Sample records for lake biwa central

  1. Radiocarbon content of lignin-enriched fraction in core sediment from Lake Biwa, central Japan

    NASA Astrophysics Data System (ADS)

    Kitagawa, Hiroyuki; Lim, Jaesoo; Takemura, Keiji; Hayashida, Akira; Haraguchi, Tsuyoshi

    2010-04-01

    The transport and deposition of terrestrially derived organic matter (TOM) into lake and ocean is a key but poorly constrained aspect of the modern global carbon cycle. An attempt has been done for estimating a transport time of TOM from the drainage basin of Lake Biwa, the largest lake in Japan. We have determined the 14C contents of the lignin-enriched fraction of the core sediment from the central part of Lake Biwa. The age of lignin-enriched fraction at the deposition time was estimated to be 7.5 × 10 3 years for the last glacial interval. Even in Lake Biwa with more than 100 rivers from the relatively small drainage basin (3850 km 2), TOM was transported at very long time (>10 3 years).

  2. Water pH and temperature in Lake Biwa from MBT'/CBT indices during the last 280 000 years

    NASA Astrophysics Data System (ADS)

    Ajioka, T.; Yamamoto, M.; Takemura, K.; Hayashida, A.; Kitagawa, H.

    2014-10-01

    We generated a 280 000 yr record of water pH and temperature in Lake Biwa, central Japan, by analysing the methylation index (MBT') and cyclisation ratio (CBT) of branched tetraethers in sediments from piston and borehole cores. Our aim was to understand the responses of precipitation and air temperature in central Japan to the East Asian monsoon variability on orbital timescales. Because the water pH in Lake Biwa is determined by phosphorus and alkali cation inputs, the record of water pH should indicate the changes in precipitation and temperature in central Japan. Comparison with a pollen assemblage in a Lake Biwa core suggests that lake water pH was determined by summer temperature in the low-eccentricity period before 55 ka, while it was determined by summer precipitation in the high-eccentricity period after 55 ka. From 130 to 55 ka, the variation in lake pH (summer precipitation) lagged behind that in summer temperature by several thousand years. This perspective is consistent with the conclusions of previous studies (Igarashi and Oba, 2006; Yamamoto, 2009), in that the temperature variation preceded the precipitation variation in central Japan.

  3. Morphology and gene sequence of Levicoleps biwae n. gen., n. sp. (Ciliophora, Prostomatida), a proposed endemic from the ancient Lake Biwa, Japan.

    PubMed

    Foissner, Wilhelm; Kusuoka, Yasushi; Shimano, Satoshi

    2008-01-01

    Levicoleps biwae n. gen., n. sp. was discovered in organic mud on the shore of Lake Biwa, Japan. Its morphology and small subunit rRNA gene sequence were studied with standard methods. Further, we established a terminology for the colepid armour and selected four features for genus recognition: the number of armour tiers, the structure of the tier plates, the presence/absence of armour spines, and the number of adoral organelles (three or five). The Japanese colepid, a barrel-shaped ciliate with an average size of 75 x 45 microm, has six armour tiers and hirtus-type tier plates, but lacks armour spines, both in the environment and in laboratory culture. Thus, it is considered to represent a new genus. This rank is supported by the considerable genetic distance (7%) from the common Coleps hirtus. Although L. biwae looks quite similar to C. hirtus in vivo, it is very likely most closely related to Coleps amphacanthus, a species with conspicuous armour spines, as indicated by body size, the number of ciliary rows and, especially, the multiple caudal cilia. Lake Biwa is about four million years old and inhabited by many endemic organisms, ranging from algae to large fish. Thus, we suspect that L. biwae is restricted to Lake Biwa or, at least, to Asia. Based on literature data and the generic features established, we also propose the new genus Reticoleps for Coleps remanei Kahl, 1933, and resurrect the genus Pinacocoleps Diesing, 1865 to include Coleps incurvus Ehrenberg, 1833, Coleps pulcher Spiegel, 1926, Coleps tessalatus Kahl, 1930 and, probably, Baikalocoleps quadratus Obolkina, 1995a. Nine colepid genera are diagnosed and dichotomously keyed.

  4. Morphology and Gene Sequence of Levicoleps biwae n. gen., n. sp. (Ciliophora, Prostomatida), a Proposed Endemic from the Ancient Lake Biwa, Japan

    PubMed Central

    FOISSNER, WILHELM; KUSUOKA, YASUSHI; SHIMANO, SATOSHI

    2010-01-01

    Levicoleps biwae n. gen., n. sp. was discovered in organic mud on the shore of Lake Biwa, Japan. Its morphology and small subunit rRNA gene sequence were studied with standard methods. Further, we established a terminology for the colepid armour and selected four features for genus recognition: the number of armour tiers, the structure of the tier plates, the presence/absence of armour spines, and the number of adoral organelles (three or five). The Japanese colepid, a barrel-shaped ciliate with an average size of 75 × 45 μm, has six armour tiers and hirtus-type tier plates, but lacks armour spines, both in the environment and in laboratory culture. Thus, it is considered to represent a new genus. This rank is supported by the considerable genetic distance (7%) from the common Coleps hirtus. Although L. biwae looks quite similar to C. hirtus in vivo, it is very likely most closely related to Coleps amphacanthus, a species with conspicuous armour spines, as indicated by body size, the number of ciliary rows and, especially, the multiple caudal cilia. Lake Biwa is about four million years old and inhabited by many endemic organisms, ranging from algae to large fish. Thus, we suspect that L. biwae is restricted to Lake Biwa or, at least, to Asia. Based on literature data and the generic features established, we also propose the new genus Reticoleps for Coleps remanei Kahl, 1933, and resurrect the genus Pinacocoleps Diesing, 1865 to include Coleps incurvus Ehrenberg, 1833, Coleps pulcher Spiegel, 1926, Coleps tessalatus Kahl, 1930 and, probably, Baikalocoleps quadratus Obolkina, 1995a. Nine colepid genera are diagnosed and dichotomously keyed. PMID:18460156

  5. Environmental magnetic record and paleosecular variation data for the last 40 kyrs from the Lake Biwa sediments, Central Japan

    NASA Astrophysics Data System (ADS)

    Hayashida, Akira; Ali, Mohammed; Kuniko, Yoshiki; Kitagawa, Hiroyuki; Torii, Masayuki; Takemura, Keiji

    2007-07-01

    We have conducted paleomagnetic and environmental magnetic analysis of a sediment piston core recovered from Lake Biwa, central Japan. Tephrochronology and AMS radiocarbon dating showed that this core covers the time period since about 40 kyr BP. The variation of paleomagnetic direction shows a good agreement with the PSV record for the last 10 kyrs from the deeper water site (BIWA SV-3; Ali et al., 1999), although the amplitudes are subdued probably due to the relatively lower accumulation rate at the shallower site. Inclination lows of the pre-Holocene interval are correlated to PSV records reported from the marine sediments off Shikoku and in the Japan Sea. In addition, the variation of magnetic mineral concentration reflects environmental changes during the last glacial period. It is suggested that the flux of fine-grained magnetite, probably associated with greater precipitation, was increased during interstadial periods. The variation of anhysteretic remanent magnetization is likely correlated to the Dansgaard-Oeschger (D-O) cycles recorded in Greenland ice cores. An apparent swing of the PSV curve is recognized at about 27 ka, but evidence for the Mono Lake excursion at 32 ka around the D-O events 6 and 7 is unclear. Combination of the detailed paleomagnetic record and the sub-Milankovitch climate cycles thus provides better resolution for understanding geomagnetic secular variation and polarity excursions in space and time.

  6. Effect of agriculture on water quality of Lake Biwa tributaries, Japan.

    PubMed

    Nakano, Takanori; Tayasu, Ichiro; Yamada, Yoshihiro; Hosono, Takahiro; Igeta, Akitake; Hyodo, Fujio; Ando, Atsushi; Saitoh, Yu; Tanaka, Takuya; Wada, Eitaro; Yachi, Shigeo

    2008-01-15

    We investigated the effects of natural environments and human activity on Lake Biwa, central Japan. We determined the concentrations of 19 elements and the compositions of stable S and Sr isotopes in the main tributaries of the lake and compared them with the corresponding values obtained from the lake water during the circulation period. Results of a principal component analysis indicated that the components dissolved in the lower reaches of the tributaries can be divided into group 1 (HCO(3), SO(4), NO(3), Ca, Mg, Sr) and group 2 components (Cl, Br, Na, K, Ba, Rb, Cs). The concentrations of group 1 components were high in the rivers of the southern area, which is urbanized and densely populated, and the eastern area, which consists of plains where agriculture predominates, compared with the rivers of the northern and western areas, which are mostly mountainous and sparsely populated. The concentrations of group 2 components tended to be high in the river water of industrial areas. The delta(34)S values of SO(4) in the river water converged to 0+/-2 per thousand as the SO(4) concentration increased and, excluding the areas where limestone is extensively distributed, as the HCO(3) concentration increased. In particular, both the delta(34)S values (0+/-2 per thousand) and the (87)Sr/(86)Sr ratios (0.7117+/-0.0005) fell within narrow ranges in the small and medium rivers of the eastern plain area, where rice is widely grown. These values agreed respectively with the delta(34)S values of the fertilizers used in the Lake Biwa basin and the soil-exchangeable (87)Sr/(86)Sr in the eastern plain. The characteristics of water quality in the small and medium rivers of the eastern area can be explained by a model in which sulfuric, nitric, and bicarbonic acids generated by the decomposition of agricultural fertilizer and paddy rice selectively leached out alkaline-earth elements adsorbed on the soil and sediments of the plain or dissolved calcium carbonate enriched with Mg

  7. A STUDY OF RECOVERING A REED ECOSYSTEM USING POROUS CONCRETE IN THE LAKE BIWA SHORE

    NASA Astrophysics Data System (ADS)

    Takeda, Naho; Kato, Hayato; Okamoto, Takahisa; Kojima, Takayuki

    In this study, reed planting tests were carried out at the Biyo-center, an experiment station on the Lake Biwa shore, in order to evaluate the feasibility of a planting method with porous concrete (PoC method). Reed planting tests with coconut-fiber mats (mat method), which were generally used around Lake Biwa, were simultaneously carried out to compare with the PoC method. The reeds planted by the PoC method grew better than the ones planted by the mat method, and the number of reeds which were washed away by waves was smaller than that planted by the mat method. The result of the observation of reeds planted in the PoC showed plant maturation, and reeds could ta ke root into the PoC without interference with the voids of the PoC. As a result, it was shown that the reed planting tests with the PoC method was simple and effective, so it would become in harmony with the environment around Lake Biwa.

  8. Water pH and temperature in Lake Biwa from MBT'/CBT indices during the last 282 000 years

    NASA Astrophysics Data System (ADS)

    Ajioka, T.; Yamamoto, M.; Takemura, K.; Hayashida, A.

    2014-03-01

    We generated a 282 000-year record of water pH and temperature in Lake Biwa, central Japan, by analysing the methylation index (MBT') and cyclisation ratio (CBT) of branched tetraethers in sediments from piston and borehole cores to understand the responses of precipitation and air temperature in central Japan to the East Asian monsoon variability on the orbital timescale. Because water pH in Lake Biwa is determined by phosphorus input driven by precipitation, the record of water pH should indicate changes in summer precipitation in central Japan. The estimated pH showed significant periodicity at 19 and 23 ka (precession) and at 41 ka (obliquity). The variation in the estimated pH agrees with variation in the pollen temperature index. This indicates synchronous variation in summer air temperature and precipitation in central Japan, which contradicts the conclusions of previous studies. The variation in estimated pH was also synchronous with the variation of oxygen isotopes in stalagmites in China, suggesting that East Asian summer monsoon precipitation was governed by Northern Hemisphere summer insolation on orbital timescales. However, the estimated winter temperatures were higher during interglacials and lower during glacials, showing an eccentricity cycle. This suggests that the temperature variation reflected winter monsoon variability.

  9. Trematode fauna of prosobranch snails of the genus Semisulcospira in Lake Biwa and the connected drainage system.

    PubMed

    Urabe, Misako

    2003-03-01

    The parasite fauna of prosobranch snails of the genus Semisulcospira was surveyed in Lake Biwa and the adjacent water system. One aspidogastrean and 28 digenetic trematode taxa were detected in 19209 snails consisting of 10 morphological species. There was no trematode species peculiar to members of the subgenus Biwamelania that is endemic to the Lake Biwa water system. However, one species, Notocotylus magniovatus, was found only in the non-endemic subgenus Semisulcospira. Of 23 digenean taxa detected in more than one host, 13 were distributed in both the lake and the tributaries. Seven of these had host taxa, more than 1% of which were infected with the parasite in both the lake and the tributaries, four had such hosts only in the tributaries, and two had no such hosts. Three species detected only in Lake Biwa were previously reported from other rivers in Japan. In the seven species detected only in the tributaries, two species had life cycles that could be maintained only in rivers. These results indicate that the core areas for the distribution of parasites of Semisulcospira are tributaries, and the lake is a sink for these species. These results contradict the expectation that the parasite fauna should be richer in the lake than in tributaries because the lake is a stable habitat over a geological time scale and has more divergent freshwater animals than the adjacent water system. Copyright 2002 Elsevier Science Ireland Ltd.

  10. Perylene in Lake Biwa sediments originating from Cenococcum geophilum in its catchment area

    NASA Astrophysics Data System (ADS)

    Itoh, Nobuyasu; Sakagami, Nobuo; Torimura, Masaki; Watanabe, Makiko

    2012-10-01

    Perylene, which is composed of five benzene rings, is commonly found in sediments throughout the world at concentrations and distributions that are different from those of other polycyclic aromatic hydrocarbons. The only information available on the origin of perylene comes from 4,9-dihydroxyperylene-3,10-quinone (DHPQ), which originates from fungal component symbiosis or from parasites on plants; however, there is no direct evidence of a mechanism of perylene formation. In this study, we examined the relationship between sedimentary perylene and Cenococcum geophilum (C. geophilum) in a catchment area at Lake Biwa. Sclerotium grains of C. geophilum containing DHPQ were found in this catchment area (approximately 40 balls kg-1 dried soil for >1 mm-ϕ), and small sclerotium grains were frequently found in the sediment. In the sediment sample, we also found broken particles containing perylene, and they had a porous structure characteristic of sclerotium grains. Furthermore, the particles contained DHPQ in different transformation stages to perylene via 3,10-perylenequinone (3,10-PQ). This finding was consistent with results from elemental analysis (oxygen/carbon). Because a remarkable amount of DHPQ originating from C. geophilum also exists in the humic acids of soils and because the inputs of compounds to the lake depend strongly on the rivers, perylene in the Lake Biwa sediment originates mainly from the DHPQ of C. geophilum in its catchment area.

  11. Water resources management in the urban agglomeration of the Lake Biwa region, Japan: An ecosystem services-based sustainability assessment.

    PubMed

    Chen, Xiaochen; Chen, Yuqing; Shimizu, Toshiyuki; Niu, Jia; Nakagami, Ken'ichi; Qian, Xuepeng; Jia, Baoju; Nakajima, Jun; Han, Ji; Li, Jianhua

    2017-05-15

    An innovative ecosystem services-based sustainability assessment was conducted in the important urban agglomeration of the Lake Biwa region, Japan, covering the time period from 1950 to 2014. A 22-indicator system was established that was based on the major ecosystem services of Lake Biwa and its water courses, i.e., provisioning services regarding aquatic products and water; regulating services regarding floods and water quality; cultural services regarding recreation and tourism, scientific research, and environmental education; and supporting services regarding biodiversity. First, changes in the eight ecosystem services were discussed together with the considerable experience and difficult lessons that can be drawn from the development trajectory. Next, with the indicators rearranged according to sustainability principles, the regional sustainability over the past six-plus decades was assessed. In general, this urban agglomeration has been progressing in terms of its sustainability, although economic and social development was achieved at the cost of environmental degradation in the past, and the current economic downturn is hurting the balanced development and integrated benefits. The results lead directly to recommendations for regional development, especially in terms of economic rejuvenation, from the perspective of improving management of Lake Biwa's water resources. Moreover, the relevant knowledge is educational and inspirational for other places in the world that are facing similar development issues. For example, the effective and even pioneering countermeasures that have been taken against environmental degradation, as well as the participation and collaboration of multiple stakeholders, could be useful as a model. Moreover, the study invites increased understanding of ecosystem vulnerability to anthropogenic devastation and emphasizes the priority of precautionary measures over countermeasures in the context of holistic urban planning and sustainable

  12. Evaluation of lead concentration by one-box type multimedia model in Lake Biwa-Yodo River basin of Japan.

    PubMed

    Kondo, Akira; Yamamoto, Megumi; Inoue, Yoshio; Ariyadasa, B H A K T

    2013-07-01

    A one box type multimedia model was developed and applied for Lake Biwa-Yodo River basin in Japan to assess the distribution of lead in the environment. This model is based on mass balance and includes four environmental media; the atmosphere, the soil, the water body, and the sediment. The mass balance of lead is represented by the summation of mass transfer flux at equilibrium, emission flux, advection flux, and deposition flux or sedimentation flux. In the case of metallic compounds, dissolution rate and exchange equilibrium have also been taken into consideration. Pollutant Release and Transfer Registry (PRTR) in Japan was used as one of the major data source for this study. The emission of lead in Lake Biwa-Yodo River basin is calculated based on five sources of registered emission in PRTR, unregistered emission in PRTR, incinerators, leaded gasoline, and landfills. In this study, we estimated lead emission from 1957 to 2007 to observe the temporal accumulation of lead. Calculated lead concentrations were compared with the measured/observed concentrations. It was found out that the model could closely predict lead concentration in the soil and the water body. The concentration in the atmosphere was underestimated by the calculated concentrations. The reason was attributed to the underestimation of the amount of lead emission from incinerators. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Screening for potentially hazardous PRTR chemicals in the Lake Biwa-Yodo River basin of Japan using a one-box multimedia model.

    PubMed

    Ariyadasa, B H A K T; Kondo, Akira; Inoue, Yoshio

    2015-02-01

    A system is needed to predict the behavior, fate, and occurrence of environmental pollutants for effective environmental monitoring. Available monitoring data and computational modeling were used to develop a one-box multimedia model based on the mass balance of the emitted chemicals. Eight physiochemical phenomena in the atmosphere, soil, water, and sediment were considered in this model. This study was carried out in the Lake Biwa-Yodo River basin which provides multiple land uses and also the natural water resource for nearly 13 million of population in the region. Annual emissions for 214 nonmetallic compounds were calculated using the chemical emission data on Japanese pollutant release and transfer registry and used for executing the model simulations for 1997, 2002, and 2008 as input data. The calculated chemical concentrations by the model for all the environmental media were analyzed to determine trends in concentration over this study span. The majority of the chemicals decreased in concentration over time. Among the 214 nonmetallic chemical pollutants, 36 chemicals did not decrease in concentration and were in the top 10 % for concentration on average. Of these 36 pollutants, 7 occur in all 4 environmental media and pose a potential health risk at humans in the Lake Biwa-Yodo River basin.

  14. Diagenetic changes of lignin compounds in a more than 0.6 million-year-old lacustrine sediment (Lake Biwa, Japan)

    NASA Astrophysics Data System (ADS)

    Ishiwatari, Ryoshi; Uzaki, Minoru

    1987-02-01

    A vertical profile of lignin in the upper 700 m layer of a 1400 m sediment core of Lake Biwa, an oligotrophic freshwater lake in Japan, was determined using a CuO oxidative degradation method. The results indicated that lignin is found throughout the core, demonstrating lignin to be very stable for over 0.6 million years. Moreover, the upper 250 m (approximately 0.6 million years old) segment of the sediment core was investigated to determine the apparent long term degradation rate of lignin. A downward lignin concentration decrease is observed over the upper 250 m of the core which corresponds to a calculated half life of at least approximately 40 × 10 4 years, assuming that lignin decrease is due to its in situ degradation (diagenesis).

  15. Three-dimensional Effects on Formation of a "Tiger Tail" of Turbidity in Lake Biwa, Japan, following a Typhoon.

    NASA Astrophysics Data System (ADS)

    Wells, J. C.; Auger, G.

    2016-02-01

    Lake Biwa, Japan, supplies water to 14.5 million in Kyoto and beyond. The North Basin's dimensions of roughly 20×40 km, and maximal depth of 104 m, facilitate geostrophic gyres during the stratified season. Our motivation is pollution by large-scale runoff, possibly combined with hypothetical earthquake-induced damage. This report focuses on the days following Typhoon Man-Yi, which dumped record rainfall in our area around September 16, 2013. Clear skies allowed unobstructed visible and IR satellite images during the period Sept 17-19. The image on the left of the attached file is a near-IR MODIS image taken at 03:54 UTC on Sept 17th, in which turbid water appears milky. There is a thin filament of turbidity extending from the Ado River delta on the western shore northeast toward Chikubu Island near the north shore. The structure of turbidity near the tip of this filament, taken together with a corresponding image take 97 minutes earlier, strongly suggests that the flow at the tip is decelerating as it approaches a saddlepoint-like structure to its north-east. This aspect, and the overall shape, are strongly reminiscent of the "Tiger Tail" of surface oil that was observed after the Deepwater Horizon disaster and analyzed mathematically in terms of Lagrangian Coherent Structures by Olascoaga et al (2012 ; PNAS 109 (13): 4738-4743). We have applied the SUNTANS ocean model, in hydrostatic mode, to simulate the flow in the Lake in the period around Typhoon Man-Yi. Comparison of simulation results with temperatures measured in-situ at six depths every six hours near the Ado River mouth, and with available data from MODIS images (cf. right side of image file) lends credibility to the simulation results. Notably, an upwelling was hindcasted by the model to occur near the north shore during the night of Sept 16-17, and this matches MODIS estimates of SST distribution. We find that the upwelling water strongly limits the initially northward motion of the sediment from the

  16. Hydrology of Central Florida Lakes - A Primer

    USGS Publications Warehouse

    Schiffer, Donna M.

    1998-01-01

    INTRODUCTION Lakes are among the most valued natural resources of central Florida. The landscape of central Florida is riddled with lakeswhen viewed from the air, it almost seems there is more water than land. Florida has more naturally formed lakes than other southeastern States, where many lakes are created by building dams across streams. The abundance of lakes on the Florida peninsula is a result of the geology and geologic history of the State. An estimated 7,800 lakes in Florida are greater than 1 acre in surface area. Of these, 35 percent are located in just four counties (fig. 1): Lake, Orange, Osceola, and Polk (Hughes, 1974b). Lakes add to the aesthetic and commercial value of the area and are used by many residents and visitors for fishing, boating, swimming, and other types of outdoor recreation. Lakes also are used for other purposes such as irrigation, flood control, water supply, and navigation. Residents and visitors commonly ask questions such as Whyare there so many lakes here?, Why is my lake drying up (or flooding)?, or Is my lake spring-fed? These questions indicate that the basic hydrology of lakes and the interaction of lakes with ground water and surface water are not well understood by the general population. Because of the importance of lakes to residents of central Florida and the many questions and misconceptions about lakes, this primer was prepared by the U.S. Geological Survey (USGS) in cooperation with the St. Johns River Water Management District and the South Florida Water Management District. The USGS has been collecting hydrologic data in central Florida since the 1920s, obtaining valuable information that has been used to better understand the hydrology of the water resources of central Florida, including lakes. In addition to data collection, as of 1994, the USGS had published 66 reports and maps on central Florida lakes (Garcia and Hoy, 1995). The main purpose of this primer is to describe the hydrology of lakes in central

  17. Levels of infection of gastric nematodes in a flock of great cormorants (Phalacrocorax carbo) from Lake Biwa, Japan.

    PubMed

    El-Dakhly, Kh M; El-Nahass, E; Uni, S; Tuji, H; Sakai, H; Yanai, T

    2012-03-01

    A high prevalence (86.7%) of various species of nematodes was observed in the stomach of great cormorants living in Lake Biwa, Japan. There were varying numbers of adults belonging to two common genera, Eustrongylides Jagerskiold 1909 (Nematoda: Dioctophymatidae) and Contracaecum Railliet & Henry 1912 (Nematoda: Anisakidae). The first included common adenophorean nematodes comprising a single species, Eustrongylides tubifex and the second comprised ascaroid nematodes that contained four named species: Contracaecum rudolphii Hartwich, 1964, Contracaecum microcephalum Yamaguti, 1961, Contracaecum multipapillatum Drasche, 1882 and Contracaecum chubutensis Garbin, 2008. After the prevalence and intensity of the infection had been noted, both types of nematodes were frequently observed to penetrate the mucosa and intrude into the wall of the glandular stomach, where they caused gross haemorrhage and ulceration. The Eustrongylides sp. was predominantly found in a nodular lesion of the proventricular wall, while Contracaecum spp. were observed either free in the lumen of the proventriculus or, on occasion, deeply penetrating its wall. Of the Contracaecum spp., C. rudolphii was the most prevalent. Grossly, large numbers of nematodes were present in infected stomachs (for C. rudolphii intensity was 1-34 and 3-57 nematodes in male birds and 1-21 and 1-32 in females; for C. microcephalum 1-2 and 1 in male birds and 1-2 in females; for C. multipapillatum 2 in male cormorants and no infection in females; for C. chubutensis 1-2 and 1 in male birds and 1-5 and 1 in females and for E. tubifex 1-5 nematodes in male birds and 2-8 in females). Ulcerative inflammation and hyperaemia were the most common pathological presentations, especially in areas that had been invaded by parasites. Microscopically, varying degrees of granulomatous inflammatory reactions were seen, in addition to degenerated nematodes which appeared to have deeply penetrated mucosal surfaces and were surrounded by

  18. Identifying drivers of biodiversity change from fossil long-lived lakes: lessons for risk and resilience of todays long-lived lake biota.

    NASA Astrophysics Data System (ADS)

    Wesselingh, Frank

    2015-04-01

    Several fossil long-lived lake systems exist that have a very good spatiotemporal geological and faunal record enabling us to study timeseries of biodiversity change. These complexes, such as the Miocene Pannonian and Quaternary Pontocaspian systems of Europe, Quaternary Lake Biwa in Japan and the Miocene Pebas System in South America enable us to assess the impact of environmental stability and pertubation on component processes of turnover, e.g. migration, speciation and extinction/ extirpation. Also, the temporal dimensions of such processes can be clarified and compared to the nature and rates of current turnover in long-lived lake systems. Our studies suggest that we are currently witnessing dramatic biodiversity loss caused mostly by habitat degradation and destruction in smaller lakes and invasives in larger lakes that may exceed the potential of endemic lake biota to recover. Long-live lakes should serve as an excellent illustration of the magnitude of the current anthropogenic-induced biodiversity crisis.

  19. Lake whitefish and lake herring population structure and niche in ten south-central Ontario lakes

    USGS Publications Warehouse

    Carl, Leon M.; McGuiness, Fiona

    2006-01-01

    This study compares simple fish communities of ten oligotrophic lakes in south-central Ontario. Species densities and population size structure vary significantly among these lake communities depending on fish species present beyond the littoral zone. Lake whitefish are fewer and larger in the presence of lake herring than in their absence. Diet analysis indicates that lake whitefish shift from feeding on both plankton and benthic prey when lake herring are absent to a primarily benthic feeding niche in the presence of lake herring. When benthic round whitefish are present, lake whitefish size and density decline and they move lower in the lake compared to round whitefish. Burbot are also fewer and larger in lakes with lake herring than in lakes without herring. Burbot, in turn, appear to influence the population structure of benthic coregonine species. Lower densities of benthic lake whitefish and round whitefish are found in lakes containing large benthic burbot than in lakes with either small burbot or where burbot are absent. Predation on the pelagic larvae of burbot and lake whitefish by planktivorous lake herring alters the size and age structure of these populations. As life history theory predicts, those species with poor larval survival appear to adopt a bet-hedging life history strategy of long-lived individuals as a reproductive reserve.

  20. Internal loading of phosphate in Lake Erie Central Basin.

    PubMed

    Paytan, Adina; Roberts, Kathryn; Watson, Sue; Peek, Sara; Chuang, Pei-Chuan; Defforey, Delphine; Kendall, Carol

    2017-02-01

    After significant reductions in external phosphorus (P) loads, and subsequent water quality improvements in the early 1980s, the water quality of Lake Erie has declined considerably over the past decade. The frequency and magnitude of harmful algal blooms (primarily in the western basin) and the extent of hypoxic bottom waters in the central basin have increased. The decline in ecosystem health, despite meeting goals for external P loads, has sparked a renewed effort to understand P cycling in the lake. We use pore-water P concentration profiles and sediment cores incubation experiments to quantify the P flux from Lake Erie central basin sediments. In addition, the oxygen isotopes of phosphate were investigated to assess the isotopic signature of sedimentary phosphate inputs relative to the isotopic signature of phosphate in lake water. Extrapolating the total P sediment flux based on the pore-water profiles to the whole area of the central basin ranged from 300 to 1250metric tons per year and using the flux based on core incubation experiments an annual flux of roughly 2400metric tons of P is calculated. These estimates amount to 8-20% of the total external input of P to Lake Erie. The isotopic signature of phosphate in the extractable fraction of the sediments (~18‰) can explain the non-equilibrium isotope values of dissolved phosphate in the deep water of the central basin of Lake Erie, and this is consistent with sediments as an important internal source of P in the Lake. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Microplastic pollution in lakes and lake shoreline sediments - A case study on Lake Bolsena and Lake Chiusi (central Italy).

    PubMed

    Fischer, Elke Kerstin; Paglialonga, Lisa; Czech, Elisa; Tamminga, Matthias

    2016-06-01

    Rivers and effluents have been identified as major pathways for microplastics of terrestrial sources. Moreover, lakes of different dimensions and even in remote locations contain microplastics in striking abundances. This study investigates concentrations of microplastic particles at two lakes in central Italy (Lake Bolsena, Lake Chiusi). A total number of six Manta Trawls have been carried out, two of them one day after heavy winds occurred on Lake Bolsena showing effects on particle distribution of fragments and fibers of varying size categories. Additionally, 36 sediment samples from lakeshores were analyzed for microplastic content. In the surface waters 2.68 to 3.36 particles/m(3) (Lake Chiusi) and 0.82 to 4.42 particles/m(3) (Lake Bolsena) were detected, respectively. Main differences between the lakes are attributed to lake characteristics such as surface and catchment area, depth and the presence of local wind patterns and tide range at Lake Bolsena. An event of heavy winds and moderate rainfall prior to one sampling led to an increase of concentrations at Lake Bolsena which is most probable related to lateral land-based and sewage effluent inputs. The abundances of microplastic particles in sediments vary from mean values of 112 (Lake Bolsena) to 234 particles/kg dry weight (Lake Chiusi). Lake Chiusi results reveal elevated fiber concentrations compared to those of Lake Bolsena what might be a result of higher organic content and a shift in grain size distribution towards the silt and clay fraction at the shallow and highly eutrophic Lake Chiusi. The distribution of particles along different beach levels revealed no significant differences. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Glacial lake expansion in the central Himalayas by Landsat images, 1990-2010.

    PubMed

    Nie, Yong; Liu, Qiao; Liu, Shiyin

    2013-01-01

    Glacial lake outburst flood (GLOF) is a serious hazard in high, mountainous regions. In the Himalayas, catastrophic risks of GLOFs have increased in recent years because most Himalayan glaciers have experienced remarkable downwasting under a warming climate. However, current knowledge about the distribution and recent changes in glacial lakes within the central Himalaya mountain range is still limited. Here, we conducted a systematic investigation of the glacial lakes within the entire central Himalaya range by using an object-oriented image processing method based on the Landsat Thematic Mapper (TM) or Enhanced Thematic Mapper (ETM) images from 1990 to 2010. We extracted the lake boundaries for four time points (1990, 2000, 2005 and 2010) and used a time series inspection method combined with a consistent spatial resolution of Landsat images that consistently revealed lake expansion. Our results show that the glacial lakes expanded rapidly by 17.11% from 1990 to 2010. The pre-existing, larger glacial lakes, rather than the newly formed lakes, contributed most to the areal expansion. The greatest expansions occurred at the altitudinal zones between 4800 m and 5600 m at the north side of the main Himalayan range and between 4500 m and 5600 m at the south side, respectively. Based on the expansion rate, area and type of glacial lakes, we identified 67 rapidly expanding glacial lakes in the central Himalayan region that need to be closely monitored in the future. The warming and increasing amounts of light-absorbing constituents of snow and ice could have accelerated the melting that directly affected the glacial lake expansion. Across the main central Himalayas, glacial lakes at the north side show more remarkable expansion than those at the south side. An effective monitoring and warning system for critical glacial lakes is urgently needed.

  3. Glacial Lake Expansion in the Central Himalayas By Landsat Images, 1990-2010

    NASA Astrophysics Data System (ADS)

    Nie, Y.; Liu, Q.; Liu, S.

    2014-12-01

    Glacial lake outburst flood (GLOF) is a serious hazard in high, mountainous regions. In the Himalayas, catastrophic risks of GLOFs have increased in recent years because most Himalayan glaciers have experienced remarkable downwasting under a warming climate. However, current knowledge about the distribution and recent changes in glacial lakes within the central Himalaya mountain range is still limited. Here, we conducted a systematic investigation of the glacial lakes within the entire central Himalaya range by using an object-oriented image processing method based on the Landsat Thematic Mapper (TM) or Enhanced Thematic Mapper (ETM) images from 1990 to 2010. We extracted the lake boundaries for four time points (1990, 2000, 2005 and 2010) and used a time series inspection method combined with a consistent spatial resolution of Landsat images that consistently revealed lake expansion. Our results show that the glacial lakes expanded rapidly by 17.11% from 1990 to 2010. The pre-existing, larger glacial lakes, rather than the newly formed lakes, contributed most to the areal expansion. The greatest expansions occurred at the altitudinal zones between 4800 m and 5600 m at the north side of the main Himalayan range and between 4500 m and 5600 m at the south side, respectively. Based on the expansion rate, area and type of glacial lakes, we identified 67 rapidly expanding glacial lakes in the central Himalayan region that need to be closely monitored in the future. The warming and increasing amounts of light-absorbing constituents of snow and ice could have accelerated the melting that directly affected the glacial lake expansion. Across the main central Himalayas, glacial lakes at the north side show more remarkable expansion than those at the south side. An effective monitoring and warning system for critical glacial lakes is urgently needed.

  4. Lake-levels, vegetation and climate in Central Asia during the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Amosov, Mikhail

    2014-05-01

    Central Asian region is bounded in the east corner of the Greater Khingan Range and the Loess Plateau, and to the west - the Caspian Sea. This representation of region boundaries is based on classical works of A.Humboldt and V.Obruchev. Three typical features of Central Asia nature are: climate aridity, extensive inland drainage basins with numerous lakes and mountain systems with developed glaciation. Nowadays the extensive data is accumulated about lake-levels during the Last Glacial Maximum (LGM) in Central Asia. Data compilation on 20 depressions, where lakes exist now or where they existed during LGM, shows that most of them had usually higher lake-level than at present time. This regularity could be mentioned for the biggest lakes (the Aral Sea, the Balkhash, the Ysyk-Kol etc.) and for small ones that located in the mountains (Tien Shan, Pamir and Tibet). All of these lake basins get the precipitation due to westerlies. On the other hand lakes, which are located in region's east rimland (Lake Qinghai and lakes in Inner Mongolia) and get the precipitation due to summer East Asian monsoons, do not comply with the proposed regularity. During LGM these lake-levels were lower than nowadays. Another exception is Lake Manas, its lake-level was also lowered. Lake Manas is situated at the bottom of Junggar Basin. There are many small rivers, which come from the ranges and suffer the violent fluctuation in the position of its lower channel. It is possible to assume that some of its runoff did not get to Lake Manas during LGM. Mentioned facts suggest that levels of the most Central Asian lakes were higher during LGM comparing to their current situation. However, at that period vegetation was more xerophytic than now. Pollen data confirm this information for Tibet, Pamir and Tien Shan. Climate aridization of Central Asia can be proved by data about the intensity of loess accumulation during LGM. This evidence received for the east part of region (the Loess Plateau) and

  5. Glacial Lake Expansion in the Central Himalayas by Landsat Images, 1990–2010

    PubMed Central

    Nie, Yong; Liu, Qiao; Liu, Shiyin

    2013-01-01

    Glacial lake outburst flood (GLOF) is a serious hazard in high, mountainous regions. In the Himalayas, catastrophic risks of GLOFs have increased in recent years because most Himalayan glaciers have experienced remarkable downwasting under a warming climate. However, current knowledge about the distribution and recent changes in glacial lakes within the central Himalaya mountain range is still limited. Here, we conducted a systematic investigation of the glacial lakes within the entire central Himalaya range by using an object-oriented image processing method based on the Landsat Thematic Mapper (TM) or Enhanced Thematic Mapper (ETM) images from 1990 to 2010. We extracted the lake boundaries for four time points (1990, 2000, 2005 and 2010) and used a time series inspection method combined with a consistent spatial resolution of Landsat images that consistently revealed lake expansion. Our results show that the glacial lakes expanded rapidly by 17.11% from 1990 to 2010. The pre-existing, larger glacial lakes, rather than the newly formed lakes, contributed most to the areal expansion. The greatest expansions occurred at the altitudinal zones between 4800 m and 5600 m at the north side of the main Himalayan range and between 4500 m and 5600 m at the south side, respectively. Based on the expansion rate, area and type of glacial lakes, we identified 67 rapidly expanding glacial lakes in the central Himalayan region that need to be closely monitored in the future. The warming and increasing amounts of light-absorbing constituents of snow and ice could have accelerated the melting that directly affected the glacial lake expansion. Across the main central Himalayas, glacial lakes at the north side show more remarkable expansion than those at the south side. An effective monitoring and warning system for critical glacial lakes is urgently needed. PMID:24376778

  6. Geology and evolution of lakes in north-central Florida

    USGS Publications Warehouse

    Kindinger, J.L.; Davis, J.B.; Flocks, J.G.

    1999-01-01

    Fluid exchange between surficial waters and groundwater in karst environments, and the processes that control exchange, are of critical concern to water management districts and planners. High-resolution seismic data were collected from 30 lakes of north-central Florida. In each case study, lake structure and geomorphology were controlled by solution and/or mechanical processes. Processes that control lake development are twofold: (1) karstification or dissolution of the underlying limestone, and (2) the collapse, subsidence, or slumping of overburden to form sinkholes. Initial lake formation is directly related to the karst topography of the underlying host limestone. Case studies have shown that lakes can be divided by geomorphic types into progressive developmental phases: (1) active subsidence or collapse phase (young); (2) transitional phase (middle age); (3) baselevel phase (mature); and (4) polje (drowned prairie) - broad flat-bottom that have one or all phases of sinkhole. Using these criteria, Florida lakes can be classified by size, fill, subsurface features, and geomorphology.Fluid exchange between surficial waters and groundwater in karst environments, and the processes that control exchange, are of critical concern to water management districts and planners. High-resolution seismic data were collected from 30 lakes of north-central Florida. In each case study, lake structure and geomorphology were controlled by solution and/or mechanical processes. Processes that control lake development are twofold: (1) karstification or dissolution of the underlying limestone, and (2) the collapse, subsidence, or slumping of overburden to form sinkholes. Initial lake formation is directly related to the karst topography of the underlying host limestone. Case studies have shown that lakes can be divided by geomorphic types into progressive developmental phased: (1) active subsidence or collapse phase (young); (2) transitional phase (middle age); (3) baselevel phase

  7. The hydrology of Lake Rousseau, west-central Florida

    USGS Publications Warehouse

    German, E.R.

    1978-01-01

    Lake Rousseau, about 4 miles southwest of Inglis, Florida, was formed in 1909 by impoundment of the Withlacooche River by Inglis Dam, west of Dunnellon, Florida. The lake was to have been part of the Cross-Florida Barge Canal; a lock and channel associated with the presently inactive project were completed in 1969. Lake Rousseau is about 11 miles long, covers about 4,000 acres, and contains about 34,000 acre-feet of water at the normal pool elevation of 27.5 feet above mean sea level. Inflow to the lake is relatively constant and responds slowly to rainfall. The estimated 100-year peak inflow, 10,400 cubic feet per second, is only 19 percent higher than the 100-year high monthly inflow. Water in Lake Rousseau is a calcium-bicarbonate type and is hard. Mean total phosphorus and organic nitrogen concentrations are considerably lower in Lake Rousseau than in north-central Florida lakes which have been considered to be eutrophic by other investigators, however, the lake supports of prolific aquatic plant community. Dissolved-oxygen concentrations near the water surface are occasionally less than 3 mg/liter. (Woodard-USGS)

  8. Monitoring lake level changes by altimetry in the arid region of Central Asia

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Liao, J. J.; Shen, G. Z.; Zhang, X. L.

    2017-07-01

    The study of lake level changes in arid region of Central Asia not only has important significance for the management and sustainable development of inland water resources, but also provides the basis for further study on the response of lakes to climate change and human activities. Therefore, in this paper, eleven typical lakes in Central Asia were observed. The lake edges were obtained through image interpretation using the quasi-synchronous MODIS image, and then water level information with long period (2002-2015) was acquired using ENVISAT/RA-2 and Cryosat-2 satellite borne radar altimeter data. The results show that these 11 lakes all have obvious seasonal changes of water level in a year with a high peak at different month. During 2002 - 2015, their water levels present decreased trend generally except Sarygamysh Lake, Alakol Lake and North Aral Sea. The alpine lakes are most stables, while open lakes’ levels change the most violently and closed lakes change diversely among different lakes.

  9. [Effects of community identity and topophilia on environmentally-conscious behavior].

    PubMed

    Nonami, Hiroshi; Kato, Junzo

    2009-04-01

    This study classified environmentally-conscious behaviors of residents (n = 335) along Lake Biwa as a common goods into personal and group behavioral intentions, and examined the determinants of these intentions. Identification with the community was a social identity, and differed from attachment to Lake Biwa, which was defined as topophilia. The results indicated that group behavior was affected by topophilia, while personal behavior was influenced by general attitudes about the environmental problems of the lake and evaluations of the cost for the behavior. Community identity had a significant effect on both personal and group behavior. Rational or emotional decision making processes resulted in two different types of environmentally-conscious behaviors.

  10. Glacial lakes of the Central and Patagonian Andes

    NASA Astrophysics Data System (ADS)

    Wilson, Ryan; Glasser, Neil F.; Reynolds, John M.; Harrison, Stephan; Anacona, Pablo Iribarren; Schaefer, Marius; Shannon, Sarah

    2018-03-01

    The prevalence and increased frequency of high-magnitude Glacial Lake Outburst Floods (GLOFs) in the Chilean and Argentinean Andes suggests this region will be prone to similar events in the future as glaciers continue to retreat and thin under a warming climate. Despite this situation, monitoring of glacial lake development in this region has been limited, with past investigations only covering relatively small regions of Patagonia. This study presents new glacial lake inventories for 1986, 2000 and 2016, covering the Central Andes, Northern Patagonia and Southern Patagonia. Our aim was to characterise the physical attributes, spatial distribution and temporal development of glacial lakes in these three sub-regions using Landsat satellite imagery and image datasets available in Google Earth and Bing Maps. Glacial lake water volume was also estimated using an empirical area-volume scaling approach. Results reveal that glacial lakes across the study area have increased in number (43%) and areal extent (7%) between 1986 and 2016. Such changes equate to a glacial lake water volume increase of 65 km3 during the 30-year observation period. However, glacial lake growth and emergence was shown to vary sub-regionally according to localised topography, meteorology, climate change, rate of glacier change and the availability of low gradient ice areas. These and other factors are likely to influence the occurrence of GLOFs in the future. This analysis represents the first large-scale census of glacial lakes in Chile and Argentina and will allow for a better understanding of lake development in this region, as well as, providing a basis for future GLOF risk assessments.

  11. The interdependence of lake ice and climate in central North America

    NASA Technical Reports Server (NTRS)

    Jelacic, A. J. (Principal Investigator)

    1972-01-01

    There are no author-identified significant results in this report. This investigation is to identify any correlations between the freeze/ thaw cycles of lakes and regional weather variations. ERTS-1 imagery of central Canada and north central United States is examined on a seasonal basis. The ice conditions of certain major study lakes are noted and recorded on magnetic tape, from which the movement of a freeze/thaw transition zone may be deduced. Weather maps and tables are used to establish any obvious correlations. The process of selecting major study lakes is discussed, and a complete lake directory is presented. Various routines of the software support library are described, accompanied by output samples. Procedures used for ERTS imagery processing are presented along with the data analysis plan. Application of these procedures to selected ERTS imagery has demonstrated their utility. Preliminary results show that the freeze/thaw transition zone can be monitored from ERTS.

  12. Bathymetry of Walker Lake, West-Central Nevada

    USGS Publications Warehouse

    Lopes, Thomas J.; Smith, J. LaRue

    2007-01-01

    Walker Lake lies within a topographically closed basin in west-central Nevada and is the terminus of the Walker River. Much of the streamflow in the Walker River is diverted for irrigation, which has contributed to a decline in lake-surface altitude of about 150 feet and an increase in dissolved solids from 2,500 to 16,000 milligrams per liter in Walker Lake since 1882. The increase in salinity threatens the fresh-water ecosystem and survival of the Lahontan cutthroat trout, a species listed as threatened under the Endangered Species Act. Accurately determining the bathymetry and relations between lake-surface altitude, surface area, and storage volume are part of a study to improve the water budget for Walker Lake. This report describes the updated bathymetry of Walker Lake, a comparison of results from this study and a study by Rush in 1970, and an estimate of the 1882 lake-surface altitude. Bathymetry was measured using a single-beam echosounder coupled to a differentially-corrected global positioning system. Lake depth was subtracted from the lake-surface altitude to calculate the altitude of the lake bottom. A Lidar (light detection and ranging) survey and high resolution aerial imagery were used to create digital elevation models around Walker Lake. The altitude of the lake bottom and digital elevation models were merged together to create a single map showing land-surface altitude contours delineating areas that are currently or that were submerged by Walker Lake. Surface area and storage volume for lake-surface altitudes of 3,851.5-4,120 feet were calculated with 3-D surface-analysis software. Walker Lake is oval shaped with a north-south trending long axis. On June 28, 2005, the lake-surface altitude was 3,935.6 feet, maximum depth was 86.3 feet, and the surface area was 32,190 acres. The minimum altitude of the lake bottom from discrete point depths is 3,849.3 feet near the center of Walker Lake. The lake bottom is remarkably smooth except for mounds near

  13. Reconstructing time series water volumes of drying lakes in Central Asia with ZY-3 stereo remote sensing data

    NASA Astrophysics Data System (ADS)

    Li, J.; Warner, T.; Bao, A.

    2017-12-01

    Central Asia is one of the world most vulnerable areas responding to global change. Lakes in arid regions of Central Asia remain sensitive to climatic change and fluctuate with temperature and precipitation variations. Study showed that some central asian inland lakes in showed a trend of area shrinkage or extinct in the last decades. Quantitative analysis of lake volume changes in spatio-temporal processes will improve our understanding water resource utilization in arid regions and their responses to regional climate change. However, due to the lack of lake bathmetry or observation data, the volumes of these lakes remain unknown. In this paper, three lakes, such as Chaiwopu lake, Alik Lake and Selectyteniz Lake in Central Asia are used to reconstruct lake volume changes. Firstly, stereo mapping technologies derived from ZY-3 high resolution data are used to map the high-precision 3-D lake bathmetry, so as to create "Area-Level-Volume" based on contours of lake bathmetry. Secondly, time series lake areas in the last 50 years are mapped with multi-source and multi-temporal remote sensing images. Based on lake storage curves and time series lake areas, lake volumes in the last 5 decades can be reconstructed, and the spatio-temporal characteristics of lake volume changes and their mechanisms are also analyzed. The results showed that the high-precision lake hydrological elements are reconstructed on arid drying lakes through the application of stereo mapping technology in remote sensing.

  14. Bacterial Communities of Three Saline Meromictic Lakes in Central Asia.

    PubMed

    Baatar, Bayanmunkh; Chiang, Pei-Wen; Rogozin, Denis Yu; Wu, Yu-Ting; Tseng, Ching-Hung; Yang, Cheng-Yu; Chiu, Hsiu-Hui; Oyuntsetseg, Bolormaa; Degermendzhy, Andrey G; Tang, Sen-Lin

    2016-01-01

    Meromictic lakes located in landlocked steppes of central Asia (~2500 km inland) have unique geophysiochemical characteristics compared to other meromictic lakes. To characterize their bacteria and elucidate relationships between those bacteria and surrounding environments, water samples were collected from three saline meromictic lakes (Lakes Shira, Shunet and Oigon) in the border between Siberia and the West Mongolia, near the center of Asia. Based on in-depth tag pyrosequencing, bacterial communities were highly variable and dissimilar among lakes and between oxic and anoxic layers within individual lakes. Proteobacteria, Bacteroidetes, Cyanobacteria, Actinobacteria and Firmicutes were the most abundant phyla, whereas three genera of purple sulfur bacteria (a novel genus, Thiocapsa and Halochromatium) were predominant bacterial components in the anoxic layer of Lake Shira (~20.6% of relative abundance), Lake Shunet (~27.1%) and Lake Oigon (~9.25%), respectively. However, few known green sulfur bacteria were detected. Notably, 3.94% of all sequencing reads were classified into 19 candidate divisions, which was especially high (23.12%) in the anoxic layer of Lake Shunet. Furthermore, several hydro-parameters (temperature, pH, dissolved oxygen, H2S and salinity) were associated (P< 0.05) with variations in dominant bacterial groups. In conclusion, based on highly variable bacterial composition in water layers or lakes, we inferred that the meromictic ecosystem was characterized by high diversity and heterogenous niches.

  15. Bacterial Communities of Three Saline Meromictic Lakes in Central Asia

    PubMed Central

    Baatar, Bayanmunkh; Chiang, Pei-Wen; Rogozin, Denis Yu; Wu, Yu-Ting; Tseng, Ching-Hung; Yang, Cheng-Yu; Chiu, Hsiu-Hui; Oyuntsetseg, Bolormaa; Degermendzhy, Andrey G.; Tang, Sen-Lin

    2016-01-01

    Meromictic lakes located in landlocked steppes of central Asia (~2500 km inland) have unique geophysiochemical characteristics compared to other meromictic lakes. To characterize their bacteria and elucidate relationships between those bacteria and surrounding environments, water samples were collected from three saline meromictic lakes (Lakes Shira, Shunet and Oigon) in the border between Siberia and the West Mongolia, near the center of Asia. Based on in-depth tag pyrosequencing, bacterial communities were highly variable and dissimilar among lakes and between oxic and anoxic layers within individual lakes. Proteobacteria, Bacteroidetes, Cyanobacteria, Actinobacteria and Firmicutes were the most abundant phyla, whereas three genera of purple sulfur bacteria (a novel genus, Thiocapsa and Halochromatium) were predominant bacterial components in the anoxic layer of Lake Shira (~20.6% of relative abundance), Lake Shunet (~27.1%) and Lake Oigon (~9.25%), respectively. However, few known green sulfur bacteria were detected. Notably, 3.94% of all sequencing reads were classified into 19 candidate divisions, which was especially high (23.12%) in the anoxic layer of Lake Shunet. Furthermore, several hydro-parameters (temperature, pH, dissolved oxygen, H2S and salinity) were associated (P< 0.05) with variations in dominant bacterial groups. In conclusion, based on highly variable bacterial composition in water layers or lakes, we inferred that the meromictic ecosystem was characterized by high diversity and heterogenous niches. PMID:26934492

  16. Geologic controls on the formation of lakes in north-central Florida

    USGS Publications Warehouse

    Kindinger, Jack G.; Davis, Jeffrey B.; Flocks, James G.; Pitman, Janet K.; Carroll, Alan R.

    1998-01-01

    Fluid exchange between surficial waters and groundwater, as well as the processes that control this exchange, are of critical concern to water management districts and planners. Digital high-resolution seismic systems were used to collect geophysical data from 30 lakes of north-central Florida. Although using seismic profile data in the past has been less than successful, the use of digital technology has increased the potential for success. Seismic profiles collected from the lakes of north-central Florida have shown the potential application of these techniques in understanding the formation of individual lakes. In each case study, lake structure and geomorphology were controlled by solution and/or mechanical processes. Processes that control lake development are twofold: 1) karstification or dissolution of the underlying limestone, and 2) me collapse, subsidence, or slumping of overburden to form sinkholes. Initial lake formation is directly related to the karst topography of the underlying host limestone. Lake size and shape are a factor of the thickness of overburden and size of the collapse or subsidence and/or clustering of depressions allowing for lake development. Lake development is through progressive sequence stages to maturity that can be delineated into geomorphic types. Case studies have shown that lakes can be divided by geomorphic types into progressive developmental phases: (1) active subsidence or collapse phase (young) - the open to partially filled collapse structures typically associated with sink holes; (2) transitional phase (middle age) - the sinkhole is plugged as the voids within the collapse are filled with sediment, periodic reactivation may occur; (3) baselevel phase (mature) - active sinkholes are progressively plugged by the continual erosion of material into the basin, and eventually sediment fills the basins; and (4) polje (drowned prairie) - broad flat-bottom basins located within the epiphreatic zone that are inundated at high

  17. Decadal and Seasonal Variations of Alpine Lakes in Glacierized areas of Central Asia during 1990-2015

    NASA Astrophysics Data System (ADS)

    Li, J.; Warner, T.; Chen, X.; Bao, A.

    2016-12-01

    Central Asia is one of the world's most vulnerable areas responding to global change. Glacier lakes in the alpine regions remain sensitive to climatic change and fluctuate with temperature and precipitation variations. Study shows that glaciers in Central Asia have retreated dramatically, leading to the expansion of the existing glacial lakes and the emergence of many new glacier lakes. The existence of these lakes increases the possibility of outburst flood during the ice melting season, which can bring a disaster to the downstream area. Mapping glacial lakes and monitoring their changes would improve our understanding of regional climate change and glacier-related hazards. Glacial lakes in Central Asia are mainly located at the Tianshan Mountains, the Altai Mountains, the Kunlun Mountains and the Pamirs with average elevation more than 1500 meters. Most of these lakes are supplied with the glaciers or snowmelt water during the summer seasons. Satellite remote sensing provides an efficient and objective tool to analyze the status and variations of glacial lakes. The increased availability of remote sensing sensors with appropriate spatial and temporal resolutions, broad coverage makes lake investigations more feasible and cost-effective. The paper intends to map glacier lake changes in glacierized alpine mountains with Landsat TM/ETM+ imagery. More than 600 scenes of Landsat images in circa 1990, circa 2000, circa 2010 and circa 2015 are used to map the decadal glacial lake changes over the Central Asia, and about 8 expanding glacial lakes are selected to map seasonal changes. Over 12000 glacial lakes were mapped in circa 1990, and in 2015, lake number are more than 16000, most of these new lakes are emerging in the last 10 years. The result shows that the number and area of the glacial lakes in the Altain Mountain remain stable, while the Tianshan Mountain have experienced expanding changes in the last two decades, and about a half number of lake areas are

  18. Lake Baikal isotope records of Holocene Central Asian precipitation

    NASA Astrophysics Data System (ADS)

    Swann, George E. A.; Mackay, Anson W.; Vologina, Elena; Jones, Matthew D.; Panizzo, Virginia N.; Leng, Melanie J.; Sloane, Hilary J.; Snelling, Andrea M.; Sturm, Michael

    2018-06-01

    Climate models currently provide conflicting predictions of future climate change across Central Asia. With concern over the potential for a change in water availability to impact communities and ecosystems across the region, an understanding of historical trends in precipitation is required to aid model development and assess the vulnerability of the region to future changes in the hydroclimate. Here we present a record from Lake Baikal, located in the southern Siberian region of central Asia close to the Mongolian border, which demonstrates a relationship between the oxygen isotope composition of diatom silica (δ18Odiatom) and precipitation to the region over the 20th and 21st Century. From this, we suggest that annual rates of precipitation in recent times are at their lowest for the past 10,000 years and identify significant long-term variations in precipitation throughout the early to late Holocene interval. Based on comparisons to other regional records, these trends are suggested to reflect conditions across the wider Central Asian region around Lake Baikal and highlight the potential for further changes in precipitation with future climate change.

  19. Impacts of urban sprawl on the area of downtown lakes in a highly developing city on central China

    NASA Astrophysics Data System (ADS)

    Zhang, W.; Zhang, Y.

    2016-12-01

    Wuhan city in central China is full of water resources and numerous lakes are located. Downtown lakes have significant ecological value and ornamental value for urban inhabitants in Wuhan. Under the rapid process of urban sprawl, downtown lakes are occupied by impervious areas. This research uses Landsat images to extract land uses from 1991 to 2013 in Wuhan city , and attempts to find out how urban sprawl affects the water body area decline in space. Two largest downtown lakes in Wuhan city, Donghu Lake located in central city and Tangxunhu Lake located in suburbs, are taken as case study area. A direction change index (DCI) is proposed to evaluate the changes of a specific land use in different directions. The results reveal that two downtown lakes are undergoing rapid water body area decline from 1991 to 2013, with decline rate are -0.022 in Donghu watershed and -0.011 in Tangxunhu watershed. 68.26% and 62.50% of the reduced water body is occupied by built-up land in Donghu watershed and Tangxunhu watershed, respectively. According to DCI, the water body reduce is highly correlated with built-up land increase in all direction. Moreover, it is found that in the Donghu watershed the north-west part suffered significant water body area decline, which is close to central city. While in Tangxunhu watershed, the area of water body declined in north-west, south-west and north-east part, and the area obstructed from central city by the lake was suffering less water body area decline. It is concluded that the water body area of downtown lakes are highly affected by the process of urban sprawl, and the lakes in central districts trends to suffer higher descend than that of the downtown lake located in suburbs. Meanwhile, even for the same downtown lake, the area orientating and close to the central city may suffer more rapid decline than the area that does not orientate to the central city.

  20. Hydrochemical determination of source water contributions to Lake Lungo and Lake Ripasottile (central Italy)

    USGS Publications Warehouse

    Archer, Claire; Noble, Paula; Kreamer, David; Piscopo, Vincenzo; Petitta, Marco; Rosen, Michael R.; Poulson, Simon R.; Piovesan, Gianluca; Mensing, Scott

    2017-01-01

    Lake Lungo and Lake Ripasottile are two shallow (4-5 m) lakes located in the Rieti Basin, central Italy, that have been described previously as surface outcroppings of the groundwater table. In this work, the two lakes as well as springs and rivers that represent their potential source waters are characterized physio-chemically and isotopically, using a combination of environmental tracers. Temperature and pH were measured and water samples were analyzed for alkalinity, major ion concentration, and stable isotope (δ2H, δ18O, δ13C of dissolved inorganic carbon, and δ34S and δ18O of sulfate) composition. Chemical data were also investigated in terms of local meteorological data (air temperature, precipitation) to determine the sensitivity of lake parameters to changes in the surrounding environment. Groundwater represented by samples taken from Santa Susanna Spring was shown to be distinct with SO42- and Mg2+ content of 270 and 29 mg/L, respectively, and heavy sulfate isotopic composition(δ34S=15.2 ‰ and δ18O=10‰). Outflow from the Santa Susanna Spring enters Lake Ripasottile via a canal and both spring and lake water exhibits the same chemical distinctions and comparatively low seasonal variability. Major ion concentrations in Lake Lungo are similar to the Vicenna Riara Spring and are interpreted to represent the groundwater locally recharged within the plain. The δ13CDIC exhibit the same groupings as the other chemical parameters, providing supporting evidence of the source relationships. Lake Lungo exhibited exceptional ranges of δ13CDIC (±5 ‰) and δ2H, δ18O (±5 ‰ and ±7 ‰, respectively), attributed to sensitivity to seasonal changes. The hydrochemistry results, particularly major ion data, highlight how the two lakes, though geographically and morphologically similar, represent distinct hydrochemical facies. These data also show a different response in each lake to temperature and precipitation patterns in the basin that may be attributed

  1. Early Holocene to present landscape dynamics of the tectonic lakes of west-central Mexico

    NASA Astrophysics Data System (ADS)

    Castillo, Miguel; Muñoz-Salinas, Esperanza; Arce, José Luis; Roy, Priyadarsi

    2017-12-01

    Paleoclimatic reconstructions from lake sediments of central Mexico indicate that the environmental conditions in the Holocene have oscillated from cool-dry to warm-wet, thus, landscape erosion rates have been modified accordingly. The Cenozoic tectonics and volcanic activity of west-central Mexico have produced a set of lakes in warmer and drier conditions compared to lakes of central Mexico. Nevertheless, the Holocene landscape dynamics for this area remains understudied. Using age-depth models, OSL and multi-element chemistry analysis of sediments in the lakes of San Marcos and Sayula we explore the landscape dynamics from early Holocene present of west-central Mexico. Our results indicate that the sedimentation rates in San Marcos Lake notably increased from 240 yr BP to the present. Since AD 1950 the sedimentation rate in Sayula Lake rose fourfold the rates of the last 2000 years. Analysis of OSL and chemistry of major elements of sediments indicates that IRSL/BLSL strongly correlates with Ti/Al (R2 = 0.93) and with the mean monthly rainfall (R2 = 0.70). We propose that the IRSL/BLSL can be used as a proxy to infer past changes in landscape dynamics. Analysis of climatic data from the 1950s to present indicates that rainfall, and consequently water runoff, is enhanced in summers free of ENSO conditions. Extreme one-day rainfall can, however, exceed mean seasonal rainfall and occur in all phases of ENSO. Droughts are particularly severe in the phase of La Niña. Our results indicate that the erosion rate in San Marcos Lake was high from ∼8000 to ∼7000 yr BP in a period coinciding with the advance and recession of glaciers in Central Mexico, however, the erosion rates in the last 165 years have surpassed the rates of the early to mid-Holocene. By constraining the age of sediment and using environmental proxies such as the Ti/Al and IRSL/BLSL from lake sediments of Sayula and San Marcos we present the first model of landscape dynamics of this part of Mexico

  2. Organic carbon accumulation and reactivity in central Swedish lakes during the Holocene

    NASA Astrophysics Data System (ADS)

    Chmiel, H.; Kokic, J.; Niggemann, J.; Dittmar, T.; Sobek, S.

    2012-04-01

    Sedimentation and burial of particulate organic carbon (POC), received from terrestrial sources and from lake internal primary production, are responsible for the progressive accumulation and long-term storage of organic matter in lake basins. For lakes in the boreal zone of central Sweden it can be presumed, that the onset of POC accumulation occurred during the early Holocene (˜8000 BP.) after the retreat of the Scandinavian ice sheet. In this study we investigated carbon mass accumulation rates (CMARs), as well as sources and reactivity of deposited organic material, for seven lakes in central Sweden (60°N, 15°E), in order to obtain a detailed temporal resolution of carbon burial and preservation in boreal lakes. Sediment long-cores were sampled in March 2011 from the ice, and CMARs were calculated from water contents, dry bulk densities, carbon contents and radiocarbon (14C) ages of the depth profiles. To indicate the sources of the organic material and characterize its diagenetic state, we determined carbon-nitrogen ratios (C/N) as well as amounts and compositions of lignin phenols. The transitions from organic rich sediment layers to glacial till deposits were found to be in sediment depths of ˜3 m in each lake. POC contents were on average highest (25-34 wt. % C), in small lakes (≤ 0.07 km2) and lowest (10-18 wt. % C) in the larger lakes (≥ 165 km2). The CMARs over the Holocene showed significant variations and were on average lower in the early Holocene, compared to recent accumulation rates. C/N values and the composition of lignin phenols further provided indications of important changes in organic matter source and reactivity over the Holocene. In summary, our data suggest that boreal lake sediments were a significantly stronger sink for organic carbon during the last ~150 years than during earlier periods of the Holocene.

  3. Mapping lake level changes using ICESat/GLAS satellite laser altimetry data: a case study in arid regions of central Asia

    NASA Astrophysics Data System (ADS)

    Li, JunLi; Fang, Hui; Yang, Liao

    2011-12-01

    Lakes in arid regions of Central Asia act as essential components of regional water cycles, providing sparse but valuable water resource for the fragile ecological environments and human lives. Lakes in Central Asia are sensitive to climate change and human activities, and great changes have been found since 1960s. Mapping and monitoring these inland lakes would improve our understanding of mechanism of lake dynamics and climatic impacts. ICESat/GLAS satellite laser altimetry provides an efficient tool of continuously measuring lake levels in these poorly surveyed remote areas. An automated mapping scheme of lake level changes is developed based on GLAS altimetry products, and the spatial and temporal characteristics of 9 typical lakes in Central Asia are analyzed to validate the level accuracies. The results show that ICESat/GLAS has a good performance of lake level monitoring, whose patterns of level changes are the same as those of field observation, and the max differences between GLAS and field data is 3cm. Based on the results, it is obvious that alpine lakes are increasing greatly in lake levels during 2003-2009 due to climate change, while open lakes with dams and plain endorheic lakes decrease dramatically in water levels due to human activities, which reveals the overexploitation of water resource in Central Asia.

