results and decreases away from the source. The facies and morphology of the sediment surface varies between basins and suggests a regional progression from higher-energy and possibly channelized flows in the easternmost basin to unchannelized flows in the central two basins to unchannelized flows that are ponded by the Hoover Dam in the westernmost basin. At the local scale, turbidites are nearly flat-lying in the central two basins, but here the morphology of the basin walls strongly affects the distribution of facies. One of the two basins is relatively narrow, and in sinuous sections reflection amplitude increases toward the outsides of meanders. Where a narrow canyon debouches into a broad basin, reflection amplitude decreases radially away from the canyon mouth and forms a fan-like deposit. The fine-grained nature of the turbidites in the most distal basin and the fact that reflections drape the underlying pre-impoundment surface suggest ponding here. The progression from ponding in the most distal basin to possibly channelized flows in the most proximal basin shows in plan view a progression similar to the stratigraphic progression documented in several minibasins in the Gulf of Mexico. Copyright ?? 2005, SEPM (Society for Sedimentary Geology).

  6. Lumped parameter, isotopic model simulations of closed-basin lake response to drought in the Pacific Northwest and implications for lake sediment oxygen isotope records.

    NASA Astrophysics Data System (ADS)

    Steinman, B. A.; Rosenmeier, M.; Abbott, M.

    2008-12-01

    The economy of the Pacific Northwest relies heavily on water resources from the drought-prone Columbia River and its tributaries, as well as the many lakes and reservoirs of the region. Proper management of these water resources requires a thorough understanding of local drought histories that extends well beyond the instrumental record of the twentieth century, a time frame too short to capture the full range of drought variability in the Pacific Northwest. Here we present a lumped parameter, mass-balance model that provides insight into the influence of hydroclimatological changes on two small, closed-basin systems located in north- central Washington. Steady state model simulations of lake water oxygen isotope ratios using modern climate and catchment parameter datasets demonstrate a strong sensitivity to both the amount and timing of precipitation, and to changes in summertime relative humidity, particularly at annual and decadal time scales. Model tests also suggest that basin hypsography can have a significant impact on lake water oxygen isotope variations, largely through surface area to volume and consequent evaporative flux to volume ratio changes in response to drought and pluvial sequences. Additional simulations using input parameters derived from both on-site and National Climatic Data Center historical climate datasets accurately approximate three years of continuous lake observations (seasonal water sampling and continuous lake level monitoring) and twentieth century oxygen isotope ratios in sediment core authigenic carbonate recovered from the lakes. Results from these model simulations suggest that small, closed-basin lakes in north-central Washington are highly sensitive to changes in the drought-related climate variables, and that long (8000 year), high resolution records of quantitative changes in precipitation and evaporation are obtainable from sediment cores recovered from water bodies of the Pacific Northwest.

  7. Ecological health of river basins in forested regions of eastern Washington and Oregon.

    Treesearch

    Robert C. Wissmar; Jeanette E. Smith; Bruce A. McIntosh; Hiram W. Li; Gordon H. Reeves; James R. Sedell

    1994-01-01

    A retrospective examination of the history of the cumulative influences of past land and water uses on the ecological health of select river basins in forest regions of eastern Washington and Oregon indicates the loss of fish and riparian habitat diversity and quality since the 19th century. A physiographic framework of the eastern Washington and Oregon in terms of...

  8. Estimate of ground water in storage in the Great Lakes basin, United States, 2006

    USGS Publications Warehouse

    Coon, William F.; Sheets, Rodney A.

    2006-01-01

    Hydrogeologic data from Regional Aquifer System Analyses (RASA) studies by the U.S. Geological Survey in the Great Lakes Basin, United States, during 1978-95, were compiled and used to estimate the total volume of water that is stored in the many aquifers of the basin. These studies focused on six regional aquifer systems: the Cambrian-Ordovician aquifer system in Wisconsin, Illinois, and Indiana; the Silurian- Devonian aquifers in Wisconsin, Michigan, Illinois, Indiana, and Ohio; the surficial aquifer system (aquifers of alluvial and glacial origin) found throughout the Great Lakes Basin; and the Pennsylvanian sandstone and carbonate-rock aquifers and the Mississippian sandstone aquifer in Michigan. Except for the surficial aquifers, all of these aquifer systems are capable of yielding substantial quantities of water and are not small aquifers with only local importance. Individual surficial aquifers, although small in comparison to the bedrock aquifers, collectively represent large potential sources of ground water and therefore have been treated as a regional system. Summation of ground-water volumes in the many regional aquifers of the basin indicates that about 1,340 cubic miles of water is in storage; of this, about 984 cubic miles is considered freshwater (that is, water with dissolved-solids concentration less than 1,000 mg/L). These volumes should not be interpreted as available in their entirety to meet water-supply needs; complete dewatering of any aquifer is environmentally undesirable. The amount of water that is considered available on the basis of water quality and environmental, economic, and legal constraints has not been determined. The effect of heavy pumping in the Chicago, Ill., and Milwaukee, Wis., areas, which has caused the regional ground-water divide in the Cambrian-Ordovician aquifer system to shift westward, has been included in the above estimates. This shift in the ground-water divide has increased the amount of water in storage in the

  9. Fugitive dust emissions from paved road travel in the Lake Tahoe basin.

    PubMed

    Zhu, Dongzi; Kuhns, Hampden D; Brown, Scott; Gillies, John A; Etyemezian, Vicken; Gertler, Alan W

    2009-10-01

    The clarity of water in Lake Tahoe has declined substantially over the past 40 yr. Causes of the degradation include nitrogen and phosphorous fertilization of the lake waters and increasing amounts of inorganic fine sediment that can scatter light. Atmospheric deposition is a major source of fine sediment. A year-round monitoring study of road dust emissions around the lake was completed in 2007 using the Testing Re-entrained Aerosol Kinetic Emissions from Roads (TRAKER) system developed at the Desert Research Institute (DRI). Results of this study found that, compared with the summer season, road dust emissions increased by a factor of 5 in winter, on average, and about a factor of 10 when traction control material was applied to the roads after snow events. For winter and summer, road dust emission factors (grams coarse particulate matter [PM10] per vehicle kilometer traveled [g/vkt]) showed a decreasing trend with the travel speed of the road. The highest emission factors were observed on very low traffic volume roads on the west side of the lake. These roads were composed of either a 3/8-in. gravel material or had degraded asphalt. The principle factors influencing road dust emissions in the basin are season, vehicle speed (or road type), road condition, road grade, and proximity to other high-emitting roads. Combined with a traffic volume model, an analysis of the total emissions from the road sections surveyed indicated that urban areas (in particular South Lake Tahoe) had the highest emitting roads in the basin.

  10. Dynamics of the lakes in the middle and lower reaches of the Yangtze River basin, China, since late nineteenth century.

    PubMed

    Cui, Lijuan; Gao, Changjun; Zhao, Xinsheng; Ma, Qiongfang; Zhang, Manyin; Li, Wei; Song, Hongtao; Wang, Yifei; Li, Shengnan; Zhang, Yan

    2013-05-01

    The middle and lower reaches of the Yangtze River basin have the most representative and largest concentration of freshwater lakes in China. However, the size and number of these lakes have changed considerably over the past century due to the natural and anthropogenic impact. The lakes, larger than 10 km(2) in size, were chosen from relief maps and remotely sensed images in 1875, 1950, 1970, 1990, 2000, and 2008 to study the dynamics of lakes in the middle and lower reaches of the Yangtze River basin and to examine the causes and consequences of these changes. Results indicated that there was a dramatic reduction in lake areas, which decreased by 7,841.2 km(2) (42.64 %) during the study period (1875-2008), and the number of lakes in this region changed moderately. Meanwhile, a large number of lakes in the middle and lower reaches of the Yangtze River basin were directly converted into paddy fields, ponds, building lands, or other land-use types over the study period. Therefore, all kinds of lake reclamation should be identified as the major driving factors for the loss of lake in this region. Furthermore, flooding, soil erosion, and sedimentation were also the main factors which triggered lake changes in different periods. Some wetland conservation and restoration projects have been implemented since the 1970s, but they have not reversed the lake degradation. These findings were of great importance to managers involved in making policy for the conservation of lake ecosystems and the utilization of lake resources.

  11. Thermal Maturity of Pennsylvanian Coals and Coaly Shales, Eastern Shelf and Fort Worth Basin, Texas

    USGS Publications Warehouse

    Hackley, Paul C.; Guevara, Edgar H.; Hentz, Tucker F.; Hook, Robert W.

    2007-01-01

    The U.S. Geological Survey and the Texas Bureau of Economic Geology are engaged in an ongoing collaborative study to characterize the organic composition and thermal maturity of Upper Paleozoic coal-bearing strata from the Eastern Shelf of the Midland basin and from the Fort Worth basin, north-central Texas. Data derived from this study will have application to a better understanding of the potential for coalbed gas resources in the region. This is an important effort in that unconventional resources such as coalbed gas are expected to satisfy an increasingly greater component of United States and world natural gas demand in coming decades. In addition, successful coalbed gas production from equivalent strata in the Kerr basin of southern Texas and from equivalent strata elsewhere in the United States suggests that a closer examination of the potential for coalbed gas resources in north-central Texas is warranted. This report presents thermal maturity data for shallow (<2,000 ft; <610 m) coal and coaly shale cuttings, core, and outcrop samples from the Middle-Upper Pennsylvanian Strawn, Canyon, and Cisco Groups from the Eastern Shelf of the Midland basin. Data for Lower Pennsylvanian Atoka Group strata from deeper wells (5,400 ft; 1,645 m) in the western part of the Fort Worth basin also are included herein. The data indicate that the maturity of some Pennsylvanian coal and coaly shale samples is sufficient to support thermogenic coalbed gas generation on the Eastern Shelf and in the western Fort Worth basin.

  12. Characterization of rainfall-runoff response and estimation of the effect of wetland restoration on runoff, Heron Lake Basin, southwestern Minnesota, 1991-97

    USGS Publications Warehouse

    Jones, Perry M.; Winterstein, Thomas A.

    2000-01-01

    The U.S. Geological Survey (USGS), in cooperation with the Minnesota Department of Natural Resources and the Heron Lake Watershed District, conducted a study to characterize the rainfall-runoff response and to examine the effects of wetland restoration on the rainfall-runoff response within the Heron Lake Basin in southwestern Minnesota. About 93 percent of the land cover in the Heron Lake Basin consists of agricultural lands, consisting almost entirely of row crops, with less than one percent consisting of wetlands. The Hydrological Simulation Program – Fortran (HSPF), Version 10, was calibrated to continuous discharge data and used to characterize rainfall-runoff responses in the Heron Lake Basin between May 1991 and August 1997. Simulation of the Heron Lake Basin was done as a two-step process: (1) simulations of five small subbasins using data from August 1995 through August 1997, and (2) simulations of the two large basins, Jack and Okabena Creek Basins, using data from May 1991 through September 1996. Simulations of the five small subbasins was done to determine basin parameters for the land segments and assess rainfall-runoff response variability in the basin. Simulations of the two larger basins were done to verify the basin parameters and assess rainfall-runoff responses over a larger area and for a longer time period. Best-fit calibrations of the five subbasin simulations indicate that the rainfall-runoff response is uniform throughout the Heron Lake Basin, and 48 percent of the total rainfall for storms becomes direct (surface and interflow) runoff. Rainfall-runoff response variations result from variations in the distribution, intensity, timing, and duration of rainfall; soil moisture; evapotranspiration rates; and the presence of lakes in the basin. In the spring, the amount and distribution of rainfall tends to govern the runoff response. High evapotranspiration rates in the summer result in a depletion of moisture from the soils, substantially

  13. Sensitivity of the East African rift lakes to climate variability

    NASA Astrophysics Data System (ADS)

    Olaka, L.; Trauth, M. H.

    2009-04-01

    Lakes in the East African Rift have provided excellent proxies to reconstruct past climate changes in the low latitudes. The lakes occupy volcano-tectonic depressions with highly variable climate and hydrological setting, that present a good opportunity to study the climatic and hydrogeological influences on the lake water budget. Previous studies have used lake floor sediments to establish the sensitivity of the East African rift lakes. This study focuses on geomorphology and climate to offer additional or alternative record of lake history that are key to quantifying sensitivity of these lakes as archives to external and internal climatic forcings. By using the published Holocene lake areas and levels, we analyze twelve lakes on the eastern arm of the East African rift; Ziway, Awassa, Turkana, Suguta, Baringo, Nakuru, Elmenteita, Naivasha, Natron, Manyara and compare with Lake Victoria, that occupies the plateau between the east and the western arms of the rift. Using the SRTM data, Hypsometric (area-altitude) analysis has been used to compare the lake basins between latitude 80 North and 30 South. The mean elevation for the lakes, is between 524 and 2262 meters above sea level, the lakes' hypsometric integrals (HI), a measure of landmass volume above the reference plane, vary from 0.31 to 0.76. The aridity index (Ai), defined as Precipitation/ Evapotranspiration, quantifies the water available to a lake, it encompasses land cover and climatic effects. It is lowest (arid) in the basin between the Ethiopian rift and the Kenyan rift and at the southern termination of the Kenyan Rift in the catchments of lake Turkana, Suguta, Baringo and Manyara with values of 0.55, 0.43, 0.43 and 0.5 respectively. And it is highest (wet) in the catchments of, Ziway, Awassa, Nakuru and Naivasha as 1.33,1.03 and 1.2 respectively, which occupy the highest points of the rift. Lake Victoria has an index of 1.42 the highest of these lakes and receives a high precipitation. We use a

  14. Levels of Plant Available Phosphorus in Agricultural Soils in the Lake Erie Drainage Basin.

    DTIC Science & Technology

    1977-12-01

    total P tributary load to Lake Erie is in the form of Tsediment-P and most of the sediment -P is of surficial soil origin. Total P load can be related...extremely high ranges can be attributed to 1) and 2) above. Lake Erie counties in Ontario were identified (Figure 3 ) and published reports of the...M-I -28- -tq 𔃾 way.’ .*..... . .. .. ... oi 111 1111; l -29- Table 8 Available-P in Ontario soils in Lake Erie Basin counties Available*-P (ug/g

  15. Assessment of the Great Lakes Marine Renewable Energy Resources: Characterizing Lake Erie Surge, Seiche and Waves

    NASA Astrophysics Data System (ADS)

    Farhadzadeh, A.; Hashemi, M. R.

    2016-02-01

    Lake Erie, the fourth largest in surface area, smallest in volume and shallowest among the Great Lakes is approximately 400 km long and 90 km wide. Short term lake level variations are due to storm surge generated by high winds and moving pressure systems over the lake mainly in the southwest-northeast direction, along the lakes longitudinal axis. The historical wave data from three active offshore buoys shows that significant wave height can exceed 5 m in the eastern and central basins. The long-term lake level data show that storm surge can reach up to 3 m in eastern Lake Erie. Owing its shallow depth, Lake Erie frequently experiences seiching motions, the low frequency oscillations that are initiated by storm surge. The seiches whose first mode of oscillations has a period of nearly 14.2 hours can last from several hours to days. In this study, the Lake Erie potential for power generation, primarily using storm surge and seiche and also waves are assessed. Given the cyclic lake level variations due to storm-induced seiching, a concept similar to that of tidal range development is utilized to assess the potential of storm surge and seiche energy harvesting mechanisms for power generation. In addition, wave energy resources of the Lake is characterized -. To achieve these objectives, the following steps are taken : (1) Frequency of occurrence for extreme storm surge and wave events is determined using extreme value analysis such as Peak-Over-Threshold method for the long-term water level and wave data; (2) Spatial and temporal variations of wave height, storm surge and seiche are characterized. The characterization is carried out using the wave and storm surge outputs from numerical simulation of a number of historical extreme events. The coupled ADCIRC and SWAN model is utilized for the modeling; (3) Assessment of the potentials for marine renewable power generation in Lake Erie is made. The approach can be extended to the other lakes in the Great Lakes region.

  16. Modeling salinization and recovery of road salt-impacted lakes in temperate regions based on long-term monitoring of Lake George, New York (USA) and its drainage basin.

    PubMed

    Sutherland, J W; Norton, S A; Short, J W; Navitsky, C

    2018-05-08

    Road salt mitigates winter highway icing but accumulates in watershed soils and receiving waters, affecting soil chemistry and physical, biological, and ecological processes. Despite efforts to reduce salt loading in watersheds, accumulated cations and Cl - continue to impact tributaries and lakes, and the recovery process is not well understood. Lake George, New York (USA) is typical of many temperate lakes at risk for elevated Cl - concentrations from winter deicing; the lake salt concentration increased by ~3.4% year -1 since 1980. Here, we evaluated the ionic composition in Finkle Brook, a major watershed draining to Lake George, studied intermittently since 1970 and typical of other salt-impacted Lake George tributaries. Salt loading in the Lake George basin since the 1940s displaced cations from exchange sites in basin soils; these desorbed cations follow a simple ion-exchange model, with lower sodium and higher calcium, magnesium and potassium fluxes in runoff. Reduced salt application in the Finkle Brook watershed during the low-snow winter of 2015-2016 led to a 30-40% decline of Cl - and base cations in the tributary, implying a Cl - soil half-life of 1-2 years. We developed a conceptual model that describes cation behavior in runoff from a watershed that received road salt loading over a long period of time, and then recovery following reduced salt loading. Next, we developed a dynamic model estimating time to steady-state for Cl - in Lake George with road salt loading starting in 1940, calibrating the model with tributary runoff and lake chemistry data from 1970 and 1980, respectively, and forecasting Cl - concentrations in Lake George based on various scenarios of salt loading and soil retention of Cl - . Our Lake George models are readily adaptable to other temperate lakes with drainage basins where road salt is applied during freezing conditions and paved roads cover a portion of the watershed. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Mountain-front recharge along the eastern side of the Middle Rio Grande Basin, central New Mexico

    USGS Publications Warehouse

    Anderholm, Scott K.

    2000-01-01

    Mountain-front recharge, which generally occurs along the margins of alluvial basins, can be a large part of total recharge to the aquifer system in such basins. Mountain-front recharge occurs as the result of infiltration of flow from streams that have headwaters in the mountainous areas adjacent to alluvial basins and ground- water flow from the aquifers in the mountainous areas to the aquifer in the alluvial basin. This report presents estimates of mountain-front recharge to the basin-fill aquifer along the eastern side of the Middle Rio Grande Basin in central New Mexico. The basin is a structural feature that contains a large thickness of basin-fill deposits, which compose the main aquifer in the basin. The basin is bounded along the eastern side by mountains composed of crystalline rocks of Precambrian age and sedimentary rocks of Paleozoic age. Precipitation is much larger in the mountains than in the basin; many stream channels debouch from the mountainous area to the basin. Chloride-balance and water-yield regression methods were used to estimate mountain-front recharge. The chloride-balance method was used to calculate a chloride balance in watersheds in the mountainous areas along the eastern side of the basin (subareas). The source of chloride to these watersheds is bulk precipitation (wet and dry deposition). Chloride leaves these watersheds as mountain-front recharge. The water-yield regression method was used to determine the streamflow from the mountainous watersheds at the mountain front. This streamflow was assumed to be equal to mountain-front recharge because most of this streamflow infiltrates and recharges the basin-fill aquifer. Total mountain-front recharge along the eastern side of the Middle Rio Grande Basin was estimated to be about 11,000 acre- feet per year using the chloride-balance method and about 36,000 and 38,000 acre-feet per year using two water-yield regression equations. There was a large range in the recharge estimates in a

  18. Pleistocene hydrovolcanism in the Tule Lake Basin, N. E. California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lavine, A.

    1993-04-01

    The Prisoners Rock and The Peninsula tuff cones and the North Crater tuff ring, located in the Tule Lake Basin of northeastern California formed along a north-trending fissure approximately 270 ka when basaltic magma interacted with abundant groundwater or shallow lake water, resulting in phreatomagmatic eruptions. Diatomite inclusions in the tuff ring and correlations with the corresponding depth and diatoms in a drill core taken in the center of the basin, 2.5 km to the west of the cones, indicate shallow, marshy or shallow, alkaline-open conditions at Tule Lake around 270 ka. Deposits at Prisoners Rock and The Peninsula indicatemore » subaerial emplacement, which allowed the deposits to lithify with little erosion by the lake. Subsequent wave erosion caused undercutting and breaking off of large blocks along mainly north-trending fractures forming vertical cliff faces on the east and west sides of the cones. The cones are elongated north-south with a greater thickness of deposits on the north and northeast, probably due to prevailing southwesterly winds at the time of eruptions. Deposits of the tuff cones at Prisoners Rock and The Peninsula resulted from deep explosions caused by water-magma ratios of around 3:1. The deposits are mainly inversely graded planar surge beds, ranging in thickness from 5 to 30 cm, and grading from very fine ash to 2 cm-diameter accretionary lapilli. Emplacement by highly steam-saturated, poorly inflated pyroclastic surges is indicated by the abundance of accretionary lapilli, vesiculated tuffs, soft-sediment deformation structures, steep bedding angles (20 to 40 degrees) lack of structures beneath country rock inclusions, massive bedding, and cementation of the deposits by alteration of basaltic glass to calcite, zeolites, clays, and chlorite.« less

  19. Paleoecological studies at Lake Patzcuaro on the west-central Mexican Plateau and at Chalco in the basin of Mexico

    USGS Publications Warehouse

    Watts, W.A.; Bradbury, J.P.

    1982-01-01

    A 1520-cm sediment core from Lake Patzcuaro, Michoacan, Mexico, is 44,000 yr old at the base. All parts of the core have abundant pollen of Pinus (pine), Alnus (alder), and Quercus (oak) with frequent Abies (fir). The interval dated from 44,000 to 11,000 yr ago has a homogeneous flora characterized by abundant Juniperus (juniper) pollen and frequent Artemisia (sagebrush). It is believed to represent an appreciably drier and colder climate than at present. The Holocene at Lake Patzcuaro is characterized by a moderate increase in Pinus pollen and the loss of Juniperus pollen, as the modern type of climate succeeded. Alnus was abundant until about 5000 yr ago; its abrupt decrease with the first appearance of herbaceous weed pollen may reflect the cutting of lake-shore and stream-course alder communities for agricultural purposes, or it may simply reflect a drying tendency in the climate. Pollen of Zea (corn) appears at Lake Patzcuaro along with low peaks of chenopod and grass pollen at 3500 yr B.P. apparently recording a human population large enough to modify the natural environment, as well as the beginning of agriculture. A rich aquatic flora in this phase suggests eutrophication of the lake by slope erosion. In the most recent period corn is absent from the sediments, perhaps reflecting a change in agricultural practices. The environment changes at Lake Patzcuaro are similar to and correlate with those in the Cuenca de Mexico, where diatom stratigraphy from the Chalco basin indicates fluctuations in lake levels and lake chemistry in response to variations in available moisture. Before 10,000 yr ago climates there were cool and dry, and the Chalco basin was occupied by a shallow freshwater marsh that drained north to Lake Texcoco, where saline water accumulated by evaporation. Increases in effective moisture and possible melting of glaciers during the Holocene caused lake levels to rise throughout the Cuenca de Mexico, and Lake Texcoco flooded the Chalco basin with

  20. Spatiotemporal heterogeneity of antibiotic pollution and ecological risk assessment in Taihu Lake Basin, China.

    PubMed

    Xu, Zhaoan; Li, Tao; Bi, Jun; Wang, Ce

    2018-06-20

    Natural lakes play a vital role as receiving system of a cocktail of antibiotics (ABs) which have triggered a major health concern. The comparisons of ABs concentrations have been substantially implemented throughout the worldwide range. However, from lake management, the questions are not yet adequately solved: "when and where does the overall pollution level of ABs present more serious, and what AB species dominate". In this study, we detected 22 ABs in water column and sediment bottom in Taihu Lake Basin in January, April, July and October in 2017. Non-metric multi-dimensional scaling (NMDS) was applied to characterize spatiotemporal dissimilarity of ABs concentrations. Combined with a method of summed standardized concentrations, analysis of variance was applied to evaluate the overall pollution level of ABs at different sites and time periods, instead of, traditionally, a comparison of concentration. The results showed that 90% CI of Macrolides, Sulfonamides, Tetracyclines and Quinolones were 0.020-5.646, 0.040-7.887, 0.100-13.308 and 0.130-9.631 ng/L in water column, respectively; and 0.005-1.532, 0.002-0.120, 0.010-0.902 and 0.006-3.972 μg/kg in sediment, respectively. ABs concentrations approximately presented spatial homogeneity in the whole basin which included all main inflow rivers, outflow rivers and the lake body itself. Species composition was seasonally distinct and the overall pollution level was significantly lower in autumn. A critical body residue analysis showed that ABs concentrations presented a neglectable cumulative risk for fish species. This research added to the body of knowledge to develop pollution management strategies on point and non-point source loads for Taihu Lake Basin, and also the methodology provided reference for spatiotemporal characterization of dissolved pollutant in other water bodies. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Wisconsin's Lake Superior Basin Water Quality Study. Technical Report No. 1.

    ERIC Educational Resources Information Center

    Dickas, Albert B., Ed.

    This hydrologic study focuses on Wisconsin's Lake Superior Basin. Water is the most important natural resource in this area which includes Douglass, Bayfield, Ashland, and Iron counties. This study was undertaken to determine the character of this hydrologic base and to determine the effects and extent of man-influenced disturbances. It includes…

  2. Historical Changes in Precipitation and Streamflow in the U.S. Great Lakes Basin, 1915-2004

    USGS Publications Warehouse

    Hodgkins, Glenn A.; Dudley, Robert W.; Aichele, Stephen S.

    2007-01-01

    The total amount of water in the Great Lakes Basin is important in the long-term allocation of water to human use and to riparian and aquatic ecosystems. The water available during low-flow periods is particularly important because the short-term demands for the water can exceed the supply. Precipitation increased over the last 90 years in the U.S. Great Lakes Basin. Total annual precipitation increased by 4.5 inches from 1915 to 2004 (based on the average of 34 U.S. Historical Climatology Network stations), 3.5 inches from 1935 to 2004 (average of 34 stations), and 4.2 inches from 1955 to 2004 (average of 37 stations). Variability in precipitation from year to year was large, but there were numerous years with relatively low precipitation in the 1930s and 1960s and many years with relatively high precipitation after about 1970. Annual runoff increased over the last 50 years in the U.S. Great Lakes Basin. Mean annual runoff increased by 2.6 inches, based on the average of 43 U.S. Geological Survey streamflow-gaging stations from 1955 to 2004 on streams that were relatively free of human influences. Variability in runoff from year to year was large, but on average runoff was relatively low from 1955 to about 1970 and relatively high from about 1970 to 1995. Runoff increased at all stations in the basin except in and near the Upper Peninsula of Michigan, where relatively small runoff decreases occurred. Changes in annual runoff for the 16 stations with data from 1935 to 2004 were similar to the changes from 1955 to 2004. The mean annual 7-day low runoff (the lowest annual average of 7 consecutive days of runoff) increased from 1955 to 2004 by 0.048 cubic feet per second per square mile based on the average of 27 stations. Runoff in the U.S. Great Lakes Basin from 1955 to 2004 increased for all months except April. November through January and July precipitation and runoff increased by similar amounts. There were differences between precipitation and runoff changes

  3. Selected aquatic biological investigations in the Great Salt Lake basins, 1875-1998, National Water-Quality Assessment Program

    USGS Publications Warehouse

    Giddings, Elise M.P.; Stephens, Doyle W.

    1999-01-01

    This report summarizes previous investigations of aquatic biological communities, habitat, and contaminants in streams and selected large lakes within the Great Salt Lake Basins study unit as part of the U.S. Geological Survey?s National Water-Quality Assessment Program (NAWQA). The Great Salt Lake Basins study unit is one of 59 such units designed to characterize water quality through the examination of chemical, physical, and biological factors in surface and ground waters across the country. The data will be used to aid in the planning, collection, and analysis of biological information for the NAWQA study unit and to aid other researchers concerned with water quality of the study unit. A total of 234 investigations conducted during 1875-1998 are summarized in this report. The studies are grouped into three major subjects: (1) aquatic communities and habitat, (2) contamination of streambed sediments and biological tissues, and (3) lakes. The location and a general description of each study is listed. The majority of the studies focus on fish and macroinvertebrate communities. Studies of algal communities, aquatic habitat, riparian wetlands, and contamination of streambed sediment or biological tissues are less common. Areas close to the major population centers of Salt Lake City, Provo, and Logan, Utah, are generally well studied, but more rural areas and much of the Bear River Basin are lacking in detailed information, except for fish populations..

  4. Nutrient and sediment transport in streams of the Lake Tahoe basin: a 30-year retrospective

    Treesearch

    Robert Coats

    2004-01-01

    Lake Tahoe, widely renowned for its astounding clarity and deep blue color, lies at an elevation of 1,898 meters (m) in the central Sierra Nevada, astride the California-Nevada border. The volume of the lake is 156 cubic kilometers (km3), and its surface area is 501 square kilometers (km2), 38 percent of the total basin...

  5. Detailed cross sections of the Eocene Green River Formation along the north and east margins of the Piceance Basin, western Colorado, using measured sections and drill hole information

    USGS Publications Warehouse

    Johnson, Ronald C.

    2014-01-01

    This report presents two detailed cross sections of the Eocene Green River Formation in the Piceance Basin, northwestern Colorado, constructed from eight detailed measured sections, fourteen core holes, and two rotary holes. The Eocene Green River Formation in the Piceance Basin contains the world’s largest known oil shale deposit with more than 1.5 billion barrels of oil in place. It was deposited in Lake Uinta, a long-lived saline lake that once covered much of the Piceance Basin and the Uinta Basin to the west. The cross sections extend across the northern and eastern margins of the Piceance Basin and are intended to aid in correlating between surface sections and the subsurface in the basin.

  6. Constraining the physical properties of Titan's empty lake basins using nadir and off-nadir Cassini RADAR backscatter

    NASA Astrophysics Data System (ADS)

    Michaelides, R. J.; Hayes, A. G.; Mastrogiuseppe, M.; Zebker, H. A.; Farr, T. G.; Malaska, M. J.; Poggiali, V.; Mullen, J. P.

    2016-05-01

    We use repeat synthetic aperture radar (SAR) observations and complementary altimetry passes acquired by the Cassini spacecraft to study the scattering properties of Titan's empty lake basins. The best-fit coefficients from fitting SAR data to a quasi-specular plus diffuse backscatter model suggest that the bright basin floors have a higher dielectric constant, but similar facet-scale rms surface facet slopes, to surrounding terrain. Waveform analysis of altimetry returns reveals that nadir backscatter returns from basin floors are greater than nadir backscatter returns from basin surroundings and have narrower pulse widths. This suggests that floor deposits are structurally distinct from their surroundings, consistent with the interpretation that some of these basins may be filled with evaporitic and/or sedimentary deposits. Basin floor deposits also express a larger diffuse component to their backscatter, which is likely due to variations in subsurface structure or an increase in roughness at the wavelength scale (Hayes, A.G. et al. [2008]. Geophys. Res. Lett. 35, 9). We generate a high-resolution altimetry radargram of the T30 altimetry pass over an empty lake basin, with which we place geometric constraints on the basin's slopes, rim heights, and depth. Finally, the importance of these backscatter observations and geometric measurements for basin formation mechanisms is briefly discussed.

  7. Influence of land use and open-water wetlands on water quality in the Lake Wallenpaupack basin, northeastern Pennsylvania

    USGS Publications Warehouse

    Sams, James I.; Day, Rick L.; Stiteler, John M.

    1999-01-01

    The recreational value of Lake Wallenpaupack, along with its proximity to the New York and New Jersey metropolitan areas, has resulted in residential development in parts of the watershed. Some of these developments encroach on existing ponds, lakes, and wetlands and result in the conversion of forest land to residential areas. Sediment and nutrients in runoff from these residential areas, and inputs from agricultural areas, sewage treatment plants, and atmospheric deposition, have had a significant effect on water quality in Lake Wallenpaupack.Water-quality data collected in the Lake Wallenpaupack watershed from 1991 through 1994 indicate the influence of land use on water resources. Water samples collected from a forested undeveloped basin contained lower concentrations of suspended sediment, nitrogen, and total phosphorus than samples collected from the basins of Ariel Creek and Purdy Creek that drain areas having mixed land use with residential developments. Sediment yields were three to four times higher in the developed basins of Purdy and Ariel Creeks compared to the forested undeveloped basin. Annual yields for total nitrogen for Ariel Creek and Purdy Creek were between three to five times greater than yields from the forested basin. For the 1993 water year, the annual yield for dissolved nitrate plus nitrite (as nitrogen) from Ariel Creek Basin was 1,410 pounds per square mile, or about 60 times greater than the 24 pounds per square mile from the undeveloped basin. The total-phosphorus yield from the Ariel Creek Basin was 216 pounds per square mile for the 1994 water year. This was about three times greater than the 74 pounds per square mile from the forested basin. The total-phosphorus yield for the Purdy Creek Basin was 188 pounds per square mile for the 1994 water year, or 2.5 times greater than the yield from the undeveloped forested basin. Only slight differences were observed in dissolved orthophosphate phosphorus loadings between the basins. All

  8. Hydrologic and land-cover features of the Caloosahatchee River Basin, Lake Okeechobee to Franklin Lock, Florida

    USGS Publications Warehouse

    LaRose, Henry R.; McPherson, Benjamin F.

    1980-01-01

    The freshwater part of the Caloosahatchee River basin, Fla., from Franklin Lock to Lake Okeechobee, is shown at a scale of 1 inch equals 1 mile on an aerial photomosaic, dated January 1979. The basin is divided into 16 subbasins, and the land cover and land use in each subbasin are given. The basin is predominantly rangeland and agricultural land. Surface-water flow in the basin is largely controlled. Some selected data on water quality are given. (USGS)

  9. Spatial changes of the evaporation/inflow ratio of lake water deduced from surface water isotopes in Bangongcuo, western Tibet

    NASA Astrophysics Data System (ADS)

    Wen, R.; Tian, L.; Weng, Y.; Qu, D.

    2013-12-01

    Oxygen isotope analysis provides a practical approach to understand the regional hydrologic cycle and to reconstruct the paleoclimate and paleoenvironment from lacustrine sediment. The large number of inland lakes on the northern part of the Tibetan Plateau provides the opportunity for this work, and an understanding of the isotope variation of the lake water in the water cycle is vital for this purpose. A water isotope sampling network was set up in the Banggongcuo Lake basin in western Tibet in 2009 that measured precipitation, lake water, and river water. Two years of collecting isotope data, together with AWS observations at the Ngari station in the basin, allowed for a study of lake water isotope variations in the water cycle in narrow Banggongcuo Lake. Observations showed much higher water δ18O in the closed lake due to the strong evaporation fractionation process when compared with local precipitation. An obvious spatial change of lake water δ18O was also found, varying from about -4.9‰ in the east to about +0.9‰ in the west. This spatial change is largely due to the fact that the main river water input to the lake is on the eastern part of the lake, while the lake water evaporates out gradually westward. This phenomenon also matches the spatial change of lake water chemical components. We simulate the gradual evaporation of the lake water using an isotope evaporation fractionation model, in an effort to quantitatively estimate the E/I ratio (evaporation to total lake water inflow) in different parts of the lake. From the observation lake water δ18O, we estimate that the E/I ratio is about 42~60% in the eastern part of the lake and increases to 76~87% in the western part.

  10. Late Pleistocene and Early Holocene lake-level fluctuations in the Lahontan Basin, Nevada: Implications for the distribution of archaeological sites

    USGS Publications Warehouse

    Adams, K.D.; Goebel, Thomas; Graf, K.; Smith, G.M.; Camp, A.J.; Briggs, R.W.; Rhode, D.

    2008-01-01

    The Great Basin of the western U.S. contains a rich record of late Pleistocene and Holocene lake-level fluctuations as well as an extensive record of human occupation during the same time frame. We compare spatial-temporal relationships between these records in the Lahontan basin to consider whether lake-level fluctuations across the Pleistocene-Holocene transition controlled distribution of archaeological sites. We use the reasonably well-dated archaeological record from caves and rockshelters as well as results from new pedestrian surveys to investigate this problem. Although lake levels probably reached maximum elevations of about 1230-1235 m in the different subbasins of Lahontan during the Younger Dryas (YD) period, the duration that the lakes occupied the highest levels was brief Paleoindian and early Archaic archaeological sites are concentrated on somewhat lower and slightly younger shorelines (???1220-1225 in) that also date from the Younger Dryas period. This study suggests that Paleoindians often concentrated their activities adjacent to large lakes and wetland resources soon after they first entered the Great Basin. ?? 2008 Wiley Periodicals, Inc.

  11. Analysis of point source pollution and water environmental quality variation trends in the Nansi Lake basin from 2002 to 2012.

    PubMed

    Wang, Weiliang; Liu, Xiaohui; Wang, Yufan; Guo, Xiaochun; Lu, Shaoyong

    2016-03-01

    Based on the data analysis of the water environmental quality and economic development from 2002 to 2012 in the Nansi Lake basin, the correlation and change between the water environmental quality and economic development were studied. Results showed that the GDP and wastewater emissions of point source in the Nansi Lake basin had an average annual growth of 7.30 and 7.68 %, respectively, from 2002 to 2012. The emissions of chemical oxygen demand (COD) and ammonia nitrogen (NH3-N) had the average annual decrease of 7.69 and 6.79 % in 2012, respectively, compared to 2002. Basin water quality overall improved, reaching the Class III of the "Environmental quality standards for surface water (GB3838-2002)," in which the main reason was that sewage treatment rate increased gradually and was above 90 % in 2012 (an increase of 10 % compared to 2002) with the progress of pollution abatement technology and the implementation of relevant policies and regulations. The contribution of water environmental pollution was analyzed from related cities (Ji'ning, Zaozhuang, Heze). Results indicated that Ji'ning had the largest contribution to water pollution of the Nansi Lake basin, and the pollutant from domestic sources accounted for a higher percentage compared to industrial sources. The wastewater, COD, and NH3-N mainly came from mining and washing of coal, manufacture of raw chemical materials and chemical products, papermaking industry, and food processing industry. According to the water pollution characteristics of the Nansi Lake basin, the basin pollution treatment strategy and prevention and treatment system were dissected to provide a scientific basis for prevention and control of lakeside point source pollution along the Nansi Lake.

  12. Early Growth of Eastern White Pine Seed Sources in the Lake States

    Treesearch

    James P. King; Hans Nienstaedt

    1968-01-01

    In 5-year-old test plantations in Minnesota, Wisconsin, and Michigan, eastern white pine seedlings from seed sources that are fast-growing in one location are not necessarily fast-growing in other locations. Until more intensive studies of the Lake States seed sources can be made, foresters should confine collection of white pine seed to local stands.

  13. Investigation of avian influenza infections in wild birds, poultry and humans in Eastern Dongting Lake, China.

    PubMed

    Shi, Jinghong; Gao, Lidong; Zhu, Yun; Chen, Tao; Liu, Yunzhi; Dong, Libo; Liu, Fuqiang; Yang, Hao; Cai, Yahui; Yu, Mingdong; Yao, Yi; Xu, Cuilin; Xiao, Xiangming; Shu, Yuelong

    2014-01-01

    We investigated avian influenza infections in wild birds, poultry, and humans at Eastern Dongting Lake, China. We analyzed 6,621 environmental samples, including fresh fecal and water samples, from wild birds and domestic ducks that were collected from the Eastern Dongting Lake area from November 2011 to April 2012. We also conducted two cross-sectional serological studies in November 2011 and April 2012, with 1,050 serum samples collected from people exposed to wild birds and/or domestic ducks. Environmental samples were tested for the presence of avian influenza virus (AIV) using quantitative PCR assays and virus isolation techniques. Hemagglutination inhibition assays were used to detect antibodies against AIV H5N1, and microneutralization assays were used to confirm these results. Among the environmental samples from wild birds and domestic ducks, AIV prevalence was 5.19 and 5.32%, respectively. We isolated 39 and 5 AIVs from the fecal samples of wild birds and domestic ducks, respectively. Our analysis indicated 12 subtypes of AIV were present, suggesting that wild birds in the Eastern Dongting Lake area carried a diverse array of AIVs with low pathogenicity. We were unable to detect any antibodies against AIV H5N1 in humans, suggesting that human infection with H5N1 was rare in this region.

  14. Environments and trypanosomiasis risks for early herders in the later Holocene of the Lake Victoria basin, Kenya.

    PubMed

    Chritz, Kendra L; Marshall, Fiona B; Zagal, M Esperanza; Kirera, Francis; Cerling, Thure E

    2015-03-24

    Specialized pastoralism developed ∼3 kya among Pastoral Neolithic Elmenteitan herders in eastern Africa. During this time, a mosaic of hunters and herders using diverse economic strategies flourished in southern Kenya. It has been argued that the risk for trypanosomiasis (sleeping sickness), carried by tsetse flies in bushy environments, had a significant influence on pastoral diversification and migration out of eastern Africa toward southern Africa ∼2 kya. Elmenteitan levels at Gogo Falls (ca. 1.9-1.6 kya) preserve a unique faunal record, including wild mammalian herbivores, domestic cattle and caprines, fish, and birds. It has been suggested that a bushy/woodland habitat that harbored tsetse fly constrained production of domestic herds and resulted in subsistence diversification. Stable isotope analysis of herbivore tooth enamel (n = 86) from this site reveals, instead, extensive C4 grazing by both domesticates and the majority of wild herbivores. Integrated with other ecological proxies (pollen and leaf wax biomarkers), these data imply an abundance of C4 grasses in the Lake Victoria basin at this time, and thus little risk for tsetse-related barriers to specialized pastoralism. These data provide empirical evidence for the existence of a grassy corridor through which small groups of herders could have passed to reach southern Africa.

  15. Environments and trypanosomiasis risks for early herders in the later Holocene of the Lake Victoria basin, Kenya

    PubMed Central

    Chritz, Kendra L.; Marshall, Fiona B.; Zagal, M. Esperanza; Kirera, Francis; Cerling, Thure E.