  4. Mercury in the central European lake district - case study Plešné lake

    NASA Astrophysics Data System (ADS)

    Navratil, Tomas; Rohovec, Jan; Novakova, Tereza; Matouskova, Sarka; Kopacek, Jiri; Kana, Jiri

    2017-04-01

    The central European lake district extends within the Bohemian forest and Bavarian forest Mountains. It includes 8 glacial lakes extending in altitudes from 935 to 1087 m a.s.l. All of them have been oligotrophic and forests of the lake catchments are dominated by Norway spruce (Picea abies). Plešné lake (PL) catchment is at 1087 m .a.s.l. and it covers area of 0.67 km2. In 2004, the forest at PL catchment was infested by the bark beetle (Ips typographus) and 88%-99% of trees had died by 2011. In contrast to relatively detailed research of North American and Scandinavian lake ecosystems the information concerning Hg contamination of central European lake ecosystems are rather scarce. The PL ecosystem can provide base for assessment of Hg contamination as well as for changes induced by the bark beetle infestation. In 2016, mean annual Hg concentration in bulk precipitation at Plešné lake reached 3.0 ng/L and bulk Hg deposition flux amounted at 4.6 µg/m2. The most important pathway of Hg deposition to the forest ecosystems has been litterfall. The highest Hg concentrations in litterfall material at PL were found in lichens 205 µg/kg, mixture of unidentifiable organic debris 159 µg/kg and bark 123 µg/kg. Litterfall spruce needles averaged at 56 µg/kg, only. Removal of spruce due to bark beetle infestation caused decrease of litterfall Hg fluxes. Recent litterfall fluxes in the unimpacted stands reached 55.8 µg/m2, while in the impacted dead stands they amounted 23.0 µg/m2, only. The qualitative composition of the litterfall in the infested stands was typical with absence of needles and prevalence of twigs and bark. To assess changes in Hg distribution within the soil profile due to forest dieback the soil data from year 1999 were compared with 2015 data. The mean Hg concentrations in the O horizons decreased from 424 to 311 µg/kg between years 1999 and 2015, and in A horizons the situation was reversed and an increase from 353 to 501 µg/kg occurred. The

  5. Magnetic and gravity studies of Mono Lake, east-central, California

    USGS Publications Warehouse

    Athens, Noah D.; Ponce, David A.; Jayko, Angela S.; Miller, Matt; McEvoy, Bobby; Marcaida, Mae; Mangan, Margaret T.; Wilkinson, Stuart K.; McClain, James S.; Chuchel, Bruce A.; Denton, Kevin M.

    2014-01-01

    From August 26 to September 5, 2011, the U.S. Geological Survey (USGS) collected more than 600 line-kilometers of shipborne magnetic data on Mono Lake, 20 line-kilometers of ground magnetic data on Paoha Island, 50 gravity stations on Paoha and Negit Islands, and 28 rock samples on Paoha and Negit Islands, in east-central California. Magnetic and gravity investigations were undertaken in Mono Lake to study regional crustal structures and to aid in understanding the geologic framework, in particular regarding potential geothermal resources and volcanic hazards throughout Mono Basin. Furthermore, shipborne magnetic data illuminate local structures in the upper crust beneath Mono Lake where geologic exposure is absent. Magnetic and gravity methods, which sense contrasting physical properties of the subsurface, are ideal for studying Mono Lake. Exposed rock units surrounding Mono Lake consist mainly of Quaternary alluvium, lacustrine sediment, aeolian deposits, basalt, and Paleozoic granitic and metasedimentary rocks (Bailey, 1989). At Black Point, on the northwest shore of Mono Lake, there is a mafic cinder cone that was produced by a subaqueous eruption around 13.3 ka. Within Mono Lake there are several small dacite cinder cones and flows, forming Negit Island and part of Paoha Island, which also host deposits of Quaternary lacustrine sediments. The typical density and magnetic properties of young volcanic rocks contrast with those of the lacustrine sediment, enabling us to map their subsurface extent.

  6. Diatom assemblage responses to changing environment in the conspicuously eutrophic Kiuruvesi lake route, central-eastern Finland

    NASA Astrophysics Data System (ADS)

    Tammelin, Mira; Kauppila, Tommi

    2016-04-01

    Lakes and their water quality have been affected by anthropogenic actions for centuries. The most intensive changes have often occurred since the mid-19th century. Industrialization, modern agriculture, forest ditching and artificial lowering of water level are examples of these changes that have usually resulted in the deterioration of lake water quality. Many organisms, such as diatoms, are sensitive to these changes in their environmental conditions. Therefore, a marked species turnover is often seen between the pre and post human impact diatom assemblages. This turnover can be rapidly assessed simultaneously from many lakes by using multivariate methods and top-bottom sampling. Our study area consists of three adjacent lake routes in the grass cultivation and dairy production area of central-eastern Finland, where slash-and-burn cultivation and artificial water level lowering were common practice during the past centuries. The centermost Iisalmi lake route is particularly interesting because of the conspicuously eutrophic lakes in its Kiuruvesi subroute. We used the top-bottom approach to sample pre and post human impact samples from 47 lakes (50 sampling sites) located in the three lake routes. In addition, stratigraphic samples from the long cores of three lakes (one larger central basin and two small upstream lakes) in the Kiuruvesi subroute were studied in more detail. Multivariate methods were used to assess diatom assemblage change within the long cores and between the pre-disturbance and modern samples. The results indicate that most study lakes have undergone a marked shift in their diatom assemblages since the onset of human impact in the area. The lake routes are characterized by differing pre-impact diatom assemblages. However, human influence has reduced their natural variation. Similar diatom species are common in the modern samples of the heavily impacted lakes in all three lake routes. The detailed examination of the diatom assemblage turnover in

  7. Estimating ground-water inflow to lakes in central Florida using the isotope mass-balance approach

    USGS Publications Warehouse

    Sacks, Laura A.

    2002-01-01

    The isotope mass-balance approach was used to estimate ground-water inflow to 81 lakes in the central highlands and coastal lowlands of central Florida. The study area is characterized by a subtropical climate and numerous lakes in a mantled karst terrain. Ground-water inflow was computed using both steady-state and transient formulations of the isotope mass-balance equation. More detailed data were collected from two study lakes, including climatic, hydrologic, and isotopic (hydrogen and oxygen isotope ratio) data. For one of these lakes (Lake Starr), ground-water inflow was independently computed from a water-budget study. Climatic and isotopic data collected from the two lakes were similar even though they were in different physiographic settings about 60 miles apart. Isotopic data from all of the study lakes plotted on an evaporation trend line, which had a very similar slope to the theoretical slope computed for Lake Starr. These similarities suggest that data collected from the detailed study lakes can be extrapolated to the rest of the study area. Ground-water inflow computed using the isotope mass-balance approach ranged from 0 to more than 260 inches per year (or 0 to more than 80 percent of total inflows). Steady-state and transient estimates of ground-water inflow were very similar. Computed ground-water inflow was most sensitive to uncertainty in variables used to calculate the isotopic composition of lake evaporate (isotopic compositions of lake water and atmospheric moisture and climatic variables). Transient results were particularly sensitive to changes in the isotopic composition of lake water. Uncertainty in ground-water inflow results is considerably less for lakes with higher ground-water inflow than for lakes with lower ground-water inflow. Because of these uncertainties, the isotope mass-balance approach is better used to distinguish whether ground-water inflow quantities fall within certain ranges of values, rather than for precise

  8. Stable carbon and oxygen isotope record of central Lake Erie sediments

    USGS Publications Warehouse

    Tevesz, M.J.S.; Spongberg, A.L.; Fuller, J.A.

    1998-01-01

    Stable carbon and oxygen isotope data from mollusc aragonite extracted from sediment cores provide new information on the origin and history of sedimentation in the southwestern area of the central basin of Lake Erie. Sediments infilling the Sandusky subbasin consist of three lithologic units overlying glacial deposits. The lowest of these is a soft gray mud overlain by a shell hash layer containing Sphaerium striatinum fragments. A fluid mud unit caps the shell hash layer and extends upwards to the sediment-water interface. New stable isotope data suggest that the soft gray mud unit is of postglacial, rather than proglacial, origin. These data also suggest that the shell hash layer was derived from erosional winnowing of the underlying soft gray mud layer. This winnowing event may have occurred as a result of the Nipissing flood. The Pelee-Lorain moraine, which forms the eastern boundary of the Sandusky subbasin, is an elevated area of till capped by a sand deposit that originated as a beach. The presence of both the shell hash layer and relict beach deposit strengthens the interpretation that the Nipissing flood was a critical event in the development of the southwestern area of the central basin of Lake Erie. This event, which returned drainage from the upper lakes to the Lake Erie basin, was a dominant influence on regional stratigraphy, bathymetry, and depositional setting.

  9. Regression Analysis of Stage Variability for West-Central Florida Lakes

    USGS Publications Warehouse

    Sacks, Laura A.; Ellison, Donald L.; Swancar, Amy

    2008-01-01

    -water exchange in controlling the stage of karst lakes in Florida. Regression equations were used to predict lake-stage variability for the recent period for 12 additional lakes, and the median difference between predicted and observed values ranged from 11 to 23 percent. Coefficients of determination for the historical period were considerably lower (maximum R2 of 0.28) than for the recent period. Reasons for these low R2 values are probably related to the small number of lakes (20) with stage data for an equivalent time period that were unaffected by ground-water pumping, the similarity of many of the lake types (large surface-water drainage lakes), and the greater uncertainty in defining historical basin characteristics. The lack of lake-stage data unaffected by ground-water pumping and the poor regression results obtained for that group of lakes limit the ability to predict natural lake-stage variability using this method in west-central Florida.

  10. Changes in the area of inland lakes in arid regions of central Asia during the past 30 years.

    PubMed

    Bai, Jie; Chen, Xi; Li, Junli; Yang, Liao; Fang, Hui

    2011-07-01

    Inland lakes are major surface water resource in arid regions of Central Asia. The area changes in these lakes have been proved to be the results of regional climate changes and recent human activities. This study aimed at investigating the area variations of the nine major lakes in Central Asia over the last 30 years. Firstly, multi-temporal Landsat imagery in 1975, 1990, 1999, and 2007 were used to delineate lake extents automatically based on Normalized Difference Water Index (NDWI) threshold segmentation, then lake area variations were detailed in three decades and the mechanism of these changes was analyzed with meteorological data and hydrological data. The results indicated that the total surface areas of these nine lakes had decreased from 91,402.06 km(2) to 46,049.23 km(2) during 1975-2007, accounting for 49.62% of their original area of 1975. Tail-end lakes in flat areas had shrunk dramatically as they were induced by both climate changes and human impacts, while alpine lakes remained relatively stable due to the small precipitation variations. With different water usage of river outlets, the variations of open lakes were more flexible than those of other two types. According to comprehensive analyses, different types of inland lakes presented different trends of area changes under the background of global warming effects in Central Asia, which showed that the increased human activities had broken the balance of water cycles in this region.

  11. Glacial Lake Musselshell: Late Wisconsin slackwater on the Laurentide ice margin in central Montana, USA

    USGS Publications Warehouse

    Davis, N.K.; Locke, W. W.; Pierce, K.L.; Finkel, R.C.

    2006-01-01

    Cosmogenic surface exposure ages of glacial boulders deposited in ice-marginal Lake Musselshell suggest that the lake existed between 20 and 11.5 ka during the Late Wisconsin glacial stage (MIS 2), rather than during the Late Illinoian stage (MIS 6) as traditionally thought. The altitude of the highest ice-rafted boulders and the lowest passes on the modern divide indicate that glacial lake water in the Musselshell River basin reached at least 920-930 m above sea level and generally remained below 940 m. Exposures of rhythmically bedded silt and fine sand indicate that Lake Musselshell is best described as a slackwater system, in which the ice-dammed Missouri and Musselshell Rivers rose and fell progressively throughout the existence of the lake rather than establishing a lake surface with a stable elevation. The absence of varves, deltas and shorelines also implies an unstable lake. The changing volume of the lake implies that the Laurentide ice sheet was not stable at its southernmost position in central Montana. A continuous sequence of alternating slackwater lake sediment and lacustrine sheetflood deposits indicates that at least three advances of the Laurentide ice sheet occurred in central Montana between 20 and 11.5 ka. Between each advance, it appears that Lake Musselshell drained to the north and formed two outlet channels that are now occupied by extremely underfit streams. A third outlet formed when the water in Lake Musselshell fully breached the Larb Hills, resulting in the final drainage of the lake. The channel through the Larb Hills is now occupied by the Missouri River, implying that the present Missouri River channel east of the Musselshell River confluence was not created until the Late Wisconsin, possibly as late as 11.5 ka. ?? 2005 Elsevier B.V. All rights reserved.

  12. A critical review of the development, current hotspots, and future directions of Lake Taihu research from the bibliometrics perspective.

    PubMed

    Zhang, Yunlin; Yao, Xiaolong; Qin, Boqiang

    2016-07-01

    Lake Taihu, as the important drinking water source of the Yangtze River Delta urban agglomeration and the third largest freshwater lake in China, has experienced serious lake eutrophication and water quality deterioration in the past three decades. Growing scientific, political, and public attention has been given to the water quality of Lake Taihu. This study aimed to conduct a comparative quantitative and qualitative analysis of the development, current hotspots, and future directions of Lake Taihu research using a bibliometric analysis of eight well-studied lakes (Lake Taihu, Lake Baikal, Lake Biwa, Lake Erie, Lake Michigan, Lake Ontario, Lake Superior and Lake Victoria) around the world based on the Science Citation Index (SCI) database. A total of 1582 papers discussing Lake Taihu research were published in 322 journals in the past three decades. However, the first paper about Lake Taihu research was not found in the SCI database until 1989, and there were only zero, one, or two papers each year from 1989 to 1995. There had been rapid development in Lake Taihu research since 1996 and a sharp increase in papers since 2005. A keyword analysis showed that "sediment," "eutrophication", "Microcystis aeruginosa", "cyanobacterial blooms", and "remote sensing" were the most frequently used keywords of the study subject. Owing to its significant impact on aquatic ecosystems, a crucial emphasis has been placed on climate change recently. In addition, the future focuses of research directions, including (1) environmental effects of physical processes; (2) nutrient cycles and control and ecosystem responses; (3) cyanobacteria bloom monitoring, causes, forecast and management; (4) eutrophication and climate change interactions; and (5) ecosystem degradation mechanism and ecological practice of lake restoration, are presented based on the keyword analysis. Through multidisciplinary fields (physics, chemistry, and biology) cross and synthesis study of Lake Taihu, the

  13. Limnology of Big Lake, south-central Alaska, 1983-84

    USGS Publications Warehouse

    Woods, Paul F.

    1992-01-01

    The limnological characteristics and trophic state of Big Lake in south-central Alaska were determined from the results of an intensive study during 1983-84. The study was begun in response to concern over the potential for eutrophication of Big Lake, which has experienced substantial residential development and recreational use because of its proximity to Anchorage. The east and west basins of the 1,213 square-hectometer lake were each visited 36 times during the 2-year study to obtain a wide variety of physical, chemical, and biological data. During 1984, an estimate was made of the lake's annual primary production. Big Lake was classified as oligotrophic on the basis of its annual mean values for total phosphorus (9.5 micrograms per liter), total nitrogen (209 micrograms per liter), chlorophyll-a (2.5 micrograms per liter), secchi-disc transparency (6.3 meters), and its mean daily integral primary production of 81.1 milligrams of carbon fixed per square meter. The lake was, however, uncharacteristic of oligotrophic lakes in that a severe dissolved-oxygen deficit developed within the hypolimnion during summer stratification and under winter ice cover. The summer dissolved-oxygen deficit resulted from the combination of strong and persistent thermal stratification, which developed within 1 week of the melting of the lake's ice cover in May, and the failure of the spring circulation to fully reaerate the hypolimnion. The autumn circulation did reaerate the entire water column, but the ensuing 6 months of ice and snow cover prevented atmospheric reaeration of the water column and led to development of the winter dissolved-oxygen deficit. The anoxic conditions that eventually developed near the lake bottom allowed the release of nutrients from the bottom sediments and facilitated ammonification reactions. These processes yielded hypolimnetic concentrations of nitrogen and phosphorus compounds, which were much larger than the oligotrophic concentrations measured

  14. Recent increases in atmospheric deposition of mercury to North-Central Wisconsin lakes inferred from sediment analyses

    USGS Publications Warehouse

    Rada, R.G.; Wiener, J.G.; Winfrey, M.R.; Powell, D.E.

    1989-01-01

    Profiles of total mercury (Hg) concentrations in sediments were examined in 11 lakes in north-central Wisconsin having a broad range of pH (5.1 to 7.8) and alkalinity (-12 to 769 μeq/L). Mercury concentrations were greatest in the top 15 cm of the cores and were much lower in the deeper strata. The Hg content in the most enriched stratum of individual cores ranged from 0.09 to 0.24 μg/g dry weight, whereas concentrations in deep, precolonial strata ranged from 0.04 to 0.07 μg/g. Sediment enrichment factors varied from 0.8 to 2.8 and were not correlated with lake pH. The increase in the Hg content of recent sediments was attributed to increased atmospheric deposition of the metal. Eight of the 11 systems studied were low-alkalinity lakes that presumably received most (≥90%) of their hydrologic input from precipitation falling directly onto the lake surface. Thus, the sedimentary Hg in these lakes seems more likely linked to direct atmospheric deposition onto the lake surfaces than to influxes from the watershed. The data imply that a potentially significant fraction of the high Hg burdens measured in game fish in certain lakes in north-central Wisconsin originated from atmospheric sources.

  15. Sublake geologic structure from high-resolution seismic-reflection data from four sinkhole lakes in the Lake Wales Ridge, Central Florida

    USGS Publications Warehouse

    Tihansky, A.B.; Arthur, J.D.; DeWitt, D.W.

    1996-01-01

    Seismic-reflection profiles from Lake Wales, Blue Lake, Lake Letta, and Lake Apthorp located along the Lake Wales Ridge in central Florida provide local detail within the regional hydrogeologic framework as described by litho- and hydrostratigraphic cross sections. Lakes located with the mantled karst region have long been considered to be sinkhole lakes, originating from subsidence activity. High-resolution seismic- reflection data confirm this origin for these four lakes. The geologic framework of the Lake Wales Ridge has proven to be a suitable geologic setting for continuous high-resolution seismic-reflection profiling in lakes; however, the nature of the lake-bottom sediments largely controls the quality of the seismic data. In lakes with significant organic-rich bottom deposits, interpretable record was limited to areas where organic deposits were minimal. In lakes with clean, sandy bottoms, the seismic-reflection methods were highly successful in obtaining data that can be correlated with sublake subsidence features. These techniques are useful in examining sublake geology and providing a better understanding of how confining units are affected by subsidence in a region where their continuity is of significant importance to local lake hydrology. Although local geologic control around each lake generally corresponds to the regional geologic framework, local deviations from regional geologic trends occur in sublake areas affected by subsidence activity. Each of the four lakes examined represents a unique set of geologic controls and provides some degree of structural evidence of subsidence activity. Sublake geologic structures identified include: (1) marginal lake sediments dipping into bathymetric lows, (2) lateral discontinuity of confining units including sags and breaches, (3) the disruption and reworking of overlying unconsolidated siliciclastic sediments as they subside into the underlying irregular limestone surface, and (4) sublake regions where

  16. Tectonic and climatic control on evolution of rift lakes in the Central Kenya Rift, East Africa

    NASA Astrophysics Data System (ADS)

    Bergner, A. G. N.; Strecker, M. R.; Trauth, M. H.; Deino, A.; Gasse, F.; Blisniuk, P.; Dühnforth, M.

    2009-12-01

    The long-term histories of the neighboring Nakuru-Elmenteita and Naivasha lake basins in the Central Kenya Rift illustrate the relative importance of tectonic versus climatic effects on rift-lake evolution and the formation of disparate sedimentary environments. Although modern climate conditions in the Central Kenya Rift are very similar for these basins, hydrology and hydrochemistry of present-day lakes Nakuru, Elmenteita and Naivasha contrast dramatically due to tectonically controlled differences in basin geometries, catchment size, and fluvial processes. In this study, we use eighteen 14C and 40Ar/ 39Ar dated fluvio-lacustrine sedimentary sections to unravel the spatiotemporal evolution of the lake basins in response to tectonic and climatic influences. We reconstruct paleoclimatic and ecological trends recorded in these basins based on fossil diatom assemblages and geologic field mapping. Our study shows a tendency towards increasing alkalinity and shrinkage of water bodies in both lake basins during the last million years. Ongoing volcano-tectonic segmentation of the lake basins, as well as reorganization of upstream drainage networks have led to contrasting hydrologic regimes with adjacent alkaline and freshwater conditions. During extreme wet periods in the past, such as during the early Holocene climate optimum, lake levels were high and all basins evolved toward freshwater systems. During drier periods some of these lakes revert back to alkaline conditions, while others maintain freshwater characteristics. Our results have important implications for the use and interpretation of lake sediment as climate archives in tectonically active regions and emphasize the need to deconvolve lacustrine records with respect to tectonics versus climatic forcing mechanisms.

  17. Origin and evolution of Sariñena Lake (central Ebro Basin): A piping-based model

    NASA Astrophysics Data System (ADS)

    Castañeda, Carmen; Javier Gracia, F.; Rodríguez-Ochoa, Rafael; Zarroca, Mario; Roqué, Carles; Linares, Rogelio; Desir, Gloria

    2017-08-01

    The origin and nature of the numerous lakes in the central Ebro Basin have been interpreted according to the prevailing arid or semiarid conditions, the easily-eroded materials and the solubility of the gypsum- and/or carbonate-rich Tertiary/Cenozoic substratum, involving important dissolution (karstic) and/or aeolian deflation. However, the origin of Sariñena Lake, the largest in the central Ebro Basin, remains unknown since the typical lake-generating processes in the region are not applicable. This work provides significant clues to the genesis and evolution of Sariñena Lake in a regional context. The combination of geomorphological mapping and high resolution LiDAR data together with sedimentological observations, the characterisation of soils and sediments around the lake, and the application of high-resolution geophysical techniques suggest that piping is the major genetic process driving the evolution of the Sariñena depression and lake. Field evidence demonstrates that piping is, at present, the most important erosive process in the region, generating significant collapse and surface lowering. Sariñena Lake is located within a deep endorheic depression excavated from Na-rich Tertiary materials. This work hypothesises that once an early, fluvially-originated palustrine area had developed, the progressive lowering of the regional water table linked to regional fluvial incision favoured the establishment of a hydrological gradient high enough to trigger piping processes within the claystones and siltstones underlying the original palustrine area. The Quaternary evolution of the Sariñena lacustrine basin was then controlled by successive water table fluctuations, linked to different phases of incision and alluvial deposition in the surrounding fluvial systems. All the evidence supporting a piping-related origin for this lake, together with examples of lakes generated by similar processes in different contexts, is used to propose a new genetic type of

  18. High-resolution single-channel seismic reflection surveys of Orange Lake and other selected sites of north central Florida

    USGS Publications Warehouse

    Kindinger, Jack G.; Davis, Jeffrey B.; Flocks, James G.

    1994-01-01

    The potential fluid exchange between lakes of north central Florida and the Floridan aquifer and the process by which exchange occurs is of critical concern to the St. Johns Water Management District. High-resolution seismic tools with relatively new digital technology were utilized in collecting geophysical data from Orange, Kingsley, Lowry and Magnolia Lakes, and the Drayton Island area of St. Johns River. The data collected shows the application of these techniques in understanding the formation of individual lakes, thus aiding in the management of these natural resources by identifying breaches or areas where the confining units are thin or absent between the water bodies and the Floridan aquifer. Orange Lake, the primary focus of the study, is a shallow flooded plain that was formed essentially as an erosional depression in the clayey Hawthorn formation. The primary karstic features identified in the lake were cover subsidence, cover collapse and buried sinkholes structures in various sizes and stages of development. Orange Lake was divided into three areas southeast, southwest, and north-central. Karst features within the southeast area of Orange Lake are mostly cover subsidence sinkholes and associated features. Many of the subsidence features found are grouped together to form larger composite sinkholes, some greater than 400 m in diameter. The size of these composite sinkholes and the number of buried subsidence sinkholes distinguish the southeast area from the others. The potential of lake waters leaking to the aquifer in the southeast area is probably controlled by the permeability of the cover sediments or by fractures that penetrate the lake floor. The lake bottom and subsurface of the north-central areas are relatively subsidence sinkholes that have no cover sediments overlying them, implying that the sinks have been actively subsiding with some seepage into the aquifer from the lake in this area due to the possible presence of the active subsidence

  19. Simulated influences of Lake Agassiz on the climate of central North America 11,000 years ago

    USGS Publications Warehouse

    Hostetler, S.W.; Bartlein, P.J.; Clark, P.U.; Small, E.E.; Solomon, A.M.

    2000-01-01

    Eleven thousand years ago, large lakes existed in central and eastern North America along the margin of the Laurentide Ice Sheet. The large-scale North American climate at this time has been simulated with atmospheric general circulation models, but these relatively coarse global models do not resolve potentially important features of the mesoscale circulation that arise from interactions among the atmosphere, ice sheet, and proglacial lakes. Here we present simulations of the climate of central and eastern North America 11,000 years ago with a high-resolution, regional climate model nested within a general circulation model. The simulated climate is in general agreement with that inferred from palaeoecological evidence. Our experiments indicate that through mesoscale atmospheric feedbacks, the annual delivery of moisture to the Laurentide Ice Sheet was diminished at times of a large, cold Lake Agassiz relative to periods of lower lake stands. The resulting changes in the mass balance of the ice sheet may have contributed to fluctuations of the ice margin, thus affecting the routing of fresh water to the North Atlantic Ocean. A retreating ice margin during periods of high lake level may have opened an outlet for discharge of Lake Agassiz into the North Atlantic. A subsequent advance of the ice margin due to greater moisture delivery associated with a low lake level could have dammed the outlet, thereby reducing discharge to the North Atlantic. These variations may have been decisive in causing the Younger Dryas cold even.

  20. Assessing and addressing the re-eutrophication of Lake Erie: central basin hypoxia

    USGS Publications Warehouse

    Scavia, Donald; Allan, J. David; Arend, Kristin K.; Bartell, Steven; Beletsky, Dmitry; Bosch, Nate S.; Brandt, Stephen B.; Briland, Ruth D.; Daloğlu, Irem; DePinto, Joseph V.; Dolan, David M.; Evans, Mary Anne; Farmer, Troy M.; Goto, Daisuke; Han, Haejin; Höök, Tomas O.; Knight, Roger; Ludsin, Stuart A.; Mason, Doran; Michalak, Anna M.; Richards, R. Peter; Roberts, James J.; Rucinski, Daniel K.; Rutherford, Edward; Schwab, David J.; Sesterhenn, Timothy M.; Zhang, Hongyan; Zhou, Yuntao

    2014-01-01

    Relieving phosphorus loading is a key management tool for controlling Lake Erie eutrophication. During the 1960s and 1970s, increased phosphorus inputs degraded water quality and reduced central basin hypolimnetic oxygen levels which, in turn, eliminated thermal habitat vital to cold-water organisms and contributed to the extirpation of important benthic macroinvertebrate prey species for fishes. In response to load reductions initiated in 1972, Lake Erie responded quickly with reduced water-column phosphorus concentrations, phytoplankton biomass, and bottom-water hypoxia (dissolved oxygen 2) requires cutting total phosphorus loads by 46% from the 2003–2011 average or reducing dissolved reactive phosphorus loads by 78% from the 2005–2011 average. Reductions to these levels are also protective of fish habitat. We provide potential approaches for achieving those new loading targets, and suggest that recent load reduction recommendations focused on western basin cyanobacteria blooms may not be sufficient to reduce central basin hypoxia to 2000 km2.

  1. Integrated hazard assessment of Cirenmaco glacial lake in Zhangzangbo valley, Central Himalayas

    NASA Astrophysics Data System (ADS)

    Wang, Weicai; Gao, Yang; Iribarren Anacona, Pablo; Lei, Yanbin; Xiang, Yang; Zhang, Guoqing; Li, Shenghai; Lu, Anxin

    2018-04-01

    Glacial lake outburst floods (GLOFs) have recently become one of the primary natural hazards in the Himalayas. There is therefore an urgent need to assess GLOF hazards in the region. Cirenmaco, a moraine-dammed lake located in the upstream portion of Zhangzangbo valley, Central Himalayas, has received public attention after its damaging 1981 outburst flood. Here, by combining remote sensing methods, bathymetric survey and 2D hydraulic modeling, we assessed the hazard posed by Cirenmaco in its current status. Inter-annual variation of Cirenmaco lake area indicates a rapid lake expansion from 0.10 ± 0.08 km2 in 1988 to 0.39 ± 0.04 km2 in 2013. Bathymetric survey shows the maximum water depth of the lake in 2012 was 115 ± 2 m and the lake volume was calculated to be 1.8 × 107 m3. Field geomorphic analysis shows that Cirenmaco glacial lake is prone to GLOFs as mass movements and ice and snow avalanches can impact the lake and the melting of the dead ice in the moraine can lower the dam level. HEC-RAS 2D model was then used to simulate moraine dam failure of the Cirenmaco and assess GLOF impacts downstream. Reconstruction of Cirenmaco 1981 GLOF shows that HEC-RAS can produce reasonable flood extent and water depth, thus demonstrate its ability to effectively model complex GLOFs. GLOF modeling results presented can be used as a basis for the implementation of disaster prevention and mitigation measures. As a case study, this work shows how we can integrate different methods to GLOF hazard assessment.

  2. Increased piscivory by lake whitefish in Lake Huron

    USGS Publications Warehouse

    Pothoven, Steven A.; Madenjian, Charles P.

    2013-01-01

    We evaluated the diet of Lake Whitefish Coregonus clupeaformis in Lake Huron during 2002–2011 to determine the importance of Round Goby Neogobius melanostomus and other fish as prey items. Lake Whitefish that had reached approximately 400 mm in length incorporated fish into their diets. The overall percentage of adult Lake Whitefish in Lake Huron that had eaten fish increased from 10% in 2002–2006 to 20% in 2007–2011, with a corresponding decrease in the frequency of Lake Whitefish that ate Dreissena spp. from 52% to 33%. During 2002–2006, Round Goby (wet mass, 38%), sculpins (Cottidae) (34%), and Ninespine Stickleback Pungitius pungitius (18%) were the primary fish eaten, whereas Round Goby accounted for 92% of the fish eaten in 2007–2011. Overall, Round Goby were found in the fewest Lake Whitefish stomachs in the north region of Lake Huron (6%) and in the most in the central (23%) and south (19%) regions of the lake. In the central region, Round Goby were eaten during all seasons that were sampled (spring through fall). In the south region, Round Goby were eaten only in the winter and spring but not in the summer when Dreissena spp. and spiny water flea Bythotrephes longimanus dominated the diet. Based on the 2007–2011 diet composition, an individual Lake Whitefish would need to have increased their consumption relative to that in 1983–1994 by 6% in the north region, 12% in the central region, and 41% in the southern region in order to achieve the same growth that was observed before dreissenid mussels arrived. However, Lake Whitefish weight adjusted for length only increased by 2% between 2002–2006 and 2007–2011 in the central region, decreased by 4% in the northern region, and remained constant in the southern region. This suggests that a shift toward more frequent piscivory does not necessarily improve the condition of a generalist feeder like Lake Whitefish.

  3. Revised age estimates of Brunhes palaeomagnetic events - Support for a link between geomagnetism and eccentricity

    NASA Technical Reports Server (NTRS)

    Rampino, M. R.

    1981-01-01

    Revisions in the dates of reported geomagnetic excursions during the Brunhes Epoch are proposed in light of possible correlations between a section at Gioia Tauro, Italy, deep-sea cores, a core from Lake Biwa, Japan, and some lava flows. The anomalously long, double Blake Event reported at Gioia Tauro is here correlated with the Blake Event (approximately 110 kyr) and the Biwa 1 event (180 plus or minus 5 kyr); an hiatus may be present in the section between these two events. The alpha event at Gioia Tauro is correlated with the Biwa 2 event at about 295 kyr; the beta event with the 'Biwa 3' event at about 400 kyr; the gamma event with the Snake River event at 480 plus or minus 50; and the delta event, not recorded elsewhere, is estimated to have occurred at approximately 620 kyr. These proposed refinements in the age estimates of the excursions suggest an approximately 100 kyr cyclicity. If the events are real and the revised dating is correct, the timing of the geomagnetic events seems to coincide with times of peak eccentricity of the earth's orbit, suggesting a causal connection.

  4. Rapid Expansion of Glacial Lakes Caused by Climate and Glacier Retreat in the Central Himalayas

    NASA Astrophysics Data System (ADS)

    Wang, W.

    2016-12-01

    Glacial lake outburst floods are among the most serious natural hazards in the Himalayas. Such floods are of high scientific and political importance because they exert trans-boundary impacts on bordering countries. The preparation of an updated inventory of glacial lakes and the analysis of their evolution are an important first step in assessment of hazards from glacial lake outbursts. Here, we report the spatiotemporal developments of the glacial lakes in the Poiqu River basin, a trans-boundary basin in the Central Himalayas, from 1976 to 2010 based on multi-temporal Landsat images. Studied glacial lakes are classified as glacierfed lakes and non-glacier-fed lakes according to their hydrologic connection to glacial watersheds. A total of 119 glacial lakes larger than 0.01 km2 with an overall surface area of 20.22 km2 (±10.8%) were mapped in 2010, with glacier-fed lakes being predominant in both number (69, 58.0%) and area (16.22 km2, 80.2%). We found that lakes connected to glacial watersheds (glacier-fed lakes) significantly expanded (122.1%) from 1976 to 2010, whereas lakes not connected to glacial watersheds (non-glacier-fed lakes) remained stable (+2.8%) during the same period. This contrast can be attributed to the impact of glaciers. Retreating glaciers not only supply meltwater to lakes but also leave space for them to expand. Compared with other regions of the Hindu Kush Himalayas (HKH), the lake area per glacier area in the Poiqu River basin was the highest. This observation might be attributed to the different climate regimes and glacier status along the HKH. The results presented in this study confirm the significant role of glacier retreat on the evolution of glacial lakes.

  5. Sedimentary Evidence of Environmental Degradation in Sanliqi Lake, Daye City (A Typical Mining City, Central China).

    PubMed

    Zeng, Linghan; Ning, Dongliang; Xu, Lei; Mao, Xin; Chen, Xu

    2015-09-01

    To reconstruct the history of environmental degradation in Sanliqi Lake (Daye City, central China), multiple proxies were analyzed in a sedimentary core which was dated using (137)Cs and spheroidal carbonaceous particles (SCPs). The results show that Sanliqi Lake has experienced serious degradation during the past 60 years, resulting from a large influx of metals and nutrients. Expansion of agricultural and industrial activities between 1945 and 1993 enhanced nutrient and metal enrichment, indicated by increases in metals, SCPs, magnetic susceptibility, total phosphorus, total nitrogen and total organic carbon. Further enrichment of Zn, Cd, Ni and Cr after 1993 was linked to a recent intensification of mining activities. Decreases in Cu and Pb after 2006 probably resulted from recent environmental remediation. This study verified the coupling between lake sediment pollution and human activities in Daye City during the past 60 years. The reconstructed history of lake pollution can provide reference information for continued restoration of Sanliqi Lake and other similar heavily polluted lakes in the developing regions.

  6. Exposure and effects of perfluoroalkyl compounds on tree swallows nesting at Lake Johanna in east central Minnesota, USA

    USGS Publications Warehouse

    Custer, Christine M.; Custer, Thomas W.; Schoenfuss, Heiko L.; Poganski, Beth H.; Solem, Laura

    2012-01-01

    Tree swallow (Tachycineta bicolor) samples were collected at a reference lake and a nearby lake (Lake Johanna) in east central Minnesota, USA contaminated with perfluorinated carboxylic and sulfonic acids. Tissues were analyzed for a suite of 13 perfluoroalkyl compounds (PFCs) to quantify exposure and to determine if there was an association between egg concentrations of PFCs and reproductive success of tree swallows. Concentrations of perfluoroocatane sulfonate (PFOS) were elevated in all tree swallow tissues from Lake Johanna compared to tissues collected at the reference lake. Other PFCs, except for two, were elevated in blood plasma at Lake Johanna compared to the reference lake. PFOS was the dominant PFC (>75%) at Lake Johanna, but accounted for <50% of total PFCs at the reference lake. There was a negative association between concentrations of PFOS in eggs and hatching success. Reduced hatching success was associated with PFOS levels as low as 150 ng/g wet weight.

  7. Coastal lake sediments reveal 5500 years of tsunami history in south central Chile

    NASA Astrophysics Data System (ADS)

    Kempf, Philipp; Moernaut, Jasper; Van Daele, Maarten; Vandoorne, Willem; Pino, Mario; Urrutia, Roberto; De Batist, Marc

    2017-04-01

    We present an exceptionally long and continuous coastal lacustrine record of ∼5500 years from Lake Huelde on the west coast of Chiloé Island in south central Chile. The study area is located within the rupture zone of the giant 1960 CE Great Chilean Earthquake (MW 9.5). The subsequent earthquake-induced tsunami inundated Lake Huelde and deposited mud rip-up clasts, massive sand and a mud cap in the lake. Long sediment cores from 8 core sites within Lake Huelde reveal 16 additional sandy layers in the 5500 year long record. The sandy layers share sedimentological similarities with the deposit of the 1960 CE tsunami and other coastal lake tsunami deposits elsewhere. On the basis of general and site-specific criteria we interpret the sandy layers as tsunami deposits. Age-control is provided by four different methods, 1) 210Pb-dating, 2) the identification of the 137Cs-peak, 3) an infrared stimulated luminescence (IRSL) date and 4) 22 radiocarbon dates. The ages of each tsunami deposit are modelled using the Bayesian statistic tools of OxCal and Bacon. The record from Lake Huelde matches the 8 regionally known tsunami deposits from documented history and geological evidence from the last ∼2000 years without over- or underrepresentation. We extend the existing tsunami history by 9 tsunami deposits. We discuss the advantages and disadvantages of various sedimentary environments for tsunami deposition and preservation, e.g. we find that Lake Huelde is 2-3 times less sensitive to relative sea-level change in comparison to coastal marshes in the same region.

  8. Ice formation in subglacial Lake Vostok, Central Antarctica

    NASA Astrophysics Data System (ADS)

    Souchez, R.; Petit, J. R.; Tison, J.-L.; Jouzel, J.; Verbeke, V.

    2000-09-01

    The investigation of chemical and isotopic properties in the lake ice from the Vostok ice core gives clues to the mechanisms involved in ice formation within the lake. A small lake water salinity can be reasonably deduced from the chemical data. Possible implications for the water circulation of Lake Vostok are developed. The characteristics of the isotopic composition of the lake ice indicate that ice formation in Lake Vostok occurred by frazil ice crystal generation due to supercooling as a consequence of rising waters and a possible contrast in water salinity. Subsequent consolidation of the developed loose ice crystals results in the accretion of ice to the ceiling of the lake.

  9. Estimation of chlorophyll-a concentration on an inland lake by using satellite data.

    NASA Astrophysics Data System (ADS)

    Iwata, T.

    2017-12-01

    Chlorophyll concentration is common as an index of water quality and phytoplankton activity in coastal areas and lake water. In this research, we propose a method to estimate chlorophyll-a distribution of lake surface by using satellite data. The satellite data used is the sea surface reflectance of 3 channels of band-9, -10, and -12 by MODIS/Aqua MYDOCGA data provided by NASA/EOSDIS, and its data resolution is spatially 1 km and temporally 1 day. As index for estimating chlorophyll-a from reflection intensity, four indices of two types are proposed and comparatively analyzed. One of the two types is the ratio of the reflectance of the visible green light band (Gr) to the one of the visible blue light band (Bl), and the other index is obtained by normalizing difference of the reflectance between two bands. The two types of indices are expressed as follows. * Band ratio (BR) = Gr / Bl * Normalized difference (ND) = (Gr-Bl) / (Gr+Bl) As the visible blue light band, band-9 (438-448 nm) and band-10 (483-493 nm) were used. The four indices are represented as BR9, BR10, ND9, and ND10. The Lake Biwa in Japan is selected as the test area to be analyzed. At the Lake, temperature and the chlorophyll-a concentration around the lake center are periodically measured every month, and data is published. From April 2011 to December 2015, correlation analysis was done using 29 data on which the water measurement date and the valid satellite data acquisition date coincided ( Fig.1 and 2 ). Based on the analysis, the following two formulas were shown as models that can successfully express surface chlorophyll-a concentration. * Chl-a [μg/L] = 6.11×BR10 - 2.61 * Chl-a [μg/L] = 32.6×ND102 + 10.2×ND10 + 3.24

  10. Evolution and outburst risk analysis of moraine-dammed lakes in the central Chinese Himalaya

    NASA Astrophysics Data System (ADS)

    Shijin, Wang; Shitai, Jiao

    2015-04-01

    The recent evolution and outburst risk of two typical moraine-dammed lakes, Galong and Gangxi, central Chinese Himalaya, are analyzed using topographic maps from 1974 and Landsat satellite imagery acquired in 1988, 2000 and 2014. The datasets show the areas of Galong and Gangxi lakes increasing at rates of 0.45 and 0.34 km2/year during the period 1974-2014, an expansion of 501% and 107%, respectively, in the past 41 years, while the areas of the parent glaciers, Reqiang and Jipucong decreased by 44.22% and 37.76%, respectively. The accelerating retreat of the glaciers not only reflects their generally negative mass balance but is consistent with the rapid expansion of the moraine-dammed lakes. When acted upon by external forces such as earthquakes, heavy rainfall, rapid melting of glaciers and dead ice, and snow/ice/rock avalanches, these lakes can become extremely dangerous, easily forming outburst mudslides, which can potentially spread to the Poiqu river basin and develop into cross-border (China and Nepal) GLOF disasters. Therefore, there is an urgent need to strengthen integrated risk management of glacial lake outburst disasters with multiple objectives and modes.

  11. Linking hydro-climate to the sediment archive: a combined monitoring and calibration study from a varved lake in central Turkey

    NASA Astrophysics Data System (ADS)

    Roberts, C. Neil; Dean, Jonathan R.; Eastwood, Warren J.; Jones, Matthew D.; Allcock, Samantha L.; Leng, Melanie J.; Metcalfe, Sarah E.; Woodbridge, Jessie; Yiǧitbaşıoǧlu, Hakan

    2016-04-01

    Hydro-climatic reconstructions from lake sediment proxies require an understanding of modern formation processes and calibration over multiple years. Here we use Nar Gölü, a non-outlet, monomictic maar lake in central Turkey, as a field site for such a natural experiment. Fieldwork since 1997 has included observations and measurements of lake water and sediment trap samples, and automated data logging (Jones et al., 2005; Woodbridge and Roberts, 2010; Dean et al., 2015). We compare these data to isotopic, chemical and biotic proxies preserved in the lake's annually-varved sediments. Nar Gölü underwent a 3 m lake-level fall between 2000 and 2010, and δ18O in both water and carbonates is correlated with this lake-level fall, responding to the change in water balance. Over the same period, sedimentary diatom assemblages responded via changes in habitat availability and mixing regime, while conductivity inferred from diatoms showed a rise in inferred salinity, although with a non-linear response to hydro-climatic forcing. There were also non-linear shifts in carbonate mineralogy and elemental chemistry. Building on the relationship between lake water balance and the sediment isotope record, we calibrated sedimentary δ18O against local meteorological records to derive a P/E drought index for central Anatolia. Application to of this to the longer sediment core isotope record from Nar Gölü (Jones et al. 2006) highlights major drought events over the last 600 years (Yiǧitbaşıoǧlu et al., 2015). Although this lacustrine record offers an archive of annually-dated, decadally-averaged hydro-climatic change, there were also times of non-linear lake response to climate. Robust reconstruction therefore requires understanding of physical processes as well as application of statistical correlations. Dean, J.R., Eastwood, W.J., Roberts, N., Jones, M.D., Yiǧitbaşıoǧlu, H., Allcock, S.L., Woodbridge, J., Metcalfe, S.E. and Leng, M.J. (2015) Tracking the hydro

  12. Effect of phosphorous concentrations on sedimentary distributions and isotopic composition of algal lipid biomarkers in lakes from central Switzerland

    NASA Astrophysics Data System (ADS)

    Ladd, N.; Dubois, N.; Schubert, C. J.

    2015-12-01

    Lakes in the Swiss central plateau experienced increasing anthropogenic phosphorous loading throughout much of the 20th century. Since the 1980s concerted remediation efforts on the part of the Swiss government have significantly reduced P concentrations in most lakes and reversed previous eutrophication. However, P concentrations remain elevated above their preindustrial levels in many sites. High quality monitoring of lake nutrient levels since the 1950s, along with several lakes of wide-ranging P concentrations in close proximity, make central Switzerland an ideal location for studying the ways in which nutrient loading affects the organic composition of lacustrine sediments. Results of such studies can be used to develop proxies of eutrophication in sites where fewer historical data exist, and to reconstruct historical P concentrations in local lakes from the time before record keeping began. We analyzed the distributions of algal lipid biomarkers from surface sediment and sediment traps collected in the spring of 2015 from ten lakes with variable P concentrations in central Switzerland. Sedimentary lipid distributions from these lakes confirm that biomarkers associated with algal and cyanobacterial sources are more abundant in the sediment of lakes with greater P loading. The dry sedimentary concentrations of biomarkers such as brassicasterol (primarily diatom source) and diplopterol (cyanobacteria source), as well as the less source specific short-chain n-alkanols, linearly increase from 0.3 - 1.9 μg/g as total phosphorous in the upper water column increases by 1 μg/L over a range of 7 - 50 μg/L. We also present preliminary hydrogen isotope data from these biomarkers. Hydrogen isotopes of algal lipids primarily reflect the source water in which the algae grew, and this relationship has been developed as a paleohydrologic proxy. However, laboratory cultures of marine algae demonstrate that they discriminate more against 2H under nutrient replete conditions

  13. Holocene Record Of The Cuitzeo Lake, Michoacan, Central Mexico

    NASA Astrophysics Data System (ADS)

    Israde-Alcantar, I.; Bischoff, J.; Cram, S.; Ruiz-Fernandez, C.; Barron, J.; Lozano-Garcia, S.; Ortega-Guerrero, B.; Garduño-Monroy, V. H.

    2007-05-01

    A 205 cm-long core spanning the last ca.10,000 years was taken in the western basin of Lake Cuitzeo, located in the tectonic depressions of central Mexico. Age control for the core is provided by four AMS dates on organic sediment. The uppermost 30 cm of the core appears to be highly bioturbated according to Pb210 chronologies. A time plot of mass-accumulation rates of sediment (g/cm2/kyr) shows high rates from 10,000 to 6000 yrs BP, strikingly reduced mid-Holocene rates, and increasing rates post 1000 yrs (which could be due to introduction of European ranching and agriculture). Organic and inorganic carbon (TOC. TIC), diatoms, iron and titanium concentrations were analyzed and used to infer variations in the hydrological cycle and climatic conditions. The lower part of the core (ca.8000 C14 yr B.P.) is characterized by high percents of CaCO3 (more than 35 percent) which rapidly declines to values less than 20 percent after ca. 6000 C14 yr B.P., likely reflecting reduced summer precipitation due to decline summer insolation. Coincident with this decline in percents CaCO3 there is a decline greater that two-fold sediment accumulation rates and an increase in percents TOC. Two peaks TOC are recorded at 909 and 6744 C14 yr B.P. suggesting increased precipitation. The TOC peak at 909 C14 yr B.P. may be associated with increased precipitation during the Medieval Warm Period. The middle Holocene TOC peak at 6744 C14 yr B.P. coincides with a period of increased precipitation in the Cariaco Basin of Venezuela. These changes in precipitation are similar to those recorded in lake records from Guatemala and the marine record of the Cariaco Basin and can be explained by shifts in the mean latitude of the Atlantic Intertropical Convergence Zone (ITCZ). The upper 100 cm of the core was studied at 1 cm intervals for metals (Al, Fe, Ti, Pb, etc.) using ICPMS geochemistry. These metals show strong cycles throughout the studied interval which may reflect wet-dry cycles. A two fold

  14. Late Glacial and Holocene sedimentary evolution of Czechowskie Lake (Eastern Pomerania, North Central Poland)

    NASA Astrophysics Data System (ADS)

    Kordowski, Jarosław; Błaszkiewicz, Mirosław; Kramkowski, Mateusz; Noryśkiewicz, Agnieszka M.; Słowiński, Michał; Tyszkowski, Sebastian; Brauer, Achim; Ott, Florian

    2015-04-01

    Czechowskie Lake is located in north-central Poland in Tuchola Forest, about 100 kilometers SW away from Gdańsk. In the deepest parts of the lake there are preserved laminated sediments with an excellent Holocene climatic record. The lake has the area of 76,6 ha. Actual water level is at 109,9 m a.s.l. The average depth is 9,59 m, maximal 32 m. It occupies a large subglacial channel, reproduced within the glacifluvial sediments of the last glaciation. The lake has a history reaching back to Pommeranian phase which is proved by analysis of sedimentary succesions in the vicinity of present-day waterbody. Primarily it come to existence as an very variable ice dammed lake but after dead ice and permafrost desintegration it changed into a stable lake. In the terrestrialised part oft the lake and in its litoral zone there were curried out numerous boreholes within limnic and slope sediments. They have been analysed in respect to lithology and structure. Some of them were also investigated palynologically which along with radiocarbon datings allowed to reconstruct major phases of the water level fluctuations. The maximum infilling with the limnic and telmatic sediments reaches over 12 m. In the bottom of the lake there is a marked presence of many overdeepenings with the diameter of dozen or several dozen meters and the depth of up to 10 m with numerous, distinct throughs between them. They favoured the preservation of the lamination in the deepest parts of the lake due to waves hampering and stopping of the density circulation in the lake waterbody. The analysis of limnic sediments revealed considerable spatial and temporal variability mainly in dependance of the area of the water body and water level in time of deposition. In the lake are recorded three distinct phases of lake level decrease. The sedimentary evolution in the isolated minor lake basins showed gradual decrease of mineral and organic deposition in favour for carbonate one although in places separated by

  15. Human Impact on Biogeochemical Cycles and Deposition Dynamics in Karstic Lakes: El Tobar Lake Record (Central Iberian Range, Spain)

    NASA Astrophysics Data System (ADS)

    Barreiro-Lostres, F.; Moreno-Caballud, A.; Giralt, S.; Hillman, A. L.; Brown, E. T.; Abbott, M. B.; Valero-Garces, B. L.

    2014-12-01

    Karstic lakes in the Iberian Range (Central Spain) provide a unique opportunity to test the human impact in the watersheds and the aquatic environments during historical times. We reconstruct the depositional evolution and the changes in biogeochemical cycles of El Tobar karstic lake, evaluating the response and the resilience of this Mediterranean ecosystem to both anthropogenic impacts and climate forcing during the last 1000 years. Lake El Tobar (40°32'N, 3°56'W; 1200 m a.s.l.; see Figure), 16 ha surface area, 20 m max. depth and permanent meromictic conditions, has a relatively large watershed (1080 ha). Five 8 m long sediment cores and short gravity cores where recovered, imaged, logged with a Geotek, described and sampled for geochemical analyses (elemental TOC, TIC, TN, TS), XRF scanner and ICP-MS, and dated (137Cs and 10 14C assays). The record is a combination of: i) laminated dark silts with terrestrial remains and diatoms and ii) massive to banded light silts (mm to cm -thick layers) interpreted as flood deposits. Sediments, TOC, and Br/Ti and Sr/Ca ratios identify four periods of increased sediment delivery occurred about 1500, 1800, 1850 and 1900 AD, coinciding with large land uses changes of regional relevance such as land clearing and increased population. Two main hydrological changes are clearly recorded in El Tobar sequence. The first one, marked by a sharp decrease in Mg, Ca and Si concentrations, took place about 1200 AD, and during a period of increasing lake level, which shifted from shallower to deeper facies and from carbonatic to clastic and organic-rich deposition. This change was likely related to increased water availability synchronous to the transition from the Medieval Climate Anomaly to the Little Ice Age. The second one was a canal construction in 1967 AD when a nearby reservoir provided fresh water influx to the lake, and resulted in stronger meromictic conditions in the system after canal construction, which is marked by lower

  16. Spatio-temporal niche partitioning of closely related picocyanobacteria clades and phycocyanin pigment types in Lake Constance (Germany).

    PubMed

    Becker, Sven; Sánchez-Baracaldo, Patricia; Singh, Arvind K; Hayes, Paul K

    2012-05-01

    We found that the clade-specific abundance dynamics of Synechococcus type picocyanobacteria in the pelagic and littoral zone macro-habitats of Lake Constance (Germany) challenge the hypothesis of a regular annual succession of picocyanobacteria genotypes in temperate zone lakes. Methods used in this study were quantitative Taq nuclease assays (TNA), denaturing gradient gel electrophoresis (DGGE), a 19-month time series analysis (with two isothermal and two stratified periods) and genotyping of a new littoral phycocyanin (PC)-rich Synechococcus strain collection. The recorded differences between the two macro-habitats and between seasons or years, and the observed effect of water column mixis in winter on the inversion of clade-specific dominance ratios in Lake Constance might explain the known inter-annual differences in abundance and dynamics of the autotrophic picoplankton (APP) in lakes. The APP in Lake Constance shows a high genetic diversity with a low overall abundance, similar to the APP in the Baltic Sea, but different from Lake Biwa in Japan or lakes in the UK. Our results indicate that APP bloom events in both macro-habitats of Lake Constance are driven by phycoerythrin-rich Synechococcus genotypes of the Subalpine Cluster I. DGGE revealed the presence of a diverse periphyton (biofilm) community of the PC-rich Synechococcus pigment type in the littoral zone in early spring, when no such community was detectable in the pelagic habitat. A more sensitive and quantitative approach with TNA, however, revealed an intermittent presence of one PC-rich genotype in the plankton. We discuss the seasonal development of the pelagic and littoral PC-rich community, and while we cannot rule out a strain isolation bias, we found that isolated PC-rich strains from the pelagic habitat have different genotypes when compared to new littoral strains. We also observed littoral substrates colonized by specific PC-rich Synechococcus genotypes. © 2012 Federation of European

  17. A 400-ka tephrochronological framework for Central America from Lake Petén Itzá (Guatemala) sediments

    NASA Astrophysics Data System (ADS)

    Kutterolf, S.; Schindlbeck, J. C.; Anselmetti, F. S.; Ariztegui, D.; Brenner, M.; Curtis, J.; Schmid, D.; Hodell, D. A.; Mueller, A.; Pérez, L.; Pérez, W.; Schwalb, A.; Frische, M.; Wang, K.-L.

    2016-10-01

    Lake Petén Itzá, northern Guatemala, lies within a hydrologically closed basin in the south-central area of the Yucatán Peninsula, and was drilled under the auspices of the International Continental Scientific Drilling Program (ICDP) in 2006. At 16°55‧N latitude, the lake is ideally located for study of past climate and environmental conditions in the Neotropical lowlands. Because of its great depth (>160 m), Lake Petén Itzá has a record of continuous sediment accumulation that extends well into the late Pleistocene. A key obstacle to obtaining long climate records from the region is the difficulty of establishing a robust chronology beyond ∼40 ka, the limit of 14C dating. Tephra layers within the Lake Petén Itzá sediments, however, enable development of age/depth relations beyond 40 ka. Ash beds from large-magnitude, Pleistocene-to-Holocene silicic eruptions of caldera volcanoes along the Central American Volcanic Arc (CAVA) were found throughout drill cores collected from Lake Petén Itzá. These ash beds were used to establish a robust chronology extending back 400 ka. We used major- and trace-element glass composition to establish 12 well-constrained correlations between the lacustrine tephra layers in Lake Petén Itzá sediments and dated deposits at the CAVA source volcanoes, and with their marine equivalents in eastern Pacific Ocean sediments. The data also enabled revision of eight previous determinations of erupted volumes and masses, and initial estimates for another four eruptions, as well as the designation of source areas for 14 previously unknown eruptions. The new and revised sedimentation rates for the older sediment successions identify the interglacial of MIS5a between 84 and 72 ka, followed by a stadial between 72 and 59 ka that corresponds to MIS4. We modified the age models for the Lake Petén Itzá sediment sequences, extended the paleoclimate and paleoecological record for this Neotropical region to ∼400 ka, and determined the

  18. Cluster analysis of water-quality data for Lake Sakakawea, Audubon Lake, and McClusky Canal, central North Dakota, 1990-2003

    USGS Publications Warehouse

    Ryberg, Karen R.

    2006-01-01

    As a result of the Dakota Water Resources Act of 2000, the Bureau of Reclamation, U.S. Department of the Interior, identified eight water-supply alternatives (including a no-action alternative) to meet future water needs in portions of the Red River of the North (Red River) Basin. Of those alternatives, four include the interbasin transfer of water from the Missouri River Basin to the Red River Basin. Three of the interbasin transfer alternatives would use the McClusky Canal, located in central North Dakota, to transport the water. Therefore, the water quality of the McClusky Canal and the sources of its water, Lake Sakakawea and Audubon Lake, is of interest to water-quality stakeholders. The Bureau of Reclamation collected water-quality samples at 23 sites on Lake Sakakawea, Audubon Lake, and the McClusky Canal system from 1990 through 2003. Physical properties and water-quality constituents from these samples were summarized and analyzed by the U.S. Geological Survey using hierarchical agglomerative cluster analysis (HACA). HACA separated the samples into related clusters, or groups. These groups were examined for statistical significance and relation to structure of the McClusky Canal system. Statistically, the sample groupings found using HACA were significantly different from each other and appear to result from spatial and temporal water-quality differences corresponding with different sections of the canal and different operational conditions. Future operational changes of the canal system may justify additional water-quality sampling to characterize possible water-quality changes.

  19. A new node on the SE Asian paleoclimate map: the alkaline crater lakes of central Myanmar

    NASA Astrophysics Data System (ADS)

    Smittenberg, Rienk H.; Chabangborn, Akkaneewut; Thu Aung, Lin; Fritz, Sherilyn; Wohlfarth, Barbara

    2014-05-01

    SE Asia is climatically a key region where the Asian monsoon system connects with the Indo-Pacific warm pool and from where much (latent) heat gets transported to higher latitudes. We recently obtained sediment cores from four crater lakes located in Central Myanmar, with the aim to further colour the still largely white space on the SE Asian paleoclimate map. The chain of volcanic craters extending northeast to southwest in the vicinity of the lower Chindwin River in central Myanmar have been known for a long time. These craters are aligned west of the Sagaing Fault, which is a continental transform fault between the Indian and Sunda continental plates. Four of the craters still contain lakes, while several of the smaller craters are drained and used for agriculture. The region has a tropical Savannah climate, with warm temperatures throughout the year. Precipitation is almost absent during the dry season but increases to an average monthly precipitation of 100-134 mm per month during the monsoon season (May through October). Three of the four lakes, named Twin Ywa (30 m depth), Twin Taung (60 m), and Twin Pyauk (8m), are highly alkaline (pH 10-11), support extensive cyanobacterial blooms and are anoxic below a few meters water depth. Their sediments are composed of highly organic and laminated algae gyttjas. The shallower (2m), oxic and more neutral (pH 7.5) Lake Leshe contains organic-lean clays but with clear variations in colour and bulk density that likely mark changes in humidity though time. The lake levels of the relatively small crater lakes are solely regulated by precipitation and evaporation, and their limnology and water isotope compositions are therefore sensitive to changes in monsoon intensity. We will present limnological data including water isotopic compositions, and initial bulk sedimentary data as well as preliminary age determinations. These will form the basis for more extensive multi-proxy analyses that should result in an improved insight

  20. Spatial and Temporal Trends of Snowfall in Central New York - A Lake Effect Dominated Region

    NASA Astrophysics Data System (ADS)

    Hartnett, Justin Joseph

    Central New York is located in one of the snowiest regions in the United States, with the city of Syracuse, New York the snowiest metropolis in the nation. Snowfall in the region generally begins in mid-November and lasts until late-March. Snow accumulation occurs from a multitude of conditions: frontal systems, mid-latitude cyclones, Nor'easters, and most notably lake-effect storms. Lake effect snowfall (LES) is a difficult parameter to forecast due to the isolated and highly variable nature of the storm. Consequently, studies have attempted to determine changes in snowfall for lake-effect dominated regions. Annual snowfall patterns are of particular concern as seasonal snowfall totals are vital for water resources, winter businesses, agriculture, government and state agencies, and much more. Through the use of snowfall, temperature, precipitation, and location data from the National Weather Service's Cooperative Observer Program (COOP), spatial and temporal changes in snowfall for Central New York were determined. In order to determine climatic changes in snowfall, statistical analyses were performed (i.e. least squares estimation, correlations, principal component analyses, etc.) and spatial maps analyzed. Once snowfall trends were determined, factors influencing the trends were examined. Long-term snowfall trends for CNY were positive for original stations (˜0.46 +/- 0.20 in. yr -1) and homogenously filtered stations (0.23 +/- 0.20 in. yr -1). However, snowfall trends for shorter time-increments within the long-term period were not consistent, as positive, negative, and neutral trends were calculated. Regional differences in snowfall trends were observed for CNY as typical lake-effect areas (northern counties, the Tug Hill Plateau and the Southern Hills) experienced larger snowfall trends than areas less dominated by LES. Typical lake-effect months (December - February) experienced the greatest snowfall trend in CNY compared to other winter months. The

  1. Contaminants in American alligator eggs from Lake Apopka, Lake Griffin, and Lake Okeechobee, Florida

    USGS Publications Warehouse

    Heinz, Gary H.; Percival, H. Franklin; Jennings, Michael L.

    1991-01-01

    Residues of organochlorine pesticides, polychlorinated biphenyls (PCBs), and 16 elements were measured in American alligator (Alligator mississippiensis) eggs collected in 1984 from Lakes Apopka, Griffin, and Okeechobee in central and south Florida. Organochlorine pesticides were highest in eggs from Lake Apopka. None of the elements appeared to be present at harmful concentrations in eggs from any of the lakes. A larger sample of eggs was collected in 1985, but only from Lakes Griffin, a lake where eggs were relatively clean, and Apopka, where eggs were most contaminated. In 1985, hatching success of artificially incubated eggs was lower for Lake Apopka, and several organochlorine pesticides were higher than in eggs from Lake Griffin. However, within Lake Apopka, higher levels of pesticides in chemically analyzed eggs were not associated with reduced hatching success of the remaining eggs in the clutch. Therefore, it did not appear that any of the pesticides we measured were responsible for the reduced hatching success of Lake Apopka eggs.

  2. Seismic Data Reveal Lake-Level Changes in Lake Issyk-Kul, Kyrgyzstan

    NASA Astrophysics Data System (ADS)

    Gebhardt, C.; Spiess, V.; Keil, H.; Sauermilch, I.; Oberhänsli, H.; Abdrakhmatov, K.; De Batist, M. A.; Naudts, L.; De Mol, L.

    2013-12-01

    Lake Issyk-Kul is located in an intramontane basin of the Tien Shan, Kyrgyzstan, Central Asia, at 1607 m above sea level. It has formed in a tectonically active region with W-E striking major thrust zones both N and S of the lake. The lake is elongated with 180 km in W-E and 60 km in S-N direction and a water depth of roughly 670 m at its central plain. With a surface area of 6232 km2 and a total water colume of around 1736 km3, Lake Issyk-Kul is the second largest lake in the higher altitudes (De Batist et al., 2002). Two large delta areas have formed at the E and W end. Steep slopes at both the N and S shore separate rather narrow, shallow shelf areas from the central deeper plain. First seismic data of lake Issyk-Kul were acquired in 1982 by the Moscow University with a total of 31 profiles across the lake. In 1997 and 2001, a second and third seismic survey of the lake were carried out by the group of Marc De Batist (Ghent, Belgium) in cooperation with the Royal Museum of Central Africa (Tervuren, Belgium) and the SBRAS (Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia) using a sparker system with a single-channel streamer. These surveys were recently completed by a fourth expedition carried out by the University of Bremen in April 2013. During this expedition, 33 additional profiles were acquired with an airgun and a multi-channel streamer. The sparker surveys mostly cover the delta and shelf areas in high detail, while the airgun survey covers the deeper parts of the lake with penetration beyond the first multiple. Bathymetry data reveal that at the delta areas, the shelf is divided into two parts. The shallower comprises the part down to 110 m water depth with an average inclination of 0.5°, while the deeper part reaches from 110 m to 300 m water depth with an average slope inclination of 1°. Incised paleo-river channels of up to 2-3 km width and 50 m depth are visible both on the eastern and western shelf, but are limited to the

  3. Acidity of Lakes and Impoundments in North-Central Minnesota

    Treesearch

    Elon S. Verry

    1981-01-01

    Measurements of lake and impoundment pH for several years, intensive sampling within years, and pH-calcium plots verify normal pH levels and do not show evidence of changes due to acid precipitation. These data in comparison with general lake data narrow the northern Lake States area in which rain or snow may cause lake acidification.

  4. Ichthyoplankton assemblages of coastal west-central Lake Erie and associated habitat characteristics

    USGS Publications Warehouse

    McKenna, J.E.; Hunter, R. Douglas; Fabrizio, M.C.; Savino, J.F.; Todd, T.N.; Bur, M.

    2008-01-01

    Early life stage survival often determines fish cohort strength and that survival is affected by habitat conditions. The structure and dynamics of ichthyoplankton assemblages can tell us much about biodiversity and fish population dynamics, but are poorly understood in nearshore areas of the Great Lakes, where most spawning and nursery habitats exist. Ichthyoplankton samples were collected with a neuston net in waters 2-13 m deep weekly or biweekly from mid-April through August, during 3 years (2000-2002) as part of a study of fish assemblages in west-central Lake Erie. A suite of abiotic variables was simultaneously measured to characterize habitat. Cluster and ordination analyses revealed several distinct ichthyoplankton assemblages that changed seasonally. A lake whitefish (Coregonus clupeaformis) dominated assemblage appeared first in April. In May, assemblages were dominated by several percid species. Summer assemblages were overwhelmingly dominated by emerald shiner (Notropis atherinoides), with large gizzard shad (Dorosoma cepedianum) and alewife (Alosa pseudoharengus) components. This seasonal trend in species assemblages was also associated with increasing temperature and water clarity. Water depth and drift processes may also play a role in structuring these assemblages. The most common and widely distributed assemblages were not associated with substratum type, which we characterized as either hard or soft. The timing of hatch and larval growth separated the major groups in time and may have adaptive significance for the members of each major assemblage. The quality and locations (with reference to lake circulation) of spawning and nursery grounds may determine larval success and affect year class strength.

  5. The Shorezone Functionality Index applied to Central Europe lakes.

    NASA Astrophysics Data System (ADS)

    Zennaro, Barbara; Siligardi, Maurizio

    2013-04-01

    While most of earlier indices were characterized by a particular analysis, for example to the water itself (chemical analyses) or the biotic environment (biotic extended index), the Lake Shorezone Functionality Index (SFI) looks at the overall status of the lacustrine environment, extending out from the lake itself to also include the surrounding territory and watershed topography. Biotic and abiotic parameters are collected in the field with an ecological point of view to evaluate the buffering capacity of riparian vegetation, the complexity and artificiality of the shoreline, the anthropogenic use of the surrounding territory, and the way the inputs from the watershed enter the lake. Each shore stretch with similar parameters is evaluated in the field with a different form. The parameters collected are then run into a dedicated software (SFINX02) that will assigned a functionality level ranging from excellent to bad (divided into 5 categories as suggested from the WFD 2000/60/CE). The same software can also be used to model different scenarios, offering therefore a toll to foresee the impacts that public or private work may have on the lake, or to plan tailored restoration actions. The data transferred into a GIS environment is used to carry out further spatial analysis and to easily display the results in maps. The SFI reports, thematic maps and brochures give specific indications on what actions are needed to improve the functionality of the lake and to avoid stress to the lake. Therefore this index can be used to plan, monitor and evaluate restoration efforts. The SFI index is easily surveyed, speedily and economically, and it evaluates the state of the environment, assists in the identification of the causes of deterioration and represents a powerful tool that can be used for sustainable planning and management. To date, the Shorezone Functionality Index (created in 2009) has been used within the Eulakes and Silmas European projects in Italy (Lake Garda, Idro

  6. Hydrology and water quality of Park Lake, south-central Wisconsin

    USGS Publications Warehouse

    Kammerer, P.A.

    1996-01-01

    Park Lake extends to the northeast from the village of Pardeeville in Columbia County (fig. 1). Local residents perceive water-quality problems in the lake that include excessive algae and aquatic plant growth. Algae and plant growth in a lake are controlled, in part, by the availability of phosphorus in the water. However, no measurements of phosphorus enter- ing the lake or of other factors that affect lake-water quality had been made, and available data on water quality were limited to 2 years of measurements at one site in the lake in 1986- 87. To obtain the data and in- formation needed to address the water-quality problems at Park Lake and to develop a management plan that would limit the input of phosphorus to the lake, the U.S. Geologi- cal Survey, in cooperation with the Park Lake Management District, studied the hydrology of the lake and collected data needed to determine sources and amount of phosphorus en- tering the lake. This Fact Sheet summarizes the results of that study. Data collected during the study were published in a separate report (Holmstrom and others, 1994, p. 70-85).

  7. A new high-resolution sediment record from Lake Gościąż (central Poland)

    NASA Astrophysics Data System (ADS)

    Bonk, Alicja; Błaszkiewicz, Mirosław; Brauer, Achim; Brykała, Dariusz; Gierszewski, Piotr; Kramkowski, Mateusz; Plessen, Brigit; Schwab, Markus; Słowiński, Michał; Tjallingii, Rik

    2017-04-01

    The varved sediments from Lake Gościąż, located in the Vistula Valley in Central Poland, are an iconic record for palaeoclimate and palaeoenvironmental reconstruction (Goslar et al. 2000, Hajdas et al. 1995, Ralska-Jasiewiczowa et al. 1998). Recently, we obtained a set of new sediment cores from Lake Gościąż and established a 21 m long sediment profile. Except of the topmost part of the core, it is continuously laminated down to glacial sands. We aim at applying a comprehensive multi-proxy core analyses combined with monitoring of present-day sedimentation processes. Sediment investigations will include new methods that have been developed or advanced since the previous studies on the Lake Gościąż sediments including continuous micro-facies analyses, μXRF core scanning and tephrochronology. The main aims of our new project are a revision of the existing floating chronology and to synchronise the Lake Gościąż sediment record based on independent isochrones with other European varved lake records like, e.g. Lake Meerfelder Maar, in order to investigate in detail proxy responses to climate change and to decipher regional leads and lags in climate change. Here, we will present (1) the objectives of our new project on this key record of past climate and environmental change and, (2) preliminary results including magnetic susceptibility, μ-XRF core scanning and microfacies images. This study is a contribution to scientific project financed by the National Science Centre, Poland - No DEC-2015/19/B/ST10/03039.

  8. Seasonal and interannual effects of hypoxia on fish habitat quality in central Lake Erie

    USGS Publications Warehouse

    Arend, Kristin K.; Beletsky, Dmitry; DePinto, Joseph; Ludsin, Stuart A.; Roberts, James J.; Rucinski, Daniel K.; Scavia, Donald; Schwab, David J.; Höök, Tomas O.

    2011-01-01

    1. Hypoxia occurs seasonally in many stratified coastal marine and freshwater ecosystems when bottom dissolved oxygen (DO) concentrations are depleted below 2–3 mg O2 L-1. 2. We evaluated the effects of hypoxia on fish habitat quality in the central basin of Lake Erie from 1987 to 2005, using bioenergetic growth rate potential (GRP) as a proxy for habitat quality. We compared the effect of hypoxia on habitat quality of (i) rainbow smelt, Osmerus mordax mordax Mitchill (young-of-year, YOY, and adult), a cold-water planktivore, (ii) emerald shiner, Notropis atherinoides Rafinesque (adult), a warm-water planktivore, (iii) yellow perch, Perca flavescens Mitchill (YOY and adult), a cool-water benthopelagic omnivore and (iv) round goby Neogobius melanostomus Pallas (adult) a eurythermal benthivore. Annual thermal and DO profiles were generated from 1D thermal and DO hydrodynamics models developed for Lake Erie’s central basin. 3. Hypoxia occurred annually, typically from mid-July to mid-October, which spatially and temporally overlaps with otherwise high benthic habitat quality. Hypoxia reduced the habitat quality across fish species and life stages, but the magnitude of the reduction varied both among and within species because of the differences in tolerance to low DO levels and warm-water temperatures. 4. Across years, trends in habitat quality mirrored trends in phosphorus concentration and water column oxygen demand in central Lake Erie. The per cent reduction in habitat quality owing to hypoxia was greatest for adult rainbow smelt and round goby (mean: -35%), followed by adult emerald shiner (mean: -12%), YOY rainbow smelt (mean: -10%) and YOY and adult yellow perch (mean: -8.5%). 5. Our results highlight the importance of differential spatiotemporally interactive effects of DO and temperature on relative fish habitat quality and quantity. These effects have the potential to influence the performance of individual fish species as well as population dynamics

  9. Branched GDGT distributions in lakes from Mexico and Central America

    NASA Astrophysics Data System (ADS)

    Lei, A.; Werne, J. P.; Correa-Metrio, A.; Pérez, L.; Caballero, M.

    2017-12-01

    The potential to use bacterial derived branched glycerol dialkyl glycerol tetraethers (brGDGTs) to reconstruct mean annual air temperatures from soils sparked significant interest in the terrestrial paleoclimate community, where a high-fidelity paleotemperature proxy is desperately needed. While the source of brGDGTs remains unknown (but are potentially attributed to the highly diverse phylum Acidobacteria), much evidence points to the potential for these bacteria to live not only in the terrestrial environment but also in lake water and sediments as well. Though the application of brGDGTs to lacustrine reconstructions is promising, the initial applications of soil-based MBT/CBT proxy to lacustrine sediments typically resulted in lower temperatures than were reasonable, likely due to additions from lacustrine bacterial brGDGTs. Here, we present data from a suite of >100 lakes in Mexico and Central America, producing a regional core-top calibration different from those developed in other regions. Results indicate a significant role for regional differences in controlling the brGDGTs distribution, likely due to different brGDGT-producing microbial communities thriving under varying environmental conditions. Rigorous development of brGDGT based proxies will improve our understanding of the source and applicability of these biomarkers, and increase confidence in the accuracy of paleotemperature reconstructions to numerous lacustrine records in the region.

  10. Chemical evidences of the effects of global change in high elevation lakes in Central Himalaya, Nepal

    NASA Astrophysics Data System (ADS)

    Tartari, Gianni; Lami, Andrea; Rogora, Michela; Salerno, Franco

    2016-04-01

    It is well known that the lakes integrate the pressure of their surrounding terrestrial environment and the climatic variability. Both the water column and sediments are capable to accumulate signals of global change, such as warming of the deep layers or mutation of diverse biological records (e.g., fossil diatoms) and the nutrient loads variability affecting the trophic state. Typically, the biological responses to climate change have been studied in several types of lakes, while documented changes in water chemistry are much rare. A long term study of 20 high altitude lakes located in central southern Himalaya (Mt Everest) conducted since the 90s has highlighted a general change in the chemical composition of the lake water: a substantial rise in the ionic content was observed, particularly pronounced in the case of sulphate. In a couple of these lakes, monitored on an annual basis, the sulphate concentrations increased over 4-fold. A change in the composition of atmospheric wet deposition, as well as a possible influence of decrease in seasonal snow cover duration, which could have exposed larger basin surfaces to alteration processes, were excluded. The chemical changes proved to be mainly related to the sulphide oxidation processes occurring in the bedrocks or the hydrographic basins. In particular, the oxidation processes, considered as the main factor causing the sulphate increase, occurred in subglacial environments characterized by higher glacier velocities causing higher glacier shrinkage. Associated to this mechanism, the exposure of fresh mineral surfaces to the atmosphere may have contributed also to increases in the alkalinity of lakes. Weakened monsoon of the past two decades may have partially contributed to the solute enrichment of the lakes through runoff waters. The almost synchronous response of the lakes studied, which differs in terms of the presence of glaciers in their basins, highlights the fact that the increasing ionic content of lake

  11. Contrasting evolution patterns between glacier-fed and non-glacier-fed lakes in the central Tibetan Plateau and driving force analysis

    NASA Astrophysics Data System (ADS)

    Song, C.; Sheng, Y.

    2015-12-01

    High-altitude lakes in the Tibetan Plateau (TP) showed strong spatio-temporal variability during past decades. The lake dynamics can be associated with several key factors including lake type, supply of glacial meltwater, local climate variations. It is important to differentiate these factors when analyzing the driving force of lakes dynamics. With a focus on lakes over the Tanggula Mountains of the central TP, this study investigates the temporal evolution patterns of lake area and water level of different types: glacier-fed closed lake, non-glacier-fed closed lake and upstream lake (draining into closed lakes). We collected all available Landsat archive data and quantified the inter-annual variability of lake extents. Results show accelerated expansions of both glacier-fed and non-glacier-fed lakes during 1970s-2013, and different temporal patterns of the two types of lakes: the non-glacier-fed lakes displayed a batch-wise growth pattern, with obvious growth in 2002, 2005 and 2011 and slight changes in other years, while glacier-fed lakes showed steady expanding tendency. The contrasting patterns are confirmed by the distinction of lake level change between the two groups derived from satellite altimetry during 2003-2009. The upstream lakes remained largely stable due to natural drainage regulation. The intermittent expansions for non-glacier-fed lakes were found to be related to excessive precipitation events and positive "precipitation-evaporation". In contrast, glacier-fed lake changes showed weak correlations with precipitation variations, which imply a joint contribution from glacial meltwater to water budgets. A simple estimation reveals that the increased water storage for all of examined lakes contributed from precipitation/evaporation (0.31±0.09 Gt/yr) slightly overweighed the glacial meltwater supply (0.26±0.08 Gt/yr).

  12. Index to limnological data for southcentral Alaska Lakes

    USGS Publications Warehouse

    Maurer, M.A.; Woods, P.F.

    1987-01-01

    South-central Alaska lakes are a valuable natural resource and provide a variety of recreational opportunities to the public. Lakeside development has increased significantly in the past 10 years and several south-central Alaskan lakes have documented pollution problems. Cultural eutrophication, the process by which man-induced nutrient loading to a lake results in large increases in biological productivity, can also produce noxious algae blooms, dissolved oxygen depletion at depth, reduced water transparency, and fish kills. The potential for cultural eutrophication of south-central Alaska lakes prompted the U.S. Geological Survey (USGS) Water Resources Division and the Alaska Department of Natural Resources-Division of Geological and Geophysical Surveys (ADGGS) to provide lake researchers, managers, and the public with this index of published historical and current limnological references. The purpose of the index is to provide reference to the data which can be used to identify and monitor cultural eutrophication of south-central Alaska lakes. (Lantz-PTT)

  13. Geomorphology of the Chippewa River delta of Glacial Lake Saginaw, central Lower Michigan, USA

    NASA Astrophysics Data System (ADS)

    Connallon, Christopher B.; Schaetzl, Randall J.

    2017-08-01

    We introduce, characterize, and interpret the geomorphic history of a relict, Pleistocene-aged delta of the Chippewa River in central Lower Michigan. The broad, sandy Chippewa delta developed into various stages of Glacial Lake Saginaw, between ca. ≈ 17 and 15 ka·BP (calibrated ages). Although the delta was first identified in 1955 on a statewide glacial geology map, neither its extent nor its Pleistocene history had been previously determined. The delta is typically forested, owing to its wet, sandy soils, which stand out against the agricultural fields of the surrounding, loamy lake plain sediments. The delta heads near the city of Mt Pleasant and extends eastward onto the Saginaw Lowlands, i.e., the plain of Glacial Lake Saginaw. Data from 3285 water well logs, 180 hand augered sites, and 185 points randomly located in a GIS on two-storied (sand over loam) soils were used to determine the extent, textural properties, and thickness of the delta. The delta is ≈ 18 km wide and ≈ 38 km long and is sandy throughout. Deltaic sediments from neighboring rivers that also drained into Glacial Lake Saginaw merge with the lower Chippewa delta, obscuring its boundary there. The delta is thickest near the delta's head and in the center, but thins to 1-2 m or less on its eastern margins. Mean thicknesses are 2.3-2.9 m, suggestive of a thin sediment body, frequently impacted by the waves and fluctuating waters of the lakes. Although beach ridges are only weakly expressed across the delta because of the sandy sediment, the coarsest parts of the delta are generally coincident with some of these inferred former shorezones and have a broad, incised channel that formed while lake levels were low. The thick upper delta generally lies above the relict shorelines of Glacial Lakes Saginaw and Arkona (≈ 17.1 to ≈ 16 ka·BP), whereas most of the thin, distal delta is associated with Glacial Lake Warren (≈ 15 ka·BP). Together, these data suggest that the Chippewa delta formed

  14. Lake Level Variation in Small Lakes: Not a Clear Picture

    NASA Astrophysics Data System (ADS)

    Starratt, S.

    2017-12-01

    Lake level is a useful tool for identifying regional changes in precipitation and evaporation. Due to the volume of water in large lakes, they may only record large-scale changes in water balance, while smaller lakes may record more subtle variations. However, the record of water level in small lakes is affected by a number of factors including elevation, bathymetry, nutrient load, and aquatic macrophyte abundance. The latest Quaternary diatom records from three small lakes with areas of <10 ha (Hobart Lake, OR, 1458 masl; Swamp Lake, CA, 1554 masl; Favre Lake, NV, 2899 masl) and a larger lake (Medicine Lake, CA, 2036 masl, 154 ha) were compared in this study. All the lakes have a deep central basin (>10 m) surrounded by a shallow (1-2 m) shelf. Changes in the abundance of diatoms representing different life habits (benthic, tychoplanktic, planktic) were used to identify lake level variation. Benthic taxa dominate the assemblage when only the central basin is occupied. As the shallow shelf is flooded, the abundance of tychoplanktic taxa increases. Planktic taxa increase with the establishment of stratification. Favre Lake presents the clearest indication of initial lake level rise (7600-5750 cal yr BP) and intermittent flooding of the shelf for the remainder of the record. Stratification appears to become established only in the last few hundred years. Higher nutrient levels in the early part of the Hobart Lake record lead to a nearly monotypic planktic assemblage which is replaced by a tychoplanktic-dominated assemblage as the lake floods the shelf at about 3500 cal yr BP. The last 500 years is dominated by benthic taxa associated with aquatic macrophytes. The consistent presence of planktic taxa in the Swamp Lake record suggests that the lake was stratified during most of its history, although slight variations in the relative abundances of planktic and tychoplanktic groups occur. The Medicine Lake record shows a gradual increase in planktic species between 11

  15. Deep structure beneath Lake Ontario: Crustal-scale Grenville subdivisions

    USGS Publications Warehouse

    Forsyth, D. A.; Milkereit, B.; Zelt, Colin A.; White, D. J.; Easton, R. M.; Hutchinson, Deborah R.

    1994-01-01

    Lake Ontario marine seismic data reveal major Grenville crustal subdivisions beneath central and southern Lake Ontario separated by interpreted shear zones that extend to the lower crust. A shear zone bounded transition between the Elzevir and Frontenac terranes exposed north of Lake Ontario is linked to a seismically defined shear zone beneath central Lake Ontario by prominent aeromagnetic and gravity anomalies, easterly dipping wide-angle reflections, and fractures in Paleozoic strata. We suggest the central Lake Ontario zone represents crustal-scale deformation along an Elzevir–Frontenac boundary zone that extends from outcrop to the south shore of Lake Ontario.Seismic images from Lake Ontario and the exposed western Central Metasedimentary Belt are dominated by crustal-scale shear zones and reflection geometries featuring arcuate reflections truncated at their bases by apparent east-dipping linear reflections. The images show that zones analogous to the interpreted Grenville Front Tectonic Zone are also present within the Central Metasedimentary Belt and support models of northwest-directed crustal shortening for Grenvillian deep crustal deformation beneath most of southeastern Ontario.A Precambrian basement high, the Iroquoian high, is defined by a thinning of generally horizontal Paleozoic strata over a crestal area above the basement shear zone beneath central Lake Ontario. The Iroquoian high helps explain the peninsular extension into Lake Ontario forming Prince Edward County, the occurrence of Precambrian inlier outcrops in Prince Edward County, and Paleozoic fractures forming the Clarendon–Linden structure in New York.

  16. Mercury accumulation in yellow perch in Wisconsin seepage lakes: Relation to lake characteristics

    USGS Publications Warehouse

    Cope, W.G.; Wiener, J.G.; Rada, R.G.

    1990-01-01

    We studied relations between lacustrine characteristics and the total mercury (Hg) content of calendar age-2 yellow perch (Perca flavescens) in 10 seepage lakes in north-central Wisconsin. Mean concentrations and burdens (masses) of Hg in whole perch varied widely among lakes, were negatively correlated with lake pH and were positively correlated with total Hg concentration in surficial profundal sediment. Approximately 80 to 90% of the variation in Hg concentration and burden in whole perch was explained with multiple regressions containing two independent variables: either lake pH or alkalinity, and Hg concentration in surficial sediment. Variation among lakes in the Hg concentration in yellow perch was unrelated to their relative rates of growth. The mean concentration of Hg in axial muscle tissue of age-5 walleyes (Stizostedion vitreum vitreum) from five of the study lakes was highly correlated with the mean concentration in whole age-2 perch in the same lakes. We hypothesized that the high Hg concentrations often seen in piscivorous fish in low-alkalinity lakes (relative to high-alkalinity lakes) is at least partly due to a greater dietary intake of Hg in such waters. Furthermore, the analysis of small yellow perch—the preferred prey of adult walleyes and an important forage species for many predatory fishes in the north-central United States—may be an effective approach to assessing Hg bioavailability in the region's lakes.

  17. Holocene lake-level fluctuations of Lake Aricota, Southern Peru

    USGS Publications Warehouse

    Placzek, C.; Quade, Jay; Betancourt, J.L.

    2001-01-01

    Lacustrine deposits exposed around Lake Aricota, Peru (17?? 22???S), a 7.5-km2 lake dammed by debris flows, provide a middle to late Holocene record of lake-level fluctuations. Chronological context for shoreline deposits was obtained from radiocarbon dating of vascular plant remains and other datable material with minimal 14C reservoir effects (<350 yr). Diatomites associated with highstands several meters above the modern lake level indicate wet episodes. Maximum Holocene lake level was attained before 6100 14C yr B.P. and ended ???2700 14C yr B.P. Moderately high lake levels occurred at 1700 and 1300 14C yr B.P. The highstand at Lake Aricota during the middle Holocene is coeval with a major lowstand at Lake Titicaca (16?? S), which is only 130 km to the northeast and shares a similar climatology. Comparisons with other marine and terrestrial records highlight emerging contradictions over the nature of mid-Holocene climate in the central Andes. ?? 2001 University of Washington.

  18. Holocene Lake-Level Fluctuations of Lake Aricota, Southern Peru

    NASA Astrophysics Data System (ADS)

    Placzek, Christa; Quade, Jay; Betancourt, Julio L.

    2001-09-01

    Lacustrine deposits exposed around Lake Aricota, Peru (17° 22‧S), a 7.5-km2 lake dammed by debris flows, provide a middle to late Holocene record of lake-level fluctuations. Chronological context for shoreline deposits was obtained from radiocarbon dating of vascular plant remains and other datable material with minimal 14C reservoir effects (<350 yr). Diatomites associated with highstands several meters above the modern lake level indicate wet episodes. Maximum Holocene lake level was attained before 6100 14C yr B.P. and ended ∼2700 14C yr B.P. Moderately high lake levels occurred at 1700 and 1300 14C yr B.P. The highstand at Lake Aricota during the middle Holocene is coeval with a major lowstand at Lake Titicaca (16°S), which is only 130 km to the northeast and shares a similar climatology. Comparisons with other marine and terrestrial records highlight emerging contradictions over the nature of mid-Holocene climate in the central Andes.

  19. Quartz-molybdenite veins in the Priestly Lake granodiorite, north-central Maine

    USGS Publications Warehouse

    Ayuso, Robert A.; Shank, Stephen G.

    1983-01-01

    Quartz-molybdenite veins up to 15 cm in width occur in fine to medium-grained porphyritic biotite-hornblende granodiorite at Priestly Lake north-central Maine. An area of about 150 m x 150 m contains quartz-molybdenite veins; a larger area is characterized by barren quartz veins. Quartz-molybdenite veins are concentrated within the most felsic variants of the intrusion as suggested by lower mafic mineral contents. The pluton has a narrow range in SiO2 (67-70 wt.%), major oxides, and in trace-element compositions. Molybdenite occurs as coarse grained clusters in pockets within the quartz veins, and fills fractures in the quartz veins and host rocks. Disseminated molybdenite in the granodiorite is relatively rare and occurs only in the area characterized by a high density of quartz veins (up to 50 veins per square meter). Alteration envelopes along the quartz veins are very thin or absent, although in some areas the granodiorite appears to be selectively and pervasively altered. Sericite, chlorite, epidote, calcite, pyrite, and quartz are concentrated near the quartz-molybdenite veins. Many of the field and geochemical characteristics of the Priestly Lake pluton are unlike those of major molybdenum-producing areas (Climax, Henderson, Urad). For example, the area of alteration seems to be of limited extent, the host rock is not intensely altered hydrothermally at the surface, the density of fractures is rather low in the mineralized area, and the amount of disseminated molybdenite appears to be small. However, the Priestly Lake pluton may be a small fraction of a concealed batholith as suggested by geophysical data. It is conceivable that the type of mineralization at the surface might be the expression of more extensive molybdenite mineralization at depth. The quartz-molybdenite veins in the Priestly Lake pluton are significant because they indicate that potential molybdenum sources for producing mineralized granites were available at depth. Future studies should be

  20. An 8,000 year oxygen isotope record of hydroclimatic change from Paradise Lake, central British Columbia

    NASA Astrophysics Data System (ADS)

    Hillman, A. L.; Abbott, M. B.; Steinman, B. A.; Pompeani, D. P.; Cwiklik, J. P.

    2013-12-01

    Climate in the Pacific Northwest over the Holocene has primarily been controlled by the position of the Aleutian Low (AL), which is interconnected to the Pacific Decadal Oscillation (PDO) and the El Nino Southern Oscillation (ENSO). Stable isotopes of authigenic calcite precipitated from lake water and archived as lake sediment can be used to reconstruct changes in precipitation/evaporation (P/E) balance over timescales ranging from individual years to millennia. Several records of this type from southern British Columbia and northern Washington (e.g., Castor and Cleland Lakes), as well as from the southern Yukon Territory (e.g., Marcella and Rantin Lakes) have been produced, but few records from between these two regions exist. Here, we present a record of δ18O and δ13C measurements of authigenic calcite from Paradise Lake, British Columbia (54.68259°N, 122.61154°W), a surficially closed basin, groundwater throughflow lake located in the central interior of British Columbia. A total of 14 AMS radiocarbon dates were used to provide age control for the Paradise Lake record. In sediment from 8,000-4,500 years BP, oxygen isotope values vary around a mean value of -18.0‰. From 4,500-2,000 years BP, a general trend towards more positive oxygen isotope values occurs, with increased variability in both δ18O and δ13C. A gradual shift of ~2‰ in δ18O measurements (to a mean value of -16.0‰) occurs over the last 2,000 years of the record, likely due to lower lake levels. The large magnitude mean state shifts in oxygen isotopes over the last 8,000 years are similar to that observed in the Marcella Lake record (Anderson et al., 2007), although they are of a smaller magnitude. We hypothesize that significant groundwater throughflow at Paradise Lake likely causes a muted hydrologic and isotopic response to climate forcing relative to Marcella Lake, which has more isotopically enriched water and loses a greater proportion of water via evaporation. The Paradise lake

  1. Challenges in understanding, modelling, and mitigating Lake Outburst Flood Hazard: experiences from Central Asia

    NASA Astrophysics Data System (ADS)

    Mergili, Martin; Schneider, Demian; Andres, Norina; Worni, Raphael; Gruber, Fabian; Schneider, Jean F.

    2010-05-01

    Lake Outburst Floods can evolve from complex process chains like avalanches of rock or ice that produce flood waves in a lake which may overtop and eventually breach glacial, morainic, landslide, or artificial dams. Rising lake levels can lead to progressive incision and destabilization of a dam, to enhanced ground water flow (piping), or even to hydrostatic failure of ice dams which can cause sudden outflow of accumulated water. These events often have a highly destructive potential because a large amount of water is released in a short time, with a high capacity to erode loose debris, leading to a powerful debris flow with a long travel distance. The best-known example of a lake outburst flood is the Vajont event (Northern Italy, 1963), where a landslide rushed into an artificial lake which spilled over and caused a flood leading to almost 2000 fatalities. Hazards from the failure of landslide dams are often (not always) fairly manageable: most breaches occur in the first few days or weeks after the landslide event and the rapid construction of a spillway - though problematic - has solved some hazardous situations (e.g. in the case of Hattian landslide in 2005 in Pakistan). Older dams, like Usoi dam (Lake Sarez) in Tajikistan, are usually fairly stable, though landsildes into the lakes may create floodwaves overtopping and eventually weakening the dams. The analysis and the mitigation of glacial lake outburst flood (GLOF) hazard remains a challenge. A number of GLOFs resulting in fatalities and severe damage have occurred during the previous decades, particularly in the Himalayas and in the mountains of Central Asia (Pamir, Tien Shan). The source area is usually far away from the area of impact and events occur at very long intervals or as singularities, so that the population at risk is usually not prepared. Even though potentially hazardous lakes can be identified relatively easily with remote sensing and field work, modeling and predicting of GLOFs (and also

  2. Principal Facts for 463 Gravity Stations in the Vicinity of Tangle Lakes, East-Central Alaska

    USGS Publications Warehouse

    Morin, Robert L.; Glen, Jonathan M.G.

    2002-01-01

    During the summer of 2001, a gravity survey was conducted in the vicinity of Tangle Lakes, east-central Alaska. Measurements of 87 gravity stations were made. The Tangle Lakes area is located about 25 km west of Paxson and north of the Denali Highway. The gravity survey is located on the southwest corner of the Mt. Hayes and the northwest corner of the Gulkana 1:250,000 scale USGS topographic maps. The boundaries of the study area are 62 deg 30' to 63 deg 30' N. latitude and 145 deg 30' to 147 deg 00' W. longitude. A map showing the location of the study area is shown in figure 1. One gravity base station was used for control for this survey. This base station, TLIN is located at the Tangle Lakes Inn. The observed gravity of this station was calculated based on multiple ties to base stations ANCU in Anchorage, PALH in Palmer, BD27 in Gulkana, and base stations D42, and D57 along the Denali Highway.

  3. Effects of recharge, Upper Floridan aquifer heads, and time scale on simulated ground-water exchange with Lake Starr, a seepage lake in central Florida

    USGS Publications Warehouse

    Swancar, Amy; Lee, Terrie Mackin

    2003-01-01

    Lake Starr and other lakes in the mantled karst terrain of Florida's Central Lake District are surrounded by a conductive surficial aquifer system that receives highly variable recharge from rainfall. In addition, downward leakage from these lakes varies as heads in the underlying Upper Floridan aquifer change seasonally and with pumpage. A saturated three-dimensional finite-difference ground-water flow model was used to simulate the effects of recharge, Upper Floridan aquifer heads, and model time scale on ground-water exchange with Lake Starr. The lake was simulated as an active part of the model using high hydraulic conductivity cells. Simulated ground-water flow was compared to net ground-water flow estimated from a rigorously derived water budget for the 2-year period August 1996-July 1998. Calibrating saturated ground-water flow models with monthly stress periods to a monthly lake water budget will result in underpredicting gross inflow to, and leakage from, ridge lakes in Florida. Underprediction of ground-water inflow occurs because recharge stresses and ground-water flow responses during rainy periods are averaged over too long a time period using monthly stress periods. When inflow is underestimated during calibration, leakage also is underestimated because inflow and leakage are correlated if lake stage is maintained over the long term. Underpredicted leakage reduces the implied effect of ground-water withdrawals from the Upper Floridan aquifer on the lake. Calibrating the weekly simulation required accounting for transient responses in the water table near the lake that generated the greater range of net ground-water flow values seen in the weekly water budget. Calibrating to the weekly lake water budget also required increasing the value of annual recharge in the nearshore region well above the initial estimate of 35 percent of the rainfall, and increasing the hydraulic conductivity of the deposits around and beneath the lake. To simulate the total

  4. Late Holocene climate change at Goat Lake, Kenai Mountains, south-central Alaska

    NASA Astrophysics Data System (ADS)

    Daigle, T. A.; Kaufman, D. S.

    2006-12-01

    Lake sediments, glacier extents, and tree rings were used to reconstruct late Holocene climate changes from Goat Lake in the Kenai Mountains, south-central Alaska (60° 14' N/149° 54' W). Two sediment cores (3.7 and 5.6 m long) were dated with 16 AMS 14C ages and record changes in watershed (organic- matter content) and within-lake (biogenic silica) productivity since ~9500 cal yr BP. Sediment analyses focused on the last 1000 yr; this interval includes a sharp transition from gyttja to inorganic mud at ~1660 AD, which marks the fist time since Pleistocene deglaciation that the north goat outlet glacier (NGO) of the Harding Icefield overtopped the drainage divide at 590 m asl to spill meltwater into Goat Lake. One 14C age of ~1535 AD from a subfossil log in the NGO valley requires ~125 yr for the NGO to thicken 150 m to the elevation of the drainage divide where it remained until ~1930. Since ~1930, the NGO has thinned 150 m and retreated 1.4 km. Equilibrium-line altitudes (ELA) were reconstructed for 12 cirque glaciers nearby Goat Lake based on the accumulation-area ratio (AAR) method following field mapping of ice-marginal features formed during the maximum Little Ice Age (LIA) in the 19th century. Maximum LIA ELA data (AAR = 0.58) were compared with 1950 ELA and yield an average lowering of 50 ± 20 m. Application of the local lapse rate of 0.47°C/100 m indicates an average ablation-season temperature reduction of 0.3°C during the maximum LIA compared to 1950, assuming no change in winter precipitation. A new tree-ring chronology from 27 hemlock trees in the Goat Lake watershed correlates with mean March through August temperature from Kenai airport (r = 0.35) and a 207 yr reconstruction indicates an average temperature reduction of 1.0°C from 1800-1900 compared with 1930-1950. Assuming no change in winter precipitation, then a 1°C cooling should have been associated with an ELA lowering by 200 m. This did not occur, and we suggest that some degree of

  5. A CHRONOLOGICAL FRAMEWORK FOR THE HOLOCENE VEGETATIONAL HISTORY OF CENTRAL MINNESOTA: THE STEEL LAKE POLLEN RECORD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, H E; Stefanova, I; Tian, J

    Paleorecords from Minnesota and adjacent areas have often been used to evaluate large-scale climatic processes in the mid-continent of North America. However, most of these records are compromised by chronological flaws, making problematic any comparisons with climatic interpretations based on other records (e.g., GISP2 in Greenland). We report here a high-resolution pollen record with a secure chronology constrained by 26 {sup 14}C dates on terrestrial macrofossils from Steel Lake, central Minnesota. About 11,200 years ago (calibrated yr BP) the late-glacial Picea forest near Steel Lake was succeeded abruptly by Pinus banksiana and/or resinosa. The Pinus forest began to open 9.4more » ka cal BP with the expansion of prairie taxa, and a pine parkland or savanna prevailed until about 8 ka cal BP, when Quercus replaced Pinus to become the dominant tree in the prairie areas for 4500 years. The close chronological control permits the correlation of key vegetational changes with those at other reliably dated sites in the eastern Dakotas and in Minnesota, suggesting that the abrupt decline of the spruce forest was time-transgressive from southwest to northeast during 2000 years, and that the development of prairie was time-transgressive in the same direction over 2600 years. Correlation of key pollen horizons at Steel Lake with those in the high-resolution pollen profiles of Elk Lake, ca. 50 km northwest of Steel Lake, suggests that the well-known Elk Lake varve chronology for the early Holocene is about 1000 years too young.« less

  6. Quick Release of Internal Water Storage in a Glacier Leads to Underestimation of the Hazard Potential of Glacial Lake Outburst Floods From Lake Merzbacher in Central Tian Shan Mountains

    NASA Astrophysics Data System (ADS)

    Shangguan, Donghui; Ding, Yongjian; Liu, Shiyin; Xie, Zunyi; Pieczonka, Tino; Xu, Junli; Moldobekov, Bolot

    2017-10-01

    Glacial meltwater and ice calving contribute to the flood volume of glacial lakes such as Lake Merzbacher in the Tian Shan Mountains of central Asia. In this study, we simulated the lake's volume by constructing an empirical relationship between the area of Lake Merzbacher, determined from satellite images, and the lake's water storage, derived from digital elevation models. Results showed that the lake water supply rate before Glacial Lake Outburst Floods (GLOFs) generally agreed well with those during the GLOFs from 2009 to 2012 but not in 2008 and 2015. Furthermore, we found that the combination of glacial meltwater and ice calving is not enough to fully explain the supply rate during GLOFs in 1996 and 1999, suggesting other factors affect the supply rate during GLOFs as well. To examine this further, we compared the water supply rate before and during GLOF events in 1999 and 2008. We inferred that quickly released short-term and intermediate-term water storage by glaciers have likely contributed to both flood events in those years. This study highlights the need to improve our understanding of the supply component of outburst floods, such as irregularly released stored water may lead to GLOF events with generally three different types: case I (singular event-triggered englacial water release), case II (glacier melt due to temperature changes), and case III (englacial water release mixed with glacier melt).

  7. Climatic oscillations in central Italy during the Last Glacial-Holocene transition: the record from Lake Accesa

    NASA Astrophysics Data System (ADS)

    Magny, Michel; de Beaulieu, Jacques-Louis; Drescher-Schneider, Ruth; Vannière, Boris; Walter-Simonnet, Anne-Véronique; Millet, Laurent; Bossuet, Gilles; Peyron, Odile

    2006-05-01

    This paper presents an event stratigraphy based on data documenting the history of vegetation cover, lake-level changes and fire frequency, as well as volcanic eruptions, over the Last Glacial-early Holocene transition from a terrestrial sediment sequence recovered at Lake Accesa in Tuscany (north-central Italy). On the basis of an age-depth model inferred from 13 radiocarbon dates and six tephra horizons, the Oldest Dryas-Bølling warming event was dated to ca. 14 560 cal. yr BP and the Younger Dryas event to ca. 12 700-11 650 cal. yr BP. Four sub-millennial scale cooling phases were recognised from pollen data at ca. 14 300-14 200, 13 900-13 700, 13 400-13 100 and 11 350-11 150 cal.yrBP. The last three may be Mediterranean equivalents to the Older Dryas (GI-1d), Intra-Allerød (GI-1b) and Preboreal Oscillation (PBO) cooling events defined from the GRIP ice-core and indicate strong climatic linkages between the North Atlantic and Mediterranean areas during the last Termination. The first may correspond to Intra-Bølling cold oscillations registered by various palaeoclimatic records in the North Atlantic region. The lake-level record shows that the sub-millennial scale climatic oscillations which punctuated the last deglaciation were associated in central Italy with different successive patterns of hydrological changes from the Bølling warming to the 8.2ka cold reversal. Copyright

  8. An integrated investigation of lake storage and water level changes in the Paiku Co basin, central Himalayas

    NASA Astrophysics Data System (ADS)

    Lei, Yanbin; Yao, Tandong; Yang, Kun; Bird, Broxton W.; Tian, Lide; Zhang, Xiaowen; Wang, Weicai; Xiang, Yang; Dai, Yufeng; Lazhu; Zhou, Jing; Wang, Lei

    2018-07-01

    Since the late 1990s, lakes in the southern Tibetan Plateau (TP) have shrunk considerably, which contrasts with the rapid expansion of lakes in the interior TP. Although these spatial trends have been well documented, the underlying hydroclimatic mechanisms are not well understood. Since 2013, we have carried out comprehensive water budget observations at Paiku Co, an alpine lake in the central Himalayas. In this study, we investigate water storage and lake level changes on seasonal to decadal time scales based on extensive in-situ measurements and satellite observations. Bathymetric surveys show that Paiku Co has a mean and maximum water depth of 41.1 m and 72.8 m, respectively, and its water storage was estimated to be 109.3 × 108 m3 in June 2016. On seasonal scale between 2013 and 2017, Paiku Co's lake level decreased slowly between January and May, increased considerably between June and September, and then decreased rapidly between October and January. On decadal time scale, Paiku Co's lake level decreased by 3.7 ± 0.3 m and water storage reduced by (10.2 ± 0.8) × 108 m3 between 1972 and 2015, accounting for 8.5% of the total water storage in 1972. This change is consistent with a trend towards drier conditions in the Himalaya region during the recent decades. In contrast, glacial lakes within Paiku Co's basin expanded rapidly, indicating that, unlike Paiku Co, glacial meltwater was sufficient to compensate the effect of the reduced precipitation.

  9. Monitoring of Bashkara glacial lakes (the Central Caucasus) and modelling of their potential outburst.

    NASA Astrophysics Data System (ADS)

    Krylenko, I.; Norin, S.; Petrakov, D.; Tutubalina, O.; Chernomorets, S.

    2009-04-01

    In recent decades due to glacier retreat the glacial lakes in the Central Caucasus, as well as in other high-mountainous areas of the world, have expanded intensively. As result the risk of lake outbursts and destructive floods is raising. In this paper we present one of the most potentially hazardous lakes of this region - a group of glacial lakes near the Bashkara glacier in the upper Adylsu river valley, to the southeast of Mt. Elbrus. Total area of these lakes is about 100,000m2, and a total volume exceeds 1,000,000 m3. The biggest of them - the Bashkara lake has formed in late 1930s - early 1940s and the small Lapa lake has appeared in the end of 1980s. The Bashkara lake outburst occurred twice in the end of 1950s and produced devastating debris flows of ca. 2 million m3. We have monitored these lakes since 1999. Our work includes detailed field research: constant measurements of water level during warm period, annually repeated bathymetric surveys, geodetic surveys, observations on dam condition and some special measurements (i.e. water temperature distribution, current velocity). Also we use aerial and satellite images to obtain data about dynamic of areas for the lakes. From 2001 to 2006 years volume of the Lapa lake has increased 5 times (from 30,000 m3 to 140,000 m3), the Bashkara lake in this period was quasi-stable. In 2006-2008 volume of the Lapa lake has decreased due to sedimentation, however, rapid growth of water level in Bashkara lake (more than 20 sm. per day) has suddenly begun. As a result, volume of the Bashkara lake exceeded 1,000000 m3 in July 2008 whereas in 2001 -2007 year it was about 800,000 m3. Previous maximum of water level was exceeded on 3,5 m, moraine dam with ice core was overtopped and overflow has started. Thus, Bashkara glacier lakes are unstable and risk of outburst is increasing. To assess parameters and zones of potential outburst flood in the Adylsu River valley we have carried out hydrodynamic simulation. Two computer

  10. Hydro-isostatic deflection and tectonic tilting in the central Andes: Initial results of a GPS survey of Lake Minchin shorelines

    NASA Technical Reports Server (NTRS)

    Bills, Bruce G.; De Silva, Shanaka L.; Currey, Donald R.; Emenger, Robert S.; Lillquist, Karl D.; Donnellan, Andrea; Worden, Bruce

    1994-01-01

    Sufficiently large lake loads provide a means of probing rheological stratification of the crust and upper mantle. Lake Minchin was the largest of the late Pleistocene pluvial lakes in the central Andes. Prominent shorelines, which formed during temporary still-stands in the climatically driven lake level history, preserve records of lateral variations in subsequent net vertical motions. At its maximum extent the lake was 140 m deep and spanned 400 km N-S and 200 km E-R. The load of surficial water contained in Lake Minchin was sufficient to depress the crust and underlying mantle by 20-40 m, depending on the subjacent rheology. Any other differential vertical motions will also be recorded as departures from horizontality of the shorelines. We recently conducted a survey of shoreline elevations of Lake Minchin with the express intent of monitoring the hydro-isostatic deflection and tectonic tilting. Using real-time differential Global Positioning System (GPS), we measured topographic profiles across suites of shorelines at 15 widely separated locations throughout the basin. Horizontal and vertical accuracies attained are roughly 30 and 70 cm, respectively. Geomorphic evidence suggests that the highest shoreline was occupied only briefly (probably less than 200 years) and radiocarbon dates on gastropod shells found in association with the shore deposits constrain the age to roughly 17 kyr. The basin-side pattern of elevations of the highest shoreline is composed of two distinct signals: (27 +/- 1) m of hydro-isostatic deflection due to the lake load, and a planar tilt with east and north components of (6.8 +/- 0.4) 10(exp -5) and 9-5.3 +/- 0.3) 10(exp -5). This rate of tilting is too high to be plausibly attributed to steady tectonism, and presumably reflects some unresolved combination of tectonism plus the effects of oceanic and lacustrine loads on a laterally heterogeneous substrate. The history of lake level fluctuations is still inadequately known to allow

  11. Water quality of Lake Austin and Town Lake, Austin, Texas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrews, F.L.; Wells, F.C.; Shelby, W.J.

    1988-01-01

    Lake Austin and Town Lake are impoundments on the Colorado River in Travis County, central Texas, and are a source of water for municipal industrial water supplies, electrical-power generation, and recreation for more than 500,000 people in the Austin metropolitan area. Small vertical temperature variations in both lakes were attributed to shallow depths in the lakes and short retention times of water in the lakes during the summer months. The largest areal variations in dissolved oxygen generally occur in Lake Austin during the summer as a result of releases of water from below the thermocline in Lake Travis. Except formore » iron, manganese, and mercury, dissolved concentrations of trace elements in water collected from Lake Austin and Town Lake did not exceed the primary or secondary drinking water standards set by the US Environmental Protection Agency. Little or no effect of stormwater runoff on temperature, dissolved oxygen, or minor elements could be detected in either Lake Austin or Town Lake. Little seasonal or areal variation was noted in nitrogen concentrations in Lake Austin or Town lake. Total phosphorus concentrations generally were small in both lakes. Increased concentrations of nitrogen and phosphorus were detected after storm runoff inflow in Town Lake, but not in Lake Austin; densities of fecal-coliform bacteria increased in Lake Austin and Town Lake, but were substantially greater in Town Lake than in Lake Austin. 18 refs., 38 figs., 59 tabs.« less

  12. Structural Evolution of central part of the Tuzgolu (Salt Lake) Basin, Central Anatolia, Turkey

    NASA Astrophysics Data System (ADS)

    Ada, M.; Cemen, I.; Çaptuğ, A.; Demirci, M.; Engin, C.

    2017-12-01

    The Tuzgolu Basin in Central Anatolia, Turkey, covers low-relief areas located between the Pontide Mountains to the North and Tauride Mountains to the South. The basin started to form as a rift basin during the Late Maastrichtian. The main Tuzgolu-Aksaray fault zone on the eastern margin of the basin and the northwest trending Yeniceoba and Cihanbeyli fault zones on the western margin of the basin were probably developed during that time. The basin has also experienced westward extension in response to westward escape of the Anatolian plate since Late Miocene. Several geologic studies have been conducted in the Tuz Gölü (Salt Lake) Basin and surrounding areas to determine structural and tectono-stratigraphic development of the basin. However, there are still many questions regarding the structural evolution of the basin. The main purpose of this study is to investigate the structural evolution of the central Tuzgolu Basin based on the structural interpretation of available 2-D seismic reflection profiles, well log analysis and construction of structural cross sections. The cross-sections will be based on depth converted seismic lines to determine structural geometry of the faults and folds. A preliminary Petrel project has been prepared using available seismic profiles. Our preliminary structural interpretations suggest that a well-developed rollover anticline was developed with respect to the westward extension in Central Anatolia. The rollover anticline is faulted in its crest area by both down-to-the west and down-to-the east normal faults. The geometry of the main boundary fault at depth still remains in question. We anticipate that this question will be resolved based on depth converted structural cross-sections and their restoration.

  13. Water Quality and Evaluation of Pesticides in Lakes in the Ridge Citrus Region of Central Florida

    USGS Publications Warehouse

    Choquette, Anne F.; Kroening, Sharon E.

    2009-01-01

    Water chemistry, including major inorganic constituents, nutrients, and pesticide compounds, was compared between seven lakes surrounded by citrus agriculture and an undeveloped lake on the Lake Wales Ridge (herein referred to as the Ridge) in central Florida. The region has been recognized for its vulnerability to the leaching of agricultural chemicals into the subsurface due to factors including soils, climate, and land use. About 40 percent of Florida's citrus cultivation occurs in 'ridge citrus' areas characterized by sandy well drained soils, with the remainder in 'flatwoods citrus' characterized by high water tables and poorly drained soils. The lakes on the Ridge are typically flow-through lakes that exchange water with adjacent and underlying aquifer systems. This study is the first to evaluate the occurrence of pesticides in lakes on the Ridge, and also represents one of the first monitoring efforts nationally to focus on regional-scale assessment of current-use pesticides in small- to moderate-sized lakes (5 to 393 acres). The samples were collected between December 2003 and September 2005. The lakes in citrus areas contained elevated concentrations of major inorganic constituents (including alkalinity, total dissolved solids, calcium, magnesium, sodium, potassium, chloride, and sulfate), total nitrogen, pH, and pesticides compared to the undeveloped lake. Nitrate (as N) and total nitrogen concentrations were typically elevated in the citrus lakes, with maximum values of 4.70 and 5.19 mg/L (milligrams per liter), respectively. Elevated concentrations of potassium, nitrate, and other inorganic constituents in the citrus lakes likely reflect inputs from the surficial ground-water system that originated predominantly from agricultural fertilizers, soil amendments, and inorganic pesticides. A total of 20 pesticide compounds were detected in the lakes, of which 12 compounds exceeded the standardized reporting level of 0.06 ug/L (microgram per liter). Those

  14. Great Lakes Initiative (GLI) Clearinghouse

    EPA Pesticide Factsheets

    The Great Lakes Initiative Toxicity Clearinghouse is a central location for information on criteria, toxicity data, exposure parameters and other supporting documents used in developing water quality standards in the Great Lakes watershed.

  15. Ancient ice islands in salt lakes of the Central Andes

    USGS Publications Warehouse

    Hurlbert, S.H.; Chang, Cecily C.Y.

    1984-01-01

    Massive blocks of freshwater ice and frozen sediments protrude from shallow, saline lakes in the Andes of southwestern Bolivia and northeastern Chile. These ice islands range up to 1.5 kilometers long, stand up to 7 meters above the water surface, and may extend out tens of meters and more beneath the unfrozen lake sediments. The upper surfaces of the islands are covered with dry white sediments, mostly aragonite or calcite. The ice blocks may have formed by freezing of the fresh pore water of lake sediments during the "little ice age." The largest blocks are melting rapidly because of possibly recent increases in geothermal heat flux through the lake bottom and undercutting by warm saline lake water during the summer.

  16. Barcoding of ancient lake ostracods (crustacea) reveals cryptic speciation with extremely low distances.

    PubMed

    Karanovic, Ivana

    2015-01-01

    Ostracods are drastically reduced crustaceans, with never more than eight appendages enclosed between two valves, leaving only a limited number of morphological characters for species delineation. Conservative morphology of characters used to define genera, along with high variability of characters used to define species are creating problems in applying a morphospecies concept. A high intraspecific variability in a Lake Biwa (Japan) endemic, Physocypria biwaensis (Okubo, 1990), has been observed previously but was never studied in detail. Two sympatric forms, differing in pigmentation and size, suggest a presence of reproductive isolation. The aim of this study is to employ molecular and morphometric tools to aid in species delineation within P. biwaensis complex and reconstruct their phylogenetic relationships. A fragment of the mtCOI gene was amplified from 30 specimens, and an additional 37 specimens were studied for morphological characters. Resulting phylogenies showed that each morphologically distinct form is associated with a distinct phylogenetic group based on mtDNA. The average pairwise distance is very low (5%), indicating a recent divergence time. I speculate that there is a possibility that one of them originated in the lake, while the other probably colonized it afterwards. This seems to be supported with an apparent niche partitioning at different depths. In spite of the fact that traditionally used sexual characters are highly variable in these two species, the morphometric analysis of shell and soft part related characters clearly delineates them and suggests that such characters may be useful for future detection of seemingly cryptic ostracod species.

  17. Habitat Suitability Index Models: Lake trout (exclusive of the Great Lakes)

    USGS Publications Warehouse

    Marcus, Michael D.; Hubert, Wayne A.; Anderson, Stanley H.

    1984-01-01

    The lake trout is an important commercial and sport fish in North America. In the Central Rocky Mountain regi on, 1ake trout are common ly referred to as "mackinaw". There is good evidence that lake trout should be called "1 ake charr" (Morton 1980). No subspecies of lake trout is presently recognized (Robins et al. 1980). The species, however, has extreme variability throughout its range, making it difficult to draw general conclusions about its biology (Martin and Olver 1980).

  18. Characterization of lake water and ground water movement in the littoral zone of Williams Lake, a closed-basin lake in North central Minnesota

    USGS Publications Warehouse

    Schuster, P.F.; Reddy, M.M.; LaBaugh, J.W.; Parkhurst, R.S.; Rosenberry, D.O.; Winter, T.C.; Antweiler, Ronald C.; Dean, W.E.

    2003-01-01

    Williams Lake, Minnesota is a closed-basin lake that is a flow-through system with respect to ground water. Ground-water input represents half of the annual water input and most of the chemical input to the lake. Chemical budgets indicate that the lake is a sink for calcium, yet surficial sediments contain little calcium carbonate. Sediment pore-water samplers (peepers) were used to characterize solute fluxes at the lake-water-ground-water interface in the littoral zone and resolve the apparent disparity between the chemical budget and sediment data. Pore-water depth profiles of the stable isotopes ??18O and ??2H were non-linear where ground water seeped into the lake, with a sharp transition from lake-water values to ground-water values in the top 10 cm of sediment. These data indicate that advective inflow to the lake is the primary mechanism for solute flux from ground water. Linear interstitial velocities determined from ??2H profiles (316 to 528 cm/yr) were consistent with velocities determined independently from water budget data and sediment porosity (366 cm/yr). Stable isotope profiles were generally linear where water flowed out of the lake into ground water. However, calcium profiles were not linear in the same area and varied in response to input of calcium carbonate from the littoral zone and subsequent dissolution. The comparison of pore-water calcium profiles to pore-water stable isotope profiles indicate calcium is not conservative. Based on the previous understanding that 40-50 % of the calcium in Williams Lake is retained, the pore-water profiles indicate aquatic plants in the littoral zone are recycling the retained portion of calcium. The difference between the pore-water depth profiles of calcium and ??18O and ??2H demonstrate the importance of using stable isotopes to evaluate flow direction and source through the lake-water-ground-water interface and evaluate mechanisms controlling the chemical balance of lakes. Published in 2003 by John Wiley

  19. Diverging Histories of the Liberty Creek and Iceberg Lake Blueschist Bodies, south central Alaska

    NASA Astrophysics Data System (ADS)

    Day, E. M.; Pavlis, T. L.; Amato, J. M.

    2011-12-01

    New studies of the Liberty Creek and Iceberg Lake blueschist bodies of south central Alaska indicate that despite structural similarities, these blueschist bodies are derived from a different protolith and were metamorphosed to blueschist facies at distinctly different times. Both blueschists are located just south of the Border Ranges Fault (BRF) within outcrop belts of the McHugh Complex, a low-grade mélange assemblage that is now known from detrital zircon studies to consist of two distinct assemblages: a Jurassic to Earliest Cretaceous assemblage and a Late Cretaceous assemblage. The BRF is a megathrust system that represents the Late Triassic-Early Jurassic initiation of southern Alaskan subduction. Large scale (1:24,000) mapping revealed similar fabric overprint histories, epitomized by a previously undescribed youngest vertical N-S trending crenulation cleavage in both blueschist bodies which implies a structural correlation despite their separation of ~100 kilometers along strike. Despite structural similarities detrital zircon studies show that the Liberty Creek and Iceberg Lake blueschists do not have a similar maximum age of deposition. Thirteen samples from the Iceberg Lake blueschist were processed, none of which produced detrital zircons. Samples from the McHugh Complex greenschists that surround the Iceberg Lake blueschist produced numerous zircons indicating a Late Jurassic (~160 Ma) maximum age of deposition. Three out of sixteen samples from the Liberty creek blueschist produced detrital zircons indicating maximum depositional ages ranging from Late Jurassic (~160.1 Ma, n=64 grains; ~152.25 Ma, n=68 grains) to Early Cretaceous (~137.1 Ma, n=95 grains). The Late Jurassic dates are consistent with maximum depositional ages determined by Amato and Pavlis (2010) for McHugh Complex rocks along Turnagain Arm near Anchorage, AK. Sisson and Onstott (1986) reported a metamorphic cooling age of 185 Ma for the Iceberg Lake blueschist, thus, although no

  20. Influence of lake surface area and total phosphorus on annual bluegill growth in small impoundments of central Georgia

    USGS Publications Warehouse

    Jennings, Cecil A.; Sundmark, Aaron P.

    2017-01-01

    The relationships between environmental variables and the growth rates of fishes are important and rapidly expanding topics in fisheries ecology. We used an informationtheoretic approach to evaluate the influence of lake surface area and total phosphorus on the age-specific growth rates of Lepomis macrochirus (Bluegill) in 6 small impoundments in central Georgia. We used model averaging to create composite models and determine the relative importance of the variables within each model. Results indicated that surface area was the most important factor in the models predicting growth of Bluegills aged 1–4 years; total phosphorus was also an important predictor for the same age-classes. These results suggest that managers can use water quality and lake morphometry variables to create predictive models specific to their waterbody or region to help develop lake-specific management plans that select for and optimize local-level habitat factors for enhancing Bluegill growth.

  1. Sanctuaries for lake trout in the Great Lakes

    USGS Publications Warehouse

    Stanley, Jon G.; Eshenroder, Randy L.; Hartman, Wilbur L.

    1987-01-01

    Populations of lake trout, severely depleted in Lake Superior and virtually extirpated from the other Great Lakes because of sea lamprey predation and intense fishing, are now maintained by annual plantings of hatchery-reared fish in Lakes Michigan, Huron, and Ontario and parts of Lake Superior. The extensive coastal areas of the Great Lakes and proximity to large populations resulted in fishing pressure on planted lake trout heavy enough to push annual mortality associated with sport and commercial fisheries well above the critical level needed to reestablish self-sustaining stocks. The interagency, international program for rehabilitating lake trout includes controlling sea lamprey abundance, stocking hatchery-reared lake trout, managing the catch, and establishing sanctuaries where harvest is prohibited. Three lake trout sanctuaries have been established in Lake Michigan: the Fox Island Sanctuary of 121, 500 ha, in the Chippewa-Ottawa Treaty fishing zone in the northern region of the lake; the Milwaukee Reef Sanctuary of 160, 000 ha in midlake, in boundary waters of Michigan and Wisconsin; and Julian's Reef Sanctuary of 6, 500 ha, in Illinois waters. In northern Lake Huron, Drummond Island Sanctuary of 55, 000 ha is two thirds in Indian treaty-ceded waters in Michigan and one third in Ontario waters of Canada. A second sanctuary, Six Fathom Bank-Yankee Reef Sanctuary, in central Lake Huron contains 168, 000 ha. Sanctuary status for the Canadian areas remains to be approved by the Provincial government. In Lake Superior, sanctuaries protect the spawning grounds of Gull Island Shoal (70, 000 ha) and Devils Island Shoal (44, 000 ha) in Wisconsin's Apostle Island area. These seven sanctuaries, established by the several States and agreed upon by the States, Indian tribes, the U.S. Department of the Interior, and the Province of Ontario, contribute toward solving an interjurisdictional fishery problem.

  2. Nature and origin of a Pleistocene-age massive ground-ice body exposed in the Chapman Lake moraine complex, central Yukon Territory, Canada

    NASA Astrophysics Data System (ADS)

    Lacelle, Denis; Lauriol, Bernard; Clark, Ian D.; Cardyn, Raphaelle; Zdanowicz, Christian

    2007-09-01

    A massive ground-ice body was found exposed in the headwall of a thaw flow developed within the Chapman Lake terminal moraine complex on the Blackstone Plateau (Ogilvie Mountains, central Yukon Territory), which is contemporaneous to the Reid glaciation. Based on visible cryostructures in the 4-m-high headwall, two units were identified: massive ground ice, overlain sharply by 2 m of icy diamicton. The nature and origin of the Chapman Lake massive ground ice was determined using cryostratigraphy, petrography, stable O-H isotopes and the molar concentration of occluded gases (CO 2, O 2, N 2 and Ar) entrapped in the ice, a new technique in the field of periglacial geomorphology that allows to distinguish between glacial and non-glacial intrasedimental ice. Collectively, the results indicate that the Chapman Lake massive ground ice formed by firn densification with limited melting-refreezing and underwent deformation near its margin. Given that the massive ground-ice body consists of relict glacier ice, it suggests that permafrost persisted, at least locally, on plateau areas in the central Yukon Territory since the middle Pleistocene. In addition, the d value of Chapman Lake relict glacier ice suggests that the ice covering the area during the Reid glaciation originated from a local alpine glaciation in the Ogilvie Mountains.

  3. δ18O and δD of lake waters across the Coast Range and Cascades, central Oregon: Modern insights from hydrologically open lakes into the control of landscape on lake water composition in deep time

    NASA Astrophysics Data System (ADS)

    Finkelstein, D. B.; Curtin, T.

    2016-12-01

    Reconstructing the stable isotopic composition of paleolake water normally requires an assumption of paleotemperature. However, hydrologically open paleolakes with short water residence times may have recorded paleoprecipitation along topographic gradients that are independent of lake water temperature. To identify the environmental and geographic controls on the isotopic composition of lake water, we sampled 22 natural lakes and reservoirs along a longitudinal and elevation gradient from the Pacific Ocean up and over the Coast and Cascade Ranges of central Oregon to the High Lava Plains in 2013 and 2015. The transect spans lakes of different origins, 6 geomorphic regions and an elevation range of 2-1942 m absl. The Coast Range lakes are sand hosted whereas the remaining are bedrock (volcanic and sedimentary) hosted. The lakes are hydrologically open and dominated by meteoric recharge. The water residence time ranges from months to decades. Samples were analyzed for temperature, pH, and total dissolved solids (TDS) in the field, and alkalinity and major cations and anions and stable isotopes of D and O in the lab. The pH ranges from 7 to 9.8 and shows no systematic variation based on substrate type or elevation. The lakes are dilute (avg. TDS = 35.8 ppm) and have low alkalinties (18.9 mg/L CaCO3) except for those in the High Lava Plains (avg. TDS = 337 ppm, alk: 291.2 mg/L CaCO3). In the Coast Range, Na is the major cation on an equivalent basis, reflecting proximity to the ocean. The easternmost lakes within the Coast Range are dominated by Ca, reflecting different drainage basins and substrate type. Lakes in the Western and High Cascades are dominated by Ca. The dominant cation and stable isotopic analyses clearly differentiate waters from different geomorphic regions. The δ18O ranges from -5.7 to -9.3 ‰ (VSMOW), and δD ranges from -37.8 to -63.6 ‰ (VSMOW) in the Coast Range whereas the δ18O ranges from -9.7 to -12.1 ‰ (VSMOW) and δD ranges from -71

  4. Seismic investigation of Lake Issyk-Kul, Kyrgyzstan

    NASA Astrophysics Data System (ADS)

    Gebhardt, C.; Naudts, L.; De Mol, L.; De Batist, M.

    2012-04-01

    Lake Issyk-Kul is located in an intramontane basin of the Tien Shan mountains in Kyrgyzstan, Central Asia. It has formed in a tectonically active region with W-E striking major thrust zones north and south of the lake. The lake's modern surface level is at 1607 m above sea level, maximum depth in the central basin of the lake is roughly 670 m, and the total water volume is around 1736 km3. The lake is elongated with 180 km in west-east and 60 km in south-north direction. With a surface area of 6232 km2, Lake Issyk-Kul is the second largest lake in the higher altitudes. The lake is characterized by two large delta areas at its western and eastern end, with the deltaic area being as wide as up to 60 km in the eastern and 40 km in the western part, and by steep slopes at the northern and southern shore with only a rather narrow shallower shelf area. The lake contains the sediments of the past up to several million years, and has been proposed as a future target for deep drilling within ICDP. Three seismic surveys by Russian and Belgian groups in 1982, 1997 and 2001 revealed a thick sediment infill in Lake Issyk-Kul. At both the western and the eastern end of the lake, large delta systems were formed by actual and previous inlets, namely the Tyup and Djyrgalan rivers in the eastern part of the lake (still active) and the Chu River at the western end (currently bypassing the lake). Large sub-aquatic channel systems are visible in the lake's bathymetry in the shallower part of the delta systems close to the river mouths. They were quite likely formed by these rivers during a former lake level lowstand. The delta system consists of stacked prograding delta lobes with a characteristic topset-foreset-bottomset configuration. These lobes together with sub-aerial terraces found at several spots around the lake witness lake level fluctuations of up to >400 m. The sediments in the central plain of Lake Issyk-Kul are mainly well-layered with many turbiditic sequences

  5. Variability of Water Chemistry in Tundra Lakes, Petuniabukta Coast, Central Spitsbergen, Svalbard

    PubMed Central

    Mazurek, Małgorzata; Paluszkiewicz, Renata; Rachlewicz, Grzegorz; Zwoliński, Zbigniew

    2012-01-01

    Samples of water from small tundra lakes located on raised marine terraces on the eastern coast of Petuniabukta (Ebbadalen, Central Spitsbergen) were examined to assess the changes in water chemistry that had occurred during the summer seasons of 2001–2003 and 2006. The unique environmental conditions of the study region include the predominance of sedimentary carbonate and sulphate rocks, low precipitation values, and an active permafrost layer with a maximum thickness of 1.2 m. The average specific electric conductivity (EC) values for the three summer seasons in the four lakes ranged from 242 to 398 μS cm−1. The highest EC values were observed when the air temperature decreased and an ice cover formed (cryochemical effects). The ion composition was dominated by calcium (50.7 to 86.6%), bicarbonates (39.5 to 86.4%), and sulphate anions. The high concentrations of HCO3 −, SO4 2−, and Ca2+ ions were attributed to the composition of the bedrock, which mainly consists of gypsum and anhydrite. The average proportion of marine components in the total load found in the Ebbadalen tundra lake waters was estimated to be 8.1%. Precipitation supplies sulphates (as much as 69–81%) and chlorides (14–36%) of nonsea origin. The chief source of these compounds may be contamination from the town of Longyearbyen. Most ions originate in the crust, the active layer of permafrost, but some are atmospheric in origin and are either transported or generated in biochemical processes. The concentrations of most components tend to increase during the summer months, reaching a maximum during freezing and partially precipitating onto the bottom sediments. PMID:22654629

  6. Natural attenuation processes of nitrate in a saline lake-aquifer system: Pétrola Basin (Central Spain)

    NASA Astrophysics Data System (ADS)

    Valiente, Nicolas; Menchen, Alfonso; Jirsa, Franz; Hein, Thomas; Wanek, Wolfgang; Gomez-Alday, Juan Jose

    2016-04-01

    Saline wetlands associated with intense agricultural activities in semi-arid to arid climates are among the most vulnerable environments to NO3- pollution. The endorheic Pétrola Basin (High Segura River Basin, Central Spain) was declared vulnerable to NO3- pollution by the Regional Government of Castilla-La Mancha in 1998. The hypersaline lake was classified as a heavily modified waterbody, due to the inputs of pollutants from agricultural sources and urban waste waters, the latest are discharged directly into the lake without proper treatment. Previous studies showed that the aquifer system has two main flow components: regional groundwater flow from recharge areas into the lake, and a density-driven flow from the lake to the underlying aquifer. The NO3- inputs derived from agriculture originate from nitrification of synthetic ammonium fertilizers, and afterwards, NO3- is expected to be attenuated by denitrification (up to 60%) in the saltwater-freshwater interface around the lake. However, the spatial and temporal pattern of nitrate reduction in lake sediments is not known. In this study, an isotope pairing technique was used in order to clarify the main pathways for the NO3- attenuation linked to the sediment-water interface. For that purpose mesocosm experiments were performed: organic-rich lake sediment (up to 23% organic carbon content) was incubated for 96 hours with the addition of 15N nitrate tracer. During the experiments two factors were modified: light and oxic conditions. Analyzing inorganic N-species (n=20) over time (72 hours) showed that NO3- attenuation was coupled with an increment in the NH4+ concentration (from 0.8 mg/L up to 5.3 mg/L) and a decrease in redox values (from 135.1 mV up to -422 mV) in the water column. The main outcome of this study was to elucidate the importance of different microbial pathways denitrification, dissimilatory nitrate reduction to ammonium (DNRA) and anaerobic ammonium oxidation (Anammox), in controlling the fate

  7. New age constraints for the Saalian glaciation in northern central Europe: Implications for the extent of ice sheets and related proglacial lake systems

    NASA Astrophysics Data System (ADS)

    Lang, Jörg; Lauer, Tobias; Winsemann, Jutta

    2018-01-01

    A comprehensive palaeogeographic reconstruction of ice sheets and related proglacial lake systems for the older Saalian glaciation in northern central Europe is presented, which is based on the integration of palaeo-ice flow data, till provenance, facies analysis, geomorphology and new luminescence ages of ice-marginal deposits. Three major ice advances with different ice-advance directions and source areas are indicated by palaeo-ice flow directions and till provenance. The first ice advance was characterised by a southwards directed ice flow and a dominance of clasts derived from southern Sweden. The second ice advance was initially characterised by an ice flow towards the southwest. Clasts are mainly derived from southern and central Sweden. The latest stage in the study area (third ice advance) was characterised by ice streaming (Hondsrug ice stream) in the west and a re-advance in the east. Clasts of this stage are mainly derived from eastern Fennoscandia. Numerical ages for the first ice advance are sparse, but may indicate a correlation with MIS 8 or early MIS 6. New pIRIR290 luminescence ages of ice-marginal deposits attributed to the second ice advance range from 175 ± 10 to 156 ± 24 ka and correlate with MIS 6. The ice sheets repeatedly blocked the main river-drainage pathways and led to the formation of extensive ice-dammed lakes. The formation of proglacial lakes was mainly controlled by ice-damming of river valleys and major bedrock spillways; therefore the lake levels and extends were very similar throughout the repeated ice advances. During deglaciation the lakes commonly increased in size and eventually drained successively towards the west and northwest into the Lower Rhine Embayment and the North Sea. Catastrophic lake-drainage events occurred when large overspill channels were suddenly opened. Ice-streaming at the end of the older Saalian glaciation was probably triggered by major lake-drainage events.