    2015-01-01

    Specialized pastoralism developed ∼3 kya among Pastoral Neolithic Elmenteitan herders in eastern Africa. During this time, a mosaic of hunters and herders using diverse economic strategies flourished in southern Kenya. It has been argued that the risk for trypanosomiasis (sleeping sickness), carried by tsetse flies in bushy environments, had a significant influence on pastoral diversification and migration out of eastern Africa toward southern Africa ∼2 kya. Elmenteitan levels at Gogo Falls (ca. 1.9–1.6 kya) preserve a unique faunal record, including wild mammalian herbivores, domestic cattle and caprines, fish, and birds. It has been suggested that a bushy/woodland habitat that harbored tsetse fly constrained production of domestic herds and resulted in subsistence diversification. Stable isotope analysis of herbivore tooth enamel (n = 86) from this site reveals, instead, extensive C4 grazing by both domesticates and the majority of wild herbivores. Integrated with other ecological proxies (pollen and leaf wax biomarkers), these data imply an abundance of C4 grasses in the Lake Victoria basin at this time, and thus little risk for tsetse-related barriers to specialized pastoralism. These data provide empirical evidence for the existence of a grassy corridor through which small groups of herders could have passed to reach southern Africa. PMID:25775535

  16. Analysis, Evaluation and Measures to Reduce Environmental Risk within Watershed Areas of the Eastern Zauralye District Lakes

    NASA Astrophysics Data System (ADS)

    Rasskasova, N. S.; Bobylev, A. V.; Malaev, A. V.

    2017-11-01

    The authors have performed an analysis for the use of watershed areas of the lakes of the Eastern Zauralye district (the territory to the east of Ural) for national economic purposes. The analysis gave a possibility to assess the impact of watersheds depending on the applied technologies on the dump of various runoff into the reservoir waters. The watershed areas of all lakes have been found to be actively used as pastures, farmland and recreational resources. Some of the main sources of solid and liquid industrial waste are cattle farms and agricultural land using outdated equipment and technologies. The study of 26 km of the watershed line areas showed that pollutants (household garbage, fuels and lubricants) and organic substances (phosphorus and nitrogen) got into the waters of the reservoirs. The maximum runoff of solid and liquid waste into the waters of the lakes happens in summer which leads to increased concentrations of organic substances, an increase in productivity of alga and higher aquatic flora determining the degree of eutrophication and trophy in the reservoirs. The average annual trophic status of TSI lakes of the Eastern Zauralye district is 56 which corresponds to the typical phase of eutrophy. The reduced transparency of lakes is also the evidence of an increase in biological productivity of reservoirs, their eutrophication and, as a result, the water quality deterioration. The intensive eutrophication of reservoirs, in its turn, most significantly affects the concentration of the ammonium form of nitrogen, total phosphorus and total nitrogen, increase in pH and deterioration of oxygen condition. The authors have developed various activities to reduce a technogenic risk in the watershed areas of the lakes in the Eastern Zauralye district which can be applied to other areas using the analogy method.

  17. Paleohydrologic record of spring deposits in and around Pleistocene pluvial Lake Tecopa, southeastern California

    USGS Publications Warehouse

    Nelson, Stephen T.; Karlsson, Haraldur R.; Paces, James B.; Tingey, David G.; Ward, Stephen; Peters, Mark T.

    2001-01-01

    Tufa (spring) deposits in the Tecopa basin, California, reflect the response of arid groundwater regimes to wet climate episodes. Two types of tufa are represented, informally defined as (1) an easily disaggregated, fine-grained mixture of calcite and quartz (friable tufa) in the southwest Tecopa Valley, and (2) hard, vuggy micrite, laminated carbonate, and carbonate-cemented sands and gravels (indurated tufa) along the eastern margin of Lake Tecopa. High δ18OVSMOW (Vienna standard mean ocean water) water values, field relations, and the texture of friable tufa suggest rapid nucleation of calcite as subaqueous, fault- controlled groundwater discharge mixed with high-pH, hypersaline lake water. Variations between δ18OVSMOW and δ13CPDB (Peedee belemnite) values relative to other closed basin lakes such as the Great Salt Lake and Lake Lahontan suggest similarities in climatic and hydrologic settings. Indurated tufa, also fault controlled, formed mounds and associated feeder systems as well as stratabound carbonate-cemented ledges. Both deposits represent discharge of deeply circulated, high total dissolved solids, and high pCO2 regional groundwater with kinetic enrichments of as much as several per mil for δ18OVSMOW values. Field relations show that indurated tufa represents episodic discharge, and U-series ages imply that discharge was correlated with cold, wet climate episodes. In response to both the breaching of the Tecopa basin and a modern arid climate, most discharge has changed from fault-controlled locations near basin margins to topographic lows of the Amargosa River drainage at elevations 30–130 m lower. Because of episodic climate change, spring flows may have relocated from basin margin to basin center multiple times.

  18. Multi-Scale Simulations of Past and Future Projections of Hydrology in Lake Tahoe Basin, California-Nevada (Invited)

    NASA Astrophysics Data System (ADS)

    Niswonger, R. G.; Huntington, J. L.; Dettinger, M. D.; Rajagopal, S.; Gardner, M.; Morton, C. G.; Reeves, D. M.; Pohll, G. M.

    2013-12-01

    Water resources in the Tahoe basin are susceptible to long-term climate change and extreme events because it is a middle-altitude, snow-dominated basin that experiences large inter-annual climate variations. Lake Tahoe provides critical water supply for its basin and downstream populations, but changes in water supply are obscured by complex climatic and hydrologic gradients across the high relief, geologically complex basin. An integrated surface and groundwater model of the Lake Tahoe basin has been developed using GSFLOW to assess the effects of climate change and extreme events on surface and groundwater resources. Key hydrologic mechanisms are identified with this model that explains recent changes in water resources of the region. Critical vulnerabilities of regional water-supplies and hazards also were explored. Maintaining a balance between (a) accurate representation of spatial features (e.g., geology, streams, and topography) and hydrologic response (i.e., groundwater, stream, lake, and wetland flows and storages), and (b) computational efficiency, is a necessity for the desired model applications. Potential climatic influences on water resources are analyzed here in simulations of long-term water-availability and flood responses to selected 100-year climate-model projections. GSFLOW is also used to simulate a scenario depicting an especially extreme storm event that was constructed from a combination of two historical atmospheric-river storm events as part of the USGS MultiHazards Demonstration Project. Historical simulated groundwater levels, streamflow, wetlands, and lake levels compare well with measured values for a 30-year historical simulation period. Results are consistent for both small and large model grid cell sizes, due to the model's ability to represent water table altitude, streams, and other hydrologic features at the sub-grid scale. Simulated hydrologic responses are affected by climate change, where less groundwater resources will be

  19. Structural Constraints and Earthquake Recurrence Estimates for the West Tahoe-Dollar Point Fault, Lake Tahoe Basin, California

    NASA Astrophysics Data System (ADS)

    Maloney, J. M.; Driscoll, N. W.; Kent, G.; Brothers, D. S.; Baskin, R. L.; Babcock, J. M.; Noble, P. J.; Karlin, R. E.

    2011-12-01

    Previous work in the Lake Tahoe Basin (LTB), California, identified the West Tahoe-Dollar Point Fault (WTDPF) as the most hazardous fault in the region. Onshore and offshore geophysical mapping delineated three segments of the WTDPF extending along the western margin of the LTB. The rupture patterns between the three WTDPF segments remain poorly understood. Fallen Leaf Lake (FLL), Cascade Lake, and Emerald Bay are three sub-basins of the LTB, located south of Lake Tahoe, that provide an opportunity to image primary earthquake deformation along the WTDPF and associated landslide deposits. We present results from recent (June 2011) high-resolution seismic CHIRP surveys in FLL and Cascade Lake, as well as complete multibeam swath bathymetry coverage of FLL. Radiocarbon dates obtained from the new piston cores acquired in FLL provide age constraints on the older FLL slide deposits and build on and complement previous work that dated the most recent event (MRE) in Fallen Leaf Lake at ~4.1-4.5 k.y. BP. The CHIRP data beneath FLL image slide deposits that appear to correlate with contemporaneous slide deposits in Emerald Bay and Lake Tahoe. A major slide imaged in FLL CHIRP data is slightly younger than the Tsoyowata ash (7950-7730 cal yrs BP) identified in sediment cores and appears synchronous with a major Lake Tahoe slide deposit (7890-7190 cal yrs BP). The equivalent age of these slides suggests the penultimate earthquake on the WTDPF may have triggered them. If correct, we postulate a recurrence interval of ~3-4 k.y. These results suggest the FLL segment of the WTDPF is near its seismic recurrence cycle. Additionally, CHIRP profiles acquired in Cascade Lake image the WTDPF for the first time in this sub-basin, which is located near the transition zone between the FLL and Rubicon Point Sections of the WTDPF. We observe two fault-strands trending N45°W across southern Cascade Lake for ~450 m. The strands produce scarps of ~5 m and ~2.7 m, respectively, on the lake

  20. Gravity field over the Sea of Galilee: Evidence for a composite basin along a transform fault

    USGS Publications Warehouse

    Ben-Avraham, Z.; ten Brink, Uri S.; Bell, R.; Reznikov, M.

    1996-01-01

    The Sea of Galilee (Lake Kinneret) is located at the northern portion of the Kinneret-Bet Shean basin, in the northern Dead Sea transform. Three hundred kilometers of continuous marine gravity data were collected in the lake and integrated with land gravity data to a distance of more than 20 km around the lake. Analyses of the gravity data resulted in a free-air anomaly map, a variable density Bouguer anomaly map, and a horizontal first derivative map of the Bouguer anomaly. These maps, together with gravity models of profiles across the lake and the area south of it, were used to infer the geometry of the basins in this region and the main faults of the transform system. The Sea of Galilee can be divided into two units. The southern half is a pull-apart that extends to the Kinarot Valley, south of the lake, whereas the northern half was formed by rotational opening and transverse normal faults. The deepest part of the basinal area is located well south of the deepest bathymetric depression. This implies that the northeastern part of the lake, where the bathymetry is the deepest, is a young feature that is actively subsiding now. The pull-apart basin is almost symmetrical in the southern part of the lake and in the Kinarot Valley south of the lake. This suggests that the basin here is bounded by strike-slip faults on both sides. The eastern boundary fault extends to the northern part of the lake, while the western fault does not cross the northern part. The main factor controlling the structural complexity of this area is the interaction of the Dead Sea transform with a subperpendicular fault system and rotated blocks.

  1. Nutrient load summaries for major lakes and estuaries of the Eastern United States, 2002

    USGS Publications Warehouse

    Moorman, Michelle C.; Hoos, Anne B.; Bricker, Suzanne B.; Moore, Richard B.; García, Ana María; Ator, Scott W.

    2014-01-01

    Nutrient enrichment of lakes and estuaries across the Nation is widespread. Nutrient enrichment can stimulate excessive plant and algal growth and cause a number of undesirable effects that impair aquatic life and recreational activities and can also result in economic effects. Understanding the amount of nutrients entering lakes and estuaries, the physical characteristics affecting the nutrient processing within these receiving waterbodies, and the natural and manmade sources of nutrients is fundamental to the development of effective nutrient reduction strategies. To improve this understanding, sources and stream transport of nutrients to 255 major lakes and 64 estuaries in the Eastern United States were estimated using Spatially Referenced Regression on Watershed attributes (SPARROW) nutrient models.

  2. Digital Bathymetric Model of Mono Lake, California

    USGS Publications Warehouse

    Raumann, Christian G.; Stine, Scott; Evans, Alexander; Wilson, Jerry

    2002-01-01

    In 1986 and 1987, Pelagos Corporation of San Diego (now Racal Pelagos) undertook a bathymetric survey of Mono Lake in eastern California for the Los Angeles Department of Water and Power (DWP). The result of that survey was a series of maps at various scales and contour intervals. From these maps, the DWP hoped to predict consequences of the drop in lake level that resulted from their diversion of streams in the Mono Basin. No digital models, including shaded-relief and perspective-view renderings, were made from the data collected during the survey. With the permission of Pelagos Corporation and DWP, these data are used to produce a digital model of the floor of Mono Lake. The model was created using a geographic information system (GIS) to incorporate these data with new observations and measurements made in the field. This model should prove to be a valuable tool for enhanced visualization and analyses of the floor of Mono Lake.

  3. Wind-induced flow velocity effects on nutrient concentrations at Eastern Bay of Lake Taihu, China.

    PubMed

    Jalil, Abdul; Li, Yiping; Du, Wei; Wang, Jianwei; Gao, Xiaomeng; Wang, Wencai; Acharya, Kumud

    2017-07-01

    Shallow lakes are highly sensitive to respond internal nutrient loading due to wind-induced flow velocity effects. Wind-induced flow velocity effects on nutrient suspension were investigated at a long narrow bay of large shallow Lake Taihu, the third largest freshwater lake in China. Wind-induced reverse/compensation flow and consistent flow field probabilities at vertical column of the water were measured. The probabilities between the wind field and the flow velocities provided a strong correlation at the surface (80.6%) and the bottom (65.1%) layers of water profile. Vertical flow velocity profile analysis provided the evidence of delay response time to wind field at the bottom layer of lake water. Strong wind field generated by the west (W) and west-north-west (WNW) winds produced displaced water movements in opposite directions to the prevailing flow field. An exponential correlation was observed between the current velocities of the surface and the bottom layers while considering wind speed as a control factor. A linear model was developed to correlate the wind field-induced flow velocity impacts on nutrient concentration at the surface and bottom layers. Results showed that dominant wind directions (ENE, E, and ESE) had a maximum nutrient resuspension contribution (nutrient resuspension potential) of 34.7 and 43.6% at the surface and the bottom profile layers, respectively. Total suspended solids (TSS), total nitrogen (TN), and total phosphorus (TP) average concentrations were 6.38, 1.5, and 0.03 mg/L during our field experiment at Eastern Bay of Lake Taihu. Overall, wind-induced low-to-moderate hydrodynamic disturbances contributed more in nutrient resuspension at Eastern Bay of Lake Taihu. The present study can be used to understand the linkage between wind-induced flow velocities and nutrient concentrations for shallow lakes (with uniform morphology and deep margins) water quality management and to develop further models.

  4. Water quality of the Crescent River basin, Lake Clark National Park and Preserve, Alaska, 2003-2004

    USGS Publications Warehouse

    Brabets, Timothy P.; Ourso, Robert T.

    2006-01-01

    The U.S. Geological Survey and the National Park Service conducted a water-quality investigation of the Crescent River Basin in Lake Clark National Park and Preserve from May 2003 through September 2004. The Crescent River Basin was studied because it has a productive sockeye salmon run that is important to the Cook Inlet commercial fishing industry. Water-quality, biology, and limnology characteristics were assessed. Glacier-fed streams that flow into Crescent Lake transport suspended sediment that is trapped by the lake. Suspended sediment concentrations from the Lake Fork Crescent River (the outlet stream of Crescent Lake) were less than 10 milligrams per liter, indicating a high trapping efficiency of Crescent Lake. The North Fork Crescent River transports suspended sediment throughout its course and provides most of the suspended sediment to the main stem of the Crescent River downstream from the confluence of the Lake Fork Crescent River. Three locations on Crescent Lake were profiled during the summer of 2004. Turbidity profiles indicate sediment plumes within the water column at various times during the summer. Turbidity values are higher in June, reflecting the glacier-fed runoff into the lake. Lower values of turbidity in August and September indicate a decrease of suspended sediment entering Crescent Lake. The water type throughout the Crescent River Basin is calcium bicarbonate. Concentrations of nutrients, major ions, and dissolved organic carbon are low. Alkalinity concentrations are generally less than 20 milligrams per liter, indicating a low buffering capacity of these waters. Streambed sediments collected from three surface sites analyzed for trace elements indicated that copper concentrations at all sites were above proposed guidelines. However, copper concentrations are due to the local geology, not anthropogenic factors. Zooplankton samples from Crescent Lake indicated the main taxa are Cyclops sp., a Copepod, and within that taxa were a

  5. Organic petrology and geochemistry of mudrocks from the lacustrine Lucaogou Formation, Santanghu Basin, northwest China: Application to lake basin evolution

    USGS Publications Warehouse

    Hackley, Paul C.; Fishman, Neil; Wu, Tao; Baugher, Gregory

    2016-01-01

    Exploration for tight oil in the frontier Santanghu Basin of northwest China has resulted in recent commercial discoveries sourced from the lacustrine Upper Permian Lucaogou Formation, already considered a “world class source rock” in the Junggar Basin to the west. Here we apply an integrated analytical program to carbonate-dominated mudrocks from the Lucaogou Formation in Santanghu Basin to document the nature of organic matter (OM) in the context of an evolving lake system. The organic-rich samples (TOC 2.8–11.4 wt%; n = 10) were widely spaced from an ~ 200 m cored section, interpreted from textural and mineralogical evidence to document transition from a lower under-filled to an overlying balanced-filled lake. Organic matter is dominated by moderate to strongly fluorescent amorphous material with Type I geochemical signature (HI values 510–755; n = 10) occurring in a continuum from lamellar stringers, 10–20 μm thick, some ≥ 1 mm in length (possible microbial mat; preserved only in lower under-filled section) to finely-disseminated amorphous groundmass intimately intermixed with mineral matrix. Biomarkers for methanotrophs and photosynthetic cyanobacteria indicate a complex microbial consortium. A unicellular prasinophyte green alga(?), similar to Tasmanites in marine rocks, is present as discrete flattened discs 50–100 μm in diameter. Type III OM including vitrinite (some fluorescent) and inertinite also is abundant. Solid bitumen, indicating local kerogen conversion, fills voids and occurs throughout the cored section. Vitrinite reflectance values are 0.47–0.58%, consistent with strong OM fluorescence but may be “suppressed”. Other proxies, e.g., biomarker parameters, indicate the Lucaogou Formation is in the early oil window at this location. On average, slightly more amorphous OM and telalginite are present in the lower section, consistent with a shallow, stratified, saline environment with low sediment dilution. More

  6. Predicting geomorphic stability in low-order streams of the western Lake Superior basin

    EPA Science Inventory

    Width:depth ratios, entrenchment ratios, gradients, and median substrate particle sizes (D50s) were measured in 32 second and third order stream reaches in the western Lake Superior basin, and stream reaches were assigned a Rosgen geomorphic classification. Over 700 measurements ...

  7. Lake trout rehabilitation in Lake Huron

    USGS Publications Warehouse

    Eshenroder, Randy L.; Payne, N. Robert; Johnson, James E.; Bowen, Charles; Ebener, Mark P.

    1995-01-01

    Efforts to restore lake trout (Salvelinus namaycush) in Lake Huron after their collapse in the 1940s were underway in the early 1970s with completion of the first round of lampricide applications in tributary streams and the stocking of several genotypes. We assess results of rehabilitation and establish a historical basis for comparison by quantifying the catch of spawning lake trout from Michigan waters in 1929-1932. Sixty-eight percent of this catch occurred in northern waters (MH-1) and most of the rest (15%) was from remote reefs in the middle of the main basin. Sea lampreys (Petromyzon marinus) increased in the early 1980s in the main basin and depressed spawning populations of lake trout. This increase was especially severe in northern waters and appeared to be associated with untreated populations in the St. Marys River. Excessive commercial fishing stemming from unresolved treaty rights also contributed to loss of spawning fish in northern Michigan waters. Seneca-strain lake trout did not appear to be attacked by sea lampreys until they reached a size > 532 mm. At sizes > 632 mm, Seneca trout were 40-fold more abundant than the Marquette strain in matched-planting experiments. Natural reproduction past the fry stage has occurred in Thunder Bay and South Bay, but prospects for self-sustaining populations of lake trout in the main basin are poor because sea lampreys are too abundant, only one side of the basin is stocked, and stocking is deferred to allow commercial gillnetting in areas where most of the spawning occurred historically. Backcross lake trout, a lake trout x splake (s. Fontinalis x s. Namaycush) hybrid, did not reproduce in Georgian Bay, but this genotype is being replaced with pure-strain lake trout, whose early performance appears promising.

  8. Distribution and transportation of mercury from glacier to lake in the Qiangyong Glacier Basin, southern Tibetan Plateau, China.

    PubMed

    Sun, Shiwei; Kang, Shichang; Huang, Jie; Li, Chengding; Guo, Junming; Zhang, Qianggong; Sun, Xuejun; Tripathee, Lekhendra

    2016-06-01

    The Tibetan Plateau is home to the largest aggregate of glaciers outside the Polar Regions and is a source of fresh water to 1.4 billion people. Yet little is known about the transportation and cycling of Hg in high-elevation glacier basins on Tibetan Plateau. In this study, surface snow, glacier melting stream water and lake water samples were collected from the Qiangyong Glacier Basin. The spatiotemporal distribution and transportation of Hg from glacier to lake were investigated. Significant diurnal variations of dissolved Hg (DHg) concentrations were observed in the river water, with low concentrations in the morning (8:00am-14:00pm) and high concentrations in the afternoon (16:00pm-20:00pm). The DHg concentrations were exponentially correlated with runoff, which indicated that runoff was the dominant factor affecting DHg concentrations in the river water. Moreover, significant decreases of Hg were observed during transportation from glacier to lake. DHg adsorption onto particulates followed by the sedimentation of particulate-bound Hg (PHg) could be possible as an important Hg removal mechanism during the transportation process. Significant decreases in Hg concentrations were observed downstream of Xiao Qiangyong Lake, which indicated that the high-elevation lake system could significantly affect the distribution and transportation of Hg in the Qiangyong Glacier Basin. Copyright © 2016. Published by Elsevier B.V.

  9. Dynamics of floodplain lakes in the Upper Amazon Basin during the late Holocene

    NASA Astrophysics Data System (ADS)

    Quintana-Cobo, Isabel; Moreira-Turcq, Patricia; Cordeiro, Renato C.; Aniceto, Keila; Crave, Alain; Fraizy, Pascal; Moreira, Luciane S.; Duarte Contrera, Julia Maria de Aguiar; Turcq, Bruno

    2018-01-01

    To better understand the impact of channel migration processes and climate change on the depositional dynamics of floodplain lakes of the upper Amazon Basin during the late Holocene, we collected three sediment cores from floodplain lakes of the Ucayali River and one from the Marañón River. The cores were dated with 14C, radiographed and described. Bulk density, grain size analysis and total organic carbon (TOC) were determined. The results show that sedimentation in Ucayali floodplain lakes was marked by variations during the late Holocene, with periods of intense hydrodynamic energy and abrupt accumulations, a gap in the record between about 2870 and 690 cal yr BP, and periods of more lacustrine conditions. These changes in sedimentation were associated with variations in the river's influence related to changes in its meandering course (2870 cal yr BP) and a period of severe flooding between 3550 and 3000 cal yr BP. Lake Lagarto on the Marañón River floodplain exhibits a different sedimentary environment of low hydrodynamics with palm trees and macrophytes. Apparently, the lake has not experienced intense migration processes during the last 600 cal yr BP (base of the core). Nevertheless, the river sediment flux to the lake was important from 600 to 500 cal yr BP, although it decreased thereafter until the present. This decrease in the mineral accumulation rate indicates a decrease in river discharge since 500 cal yr BP, which coincides with precipitation records from the central Andes. In the upper part of the three Ucayali floodplain cores, a 30- to 250-cm-thick layer of reworked sediments has been deposited since 1950 AD (post-bomb). In Lake Carmen, this layer is associated with invasion of the lake by the levee of a migrating meander of the Ucayali. In Lakes Hubos and La Moringa, however, the river is still far away and the deposition must be interpreted as the result of extreme flooding. The beginning of the Ucayali meander migration is dated back to

  10. Water Availability and Use Pilot-A multiscale assessment in the U.S. Great Lakes Basin

    USGS Publications Warehouse

    Reeves, Howard W.

    2011-01-01

    Beginning in 2005, water availability and use were assessed for the U.S. part of the Great Lakes Basin through the Great Lakes Basin Pilot of a U.S. Geological Survey (USGS) national assessment of water availability and use. The goals of a national assessment of water availability and use are to clarify our understanding of water-availability status and trends and improve our ability to forecast the balance between water supply and demand for future economic and environmental uses. This report outlines possible approaches for full-scale implementation of such an assessment. As such, the focus of this study was on collecting, compiling, and analyzing a wide variety of data to define the storage and dynamics of water resources and quantify the human demands on water in the Great Lakes region. The study focused on multiple spatial and temporal scales to highlight not only the abundant regional availability of water but also the potential for local shortages or conflicts over water. Regional studies provided a framework for understanding water resources in the basin. Subregional studies directed attention to varied aspects of the water-resources system that would have been difficult to assess for the whole region because of either data limitations or time limitations for the project. The study of local issues and concerns was motivated by regional discussions that led to recent legislative action between the Great Lakes States and regional cooperation with the Canadian Great Lakes Provinces. The multiscale nature of the study findings challenges water-resource managers and the public to think about regional water resources in an integrated way and to understand how future changes to the system-driven by human uses, climate variability, or land-use change-may be accommodated by informed water-resources management.

  11. High fluoride water in Bondo-Rarieda area of Siaya County, Kenya: a hydro-geological implication on public health in the Lake Victoria Basin.

    PubMed

    Wambu, Enos W; Agong, Stephen G; Anyango, Beatrice; Akuno, Walter; Akenga, Teresa

    2014-05-17

    Only a few studies to evaluate groundwater fluoride in Eastern Africa have been undertaken outside the volcanic belt of the Great Eastern Africa Rift Valley. The extent and impact of water fluoride outside these regions therefore remain unclear. The current study evaluated fluoride levels in household water sources in Bondo-Rarieda Area in the Kenyan part of the Lake Victoria Basin (LVB) and highlighted the risk posed by water fluoride to the resident communities. The results, it was anticipated, will contribute to in-depth understanding of the fluoride problem in the region. A total of 128 water samples were collected from different water sources from the entire study area and analyzed for fluoride content using ion-selective electrodes. Lake Victoria was the main water source in the area but dams and open pans (39.5%), boreholes and shallow wells (23.5%), and streams (18.5%) were the principal water sources outside walking distances from the lake. The overall mean fluoride content of the water exceeded recommended limits for drinking water. The mean water fluoride was highest in Uyoma (1.39±0.84 ppm), Nyang'oma (1.00±0.59 ppm) and Asembo (0.92±0.46 ppm) and lowest in Maranda Division (0.69±0.42 ppm). Ponds (1.41±0.82 ppm), springs (1.25±0.43 ppm), dams and open pans (0.96±0.79 ppm), and streams (0.95±0.41 ppm) had highest fluoride levels but lake and river water did not have elevated fluoride levels. Groundwater fluoride decreased with increasing distance from the lake indicating that water fluoride may have hydro-geologically been translocated into the region from geochemical sources outside the area. Lake Victoria was the main water source for the residents of Bondo-Rarieda Area. Majority of in-land residents however used water from dams, open pans, boreholes, shallow wells, ponds and streams, which was generally saline and fluoridated. It was estimated that 36% of children living in this area, who consume water from ground sources from the area could

  12. High fluoride water in Bondo-Rarieda area of Siaya County, Kenya: a hydro-geological implication on public health in the Lake Victoria Basin

    PubMed Central

    2014-01-01

    Background Only a few studies to evaluate groundwater fluoride in Eastern Africa have been undertaken outside the volcanic belt of the Great Eastern Africa Rift Valley. The extent and impact of water fluoride outside these regions therefore remain unclear. The current study evaluated fluoride levels in household water sources in Bondo-Rarieda Area in the Kenyan part of the Lake Victoria Basin (LVB) and highlighted the risk posed by water fluoride to the resident communities. The results, it was anticipated, will contribute to in-depth understanding of the fluoride problem in the region. Methods A total of 128 water samples were collected from different water sources from the entire study area and analyzed for fluoride content using ion-selective electrodes. Results Lake Victoria was the main water source in the area but dams and open pans (39.5%), boreholes and shallow wells (23.5%), and streams (18.5%) were the principal water sources outside walking distances from the lake. The overall mean fluoride content of the water exceeded recommended limits for drinking water. The mean water fluoride was highest in Uyoma (1.39±0.84 ppm), Nyang’oma (1.00±0.59 ppm) and Asembo (0.92±0.46 ppm) and lowest in Maranda Division (0.69±0.42 ppm). Ponds (1.41±0.82 ppm), springs (1.25±0.43 ppm), dams and open pans (0.96±0.79 ppm), and streams (0.95±0.41 ppm) had highest fluoride levels but lake and river water did not have elevated fluoride levels. Groundwater fluoride decreased with increasing distance from the lake indicating that water fluoride may have hydro-geologically been translocated into the region from geochemical sources outside the area. Conclusions Lake Victoria was the main water source for the residents of Bondo-Rarieda Area. Majority of in-land residents however used water from dams, open pans, boreholes, shallow wells, ponds and streams, which was generally saline and fluoridated. It was estimated that 36% of children living in this area, who

  13. Modern lacustrine stromatolites, Walker Lake, Nevada

    NASA Astrophysics Data System (ADS)

    Osborne, Robert H.; Licari, Gerald R.; Link, Martin H.

    1982-05-01

    The Walker River drainage basin occupies about 10,000 km 2 in western Nevada and parts of California and is essentially a closed hydrologic system which drains from the crest of the Sierra Nevada in California and terminates in Walker Lake, Nevada. Walker Lake trends north and is about 27.4 km long and 8 km wide with water depths exceeding 30.5 m. The lake is situated in an asymmetric basin with steep alluvial fans flanking the western shoreline (Wassuk Range) and more gentle but areally more extensive alluvial fans flanking the eastern shoreline (Gillis Range). Exposed lake terraces and the present shoreline of Walker Lake record a sequence of Pleistocene and Holocene stromatolitic and tufaceous carbonate deposits. Small generalized and columnar stromatolites, frequently encrusted on exposed coarse-grained clasts or bedrock, are present along parts of the nearshore margin of Walker Lake and at elevated lake stands. Columnar stromatolites as much as 4 cm high are subcylindrical to club shaped discrete, and laterally linked at the base with local branching. These digitate stromatolites start as wavy, generalized stromatolites which are vertically transitional to small, laterally linked cabbage heads with laminae which thicken over the crests. Although algal structures are not well preserved in the older stromatolites, recent precipitation of low magnesium calcite occurs as smooth encrustations and as tiny mounds which are consistently associated with a diverse, seasonally variable, green and blue-green algal community including Cladophora glomerata, Ulothrix (cf. aequalis), Gongrosira, Schizothrix, Amphithrix janthina, Calothrix, Homeothrix, Spirulina, Anabaena, Lyngbya, and Entophysalis. Cladophora glomerata and a species of Ulothrix, which are the two most abundant algae within the Walker Lake stromatolite community, are known to condition semi-alkaline lake water by the removal of CO 2 from bicarbonate during photosynthesis. Such conditioning results in the

  14. Changes of Climate Extremes in Urmia Lake Basin: Observations and Multimodel Ensemble Projections

    NASA Astrophysics Data System (ADS)

    Ashraf, B.; AghaKouchak, A.

    2017-12-01

    This study presents an analysis of the changes in temperature and precipitation extremes in Urmia Lake Basin, in Iran in 21th century. The latest observations in the past three decades and multimodel ensemble projections from eleven General Circulation Models (GCMs) under the three Representative Concentration Pathways (RCPs) 2.6, 4.5 and 8.5 scenarios are employed for analysis in this study. The twenty-seven indicative temperature and precipitation indices recommended by the joint World Meteorological Organization CCL/CLIVAR/JCOMM Expert Team on Climate Change Detection and Indices (ETCCDI) were used for assessing changes in extremes. Results indicate that most warm (cold) extreme temperature indices have shown significantly positive (negative) trends in the Urmia Lake Basin in past three decades, while only slight changes in precipitation extremes can be observed. Ensemble projection from Bayesian Model Averaging (BMA) of Phase 5 of the Coupled Model Intercomparison Project (CMIP5) suggests that the increasing consecutive dry days (CDD), together with the decreasing frost day (FD) and increasing warm nights frequency (TN90) contribute to more frequent/severe droughts in Urmia Lake Basin. Meanwhile, the results show slight increase of annual count of days with precipitation of more than 10 mm (R10), maximum 5-day precipitation total (R5D), simple daily intensity index (SDII), and annual total precipitation with precipitation >95th percentile (R95) in projections. Our finding provides information on how extremes might change in the future from a wide range of scenarios that can potentially be sued for water resource and eco-environmental planning and adaptation strategies.

  15. The Pilot Valley shoreline: An early record of Lake Bonneville dynamics: Chapter 3

    USGS Publications Warehouse

    Miller, David; Phelps, Geoffrey

    2016-01-01

    The Pilot Valley shoreline is named for distinctive gravel beaches on the eastern, northern, and western sides of Pilot Valley playa, Utah. The shoreline has been identified across the Bonneville basin where it is characterized by one to three beach crests between ~ 1305 and 1309 m elevation, all overlain by deep-water marl of Lake Bonneville. It thus represents the lowest and earliest recognized shoreline of Lake Bonneville. Features of the shoreline indicate that both high wave energy and high stream sediment discharge contributed to shoreline development. Basin hypsometry did not play a role in the development of the shoreline, which must have been caused by a combination of climatically driven hydrologic and storm factors, such as reduced precipitation that stabilized lake level and increase in storm-driven wave energy. The Pilot Valley shoreline is poorly dated at about 30 ka. If it is somewhat older, correlation with Greenland Interstadial 5.1 at 30.8–30.6 ka could explain the stabilization of lake level.

  16. The Response of Eastern African Terrestrial Environments to the Mid-Pleistocene Climate Transition: Paleosol Isotopic Evidence from the Turkana Basin, Kenya

    NASA Astrophysics Data System (ADS)

    Quinn, R.; Lepre, C. J.

    2017-12-01

    Heightened aridity and C4 grass expansion are recorded in Africa during the Mid-Pleistocene Climate Transition (MPCT, 1.3-0.7 Ma), potentially as consequences of decreasing atmospheric CO2. Whether all of Africa responded to the MPCT in the same manner is unclear. Recent studies of a Malawi Basin lake core and paleosols show abundant C3 flora across the MPCT. African climate change is often suggested as a primary cause of hominin speciation, extinction, and technological innovations. Competing environmental-based evolutionary hypotheses propose increased aridity, humidity pulses, and climatic variability as influences of water availability and vegetation structure in Plio-Pleistocene hominin habitats. The Turkana Basin in northern Kenya preserves a rich fossil record of hominins from 4.3-0.7 Ma and offers high-resolution age control via paleomagnetic stratigraphy, isotopic geochronology, and tephrostratigraphy. Turkana's large paleosol isotopic database demonstrates a gradual increase in C4 grass abundance and aridity from 4-1 Ma. Faunal evidence for increasing abundances of C4 grazers corroborates the spread of C4 grasslands from 2-1 Ma. However, there is a dearth of terrestrial environmental records after 1.5 Ma and through the MPCT at Turkana, during which time eastern Africa witnessed the extinction of Paranthropus and the disperal of genus Homo. Here we report a stable isotopic (δ13C, δ18O) record of paleosol carbonates from the Turkana Basin from 1.4 to 0.7 Ma. Based on our findings and comparisons with comparable datasets from other hominin locales, we suggest that eastern African environments responded to the MPCT in a phased shift from south to north, possibly as a consequence of the compression of the ITCZ during glacial maxima and/or to changes to the Indian Ocean Dipole.

  17. Stable carbon and oxygen isotope record of central Lake Erie sediments

    USGS Publications Warehouse

    Tevesz, M.J.S.; Spongberg, A.L.; Fuller, J.A.

    1998-01-01

    Stable carbon and oxygen isotope data from mollusc aragonite extracted from sediment cores provide new information on the origin and history of sedimentation in the southwestern area of the central basin of Lake Erie. Sediments infilling the Sandusky subbasin consist of three lithologic units overlying glacial deposits. The lowest of these is a soft gray mud overlain by a shell hash layer containing Sphaerium striatinum fragments. A fluid mud unit caps the shell hash layer and extends upwards to the sediment-water interface. New stable isotope data suggest that the soft gray mud unit is of postglacial, rather than proglacial, origin. These data also suggest that the shell hash layer was derived from erosional winnowing of the underlying soft gray mud layer. This winnowing event may have occurred as a result of the Nipissing flood. The Pelee-Lorain moraine, which forms the eastern boundary of the Sandusky subbasin, is an elevated area of till capped by a sand deposit that originated as a beach. The presence of both the shell hash layer and relict beach deposit strengthens the interpretation that the Nipissing flood was a critical event in the development of the southwestern area of the central basin of Lake Erie. This event, which returned drainage from the upper lakes to the Lake Erie basin, was a dominant influence on regional stratigraphy, bathymetry, and depositional setting.

  18. New paleoreconstruction of transgressive stages in the northern part of Lake Ladoga, NW Russia.

    NASA Astrophysics Data System (ADS)

    Terekhov, Anton; Sapelko, Tatyana

    2016-04-01

    Lake Ladoga is one of the largest lakes in the world and the largest in Europe. The watershed of lake Ladoga covers the North-Western part of European Russia and the Eastern Finland. Lake basin is on the border between the Baltic shield and the East European Platform. The most consistent paleoreconstructions of Lake Ladoga history are based on bottom sediments of smaller lakes, which used to be a part of Ladoga in the past. The stages of Ladoga evolution are directly connected with the history of the Baltic Ice Lake (BIL) and of the Ancylus Lake. Water level of these lakes was significant higher than nowadays level. Lake Ladoga in its present limits used to be an Eastern gulf of BIL and Ancylus Lake. The preceding paleoreconstructions of Ladoga water level oscillations were undertaken by G. de Geer, J. Ailio, E. Hyyppä, K. Markov, D. Kvasov, D. Malakhovskiy, M. Ekman, G. Lak, N. Davydova, M. Saarnisto, D. Subetto and others. The new data on multivariate analysis of bottom sediments of lakes which used to belong to Ladoga, collected in the last few years, allows to create several maps of Ladoga transgressive stages in Late Glacial period and post-glacial time. A series of maps showing the extent of Ladoga transgression was created based on lake sediments multivariate analysis and a GIS-modeling using the digital elevation data with an accuracy of several meters and an open-source software (QGIS and SAGA). Due to post-glacial rebound of the lake watershed territory, GIS-modeling should comprise the extent of the glacioisostatic uplift, so the chart of a present-day uplift velocity for Fennoscandia of Ekman and Mäkinen was used. The new digital elevation models were calculated for several moments in the past, corresponding to the most probable dates of smaller lakes isolation from Lake Ladoga. Then, the basin of Ladoga was "filled" with water into GIS program to the levels sufficient for the smaller lakes to join and to split-off. The modern coastlines of Ladoga and

  19. Late Holocene subalpine lake sediments record a multi-proxy shift to increased aridity at 3.65 kyr BP, following a millennial-scale neopluvial interval in the Lake Tahoe watershed and western Great Basin, USA

    NASA Astrophysics Data System (ADS)

    Noble, Paula; Zimmerman, Susan; Ball, Ian; Adams, Kenneth; Maloney, Jillian; Smith, Shane

    2016-04-01

    A mid Holocene dry period has been reported from lake records in the Great Basin and Sierra Nevada, yet the spatial and temporal extent of this interval is not well understood. We present evidence for a millennial-scale interval of high winter precipitation (neopluvial) at the end of the mid Holocene in the Lake Tahoe-Pyramid Lake watershed in the northern Sierra Nevada that reached its peak ˜3.7 kcal yr BP. A transect of 4 cores recovered from Fallen Leaf Lake in the Tahoe Basin were dated using AMS14C on plant macrofossils, and analyzed using scanning XRF, C and N elemental and stable isotope measurements, and diatoms as paleoclimate proxies. Fallen Leaf Lake is a deep glacially-derived lake situated in the Glen Alpine Valley at an elevation of 1942m, ˜45 m above the level of Lake Tahoe. In Fallen Leaf Lake, the end of the neopluvial is dated at 3.65 ± 0.09 kcal yr BP, and is the largest post-glacial signal in the cores. The neopluvial interval is interpreted to be a period of increased snowpack in the upper watershed, supported by depleted g δ13Corg (-27.5) values, negative baseline shifts in TOC and TN, lower C:N, and high abundances of Aulacoseira subarctica, a winter-early spring diatom. Collectively, these proxies indicate cooler temperatures, enhanced mixing, and/or shortened summer stratification resulting in increased algal productivity relative to terrestrial inputs. The neopluvial interval ends abruptly at 3.65 ka, with a change from mottled darker opaline clay to a homogeneous olive clay with decreased A. subarctica and opal, and followed by a 50% reduction in accumulation rates. After this transition δ13Corg becomes enriched by 2‰ and TOC, TN, and C:N all show the start of positive trends that continue through the Holocene. Pyramid Lake is an endorheic basin situated at the terminal end of the watershed, and inflow arrives from the Lake Tahoe basin via the Truckee River. At Pyramid Lake, existing ages on paleo-shorelines indicate a significant

  20. Classification and Accuracy Assessment for Coarse Resolution Mapping within the Great Lakes Basin, USA

    EPA Science Inventory

    This study applied a phenology-based land-cover classification approach across the Laurentian Great Lakes Basin (GLB) using time-series data consisting of 23 Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) composite images (250 ...

  1. Comparison of historical streamflows to 2013 Streamflows in the Williamson, Sprague, and Wood Rivers, Upper Klamath Lake Basin, Oregon

    USGS Publications Warehouse

    Hess, Glen W.; Stonewall, Adam J.

    2014-01-01

    In 2013, the Upper Klamath Lake Basin, Oregon, experienced a dry spring, resulting in an executive order declaring a state of drought emergency in Klamath County. The 2013 drought limited the water supply and led to a near-total cessation of surface-water diversions for irrigation above Upper Klamath Lake once regulation was implemented. These conditions presented a unique opportunity to understand the effects of water right regulation on streamflows. The effects of regulation of diversions were evaluated by comparing measured 2013 streamflow with data from hydrologically similar years. Years with spring streamflow similar to that in 2013 measured at the Sprague River gage at Chiloquin from water years 1973 to 2012 were used to define a Composite Index Year (CIY; with diversions) for comparison to measured 2013 streamflows (no diversions). The best-fit 6 years (1977, 1981, 1990, 1991, 1994, and 2001) were used to determine the CIY. Two streams account for most of the streamflow into Upper Klamath Lake: the Williamson and Wood Rivers. Most streamflow into the lake is from the Williamson River Basin, which includes the Sprague River. Because most of the diversion regulation affecting the streamflow of the Williamson River occurred in the Sprague River Basin, and because of uncertainties about historical flows in a major diversion above the Williamson River gage, streamflow data from the Sprague River were used to estimate the change in streamflow from regulation of diversions for the Williamson River Basin. Changes in streamflow outside of the Sprague River Basin were likely minor relative to total streamflow. The effect of diversion regulation was evaluated using the “Baseflow Method,” which compared 2013 baseflow to baseflow of the CIY. The Baseflow Method reduces the potential effects of summer precipitation events on the calculations. A similar method using streamflow produced similar results, however, despite at least one summer precipitation event. The

  2. Wisconsin's Lake Superior Basin Water Quality Study. Supplement. Technical Report No. 2.

    ERIC Educational Resources Information Center

    Whisnant, David M., Ed.