  8. A multi-proxy intercomparison of environmental change in two maar lake records from central Turkey during the last 14 ka

    NASA Astrophysics Data System (ADS)

    Roberts, C. Neil; Allcock, Samantha L.; Arnaud, Fabien; Dean, Jonathan R.; Eastwood, Warren J.; Jones, Matthew D.; Leng, Melanie J.; Metcalfe, Sarah E.; Malet, Emmanuel; Woodbridge, Jessie; Yiǧitbaşıoǧlu, Hakan

    2016-04-01

    Individual palaeoenvironmental records are a combination of regional-scale (e.g. climatic) and local factors. In order to separate these signals, we compare multiple proxies from two nearby maar lake records, on the assumption that common signals are due to regional-scale forcing. On the other side, we infer that residual signals are likely to be local and site-specific, rather than reflecting regional climate changes. A new core sequence from Nar lake has been dated by varve counting and U-Th as covering the last 13,800 years (Dean et al., 2015; Roberts et al., 2016). Periods of marked dryness are associated with peaks in Mg/dolomite, elevated Diatom-Inferred Electrical Conductivity, an absence of laminated sediments, and low Quercus/chenopod ratios. These conditions occurred during the Late-Glacial stadial, at 4.3-3.7 and 3.2-2.6 ka BP. Wet phases occurred during the early Holocene and again 1.5-0.6 ka, characterised by negative δ18O values, calcite precipitation, high Ca/Sr ratios, a high % of planktonic diatoms, laminated sediments, and high Quercus/chenopod ratios. Comparison with the independently dated record from Eski Acıgöl (Roberts et al., 2001) shows good correspondence for many proxies, especially for δ18O. A ranking of multiple proxies shows the worst correspondence is for clastic lithogenic elements (e.g. Ti flux). Differences between the two lake records are caused by basin infilling at Eski Acıgöl, which fails to register climatic changes during the last 2 ka, and to catchment erosion and increased flux of lithogenic elements into Nar lake; this is catchment-specific and primarily anthropogenic rather than climatic in origin. In separating a regional signal from site-specific "noise", two lakes may therefore be better than one. Dean, J.R. et al. 2015 Eastern Mediterranean hydroclimate over the late glacial and Holocene, reconstructed from the sediments of Nar lake, central Turkey, using stable isotopes and carbonate mineralogy. Quaternary

  9. Evidence for insolation and Pacific forcing of late glacial through Holocene climate in the Central Mojave Desert (Silver Lake, CA)

    NASA Astrophysics Data System (ADS)

    Kirby, Matthew E.; Knell, Edward J.; Anderson, William T.; Lachniet, Matthew S.; Palermo, Jennifer; Eeg, Holly; Lucero, Ricardo; Murrieta, Rosa; Arevalo, Andrea; Silveira, Emily; Hiner, Christine A.

    2015-09-01

    Silver Lake is the modern terminal playa of the Mojave River in southern California (USA). As a result, it is well located to record both influences from the winter precipitation dominated San Bernardino Mountains - the source of the Mojave River - and from the late summer to early fall North American monsoon at Silver Lake. Here, we present various physical, chemical and biological data from a new radiocarbon-dated, 8.2 m sediment core taken from Silver Lake that spans modern through 14.8 cal ka BP. Texturally, the core varies between sandy clay, clayey sand, and sand-silt-clay, often with abrupt sedimentological transitions. These grain-size changes are used to divide the core into six lake status intervals over the past 14.8 cal ka BP. Notable intervals include a dry Younger Dryas chronozone, a wet early Holocene terminating 7.8 - 7.4 cal ka BP, a distinct mid-Holocene arid interval, and a late Holocene return to ephemeral lake conditions. A comparison to potential climatic forcings implicates a combination of changing summer - winter insolation and tropical and N Pacific sea-surface temperature dynamics as the primary drivers of Holocene climate in the central Mojave Desert.

  10. Relating actual with subfossil chironomid assemblages. Holocene habitat changes and paleoenvironmental reconstruction of Basa de la Mora Lake (Central Pyrenees)

    NASA Astrophysics Data System (ADS)

    Tarrats, Pol; Rieradevall, Maria; González-Sampériz, Penélope; Pérez-Sanz, Ana; Valero-Garcés, Blas; Moreno, Ana

    2014-05-01

    Analyses of subfossil and actual macroinvertebrate fauna and Chironomidae larvae (Insecta: Diptera) assemblages of Basa de la Mora Lake (Central Pyrenees, Spain, 1914 m a.s.l.) improves the environmental calibration for lake paleoreconstruction and allow to infer lake habitat changes throughout the Holocene. The results of the actual Chironomidae community are consistent with other mountain lake studies (either in the Pyrenees or other regions), with a few mismatching due to lake specific conditions. The actual and the subfossil Chironomidae taxa present in Basa de la Mora Lake are the same, which is an essential requirement to apply the analogue methods. Although we could not find habitat-specific taxa, significant differences between the different habitats present in the lake were found. This circumstance allowed applying the Modern Analogue Technique (MAT) to infer lake habitat changes. The MAT method relates the actual community, defined from the species abundance matrix and an environmental variable (which is the object of the inference), and the past community, defined from the species abundance matrix downcore. Because the first axis of DCA carried out for the study of the actual Chironomidae larvae explained the assemblage changes between the different habitats, the scores of this first axis were used as representative of the environmental variable (dominant habitat type) to be inferred. The application of the MAT has allowed identifying two periods of lake productivity increase through the Holocene: i) around 2800 cal. yrs BP, which coincides with the first documented human occupation of the area, and ii) the last four centuries, synchronous to the maximum population of mountain areas in the Pyrenees and development of stockbreeding activities.

  11. Hydrologic analysis of two headwater lake basins of differing lake pH in the west-central Adirondack Mountains of New York

    USGS Publications Warehouse

    Murdoch, Peter S.; Peters, N.E.; Newton, R.M.

    1987-01-01

    Hydrologic analysis of two headwater lake basins in the Adirondack Mountains, New York, during 1980-81 indicates that the degree of neutralization of acid precipitation is controlled by the groundwater contribution to the lake. According to flow-duration analyses, daily mean outflow/unit area from the neutral lake (Panther Lake, pH 5-7) was more sustained and contained a higher percentage of groundwater than that of the acidic lake (Woods Lake, pH 4-5). Outflow recession rates and maximum base-flow rates, derived from individual recession curves, were 3.9 times and 1.5 times greater, respectively, in the neutral-lake basin than in the acidic-lake basin. Groundwater contribution to lake outflow was also calculated from a lake-water budget; the groundwater contribution to the neutral lake was about 10 times greater than that to the acidic lake. Thick sandy till forms the groundwater reservoir and the major recharge area in both basins but covers 8.5 times more area in the neutral-lake basin than in the acidic-lake basin. More groundwater storage within the neutral basin provides longer contact time with neutralizing minerals and more groundwater discharge. As a result, the neutral lake has relatively high pH and alkalinity, and more net cation transport. (USGS)

  12. Hydrology of the Floral City Pool of Tsala Apopka Lake, west-central Florida

    USGS Publications Warehouse

    Bradner, L.A.

    1988-01-01

    Tsala Apopka Lake, in west-central Florida, has an area of about 19,000 acres and is divided into three water-management pools, with the Floral City Pool, the most upgradient. The Floral City Pool, which has a surface area of approximately 4,750 acres, contains an extensive combination of lakes, wetlands, and connecting canals. The Pool receives inflow from the Withlacoochee River through two canals. Outflow is through one manmade canal and one natural slough. Canal flow is partially controlled by manmade structures. A cumulative deficit of 19.4 inches of rainfall from August 1984 through May 1985 reduced surface-water inflow to the Floral City Pool to about 0.5 cu ft/sec by May 1985. During May 1985, pool levels declined approximately 0.04 ft/day. By the end of May, there was no observable outflow. From June 1985 through September 1985, 39.8 inches of rainfall caused above-average inflow to the Floral City Pool and a pool-level increase of 6.2 ft. The inflow of 340 CFS nearly equaled the outflow of 338 CFS by the end of September. (USGS)

  13. Role of lake regulation on glacier fed rivers in enhancing salmon productivity: The Cook Inlet watershed south central Alaska, USA

    USGS Publications Warehouse

    Hupp, C.R.

    2000-01-01

    Rivers fed by glaciers constitute a major part of the freshwater runoff into the Cook Inlet basin of south-central Alaska. This basin is very important to the economy of the State of Alaska because it is home to more than half of the population and it supports multi-million dollar commercial, subsistence and sport fisheries. Hence an understanding of how glacial runoff influences biological productivity is important for managing rivers that drain into Cook Inlet. This paper examines the ways in which the regulation of glacier-fed rivers by proglacial lakes affects salmon productivity, with particular reference to the Kenai River. Salmon escapement per unit channel length on the Kenai River is between two and ten times that found for rain-and-snowmelt dominated rivers and glacier-fed rivers lacking lake regulation. Lakes are shown to influence biological processes in glacier-fed rivers by attenuating peak flows, sustaining high flows throughout the summer, supplementing winter low flows, settling suspended sediment, and increasing river temperatures. Downstream from large lakes, glacier-fed rivers are less disturbed, channels are relatively stable and have well-developed salmonid habitats. The positive influences are indicated by the high diversity and abundances of benthic macroinvertebrates, which are important food resources for juvenile salmonids. High summer flows allow access for up-river salmon runs and lakes also provide both overwintering and rearing habitat. Copyright ?? 2000 John Wiley & Sons, Ltd.Rivers fed by glaciers constitute a major part of the freshwater runoff into the Cook Inlet basin of south-central Alaska. This basin is very important to the economy of the State of Alaska because it is home to more than half of the population and it supports multi-million dollar commercial, subsistence and sport fisheries. Hence an understanding of how glacial runoff influences biological productivity is important for managing rivers that drain into Cook Inlet

  14. Hydrogeologic comparison of an acidic-lake basin with a neutral-lake basin in the West-Central Adirondack Mountains, New York

    USGS Publications Warehouse

    Peters, N.E.; Murdoch, Peter S.

    1985-01-01

    Two small headwater lake basins that receive similar amounts of acidic atmospheric deposition have significantly different lake outflow pH values; pH at Panther Lake (neutral) ranges from about 4.7 to 7; that at Woods Lake (acidic) ranges from about 4.3 to 5. A hydrologic analysis, which included monthly water budgets, hydrograph analysis, examination of flow duration and runoff recession curves, calculation of ground-water storage, and an analysis of lateral flow capacity of the soil, indicates that differences in lakewater pH can be attributed to differences in the ground-water contribution to the lakes. A larger percentage of the water discharged from the neutral lake is derived from ground water than that from the acidic lake. Ground water has a higher pH resulting from a sufficiently long residence time for neutralizing chemical reactions to occur with the till. The difference in ground-water contribution is attributed to a more extensive distribution of thick till (<3m) in the neutral-lake basin than in the acidic-lake basin; average thickness of till in the neutral-lake basin is 24m whereas that in the other is 2.3m. During the snowmelt period, as much as three months of accumulated precipitation may be released within two weeks causing the lateral flow capacity of the deeper mineral soil to be exceeded in the neutral-lake basin. This excess water moves over and through the shallow acidic soil horizons and causes the lakewater pH to decrease during snowmelt.Two small headwater lake basins that receive similar amounts of acidic atmospheric deposition have significantly different lake outflow pH values; pH at Panther Lake (neutral) ranges from about 4. 7 to 7; that at Woods Lake (acidic) ranges from about 4. 3 to 5. A hydrologic analysis, which included monthly water budgets, hydrograph analysis, examination of flow duration and runoff recession curves, calculation of ground-water storage, and an analysis of lateral flow capacity of the soil, indicates that

  15. Potential impact of Chironomus plumosus larvae on hypolimnetic oxygen in the central basin of Lake Erie

    USGS Publications Warehouse

    Soster, Frederick M.; Matisoff, Gerald; Schloesser, Donald W.; Edwards, William J.

    2015-01-01

    Previous studies have indicated that burrow-irrigating infauna can increase sediment oxygen demand (SOD) and impact hypolimnetic oxygen in stratified lakes. We conducted laboratory microcosm experiments and computer simulations with larvae of the burrowing benthic midge Chironomus plumosus to quantify burrow oxygen uptake rates and subsequent contribution to sediment oxygen demand in central Lake Erie. Burrow oxygen uptake and water flow velocities through burrows were measured using oxygen microelectrodes and hot film anemometry, respectively. Burrow oxygen consumption averaged 2.66 × 10− 10 (SE = ± 7.82 × 10− 11) mol O2/burrow/s at 24 °C and 9.64 × 10− 10 (SE = ± 4.86 × 10− 10) mol O2/burrow/s at 15 °C. In sealed microcosm experiments, larvae increased SOD 500% at 24 °C (density = 1508/m2) and 375% at 15 °C (density = 864/m2). To further evaluate effects of densities of C. plumosus burrows on SOD we developed a 3-D transport reaction model of the process. Using experimental data and chironomid abundance data in faunal surveys in 2009 and 2010, we estimated that bioirrigation by a population of 140 larvae/m2 could account for between 2.54 × 10− 11 mol/L/s (model results) and 5.58 × 10− 11 mol/L/s (experimental results) of the average 4.22 × 10− 11 mol/L/s oxygen depletion rate between 1970 and 2003, which could have accounted for 60–132% of the oxygen decline. At present, it appears that the population density of this species may be an important factor in development of hypoxic or anoxic conditions in central Lake Erie.

  16. Glacial lake inventory and lake outburst potential in Uzbekistan.

    PubMed

    Petrov, Maxim A; Sabitov, Timur Y; Tomashevskaya, Irina G; Glazirin, Gleb E; Chernomorets, Sergey S; Savernyuk, Elena A; Tutubalina, Olga V; Petrakov, Dmitriy A; Sokolov, Leonid S; Dokukin, Mikhail D; Mountrakis, Giorgos; Ruiz-Villanueva, Virginia; Stoffel, Markus

    2017-08-15

    Climate change has been shown to increase the number of mountain lakes across various mountain ranges in the World. In Central Asia, and in particular on the territory of Uzbekistan, a detailed assessment of glacier lakes and their evolution over time is, however lacking. For this reason we created the first detailed inventory of mountain lakes of Uzbekistan based on recent (2002-2014) satellite observations using WorldView-2, SPOT5, and IKONOS imagery with a spatial resolution from 2 to 10m. This record was complemented with data from field studies of the last 50years. The previous data were mostly in the form of inventories of lakes, available in Soviet archives, and primarily included localized in-situ data. The inventory of mountain lakes presented here, by contrast, includes an overview of all lakes of the territory of Uzbekistan. Lakes were considered if they were located at altitudes above 1500m and if lakes had an area exceeding 100m 2 . As in other mountain regions of the World, the ongoing increase of air temperatures has led to an increase in lake number and area. Moreover, the frequency and overall number of lake outburst events have been on the rise as well. Therefore, we also present the first outburst assessment with an updated version of well-known approaches considering local climate features and event histories. As a result, out of the 242 lakes identified on the territory of Uzbekistan, 15% are considered prone to outburst, 10% of these lakes have been assigned low outburst potential and the remainder of the lakes have an average level of outburst potential. We conclude that the distribution of lakes by elevation shows a significant influence on lake area and hazard potential. No significant differences, by contrast, exist between the distribution of lake area, outburst potential, and lake location with respect to glaciers by regions. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. The hydrogeology of the Lake Waco Formation: Eagle Ford Group, central Texas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradley, R.G.; Yelderman, J.C. Jr.

    1993-02-01

    The Lake Waco Formation in central Texas crops out west of a major urban growth corridor along Interstate Highway 35. The development associated with this corridor increases the need for landfills and the possibility of leaks and spills. The Lake Waco Formation is predominantly shale and presently used for a regional landfill in the study area. It is not considered an aquifer and subsequently limited hydrogeological information exists. However, a numerous shallow wells occur in the weathered bedrock veneer and the shallow groundwater is directly connected to surface streams. Investigations revealed flow along bedding plane separations and fractures. The effectivemore » porosity is estimated to be less than .5 percent. Lab permeameter tests, slug tests, and constant-rate pumping tests were used to evaluate hydrogeologic parameters. Storage coefficient values range from .0017 to .0063 with a mean value of .0032. Hydraulic conductivity values decreased with depth and averaged 1.7 [times] 10 [sup [minus]4] cm/s for weathered shale and 1.4 [times] 10[sup [minus]7] cm/s for unweathered shale. Groundwater flow studies using piezometers exhibit topographic control of flow with horizontal to vertical anisotropy due to increased fracturing near the surface, but no noticeable horizontal anisotropic influence from fractures. Multiple-well pumping tests reveal horizontal anisotropic flow under pumping stress that is not present under static conditions and is complicated by heterogeneity.« less

  18. Hydrologic data; North Canadian River from Lake Overholser to Lake Eufaula, central Oklahoma

    USGS Publications Warehouse

    Havens, J.S.

    1984-01-01

    The data contained in this report were gathered during the period 1982 to 1984 for use in constructing a digital model of the North Canadian River from Lake Overholser, in the western part of Oklahoma City, to Lake Eufaula, in eastern Oklahoma. Locations of test holes and sampling sites are show in figure 1. Information on well depths and water levels in table 1 was gathered in the summer of 1982. Some information in the table was reported by well owners. Field water-quality data for water temperatures, specific conductance, and pH were measured at the time the wells were inventoried in 1982 and appear in table 2. Forty-nine test holes were augered to provide more comprehensive lithologic and water-level data along the North Canadian River. Lithologic logs of these test holes appear in table 3. Thirty-eight of the test holes were completed as observations wells by placing perforated plastic casing in the holes. Water levels were measured in these observations wells from the time of completion in mid-1982 through mid-1984. Hydrographs of the observation wells are shown in figures 2 through 15. The data are presented graphically for clarity. Hydrographs of water-level fluctuations in two wells equipped with continuous water-level recorders and hydrographs of stage fluctuations on the North Canadian River at nearby gaging stations are shown in figures 16 and 17. Two sets of low-flow measurements for the North Canadian River showing gains and losses in flow between measuring sites in the reach from Lake Overholser to Lake Eufaula are given in table 4. Measurements of flow on tributary streams are also given in this table. Analyses of water-quality samples collected at the time of the low-flow measurements are given in table 5.

  19. Finger Lake Region, NY State, USA

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This view of the central portion of upstate New York, centers on the Finger Lakes. The large city on the shore of Lake Ontario, is Rochester. Although the city, being a business, educational and technical center, has no heavy industry, the outline of the city shows fairly well in the snow, but not as well as the outlines of industrial cities elsewhere in the world. The Finger Lakes are large linear lakes carved out by glaciers during the last ice age.

  20. Paleoenvironments, Evolution, and Geomicrobiology in a Tropical Pacific Lake: The Lake Towuti Drilling Project (TOWUTI)

    NASA Astrophysics Data System (ADS)

    Vogel, Hendrik; Russell, James M.; Bijaksana, Satria; Crowe, Sean; Fowle, David; Haffner, Douglas; King, John; Marwoto, Ristiyanti; Melles, Martin; von Rintelen, Thomas; Stevenson, Janelle; Watkinson, Ian; Wattrus, Nigel

    2014-05-01

    Lake Towuti (2.5°S, 121°E) is a, 560 km2, 200-m deep tectonic lake at the downstream end of the Malili lake system, a set of five, ancient (1-2 MYr) tectonic lakes in central Sulawesi, Indonesia. Lake Towuti's location in central Indonesia provides a unique opportunity to reconstruct long-term paleoclimate change in a crucially important yet understudied region- the Indo-Pacific warm pool (IPWP), heart of the El Niño-Southern Oscillation. The Malili Lakes have extraordinarily high rates of floral and faunal endemism, and the lakes are surrounded by one of the most diverse tropical forests on Earth. Drilling in Lake Towuti will identify the age and origin of the lake and the environmental and climatic context that shaped the evolution of this unique lacustrine and terrestrial ecosystem. The ultramafic (ophiolitic) rocks and lateritic soils surrounding Lake Towuti provide metal substrates that feed a diverse, exotic microbial community, analogous to the microbial ecosystems that operated in the Archean Oceans. Drill core will provide unique insight into long-term changes in this ecosystem, as well as microbial processes operating at depth in the sediment column. High-resolution seismic reflection data (CHIRP and airgun) combined with numerous long sediment piston cores collected from 2007-2013 demonstrate the enormous promise of Lake Towuti for an ICDP drilling campaign. Well-stratified sequences of up to 150 m thickness, uninterrupted by unconformities or erosional truncation, are present in multiple sub-basins within Towuti, providing ideal sites for long-term environmental, climatic, and limnological reconstructions. Multiproxy analyses of our piston cores document a continuous and detailed record of moisture balance variations in Lake Towuti during the past 60 kyr BP. In detail our datasets show that wet conditions and rainforest ecosystems in central Indonesia persisted during Marine Isotope Stage 3 (MIS3) and the Holocene, and were interrupted by severe

  1. Mid- to late Holocene climate-driven regime shifts inferred from diatom, ostracod and stable isotope records from Lake Son Kol (Central Tian Shan, Kyrgyzstan)

    NASA Astrophysics Data System (ADS)

    Schwarz, Anja; Turner, Falko; Lauterbach, Stefan; Plessen, Birgit; Krahn, Kim J.; Glodniok, Sven; Mischke, Steffen; Stebich, Martina; Witt, Roman; Mingram, Jens; Schwalb, Antje

    2017-12-01

    Arid Central Asia represents a key region for understanding climate variability and interactions in the Northern Hemisphere. Patterns and mechanisms of Holocene climate change in arid Central Asia are, however, only partially understood. Multi-proxy data combining diatom, ostracod, sedimentological, geochemical and stable isotope analyses from a ca. 6000-year-old lake sediment core from Son Kol (Central Kyrgyzstan) show distinct and repeated changes in species assemblages. Diatom- and ostracod-inferred conductivity shifts between meso-euhaline and freshwater conditions suggest water balance and regime shifts. Organism-derived data are corroborated by stable isotope, mineralogical and geochemical records, underlining that Son Kol was affected by strong lake level fluctuations of several meters. The δ13Ccarb/δ18Ocarb correlation shows repeated switchovers from a closed to an open lake system. From 6000 to 3800 and 3250 to 1950 cal. yr BP, Son Kol was a closed basin lake with higher conductivities, increased nutrient availability and a water level located below the modern outflow. Son Kol became again a hydrologically open lake at 3800 and 1950 cal. yr BP. Comparisons to other local and regional paleoclimate records indicate that these regime shifts were largely controlled by changing intensity and position of the Westerlies and the Siberian Anticyclone that triggered changes in the amount of winter precipitation. A strong influence of the Westerlies ca. 5000-4400, 3800-3250 and since 1950 cal. yr BP enhanced the amount of precipitation during spring, autumn and winter, whereas cold and dry winters prevailed during phases with a strong Siberian Anticyclone and southward shifted Westerlies at ca. 6000-5000, 4400-3800 and 3250-1950 cal. yr BP. Similarities between variations in winter precipitation at Son Kol and records of the predominant NAO-mode further suggest a teleconnection between wet (dry) winter climate in Central Asia and a positive (negative) NAO

  2. Comparison of evaporation at two central Florida lakes, April 2005–November 2007

    USGS Publications Warehouse

    Swancar, Amy

    2015-09-25

    Both lakes are seepage lakes (no surface-water inflow or outflows) that are dependent on groundwater inflow from their basins to offset an atmospheric deficit, because long-term rainfall in this area is less than evaporation. The Lake Starr basin, where sandy, well-drained ridges surround the lake, has a greater capacity to store infiltrating rain than the Lake Calm basin, which is flat and has poorly drained soils. The storage capacities of the basins affect groundwater exchange with the lakes. Rainfall and net groundwater exchange, which is related to basin characteristics, varied more between these two lakes than did evaporation during this study.

  3. Establishment patterns of water-elm at Catahoula Lake, Louisiana

    Treesearch

    Karen S. Doerr; Sanjeev Joshi; Richard F. Keim

    2015-01-01

    At Catahoula Lake in central Louisiana, an internationally important lake for water fowl, hydrologic alterations to the surrounding rivers and the lake itself have led to an expansion of water-elm (Planera aquatic J.F. Gmel.) into the lake bed. In this study, we used dendrochronology and aerial photography to quantify the expansion of water-elm in the lake and identify...

  4. Great Lakes Maps - NOAA's National Weather Service

    Science.gov Websites

    Coastal Forecast System) Waves (GLERL Great Lakes Coastal Forecast System) Ice Cover (GLERL Great Lakes Coastal Forecast System) NOAA's National Weather Service Central Region Headquarters Regional Office 7220

  5. Petrographic Composition of Lignite from the Lake Somerville Spillway (East-central Texas)

    NASA Astrophysics Data System (ADS)

    Pawelec, Sandra; Bielowicz, Barbara

    2017-12-01

    In the presented paper, the macroscopic and microscopic composition of lignite from Lake Somerville Spillway has been examined. The study area is the upper part of the Manning Formation, located north-west of Somerville in the central-eastern part of Texas. There are three exposures: NE, SW and MC (Main Central) with visible parts of late-Eocene lignite seams belonging to the Jackson Group. The Manning section is divided into four marine dominated parasequences (P1 through P4). Lignite samples outlining the P1 parasequence from the MC and NE outcrops and the argillate sample from the lower part of the P2 parasequence, NE outcrop. Macroscopic characterization was carried out based on lithological classifications of humic coal. On this basis, it has been shown that the main lithotype occurring in the deposit is detritic (matrix) coal with a high share of mineral matter. The maceral composition of coal was determined according to the ICCP guidelines. The macerals from liptinite group were determined under fluorescent light. The maceral group content analysis was performed with use of 500-600 equally spaced points on the surface of the polished sections. It has been found that the examined coal is dominated by macerals from the huminite group, with a share ranging from 20.8 to 65.3% volume, including atrinite (9.8-22.8% volume, 17.5% volume on average). In the examined coal, macerals from the inertinite group (10.1 to 44.8%), especially semifusinite (max. 13.9%), fusinite (max. 9.3%) and funginite (max. 6.3 %) are of particularly large share. In the liptinite group, particular attention was paid to the content of alginite (max. 4.5%) and bituminite (max. 1.3 %), which indicate the paralic sedimentation environment of the examined coal. Additionally, the variability of macerals and maceral groups within the exposures and levels of the P1 parasequence was examined. The last step was to compare lignite from Lake Somerville Spillway with other lignites belonging to the

  6. Fate of Metals in Relation to Water and Sediment Properties in a Subtropical Lake in Central Himalaya, India.

    PubMed

    Inaotombi, Shaikhom; Gupta, Prem Kumar

    2017-04-01

    Lakes of Himalaya are one of the most fragile ecosystems on earth. Tourism and urban development in the upland region strongly affect its water resources. The high rate of sedimentation and organic matter deposition alters the ecological state of sediment bed, which indirectly influences on dynamics of metallic elements. We investigated spatial and temporal variations of water and sediment characteristic in Lake Sattal of Central Himalaya, India. Samples were collected seasonally from four sampling locations from January 2011 to December 2012. Pearson's correlation and Canonical correspondence analysis (CCAs) were applied to examine the dynamics and behaviors of heavy metals. Concentrations of elements were in the order of fluoride (Fl) > zinc (Zn) > copper (Cu) > iron (Fe) > manganese (Mn). Sand size fraction was higher in the littoral zone while clay particle was dominant in the profundal zone of the lake. Dissolved oxygen at sediment-water-interface (SWI) and water temperature were the major factors influencing the dynamics of metallic contents in the water column. Spatially, total organic matter (TOM) was higher in the deeper portion of the lake. Our study revealed that mobility of Fe is temperature-dependent, whereas speciation of Mn and Cu are primarily controlled by the suboxic condition of SWI in organic-rich site. Upland lakes are more vulnerable to anoxic condition and have severe implications on heavy metals speciation. Proper implementation of land use policies and management practices, including stormwater detention, can be integrated into resolving such problems.

  7. Role of lake regulation on glacier-fed rivers in enhancing salmon productivity: the Cook Inlet watershed, south-central Alaska, USA

    NASA Astrophysics Data System (ADS)

    Dorava, Joseph M.; Milner, Alexander M.

    2000-10-01

    Rivers fed by glaciers constitute a major part of the freshwater runoff into the Cook Inlet basin of south-central Alaska. This basin is very important to the economy of the State of Alaska because it is home to more than half of the population and it supports multi-million dollar commercial, subsistence and sport fisheries. Hence an understanding of how glacial runoff influences biological productivity is important for managing rivers that drain into Cook Inlet. This paper examines the ways in which the regulation of glacier-fed rivers by proglacial lakes affects salmon productivity, with particular reference to the Kenai River. Salmon escapement per unit channel length on the Kenai River is between two and ten times that found for rain-and-snowmelt dominated rivers and glacier-fed rivers lacking lake regulation.Lakes are shown to influence biological processes in glacier-fed rivers by attenuating peak flows, sustaining high flows throughout the summer, supplementing winter low flows, settling suspended sediment, and increasing river temperatures. Downstream from large lakes, glacier-fed rivers are less disturbed, channels are relatively stable and have well-developed salmonid habitats. The positive influences are indicated by the high diversity and abundances of benthic macroinvertebrates, which are important food resources for juvenile salmonids. High summer flows allow access for up-river salmon runs and lakes also provide both overwintering and rearing habitat.

  8. Lake trout spawning habitat in the Six Fathom Bank-Yankee Reef lake trout sanctuary, Lake Huron

    USGS Publications Warehouse

    Edsall, Thomas A.; Brown, Charles L.; Kennedy, Gregory W.; Poe, Thomas P.

    1992-01-01

    Attempts to reestablish self-sustaining stocks of lake trout (Salvelinus namaycush) in the lower four Great Lakes, where the species was extinguished in the 1950s and 1960s, have been largely unsuccessful. To avoid many of the problems believed to be contributing to this failure, the fishery management community recently established several sanctuaries in the offshore waters of the Great Lakes where the development and protection of self-sustaining stocks of lake trout would be a primary management objective. One of these, the Six Fathom Bank-Yankee Reef sanctuary, was created in the south-central portion of Lake Huron. This sanctuary covers 168,000 ha and includes the shallower portions of the Six Fathom and Ipperwash scarps, which are major bathymetric features in the southern half of the lake. Historical accounts describe Six Fathom Bank as the most important lake trout spawning ground in the lake. Here we present the results of lake bed surveys conducted in the sanctuary with side-scan sonar, underwater videocamera systems, and a small research submarine. Our observations of the lake bed are consistent with what is known of the bedrock stratigraphy, glacial history, and karst geomorphology of the Lake Huron basin. Most of the loose rock we found seemed to be derived from local carbonate bedrock formations, although non-carbonate rock probably from Precambrian sources to the north was also present in some areas. Much of the bedrock and loose rock displayed karst solution features described for the Bruce Peninsula on the Ontario shoreline. Our surveys revealed substantial areas of lake bed at water depths of 20–36 m that resembled suitable spawning and fry production habitat for the shallow-water strains of lake trout that are the focus of the rehabilitation effort. Low mid-lake nutrient levels documented recently by others and the extremely high abundance of Mysis relicta (an important item in the diet of young lake trout) that we documented on Yankee Reef

  9. Holocene Paleoenvironment of the North-central Great Basin: Preliminary Results from Favre Lake, Northern Ruby Mountains, Nevada

    NASA Astrophysics Data System (ADS)

    Starratt, S.; Wahl, D.; Wan, E.; Anderson, L.; Wanket, J.; Olson, H.; Lloyd-Davies, T.; Kusler, J.

    2009-12-01

    Little is known about Holocene climate variability in north-central Nevada. This study aims to assess changes in watershed vegetation, fire history, lake levels and limnological conditions in order to understand secular to millennial-scale changes in regional climate. Favre Lake (2,899 m a.s.l.; 12 m deep; 7.7 hectares) is a flow-through lake in the northern Ruby Mountains. The primary sources of influent, both of which appear to be intermittent, are Castle Lake (2,989 m a.s.l.) and Liberty Lake (3,077 m a.s.l.). The bedrock of the three lake basins is early Paleozoic marble and Mesozoic granite and metamorphic rocks. Bathymetric maps and temperature, pH, salinity, and conductivity profiles have been generated for Favre Lake. Surface samples and a series of cores were also collected using a modified Livingstone piston corer. The presence of the Mazama ash in the basal sediment (~4 m below the sediment/water interface) indicates the record extends to ~7,700 cal yr B.P. Magnetic susceptibility (MS) and loss-on-ignition data indicate that the sediments in the lowest part of the core contain primary and reworked Mazama ash. About 2,000 years ago CaCO3 increased from 2 to 3% of the inorganic sediment. The upper 25 cm of the core are marked by an increase in MS which may indicate increased erosion due to grazing. Between about 7,700 and 6,000 cal yr B.P. the diatom flora is dominated by a diverse assemblage of benthic species. The remainder of the core is dominated by Fragilaria, suggesting that lake level rose and flooded the shelf that surrounds the depocenter of the lake. This is supported by changes in the abundance of the aquatic fern Isoetes. Pinus and Artemisia dominate the pollen record, followed by subordinate levels of Poaceae, Asteraceae, Amaranthaceae, and Sarcobatus. The late early Holocene (7,700-6,000 cal yr B.P.) is dominated by Pinus which is present in reduced amounts during the middle Holocene (6,000-3,000 cal yr B.P.) and then returns to dominance in

  10. Detailed study of selenium in soil, water, bottom sediment, and biota in the Sun River Irrigation Project, Freezout Lake Wildlife Management Area, and Benton Lake National Wildlife Refuge, west-central Montana, 1990-92

    USGS Publications Warehouse

    Nimick, D.A.; Lambing, J.H.; Palawski, D.U.; Malloy, J.C.

    1996-01-01

    Selenium and other constituents are adversely affecting water quality and creating a potential hazard to wildlife in several areas of the Sun River Irrigation Project, Freezout Lake Wildlife Management Area, and Benton Lake National Wildlife Refuge in west-central Montana. Selenium derived from Cretaceous shale and Tertiary and Quaternary deposits containing shale detritus is transported in the oxic shallow ground-water systems. At Freezout Lake Wildlife Management Area, drainage from irrigated glacial deposits is the primary source of selenium; drainage from non-irrigated farmland is a significant source locally. Benton Lake generally receives more selenium from natural runoff from its non-irrigated basin than from the trans-basin diversion of irrigation return flow. Selenium has accumulated in aquatic plants and invertebrates, fish, and water birds, particularly in wetlands that receive the largest selenium loads. Although selenium residues in biological tissue from some wetland units exceeded biological risk levels, water-bird reproduction generally has not been impaired. The highest selenium residues in biota commonly occurred in samples from Priest Butte Lakes, which also had the highest selenium concentration in wetland water. Selenium concentrations in all invertebrate samples from Priest Butte Lakes and the south end of Freezeout Lake exceeded the critical dietary threshold for water birds. Selenium delivered to wetlands accumulates in bottom sediment, predominantly in near-shore areas. Potential impacts to water quality, and presumably biota, may be greatest near the mouths of inflows. Most selenium delivered to wetlands will continue to accumulate in bottom sediment and biota.

  11. Subsurface structure around Omi basin using borehole database

    NASA Astrophysics Data System (ADS)

    Kitada, N.; Ito, H.; Takemura, K.; Mitamura, M.

    2015-12-01

    Kansai Geo-informatics Network (KG-NET) is organized as a new system of management of GI-base in 2005. This organization collects the geotechnical and geological information of borehole data more than 60,000 data. GI-base is the database system of the KG-NET and platform to use these borehole data. Kansai Geo-informatics Research Committee (KG-R) is tried to explain the geotechnical properties and geological environment using borehole database in Kansai area. In 2014, KG-R established the 'Shin-Kansai Jiban Omi plain', and explain the subsurface geology and characteristics of geotechnical properties. In this study we introduce this result and consider the sedimental environment and characteristics in this area. Omi Basin is located in the central part of Shiga Prefecture which includes the largest lake in Japan called Lake Biwa. About 15,000 borehole data are corrected to consider the subsurface properties. The outline of topographical and geological characteristics of the basin is divided into west side and east side. The west side area is typical reverse fault called Biwako-Seigan fault zone along the lakefront. From Biwako-Seigan fault, the Omi basin is tilting down from east to west. Otherwise, the east areas distribute lowland and hilly area comparatively. The sedimentary facies are also complicate and difficult to be generally evaluated. So the discussion has been focused about mainly the eastern and western part of Lake Biwa. The widely dispersed volcanic ash named Aira-Tn (AT) deposited before 26,000-29,000 years ago (Machida and Arai, 2003), is sometimes interbedded the humic layers in the low level ground area. However, because most of the sediments are comprised by thick sand and gravels whose deposit age could not be investigated, it is difficult to widely identify the boundary of strata. Three types of basement rocks are distributed mainly (granite, sediment rock, rhyolite), and characteristics of deposit are difference of each backland basement rock

  12. Endemism of subterranean Diacyclops in Korea and Japan, with descriptions of seven new species of the languidoides-group and redescriptions of D. brevifurcus Ishida, 2006 and D. suoensis Ito, 1954 (Crustacea, Copepoda, Cyclopoida)

    PubMed Central

    Karanovic, Tomislav; Grygier, Mark J.; Lee, Wonchoel

    2013-01-01

    Abstract Copepods have been poorly studied in subterranean habitats in Korea. Previous records have indicated mostly the presence of species already described from Japan, with very few endemic elements. This commonality has usually been explained by repeated dispersal across the land bridges that connected the two countries several times during the Pleistocene glacial cycles. However, the Korean Peninsula is known for pockets of Cambrian and Ordovician carbonate rocks, with more than 1,000 caves already having been explored. The relative isolation of these carbonate pockets makes for an enormous speciation potential, and the development of a high level of short-range endemism of subterranean copepods should be expected. Representatives of the genus Diacyclops Kiefer, 1927 are here investigated from a range of subterranean habitats in South Korea, with comparative material sampled from central Honshu in Japan. Morphological analyses of microcharacters, many of which are used in cyclopoid taxonomy for the first time herein, reveal high diversity in both countries. No subterranean species is found in common, although the existence of four sibling species pairs in Korea and Japan may be indicative of relatively recent speciation. We describe seven new stygobiotic species, including three from Korea (Diacyclops hanguk sp. n., Diacyclops leeae sp. n., and Diacyclops parasuoensis sp. n.) and four from Japan (Diacyclops hisuta sp. n., Diacyclops ishidai sp. n., Diacyclops parahanguk sp. n., and Diacyclops pseudosuoensis sp. n.). Diacyclops hanguk, Diacyclops parasuoensis, Diacyclops ishidai, and Diacyclops parahanguk are described from newly collected material, while the other three new species are proposed for specimens previously identified as other, widely distributed species. Diacyclops brevifurcus Ishida, 2006 is redescribed from the holotype female, and Diacyclops suoensis Ito, 1954 is redescribed from material newly collected near the ancient Lake Biwa in Japan

  13. Depth and Differentiation of the Orientale Melt Lake

    NASA Technical Reports Server (NTRS)

    Vaughan, W. M.; Head, J. W.; Hess, P. C.; Wilson, L.; Neumann, G. A.; Smith, D. E.; Zuber, M. T.

    2012-01-01

    Impact melt emplacement and evolution in lunar multi-ring basins is poorly understood since impact melt deposits in basins are generally buried by mare basalt fill and obscured by subsequent impact cratering. The relatively young Orientale basin, which is only partially flooded with mare basalt, opens a rare window into basin-scale impact melts. We describe the geology of impact melt-related facies in Orientale and suggest that the central depression of Orientale may represent a solidified impact melt lake that vertically subsided shortly after basin formation due to solidification and cooling. We use Lunar Orbiter Laser Altimeter (LOLA) data to measure the depth (approx. 1.75 km) and diameter (approx 350 km) of this central depression. If all the observed subsidence of the central depression is due to solidification and cooling, the melt lake should be approx 12.5-16 km deep, far more voluminous (approx 106 km3) than the largest known differentiated igneous intrusions on Earth. We investigate the possibility that the Orientale melt lake has differentiated and model 1) the bulk composition of the melt lake, 2) the operation of melt mixing in the melt lake, and 3) the chemical evolution of the resulting liquids on the An-Fo-Qz ternary in order to predict the lithologies that might be present in the solidified Orientale melt lake. Finally, we consider the possible significance of these lithologies.

  14. Hydrogeologic controls on the groundwater interactions with an acidic lake in karst terrain, Lake Barco, Florida

    USGS Publications Warehouse

    Lee, T.M.

    1996-01-01

    Transient groundwater interactions and lake stage were simulated for Lake Barco, an acidic seepage lake in the mantled karst of north central Florida. Karst subsidence features affected groundwater flow patterns in the basin and groundwater fluxes to and from the lake. Subsidence features peripheral to the lake intercepted potential groundwater inflow and increased leakage from the shallow perimeter of the lake bed. Simulated groundwater fluxes were checked against net groundwater flow derived from a detailed lake hydrologic budget with short-term lake evaporation computed by the energy budget method. Discrepancies between modeled and budget-derived net groundwater flows indicated that the model underestimated groundwater inflow, possibly contributed to by transient water table mounding near the lake. Recharge from rainfall reduced lake leakage by 10 to 15 times more than it increased groundwater inflow. As a result of the karst setting, the contributing groundwater basin to the lake was 2.4 ha for simulated average rainfall conditions, compared to the topographically derived drainage basin area of 81 ha. Short groundwater inflow path lines and rapid travel times limit the contribution of acid-neutralizing solutes from the basin, making Lake Barco susceptible to increased acidification by acid rain.

  15. Hydrologic reconnaissance of the southern Great Salt Lake Desert and summary of the hydrology of west-central Utah

    USGS Publications Warehouse

    Gates, Joseph S.; Kruer, Stacie A.

    1981-01-01

    This report is the last of 19 hydrologic reconnaissances of the basins in western Utah. The purposes of this series of studies are (1) to analyze available hydrologic data and describe the hydrologic system, (2) to evaluate existing and potential water-resources development, and (3) to identify additional studies that might be needed. Part 1 of this report gives an estimate of recharge and discharge, an estimate of the potential for water-resources development, and a statement on the quality of water in the southern Great Salt Lake Desert part of west-central Utah. Part 2 deals with the same aspects of west-central Utah as a whole. Part 2 also summarizes the evidence of interbasin ground-water flow in west-central Utah and presents a theory for the origin of the water discharged from Fish Springs.

  16. Survival of lake trout eggs and fry reared in water from the upper Great Lakes

    USGS Publications Warehouse

    Mac, Michael J.; Edsall, Carol Cotant; Seelye, James G.

    1985-01-01

    As part of continuing studies of the reproductive failure of lake trout (Salvelinus namaycush) in Lake Michigan, we measured the survival of lake trout eggs and fry of different origins and reared in different environments. Eggs and milt were stripped from spawning lake trout collected in the fall of 1980 from southeastern Lake Michigan, northwestern Lake Huron, south central Lake Superior, and from hatchery brood stock. Eggs from all sources were incubated, and the newly hatched fry were reared for 139 days in lake water from each of the three upper Great Lakes and in well water. Survival of eggs to hatching at all sites was lowest for those from Lake Michigan (70% of fertilized eggs) and highest for eggs from Lake Superior (96%). Comparisons of incubation water from the different lakes indicated that hatching success of eggs from all sources was highest in Lake Huron water, and lowest in Lake Michigan water. The most notable finding was the nearly total mortality of fry from eggs of southeastern Lake Michigan lake trout. At all sites, the mean survival of Lake Michigan fry through 139 days after hatching was only 4% compared to near 50% for fry from the other three sources. In a comparison of the rearing sites, little influence of water quality on fry survival was found. Thus, the poor survival was associated with the source of eggs and sperm, not the water in which the fry were reared.

  17. Chemical and biotic characteristics of prairie lakes and large wetlands in south-central North Dakota—Effects of a changing climate

    USGS Publications Warehouse

    Mushet, David M.; Goldhaber, Martin B.; Mills, Christopher T.; McLean, Kyle I.; Aparicio, Vanessa M.; McCleskey, R. Blaine; Holloway, JoAnn M.; Stockwell, Craig A.

    2015-09-28

    The climate of the prairie pothole region of North America is known for variability that results in significant interannual changes in water depths and volumes of prairie lakes and wetlands; however, beginning in July 1993, the climate of the region shifted to an extended period of increased precipitation that has likely been unequaled in the preceding 500 years. Associated changing water volumes also affect water chemical characteristics, with potential effects on fish and wildlife populations. To explore the effect of changing climate patterns, in 2012 and 2013, the U.S. Geological Survey revisited 167 of 178 prairie lakes and large wetlands of south-central North Dakota that were originally sampled in the mid-1960s to mid-1970s. During the earlier sampling period, these lakes and wetlands displayed a great range of chemical characteristics (for example, specific conductance ranged from 365 microsiemens per centimeter at 25 degrees Celsius to 70,300 microsiemens per centimeter at 25 degrees Celsius); however, increased water volumes have resulted in greatly reduced variation among lakes and wetlands and a more homogeneous set of chemical conditions defined by pH, specific conductance, and concentrations of major cations and anions. High concentrations of dissolved solids previously limited fish occurrence in many of the lakes and wetlands sampled; however, freshening of these lakes and large wetlands has allowed fish to populate and flourish where they were previously absent. Conversely, the freshening of previously saline lakes and wetlands has resulted in concurrent shifts away from invertebrate species adapted to live in these highly saline environments. A shift in the regional climate has changed a highly diverse landscape of wetlands (fresh to highly saline) to a markedly more homogeneous landscape that has reshaped the fish and wildlife communities of this ecologically and economically important region.

  18. Paleoenvironments, Evolution, and Geomicrobiology in a Tropical Pacific Lake: The Lake Towuti Drilling Project (TOWUTI)

    NASA Astrophysics Data System (ADS)

    Vogel, Hendrik; Russell, James M.; Bijaksana, Satria; Fowle, David; von Rintelen, Thomas; Stevenson, Janelle; Watkinson, Ian; Marwoto, Ristiyanti; Melles, Martin; Crowe, Sean; Haffner, Doug; King, John

    2013-04-01

    Lake Towuti (2.5°S, 121°E) is a, 560 km2, 200-m deep tectonic lake at the downstream end of the Malili lake system, a set of five, ancient (1-2 MYr) tectonic lakes in central Sulawesi, Indonesia. Lake Towuti's location in central Indonesia provides a unique opportunity to reconstruct long-term paleoclimate change in a crucially important yet understudied region- the tropical Western Pacific warm pool, heart of the El Niño-Southern Oscillation. The Malili Lakes have extraordinarily high rates of floral and faunal endemism, and the lakes are surrounded by one of the most diverse tropical forests on Earth. Drilling in Lake Towuti will identify the age and origin of the lake and the environmental and climatic context that shaped the evolution of this unique lacustrine and terrestrial ecosystem. The ultramafic (ophiolitic) rocks and lateritic soils surrounding Lake Towuti provide metal substrates that feed a diverse, exotic microbial community, analogous to the microbial ecosystems that operated in the Archean Oceans. Drill core will provide unique insight into long-term changes in this ecosystem, as well as microbial processes operating at depth in the sediment column. While the Malili Lakes have long been considered high-priority drilling sites, only now do we have the requisite site survey information to propose the development of ICDP's first lake drilling target in the tropical western Pacific. High-resolution seismic reflection data (CHIRP and airgun) combined with numerous long sediment piston cores collected from 2007-2010 demonstrate the enormous promise of Lake Towuti for an ICDP drilling campaign. Well-stratified sequences of up to 150 m thickness, uninterrupted by unconformities or erosional truncation, are present in multiple sub-basins within Towuti, providing ideal sites for long-term environmental, climatic, and limnological reconstructions. Multiproxy analyses of our piston cores document a continuous and detailed record of moisture balance

  19. Lake Ilopango, El Salvador

    NASA Image and Video Library

    2015-03-10

    Lake Ilopango is a crater lake which fills a volcanic caldera in central El Salvador, immediately east of the capital city San Salvador. The caldera collapsed most recently in about 500 AD, producing 20 times as much ash as the Mount St. Helens eruption, and blanketing an area of at least 10,000 square kilometers waist-deep in ash. The only historical eruption occurred in 1879, forming lava domes, now islets in the lake. Quetzaltepec is the stratovolcano just west of the city. Its last eruption in 1917 produced lavas flowing down the northwest flank, and evaporated the crater lake. The image was acquired March 5, 2006, covers an area of 27 by 42 km, and is located at 13.7 degrees north, 89.1 degrees west. http://photojournal.jpl.nasa.gov/catalog/PIA19237

  20. Widespread waterborne pollution in central Swedish lakes and the Baltic Sea from pre-industrial mining and metallurgy.

    PubMed

    Bindler, Richard; Renberg, Ingemar; Rydberg, Johan; Andrén, Thomas

    2009-07-01

    Metal pollution is viewed as a modern problem that began in the 19th century and accelerated through the 20th century; however, in many parts of the globe this view is wrong. Here, we studied past waterborne metal pollution in lake sediments from the Bergslagen region in central Sweden, one of many historically important mining regions in Europe. With a focus on lead (including isotopes), we trace mining impacts from a local scale, through a 120-km-long river system draining into Mälaren--Sweden's third largest lake, and finally also the Baltic Sea. Comparison of sediment and peat records shows that pollution from Swedish mining was largely waterborne and that atmospheric deposition was dominated by long-range transport from other regions. Swedish ore lead is detectable from the 10th century, but the greatest impact occurred during the 16th-18th centuries with improvements occurring over recent centuries, i.e., historical pollution > modern industrial pollution.

  1. 24. Lake Hodges Flume conduit enlargement. April 1930. Courtesy of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. Lake Hodges Flume conduit enlargement. April 1930. Courtesy of the Mandeville Department of Special Collections, Central Library, University of California, San Diego. - Lake Hodges Flume, Along San Dieguito River between Lake Hodges & San Dieguito Reservoir, Rancho Santa Fe, San Diego County, CA

  2. 22. Concrete trestle on Lake Hodges Flume, 1919. Courtesy of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. Concrete trestle on Lake Hodges Flume, 1919. Courtesy of the Mandeville Department of Special Collections, Central Library, University of California, San Diego. - Lake Hodges Flume, Along San Dieguito River between Lake Hodges & San Dieguito Reservoir, Rancho Santa Fe, San Diego County, CA

  3. Variable viral and grazer control of prokaryotic growth efficiency in temperate freshwater lakes (French Massif Central).

    PubMed

    Ram, A S Pradeep; Palesse, S; Colombet, J; Sabart, M; Perriere, F; Sime-Ngando, T

    2013-11-01

    The effects of viral lysis and heterotrophic nanoflagellate grazing (top down forces) on prokaryotic mortality and their subsequent impact on their metabolism were estimated in the upper euphotic and deeper aphotic depth of 11 freshwater lakes located in the French Massif Central. The standing stocks of viruses (VA) and heterotrophic nanoflagellate (HNF) varied significantly (p < 0.05) with sampled depth. VA was substantially (twofold on an average) and significantly higher (p < 0.03) at the aphotic compared to euphotic depth, whereas the reverse was true (p < 0.02) for HNF. Among the prokaryote subgroup, high nucleic acid content prokaryotes explained for significant variability in the total VA and served as principle host target for viral proliferation. Like standing stocks, flagellate grazing and viral infection rates also followed similar patterns. In the investigated lakes, the mechanism for regulating prokaryotic production varied with sampled depth from grazing control in the euphotic to control due to viral lysis in the aphotic. We also tested the hypothesis of top down control on prokaryotic growth efficiency (PGE, which we used as an index of prokaryotic physiological and energetic status at the community level) at both depths. Overall, among the studied lakes, PGE varied widely (4-51 %) with significantly (p < 0.05) lower values in the aphotic (mean = 18 ± 4 %) than euphotic depth (mean = 32 ± 9 %). Contrasting observations on the top down control of PGE between sampled depths were observed. The presence of grazers was found to stimulate PGE at the euphotic, whereas viruses through their lytic infection had a strong negative impact on PGE at the aphotic depth. Such observed differences in PGE and the mechanism controlling prokaryotic production with depth could eventually have strong implication on carbon and nutrient flux patterns in the studied lakes.

  4. Climate change and human occupations in the Lake Daihai basin, north-central China over the last 4500 years: A geo-archeological perspective

    NASA Astrophysics Data System (ADS)

    Xu, Lichen; Liu, Yan; Sun, Qianli; Chen, Jing; Cheng, Peng; Chen, Zhongyuan

    2017-05-01

    High-resolution climate variations since the last 4500 years in the monsoonal-arid transition zone of north-central China were revealed through the integration of proxies from sediment cores in the Lake Daihai basin. Human occupations in the lake basin deduced from archeological findings and historical literatures were then incorporated into the climate sequence to demonstrate the patterns of human responses to the climate changes, and the recent anthropogenic effects. It indicated that: (1) Climate dominated human-environment adaptations prevailed prior to ∼2700 cal yr BP. An amicable climate setting before ∼4100 cal yr BP would facilitate the growth of the Laohushan Culture (LC) in the lake basin, while a pronounced deterioration of water thermal condition after that had led to human exodus and the collapse of the LC. The reduced human activity in the lake basin indicated at ∼3800-3500 cal yr BP and a subsequent cultural blank at ∼3500-2700 cal yr BP, were both in response to the climate and lake level fluctuations during ∼3800-2800 cal yr BP. (2) Transition to a positive human adaptation was seen at ∼2700-1100 cal yr BP, represented by the exploitation of arable land for cultivation and animal husbandry as the lake contracted. (3) An increasing human presence that affected environmental processes became more severe over the last ∼1100 cal yr BP. This was basically due to the ongoing lake shore reclamation for cropping, and more recently heavy metals emissions from fossil fuel combustion and local industries.

  5. A geochemical record of the link between chemical weathering and the East Asian summer monsoon during the late Holocene preserved in lacustrine sediments from Poyang Lake, central China

    NASA Astrophysics Data System (ADS)

    Huang, Chao; Wei, Gangjian; Li, Wuxian; Liu, Ying

    2018-04-01

    This paper presents relatively high-resolution geochemical records spanning the past 4000 cal yr BP obtained from the lacustrine sediments of Poyang Lake in central China. The variations in the intensity of the East Asian summer monsoon (EASM) are traced using the K/Na, Ti/Na, Al/K, kaolinite/illite and clay/feldspar ratios, together with the chemical index of alteration (CIA), as indicators of chemical weathering. During the last 4000 years, the proxy records of chemical weathering from Poyang Lake exhibit an overall enhanced trend, consistent with regional hydrological changes in previous independent records. Further comparisons and analyses demonstrate that regional moisture variations in central China is inversely correlated with the EASM intensity, with weak EASM generating high precipitation in central China. Our data reveal three intervals of dramatically dry climatic conditions (i.e., ca. 4000-3200 cal yr BP, ca. 2800-2400 cal yr BP, and ca. 500-200 cal yr BP). A period of weak chemical weathering, related to cold and dry climatic conditions, occurred during the Little Ice Age (LIA), whereas more intense chemical weathering, reflecting warm and humid climatic conditions, was recorded during the Medieval Warm Period (MWP). Besides, an intensification of chemical weathering in Poyang Lake during the late Holocene agrees well with strong ENSO activity, suggesting that moisture variations in central China may be predominantly driven by ENSO variability.

  6. Water quality of Lake Whitney, north-central Texas

    USGS Publications Warehouse

    Strause, Jeffrey L.; Andrews, Freeman L.

    1983-01-01

    Seasonal temperature variations and variations in the concentration of dissolved oxygen result in dissolved iron, dissolved manganese, total inorganic nitrogen, and total phosphorus being recycled within the lake; however, no significant accumulations of these constituents were detected.

  7. 21. Newly completed Lake Hodges Dam and Flume, 1919. Courtesy ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. Newly completed Lake Hodges Dam and Flume, 1919. Courtesy of the Mandeville Department of Special Collection, Central Library, University of California, San Diego. - Lake Hodges Flume, Along San Dieguito River between Lake Hodges & San Dieguito Reservoir, Rancho Santa Fe, San Diego County, CA

  8. Sources and distribution of microplastics in China's largest inland lake - Qinghai Lake.

    PubMed

    Xiong, Xiong; Zhang, Kai; Chen, Xianchuan; Shi, Huahong; Luo, Ze; Wu, Chenxi

    2018-04-01

    Microplastic pollution was studied in China's largest inland lake - Qinghai Lake in this work. Microplastics were detected with abundance varies from 0.05 × 10 5 to 7.58 × 10 5 items km -2 in the lake surface water, 0.03 × 10 5 to 0.31 × 10 5 items km -2 in the inflowing rivers, 50 to 1292 items m -2 in the lakeshore sediment, and 2 to 15 items per individual in the fish samples, respectively. Small microplastics (0.1-0.5 mm) dominated in the lake surface water while large microplastics (1-5 mm) are more abundant in the river samples. Microplastics were predominantly in sheet and fiber shapes in the lake and river water samples but were more diverse in the lakeshore sediment samples. Polymer types of microplastics were mainly polyethylene (PE) and polypropylene (PP) as identified using Raman Spectroscopy. Spatially, microplastic abundance was the highest in the central part of the lake, likely due to the transport of lake current. Based on the higher abundance of microplastics near the tourist access points, plastic wastes from tourism are considered as an important source of microplastics in Qinghai Lake. As an important area for wildlife conservation, better waste management practice should be implemented, and waste disposal and recycling infrastructures should be improved for the protection of Qinghai Lake. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. The effect of seasonality on the structure of rotifers in a black-water shallow lake in Central Amazonia.

    PubMed

    Nova, Clarice C; Lopes, Vanessa G; Souza, Leonardo Coimbra E; Kozlowsky-Suzuki, Betina; Pereira, Talita A A; Branco, Christina W C

    2014-09-01

    Rotifers have often been used as indicators of sudden changes in physical and chemical features of the aquatic environment. Such features vary greatly during flood pulse events in small lakes connected to major floodplains. However, few are the studies that investigate the consequences of the flood pulse in rotifer species composition, abundance, richness and diversity, especially in Amazonian lakes. We analyzed samples from a small blackwater lake of an "igarapé" connected permanently to the Negro river, in Central Amazonia. Samples were taken twice a year for two years, comprising flooding and receding periods of the flood pulse. Rotifer abundance increased significantly after draught events, and electrical conductivity and turbidity were intrinsically related to such variation. Species composition also changed from flooding to receding periods. Some taxa, such as Brachionus zahniseri reductus and Lecane remanei were restricted to receding periods, while Brachionus zahniseri, Brachionus gillardi and Lecane proiecta were only present during flooding. A shift in the composition of rotifer families was observed from one period to another, showing the effect of renewing waters of the flood pulse. These results suggest that the flood pulse acts as a driving force and stressing condition, considerably altering rotifer community dynamics, either changing species composition or decreasing abundance.

  10. Reconstruction of Holocene Climate Variability within the Central Mediterranean Using Lake Sediments from the Akrotiri Peninsula, Crete

    NASA Astrophysics Data System (ADS)

    Magill, C. R.; Rosenmeier, M. F.; Cavallari, B. J.; Curtis, J. H.; Weiss, H.

    2005-12-01

    Middle and late Holocene geochemical records from the Limnes depression, a small sinkhole located within the Akrotiri Peninsula, Crete, document centennial and millennial-scale climate variability within the central Mediterranean region. The oldest sediments of the basin consist largely of fibrous plant macrofossils and organic matter and likely indicate lake filling and expansion of wetland vegetation beginning ~5700 radiocarbon years before present (14C-yrs B.P.) (4550 B.C.). The basal peat layers grade into predominantly open water and less shallow lacustrine deposits by 4500 14C-yrs B.P (3200 B.C.). Continuous open water sedimentation within the Limnes core is interrupted by a number of distinct lag deposits and peaty deposits centered at 3700, 1600, and 350 14C-yrs B.P (2100 B.C., 500 A.D., and 1500 A.D.) indicating periods of significantly lowered lake level or perhaps lake desiccation. These ages coincide roughly with oxygen isotope (δ18O) minima measured in biogenic carbonates (ostracod shells) and support the inference for low lake stage. Trace element (Ca, Mg, and Sr) concentrations in ostracod shells from the Limnes core parallel the oxygen isotope record, suggesting that the data reflect basin hydrology rather than changes in the isotopic composition of rainfall. Furthermore, covariance in both δ18O and Mg concentrations eliminate temperature as a control on the oxygen isotope record. Sediments from the basin also contain aragonite remains of the green alga Chara and isotope analysis of the calcite may record additional paleoenvironmental information. The paleoclimate history inferred from the Limnes record correlates temporally (albeit tenuously) to previous paleoenvironmental data that document abrupt onset of arid conditions in the eastern Mediterranean and western Asia ca. 2200 B.C. Moreover, stratigraphic and geochemical evidence of low lake level (drying) within the Limnes basin at 2100 B.C. may correspond to the termination of the Early Minoan

  11. Lake Ontario Shore Protection Study: Literature Review Report.

    DTIC Science & Technology

    1979-07-01

    Rochester Region - Extracted from IJC, May 1976 31 Recreational Facilities and Lake Ontario State Parkway Expressways - Existing and Proposed...Throughout Areas of the Lake Ontario Western and Central Basins and the Genesee and Oswego River Basins - Extracted from the Genesee/Finger Lakes Regional...Planning Board, Nov. 1972 32 Recreational Facilities of the Rochester to St. Lawrence Region - Extracted from IJC, May 1976 33 Aquatic Vegetation

  12. Effects of acidic deposition on in-lake phosphorus availability: a lesson from lakes recovering from acidification.

    PubMed

    Kopáček, Jiří; Hejzlar, Josef; Kaňa, Jiří; Norton, Stephen A; Stuchlík, Evžen

    2015-03-03

    Lake water concentrations of phosphorus (P) recently increased in some mountain areas due to elevated atmospheric input of P rich dust. We show that increasing P concentrations also occur during stable atmospheric P inputs in central European alpine lakes recovering from atmospheric acidification. The elevated P availability in the lakes results from (1) increasing terrestrial export of P accompanying elevated leaching of dissolved organic carbon and decreasing phosphate-adsorption ability of soils due to their increasing pH, and (2) decreasing in-lake P immobilization by aluminum (Al) hydroxide due to decreasing leaching of ionic Al from the recovering soils. The P availability in the recovering lakes is modified by the extent of soil acidification, soil composition, and proportion of till and meadow soils in the catchment. These mechanisms explain several conflicting observations of the acid rain effects on surface water P concentrations.

  13. Sedimentation and subsidence patterns in the central and north basins of Lake Baikal from seismic stratigraphy

    USGS Publications Warehouse

    Moore, T.C.; Klitgord, Kim D.; Golmshtok, A.J.; Weber, E.