    During the period extending from May 1972 through April 1973, an investigation of the overall water quality conditions of streams flowing into Lake Superior from the entire state of Wisconsin was conducted. The goal of this publication was to provide much needed regional information on water quality, drainage basins, pollution sources and loads,…

  3. New constraints on slip-rates, recurrence intervals, and strain partitioning beneath Pyramid Lake, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eisses, Amy

    provides a punctuated short-term record of little to no slip on the Lake Range fault. In contrast, for the past 9,500 years, the basin has experienced a decrease in sedimentation rate, but an escalation in earthquake activity on the Lake Range fault, with the potential of 3 or 4 major earthquakes assuming a characteristic offset of 2.5 m per event. Regionally, our CHIRP investigation helps to reveal how strain is partitioned along the boundary between the eastern edge of the Walker Lane Deformation Belt and the northwest Great Basin proper.« less

  4. Finding balance between fire hazard reduction and erosion control in the Lake Tahoe Basin, California–Nevada

    Treesearch

    Nicolas M. Harrison; Andrew P. Stubblefield; J. Morgan Varner; Eric E. Knapp

    2016-01-01

    The 2007 Angora Fire served as a stark reminder of the need for fuel reduction treatments in the Lake Tahoe Basin, California–Nevada, USA. Concerns exist, however, that the corresponding removal of forest floor fuels could increase erosion rates, negatively affecting the clarity of Lake Tahoe. To quantify trade-offs between fuel reduction and erosion, we conducted...

  5. Drought drove forest decline and dune building in eastern upper Michigan, USA, as the upper Great Lakes became closed basins

    USGS Publications Warehouse

    Loope, Walter L.; Loope, Henry M.; Goble, Ronald J.; Fisher, Timothy G.; Lytle, David E.; Legg, Robert J.; Wysocki, Douglas A.; Hanson, Paul R.; Young, Aaron R.

    2012-01-01

    Current models of landscape response to Holocene climate change in midcontinent North America largely reconcile Earth orbital and atmospheric climate forcing with pollen-based forest histories on the east and eolian chronologies in Great Plains grasslands on the west. However, thousands of sand dunes spread across 12,000 km2 in eastern upper Michigan (EUM), more than 500 km east of the present forest-prairie ecotone, present a challenge to such models. We use 65 optically stimulated luminescence (OSL) ages on quartz sand deposited in silt caps (n = 8) and dunes (n = 57) to document eolian activity in EUM. Dune building was widespread ca. 10–8 ka, indicating a sharp, sustained decline in forest cover during that period. This decline was roughly coincident with hydrologic closure of the upper Great Lakes, but temporally inconsistent with most pollen-based models that imply canopy closure throughout the Holocene. Early Holocene forest openings are rarely recognized in pollen sums from EUM because faint signatures of non-arboreal pollen are largely obscured by abundant and highly mobile pine pollen. Early Holocene spikes in nonarboreal pollen are recorded in cores from small ponds, but suggest only a modest extent of forest openings. OSL dating of dune emplacement provides a direct, spatially explicit archive of greatly diminished forest cover during a very dry climate in eastern midcontinent North America ca. 10–8 ka.

  6. Rapid climate change from north Andean Lake Fúquene pollen records driven by obliquity: implications for a basin-wide biostratigraphic zonation for the last 284 ka

    NASA Astrophysics Data System (ADS)

    Bogotá-A, R. G.; Groot, M. H. M.; Hooghiemstra, H.; Lourens, L. J.; Van der Linden, M.; Berrio, J. C.

    2011-11-01

    This paper compares a new super-high resolution pollen record from a central location in Lake Fúquene (4°N) with 3 pollen records from marginal sites from the same lake basin, located at 2540 m elevation in the Eastern Cordillera of Colombia. We harmonized the pollen sum of all records, and provided previously published records of climate change with an improved age model using a new approach for long continental pollen records. We dissociated from subjective curve matching and applied a more objective procedure including radiocarbon ages, cyclostratigraphy, and orbital tuning using the new 284 ka long Fúquene Basin Composite record (Fq-BC) as the backbone ( Groot et al., 2011). We showed that a common ˜9 m cycle in the arboreal pollen percentage (AP%) records reflects obliquity forcing and drives vegetational and climatic change. The AP% records were tuned to the 41 kyr component filtered from standard benthic δ 18O LR04 record. Changes in sediment supply to the lake are reflected in concert by the four records making frequency analysis in the depth domain an adequate method to compare records from the same basin. We calibrated the original 14C ages and used where necessary biostratigraphic correlation, i.e. for records shorter than one obliquity cycle. Pollen records from the periphery of the lake showed changes in the abundance of Alnus and Weinmannia forests more clearly while centrally located record Fq-9C shows a more integrated signal of regional vegetation change. The revised age models show that core Fq-2 reflects the last 44 ka and composite record Fq-7C the last 85.5 ka. Marginally located core Fq-3 has an age of 133 ka at 32 m core depth and the lowermost 11 m of sediments appear of older but unknown age. The longest record Fq-BC shows ˜60 yr resolution over the period of 284-27 ka. All pollen records are in support of a common regional vegetation development leading to a robust reconstruction of long series of submillennial climate oscillations

  7. EVALUATING PERTUBATIONS AND DEVELOPING RESTORATION STRATEGIES FOR INLAND WETLANDS IN THE GREAT LAKES BASIN

    EPA Science Inventory

    Wetland coverage and type distributions vary systematically by ecoregion across the Great Lakes Basin. Land use and subsequent changes in wetland type distributions also vary among ecoregions. Incidence of wetland disturbance varies significantly within ecoregions but tends to i...

  8. Climate change and human occupations in the Lake Daihai basin, north-central China over the last 4500 years: A geo-archeological perspective

    NASA Astrophysics Data System (ADS)

    Xu, Lichen; Liu, Yan; Sun, Qianli; Chen, Jing; Cheng, Peng; Chen, Zhongyuan

    2017-05-01

    High-resolution climate variations since the last 4500 years in the monsoonal-arid transition zone of north-central China were revealed through the integration of proxies from sediment cores in the Lake Daihai basin. Human occupations in the lake basin deduced from archeological findings and historical literatures were then incorporated into the climate sequence to demonstrate the patterns of human responses to the climate changes, and the recent anthropogenic effects. It indicated that: (1) Climate dominated human-environment adaptations prevailed prior to ∼2700 cal yr BP. An amicable climate setting before ∼4100 cal yr BP would facilitate the growth of the Laohushan Culture (LC) in the lake basin, while a pronounced deterioration of water thermal condition after that had led to human exodus and the collapse of the LC. The reduced human activity in the lake basin indicated at ∼3800-3500 cal yr BP and a subsequent cultural blank at ∼3500-2700 cal yr BP, were both in response to the climate and lake level fluctuations during ∼3800-2800 cal yr BP. (2) Transition to a positive human adaptation was seen at ∼2700-1100 cal yr BP, represented by the exploitation of arable land for cultivation and animal husbandry as the lake contracted. (3) An increasing human presence that affected environmental processes became more severe over the last ∼1100 cal yr BP. This was basically due to the ongoing lake shore reclamation for cropping, and more recently heavy metals emissions from fossil fuel combustion and local industries.

  9. A climatology of extreme wave height events impacting eastern Lake Ontario shorelines

    NASA Astrophysics Data System (ADS)

    Grieco, Matthew B.; DeGaetano, Arthur T.

    2018-05-01

    Model-derived wave height data for points along the eastern Lake Ontario shoreline provide the basis for a 36-year climatology of extreme wave heights. The most extreme wave heights exceed 6 m at all locations, except for those along the extreme northeastern shoreline of the Lake. Typically extreme wave events are a regional phenomenon, affecting multiple locations along the eastern and southeastern shoreline. A pronounced seasonal cycle in wave event occurrence is characterized by peaks in autumn and spring, with an absence of 99.9th percentile wave heights during summer. Less extreme (90th percentile heights) occur in all months with a peak in winter. Extreme wave events are most often associated with a low pressure center tracking to the north of Lake Ontario from the Ohio Valley. This track produces the strong winds > 10 ms-1 and predominantly west-to-east wind fetch that characterize high wave height events. The seasonal frequency of the wave events exceeding the historical 95th percentile has shown a statistically significant increase at most locations since 1979. This has been partially offset by declines in the frequency of events with wave heights between the 90 and 95th percentile. Seasonal extreme wave height frequency is also found to be related to the occurrence of El Niño. During El Niño winters, there are significantly fewer events with wave heights exceeding 2.5 m than would be expected by chance. A corresponding relationship to La Niña occurrence is not evident.

  10. Faulting along the southern margin of Reelfoot Lake, Tennessee

    USGS Publications Warehouse

    Van Arsdale, R.; Purser, J.; Stephenson, W.; Odum, J.

    1998-01-01

    The Reelfoot Lake basin, Tennessee, is structurally complex and of great interest seismologically because it is located at the junction of two seismicity trends of the New Madrid seismic zone. To better understand the structure at this location, a 7.5-km-long seismic reflection profile was acquired on roads along the southern margin of Reelfoot Lake. The seismic line reveals a westerly dipping basin bounded on the west by the Reelfoot reverse fault zone, the Ridgely right-lateral transpressive fault zone on the east, and the Cottonwood Grove right-lateral strike-slip fault in the middle of the basin. The displacement history of the Reelfoot fault zone appears to be the same as the Ridgely fault zone, thus suggesting that movement on these fault zones has been synchronous, perhaps since the Cretaceous. Since the Reelfoot and Ridgely fault systems are believed responsible for two of the mainshocks of 1811-1812, the fault history revealed in the Reelfoot Lake profile suggests that multiple mainshocks may be typical of the New Madrid seismic zone. The Ridgely fault zone consists of two northeast-striking faults that lie at the base of and within the Mississippi Valley bluff line. This fault zone has 15 m of post-Eocene, up-to-the-east displacement and appears to locally control the eastern limit of Mississippi River migration. The Cottonwood Grove fault zone passes through the center of the seismic line and has approximately 5 m up-to-the-east displacement. Correlation of the Cottonwood Grove fault with a possible fault scarp on the floor of Reelfoot Lake and the New Markham fault north of the lake suggests the Cottonwood Grove fault may change to a northerly strike at Reelfoot Lake, thereby linking the northeast-trending zones of seismicity in the New Madrid seismic zone.

  11. Climatology, hydrology, and simulation of an emergency outlet, Devils Lake basin, North Dakota

    USGS Publications Warehouse

    Wiche, Gregg J.; Vecchia, A.V.; Osborne, Leon; Wood, Carrie M.; Fay, James T.

    2000-01-01

    Devils Lake is a natural lake in northeastern North Dakota that is the terminus of a nearly 4,000-square-mile subbasin in the Red River of the North Basin. The lake has not reached its natural spill elevation to the Sheyenne River (a tributary of the Red River of the North) in recorded history. However, geologic evidence indicates a spill occurred sometime within the last 1,800 years. From 1993 to 1999, Devils Lake rose 24.5 feet and, at the present (August 2000), is about 13 feet below the natural spill elevation. The recent lake-level rise has caused flood damages exceeding $300 million and triggered development of future flood-control options to prevent further infrastructure damage and reduce the risk of a potentially catastrophic uncontrolled spill. Construction of an emergency outlet from the west end of Devils Lake to the Sheyenne River is one flood-control option being considered. This report describes the climatologic and hydrologic causes of the recent lake level rise, provides information on the potential for continued lake-level rises during the next 15 years, and describes the potential effectiveness of an emergency outlet in reducing future lake levels and in reducing the risk of an uncontrolled spill. The potential effects of an outlet on downstream water quantity and quality in the upper Sheyenne River also are described.

  12. Isopach and isoresource maps for oil shale deposits in the Eocene Green River Formation for the combined Uinta and Piceance Basins, Utah and Colorado

    USGS Publications Warehouse

    Mercier, Tracey J.; Johnson, Ronald C.

    2012-01-01

    The in-place oil shale resources in the Eocene Green River Formation of the Piceance Basin of western Colorado and the Uinta Basin of western Colorado and eastern Utah are estimated at 1.53 trillion barrels and 1.32 trillion barrels, respectively. The oil shale strata were deposited in a single large saline lake, Lake Uinta, that covered both basins and the intervening Douglas Creek arch, an area of comparatively low rates of subsidence throughout the history of Lake Uinta. Although the Green River Formation is largely eroded for about a 20-mile area along the crest of the arch, the oil shale interval is similar in both basins, and 17 out of 18 of the assessed oil shale zones are common to both basins. Assessment maps for these 17 zones are combined so that the overall distribution of oil shale over the entire extent of Lake Uinta can be studied. The combined maps show that throughout most of the history of Lake Uinta, the richest oil shale was deposited in the depocenter in the north-central part of the Piceance Basin and in the northeast corner of the Uinta Basin where it is closest to the Piceance Basin, which is the only area of the Uinta Basin where all of the rich and lean oil shale zones, originally defined in the Piceance Basin, can be identified. Both the oil shale and saline mineral depocenter in the Piceance Basin and the richest oil shale area in the Uinta Basin were in areas with comparatively low rates of subsidence during Lake Uinta time, but both areas had low rates of clastic influx. Limiting clastic influx rather than maximizing subsidence appears to have been the most important factor in producing rich oil shale.

  13. Great Salt Lake basins study unit

    USGS Publications Warehouse

    Waddell, Kidd M.; Baskin, Robert L.

    1994-01-01

    In 1991, the U.S. Geological Survey (USGS) began implementing a full-scale National Water-Quality Assessment (NAWQA) Program.The long-term goals of the NAWQA Program are to describe the status and trends in the quality of a large, representative part of the Nation’s surface- and ground-water resources and to provide a sound, scientific understanding of the primary natural and human factors that affect the quality of these resources. In meeting these goals, the program will produce a wealth of water-quality information that will be useful to policy makers and managers at Federal, State, and local levels.A major design feature of the NAWQA Program will enable water-quality information at different areal scales to be integrated. A major component of the program is study-unit investigations, which ae the principal building blocks of the program upon which national-level assessment activities will be based. The 60 study-unit investigations that make up the program are hydrologic systems that include principal river basins and aquifer systems throughout the Nation. These study units cover areas from less than 1.000 to greater than 60,000 mi2 and incorporate from about 60 to 70 percent of the Nation’s water use and population served by public water supply. In 1993, assessment activities began in the Great Salt Lake Basins NAWQA study unit.

  14. Sedimentology of the mid-Carboniferous fill of the Olta paleovalley, eastern Paganzo Basin, Argentina: Implications for glaciation and controls on diachronous deglaciation in western Gondwana during the late Paleozoic Ice Age

    NASA Astrophysics Data System (ADS)

    Moxness, Levi D.; Isbell, John L.; Pauls, Kathryn N.; Limarino, Carlos O.; Schencman, Jazmin

    2018-07-01

    Both global and regional climate drivers contributed to glaciation during the late Paleozoic Ice Age (LPIA). However, the transition from icehouse to greenhouse conditions was asynchronous across Gondwana suggesting that, in some cases, regional controls played a significant role in deglaciation. Of particular interest to understanding changing LPIA climatic conditions, is the eastern Paganzo Basin. This region was flanked by ice centers in the Precordilleran and Sierras Pampeanas regions of Argentina on the west, and major ice sheets in the Paraná, Chaco-Paraná, and Sauce Grande basins to the east, all of which resided between ∼40 and 65° S latitude. Hypotheses on the occurrence of ice in the eastern Paganzo Basin are based on interpretations of the narrow, steep-walled, Olta-Malanzán paleovalley as carved by an alpine glacier or by an outlet glacier draining an eastern ice sheet, and that glaciers deposited coarse clastics within the paleovalley. However, we found no evidence for glaciation. Rather, gravel from prograding alluvial fans/fan deltas and rock falls ponded drainage resulting in lacustrine activity in the eastern end of the valley. A transition from either subaerially or shallow subaqueously deposited sandstones to marine mudstones in the western end of the Olta paleovalley suggest a marine transgression, which, in turn, was overlain by deposits of prograding Gilbert-type deltas. Dropstones were from rock falls off valley walls and rafting by lake ice rather than from icebergs. Therefore, we conclude that the climate in western Argentina resulted from uplift induced glaciation in the Precordilleran region and along the western margin of the Paganzo Basin, and the occurrence of a precipitation shadow to the east. The disappearance of the western glaciers during the mid-Carboniferous, prior to deglaciation elsewhere at the same paleolatitude, resulted from a westward shift in the position of the active margin, collapse of the glaciated upland

  15. ATMOSPHERIC MERCURY IN THE LAKE MICHIGAN BASIN: INFLUENCE OF THE CHICAGO/GARY URBAN AREA

    EPA Science Inventory

    The relative importance of the Chicago/Gay urban area was investigated to determine its impact on atmospheric mercury (Hg) concentrations and wet deposition in the Lake Michigan basin. Event wet-only precipitation, total particulate, and vapor phase samples were collected for ...

  16. Characterization of lake water and ground water movement in the littoral zone of Williams Lake, a closed-basin lake in North central Minnesota

    USGS Publications Warehouse

    Schuster, P.F.; Reddy, M.M.; LaBaugh, J.W.; Parkhurst, R.S.; Rosenberry, D.O.; Winter, T.C.; Antweiler, Ronald C.; Dean, W.E.

    2003-01-01

    Williams Lake, Minnesota is a closed-basin lake that is a flow-through system with respect to ground water. Ground-water input represents half of the annual water input and most of the chemical input to the lake. Chemical budgets indicate that the lake is a sink for calcium, yet surficial sediments contain little calcium carbonate. Sediment pore-water samplers (peepers) were used to characterize solute fluxes at the lake-water-ground-water interface in the littoral zone and resolve the apparent disparity between the chemical budget and sediment data. Pore-water depth profiles of the stable isotopes ??18O and ??2H were non-linear where ground water seeped into the lake, with a sharp transition from lake-water values to ground-water values in the top 10 cm of sediment. These data indicate that advective inflow to the lake is the primary mechanism for solute flux from ground water. Linear interstitial velocities determined from ??2H profiles (316 to 528 cm/yr) were consistent with velocities determined independently from water budget data and sediment porosity (366 cm/yr). Stable isotope profiles were generally linear where water flowed out of the lake into ground water. However, calcium profiles were not linear in the same area and varied in response to input of calcium carbonate from the littoral zone and subsequent dissolution. The comparison of pore-water calcium profiles to pore-water stable isotope profiles indicate calcium is not conservative. Based on the previous understanding that 40-50 % of the calcium in Williams Lake is retained, the pore-water profiles indicate aquatic plants in the littoral zone are recycling the retained portion of calcium. The difference between the pore-water depth profiles of calcium and ??18O and ??2H demonstrate the importance of using stable isotopes to evaluate flow direction and source through the lake-water-ground-water interface and evaluate mechanisms controlling the chemical balance of lakes. Published in 2003 by John Wiley

  17. Preliminary stratigraphic cross section showing radioactive zones in the Devonian dark shales in the eastern part of the Appalachian Basin

    USGS Publications Warehouse

    West, Mareta N.

    1978-01-01

    The U.S. Geological Survey (USGS), in a cooperative agreement with the U.S. Department of Energy (DOE), is participating in the Eastern Gas Shales Project. The purpose of the DOE project is to increase the production of natural gas from eastern United States shales in petroliferous basins through improved exploration and extraction techniques. The USGS participation includes stratigraphic studies which will contribute to the characterization and appraisal of the natural gas resources of Devonian shale in the Appalachian basin.This cross section differs from others in this series partly because many of the shales in the eastern part of the basin are less radioactive than those farther west and because in this area shales that may be gas-productive are not necessarily highly radioactive and black.

  18. Preliminary report on the ground-water resources of the Klamath River basin, Oregon

    USGS Publications Warehouse

    Newcomb, Reuben Clair; Hart, D.H.

    1958-01-01

    The Klamath River basin, including the adjacent Lost River basin, includes about 5,500 square miles of plateaus, mountain-slopes and valley plains in south-central Oregon. The valley plains range in altitude from about 4,100 feet in the south to more than 4,500 feet at the northern end; the mountain and plateau lands rise to an average altitude of 6,000 feet at the drainage divide, some peaks rising above 9,000 feet. The western quarter of the basin is on the eastern slope of the Cascade Range and the remainder consists of plateaus, mountains, and valleys of the basin-and-range type. The rocks of the Klamath River basin range in age from Recent to Mesozoic. At the southwest side of the basin in Oregon, pre-Tertiary metamorphic, igneous, and sedimentary rocks, which form extensive areas farther west, are overlain by sedimentary rocks of Eocene age and volcanic rocks of Eocene and Oligocene age. These early Tertiary rocks dip east toward the central part of the Klamath River basin. The complex volcanic rocks of high Cascades include three units: the lowest unit consists of a sequence of basaltic lava flows about 800 feet thick; the medial unit is composed of volcanic-sedimentary and sedimentary rocksthe Yonna formation200 to 2,000 feet thick; the uppermost unit is a sequence of basaltic lava flows commonly about 200 feet thick. These rocks dip east from the Cascade Range and are the main bedrock formations beneath most of the basin. Extensive pumice deposits, which emanated from ancestral Mount Mazama, cover large areas in the northwestern part of the basin. The basin has an overall synclinal structure open to the south at the California boundary where it continues as the Klamath Lake basin in California. The older rocks dip into the basin in monoclinal fashion from the adjoining drainage basins. The rocks are broken along rudely rectangular nets of closely spaced normal faults, the most prominent set of which trends northwest. The network of fault displacements

  19. Late Quaternary MIS 6-8 shoreline features of pluvial Owens Lake, Owens Valley, eastern California

    USGS Publications Warehouse

    Jayko, A.S.; Bacon, S.N.

    2008-01-01

    The chronologic history of pluvial Owens Lake along the eastern Sierra Nevada in Owens Valley, California, has previously been reported for the interval of time from ca. 25 calibrated ka to the present. However, the age, distribution, and paleoclimatic context of higher-elevation shoreline features have not been formally documented. We describe the location and characteristics of wave-formed erosional and depositional features, as well as fluvial strath terraces that grade into an older shoreline of pluvial Owens Lake. These pluvial-lacustrine features are described between the Olancha area to the south and Poverty Hills area to the north, and they appear to be vertically deformed -20 ?? 4 m across the active oblique-dextral Owens Valley fault zone. They occur at elevations from 1176 to 1182 m along the lower flanks of the Inyo Mountains and Coso Range east of the fault zone to as high as -1204 m west of the fault zone. This relict shoreline, referred to as the 1180 m shoreline, lies -20-40 m higher than the previously documented Last Glacial Maximum shoreline at -1160 m, which occupied the valley during marine isotope stage 2 (MIS 2). Crosscutting relations of wave-formed platforms, notches, and sandy beach deposits, as well as strath terraces on lava flows of the Big Pine volcanic field, bracket the age of the 1180 m shoreline to the time interval between ca. 340 ?? 60 ka and ca. 130 ?? 50 ka. This interval includes marine oxygen isotope stages 8-6 (MIS 8-6), corresponding to 260-240 ka and 185-130 ka, respectively. An additional age estimate for this shoreline is provided by a cosmogenic 36Cl model age of ca. 160 ?? 32 ka on reefal tufa at ???1170 m elevation from the southeastern margin of the valley. This 36Cl model age corroborates the constraining ages based on dated lava flows and refines the lake age to the MIS 6 interval. Documentation of this larger pluvial Owens Lake offers insight to the hydrologic balance along the east side of the southern Sierra

  20. Monitoring Agricultural Cropping Patterns in the Great Lakes Basin Using MODIS-NDVI Time Series Data

    EPA Science Inventory

    This research examined changes in agricultural cropping patterns across the Great Lakes Basin (GLB) using the Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) data. Specific research objectives were to characterize the distribut...

  1. Monitoring Agricultural Cropping Patterns across the Laurentian Great Lakes Basin Using MODIS-NDVI Data

    EPA Science Inventory

    The Moderate Resolution Imaging Spectrometer (MODIS) Normalized Difference Vegetation Index (NDVI) 16-day composite data product (MOD12Q) was used to develop annual cropland and crop-specific map products (corn, soybeans, and wheat) for the Laurentian Great Lakes Basin (GLB). Th...

  2. Predicting geomorphic stability in low-order streams of the western Lake Superior basin - Poster

    EPA Science Inventory

    Width:depth ratios, entrenchment ratios, gradients, and median substrate particle sizes (D50s) were measured in 32 second- and third-order stream reaches in the western Lake Superior basin in 1997-1998. More than 700 measurements of suspended sediment concentration during snowmel...

  3. The changes in the frequency of daily precipitation in Urmia Lake basin, Iran

    NASA Astrophysics Data System (ADS)

    Salehi Bavil, Sepideh; Zeinalzadeh, Kamran; Hessari, Behzad

    2017-06-01

    Urmia Lake, as one of the most valuable saline ecosystems in the world, has faced a sharp drop in the water level in recent years. The trend studies of climatic parameters can be effective in identifying the responsible factors and managing this crisis. This research investigated the frequency trend of daily precipitation in the ranges of less than 5 mm, 5-10 mm, 10-15 mm, 15-20 mm, and more than 20 mm in the Urmia Lake basin. The trend was assessed using Mann-Kendall, Spearman Rho and linear regression tests on 60 stations during a period of 30 years (1981 to 2011). The results showed that in all the three tests, the frequency of daily precipitation of less than 5 mm had a significant increase at 1% level. The 5-10 mm range displayed no significant trend, while the 10-15 mm range showed a significantly decreasing trend. The frequency in the 15-20 mm and above 20 mm ranges showed an insignificant falling trend. The analysis also indicated jumps in 1996 and 1999 (almost coinciding with the sharp drop in the lake's water level). In other words, the frequency trends of daily precipitation with small amounts (as a result, high evapotranspiration loss) were increasing and with large amounts were decreasing. This can be a contributor to reduced run-off and, hence, decreased water entering the lake. The results emphasize the need for changes in the management and consumption of water resources in the basin, in order to adapt to the climatic change.

  4. Photodemethylation of Methylmercury in Eastern Canadian Arctic Thaw Pond and Lake Ecosystems.

    PubMed

    Girard, Catherine; Leclerc, Maxime; Amyot, Marc

    2016-04-05

    Permafrost thaw ponds of the warming Eastern Canadian Arctic are major landscape constituents and often display high levels of methylmercury (MeHg). We examined photodegradation potentials in high-dissolved organic matter (DOC) thaw ponds on Bylot Island (BYL) and a low-DOC oligotrophic lake on Cornwallis Island (Char Lake). In BYL, the ambient MeHg photodemethylation (PD) rate over 48 h of solar exposure was 6.1 × 10(-3) m(2) E(-1), and the rate in MeHg amended samples was 9.3 × 10(-3) m(2) E(-1). In contrast, in low-DOC Char Lake, PD was only observed in the first 12 h, which suggests that PD may not be an important loss process in polar desert lakes. Thioglycolic acid addition slowed PD, while glutathione and chlorides did not impact northern PD rates. During an ecosystem-wide experiment conducted in a covered BYL pond, there was neither net MeHg increase in the dark nor loss attributable to PD following re-exposure to sunlight. We propose that high-DOC Arctic thaw ponds are more prone to MeHg PD than nearby oligotrophic lakes, likely through photoproduction of reactive species rather than via thiol complexation. However, at the ecosystem level, these ponds, which are widespread through the Arctic, remain likely sources of MeHg for neighboring systems.

  5. Out of the tropics: the Pacific, Great Basin lakes, and late Pleistocene water cycle in the western United States.

    PubMed

    Lyle, Mitchell; Heusser, Linda; Ravelo, Christina; Yamamoto, Masanobu; Barron, John; Diffenbaugh, Noah S; Herbert, Timothy; Andreasen, Dyke

    2012-09-28

    The water cycle in the western United States changed dramatically over glacial cycles. In the past 20,000 years, higher precipitation caused desert lakes to form which have since dried out. Higher glacial precipitation has been hypothesized to result from a southward shift of Pacific winter storm tracks. We compared Pacific Ocean data to lake levels from the interior west and found that Great Basin lake high stands are older than coastal wet periods at the same latitude. Westerly storms were not the source of high precipitation. Instead, air masses from the tropical Pacific were transported northward, bringing more precipitation into the Great Basin when coastal California was still dry. The changing climate during the deglaciation altered precipitation source regions and strongly affected the regional water cycle.

  6. Out of the tropics: the Pacific, Great Basin lakes, and late Pleistocene water cycle in the western United States

    USGS Publications Warehouse

    Lyle, Mitchell; Heusser, Linda; Ravelo, Christina; Yamamoto, Masanobu; Barron, John; Diffenbaugh, Noah S.; Herbert, Timothy; Andreasen, Dyke

    2012-01-01

    The water cycle in the western U.S. changed dramatically over glacial cycles. In the last 20,000 years, higher precipitation caused desert lakes to form which have since dried out. Higher glacial precipitation is hypothesized to result from a southward shift of Pacific winter storm tracks. We compared Pacific Ocean data to lake levels from the interior west and found that Great Basin lake high stands are older than coastal wet periods at the same latitude. Westerly storms were not the source of high precipitation. Instead, air masses from the tropical Pacific were transported northward, bringing more precipitation into the Great Basin when coastal California was still dry. The changing climate during the deglaciation altered precipitation source regions and strongly affected the regional water cycle.

  7. Are Eastern Basin (Ross Sea, Antarctica) Bathymetric Ridges Associated With the Last Glacial Maximum?

    NASA Astrophysics Data System (ADS)

    Chow, J. M.; Bart, P. J.

    2005-05-01

    Ross Sea (Antarctica) Eastern Basin bathymetric ridges have been interpreted to be ice stream divides created during the Last Glacial Maximum (LGM) advance of the Antarctic Ice Sheet based on radiocarbon dating of organic matter from near-seafloor sediments recovered in piston cores (Domack et al., 1999). Detailed seismic correlations and contour mapping show that there are at least five thick units outcropping in Eastern Basin. Four of these seismically-defined units can be correlated to age control at DSDP sites 270 and 272. In contrast to the near-seafloor sampling, the interiors of these units were initially assigned a Pliocene age based on a variety of microfossil biozones (Hayes and Frakes, 1975). Savage and Ciesielski (1983) determined that the youngest unit was deposited during the Coscinodiscus lentiginosus (since renamed Thalassiosira lentiginosa) diatom biozone (i.e., the unit formed sometime between 0.65 Ma to Recent timeframe). Thus, seafloor units in the area probably are of Quaternary age, but not necessarily LGM age. More recently, diatom biozonations for the Southern Ocean have been revised to provide more detailed biochronostratigraphic resolution (Zielinski and Gersonde, 2002; Zielinski et al., 2002). We are using the most recently-revised Southern Ocean diatom-zonation schemes to systematically evaluate ages of samples taken from the base of piston cores penetrating the five individual seismically-defined units in Eastern Basin. Using this sampling strategy, we increase the chances of penetrating through the Recent hemipelagic drape to sample the underlying seismically-defined units.

  8. A multiproxy study of Holocene water-depth and environmental changes in Lake St Ana, Eastern Carpathian Mountains, Romania

    NASA Astrophysics Data System (ADS)

    Magyari, E. K.; Buczkó, K.; Braun, M.; Jakab, G.

    2009-04-01

    This study presents the results of a multi-disciplinary investigation carried out on the sediment of a crater lake (Lake Saint Ana, 950 m a.s.l.) from the Eastern Carpathian Mountains. The lake is set in a base-poor volcanic environment with oligotrophic and slightly acidic water. Loss-on-ignition, major and trace element, pollen, plant macrofossil and siliceous algae analyses were used to reconstruct Holocene environmental and water-depth changes. Diatom-based transfer functions were applied to estimate the lake's trophic status and pH, while reconstruction of the water-depth changes was based on the plant macrofossil and diatom records. The lowest Holocene water-depths were found between 9,000 and 7,400 calibrated BP years, when the crater was occupied by Sphagnum-bog and bog-pools. The major trend from 7,400 years BP was a gradual increase, but the basin was still dominated by poor-fen and poor fen-pools. Significant increases in water-depth, and meso/oligotrophic lake conditions were found from 5,350(1), 3,300(2) and 2,700 years BP. Of these, the first two coincided with major terrestrial vegetation changes, namely the establishment of Carpinus betulus on the crater slope (1), and the replacement of the lakeshore Picea abies forest by Fagus sylvatica (2). The chemical record clearly indicated significant soil changes along with the canopy changes (from coniferous to deciduous), that in turn led to increased in-lake productivity and pH. A further increase in water-depth around 2,700 years BP resulted in stable thermal stratification and hypolimnetic anoxia that via P-release further increased in-lake productivity and eventually led to phytoplankton blooms with large populations of Scenedesmus cf. S. brasiliensis. High productivity was depressed by anthropogenic lakeshore forest clearances commencing from ca. 1,000 years BP that led to the re-establishment of Picea abies on the lakeshore and consequent acidification of the lake-water. On the whole, these data

  9. Crustal architecture of the eastern margin of Japan Sea: back-arc basin opening and contraction

    NASA Astrophysics Data System (ADS)

    No, T.; Sato, T.; Takahashi, N.; Kodaira, S.; Kaneda, Y.; Ishiyama, T.; Sato, H.

    2012-12-01

    Although large earthquakes such as the 1964 Niigata earthquake (M 7.5), 1983 Nihonkai-Chubu earthquake (M 7.8), and 1993 Hokkaido Nansei-Oki earthquake (M 7.8) have caused large amounts of damage to the eastern margin of the Japan Sea, a substantial number of seismic studies have been conducted for the seismogenic zone on the Pacific Ocean side of Japan. In addition, the detail of the source fault model for the eastern margin of the Japan Sea is not well defined for all cases. This highlights the need for further studies to investigate seismic imaging. Therefore, we have collaborated with other Japanese research institutions for a project titled "Priority Investigations of Strain Concentration Areas" (which is funded by Special Coordination Funds for Promoting Science and Technology, Japan). This project has conducted seismic surveys from 2009 to 2012 using the deep-sea research vessel, Kairei, from the Japan Agency for Marine-Earth Science and Technology. There is a strain concentration area in the eastern part of the survey area (Okamura et al., 1995). The western part of the survey area includes the Yamato Basin and Japan Basin. It is very important to study the crustal structure in the seismotectonic studies of the eastern margin of the Japan Sea. We conducted a marine seismic survey by using a multichannel seismic (MCS) system and ocean bottom seismographs (OBSs) along the eastern margin of the Japan Sea. Seismic data were acquired along 42 lines with a total length of approximately 9,000 km. The following results were obtained from seismic imaging. On the basis of the results of the MCS imaging, active reverse faults and folds were observed in the margin of the Toyama Trough; however, the sedimentary layers in the trough were flat. In the sedimentary layers and crusts of the Sado Ridge, Mogami Trough, and source area of the 1964 Niigata earthquake located north of the Sado Island, greater deformation was observed. The deformation weakened toward the Yamato

  10. Investigating the causality of changes in the landscape pattern of Lake Urmia basin, Iran using remote sensing and time series analysis.

    PubMed

    Mehrian, Majid Ramezani; Hernandez, Raul Ponce; Yavari, Ahmad Reza; Faryadi, Shahrzad; Salehi, Esmaeil

    2016-08-01

    Lake Urmia is the second largest hypersaline lake in the world in terms of surface area. In recent decades, the drop in water level of the lake has been one of the most important environmental issues in Iran. At present, the entire basin is threatened due to abrupt decline of the lake's water level and the consequent increase in salinity. Despite the numerous studies, there is still an ambiguity about the main cause of this environmental crisis. This paper is an attempt to detect the changes in the landscape structure of the main elements of the whole basin using remote sensing techniques and analyze the results against climate data with time series analysis for the purpose of achieving a more clarified illustration of processes and trends. Trend analysis of the different affecting factors indicates that the main cause of the drastic dry out of the lake is the huge expansion of irrigated agriculture in the basin between 1999 and 2014. The climatological parameters including precipitation and temperature cannot be the main reasons for reduced water level in the lake. The results show how the increase in irrigated agricultural area without considering the water resources limits can lead to a regional disaster. The approach used in this study can be a useful tool to monitor and assess the causality of environmental disaster.

  11. Hydrogeologic controls on the groundwater interactions with an acidic lake in karst terrain, Lake Barco, Florida

    USGS Publications Warehouse

    Lee, T.M.

    1996-01-01

    Transient groundwater interactions and lake stage were simulated for Lake Barco, an acidic seepage lake in the mantled karst of north central Florida. Karst subsidence features affected groundwater flow patterns in the basin and groundwater fluxes to and from the lake. Subsidence features peripheral to the lake intercepted potential groundwater inflow and increased leakage from the shallow perimeter of the lake bed. Simulated groundwater fluxes were checked against net groundwater flow derived from a detailed lake hydrologic budget with short-term lake evaporation computed by the energy budget method. Discrepancies between modeled and budget-derived net groundwater flows indicated that the model underestimated groundwater inflow, possibly contributed to by transient water table mounding near the lake. Recharge from rainfall reduced lake leakage by 10 to 15 times more than it increased groundwater inflow. As a result of the karst setting, the contributing groundwater basin to the lake was 2.4 ha for simulated average rainfall conditions, compared to the topographically derived drainage basin area of 81 ha. Short groundwater inflow path lines and rapid travel times limit the contribution of acid-neutralizing solutes from the basin, making Lake Barco susceptible to increased acidification by acid rain.

  12. Spatio-temporal variability of droughts and terrestrial water storage over Lake Chad Basin using independent component analysis

    NASA Astrophysics Data System (ADS)

    Ndehedehe, Christopher E.; Agutu, Nathan O.; Okwuashi, Onuwa; Ferreira, Vagner G.

    2016-09-01

    Lake Chad has recently been perceived to be completely desiccated and almost extinct due to insufficient published ground observations. Given the high spatial variability of rainfall in the region, and the fact that extreme climatic conditions (for example, droughts) could be intensifying in the Lake Chad basin (LCB) due to human activities, a spatio-temporal approach to drought analysis becomes essential. This study employed independent component analysis (ICA), a fourth-order cumulant statistics, to decompose standardised precipitation index (SPI), standardised soil moisture index (SSI), and terrestrial water storage (TWS) derived from Gravity Recovery and Climate Experiment (GRACE) into spatial and temporal patterns over the LCB. In addition, this study uses satellite altimetry data to estimate variations in the Lake Chad water levels, and further employs relevant climate teleconnection indices (El-Niño Southern Oscillation-ENSO, Atlantic Multi-decadal Oscillation-AMO, and Atlantic Meridional Mode-AMM) to examine their links to the observed drought temporal patterns over the basin. From the spatio-temporal drought analysis, temporal evolutions of SPI at 12 month aggregation show relatively wet conditions in the last two decades (although with marked alterations) with the 2012-2014 period being the wettest. In addition to the improved rainfall conditions during this period, there was a statistically significant increase of 0.04 m/yr in altimetry water levels observed over Lake Chad between 2008 and 2014, which confirms a shift in the hydrological conditions of the basin. Observed trend in TWS changes during the 2002-2014 period shows a statistically insignificant increase of 3.0 mm/yr at the centre of the basin, coinciding with soil moisture deficit indicated by the temporal evolutions of SSI at all monthly accumulations during the 2002-2003 and 2009-2012 periods. Further, SPI at 3 and 6 month scales indicated fluctuating drought conditions at the extreme south

  13. Holocene Paleoenvironment of the North-central Great Basin: Preliminary Results from Favre Lake, Northern Ruby Mountains, Nevada

    NASA Astrophysics Data System (ADS)

    Starratt, S.; Wahl, D.; Wan, E.; Anderson, L.; Wanket, J.; Olson, H.; Lloyd-Davies, T.; Kusler, J.

    2009-12-01

    Little is known about Holocene climate variability in north-central Nevada. This study aims to assess changes in watershed vegetation, fire history, lake levels and limnological conditions in order to understand secular to millennial-scale changes in regional climate. Favre Lake (2,899 m a.s.l.; 12 m deep; 7.7 hectares) is a flow-through lake in the northern Ruby Mountains. The primary sources of influent, both of which appear to be intermittent, are Castle Lake (2,989 m a.s.l.) and Liberty Lake (3,077 m a.s.l.). The bedrock of the three lake basins is early Paleozoic marble and Mesozoic granite and metamorphic rocks. Bathymetric maps and temperature, pH, salinity, and conductivity profiles have been generated for Favre Lake. Surface samples and a series of cores were also collected using a modified Livingstone piston corer. The presence of the Mazama ash in the basal sediment (~4 m below the sediment/water interface) indicates the record extends to ~7,700 cal yr B.P. Magnetic susceptibility (MS) and loss-on-ignition data indicate that the sediments in the lowest part of the core contain primary and reworked Mazama ash. About 2,000 years ago CaCO3 increased from 2 to 3% of the inorganic sediment. The upper 25 cm of the core are marked by an increase in MS which may indicate increased erosion due to grazing. Between about 7,700 and 6,000 cal yr B.P. the diatom flora is dominated by a diverse assemblage of benthic species. The remainder of the core is dominated by Fragilaria, suggesting that lake level rose and flooded the shelf that surrounds the depocenter of the lake. This is supported by changes in the abundance of the aquatic fern Isoetes. Pinus and Artemisia dominate the pollen record, followed by subordinate levels of Poaceae, Asteraceae, Amaranthaceae, and Sarcobatus. The late early Holocene (7,700-6,000 cal yr B.P.) is dominated by Pinus which is present in reduced amounts during the middle Holocene (6,000-3,000 cal yr B.P.) and then returns to dominance in

  14. Measuring Holocene Indian Summer Monsoon Precipitation through Lake Sedimentary Proxies, Eastern Tibet

    NASA Astrophysics Data System (ADS)

    Perello, M. M.; Bird, B. W.; Lei, Y.; Polissar, P. J.; Thompson, L. G.; Yao, T.

    2017-12-01

    The Tibetan Plateau is the headwaters of several major river systems in South Asia, which serve as essential water resources for more than 40% of the world's population. The majority of regional precipitation that sustains these water resources is from the Indian summer monsoon (ISM), which can experience considerably variability in response to local and remote forcings and teleconnections. Despite the ISM's importance, its sensitivity to long term and abrupt changes in climatic boundary conditions is not well established with the modern instrumental record or the available body of paleoclimate data. Here, we present results from an ongoing study that utilizes lake sediment records to provide a longer record of relative levels of precipitation and lake level during the monsoon season. The sediments cores used in this study were collected from five lakes along an east-west transect in the Eastern Tibetan Plateau (87-95°E). Using these records, we assess temporal and spatial variability in the intensity of the ISM throughout the Holocene on decadal frequencies. Multiple proxies, including sedimentology, grain size, geochemistry, terrestrial and aquatic leaf wax isotopes, and diatom community assemblages, are used to assess paleo-precipitation and lake level. Preliminary records from our lakes indicate regional trends in monsoon strength, with higher lake levels in the Early Holocene, but with greater variability in the Late Holocene than in other regional paleoclimate records. We have also observed weak responses in our lakes to the Late Holocene events, the Medieval Climate Anomaly and the Little Ice Age. These paleoclimate reconstructions furthers our understanding of strong versus weak monsoon intensities and can be incorporated in climate models for predicting future monsoon conditions.