    1997-01-01

    Comparison of sedimentation patterns, basement subsidence, and faulting histories in the north and central basins of Lake Baikal aids in developing an interbasinal seismic stratigraphy that reveals the early synrift evolution of the central portion of the Baikal rift, a major continental rift system. Although there is evidence that the central and northern rift basins evolved at approximately the same time, their sedimentation histories are markedly different. Primary sediment sources for the initial rift phase were from the east flank of the rift; two major deltas developed adjacent to the central basin: the Selenga delta at the south end and the Barguzin delta at the north end. The Barguzin River system, located at the accommodation zone between the central and north basins, also fed into the southern part of the north basin and facilitated the stratigraphic linkage of the two basins. A shift in the regional tectonic environment in the mid Pliocene(?) created a second rift phase distinguished by more rapid subsidence and sediment accumulation in the north basin and by increased subsidence and extensive faulting in the central basin. The Barguzin delta ceased formation and parts of the old delta system were isolated within the north basin and on Academic Ridge. These isolated deltaic deposits provide a model for the development of hydrocarbon plays within ancient rift systems. In this second tectonic phase, the dominant sediment fill in the deeper and more rapidly subsiding north basin shifted from the flexural (eastern) margin to axial transport from the Upper Angara River at the north end of the basin.

  14. MORPHOLOGICAL VARIATION IN HATCHLING AMERICAN ALLIGATORS (ALLIGATOR MISSISSIPPIENSIS) FROM THREE FLORIDA LAKES

    EPA Science Inventory

    Morphological variation of 508 hatchling alligators from three lakes in north central Florida (Lakes Woodruff, Apopka, and Orange) was analyzed using multivariate statistics. Morphological variation was found among clutches as well as among lakes. Principal components analysis wa...

  15. Estimation of water storage changes in small endorheic lakes in Burabay National Nature Park (Northern Kazakhstan, Central Asia); the effect of climate change and anthropogenic influences

    NASA Astrophysics Data System (ADS)

    Yapiyev, Vadim; Sagintayev, Zhanay; Verhoef, Anne; Samarkhanov, Kanat; Jumassultanova, Saltanat

    2017-04-01

    Both climate change and anthropogenic activities contribute to deterioration of terrestrial water resources and ecosystems worldwide. It has been observed in recent decades that water-limited steppe regions of Central Asia are among ecosystems found to exhibit enhanced responses to climate variability. In fact, the largest share of worldwide net loss of permanent water extent is geographically concentrated in the Central Asia and Middle East regions attributed to both climate variability/change and human activities impacts. We used a digital elevation model, digitized bathymetry maps and high resolution Landsat images to estimate the areal water cover extent and volumetric storage changes in small terminal lakes in Burabay National Nature Park (BNNP), located in Northern Central Asia, for the period 2000-2016. Based on the analysis of long-term climatic data from meteorological stations, hydrometeorological network observations as well as regional climate model projections we evaluate the impacts of past thirty years and future climatic conditions on the water balance of BNNP lake catchments. The anthropogenic water consumption was estimated based on data collected at a local water supply company and regulation authorities. One the one hand historical in-situ observations and future climate projections do not show a significant change in precipitation in BNNP. On the other hand both observations and the model demonstrate steadily rising air temperatures in the area. It is concluded that the long-term decline in water levels for most of these lakes can be largely attributed to climate change (but only via changes in air temperature, causing evaporation to exceed precipitation) and not to direct anthropogenic influences such as increased water withdrawals. In addition, the two largest lakes, showing the highest historical water level decline, do not have sufficient water drainage basin area to sustain water levels under increased evaporation rates.

  16. Indications of human activity from amino acid and amino sugar analyses on Holocene sediments from lake Lonar, central India

    NASA Astrophysics Data System (ADS)

    Menzel, P.; Gaye, B.; Wiesner, M.; Prasad, S.; Basavaiah, N.; Stebich, M.; Anoop, A.; Riedel, N.; Brauer, A.

    2012-04-01

    The DFG funded HIMPAC (Himalaya: Modern and Past Climates) programme aims to reconstruct Holocene Indian Monsoon climate using a multi-proxy and multi-archive approach. First investigations made on sediments from a ca. 10 m long core covering the whole Holocene taken from the lake Lonar in central India's state Maharashtra, Buldhana District, serve to identify changes in sedimentation, lake chemistry, local vegetation and regional to supra-regional climate patterns. Lake Lonar occupies the floor of an impact crater that formed on the ~ 65 Ma old basalt flows of the Deccan Traps. It covers an area of ca. 1 km2 and is situated in India's core monsoon area. The modern lake has a maximum depth of about 5 m, is highly alkaline, and hyposaline, grouped in the Na-Cl-CO3 subtype of saline lakes. No out-flowing stream is present and only three small streams feed the lake, resulting in a lake level highly sensitive to precipitation and evaporation. The lake is eutrophic and stratified throughout most of the year with sub- to anoxic waters below 2 m depth. In this study the core sediments were analysed for their total amino acid (AA) and amino sugar (AS) content, the amino acid bound C and N percentage of organic C and total N in the sediment and the distribution of individual amino acids. The results roughly show three zones within the core separated by distinct changes in their AA content and distribution. (i) The bottom part of the core from ca. 12000 cal a BP to 11400 cal a BP with very low AA and AS percentage indicating high lithogenic contribution, most probably related to dry conditions. (ii) From 11400 cal a BP to 1200 cal a BP the sediments show moderate AA and AS percentages and low values for the ratios of proteinogenic AAs to their non-proteinogenic degradation products (e.g. ASP/β-ALA; GLU/γ-ABA). (iii) The top part of the core (< 1200 cal a BP) is characterised by an intense increase in total AA and AS, AA-C/Corg and AA-N/Ntotas well as in the ratio of

  17. Water level monitoring using radar remote sensing data: Application to Lake Kivu, central Africa

    NASA Astrophysics Data System (ADS)

    Munyaneza, Omar; Wali, Umaru G.; Uhlenbrook, Stefan; Maskey, Shreedhar; Mlotha, McArd J.

    Satellite radar altimetry measures the time required for a pulse to travel from the satellite antenna to the earth’s surface and back to the satellite receiver. Altimetry on inland lakes generally shows some deviation from in situ level measurements. The deviation is attributed to the geographically varying corrections applied to account for atmospheric effects on radar waves. This study was focused on verification of altimetry data for Lake Kivu (2400 km 2), a large inland lake between Rwanda and the Democratic Republic of Congo (DRC) and estimating the lake water levels using bathymetric data combined with satellite images. Altimetry data obtained from ENVISAT and ERS-2 satellite missions were compared with water level data from gauging stations for Lake Kivu. Gauge data for Lake Kivu were collected from the stations ELECTROGAZ and Rusizi. ENVISAT and ERS-2 data sets for Lake Kivu are in good agreement with gauge data having R2 of 0.86 and 0.77, respectively. A combination of the two data sets improved the coefficient of determination to 95% due to the improved temporal resolution of the data sets. The calculated standard deviation for Lake Kivu water levels was 0.642 m and 0.701 m, for ENVISAT and ERS-2 measurements, respectively. The elevation-surface area characteristics derived from bathymetric data in combination with satellite images were used to estimate the lake level gauge. Consequently, the water level of Lake Kivu could be estimated with an RMSE of 0.294 m and an accuracy of ±0.58 m. In situations where gauges become malfunctioning or inaccessible due to damage or extreme meteorological events, the method can be used to ensure data continuity.

  18. Lake sediment records on climate change and human activities in the Xingyun Lake catchment, SW China.

    PubMed

    Zhang, Wenxiang; Ming, Qingzhong; Shi, Zhengtao; Chen, Guangjie; Niu, Jie; Lei, Guoliang; Chang, Fengqin; Zhang, Hucai

    2014-01-01

    Sediments from Xinyun Lake in central Yunnan, southwest China, provide a record of environmental history since the Holocene. With the application of multi-proxy indicators (total organic carbon (TOC), total nitrogen (TN), δ13C and δ15N isotopes, C/N ratio, grain size, magnetic susceptibility (MS) and CaCO3 content), as well as accelerator mass spectrometry (AMS) 14C datings, four major climatic stages during the Holocene have been identified in Xingyun's catchment. A marked increase in lacustrine palaeoproductivity occurred from 11.06 to 9.98 cal. ka BP, which likely resulted from an enhanced Asian southwest monsoon and warm-humid climate. Between 9.98 and 5.93 cal. ka BP, a gradually increased lake level might have reached the optimum water depth, causing a marked decline in coverage by aquatic plants and lake productivity of the lake. This was caused by strong Asian southwest monsoon, and coincided with the global Holocene Optimum. During the period of 5.60-1.35 cal. ka BP, it resulted in a warm and dry climate at this stage, which is comparable to the aridification of India during the mid- and late Holocene. The intensifying human activity and land-use in the lake catchment since the early Tang Dynasty (∼1.35 cal. ka BP) were associated with the ancient Dian culture within Xingyun's catchment. The extensive deforestation and development of agriculture in the lake catchment caused heavy soil loss. Our study clearly shows that long-term human activities and land-use change have strongly impacted the evolution of the lake environment and therefore modulated the sediment records of the regional climate in central Yunnan for more than one thousand years.

  19. Imaging radar observations of frozen Arctic lakes

    NASA Technical Reports Server (NTRS)

    Elachi, C.; Bryan, M. L.; Weeks, W. F.

    1976-01-01

    A synthetic aperture imaging L-band radar flown aboard the NASA CV-990 remotely sensed a number of ice-covered lakes about 48 km northwest of Bethel, Alaska. The image obtained is a high resolution, two-dimensional representation of the surface backscatter cross section, and large differences in backscatter returns are observed: homogeneous low returns, homogeneous high returns and/or low returns near lake borders, and high returns from central areas. It is suggested that a low return indicates that the lake is frozen completely to the bottom, while a high return indicates the presence of fresh water between the ice cover and the lake bed.

  20. Lake Sarez, Tajikistan

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Lake Sarez (top), deep in the Pamir mountains of Tajikistan, was created 90 years ago when a strong earthquake triggered a massive landslide that, in turn, became a huge dam along the Murghob River, now called the Usoi Dam. The resulting lake is perched above surrounding drainages at an elevation greater than 3000m, and is part of the watershed that drains the towering Akademi Nauk Range (see the regional image, lower). The lake is 61 km long and as deep as 500 m, and holds an estimated 17 cubic km of water. The area experiences considerable seismic activity, and scientists fear that part of the right bank may slump into the lake, creating a huge wave that will top over and possibly breach the natural dam. Such a wave would create a catastrophic flood downstream along the Bartang, Panj and Amu Darya Rivers, perhaps reaching all the way to the Aral Sea. Currently, central Asian governments, as well as the World Bank and the UN are monitoring the dam closely, and have proposed gradually lowering the lake level as a preventive measure. More information about the lake is available at the following web sites: Lake Sarez Study group, UN Report, Reliefweb Digital photograph numbers ISS002-E-7771 and ISS002-E-7479 were taken in the spring of 2001 from Space Station Alpha and are provided by the Earth Sciences and Image Analysis Laboratory at Johnson Space Center. Additional images taken by astronauts and cosmonauts can be viewed at the NASA-JSC Gateway to Astronaut Photography of Earth.

  1. Pulpwood production in the North Central Region, 1973.

    Treesearch

    James E. Blyth

    1975-01-01

    Presents 1973 pulpwood production and receipt data for the Lake States and Central States. Pulpwood production for the Lake States is given by species for each county, and production by Forest Survey Unit is compared with that of previous years. For the Central States, 1973 pulpwood production and receipt data are presented by state, and four production classes are...

  2. Isotope analyses of the lake sediments in the Plitvice Lakes, Croatia

    NASA Astrophysics Data System (ADS)

    Horvatinčić, Nada; Sironić, Andreja; Barešić, Jadranka; Bronić, Ines Krajcar; Nikolov, Jovana; Todorović, Nataša; Hansman, Jan; Krmar, Miodrag

    2014-10-01

    The analyses of radioactive isotopes 14C, 137Cs and 210Pb, and stable isotope 13C were performed in the sediment cores, top 40 cm, taken in 2011 from karst lakes Prošće and Kozjak in the Plitvice Lakes National Park, central Croatia. Frozen sediment cores were cut into 1 cm thick layers and dried. 14C activity in both carbonate and organic fractions was measured using accelerator mass spectrometry technique with graphite synthesis. 137Cs, 210Pb, 214Pb and 214Bi were measured by low level gamma spectrometry method on ORTECHPGe detector with the efficiency of 32%. Distribution of 14C activity from both lakes showed increase of the 14C activity in the top 10-12 cm in both carbonate and organic fractions as a response to thermonuclear bomb-produced 14C in the atmosphere in the sixties of the 20th century. Anthropogenically produced 137Cs was also observed in sediment profiles. Sedimentation rates for both lake sediments were estimated based on the unsupported 210Pb activity. Different 14C activity of the carbonate fraction (63-80 pMC, percent of modern carbon) and organic fraction (82-93 pMC) is the result of geochemical and biological processes of the sediment precipitation in the lake waters. This is also confirmed by the δ 13 C values of both fractions. Carbon isotope composition, a 14 C and δ 13 C, was compared with the lake sediments from the same lakes collected in 1989 and 2003.

  3. Temperate Lakes Discovered on Titan

    NASA Astrophysics Data System (ADS)

    Vixie, Graham; Barnes, Jason W.; Jackson, Brian; Wilson, Paul

    2012-04-01

    We have discovered two temperate lakes on Titan using Cassini's Visual and Infrared Mapping Spectrometer (VIMS). Three key features help to identify these surface features as lakes: morphology, albedo, and specular reflection. The presence of lakes at the mid-latitudes mean liquid can accumulate and remain stable outside of the poles. We first identify a lake surface by looking for possible shorelines with a lacustrine morphology. Then, we apply a simple atmospheric correction that produces an approximate surface albedo. Next, we prepare cylindrical projection maps of the brightness of the sky as seen from any points on the surface to identify specular reflections. Our techniques can then be applied to other areas, such as Arrakis Planitia, to test for liquid. Currently, all the known lakes on Titan are concentrated at the poles. Lakes have been suggested in the tropic zone by Griffith et al. Our discovery of non-transient, temperate lakes has important implications for Titan's hydrologic cycle. Clouds have been recorded accumulating in the mid-latitudes and areas have been darkened by rainfall but later brightened after evaporation (Turtle et al. 2011). Stable temperate lakes would affect total rainfall, liquid accumulation, evaporation rates, and infiltration. Polaznik Macula (Figure 1) is a great candidate for lake filling, evaporation rates, and stability. References: Griffith, C., et al.: "Evidence for Lakes on Titan's Tropical Surface". AAS/Division for Planetary Sciences Meeting Abstracts #42, Vol. 42, pp. 1077, 2010. Turtle, E. P., et al.: "Rapid and Extensive Surface Changes Near Titan's Equator: Evidence of April Showers". Science, Vol. 331, pp. 1414-, 2011. Figure 1: Polaznik Macula is the large, dark area central to the figure. The encircled dark blue areas represent positively identified lake regions in the T66 flyby. The light blue areas represent lake candidates still under analysis. The green circle marks a non-lake surface feature enclosed by a

  4. Food Web Topology in High Mountain Lakes.

    PubMed

    Sánchez-Hernández, Javier; Cobo, Fernando; Amundsen, Per-Arne

    2015-01-01

    Although diversity and limnology of alpine lake systems are well studied, their food web structure and properties have rarely been addressed. Here, the topological food webs of three high mountain lakes in Central Spain were examined. We first addressed the pelagic networks of the lakes, and then we explored how food web topology changed when benthic biota was included to establish complete trophic networks. We conducted a literature search to compare our alpine lacustrine food webs and their structural metrics with those of 18 published lentic webs using a meta-analytic approach. The comparison revealed that the food webs in alpine lakes are relatively simple, in terms of structural network properties (linkage density and connectance), in comparison with lowland lakes, but no great differences were found among pelagic networks. The studied high mountain food webs were dominated by a high proportion of omnivores and species at intermediate trophic levels. Omnivores can exploit resources at multiple trophic levels, and this characteristic might reduce competition among interacting species. Accordingly, the trophic overlap, measured as trophic similarity, was very low in all three systems. Thus, these alpine networks are characterized by many omnivorous consumers with numerous prey species and few consumers with a single or few prey and with low competitive interactions among species. The present study emphasizes the ecological significance of omnivores in high mountain lakes as promoters of network stability and as central players in energy flow pathways via food partitioning and enabling energy mobility among trophic levels.

  5. The influence of irrigation water on the hydrology and lake water budgets of two small arid-climate lakes in Khorezm, Uzbekistan

    USGS Publications Warehouse

    Scott, J.; Rosen, Michael R.; Saito, L.; Decker, D.L.

    2011-01-01

    Little is known regarding the origins and hydrology of hundreds of small lakes located in the western Uzbekistan province of Khorezm, Central Asia. Situated in the Aral Sea Basin, Khorezm is a productive agricultural region, growing mainly cotton, wheat, and rice. Irrigation is provided by an extensive canal network that conveys water from the Amu Darya River (AD) throughout the province. The region receives on average 10 cm/year of precipitation, yet potential evapotranspiration exceeds this amount by about 15 times. It was hypothesized that the perennial existence of the lakes of interest depends on periodic input of excess irrigation water. This hypothesis was investigated by studying two small lakes in the region, Tuyrek and Khodjababa. In June and July 2008, surface water and shallow groundwater samples were collected at these lake systems and surrounding communities and analyzed for δ2H, δ18O, and major ion hydrochemistry to determine water sources. Water table and lake surface elevations were monitored, and the local aquifer characteristics were determined through aquifer tests. These data and climate data from a Class A evaporation pan and meteorological stations were used to estimate water budgets for both lakes. Lake evaporation was found to be about 0.7 cm/day during the study period. Results confirm that the waters sampled at both lake systems and throughout central Khorezm were evaporated from AD water to varying degrees. Together, the water budgets and stable isotope and major ion hydrochemistry data suggest that without surface water input from some source (i.e. excess irrigation water), these and other Khorezm lakes with similar hydrology may decrease in volume dramatically, potentially to the point of complete desiccation.

  6. Antibiotics and Antibiotic Resistance Genes in Sediment of Honghu Lake and East Dongting Lake, China.

    PubMed

    Yang, Yuyi; Cao, Xinhua; Lin, Hui; Wang, Jun

    2016-11-01

    Sediment is an ideal medium for the aggregation and dissemination of antibiotics and antibiotic resistance genes (ARGs). The levels of antibiotics and ARGs in Honghu Lake and East Dongting Lake of central China were investigated in this study. The concentrations of eight antibiotics (four sulfonamides and four tetracyclines) in Honghu Lake were in the range 90.00-437.43 μg kg -1 (dry weight (dw)) with mean value of 278.21 μg kg -1 dw, which was significantly higher than those in East Dongting Lake (60.02-321.04 μg kg -1 dw, mean value of 195.70 μg kg -1 dw). Among the tested three sulfonamide resistance genes (sul) and eight tetracycline resistance genes (tet), sul1, sul2, tetA, tetC, and tetM had 100 % detection frequency in sediment samples of East Dongting Lake, while only sul1, sul2, and tetC were observed in all samples of Honghu Lake. The relative abundance of sul2 was higher than that of sul1 at p < 0.05 level in both lakes. The relative abundance of tet genes in East Dongting Lake was in the following order: tetM > tetB > tetC > tetA. The relative abundance of sul1, sul2, and tetC in East Dongting Lake was significantly higher than those in Honghu Lake. The abundance of background bacteria may play an important role in the horizontal spread of sul2 and tetC genes in Honghu Lake and sul1 in East Dongting Lake, respectively. Redundancy analysis indicated that tetracyclines may play a more important role than sulfonamides in the abundance of sul1, sul2, and tetC gens in Honghu Lake and East Dongting Lake.

  7. Veneer-log production and consumption, North Central Region, 1966.

    Treesearch

    James E. Blyth

    1968-01-01

    Veneer-log production in 1966 was about 51 million board feet in the Lake States and 37 million in the Central States. The Lake States hard maple harvest exceeded 13 million board feet, up 1.3 million from 1965. The walnut harvest in the Central States was nearly 15 million board feet.

  8. The lacustrine carbon cycle as illuminated by the waters and sediments of two hydrologically distinct headwater lakes in North-Central Minnesota, U.S.A

    USGS Publications Warehouse

    Dean, W.E.; Schwalb, A.

    2002-01-01

    The accumulation rates of CaCO3 and organic carbon (OC) in lake sediments are delicately balanced between production in the epilimnion and destruction in the hypolimnion. The cycling of these two forms of carbon makes a "carbon pump" that greatly affects the biogeochemical cycles of other elements. To further understand these biogeochemical dynamics, the lakes, streams, and wetlands of the Shingobee River headwater area of north-central Minnesota have been subjected to intensive hydrologic and biogeochemical studies. Williams Lake, situated close to the highest point in the regional flow system, is hydrologically closed, with no surface inlet or outlet, and ground water and precipitation as the only sources of water. Shingobee Lake, situated at the lowest point in the regional flow system, has the Shingobee River as an inlet and outlet. The surface waters of both lakes are oversaturated, and the bottom waters undersaturated, with respect to CaCO3 during the summer. The small amount of CaCO3 that is precipitated in the epilimnion of Williams Lake during the summer is dissolved in the undersaturated hypolimnion and sediments with the result that no CaCO3 is incorporated into the profundal surface sediments. Because of the high phytoplankton productivity of Shingobee Lake, sufficient CaCO3 is produced in the epilimnion that large amounts survive the corrosive hypolimnion and sediments, and an average of 46 wt. % accumulates in surface sediments. Another consequence of higher phytoplankton productivity in Shingobee Lake is that the hypolimnion becomes oxygen deficient within a month after overturn in both the spring and fall. Because of reducing conditions that develop in the hypolimnion of Shingobee Lake, high concentrations of dissolved Fe and Mn accumulate there during summer stratification. Precipitation of Fe and Mn oxyhydroxides during periods of fall and spring overturn results in high concentrations of Fe and Mn in surface sediments. In Williams Lake, high

  9. Fisheries research and monitoring activities of the Lake Erie Biological Station, 2015

    USGS Publications Warehouse

    Bodamer Scarbro, Betsy L.; Edwards, W.H.; Kocovsky, Patrick M.; Kraus, Richard T.; Rogers, M. R.; Schoonyan, A. L.; Stewart, T. R.

    2016-01-01

    In 2015, the U.S. Geological Survey’s (USGS) Lake Erie Biological Station (LEBS) successfully completed large vessel surveys in all three of Lake Erie’s basins. Lake Erie Biological Station’s primary vessel surveys included the Western Basin Forage Fish Assessment and East Harbor Fish Community Assessment as well as contributing to the cooperative multi-agency Central Basin Hydroacoustics Assessment, the Eastern Basin Coldwater Community Assessment, and Lower Trophic Level Assessment (see Forage and Coldwater Task Group reports). In 2015, LEBS also initiated a Lake Erie Central Basin Trawling survey in response to the need for forage fish data from Management Unit 3 (as defined by the Yellow Perch Task Group). Results from these surveys contribute to Lake Erie Committee Fish Community Goals and Objectives. Our 2015 vessel operations were initiated in early April and continued into late November. During this time, crews of the R/V Muskie and R/V Bowfin deployed 121 bottom trawls covering 83.2 ha of lake-bottom and catching 105,600 fish totaling 4,065 kg during four separate trawl surveys in the western and central basins of Lake Erie. We deployed and lifted 9.5 km of gillnet, which caught an additional 805 fish, 100 (337 kg) of which were the native coldwater predators Lake Trout, Burbot, and Lake Whitefish (these data are reported in the 2016 Coldwater Task Group report). We also conducted 317 km of hydroacoustic survey transects (reported in the 2016 Forage Task Group report), collected 114 lower trophic (i.e. zooplankton and benthos) samples, and obtained 216 water quality observations (e.g., temperature profiles, and water samples). The LEBS also assisted CLC member agencies with the maintenance and expansion of GLATOS throughout all three Lake Erie sub-basins. Within the following report sections, we describe results from three trawl surveys – the spring and autumn Western Basin Forage Fish Assessment and the East Harbor Forage Fish Assessment – and

  10. Aqueous Geochemistry of Lake Tuscaloosa, West-Central Alabama, USA: Drought Response

    NASA Astrophysics Data System (ADS)

    Creech, L., Jr.; Donahoe, R. J.

    2008-12-01

    Lake Tuscaloosa was created in 1969 by the impoundment of the North River near Northport and Tuscaloosa, AL. The reservoir is 25 miles long with a capacity of 123,000 acre-feet, a surface area of 5,885 acres, and an estimated safe yield of 200 M gal/d. It is the receiving water body of a 432 square mile watershed. This project studies the aqueous geochemistry of surface waters using samples representative of different seasonal conditions and land cover. Of the 21 sample locations in this study, three are located on tributaries, four transect the axis of the lake, and the rest are divided among semi-restricted coves representing forested and residential land cover. Sample chemistry is quantified for major, minor, and trace cations, anions, and nutrients, total dissolved nitrogen, DOC, and ALK. The current study presents data collected from the lake and its tributaries during recent severe drought conditions impacting much of the southeastern United States. These data are compared with data from an identical study conducted five years ago during a more normal water year. For each sampling year, four seasonal sampling events were conducted. Both intra- and inter-annual results are reported. Historical USGS data for seven locations sampled since 1986 on a semi-annual basis illustrate a general increase in TDS and nutrients since the lake's creation. Some USGS sample locations coincide with those of the current study. Recently collected data agrees well with recent USGS data for the same locations. It is likely that trends observed in this study are related to anthropogenic effects along the lake shore, as evidenced by the geochemical differences between residential and forested coves. Long-term trends observed in historical data are likely the result of land use in the watershed related to mining, agriculture, and residential development. It is also observed that lower flow conditions are associated with increased solute concentrations, indicating that dilution by

  11. Geophysical investigation, Lake Sherwood dam site, east-central Missouri.

    DOT National Transportation Integrated Search

    2011-10-01

    Electrical resistivity and self potential (SP) data were acquired across selected segment of the Lake Sherwood earth-fill : dam and in designated areas immediately adjacent to the dam. : The 2-D electrical resistivity profile data were acquired with ...

  12. SCOPSCO - Scientific Collaboration On Past Speciation Conditions in Lake Ohrid

    NASA Astrophysics Data System (ADS)

    Wagner, B.; Wilke, T.; Grazhdani, A.; Kostoski, G.; Krastel, S.; Reicherter, K. R.; Zanchetta, G.

    2009-12-01

    Lake Ohrid is a transboundary lake with approximately two thirds of its surface area belonging to the Former Yugoslav Republic of Macedonia and about one third belonging to the Republic of Albania. With more than 210 endemic species described, the lake is a unique aquatic ecosystem and a hotspot of biodiversity. This importance was emphasized, when the lake was declared a UNESCO World Heritage Site in 1979. Though the lake is considered to be the oldest, continuously existing lake in Europe, the age and the origin of Lake Ohrid are not completely unravelled to date. Age estimations vary between one and ten million years and concentrate around two to five million years, and both marine and limnic origin is proposed. Extant sedimentary records from Lake Ohrid cover the last glacial/interglacial cycle and reveal that Lake Ohrid is a valuable archive of volcanic ash dispersal and climate change in the central northern Mediterranean region. These records, however, are too short to provide information about the age and origin of the lake and to unravel the mechanisms controlling the evolutionary development leading to the extraordinary high degree of endemism. Concurrent genetic brakes in several invertebrate groups indicate that major geological and/or environmental events must have shaped the evolutionary history of endemic faunal elements in Lake Ohrid. High-resolution hydroacoustic profiles taken between 2004 and 2008, and multichannel seismic (Mini-GI-Gun) studies in 2007 and 2008 demonstrate well the interplay between sedimentation and active tectonics and impressively prove the potential of Lake Ohrid for an ICDP drilling campaign. The maximal sediment thickness is c. 680 m in the central basin, where unconformities or erosional features are absent. Thus the complete history of the lake is likely recorded. A deep drilling in Lake Ohrid would help (i) to obtain more precise information about the age and origin of the lake, (ii) to unravel the seismotectonic history

  13. Roger Lake research natural area: guidebook supplement 29.

    Treesearch

    J. Dana Visalli

    2006-01-01

    Roger Lake Research Natural Area (RNA), a 174.7-ha reserve in north-central Washington, contains a rich diversity of landforms, plant communities, and wildlife habitats. Spreading outward from the lake itself, sedge and sphagnum fens give way to upland coniferous forest, granitic cliffs, and a relictual, high-altitude big sagebrush-whitebark pine (Artemisia tridentata-...

  14. Comparison of catch and lake trout bycatch in commercial trap nets and gill nets targeting lake whitefish in northern Lake Huron

    USGS Publications Warehouse

    Johnson, James E.; Ebener, Mark P.; Gebhardt, Kenneth; Bergstedt, Roger

    2004-01-01

    We compared seasonal lake whitefish catch rates, lake trout bycatch, and gearinduced lake trout mortality between commercial trap nets and gill nets in north-central Lake Huron. Onboard monitors recorded catches from 260 gill net and 96 trap net lifts from October 1998 through December 1999. Catch rates for lake whitefish were highest in fall for both gear types, reflecting proximity of spawning sites to the study area. Lake whitefish catch rates were also relatively high in spring but low in both gear types in summer. Lake trout were the principal bycatch species in both gears. The lake trout bycatch was lowest in both gear types in fall, highest in gill nets in spring, and highest in trap nets in summer. The ratio of lake trout to legal whitefish (the target species) was highest in summer and lowest in fall in both gear types. The high lake trout ratio in summer was due principally to low catch rates of lake whitefish. All but 3 of 186 live lake trout removed from trap net pots survived for at least two days of observation in laboratory tanks. Therefore, we estimated that post-release survival of trap netted lake trout that had not been entangled in the mesh was 98.4%. In addition, we accounted for stress-induced mortality for lake trout that were live at capture but entangled in the mesh of either gear type. Resulting estimates of lake trout survival were higher in trap nets (87.8%) than in gill nets (39.6%). The number of lake trout killed per lift was highest during summer in trap nets and during spring in gill nets. In trap nets, 85% of dead lake trout were observed to be entangled in the mesh of the pot or tunnels. Survival rates of lake trout in gill nets were higher in our study than reported by others, probably because our nets were hand lifted in a small boat. Our trap net-induced mortality estimates on lake trout were higher than those reported by others because we adjusted our estimates to account for post-release mortality caused by handling and

  15. How well suited are maar lakes of Madagascar for palaeoenvironmental multi-proxy reconstructions? - First results from shallow seismic, sedimentological and hydrological investigations in Central and Northwest Madagascar.

    NASA Astrophysics Data System (ADS)

    Daut, Gerhard; Jasmin Krahn, Kim; Rabhobisoa, Jean-Jacques; Ornella Moanazafy, Sergénie; Haberzettl, Torsten; Kasper, Thomas; Mäusbacher, Roland; Schwalb, Antje

    2017-04-01

    Madagascar is well known for its unique flora and fauna which are frequently in the focus of scientific investigations. However, studies on environmental changes in Madagascar linked to Quaternary climatic and/or anthropogenic impact are scarce. The aim of this initial study is to evaluate the potential of maar lakes, situated in different climatic zones of Madagascar, for paleoenvironmental studies and to identify promising coring sites with continuous sediment sequences reaching far back in time. Therefore, in November 2016, a shallow seismic profiling campaign, combined with surface sediment, short gravity core (max. 1.8 m), water and plankton sampling was performed on three target sites. These were two deep maar lakes, i.e., Andraikiba (Central Madagascar, 50m waterdepth) as well as Amparahibe (46,5m waterdepth) and Andampy Ambatoloaka, a shallow (5m waterdepth during low tide) former maar lake now connected to the Ocean (both NW-Madagascar. Vertical water parameter measurements in Lake Amparahibe confirm anoxic bottom conditions, while dissolved oxygen values at the water surface are about 7.9 mg/L (103%). Temperature decreases with depth from 29.3 °C to 27.2 °C, and the lake is slightly alkaline with an electrical conductivity of around 245 µS/cm. Since Andampy Ambatoloaka is connected to the ocean, it shows slightly alkaline conditions as well, electrical conductivity is high ( 57.8 mS/cm) and dissolved oxygen and temperature values are relatively stable at about 8.2 mg/L (104%) and 28.1 °C, respectively. The shallow seismic survey shows an infill with layered sediments of >50 m thickness in Lake Andraikiba. In Lake Amparahibe natural gas in the sediment prevented deeper penetration, however the record shows 10 m of undisturbed, layered sediments in the uppermost part. Sediment cores obtained from both lakes consist of dark brownish to blackish, clayey to silty and partly laminated sediments. High values of magnetic susceptibilities (>1800*10-6 SI) and

  16. Simulating Lake-Groundwater Interactions During Decadal Climate Cycles: Accounting For Variable Lake Area In The Watershed

    NASA Astrophysics Data System (ADS)

    Virdi, M. L.; Lee, T. M.

    2009-12-01

    The volume and extent of a lake within the topo-bathymetry of a watershed can change substantially during wetter and drier climate cycles, altering the interaction of the lake with the groundwater flow system. Lake Starr and other seepage lakes in the permeable sandhills of central Florida are vulnerable to climate changes as they rely exclusively on rainfall and groundwater for inflows in a setting where annual rainfall and recharge vary widely. The groundwater inflow typically arrives from a small catchment area bordering the lake. The sinkhole origin of these lakes combined with groundwater pumping from underlying aquifers further complicate groundwater interactions. Understanding the lake-groundwater interactions and their effects on lake stage over multi-decadal climate cycles is needed to manage groundwater pumping and public expectation about future lake levels. The interdependence between climate, recharge, changing lake area and the groundwater catchment pose unique challenges to simulating lake-groundwater interactions. During the 10-year study period, Lake Starr stage fluctuated more than 13 feet and the lake surface area receded and expanded from 96 acres to 148 acres over drier and wetter years that included hurricanes, two El Nino events and a La Nina event. The recently developed Unsaturated Zone Flow (UZF1) and Lake (LAK7) packages for MODFLOW-2005 were used to simulate the changing lake sizes and the extent of the groundwater catchment contributing flow to the lake. The lake area was discretized to occupy the largest surface area at the highest observed stage and then allowed to change size. Lake cells convert to land cells and receive infiltration as receding lake area exposes the underlying unsaturated zone to rainfall and recharge. The unique model conceptualization also made it possible to capture the dynamic size of the groundwater catchment contributing to lake inflows, as the surface area and volume of the lake changed during the study

  17. A digital model for planning water management at Benton Lake National Wildlife Refuge, west-central Montana

    USGS Publications Warehouse

    Nimick, David A.; McCarthy, Peter M.; Fields, Vanessa

    2011-01-01

    Benton Lake National Wildlife Refuge is an important area for waterfowl production and migratory stopover in west-central Montana. Eight wetland units covering about 5,600 acres are the essential features of the refuge. Water availability for the wetland units can be uncertain owing to the large natural variations in precipitation and runoff and the high cost of pumping supplemental water. The U.S. Geological Survey, in cooperation with the U.S. Fish and Wildlife Service, has developed a digital model for planning water management. The model can simulate strategies for water transfers among the eight wetland units and account for variability in runoff and pumped water. This report describes this digital model, which uses a water-accounting spreadsheet to track inputs and outputs to each of the wetland units of Benton Lake National Wildlife Refuge. Inputs to the model include (1) monthly values for precipitation, pumped water, runoff, and evaporation; (2) water-level/capacity data for each wetland unit; and (3) the pan-evaporation coefficient. Outputs include monthly water volume and flooded surface area for each unit for as many as 5 consecutive years. The digital model was calibrated by comparing simulated and historical measured water volumes for specific test years.

  18. Status of lake trout rehabilitation on Six Fathom Bank and Yankee Reef in Lake Huron

    USGS Publications Warehouse

    Madenjian, Charles P.; DeSorcie, Timothy J.; McClain, Jerry R.; Woldt, Aaron P.; Holuszko, Jeffrey D.; Bowen, Charles A.

    2004-01-01

    Six Fathom Bank, an offshore reef in the central region of Lake Huron's main basin, was stocked annually with hatchery-reared lake trout Salvelinus namaycush during 1985–1998, and nearby Yankee Reef was stocked with hatchery-reared lake trout in 1992, 1997, and annually during 1999–2001. We conducted gill-net surveys during spring and fall to evaluate performances of each of the various strains of lake trout, as well as the performance of the entire lake trout population (all strains pooled), on these two offshore reefs during 1992–2000. Criteria to evaluate performance included the proportion of “wild” fish within the population, spawner density, adult survival, growth, maturity, and wounding rate by sea lamprey Petromyzon marinus. Although naturally reproduced age-0 lake trout fry were caught on Six Fathom Bank and Yankee Reef, wild lake trout did not recruit to the adult population to any detectable degree. The density of spawning lake trout on Six Fathom Bank (>100 fish/305 m of gill net) during 1995–1998 appeared to be sufficiently high to initiate a self-sustaining population. However, annual mortality estimates for all lake trout strains pooled from catch curve analyses ranged from 0.48 to 0.62, well exceeding the target level of 0.40 suggested for lake trout rehabilitation. Annual mortality rate for the Seneca Lake strain (0.34) was significantly lower than that for the Superior–Marquette (0.69) and Lewis Lake (0.69) strains. This disparity in survival among strains was probably attributable to the lower sea-lamprey-induced mortality experienced by the Seneca Lake strain. The relatively high mortality experienced by adult lake trout partly contributed to the lack of successful natural recruitment to the adult population on these offshore reefs, but other factors were probably also involved. We recommend that both stocking of the Seneca Lake strain and enhanced efforts to reduce sea lamprey abundance in Lake Huron be continued.

  19. Regional trends in mercury distribution across the Great Lakes states, north central USA

    NASA Astrophysics Data System (ADS)

    Nater, Edward A.; Grigal, David F.

    1992-07-01

    CONCENTRATIONS of mercury in the environment are increasing as a result of human activities, notably fossil-fuel burning and incineration of municipal wastes. Increasing levels of mercury in aquatic environments and consequently in fish populations are recognized as a public-health problem1,2. Enhanced mercury concentrations in lake sediments relative to pre-industrial values have also been attributed to anthropogenic pollution. It is generally assumed that atmospheric mercury deposition is dominated by global-scale processes, consequently being regionally uniform. Here, to the contrary, we report a significant gradient in concentrations and total amounts of mercury in organic litter and surface mineral soil along a transect of forested sites across the north central United States from northwestern Minnesota to eastern Michigan. This gradient is accompanied by parallel changes in wet sulphate deposition and human activity along the transect, suggesting that the regional variation in mercury content is due to deposition of anthropogenic mercury, most probably in particulate form.

  20. Holocene climate variability in arid Central Asia as revealed from high-resolution sedimentological and geochemical analyses of laminated sediments from Lake Chatyr Kol (Central Tian Shan, Kyrgyzstan)

    NASA Astrophysics Data System (ADS)

    Lauterbach, S.; Plessen, B.; Dulski, P.; Mingram, J.; Prasad, S.

    2013-12-01

    A pronounced trend from a predominantly wet climate during the early Holocene towards significantly drier conditions since the mid-Holocene, mainly attributed to the weakening of the Asian summer monsoon (ASM), is documented in numerous palaeoclimate records from the monsoon-influenced parts of Asia, e.g. the Tibetan Plateau and north- and southeastern China. In contrast, climate in the adjacent regions of mid-latitude arid Central Asia, located north and northwest of the Tibetan Plateau, is supposed to have been characterized by pronounced dry conditions during the early Holocene, wet conditions during the mid-Holocene and a rather moderate drying during the late Holocene, which is mainly attributed to the complex interplay between the mid-latitude Westerlies and the ASM. However, although mid-latitude Central Asia thus might represent a key region for the understanding of teleconnections between the ASM system and the Westerlies, knowledge about past climate development in this region is still ambiguous due to the limited number of high-resolution palaeoclimate records. Hence, new well-dated and highly resolved palaeoclimate records from this region are expected to provide important information about spatio-temporal changes in the regional interplay between Westerlies and ASM and thus aid the understanding of global climate teleconnections. As a part of the project CADY (Central Asian Climate Dynamics), aiming at reconstructing past climatic and hydrological variability in Central Asia, a sediment core of about 6.25 m length has been recovered from alpine Lake Chatyr Kol (40°36' N, 75°14' E, 3530 m a. s. l., surface area ~170 km2, maximum depth ~20 m), located in the Central Tian Shan of Kyrgyzstan. Sediment microfacies analysis on large-scale petrographic thin sections reveals continuously sub-mm scale laminated sediments throughout the record except for the uppermost ca. 60 cm. Microsedimentological characterization of these laminae, which are most probably

  1. Lake-level increasing under the climate cryoaridization conditions during the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Amosov, Mikhail; Strelkov, Ivan

    2017-04-01

    A lake genesis and lake-level increasing during the Last Glacial Maximum (LGM) are the paramount issues in paleoclimatology. Investigating these problems reveals the regularities of lake development and figures out an arid territory conditions at the LGM stage. Pluvial theory is the most prevalent conception of lake formation during the LGM. This theory is based on a fact that the water bodies emerged and their level increased due to torrential rainfalls. In this study, it is paid attention to an alternative assumption of lake genesis at the LGM stage, which is called climate cryoaridization. In accordance with this hypothesis, the endorheic water basins had their level enlarged because of a simultaneous climate aridity and temperature decrease. In this research, a lake-level increasing in endorheic regions of Central Asia and South American Altiplano of the Andes is described. The lake investigation is related to its conditions during the LGM. The study also includes a lake catalogue clearly presenting the basin conditions at the LGM stage and nowadays. The data compilation partly consists of information from an earlier work of Mikhail Amosov, Lake-levels, Vegetation And Climate In Central Asia During The Last Glacial Maximum (EGU2014-3015). According to the investigation, a lake catalogue on 27 lakes showed that most of the water bodies had higher level. This feature could be mentioned for the biggest lakes of the Aral Sea, Lake Balkhash, Issyk-Kul etc. and for the small ones located in the mountains, such as Pamir, Tian-Shan and Tibet. Yet some lakes that are situated in Central Asian periphery (Lake Qinghai and lakes in Inner Mongolia) used to be lower than nowadays. Also, the lake-level increasing of Altiplano turned to be a significant feature during the LGM in accordance with the data of 5 lakes, such as Titicaca, Coipasa-Uyuni, Lejia, Miscanti and Santa-Maria. Most of the current endorheic basins at the LGM stage were filled with water due to abundant

  2. Veneer-log production and receipts, North Central Region, 1974.

    Treesearch

    James E. Blyth; Jerold T. Hahn

    1976-01-01

    Shows 1974 veneer-log production and receipts by species in the Lake States (Michigan, Minnesota, and Wisconsin) and in the Central States (Illinois, Indiana, Iowa, and Missouri). Comparisons are made with similar data for 1972. Includes tables showing veneer-log production and receipts (for selected years) since 1946 in the Lake States and since 1956 in the Central...

  3. Veneer-log production and receipts, North Central Region, 1976.

    Treesearch

    James E. Blyth; Jerold T. Hahn

    1978-01-01

    Shows 1976 veneer-log production and receipts by species in the Lake States (Michigan, Minnesota, and Wisconsin) and in the Central States (Illinois, Indiana, Iowa, and Missouri). Comparisons are made with similar data for 1974. Includes tables showing veneer-log production and receipts (for selected years) since 1946 in the Lake States and since 1956 in the Central...

  4. Veneer industry and timber use, North Central Region, 1984.

    Treesearch

    James E. Blyth; W. Brad Smith

    1986-01-01

    Shows 1984 veneer log production and receipts by species in the Lake States (Michigan, Minnesota, and Wisconsin) and in the Central States (Illinois, Indiana, Iowa, and Missouri). Comparisons are made with the 1980 data. Includes tables showing veneer log production and receipts (for selected years) since 1946 in the Lake States and since 1956 in the Central States...

  5. Veneer industry and timber use, North Central Region, 1988.

    Treesearch

    W. Brad Smith; Ronald L. Hackett

    1990-01-01

    Shows 1988 veneer-log production and receipts by species in the Lake States (Michigan, Minnesota, and Wisconsin) and in the Central States (Illinois, Indiana, Iowa, and Missouri). Comparisons are made with similar data in 1984. Includes tables showing veneer-log production and receipts (for selected years) since 1946 in the Lake States and since 1956 in the Central...

  6. Veneer-log production and receipts, North Central Region, 1972.

    Treesearch

    James E. Blyth

    1974-01-01

    Shows 1972 veneer-log production and receipts by species in the Lake States (Michigan, Minnesota, and Wisconsin) and in the Central States (Illinois, Indiana, Iowa, and Missouri). Comparisons are made with similar data for 1970. Includes tables showing veneer-log production and receipts (for selected years) since 1946 in the Lake States and since 1956 in the Central...

  7. Kame deltas provide evidence for a new glacial lake and suggest early glacial retreat from central Lower Michigan, USA

    NASA Astrophysics Data System (ADS)

    Schaetzl, Randall J.; Lepper, Kenneth; Thomas, Sarah E.; Grove, Leslie; Treiber, Emma; Farmer, Alison; Fillmore, Austin; Lee, Jordan; Dickerson, Bethany; Alme, Kayleigh

    2017-03-01

    In association with an undergraduate Honors Seminar at Michigan State University, we studied two small kame deltas in north-central Lower Michigan. These recently identified deltas provide clear evidence for a previously unknown proglacial lake (Glacial Lake Roscommon) in this large basin located in an interlobate upland. Our first goal was to document and characterize the geomorphology of these deltas. Because both deltas are tied to ice-contact ridges that mark the former position of the retreating ice margin within the lake, our second goal was to establish the age of one of the deltas, thereby constraining the timing of ice retreat in this part of Michigan, for which little information currently exists. Both deltas are composed of well-sorted fine and medium sands with little gravel, and have broad, nearly flat surfaces and comparatively steep fronts. Samples taken from the upper 1.5 m of the deltas show little spatial variation in texture, aside from a general fining toward their outer margins. Gullies on the outer margins of both deltas probably postdate the formation of the deltas proper; we suggest that they formed by runoff during a permafrost period, subsequent to lake drawdown. We named the ice lobe that once covered this area the Mackinac Lobe, because it had likely advanced into the region across the Mackinac Straits area. Five of six optically stimulated luminescence (OSL) ages from one of the deltas had minimal scatter and were within ± 1000 years of one another, with a mean age of 23.1 ± 0.4 ka. These ages suggest that the Mackinac Lobe had started to retreat from the region considerably earlier than previously thought, even while ice was near its maximum extent in Illinois and Indiana, and the remainder of Michigan was ice-covered. This early retreat, which appears to coincide with a short-lived warm period indicated from the Greenland ice core, formed an "opening" that was at least occasionally flooded. Thick and deep, fine-textured deposits

  8. Hydrological and chemical estimates of the water balance of a closed-basin lake in north central Minnesota

    USGS Publications Warehouse

    LaBaugh, James W.; Winter, Thomas C.; Rosenberry, Donald O.; Schuster, Paul F.; Reddy, Michael M.; Aiken, George R.

    1997-01-01

    Chemical mass balances for sodium, magnesium, chloride, dissolved organic carbon, and oxygen 18 were used to estimate groundwater seepage to and from Williams Lake, Minnesota, over a 15-month period, from April 1991 through June 1992. Groundwater seepage to the lake and seepage from the lake to groundwater were determined independently using a flow net approach using data from water table wells installed as part of the study. Hydrogeological analysis indicated groundwater seepage to the lake accounted for 74% of annual water input to the lake; the remainder came from atmospheric precipitation, as determined from a gage in the watershed and from nearby National Weather Service gages. Seepage from the lake accounted for 69% of annual water losses from the lake; the remainder was removed by evaporation, as determined by the energy budget method. Calculated annual water loss exceeded calculated annual water gain, and this imbalance was double the value of the independently measured decrease in lake volume. Seepage to the lake determined from oxygen 18 was larger (79% of annual water input) than that determined from the flow net approach and made the difference between calculated annual water gain and loss consistent with the independently measured decrease in lake volume. Although the net difference between volume of seepage to the lake and volume of seepage from the lake was 1% of average lake volume, movement of water into and out of the lake by seepage represented an annual exchange of groundwater with the lake equal to 26–27% of lake volume. Estimates of seepage to the lake from sodium, magnesium, chloride, and dissolved organic carbon did not agree with the values determined from flow net approach or oxygen 18. These results indicated the importance of using a combination of hydrogeological and chemical approaches to define volume of seepage to and from Williams Lake and identify uncertainties in chemical fluxes.

  9. Food Web Topology in High Mountain Lakes

    PubMed Central

    Sánchez-Hernández, Javier; Cobo, Fernando; Amundsen, Per-Arne

    2015-01-01

    Although diversity and limnology of alpine lake systems are well studied, their food web structure and properties have rarely been addressed. Here, the topological food webs of three high mountain lakes in Central Spain were examined. We first addressed the pelagic networks of the lakes, and then we explored how food web topology changed when benthic biota was included to establish complete trophic networks. We conducted a literature search to compare our alpine lacustrine food webs and their structural metrics with those of 18 published lentic webs using a meta-analytic approach. The comparison revealed that the food webs in alpine lakes are relatively simple, in terms of structural network properties (linkage density and connectance), in comparison with lowland lakes, but no great differences were found among pelagic networks. The studied high mountain food webs were dominated by a high proportion of omnivores and species at intermediate trophic levels. Omnivores can exploit resources at multiple trophic levels, and this characteristic might reduce competition among interacting species. Accordingly, the trophic overlap, measured as trophic similarity, was very low in all three systems. Thus, these alpine networks are characterized by many omnivorous consumers with numerous prey species and few consumers with a single or few prey and with low competitive interactions among species. The present study emphasizes the ecological significance of omnivores in high mountain lakes as promoters of network stability and as central players in energy flow pathways via food partitioning and enabling energy mobility among trophic levels. PMID:26571235

  10. 27 CFR 9.79 - Lake Michigan Shore.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) Starting at the most northern point, the intersection the Kalamazoo River with Lake Michigan. (2) Then southeast along the winding course of the Kalamazoo River for approximately 35 miles until it intersects the Penn Central railroad line just south of the City of Otsego. (3) Then south along the Penn Central...

  11. Glacial lakes amplify glacier recession in the central Himalaya

    NASA Astrophysics Data System (ADS)

    King, Owen; Quincey, Duncan; Carrivick, Jonathan; Rowan, Ann

    2016-04-01

    The high altitude and high latitude regions of the world are amongst those which react most intensely to climatic change. Across the Himalaya glacier mass balance is predominantly negative. The spatial and temporal complexity associated with this ice loss across different glacier clusters is poorly documented however, and our understanding of the processes driving change is limited. Here, we look at the spatial variability of glacier hypsometry and glacial mass loss from three catchments in the central Himalaya; the Dudh Koshi basin, Tama Koshi basin and an adjoining section of the Tibetan Plateau. ASTER and SETSM digital elevation models (2014/15), corrected for elevation dependant biases, co-registration errors and along or cross track tilts, are differenced from Shuttle Radar Topographic Mission (SRTM) data (2000) to yield surface lowering estimates. Landsat data and a hypsometric index (HI), a classification scheme used to group glaciers of similar hypsometry, are used to examine the distribution of glacier area with altitude in each catchment. Surface lowering rates of >3 m/yr can be detected on some glaciers, generally around the clean-ice/debris-cover boundary, where dark but thin surface deposits are likely to enhance ablation. More generally, surface lowering rates of around 1 m/yr are more pervasive, except around the terminus areas of most glaciers, emphasising the influence of a thick debris cover on ice melt. Surface lowering is only concentrated at glacier termini where glacial lakes have developed, where surface lowering rates are commonly greater than 2.5 m/yr. The three catchments show contrasting hypsometric distributions, which is likely to impact their future response to climatic changes. Glaciers of the Dudh Koshi basin store large volumes of ice at low elevation (HI > 1.5) in long, debris covered tongues, although their altitudinal range is greatest given the height of mountain peaks in the catchment. In contrast, glaciers of the Tama Koshi

  12. ALPINE LAKES WILDERNESS STUDY AREA, WASHINGTON.

    USGS Publications Warehouse

    Gualtieri, J.L.; Thurber, H.K.

    1984-01-01

    The Alpine Lakes Wilderness study area, located in the central part of the Cascade Mountains of Washington was examined for its mineral-resource potential. On the basis of that study the area was found to contain deposits of copper, other base metals, and gold and silver. Probable or substantiated mineral-resource potential exists for these commodities in the southwest-central, northwest, and southeast-central parts of the area. The geologic terrane precludes the occurrence of fossil fuel resources.

  13. Long-term dynamics of freshwater red tide in shallow lake in central Japan.

    PubMed

    Hirabayashi, Kimio; Yoshizawa, Kazuya; Yoshida, Norihiko; Ariizumi, Kazunori; Kazama, Futaba

    2007-01-01

    The aim of this study is to clarify the long-term dynamics of the red tide occurring in Lake Kawaguchi. The measurement of environmental factors and water sampling were carried out monthly at a fixed station in Lake Kawaguchi's center basin from April 1993 to March 2004. On June 26, 1995, the horizontal distribution ofPeridinium bipes was investigated using a plastic pipe, obtaining 0∼1-m layers of water column samples at 68 locations across the entire lake. P. bipes showed an explosive growth and formed a freshwater red tide in the early summer of 1995, when the nutrient level was higher than those in the other years, particularly the phosphate concentration in the surface layer. The dissolved total phosphorus (DTP) concentration was sufficient forP. bipes growth in that year. In the study of its horizontal distribution,P. bipes was found at all the locations. The numbers of cells per milliliter ranged from 67 to 5360, averaging 1094±987 cells/ml, with particularly high densities along the northern shore. Since then,P. bipes has annually averaged about 25 cells/ml in Lake Kawaguchi. We observed that the red tide caused byP. bipes correlates with a high DTP concentration in Lake Kawaguchi.

  14. The nuclear bomb carbon curve recorded in tree-rings and lake sediments near Taal Volcano, Central Philippines

    NASA Astrophysics Data System (ADS)

    Liou, M. S.; Li, H. C.; Huang, S. K.; Guan, B. T.

    2017-12-01

    Dendrochronologies built from precisely dated annual rings have shown to record the regional bomb pulse and the C-14 concentration variations caused by local events. In this study, we collected teak trees Tectona grandis near the Lake Taal, Central Philippines in 2011 for dendrochronological analysis and radiocarbon dating. The tree-ring sample contains 90 rings dated from 1922 to 2011. Currently, 28 selected subsamples have been measured by AMS 14C on bulk carbon with a few samples on holocellulose. The 14C results of the samples indicate that: 1) the results of AMS 14C dating between holocellulose and whole wood from the same ring are similar, so we select whole wood for AMS 14C dating. 2) The nuclear bomb 14C pulse was clearly recorded in the Tectona grandis growth rings. The Δ14C values rose dramatically in 1960 and reached a maximum of 692‰ in 1966. The magnitude and the peak year of the bomb curve in the Tectona grandis tree-ring record are comparable to other published tree-ring records in the tropical regions. 3) The Δ14C values suddenly dropped in 1950, 1964 and 1968, probably affected by CO2 gas releasing due to the Taal volcanic activities. Further study on the tree-ring 14C dating will allow us to evaluate the bomb pulse trends more precisely, and the volcanic activities of Pinatubo and Taal Volcanoes. The tree-ring Δ14C record not only confirms existence of the bomb curve in Taal Lake area, but also allows us compare to the Δ14C record in the lake sediment for chronological construction. A 120-cm gravity core, TLS-2, collected from Lake Taal in 2008, shows the nuclear bomb carbon curve in the TOC of the core. However, the magnitude of the nuclear bomb 14C pulse in the TOC of TLS-2 is much lower than that in the tree-ring records, due to mixing effect of different organic carbon sources, smoothing effect of 14CO2 in multiple years plant growths, local old CO2 emission from volcanic activity, degassing from the lake bottom, and industrial and city

  15. Pulpwood production in the north central region by county, 1977.

    Treesearch

    James E Blyth; W. Brad Smith

    1979-01-01

    Discusses 1977 pulpwood production and receipts and recent production in the Lake States and Central States. Shows pulpwood production in the Lake States (Michigan, Minnesota, and Wisconsin) by species for each county and compares production by Forest Survey Unit with that of previous years. Presents 1977 pulpwood production and receipts data by state for Central...

  16. Trends in fishery management of the Great Lakes

    USGS Publications Warehouse

    Smith, Stanford H.

    1970-01-01

    Some hope is returning for recovery of the fish stocks of the Great Lakes, which have been outstanding examples of abuse although they are the world's largest and most valuable freshwater fishery resource. The lakes and the fish in them have been under complete jurisdiction of sovereign nations and their subdivisions almost since the settlement of north-central North America, but ironically this control has not prevented their decadence. For the first time in the long history of the Great Lakes fishery, management measures have been taken to meliorate conditions that contributed to earlier difficulties.

  17. SCOPSCO: Scientific Collaboration On Past Speciation Conditions in Lake Ohrid

    NASA Astrophysics Data System (ADS)

    Wagner, B.; Wilke, T.; Grazhdani, A.; Kostoski, G.; Krastel-Gudegast, S.; Reicherter, K.; Zanchetta, G.

    2009-04-01

    Lake Ohrid is a transboundary lake with approximately two thirds of its surface area belonging to the Former Yugoslav Republic of Macedonia and about one third belonging to the Republic of Albania. With more than 210 endemic species described, the lake is a unique aquatic ecosystem and a hotspot of biodiversity. This importance was emphasized, when the lake was declared a UNESCO World Heritage Site in 1979, and included as a target area of the International Continental Scientific Drilling Program (ICDP) already in 1993. Though the lake is considered to be the oldest, continuously existing lake in Europe, the age and the origin of Lake Ohrid are not completely unravelled to date. Age estimations vary between one and ten million years and concentrate around two to five million years, and both marine and limnic origin is proposed. Extant sedimentary records from Lake Ohrid cover the last glacial/interglacial cycle and reveal that Lake Ohrid is a valuable archive of volcanic ash dispersal and climate change in the central northern Mediterranean region. These records, however, are too short to provide information about the age and origin of the lake and to unravel the mechanisms controlling the evolutionary development leading to the extraordinary high degree of endemism. Concurrent genetic brakes in several invertebrate groups indicate that major geological and/or environmental events must have shaped the evolutionary history of endemic faunal elements in Lake Ohrid. High-resolution hydroacoustic profiles (INNOMAR SES-96 light and INNOMAR SES-2000 compact) taken between 2004 and 2008, and multichannel seismic (Mini-GI-Gun) studies in 2007 and 2008 demonstrate well the interplay between sedimentation and active tectonics and impressively prove the potential of Lake Ohrid for an ICDP drilling campaign. The maximal sediment thickness is ~680 m in the central basin, where unconformities or erosional features are absent. Thus the complete history of the lake is likely

  18. Climate of a high altitude lake basin and lake-atmosphere interactions - observations and atmospheric modelling

    NASA Astrophysics Data System (ADS)

    Maussion, F.; Kropacek, J.; Finkelnburg, R.; Scherer, D.

    2012-04-01

    Large lakes and inland water bodies have a significant influence on their local climate. The hydrometeorological effect of inland water bodies is varying greatly between seasons, years and contrasting climatic conditions. It is generally hypothesised that the cool air above the lake will inhibit convection in summer; conversely, the relatively warm lake in late-autumn will initiate convective instability that may generate strong snowfalls. In this study we focus on the lake Nam Co (2'000 sq.km, 4700 m a.s.l). Located in a transition zone between the continental climate of Central Asia and the Indian Monsoon system, the Nam Co lake is covered by ice from mid-January to end of April and reaches surface temperatures of 13 °C in summer. We address three main research questions: (i) what is the influence of the Nam Co lake on local meteorological variables over the course of the year, (ii) what is the impact of the timing of the lake freezing on late-autumn and winter precipitation fields and (iii) how will the influence of the lake evolve in the context of a changing climate? In order to answer these questions, we combine satellite observations of lake surface temperatures from the ARC-Lake product and atmospheric modelling using the WRF model. The spatio-temporal variability of temperature, wind and precipitation fields during the last decade are analyzed using high-resolution (up to 2 km) simulations. The positive impact of the assimilation of the lake surface temperatures for the initialization of the model is analysed and discussed, as well as the combined influences of the large scale (westerlies, monsoon) and local (orographic) forcings. Our results are of relevance for any regional climate or hydrological modelling study and bring new insights in our understanding of the complex hydrometeorological processes taking place on the Tibetan Plateau.

  19. Search for ancient microorganisms in Lake Baikal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunter-Cevera, Jennie C.; Repin, Vladimir E.; Torok, Tamas

    Lake Baikal in Russia, the world's oldest and deepest continental lake lies in south central Siberia, near the border to Mongolia. The lake is 1,643 m deep and has an area of about 46,000 km2. It holds one-fifth of all the terrestrial fresh water on Earth. Lake Baikal occupies the deepest portion of the Baikal Rift Zone. It was formed some 30-45 million years ago. The isolated Lake Baikal ecosystem represents a unique niche in nature based on its historical formation. The microbial diversity present in this environment has not yet been fully harvested or examined for products and processesmore » of commercial interest and value. Thus, the collection of water, soil, and sub-bottom sediment samples was decided to characterize the microbial diversity of the isolated strains and to screen the isolates for their biotechnological value.« less

  20. Large drainages from short-lived glacial lakes in the Teskey Range, Tien Shan Mountains, Central Asia

    NASA Astrophysics Data System (ADS)

    Narama, Chiyuki; Daiyrov, Mirlan; Duishonakunov, Murataly; Tadono, Takeo; Sato, Hayato; Kääb, Andreas; Ukita, Jinro; Abdrakhmatov, Kanatbek

    2018-04-01

    Four large drainages from glacial lakes occurred during 2006-2014 in the western Teskey Range, Kyrgyzstan. These floods caused extensive damage, killing people and livestock as well as destroying property and crops. Using satellite data analysis and field surveys of this area, we find that the water volume that drained at Kashkasuu glacial lake in 2006 was 194 000 m3, at western Zyndan lake in 2008 was 437 000 m3, at Jeruy lake in 2013 was 182 000 m3, and at Karateke lake in 2014 was 123 000 m3. Due to their subsurface outlet, we refer to these short-lived glacial lakes as the tunnel-type, a type that drastically grows and drains over a few months. From spring to early summer, these lakes either appear, or in some cases, significantly expand from an existing lake (but non-stationary), and then drain during summer. Our field surveys show that the short-lived lakes form when an ice tunnel through a debris landform gets blocked. The blocking is caused either by the freezing of stored water inside the tunnel during winter or by the collapse of ice and debris around the ice tunnel. The draining then occurs through an opened ice tunnel during summer. The growth-drain cycle can repeat when the ice-tunnel closure behaves like that of typical supraglacial lakes on debris-covered glaciers. We argue here that the geomorphological characteristics under which such short-lived glacial lakes appear are (i) a debris landform containing ice (ice-cored moraine complex), (ii) a depression with water supply on a debris landform as a potential lake basin, and (iii) no visible surface outflow channel from the depression, indicating the existence of an ice tunnel. Applying these characteristics, we examine 60 depressions (> 0.01 km2) in the study region and identify here 53 of them that may become short-lived glacial lakes, with 34 of these having a potential drainage exceeding 10 m3 s-1 at peak discharge.

  1. Landsat-based trend analysis of lake dynamics across northern permafrost regions

    USGS Publications Warehouse

    Nitze, Ingmar; Grosse, Guido; Jones, Benjamin M.; Arp, Christopher D.; Ulrich, Mathias; Federov, Alexander; Veremeeva, Alexandra

    2017-01-01

    Lakes are a ubiquitous landscape feature in northern permafrost regions. They have a strong impact on carbon, energy and water fluxes and can be quite responsive to climate change. The monitoring of lake change in northern high latitudes, at a sufficiently accurate spatial and temporal resolution, is crucial for understanding the underlying processes driving lake change. To date, lake change studies in permafrost regions were based on a variety of different sources, image acquisition periods and single snapshots, and localized analysis, which hinders the comparison of different regions. Here we present, a methodology based on machine-learning based classification of robust trends of multi-spectral indices of Landsat data (TM,ETM+, OLI) and object-based lake detection, to analyze and compare the individual, local and regional lake dynamics of four different study sites (Alaska North Slope, Western Alaska, Central Yakutia, Kolyma Lowland) in the northern permafrost zone from 1999 to 2014. Regional patterns of lake area change on the Alaska North Slope (-0.69%), Western Alaska (-2.82%), and Kolyma Lowland (-0.51%) largely include increases due to thermokarst lake expansion, but more dominant lake area losses due to catastrophic lake drainage events. In contrast, Central Yakutia showed a remarkable increase in lake area of 48.48%, likely resulting from warmer and wetter climate conditions over the latter half of the study period. Within all study regions, variability in lake dynamics was associated with differences in permafrost characteristics, landscape position (i.e. upland vs. lowland), and surface geology. With the global availability of Landsat data and a consistent methodology for processing the input data derived from robust trends of multi-spectral indices, we demonstrate a transferability, scalability and consistency of lake change analysis within the northern permafrost region.