  15. A late Holocene record of solar-forced atmospheric blocking variability over Northern Europe inferred from varved lake sediments of Lake Kuninkaisenlampi

    NASA Astrophysics Data System (ADS)

    Saarni, Saija; Muschitiello, Francesco; Weege, Stefanie; Brauer, Achim; Saarinen, Timo

    2016-12-01

    This study presents a new varved lake sediment sequence from Lake Kuninkaisenlampi, Eastern Finland. The record is constituted by alternations of clastic and biogenic laminae and provides a precise chronology extending back to 3607 ± 94 varve yrs. BP. The seasonality of the boreal climatic zone, with cold winters and mild summers, is reflected in the varve structure as a succession of three laminae from bottom to top, (i) a coarse to fine-grained detrital lamina marked by detrital catchment material transported by spring floods; (ii) a biogenic lamina with diatoms, plant and insect remnants reflecting biological productivity during the season of lake productivity; and (iii) a very fine amorphous organic lamina deposited during the winter stratification. The thickness of the detrital lamina in the lake reflects changes in the rate of spring snow melt in the catchment and is, therefore, considered a proxy for winter conditions. Hence, the record allows reconstructing local climate and environmental conditions on inter-annual to the multi-centennial timescales. We find that minerogenic accumulation reflected in the detrital lamina exhibits a high multi-decadal to centennial-scale spectral coherency with proxies for solar activity, such as Δ14C, and Total Solar Irradiance, suggesting a strong link between solar variability and sediment transport to the lake basin. Increased catchment erosion is observed during periods of low solar activity, which we ascribe to the development of more frequent atmospheric winter blocking circulation induced by solar-forced changes in the stratosphere. We suggest that soil frost in the catchment of Lake Kuninkaisenlampi related to more frequent winter blocking led to increased surface run-off and ultimately to increased catchment erosion during spring. We conclude that, during the past ca 3600 years, solar forcing may have modulated multi-decadal to centennial variations in sedimentation regimes in lakes from Eastern Finland and

  16. Eocene to Miocene Out-of-Sequence Deformation in the Eastern Tibetan Plateau: Insights From Shortening Structures in the Sichuan Basin

    NASA Astrophysics Data System (ADS)

    Tian, Yuntao; Kohn, Barry P.; Qiu, Nansheng; Yuan, Yusong; Hu, Shengbiao; Gleadow, Andrew J. W.; Zhang, Peizhen

    2018-02-01

    A distinctive NNE trending belt of shortening structures dominates the topography and deformation of the eastern Sichuan Basin, 300 km east of the Tibetan Plateau. Debate continues as to whether the structures resulted from Cenozoic eastward growth of the Tibetan Plateau. A low-temperature thermochronology (AFT and AHe) data set from four deep boreholes and adjacent outcrops intersecting a branch of the shortening structures indicates distinctive differential cooling at 35-28 Ma across the structure, where stratigraphy has been offset vertically by 0.8-1.3 km. This result forms the first quantitative evidence for the existence of a late Eocene-Oligocene phase of shortening in the eastern Sichuan Basin, synchronous with the early phase of eastward growth and extrusion of the Tibetan Plateau. Further, a compilation of regional Cenozoic structures reveals a Miocene retreat of deformation from the foreland basin to the hinterland areas. Such a tectonic reorganization indicates that Eocene to Miocene deformation in the eastern Tibetan Plateau is out-of-sequence and was probably triggered by enhanced erosion in the eastern Tibetan Plateau.

  17. Assessment of Climate Change and Agricultural Land Use Change on Streamflow Input to Devils Lake: A Case Study of the Mauvais Coulee Sub-basin

    NASA Astrophysics Data System (ADS)

    Jackson, C.; Todhunter, P. E.

    2017-12-01

    Since 1993, Devils Lake in North Dakota has experienced a prolonged rise in lake level and flooding of the lake's neighboring areas within the closed basin system. Understanding the relative contribution of climate change and land use change is needed to explain the historical rise in lake level, and to evaluate the potential impact of anthropogenic climate change upon future lake conditions and management. Four methodologies were considered to examine the relative contribution of climatic and human landscape drivers to streamflow variations: statistical, ecohydrologic, physically-based modeling, and elasticity of streamflow; for this study, ecohydrologic and climate elasticity were selected. Agricultural statistics determined that Towner and Ramsey counties underwent a crop conversion from small grains to row crops within the last 30 years. Through the Topographic Wetness Index (TWI), a 10 meter resolution DEM confirmed the presence of innumerable wetland depressions within the non-contributing area of the Mauvais Coulee Sub-basin. Although the ecohydrologic and climate elasticity methodologies are the most commonly used in literature, they make assumptions that are not applicable to basin conditions. A modified and more informed approach to the use of these methods was applied to account for these unique sub-basin characteristics. Ultimately, hydroclimatic variability was determined as the largest driver to streamflow variation in Mauvais Coulee and Devils Lake.

  18. Pesticides in the Lake Kinneret basin: a combined approach towards mircopollutant management

    NASA Astrophysics Data System (ADS)

    Gaßmann, M.; Friedler, E.; Dubwoski, Y.; Dinerman, E.; Olsson, O.; Bauer, M.

    2009-04-01

    Lake Kinneret is the only large surface waterbody in Israel, supplying about 27% of the country's freshwater. Water quality in Lake Kinneret is of major concern and improving the ecological status of this large water body is now a national priority. While many studies in the past focused on nutrients inflows and phytoplankton dynamics, less research has been done on assessing the fate and pathways of micropollutants at semi-arid environments in common and Lake Kinneret in particular. Since the watershed area of Lake Kinneret is used primarily for agriculture, it is important to evaluate the fate and dynamic transfer of organic micropollutants such as pesticides and herbicides in the watershed streams and in the lake itself. This study introduces a combined concept of extensive measurements and modelling tools to observe and simulate the pesticide release chain (i) application - (ii) diffuse release to rivers - (iii) transport in the river - (iv) accumulation in the lake. The available information regarding identification of application zones (i) and the amounts of used pesticides is based on stakeholders interviews, a survey of the different crop types and orchards and a comparison to sold amounts of the target pesticides (Melman and Bar-Ilan 2008). In the current research, a single field mass balance of pesticides is carried out to determine the field release to rivers (ii) by an extensive measurement campaign on the different compartments (soil, vegetation, atmosphere) and phases (water, air, solids) of a single field. The mass balance results in a release pattern of pesticide, which will be overtaken into the modelling approach. Transport of pesticides in rivers (iii) is modelled on the base of a recently developed stream network model for ephemeral streams (MOHID River), introducing important instream fate processes of pesticides and supported by six instream measurement stations of hydrological as well as pesticide data in the basin. To determine the final

  19. Aeromagnetic anomaly patterns reveal buried faults along the eastern margin of the Wilkes Subglacial Basin (East Antarctica)

    USGS Publications Warehouse

    Armadillo, E.; Ferraccioli, F.; Zunino, A.; Bozzo, E.

    2007-01-01

    The Wilkes Subglacial Basin (WSB) is the major morphological feature recognized in the hinterland of the Transantarctic Mountains. The origin of this basin remains contentious and relatively poorly understood due to the lack of extensive geophysical exploration. We present a new aeromagnetic anomaly map over the transition between the Transantarctic Mountains and the WSB for an area adjacent to northern Victoria Land. The aeromagnetic map reveals the existence of subglacial faults along the eastern margin of the WSB. These inferred faults connect previously proposed fault zones over Oates Land with those mapped along the Ross Sea Coast. Specifically, we suggest a link between the Matusevich Frature Zone and the Priestley Fault during the Cenozoic. The new evidence for structural control on the eastern margin of the WSB implies that a purely flexural origin for the basin is unlikely.

  20. Great Lakes prey fish populations: a cross-basin overview of status and trends based on bottom trawl surveys, 1978-2013

    USGS Publications Warehouse

    Gorman, Owen T.; Weidel, Brian C.

    2014-01-01

    The assessment of Great Lakes prey fish stocks have been conducted annually with bottom trawls since the 1970s by the Great Lakes Science Center, sometimes assisted by partner agencies. These stock assessments provide data on the status and trends of prey fish that are consumed by important commercial and recreational fishes. Although all these annual surveys are conducted using bottom trawls, they differ among the lakes in the proportion of the lake covered, seasonal timing, trawl gear used, and the manner in which the trawl is towed (across or along bottom contours). Because each assessment is unique, population indices were standardized to the highest value for a time series within each lake for the following prey species: Cisco (Coregonus artedi), Bloater (C. hoyi), Rainbow Smelt (Osmerus mordax), Alewife (Alosa pseudoharengus), and Round Goby (Neogobius melanostomus). In this report, standardized indices are presented in graphical form along with synopses to provide a short, informal cross-basin summary of the status and trends of principal prey fishes. There was basin-wide agreement in the trends of age-1 and older biomass for all prey species, with the highest concordance occurring for coregonids and Rainbow Smelt, and weaker concordance for Alewife. For coregonids, the highest biomass occurred from the mid-1980s to the mid-1990s. Rainbow Smelt biomass declined slowly and erratically during the last quarter century. Alewife biomass was generally higher from the early 1980s through 1990s across the Great Lakes, but since the early 1990s, trends have been divergent across the lakes, though there has been a downward trend in all lakes since 2005. Recently, Lake Huron has shown resurgence in biomass of Bloater, achieving 75% of its maximum record in 2012 due to recruitment of a succession of strong and moderate year classes that appeared in 2005-2011. Also, strong recruitment of the 2010 year class of Alewife has led to a sharp increase in biomass of Alewife in

  1. Land use change and effects on water quality and ecosystem health in the Lake Tahoe basin, Nevada and California

    USGS Publications Warehouse

    Forney, William; Richards, Lora; Adams, Kenneth D.; Minor, Timothy B.; Rowe, Timothy G.; Smith, J. LaRue; Raumann, Christian G.

    2001-01-01

    Human activity in the Lake Tahoe Basin has increased substantially in the past four decades, causing significant impacts on the quality and clarity of the lake's famous deep, clear water. Protection of Lake Tahoe and the surrounding environment has become an important activity in recent years. A variety of agencies, including the Tahoe Regional Planning Agency, Tahoe Research Group of the University of California at Davis, Desert Research Institute of the University and Community College System of Nevada, U.S. Geological Survey (USGS), and a host of State (both Nevada and California) and local agencies have been monitoring and conducting research in the Basin in order to understand how the lake functions and to what extent humans have affected its landscape and ecosystem processes. In spite of all of these activities, there remains a lack of comprehensive land use change data and analysis for the Basin. A project is underway that unites the land cover mapping expertise of the USGS National Mapping Discipline with the hydrologic expertise of the Water Resources Discipline to assess the impacts of urban growth and land use change in the Lake Tahoe Basin. Three activities are planned over the next 3 years: (1) mapping the current and historic state of the land surface, (2) conducting analysis to document patterns, rates, and trends in urbanization, land use change, and ecosystem health, and (3) assessing the causes and consequences of land use change with regard to water quality and ecosystem health. We hypothesize that changes in the extent of urban growth and the corresponding increases in impervious surfaces and decreases in natural vegetation have resulted in severe impacts on ecosystem health and integrity, riparian zones and water quality over time. We are acting on multiple fronts to test this hypothesis through the quantification of landscape disturbances and impacts.

  2. White Lake AOC

    EPA Pesticide Factsheets

    White Lake is in Muskegon County along the eastern shore of Lake Michigan. It was named an Area of Concern on the Great Lakes under the Great Lakes Water Quality Agreement of 1987 and delisted in 2014.

  3. Variety, State and Origin of Drained Thaw Lake Basins in West-Siberian North

    NASA Astrophysics Data System (ADS)

    Kirpotin, S.; Polishchuk, Y.; Bryksina, N.; Sugaipova, A.; Pokrovsky, O.; Shirokova, L.; Kouraev, A.; Zakharova, E.; Kolmakova, M.; Dupre, B.

    2009-04-01

    Drained thaw lake basins in Western Siberia have a local name "khasyreis" [1]. Khasyreis as well as lakes, ponds and frozen mounds are invariable element of sub-arctic frozen peat bogs - palsas and tundra landscapes. In some areas of West-Siberian sub-arctic khasyreis occupy up to 40-50% of total lake area. Sometimes their concentration is so high that we call such places ‘khasyrei's fields". Khasyreis are part of the natural cycle of palsa complex development [1], but their origin is not continuous and uniform in time and, according to our opinion, there were periods of more intensive lake drainage and khasyrei development accordingly. These times were corresponding with epochs of climatic warming and today we have faced with one of them. So, last years this process was sufficiently activated in the south part of West-Siberian sub-arctic [2]. It was discovered that in the zone of continuous permafrost thermokarst lakes have expanded their areas by about 10-12%, but in the zone of discontinuous permafrost the process of their drainage prevails. These features are connected with the thickness of peat layers which gradually decreases to the North, and thus have reduced the opportunity for lake drainage in northern areas. The most typical way of khasyrei origin is their drainage to the bigger lakes which are always situated on the lower levels and works as a collecting funnels providing drainage of smaller lakes. The lower level of the big lake appeared when the lake takes a critical mass of water enough for subsidence of the lake bottom due to the melting of underlaying rocks [2]. Another one way of lake drainage is the lake intercept by any river. Lake drainage to the subsurface (underlaying rocks) as some authors think [3, 4] is not possible in Western Siberia, because the thickness of permafrost is at list 500 m here being safe confining bed. We mark out few stages of khasyrei development: freshly drained, young, mature and old. This row reflects stages of

  4. Environmental isotope investigation of groundwater flow in the Honey Lake Basin, California and Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rose, T.P.; Davisson, M.L.; Hudson, G.B.

    The hydrology of Honey Lake Basin was studied using environmental isotope measurements of approximately 130 water samples collected during 1995 and 1996. The principal analytical methods included hydrogen, oxygen and carbon stable isotope ratio measurements, radiocarbon and tritium dating, and measurements of dissolved noble gas abundances.

  5. Assessing the Accuracy of MODIS-NDVI Derived Land-Cover Across the Great Lakes Basin

    EPA Science Inventory

    This research describes the accuracy assessment process for a land-cover dataset developed for the Great Lakes Basin (GLB). This land-cover dataset was developed from the 2007 MODIS Normalized Difference Vegetation Index (NDVI) 16-day composite (MOD13Q) 250 m time-series data. Tr...

  6. Squalius namak, a new chub from Lake Namak basin in Iran (Teleostei: Cyprinidae).

    PubMed

    Khaefi, Roozbehan; Esmaeili, Hamid Reza; Sayyadzadeh, Golnaz; Geiger, Matthias F; Freyhof, Jörg

    2016-09-19

    Squalius namak, new species, from the endorheic Lake Namak and Kavir basins in Iran, is distinguished from the species of the genus Squalius in the Persian Gulf and the southern Caspian Sea basins by having a wide and thick symphysial knob on the lower jaw, a convex posterior anal-fin margin, a bold, dark-grey or brown, roundish or crescent-shaped blotch at the posterior tip of each flank scale and orange caudal-, anal- and pelvic-fin rays in life. Squalius namak is also characterized by four fixed, diagnostic nucleotide substitutions in the mtDNA COI barcode region.

  7. Final Environmental Impact Statement. Permit Application by United States Steel Corp., Proposed Lake Front Steel Mill, Conneaut, Ohio. Volume 3.

    DTIC Science & Technology

    1979-01-01

    effluent will generally be carried by lake currents past Presque Isle and into the Lake Erie eastern basin. In the passage between Long Point and Presque ...the city of Erie Building Trades Council(s) which have jurisdiction as far west as the Ohio/ Pennsylvania border while some of the same individual craft...the relative (large) size of Erie local unions and the fact that most of their members live in the Pennsylvania Principal Study Area. Within the Ohio

  8. The structure of a Mesozoic basin beneath the Lake Tana area, Ethiopia, revealed by magnetotelluric imaging

    NASA Astrophysics Data System (ADS)

    Hautot, Sophie; Whaler, Kathryn; Gebru, Workneh; Desissa, Mohammednur

    2006-03-01

    The northwestern Plateau of Ethiopia is almost entirely covered with extensive Tertiary continental flood basalts that mask the underlying formations. Mesozoic and Tertiary sediments are exposed in a few locations surrounding the Lake Tana area suggesting that the Tana depression is an extensional basin buried by the 1-2 km thick Eocene-Oligocene flood basalt sequences in this region. A magnetotelluric survey has been carried out to investigate the deep structure of the Tana area. The objectives were to estimate the thickness of the volcanics and anticipated underlying sedimentary basin. We have collected 27 magnetotelluric soundings south and east of Lake Tana. Two-dimensional inversion of the data along a 160 km long profile gives a model consistent with a NW-SE trending sedimentary basin beneath the lava flows. The thickness of sediments overlying the Precambrian basement averages 1.5-2 km, which is comparable to the Blue Nile stratigraphic section, south of the area. A 1 km thickening of sediments over a 30-40 km wide section suggests that the form of the basin is a half-graben. It is suggested that electrically resistive features in the model are related to volcanic materials intruded within the rift basin sediments through normal faults. The results illustrate the strong control of the Precambrian fracture zones on the feeding of the Tertiary Trap series.

  9. Development of anoxia during the last 90 years in Lake Tiefer See, NE Germany

    NASA Astrophysics Data System (ADS)

    Groß-Schmölders, Miriam; Dräger, Nadine; Kienel, Ulrike; Brauer, Achim

    2015-04-01

    The sediments from the deepest part of the lake basin (62 m) of Lake Tiefer See, an elongated lake formed in a sub-glacial channel during the last glaciation in NE Germany, have been proven to be annually laminated (calcite varves) since AD 1924 (KIENEL ET AL. 2013). Possible explanations for the onset of varve formation are either eutrophication caused by increased nutrient influx through the use of fertilizers in agriculture and/or the modern climatic warming. Since varves can only form under predominantly anoxic conditions it is hypothesized that the development of the anoxic water body in Lake Tiefer See can be reconstructed by determining the onset of varve formation in different parts and at different water depths of the lake basin. Therefore, we investigated: eleven short cores (length from 49 cm (TSK 14 S 2) to 121 cm (TSK 13 QP5)) from a depth of 19, 4 m up to 62 m water depth, mainly along a N-S and a W-E transect. The onset of varve preservation was investigated on all cores by varve counting. Counting and characterization of varves has been obtained by micro-facies analyses of large-scale thin sections μXRF-element scanning. In result we found a good correlation between the onset of varve formation/preservation and water depth. Whereas varves at the deepest point of Lake Tiefer See are developed since 1924 the onset of varve formation began successively later at more shallow water depths. The latest development of varves since 1981 occurs in the northern part of the basin at a water depth of 30 meters and in the East in a depth of 19 meters. In addition to the onset of varve formation, further differences between deep and shallow water cores have been observed. (1) The number of sub-layers per year: two or three layers in the shallow areas in the east, up to seven layers in the deeper part. (2) Better preservation of varves in the northern than in the eastern part of the basin. (3) Different diatom assemblages related to the water depth: Stephanodiscus

  10. The rise and fall of water hyacinth in Lake Victoria and the Kagera River basin, 1989-2001

    USGS Publications Warehouse

    Albright, Thomas P.; Moorhouse, T.G.; McNabb, T.J.

    2004-01-01

    Water hyacinth (Eichhornia crassipes (Mart.) Solms) is an invasive aquatic macrophyte associated with major negative economic and ecological impacts to the Lake Victoria region since the plant's establishment in Uganda in the 1980s. Reliable estimates of water hyacinth distribution and extent are required to gauge the severity of the problem through time, relate water hyacinth abundance to environmental factors, identify areas requiring management action, and assess the efficacy of management actions. To provide such estimates and demonstrate the utility of remote sensing for this application, we processed and analyzed remotely sensed imagery to determine the distribution and extent of water hyacinth. Maps were produced and coverage was quantified using a hybrid unsupervised image classification approach with manual editing for each of the riparian countries of Kenya, Tanzania, and Uganda, as well as for numerous gulfs and bays. A similar procedure was carried out for selected lakes in the Rwanda-Tanzania borderlands lakes region in the Kagera River basin. Results confirm the severity of the water hyacinth infestation, especially in the northern parts of the lake. A maximum lake-wide extent of at least 17,374 ha was attained in 1998. Following this, a combination of factors, including conditions associated with the 1997 to 1998 El Nin??o and biocontrol with water hyacinth weevils, appear to have contributed to a major decline in water hyacinth in the most affected parts of the lake. Some lakes in the Kagera basin, such as Lake Mihindi, Rwanda, were severely infested in the late 1990s, but the level of infestation in most of these decreased markedly by the early 2000s.

  11. Lake levels, streamflow, and surface-water quality in the Devils Lake area, North Dakota

    USGS Publications Warehouse

    Wiche, Gregg J.

    1996-01-01

    The Devils Lake Basin is a 3,810-square-mile (mi2) closed basin (fig. 1) in the Red River of the North Basin. About 3,320 mi2 of the total 3,810 mi2 is tributary to Devils Lake; the remainder is tributary to Stump Lake.Since glaciation, the lake level of Devils Lake has fluctuated from about 1,457 feet (ft) above sea level (asl), the natural spill elevation of the lake to the Sheyenne River, to 1,400 ft asl (Aronow, 1957). Although no documented records of lake levels are available before 1867, Upham (1895, p. 595), on the basis of tree-ring chronology, indicated that the lake level was 1,441 ft asl in 1830. Lake levels were recorded sporadically from 1867 to 1901 when the U.S. Geological Survey established a gaging station on Devils Lake. From 1867 to the present (1996), the lake level has fluctuated between a maximum of 1,438.4 ft asl in 1867 and a minimum of 1,400.9 ft asl in 1940 (fig. 2). On July 31, 1996, the lake level was 1,437.8 ft asl, about 15.2 ft higher than the level recorded in February 1993 and the highest level in about 120 years.Since 1993, the lake level of Devils Lake (fig. 2) has risen rapidly in response to above-normal precipitation from the summer of 1993 to the present, and 30,000 acres of land around the lake have been flooded. The above-normal precipitation also has caused flooding elsewhere in the Devils Lake Basin. State highways near Devils Lake are being raised, and some local roads have been closed because of flooding.In response to the flooding, the Devils Lake Basin Interagency Task Force, comprised of many State and Federal agencies, was formed in 1995 to find and propose intermediate (5 years or less) solutions to reduce the effects of high lake levels. In addition to various planning studies being conducted by Federal agencies, the North Dakota State Water Commission has implemented a project to store water on small tracts of land and in the chain of lakes (Sweetwater Lake, Morrison Lake, Dry Lake, Mikes Lake, Chain Lake

  12. Associations between cyanobacteria and indices of secondary production in the western basin of Lake Erie

    USGS Publications Warehouse

    Larson, James H.; Evans, Mary Anne; Kennedy, Robert J.; Bailey, Sean; Loftin, Keith A.; Laughrey, Zachary; Femmer, Robin; Schaeffer, Jeff; Richardson, William B.; Wynne, Timothy; Nelson, J. C.; Duris, Joseph W.

    2018-01-01

    Large lakes provide a variety of ecological services to surrounding cities and communities. Many of these services are supported by ecological processes that are threatened by the increasing prevalence of cyanobacterial blooms which occur as aquatic ecosystems experience cultural eutrophication. Over the past 10 yr, Lake Erie experienced cyanobacterial blooms of increasing severity and frequency, which have resulted in impaired drinking water for the surrounding communities. Cyanobacterial blooms may impact ecological processes that support other services, but many of these impacts have not been documented. Secondary production (production of primary consumers) is an important process that supports economically important higher trophic levels. Cyanobacterial blooms may influence secondary production because cyanobacteria are a poor‐quality food resource and cyanotoxins may be harmful to consumers. Over 3 yr at 34 sites across the western basin of Lake Erie, we measured three indices of secondary production that focus on the dominant bivalve taxa: (1) growth of a native unionid mussel, (2) the size of young‐of‐year dreissenid mussels, and (3) the mass of colonizing animals on a Hester‐Dendy sampler. Associations between these indices and cyanobacterial data were estimated to assess whether cyanobacteria are associated with variation in secondary production in the western basin of Lake Erie. The results suggest cyanobacterial abundance alone is only weakly associated with secondary production, but that cyanotoxins have a larger effect on secondary production. Given recurring late‐summer cyanobacterial blooms, this impact on secondary production has the potential to undermine Lake Erie's ability to sustain important ecosystem services.

  13. Hydro-economic Risk Assessment in the Eastern Nile River Basin

    NASA Astrophysics Data System (ADS)

    Arjoon, D.; Tilmant, A.; Mohamed, Y.

    2013-12-01

    In 2011, the Ethiopian government announced plans for the construction of the Grand Renaissance Dam (GRD) on the Blue Nile, just east of its border with Sudan, at a cost of almost 5 billion dollars. The project is expected to generate over 15 TWh of energy and will include a reservoir of more than 60 km3 capacity, which roughly corresponds to the average annual flow of the Blue Nile. This project is part of a larger scheme, by the government, to expand its hydroelectric power capacity, however, the scheme faces strong opposition from downstream Egypt and Sudan. Egypt and Sudan are highly dependent on flows that originate in Ethiopia (it has been estimated that 86% of Nile flow originates in the Ethiopian highlands). The Ethiopian government argues that the dam would supply electricity for Ethiopians as well as generate surplus energy for export to neighboring countries. The Ethiopians also argue that the huge reservoir would generate positive externalities downstream by reducing floods and providing more constant and predictable lows. This study attempts to provide an independent analysis of the hydrologic and economic risks faced by downstream countries when GRD will be online. To achieve this, an integrated, stochastic hydro-economic model of the entire Eastern Nile basin is used to analyze various development and management scenarios. The results indicate that if countries agree to co- operative management of the Eastern Nile River basin, GRD would indeed significantly increase basin-wide benefits, especially in Ethiopia and in Sudan. An alternative management scenario, whereby GRD would be operated by Sudan and Egypt, does not yield significant economic gains in these countries. However, massive unilateral irrigation developments in Ethiopia will be detrimental for all countries, including Ethiopia itself, due to the huge opportunity costs involved.

  14. Double-crested Cormorant studies at Little Galloo Island, Lake Ontario in 2013: Diet composition, fish consumption and the efficacy of management activities in reducing fish predation

    USGS Publications Warehouse

    Johnson, James H.; McCullough, Russ D.; Mazzocchi, Irene

    2014-01-01

    For almost two decades Little Galloo Island (LGI) has supported a large colony of Double-crested Cormorants (Phalacrocorax auritus) in the eastern basin of Lake Ontario. Cormorant nest counts on the island since the early 1990's have averaged 4,297 per year. However, less than 2,000 pairs have nested on the island in three of the past five years. The highest count was reached in 1996 with 8,410 nesting pairs on the island. Johnson et al. (2013) estimated that cormorants from LGI alone have consumed 504 million fish since 1992. The proliferation of cormorants in the eastern basin of Lake Ontario coincided with declines in two important recreational fish species, smallmouth bass (Micropterus dolemieu) and yellow perch (Perca falvescens). Lantry et al. (2002) and Burnett et al. (2002) provide convincing evidence linking cormorant population increases to declining eastern basin smallmouth bass and yellow perch stocks. Decline of these fish stocks was evident only in the eastern basin, suggesting a localized problem, which is consistent with the halo effect where large piscivorous waterbird colonies may deplete local fish stocks (Birt et al. 1987). The year 2013 marked the twenty second consecutive year of study of the food habits and fish consumption of LGI cormorants and the fifteenth consecutive year evaluating the efficacy of management activities to control the reproductive success of cormorants nesting at LGI. The program consists mainly of spraying cormorant eggs with food grade vegetable oil as well as the culling of adult and immature birds. This paper reports the findings of work carried out in 2013 at LGI.

  15. Cryogenic formation of brine and sedimentary mirabilite in submergent coastal lake basins, Canadian Arctic

    NASA Astrophysics Data System (ADS)

    Grasby, Stephen E.; Rod Smith, I.; Bell, Trevor; Forbes, Donald L.

    2013-06-01

    Two informally named basins (Mirabilite Basins 1 and 2) along a submergent coastline on Banks Island, Canadian Arctic Archipelago, host up to 1 m-thick accumulations of mirabilite (Na2SO4·10H2O) underlying stratified water bodies with basal anoxic brines. Unlike isostatically uplifting coastlines that trap seawater in coastal basins, these basins formed from freshwater lakes that were transgressed by seawater. The depth of the sill that separates the basins from the sea is shallow (1.15 m), such that seasonal sea ice formation down to 1.6 m isolates the basins from open water exchange through the winter. Freezing of seawater excludes salts, generating dense brines that sink to the basin bottom. Progressive freezing increases salinity of residual brines to the point of mirabilite saturation, and as a result sedimentary deposits of mirabilite accumulate on the basin floors. Brine formation also leads to density stratification and bottom water anoxia. We propose a model whereby summer melt of the ice cover forms a temporary freshwater lens, and rather than mixing with the underlying brines, it is exchanged with seawater once the ice plug that separates the basins from the open sea melts. This permits progressive brine development and density stratification within the basins.

  16. Chemical and mineralogical proxies of erosion episodes in the dried lake sediments (Amik Lake, Southern Turkey): paleoenvironmental implications

    NASA Astrophysics Data System (ADS)

    El Ouahabi, Meriam; Hubert-Ferrari, Aurélia; Lebeau, Héléne; Fagel, Nathalie; Vander Auwera, Jacquelinec; Karabacak, Volkan; Schmidt, Sabine

    2016-04-01

    The Amik Basin in the Eastern Mediterranean region has been continuously occupied since 6000-7000 BC. The landscape has sustained with highly variable anthropic pressure culminating during the Late Roman Period when the Antioch city reached its golden age. The basin also sustained a high seismic activity (M≥7) as it is a releasing step-over along the Dead Sea Fault. The study focuses on the sedimentary record of the Amik Lake occupying the central part of the Basin. Our objective is to constrain major paleo-environmental changes in the area over the last 4000 years and to unravel possible human impacts on the sedimentation. A diverse array of complementary methods was applied on the 6 m long record. High resolution of mineralogical (XRD) and geochemical (XRF) analyses were performed. Quantitative mineralogical phases of sediments by the Rietveld method were computed using Topaz software. The age of the record is constrained combining radionuclide and radiocarbon dating, and checked using the correlation between the earthquake history and rapidly deposited layer identified. A high sedimentation rate of 0.12 cm/yr was inferred at the coring site. The 4000 years old record shows that significant fluctuations of the lake level and the riverine system inflow into the Amik Lake occurred. The Late Bronze lowstand leaded to punctual dryings of the lake at the end of the Bronze/Iron transition marked by the collapse of the Hittite Empire and during the Dark ages. At that time, the riverine was carrying a large terrigenous input linked to strong soil erosion related to deforestation, exploitation of mineral resources and the beginning of upland cultivation. During the Roman Period and in the later periods, upland soils were partly depleted and the riverine system completely transformed by channelization that leaded to a mashification of the Amik Basin. Chemical and mineralogical composition of sediments is quite diversified reflecting the significant geological variation

  17. Timing and patterns of basin infilling as documented in Lake Powell during a drought

    USGS Publications Warehouse

    Pratson, Lincoln F.; Hughes-Clarke, John; Anderson, Mark; Gerber, Thomas; Twitchell, David C.; Ferrari, Ronald; Nittrouer, Charles A.; Beaudoin, Jonathan D.; Granet, Jesse; Crockett, John

    2008-01-01

    Between 1999 and 2005, drought in the western United States led to a >44 m fall in the level of Lake Powell (Arizona-Utah), the nation's second-largest reservoir. River discharges to the reservoir were halved, yet the rivers still incised the tops of deltas left exposed along the rim of the reservoir by the lake-level fall. Erosion of the deltas enriched the rivers in sediment such that upon entering the reservoir they discharged plunging subaqueous gravity flows, one of which was imaged acoustically. Repeat bathymetric surveys of the reservoir show that the gravity flows overtopped rockfalls and formed small subaqueous fans, locally raising sediment accumulation rates 10–100-fold. The timing of deep-basin deposition differed regionally across the reservoir with respect to lake-level change. Total mass of sediment transferred from the lake perimeter to its bottom equates to ~22 yr of river input.

  18. Impact of climate change on runoff in Lake Urmia basin, Iran

    NASA Astrophysics Data System (ADS)

    Sanikhani, Hadi; Kisi, Ozgur; Amirataee, Babak

    2018-04-01

    Investigation of the impact of climate change on water resources is very necessary in dry and arid regions. In the first part of this paper, the climate model Long Ashton Research Station Weather Generator (LARS-WG) was used for downscaling climate data including rainfall, solar radiation, and minimum and maximum temperatures. Two different case studies including Aji-Chay and Mahabad-Chay River basins as sub-basins of Lake Urmia in the northwest part of Iran were considered. The results indicated that the LARS-WG successfully downscaled the climatic variables. By application of different emission scenarios (i.e., A1B, A2, and B1), an increasing trend in rainfall and a decreasing trend in temperature were predicted for both the basins over future time periods. In the second part of this paper, gene expression programming (GEP) was applied for simulating runoff of the basins in the future time periods including 2020, 2055, and 2090. The input combination including rainfall, solar radiation, and minimum and maximum temperatures in current and prior time was selected as the best input combination with highest predictive power for runoff prediction. The results showed that the peak discharge will decrease by 50 and 55.9% in 2090 comparing with the baseline period for the Aji-Chay and Mahabad-Chay basins, respectively. The results indicated that the sustainable adaptation strategies are necessary for these basins for protection of water resources in future.

  19. Cretaceous sedimentation in the outer Eastern Carpathians: Implications for the facies model reconstruction of the Moldavide Basin

    NASA Astrophysics Data System (ADS)

    Roban, R. D.; Krézsek, C.; Melinte-Dobrinescu, M. C.

    2017-06-01

    The mid Cretaceous is characterized by high eustatic sea-levels with widespread oxic conditions that made possible the occurrence of globally correlated Oceanic Red Beds. However, very often, these eustatic signals have been overprinted by local tectonics, which in turn resulted in Lower Cretaceous closed and anoxic basins, as in the Eastern Carpathians. There, the black shale to red bed transition occurs in the latest Albian up to the early Cenomanian. Although earlier studies discussed the large-scale basin configuration, no detailed petrography and sedimentology study has been performed in the Eastern Carpathians. This paper describes the Hauterivian to Turonian lithofacies and interprets the depositional settings based on their sedimentological features. The studied sections crop out only in tectonic half windows of the Eastern Carpathians, part of the Vrancea Nappe. The lithofacies comprises black shales interbedded with siderites and sandstones, calcarenites, marls, radiolarites and red shales. The siliciclastic muddy lithofacies in general reflects accumulation by suspension settling of pelagites and hemipelagites in anoxic (black shale) to dysoxic (dark gray and gray to green shales) and oxic (red shales) conditions. The radiolarites alternate with siliceous shales and are considered as evidence of climate changes. The sandstones represent mostly low and high-density turbidite currents in deep-marine lobes, as well as channel/levee systems. The source area is an eastern one, e.g., the Eastern Carpathians Foreland, given the abundance of low grade metamorphic clasts. The Hauterivian - lower Albian sediments are interpreted as deep-marine, linear and multiple sourced mud dominated systems deposited in a mainly anoxic to dysoxic basin. The anoxic conditions existed in the early to late Albian, but sedimentation changed to a higher energy mud/sand-dominated submarine channels and levees. This coarsening upwards tendency is interpreted as the effect of the

  20. Vegetation management in sensitive areas of the Lake Tahoe Basin: A workshop to evaluate risks and advance existing strategies and practices [Independent review panel report

    Treesearch

    William Elliot; Wally Miller; Bruce Hartsough; Scott Stephens

    2009-01-01

    Elected officials, agency representatives and stakeholders representing many segments of the Lake Tahoe Basin community have all raised concerns over the limited progress in reducing excess vegetation biomass in Stream Environment Zones (SEZ) and on steep slopes (collectively referred to as sensitive areas) in the Lake Tahoe Basin. Limited access, the potential for...

  1. Application of Satellite Observations to Manage Natural Disasters in the Lake Victoria Basin

    NASA Technical Reports Server (NTRS)

    Habib, Shahid; Policelli, F.; Irwin, D.; Korme, Tesfaye; Adler, Bob; Hong, Yang

    2010-01-01

    Lake Victoria, the second largest fresh water lake in the Eastern part of Africa is a vital natural resource for the economic well being and prosperity of over 30 million people located in riparian regions of Uganda, Kenya and Tanzania. It covers a large area of about 68,870 km2 and produces a GDP of about US $30 billion per year. The region is also very much prone to natural disasters such as severe floods during heavy precipitation periods in the Eastern part of Africa. In addition to floods, the precipitation also produces large infestations of mosquito larvae due to the standing water in many areas. This further causes multiple vector borne diseases such as Malaria, Rift Valley Fever and more. These problems are of serious concern and require active and aggressive surveillance and management to minimize the loss of human and animal lives and property damage. Satellite imagery and observations along with the in situ measurements provide a great tool to analyze and study this area and inform the policy makers to make calculated policy decisions which are more beneficial to the environment. Recently, NASA and USAID have joined forces with the Regional Center for Mapping of Resources for Development (RCMRD) located in Nairobi, Kenya to utilize multiple NASA sensors such as TRMM, SRTM and MODIS to develop flood potential maps for the Lake Victoria Basin. The idea is to generate a flood forecasts and "nowcasts" that can be sent to the disaster management organizations of Uganda, Kenya, and Tanzania. Post flood event satellite imagery is becoming a common tool to assess the areas inundated by flooding. However, this work is unique undertaking by utilizing land imaging and atmospheric satellites to build credible flood potential maps. At same time, we are also studying the potential occurrence and spread of Rift Valley Fever disease based on the short term climate records and precipitation data. These activities require multi-nation coordination and agreements and

  2. National Dam Safety Program. Brocton Reservoir (Inventory Number NY 785) , Lake Erie Basin, Chautauqua County, New York. Phase I Inspection Report

    DTIC Science & Technology

    1980-09-26

    Inspection Report Brocton Reservoir National Dam Safety Program Lake Erie Basin, Chautauqua County, New York 6. PERFORMING ORG. REPORT NUMBER Inventory No...LAKE ERIE BASIN BROCTON RESERVOIR I ’CHAUTAUQUA COUNTY, NEW YORK I INVENTORY NO. N.Y. 785 PHASE I INSPECTION REPORT NATIONAL DAM SAFETY PROGRAMI. I...Drawings I I I I I I I I I I PHASE I INSPECTION REPORT NATIONAL DAM SAFETY PROGRAIM NAME OF DAM: Brocton Reservoir Inventory No. N.Y. 785 I STATE LOCATED

  3. Concentrations and distribution of manmade organic compounds in the Lake Tahoe Basin, Nevada and California, 1997-99

    USGS Publications Warehouse

    Lico, Michael S.; Pennington, Nyle

    1999-01-01

    The U.S. Geological Survey, in cooperation with the Tahoe Regional Planning Agency and the Lahontan Regional Water-Quality Control Board, sampled Lake Tahoe, major tributary streams to Lake Tahoe, and several other lakes in the Lake Tahoe Basin for manmade organic compounds during 1997-99. Gasoline components were found in all samples collected from Lake Tahoe during the summer boating season. Methyl tert-butyl ether (MTBE), benzene, toluene, ethylbenzene, and xylenes (BTEX) were the commonly detected compounds in these samples. Most samples from tributary streams and lakes with no motorized boating had no detectable concentrations of gasoline components. Motorized boating activity appears to be directly linked in space and time to the occurrence of these gasoline components. Other sources of gasoline components to Lake Tahoe, such as the atmosphere, surface runoff, and subsurface flow, are minor compared to the input by motorized boating. Water sampled from Lake Tahoe during mid-winter, when motorized boating activity is low, had no MTBE and only one sample had any detectable BTEX compounds. Soluble pesticides rarely were detected in water samples from the Lake Tahoe Basin. The only detectable concentrations of these compounds were in samples from Blackwood and Taylor Creeks collected during spring runoff. Concentrations found in these samples were low, in the 1 to 4 nanograms per liter range. Organochlorine compounds were detected in samples collected from semipermeable membrane devices (SPMD's) collected from Lake Tahoe, tributary streams, and Upper Angora Lake. In Lake Tahoe, SPMD samples collected offshore from urbanized areas contained the largest number and highest concentrations of organochlorine compounds. The most commonly detected organochlorine compounds were cis- and trans-chlordane, p, p'-DDE, and hexachlorobenzene. In tributary streams, SPMD samples collected during spring runoff generally had higher combined concentrations of organochlorine

  4. Variability of Remote Sensing Spectral Indices in Boreal Lake Basins

    NASA Astrophysics Data System (ADS)

    Hakala, T.; Pölönen, I.; Honkavaara, E.; Näsi, R.; Hakala, T.; Lindfors, A.

    2018-05-01

    Remotely sensed hyperspectral data has widely been used to determine water quality parameters in oceanic waters. However in freshwater basins the dependence between the hyperspectral data and the parameters is more complicated. In this work some ideas are presented concerning the study of this dependence. The data used in this study were collected from the lake Hiidenvesi in southern Finland. The hyperspectral data consists of reflectances in 36 bands in the wavelength area 508…878 nm and the separately measured water quality parameters are turbidity, blue-green algae, chlorophyll, pH and dissolved oxygen. Hyperspectral data was used as bare band reflectances, but also in the form of two simple spectral indices: ratio A / B and difference A - B, where A and B go through all the bands. The correlations of the indices with the parameters were presented visually as 1- or 2-dimensional arrays. To examine the significance on the results of different variables, the data was classified in two different ways: the natural basins and the values of the water quality parameters. It was noticed that the variability of the correlation arrays was particularly strong among different basins in both the magnitude of correlation and the best performing indices. Further studies are needed to clarify which features of the basins are of most importance in predicting the shapes of the correlation arrays.

  5. Late Quaternary environmental change in the Bonneville basin, western USA

    USGS Publications Warehouse

    Madsen, D.B.; Rhode, D.; Grayson, D.K.; Broughton, J.M.; Livingston, S.D.; Hunt, J.; Quade, Jay; Schmitt, D.N.; Shaver, M. W.