  2. A coupled lake-atmosphere model (CLAM) and its application to Lake Kinneret

    NASA Astrophysics Data System (ADS)

    Pan, Hai

    1999-08-01

    Kinneret is a 166-km2 lake located in Northern Israel, in the central part of the Jordan Valley, a corridor running from north to south, between the Galilee hills in the west and the Golan Heights in the east. Both the Galilee hills and the Golan Heights reach an elevation of about 400 m above mean sea level (MSL), and the lake is about -210 m (MSL). North of the lake is the mountainous area of the Hermon, culminating at about 2800 m (MSL). About 120 km south of it is the Dead Sea, which is about -410 m (MSL), and about 45 km west of it is the Mediterranean Sea. The complexity of the terrain, combined with relatively arid soil and various ground covers surrounding the lake, results in a very complicated system of atmospheric and lake processes. To understand this system, especially the processes affecting the atmosphere and lake dynamics and thermodynamics, and their effects on Lake Kinneret evaporation, a coupled lake-atmosphere model (CLAM) was developed and applied to the lake region. The CLAM is based on the Regional Atmospheric Modeling System (RAMS) and the oceanic S-coordinate Rutgers University Model (SCRUM). Energy, mass, and momentum are conserved at the interface between the atmosphere and the lake, and appropriate balance equations are applied there. In the atmospheric module, two nested grids are employed to simulate Northern Israel at a resolution of 4 x 4 km2, and the near-lake region at a resolution of 1 x 1 km 2. Synoptic conditions obtained from the National Meteorological Center (NMC) reanalysis are assimilated by the model. Soil moisture, which appears to have a significant impact on atmospheric circulation in this region, was transformed from the normalized difference vegetation index (NDVI). Observations collected during two summers above and inside the lake emphasize the good capability of CLAM to simulate surface fluxes and other microclimatic conditions, as well as lake temperature and currents. Although the lake is small (about 12-km wide

  3. Pulpwood production in the North Central Region by county, 1975.

    Treesearch

    James E. Blyth; Jerold T. Hahn

    1977-01-01

    Discusses 1975 pulpwood production and receipts and recent production trends in the Lake States and Central States. Gives pulpwood production in the Lake States by species for each county and compares production by Forest Survey Unit with that of previous years. Presents 1975 pulpwood and receipts data by state for the Central States, and shows four production...

  4. Pulpwood production in the North Central Region, by county, 1970.

    Treesearch

    James. E. Blyth

    1971-01-01

    Presents 1970 pulpwood production and receipt data for the Lake States and Central States. Pulpwood production for the Lake States is given by species for each county, and production by Forest Survey Unit is compared to that of previous years. For the Central States, 1970 pulpwood production and receipt data are presented by state, and four production classes are...

  5. Pulpwood production in the North Central Region, by county, 1971.

    Treesearch

    James. E. Blyth

    1973-01-01

    Presents 1971 pulpwood and production and receipt data for the Lake States and Central States. Pulpwood production for the Lake States is given by species for each county, and production by Forest Survey Unit is compared with that of previous years. For the Central States, 1971 pulpwood production and receipt data are presented by State, and four production classes...

  6. Pulpwood production in the North Central Region, by county, 1972.

    Treesearch

    James E. Blyth

    1973-01-01

    Presents 1972 pulpwood production and receipt data for the Lake States and Central States. Pulpwood production for the Lake States is given by species for each county, and production by Forest Survey Unit is compared to that of previous years. For the Central States, 1972 pulpwood production and receipts data are presented by state, and four production classes are...

  7. Pulpwood production in the North Central Region, by county, 1969.

    Treesearch

    James E. Blyth

    1970-01-01

    Presents 1969 pulpwood production and receipt data for the Lake States and Central States. Pulpwood production for the Lake State given by species for each county, and production by Forest Survey Unit is compared to that of previous years. Also discusses production and use of mixed hardwood pulpwood since 1946. For the Central States, 1969 pulpwood production and...

  8. Pulpwood production in the North Central Region by county, 1974.

    Treesearch

    James E. Blyth; Jerold T. Hahn

    1976-01-01

    Discusses 1974 pulpwood production and receipts and recent production trends in the Lake States and Central States. Gives pulpwood production in the Lake States by species for each county, and compares production by Forest Survey Unit with that of previous years. For the Central States, presents 1974 pulpwood production and receipt data by state, and shows four...

  9. Pulpwood production in the north central region by county, 1976.

    Treesearch

    James E. Blyth; Jerold T. Hahn

    1978-01-01

    Discusses 1976 pulpwood production and receipts and recent production in the Lake States and Central States. Shows pulpwood production in the Lake States (Michigan, Minnesota, and Wisconsin) by species for each county and compares production by Forest Survey Unit with that of previous years. Presents 1976 pulpwood production and receipts data by state for the Central...

  10. Pulpwood production in the North Central Region, by county, 1968.

    Treesearch

    James E. Blyth

    1969-01-01

    This report presents 1968 pulpwood production and receipt data for the Lake States and Central States. Pulpwood production for the Lake States is given by species for each county, and 1968 production by Forest Survey Unit is compared to that of previous years. For the Central States, 1968 pulpwood production and receipt data are presented by state, and four...

  11. Palaeolimnological evidence of vulnerability of Lake Neusiedl (Austria) toward climate related changes since the last "vanished-lake" stage.

    NASA Astrophysics Data System (ADS)

    Tolotti, Monica; Milan, Manuela; Boscaini, Adriano; Soja, Gerhard; Herzig, Alois

    2013-04-01

    The palaeolimnological reconstruction of secular evolution of Euroepan Lakes with key socio-economical relevance respect to large (climate change) and local scale (land use, tourism) environmental changes, represents one of the objectives of the project EuLakes (European Lakes Under Environmental Stressors, Supporting lake governance to mitigate the impact of climate change, Reg. N. 2CE243P3), launched in 2010 within the Central European Inititiative. The project consortium comprises lakes of different morphology and prevalent human uses, including the meso-eutrophic Lake Neusiedl, the largest Austrian lake (total area 315 km2), and the westernmost shallow (mean depth 1.2 m) steppe lake of the Euro-Asiatic continent. The volume of Lake Neusiedl can potentially change over the years, in relation with changing balance between atmospheric precipitation and lake water evapotranspiration. Changing water budget, together with high lake salinity and turbidity, have important implications over the lake ecosystem. This contribution illustrates results of the multi-proxi palaeolimnological reconstruction of ecologial changes occurred in Lake Neusiedl during the last ca. 140 years, i.e. since the end of the last "vanished-lake" stage (1865-1871). Geochemical and biological proxies anticipate the increase in lake productivity of ca. 10 years (1950s) respect to what reported in the literature. Diatom species composition indicate a biological lake recovery in the late 1980s, and suggest a second increment in lake productivity since the late 1990s, possibly in relation with the progressive increase in the nitrogen input from agriculture. Abundance of diatoms typical of brackish waters indicated no significant long-term change in lake salinity, while variations in species toleranting dessiccation confirm the vulnerability of Lake Neusiedl toward climate-driven changes in the lake water balance. This fragility is aggravated by the the semi-arid climate conditions of the catchemnt

  12. Geophysical investigation of sentinel lakes in Lake, Seminole, Orange, and Volusia Counties, Florida

    USGS Publications Warehouse

    Reich, Christopher; Flocks, James; Davis, Jeffrey

    2012-01-01

    This study was initiated in cooperation with the St. Johns River Water Management District (SJRWMD) to investigate groundwater and surface-water interaction in designated sentinel lakes in central Florida. Sentinel lakes are a SJRWMD established set of priority water bodies (lakes) for which minimum flows and levels (MFLs) are determined. Understanding both the structure and lithology beneath these lakes can ultimately lead to a better understanding of the MFLs and why water levels fluctuate in certain lakes more so than in other lakes. These sentinel lakes have become important water bodies to use as water-fluctuation indicators in the SJRWMD Minimum Flows and Levels program and will be used to define long-term hydrologic and ecologic performance measures. Geologic control on lake hydrology remains poorly understood in this study area. Therefore, the U.S. Geological Survey investigated 16 of the 21 water bodies on the SJRWMD priority list. Geologic information was obtained by the tandem use of high-resolution seismic profiling (HRSP) and direct-current (DC) resistivity profiling to isolate both the geologic framework (structure) and composition (lithology). Previous HRSP surveys from various lakes in the study area have been successful in identifying karst features, such as subsidence sinkholes. However, by using this method only, it is difficult to image highly irregular or chaotic surfaces, such as collapse sinkholes. Resistivity profiling was used to complement HRSP by detecting porosity change within fractured or collapsed structures and increase the ability to fully characterize the subsurface. Lake Saunders (Lake County) is an example of a lake composed of a series of north-south-trending sinkholes that have joined to form one lake body. HRSP shows surface depressions and deformation in the substrate. Resistivity data likewise show areas in the southern part of the lake where resistivity shifts abruptly from approximately 400 ohm meters (ohm-m) along the

  13. Seasonal habitat selection by lake trout (Salvelinus namaycush) in a small Canadian shield lake: Constraints imposed by winter conditions

    USGS Publications Warehouse

    Blanchfield, P.J.; Tate, L.S.; Plumb, J.M.; Acolas, M.-L.; Beaty, K.G.

    2009-01-01

    The need for cold, well-oxygenated waters significantly reduces the habitat available for lake trout (Salvelinus namaycush) during stratification of small temperate lakes. We examined the spatial and pelagic distribution of lake trout over two consecutive summers and winters and tested whether winter increased habitat availability and access to littoral regions in a boreal shield lake in which pelagic prey fish are absent. In winter, lake trout had a narrowly defined pelagic distribution that was skewed to the upper 3 m of the water column and spatially situated in the central region of the lake. Individual core areas of use (50% Kernel utilization distributions) in winter were much reduced (75%) and spatially non-overlapping compared to summer areas, but activity levels were similar between seasons. Winter habitat selection is in contrast to observations from the stratified season, when lake trout were consistently located in much deeper waters (>6 m) and widely distributed throughout the lake. Winter distribution of lake trout appeared to be strongly influenced by ambient light levels; snow depth and day length accounted for up to 69% of the variation in daily median fish depth. More restricted habitat use during winter than summer was in contrast to our original prediction and illustrates that a different suite of factors influence lake trout distribution between these seasons. ?? Springer Science+Business Media B.V. 2009.

  14. Pleistocene glaciers, lakes, and floods in north-central Washington State

    USGS Publications Warehouse

    Waitt, Richard B.; Haugerud, Ralph A.; Kelsey, Harvey M.

    2017-01-01

    The Methow, Chelan, Wenatchee, and other terrane blocks accreted in late Mesozoic to Eocene times. Methow valley is excavated in an exotic terrane of folded Mesozoic sedimentary and volcanic rocks faulted between crystalline blocks. Repeated floods of Columbia River Basalt about 16 Ma drowned a backarc basin to the southeast. Cirques, aretes, and U-shaped hanging troughs brand the Methow, Skagit, and Chelan headwaters. The Late Wisconsin Cordilleran icesheet beveled the alpine topography and deposited drift. Cordilleran ice flowed into the heads of Methow tributaries and overflowed from Skagit tributaries to greatly augment Chelan trough's glacier. Joined Okanogan and Methow ice flowed down Columbia valley and up lower Chelan trough. This tongue met the icesheet tongue flowing southeast down Chelan valley. Successively lower ice-marginal channels and kame terraces show that the icesheet withered away largely by downwasting. Immense late Wisconsin floods from glacial Lake Missoula occasionally swept the Chelan-Vantage reach of Columbia valley by different routes. The earliest debacles, nearly 19,000 cal yr BP (by radiocarbon methods), raged 335 m deep down the Columbia and built high Pangborn bar at Wenatchee. As Cordilleran ice blocked the northwest of Columbia valley, several giant floods descended Moses Coulee and backflooded up the Columbia. As advancing ice then blocked Moses Coulee, Grand Coulee to Quincy basin became the westmost floodway. From Quincy basin many Missoula floods backflowed 50 km upvalley past Wenatchee 18,000 to 15,500 years ago. Receding ice dammed glacial Lake Columbia centuries more--till it burst about 15,000 years ago. After Glacier Peak ashfall about 13,600 years ago, smaller great flood(s) swept down the Columbia from glacial Lake Kootenay in British Columbia. A cache of huge fluted Clovis points had been laid atop Pangborn bar (East Wenatchee) after the Glacier Peak ashfall. Clovis people came two and a half millennia after the last

  15. Long-term studies (1871-2000) on acidification and recovery of lakes in the Bohemian Forest (central Europe).

    PubMed

    Vrba, Jaroslav; Kopácek, Jirí; Fott, Jan; Kohout, Leos; Nedbalová, Linda; Prazáková, Miroslava; Soldán, Tomás; Schaumburg, Jochen

    2003-07-01

    This paper evaluates long-term changes in the atmospheric depositions of S and N compounds, lake water quality, and biodiversity at eight glacial lakes in the Bohemian Forest over the past 130 years. This time interval covers (i) the 'background' pre-acidification status of the lakes, (ii) a period of changes in the communities that can be partly explained by introduction of fish, (iii) a period of strong lake acidification with its adverse impacts on the communities, (iv) the lake reversal from acidity, which includes the recent status of the lakes. The lake water chemistry has followed-with a characteristic hysteresis-both the sharp increase and decline in the deposition trends of strong anions. Remarkable changes in biota have mirrored the changing water quality. Fish became extinct and most species of zooplankton (Crustacea) and benthos (Ephemeroptera and Plecoptera) retreated due to the lake water acidification. Independent of ongoing chemical reversal, microorganisms remain dominant in the recent plankton biomass as well as in controlling the pelagic food webs. The first signs of the forthcoming biological recovery have already been evidenced in some lakes, such as the population of Ceriodaphnia quadrangula (Cladocera) returning into the pelagial of one lake or the increase in both phytoplankton biomass and rotifer numbers in another lake.

  16. Assessment of the Great Lakes Marine Renewable Energy Resources: Characterizing Lake Erie Surge, Seiche and Waves

    NASA Astrophysics Data System (ADS)

    Farhadzadeh, A.; Hashemi, M. R.

    2016-02-01

    Lake Erie, the fourth largest in surface area, smallest in volume and shallowest among the Great Lakes is approximately 400 km long and 90 km wide. Short term lake level variations are due to storm surge generated by high winds and moving pressure systems over the lake mainly in the southwest-northeast direction, along the lakes longitudinal axis. The historical wave data from three active offshore buoys shows that significant wave height can exceed 5 m in the eastern and central basins. The long-term lake level data show that storm surge can reach up to 3 m in eastern Lake Erie. Owing its shallow depth, Lake Erie frequently experiences seiching motions, the low frequency oscillations that are initiated by storm surge. The seiches whose first mode of oscillations has a period of nearly 14.2 hours can last from several hours to days. In this study, the Lake Erie potential for power generation, primarily using storm surge and seiche and also waves are assessed. Given the cyclic lake level variations due to storm-induced seiching, a concept similar to that of tidal range development is utilized to assess the potential of storm surge and seiche energy harvesting mechanisms for power generation. In addition, wave energy resources of the Lake is characterized -. To achieve these objectives, the following steps are taken : (1) Frequency of occurrence for extreme storm surge and wave events is determined using extreme value analysis such as Peak-Over-Threshold method for the long-term water level and wave data; (2) Spatial and temporal variations of wave height, storm surge and seiche are characterized. The characterization is carried out using the wave and storm surge outputs from numerical simulation of a number of historical extreme events. The coupled ADCIRC and SWAN model is utilized for the modeling; (3) Assessment of the potentials for marine renewable power generation in Lake Erie is made. The approach can be extended to the other lakes in the Great Lakes region.

  17. Reconstructing hydroclimatic variations using compound-specific hydrogen isotope analysis of biomarkers from a maar lake in the Central Highlands, Vietnam

    NASA Astrophysics Data System (ADS)

    Doiron, Kelsey; Stevens, Lora; Sauer, Peter

    2017-04-01

    Monsoonal variation in Southeast Asia affects a significant portion of the global population, but knowledge regarding response of the monsoon system to changing boundary conditions is limited. The paleoclimatic tool of compound-specific isotope analysis(CSIA) provides the ability to reconstruct past precipitation using a diverse set of biomarkers preserved in the sedimentary record. Limited proxies in tropical southeast Asia and difficult site access have led to a deficit in paleoclimate records. Ia M'He (14˚ 10'45" N, 107˚ 52' E) is a shallow volcanic crater (maar) lake, approximately 57 ha, located in the Central Highlands of Vietnam. Precipitation in the Central Highlands is sensitive to reorganizations of major climatic features, such as the migration of the ITCZ and the coupled Indo-Asian monsoon, ENSO and related shifts in the Pacific Walker Circulation and typhoon frequency. To examine this complex behavior, this pilot study aims to provide a 500-year record of effective moisture inferred from CSIA of hydrogen isotopes on biomarkers. Carbon/nitrogen ratios and carbon isotope ratios indicate that bulk organic matter is a combination of algae and C3 vegetation, offering the potential to use compound-specific hydrogen isotopes of aquatic and terrestrial organic matter in tandem. Preliminary analysis of the core shows dominant alkane chain lengths of C27 and C29, associated with terrestrial plant leaf waxes. The hydrogen isotope ratios of the plant wax components provide a proxy for paleo precipitation in a region where rainfall and droughts heavily influence population dynamics and create social discord. The CSIA record is expected to correlate with records from northern Vietnam, the South China Sea and Indonesia, with greater precipitation during the Little Ice Age. The degree to which evaporative modification of lake water (i.e., seasonal drying) occurs will be estimated by comparing the terrestrial CSIA values indicative of meteoric water with aquatic CSIA

  18. In-Lake Processes Offset Increased Terrestrial Inputs of Dissolved Organic Carbon and Color to Lakes

    PubMed Central

    Köhler, Stephan J.; Kothawala, Dolly; Futter, Martyn N.; Liungman, Olof; Tranvik, Lars

    2013-01-01

    Increased color in surface waters, or browning, can alter lake ecological function, lake thermal stratification and pose difficulties for drinking water treatment. Mechanisms suggested to cause browning include increased dissolved organic carbon (DOC) and iron concentrations, as well as a shift to more colored DOC. While browning of surface waters is widespread and well documented, little is known about why some lakes resist it. Here, we present a comprehensive study of Mälaren, the third largest lake in Sweden. In Mälaren, the vast majority of water and DOC enters a western lake basin, and after approximately 2.8 years, drains from an eastern basin. Despite 40 years of increased terrestrial inputs of colored substances to western lake basins, the eastern basin has resisted browning over this time period. Here we find the half-life of iron was far shorter (0.6 years) than colored organic matter (A420 ; 1.7 years) and DOC as a whole (6.1 years). We found changes in filtered iron concentrations relate strongly to the observed loss of color in the western basins. In addition, we observed a substantial shift from colored DOC of terrestrial origin, to less colored autochthonous sources, with a substantial decrease in aromaticity (-17%) across the lake. We suggest that rapid losses of iron and colored DOC caused the limited browning observed in eastern lake basins. Across a wider dataset of 69 Swedish lakes, we observed greatest browning in acidic lakes with shorter retention times (< 1.5 years). These findings suggest that water residence time, along with iron, pH and colored DOC may be of central importance when modeling and projecting changes in brownification on broader spatial scales. PMID:23976946

  19. Central and North Gulf Coast, Texas

    NASA Technical Reports Server (NTRS)

    1992-01-01

    In this view of the central and north Gulf Coast of Texas (30.0N, 96.0W), San Antonio Bay, Matagorda Bay and Galveston/Trinity Bay are clearly seen though small sediment plumes at the tidal passes are visible. The large field patterns of irrigated agriculture highlights an ancient deltaic plain formed by the Colorado and Brazos Rivers. Many manmade lakes and reservoirs, as far west as Lake Belton and Lake Waco and as far east as Toledo Bend are visible.

  20. Bathymetric Contour Maps of Lakes Surveyed in Iowa in 2005

    USGS Publications Warehouse

    Linhart, S.M.; Lund, K.D.

    2008-01-01

    The U.S. Geological Survey, in cooperation with the Iowa Department of Natural Resources, conducted bathymetric surveys on seven lakes in Iowa during 2005 (Arrowhead Pond, Central Park Lake, Lake Keomah, Manteno Park Pond, Lake Miami, Springbrook Lake, and Yellow Smoke Lake). The surveys were conducted to provide the Iowa Department of Natural Resources with information for the development of total maximum daily load limits, particularly for estimating sediment load and deposition rates. The bathymetric surveys provide a baseline for future work on sediment loads and deposition rates for these lakes. All of the lakes surveyed in 2005 are man-made lakes with fixed spillways. Bathymetric data were collected using boat-mounted, differential global positioning system, echo depth-sounding equipment, and computer software. Data were processed with commercial hydrographic software and exported into a geographic information system for mapping and calculating area and volume. Lake volume estimates ranged from 47,784,000 cubic feet (1,100 acre-feet) at Lake Miami to 2,595,000 cubic feet (60 acre-feet) at Manteno Park Pond. Surface area estimates ranged from 5,454,000 square feet (125 acres) at Lake Miami to 558,000 square feet (13 acres) at Springbrook Lake.

  1. Groundwater levels, geochemistry, and water budget of the Tsala Apopka Lake system, west-central Florida, 2004–12

    USGS Publications Warehouse

    McBride, W. Scott; Metz, Patricia A.; Ryan, Patrick J.; Fulkerson, Mark; Downing, Harry C.

    2017-12-18

    Tsala Apopka Lake is a complex system of lakes and wetlands, with intervening uplands, located in Citrus County in west-central Florida. It is located within the 2,100 square mile watershed of the Withlacoochee River, which drains north and northwest towards the Gulf of Mexico. The lake system is managed by the Southwest Florida Water Management District as three distinct “pools,” which from upstream to downstream are referred to as the Floral City Pool, Inverness Pool, and Hernando Pool. Each pool contains a mixture of deep-water lakes that remain wet year round, ephemeral (seasonal) ponds and wetlands, and dry uplands. Many of the major deep-water lakes are interconnected by canals. Flow from the Withlacoochee River, when conditions allow, can be diverted into the lake system. Flow thorough the canals can be used to control the distribution of water between the three pools. Flow in the canals is controlled using structures, such as gates and weirs.Hydrogeologic units in the study area include a surficial aquifer consisting of Quaternary-age sediments, a discontinuous intermediate confining unit consisting of Miocene- and Pliocene-age sediments, and the underlying Upper Floridan aquifer, which consists of Eocene- and Oligocene-age carbonates. The fine-grained quartz sands that constitute the surficial aquifer are generally thin, typically less than 25 feet thick, within the vicinity of Tsala Apopka Lake. A thin, discontinuous, sandy clay layer forms the intermediate confining unit. The Upper Floridan aquifer is generally unconfined in the vicinity of Tsala Apopka Lake because the intermediate confining unit is discontinuous and breached by numerous karst features. In the study area, the Upper Floridan aquifer includes the upper Avon Park Formation and Ocala Limestone. The Ocala Limestone is the primary source of drinking water and spring flow in the area.The objectives of this study are to document the interaction of Tsala Apopka Lake, the surficial aquifer

  2. The evaluation of water hyacinth (Eichhornia crassiper) control program in Rawapening Lake, Central Java Indonesia

    NASA Astrophysics Data System (ADS)

    Hidayati, N.; Soeprobowati, T. R.; Helmi, M.

    2018-03-01

    The existence of water hyacinths and other aquatic plants have been a major concern in Rawapening Lake for many years. Nutrient input from water catchment area and fish feed residues suspected to leads eutrophication, a condition that induces uncontrolled growth of aquatic plants. In dry season, aquatic plants cover almost 70% of lake area. This problem should be handled properly due to wide range of lake function such as water resources, fish farming, power plants, flood control, irrigation and many other important things. In 2011, Rawapening Lake was appointed as pilot project of Save Indonesian Lake Movement: the Indonesian movement for lakes ecosystem conservation and rehabilitation. This project consists of 6 super priority programs and 11 priority programs. This paper will evaluate the first super priority program which aims to control water hyacinth bloom. Result show that the three indicators in water hyacinth control program was not achieved. The coverage area of Water hyacinth was not reduced, tend to increase during period 2012 to 2016. We suggesting better coordination should be performed in order to avoid policies misinterpretation and to clarify the authority from each institution. We also give a support to the establishment of lake zonation plan and keep using all the three methods of cleaning water hyacinth with a maximum population remained at 20%.

  3. SCOPSCO - Scientific Collaboration On Past Speciation Conditions in Lake Ohrid

    NASA Astrophysics Data System (ADS)

    Vogel, Hendrik; Wagner, Bernd; Wilke, Thomas; Grazhdani, Andon; Kostoski, Goce; Krastel-Gudegast, Sebastian; Reicherter, Klaus; Zanchetta, Giovanni

    2010-05-01

    Lake Ohrid is a transboundary lake with approximately two thirds of its surface area belonging to the Former Yugoslav Republic of Macedonia and about one third belonging to the Republic of Albania. With more than 210 endemic species described, the lake is a unique aquatic ecosystem and a hotspot of biodiversity. This importance was emphasized, when the lake was declared a UNESCO World Heritage Site in 1979, and included as a target area of the International Continental Scientific Drilling Program (ICDP) already in 1993. Though the lake is considered to be the oldest, continuously existing lake in Europe, the age and the origin of Lake Ohrid are not completely unravelled to date. Age estimations vary between one and ten million years and concentrate around two to five million years, and both marine and limnic origin is proposed. Extant sedimentary records from Lake Ohrid cover the last glacial/interglacial cycle and reveal that Lake Ohrid is a valuable archive of volcanic ash dispersal and climate change in the central northern Mediterranean region. These records, however, are too short to provide information about the age and origin of the lake and to unravel the mechanisms controlling the evolutionary development leading to the extraordinary high degree of endemism. Concurrent genetic brakes in several invertebrate groups indicate that major geological and/or environmental events must have shaped the evolutionary history of endemic faunal elements in Lake Ohrid. High-resolution hydroacoustic profiles (INNOMAR SES-96 light and INNOMAR SES-2000 compact) taken between 2004 and 2008, and multichannel seismic (Mini-GI-Gun) studies in 2007 and 2008 demonstrate well the interplay between sedimentation and active tectonics and impressively prove the potential of Lake Ohrid for an ICDP drilling campaign. The maximal sediment thickness is ˜680 m in the central basin, where unconformities or erosional features are absent. Thus the complete history of the lake is likely

  4. Cyanobacteria biennal dynamic in a volcanic mesotrophic lake in central Italy: Strategies to prevent dangerous human exposures to cyanotoxins.

    PubMed

    Manganelli, Maura; Stefanelli, Mara; Vichi, Susanna; Andreani, Paolo; Nascetti, Giuseppe; Scialanca, Fabrizio; Scardala, Simona; Testai, Emanuela; Funari, Enzo

    2016-06-01

    Vico Lake, a volcanic meso-eutrophic lake in Central Italy, whose water is used for drinking and recreational activities, experienced the presence of the microcystins (MC) producing cyanobacterium Planktothrix rubescens. In order to assess the human health risks and to provide the local health authorities with a scientific basis for planning tailored monitoring activities, we studied P. rubescens ecology and toxicity for two years. P. rubescens generally dominated the phytoplankton community, alternating with Limnothrix redekei, potentially toxic. P. rubescens was distributed throughout the water column during winter; in summer it produced intense blooms where drinking water is collected (-20 m); here MC were detected all year round (0.5-5 μg/L), with implications for drinking water quality. In surface waters, MC posed no risk for recreational activities in summer, while in winter surface blooms and foams (containing up to 56 μg MC/L) can represent a risk for people and children practicing water sports and for animals consuming raw water. Total phosphorus, phosphate and inorganic nitrogen were not relevant to predict densities nor toxicity; however, a strong correlation between P. rubescens density and aminopeptidase ectoenzymatic activity, an enzyme involved in protein degradation, suggested a role of organic nitrogen for this species. The fraction of potentially toxic population, determined both as mcyB(+)/16SrDNA (10-100%) and as the MC/mcyB(+) cells (0.03-0.79 pg MC/cell), was much more variable than usually observed for P. rubescens. Differently from other Italian and European lakes, the correlation between cell density or the mcyB(+) cells and MC explained only ∼50 and 30% of MC variability, respectively: for Vico Lake, monitoring only cell or the mcyB(+) cell density is not sufficient to predict MC concentrations, and consequently to protect population health. Finally, during a winter bloom one site has been sampled weekly, showing that

  5. Seasonal and spatial contrasts of sedimentary organic carbon in floodplain lakes of the central Amazon basin.

    NASA Astrophysics Data System (ADS)

    Sobrinho, Rodrigo; Kim, Jung-Hyun; Abril, Gwenaël; Zell, Claudia; Moreira-Turcq, Patricia; Mortillaro, Jean-Michel; Meziane, Tarik; Damsté, Jaap; Bernardes, Marcelo

    2014-05-01

    Three-quarters of the area of flooded land in the world are temporary wetlands (Downing, 2009), which play a significant role in the global carbon cycle(Einsele et al., 2001; Cole et al., 2007; Battin et al., 2009; Abril et al., 2013). Previous studies of the Amazonian floodplain lakes (várzeas), one important compartment of wetlands, showed that the sedimentation of organic carbon (OC) in the floodplain lakes is strongly linked to the periodical floods and to the biogeography from upstream to downstream(Victoria et al., 1992; Martinelli et al., 2003). However, the main sources of sedimentary OC remain uncertain. Hence, the study of the sources of OC buried in floodplain lake sediments can enhance our understanding of the carbon balance of the Amazon ecosystems. In this study, we investigated the seasonal and spatial pattern of sedimentary organic matter in five floodplain lakes of the central Amazon basin (Cabaliana, Janauaca, Canaçari, Miratuba, and Curuai) which have different morphologies, hydrodynamics and vegetation coverage. Surface sediments were collected in four hydrological seasons: low water (LW), rising water (RW), high water (HW) and falling water (FW) in 2009 and 2010. We investigated commonly used bulk geochemical tracers such as C:N ratio and stable isotopic composition of organic carbon (δ13COC). These results were compared with lignin-phenol parameters as an indicator of vascular plant detritus (Hedges and Ertel, 1982) and branched glycerol dialkyl glycerol tetraethers (brGDGTs) to trace the soil OC from land to the aquatic settings (Hopmans et al., 2004). Our data showed that during the RW and FW seasons, the concentration of lignin and brGDGTs were higher in comparison to other seasons. Our study also indicated that floodplain lake sediments primarily consisted of a mixture of C3 plant detritus and soil OC. However, a downstream increase in C4 plant-derived OC contribution was observed along the gradient of increasingly open waters, i

  6. Hydrology of Lake Tohopekaliga, Osceola County, Florida

    USGS Publications Warehouse

    Phelps, G.G.

    1982-01-01

    Lake Tohopekaliga, one of the major lakes in central Florida, provides flood control in the upper Kissimmee River basin, recreation for fishermen and boaters, water for live-stock, esthetic surroundings for homesites, and serves as a receiving body for treated effluent from municipal sewage treatment plants. The purpose of this map report is to provide a general reconnaissance of the lake, based primarily on existing geologic , hydrologic and water-quality data. The lake has a surface area of about 30 square miles and a mean depth of about 5 feet. Maximum depth measured was about 13 feet. Inflow to the lake comes from Shingle Creek and St. Cloud canal and outflow is through the South-port canal. Regulation of lake levels for flood control began in the early 1960 's and has resulted in a decrease in the range of lake stage of about 3 feet. Concentrations of pesticide residues in lake bottom sediments do not appear to have increased from 1972 to 1980. The lake has abundant aquatic vegetation, the amount and extent of which varies with fluctuating water levels. Water-quality data collected between 1954-77 are summarized in the report and additional data collected in 1980 are also shown. The range of plant nutrient concentrations measured in May 1980 are: Total organic nitrogen 0.71-2.2 milligrams per liter. Most water-quality parameters vary from one area of the lake to another because of restricted areal circulation due to the shape of the lake. (USGS)

  7. Geothermal activity and hydrothermal mineral deposits at southern Lake Bogoria, Kenya Rift Valley: Impact of lake level changes

    NASA Astrophysics Data System (ADS)

    Renaut, Robin W.; Owen, R. Bernhart; Ego, John K.

    2017-05-01

    Lake Bogoria, a saline alkaline closed-lake in a drainage basin of Neogene volcanic rocks in the central Kenya Rift, is fed partly by ∼200 hot alkaline springs located in three groups along its margins. Hot springs along the midwest shoreline (Loburu, Chemurkeu) and their travertine deposits have been studied, but little is known about the geothermal activity at southern Lake Bogoria. Observations, field measurements and analyses (geochemical and mineralogical) of the spring waters and deposits, spanning three decades, show that the southern spring waters are more saline, the hydrothermal alteration there is more intense, and that most hot spring deposits are siliceous. Geothermal activity at southern Lake Bogoria (Ng'wasis, Koibobei, Losaramat) includes littoral boiling springs and geysers, with fumaroles at slightly higher elevations. Modern spring deposits are ephemeral sodium carbonates, opal-A crusts and silica gels. Local fossil spring deposits include diatomaceous silica-cemented conglomerates that formed subaqueously when the lake was then dilute and higher than today, and outlying calcite tufa deposits. In contrast, mineral deposits around neighbouring fumarole vents and sites of hydrothermal alteration include clays (kaolinite), sulfate minerals (jarosite, alunite), and Fe-oxyhydroxides linked to rising acidic fluids. When lake level falls, the zone of acidity moves downwards and may overprint older alkaline spring deposits. In contrast, rising lake level leads to lake water dilution and vents in the lower parts of the acidic zone may become dilute alkaline springs. The new evidence at Lake Bogoria shows the potential for using the mineralogy of geothermal sediments to indicate former changes in lake level.

  8. District wide water resources investigation and management using LANDSAT data. Phase 1: Lake volume

    NASA Technical Reports Server (NTRS)

    Shih, S. F. (Principal Investigator)

    1982-01-01

    A technique for estimating available water storage volume using LANDSAT data was developed and applied to Lake Washington and Lake Harris in central Florida. The technique can be applied two ways. First, where the historical stage records are available, the historical LANDSAT data can be used to establish the relationship between lake volume and lake stage. In the second case, where the historical stage records are not available, the historical LANDSAT data can be used to estimate the historical lake stage after the lake volume and stage information become available in the future.

  9. PLASMA STEROID CONCENTRATIONS IN RELATION TO SIZE AND AGE IN JUVENILE ALLIGATORS FROM TWO FLORIDA LAKES.

    EPA Science Inventory

    Previous studies have reported a number of physiological differences among juvenile alligators from two well-studied populations (Lake Apopka and Lake Woodruff) in north central Florida. These studies obtained alligators of similar size from each lake under the assumption that th...

  10. Morphological features of an endangered Japanese strain of Cyprinus carpio: reconstruction based on seven SNP markers.

    PubMed

    Atsumi, K; Song, H Y; Senou, H; Inoue, K; Mabuchi, K

    2017-03-01

    Morphological analyses of 183 specimens of Japanese common carp Cyprinus carpio (171 from Lake Biwa and 12 from nursery ponds) using genetic hybrid indices demonstrated that the typical native Japanese strain of C. carpio has a more elongate body, more branched dorsal-fin rays, fewer and shorter gill rakers, more developed pneumatic bulb, more coiled pneumatic duct, longer posterior swimbladder and shorter intestine than the typical introduced C. carpio. These results provide a basis for a better understanding of the ecological characteristics and taxonomic status of the endangered Japanese strain of C. carpio. © 2016 The Fisheries Society of the British Isles.

  11. Arsenic and lead distribution and mobility in lake sediments in the south-central Puget Sound watershed: the long-term impact of a metal smelter in Ruston, Washington, USA.

    PubMed

    Gawel, James E; Asplund, Jessica A; Burdick, Sarah; Miller, Michelle; Peterson, Shawna M; Tollefson, Amanda; Ziegler, Kara

    2014-02-15

    The American Smelting and Refining Company (ASARCO) smelter in Ruston, Washington, contaminated the south-central Puget Sound region with heavy metals, including arsenic and lead. Arsenic and lead distribution in surface sediments of 26 lakes is significantly correlated with atmospheric model predictions of contaminant deposition spatially, with concentrations reaching 208 mg/kg As and 1,375 mg/kg Pb. The temporal distribution of these metals in sediment cores is consistent with the years of operation of the ASARCO smelter. In several lakes arsenic and lead levels are highest at the surface, suggesting ongoing inputs or redistribution of contaminants. Moreover, this study finds that arsenic is highly mobile in these urban lakes, with maximum dissolved arsenic concentrations proportional to surface sediment levels and reaching almost 90 μg/L As. With 83% of the lakes in the deposition zone having surface sediments exceeding published "probable effects concentrations" for arsenic and lead, this study provides evidence for possible ongoing environmental health concerns. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Late Early Permian continental ichnofauna from Lake Kemp, north-central Texas, USA

    USGS Publications Warehouse

    Lucas, S.G.; Voigt, S.; Lerner, A.J.; Nelson, W.J.

    2011-01-01

    Continental trace fossils of Early Permian age are well known in the western United States from Wolfcampian (~. Asselian to Artinskian) strata, but few examples are known from Leonardian (~. Kungurian) deposits. A substantial ichnofauna from strata of the lower part of the Clear Fork Formation at Lake Kemp, Baylor County, Texas, augments the meager North American record of Leonardian continental trace fossil assemblages. Ichnofossils at Lake Kemp occur in the informally-named Craddock dolomite member of the Clear Fork Formation, which is 12-15. m above the local base of the Clear Fork. The trace-bearing stratum is an up-to-0.3. m thick, laminated to flaser-bedded, dolomitic siltstone that also contains mud cracks, raindrop impressions, microbially induced mat structures, and some land-plant impressions. We interpret the Craddock dolomite member as the feather-edge of a marine transgressive carbonate deposit of an irregular coastline marked by shallow bays or estuaries on the eastern shelf of the Midland basin, and the trace-fossil-bearing stratum at Lake Kemp is an unchannelized flow deposit on a muddy coastal plain. The fossil site at Lake Kemp yields a low to moderately diverse fauna of invertebrate and vertebrate traces. A sparse invertebrate ichnofauna consists of arthropod feeding and locomotion traces assigned to Walpia cf. W. hermitensis White, 1929 and Diplichnites gouldi Gevers in Gevers et al., 1971. Tetrapod footprints are most common and assigned to Batrachichnus salamandroides (Geinitz, 1861), cf. Amphisauropus kablikae (Geinitz and Deichm??ller, 1882), and Dromopus lacertoides (Geinitz, 1861), which represent small temnospondyl, seymouriamorph, and basal sauropsid trackmakers. Both the traces and sedimentary features of the fossil horizon indicate a freshwater setting at the time of track formation, and the trace assemblage represents the Scoyenia ichnofacies and the Batrachichnus ichnofacies in an overbank environment with sheet flooding and shallow

  13. Great Lakes, No Clouds

    NASA Image and Video Library

    2017-12-08

    NASA image acquired August 28, 2010 Late August 2010 provided a rare satellite view of a cloudless summer day over the entire Great Lakes region. North Americans trying to sneak in a Labor Day weekend getaway on the lakes were hoping for more of the same. The Great Lakes comprise the largest collective body of fresh water on the planet, containing roughly 18 percent of Earth's supply. Only the polar ice caps contain more fresh water. The region around the Great Lakes basin is home to more than 10 percent of the population of the United States and 25 percent of the population of Canada. Many of those people have tried to escape record heat this summer by visiting the lakes. What they found, according to The Hamilton Spectator, was record-breaking water temperatures fueled by record-breaking air temperatures in the spring and summer. By mid-August, the waters of Lake Superior were 6 to 8°C (11 to 14°F) above normal. Lake Michigan set records at about 4°C (7°F) above normal. The other three Great Lakes – Huron, Erie, and Ontario -- were above normal temperatures, though no records were set. The image was gathered by the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Aqua satellite at 1:30 p.m. Central Daylight Time (18:30 UTC) on August 28. Open water appears blue or nearly black. The pale blue and green swirls near the coasts are likely caused by algae or phytoplankton blooms, or by calcium carbonate (chalk) from the lake floor. The sweltering summer temperatures have produced an unprecedented bloom of toxic blue-green algae in western Lake Erie, according to the Cleveland Plain Dealer. NASA image by Jeff Schmaltz, MODIS Rapid Response Team, Goddard Space Flight Center. Caption by Mike Carlowicz. Instrument: Aqua - MODIS Click here to see more images from NASA Goddard’s Earth Observatory NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft

  14. Fuel treatments, fire suppression, and their interaction with wildfire and its impacts: the Warm Lake experience during the Cascade Complex of wildfires in central Idaho, 2007

    Treesearch

    Russell T. Graham; Theresa B. Jain; Mark Loseke

    2009-01-01

    Wildfires during the summer of 2007 burned over 500,000 acres within central Idaho. These fires burned around and through over 8,000 acres of fuel treatments designed to offer protection from wildfire to over 70 summer homes and other buildings located near Warm Lake. This area east of Cascade, Idaho, exemplifies the difficulty of designing and implementing fuel...

  15. Lakes in the greater Denver area, Front Range Urban Corridor

    USGS Publications Warehouse

    Danielson, T.W.

    1975-01-01

    The purpose of this report is to present the results of an inventory of the lakes in the central one-third of the Colorado Front Range Urban Corridor. This inventory provides information that might be helpful in planning the best and most beneficial use of lakes in an area of rapid population growth. The report includes data on lake size and water quality. Size data are included on most of the lakes of 2 hectares (20,000 m2, or about 5 acres) or greater, and water-quality data are provided on most lakes larger than 10 hectares (about 25 acres). Bodies of water resulting form excavation of gravel (borrow pits) were generally not included in the inventory.

  16. Visualization of a drifting buoy deployment on Lake St. Clair within the Great Lakes Waterway from August 12-15, 2002

    USGS Publications Warehouse

    Holtschlag, David J.; Syed, Atiq U.; Kennedy, Gregory W.

    2002-01-01

    Lake St. Clair is a 430 square mile lake between the state of Michigan and the province of Ontario, which forms part of the international boundary between the United States and Canada in the Great Lakes Basin. Lake St. Clair receives most of its inflow from Lake Huron through St. Clair River, which has an average flow of 182,000 cubic feet per second. The lake discharges to Detroit River, where it flows 32 miles to Lake Erie. Twelve drifting buoys were deployed on Lake St. Clair for 74 hours between August 12-15, 2002 to help investigate flow circulation patterns as part of a source water assessment study of the susceptibility of public water intakes. The buoys contained global positioning system (GPS) receivers to track their movements. Buoys were released in a transect between tethered buoys marking an 800-foot wide navigational channel in the north-central part of the lake just downstream of St. Clair River, and about 15.5 miles northeast of Detroit River. In addition, an acoustic Doppler current profiler (ADCP) was used to measure velocity profiles in a grid of 41 points that spanned the area through which the buoys drifted. Computer animations, which can be viewed through the Internet, were developed to help visualize the results of the buoy deployments and ADCP measurements.

  17. A metabolism-based whole lake eutrophication model to estimate the magnitude and time scales of the effects of restoration in Upper Klamath Lake, south-central Oregon

    USGS Publications Warehouse

    Wherry, Susan A.; Wood, Tamara M.

    2018-04-27

    A whole lake eutrophication (WLE) model approach for phosphorus and cyanobacterial biomass in Upper Klamath Lake, south-central Oregon, is presented here. The model is a successor to a previous model developed to inform a Total Maximum Daily Load (TMDL) for phosphorus in the lake, but is based on net primary production (NPP), which can be calculated from dissolved oxygen, rather than scaling up a small-scale description of cyanobacterial growth and respiration rates. This phase 3 WLE model is a refinement of the proof-of-concept developed in phase 2, which was the first attempt to use NPP to simulate cyanobacteria in the TMDL model. The calibration of the calculated NPP WLE model was successful, with performance metrics indicating a good fit to calibration data, and the calculated NPP WLE model was able to simulate mid-season bloom decreases, a feature that previous models could not reproduce.In order to use the model to simulate future scenarios based on phosphorus load reduction, a multivariate regression model was created to simulate NPP as a function of the model state variables (phosphorus and chlorophyll a) and measured meteorological and temperature model inputs. The NPP time series was split into a low- and high-frequency component using wavelet analysis, and regression models were fit to the components separately, with moderate success.The regression models for NPP were incorporated in the WLE model, referred to as the “scenario” WLE (SWLE), and the fit statistics for phosphorus during the calibration period were mostly unchanged. The fit statistics for chlorophyll a, however, were degraded. These statistics are still an improvement over prior models, and indicate that the SWLE is appropriate for long-term predictions even though it misses some of the seasonal variations in chlorophyll a.The complete whole lake SWLE model, with multivariate regression to predict NPP, was used to make long-term simulations of the response to 10-, 20-, and 40-percent

  18. Zooplankton communities and Bythotrephes longimanus in lakes of the montane region of the northern Alps

    PubMed Central

    Horváth, Zsófia; Vad, Csaba F.; Preiler, Christian; Birtel, Julia; Matthews, Blake; Ptáčníková, Radka; Ptáčník, Robert

    2017-01-01

    Abstract Lakes in the Alps represent a considerable fraction of nutrient-poor lakes in Central Europe, with unique biodiversity and ecosystem properties. Although some individual lakes are well studied, less knowledge is available on large-scale patterns essential to general understanding of their functioning. Here, we aimed to describe crustacean zooplankton communities (Cladocera, Copepoda) and identify their environmental drivers in the pelagic zone of 54 oligotrophic lakes in the montane region of the Alps (400–1200 m) in Austria, Germany, and Switzerland, covering a spatial scale of 650 km. Moreover, we aimed to provide data on the distribution and ecological requirements of the North American invader Bythotrephes longimanus in its Central European native range. Communities were mainly dominated by widespread species typical of lowland habitats, and only a few true specialists of oligotrophic alpine lakes were present. The most frequent taxa were the Daphnia longispina complex and Eudiaptomus gracilis, with 48 and 45 occurrences, respectively. Species richness decreased with altitude and increased with lake area. The main structuring factors of community composition were chlorophyll a concentration and depth, which drove an apparent separation of mesotrophic and oligotrophic communities. Bythotrephes had 13 occurrences, showing a preference for deep oligotrophic lakes. Its presence was not coupled with lower crustacean species richness, as was repeatedly observed in North America. Additionally, it frequently co-occurred with the other large predatory cladoceran, Leptodora kindtii. B. longimanus might be considered a truly montane species in Central Europe, given its absence in lowland and alpine lakes. PMID:28824797

  19. Zooplankton communities and Bythotrephes longimanus in lakes of the montane region of the northern Alps

    PubMed Central

    Horváth, Zsófia; Vad, Csaba F.; Preiler, Christian; Birtel, Julia; Matthews, Blake; Ptáčníková, Radka; Ptacnik, Robert

    2017-01-01

    Lakes in the Alps represent a considerable fraction of nutrient-poor lakes in Central Europe, with unique biodiversity and ecosystem properties. Although some individual lakes are well-studied, less knowledge is available on large-scale patterns essential to generalise the understanding of their functioning. Here, we aimed to describe crustacean zooplankton communities (Cladocera, Copepoda) and identify their environmental drivers in the pelagic zone of 54 oligotrophic lakes in the montane region of the Alps (400–1200 m) in Austria, Germany, and Switzerland, covering a spatial scale of 650 km. Moreover, we aimed to provide data on the distribution and ecological requirements of the North American invader Bytotrephes longimanus in its Central European native range. Communities were mainly dominated by widespread species typical of lowland habitats, and only a few true specialists of oligotrophic alpine lakes were present. The most frequent taxa were the Daphnia longispina complex and Eudiaptomus gracilis, with 48 and 45 occurrences, respectively. Species richness decreased with altitude and increased with lake area. The main structuring factors of community composition were chlorophyll a concentration and depth, which drove an apparent separation of mesotrophic and oligotrophic communities. Bytotrephes had 13 occurrences, showing a preference for deep oligotrophic lakes. Its presence was not coupled with lower crustacean species richness as it was repeatedly observed in North America. Additionally, it frequently co-occurred with the other large predatory cladoceran, Leptodora kindtii. B. longimanus might be considered a truly montane species in Central Europe, given its absence in lowland and alpine lakes. PMID:28649318

  20. Targets set to reduce Lake Erie algae

    USGS Publications Warehouse

    Evans, Mary

    2016-01-01

    In February 2016, the Great Lakes Executive Committee, which oversees the implementation of the Great Lakes Water Quality Agreement (GLWQA) between the U.S. and Canada, approved phosphorus loading targets for Lake Erie to reduce the size of harmful algal blooms (HABs), reduce the presence of the low oxygen zone in the central basin, and protect nearshore water quality. The targets are set with respect to the nutrient loads calculated for 2008. To reduce the impacts of HABs on Lake Erie a target was set of a 40 percent reduction in total and soluble reactive phosphorus loads in the spring from two Canadian rivers and several Michigan and Ohio rivers, especially the Maumee River (https://binational.net/2016/02/22/ finalptargets-ciblesfinalesdep/). States and the province of Ontario are already developing Domestic Action Plans to accomplish the reductions and scientists are developing research and monitoring plans to assess progress.

  1. Reconstructing Heat Fluxes Over Lake Erie During the Lake Effect Snow Event of November 2014

    NASA Astrophysics Data System (ADS)

    Fitzpatrick, L.; Fujisaki-Manome, A.; Gronewold, A.; Anderson, E. J.; Spence, C.; Chen, J.; Shao, C.; Posselt, D. J.; Wright, D. M.; Lofgren, B. M.; Schwab, D. J.

    2017-12-01

    The extreme North American winter storm of November 2014 triggered a record lake effect snowfall (LES) event in southwest New York. This study examined the evaporation from Lake Erie during the record lake effect snowfall event, November 17th-20th, 2014, by reconstructing heat fluxes and evaporation rates over Lake Erie using the unstructured grid, Finite-Volume Community Ocean Model (FVCOM). Nine different model runs were conducted using combinations of three different flux algorithms: the Met Flux Algorithm (COARE), a method routinely used at NOAA's Great Lakes Environmental Research Laboratory (SOLAR), and the Los Alamos Sea Ice Model (CICE); and three different meteorological forcings: the Climate Forecast System version 2 Operational Analysis (CFSv2), Interpolated observations (Interp), and the High Resolution Rapid Refresh (HRRR). A few non-FVCOM model outputs were also included in the evaporation analysis from an atmospheric reanalysis (CFSv2) and the large lake thermodynamic model (LLTM). Model-simulated water temperature and meteorological forcing data (wind direction and air temperature) were validated with buoy data at three locations in Lake Erie. The simulated sensible and latent heat fluxes were validated with the eddy covariance measurements at two offshore sites; Long Point Lighthouse in north central Lake Erie and Toledo water crib intake in western Lake Erie. The evaluation showed a significant increase in heat fluxes over three days, with the peak on the 18th of November. Snow water equivalent data from the National Snow Analyses at the National Operational Hydrologic Remote Sensing Center showed a spike in water content on the 20th of November, two days after the peak heat fluxes. The ensemble runs presented a variation in spatial pattern of evaporation, lake-wide average evaporation, and resulting cooling of the lake. Overall, the evaporation tended to be larger in deep water than shallow water near the shore. The lake-wide average evaporations

  2. Selection of prey by walleyes in the Ohio waters of the central basin of Lake Erie, 1985-1987

    USGS Publications Warehouse

    Wolfert, David R.; Bur, Michael T.

    1992-01-01

    Walleyes (Stizostedion vitreum vitreum) were collected at five locations in the central basin of Lake Erie in 1985-87. The contents of the fishes' stomachs were examined to identify the species of prey. The seasonal availability of potential prey was determined from sampling with trawl tows. Food electivity indexes for young-of-the-year (YOY) and older walleyes were calculated. Electivity indexes changed monthly in YOY walleyes that consumed mostly YOY gizzard shads (Dorosoma cepedianum) in July and fed moderately on gizzard shads, but more on smelts (Osmerus mordax), in August. In September and October YOY walleyes did not consume YOY white perch (Morone americana). During October, they continued to eat YOY gizzard shads moderately but consumed mostly emerald shiners (Notropis atherinoides). Older walleys were highly partial to YOY gizzard shads, emerald shiners, and smelts and consumed no YOY white perch. The numbers of YOY yellow perch (Perca flavescens) in stomachs were limited. Prey selection by walleyes in the central basin was species-specific irrespective of abundance of prey.

  3. Pulpwood production and consumption in the North Central Region, by county, 1967.

    Treesearch

    James E. Blyth

    1969-01-01

    This report presents 1967 pulpwood production and receipt data for the Lake States and Central States. Pulpwood production for the Lake States is given by species for each county, and 1967 production by Forest Survey District is compared to that of previous years. For the Central States, 1967 pulpwood production and receipt data are presented by state, and four...

  4. Flooding in Central China

    NASA Technical Reports Server (NTRS)

    2002-01-01

    During the summer of 2002, frequent, heavy rains gave rise to floods and landslides throughout China that have killed over 1,000 people and affected millions. This false-color image of the western Yangtze River and Dongting Lake in central China was acquired on August 21, 2002, by the Moderate-resolution Imaging Spectroradiometer (MODIS), flying aboard NASA's Terra spacecraft. (right) The latest flooding crisis in China centers on Dingtong Lake in the center of the image. Heavy rains have caused it to swell over its banks and swamp lakefront towns in the province of Hunan. As of August 23, 2002, more than 250,000 people have been evacuated, and over one million people have been brought in to fortify the dikes around the lake. Normally the lake would appear much smaller and more defined in the MODIS image. Credit: Image courtesy Jacques Descloitres, MODIS Land Rapid Response Team at NASA GSFC.

  5. Greenhouse gas fluxes of a shallow lake in south-central North Dakota, USA

    USGS Publications Warehouse

    Tangen, Brian; Finocchiaro, Raymond; Gleason, Robert A.; Dahl, Charles F.

    2016-01-01

    Greenhouse gas (GHG) fluxes of aquatic ecosystems in the northern Great Plains of the U.S. represent a significant data gap. Consequently, a 3-year study was conducted in south-central North Dakota, USA, to provide an initial estimate of GHG fluxes from a large, shallow lake. Mean GHG fluxes were 0.02 g carbon dioxide (CO2) m−2 h−1, 0.0009 g methane (CH4) m−2 h−1, and 0.0005 mg nitrous oxide (N2O) m−2 h−1. Fluxes of CO2 and CH4 displayed temporal and spatial variability which is characteristic of aquatic ecosystems, while fluxes of N2O were consistently low throughout the study. Comparisons between results of this study and published values suggest that mean daily fluxes of CO2, CH4, and N2O fromLong Lakewere low, particularly when compared to the well-studied prairie pothole wetlands of the region. Similarly, cumulative seasonal CH4 fluxes, which ranged from 2.68–7.58 g CH4 m−2, were relatively low compared to other wetland systems of North America. The observed variability among aquatic ecosystems underscores the need for further research.

  6. Peak-flow frequency and extreme flood potential for streams in the vicinity of the Highland Lakes, central Texas

    USGS Publications Warehouse

    Asquith, William H.; Slade, R.M.; Lanning-Rush, Jennifer

    1996-01-01

    The Highland Lakes on the Colorado River are in an area periodically threatened by large storms and floods. Many storms exceeding 10 inches (in.) in depth have been documented in the area, including some with depths approaching 40 in. These storms typically produce large peak discharges that often threaten lives and property. The storms sometimes occur with little warning. Steep stream slopes and thin soils characteristic of the area often cause large peak discharges and rapid movement of floods through watersheds. A procedure to predict the discharge associated with large floods is needed for the area so that appropriate peak discharges can be used in the design of flood plains, bridges, and other structures.The U.S. Geological Survey (USGS), in cooperation with the Lower Colorado River Authority (LCRA), studied flood peaks for streams in the vicinity of the Highland Lakes of central Texas. The Highland Lakes are a series of reservoirs constructed on the Colorado River. The chain of lakes (and year each was completed) comprises Lake Buchanan (1937), Inks Lake (1938), Lake Lyndon B. Johnson (1950), Lake Marble Falls (1951), Lake Travis (1942), and lake Austin (1890). The study area (fig. 1), which includes all or parts of 21 counties in the vicinity of the Highland Lakes, was selected because most streams in the area have flood characteristics similar to streams entering the Highland Lakes. The entire study area is in a region subject to large storms.The purpose of this report is to present (1) peak-flow frequency data for stations and equations to estimate peak-flow frequency for large streams with natural drainage basins in the vicinity of the Highland Lakes, and (2) a technique to estimate the extreme flood peak discharges for the large streams in the vicinity of the Highland Lakes. Peak-flow frequency in this report refers to the peak discharges for recurrence intervals of 2,5, 10,25,50, and 100 years. A large stream is defined as having a contributing drainage

  7. Antibiotic resistance genes in surface water of eutrophic urban lakes are related to heavy metals, antibiotics, lake morphology and anthropic impact.

    PubMed

    Yang, Yuyi; Xu, Chen; Cao, Xinhua; Lin, Hui; Wang, Jun

    2017-08-01

    Urban lakes are impacted by heavy human activities and represent potential reservoirs for antibiotic resistance genes. In this study, six urban lakes in Wuhan, central China were selected to analyze the distribution of sulfonamide resistance (sul) genes, tetracycline resistance (tet) genes and quinolone resistance (qnr) genes and their relationship with heavy metals, antibiotics, lake morphology and anthropic impact. sul1 and sul2 were detected in all six lakes and dominated the types of antibiotic resistance genes, which accounted for 86.28-97.79% of the total antibiotic resistance gene abundance. For eight tested tet genes, antibiotic efflux pumps (tetA, tetB, tetC, and tetG) genes were all observed in six lakes and had higher relative abundance than ribosomal protection protein genes (tetM and tetQ). For 4 plasmid mediated quinolone resistance genes, only qnrD is found in all six lakes. The class I integron (intI1) is also found to be a very important media for antibiotic resistance gene propagation in urban lakes. The results of redundancy analysis and variation partitioning analysis showed that antibiotic and co-selection with heavy metals were the major factors driving the propagation of antibiotic resistance genes in six urban lakes. The heavily eutrophic Nanhu Lake and Shahu Lake which located in a high density building area with heavy human activities had the higher relative abundance of total antibiotic resistance genes. Our study could provide a useful reference for antibiotic resistance gene abundance in urban lakes with high anthropic impact.

  8. Climatic data for Mirror Lake, West Thornton, New Hampshire, 1981-82

    USGS Publications Warehouse

    Sturrock, A.M.; Buso, D.C.; Bieber, G.M.; Engelbrecht, L.G.; Winter, T.C.

    1984-01-01

    Research on the hydrology of Mirror Lake, (north-central) New Hampshire includes study of evaporation. Presented here are those climatic data needed for energy-budget and mass-transfer studies, including: temperature of lake water surface, dry-bulb and wet-bulb air temperatures, wind speed, precipitation and solar radiation. Data are collected at raft and land stations. (USGS)

  9. CHARACTERIZATION OF ENDOCRINE-DISRUPTION AND CLINICAL MANIFESTATIONS IN LARGE-MOUTH BASS FROM FLORIDA LAKES

    EPA Science Inventory

    Previous efforts from this laboratory, have documented altered endocrine function and sexual differentiation for alligators and turtles from Lake Apopka in Central Florida. This lake has been exposed to a variety of contaminants which are potentially endocrine-disrupting. Therefo...

  10. Influence of geomorphic setting on sedimentation of two adjacent alpine lakes, Triglav Lakes Valley (Julian Alps, NW Slovenia)

    NASA Astrophysics Data System (ADS)

    Smuc, Andrej; Skabene, Dragomir; Muri, Gregor; Vreča, Polona; Jaćimović, Radojko; Čermelj, Branko; Turšič, Janja

    2013-04-01

    The Triglav Lakes Valley is elongated, 7km long depression, located high (at places over 2000 m.a.s.l.) in the central part of the Julian Alps (NW Slovenia). It hosts 6 small isolated lakes that formed due to the combination of Neogene tectonic and Pleistocene glaciation. The study is focused on the 5th and 6th Triglav Valley Lakes that characterize lower part of the valley. The lakes are located so close to each other that they are even connected in times of high water. Thus, they share the same bedrock geology, are subjected to the same climatic forcing and share similar vegetation communities. Despite their proximity, the lakes differ in their hydrologic and geomorphic setting. The lakes have no permanent surface tributaries; however 5th is fed periodically, at times of high water level, by the Močivec spring, while additional water flows from the swamp area near its northern shore. An underground spring on the eastern side of 5th represents the lake's only permanent freshwater inflow, while drainage takes place to the west via a small ponor. 6th has only one weak underground spring on the eastern side of the lake. Water levels may fluctuate between 2 and 3 m. Additionally, the lakes have different configuration of lakes shores; the northern shores of the 5th lake are low-angle soil and debris covered plateau, while southern shores of the 5th lake and shores of the 6th lake are represented by heavily karstified carbonate base rock and covered partly by trees. The detailed sedimentary analysis of the lakes record showed some similarities, but also some significant differences. Sediments of both lakes are represented by fine-grained turbidity current deposits that are transported from lake shores during snow melt or storms. The grain-size and sedimentary rates of the lakes are however markedly different. The 5th lake has coarser grained sediments, with mean ranging from 46 to 60 µm and records higher sedimentation rates of ~0,57 cm/year, compared to the 6th lake

  11. Lake-sediment record of PAH, mercury, and fly-ash particle deposition near coal-fired power plants in Central Alberta, Canada.

    PubMed

    Barst, Benjamin D; Ahad, Jason M E; Rose, Neil L; Jautzy, Josué J; Drevnick, Paul E; Gammon, Paul R; Sanei, Hamed; Savard, Martine M

    2017-12-01

    We report a historical record of atmospheric deposition in dated sediment cores from Hasse Lake, ideally located near both currently and previously operational coal-fired power plants in Central Alberta, Canada. Accumulation rates of spheroidal carbonaceous particles (SCPs), an unambiguous marker of high-temperature fossil-fuel combustion, in the early part of the sediment record (pre-1955) compared well with historical emissions from one of North America's earliest coal-fired power plants (Rossdale) located ∼43 km to the east in the city of Edmonton. Accumulation rates in the latter part of the record (post-1955) suggested inputs from the Wabamun region's plants situated ∼17-25 km to the west. Increasing accumulation rates of SCPs, polycyclic aromatic hydrocarbons (PAHs) and Hg coincided with the previously documented period of peak pollution in the Wabamun region during the late 1960s to early 1970s, although Hg deposition trends were also similar to those found in western North American lakes not directly affected by point sources. A noticeable reduction in contaminant inputs during the 1970s is attributed in part to technological improvements and stricter emission controls. The over one hundred-year historical record of coal-fired power plant emissions documented in Hasse Lake sediments has provided insight into the impact that both environmental regulations and changes in electricity output have had over time. This information is crucial to assessing the current and future role of coal in the world's energy supply. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  12. Investigating molecular changes in organic matter composition in two Holocene lake-sediment records from central Sweden using pyrolysis-GC/MS

    NASA Astrophysics Data System (ADS)

    Ninnes, Sofia; Tolu, Julie; Meyer-Jacob, Carsten; Mighall, Tim M.; Bindler, Richard

    2017-06-01

    Organic matter (OM) is a key component of lake sediments, affecting carbon, nutrient, and trace metal cycling at local and global scales. Yet little is known about long-term (millennial) changes in OM composition due to the inherent chemical complexity arising from multiple OM sources and from secondary transformations. In this study we explore how the molecular composition of OM changes throughout the Holocene in two adjacent boreal lakes in central Sweden and compare molecular-level information with conventional OM variables, including total carbon, total nitrogen, C:N ratios, δ13C, and δ15N. To characterize the molecular OM composition, we employed a new method based on pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS), which yields semiquantitative data on >100 organic compounds of different origin and degradation status. We identify large changes in OM composition after deglaciation (circa 8500 ± 500 B.C.), associated with early landscape development, and during the most recent 40-50 years, driven by degradation processes. With molecular-level information we can also distinguish between natural landscape development and human catchment disturbance during the last 1700 years. Our study demonstrates that characterization of the molecular OM composition by the high-throughput Py-GC/MS method is an efficient complement to conventional OM variables for identification and understanding of past OM dynamics in lake-sediment records. Holocene changes observed for pyrolytic compounds and compound classes known for having different reactivity indicate the need for further paleo-reconstruction of the molecular OM composition to better understand both past and future OM dynamics and associated environmental changes.

  13. A 900-Year Diatom and Chrysophyte Record of Spring Mixing and Summer Stratification From Varved Lake Mina, West-Central Minnesota, USA

    NASA Astrophysics Data System (ADS)

    St. Jacques, J.; Cumming, B. F.; Smol, J. P.

    2009-05-01

    A high-resolution, independent pollen-inferred paleoclimate record and direct algal seasonality data from the actual time of sediment deposition are used to interpret the high-resolution diatom and chrysophyte record of varved Lake Mina, west-central Minnesota, USA during AD 1116-2002. This direct algal seasonality information was obtained by a new technique of splitting varves into constituent winter-spring and summer lamina, and separately analyzing the siliceous algae in each layer. Analyses of integrated, continuous four-year diatom and chrysophyte samples from a sedimentary sequence show that the time period AD 1116-1478 (i.e. the Atlantic- centered Medieval Climate Anomaly (MCA)) was characterized by periods of vigorous and prolonged spring mixing, suggesting that ice-out occurred early. However, the warm summer temperatures in the MCA, particularly in a massive drought spanning AD 1300-1400, frequently caused the lake to stratify strongly, leading to nutrient depletion. During AD 1478-1870 (i.e. the Atlantic-centered Little Ice Age (LIA)), Lake Mina was characterized by weak spring circulation and increasing nutrient depletion, suggesting late ice-out conditions. Strong summer stratification and/or nutrient depletion in both time periods is shown by the occurrence of the nutrient-poor oligotrophic taxon Cyclotella pseudostelligera. The diatom and chrysophyte assemblages of the period of Euro-American settlement AD 1870-2002 show higher nutrient availability and increased spring mixing intensity, due to forest clearance and increasingly earlier ice-out (documented in regional historical records).