    2001-01-01

    Excavation and analyses of small animal remains from stratified raptor deposits spanning the last 11.5 ka, together with collection and analysis of over 60 dated fossil woodrat midden samples spanning the last 50 ka, provide a detailed record of changing climate in the eastern Great Basin during the late Pleistocene and Holocene. Sagebrush steppe dominated the northern Bonneville basin during the Full Glacial, suggesting that conditions were cold and relatively dry, in contrast to the southern basin, which was also cold but moister. Limber pine woodlands dominated ???13-11.5 ka, indicating increased dryness and summer temperatures ???6-7??C cooler than present. This drying trend accelerated after ???11.5 ka causing Lake Bonneville to drop rapidly, eliminating 11 species of fish from the lake. From ???11.5-8.2 ka xerophytic sagebrush and shadscale scrub replaced more mesophilic shrubs in a step-wise fashion. A variety of small mammals and plants indicate the early Holocene was ???3??C cooler and moister than at present, not warmer as suggested by a number of climatic models. The diversity of plants and animals changed dramatically after 8.2 ka as many species disappeared from the record. Some of the upland species returned after ???4 ka and Great Salt Lake became fresh enough at ???3.4 and ???1.2 ka to support populations of Utah chub. ?? 2001 Elsevier Science B.V.

  6. Development of an integrated water resources management plan for the Lake Manyara sub-basin, Northern Tanzania

    NASA Astrophysics Data System (ADS)

    Ngana, J. O.; Mwalyosi, R. B. B.; Madulu, N. F.; Yanda, P. Z.

    Water resources management in Lake Manyara sub-basin is an issue of very high significance as the sub-basin hosts a number of national and global assets of great socio-cultural, ecological and economic values. The sub-basin comprise of a Biosphere Reserve with boosting tourism from Lake Manyara National Park with a variety of wildlife population, large livestock population and highly fertile land for agricultural production. The prevailing system of uncoordinated water resources management in the sub-basin cannot sustain the ever increasing water needs of the various expanding sectors, therefore a strategy must be sought to integrate the various sectoral needs against the available water resources in order to attain both economic and ecological sustainability. Through participatory approach with the stakeholders, the study has established key issues, demonstrated considerable experience in water resources management in the sub-basin including existence of water boards, water committees in some districts as well as land resources management practices However, a number of constraints were noted which inhibit sustainable water resources management including ignorance of water policies, conflicting sectoral policies, lack of coordination between sectors, high in migration rates into the basin, heavy in migration of livestock, conflicts between sectors, poor land use resulting in soil erosion and sedimentation, lack of comprehensive data base on water resources and water needs for : domestic, tourism, livestock, irrigation, wild life and environmental flows. As a way forward it was recommended that a basin wide legally mandated body (involving all levels) be established to oversee water use in the sub-basin. Other strategies include capacity building of stakeholders on water natural resources management policies, water rights and enforcement of laws. This progress report paper highlights the wealth of knowledge that stakeholders possess on water resources management and

  7. Model simulations of potential contribution of the proposed Huangpu Gate to flood control in the Lake Taihu basin of China

    NASA Astrophysics Data System (ADS)

    Zhang, Hanghui; Liu, Shuguang; Ye, Jianchun; Yeh, Pat J.-F.

    2017-10-01

    The Lake Taihu basin (36 895 km2), one of the most developed regions in China located in the hinterland of the Yangtze River Delta, has experienced increasing flood risk. The largest flood in history occurred in 1999 with a return period estimate of 200 years, considerably larger than the current capacity of the flood defense with a design return period of 50 years. Due to its flat saucer-like terrain, the capacity of the flood control system in this basin depends on flood control infrastructures and peripheral tidal conditions. The Huangpu River, an important river of the basin connecting Lake Taihu upstream and Yangtze River estuaries downstream, drains two-fifths of the entire basin. Since the water level in the Huangpu River is significantly affected by the high tide conditions in estuaries, constructing an estuary gate is considered an effective solution for flood mitigation. The main objective of this paper is to assess the potential contributions of the proposed Huangpu Gate to the flood control capacity of the basin. To achieve this goal, five different scenarios of flooding conditions and the associated gate operations are considered by using numerical model simulations. Results of quantitative analyses show that the Huangpu Gate is effective for evacuating floodwaters. It can help to reduce both peak values and duration of high water levels in Lake Taihu to benefit surrounding areas along the Taipu Canal and the Huangpu River. The contribution of the gate to the flood control capacity is closely associated with its operation modes and duration. For the maximum potential contribution of the gate, the net outflow at the proposed site is increased by 52 %. The daily peak level is decreased by a maximum of 0.12 m in Lake Taihu, by maxima of 0.26-0.37 and 0.46-0.60 m in the Taipu Canal and the Huangpu River, respectively, and by 0.05-0.39 m in the surrounding areas depending on the local topography. It is concluded that the proposed Huangpu Gate can reduce

  8. Great Lakes prey fish populations: A cross-basin overview of status and trends in 2008

    USGS Publications Warehouse

    Gorman, Owen T.; Bunnell, David B.

    2009-01-01

    Assessments of prey fishes in the Great Lakes have been conducted annually since the 1970s by the Great Lakes Science Center, sometimes assisted by partner agencies. Prey fish assessments differ among lakes in the proportion of a lake covered, seasonal timing, bottom trawl gear used, sampling design, and the manner in which the trawl is towed (across or along bottom contours). Because each assessment is unique in one or more important aspects, a direct comparison of prey fish catches among lakes is problematic. All of the assessments, however, produce indices of abundance or biomass that can be standardized to facilitate comparisons of trends among lakes and to illustrate present status of the populations. We present indices of abundance for important prey fishes in the Great Lakes standardized to the highest value for a time series within each lake: cisco (Coregonus artedi), bloater (C. hoyi), rainbow smelt (Osmerus mordax), and alewife (Alosa pseudoharengus). We also provide indices for round goby (Neogobius melanostomus), an invasive fish presently spreading throughout the basin. Our intent is to provide a short, informal report emphasizing data presentation rather than synthesis; for this reason we intentionally avoid use of tables and cited references.For each lake, standardized relative indices for annual biomass and density estimates of important prey fishes were calculated as the fraction relative to the largest value observed in the times series. To determine whether basin-wide trends were apparent for each species, we first ranked standardized index values within each lake. When comparing ranked index values from three or more lakes, we calculated the Kendall coefficient of concordance (W), which can range from 0 (complete discordance or disagreement among trends) to 1 (complete concordance or agreement among trends). The P-value for W provides the probability of agreement across the lakes. When comparing ranked index values from two lakes, we calculated

  9. Collaborations, research, and adaptive management to address nonnative Phragmites australis in the Great Lakes Basin

    USGS Publications Warehouse

    Kowalski, Kurt P.

    2016-06-30

    Phragmites australis, also known as common reed, is a native North American wetland grass that has grown in North America for thousands of years. More recently, a nonnative, invasive variety of Phragmites from Eurasia is rapidly invading wetlands across the continental United States and other parts of North America, where it negatively impacts humans and the environment. U.S. Geological Survey scientists, funded by the Great Lakes Restoration Initiative, are leading innovative efforts to improve management of nonnative Phragmites in the Great Lakes Basin.

  10. Prevalence of Schistosomes and Soil-Transmitted Helminths among Schoolchildren in Lake Victoria Basin, Tanzania

    PubMed Central

    Siza, Julius E.; Kaatano, Godfrey M.; Chai, Jong-Yil; Eom, Keeseon S.; Rim, Han-Jong; Yong, Tai-Soon; Min, Duk-Young; Chang, Su Young; Ko, Yunsuk; Changalucha, John M.

    2015-01-01

    The objectives of this study was to conduct a survey on schistosomiasis and soil-transmitted helminth (STH) infections in order to come up with feasible control strategies in Lake Victoria basin, Tanzania. Depending on the size of the school, 150-200 schoolchildren were recruited for the study. Duplicate Kato-Katz stool smears were prepared from each child and microscopically examined for Schistosoma mansoni and STHs. Urine specimens were examined for Schistosoma haematobium eggs using the filtration technique. After the survey, mass drug administration was done using praziquantel and albendazole for schistosomiasis and STHs infections, respectively. A total of 5,952 schoolchildren from 36 schools were recruited for the study and had their stool and urine specimens examined. Out of 5,952 schoolchildren, 898 (15.1%) were positive for S. mansoni, 754 (12.6%) for hookworms, 188 (3.2%) for Ascaris lumblicoides, and 5 (0.008%) for Trichuris trichiura. Out of 5,826 schoolchildren who provided urine samples, 519 (8.9%) were positive for S. haematobium eggs. The results revealed that intestinal schistosomiasis, urogenital schistosomiasis, and STH infections are highly prevalent throughought the lake basin. The high prevalence of intestinal and urogenital schistosomisiasis in the study area was a function of the distance from Lake Victoria, the former being more prevalent at localities close to the lake, whilst the latter is more so away from it. Control of schistosomiasis and STHs in the study area requires an integrated strategy that involves provision of health education to communities, regular treatments, and provision of adequate safe water supply and sanitation facilities. PMID:26537030

  11. Prevalence of Schistosomes and Soil-Transmitted Helminths among Schoolchildren in Lake Victoria Basin, Tanzania.

    PubMed

    Siza, Julius E; Kaatano, Godfrey M; Chai, Jong-Yil; Eom, Keeseon S; Rim, Han-Jong; Yong, Tai-Soon; Min, Duk-Young; Chang, Su Young; Ko, Yunsuk; Changalucha, John M

    2015-10-01

    The objectives of this study was to conduct a survey on schistosomiasis and soil-transmitted helminth (STH) infections in order to come up with feasible control strategies in Lake Victoria basin, Tanzania. Depending on the size of the school, 150-200 schoolchildren were recruited for the study. Duplicate Kato-Katz stool smears were prepared from each child and microscopically examined for Schistosoma mansoni and STHs. Urine specimens were examined for Schistosoma haematobium eggs using the filtration technique. After the survey, mass drug administration was done using praziquantel and albendazole for schistosomiasis and STHs infections, respectively. A total of 5,952 schoolchildren from 36 schools were recruited for the study and had their stool and urine specimens examined. Out of 5,952 schoolchildren, 898 (15.1%) were positive for S. mansoni, 754 (12.6%) for hookworms, 188 (3.2%) for Ascaris lumblicoides, and 5 (0.008%) for Trichuris trichiura. Out of 5,826 schoolchildren who provided urine samples, 519 (8.9%) were positive for S. haematobium eggs. The results revealed that intestinal schistosomiasis, urogenital schistosomiasis, and STH infections are highly prevalent throughought the lake basin. The high prevalence of intestinal and urogenital schistosomisiasis in the study area was a function of the distance from Lake Victoria, the former being more prevalent at localities close to the lake, whilst the latter is more so away from it. Control of schistosomiasis and STHs in the study area requires an integrated strategy that involves provision of health education to communities, regular treatments, and provision of adequate safe water supply and sanitation facilities.

  12. Water management sustainability in reclaimed coastal areas. The case of the Massaciuccoli lake basin (Tuscany, Italy)

    NASA Astrophysics Data System (ADS)

    Rossetto, Rudy; Baneschi, Ilaria; Basile, Paolo; Guidi, Massimo; Pistocchi, Chiara; Sabbatini, Tiziana; Silvestri, Nicola; Bonari, Enrico

    2010-05-01

    land sub-systems, the first one showing an average 4.2 mm net daily water loss during the summer season (about 0.975 m3/s) for the years 2000-2009. Lake inflow is constituted of two main terms: an anthropogenic one related to the drainage of the reclaimed land of about 1.1 m3/s (ranging 75-81% of the total inflow); a natural one defined by recharge through rainfall, the western coastal aquifer and the eastern reliefs, accounting for 0.25 m3/s (varying 19-25% of the total inflow). On the other hand, lake water loss is mainly due to evaporation from water surface and evapotranspiration from the palustrine vegetation for around 56-61% (1.31 m3/s on average), while 13 to 15% (0.325 m3/s) is due to inefficient irrigation schemes using lake water and, being the lake perched, recharge to the reclaimed land aquifer (26 to 29%) by means of water infiltrating along the embankments (0.64 m3/s on average). Since several springs on the eastern margin, which would flow to the lacustrine system for about 0.160 m3/s (Autorità di Bacino del Fiume Serchio, 2007), are tapped (for residential, tourism and industrial users), the anthropogenic impact on the water deficit constitutes about 50% of the total, being 34% due to irrigation and 16% to other users. This demonstrates the naturally induced water deficit, already known by historical sources, is heavily altered by anthropogenic pressure defining a not sustainable balance between the socio-economic system and the natural one. It is then clear, that in order to reduce the water stress, a new water management strategy in the whole basin must be devised by revising and enhancing the irrigation schemes and the residential, industrial and tourism water distribution. Reference Autorità di Bacino del Fiume Serchio, 2007. Piano di Bacino 'Bilancio idrico del bacino del lago di Massaciuccoli' Relazione di piano. Lucca, Italy.

  13. Sources, distribution and export coefficient of phosphorus in lowland polders of Lake Taihu Basin, China.

    PubMed

    Huang, Jiacong; Gao, Junfeng; Jiang, Yong; Yin, Hongbin; Amiri, Bahman Jabbarian

    2017-12-01

    Identifying phosphorus (P) sources, distribution and export from lowland polders is important for P pollution management, however, is challenging due to the high complexity of hydrological and P transport processes in lowland areas. In this study, the spatial pattern and temporal dynamics of P export coefficient (PEC) from all the 2539 polders in Lake Taihu Basin, China were estimated using a coupled P model for describing P dynamics in a polder system. The estimated amount of P export from polders in Lake Taihu Basin during 2013 was 1916.2 t/yr, with a spatially-averaged PEC of 1.8 kg/ha/yr. PEC had peak values (more than 4.0 kg/ha/yr) in the polders near/within the large cities, and was high during the rice-cropping season. Sensitivity analysis based on the coupled P model revealed that the sensitive factors controlling the PEC varied spatially and changed through time. Precipitation and air temperature were the most sensitive factors controlling PEC. Culvert controlling and fertilization were sensitive factors controlling PEC during some periods. This study demonstrated an estimation of PEC from 2539 polders in Lake Taihu Basin, and an identification of sensitive environmental factors affecting PEC. The investigation of polder P export in a watershed scale is helpful for water managers to learn the distribution of P sources, to identify key P sources, and thus to achieve best management practice in controlling P export from lowland areas. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Extreme Mesozoic crustal thinning in the Eastern Iberia margin: The example of the Columbrets Basin (Valencia Trough)

    NASA Astrophysics Data System (ADS)

    Mohn, G.; Etheve, N.; Frizon de Lamotte, D.; Roca, E.; Tugend, J.; Gómez-Romeu, J.

    2017-12-01

    Eastern Iberia preserves a complex succession of Mesozoic rifts partly or completely inverted during the Late Cretaceous and Cenozoic in relation with Africa-Eurasia convergence. Notably, the Valencia Trough, classically viewed as part of the Cenozoic West Mediterranean basins, preserves in its southwestern part a thick Mesozoic succession (locally »10km thick) over a highly thinned continental basement (locally only »3,5km thick). This sub-basin referred to as the Columbrets Basin, represents a Late Jurassic-Early Cretaceous hyper-extended rift basin weakly overprinted by subsequent events. Its initial configuration is well preserved allowing us to unravel its 3D architecture and tectono-stratigraphic evolution in the frame of the Mesozoic evolution of eastern Iberia. The Columbrets Basin benefits from an extensive dataset combining high resolution reflection seismic profiles, drill holes, refraction seismic data and Expanding Spread Profiles. Its Mesozoic architecture is controlled by interactions between extensional deformation and halokinesis involving the Upper Triassic salt. The thick uppermost Triassic to Cretaceous succession describes a general synclinal shape, progressively stretched and dismembered towards the basin borders. The SE-border of the basin is characterized by a large extensional detachment fault acting at crustal scale and interacting locally with the Upper Triassic décollement. This extensional structure accommodates the exhumation of the continental basement and part of the crustal thinning. Eventually our results highlight the complex interaction between extreme crustal thinning and occurrence of a pre-rift salt level for the deformation style and tectono-stratigraphic evolution of hyper-extended rift basins.

  15. Historic fire regimes of eastern Great Basin (USA) mountains reconstructed from tree rings

    Treesearch

    Stanley G. Kitchen

    2010-01-01

    Management of natural landscapes requires knowledge of key disturbance processes and their effects. Fire and forest histories provide valuable insight into how fire and vegetation varied and interacted in the past. I constructed multi-century fire chronologies for 10 sites on six mountain ranges representative of the eastern Great Basin (USA), a region in which...

  16. Shallow Investigations of the Deep Seafloor: Quantitative Morphology in the Levant Basin, Eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Kanari, M.; Ketter, T.; Tibor, G.; Schattner, U.

    2017-12-01

    We aim to characterize the seafloor morphology and its shallow sub-surface structures and deformations in the deep part of the Levant basin (eastern Mediterranean) using recently acquired high-resolution shallow seismic reflection data and multibeam bathymetry, which allow quantitative analysis of morphology and structure. The Levant basin at the eastern Mediterranean is considered a passive continental margin, where most of the recent geological processes were related in literature to salt tectonics rooted at the Messinian deposits from 6Ma. We analyzed two sets of recently acquired high-resolution data from multibeam bathymetry and 3.5 kHz Chirp sub-bottom seismic reflection in the deep basin of the continental shelf offshore Israel (water depths up to 2100 m). Semi-automatic mapping of seafloor features and seismic data interpretation resulted in quantitative morphological analysis of the seafloor and its underlying sediment with penetration depth up to 60 m. The quantitative analysis and its interpretation are still in progress. Preliminary results reveal distinct morphologies of four major elements: channels, faults, folds and sediment waves, validated by seismic data. From the spatial distribution and orientation analyses of these phenomena, we identify two primary process types which dominate the formation of the seafloor in the Levant basin: structural and sedimentary. Characterization of the geological and geomorphological processes forming the seafloor helps to better understand the transport mechanisms and the relations between sediment transport and deposition in deep water and the shallower parts of the shelf and slope.

  17. Pile burning effects on soil water repellency, infiltration, and downslope water chemistry in the Lake Tahoe Basin, USA

    Treesearch

    Ken Hubbert; Matt Busse; Steven Overby; Carol Shestak; Ross Gerrard

    2015-01-01

    Thinning of conifers followed by pile burning has become a popular treatment to reduce fuel loads in the Lake Tahoe Basin. However, concern has been voiced about burning within or near riparian areas because of the potential effect on nutrient release and, ultimately, lake water quality. Our objective was to quantify the effects of pile burning on soil physical and...

  18. Lake Chad, Chad, Africa

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Hydrologic and ecologic changes in the Lake Chad Basin are shown in this Oct 1992 photograph. In space photo documentation, Lake Chad was at its greatest area extent (25,000 sq. km.) during Gemini 9 in June 1966 (see S66-38444). Its reduction during the severe droughts from 1968 to 1974 was first noted during Skylab (1973-1974). After the drought began again in 1982, the lake reached its minimum extent (1,450 sq. km.) in Space Shuttle photographs taken in 1984 and 1985. In this STS-52 photograph, Lake Chad has begun to recover. The area of the open water and interdunal impoundments in the southern basin (the Chari River Basin) is estimated to be 1,900 to 2100 sq. km. Note the green vegetation in the valley of the K'Yobe flow has wetted the northern lake basin for the first time in several years. There is evidence of biomass burning south of the K'Yobe Delta and in the vegetated interdunal areas near the dike in the center of the lake. Also note the dark 'Green Line' of the Sahel (the g

  19. The study on the spatial-temporal changes of land use pattern in eastern Sichuan basin based on RS/GIS

    NASA Astrophysics Data System (ADS)

    Sun, Siqi; Xiao, Yi; Guo, Luo

    2018-02-01

    Eastern Sichuan Basin is one of the areas sensitive to global climate change. Due to impacts from human disturbance, the farmland in the study area has been degrading, and the desertification of land has been expanding rapidly. Based on the data of Landsat TM/ETM image in 1990, 1995, 2000, 2005 and 2010, this thesis analysed the spatial characteristics and dynamic trends of land use pattern in eastern Sichuan basin using software for remote sense and geographical information system. The driving factors of land-use change in study area were also discussed. The results indicated that: (i) the area of farmland has significantly decreased because of degradation and conversion from grassland into building land; (ii) farmland patches have changed into fragmented and isolated ones; (iii) the main landscapes in study area, are farmland and forests; (iv) land-use change is significantly associated with the human activities. This study provides a strong theoretical and technical basis for the policy-making of environmental protection and management in Eastern Sichuan Basin of Sichuan Province in china.

  20. Institutional arrangements for beneficial regional cooperation on water, energy and food priority issues in the Eastern Nile Basin

    NASA Astrophysics Data System (ADS)

    Al-Saidi, Mohammad; Hefny, Amr

    2018-07-01

    Research on water cooperation in the Eastern Nile Basin has focused on expanding policy and diplomacy tools for a better allocation of transboundary water resources confined to the river. Regional cooperation on water and related sectors such as energy and land expands the bargaining and areas for mutual gain, and thus enhances cooperation perspectives. This paper looks at the contribution and the potential benefits of a regional cooperation approach to addressing the underlying challenges of water diplomacy, such as complexity and distrust. It also promotes the understanding of river basins as a "resource basin" of integrated and linked resource-use issues, not always related to the river flow. The paper provides an analysis of priority issues for water-energy-food nexus in regional cooperation in the Eastern Nile Basin. This basin represents an illustrative case for regional cooperation and increased integration due to multiple comparative advantages inherent in the uneven endowments of water, energy and arable land resources, and to varying levels of economic and technological advancement among the three riparian countries: Egypt, Sudan and Ethiopia. The paper also analyzes institutional arrangements on a regional scale, and elaborates on the inherent trade-offs associated with them.

  1. Hydrographic Surveys for Six Water Bodies in Eastern Nebraska, 2005-07

    USGS Publications Warehouse

    Johnson, Michaela R.; Andersen, Michael J.; Sebree, Sonja K.

    2008-01-01

    The U.S. Geological Survey, in cooperation with the Nebraska Department of Environmental Quality, completed hydrographic surveys for six water bodies in eastern Nebraska: Maskenthine Wetland, Olive Creek Lake, Standing Bear Lake, Wagon Train Lake and Wetland, Wildwood Lake, and Yankee Hill Lake and sediment basin. The bathymetric data were collected using a boat-mounted survey-grade fathometer that operated at 200 kHz, and a differentially corrected Global Positioning System with antenna mounted directly above the echo-sounder transducer. Shallow-water and terrestrial areas were surveyed using a Real-Time Kinematic Global Positioning System. The bathymetric, shallow-water, and terrestrial data were processed in a geographic information system to generate a triangulated irregular network representation of the bottom of the water body. Bathymetric contours were interpolated from the triangulated irregular network data using a 2-foot contour interval. Bathymetric contours at the conservation pool elevation for Maskenthine Wetland, Yankee Hill Lake, and Yankee Hill sediment pond also were interpolated in addition to the 2-foot contours. The surface area and storage capacity of each lake or wetland were calculated for 1-foot intervals of water surface elevation and are tabulated in the Appendix for all water bodies.

  2. Acoustic stratigraphy of Bear Lake, Utah-Idaho: late Quaternary sedimentation patterns in a simple half-graben

    USGS Publications Warehouse

    Colman, Steven M.

    2006-01-01

    A 277-km network of high-resolution seismic-reflection profiles, supplemented with a sidescan-sonar mosaic of the lake floor, was collected in Bear Lake, Utah–Idaho, in order to explore the sedimentary framework of the lake's paleoclimate record. The acoustic stratigraphy is tied to a 120 m deep, continuously cored drill hole in the lake. Based on the age model for the drill core, the oldest continuously mapped acoustic reflector in the data set has an age of about 100 ka, although older sediments were locally imaged. The acoustic stratigraphy of the sediments below the lake indicates that the basin developed primarily as a simple half-graben, with a steep normal-fault margin on the east and a flexural margin on the west. As expected for a basin controlled by a listric master fault, seismic reflections steepen and diverge toward the fault, bounding eastward-thickening sediment wedges. Secondary normal faults west of the master fault were imaged beneath the lake and many of these faults show progressively increasing offset with depth and age. Several faults cut the youngest sediments in the lake as well as the modern lake floor. The relative simplicity of the sedimentary sequence is interrupted in the northwestern part of the basin by a unit that is interpreted as a large (4 × 10 km) paleodelta of the Bear River. The delta overlies a horizon with an age of about 97 ka, outcrops at the lake floor and is onlapped by much of the uppermost sequence of lake sediments. A feature interpreted as a wave-cut bench occurs in many places on the western side of the lake. The base of this bench occurs at a depth (22–24 m) similar to that (20–25 m) of the distal surface of the paleodelta. Pinch-outs of sedimentary units are common in relatively shallow water on the gentle western margin of the basin and little Holocene sediment has accumulated in water depths of less than 30 m. On the steep eastern margin of the basin, sediments commonly onlap the hanging wall of the East

  3. An integrated science plan for the Lake Tahoe basin: conceptual framework and research strategies

    Treesearch

    Zachary P. Hymanson; Michael W. Collopy

    2010-01-01

    An integrated science plan was developed to identify and refine contemporary science information needs for the Lake Tahoe basin ecosystem. The main objectives were to describe a conceptual framework for an integrated science program, and to develop research strategies addressing key uncertainties and information gaps that challenge government agencies in the theme...

  4. The prevalence of bovine venereal campylobacteriosis in cattle herds in the Lake Chad basin of Nigeria.

    PubMed

    Mshelia, Gideon Dauda; Amin, Jibrilla Dahiru; Egwu, Godwin Onyeamaechi; Woldehiwet, Zerai; Murray, Richard Donald

    2012-10-01

    The prevalence of bovine venereal campylobacteriosis (BVC) was investigated in the Lake Chad basin of Nigeria. Preputial washings and cervico-vaginal mucus samples were obtained from 270 cattle presenting a history of abortion and lowered fertility, kept in traditional and institutional farms. All the samples investigated were cultured using standard bacteriological technique. Campylobacter fetus was isolated from six bulls and four cows. In all cattle sampled, the isolation rates were 2.2% for C. fetus subsp. venerealis and 1.5% for C. fetus subsp. fetus; the herd and within-herd prevalence rates for C. fetus were 22.2% and 3.4%, respectively, while the overall active infectivity rate was 3.7%. BVC probably contributes to lowered fertility and abortions found in cattle in the Lake Chad basin of Nigeria, associated more with C. fetus subsp. venerealis than C. fetus subsp. fetus.

  5. Water-Quality Characterization of Surface Water in the Onondaga Lake Basin, Onondaga County, New York, 2005-08

    USGS Publications Warehouse

    Coon, William F.; Hayhurst, Brett A.; Kappel, William M.; Eckhardt, David A.V.; Szabo, Carolyn O.

    2009-01-01

    Water-resources managers in Onondaga County, N.Y., have been faced with the challenge of improving the water-quality of Onondaga Lake. To assist in this endeavor, the U.S. Geological Survey undertook a 3-year basinwide study to assess the water quality of surface water in the Onondaga Lake Basin. The study quantified the relative contributions of nonpoint sources associated with the major land uses in the basin and also focused on known sources (streams with large sediment loads) and presumed sinks (Onondaga Reservoir and Otisco Lake) of sediment and nutrient loads, which previously had not been evaluated. Water samples were collected and analyzed for nutrients and suspended sediment at 26 surface-water sites and 4 springs in the 285-square-mile Onondaga Lake Basin from October 2005 through December 2008. More than 1,060 base-flow, stormflow, snowmelt, spring-water, and quality-assurance samples collected during the study were analyzed for ammonia, nitrite, nitrate-plus-nitrite, ammonia-plus-organic nitrogen, orthophosphate, phosphorus, and suspended sediment. The concentration of total suspended solids was measured in selected samples. Ninety-one additional samples were collected, including 80 samples from 4 county-operated sites, which were analyzed for suspended sediment or total suspended solids, and 8 precipitation and 3 snowpack samples, which were analyzed for nutrients. Specific conductance, salinity, dissolved oxygen, and water temperature were periodically measured in the field. The mean concentrations of selected constituents in base-flow, stormflow, and snowmelt samples were related to the land use or land cover that either dominated the basin or had a substantial effect on the water quality of the basin. Almost 40 percent of the Onondaga Lake Basin is forested, 30 percent is in agricultural uses, and almost 21 percent, including the city of Syracuse, is in developed uses. The data indicated expected relative differences among the land types for

  6. Sediment-source data for four basins tributary to Lake Tahoe, California and Nevada; August 1983-June 1988

    USGS Publications Warehouse

    Hill, B.R.; Hill, J.R.; Nolan, K.M.

    1990-01-01

    Data were collected during a 5-year study of sediment sources in four drainage basins tributary to Lake Tahoe, California-Nevada. The study areas include the Blackwood Creek, General Creek, Edgewood Creek, and Logan House Creek basins. Data include changes in bank and bed positions at channel cross sections; results of stream-channel inventories; analyses of bank and bed material samples; tabulations of bed-material pebble counts; measured rates of hillslope erosion; dimensions of gullies; suspended-sediment data collected during synoptic snowmelt sampling; and physiographic data for the four study basins. (USGS)

  7. Tectonic controls on the hydrocarbon habitats of the Barito, Kutei, and Tarakan Basins, Eastern Kalimantan, Indonesia: major dissimilarities in adjoining basins

    NASA Astrophysics Data System (ADS)

    Satyana, Awang Harun; Nugroho, Djoko; Surantoko, Imanhardjo

    1999-04-01

    The Barito, Kutei, and Tarakan Basins are located in the eastern half of Kalimantan (Borneo) Island, Indonesia. The basins are distinguished by their different tectonic styles during Tertiary and Pleistocene times. In the Barito Basin, the deformation is a consequence of two distinct, separate, regimes. Firstly, an initial transtensional regime during which sinistral shear resulted in the formation of a series of wrench-related rifts, and secondly, a subsequent transpressional regime involving convergent uplift, reactivating old structures and resulting in wrenching, reverse faulting and folding within the basin. Presently, NNE-SSW and E-W trending structures are concentrated in the northeastern and northern parts of the basin, respectively. In the northeastern part, the structures become increasingly imbricated towards the Meratus Mountains and involve the basement. The western and southern parts of the Barito Basin are only weakly deformed. In the Kutei Basin, the present day dominant structural trend is a series of tightly folded, NNE-SSW trending anticlines and synclines forming the Samarinda Anticlinorium which is dominant in the eastern part of the basin. Deformation is less intense offshore. Middle Miocene to Recent structural growth is suggested by depositional thinning over the structures. The western basin area is uplifted, large structures are evident in several places. The origin of the Kutei structures is still in question and proposed mechanisms include vertical diapirism, gravitational gliding, inversion through regional wrenching, detachment folds over inverted structures, and inverted delta growth-fault system. In the Tarakan Basin, the present structural grain is typified by NNE-SSW normal faults which are mostly developed in the marginal and offshore areas. These structures formed on older NW-SE trending folds and are normal to the direction of the basin sedimentary thickening suggesting that they developed contemporaneously with deposition, as

  8. Resurgence of emerald shiners Notropis atherinoides in Lake Huron's main basin

    USGS Publications Warehouse

    Schaeffer, J.S.; Warner, D.M.; O'Brien, T. P.

    2008-01-01

    Emerald shiners Notropis atherinoides were formerly common in Lakes Huron and Michigan, but declined during the 1960s as the exotic alewife Alosa pseudoharengus proliferated. The Lake Huron emerald shiner population was chronically depressed through 2004; however, we detected resurgence in emerald shiner density and biomass in Lake Huron during acoustic and midwater trawl surveys conducted during 2004-2006. Emerald shiners were not found during 2004, but by 2006 main basin density exceeded 500 fish/ha, biomass estimates exceeded 0.5 kg/ha, and emerald shiners contributed more to pelagic biomass than alewives or rainbow smelt Osmerus mordax. Length frequency distributions suggested that increased density was the result of two consecutive strong year classes in 2005 and 2006. Emerald shiner distributions also expanded from a focus in western Lake Huron in 2005 to a lakewide distribution in 2006. Emerald shiners occurred offshore, but were nearly always associated with epilimnetic surface waters warmer than 19??C. Resurgence of emerald shiners was likely a consequence of reduced alewife abundance, as they declined concurrently with alewife proliferation during the early 1960s. Return of this species may benefit native nearshore piscivores; however, benefits to Pacific salmonids Oncorhynchus spp. are uncertain because emerald shiners are smaller and still less abundant than historically important prey species, and they may be thermally segregated from salmonines.

  9. [Dynamic evolution of landscape spatial pattern in Taihu Lake basin, China].

    PubMed

    Wang, Fang; Xie, Xiao Ping; Chen, Zhi Cong

    2017-11-01

    Based on the land-use satellite image datasets of 2000, 2010 and 2015, the landscape index, dynamic change model, landscape transfer matrix and CLUE-S model were integrated to analyze the dynamic evolution of the landscape spatial pattern of Taihu Lake basin. The results showed that the landscape type of the basin was dominated by cultivated land and construction land, and the degree of landscape fragmentation was strengthened from 2000 to 2015, and the distribution showed a uniform trend. From the point of transfer dynamic change, the cultivated land and construction land changed significantly, which was reduced by 6761 km 2 (2.1%) and increased by 6615.33 km 2 (8.4%), respectively. From the landscape transfer, it could be seen that the main change direction of the cultivated land reduction was the construction land, and the cultivated land with 7866.30 km 2 was converted into construction land, accounting for 91.6% of the cultivated land change, and the contribution to the construction land was 96.5%. The trend of dynamic changes of cultivated and construction land in the counties and cities was the same as that of the whole Taihu Lake basin. For Shanghai Central Urban, as well as Pudong District, Lin'an City, Baoshan District, Minhang District, Jiading District and Changzhou City, the area of the cultivated land and construction land changed more prominently. However, compared with the CLUE-S model for the landscape pattern change in 2030, the change of cultivated and construction lands would be the largest in the natural development scenario. Under the ecological protection scenario, the area of grassland would increase and the dynamic degree would reach 54.5%. Under the situation of cultivated land protection, the conversion of cultivated land to construction land would be decreased.

  10. Water Quality in the Great Salt Lake Basins, Utah, Idaho, and Wyoming, 1998-2001

    USGS Publications Warehouse

    Waddell, Kidd M.; Gerner, Steven J.; Thiros, Susan A.; Giddings, Elise M.; Baskin, Robert L.; Cederberg, Jay R.; Albano, Christine M.

    2004-01-01

    This report contains the major findings of a 1998-2001 assessment of water quality in the Great Salt Lake Basins. It is one of a series of reports by the National Water-Quality Assessment (NAWQA) Program that present major findings in 51 major river basins and aquifer systems across the Nation. In these reports, water quality is discussed in terms of local, State, and regional issues. Conditions in a particular basin or aquifer system are compared to conditions found elsewhere and to selected national benchmarks, such as those for drinking-water quality and the protection of aquatic organisms. This report is intended for individuals working with water-resource issues in Federal, State, or local agencies, universities, public interest groups, or in the private sector. The information will be useful in addressing a number of current issues, such as the effects of agricultural and urban land use on water quality, human health, drinking water, source-water protection, hypoxia and excessive growth of algae and plants, pesticide registration, and monitoring and sampling strategies. This report is also for individuals who wish to know more about the quality of streams and ground water in areas near where they live, and how that water quality compares to water quality in other areas across the Nation. The water-quality conditions in the Great Salt Lake Basins summarized in this report are discussed in detail in other reports that can be accessed at http://ut.water.usgs.gov. Detailed technical information, data and analyses, collection and analytical methodology, models, graphs, and maps that support the findings presented in this report in addition to reports in this series from other basins can be accessed at the national NAWQA Web site http://water.usgs.gov/nawqa.

  11. Changes in discharge dynamics under the constraints of local and global changes in the Chao Lake basin (China)

    NASA Astrophysics Data System (ADS)

    Chu, Y.; Salles, C.; Rodier, C.; Crès, F.-N.; Huang, L.; Tournoud, M.-G.

    2012-04-01

    Located on the Yangtze basin, the Chao Lake is the fifth largest freshwater lake in China and of great importance in terms of water resources and aquaculture. Its catchment (9130 km2) includes the city of Hefei and large extends of agricultural and rural areas. Fast changes are expected in land uses and agricultural practices for the future, due to the touristic appeal of the Chao Lake shore and the growth of the city of Hefei. Climate changes are also expected in this region, with a high impact on rainfall regime. The consequences of these changes on the sustainability of the water inflows into the lake are a major issue for the economical development of the Chao Lake area even though they are little-known. Our study aims to give tools for estimating such consequences, accounting for uncertainties in scenario data and model parameters. The dynamics of rivers flowing into the Chao Lake is not very well-known, except for the Fengle River. The Fengle catchment (1480 km2) is mainly rural. River discharges are recorded at Taoxi station, upstream its outlet into the lake. 20-year records of daily discharges are available. Nine rain gauges, with daily data, daily temperature and evapotranspiration data are also available. The current dynamics of the Fengle River is characterized in terms of flood frequencies on discharge-duration-frequency curves. The ATHYS freely available hydrological tool (www.athys-soft.org) is used to calibrate and validate a distributed model of the Fengle catchment. Four calibration runs are done on four independent 5-year discharge records. Four different sets of model parameters are discussed. The model is then run for validation. The uncertainties in model predictions are evaluated in terms of errors in the simulated discharges during the validation period, with regards to the 5-year period used for calibration. The model is then applied on scenarios of changes in land uses and climate. Uncertainties in scenarios of changes are estimated

  12. Mapping Cropland and Major Crop Types Across the Great Lakes Basin Using MODIS-NDVI Data

    EPA Science Inventory

    This research evaluated the potential for using the MODIS Normalized Difference Vegetation Index (NDVI) 16-day composite (MOD13Q) 250-m time-series data to develop a cropland mapping capability throughout the 480 000 km2 Great Lakes Basin (GLB). Cropland mapping was conducted usi...

  13. Evolution and palaeoenvironment of the Bauru Basin (Upper Cretaceous, Brazil)

    NASA Astrophysics Data System (ADS)

    Fernandes, Luiz Alberto; Magalhães Ribeiro, Claudia Maria

    2015-08-01

    , amphibians, molluscs, crustaceans, and charophyte algae lived. The fossil record mainly consists of transported bones and other skeletal fragments. In the northeastern and eastern marginal regions fossils are found in marginal alluvial fan deposits, broad plains of braided streams and ephemeral alkaline water lakes. In the basin interior the fossil record is related to deposits in sand sheets with braided streams, small dunes, and shallow lakes. In the great Caiuá inner desert a few smaller animals could survive (small reptiles and early mammals), sometimes leaving their footprints in dune foreset deposits. The aim of this article is to present and link the basin sedimentary evolution, palaeoecological features and palaeontological record.

  14. Estimation of groundwater use for a groundwater-flow model of the Lake Michigan Basin and adjacent areas, 1864-2005

    USGS Publications Warehouse

    Buchwald, Cheryl A.; Luukkonen, Carol L.; Rachol, Cynthia M.

    2010-01-01

    The U.S. Geological Survey, at the request of Congress, is assessing the availability and use of the Nation's water resources to help characterize how much water is available now, how water availability is changing, and how much water can be expected to be available in the future. The Great Lakes Basin Pilot project of the U.S. Geological Survey national assessment of water availability and use focused on the Great Lakes Basin and included detailed studies of the processes governing water availability in the Great Lakes Basin. One of these studies included the development of a groundwater-flow model of the Lake Michigan Basin. This report describes the compilation and estimation of the groundwater withdrawals in those areas in Wisconsin, Michigan, Indiana, and Illinois that were needed for the Lake Michigan Basin study groundwater-flow model. These data were aggregated for 12 model time intervals spanning 1864 to 2005 and were summarized by model area, model subregion, category of water use, aquifer system, aquifer type, and hydrogeologic unit model layer. The types and availability of information on groundwater withdrawals vary considerably among states because water-use programs often differ in the types of data collected and in the methods and frequency of data collection. As a consequence, the methods used to estimate and verify the data also vary. Additionally, because of the different sources of data and different terminologies applied for the purposes of this report, the water-use data published in this report may differ from water-use data presented in other reports. These data represent only a partial estimate of groundwater use in each state because estimates were compiled only for areas in Wisconsin, Michigan, Indiana, and Illinois within the Lake Michigan Basin model area. Groundwater-withdrawal data were compiled for both nearfield and farfield model areas in Wisconsin and Illinois, whereas these data were compiled primarily for the nearfield model

  15. Exploring the water storage changes in the largest lake (Selin Co) over the Tibetan Plateau during 2003-2012 from a basin-wide hydrological modeling

    NASA Astrophysics Data System (ADS)

    Zhou, Jing; Wang, Lei; Zhang, Yinsheng; Guo, Yanhong

    2016-04-01

    Lake water storage change (DSw) is an important indicator of the hydrologic cycle and greatly influences lake expansion/shrinkage over the Tibetan Plateau (TP). Accurate estimation of DSw will contribute to improved understanding of lake variations in the TP. Based on a water balance, this study explored the variations of DSw for the Lake Selin Co (the largest closed lake on the TP) during 2003-2012 using the Water and Energy Budget-based Distributed Hydrological Model (WEB-DHM) together with two different evapotranspiration (ET) algorithms (the Penman-Monteith method and a simple sublimation estimation approach for water area in unfrozen and frozen period). The contributions of basin discharge and climate causes to the DSw are also quantitatively analyzed. The results showed that WEB-DHM could well reproduce daily discharge, the spatial pattern, and basin-averaged values of MODIS land surface temperature (LST) during nighttime and daytime. Compared with the ET reference values estimated from the basin-wide water balance, our ET estimates showed better performance than three global ET products in reproducing basin-averaged ET. The modeled ET at point scale matches well with short-term in situ daily measurements (RMSE=0.82 mm/d). Lake inflows and precipitation over the water area had stronger relationships with DSw in the warm season and monthly scale, whereas evaporation from the water area had remarkable effects on DSw in the cold season. The total contribution of the three factors to DSw was about 90%, and accounting for 49.5%, 22.1%, and 18.3%, respectively.

  16. Improvement in precipitation-runoff model simulations by recalibration with basin-specific data, and subsequent model applications, Onondaga Lake Basin, Onondaga County, New York

    USGS Publications Warehouse

    Coon, William F.

    2011-01-01

    Simulation of streamflows in small subbasins was improved by adjusting model parameter values to match base flows, storm peaks, and storm recessions more precisely than had been done with the original model. Simulated recessional and low flows were either increased or decreased as appropriate for a given stream, and simulated peak flows generally were lowered in the revised model. The use of suspended-sediment concentrations rather than concentrations of the surrogate constituent, total suspended solids, resulted in increases in the simulated low-flow sediment concentrations and, in most cases, decreases in the simulated peak-flow sediment concentrations. Simulated orthophosphate concentrations in base flows generally increased but decreased for peak flows in selected headwater subbasins in the revised model. Compared with the original model, phosphorus concentrations simulated by the revised model were comparable in forested subbasins, generally decreased in developed and wetland-dominated subbasins, and increased in agricultural subbasins. A final revision to the model was made by the addition of the simulation of chloride (salt) concentrations in the Onondaga Creek Basin to help water-resource managers better understand the relative contributions of salt from multiple sources in this particular tributary. The calibrated revised model was used to (1) compute loading rates for the various land types that were simulated in the model, (2) conduct a watershed-management analysis that estimated the portion of the total load that was likely to be transported to Onondaga Lake from each of the modeled subbasins, (3) compute and assess chloride loads to Onondaga Lake from the Onondaga Creek Basin, and (4) simulate precolonization (forested) conditions in the basin to estimate the probable minimum phosphorus loads to the lake.

  17. Drivers of deep-water renewal events observed over 13 years in the South Basin of Lake Baikal

    NASA Astrophysics Data System (ADS)

    Tsimitri, Chrysanthi; Rockel, Burkhardt; Wüest, Alfred; Budnev, Nikolay M.; Sturm, Michael; Schmid, Martin

    2015-03-01

    Lake Baikal, with a depth of 1637 m, is characterized by deep-water intrusions that bridge the near-surface layer to the hypolimnion. These episodic events transfer heat and oxygen over large vertical scales and maintain the permanent temperature stratified deep-water status of the lake. Here we evaluate a series of intrusion events that reached the bottom of the lake in terms of the stratification and the wind conditions under which they occurred and provide a new insight into the triggering mechanisms. We make use of long-term temperature and current meter data (2000-2013) recorded in the South Basin of the lake combined with wind data produced with a regional downscaling of the global NCEP-RA1 reanalysis product. A total of 13 events were observed during which near-surface cold water reached the bottom of the South Basin at 1350 m depth. We found that the triggering mechanism of the events is related to the time of the year that they take place. We categorized the events in three groups: (1) winter events, observed shortly before the complete ice cover of the lake that are triggered by Ekman coastal downwelling, (2) under-ice events, and (3) spring events, that show no correlation to the wind conditions and are possibly connected to the increased spring outflow of the Selenga River. This article was corrected on 18 MAR 2015. See the end of the full text for details.

  18. 27 CFR 9.177 - Alexandria Lakes.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... and then northeasterly along the western shore of Lake Carlos on to the Alexandria East, Minn. map... eastern shoreline; then (11) South along Lake Ida's eastern shoreline, then onto the Alexandria West, Minn...

  19. Geothermal constraints on enrichment of boron and lithium in salt lakes: An example from a river-salt lake system on the northern slope of the eastern Kunlun Mountains, China

    NASA Astrophysics Data System (ADS)

    Tan, Hongbing; Chen, Jun; Rao, Wenbo; Zhang, Wenjie; Zhou, Huifang

    2012-06-01

    Some rivers on the northern slope of the eastern Kunlun Mountains in the Qaidam Basin, China, show very high concentrations of boron and lithium. Correspondingly, the salt lakes fed by these rivers show an unusual enrichment of boron and lithium, and become an important economic resource. The origin of boron and lithium has long been debated. The aim of this study is to analyze the water chemistry and hydrogen and oxygen isotopic composition of river water to understand the unusual enrichment of boron and lithium in the salt lakes of the Qaidam Basin. Oxygen and hydrogen isotope data show that the source of river water in the winter and summer originates from the Kunlun Mountain ice and snow melt water, respectively. The water chemistry shows that boron and lithium contents are high but little variable with seasons in the Nalenggele River and Wutumeiren River waters. By contrast, other rivers have much lower lithium and boron contents. Moreover, the contents of B3+ and Li+ in the river loads or bed sands show little difference amongst the rivers. This indicates that removal by adsorption or input by surface rock weathering is not the main controlling factor of the B3+ and Li+ variation in the rivers. Rivers with high B3+ and Li+ content are chemically similar to geothermal waters in the Tibetan Plateau. In addition, the source area of the Nalenggele River is located in a collision zone of the Kunlun Mountains and Altun Mountains. Large and deep faults can serve as conduits for geothermal fluids. Thus, deep geothermal waters in the source area can easily migrate to the surface and discharge as springs feeding the rivers. They are an important source of B3+ and Li+ to the rivers. The abnormally high contents of B3+ and Li+ in the Nalenggele and Wutumeiren Rivers also suggest that the geothermal source area may be a future target for boron and lithium resources.

  20. Vegetation and climate history in arid western China during MIS2: New insights from pollen and grain-size data of the Balikun Lake, eastern Tien Shan

    NASA Astrophysics Data System (ADS)

    Zhao, Yongtao; An, Cheng-Bang; Mao, Limi; Zhao, Jiaju; Tang, Lingyu; Zhou, Aifeng; Li, Hu; Dong, Weimiao; Duan, Futao; Chen, Fahu

    2015-10-01

    Marine Isotope Stage (MIS) 2 is mostly a cold period encompassing the Last Glacial Maximum (LGM), but the regional expression of MIS2 in arid areas of China is not well known. In this paper, we use high-resolution lacustrine pollen and grain-size records from Balikun Lake to infer vegetation, lake evolution, and climate in arid western China during MIS2. Our results suggest that: 1) the regional vegetation around Balikun was mainly dominated by desert and/or desert-steppe, and Balikun Lake was relatively shallow and experienced high aeolian input during MIS2; 2) distinctive runoff from mountain glacial meltwater in the eastern parts of the Balikun basin caused a high relative abundance of Artemisia pollen during the LGM (26.5-19.2 cal kyr BP), while simultaneously the desert areas expanded as indicated by the high abundance of desert shrubs (e.g., Elaeagnaceae, Rhamnaceae, Hippophae). This cold and dry LGM climate triggered a substantial lowering of lake level; 3) an extremely cold and dry climate prevailing from 17.0 to 15.2 cal kyr BP, correlated with Heinrich event 1 (H1), would explain the low vegetation cover found then; and 4) the warm and humid Bølling/Allerød interstadial (BA: ca. 15-ca. 13 cal kyr BP) is clearly recorded in the Balikun region by the development of wetland herb communities (e.g., Poaceae, Cyperaceae, Typha), and the lake level rose due to increased runoff. Our results challenge the traditional view of cold and wet climatic conditions and high lake levels in arid western China during the LGM, and we propose that changes in local temperature modulated by July insolation was an indispensable factor in triggering vegetation evolution in the Balikun region during MIS2.

  1. Identifying water-quality trends in the Trinity River, Texas, USA, 1969-1992, using sediment cores from Lake Livingston

    USGS Publications Warehouse

    Van Metre, P.C.; Callender, E.

    1996-01-01

    Chemical analyses were done on cores of bottom sediment from three locations in Lake Livingston, a reservoir on the Trinity River in east Texas to identify trends in water quality in the Trinity River using the chemical record preserved in bottom sediments trapped by the reservoir. Sediment cores spanned the period from 1969, when the reservoir was impounded, to 1992, when the cores were collected. Chemical concentrations in reservoir sediment samples were compared to concentrations for 14 streambed sediment samples from the Trinity River Basin and to reported concentrations for soils in the eastern United States and shale. These comparisons indicate that sediments deposited in Lake Livingston are representative of the environmental setting of Lake Livingston within the Trinity River Basin. Vertical changes in concentrations within sediment cores indicate temporal trends of decreasing concentrations of lead, sodium, barium, and total DDT (DDT plus its metabolites DDD and DDE) in the Trinity River. Possible increasing temporal trends are indicated for chlordane and dieldrin. Each sediment-derived trend is related to trends in water quality in the Trinity River or known changes in environmental factors in its drainage basin or both.

  2. Characterizing post-drainage succession in Thermokarst Lake Basins on the Seward Peninsula, Alaska with TerraSAR-X Backscatter and Landsat-based NDVI data

    USGS Publications Warehouse

    Regmi, Prajna; Grosse, Guido; Jones, Miriam C.; Jones, Benjamin M.; Walter Anthony, Katey

    2012-01-01

    Drained thermokarst lake basins accumulate significant amounts of soil organic carbon in the form of peat, which is of interest to understanding carbon cycling and climate change feedbacks associated with thermokarst in the Arctic. Remote sensing is a tool useful for understanding temporal and spatial dynamics of drained basins. In this study, we tested the application of high-resolution X-band Synthetic Aperture Radar (SAR) data of the German TerraSAR-X satellite from the 2009 growing season (July–September) for characterizing drained thermokarst lake basins of various age in the ice-rich permafrost region of the northern Seward Peninsula, Alaska. To enhance interpretation of patterns identified in X-band SAR for these basins, we also analyzed the Normalized Difference Vegetation Index (NDVI) calculated from a Landsat-5 Thematic Mapper image acquired on July 2009 and compared both X-band SAR and NDVI data with observations of basin age. We found significant logarithmic relationships between (a) TerraSAR-X backscatter and basin age from 0 to 10,000 years, (b) Landat-5 TM NDVI and basin age from 0 to 10,000 years, and (c) TerraSAR-X backscatter and basin age from 50 to 10,000 years. NDVI was a better indicator of basin age over a period of 0–10,000 years. However, TerraSAR-X data performed much better for discriminating radiocarbon-dated basins (50–10,000 years old). No clear relationships were found for either backscatter or NDVI and basin age from 0 to 50 years. We attribute the decreasing trend of backscatter and NDVI with increasing basin age to post-drainage changes in the basin surface. Such changes include succession in vegetation, soils, hydrology, and renewed permafrost aggradation, ground ice accumulation and localized frost heave. Results of this study show the potential application of X-band SAR data in combination with NDVI data to map long-term succession dynamics of drained thermokarst lake basins.

  3. Buried paleo-sedimentary basins in the north-eastern Black Sea-Azov Sea area and tectonic implications (DOBRE-2)

    NASA Astrophysics Data System (ADS)

    Starostenko, Vitaly; Stephenson, Randell; Janik, Tomasz; Tolkunov, Anatoly

    2014-05-01

    A number of independent but inter-related projects carried out under the auspices of various national and international programmes in Ukraine including DARIUS were aimed at imaging the upper lithosphere, crustal and sedimentary basin architecture in the north-eastern Black Sea, southern Crimea and Kerch peninsulas and the Azov Sea. This region marks the transition from relatively undisturbed Precambrian European cratonic crust and lithosphere north of the Azov Sea to areas of significant Phanerozoic tectonics and basin development, in both extensional as well as compressional environments, to the south, including the eastern Black Sea rift, which is the main sedimentary basin of the study area. The wide-angle reflection and refraction (WARR) profile DOBRE-2, a Ukrainian national project with international participation (see below), overlapping some 115 km of the southern end of the DOBREfraction'99 profile (that crosses the intracratonic Donbas Foldbelt) in the north and running to the eastern Black Sea basin in the south, utilised on- and offshore recording and energy sources. It maps crustal velocity structure across the craton margin and documents, among other things, that the Moho deepens from 40 km to ~47 km to the southwest below the Azov Sea and Crimean-Caucasus deformed zone. A regional CDP seismic profile coincident with DOBRE-2, crossing the Azov Sea, Kerch Peninsula and the north-eastern Black Sea southwest to the Ukraine-Turkey border, acquired by Ukrgeofisika (the Ukrainian national geophysical company) reveals in its inferred structural relationships the ages of Cretaceous and younger extensional and subsequent basin inversion tectonic events as well as the 2D geometry of basement displacement associated with post mid-Eocene inversion. A direct comparison of the results of the WARR velocity model and the near-vertical reflection structural image has been made by converting the former into the time domain. The results dramatically demonstrate that

  4. Fisheries research and monitoring activities of the Lake Erie Biological Station, 2014

    USGS Publications Warehouse

    Bodamer Scarbro, Betsy L.; Edwards, William; Gawne, Carrie; Kocovsky, Patrick M.; Kraus, Richard T.; Rogers, Mark W.; Stewart, Taylor

    2015-01-01

    In 2014, the USGS LEBS successfully completed large vessel surveys in all three of Lake Erie’s basins. Lake Erie Biological Station’s primary vessel surveys included the Western Basin Forage Fish Assessment and East Harbor Forage Fish Assessment as well as contributing to the cooperative multi-agency Central Basin Hydroacoustics Assessment, the Eastern Basin Coldwater Community Assessment, and LTLA (see FTG, CWTG, and FTG reports, respectively). Results from the surveys contribute to Lake Erie Committee Task Group data needs and analyses of trends in Lake Erie’s fish communities. The cruise survey schedule in 2014 was greatly increased by LEBS’s participation in the Lake Erie CSMI, which consisted of up-to two weeks of additional sampling per month from April to October. CSMI is a bi-national effort that occurs at Lake Erie every five years with the purpose of addressing data and knowledge gaps necessary to management agencies and the Lake Erie LaMP. LEBS deepwater science capabilities also provided a platform for data collection by Lake Erie investigators from multiple agencies and universities including: the USGS GLSC, ODW, KSU, OSU, UM, PU, UT, and the USNRL. Samples from this survey are being processed and a separate report of the findings will be made available in a separate document. Our 2014 vessel operations were initiated in mid-April, as soon after ice-out as possible, and continued into early December. During this time, crews of the R/V Muskie and R/V Bowfin deployed 196 bottom trawls covering 48.5 km of lake-bottom, nearly 6 km of gillnet, collected data from 60 hydroacoustics transects, 285 lower trophic (i.e., zooplankton and benthos) samples, and 330 water quality measures (e.g., temperature profiles, water samples). Thus, 2014 was an intensive year of field activity. Our June and September bottom trawl surveys in the Western Basin were numerically dominated by Emerald Shiner, White Perch, and Yellow Perch; however, Freshwater Drum were

  5. Geochemistry of groundwater in the Beaver and Camas Creek drainage basins, eastern Idaho

    USGS Publications Warehouse

    Rattray, Gordon W.; Ginsbach, Michael L.

    2014-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Energy, is studying the fate and transport of waste solutes in the eastern Snake River Plain (ESRP) aquifer at the Idaho National Laboratory (INL) in eastern Idaho. This effort requires an understanding of the natural and anthropogenic geochemistry of groundwater at the INL and of the important physical and chemical processes controlling the geochemistry. In this study, the USGS applied geochemical modeling to investigate the geochemistry of groundwater in the Beaver and Camas Creek drainage basins, which provide groundwater recharge to the ESRP aquifer underlying the northeastern part of the INL. Data used in this study include petrology and mineralogy from 2 sediment and 3 rock samples, and water-quality analyses from 4 surface-water and 18 groundwater samples. The mineralogy of the sediment and rock samples was analyzed with X-ray diffraction, and the mineralogy and petrology of the rock samples were examined in thin sections. The water samples were analyzed for field parameters, major ions, silica, nutrients, dissolved organic carbon, trace elements, tritium, and the stable isotope ratios of hydrogen, oxygen, carbon, sulfur, and nitrogen. Groundwater geochemistry was influenced by reactions with rocks of the geologic terranes—carbonate rocks, rhyolite, basalt, evaporite deposits, and sediment comprised of all of these rocks. Agricultural practices near and south of Dubois and application of road anti-icing liquids on U.S. Interstate Highway 15 were likely sources of nitrate, chloride, calcium, and magnesium to groundwater. Groundwater geochemistry was successfully modeled in the alluvial aquifer in Camas Meadows and the ESRP fractured basalt aquifer using the geochemical modeling code PHREEQC. The primary geochemical processes appear to be precipitation or dissolution of calcite and dissolution of silicate minerals. Dissolution of evaporite minerals, associated with Pleistocene Lake

  6. Walleye in Lake Erie and Lake St. Clair

    USGS Publications Warehouse

    Nepszy, S.J.; Davies, D.H.; Einhouse, D.; Hatch, R.W.; Isbell, G.; MacLennan, D.; Muth, K.M.

    1991-01-01

    The history and current status of walleye (Stizostedion vitreum vitreum) stocks in Lake Erie and Lake St. Clair are reviewed in relation to their exploitation by commercial and recreational fishermen, environmental factors, rehabilitation efforts, and community dynamics. Management initiatives and stock recovery under these processes are outlined. After the collapse of the fishery in 1957, the highly productive walleye stock of western Lake Erie remained depressed through the 1960s, while the eastern basin stock remained stable. Closure of the fishery for walleye from 1970-73 because of mercury contamination provided an opportunity for the development of an international interagency management plan. With quota management, the walleye stock in western Lake Erie responded well to limited exploitation, steadily increased, and expanded its range. As population expanded, growth began to decline and was more apparent in the young-of-the-year (YOY) in the 1970s, and in older walleye in the late 1970s and 1980s. At the turn of the century, commercial harvest of walleye in Lake St. Clair ranged from 12-127 tonnes annually. A relatively stable period from 1910-59 was followed by significantly increased harvests (100-150 t) in 1959-65. This increase was a result of increased commercial exploitation as well as an increased abundance of walleye. After the mercury contamination problem of 1970, angling effort and harvest was reduced but then gradually increased in Ontario waters from 37 t in 1973 to 62 t in 1988. The increased mean age of the stock during the early 1970s was due to a few strong year-classes (1970, 1972, and 1974) as well as a period of stable or reduced catch per unit effort. With the current mean age not reduced significantly, the stocks of walleye should continue to provide good yields.

  7. The last interglaciation at Owens Lake, California; Core OL-92

    USGS Publications Warehouse

    Bischoff, James L.

    1998-01-01

    Owens Lake, located at the eastern base of the central Sierra Nevada (Fig. 1), was the terminus of the Owens River prior to the lake's complete desiccation shortly after 1913 due to river diversion by the City of Los Angeles. During earlier wetter cycles, the lake overflowed to fill a series of downstream basins including China Lake Basin, Searles Valley, Panamint Valley, and ultimately, Death Valley (Smith and Street-Perrott, 1983). In 1992 the U.S. Geological Survey drilled a 323-m-deep core (OL-92) into Owens Lake sediments near the depocenter of the basin to obtain a continuous record of silty-clay sediment spanning the last 800,000 yrs. A multi-parameter reconnaissance study of the entire core (ca 7000-yr resolution), was reported in a 13-chapter summary volume (Smith and Bischoff, 1997). A document containing the numerical and other detailed forms of raw data collected by that volume's authors was prepared earlier (Smith and Bischoff, 1993). The reconnaissance study provided an approximate time-depth model for the entire core, based on radiocarbon dates from the top 31m, the Bishop Ash (759,000 yrs) at 304 m, ten within-Brunhes paleomagnetic excursions, and a compaction-corrected mass-accumulation rate of 51.4 g/cm/l000yr (Bischoff et al., 1997a). Application of this model to observed sediment parameters indicates that Owens Lake was saline, alkaline, and biologically productive at times of decreased water-flow, and was generally hydrologically flushed and relatively unproductive during times of increased water-flow. Grain size, abundance of CaCO3, organic carbon, clay mineralogy, cation-exchange capacity of the clay fraction, fossil pollen, fish, ostracodes, and diatoms (see summary by Smith et al., 1997) all show cyclic variation down the core. CaCO3 abundance, in particular, strongly reflects an approximately 100 ka dominant cycle, characteristic of global ice-volume indicated by the MIS δ18O record. Four of the last five marine isotope terminations are

  8. Growth pattern research on the modern deposition of Ganjiang delta in Poyang lake basin by spatio-temporal remote sensing images

    NASA Astrophysics Data System (ADS)

    Zhou, Hongying; Yuan, Xuanjun; Zhang, Youyan; Dong, Wentong; Liu, Song

    2016-11-01

    It is of great importance for petroleum exploration to study the sedimentary features and the growth pattern of shoal water deltas in lake basins. Taking spatio-temporal remote sensing images as the principal data source, combined with field sedimentation survey, a quantitative research on the modern deposition of Ganjiang delta in the Poyang Lake Basin is described in this paper. Using 76 multi-temporal and multi-type remote sensing images acquired from 1973 to 2015, combined with field sedimentation survey, remote sensing interpretation analysis was conducted on the sedimentary facies of the Ganjiang delta. It is found that that the current Poyang Lake mainly consists of three types of sand body deposits including deltaic deposit, overflow channel deposit, and aeolian deposit, and the distribution of sand bodies was affected by the above three types of depositions jointly. The mid-branch channels of the Ganjiang delta increased on an exponential growth rhythm. The main growth pattern of the Ganjiang delta is dendritic and reticular, and the distributary channel mostly arborizes at lake inlet and was reworked to be reticulatus at late stage.

  9. Assessing Sediment Yield for Selected Watersheds in the Laurentian Great Lakes Basin Under Future Agricultural Scenarios

    EPA Science Inventory

    In the Laurentian Great Lakes Basin (GLB), corn acreage has been expanding since 2005 in response to high demand for corn as an ethanol feedstock. This study integrated remote sensing-derived products and the Soil and Water Assessment Tool (SWAT) withing a GIS modeling environme...

  10. Southeastern extension of the Lake Basin fault zone in south- central Montana: implications for coal and hydrocarbon exploration ( USA).

    USGS Publications Warehouse

    Robinson, L.N.; Barnum, B.E.

    1986-01-01

    The Lake Basin fault zone consists mainly of en echelon NE-striking normal faults that have been interpreted to be surface expressions of left-lateral movement along a basement wrench fault. Information gathered from recent field mapping of coal beds and from shallow, closely-spaced drill holes resulted in detailed coal bed correlations, which revealed another linear zone of en echelon faulting directly on the extended trend of the Lake Basin fault zone. This faulted area, referred to as the Sarpy Creek area, is located 48 km E of Hardin, Montana. It is about 16 km long, 13 km wide, and contains 21 en echelon normal faults that have an average strike of N 63oE. We therefore extend the Lake Basin fault zone 32 km farther SE than previously mapped to include the Sarpy Creek area. The Ash Creek oil field, Wyoming, 97 km due S of the Sarpy Creek area, produces from faulted anticlinal structues that have been interpreted to be genetically related to the primary wrench-fault system known as the Nye-Bowler fault zone. The structural similarities between the Sarpy Creek area and the Ash Creek area indicate that the Sarpy Creek area is a possible site for hydrocarbon accumulation.-from Authors

  11. Wave Energy Potential in the Eastern Mediterranean Levantine Basin. An Integrated 10-year Study

    DTIC Science & Technology

    2014-01-01

    SUBTITLE Wave energy potential in the Eastern Mediterranean Levantine Basin. An integrated 10-year study 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c... Cardone CV, Ewing JA, et al. The WAM model e a third generation ocean wave prediction model. J Phys Oceanogr 1988;18(12):1775e810. [70] Varinou M

  12. Satellite Observations of Drought and Falling Water Storage in the Colorado River Basin and Lake Mead

    NASA Astrophysics Data System (ADS)

    Castle, S.; Famiglietti, J. S.; Reager, J. T.; Thomas, B.

    2012-12-01

    Over the past decade the Western US has experienced extreme drought conditions, which have affected both agricultural and urban areas. An example of water infrastructure being impacted by these droughts is Lake Mead, the largest reservoir in the United States at its full capacity that provides water and energy for several states in the Western US. Once Lake Mead falls below the critical elevation of 1050 feet above sea level, the Hoover Dam, the structure that created Lake Mead by damming flow within the Colorado River, will stop producing energy for Las Vegas. The Gravity Recovery and Climate Experiment (GRACE) satellites, launched in 2002, have proven successful for monitoring changes in water storage over large areas, and give hydrologists a first-ever picture of how total water storage is changing spatially and temporally within large regions. Given the importance of the Colorado River to meet water demands to several neighboring regions, including Southern California, it is vital to understand how water is transported and managed throughout the basin. In this research, we use hydrologic remote sensing to characterize the human and natural water balance of the Colorado River basin and Lake Mead. The research will include quantifying the amount of Colorado River water delivered to Southern California, coupling the GRACE Total Water Storage signal of the Upper and Lower Colorado River with Landsat-TM satellite imagery and areal extent of Lake Mead water storage, and combining these data together to determine the current status of water availability in the Western US. We consider water management and policy changes necessary for sustainable water practices including human water use, hydropower, and ecosystem services in arid regions throughout the Western US.

  13. Modelling nitrogen transformation and removal in mara river basin wetlands upstream of lake Victoria

    NASA Astrophysics Data System (ADS)

    Mayo, Aloyce W.; Muraza, Marwa; Norbert, Joel

    2018-06-01

    Lake Victoria, the largest lake in Africa, is a resource of social-economic potential in East Africa. This lake receives water from numerous tributaries including Mara River, which contributes about 4.8% of the total Lake water inflow. Unfortunately, Mara River basin faces environmental problems because of intensive settlement, agriculture, overgrazing in the basin and mining activities, which has lead to water pollution in the river, soil erosion and degradation, decreased soil fertility, loss of vegetation cover, decreased water infiltration capacity and increased sedimentation. One of the pollutants carried by the river includes nitrogen, which has contributed to ecological degradation of the Lake Victoria. Therefore this research work was intended to determine the effectiveness of Mara River wetland for removal of nitrogen and to establish nitrogen removal mechanisms in the wetland. To predict nitrogen removal in the wetland, the dynamics of nitrogen transformation was studied using a conceptual numerical model that takes into account of various processes in the system using STELLA II version 9.0®2006 software. Samples of model input from water, plants and sediments were taken for 45 days and were analyzed for pH, temperature, and DO in situ and chemical parameters such as NH3-N, Org-N, NO2-N, and NO3-N were analyzed in the laboratory in accordance with Standard methods. For plants, the density, dominance, biomass productivity and TN were determined and for sediments TN was analyzed. Inflow into the wetland was determined using stage-discharge relationship and was found to be 734,400 m3/day and the average wetland volume was 1,113,500 m3. Data collected by this study were used for model calibration of nitrogen transformation in this wetland while data from another wetland were used for model validation. It was found that about 37.8% of total nitrogen was removed by the wetland system largely through sedimentation (26.6%), plant uptake (6.6%) and

  14. Lake Urmia (Iran): can future socio-ecologically motivated river basin management restore lake water levels in an arid region with extensive agricultural development?

    NASA Astrophysics Data System (ADS)

    Fazel, Nasim; Berndtsson, Ronny; Bertacchi Uvo, Cintia; Klove, Bjorn; Madani, Kaveh

    2015-04-01

    Lake Urmia, one of the world's largest hyper saline lakes located in northwest of Iran, is a UNESCO Biosphere Reserve and Ramsar site, protected as a national park and, supports invaluable and unique biodiversity and related ecosystem services for the region's 6.5 million inhabitants. Due to increased development of the region's water resources for agriculture and industry and to a certain extent climate change, the lake has started to shrink dramatically since 1995 and now is holding less than 30 percent of its volume. Rapid development in agricultural sector and land-use changes has resulted in immense construction of dams and water diversions in almost all lake feeding rivers, intensifying lake shrinking, increasing salinity and degrading its ecosystem. Recently, lake's cultural and environmental importance and social pressure has raised concerns and brought government attention to the lake restoration plans. Along with poor management, low yield agriculture as the most water consuming activity in the region with, rapid, insufficient development is one of the most influential drivers in the lake desiccation. Part of the lake restoration plans in agricultural sector is to restrict the agricultural areas in the main feeding river basins flowing mostly in the southern part of the lake and decreasing the agricultural water use in this area. This study assess the efficiency and effectiveness of the proposed plans and its influence on the lake level rise and its impacts on economy in the region using a system dynamics model developed for the Lake consist of hydrological and agro-economical sub-systems. The effect of decrease in agricultural area in the region on GDP and region economy was evaluated and compared with released water contribution in lake level rise for a five year simulation period.

  15. Tackling soil degradation and environmental changes in Lake Manyara Basin, Tanzania to support sustainable landscape/ecosystem management.

    NASA Astrophysics Data System (ADS)

    Munishi, Linus; Mtei, Kelvin; Bode, Samuel; Dume, Bayu; Navas, Ana; Nebiyu, Amsalu; Semmens, Brice; Smith, Hugh; Stock, Brian; Boeckx, Pascal; Blake, Will

    2017-04-01

    The Lake Manyara Basin (LMB), which encompasses Lake Manyara National Park a world ranking World Biosphere Reserve, is of great ecological and socio-economic value because it hosts a small-holder rain fed and extensive irrigation agriculture, grazing grounds for pastoralists, terrestrial and aquatic habitat for wildlife and tourism business contributing to poverty alleviation. Despite these multiple ecosystem services that support the local communities, the LMB is threatened by; (a) siltation from eroded soil fed from the wider catchment and rift escarpment of the basin and (b) declining water levels due to water capture by agriculture and possibly climate change. These threats to the ecosystem and its services are augmented by increasing human population, pollution by agricultural pesticides, poaching, human encroachment and infrastructure development, and illegal fisheries. Despite these challenges, here is a dearth of information on erosion hotspots and to date soil erosion and siltation problems in LMB have been interpreted largely in qualitative terms, and no coherent interpretative framework of these records exists. Despite concerns that modern sediment fluxes to the Lake may exceed long-term fluxes, little is known about erosion sources, how erosion rates and processes vary across the landscape and how erosion rates are influenced by the strong climate gradients in the basin. This contribution describes a soil erosion and sediment management project that aims to deliver a demonstration dataset generated from inter-disciplinary sediment-source tracing technologies and approaches to assess erosion hotspots, processes and spatial patterns of erosion in the area. The work focuses on a sub basin, the Monduli Sub catchment, located within the greater LMB. This is part of efforts to establish an understanding of soil erosion and landscape degradation in the basin as a pathway for generating and developing knowledge, building capacity to assist conservationists

  16. Assessment of Wetland Hydrological Dynamics in a Modified Catchment Basin: Case of Lake Buninjon, Victoria, Australia.

    PubMed

    Yihdego, Yohannes; Webb, John A

    2017-02-01

      The common method to estimate lake levels is the water balance equation, where water input and output result in lake storage and water level changes. However, all water balance components cannot always be quickly assessed, such as due to significant modification of the catchment area. A method that assesses general changes in lake level can be a useful tool in examining why lakes have different lake level variation patterns. Assessment of wetlands using the dynamics of the historical hydrological and hydrogeological data set can provide important insights into variations in wetland levels in different parts of the world. A case study from a saline landscape, Lake Buninjon, Australia, is presented. The aim of the present study was to determine how climate, river regime, and lake hydrological properties independently influence lake water levels and salinity, leaving the discrepancy, for the effect of the non-climatic/catchment modification in the past and the model shows that surface inflow is most sensitive variable. The method, together with the analysis and interpretation, might be of interest to wider community to assess its response to natural/anthropogenic stress and decision choices for its ecological, social, scientific value, and mitigation measures to safe guard the wetland biodiversity in a catchment basin.

  17. Morphometry and mixing regime of a tropical lake: Lake Nova (Southeastern Brazil).

    PubMed

    Gonçalves, Monica A; Garcia, Fábio C; Barroso, Gilberto F

    2016-09-01

    Lake Nova (15.5 km2) is the second largest lake in the Lower Doce River Valley (Southeastern Brazil). A better understanding of ecosystem structure and functioning requires knowledge about lake morphometry, given that lake basin form influences water column stratification. The present study aims to contribute to the understanding of relationship between morphometry and mixing patterns of deep tropical lakes in Brazil. Water column profiles of temperature and dissolved oxygen were taken on four sampling sites along the lake major axis during 2011, 2012 and 2013. The bathymetric survey was carried out in July 2011, along 131.7 km of hydrographic tracks yield 51,692 depth points. Morphometric features of lake size and form factors describe the relative deep subrectangular elongated basin with maximum length of 15.7 km, shoreline development index 5.0, volume of 0.23 km3, volume development of 1.3, and maximum, mean and relative depths of 33.9 m, 14.7 m and 0.7 %, respectively. The deep basin induces a monomictic pattern, with thermal stratification during the wet/warm season associated with anoxic bottom waters (1/3 of lake volume), and mixing during dry and cool season. Based on in situ measurements of tributary river discharges, theoretical retention time (RT) has been estimated in 13.4 years. The morphometry of Lake Nova promote long water RT and the warm monomictic mixing pattern, which is in accordance to the deep tropical lakes in Brazil.

  18. Water Quality, Physical Habitat, and Biology of the Kijik River Basin, Lake Clark National Park and Preserve, Alaska, 2004-2005

    USGS Publications Warehouse

    Brabets, Timothy P.; Ourso, Robert T.

    2006-01-01

    The U.S. Geological Survey and the National Park Service conducted a water-quality investigation of the Kijik River Basin in Lake Clark National Park and Preserve from June 2004 to March 2005. The Kijik River Basin was studied because it has a productive sockeye salmon run that is important to the larger Kvichak River watershed. Water-quality, physical habitat, and biological characteristics were assessed. Water type throughout the Kijik River Basin is calcium bicarbonate although Little Kijik River above Kijik Lake does have slightly higher concentrations of sulfate and chloride. Alkalinity concentrations are generally less than 28 milligrams per liter, indicating a low buffering capacity of these waters. Lachbuna Lake traps much of the suspended sediment from the glacier streams in the headwaters of the basin as evidenced by low secchi-disc transparency of 1 to 2 meters and low suspended sediment concentrations in the Kijik River downstream from the lake. Kijik Lake is a fed by clearwater streams and has secchi-disc readings ranging from 11 to 15 meters. Streambed sediments collected from four surface sites analyzed for trace elements indicated that arsenic concentrations at all sites were above proposed guidelines. However, arsenic concentrations are due to the local geology, not anthropogenic factors. Benthic macroinvertebrate qualitative multi-habitat samples collected from two sites on the Little Kijik River and two sites on the main stem of the Kijik River indicated a total of 69 taxa present among the four sites. The class Insecta, made up the largest percentage of macroinvertebrates, totaling 70 percent of the families found. The insects were comprised of four orders; Diptera (flies and midges), Ephemeroptera (mayflies), Plecoptera (stoneflies), and Trichoptera (caddisflies). One-hundred twenty-two species of periphytic algae were identified in qualitative multi-habitat samples collected at the four stream sites. Eight species of non-motile, diatoms were

  19. Nanophytoplankton Diversity Across the Oligohaline Lake Pontchartrain Basin Estuary: A Preliminary Investigation Utlizing psbA Sequences

    USDA-ARS?s Scientific Manuscript database

    The Lake Pontchartrain basin estuary is shallow, wind-driven and comprised of two large embayments (1645 km2). Salinities range from freshwater in the west to 8 ppt in the east near the Gulf of Mexico. Phytoplankton investigations spanning this salinity gradient or examining small photoautotrophs ar...

  20. Changes in bathymetry for Lake Katherine and Wood Lake, Richland County, South Carolina, 1989-93

    USGS Publications Warehouse

    Patterson, Glenn G.

    1995-01-01

    Bathymetric surveys of Lake Katherine and Wood Lake, small residential lakes in Columbia, South Carolina, were made in 1989 and 1993. During this period the combined volume of the lakes decreased by 519,000 cubic feet (11.9 acre-feet). Most of the decrease in volume occurred in the northern part of Lake Katherine where deltaic sediment deposits at the mouth of Gills Creek increased in thickness during the 4-year period. The sediment was derived from a combination of sources in the Gills Creek Basin upstream from the lakes. Construction of a highway and a housing development in the Basin were significant factors in the sedimentation.

  1. Vascular flora of saline lakes in the southern high plains of Texas and eastern New Mexico

    USGS Publications Warehouse

    Rosen, David J.; Conway, Warren C.; Haukos, David A.; Caskey, Amber D.

    2013-01-01

    Saline lakes and freshwater playas form the principal surface hydrological feature of the High Plains of the Southern Great Plains. Saline lakes number less than 50 and historically functioned as discharge wetlands with relatively consistent water availability due to the presence of one or more springs. Currently, less than ten saline lakes contain functional springs. A survey of vascular plants at six saline lakes in the Southern High Plains of northwest Texas and one in eastern New Mexico during May and September 2009 resulted in a checklist of 49 species representing 16 families and 40 genera. The four families with the most species were Asteraceae (12), Amaranthaceae (8), Cyperaceae (5), and Poaceae (12). Non-native species (Bromus catharticus, Poa compressa, Polypogon monspeliensis, Sonchus oleraceus, Kochia scoparia, and Tamarix ramosissima) accounted for 10% of the total species recorded. Whereas nearly 350 species of vascular plants have been identified in playas in the Southern High Plains, saline lakes contain a fraction of this species richness. The Southern High Plains saline lake flora is regionally unique, containing taxa not found in playas, with species composition that is more similar to temperate desert wetlands of the Intermountain Region and Gulf Coastal Plain of North America.

  2. Seasonal thaw settlement at drained thermokarst lake basins, Arctic Alaska

    USGS Publications Warehouse

    Liu, Lin; Schaefer, Kevin; Gusmeroli, Alessio; Grosse, Guido; Jones, Benjamin M.; Zhang, Tinjun; Parsekian, Andrew; Zebker, Howard

    2014-01-01

    Drained thermokarst lake basins (DTLBs) are ubiquitous landforms on Arctic tundra lowland. Their dynamic states are seldom investigated, despite their importance for landscape stability, hydrology, nutrient fluxes, and carbon cycling. Here we report results based on high-resolution Interferometric Synthetic Aperture Radar (InSAR) measurements using space-borne data for a study area located on the North Slope of Alaska near Prudhoe Bay, where we focus on the seasonal thaw settlement within DTLBs, averaged between 2006 and 2010. The majority (14) of the 18 DTLBs in the study area exhibited seasonal thaw settlement of 3–4 cm. However, four of the DTLBs examined exceeded 4 cm of thaw settlement, with one basin experiencing up to 12 cm. Combining the InSAR observations with the in situ active layer thickness measured using ground penetrating radar and mechanical probing, we calculated thaw strain, an index of thaw settlement strength along a transect across the basin that underwent large thaw settlement. We found thaw strains of 10–35% at the basin center, suggesting the seasonal melting of ground ice as a possible mechanism for the large settlement. These findings emphasize the dynamic nature of permafrost landforms, demonstrate the capability of the InSAR technique to remotely monitor surface deformation of individual DTLBs, and illustrate the combination of ground-based and remote sensing observations to estimate thaw strain. Our study highlights the need for better description of the spatial heterogeneity of landscape-scale processes for regional assessment of surface dynamics on Arctic coastal lowlands.

  3. Incorporation of Complex Hydrological and Socio-economic Factors for Non-point Source Pollution Control: A Case Study at the Yincungang Canal, the Lake Tai Basin of China

    NASA Astrophysics Data System (ADS)

    Yang, X.; Luo, X.; Zheng, Z.

    2012-04-01

    It is increasingly realized that non-point pollution sources contribute significantly to water environment deterioration in China. Compared to developed countries, non-point source pollution in China has the unique characteristics of strong intensity and composition complexity due to its special socioeconomic conditions. First, more than 50% of its 1.3 billion people are rural. Sewage from the majority of the rural households is discharged either without or only with minimal treatment. The large amount of erratic rural sewage discharge is a significant source of water pollution. Second, China is plagued with serious agricultural pollution due to widespread improper application of fertilizers and pesticides. Finally, there lack sufficient disposal and recycling of rural wastes such as livestock manure and crop straws. Pollutant loads from various sources have far exceeded environmental assimilation capacity in many parts of China. The Lake Tai basin is one typical example. Lake Tai is the third largest freshwater lake in China. The basin is located in the highly developed and densely populated Yangtze River Delta. While accounting for 0.4% of its land area and 2.9% of its population, the Lake Tai basin generates more than 14% of China's Gross Domestic Production (GDP), and the basin's GDP per capita is 3.5 times as much as the state average. Lake Tai is vital to the basin's socio-economic development, providing multiple services including water supply for municipal, industrial, and agricultural needs, navigation, flood control, fishery, and tourism. Unfortunately, accompanied with the fast economic development is serious water environment deterioration in the Lake Tai basin. The lake is becoming increasingly eutrophied and has frequently suffered from cyanobacterial blooms in recent decades. Chinese government has made tremendous investment in order to mitigate water pollution conditions in the basin. Nevertheless, the trend of deteriorating water quality has yet to

  4. Groundwater quality in the Chemung River, Eastern Lake Ontario, and Lower Hudson River Basins, New York, 2013

    USGS Publications Warehouse

    Scott, Tia-Marie; Nystrom, Elizabeth A.; Reddy, James E.

    2015-11-10

    The Lower Hudson River Basin study area covers 5,607 square miles and encompasses the part of the Lower Hudson River Basin that lies within New York plus the parts of the Housatonic, Hackensack, Bronx, and Saugatuck River Basins that are in New York. Twelve of the wells sampled in the Lower Hudson River Basin are completed in sand-and-gravel deposits, and 13 are completed in bedrock. Groundwater in the Lower Hudson River Basin was generally of good quality, although properties and concentrations of some constituents—pH, sodium, chloride, dissolved solids, arsenic, aluminum, iron, manganese, radon-222, total coliform bacteria, fecal coliform bacteria, Escherichia coli bacteria, and heterotrophic plate count—equaled or exceeded primary, secondary, or proposed drinking-water standards. The constituent most frequently detected in concentrations exceeding drinking-water standards (20 of 25 samples) was radon-222.

  5. Forest changes since Euro-American settlement and ecosystem restoration in the Lake Tahoe Basin, USA

    Treesearch

    Alan H. Taylor

    2007-01-01

    Pre Euro-American settlement forest structure and fire regimes for Jeffrey pine-white fir, red fir-western white pine, and lodgepole pine forests were quantified using stumps from trees cut in the 19th century to establish a baseline reference for ecosystem management in the Lake Tahoe Basin. Contemporary forests varied in different ways compared...

  6. Glacial history and runoff components of the Tlikakila River Basin, Lake Clark National Park and Preserve, Alaska

    USGS Publications Warehouse

    Brabets, Timothy P.; March, Rod S.; Trabant, Dennis C.

    2004-01-01

    The Tlikakila River is located in Lake Clark National Park and Preserve and drains an area of 1,610 square kilometers (622 square miles). Runoff from the Tlikakila River Basin accounts for about one half of the total inflow to Lake Clark. Glaciers occupy about one third of the basin and affect the runoff characteristics of the Tlikakila River. As part of a cooperative study with the National Park Service, glacier changes and runoff characteristics in the Tlikakila River Basin were studied in water years 2001 and 2002. Based on analyses of remote sensing data and on airborne laser profiling, most glaciers in the Tlikakila River Basin have retreated and thinned from 1957 to the present. Volume loss from 1957-2001 from the Tanaina Glacier, the largest glacier in the Tlikakila River Basin, was estimated to be 6.1 x 109 cubic meters or 1.4 x 108 cubic meters per year. For the 2001 water year, mass balance measurements made on the three largest glaciers in the Tlikakila River BasinTanaina, Glacier Fork, and North Forkall indicate a negative mass balance. Runoff measured near the mouth of the Tlikakila River for water year 2001 was 1.70 meters. Of this total, 0.18 meters (11 percent) was from glacier ice melt, 1.27 meters (75 percent) was from snowmelt, 0.24 meters (14 percent) was from rainfall runoff, and 0.01 meters (1 percent) was from ground water. Although ground water is a small component of runoff, it provides a critical source of warm water for fish survival in the lower reaches of the Tlikakila River.