  14. SOURCE APPORTIONMENT OF POLYCYCLIC AROMATIC HYDROCARBONS (PAHs) INTO CENTRAL PARK LAKE, NEW YORK CITY, OVER A CENTURY OF DEPOSITION

    PubMed Central

    Yan, Beizhan; Bopp, Richard F.; Abrajano, Teofilo A.; Chaky, Damon; Chillrud, Steven N.

    2014-01-01

    Relative contributions of polycyclic aromatic hydrocarbons (PAHs) from combustion sources of wood, petroleum, and coal were computed in sediments from Central Park Lake in New York City (NY, USA) by chemical mass balance based on several reliable source indicators. These indicators are the ratio of retene to the sum of retene and chrysene, the ratio of 1,7-dimethylphenanthrene (DMP) to 1,7-DMP and 2,6-DMP, and the ratio of fluroanthene to fluroanthene and pyrene. The authors found that petroleum combustion–derived PAH fluxes generally followed the historical consumption data of New York State. Coal combustion-derived PAH flux peaked approximately in the late 1910s, remained at a relatively high level over the next 3 decades, then rapidly declined from the 1950s to the 1960s; according to historical New York State coal consumption data, however, there was a 2-peak trend, with peaks around the early 1920s and the mid-1940s. The 1940s peak was not observed in Central Park Lake, most likely because of the well-documented shift from coal to oil as the major residential heating fuel in New York City during the late 1930s. It was widely believed that the decreased PAH concentrations and fluxes in global sediments during the last century resulted from a major energy shift from coal to petroleum. The data, however, show that this shift occurred from 1945 through the 1960s and did not result in an obvious decline. The sharpest decrease, which occurred in the 1970s was not predominantly related to coal usage but rather was the result of multiple factors, including a decline in petroleum usage largely, the introduction of low sulfur–content fuel in New York City, and the introduction of emission-control technologies. PMID:24375577

  15. Source apportionment of polycyclic aromatic hydrocarbons (PAHs) into Central Park Lake, New York City, over a century of deposition.

    PubMed

    Yan, Beizhan; Bopp, Richard F; Abrajano, Teofilo A; Chaky, Damon; Chillrud, Steven N

    2014-05-01

    Relative contributions of polycyclic aromatic hydrocarbons (PAHs) from combustion sources of wood, petroleum, and coal were computed in sediments from Central Park Lake in New York City (NY, USA) by chemical mass balance based on several reliable source indicators. These indicators are the ratio of retene to the sum of retene and chrysene, the ratio of 1,7-dimethylphenanthrene (DMP) to 1,7-DMP and 2,6-DMP, and the ratio of fluroanthene to fluroanthene and pyrene. The authors found that petroleum combustion-derived PAH fluxes generally followed the historical consumption data of New York State. Coal combustion-derived PAH flux peaked approximately in the late 1910s, remained at a relatively high level over the next 3 decades, then rapidly declined from the 1950s to the 1960s; according to historical New York State coal consumption data, however, there was a 2-peak trend, with peaks around the early 1920s and the mid-1940s. The 1940s peak was not observed in Central Park Lake, most likely because of the well-documented shift from coal to oil as the major residential heating fuel in New York City during the late 1930s. It was widely believed that the decreased PAH concentrations and fluxes in global sediments during the last century resulted from a major energy shift from coal to petroleum. The data, however, show that this shift occurred from 1945 through the 1960s and did not result in an obvious decline. The sharpest decrease, which occurred in the 1970s was not predominantly related to coal usage but rather was the result of multiple factors, including a decline in petroleum usage largely, the introduction of low sulfur-content fuel in New York City, and the introduction of emission-control technologies. © 2013 SETAC.

  16. Toward an annual estimate of methane emissions from Lake Erie

    NASA Astrophysics Data System (ADS)

    Fernandez, J.; Townsend-Small, A.

    2017-12-01

    Lake Erie is the shallowest, warmest, and most eutrophic of all of the North American Great Lakes. The central basin of Lake Erie exhibits seasonally hypoxic bottom waters, which contributes to biological methane (CH4) production. Leaks from extensive natural gas wells and pipelines in Canadian waters are a potential source of thermogenic CH4 to the lake. The shallow western basin lacks water column hypoxia, but experiences increasingly frequent algal blooms and hypoxic sediments. Our past research, focused on the central basin, indicated that Lake Erie is a positive source of CH4 during late summer (August - September), emitting 1.3 ± 0.6 × 105 kg CH4-C day. Here, we present a seasonal dataset of CH4 fluxes measured throughout a 16-month period starting in the spring of 2015 and ending late summer in 2016 to estimate an annual lake wide CH4 emission. Our results indicate that the western basin experienced the greatest CH4 emissions, and the highest rates of CH4 flux co-occur with the highest rates of nutrient loading and largest algal blooms near the mouth of the Maumee River. Winter CH4 fluxes were minimal and similar throughout the lake, indicating that natural gas wells are a minimal source of CH4 emissions. Emissions were highest in August and tapered off through the fall and winter, rising again in spring. The estimated annual CH4 emission in Lake Erie was 4.41 × 107 kg CH4-C yr-1. We compared this to other CH4 sources in Michigan and Ohio in the USEPA Greenhouse Gas Reporting Program Database, and found that Lake Erie is second largest emitter of CH4 in Ohio (a landfill in Cincinnati is a larger source), and the largest in Michigan. Recent work has shown that eutrophication in lakes such as Lake Erie may be on the rise due to climate change induced increases in precipitation. If so, these large CH4 emissions may have positive feedback consequences to climate warming. Therefore, more research is needed to indicate whether or not these CH4 emissions are

  17. Impacts of Recent Wetting on Snow Processes and Runoff Generation in a Terminal Lake Basin, Devils Lake, North Dakota.

    NASA Astrophysics Data System (ADS)

    Mahmood, T. H.; Van Hoy, D.

    2016-12-01

    The Devils Lake Basin, only terminal lake basin in North America, drains to a terminal lake called Devils Lake. Terminal lakes are susceptible to climate and land use changes as their water levels fluctuate to these changes. The streamflow from the headwater catchments of the Devils Lake basin exerts a strong control on the water level of the lake. Since, the mid-1980s, the Devils Lake Basin as well as other basins in the northern Great Plains have faced a large and abrupt surge in precipitation regime resulting in a series of wetter climatic condition and flooding around the Devils Lake area. Nevertheless, the impacts of the recent wetting on snow processes such as snow accumulations, blowing snow transport, in-transit sublimation, frozen soil infiltration and snowmelt runoff generations in a headwater catchment of the Devils Lake basin are poorly understood. In this study, I utilize a physically-based, distributed cold regions hydrological model to simulate the hydrological responses in the Mauvais Coulee basin that drains to Devils Lake. The Mauvais Coulee basin ( 1072 km2), located in the north-central North Dakota, is set in a gently rolling landscape with low relief ( 220 m) and an average elevation of 500 m. Major land covers are forest areas in turtle mountains ( 10%) and crops ( 86%), with wheat ( 25%) and canola ( 20%) as the major crops. The model set up includes ten sub-basins, each of which is divided into several hydrological response units (HRUs): riparian forest, river channel, reservoir, wheat, canola, other crops, and marsh. The model is parameterized using local and regional measurements and the findings from previous scientific studies. The model is evaluated against streamflow observations at the Mauvais Coulee gauge (USGS) during 1994-2013 periods using multiple performance criteria. Finally, the impacts of recent increases in precipitation on hydrologic responses are investigated using modeled hydrologic processes.

  18. Use of zooplankton to assess the movement and distribution of alewife (Alosa pseudoharengus) in south-central Lake Ontario in spring

    USGS Publications Warehouse

    O'Gorman, Robert; Mills, Edward L.; DeGisi, Joe

    1991-01-01

    Data from assessments of fish and zooplankton conducted during April and May-June 1986-88 in south-central Lake Ontario were examined for evidence that zooplankton size structure can be used to follow the movement of alewife (Alosa pseudoharengus). The spring influx of alewife into nearshore waters was linked with water temperature and coincided with a decline in the mean length of crustacean zooplankton and the virtual disappearance of zooplankters a?Y 0.9 mm. Alewife moving inshore to spawn fed heavily on the largest zooplankters, negating the possibility that changes in zooplankton size were wholly a response to seasonal recruitment as waters warm and the competition shifts to Bosmina. Offshore, there was usually no significant (P < 0.05) change in mean lengths of zooplankton in the upper water column between April and May-June, and zooplankters a?Y 0.9 mm always remained abundant, suggesting that few alewife were there from April through mid-June. We conclude that in large freshwater lakes where a planktivore is abundant, yet spatially concentrated, changes in size of crustacean zooplankton can facilitate understanding of the fish's movement and distribution.

  19. Climatic data for Mirror Lake, West Thornton, New Hampshire, 1984

    USGS Publications Warehouse

    Sturrock, A.M.; Buso, D.C.; Scarborough, J.L.; Winter, T.C.

    1986-01-01

    Research on the hydrology of Mirror lake, (north-central) New Hampshire includes study of evaporation. Presented here are those climatic data needed for energy-budget and mass-transfer studies, including: temperature of lake water surface; dry-bulb and wet-bulb air temperatures; wind speed at 3 levels above the water surface; and solar and atmospheric radiation. Data are collected at raft and land stations. (USGS)

  20. Characterization of endocrine-disruption and clinical manifestations in large-mouth bass from Florida lakes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gross, D.A.; Gross, T.S.; Johnson, B.

    1995-12-31

    Previous efforts from this laboratory have documented altered endocrine function and sexual differentiation for alligators and turtles from Lake Apopka in Central Florida. This lake has been exposed to a variety of contaminants which are potentially endocrine-disrupting. Therefore, a survey of large mouth bass populations was conducted on several lakes in North Central Florida to examine reproductive and clinical health. Large-mouth bass were collected from lakes Apopka, Griffin, Jessup and Woodruff. Approximately 24 fish (12 males and 12 females) were collected from each lake during the spawning (March--April) and non-reproductive (July--August) seasons. Plasma samples were collected for analysis of estrogen,more » testosterone and 11-keto-testosterone concentrations. Gonadal and liver tissues were collected for histological analysis. General blood chemistry analyses and parasite surveys were also conducted to estimate general health. Additionally, fillet samples were collected and analyzed for pesticide levels. Fish from Lake Apopka had unusual concentrations of estrogen and 11-keto-testosterone in plasma when compared to bass from Lakes Woodruff, Jessup and Griffin. Parasites loads were significantly higher for bass from lake Apopka than from the other lakes. Male bass on Apopka had depressed concentrations of 11-keto-testosterone, skewing the E/T ratios upward while female bass had higher concentrations of estrogens than females from the other lakes, again resulting in skewed E/T ratios. These skewed E/T ratios are similar to those observed for alligators on the same lake and raise the possibility that they are caused by contaminants. However, contaminant levels in fillets did not differ significantly between lakes. These studies indicate potentially altered reproductive and immunological function for large-mouth bass living in a contaminated lake.« less

  1. Numerical simulation the pollutants transport in the Lake base on remote sensing image with Lattice Boltzmann Method

    NASA Astrophysics Data System (ADS)

    Qiao, Y.

    2013-12-01

    As China's economic development, water pollution incidents happened frequently. For example, the cyanobacterial bloom events repeatedly occur in Taihu Lake. In this research, we investigate the pollutants solute transport start at different points, such as the eutrophication substances Nitrogen and Phosphorus et al, with the Lattice Boltzmann Method (LBM) performed on real pore geometries. The LBM has emerged as a powerful tool for simulating the behaviour of multi-component fluid systems in complex pore networks. We will build a quick response simulation system, which is base on the high resolution GIS figure, using the LBM numerical method.When the start two deferent points at the Meiliang Bay nearby the Wuxi City, it is shown that the pollutants solute can't transport out of the bay to influence the Taihu Lake and the diffusion areas are similar. On the other hand, when the start point at central region of the Taihu Lake, it is found that the pollutants solute covered the almost whole area of the lake and the cyanobacterial bloom with good condition. In the same way, if the cyanobacterial bloom transport in the central area, then it will pollute the whole Taihu Lake. Therefore, when we monitor and deal with the eutrophication substances, we need to focus on the central area of lake.

  2. Lumped parameter, isotopic model simulations of closed-basin lake response to drought in the Pacific Northwest and implications for lake sediment oxygen isotope records.

    NASA Astrophysics Data System (ADS)

    Steinman, B. A.; Rosenmeier, M.; Abbott, M.

    2008-12-01

    The economy of the Pacific Northwest relies heavily on water resources from the drought-prone Columbia River and its tributaries, as well as the many lakes and reservoirs of the region. Proper management of these water resources requires a thorough understanding of local drought histories that extends well beyond the instrumental record of the twentieth century, a time frame too short to capture the full range of drought variability in the Pacific Northwest. Here we present a lumped parameter, mass-balance model that provides insight into the influence of hydroclimatological changes on two small, closed-basin systems located in north- central Washington. Steady state model simulations of lake water oxygen isotope ratios using modern climate and catchment parameter datasets demonstrate a strong sensitivity to both the amount and timing of precipitation, and to changes in summertime relative humidity, particularly at annual and decadal time scales. Model tests also suggest that basin hypsography can have a significant impact on lake water oxygen isotope variations, largely through surface area to volume and consequent evaporative flux to volume ratio changes in response to drought and pluvial sequences. Additional simulations using input parameters derived from both on-site and National Climatic Data Center historical climate datasets accurately approximate three years of continuous lake observations (seasonal water sampling and continuous lake level monitoring) and twentieth century oxygen isotope ratios in sediment core authigenic carbonate recovered from the lakes. Results from these model simulations suggest that small, closed-basin lakes in north-central Washington are highly sensitive to changes in the drought-related climate variables, and that long (8000 year), high resolution records of quantitative changes in precipitation and evaporation are obtainable from sediment cores recovered from water bodies of the Pacific Northwest.

  3. Oncorhynchus nerka population monitoring in the Sawtooth Valley Lakes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teuscher, D.M.; Taki, D.; Ariwite, K.

    1996-05-01

    Critical habitat for endangered Snake River sockeye salmon includes five rearing lakes located in the Sawtooth Valley of central Idaho. Most of the lakes contain either introduced or endemic kokanee populations. Snake River sockeye occur naturally in Redfish Lake, and are being stocked in Redfish and Pettit Lakes. Because kokanee compete with sockeye for limited food resources, understanding population characteristics of both species such as spawn timing, egg-to-fry survival, distribution and abundance are important components of sockeye recovery. This chapter describes some of those characteristics. In 1995, hydroacoustic estimates of O. nerka densities in the Sawtooth Valley Lakes ranged frommore » 57 to 465 fish/ha. Densities were greatest in Pettit followed by Redfish (167), Alturas (95), and Stanley Lakes. O. nerka numbers increased from 1994 values in Pettit and Alturas Lakes, but declined in Redfish and Stanley. Despite a decline in total lake abundance, O. nerka biomass estimates in Redfish Lake increased. Approximately 144,000 kokanee fry recruited to Redfish Lake from Fishhook Creek. O. nerka fry recruitment to Stanley and Alturas lake was 5,000 and 30,000 fry, respectively. Egg-to-fry survival was 14% in Fishhook and 7% in Stanley Lake Creek. In Fishhook Creek, kokanee spawning escapement was estimated using stream surveys and a weir. Escapement estimates were 4,860 from weir counts, and 7,000 from stream surveys. As part of the kokanee reduction program, 385 of the spawning female kokanee were culled. Escapement for Stanley Lake Creek was only 60 fish, a ten fold decrease from 1994. In Alturas Lake, kokanee spawners dropped by 50% to 1,600.« less

  4. Comparison of tire and road wear particle concentrations in sediment for watersheds in France, Japan, and the United States by quantitative pyrolysis GC/MS analysis.

    PubMed

    Unice, Ken M; Kreider, Marisa L; Panko, Julie M

    2013-08-06

    Impacts of surface runoff to aquatic species are an ongoing area of concern. Tire and road wear particles (TRWP) are a constituent of runoff, and determining accurate TRWP concentrations in sediment is necessary in order to evaluate the likelihood that these particles present a risk to the aquatic environment. TRWP consist of approximately equal mass fractions of tire tread rubber and road surface mineral encrustations. Sampling was completed in the Seine (France), Chesapeake (U.S.), and Yodo-Lake Biwa (Japan) watersheds to quantify TRWP in the surficial sediment of watersheds characterized by a wide diversity of population densities and land uses. By using a novel quantitative pyrolysis-GC/MS analysis for rubber polymer, we detected TRWP in 97% of the 149 sediment samples collected. The mean concentrations of TRWP were 4500 (n = 49; range = 62-11 600), 910 (n = 50; range = 50-4400) and 770 (n = 50; range = 26-4600) μg/g d.w. for the characterized portions of the Seine, Chesapeake and Yodo-Lake Biwa watersheds, respectively. A subset of samples from the watersheds (n = 45) was pooled to evaluate TRWP metals, grain size and organic carbon correlations by principal components analysis (PCA), which indicated that four components explain 90% of the variance. The PCA components appeared to correspond to (1) metal alloys possibly from brake wear (primarily Cu, Pb, Zn), (2) crustal minerals (primarily Al, V, Fe), (3) metals mediated by microbial immobilization (primarily Co, Mn, Fe with TOC), and (4) TRWP and other particulate deposition (primarily TRWP with grain size and TOC). This study should provide useful information for assessing potential aquatic effects related to tire service life.

  5. A 900-year pollen-inferred temperature and effective moisture record from varved Lake Mina, west-central Minnesota, USA

    NASA Astrophysics Data System (ADS)

    St. Jacques, Jeannine-Marie; Cumming, Brian F.; Smol, John P.

    2008-04-01

    Drought is endemic to the North American Great Plains, causing severe economic consequences. However, instrumental climate data only exist from ca AD 1890, and limited tree-ring, paleolimnological, archeological and eolian records document the last two millennia. To address this lack of monitoring and paleoclimatic data, the pollen preserved in the varved sediments of Lake Mina, Minnesota, on the northeastern border of the Great Plains, were analyzed. May and February mean monthly temperatures and "annual precipitation minus potential evapotranspiration" were reconstructed at a 4-year resolution using a pre-settlement pollen-climate calibration set. The period of the so-called Little Ice Age (LIA) (AD 1500-1870) was colder than the Medieval Climate Anomaly (MCA) (AD 1100-1500) in west-central Minnesota. Winter temperatures in the LIA declined more than summer ones. The pollen record suggests that the LIA occurred in three phases: an initial cold phase from AD 1505 to AD 1575, a warmer phase, and then a very cold phase from AD 1625 to AD 1775. There were severe droughts detected in the Lake Mina record from AD 1660 to AD 1710 and AD 1300 to AD 1400, suggesting that high-resolution pollen records can detect events previously defined from the tree-ring records. This latter century-scale drought is concurrent with the widely reported "AD 1250-1400 mega-drought", which exceeds the severity of 20th century droughts.

  6. Morphology, volcanism, and mass wasting in Crater Lake, Oregon

    USGS Publications Warehouse

    Bacon, C.R.; Gardner, J.V.; Mayer, L.A.; Buktenica, M.W.; Dartnell, P.; Ramsey, D.W.; Robinson, J.E.

    2002-01-01

    Crater Lake was surveyed nearly to its shoreline by high-resolution multibeam echo sounding in order to define its geologic history and provide an accurate base map for research and monitoring surveys. The bathymetry and acoustic backscatter reveal the character of landforms and lead to a chronology for the concurrent filling of the lake and volcanism within the ca. 7700 calibrated yr B.P. caldera. The andesitic Wizard Island and central-plattform volcanoes are composed of sequences of lava deltas that record former lake levels and demonstrate simultaneous activity at the two vents. Wizard Island eruptions ceased when the lake was ~80 m lower than at present. Lava streams from prominent channels on the surface of the central platform descended to feed extensive subaqueous flow fields on the caldera floor. The Wizard Island and central-platform volcanoes, andesitic Merriam Cone, and a newly discovered probable lava flow on the eastern floor of the lake apparently date from within a few hundred years of caldera collapse, whereas a small rhydacite dome was emplaced on the flank of Wizard Island at ca. 4800 cal. yr B.P. Bedrock outcrops on the submerged caldera walls are shown in detail and, in some cases, can be correlated with exposed geologic units of Mount Mazama. Fragmental debris making up the walls elsewhere consists of narrow talus cones forming a dendritic pattern that leads to fewer, wider ridges downslope. Hummocky topography and scattered blocks up to ~280 m long below many of the embayments in the caldera wall mark debris-avalanche deposits that probably formed in single events and commonly are affected by secondary failures. The flat-floored, deep basins contain relatively fine-grained sediment transported from the debris aprons by sheet-flow turbidity currents. Crater Lake apparently filled rapidly (ca. 400-750 yr) until reaching a permeable layer above glaciated lava identified by the new survey in the northeast caldera wall at ~1845 m elevation

  7. Water quality of Somerville Lake, south-central Texas

    USGS Publications Warehouse

    McPherson, Emma; Mendieta, H.B.

    1983-01-01

    The concentration of dissolved solids ranged from 139 to 292 milligrams per liter and averaged about 220 milligrams per liter. Dissolved chloride concentrations ranged from 20 to 68 milligrams per liter and averaged 43 milligrams per liter. Dissolved sulfate concentrations ranged from 30 to 130 milligrams per liter and averaged 63 milligrams per liter. The total hardness of the water ranged from 75 to 140 milligrams per liter, expressed as calcium carbonate, placing it in the moderately hard to hard (61 to 180 milligrams per liter) classification. The concentrations of principal dissolved constituents indicate that Somerville Lake is an excellent source of water for municipal, industrial, or agricultural use.

  8. Evidence of Lake Trout reproduction at Lake Michigan's mid-lake reef complex

    USGS Publications Warehouse

    Janssen, J.; Jude, D.J.; Edsall, T.A.; Paddock, R.W.; Wattrus, N.; Toneys, M.; McKee, P.

    2006-01-01

    The Mid-Lake Reef Complex (MLRC), a large area of deep (> 40 m) reefs, was a major site where indigenous lake trout (Salvelinus namaycush) in Lake Michigan aggregated during spawning. As part of an effort to restore Lake Michigan's lake trout, which were extirpated in the 1950s, yearling lake trout have been released over the MLRC since the mid-1980s and fall gill net censuses began to show large numbers of lake trout in spawning condition beginning about 1999. We report the first evidence of viable egg deposition and successful lake trout fry production at these deep reefs. Because the area's existing bathymetry and habitat were too poorly known for a priori selection of sampling sites, we used hydroacoustics to locate concentrations of large fish in the fall; fish were congregating around slopes and ridges. Subsequent observations via unmanned submersible confirmed the large fish to be lake trout. Our technological objectives were driven by biological objectives of locating where lake trout spawn, where lake trout fry were produced, and what fishes ate lake trout eggs and fry. The unmanned submersibles were equipped with a suction sampler and electroshocker to sample eggs deposited on the reef, draw out and occasionally catch emergent fry, and collect egg predators (slimy sculpin Cottus cognatus). We observed slimy sculpin to eat unusually high numbers of lake trout eggs. Our qualitative approaches are a first step toward quantitative assessments of the importance of lake trout spawning on the MLRC.

  9. A mass balance mercury budget for a mine-dominated lake: Clear Lake, California

    USGS Publications Warehouse

    Suchanek, T.H.; Cooke, J.; Keller, K.; Jorgensen, S.; Richerson, P.J.; Eagles-Smith, Collin A.; Harner, E.J.; Adam, D.P.

    2009-01-01

    The Sulphur Bank Mercury Mine (SBMM), active intermittently from 1873–1957 and now a USEPA Superfund site, was previously estimated to have contributed at least 100 metric tons (105 kg) of mercury (Hg) into the Clear Lake aquatic ecosystem. We have confirmed this minimum estimate. To better quantify the contribution of the mine in relation to other sources of Hg loading into Clear Lake and provide data that might help reduce that loading, we analyzed Inputs and Outputs of Hg to Clear Lake and Storage of Hg in lakebed sediments using a mass balance approach. We evaluated Inputs from (1) wet and dry atmospheric deposition from both global/regional and local sources, (2) watershed tributaries, (3) groundwater inflows, (4) lakebed springs and (5) the mine. Outputs were quantified from (1) efflux (volatilization) of Hg from the lake surface to the atmosphere, (2) municipal and agricultural water diversions, (3) losses from out-flowing drainage of Cache Creek that feeds into the California Central Valley and (4) biotic Hg removal by humans and wildlife. Storage estimates include (1) sediment burial from historic and prehistoric periods (over the past 150–3,000 years) from sediment cores to ca. 2.5m depth dated using dichloro diphenyl dichloroethane (DDD), 210Pb and 14C and (2) recent Hg deposition in surficial sediments. Surficial sediments collected in October 2003 (11 years after mine site remediation) indicate no reduction (but a possible increase) in sediment Hg concentrations over that time and suggest that remediation has not significantly reduced overall Hg loading to the lake. Currently, the mine is believed to contribute ca. 322–331 kg of Hg annually to Clear Lake, which represents ca. 86–99% of the total Hg loading to the lake. We estimate that natural sedimentation would cover the existing contaminated sediments within ca. 150–300 years.

  10. Avian use of Sheyenne Lake and associated habitats in central North Dakota

    USGS Publications Warehouse

    Faanes, Craig A.

    1982-01-01

    A study of avian use of various habitats was conducted in the Sheyenne Lake region of central North Dakota during April-June 1980. Population counts of birds were made in wetlands of various classes, prairie thickets, upland native prairie, shelterbelts, and cropland. About 22,000 breeding bird pairs including 92 species that nested occupied the area. Population means for most species were equal to or greater than statewide means. Red-winged blackbird (Agelaius phoeniceus), yellow-headed blackbird (Xanthocephalus xanthocephalus), mourning dove (Zenaida macroura), and blue-winged teal (Anas discors) were the most numerous species, and made up 32.9% of the total population . Highest densities of breeding birds occurred in shelterbelts, semipermanent wetlands, and prairie thickets. Lowest densities occurred in upland native prairie and cropland. The study area was used by 49.6% of the total avifauna of the State, and 51% of the breeding avifauna of North Dakota probably nested in the study area. The diversity of birds using the area was unusual in that such a large number of species occupied a relatively small area. The close interspersion of many native habitats, several of which are unique in North Dakota, probably accounted for this diversity. Data on dates of occurrence, nesting records, and habitat use are presented for the 175 species recorded in 1980. Observations of significance by refuge staff are also provided.

  11. InSAR detection of aquifer recovery: Case studies of Koehn Lake (central California) and Lone Tree Gold Mine (Basin and Range)

    NASA Astrophysics Data System (ADS)

    Wdowinski, S.; Greene, F.; Amelung, F.

    2013-12-01

    Anthropogenic intervention in groundwater flow and aquifer storage often results in vertical movements of Earth's surface, which are well detected by InSAR observations. Most anthropogenic intervention occurs due to groundwater extraction for both agriculture and human consumption and results in land subsidence. However in some cases, ending anthropogenic intervention can lead to aquifer recovery and, consequently, surface uplift. In this study we present two such cases of aquifer recovery. The first case is the aquifer beneath Koehn Lake in Central California, which was overused to meet agricultural demands until the 1990's. The second case is the Lone Tree Gold Mine in Nevada that during active mining in the 1991-2006 groundwater pumping disrupted the aquifer and cause subsidence. But after mining ceased, groundwater flow was recovered and resulted in uplift. In both cases we studied the surface uplift using InSAR time series observations. We conduct an ERS and Envisat InSAR survey over Koehn Lake in California and Lone Tree Gold Mine in Nevada between 1992 and 2010. We followed the SBAS algorithm to generate a time-series of ground displacements and average velocities of pixels, which remain coherent through time in the SAR dataset. A total of 100 and 80 combined ERS and Envisat SAR dates are inverted for Koehn Lake and Lone Tree Gold Mine respectively. Results for the Koehn Lake area indicate a rapid uplift of about 3.5 mm/yr between 1992-2000 and a slower uplift rate of 1.6 mm/yr between 2000-2004, suggesting a decrease in the recovery process. The observed uplift correlates well with groundwater level increase in the Koehn Lake area. Results for the Lone Tree Gold Mine show a constant subsidence (~ 1 cm/yr) due to groundwater extraction between 1992-2006, but uplift of ~1 cm/yr since the beginning of 2007. In both case studies, InSAR observations reveal that the aquifer recovery is accompanied by surface uplift. We plan to use the InSAR observations and the

  12. 77 FR 41686 - Safety Zone; Sheffield Lake Fireworks, Lake Erie, Sheffield Lake, OH

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-16

    ...-AA00 Safety Zone; Sheffield Lake Fireworks, Lake Erie, Sheffield Lake, OH AGENCY: Coast Guard, DHS. ACTION: Temporary final rule. SUMMARY: The Coast Guard is establishing a temporary safety zone on Lake Erie, Sheffield Lake, OH. This safety zone is intended to restrict vessels from a portion of Lake Erie...

  13. Occurrence of methylmercury in Lake Valencia, Venezuela

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaffe, R.; Cai, Y.; West-Thomas, J.

    1997-12-31

    The presence of mercury in the environment has received renewed attention during recent years. This is in part due to the known human health and ecological effects of the highly toxic organomercury compounds, and to the fact that novel and improved analytical techniques such as atomic fluorescence spectroscopy (AFS) and capillary chromatography with AFS detection, have enhanced significantly the detection of trace amounts of mercury and organo mercurials in environmental samples. Such techniques have allowed for a better understanding of the biogeochemical cycle of mercury in the aquatic environment. This paper reports on the presence of methylmercury in the watermore » column and sediments of a hyper-eutrophic lake. Lake Valencia is a freshwater lake located in North-Central Venezuela`s Aragua Valley. The lake`s surface area covers approximately 350 km{sup 2}, with a mean depth of 19 m and a maximum depth of 41 m. Due to the discharge of waste waters from the cities of Maracay and Valencia, as well as from other smaller villages and agricultural areas in its watershed, Lake Valencia has become hyper-eutrophic. The population of phytoplankton, particularly of blue-green algae, has increased dramatically during the last two decades resulting in anoxic conditions in the lower part of the water column during most of the year. In addition, concentrations of anthropogenic chemicals, including heavy metals, have increased in the Lake during the last four decades. 15 refs., 2 figs.« less

  14. Quantifying the impact of bathymetric changes on the hydrological regimes in a large floodplain lake: Poyang Lake

    NASA Astrophysics Data System (ADS)

    Yao, Jing; Zhang, Qi; Ye, Xuchun; Zhang, Dan; Bai, Peng

    2018-06-01

    The hydrological regime of a lake is largely dependent on its bathymetry. A dramatic water level reduction has occurred in Poyang Lake in recent years, coinciding with significant bed erosion. Few studies have focused on the influence of bathymetric changes on the hydrological regime in such a complex river-lake floodplain system. This study combined hydrological data and a physically based hydrodynamic model to quantify the influence of the bathymetric changes (1998-2010) on the water level spatiotemporal distribution in Poyang Lake, based on a dry year (2006), a wet year (2010) and an average year (2000-2010). The following conclusions can be drawn from the results of this study: (1) The bed erosion of the northern outlet channel averaged 3 m, resulting in a decrease in the water level by 1.2-2 m in the northern channels (the most significantly influenced areas) and approximately 0.3 m in the central lake areas during low-level periods. The water levels below 16 m and 14 m were significantly affected during the rising period and recession period, respectively. The water level reduction was enhanced due to lower water levels. (2) The water surface profiles adjusted, and the rising and recession rates of the water level increased by 0.5-3.1 cm/d at the lake outlet. The bathymetric influence extended across the entire lake due to the emptying effect, resulting in a change in the water level distribution. The average annual outflow increased by 6.8%. (3) The bathymetric changes contributed approximately 14.4% to the extreme low water level in autumn 2006 and enhanced the drought in the dry season. This study quantified the impact of the bathymetric changes on the lake water levels, thereby providing a better understanding of the potential effects of continued sand mining operations and providing scientific explanations for the considerable variations in the hydrological regimes of Poyang Lake. Moreover, this study attempts to provide a reference for the assessment of

  15. A proposed aquatic plant community biotic index for Wisconsin lakes

    USGS Publications Warehouse

    Nichols, S.; Weber, S.; Shaw, B.

    2000-01-01

    The Aquatic Macrophyte Community Index (AMCI) is a multipurpose tool developed to assess the biological quality of aquatic plant communities in lakes. It can be used to specifically analyze aquatic plant communities or as part of a multimetric system to assess overall lake quality for regulatory, planning, management, educational, or research purposes. The components of the index are maximum depth of plant growth; percentage of the littoral zone vegetated; Simpson's diversity index; the relative frequencies of submersed, sensitive, and exotic species; and taxa number. Each parameter was scaled based on data distributions from a statewide database, and scaled values were totaled for the AMCI value. AMCI values were grouped and tested by ecoregion and lake type (natural lakes and impoundments) to define quality on a regional basis. This analysis suggested that aquatic plant communities are divided into four groups: (1) Northern Lakes and Forests lakes and impoundments, (2) North-Central Hardwood Forests lakes and impoundments, (3) Southeastern Wisconsin Till Plains lakes, and (4) Southeastern Wisconsin Till Plains impoundments, Driftless Area Lakes, and Mississippi River Backwater lakes. AMCI values decline from group 1 to group 4 and reflect general water quality and human use trends in Wisconsin. The upper quartile of AMCI values in any region are the highest quality or benchmark plant communities. The interquartile range consists of normally impacted communities for the region and the lower quartile contains severely impacted or degraded plant communities. When AMCI values were applied to case studies, the values reflected known impacts to the lakes. However, quality criteria cannot be used uncritically, especially in lakes that initially have low nutrient levels.The Aquatic Macrophyte Community Index (AMCI) is a multipurpose tool developed to assess the biological quality of aquatic plant communities in lakes. It can be used to specifically analyze aquatic plant

  16. Lake trout rehabilitation in Lake Ontario

    USGS Publications Warehouse

    Elrod, Joseph H.; O'Gorman, Robert; Schneider, Clifford P.; Eckert, Thomas H.; Schaner, Ted; Bowlby, James N.; Schleen, Larry P.

    1995-01-01

    Attempts to maintain the native lake trout (Salvelinus namaycush) population in Lake Ontario by stocking fry failed and the species was extirpated by the 1950s. Hatchery fish stocked in the 1960s did not live to maturity because of sea lamprey (Petromyzon marinus) predation and incidental commercial harvest. Suppression of sea lampreys began with larvicide treatments of Lake Ontario tributaries in 1971 and was enhanced when the tributaries of Oneida Lake and Lake Erie were treated in the 1980s. Annual stocking of hatchery fish was resumed with the 1972 year class and peaked at about 1.8 million yearlings and 0.3 million fingerlings from the 1985–1990 year classes. Survival of stocked yearlings declined over 50% in the 1980 s and was negatively correlated with the abundance of lake trout > 550 mm long (r = −0.91, P < 0.01, n = 12). A slot length limit imposed by the State of New York for the 1988 fishing season reduced angler harvest. Angler harvest in Canadian waters was 3 times higher in eastern Lake Ontario than in western Lake Ontario. For the 1977–1984 year classes, mean annual survival rate of lake trout age 6 and older was 0.45 (range: 0.35–0.56). In U.S. waters during 1985–1992, the total number of lake trout harvested by anglers was about 2.4 times greater than that killed by sea lampreys. The number of unmarked lake trout < 250 mm long in trawl catches in 1978–1992 was not different from that expected due to loss of marks and failure to apply marks at the hatchery, and suggested that recruitment of naturally-produced fish was nil. However, many of the obstacles which may have impeded lake trout rehabilitation in Lake Ontario during the 1980s are slowly being removed, and there are signs of a general ecosystem recovery. Significant recruitment of naturally produced lake trout by the year 2000, one interim objective of the rehabilitation plan for the Lake, may be achieved.

  17. Lake level variability in Silver Lake, Michigan: a response to fluctuations in lake levels of Lake Michigan

    USGS Publications Warehouse

    Fisher, Timothy G.; Loope, Walter L.

    2004-01-01

    Sediment from Silver Lake, Michigan, can be used to constrain the timing and elevation of Lake Michigan during the Nipissing transgression. Silver Lake is separated from Lake Michigan by a barrier/dune complex and the Nipissing, Calumet, and Glenwood shorelines of Lake Michigan are expressed landward of this barrier. Two Vibracores were taken from the lake in February 2000 and contain pebbly sand, sand, buried soils, marl, peat, and sandy muck. It is suggested here that fluctuations in the level of Lake Michigan are reflected in Silver Lake since the Chippewa low phase, and possibly at the end of the Algonquin phase. An age of 12,490 B.P. (10,460±50 14C yrs B.P.) on wood from a buried Entisol may record the falling Algonquin phase as the North Bay outlet opened. A local perched water table is indicated by marl deposited before 7,800 B.P. and peat between 7,760-7,000 B.P. when Lake Michigan was at the low elevation Chippewa phase. Continued deepening of the lake is recorded by the transition from peat to sandy muck at 7,000 B.P. in the deeper core, and with the drowning of an Inceptisol nearly 3 m higher at 6,410 B.P. in the shallower core. A rising groundwater table responding to a rising Lake Michigan base level during the Nipissing transgression, rather than a response to mid-Holocene climate change, explains deepening of Silver Lake. Sandy muck was deposited continually in Silver Lake between Nipissing and modern time. Sand lenses within the muck are presumed to be eolian in origin, derived from sand dunes advancing into the lake on the western side of the basin.

  18. Microbial ecology of soda lakes: investigating sulfur and nitrogen cycling at Mono Lake, CA, USA

    NASA Astrophysics Data System (ADS)

    Fairbanks, D.; Phillips, A. A.; Wells, M.; Bao, R.; Fullerton, K. M.; Stamps, B. W.; Speth, D. R.; Johnson, H.; Sessions, A. L.

    2017-12-01

    suggests thiosulfate oxidation may be coupled to nitrate reduction despite the extremely low level of nitrate in Mono Lake. Our results illustrate the centrality of living organisms in both shaping and responding to geochemical cycles, as well as future directions for exploring coupled biogeochemical cycles in Mono Lake.

  19. Seismic investigations of ancient Lake Ohrid (Macedonia/Albania): a pre-site survey for the SCOPSCO ICDP-drilling campaign

    NASA Astrophysics Data System (ADS)

    Lindhorst, K.; Krastel, S.; Schwenk, T.; Kurschat, S.; Daut, G.; Wessel, M.; Wagner, B.

    2009-04-01

    Lake Ohrid (Macedonia/Albania) is probably the oldest lake in Europe (2-5 Ma), and has been found as an important archive to study the sedimentary evolution of a graben system over several million years. Lake Ohrid has a length of 30 km (N-S) and a width of 15 km (W-E) and covers an area of 360 sqkm. Two major mountain chains surround the lake, on the west side the Mocra Mountains (app. 1500 m) and on the east side the Galicica Mountain (app. 2250 m). With more than 210 endemic species described, the lake is a unique aquatic ecosystem that is of worldwide importance. An international group of scientists has recently submitted a full drilling proposal entitled SCOPSCO (Scientific Collaboration On Past Speciation Conditions in Lake Ohrid) to ICDP in order to (i) to obtain more precise information about the age and origin of the lake, (ii) to unravel the seismotectonic history of the lake area including effects of major earthquakes and associated mass wasting events, (iii) to obtain a continuous record containing information on volcanic activities and climate changes in the central northern Mediterranean region, and (iv) to better understand the impact of major geological/environmental events on general evolutionary patterns and shaping an extraordinary degree of endemic biodiversity as a matter of global significance. The lake was the target of several geophysical pre-site surveys starting with a first shallow seismic campaign in spring 2004 using a high resolution parametric sediment echosounder (INNOMAR SES-96 light). Airgun multichannel seismic data were collected during two surveys in 2007 and 2008, resulting in a dense grid of seismic lines over the entire lake. In total 650 km of shallow seismic lines 400 km of airgun multichannel seismics demonstrates the potential of Lake Ohrid as target for ICDP. Seismic profiles show that the lake can be divided into slope areas and a large central basin. The slope areas are characterized by a dense net of faults

  20. Genetic structure of lake whitefish, Coregonus clupeaformis, populations in the northern main basin of Lake Huron

    USGS Publications Warehouse

    Stott, Wendylee; Ebener, Mark P.; Mohr, Lloyd; Schaeffer, Jeff; Roseman, Edward F.; Harford, William J.; Johnson, James E.; Fietsch, Cherie-Lee

    2012-01-01

    Genetic analysis of spawning lake whitefish (Coregonus clupeaformis) from six sites in the main basin of Lake Huron was conducted to determine population structure. Samples from fisheryindependent assessment surveys in the northwest main basin were analyzed to determine the relative contributions of lake whitefish genetic populations. Genetic population structure was identified using data from seven microsatellite DNA loci. One population was identified at Manitoulin Island, one to two were observed in the east-central main basin (Fishing Island and Douglas Point), and one to two populations were found in the northwest (Thunder Bay and Duncan Bay). The genetic identity of collections from Duncan Bay and Thunder Bay was not consistent among methods used to analyze population structure. Low genetic distances suggested that they comprised one population, but genic differences indicated that they may constitute separate populations. Simulated data indicated that the genetic origins of samples from a mixed-fishery could be accurately identified, but accuracy could be improved by incorporating additional microsatellite loci. Mixture analysis and individual assignment tests performed on mixed-stock samples collected from the western main basin suggested that genetic populations from the east-central main basin contributed less than those from the western main basin and that the proportional contribution of each baseline population was similar in each assessment sample. Analysis of additional microsatellite DNA loci may be useful to help improve the precision of the estimates, thus increasing our ability to manage and protect this valuable resource.

  1. Increasing heavy metals in the background atmosphere of central North China since the 1980s: Evidence from a 200-year lake sediment record

    NASA Astrophysics Data System (ADS)

    Wan, Dejun; Song, Lei; Yang, Jinsong; Jin, Zhangdong; Zhan, Changlin; Mao, Xin; Liu, Dongwei; Shao, Yue

    2016-08-01

    Long-term trends of atmospheric compositions are significant for assessing the influence of human activities on the atmosphere and protecting the atmospheric environment. In this study, based on heavy metal concentrations and Pb isotope ratios in a well-dated sediment core from a remote alpine lake in central North China, anthropogenic fluxes of As, Cd, Sb, and Pb were reconstructed and heavy metal evolutions in the atmosphere were revealed in the last 200 years. The heavy metals in the atmosphere were generally natural origins before 1980 A.D. Since the 1980s they began to increase gradually, but they increased the most in the 1990s resulting from rapid developments of rough and high energy-consuming industries in North China. After entering the 21st century the industries still developed rapidly, but the atmospheric Pb ceased increase and the As and Sb even decreased in the 2000s due to (1) phasing out of leaded gasoline and (2) implementing stricter industrial emission standards in 2000 A.D. in China. However, in the 2000s the atmospheric heavy metals still kept at a relatively high level and even likely began to increase again in the 2010s. Considering the lake relatively remote and seldom affected by local human activities, the results likely reflect heavy metal evolutions in the regional background atmosphere of central North China at the annual/decadal timescale in the last 200 years.

  2. A 27 ka paleoenvironmental lake sediment record from Taro Co, central Tibetan Plateau: implications for the interplay between monsoon and the Westerlies

    NASA Astrophysics Data System (ADS)

    Wang, J.; Ma, Q.; Huang, L.; Ju, J.; Guo, Y.; Lin, X.; Li, Y.; Zhu, L.

    2017-12-01

    The climate of Tibetan Plateau (TP) is mainly influenced by the Indian Ocean Summer Monsoon (IOSM) and the Westerlies. The interaction of these two air masses is therefore a crucial scientific issue to understand how they impact the climate in this area, especially in the geological times. However, constrained by the available archives, researches on this topic are still very few in the hinterland of the TP, especially covering the Last Glacial Maximum (LGM) period. Here we present a new lake sediment record retrieved from Taro Co covering the last 27 ka to elucidate how the IOSM and the Westerlies interact and the possible mechanisms. Taro Co (486 km2, Dmax: 132m, 4565 m a.s.l., currently closed), located on the central TP, is a fresh lake with the major supply from glaciers. Two parallel piston cores as well as several gravity cores were retrieved from the deepest parts. These cores were correlated based on high resolution XRF scanning and a continuous 1069 cm-long core was finally integrated. Chronology was determined by 210Pb, 137Cs and AMS 14C measurements. Multidiscipline analyses including grain size, total organic carbon (TOC), total nitrogen, diatom, ostracod, pollen and n-alkanes were accomplished to reconstruct paleoenvironmental changes. The lake level of Taro Co was low since 27 cal ka BP indicated by very coarse materials and diatom assemblages with gradually increased temperature and salinity (TOC and carbonate getting higher). The terrestrial water input decreased continuously reflected by such elements as Si, Ti, Fe, K. It is likely that there was a sedimentation gap between 961-954cm, corresponding to 23.4 to 18.6 cal ka BP probably demonstrated Taro Co was very shallow at that period. The first prominent abrupt change of most proxies was observed at 14.7 cal ka BP showing a great lake deepening which likely indicated an enhancement of IOSM. There were several spells with abrupt changes of cold/warm stages before the Holocene and the Younger Dryas

  3. Comparative results of using different methods for discovery of microorganisms in very ancient layers of the Central Antartic Glacier above the Lake Vostok

    NASA Astrophysics Data System (ADS)

    Abyzov, S.; Hoover, R.; Imura, S.; Mitskevich, I.; Naganuma, T.; Poglazova, M.; Ivanov, M.

    The ice sheet of the Central Antarctic is considered by world-wide scientific community as a model for elaboration of different methods for search of the life outside of the Earth. This problem became especially significant in connection with discovery the under glacial lake in the vicinity of the Russian Antarctic Station Vostok. This lake, later named "Lake Vostok" is considered by many scientists as an analog ice covered seas of Jupiter's satellite Europa. According to the opinion of many researchers there is great possibility of presence in this lake of relict forms of microorganisms well preserved since Ice Age period. The investigations through out the thickness of the ice sheet above the Lake Vostok shows the presence of microorganisms belonging to well-known different taxonomic groups even in the very ancient horizons close to floor of the glacier. Different methods were used for search of microorganisms which were rarely found in the deep ancient layers of the ice sheet. The method of aseptic sampling from the ice cores and results of control sterile conditions in all stages of conducting of these investigations are described in detail in previous reports. Primary investigations used try usual methods of sowing samples onto the different nutrient media permitted to obtain only a few part of the microorganisms which grow on the media used. The possibility of isolation of obtained organisms for further investigations by using modern methods including DNA-analysis appears to be preferential importance of this method. In the further investigations of the very ancient layers of the ice sheet by radioisotopic, luminescence and scanning electron microscopy methods of different modifications, were determined as quantity of microorganisms distributed on its different horizons, as well as the morphological diversity of obtained cells of microorganisms. Experience of many years standing investigations of micro flora in the very ancient strata of the Antarctic ice

  4. Integrating the Holocene tephrostratigraphy for East Asia using a high-resolution cryptotephra study from Lake Suigetsu (SG14 core), central Japan

    NASA Astrophysics Data System (ADS)

    McLean, Danielle; Albert, Paul G.; Nakagawa, Takeshi; Suzuki, Takehiko; Staff, Richard A.; Yamada, Keitaro; Kitaba, Ikuko; Haraguchi, Tsuyoshi; Kitagawa, Junko; Smith, Victoria C.; SG14 Project Members

    2018-03-01

    Tephra (volcanic ash) layers have the potential to synchronise disparate palaeoenvironmental archives on regional to hemispheric scales. Highly productive arc regions, like those in East Asia, offer a considerable number of widespread isochrons, but before records can be confidently correlated using these layers, a refined and integrated framework of these eruptive events is required. Here we present the first high-resolution Holocene cryptotephra study in East Asia, using the Lake Suigetsu sedimentary archive in central Japan. The Holocene tephrostratigraphy has been extended from four to twenty ash layers using cryptotephra extraction techniques, which integrates the deposits from explosive eruptions from North Korea/China, South Korea and along the Japanese arc. This Lake Suigetsu tephrostratigraphy is now the most comprehensive record of East Asian volcanism, and the linchpin site for correlating sequences across this region. Major element glass geochemical compositions are presented for the tephra layers in the sequence, which have been compared to proximal datasets to correlate them to their volcanic source and specific eruptions. This study has significantly extended the ash dispersal of many key Holocene marker layers, and has identified the first distal occurrence of isochrons from Ulleungdo and Changbaishan volcanoes. Utilising the high-precision Lake Suigetsu chronology, we are able to provide constrained eruption ages for the tephra layers, which can be transferred into other site-specific age models containing these markers. This new framework indicates that several isochrons stratigraphically bracket abrupt climate intervals in Japan, and could be used to precisely assess the regional and hemispheric synchronicity of these events.

  5. Disentangling Holocene lake level changes with a transect of lake sediment cores - a case study from Lake Fürstenseer See, northeastern Germany

    NASA Astrophysics Data System (ADS)

    Dietze, Elisabeth; Slowinski, Michal; Kienel, Ulrike; Zawiska, Izabela; Brauer, Achim

    2014-05-01

    Deciphering the main processes contributing to lake and landscape evolution in the northern central European lowlands on different temporal scales is one of the main targets of the Virtual Institute of Integrated Climate and Landscape Evolution Analysis (ICLEA) of the Helmholtz Association. In the context of future climatic changes especially the hydrological system is a vulnerable landscape component that showed considerably large changes in the recent past. The analysis of lake sediment archives can help to infer long-term dynamics of regional lake and groundwater levels, although available proxy information needs to be studied carefully, as water level changes are only one trigger. Lake Fürstenseer See (53°19'N, 13°12'E, lake level in 2009: 63.3 m a.s.l.) formed after the retreat of the Weichselian ice sheet in a subglacial channel in the direct forefront of the Pommerian ice margin. The ~2 km2 large lake (zmax = 24.5 m) has a (sub-) surficial catchment area of ~(20) 40 km2 including other smaller lakes and peatlands. In the past, the lake system was artificially dammed for the operation of water mills. Located within the well-drained sandur substrate, the lake levels vary with groundwater levels in response to hydrological and catchment-related groundwater recharge. Detrital matter input from fluvial activity can be excluded. Lake sediment cores at four sites along a transect down to 23 m water depth show distinct sediment facies patterns. Stratigraphic descriptions and non-destructive continuous micro-XRF scanning allowed the differentiation of the main sediment facies, which were microscopically described using thin sections. Quantification of total organic and inorganic matter (TOC, TIC, C/N-composition) and discontinuous macrorest, diatom and Cladocera analysis helped to approach the sedimentation history. Stable isotopes of (delta-180, delta-13C) were used for characterization of carbonates. A high amount of non-reworked terrestrial plant remains from

  6. Small lakes in big landscape: Multi-scale drivers of littoral ecosystem in alpine lakes.

    PubMed

    Zaharescu, Dragos G; Burghelea, Carmen I; Hooda, Peter S; Lester, Richard N; Palanca-Soler, Antonio

    2016-05-01

    In low nutrient alpine lakes, the littoral zone is the most productive part of the ecosystem, and it is a biodiversity hotspot. It is not entirely clear how the scale and physical heterogeneity of surrounding catchment, its ecological composition, and larger landscape gradients work together to sustain littoral communities. A total of 113 alpine lakes from the central Pyrenees were surveyed to evaluate the functional connectivity between littoral zoobenthos and landscape physical and ecological elements at geographical, catchment and local scales, and to ascertain how they affect the formation of littoral communities. At each lake, the zoobenthic composition was assessed together with geolocation, catchment hydrodynamics, geomorphology and topography, riparian vegetation composition, the presence of trout and frogs, water pH and conductivity. Multidimensional fuzzy set models integrating benthic biota and environmental variables revealed that at geographical scale, longitude unexpectedly surpassed altitude and latitude in its effect on littoral ecosystem. This reflects a sharp transition between Atlantic and Mediterranean climates and suggests a potentially high horizontal vulnerability to climate change. Topography (controlling catchment type, snow coverage and lakes connectivity) was the most influential catchment-scale driver, followed by hydrodynamics (waterbody size, type and volume of inflow/outflow). Locally, riparian plant composition significantly related to littoral community structure, richness and diversity. These variables, directly and indirectly, create habitats for aquatic and terrestrial stages of invertebrates, and control nutrient and water cycles. Three benthic associations characterised distinct lakes. Vertebrate predation, water conductivity and pH had no major influence on littoral taxa. This work provides exhaustive information from relatively pristine sites, and unveils a strong connection between littoral ecosystem and catchment

  7. Predicting water-surface fluctuation of continental lakes: A RS and GIS based approach in Central Mexico

    USGS Publications Warehouse

    Mendoza, M.E.; Bocco, G.; Bravo, M.; Lopez, Granados E.; Osterkamp, W.R.

    2006-01-01

    Changes in the water-surface area occupied by the Cuitzeo Lake, Mexico, during the 1974-2001 period are analysed in this study. The research is based on remote sensing and geographic information techniques, as well as statistical analysis. High-resolution satellite image data were used to analyse the 1974-2000 period, and very low-resolution satellite image data were used for the 1997-2001 period. The long-term analysis (1974-2000) indicated that there were temporal changes in the surface area of the Cuitzeo Lake and that these changes were related to precipitation and temperatures that occurred in the previous year. Short-term monitoring (1997-2001) showed that the Cuitzeo Lake surface is lowering. Field observations demonstrated also that yearly desiccation is recurrent, particularly, in the western section of the lake. Results suggested that this behaviour was probably due to a drought period in the basin that began in the mid 1990s. Regression models constructed from long-term data showed that fluctuations of lake level can be estimated by monthly mean precipitation and temperatures of the previous year. ?? Springer Science + Business Media, Inc. 2006.

  8. Forecasting cyanobacteria dominance in Canadian temperate lakes.

    PubMed

    Persaud, Anurani D; Paterson, Andrew M; Dillon, Peter J; Winter, Jennifer G; Palmer, Michelle; Somers, Keith M

    2015-03-15

    Predictive models based on broad scale, spatial surveys typically identify nutrients and climate as the most important predictors of cyanobacteria abundance; however these models generally have low predictive power because at smaller geographic scales numerous other factors may be equally or more important. At the lake level, for example, the ability to forecast cyanobacteria dominance is of tremendous value to lake managers as they can use such models to communicate exposure risks associated with recreational and drinking water use, and possible exposure to algal toxins, in advance of bloom occurrence. We used detailed algal, limnological and meteorological data from two temperate lakes in south-central Ontario, Canada to determine the factors that are closely linked to cyanobacteria dominance, and to develop easy to use models to forecast cyanobacteria biovolume. For Brandy Lake (BL), the strongest and most parsimonious model for forecasting % cyanobacteria biovolume (% CB) included water column stability, hypolimnetic TP, and % cyanobacteria biovolume two weeks prior. For Three Mile Lake (TML), the best model for forecasting % CB included water column stability, hypolimnetic TP concentration, and 7-d mean wind speed. The models for forecasting % CB in BL and TML are fundamentally different in their lag periods (BL = lag 1 model and TML = lag 2 model) and in some predictor variables despite the close proximity of the study lakes. We speculate that three main factors (nutrient concentrations, water transparency and lake morphometry) may have contributed to differences in the models developed, and may account for variation observed in models derived from large spatial surveys. Our results illustrate that while forecast models can be developed to determine when cyanobacteria will dominate within two temperate lakes, the models require detailed, lake-specific calibration to be effective as risk-management tools. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Local to regional scale industrial heavy metal pollution recorded in sediments of large freshwater lakes in central Europe (lakes Geneva and Lucerne) over the last centuries.

    PubMed

    Thevenon, Florian; Graham, Neil D; Chiaradia, Massimo; Arpagaus, Philippe; Wildi, Walter; Poté, John

    2011-12-15

    This research first focuses on the spatial and temporal patterns of heavy metals from contrasting environments (highly polluted to deepwater sites) of Lake Geneva. The mercury (Hg) and lead (Pb) records from two deepwater sites show that the heavy metal variations before the industrial period are primarily linked to natural weathering input of trace elements. By opposition, the discharge of industrial treated wastewaters into Vidy Bay of Lake Geneva during the second part of the 20th century, involved the sedimentation of highly metal-contaminated sediments in the area surrounding the WWTP outlet pipe discharge. Eventually, a new Pb isotope record of sediments from Lake Lucerne identifies the long-term increasing anthropogenic lead pollution after ca. 1500, probably due to the development of metallurgical activities during the High Middle Ages. These data furthermore allows to compare the recent anthropogenic sources of water pollution from three of the largest freshwater lakes of Western Europe (lakes Geneva, Lucerne, and Constance). High increases in Pb and Hg highlight the regional impact of industrial pollution after ca. 1750-1850, and the decrease of metal pollution in the 1980s due to the effects of remediation strategies such as the implementation of wastewater treatment plants (WWTPs). However, at all the studied sites, the recent metal concentrations remain higher than pre-industrial levels. Moreover, the local scale pollution data reveal two highly contaminated sites (>100 μg Pb/g dry weight sediment) by industrial activities, during the late-19th and early-20th centuries (Lake Lucerne) and during the second part of the 20th century (Vidy Bay of Lake Geneva). Overall, the regional scale pollution history inferred from the three large and deep perialpine lakes points out at the pollution of water systems by heavy metals during the last two centuries due to the discharge of industrial effluents. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. [Distribution of diatoms in central city of Beijing].

    PubMed

    Li, Li-Ping; Sun, Ting-Yi; Liu, Hong-Xia; Zhang, Hai-Dong; Bai, Ying-Jie; Wang, Rong-Shuai; Liu, Liang

    2012-08-01

    To explore the quantity and distribution of diatoms in main rivers and lakes in Xicheng, Dongcheng, Chaoyang, Haidian, Fengtai and Shijingshan Districts of the city of Beijing. Water samples were examined through the method of disorganizing, which were collected from 16 rivers and lakes in the central city of Beijing in September and October 2011. Diatom species and proportions of water samples were analyzed using DotSlide microscope station. A total of 10 species of diatoms were detected. Cyclotella, Synedra and Melosira etc. were found to be the dominant species via quantitative analysis. Significant differences were observed for diatom species and proportions among the different rivers and lakes. Melosira was found to be the dominant species in the Chang River; Synedra, in the Zhuan River, the Kunyu River and the Taoranting Park; Cyclotella, in the East Moat River, the Ba River, the Liangshui River and the Yongding River; and Navicula, in the Liangma River; Nitzschia, in the diversion canal of the Yongding River. The features of distribution of diatoms in the central city of Beijing are outlined. The morphological and relative constituent ratio database of diatoms are established in central city of Beijing.

  11. Bacteria and Turbidity Survey for Blue Mountain Lake, Arkansas, Spring and Summer, 1994

    USGS Publications Warehouse

    Lasker, A. Dwight

    1995-01-01

    Introduction Blue Mountain Lake darn is located at river mile 74.4 on the Petit Jean River in Logan and Yell Counties in west-central Arkansas (fig. 1). Drainage area above the darn is 488 square miles. Blue Mountain Lake is located between two national forests-the Ozark National Forest and the Ouachita National Forest. The primary purpose for Blue Mountain Lake is flood control, but the lake is used for a variety of recreational purposes. The U.S. Geological Survey (USGS) in cooperation with the U.s. Army Corps of Engineers, Little Rock District, conducted a bacterial and turbidity study of the Blue Mountain Lake Basin during the spring and suri1mer 1994. Samples were collected weekly at 11 locations within the lake basin from May through September 1994. Eight sampling sites were located on tributaries to the lake and three sampling sites were located on the lake with one of the sites located at a swim beach (fig. 2; table 1).

  12. Pleistocene lake level changes in Western Mongolia

    NASA Astrophysics Data System (ADS)

    Borodavko, P. S.

    2009-04-01

    Global cooling in the Early Pleistocene caused extensive continental glaciation in the northern hemisphere including the arid areas of Central Asia. The reduction of temperatures (particularly summer temperatures) reduced evaporation and strengthened the importance of precipitation. The simultaneity of "lakes periods" (pluvials) and stages of glaciation is established experience confirmed by investigations in the west of North America and Russia. In the Mongolian Great Lakes Depression new evidence for similar conditions is found. The Great Lakes Depression is one of the largest in Central Asia, and is divided into 2 main Lakes basins: Hyargas Lake Basin and Uvs Lake Basin. The basin is 600-650 km in length with a width of 200-250 km in the north and 60-100 km in the south. Total catchment area is about 186600 km2. The elevation of the basin floor is from 1700 m a.s.l. to 760 m a.s.l., decreasing to the north and south-east. The depression extends south-north and is bounded by mountains: Tannu-Ola to the north, Hangai to the east; Gobi Altai to the south and Mongolian Altay to the west. The maximum elevation of the mountains is 4000 m a.s.l. There are some mountains with an elevation between 2000 and 3000 m a.s.l in the lake catchment. These mountains are not glaciated today. The geological record [1] suggests the Great Lakes Depression already existed in the Mesozoic, but assumed its modern form only during the Pliocene-Quaternary when tectonic movements caused the uplift of the surrounding mountains. A phase of tectonic stability occurred during the Late Quaternary. The depression is filled by Quaternary fluvial, aeolian and lacustrine deposits (e.g. sand, pebbles). The Neogene deposits are represented by coloured clay, marl, sand and sandstone [1]. Hyargas Lake is the end base level of erosion of the lake group consisting of the Hara-Us Nur, Dorgon, Hara Nur and Airag lakes. Hyargas is one of the largest lakes in Mongolia, with a water surface of 1,407 km2. The

  13. Morphology and morphometry of upland lakes over lateritic crust, Serra dos Carajás, southeastern Amazon region.

    PubMed

    Silva, Marcio S DA; Guimarães, José T F; Souza Filho, Pedro W M; Nascimento Júnior, Wilson; Sahoo, Prafulla K; Costa, Francisco R DA; Silva Júnior, Renato O; Rodrigues, Tarcísio M; Costa, Marlene F DA

    2018-01-01

    High-resolution satellite images, digital elevation models, bathymetric and sedimentological surveys coupled with statistical analysis were used to understand the physical environment and discuss their influence on water quality of the five upland lakes of Serra Sul dos Carajás, southeast Amazonia. The lakes have mid-altitude ranges (elevation), very small (catchment) and shallow to very shallow (central basins). Based on the length, area and volume, Violão and TI (Três Irmãs)-3 lakes may present large vertical movements of the water due to wind action and weakly stratified waters. Trophic conditions based on depth and shore development (Ld) parameters must be used with caution, since Amendoim Lake is relatively deep, but it is oligotrophic to ultra-oligotrophic. Ld values suggest that the lakes are circular to subcircular and are likely formed by solution process, as also suggested by volume development. TI-2 Lake is only presenting convex central basin and has highest dynamic ratio (DR), thus it may have high sedimentation and erosion rates. Based on the relationship between studied parameters, morphometric index and DR likely influence temperature and dissolved oxygen of waters of TI-2 Lake due to its depth profile and wind-induced surface mixing. Nevertheless, water quality parameters are controlled by catchment characteristics of the lakes.

  14. Extreme events in the sedimentary record of maar Lake Pavin: Implications for natural hazards assessment in the French Massif Central

    NASA Astrophysics Data System (ADS)

    Chassiot, Léo; Chapron, Emmanuel; Di Giovanni, Christian; Albéric, Patrick; Lajeunesse, Patrick; Lehours, Anne-Catherine; Meybeck, Michel

    2016-06-01

    A set of sedimentary cores, high resolution swath bathymetry and subbottom profiler data provides new insights on sedimentary processes in meromictic maar Lake Pavin, France. Three sedimentary environments (i.e., littoral, plateau and basin) have been identified in the lake from sediment composition using bulk organic geochemistry and the analysis of hydroacoustic images. Various forms of rapidly deposited layers (RDLs) have been identified and radiocarbon dated. An up to date stratigraphy of sedimentary events matching coeval RDLs across the lake is presented and illustrates a wide range of natural hazards linked to Lake Pavin during the last 2000 years. In AD 600, a sudden lake outburst triggered a slump deposit along with a 9 m lake-level drop that drove shifts in sedimentary organic matter composition. Outside the lake, outburst flood deposits have been described downstream and provide sedimentary evidence for this event. The lake-level drop also favored the generation of gravity reworking processes, as shown by (1) a regional earthquake-triggered large slope failure on the plateau connected to a mass-wasting deposit in the basin dated to AD 1300, and (2) a succession of turbidites in AD 1825 and AD 1860 contemporaneous to two historic earthquakes, suggesting that this lake is sensitive to earthquakes with a minimum epicentral intensity of V. Finally, past observations of lake water color changes in AD 1783 and AD 1936, similar to reports in other meromictic lakes, match iron-rich deposits identified in maar lake sediments and suggest that Lake Pavin could have undergone limnic eruptions.

  15. Evaluation of 11 equations for determining evaporation for a small lake in the North Central United States

    USGS Publications Warehouse

    Winter, Thomas C.; Rosenberry, Donald O.; Sturrock, A.M.

    1995-01-01

    Eleven equations for calculating evaporation were compared with evaporation determined by the energy budget method for Williams Lake, Minnesota. Data were obtained from instruments on a raft, on land near the lake, and at a weather station 60 km south of the lake. The comparisons were based on monthly values for the open-water periods of 5 years, a total of 22 months. A modified DeBruin-Keijman, Priestley-Taylor, and a modified Penman equation resulted in monthly evaporation values that agreed most closely with energy budget values. To use these equations, net radiation, air temperature, wind speed, and relative humidity need to be measured near the lake. In addition, thermal surveys need to be made to determine change in heat stored in the lake. If data from distant climate stations are the only data available, and they include solar radiation, the Jensen-Haise and Makkink equations resulted in monthly evaporation values that agreed reasonably well with energy budget values.