  7. Response of Glacier and Lake Dynamics in Four Inland Basins to Climate Change at the Transition Zone between the Karakorum And Himalayas.

    PubMed

    Li, Zhiguo; Fan, Kuangsheng; Tian, Lide; Shi, Benlin; Zhang, Shuhong; Zhang, Jingjing

    2015-01-01

    Inland glacier and lake dynamics on the Tibetan Plateau (TP) and its surroundings over recent decades are good indicators of climate change and have a significant impact on the local water supply and ecosystem. The glacier and lake changes in Karakoram are quite different from those of the Himalayas. The mechanisms of the complex and regionally heterogeneous behavior of the glacier and lake changes between the Karakorum and Himalayas are poorly understood. Based on satellite images and meteorological data of Shiquanhe, Hetian, and Yutian stations, we demonstrate that the overall retreat of glaciers and increase of lake area at the transition zone between the Karakoram and Himalayas (TKH) have occurred since 1968 in response to a significant global climate change. Glacial areas in the Songmuxi Co basin, Zepu Co basin, Mang Co basin and Unnamed Co decreased by -1.98 ± 0.02 km2, -5.39 ± 0.02 km2, -0.01 ± 0.02 km2, and -0.12 ± 0.02 km2 during the study period, corresponding to losses of -1.42%, -2.86%, -1.54%, and -1.57%, respectively. The lake area of the Songmuxi Co, Zepu Co, Mang Co and Unnamed Co increased by 7.57 ± 0.02 km2, 8.53 ± 0.02 km2, 1.35 ± 0.02 km2, and 0.53 ± 0.02 km2, corresponding to growths of 30.22%, 7.55%, 11.39%, and 8.05%, respectively. Increases in temperature was the main reason for glacier retreat, whereas decreases in potential evapotranspiration of lakes, increases in precipitation, and increases in melt water from glaciers and frozen soil all contributed to lake area expansion.

  8. Response of Glacier and Lake Dynamics in Four Inland Basins to Climate Change at the Transition Zone between the Karakorum And Himalayas

    PubMed Central

    Li, Zhiguo; Fan, Kuangsheng; Tian, Lide; Shi, Benlin; Zhang, Shuhong; Zhang, Jingjing

    2015-01-01

    Inland glacier and lake dynamics on the Tibetan Plateau (TP) and its surroundings over recent decades are good indicators of climate change and have a significant impact on the local water supply and ecosystem. The glacier and lake changes in Karakoram are quite different from those of the Himalayas. The mechanisms of the complex and regionally heterogeneous behavior of the glacier and lake changes between the Karakorum and Himalayas are poorly understood. Based on satellite images and meteorological data of Shiquanhe, Hetian, and Yutian stations, we demonstrate that the overall retreat of glaciers and increase of lake area at the transition zone between the Karakoram and Himalayas (TKH) have occurred since 1968 in response to a significant global climate change. Glacial areas in the Songmuxi Co basin, Zepu Co basin, Mang Co basin and Unnamed Co decreased by -1.98 ± 0.02 km2, -5.39 ± 0.02 km2, -0.01 ± 0.02 km2, and -0.12 ± 0.02 km2 during the study period, corresponding to losses of -1.42%, -2.86%, -1.54%, and -1.57%, respectively. The lake area of the Songmuxi Co, Zepu Co, Mang Co and Unnamed Co increased by 7.57 ± 0.02 km2, 8.53 ± 0.02 km2, 1.35 ± 0.02 km2, and 0.53±0.02 km2, corresponding to growths of 30.22%, 7.55%, 11.39%, and 8.05%, respectively. Increases in temperature was the main reason for glacier retreat, whereas decreases in potential evapotranspiration of lakes, increases in precipitation, and increases in melt water from glaciers and frozen soil all contributed to lake area expansion. PMID:26699717

  9. Losses of ecosystem service values in the Taihu Lake Basin from 1979 to 2010

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Wang, Qiao; Li, Guangyu; Zhang, Hanpei; Zhang, Jue

    2017-06-01

    The Taihu Lake Basin, an east-coastal developed area, is one of the fastest-growing metropolitan areas in China. Ecosystem services in the Taihu Lake Basin have been overexploited and jeopardized. Based on land-use and land-cover change (LUCC) data from 1979, 1984, 2000, and 2010, in conjunction with the adjusted ecosystem service values (ESV), changes in ESV were analyzed in detail. Results revealed that LUCC resulted in a substantial decrease in total ESV from 3.92 billion in 1979 to 2.98 billion in 2010. The ESV of cropland decreased from 1.64 billion in 1979 to 1.34 billion in 2010, which represented a 20.28% reduction. The ESV of water areas decreased from 1.08 billion in 1979 to 0.36 billion in 2010, which represented a 65.62% reduction mainly because of a decline in water quality. In terms of annual change rate, cropland and water areas showed a sustained downward trend. Spatially, ESV declines were mainly observed in Suzhou, Wuxi, Changzhou, and Shanghai, probably due to a combination of economic progress, population growth, and rapid urbanization. The research results can be a useful reference for policymakers in mitigating ESV decline.

  10. Spatial distribution of pelagic fish larvae in the northern main basin of Lake Huron

    USGS Publications Warehouse

    Roseman, Edward F.; O'Brien, Timothy P.

    2013-01-01

    Larval fish occurrence in inshore and offshore zones in the northern main basin of Lake Huron was assessed during 2007 as part of a larger ecological examination of Lake Huron foodwebs and habitats. Day and night collections using neuston and conical nets at inshore (1.5–15 m depths) and offshore (37 and 91 m depths) locations at De Tour and Hammond Bay to assess the abundance, phenology, and spatial distribution of pelagic ichthyoplankton during spring and early summer were made. In general, densities of larval fishes were higher at De Tour than Hammond Bay during daytime neuston net collections, with the exception of Longnose Sucker, which were only collected at Hammond Bay. Lake Whitefish, Burbot, and Rainbow Smelt dominated inshore catches in early spring with Cisco, Deepwater Sculpin, Emerald Shiner, Bloater, Slimy Sculpin, Ninespine Stickleback, and Yellow Perch larvae also collected.Nighttime nearshore and offshore sampling revealed that Rainbow Smelt and Burbot larvae were present in relatively high abundances compared to inshore densities. Concentrations of larvae of deepwater demersal fishes such as Lake Whitefish and Deepwater Sculpin suggest that inshore zones in northern Lake Huron are important nursery habitats emphasizing a critical production and recruitment linkage between inshore and deepwater zones.

  11. Documenting a decline in boreal spring rainfall over the Congo Basin and eastern Africa

    NASA Astrophysics Data System (ADS)

    Nicholson, S. E.

    2016-12-01

    The Africa rain forest is one of the continent's greatest resources. Unfortunately, evidence shows that a serious decline in photosynthetic activity has occurred in widespread parts of this environmental sensitive region. An extended period of drought appears to be a major factor in this decline. This paper presents an analysis of rainfall conditions in the region over the last half century. Commencing in the 1980s April-May-June rainfall decreased markedly over the eastern Congo Basin, as well as throughout much of eastern Africa. Ironically, in areas with the greatest decline, October-November-December rainfall increased at the same time. Possible meteorological reasons for these changes are examined.

  12. Pseudofaults and associated seamounts in the conjugate Arabian and Eastern Somali basins, NW Indian Ocean - New constraints from high-resolution satellite-derived gravity data

    NASA Astrophysics Data System (ADS)

    Sreejith, K. M.; Chaubey, A. K.; Mishra, Akhil; Kumar, Shravan; Rajawat, A. S.

    2016-12-01

    Marine gravity data derived from satellite altimeters are effective tools in mapping fine-scale tectonic features of the ocean basins such as pseudofaults, fracture zones and seamounts, particularly when the ocean basins are carpeted with thick sediments. We use high-resolution satellite-generated gravity and seismic reflection data to map boundaries of pseudofaults and transferred crust related to the Paleocene spreading ridge propagation in the Arabian and its conjugate Eastern Somali basins. The study has provided refinement in the position of previously reported pseudofaults and their spatial extensions in the conjugate basins. It is observed that the transferred crustal block bounded by inner pseudofault and failed spreading ridge is characterized by a gravity low and rugged basement. The refined satellite gravity image of the Arabian Basin also revealed three seamounts in close proximity to the pseudofaults, which were not reported earlier. In the Eastern Somali Basin, seamounts are aligned along NE-SW direction forming ∼300 km long seamount chain. Admittance analysis and Flexural model studies indicated that the seamount chain is isostatically compensated locally with Effective Elastic Thickness (Te) of 3-4 km. Based on the present results and published plate tectonic models, we interpret that the seamounts in the Arabian Basin are formed by spreading ridge propagation and are associated with pseudofaults, whereas the seamount chain in the Eastern Somali Basin might have probably originated due to melting and upwelling of upper mantle heterogeneities in advance of migrating/propagating paleo Carlsberg Ridge.

  13. Seismic Data Reveal Lake-Level Changes in Lake Issyk-Kul, Kyrgyzstan

    NASA Astrophysics Data System (ADS)

    Gebhardt, C.; Spiess, V.; Keil, H.; Sauermilch, I.; Oberhänsli, H.; Abdrakhmatov, K.; De Batist, M. A.; Naudts, L.; De Mol, L.

    2013-12-01

    Lake Issyk-Kul is located in an intramontane basin of the Tien Shan, Kyrgyzstan, Central Asia, at 1607 m above sea level. It has formed in a tectonically active region with W-E striking major thrust zones both N and S of the lake. The lake is elongated with 180 km in W-E and 60 km in S-N direction and a water depth of roughly 670 m at its central plain. With a surface area of 6232 km2 and a total water colume of around 1736 km3, Lake Issyk-Kul is the second largest lake in the higher altitudes (De Batist et al., 2002). Two large delta areas have formed at the E and W end. Steep slopes at both the N and S shore separate rather narrow, shallow shelf areas from the central deeper plain. First seismic data of lake Issyk-Kul were acquired in 1982 by the Moscow University with a total of 31 profiles across the lake. In 1997 and 2001, a second and third seismic survey of the lake were carried out by the group of Marc De Batist (Ghent, Belgium) in cooperation with the Royal Museum of Central Africa (Tervuren, Belgium) and the SBRAS (Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia) using a sparker system with a single-channel streamer. These surveys were recently completed by a fourth expedition carried out by the University of Bremen in April 2013. During this expedition, 33 additional profiles were acquired with an airgun and a multi-channel streamer. The sparker surveys mostly cover the delta and shelf areas in high detail, while the airgun survey covers the deeper parts of the lake with penetration beyond the first multiple. Bathymetry data reveal that at the delta areas, the shelf is divided into two parts. The shallower comprises the part down to 110 m water depth with an average inclination of 0.5°, while the deeper part reaches from 110 m to 300 m water depth with an average slope inclination of 1°. Incised paleo-river channels of up to 2-3 km width and 50 m depth are visible both on the eastern and western shelf, but are limited to the

  14. Sediment sequences and palynology of outer South Bay, Manitoulin Island, Ontario: Connections to Lake Huron paleohydrologic phases and upstream Lake Agassiz events

    NASA Astrophysics Data System (ADS)

    Lewis, C. F. M.; Anderson, T. W.

    2017-10-01

    South Bay on the southern coast of Manitoulin Island is a fjord-like embayment connected to Lake Huron by a natural narrow gap in the bay's outer sill 6.5-14 m above the lake. A seismic profile, pollen, plant macrofossil, grain size analyses, and other sediment properties of two piston cores from a shallow outer basin of the bay document a 9 m-thick sediment section comprising rhythmically laminated clay under silty clay containing zones with small molluscan shells and marsh detritus. A sandy pebbly layer under soft silty clay mud overlies these sediments. This stratigraphy represents inundation by deep glacial Lake Algonquin followed by the shallowing Post Algonquin series of lakes, and exposure in the early Holocene by 5 Lake Stanley lowstands in the Lake Huron basin separated by 4 Lake Mattawa highstands. Overflow from South Bay in the first lowstand is thought to have eroded the outer sill gap. Marsh environments are inferred to have formed in the bay during subsequent lowstands. The Lake Mattawa highstands are attributed to outburst floods mainly from glacial Lake Agassiz. Palynological evidence of increased spruce occurrence, an apparent regional climate reversal, during the dry pine period is attributed to cold northwest winds from the Lake Superior basin and a lake effect from the Mattawa highstands in the Lake Huron basin. Lake waters transgressed South Bay following the pine period to form the Nipissing shore on Manitoulin Island. Transfer of Lake Huron basin drainage to southern outlets and continued glacioisostatic uplift of the region led to the present configuration of South Bay and Lake Huron.

  15. On modeling the paleohydrologic response of closed-basin lakes to fluctuations in climate: Methods, applications, and implications

    NASA Astrophysics Data System (ADS)

    Liu, Ganming; Schwartz, Franklin W.

    2014-04-01

    Climate reconstructions using tree rings and lake sediments have contributed significantly to the understanding of Holocene climates. Approaches focused specifically on reconstructing the temporal water-level response of lakes, however, are much less developed. This paper describes a statistical correlation approach based on time series with Palmer Drought Severity Index (PDSI) values derived from instrumental records or tree rings as a basis for reconstructing stage hydrographs for closed-basin lakes. We use a distributed lag correlation model to calculate a variable, ωt that represents the water level of a lake at any time t as a result of integrated climatic forcing from preceding years. The method was validated using both synthetic and measured lake-stage data and the study found that a lake's "memory" of climate fades as time passes, following an exponential-decay function at rates determined by the correlation time lag. Calculated trends in ωt for Moon Lake, Rice Lake, and Lake Mina from A.D. 1401 to 1860 compared well with the established chronologies (salinity, moisture, and Mg/Ca ratios) reconstructed from sediments. This method provides an independent approach for developing high-resolution information on lake behaviors in preinstrumental times and has been able to identify problems of climate signal deterioration in sediment-based climate reconstructions in lakes with a long time lag.

  16. Cenozoic basin thermal history reconstruction and petroleum systems in the eastern Colombian Andes

    NASA Astrophysics Data System (ADS)

    Parra, Mauricio; Mora, Andres; Ketcham, Richard A.; Stockli, Daniel F.; Almendral, Ariel

    2017-04-01

    Late Mesozoic-Cenozoic retro-arc foreland basins along the eastern margin of the Andes in South America host the world's best detrital record for the study of subduction orogenesis. There, the world's most prolific petroleum system occur in the northernmost of these foreland basin systems, in Ecuador, Colombia and Venezuela, yet over 90% of the discovered hydrocarbons there occur in one single province in norteastern Venezuela. A successful industry-academy collaboration applied a multidisciplinary approach to the study of the north Andes with the aim of investigating both, the driving mechanisms of orogenesis, and its impact on hydrocarbon accumulation in eastern Colombia. The Eastern Cordillera is an inversion orogen located at the leading edge of the northern Andes. Syn-rift subsidence favored the accumulation of km-thick organic matter rich shales in a back-arc basin in the early Cretaceous. Subsequent late Cretaceous thermal subsidence prompted the accumulation of shallow marine sandstones and shales, the latter including the Turonian-Cenomanian main hydrocarbon source-rock. Early Andean uplift since the Paleocene led to development of a flexural basin, filled with mainly non-marine strata. We have studied the Meso-Cenozoic thermal evolution of these basins through modeling of a large thermochronometric database including hundreds of apatite and zircon fission-track and (U-Th)/He data, as well as paleothermometric information based on vitrinite reflectance and present-day temperatures measured in boreholes. The detrital record of Andean construction was also investigated through detrital zircon U-Pb geochronometry in outcrop and borehole samples. A comprehensive burial/exhumation history has been accomplished through three main modeling strategies. First, one-dimensional subsidence was used to invert the pre-extensional lithospheric thicknesses, the magnitude of stretching, and the resulting heat flow associated to extension. The amount of eroded section and

  17. Hydrologic and Water-Quality Characterization and Modeling of the Onondaga Lake Basin, Onondaga County, New York

    USGS Publications Warehouse

    Coon, William F.; Reddy, James E.

    2008-01-01

    Onondaga Lake in Onondaga County, New York, has been identified as one of the Nation?s most contaminated lakes as a result of industrial and sanitary-sewer discharges and stormwater nonpoint sources, and has received priority cleanup status under the national Water Resources Development Act of 1990. A basin-scale precipitation-runoff model of the Onondaga Lake basin was identified as a desirable water-resources management tool to better understand the processes responsible for the generation of loads of sediment and nutrients that are transported to Onondaga Lake. During 2003?07, the U.S. Geological Survey (USGS) developed a model based on the computer program, Hydrological Simulation Program?FORTRAN (HSPF), which simulated overland flow to, and streamflow in, the major tributaries of Onondaga Lake, and loads of sediment, phosphorus, and nitrogen transported to the lake. The simulation period extends from October 1997 through September 2003. The Onondaga Lake basin was divided into 107 subbasins and within these subbasins, the land area was apportioned among 19 pervious and impervious land types on the basis of land use and land cover, hydrologic soil group (HSG), and aspect. Precipitation data were available from three sources as input to the model. The model simulated streamflow, water temperature, concentrations of dissolved oxygen, and concentrations and loads of sediment, orthophosphate, total phosphorus, nitrate, ammonia, and organic nitrogen in the four major tributaries to Onondaga Lake?Onondaga Creek, Harbor Brook, Ley Creek, and Ninemile Creek. Simulated flows were calibrated to data from nine USGS streamflow-monitoring sites; simulated nutrient concentrations and loads were calibrated to data collected at six of the nine streamflow-monitoring sites. Water-quality samples were collected, processed, and analyzed by personnel from the Onondaga County Department of Water Environment Protection. Several time series of flow, and sediment and nutrient loads

  18. Bacteria and emerging chemical contaminants in the St. Clair River/Lake St. Clair Basin, Michigan

    USGS Publications Warehouse

    Fogarty, Lisa R.

    2007-01-01

    Introduction Since the enactment of the Clean Water Act in 1972, awareness of the quality of the Nation's water has continued to improve. Despite improvements to wastewater-treatment systems and increased regulation on waste discharge, bacterial and chemical contamination is still a problem for many rivers and lakes throughout the United States. Pathogenic microorganism and newly recognized chemical contaminants have been found in waters that are used for drinking water and recreation (Rose and Grimes, 2001; Kolpin and others, 2002). This summary of bacteria and emerging-chemical-contaminant monitoring in the St. Clair River/Lake St. Clair Basin (fig. 1) was initiated by the Lake St. Clair Regional Monitoring Project (LSCRMP) in 2003, in cooperation with the Michigan Department of Environmental Quality (MDEQ), the Counties of Macomb, Oakland, St. Clair, and Wayne, and the U.S. Geological Survey (USGS).

  19. A presettlement fire history in an oak-pine forest near Basin Lake, Algonquin Park, Ontario

    Treesearch

    Richard P. Guyette; Daniel C. Dey

    1995-01-01

    Fire scars from natural remnants of red pine (Pinus resinosa Ait.) in an oak-pine forest near Basin Lake, Algonquin Park, Ontario, were dated using dendrochronological methods. A fire scar chronology was constructed from 28 dated fire scars on 26 pine remnants found in a 1 km2 area of this forest. From pith and outside ring...

  20. Recent evolution of glacial lakes in the Eastern Himalayas: the case-study of Mt. Everest (Nepal)

    NASA Astrophysics Data System (ADS)

    Salerno, Franco; D'Agata, Carlo; Diolaiuti, Guglielmina; Smiraglia, Claudio; Viviano, Gaetano; Tartari, Gianni

    2010-05-01

    In this contribution we analyze the glacier and lakes surface variations since the end of the 1950s until 2008 (around 50 years) through hystorical maps and remote sensing images. The Sagarmatha National Park (SNP), Eastern Hymalaian range (Nepal) covers an area of 1141km2, ranging from 2845 m to 8848 m (Mt Everest). Nearly all (28 out of a total of 29 in SNP) are ‘black glaciers', known also as D-type or debris-covered. Overall, SNP experienced a small net reduction in glacier cover of 19.6 km2 (4.9%) from 403.9 km2 at the end of the ‘50s to 384.6 km2 at the start of the ‘90s. As regards lakes surface variations, SNP experienced a very large net increasing in lake surface cover of 1.6 km2 (26%) from 6.0 km2 at the end of the ‘50s to 7.6 km2 in 2008. Moreover the number of lakes is enormously increased (by 36%, from 124 to 169). The new lakes have appeared at higher elevations (42 m higher than the lakes of 50's) probably following the glaciers retreat. As previously documented in bibliography, the Proglacial lakes (Moraine-dammed and in contact with the glacier front) is the typology of glacial lakes more effected by the climate change. These lakes are susceptible to Glacial Lake Outburst Floods (GLOFs) with the potential of releasing million cubic meters of water in a few hours causing catastrophic flooding up. We conclude this contribution pointing out the emerged scientific questions to address future research activities.

  1. Late Pleistocene outburst flooding from pluvial Lake Alvord into the Owyhee River, Oregon

    USGS Publications Warehouse

    Carter, D.T.; Ely, L.L.; O'Connor, J. E.; Fenton, C.R.

    2006-01-01

    At least one large, late Pleistocene flood traveled into the Owyhee River as a result of a rise and subsequent outburst from pluvial Lake Alvord in southeastern Oregon. Lake Alvord breached Big Sand Gap in its eastern rim after reaching an elevation of 1292 m, releasing 11.3 km3 of water into the adjacent Coyote Basin as it eroded the Big Sand Gap outlet channel to an elevation of about 1280 m. The outflow filled and then spilled out of Coyote Basin through two outlets at 1278 m and into Crooked Creek drainage, ultimately flowing into the Owyhee and Snake Rivers. Along Crooked Creek, the resulting flood eroded canyons, stripped bedrock surfaces, and deposited numerous boulder bars containing imbricated clasts up to 4.1 m in diameter, some of which are located over 30 m above the present-day channel. Critical depth calculations at Big Sand Gap show that maximum outflow from a 1292- to 1280-m drop in Lake Alvord was ??? 10,000 m3 s- 1. Flooding became confined to a single channel approximately 40 km downstream of Big Sand Gap, where step-backwater calculations show that a much larger peak discharge of 40,000 m3 s- 1 is required to match the highest geologic evidence of the flood in this channel. This inconsistency can be explained by (1) a single 10,000 m3 s- 1 flood that caused at least 13 m of vertical incision in the channel (hence enlarging the channel cross-section); (2) multiple floods of 10,000 m3 s- 1 or less, each producing some incision of the channel; or (3) an earlier flood of 40,000 m3 s- 1 creating the highest flood deposits and crossed drainage divides observed along Crooked Creek drainage, followed by a later 10,000 m3 s- 1 flood associated with the most recent shorelines in Alvord and Coyote Basins. Well-developed shorelines of Lake Alvord at 1280 m and in Coyote Basin at 1278 m suggest that after the initial flood, postflood overflow persisted for an extended period, connecting Alvord and Coyote Basins with the Owyhee River of the Columbia River

  2. Natural attenuation processes of nitrate in a saline lake-aquifer system: Pétrola Basin (Central Spain)

    NASA Astrophysics Data System (ADS)

    Valiente, Nicolas; Menchen, Alfonso; Jirsa, Franz; Hein, Thomas; Wanek, Wolfgang; Gomez-Alday, Juan Jose

    2016-04-01

    Saline wetlands associated with intense agricultural activities in semi-arid to arid climates are among the most vulnerable environments to NO3- pollution. The endorheic Pétrola Basin (High Segura River Basin, Central Spain) was declared vulnerable to NO3- pollution by the Regional Government of Castilla-La Mancha in 1998. The hypersaline lake was classified as a heavily modified waterbody, due to the inputs of pollutants from agricultural sources and urban waste waters, the latest are discharged directly into the lake without proper treatment. Previous studies showed that the aquifer system has two main flow components: regional groundwater flow from recharge areas into the lake, and a density-driven flow from the lake to the underlying aquifer. The NO3- inputs derived from agriculture originate from nitrification of synthetic ammonium fertilizers, and afterwards, NO3- is expected to be attenuated by denitrification (up to 60%) in the saltwater-freshwater interface around the lake. However, the spatial and temporal pattern of nitrate reduction in lake sediments is not known. In this study, an isotope pairing technique was used in order to clarify the main pathways for the NO3- attenuation linked to the sediment-water interface. For that purpose mesocosm experiments were performed: organic-rich lake sediment (up to 23% organic carbon content) was incubated for 96 hours with the addition of 15N nitrate tracer. During the experiments two factors were modified: light and oxic conditions. Analyzing inorganic N-species (n=20) over time (72 hours) showed that NO3- attenuation was coupled with an increment in the NH4+ concentration (from 0.8 mg/L up to 5.3 mg/L) and a decrease in redox values (from 135.1 mV up to -422 mV) in the water column. The main outcome of this study was to elucidate the importance of different microbial pathways denitrification, dissimilatory nitrate reduction to ammonium (DNRA) and anaerobic ammonium oxidation (Anammox), in controlling the fate

  3. Water and sediment quality of the Lake Andes and Choteau Creek basins, South Dakota, 1983-2000

    USGS Publications Warehouse

    Sando, Steven Kent; Neitzert, Kathleen M.

    2003-01-01

    The Bureau of Reclamation has proposed construction of the Lake Andes/Wagner Irrigation Demonstration Project to investigate environmental effects of irrigation of glacial till soils substantially derived from marine shales. During 1983-2000, the U.S. Geological Survey collected hydrologic, water-quality, and sediment data in the Lake Andes and Choteau Creek Basins, and on the Missouri River upstream and downstream from Choteau Creek, to provide baseline information in support of the proposed demonstration project. Lake Andes has a drainage area of about 230 mi2 (square miles). Tributaries to Lake Andes are ephemeral. Water-level fluctuations in Lake Andes can be large, and the lake has been completely dry on several occasions. The outlet aqueduct from Lake Andes feeds into Garden Creek, which enters Lake Francis Case just upstream from Fort Randall Dam on the Missouri River. For Lake Andes tributary stations, calcium, magnesium, and sodium are approximately codominant among the cations, and sulfate is the dominant anion. Dissolved-solids concentrations typically range from about 1,000 mg/L (milligrams per liter) to about 1,700 mg/L. Major-ion concentrations for Lake Andes tend to be higher than the tributaries and generally increase downstream in Lake Andes. Proportions of major ions are similar among the different lake units (with the exception of Owens Bay), with calcium, magnesium, and sodium being approximately codominant among cations, and sulfate being the dominant anion. Owens Bay is characterized by a calcium sulfate water type. Dissolved-solids concentrations for Lake Andes typically range from about 1,400 to 2,000 mg/L. Whole-water nitrogen and phosphorus concentrations are similar among the Lake Andes tributaries, with median whole-water nitrogen concentrations ranging from about 1.6 to 2.4 mg/L, and median whole-water phosphorus concentrations ranging from about 0.5 to 0.7 mg/L. Whole-water nitrogen concentrations in Lake Andes are similar among the

  4. Historical Evolution of the Hydrological Functioning of the Old Lake Xochimilco, Southern Mexico Basin

    NASA Astrophysics Data System (ADS)

    Gonzalez, T.; Ruvalcaba, A.

    2012-12-01

    The lacustrian area of Xochimilco is one of the remnants of the old system of lakes located in the Basin of Mexico. After the Spanish conquest, began a series of actions including hydraulic-works that have changed the original landscape of this region. This region had important springs that for more than 50 years supplied water to the Mexico City. Since 1960, the excessive exploitation of the aquifer and urban growth in the region exhausted the springs. Using historical information we were able to characterize the major phenomena that have substantially changed the hydrogeological functioning of the region, in some more than 100 years. Currently, the exploitation of extraction wells has caused a gradual decrease in their static level and the existing remnant of the old lake is maintained with treated water. Observable effects are presented. The topographic gradient has been modified occurs subsidence and fractures are visible besides a severe reduction in the lake area which has been reduced to 15% of its original extent.

  5. Comparison of evaporation at two central Florida lakes, April 2005–November 2007

    USGS Publications Warehouse

    Swancar, Amy

    2015-09-25

    Both lakes are seepage lakes (no surface-water inflow or outflows) that are dependent on groundwater inflow from their basins to offset an atmospheric deficit, because long-term rainfall in this area is less than evaporation. The Lake Starr basin, where sandy, well-drained ridges surround the lake, has a greater capacity to store infiltrating rain than the Lake Calm basin, which is flat and has poorly drained soils. The storage capacities of the basins affect groundwater exchange with the lakes. Rainfall and net groundwater exchange, which is related to basin characteristics, varied more between these two lakes than did evaporation during this study.

  6. Great lakes prey fish populations: a cross-basin overview of status and trends based on bottom trawl surveys, 1978-2012

    USGS Publications Warehouse

    Gorman, Owen T.

    2012-01-01

    The assessment of prey fish stocks in the Great Lakes have been conducted annually with bottom trawls since the 1970s by the Great Lakes Science Center, sometimes assisted by partner agencies. These stock assessments provide data on the status and trends of prey fish that are consumed by important commercial and recreational fishes. Although all these annual surveys are conducted using bottom trawls, they differ among the lakes in the proportion of the lake covered, seasonal timing, bottom trawl gear used, and the manner in which the trawl is towed (across or along bottom contours). Because each assessment is unique in one or more important aspects, direct comparison of prey fish catches among lakes is not straightforward. However, all of the assessments produce indices of abundance or biomass that can be standardized to facilitate comparisons of status and trends across all the Great Lakes. In this report, population indices were standardized to the highest value for a time series within each lake for the following principal prey species: cisco (Coregonus artedi), bloater (C. hoyi), rainbow smelt (Osmerus mordax), and alewife (Alosa pseudoharengus). Indices were also provided for round goby (Neogobius melanostomus), an invasive fish that has proliferated throughout the basin over the past 18 years. These standardized indices represent the best available long-term indices of relative abundance for these fishes across all of the Great Lakes. In this report, standardized indices are presented in graphical form along with synopses to provide a short, informal cross-basin summary of the status and trends of principal prey fishes. In keeping with this intent, tables, references, and a detailed discussion were omitted.

  7. Benthic bioindicators from the lakes of Northern Yakutia (Siberia, Russia) in paleoclimatic research

    NASA Astrophysics Data System (ADS)

    Tumanov, O. N.; Nazarova, L. B.; Frolova, L. A.; Pestryakova, L. A.

    2012-04-01

    High latitude regions are particularly affected by global climate change. Aquatic ecosystems are known to respond quickly and sensitively to such changes (Carpenter et al., 1992; Findlay et al. 2001; Smol et al., 2005). This effect is especially dramatic in regions with continental climates such as Northern and Eastern Siberia. In 2008, Russian-German expedition investigated 33 lakes of Kolyma river basin, North-Eastern Yakutia. The region of investigation is located in the mouth of Kolyma river between approximately 68°2' and 69°4' N and between 159°8' and 161°9' E. It's a most north-eastern region of Yakutia, so it's suitable for paleolimnological investigations. The investigated lakes are situated along the 200 km transect crossing 3 vegetation zones: polygonal tundra, forest tundra and northern taiga. The main aims were establishing a calibration dataset for paleoenvironmental reconstructions by using aquatic organisms, investigation of limnological variables and the influence of the environmental conditions on distribution of aquatic organisms in Yakutian lakes. The modern benthic fauna of the lakes is represented by 89 taxa from 14 taxonomic groups. The most abundant group was Mollusca. The most taxonomically diverse group was Chironomidae. A unique for this region species were discovered, such as Cincinna kamchatica, Physa jarochnovitschae, Colymbetes dolabratus, Ilybius wasastjernae, Xestochironomus sp., Agrypnia sp. etc. Cluster analysis of taxonomical composition of the benthic fauna of these lakes showed high dependency to vegetation zones. The highest levels of hydrobiological indexes (Shannon, Evenness, species richness) were registered in forest tundra. CCA analysis showed that the most influential factors in species distribution were climate-dependant factors, such as mean Tair of July, pH and water depth. Data from taxonomical analysis of Chironomidae group were used for establishing a calibration dataset for paleoenvironmental reconstructions.

  8. Records from Lake Qinghai: Holocene climate history of Northeastern Tibetan Plateau linking to global change

    NASA Astrophysics Data System (ADS)

    An, Z.; Colman, S.; Zhou, W.; Brown, E.; Li, X.; Jull, T.; Wang, S.; Liu, W.; Sun, Y.; Lu, X.; Song, Y.; Chang, H.; Cai, Y.; Xu, H.; Wang, X.; Liu, X.; Wu, F.; Han, Y.; Cheng, P.; Ai, L.; Wang, Z.; Qiang, X.; Shen, J.; Zhu, Y.; Wu, Z.; Liu, X.

    2008-12-01

    Lake Qinghai (99°36'-100°16'E, 36°32'-37°15'N ) of the north eastern margin of Tibet Plateau is the largest inland lake of China. It sits on the transitional zone of Asian monsoon- arid areas, receives influences of Asian monsoons and Westerlies, thus sensitive to global climate changes. Although previous studies had investigated Holocene climate change of Lake Qinghai area, it is rare to see precise Holocene climatic sequences of Lake Qinghai, nor in-depth discussions on controlling factors of Lake Qinghai climate changes. In Year 2005, with support from ICDP, Chinese Academy of Sciences (CAS), Chinese Ministry of Science and Technology (MOST) and National Science Foundation of China (NSFC), Drilling, Observation and Sampling of the Earths Continental Crust Corporation (DOSECC) and Institute of Earth Environment, Chinese Academy of Sciences (IEECAS) took a series of shallows cores from the southern basin of Lake Qinghai. West sub-basin sediments display Holocene lacustrine feature for the upper 5m, while the 5-18m are interbeded sediments of shallow lake, eolian-lacustrine and eolian loess. Chinese and US scientists with support from NSFC, MOST, CAS and NSF analysed 1F core from west sub-basin depocenter of the south basin with multiple physical, chemical, biological approaches. By comparing with modern process observation records, we obtained proxies that respectfully reflect precipitation, temperature and lake salinity changes, etc., reconstructed high resolution time sequences of magnetic susceptibility, colour scale, grain size, Corg, C/N, δ13Corg, carbonate, δ13C and δ18O of carbonate and ostracodes, elements, char-soot,Uk'37 and %C37:4 as well as pollen of the last 13Ka. They indicate the climatic change history of Lake Qinghai since past 13Ka, and agreeable evidences are found from adjacent tree ring and stalagmite records. Comparison of Lake Qinghai Holocene climate change sequence with those from high altitude ice core, stalagmites and ocean

  9. Hazard Assessment of Glacial Lake Outburst Flood and Potential of ICTs for Coping: A Case of Eastern Himalaya of Nepal

    NASA Astrophysics Data System (ADS)

    Bhattarai, D. R.; Pradhananga, D.

    2014-12-01

    Alarming rate of retreat of glaciers and formation of glacial lakes in higher elevation of Nepal Himalaya has been reported to be related with the pronounced atmospheric temperature rise in the region. Glacier Lake Outburst Floods (GLOF) are the growing climate induced hazards in the Himalaya increasing the vulnerability of community living in the mountain valley, and the fragile ecosystem. This study tried to come up with the potential impacts from glacial lake outburst flood (GLOF) in highland of eastern region of Nepal and potential role of Information Communication Technologies (ICT) in coping. I analyzed the trend of climatic pattern (temperature and precipitation) of the Eastern Himalaya Region of Nepal available from Department of Hydrology and Meteorology (DHM), Government of Nepal, and also prepared the latest location map of the glacial lakes using google earth and ArcGIS application in the highland of the Kanchanjungha Conservation Area of the region. Tiptala glacial lake, located at an elevation of 4950 masl, within the conservation area, was selected for the GLOF hazard assessment. I used semi-structured questioner survey and key informants interviews in the community living below the lake in the highland of the study area in order to assess the potential hazard of GLOF. Analysis shows the increasing trend of atmospheric temperature in the region. With the varying sizes, 46 glacial lakes were located in the region, which covers over 2.57 sq. km in total. Though the larger portion of the downstream area of the Tiptala glacial lake fall in the remote location away from major residential area, few villages, major pasture lands for Yaks, foot trails, and several bridges across the Tamor River below the lake are in risk of GLOF. Poor access due to extreme geographical remoteness and capacity to afford the modern technologies in the community is seen as the major limiting factor to the knowledge and information about the climate change and related impacts

  10. The importance of diverse data types to calibrate a watershed model of the Trout Lake Basin, Northern Wisconsin, USA

    USGS Publications Warehouse

    Hunt, R.J.; Feinstein, D.T.; Pint, C.D.; Anderson, M.P.

    2006-01-01

    As part of the USGS Water, Energy, and Biogeochemical Budgets project and the NSF Long-Term Ecological Research work, a parameter estimation code was used to calibrate a deterministic groundwater flow model of the Trout Lake Basin in northern Wisconsin. Observations included traditional calibration targets (head, lake stage, and baseflow observations) as well as unconventional targets such as groundwater flows to and from lakes, depth of a lake water plume, and time of travel. The unconventional data types were important for parameter estimation convergence and allowed the development of a more detailed parameterization capable of resolving model objectives with well-constrained parameter values. Independent estimates of groundwater inflow to lakes were most important for constraining lakebed leakance and the depth of the lake water plume was important for determining hydraulic conductivity and conceptual aquifer layering. The most important target overall, however, was a conventional regional baseflow target that led to correct distribution of flow between sub-basins and the regional system during model calibration. The use of an automated parameter estimation code: (1) facilitated the calibration process by providing a quantitative assessment of the model's ability to match disparate observed data types; and (2) allowed assessment of the influence of observed targets on the calibration process. The model calibration required the use of a 'universal' parameter estimation code in order to include all types of observations in the objective function. The methods described in this paper help address issues of watershed complexity and non-uniqueness common to deterministic watershed models. ?? 2005 Elsevier B.V. All rights reserved.

  11. Western Lake Erie Basin: Soft-data-constrained, NHDPlus resolution watershed modeling and exploration of applicable conservation scenarios

    USDA-ARS?s Scientific Manuscript database

    Complex watershed simulation models are powerful tools that can help scientists and policy-makers address challenging topics, such as land use management and water security. In the Western Lake Erie Basin (WLEB), complex hydrological models have been applied at various scales to help describe relat...

  12. Late Glacial and Holocene sedimentary evolution of Czechowskie Lake (Eastern Pomerania, North Central Poland)

    NASA Astrophysics Data System (ADS)

    Kordowski, Jarosław; Błaszkiewicz, Mirosław; Kramkowski, Mateusz; Noryśkiewicz, Agnieszka M.; Słowiński, Michał; Tyszkowski, Sebastian; Brauer, Achim; Ott, Florian

    2015-04-01

    Czechowskie Lake is located in north-central Poland in Tuchola Forest, about 100 kilometers SW away from Gdańsk. In the deepest parts of the lake there are preserved laminated sediments with an excellent Holocene climatic record. The lake has the area of 76,6 ha. Actual water level is at 109,9 m a.s.l. The average depth is 9,59 m, maximal 32 m. It occupies a large subglacial channel, reproduced within the glacifluvial sediments of the last glaciation. The lake has a history reaching back to Pommeranian phase which is proved by analysis of sedimentary succesions in the vicinity of present-day waterbody. Primarily it come to existence as an very variable ice dammed lake but after dead ice and permafrost desintegration it changed into a stable lake. In the terrestrialised part oft the lake and in its litoral zone there were curried out numerous boreholes within limnic and slope sediments. They have been analysed in respect to lithology and structure. Some of them were also investigated palynologically which along with radiocarbon datings allowed to reconstruct major phases of the water level fluctuations. The maximum infilling with the limnic and telmatic sediments reaches over 12 m. In the bottom of the lake there is a marked presence of many overdeepenings with the diameter of dozen or several dozen meters and the depth of up to 10 m with numerous, distinct throughs between them. They favoured the preservation of the lamination in the deepest parts of the lake due to waves hampering and stopping of the density circulation in the lake waterbody. The analysis of limnic sediments revealed considerable spatial and temporal variability mainly in dependance of the area of the water body and water level in time of deposition. In the lake are recorded three distinct phases of lake level decrease. The sedimentary evolution in the isolated minor lake basins showed gradual decrease of mineral and organic deposition in favour for carbonate one although in places separated by

  13. Hazard Assessment of Glacial Lake Outburst Flood and Potential of ICTs for Coping: A Case of Eastern Himalaya of Nepal

    NASA Astrophysics Data System (ADS)

    Bhattarai, D. R.

    2015-12-01

    Retreat of glaciers and formation of glacial lakes in Nepal Himalaya have been reported to be related with the temperature rise in the region. Glacier Lake Outburst Floods (GLOF) are the growing climate induced hazards in the Himalaya. GLOF has increased the vulnerability of community and fragile ecosystem in the mountain valleys. This study has analyzed the potential impacts from GLOF in the highland of eastern Nepal and the potential role of Information Communication Technologies (ICT) to cope with such impacts. I analyzed the trend of climatic pattern (temperature and precipitation) of the Eastern Himalaya Region of Nepal available from the Department of Hydrology and Meteorology, Government of Nepal, and prepared the latest location map of the glacial lakes using google earth and ArcGIS applications in the highland of the Kanchanjungha Conservation Area of the region. Tiptala glacial lake, located at an elevation of 4950 m, within the conservation area, was selected for the GLOF hazard assessment. I used semi-structured questionnaire survey and key informants' interviews in the community in order to assess the potential hazard of GLOF. With the varying sizes, 46 glacial lakes were located in the region, which covers over 2.57 sq. km in total. Though the larger portion of the downstream area of the Tiptala glacial lake fall in the remote location away from major residential area, few villages, major pasture lands for Yaks, foot trails, and several bridges across the Tamor River below the lake are in risk of GLOF. Poor access due to extreme geographical remoteness and capacity to afford the modern technologies in the community are the major limiting factor to the knowledge and information about the climate change and related impacts. Modern ICTs has high potential to reduce the risk of climate related hazards in the remote area by information dissemination and awareness.

  14. Timing of the last glaciation and subsequent deglaciation in the Ruby Mountains, Great Basin, USA

    NASA Astrophysics Data System (ADS)

    Laabs, Benjamin J. C.; Munroe, Jeffrey S.; Best, Laura C.; Caffee, Marc W.

    2013-01-01

    The timing of the last Pleistocene glaciation in western North America is becoming increasingly well understood, largely due to improved methods of obtaining numerical ages of glacial deposits and landforms. Among these, cosmogenic radionuclide surface-exposure dating has been widely applied to moraines of mountain glaciers, providing the framework for understanding terrestrial climate change during and since the last glaciation in western North America. During the Late Pleistocene, the Great Basin of the western United States hosted numerous mountain glaciers, the deposits of which can provide valuable records of past climate changes if their ages can be precisely determined. In this study, twenty-nine cosmogenic radionuclide 10Be surface-exposure ages from a suite of moraines in Seitz Canyon, western Ruby Mountains, limit the timing of the last glacial episode in the interior Great Basin, known as the Angel Lake Glaciation. Results indicate that deposition of a terminal moraine and two recessional moraines began just prior to ˜20.5 ka and continued until ˜20.0 ka. Retreat from the next younger recessional moraine began at ˜17.2 ka, and final deglaciation began at ˜14.8 ka. These ages are broadly consistent with cosmogenic surface-exposure ages from the eastern Sierra Nevada and the western Wasatch Mountains, in the western and eastern extremes of the Great Basin respectively. Furthermore, these ages suggest that the valley glacier in Seitz Canyon was at or near its maximum extent before and during the hydrologic maxima of Pleistocene lakes in the Great Basin, supporting previous suggestions that a cool and wet climate persisted in this region during the early part of the last glacial-interglacial transition.

  15. The volcanic, sedimentologic, and paleolimnologic history of the Crater Lake caldera floor, Oregon:Evidence for small caldera evolution

    USGS Publications Warehouse

    Nelson, C. Hans; Bacon, Charles R.; Robinson, Stephen W.; Adam, David P.; Bradbury, J. Platt; Barber, John H.; Schwartz, Deborah; Vagenas, Ginger

    1994-01-01

    Apparent phreatic explosion craters, caldera-floor volcanic cones, and geothermal features outline a ring fracture zone along which Mount Mazama collapsed to form the Crater Lake caldera during its climactic eruption about 6,850 yr B.P. Within a few years, subaerial deposits infilled the phreatic craters and then formed a thick wedge (10-20 m) of mass flow deposits shed from caldera walls. Intense volcanic activity (phreatic explosions, subaerial flows, and hydrothermal venting) occurred during this early postcaldera stage, and a central platform of subaerial andesite flows and scoria formed on the caldera floor.Radiocarbon ages suggest that deposition of Iacustrine hemipelagic sediment began on the central platform about 150 yr after the caldera collapse. This is the minimum time to fill the lake halfway with water and cover the platform assuming present hydrologic conditions of precipitation and evaporation but with negligible leakage of lake water. Wizard Island formed during the final part of the 300-yr lake-filling period as shown by its (1) upper subaerial lava flows from 0 to -70 m below present water level and lower subaqueous lava flows from -70 to -500 m and by (2) lacustrine turbidite sand derived from Wizard Island that was deposited on the central platform about 350 yr after the caldera collapse. Pollen stratigraphy indicates that the warm and dry climate of middle Holocene time correlates with the early lake deposits. Diatom stratigraphy also suggests a more thermally stratified and phosphate-rich environment associated respectively with this climate and greater hydrothermal activity during the early lake history.Apparent coarse-grained and thick-bedded turbidites of the early lake beds were deposited throughout northwest, southwest, and eastern basins during the time that volcanic and seismic activity formed the subaqueous Wizard Island, Merriam Cone, and rhyodacite dome. The last known postcaldera volcanic activity produced a subaqueous rhyodacite

  16. On the role of snow cover ablation variability and synoptic-scale atmospheric forcings at the sub-basin scale within the Great Lakes watershed

    NASA Astrophysics Data System (ADS)

    Suriano, Zachary J.

    2018-02-01

    Synoptic-scale atmospheric conditions play a critical role in determining the frequency and intensity of snow cover ablation in the mid-latitudes. Using a synoptic classification technique, distinct regional circulation patterns influencing the Great Lakes basin of North America are identified and examined in conjunction with daily snow ablation events from 1960 to 2009. This approach allows for the influence of each synoptic weather type on ablation to be examined independently and for the monthly and inter-annual frequencies of the weather types to be tracked over time. Because of the spatial heterogeneity of snow cover and the relatively large geographic extent of the Great Lakes basin, snow cover ablation events and the synoptic-scale patterns that cause them are examined for each of the Great Lakes watershed's five primary sub-basins to understand the regional complexities of snow cover ablation variability. Results indicate that while many synoptic weather patterns lead to ablation across the basins, they can be generally grouped into one of only a few primary patterns: southerly flow, high-pressure overhead, and rain-on-snow patterns. As expected, the patterns leading to ablation are not necessarily consistent between the five sub-basins due to the seasonality of snow cover and the spatial variability of temperature, moisture, wind, and incoming solar radiation associated with the particular synoptic weather types. Significant trends in the inter-annual frequency of ablation-inducing synoptic types do exist for some sub-basins, indicating a potential change in the hydrologic impact of these patterns over time.

  17. Effects of flood control alternatives on fish and wildlife resources of the Malheur-Harney lakes basin

    USGS Publications Warehouse

    Hamilton, David B.; Auble, Gregor T.; Ellison, Richard A.; Roelle, James E.

    1985-01-01

    Malheur Lake is the largest freshwater marsh in the western contiguous United States and is one of the main management units of the Malheur National Wildlife Refuge in southeastern Oregon. The marsh provides excellent waterfowl production habitat as well as vital migration habitats for birds in the Pacific flyway. Water shortages have typically been a problem in this semiarid area; however, record snowfalls and cool summers have recently caused Malheur Lake to rise to its highest level in recorded history. This has resulted in the loss of approximately 57,000 acres of important wildlife habitat as well as extensive flooding of local ranches, roads, and railroad lines. Because of the importance of the Refuge, any water management plan for the Malheur-Harney Lakes Basin needs to consider the impact of management alternatives on the hydrology of Malheur Lake. The facilitated modeling workshop described in this report was conducted January 14-18, 1985, under the joint sponsorship of the Portland Ecological Services Field Office and the Malheur National Wildlife Refuge, Region 1, U.S. Fish and Wildlife Service (FWS). The Portland Field Office is responsible for FWS reporting requirements on Federal water resource projects while the Refuge staff has management responsibility for much of the land affected by high water levels in the Malheur-Harney Lakes Basin. The primary objective of the workshop was to begin gathering and analyzing information concerning potential fish and wildlife impacts, needs, and opportunities associated with proposed U.S. Army Corps of Engineers (COE) flood control alternatives for Malheur Lake. The workshop was structured around the formulation of a computer model that would simulate the hydrologic effects of the various alternatives and any concommitant changes in vegetation communities and wildlife use patterns. The simulation model is composed of three connected submodels. The Hydrology submodel calculates changes in lake volume, elevation

  18. Reconstruction of Sea/Lake-Level Changes in an Active Strike-Slip Basin (Gulf of Cariaco, NE Venezuela)

    NASA Astrophysics Data System (ADS)

    van Daele, M.; Audemard, F.; Beck, C.; de Batist, M.; van Welden, A.; Moernaut, J.; 2006 Shipboard Party, G.

    2008-05-01

    In January 2006, 76 high-resolution reflection seismic profiles were acquired in the Gulf of Cariaco, Northeast Venezuela. In the upper 100 m of sedimentary infill, 17 unconformity-bounded sequences were identified and mapped throughout the basin. Up to now, no core or borehole information is available to provide age constraints on these units. The sedimentary infill is cut by several faults, Riedel faults in the central part and the El Pilar fault (one of the main faults of the South American-Caribbean plate boundary) in the southern part of the gulf. The connection of the Gulf of Cariaco with the adjacent Cariaco Basin occurs at a present-day water depth of ~ 55 m. This implies that the gulf was disconnected from the world ocean and functioned as a lake during a large part of the last glacial. The main rivers entering the gulf drain the coastal mountain ranges and tend to form pronounced deltas at their inlet. During times when the gulf was a lake, periods with a dry climate resulted in dramatic lake-level lowstands and even complete desiccation/evaporation. The present-day depths of delta offlap breaks and the presence of lowstand/evaporite deposits can thus be used to estimate sea/lake level at the time of their formation. Detailed analysis of these stratigraphic sea/lake-level indicators allowed reconstructing the sea/lake-level history for the period encompassed by the 17 identified sequences. This sea/lake-level reconstruction also needed to be corrected for tectonic subsidence, affecting different parts of the gulf with different intensity. The reconstructed sea/lake-level curve of the Gulf of Cariaco was compared with the eustatic sea-level curve and with results of previous paleoclimate studies in Venezuela. The striking coherence between the eustatic curve and the amplitudes and absolute heights of successive reconstructed lowstands and highstands compelled us to tune our record to the eustatic curve in order to achieve a rough age estimate for our units

  19. Hydrogeological behaviour of the Fuente-de-Piedra playa lake and tectonic origin of its basin (Malaga, southern Spain)

    NASA Astrophysics Data System (ADS)

    Rodriguez-Rodriguez, Miguel; Martos-Rosillo, Sergio; Pedrera, Antonio

    2016-12-01

    Changes in the quantity of groundwater input due to water extraction for irrigation and urban supply has modified the water balance in the Fuente de Piedra playa lake. We have analysed the hydrogeology of the playa-lake system and developed a water-level model by means of a simple long-term water balance and piezometric analysis. In addition, a tectonic model is proposed to explain the endorheic basin development that led to the formation of the playa. Upright folds developed since the late Miocene and density-driven subsidence favoured the setting-up of and endorheic system located between the Atlantic and the Mediterranean basins in the Quaternary. The underlying low permeability rocks beneath the playa form a very stable aquitard with highly saline groundwater that prevents groundwater recharge of the lake into the aquitard. The hydrological modelling allowed us to simulate the evolution of the wáter level under a scenario of unaltered conditions during a 13-year period, showing that the percentage of days with dry conditions varies from 24.8% of the time under altered conditions to 14.9% as far as an unaltered scenario is concerned.

  20. Late Paleogene terrestrial fauna and paleoenvironments in Eastern Anatolia: New insights from the Kağızman-Tuzluca Basin

    NASA Astrophysics Data System (ADS)

    Métais, Grégoire; Sen, Sevket; Sözeri, Koray; Peigné, Stéphane; Varol, Baki

    2015-08-01

    In Eastern Turkey, relatively little work has been undertaken to characterize the sedimentologic and stratigraphical context of the Kağızman-Tuzluca Basin until now. Extending across the Turkey-Armenian border, this basin documents the syn- and post-collisional evolution of Eastern Anatolia, resulting from the closure of the Neotethyan Seaways and the final collision of the Afro-Arabian and Eurasian plates. From detailed sedimentological and paleontological studies, we propose an interpretation of the lithology and depositional environment of the Late Paleogene Alhan Formation located on the western bank of the Aras River. This sequence of terrestrial clastics rests directly and unconformably onto the ophiolitic mélange, and it documents several depositional sequences deposited in alluvial plain and lacustrine environments. At this stage, the age of the Alhan Formation can only be calibrated by fossil evidence. Several stratigraphic levels yielding fossil data along the section have been identified, but these poor assemblages of fauna and flora hamper extensive comparisons with roughly contemporaneous localities of Central and Southern Asia. Carnivorous and ruminant mammal remains are reported for the first time from the supposed Late Oligocene Güngörmez Formation. The identified fossil mammal taxa reveal biogeographic affinities between Central Anatolia and southern Asia, thus suggesting dispersal between these areas during the Oligocene or earlier. Further studies of the fossil assemblages from the Kağızman-Tuzluca Basin and other basins of Eastern Anatolia and lesser Caucasus regions are needed to better constrain the paleobiogeographic models.

  1. Hydrogeologic Framework of Bedrock Units and Initial Salinity Distribution for a Simulation of Groundwater Flow for the Lake Michigan Basin

    USGS Publications Warehouse

    Lampe, David C.

    2009-01-01

    The U.S. Geological Survey is assessing groundwater availability in the Lake Michigan Basin. As part of the assessment, a variable-density groundwater-flow model is being developed to simulate the effects of groundwater use on water availability throughout the basin. The hydrogeologic framework for the Lake Michigan Basin model was developed by grouping the bedrock geology of the study area into hydrogeologic units on the basis of the functioning of each unit as an aquifer or confining layer within the basin. Available data were evaluated based on the areal extent of coverage within the study area, and procedures were established to characterize areas with sparse data coverage. Top and bottom altitudes for each hydrogeologic unit were interpolated in a geographic information system for input to the model and compared with existing maps of subsurface formations. Fourteen bedrock hydrogeologic units, making up 17 bedrock model layers, were defined, and they range in age from the Jurassic Period red beds of central Michigan to the Cambrian Period Mount Simon Sandstone. Information on groundwater salinity in the Lake Michigan Basin was compiled to create an input dataset for the variable-density groundwater-flow simulation. Data presented in this report are referred to as 'salinity data' and are reported in terms of total dissolved solids. Salinity data were not available for each hydrogeologic unit. Available datasets were assigned to a hydrogeologic unit, entered into a spatial database, and data quality was visually evaluated. A geographic information system was used to interpolate salinity distributions for each hydrogeologic unit with available data. Hydrogeologic units with no available data either were set equal to neighboring units or were vertically interpolated by use of values from units above and below.

  2. Pull-Apart vs. Subduction Rollback Mechanisms For The Cenozoic Formation Of Bohai Basin, Eastern China

    NASA Astrophysics Data System (ADS)

    Castellanos, H. A.; Mann, P.

    2005-12-01

    The Bohai basin of eastern China covers an area of about 200,000 km2 and forms one of a family of basins that record Cenozoic extension along the eastern margin of Asia from Viet Nam to northeastern Russia. Two very different deformational mechanisms have been proposed for the Cenozoic formation of the Bohai basin. The first model proposes a two-stage extension model consisting of Paleogene rifting in a WNW-ESE direction followed by Neogene thermal subsidence that controlled overlying and less deformed sag basins above the rifted section (Ye et al., 1985). The mechanism for two-stage rifting is generally attributed to rollback of the subducted Pacific plate beneath the Asian continent, lithospheric extension of the overriding continental plate, and thermally-driven, regional subsidence. A second model invokes a more localized Cenozoic pull-apart basin formed at a right-step in a right-lateral shear system parallel to the Asian continental margin (Allen et al., 1997). Earthquakes and GPS data indicate that right-lateral strike-slip faulting continues to the present-day in a pattern consistent with the regional-scale "lazy-Z" map pattern of the Cenozoic Bohai depocenter. Allen et al. (1997) propose the subsurface of the large pull-apart structure contains diffuse, sub-parallel strike-slip faults offset by smaller-scale, intrabasinal stepovers. In order to better distinguish the timing and mechanism for the formation of the Bohai basin, we have interpreted 1400 km of offshore 2D seismic data, a 3D seismic volume, and integrated lithostratigraphic data from 6 wells that are tied to these reflection data. Three major units were identified and mapped on a basin-wide scale: basement, a syn-rift unit, and a post-rift sag unit. Thickening trends and ages indicate the syn-rift phase occurred from late Paleocene to late Oligocene. Basin opening occurred on a series of half-grabens trending NNE-SSW. Rifting ended during the late Oligocene when a regional uplift and erosional

  3. Origin of back-arc basins and effects of western Pacific subduction systems on eastern China geology

    NASA Astrophysics Data System (ADS)

    Niu, Y.

    2013-12-01

    Assuming that subduction initiation is a consequence of lateral compositional buoyancy contrast within the lithosphere [1], and recognizing that subduction initiation within normal oceanic lithosphere is unlikely [1], we can assert that passive continental margins that are locations of the largest compositional buoyancy contrast within the lithosphere are the loci of future subduction zones [1]. We hypothesize that western Pacific back-arc basins were developed as and evolved from rifting at passive continental margins in response to initiation and continuation of subduction zones. This hypothesis can be tested by demonstrating that intra-oceanic island arcs must have basement of continental origin. The geology of the Islands of Japan supports this. The highly depleted forearc peridotites (sub-continental lithosphere material) from Tonga and Mariana offer independent lines of evidence for the hypothesis [1]. The origin and evolution of the Okinawa Trough (back-arc basin) and Ryukyu Arc/Trench systems represents the modern example of subduction initiation and back-arc basin formation along a (Chinese) continental margin. The observation why back-arc basins exit behind some subduction zones (e.g., western Pacific) but not others (e.g., in South America) depends on how the overlying plate responds to subduction, slab-rollback and trench retreat. In the western Pacific, trench retreat towards east results in the development of extension in the upper Eurasian plate and formation of back-arc basins. In the case of South America, where no back-arc basins form because trench retreat related extension is focused at the 'weakest' South Mid-Atlantic Ridge. It is thus conceptually correct that the South Atlantic is equivalent to a huge 'back-arc basin' although its origin may be different. Given the negative Clayperon slope of the Perovskite-ringwoodite phase transition at the 660 km mantle seismic discontinuity (660-D), slab penetration across the 660-D is difficult and

  4. Archaeal and bacterial communities across a chronosequence of drained lake basins in arctic alaska

    DOE PAGES

    Kao-Kniffin, J.; Woodcroft, B. J.; Carver, S. M.; ...

    2015-12-18

    We examined patterns in soil microbial community composition across a successional gradient of drained lake basins in the Arctic Coastal Plain. Analysis of 16S rRNA gene sequences revealed that methanogens closely related to Candidatus ‘Methanoflorens stordalenmirensis’ were the dominant archaea, comprising >50% of the total archaea at most sites, with particularly high levels in the oldest basins and in the top 57 cm of soil (active and transition layers). Bacterial community composition was more diverse, with lineages from OP11, Actinobacteria, Bacteroidetes, and Proteobacteria found in high relative abundance across all sites. Notably, microbial composition appeared to converge in the activemore » layer, but transition and permafrost layer communities across the sites were significantly different to one another. Microbial biomass using fatty acid-based analysis indicated that the youngest basins had increased abundances of gram-positive bacteria and saprotrophic fungi at higher soil organic carbon levels, while the oldest basins displayed an increase in only the gram-positive bacteria. While this study showed differences in microbial populations across the sites relevant to basin age, the dominance of Candidatus ‘M. stordalenmirensis’ across the chronosequence indicates the potential for changes in local carbon cycling, depending on how these methanogens and associated microbial communities respond to warming temperatures.« less

  5. Spatial variation in biofouling of a unionid mussel (Lampsilis siliquoidea) across the western basin of Lake Erie

    USGS Publications Warehouse

    Larson, James H.; Evans, Mary; Richardson, William B.; Schaeffer, Jeff; Nelson, John

    2016-01-01

    Invasion of North American waters by nonnative Dreissena polymorpha and D. rostriformis bugensishas resulted in declines of the Unionidae family of native North American mussels. Dreissenid mussels biofoul unionid mussels in large numbers and interfere with unionid movement, their acquisition of food, and the native mussels' ability to open and close their shells. Initial expectations for the Great Lakes included extirpation of unionids where they co-occurred with dreissenids, but recently adult and juvenile unionids have been found alive in several apparent refugia. These unionid populations may persist due to reduced dreissenid biofouling in these areas, and/or due to processes that remove biofoulers. For example locations inaccessible to dreissenid veligers may reduce biofouling and habitats with soft substrates may allow unionids to burrow and thus remove dreissenids. We deployed caged unionid mussels (Lampsilis siliquoidea) at 36 sites across the western basin of Lake Erie to assess spatial variation in biofouling and to identify other areas that might promote the persistence or recovery of native unionid mussels. Biofouling ranged from 0.03 – 26.33 g per mussel, reached a maximum in the immediate vicinity of the mouth of the Maumee River, and appeared to primarily consist of dreissenid mussels. A known mussel refugium in the vicinity of a power plant near the mouth of the Maumee actually exhibited very high biofouling rates, suggesting that low dreissenid colonization did not adequately explain unionid survival in this refugium. In contrast, the southern nearshore area of Lake Erie, near another refugium, had very low biofouling. A large stretch of the western basin appeared to have low biofouling rates and muddy substrates, raising the possibility that these open water areas could support remnant and returning populations of unionid mussels. Previous observations of unionid refugia and the occurrence of low biofouling rates in large areas of the western

  6. The spatial scale for cisco recruitment dynamics in Lake Superior during 1978-2007

    USGS Publications Warehouse

    Rook, Benjamin J.; Hansen, Michael J.; Gorman, Owen T.

    2012-01-01

    The cisco Coregonus artedi was once the most abundant fish species in the Great Lakes, but currently cisco populations are greatly reduced and management agencies are attempting to restore the species throughout the basin. To increase understanding of the spatial scale at which density‐independent and density‐dependent factors influence cisco recruitment dynamics in the Great Lakes, we used a Ricker stock–recruitment model to identify and quantify the appropriate spatial scale for modeling age‐1 cisco recruitment dynamics in Lake Superior. We found that the recruitment variation of ciscoes in Lake Superior was best described by a five‐parameter regional model with separate stock–recruitment relationships for the western, southern, eastern, and northern regions. The spatial scale for modeling was about 260 km (range = 230–290 km). We also found that the density‐independent recruitment rate and the rate of compensatory density dependence varied among regions at different rates. The density‐independent recruitment rate was constant among regions (3.6 age‐1 recruits/spawner), whereas the rate of compensatory density dependence varied 16‐fold among regions (range = −0.2 to −2.9/spawner). Finally, we found that peak recruitment and the spawning stock size that produced peak recruitment varied among regions. Both peak recruitment (0.5–7.1 age‐1 recruits/ha) and the spawning stock size that produced peak recruitment (0.3–5.3 spawners/ha) varied 16‐fold among regions. Our findings support the hypothesis that the factors driving cisco recruitment operate within four different regions of Lake Superior, suggest that large‐scale abiotic factors are more important than small‐scale biotic factors in influencing cisco recruitment, and suggest that fishery managers throughout Lake Superior and the entire Great Lakes basin should address cisco restoration and management efforts on a regional scale in each lake.

  7. Hydrogeologic setting, water budget, and preliminary analysis of ground-water exchange at Lake Starr, a seepage lake in Polk County, Florida

    USGS Publications Warehouse

    Swancar, Amy; Lee, T.M.; O'Hare, T. M.

    2000-01-01

    Lake Starr, a 134-acre seepage lake of multiple-sinkhole origin on the Lake Wales Ridge of central Florida, was the subject of a detailed water-budget study from August 1996 through July 1998. The study monitored the effects of hydrogeologic setting, climate, and ground-water pumping on the water budget and lake stage. The hydrogeologic setting of the Lake Starr basin differs markedly on the two sides of the lake. Ground water from the surficial aquifer system flows into the lake from the northwest side of the basin, and lake water leaks out to the surficial aquifer system on the southeast side of the basin. Lake Starr and the surrounding surficial aquifer system recharge the underlying Upper Floridan aquifer. The rate of recharge to the Upper Floridan aquifer is determined by the integrity of the intermediate confining unit and by the downward head gradient between the two aquifers. On the inflow side of the lake, the intermediate confining unit is more continuous, allowing ground water from the surficial aquifer system to flow laterally into the lake. Beneath the lake and on the southeast side of the basin, breaches in the intermediate confining unit enhance downward flow to the Upper Floridan aquifer, so that water flows both downward and laterally away from the lake through the ground-water flow system in these areas. An accurate water budget, including evaporation measured by the energy-budget method, was used to calculate net ground-water flow to the lake, and to do a preliminary analysis of the relation of net ground-water fluxes to other variables. Water budgets constructed over different timeframes provided insight on processes that affect ground-water interactions with Lake Starr. Weekly estimates of net ground-water flow provided evidence for the occurrence of transient inflows from the nearshore basin, as well as the short-term effects of head in the Upper Floridan aquifer on ground-water exchange with the lake. Monthly water budgets showed the effects

  8. Lunar impact basins: New data for the nearside northern high latitudes and eastern limb from the second Galileo flyby

    NASA Technical Reports Server (NTRS)

    Head, J. W.; Belton, M.; Greeley, R.; Pieters, C.; Fischer, E.; Sunshine, J.; Klaasen, K.; Mcewen, A.; Becker, T.; Neukum, G.

    1993-01-01

    During the December 1992 Galileo Earth/Moon encounter the northern half of the nearside, the eastern limb, and parts of the western farside of the Moon were illuminated and in view, a geometry that was complementary to the first lunar encounter in December, 1990, which obtained images of the western limb and eastern farside. The Galileo Solid State Imaging System (SSI) obtained multispectral images for these regions during the second encounter and color ratio composite images were compiled using combinations of band ratios chosen on the basis of telescopic spectra and laboratory spectra of lunar samples. Ratios of images taken at 0.41 and 0.76 micron are sensitive to changes in the slope in the visible portion of the spectrum, and ratios of 0.99 and 0.76 micron relate to the strength of near-infrared absorptions due to iron-rich mafic minerals (0.76/0.99 ratio) such as olivine and pyroxene. Results of the analyses of the compositional diversity of the crust, maria, and Copernican craters are presented elsewhere. Primary objectives for lunar basin analysis for the second encounter include analysis of: the north polar region and the Humboldtianum basin; the characteristics of the Imbrium basin along its northern border and the symmetry of associated deposits; the origin of light plains north of Mare Frigoris and associated with several other basins; the nature and significance of pre-basin substrate; the utilization of the stereo capability to assess subtle basis structure; the identification of previously unrecognized ancient basins; basin deposits and structure for limb and farside basins; and assessment of evidence for proposed ancient basins. These data and results will be applied to addressing general problems of evaluation of the nature and origin of basin deposits, investigation of mode of ejecta emplacement and ejecta mixing, analysis of the origin of light plains deposits, analysis of basin deposit symmetry/asymmetry, investigation of basin depth of

  9. Lakes and lake-like waters of the Hawaiian Archipelago

    USGS Publications Warehouse

    Maciolek, J.A.

    1982-01-01

    This summary of Hawaiian lacustrine limnology is based on 12 years of field and literature surveys of archipelagic inland waters. Lakes here are distinguished from other standing waters by limits on surface oceanic area (> 0.1 ha) and depth (> 2 m), and by the absence of flatural surface oceanic connection. A variety of extinct and existing water bodies, sometimes referred to as lakes, are noted. Six lakes are described. Five of them are in crater basins, 3 are freshwater, and 2 are elevated (highest = 3969 m). The scarcity of elevated lakes results from general permeability of the substrata. Among the 6 lakes, surface areas range from 0.22 to 88 ha and maximum depths from 3 to 248 m. Naturally occurring aquatic biota generally is low in species diversity except for phytoplankton; fishes and submersed vascular plants are absent. Two lowland lakes, freshwater Green (Wai a Pele) and saline Kauhak6, are described for the first time. Profundal Kauhak6, 248 m deep, has a surface area of only 0.35 ha, which results in an extraordinary relative depth of 370%. It is permanently stratified, a condition apparently due primarily to the unique morphometry of its basin

  10. Natural Environmental Hazards Reflected in High-Altitude Patagonian Lake Sediments (lake Caviahue, Argentina)

    NASA Astrophysics Data System (ADS)

    Müller, Anne; Scharf, Burkhard; von Tümpling, Wolf; Pirrung, Michael

    2009-03-01

    Two 6-m long sediment cores drilled in the two basins of Lake Caviahue give new evidence of the impact of natural hazards such as ash fallouts linked to nearby volcanic eruptions in the ecologically sensitive environment of the high-altitude region of the Argentinan Patagonian Andes. The two cores show distinct signals of changes in autochthonous productivity and terrigenous input into the lake from ash fallout as well as from river load and shore erosion. Multiproxy records of the sediments indicate whether these changes can be related to volcanic activity. High values of magnetic susceptibility in the cores reflect periods of basaltic ash fallouts during eruptions of the nearby Copahue Volcano. The southern basin is located in the prevalent direction of ash fallouts and has been affected by these volcanic inputs more intensely than the northern basin of the lake. In contrast, sedimentation and authochthonous productivity in the northern basin are strongly affected by fluvial inputs such as suspended river load and acidic stream waters.

  11. Natural Environmental Hazards Reflected in High-Altitude Patagonian Lake Sediments (Lake Caviahue, Argentina)

    NASA Astrophysics Data System (ADS)

    Mueller, A.; Pirrung, M.; Scharf, B.; von Tuempling, W.

    2007-05-01

    Two 6-m long sediment cores drilled in the two basins of Lake Caviahue give new evidence of the impact of natural hazards such as ash fallouts linked to nearby volcanic eruptions in the ecologically sensitive environment of the high-altitude region of the Argentinan Patagonian Andes. The two cores show distinct signals of changes in autochthonous productivity and terrigenous input into the lake from ash fallout, river load and shore erosion. Multiproxy records of the sediments indicate whether these changes can be related to volcanic activity. High values of magnetic susceptibility in the cores reflect periods of basaltic ash fallouts during eruptions of the nearby Copahue volcano. The southern basin is located in the prevalent direction of ash fallouts and has been affected by these volcanic inputs more intensely than the northern basin of the lake. In contrast, sedimentation and authochthonous productivity in the northern basin are strongly affected by fluvial inputs such as suspended river load and acidic stream waters.

  12. Holocene moisture and East Asian summer monsoon evolution in the northeastern Tibetan Plateau recorded by Lake Qinghai and its environs: A review of conflicting proxies

    NASA Astrophysics Data System (ADS)

    Chen, Fahu; Wu, Duo; Chen, Jianhui; Zhou, Aifeng; Yu, Junqing; Shen, Ji; Wang, Sumin; Huang, Xiaozhong

    2016-12-01

    Climatic and environmental changes in the northeastern Tibetan Plateau are controlled by the Asian summer monsoon (ASM) and the westerlies, two key circulation components of the global climate system which directly affect a large human population and associated ecosystems in eastern Asia. During the past few decades, a series of Holocene palaeoclimatic records have been obtained from sediment cores from Lake Qinghai and from various other geological archives in the surrounding area of the northeastern Tibetan Plateau. However, because of uncertainties regarding the sediment chronologies and the climatic significance of the proxies used, the nature of Holocene climatic changes in the region remains unclear and even controversial. Here we review all major classes of the published data from drilled cores from Lake Qinghai, as well as other evidence from lakes and aeolian deposits from surrounding areas, in order to reconstruct changes in moisture patterns and possible summer monsoon evolution in the area during the Holocene. Combining the results of moisture and precipitation proxies such as vegetation history, pollen-based precipitation reconstruction, aeolian activity, lake water depth/lake level changes, salinity and sediment redness, we conclude that moisture and precipitation began to increase in the early Holocene, reached their maximum during the middle Holocene, and decreased during the late Holocene - similar to the pattern of the East Asian summer monsoon (EASM) in northern China. It is clear that the region experienced a relatively dry climate and weak EASM during the early Holocene, as indicated by relatively low tree pollen percentages and fluctuating pollen concentrations; generally low lake levels of Lake Qinghai and the adjacent Lake Hurleg and Lake Toson in the Qaidam Basin; and widely distributed aeolian sand deposition in the Lake Qinghai Basin and the nearby Gonghe Basin to the south, and in the eastern Qaidam Basin to the west. We argue that the

  13. Assessment of potential unconventional Carboniferous-Permian gas resources of the Liaohe Basin eastern uplift, Liaoning Province, China, 2011

    USGS Publications Warehouse

    Pollastro, Richard M.; Potter, Christopher J.; Schenk, Christopher J.; Charpentier, Ronald R.; Cook, Troy A.; Klett, Timothy R.; Kirschbaum, Mark A.

    2012-01-01

    The U.S. Geological Survey estimated a mean of 448 billion cubic feet of potential technically recoverable unconventional natural gas in Carboniferous and Permian coal-bearing strata in the eastern uplift of the Liaohe Basin, Liaoning Province, China.

  14. Constraining back-arc basin formation in the eastern Coral Sea: preliminary results from the ECOSAT voyage

    NASA Astrophysics Data System (ADS)

    Seton, M.; Williams, S.; Mortimer, N. N.; Meffre, S.; Moore, J.; Micklethwaite, S.; Zahirovic, S.

    2013-12-01

    The eastern Coral Sea region is an underexplored area at the northeastern corner of the Australian plate, where long-lived interaction between the Pacific and Australian plate boundaries has resulted in an intricate assemblage of deep oceanic basins and ridges, continental fragments and volcanic products. A paucity of marine geophysical and geological data from this complex region has resulted in the lack of a clear conceptual framework to describe its formation, ultimately affecting our understanding of the connection between the plate boundaries of the SW Pacific and SE Asia. In particular, the tectonic relationship between two back-arc basins, the Santa Cruz and d'Entrecasteaux Basins, and the South Rennell Trough, has yet to be resolved. In October-November, 2012, we collected 6,200 km of marine magnetic, 6,800 km of gravity and over 13,600 km2 of swath bathymetry data from the eastern Coral Sea onboard the RV Southern Surveyor. A complementary dredging program yielded useful samples from 14 seafloor sites. Our preliminary geochemical interpretation of the dredge samples obtained from the South Rennell Trough reveal volcanic rocks resembling MORB or BABB-type basalts, similar in composition to the recently re-analysed and dated ORSTOM dredges from the area that yielded ~28 Ma MORB-like basalts. Swath bathymetry profiles from the Santa Cruz Basin reveal that the South Rennell Trough extends into this basin, with seafloor spreading fabric being parallel to the trough. Preliminary analysis of the three full and four partial new magnetic anomaly profiles across the Santa Cruz Basin, coupled with limited existing profiles, reveals that the basin may have formed between Chrons 13-18 (~32-38 Ma), with an extinct spreading ridge along the inferred continuation of the South Rennell Trough, consistent with ORSTOM age dates. Our results suggest that the South Rennell Trough is an extinct southwestward propagating spreading ridge, which may have initiated along a pre

  15. Sediment sources in the Lake Tahoe Basin, California-Nevada; preliminary results of a four-year study, August 1983-September 1987

    USGS Publications Warehouse

    Hill, B.R.; Hill, J.R.; Nolan, K.M.

    1988-01-01

    Data were collected during a 4-yr study of sediment sources in four drainage basins tributary to Lake Tahoe, California-Nevada. The study areas include the Blackwood, General, Edgewood, and Logan House Creek basins. Data include changes in bank and bed positions at channel cross sections; results of stream-channel mapping; analyses of bank and bed material samples; tabulations of bed material point counts; measured rates of hillslope erosion; dimensions of gullies; suspended-sediment data collected during synoptic snowmelt sampling; and physiographic data for the four study basins. (USGS)

  16. Application of neural networks to prediction of fish diversity and salmonid production in the Lake Ontario basin

    USGS Publications Warehouse

    McKenna, James E.

    2005-01-01

    Diversity and fish productivity are important measures of the health and status of aquatic systems. Being able to predict the values of these indices as a function of environmental variables would be valuable to management. Diversity and productivity have been related to environmental conditions by multiple linear regression and discriminant analysis, but such methods have several shortcomings. In an effort to predict fish species diversity and estimate salmonid production for streams in the eastern basin of Lake Ontario, I constructed neural networks and trained them on a data set containing abiotic information and either fish diversity or juvenile salmonid abundance. Twenty percent of the original data were retained as a test data set and used in the training. The ability to extend these neural networks to conditions throughout the streams was tested with data not involved in the network training. The resulting neural networks were able to predict the number of salmonids with more than 84% accuracy and diversity with more than 73% accuracy, which was far superior to the performance of multiple regression. The networks also identified the environmental variables with the greatest predictive power, namely, those describing water movement, stream size, and water chemistry. Thirteen input variables were used to predict diversity and 17 to predict salmonid abundance.

  17. Using multi-year reanalysis-derived recharge rates to drive a groundwater model for the Lake Tana region of Blue Nile Basin, Ethiopia

    NASA Astrophysics Data System (ADS)

    Dokou, Z.; Kheirabadi, M.; Nikolopoulos, E. I.; Moges, S. A.; Bagtzoglou, A. C.; Anagnostou, E. N.

    2017-12-01

    Ethiopia's high inter-annual variability in local precipitation has resulted in droughts and floods that stress local communities and lead to economic and food insecurity. Better predictions of water availability can supply farmers and water management authorities with critical guidance, enabling informed water resource allocation and management decisions that will in turn ensure food and water security in the region. The work presented here focuses on the development and calibration of a groundwater model of the Lake Tana region, one of the most important sub-basins of the Blue Nile River Basin. Groundwater recharge, which is the major groundwater source in the area, depends mainly on the seasonality of precipitation and the spatial variation in geology. Given that land based precipitation data are sparse in the region, two approaches for estimating groundwater recharge were used and compared that both utilize global atmospheric reanalysis driven by remote sensing datasets. In the first approach, the reanalysis precipitation dataset (ECMWF reanalysis adjusted based on GPCC) together with evapotranspiration and surface run-off estimates are used to calculate the groundwater recharge component using water budget equations. In the second approach, groundwater recharge estimates (subsurface runoff) are taken directly from a Land Surface model (FLDAS Noah), provided at a monthly time scale and 0.1˚ x 0.1˚ spatial resolution. The reanalysis derived recharge rates in both cases are incorporated into the groundwater model MODFLOW, which in combination with a Lake module that simulates the Lake water budget, offers a unique capability of improving the predictability of groundwater and lake levels in the Lake Tana basin. Model simulations using the two approaches are compared against in-situ observations of groundwater and lake levels. This modeling effort can be further used to explore climate variability effects on groundwater and lake levels and provide guidance to

  18. Structural imaging of the East Beni Sueif Basin, north eastern Desert, Egypt

    NASA Astrophysics Data System (ADS)

    Salem, E.; Sehim, A.

    2017-12-01

    The East Beni Sueif Basin is the only tested hydrocarbon-bearing basin on the eastern side of the Nile in Egypt. The basin is located around 150 km to the south of Cairo. This work introduces the first attempt of seismic interpretation and structural patterns of this basin, for which subsurface published works are lacking. Structural imaging of the area is achieved through interpretation of pre-stack time migration (PSTM) seismic cube and data sets of seven wells. The penetrated sedimentary section is represented by Albian-Middle Eocene sediments. The East Beni Sueif Basin is a type of the whole graben-system and is bounded by two NW-SE bounding faults. These faults had continued activity in an extensional regime associated with fault-propagating folds. The basin is traversed by a N75°E-trending fault system at basement level. This fault system separates the basin into two structural provinces. The Northwestern Province is deeper and shows more subsidence with a predominance of NW-trending longitudinal faults and N60·W oblique faults to the basin trend. The Southeastern Province is shallow and crossed by N14·W-trending faults which are slightly oblique to the basin axis. Albian time had witnessed the main extensional tectonic phase and resulted in major subsidence along basin-bounding faults associated with growth thickening of basal deposits. During Senonian time, the basin experienced a mild phase of transtensional tectonics, which formed negative-flower structures entrapping different folds along the N75°E and N60·W faults. The timing and style of these structures are similar to the Syrian-Arc structures in several Western Desert oil fields. The basin emerged during the Paleocene with scoured and eroded top Cretaceous sediments. Subsidence was resumed during the Early Eocene and resulted in 1500 m-thick carbonate sediments. Lastly, a mild extensional activity possibly occurred during the Oligocene-Miocene time. Despite the possible restricted potentiality

  19. Depositional environments of the Cache, Lower Lake, and Kelseyville Formations, Lake County, California

    USGS Publications Warehouse

    Rymer, Michael J.; Roth, Barry; Bradbury, J. Platt; Forester, Richard M.

    1988-01-01

    We describe the depositional environments of the Cache, Lower Lake, and Kelseyville Formations in light of habitat preferences of recovered mollusks, ostracodes, and diatoms. Our reconstruction of paleoenvironments for these late Cenozoic deposits provides a framework for an understanding of basin evolution and deposition in the Clear Lake region. The Pliocene and Pleistocene Cache Formation was deposited primarily in stream and debris flow environments; fossils from fine-grained deposits indicate shallow, fresh-water environments with locally abundant aquatic vegetation. The fine-grained sediments (mudstone and siltstone) were probably deposited in ponds in abandoned channels or shallow basins behind natural levees. The abandoned channels and shallow basins were associated with the fluvial systems responsible for deposition of the bulk of the technically controlled Cache Formation. The Pleistocene Lower Lake Formation was deposited in a water mass large enough to contain a variety of local environments and current regimes. The recovered fossils imply a lake with water depths of 1 to 5 m. However, there is strong support from habitat preferences of the recovered fossils for inferring a wide range of water depths during deposition of the Lower Lake Formation; they indicate a progressively shallowing system and the culmination of a desiccating lacustrine system. The Pleistocene Kelseyville Formation represents primarily lacustrine deposition with only minor fluvial deposits around the margins of the basin. Local conglomerate beds and fossil tree stumps in growth position within the basin indicate occasional widespread fluvial incursions and depositional hiatuses. The Kelseyville strata represent a large water mass with a muddy and especially fluid substrate having permanent or sporadic periods of anoxia. Central-lake anoxia, whether permanent or at irregular intervals, is the simplest way to account for the low numbers of benthic organisms recovered from the

  20. Heavy Metal Pollution, Fractionation, and Potential Ecological Risks in Sediments from Lake Chaohu (Eastern China) and the Surrounding Rivers

    PubMed Central

    Zhang, Lei; Liao, Qianjiahua; Shao, Shiguang; Zhang, Nan; Shen, Qiushi; Liu, Cheng

    2015-01-01

    Heavy metal (Cr, Ni, Cu, Zn, Cd, and Pb) pollution, fractionation, and ecological risks in the sediments of Lake Chaohu (Eastern China), its eleven inflowing rivers and its only outflowing river were studied. An improved BCR (proposed by the European Community Bureau of Reference) sequential extraction procedure was applied to fractionate heavy metals within sediments, a geoaccumulation index was used to assess the extent of heavy metal pollution, and a risk assessment code was applied to evaluate potential ecological risks. Heavy metals in the Shuangqiao and Nanfei Rivers were generally higher than the other studied sites. Of the three Lake Chaohu sites, the highest concentrations were identified in western Chaohu. Heavy metal pollution and ecological risks in the lake’s only outflowing river were similar to those in the eastern region of the lake, to which the river is connected. Heavy metal concentrations occurred in the following order: Cd > Zn > Cu > Pb ≈ Ni ≈ Cr. Cr, Ni, and Cu made up the largest proportion of the residual fraction, while Cd was the most prominent metal in the exchangeable and carbonate-included fraction. Cd posed the greatest potential ecological risk; the heavy metals generally posed risks in the following order: Cd > Zn > Cu > Ni > Pb > Cr. PMID:26561822