  16. Salt lakes of La Mancha (Central Spain): A hot spot for tiger beetle (Carabidae, Cicindelinae) species diversity

    PubMed Central

    Rodríguez-Flores, Paula C.; Gutiérrez-Rodríguez, Jorge; Aguirre-Ruiz, Ernesto F.; García-París, Mario

    2016-01-01

    Abstract The tiger beetle assemblage of the wetlands of La Mancha (central Spain) comprises nine species: Calomera littoralis littoralis, Cephalota maura maura, Cephalota circumdata imperialis, Cephalota dulcinea, Cicindela campestris campestris, Cicindela maroccana, Cylindera paludosa, Lophyra flexuosa flexuosa, and Myriochila melancholica melancholica. This assemblage represents the largest concentration of tiger beetles in a single 1º latitude / longitude square in Europe. General patterns of spatial and temporal segregation among species are discussed based on observations of 1462 specimens registered during an observation period of one year, from April to August. The different species of Cicindelini appear to be distributed over space and time, with little overlapping among them. Three sets of species replace each other phenologically as the season goes on. Most of the species occupy drying or dried salt lakes and salt marshes, with sparse vegetation cover. Spatial segregation is marked in terms of substrate and vegetation use. Calomera littoralis and Myriochila melancholica have been observed mainly on wet soils; Cephalota circumdata on dry open saline flats; Cephalota dulcinea and Cylindera paludosa in granulated substrates with typical halophytic vegetation; Cephalota maura is often present in man-modified areas. Cephalota circumdata and Cephalota dulcinea are included as species of special interest in the list of protected species in Castilla–La Mancha. Conservation problems for the Cicindelini assemblage arise from agricultural activities and inadequate use of sport vehicles. Attempts at restoring the original habitat, supressing old semi-industrial structures, may affect the spatial heterogeneity of the lakes, and have an effect on Cicindelinae diversity. PMID:27006617

  17. Subaqueous geology and a filling model for Crater Lake, Oregon

    USGS Publications Warehouse

    Nathenson, M.; Bacon, C.R.; Ramsey, D.W.

    2007-01-01

    Results of a detailed bathymetric survey of Crater Lake conducted in 2000, combined with previous results of submersible and dredge sampling, form the basis for a geologic map of the lake floor and a model for the filling of Crater Lake with water. The most prominent landforms beneath the surface of Crater Lake are andesite volcanoes that were active as the lake was filling with water, following caldera collapse during the climactic eruption of Mount Mazama 7700 cal. yr B.P. The Wizard Island volcano is the largest and probably was active longest, ceasing eruptions when the lake was 80 m lower than present. East of Wizard Island is the central platform volcano and related lava flow fields on the caldera floor. Merriam Cone is a symmetrical andesitic volcano that apparently was constructed subaqueously during the same period as the Wizard Island and central platform volcanoes. The youngest postcaldera volcanic feature is a small rhyodacite dome on the east flank of the Wizard Island edifice that dates from 4800 cal. yr B.P. The bathymetry also yields information on bedrock outcrops and talus/debris slopes of the caldera walls. Gravity flows transport sediment from wall sources to the deep basins of the lake. Several debris-avalanche deposits, containing blocks up to 280 m long, are present on the caldera floor and occur below major embayments in the caldera walls. Geothermal phenomena on the lake floor are bacterial mats, pools of solute-rich warm water, and fossil subaqueous hot spring deposits. Lake level is maintained by a balance between precipitation and inflow versus evaporation and leakage. High-resolution bathymetry reveals a series of up to nine drowned beaches in the upper 30 m of the lake that we propose reflect stillstands subsequent to filling of Crater Lake. A prominent wave-cut platform between 4 m depth and present lake level that commonly is up to 40 m wide suggests that the surface of Crater Lake has been at this elevation for a very long time

  18. Water quality of least-impaired lakes in eastern and southern Arkansas

    USGS Publications Warehouse

    Justus, B.

    2010-01-01

    A three-phased study identified one least-impaired (reference) lake for each of four Arkansas lake classifications: three classifications in the Mississippi Alluvial Plain (MAP) ecoregion and a fourth classification in the South Central Plains (SCP) ecoregion. Water quality at three of the least-impaired lakes generally was comparable and also was comparable to water quality from Kansas and Missouri reference lakes and Texas least-impaired lakes. Water quality of one least-impaired lake in the MAP ecoregion was not as good as water quality in other least-impaired lakes in Arkansas or in the three other states: a probable consequence of all lakes in that classification having a designated use as a source of irrigation water. Chemical and physical conditions for all four lake classifications were at times naturally harsh as limnological characteristics changed temporally. As a consequence of allochthonous organic material, oxbow lakes isolated within watersheds comprised of swamps were susceptible to low dissolved oxygen concentrations to the extent that conditions would be limiting to some aquatic biota. Also, pH in lakes in the SCP ecoregion was <6.0, a level exceeding current Arkansas water-quality standards but typical of black water systems. Water quality of the deepest lakes exceeded that of shallow lakes. N/P ratios and trophic state indices may be less effective for assessing water quality for shallow lakes (<2 m) than for deep lakes because there is an increased exposure of sediment (and associated phosphorus) to disturbance and light in the former. ?? 2009 Springer Science+Business Media B.V.

  19. Water quality of least-impaired lakes in eastern and southern Arkansas.

    PubMed

    Justus, Billy

    2010-09-01

    A three-phased study identified one least-impaired (reference) lake for each of four Arkansas lake classifications: three classifications in the Mississippi Alluvial Plain (MAP) ecoregion and a fourth classification in the South Central Plains (SCP) ecoregion. Water quality at three of the least-impaired lakes generally was comparable and also was comparable to water quality from Kansas and Missouri reference lakes and Texas least-impaired lakes. Water quality of one least-impaired lake in the MAP ecoregion was not as good as water quality in other least-impaired lakes in Arkansas or in the three other states: a probable consequence of all lakes in that classification having a designated use as a source of irrigation water. Chemical and physical conditions for all four lake classifications were at times naturally harsh as limnological characteristics changed temporally. As a consequence of allochthonous organic material, oxbow lakes isolated within watersheds comprised of swamps were susceptible to low dissolved oxygen concentrations to the extent that conditions would be limiting to some aquatic biota. Also, pH in lakes in the SCP ecoregion was <6.0, a level exceeding current Arkansas water-quality standards but typical of black water systems. Water quality of the deepest lakes exceeded that of shallow lakes. N/P ratios and trophic state indices may be less effective for assessing water quality for shallow lakes (<2 m) than for deep lakes because there is an increased exposure of sediment (and associated phosphorus) to disturbance and light in the former.

  20. State and regional water-quality characteristics and trophic conditions of Michigan's inland lakes, 2001-2005

    USGS Publications Warehouse

    Fuller, L.M.; Minnerick, R.J.

    2008-01-01

    The U.S. Geological Survey and the Michigan Department of Environmental Quality are jointly monitoring selected water-quality constituents of inland lakes through 2015 as part of Michigan’s Lake Water Quality Assessment program. During 2001–2005, 433 lake basins from 364 inland lakes were monitored for baseline water-quality conditions and trophic status. This report summarizes the water-quality characteristics and trophic conditions of those monitored lake basins throughout the State. Regional variation of water quality in lake basins was examined by grouping on the basis of the five Omernik level III ecoregions within Michigan. Concentrations of most constituents measured were significantly different between ecoregions. Less regional variation of phosphorus concentrations was noted between Northern Lakes and Forests (50) and North Central Hardwoods (51) ecoregions during summer possibly because water samples were collected when lake productivity was high; hence the utilization of the limited amount of phosphorus by algae and macrophytes may have resulted in the more uniform concentrations between these two ecoregions. Concentrations of common ions (calcium, magnesium, potassium, sodium, chloride, and sulfate) measured in the spring typically were higher in the Michigan southern Lower Peninsula in the Eastern Corn Belt Plains (55), Southern Michigan/Northern Indiana Drift Plains (56), and Huron/Erie Lake Plains (57) ecoregions. Most ions whose concentrations were less than the minimum reporting levels or were nondetectable were from lakes in the Michigan northern Lower Peninsula and the Upper Peninsula in the Northern Lakes and Forests (50) and North Central Hardwoods (51) ecoregions. Chlorophyll a concentrations followed a similar distribution pattern. Measured properties such as pH and specific conductance (indicative of dissolved solids) also showed a regional relation. The lakes with the lowest pH and specific conductance were generally in the western

  1. Evolution of Late Miocene to Contemporary Displacement Transfer Between the Northern Furnace Creek and Southern Fish Lake Valley Fault Zones and the Central Walker Lane, Western Great Basin, Nevada

    NASA Astrophysics Data System (ADS)

    Oldow, J. S.; Geissman, J. W.

    2013-12-01

    Late Miocene to contemporary displacement transfer from the north Furnace Creek (FCF) and southern Fish Lake Valley (FLVF) faults to structures in the central Walker Lane was and continues to be accommodated by a belt of WNW-striking left-oblique fault zones in the northern part of the southern Walker Lane. The WNW fault zones are 2-9 km wide belts of anastomosing fault strands that intersect the NNW-striking FCF and southern FLVF in northern Death Valley and southern Fish Lake Valley, respectively. The WNW fault zones extend east for over 60 km where they merge with a 5-10 km wide belt of N10W striking faults that marks the eastern boundary of the southern Walker Lane. Left-oblique displacement on WNW faults progressively decreases to the east, as motion is successively transferred northeast on NNE-striking faults. NNE faults localize and internally deform extensional basins that each record cumulative net vertical displacements of between 3.0 and 5.2 km. The transcurrent faults and associated basins decrease in age from south to north. In the south, the WNW Sylvania Mountain fault system initiated left-oblique motion after 7 Ma but does not have evidence of contemporary displacement. Farther north, the left-oblique motion on the Palmetto Mountain fault system initiated after 6.0 to 4.0 Ma and has well-developed scarps in Quaternary deposits. Cumulative left-lateral displacement for the Sylvania Mountain fault system is 10-15 km, and is 8-12 km for the Palmetto fault system. The NNE-striking faults that emanate from the left-oblique faults merge with NNW transcurrent faults farther north in the eastern part of the Mina deflection, which links the Owens Valley fault of eastern California to the central Walker Lane. Left-oblique displacement on the Sylvania Mountain and Palmetto Mountain fault zones deformed the Furnace Creek and Fish Lake Valley faults. Left-oblique motion on Sylvania Mountain fault deflected the FCF into the 15 km wide Cucomungo Canyon restraining

  2. Geothermal Flux, Basal Melt Rates, and Subglacial Lakes in Central East Antarctica

    NASA Astrophysics Data System (ADS)

    Carter, S. P.; Blankenship, D. D.; Morse, D. L.

    2002-12-01

    The lakes beneath the East Antarctic ice sheet represent a unique environment on Earth, entirely untouched by human interference. Life forms which survive in this cold, lightless, high pressure environment may resemble the life forms which survived through "snowball earth" and evolved into the life forms we know today (Kirchvink, 2000). Recent airborne radar surveys over Dome C and the South Pole regions allow us to assess where these lakes are most likely to exist and infer melting and freezing rates at base of the ice sheet. Lakes appear as strong, flat basal reflectors in airborne radar sounding data. In order to determine the absolute strength of the reflector it is important to accurately estimate signal loss due to absorption by the ice. As this quantity is temperature sensitive, especially in regions where liquid water is likely to exist, we have developed a one dimensional heat transfer model, incorporating surface temperature, accumulation, ice sheet thickness, and geothermal flux. Of the four quantities used for our temperature model, geothermal flux has usually proven to be the most difficult to asses, due to logistical difficulties. A technique developed by Fahnestock et al 2001 is showing promise for inferring geothermal flux, with airborne radar data. This technique assumes that internal reflectors, which result from varying electrical properties within the ice column, can be approximated as constant time horizons. Using ice core data from our study area, we can place dates upon these internal layers and develop an age versus depth relationship for the surveyed region, with margin of error of +- 50 m for each selected layer. Knowing this relationship allows us to infer the vertical strain response of the ice to the stress of vertical loading by snow accumulation. When ice is frozen to the bed the deeper ice will accommodate the increased stress of by deforming and thinning (Patterson 1994). This thinning of deeper layers occurs throughout most of our

  3. Macroinvertebrates as indicators of fish absence in naturally fishless lakes

    USGS Publications Warehouse

    Schilling, Emily Gaenzle; Loftin, C.S.; Huryn, Alexander D.

    2009-01-01

    1. Little is known about native communities in naturally fishless lakes in eastern North America, a region where fish stocking has led to a decline in these habitats. 2. Our study objectives were to: (i) characterise and compare macroinvertebrate communities in fishless lakes found in two biophysical regions of Maine (U.S.A.): kettle lakes in the eastern lowlands and foothills and headwater lakes in the central and western mountains; (ii) identify unique attributes of fishless lake macroinvertebrate communities compared to lakes with fish and (iii) develop a method to efficiently identify fishless lakes when thorough fish surveys are not possible. 3. We quantified macroinvertebrate community structure in the two physiographic fishless lake types (n = 8 kettle lakes; n = 8 headwater lakes) with submerged light traps and sweep nets. We also compared fishless lake macroinvertebrate communities to those in fish-containing lakes (n = 18) of similar size, location and maximum depth. We used non-metric multidimensional scaling to assess differences in community structure and t-tests for taxon-specific comparisons between lakes. 4. Few differences in macroinvertebrate communities between the two physiographic fishless lake types were apparent. Fishless and fish-containing lakes had numerous differences in macroinvertebrate community structure, abundance, taxonomic composition and species richness. Fish presence or absence was a stronger determinant of community structure in our study than differences in physical conditions relating to lake origin and physiography. 5. Communities in fishless lakes were more speciose and abundant than in fish-containing lakes, especially taxa that are large, active and free-swimming. Families differing in abundance and taxonomic composition included Notonectidae, Corixidae, Gyrinidae, Dytiscidae, Aeshnidae, Libellulidae and Chaoboridae. 6. We identified six taxa unique to fishless lakes that are robust indicators of fish absence: Graphoderus

  4. Auke Lake Campus Site Development Plan.

    ERIC Educational Resources Information Center

    Alaska Univ., Juneau. Dept. of Facilities Planning and Construction.

    The University of Alaska, Juneau (UAJ), is the center for the University of Alaska Southeast and includes both a senior college and a community college. Most of the university facilities within the Juneau area are on the Auke Lake Campus, approximately 12 miles northwest of central Juneau. This report delineates the location of the campus, then…

  5. Veneer industry and timber use, North Central Region, 1980.

    Treesearch

    James E. Blyth; W. Brad Smith

    1984-01-01

    Shows 1980 veneer-log production and receipts by species in the Lake State (Michigan, Minnesota, and Wisconsin) and in the Central States (Illinois, Indiana, Iowa, and Missouri). Comparisons are made with similar data collected in 1976. Includes tables showing veneer-log production and receipts (for selected years) since 1946 in the Lake States and since 1956 in the...

  6. Dreissenid mussels are not a "dead end" in Great Lakes food webs

    USGS Publications Warehouse

    Madenijan, Charles P.; Pothoven, Steven A.; Schneeberger, Philip J.; Ebener, Mark P.; Mohr, Lloyd C.; Nalepa, Thomas F.; Bence, James R.

    2010-01-01

    Dreissenid mussels have been regarded as a “dead end” in Great Lakes food webs because the degree of predation on dreissenid mussels, on a lakewide basis, is believed to be low. Waterfowl predation on dreissenid mussels in the Great Lakes has primarily been confined to bays, and therefore its effects on the dreissenid mussel population have been localized rather than operating on a lakewide level. Based on results from a previous study, annual consumption of dreissenid mussels by the round goby (Neogobius melanostomus) population in central Lake Erie averaged only 6 kilotonnes (kt; 1 kt = one thousand metric tons) during 1995–2002. In contrast, our coupling of lake whitefish (Coregonus clupeaformis) population models with a lake whitefish bioenergetics model revealed that lake whitefish populations in Lakes Michigan and Huron consumed 109 and 820 kt, respectively, of dreissenid mussels each year. Our results indicated that lake whitefish can be an important predator on dreissenid mussels in the Great Lakes, and that dreissenid mussels do not represent a “dead end” in Great Lakes food webs. The Lake Michigan dreissenid mussel population has been estimated to be growing more than three times faster than the Lake Huron dreissenid mussel population during the 2000s. One plausible explanation for the higher population growth rate in Lake Michigan would be the substantially higher predation rate by lake whitefish on dreissenid mussels in Lake Huron.

  7. Distribution and abundance of burrowing mayflies (Hexagenia spp.) in Lake Erie, 1997-2005

    USGS Publications Warehouse

    Krieger, K.A.; Bur, M.T.; Ciborowski, J.J.H.; Barton, D.R.; Schloesser, D.W.

    2007-01-01

    Burrowing mayflies (Hexagenia limbata and H. rigida) recolonized sediments of the western basin of Lake Erie in the 1990s following decades of pollution abatement. We predicted that Hexageniawould also disperse eastward or expand from existing localized populations and colonize large regions of the other basins. We sampled zoobenthos in parts of the western and central basins yearly from 1997–2005, along the north shore of the eastern basin in 2001–2002, and throughout the lake in 2004. In the island area of the western basin, Hexagenia was present at densities ≤1,278 nymphs/m2and exhibited higher densities in odd years than even years. By contrast, Hexagenia became more widespread in the central basin from 1997–2000 at densities ≤48 nymphs/m2 but was mostly absent from 2001–2005. Nymphs were found along an eastern basin transect at densities ≤382/m2 in 2001 and 2002. During the 2004 lake-wide survey, Hexagenia was found at 63 of 89 stations situated throughout the western basin (≤1,636 nymphs/m2, mean = 195 nymphs/m2, SE = 32, N = 89) but at only 7 of 112 central basin stations, all near the western edge of the basin (≤708 nymphs/m2), and was not found in the eastern basin. Hexagenia was found at 2 of 62 stations (≤91 nymphs/m2) in harbors, marinas, and tributaries along the south shore of the central basin in 2005. Oxygen depletion at the sediment-water interface and cool temperatures in the hypolimnion are probably the primary factors preventing successful establishment throughout much of the central basin. Hexagenia can be a useful indicator of lake quality where its distribution and abundance are limited by anthropogenic causes.

  8. Human-climate interactions in the central Mediterranean region during the last millennia: The laminated record of Lake Butrint (Albania)

    NASA Astrophysics Data System (ADS)

    Morellón, Mario; Anselmetti, Flavio S.; Ariztegui, Daniel; Brushulli, Brunhilda; Sinopoli, Gaia; Wagner, Bernd; Sadori, Laura; Gilli, Adrian; Pambuku, Arben

    2016-03-01

    Lake Butrint (39°47 N, 20°1 E) is a ca. 21 m deep, coastal lagoon located in SW Albania where finely-laminated sediments have been continuously deposited during the last millennia. The multi-proxy analysis (sedimentology, high-resolution elemental geochemistry and pollen) of a 12 m long sediment core, supported by seven AMS radiocarbon dates and 137Cs dating, enable a precise reconstruction of the environmental change that occurred in the central Mediterranean region during the last ∼4.5 cal kyrs BP. Sediments consist of triplets of authigenic carbonates, organic matter and clayey laminae. Fluctuations in the thickness and/or presence of these different types of seasonal laminae indicate variations in water salinity, organic productivity and runoff in the lake's catchment, as a result of the complex interplay of tectonics, anthropogenic forcing and climate variability. The progradation of the Pavllo river delta, favoured by variable human activity from the nearby ancient city of Butrint, led to the progressive isolation of this hydrological system from the Ionian Sea. The system evolved from an open bay to a restricted lagoon, which is consistent with archaeological data. An abrupt increase in mass-wasting activity between 1515 and 1450 BC, likely caused by nearby seismic activity, led to the accumulation of 24 homogenites, up to 17 cm thick. They have been deposited during the onset of finely laminated sedimentation, which indicates restricted, anoxic bottom water conditions and higher salinity. Periods of maximum water salinity, biological productivity, and carbonate precipitation coincide with warmer intervals, such as the early Roman Warm Period (RWP) (500 BC-0 AD), the Medieval Climate Anomaly (MCA) (800-1400 AD) and recent times (after 1800 AD). Conversely, lower salinity and more oxic conditions, with higher clastic input were recorded during 1400-500 BC, the Late Roman and the Early Medieval periods (0-800 AD) and during the Little Ice Age (1400-1800 AD

  9. Chromophoric Dissolved Organic Matter in Southwestern Greenland Lakes

    NASA Astrophysics Data System (ADS)

    Osburn, C. L.; Giles, M. E.; Underwood, G. J. C.

    2014-12-01

    Dissolved organic matter (DOM) is an important property of Arctic lake ecosystems, originating from allochthonous inputs from catchments and autochthonous production by plankton in the water column. Little is known about the quality of DOM in Arctic lakes that lack substantial inputs from catchments and such lakes are abundant in southwestern Greenland. Colored dissolved organic matter (CDOM), the fraction that absorbs ultraviolet (UV) and visible light, is the controlling factor for the optical properties of many surface waters and as well informs on the quality of DOM. We examined the quality of CDOM in 21 lakes in southwestern Greenland, from the ice sheet to the coast, as part of a larger study examining the role of DOM in regulating microbial communities in these lakes. DOM was size fractioned and absorbance and fluorescence was measured on each size fraction, as well as on bulk DOM. The specific ultraviolet absorbance (SUVA) at 254 nm (SUVA254), computed by normalizing absorption (a254) to dissolved organic carbon (DOC) concentration, provided an estimate of the aromatic carbon content of DOM. SUVA values were generally <2, indicating low aromatic content. Parallel factor analysis (PARAFAC) of CDOM fluorescence was used to determine the relative abundance of allochthonous and autochthonous DOM in all size fractions. Younger lakes near the ice sheet and lakes near the coast had lower amounts of CDOM and appeared more microbial in quality. However, lakes centrally located between the ice sheet and the coast had the highest CDOM concentrations and exhibited strong humic fluorescence. Overall distinct differences in CDOM quality were observed between lake locations and among DOM size fractions.

  10. Sediment Transforms Lake Michigan

    NASA Image and Video Library

    2011-01-11

    NASA image acquired December 17, 2010 In mid-December 2010, suspended sediments transformed the southern end of Lake Michigan. Ranging in color from brown to green, the sediment filled the surface waters along the southern coastline and formed a long, curving tendril extending toward the middle of the lake. The Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Aqua satellite captured these natural-color images on December 17, 2010 (top), and December 10, 2010 (bottom). Such sediment clouds are not uncommon in Lake Michigan, where winds influence lake circulation patterns. A scientificpaper published in 2007 described a model of the circulation, noting that while the suspended particles mostly arise from lake-bottom sediments along the western shoreline, they tend to accumulate on the eastern side. When northerly winds blow, two circulation gyres, rotating in opposite directions, transport sediment along the southern shoreline. As the northerly winds die down, the counterclockwise gyre predominates, and the smaller, clockwise gyre dissipates. Clear water—an apparent remnant of the small clockwise gyre—continues to interrupt the sediment plume. George Leshkevich, a researcher with the U.S. National Oceanic and Atmospheric Administration, explains that the wind-driven gyres erode lacustrine clay (very fine lakebed sediment) on the western shore before transporting it, along with re-suspended lake sediments, to the eastern shore. On the eastern side, the gyre encounters a shoreline bulge that pushes it toward the lake’s central southern basin, where it deposits the sediments. The sediment plume on December 17 followed a windy weather front in the region on December 16. NASA image courtesy MODIS Rapid Response Team at NASA GSFC. Caption by Michon Scott. Instrument: Aqua - MODIS NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard

  11. Water budgets, water quality, and analysis of nutrient loading of the Winter Park chain of lakes, central Florida, 1989-92

    USGS Publications Warehouse

    Phelps, G.G.; German, E.R.

    1995-01-01

    The Winter Park chain of lakes (Lakes Maitland, Virginia, Osceola, and Mizell) has a combined area of about 900 acres, an immediate drainage area of about 3,100 acres, and mean depths ranging from 11 to 15 feet. The lakes are an important recreational resource for the surrounding communities, but there is concern about the possible effects of stormwater runoff and seepage of nutrient-enriched ground water on the quality of water in the lakes. The lakes receive water from several sources: rainfall on lake surfaces, inflow from other surface-water bodies, stormflow that enters the lakes through storm drains or by direct runoff from land adjacent to the lakes and ground-water seepage. Water leaves the lakes by evaporation, surface outflow, and ground-water outflow. Of the three, only surface outflow can be measured directly. Rainfall, surface inflow and outflow, and lake-stage data were collected from October 1, 1989, to September 30, 1992. Stormflow, evaporation and ground-water inflow and outflow were estimated for the 3 years of the study. Ground-water outflow was calculated by evaluating the rate of lake-stage decline during dry periods. Estimated ground-water outflow was compared to downward leakage rates estimated by ground-water flow models. Lateral ground-water inflow from surficial sediments was calculated as the residual of the flow budget. Flow budgets were calculated for the 3 years of the study. In water year 1992 (a year with about average rainfall), inflow consisted of rainfall, 48 inches; stormflow, 15 inches; surface inflow, 67 inches; and ground water, 40 inches. The calculated outflows were evaporation, 47 inches; surface outflow, 90 inches; and ground water, 33 inches. Water-quality data also were used to calculate nutrient budgets for the lakes. Bimonthly water samples were collected from the lakes and at surface inflow and outflow sites, and were analyzed for physical characteristics, dissolved oxygen, pH, specific conductance, major ions, the

  12. Changes in movements of Chinook Salmon between lakes Huron and Michigan after Alewife population collapse

    USGS Publications Warehouse

    Clark, Richard D.; Bence, James R.; Claramunt, Randall M.; Clevenger, John A.; Kornis, Matthew S.; Bronte, Charles R.; Madenjian, Charles P.; Roseman, Edward

    2017-01-01

    Alewives Alosa pseudoharengus are the preferred food of Chinook Salmon Oncorhynchus tshawytscha in the Laurentian Great Lakes. Alewife populations collapsed in Lake Huron in 2003 but remained comparatively abundant in Lake Michigan. We analyzed capture locations of coded-wire-tagged Chinook Salmon before, during, and after Alewife collapse (1993–2014). We contrasted the pattern of tag recoveries for Chinook Salmon released at the Swan River in northern Lake Huron and Medusa Creek in northern Lake Michigan. We examined patterns during April–July, when Chinook Salmon were primarily occupied by feeding, and August–October, when the salmon were primarily occupied by spawning. We found evidence that Swan River fish shifted their feeding location from Lake Huron to Lake Michigan after the collapse. Over years, proportions of Swan River Chinook Salmon captured in Lake Michigan increased in correspondence with the Alewife decline in Lake Huron. Mean proportions of Swan River fish captured in Lake Michigan were 0.13 (SD = 0.14) before collapse (1993–1997) and 0.82 (SD = 0.22) after collapse (2008–2014) and were significantly different. In contrast, proportions of Medusa Creek fish captured in Lake Michigan did not change; means were 0.98 (SD = 0.05) before collapse and 0.99 (SD = 0.01) after collapse. The mean distance to the center of the coastal distribution of Swan River fish during April–July shifted 357 km (SD = 169) from central Lake Huron before collapse to central Lake Michigan after collapse. The coastal distributions during August–October were centered on the respective sites of origin, suggesting that Chinook Salmon returned to release sites to spawn regardless of their feeding locations. Regarding the impact on Alewife populations, this shift in interlake movement would be equivalent to increasing the Chinook Salmon stocking rate within Lake Michigan by 30%. The primary management implication is that interlake coordination of Chinook Salmon

  13. Glacialmorphological reconstruction of glacier advances and glacial lake outburst floods at the Cachapoal glacier in the Dry Central Andes of Chile (34°S)

    NASA Astrophysics Data System (ADS)

    Iturrizaga, Lasafam; Charrier, Reynaldo

    2013-04-01

    Throughout the Andes Mountain range of South America a general trend of glacier shrinkage has taken place in the last century. Only a few glaciers have shown a rather non-continuous trend of glacier retreat and temporally advanced or even surged during the mid-19th to 20th century. One of the earliest assumed glacier surges has occurred in the upper Cachapoal catchment area at the homonymous glacier. In climatic respect the Cachapoal glacier is located in the transition zone from the most southern part of the Dry Central Andes of Chile to the more humid zone of the Wet Andes. The region is affected mainly by winter precipitation deriving from the Westerlies. The debris-covered, 12 km-long Cachapoal glacier represents one of the largest valley glaciers in the Central Andes. It is an avalanche-fed glacier with an almost 1500 m-high head wall in its upper catchment area flowing down from Picos del Barroso (5180 m) and terminates at an elevation of 2630 m a.s.l. with a bifurcated glacier tongue. A large moraine complex, almost 2 km in length and 500 m in width, separates the two glacier lobes. During times of advanced glacier tongue positions the Ríos Molina and Cachapoal may be have blocked independently at two distinct localities which are situated about 2300 m apart from each other. A blockage with temporal lake formation has occurred at least in the years 1848, 1955 and 1981 (cf. Plagemann 1887, Peña 1981), from which the rupture of the earliest glacier barrier has been the most devastating. This event is locally reminded as "la gran avenida en seco" in the historical record. Geomorphological evidence of the past historical and modern glacier expansions is given in the proglacial area by a fresh dead-ice hummocky topography and glacial trimlines at the valley flanks. More down valley broad outwash plains and boulder clusters indicate past high energy floods produced by glacier lake outbursts. Regarding the small size of the catchment area of the Río Molina

  14. Seismic images of a tectonic subdivision of the Greenville Orogen beneath lakes Ontario and Erie

    USGS Publications Warehouse

    Forsyth, D. A.; Milkereit, B.; Davidson, A.; Hanmer, S.; Hutchinson, Deborah R.; Hinze, W. J.; Mereu, R.F.

    1994-01-01

    New seismic data from marine air-gun and Vibroseis profiles in Lake Ontario and Lake Erie provide images of subhorizontal Phanerozoic sediments underlain by a remarkable series of easterly dipping reflections that extends from the crystalline basement to the lower crust. These reflections are interpreted as structural features of crustal-scale subdivisions within the Grenville Orogen. Broadly deformed, imbricated, and overlapping thrust sheets within the western Central Metasedimentary Belt are succeeded to the west by a complex zone of easterly dipping, apparent thrust faults that are interpreted as a southwest subsurface extension of the boundary zone between the Central Metasedimentary Belt and the Central Gneiss Belt. The interpreted Central Metasedimentary Belt boundary zone has a characteristic magnetic anomaly that provides a link from the adjacent ends of lakes Ontario and Erie to structures exposed 150 km to the north. Less reflective, west-dipping events are interpreted as structures within the eastern Central Gneiss Belt. The seismic interpretation augments current tectonic models that suggest the exposed ductile structures formed at depth as a result of crustal shortening along northwest-verging thrust faults. Relatively shallow reflections across the boundary region suggest local, Late Proterozoic extensional troughs containing post-Grenville sediments, preserved possibly as a result of pre-Paleozoic reactivation of basement structures.

  15. Depositional environments of the Cache, Lower Lake, and Kelseyville Formations, Lake County, California

    USGS Publications Warehouse

    Rymer, Michael J.; Roth, Barry; Bradbury, J. Platt; Forester, Richard M.

    1988-01-01

    We describe the depositional environments of the Cache, Lower Lake, and Kelseyville Formations in light of habitat preferences of recovered mollusks, ostracodes, and diatoms. Our reconstruction of paleoenvironments for these late Cenozoic deposits provides a framework for an understanding of basin evolution and deposition in the Clear Lake region. The Pliocene and Pleistocene Cache Formation was deposited primarily in stream and debris flow environments; fossils from fine-grained deposits indicate shallow, fresh-water environments with locally abundant aquatic vegetation. The fine-grained sediments (mudstone and siltstone) were probably deposited in ponds in abandoned channels or shallow basins behind natural levees. The abandoned channels and shallow basins were associated with the fluvial systems responsible for deposition of the bulk of the technically controlled Cache Formation. The Pleistocene Lower Lake Formation was deposited in a water mass large enough to contain a variety of local environments and current regimes. The recovered fossils imply a lake with water depths of 1 to 5 m. However, there is strong support from habitat preferences of the recovered fossils for inferring a wide range of water depths during deposition of the Lower Lake Formation; they indicate a progressively shallowing system and the culmination of a desiccating lacustrine system. The Pleistocene Kelseyville Formation represents primarily lacustrine deposition with only minor fluvial deposits around the margins of the basin. Local conglomerate beds and fossil tree stumps in growth position within the basin indicate occasional widespread fluvial incursions and depositional hiatuses. The Kelseyville strata represent a large water mass with a muddy and especially fluid substrate having permanent or sporadic periods of anoxia. Central-lake anoxia, whether permanent or at irregular intervals, is the simplest way to account for the low numbers of benthic organisms recovered from the

  16. Wind-driven Water Bodies : a new paradigm for lake geology

    NASA Astrophysics Data System (ADS)

    Nutz, A.; Schuster, M.; Ghienne, J. F.; Roquin, C.; Bouchette, F. A.

    2015-12-01

    In this contribution we emphasize the importance in some lakes of wind-related hydrodynamic processes (fair weather waves, storm waves, and longshore, cross-shore and bottom currents) as a first order forcing for clastics remobilization and basin infill. This alternative view contrasts with more classical depositional models for lakes where fluvial-driven sedimentation and settling dominates. Here we consider three large lakes/paleo-lakes that are located in different climatic and geodynamic settings: Megalake Chad (north-central Africa), Lake Saint-Jean (Québec, Canada), and Lake Turkana (Kenya, East African Rift System). All of these three lake systems exhibit well developed modern and ancient high-energy littoral morphosedimentary structures which directly derive from wind-related hydrodynamics. The extensive paleo-shorelines of Megalake Chad are composed of beach-foredune ridges, spits, wave-dominated deltas, barriers, and wave-ravinment surface. For Lake Saint-Jean the influence of wind is also identified below the wave-base at lake bottom from erosional surfaces, and sediment drifts. In the Lake Turkana Basin, littoral landforms and deposits are identified for three different time intervals (today, Holocene, Plio-Pleistocene) evidencing that wind-driven hydrodynamics can be preserved in the geological record. Moreover, a preliminary global survey suggests that numerous modern lakes (remote sensing) and paleo-lakes (bibliographic review) behave as such. We thus coin the term "Wind-driven Water Bodies" (WWB) to refer to those lake systems where sedimentation (erosion, transport, deposition) is dominated by wind-induced hydrodynamics at any depth, as it is the case in the marine realm for shallow seas. Integrating wind forcing in lake models has strong implications for basin analysis (paleoenvironments and paleoclimates restitutions, resources exploration), but also for coastal engineering, wildlife and reservoirs management, or leisure activities.

  17. Seasonal Variations in Water Chemistry and Sediment Composition in Three Minnesota Lakes

    NASA Astrophysics Data System (ADS)

    Lascu, I.; Ito, E.; Banerjee, S.

    2006-12-01

    Variations in water chemistry, isotopic composition of dissolved inorganic carbon, sediment geochemistry and mineral magnetism were monitored for several months in three Minnesota lakes. Lake McCarrons, Deming Lake and Steel Lake are all small (<1 km2), deep (>16 m), stratified lakes that contain varved sediments for some time intervals or throughout. Deming Lake and Steel Lake are situated in north-central Minnesota, about 40 km apart, while Lake McCarrons is located in the heart of the Twin Cities and is heavily used for recreational purposes. The lakes have different mixing regimes (Steel is dimictic, Deming is meromictic and McCarrons is oligomictic) but all have well defined epilimnia and hypolimnia during the ice-free season. Water samples were collected bi-weekly from the epilimnia, upper and lower hypolimnia, while sediments were collected monthly from sediment traps placed in shallow and deep parts of the lakes. All lakes are moderately alkaline (80-280 ppm HCO3-) carbonate-producing systems, although calcite is being dissolved in the slightly acidic hypolimnetic waters of Deming Lake. The magnetic parameters reveal different distributions of the magnetic components in the three lakes, but all exhibit a general increase in the concentration of bacterial magnetosomes towards the end of summer. Differences in elemental concentrations, cation and anion profiles, and chemical behavior as the season progressed are also obvious among the three lakes. For the two lakes situated in the same climatic regime, this implies additional controls (besides climate) on water and sediment composition, such as local hydrology, substrate composition and biogeochemical in-lake processes.

  18. Viral activity in two contrasting lake ecosystems.

    PubMed

    Bettarel, Yvan; Sime-Ngando, Télesphore; Amblard, Christian; Dolan, John

    2004-05-01

    For aquatic systems, especially freshwaters, there is little data on the long-term (i.e., >6-month period) and depth-related variability of viruses. In this study, we examined virus-induced mortality of heterotrophic bacteria over a 10-month period and throughout the water column in two lakes of the French Massif Central, the oligomesotrophic Lake Pavin and the eutrophic Lake Aydat. Concurrently, we estimated nonviral mortality through heterotrophic nanoflagellate and ciliate bacterivory. Overall, viral infection parameters were much less variable than bacterial production. We found that the frequency of visibly infected cells (FVIC), estimated using transmission electron microscopy, peaked in both lakes at the end of spring (May to June) and in early autumn (September to October). FVIC values were significantly higher in Lake Pavin (mean [M] = 1.6%) than in Lake Aydat (M = 1.1%), whereas the opposite trend was observed for burst sizes, which averaged 25.7 and 30.2 virus particles bacterium(-1), respectively. We detected no significant depth-related differences in FVIC or burst size. We found that in both lakes the removal of bacterial production by flagellate grazing (M(Pavin) = 37.7%, M(Aydat) = 18.5%) was nearly always more than the production removed by viral lysis (M(Pavin) = 16.2%, M(Aydat) = 19%) or ciliate grazing (M(Pavin) = 2.7%, M(Aydat) = 8.8%). However, at specific times and locations, viral lysis prevailed over protistan grazing, for example, in the anoxic hypolimnion of Lake Aydat. In addition, viral mortality represented a relatively constant mortality source in a bacterial community showing large variations in growth rate and subject to large variations in loss rates from grazers. Finally, although viruses did not represent the main agent of bacterial mortality, our data seem to show that their relative importance was higher in the less productive system.

  19. Increase in lake trout reproduction in Lake Huron following the collapse of alewife: Relief from thiamine deficiency or larval predation?

    USGS Publications Warehouse

    Fitzsimons, J.D.; Brown, S.; Brown, L.; Honeyfield, D.; He, J.; Johnson, J.E.

    2010-01-01

    In the Great Lakes there is still uncertainty as to the population level effects of a thiamine deficiency on salmonines caused by high consumption of alewives Alosa pseudoharengus. A resurgence of lake trout Salvelinus namaycush reproduction in Lake Huron following the crash of alewife stocks between 2002 and 2004 provided an opportunity to evaluate the relative effects of this crash on reproduction through relief from either alewife mediated thiamine deficiency or alewife predation on larval lake trout relative to possible changes in the size of the lake trout spawning stock. Changes in mean lake trout egg thiamine concentration post crash at one spawning reef in Parry Sound, where mean thiamine concentration increased by almost two-fold, were consistent with diet switching from alewives to rainbow smelt Osmerus mordax, the next most abundant prey fish in Lake Huron. Although thiamine levels for lake trout collected at a second reef in Parry Sound did not change post-crash, levels both pre- and post-crash were consistent with a rainbow smelt diet. A reef specific fry emergence index was found to be positively related to reef specific egg thiamine concentration but negatively related to reef specific occurrence of EMS, a thiamine deficiency related mortality syndrome. We found little evidence for overlap between the timing of spring shoreward migration of alewives and lake trout emergence, suggesting that relief from alewife predation effects had relatively little effect on the observed increase in lake trout recruitment. Numbers of spawners in the north, north-central, and southern zones of the lake increased from 2000 onwards. Overall the abundance post-2003 was higher than from pre-2004, suggesting that spawner abundance may also have contributed to increased lake trout reproduction. However, predicted numbers of spawners and measured abundance of wild recruits in assessment gear were poorly correlated suggesting that the increase in reproduction was not totally

  20. Hydrologic data from the integrated lake-watershed acidification study in the west-central Adirondack Mountains, New York : October 1977 through January 1982

    USGS Publications Warehouse

    Peters, N.E.; Murdoch, Peter S.; Dalton, F.N.

    1987-01-01

    Hydrologic data were collected from three forested headwater lake watersheds in Herkimer and Hamilton Counties from October 1977 through early January 1982 as part of the Integrated Lake-Watersheds Acidification Study (ILWAS). ILWAS was established in 1977 to determine why these lakes differ in pH when all receive equal amounts of acidic atmospheric deposition. Woods Lake is acidic (pH ranges from 4 to 5), Panther Lake is neutral (pH ranges from 5 to 7.5), and Sagamore Lake is intermediate (pH ranges from 5 to 6). The data tabulated herein include discharge at the three lake outlets and in a tributary to each lake; lake-water stage at each lake; chemical quality of lake water, including total concentrations of zinc, iron, manganese, and lead, at each lake outlet and at Lost Brook (a tributary to Sagamore Lake); groundwater stage from 29 wells; major ion concentrations of groundwater from 22 of these wells; temperature of soil from three depths at one site in each watershed; soil-moisture tension at three depths at eight sites - four in the neutral-lake basin, three in the acidic-lake basin , and one in the intermediate-lake basin; and average snowpack depths and water equivalents at approximately 20 snow-course sites in each basin for three sampling periods during the 1979-80 winter. (USGS)

  1. Effects of nearshore recharge on groundwater interactions with a lake in mantled karst terrain

    USGS Publications Warehouse

    Lee, Terrie M.

    2000-01-01

    The recharge and discharge of groundwater were investigated for a lake basin in the mantled karst terrain of central Florida to determine the relative importance of transient groundwater inflow to the lake water budget. Variably saturated groundwater flow modeling simulated water table responses observed beneath two hillsides radiating outward from the groundwater flow‐through lake. Modeling results indicated that transient water table mounding and groundwater flow reversals in the nearshore region following large daily rainfall events generated most of the net groundwater inflow to the lake. Simulated daily groundwater inflow was greatest following water table mounding near the lake, not following subsequent peaks in the water level of upper basin wells. Transient mounding generated net groundwater inflow to the lake, that is, groundwater inflow in excess of the outflow occurring through the deeper lake bottom. The timing of the modeled net groundwater inflow agreed with an independent lake water budget; however, the quantity was considerably less than the budget‐derived value.

  2. View of Central Texas as seen from Apollo 9

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Central Texas area as photographed from the Apollo 9 spacecraft during its earth-orbital mission. Interstate 35 runs from Austin (right center edge of pictures) to Waco (near bottom left corner). Also, visible are the cities of Georgetown, Taylor, Temple and Killeen. The Colorado River runs through Austin. The Brazos River flows through Waco. Lake Travis is upstream from Austin. Lake Whitney is at bottom left corner of picture. The Belton Reservoir is near bottom center. The lake formed by the dam on the Lampasas River near Belton is also clearly visible.

  3. Paleoecological studies at Lake Patzcuaro on the west-central Mexican Plateau and at Chalco in the basin of Mexico

    USGS Publications Warehouse

    Watts, W.A.; Bradbury, J.P.

    1982-01-01

    A 1520-cm sediment core from Lake Patzcuaro, Michoacan, Mexico, is 44,000 yr old at the base. All parts of the core have abundant pollen of Pinus (pine), Alnus (alder), and Quercus (oak) with frequent Abies (fir). The interval dated from 44,000 to 11,000 yr ago has a homogeneous flora characterized by abundant Juniperus (juniper) pollen and frequent Artemisia (sagebrush). It is believed to represent an appreciably drier and colder climate than at present. The Holocene at Lake Patzcuaro is characterized by a moderate increase in Pinus pollen and the loss of Juniperus pollen, as the modern type of climate succeeded. Alnus was abundant until about 5000 yr ago; its abrupt decrease with the first appearance of herbaceous weed pollen may reflect the cutting of lake-shore and stream-course alder communities for agricultural purposes, or it may simply reflect a drying tendency in the climate. Pollen of Zea (corn) appears at Lake Patzcuaro along with low peaks of chenopod and grass pollen at 3500 yr B.P. apparently recording a human population large enough to modify the natural environment, as well as the beginning of agriculture. A rich aquatic flora in this phase suggests eutrophication of the lake by slope erosion. In the most recent period corn is absent from the sediments, perhaps reflecting a change in agricultural practices. The environment changes at Lake Patzcuaro are similar to and correlate with those in the Cuenca de Mexico, where diatom stratigraphy from the Chalco basin indicates fluctuations in lake levels and lake chemistry in response to variations in available moisture. Before 10,000 yr ago climates there were cool and dry, and the Chalco basin was occupied by a shallow freshwater marsh that drained north to Lake Texcoco, where saline water accumulated by evaporation. Increases in effective moisture and possible melting of glaciers during the Holocene caused lake levels to rise throughout the Cuenca de Mexico, and Lake Texcoco flooded the Chalco basin with

  4. Holocene pollen and sediment record from the tangle lakes area, central Alaska

    USGS Publications Warehouse

    Ager, Thomas A.; Sims, John D.

    1981-01-01

    Pollen and sediments have been analyzed from a 5.5 meter‐length core of lacustrine sediments from Tangle Lakes, in the Gulkana Upland south of the Alaska Range (63 ° 01 ‘ 46”; N. latitude, 146° 03 ‘ 48 “ W. longitude). Radiocarbon ages indicate that the core spans the last 4700 years. The core sediments are sandy silt and silty clay; the core shows distinct rhythmic laminations in the lower 398 cm. The laminae appear to be normally graded; peat fibers and macerated plant debris are more abundant near the tops of the laminae. Six volcanic‐ash layers are present in the upper 110 cm of the core.Present‐day vegetation of the Tangle Lakes area is mesic shrub tundra and open spruce woodland, with scattered patches of shrub willow (Salix), balsam poplar (P. balsamifera), spruce (Picea), paper birch (Betula papyrifera), and alder (Alnus). Pollen analysis of 27 core samples suggests that this vegetation type has persisted throughout the past 4700 years, except for an apparently substantial increase in Picea beginning about 3500 years B.P. Percentages of Picea pollen are very low (generally 1–3 percent) in the lower 2 meters of core (ca. 4700 to 3500 years B.P.), but rise to 13–18 percent in the upper 3.4 meters (ca. 3500 years B.P. to present). Previously reported data from this area indicate that Picea trees initially arrived in the Tangle Lakes area about 9100 years B.P., at least 2.5 to 3 thousand years after deglaciation of the region. The present investigation suggests that Picea trees became locally scarce or died out sometime after about 9000 years B.P. but before 4700 years B.P., then reinvaded the area about 3500 years B.P. If this extrapolated age for the Picea reinvasion is accurate it suggests that local expansion of the Picea population coincides with the onset of a Neoglacial interval of cooler, moister climate. This is an unexpected result, because intervals of cooler climate generally coincide with lowering of the altitudinal limit of

  5. 78 FR 66356 - Notification of a Public Teleconference of the Great Lakes Advisory Board

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-05

    ... development of a draft Great Lakes Restoration Initiative FY 2015-2019 Action Plan. DATES: The public teleconference will be held on Wednesday, November 13, 2013 from 9:00 a.m. to 12 noon Central Time, 10 a.m. to 1...-6059 or email at [email protected] . General information on the Great Lakes Restoration Initiative...

  6. Holocene lake level changes at a lowland lake in northeastern Germany inferred from acoustic sub-bottom profiling and a transect of sediment cores

    NASA Astrophysics Data System (ADS)

    Dietze, Elisabeth; Zawiska, Izabela; Słowiński, Michał; Brauer, Achim

    2015-04-01

    Holocene lake level changes were studied at Lake Fürstenseer See, a typical lake with complex basin morphology in northeastern German sandur area. An acoustic sub-bottom profile and a transect of four long sediment cores in the deepest lake sub-basin were analyzed. The cores were dated with AMS-14C and correlated with multiple proxies (sediment facies, μ-XRF, macrofossils, subfossil Cladocera, carbonate isotopes). At sites in 10 and 15 m water depth, shifts in the sand-mud boundary, i.e. sediment limit sensu Digerfeldt (1986), allowed quantitative estimates of the absolute amplitude of lake level changes. At sites in 20 and 23 m water depth, the negative correlation of Ca and Ti reflect lake level changes qualitatively. During high lake stands massive organic muds were deposited. Lower lake levels isolated the lake sub-basins which reduced the overall water circulation and lead to the deposition of Ti-poor carbonate muds. Furthermore, macrofossil and subfossil Cladocera analyses were used as proxies for the intense reworking at the slope and for the trophic state of the lake, respectively. Lake levels were up to 4 m higher, e.g. around 5000 cal. yrs BP and during the Medieval time period (see also Kaiser et al., 2014). During the early to mid-Holocene (between 9400 and 6400 cal. yrs BP), Lake Fürstenseer See fluctuated at an at least 3-m lower level. Further water level changes can be related to known climatic events and regional human impact. Digerfeldt, G., 1986. Studies on past lake-level fluctuations. In Berglund, B. (ed.), Handbook of Holocene Palaeoecology and Palaeohydrology: 127-144. John Wiley & Sons, New York. Kaiser, K., Küster, M., Fülling, A., Theuerkauf, M., Dietze, E., Graventein, H., Koch, P.J., Bens, O., Brauer, A., 2014. Littoral landforms and pedosedimentary sequences indicating late Holocene lake-level changes in northern central Europe ' A case study from northeastern Germany. Geomorphology 216, 58-78.

  7. Holocene evolution of the River Nile drainage system as revealed from the Lake Dendi sediment record, central Ethiopian highlands

    NASA Astrophysics Data System (ADS)

    Wagner, B.; Viehberg, F. A.; Wennrich, V.; Junginger, A.; Kolvenbach, A.; Rethemeyer, J.; Schaebitz, F.; Schmiedl, G. H.

    2015-12-01

    A 12 m long sediment sequence from Dendi Crater lakes, located on the central Ethiopian Plateau, was analysed with sedimentological and geochemical methods to reconstruct the regional environmental history. Bulk organic carbon samples from 23 horizons throughout the sequence were used for AMS radiocarbon dating and indicate that the sediment sequence spans the last ca. 12 cal kyr BP. Microscope analyses and sedimentological data reveal three tephra layers, of which the most prominent layer with a thickness of ~2 m was deposited at 10.2 cal kyr BP and probably originates from an eruption of the Wenchi crater 12 km to the west of the Dendi lakes. Sedimentological data of the pelagic deposits indicate shifts in erosion and rainfall throughout the record. A decrease in Ca and Sr at 11.6 cal kyr BP is related to the shift of less humid condition during the Younger Dryas (YD) to the return to full humid conditions of the African Humid Period (AHP). Single thin horizons with high carbonate content or high Ti and K imply that short spells of dry conditions and significantly increased rainfall superimpose the generally more humid conditions during the AHP. The end of the AHP is gradual. Relatively stable and less humid conditions characterised the Dendi Crater lakes until around 3.9 cal kyr BP. A highly variable increase in clastic matter over the last 1500 years indicates higher erosion due to short-term variations in precipitation within the Dendi catchment. Overall, the sediment record suggests moderate change of precipitation during the Holocene, which is probably due to their exposed location in the Ethiopian highlands. The data from the Dendi Crater lakes show, in concert with other records from the Nile catchment and the Eastern Mediterranean Sea (EMS), that the Blue Nile provided the main freshwater source for maintaining EMS stratification and sapropel S1 formation between ca. 10.0 and 8.7 cal kyr BP. Subsequent aridification is recorded from equatorial East Africa

  8. 50 CFR Table 5 to Part 226 - Hydrologic Units and Counties Containing Critical Habitat for Central California Coast Coho...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Critical Habitat for Central California Coast Coho Salmon, Tribal Lands Within the Range of the ESU, and... and Counties Containing Critical Habitat for Central California Coast Coho Salmon, Tribal Lands Within... Warm Springs Dam (Lake Sonoma); Coyote Dam (Lake Mendocino). Gualala-Salmon 18010109 Sonoma (CA...

  9. Pesticides and their breakdown products in Lake Waxahachie, Texas, and in finished drinking water from the lake

    USGS Publications Warehouse

    Ging, Patricia B.

    2002-01-01

    Since 1991, the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Program has collected pesticide data from streams and aquifers throughout the Nation (Gilliom and others, 1995). However, little published information on pesticides in public drinking water is available. The NAWQA Program usually collects data on the sources of drinking water but not on the finished drinking water. Therefore, the U.S. Environmental Protection Agency (USEPA), in conjunction with the NAWQA Program, has initiated a nationwide pilot project to collect information on concentrations of pesticides and their breakdown products in finished drinking water, in source waters such as reservoirs, and in the basins that contribute water to the reservoirs. The pilot project was designed to collect water samples from finished drinking-water supplies and the associated source water from selected reservoirs that receive runoff from a variety of land uses. Lake Waxahachie, in Ellis County in north-central Texas, was chosen to represent a reservoir receiving water that includes runoff from cotton cropland. This fact sheet presents the results of pesticide sampling of source water from Lake Waxahachie and in finished drinking water from the lake. Analyses are compared to indicate differences in pesticide detections and concentrations between lake water and finished drinking water.

  10. Hydrologic and climatologic data, 1965, Salt Lake County, Utah

    USGS Publications Warehouse

    Iorns, W.V.; Mower, Reed W.; Horr, C.A.

    1966-01-01

    An investigation of the water resources of Salt Lake County, Utah, was undertaken by the Water Resources Division of the U.S. Geological Survey in July 1963. This investigation is a cooperative project financed equally by the State of Utah and the Federal Government in accordance with an agreement between the State Engineer and the Geological Survey. The Utah Water and Power Board, Utah Fish and Game Commission, Salt Lake County Water Conservancy District, Metropolitan Water District of Salt Lake City, Salt Lake County, Kennecott Copper Corporation, Utah Power and Light Company, Salt Lake City Chamber of Commerce, and the Central Utah Water Conservancy District. contributed funds to the State Engineer's office toward support of the project.The investigation encompasses the collection and interpretation of a large variety of climatologic, hydrologic, and geologic data in and near Salt Lake County. Utah Basic-Data Release No. 11 contains data collected through 1964. This release contains climatologic and surface-water data for the 1965 water year (October 1964 to September 1965) and ground-water data collected during the 1965 calendar year. Similar annual releases will contain data collected during the remainder of the investigation, and interpretive reports will be prepared as the investigation proceeds. Organizations that furnished data are acknowledged in station descriptions and footnotes to tables.

  11. Hydrologic and climatologic data, 1966, Salt Lake County, Utah

    USGS Publications Warehouse

    Hely, A.G.; Mower, Reed W.; Horr, C.A.

    1967-01-01

    An investigation of the water resources of Salt Lake County, Utah, was undertaken by the Water Resources Division of the U.S. Geological Survey in July 1963. This investigation is a cooperative project financed equally by the State of Utah and the Federal Government in accordance with an agreement between the State Engineer and the Geological Survey. The Utah Water and Power Board, Utah Fish and Game Commission, Salt Lake County Water Conservancy District, Metropolitan Water District of Salt Lake City, Salt Lake County, Kennecott Copper Corporation, Utah Power and Light Company, Salt Lake City Chamber of Commerce, and the Central Utah Water Conservancy District contributed funds to the State Engineer's office toward support of the project.The investigation encompasses the collection and interpretation of a large variety of climatologic, hydrologic, and geologic data in and near Salt Lake County. Utah Basic-Data Releases 11 and 12 contain data collected through 1965. This release contains climatologic and surface-water data for the 1966 water year (October 1965 to September 1966) and groundwater data collected during the 1966 calendar year. Similar annual releases will contain data collected during the remainder of the investigation, and interpretive reports will be prepared as the investigation proceeds. Organizations that furnished data are acknowledged in station descriptions and footnotes to tables.

  12. 2016 Lake Michigan Lake Trout Working Group Report

    USGS Publications Warehouse

    Madenjian, Charles P.; Breidert, Brian; Boyarski, David; Bronte, Charles R.; Dickinson, Ben; Donner, Kevin; Ebener, Mark P.; Gordon, Roger; Hanson, Dale; Holey, Mark; Janssen, John; Jonas, Jory; Kornis, Matthew; Olsen, Erik; Robillard, Steve; Treska, Ted; Weldon, Barry; Wright, Greg D.

    2017-01-01

    This report provides a review on the progression of lake trout rehabilitation towards meeting the Salmonine Fish Community Objectives (FCOs) for Lake Michigan (Eshenroder et. al. 1995) and the interim goal and evaluation objectives articulated in A Fisheries Management Implementation Strategy for the Rehabilitation of Lake Trout in Lake Michigan (Dexter et al. 2011); we also include data describing lake trout stocking and mortality to portray the present state of progress towards lake trout rehabilitation.

  13. Anatomy of the Midcontinent Rift beneath Lake Superior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, M.D.; McGinnis, L.D.; Ervin, C.P.

    1994-09-01

    The structure and geometry of the 1.1-b.y.-old Midcontinent Rift system under Lake Superior is interpreted from 20 seismic reflection profiles recorded during the early and mid-1980s. The seismic data reveal that rift basins under Lake Superior are variable in depth and are partially filled with Keweenawan age sediments to depths of 7 km or more and volcanic flows to depths of 36 km. These rift basins form a continuous and sinuous feature that widens in the Allouez Basin and Marquette Basin in the western and central lake and narrows between White Ridge and the Porcupine Mountains. The rift basin bendsmore » southeast around the Keweenaw Peninsula, widens to about 100 km as it extends into the eastern half of Lake Superior, and exists the lake with its axis in the vicinity of Au Sable Point in Pictured Rocks National Lake Shore, about 50 km northeast of Munising, Michigan. The axis of the rift may exit the western end of the lake near Chequamegon Bay in Wisconsin. However, lack of data in that area limits interpretation at this time. Prior to late-stage reverse-faulting, a continuous basin of more uniform thickness was present beneath the lake. Crustal extension during rifting of approximately 50 km was followed by plate convergence and crustal shortening of approximately 30 km, with the major component of thrust from the southeast. Crustal shortening occurred after development of rift grabens and their filling with lava flows, but before deposition of the final sag basin sediments. Integration of information obtained from outcrops with data reported here indicates that the Lake Superior section of the rift is associated with as many as three major boundary faults.« less

  14. Simulation of the effects of rainfall and groundwater use on historical lake water levels, groundwater levels, and spring flows in central Florida

    USGS Publications Warehouse

    O'Reilly, Andrew M.; Roehl, Edwin A.; Conrads, Paul; Daamen, Ruby C.; Petkewich, Matthew D.

    2014-01-01

    The urbanization of central Florida has progressed substantially in recent decades, and the total population in Lake, Orange, Osceola, Polk, and Seminole Counties more than quadrupled from 1960 to 2010. The Floridan aquifer system is the primary source of water for potable, industrial, and agricultural purposes in central Florida. Despite increases in groundwater withdrawals to meet the demand of population growth, recharge derived by infiltration of rainfall in the well-drained karst terrain of central Florida is the largest component of the long-term water balance of the Floridan aquifer system. To complement existing physics-based groundwater flow models, artificial neural networks and other data-mining techniques were used to simulate historical lake water level, groundwater level, and spring flow at sites throughout the area. Historical data were examined using descriptive statistics, cluster analysis, and other exploratory analysis techniques to assess their suitability for more intensive data-mining analysis. Linear trend analyses of meteorological data collected by the National Oceanic and Atmospheric Administration at 21 sites indicate 67 percent of sites exhibited upward trends in air temperature over at least a 45-year period of record, whereas 76 percent exhibited downward trends in rainfall over at least a 95-year period of record. Likewise, linear trend analyses of hydrologic response data, which have varied periods of record ranging in length from 10 to 79 years, indicate that water levels in lakes (307 sites) were about evenly split between upward and downward trends, whereas water levels in 69 percent of wells (out of 455 sites) and flows in 68 percent of springs (out of 19 sites) exhibited downward trends. Total groundwater use in the study area increased from about 250 million gallons per day (Mgal/d) in 1958 to about 590 Mgal/d in 1980 and remained relatively stable from 1981 to 2008, with a minimum of 559 Mgal/d in 1994 and a maximum of 773

  15. Digital data sets that describe aquifer characteristics of the alluvial and terrace deposits along the North Canadian River from Canton Lake to Lake Overholser in Central Oklahoma

    USGS Publications Warehouse

    Adams, G.P.; Rea, Alan; Runkle, D.L.

    1997-01-01

    ARC/INFO export and nonproprietary format files This diskette contains digitized aquifer boundaries and maps of of hydraulic conductivity, recharge, and ground-water level elevation contours for the alluvial and terrace deposits along the alluvial and terrace deposits along the North Canadian River from Canton Lake to Lake Overholser in central Oklahoma. Ground water in approximately 400 square miles of Quaternary-age alluvial and terrace aquifer is an important source of water for irrigation, industrial, municipal, stock, and domestic supplies. The aquifer consists of clay, silt, sand, and gravel. Sand-sized sediments dominate the poorly sorted, fine to coarse, unconsolidated quartz grains in the aquifer. The hydraulically connected alluvial and terrace deposits unconformably overlie Permian-age formations. The aquifer is overlain by a layer of wind-blown sand in parts of the area. Most of the lines in the aquifer boundary, hydraulic conductivity, and recharge data sets were extracted from published digital surficial geology data sets based on a scale of 1:250,000. The ground-water elevation contours and some of the lines for the aquifer boundary, hydraulic conductivity, and recharge data sets were digitized from a ground-water modeling report about the aquifer published at a scale of 1:250,000. The hydraulic conductivity values and recharge rates also are from the ground-water modeling report. Ground-water flow models are numerical representations that simplify and aggregate natural systems. Models are not unique; different combinations of aquifer characteristics may produce similar results. Therefore, values of hydraulic conductivity and recharge used in the model and presented in this data set are not precise, but are within a reasonable range when compared to independently collected data.

  16. Hydrogeochemical investigations in a drained lake area: the case of Xynias basin (Central Greece).

    PubMed

    Charizopoulos, Nikos; Zagana, Eleni; Stamatis, Georgios

    2016-08-01

    In Xynias drained Lake Basin's area, central Greece, a hydrogeochemical research took place including groundwater sampling from 30 sampling sites, chemical analysis, and statistical analysis. Groundwaters present Ca-Mg-HCO3 as the dominant hydrochemical type, while their majority is mixed waters with non-dominant ion. They are classified as moderately hard to hard and are characterized by oxidizing conditions. They are undersaturated with respect to gypsum, anhydrite, fluorite, siderite, and magnesite and oversaturated in respect to calcite, aragonite, and dolomite. Nitrate concentration ranges from 4.4 to 107.4 mg/L, meanwhile 13.3 % of the samples exceed the European Community (E.C.) drinking water permissible limit. The trace elements Fe, Ni, Cr, and Cd present values of 30, 80, 57, and 50 %, respectively, above the maximum permissible limit set by E.C. Accordingly, the majority of the groundwaters are considered unsuitable for drinking water needs. Sodium adsorption ratio values (0.04-3.98) and the electrical conductivity (227-1200 μS/cm) classify groundwaters as suitable for irrigation uses, presenting low risk and medium soil alkalization risk. Factor analysis shows that geogenic processes associated with the former lacustrine environment and anthropogenic influences with the use of fertilizers are the major factors that characterized the chemical composition of the groundwaters.

  17. Vegetation, climate and lake changes over the last 7000 years at the boreal treeline in north-central Siberia

    NASA Astrophysics Data System (ADS)

    Klemm, Juliane; Herzschuh, Ulrike; Pestryakova, Luidmila A.

    2016-09-01

    Palaeoecological investigations in the larch forest-tundra ecotone in northern Siberia have the potential to reveal Holocene environmental variations, which likely have consequences for global climate change because of the strong high-latitude feedback mechanisms. A sediment core, collected from a small lake (radius ∼100 m), was used to reconstruct the development of the lake and its catchment as well as vegetation and summer temperatures over the last 7100 calibrated years. A multi-proxy approach was taken including pollen and sedimentological analyses. Our data indicate a gradual replacement of open larch forests by tundra with scattered single trees as found today in the vicinity of the lake. An overall trend of cooling summer temperature from a ∼2 °C warmer-than-present mid-Holocene summer temperatures until the establishment of modern conditions around 3000 years ago is reconstructed based on a regional pollen-climate transfer function. The inference of regional vegetation changes was compared to local changes in the lake's catchment. An initial small water depression occurred from 7100 to 6500 cal years BP. Afterwards, a small lake formed and deepened, probably due to thermokarst processes. Although the general trends of local and regional environmental change match, the lake catchment changes show higher variability. Furthermore, changes in the lake catchment slightly precede those in the regional vegetation. Both proxies highlight that marked environmental changes occurred in the Siberian forest-tundra ecotone over the course of the Holocene.

  18. 78 FR 70941 - Notification of a Public Teleconference of the Great Lakes Advisory Board

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-27

    ... development of a draft Great Lakes Restoration Initiative FY 2015-2019 Action Plan. DATES: The public teleconference will be held on Wednesday, December 11, 2013 from 1:00 p.m. to 3 p.m. Central Time, 2 p.m. to 4 p....gov . General information on the Great Lakes Restoration Initiative (GLRI) and the GLAB can be found...

  19. First records of a European cladoceran, Bythotrephes cederstroemi, in Lakes Erie and Huron

    USGS Publications Warehouse

    Bur, Michael T.; Klarer, David M.; Krieger, Kenneth A.

    1986-01-01

    Adult forms of the cladoceran Bythotrephes cederstroemi Schoedler (Cercopagidae), a widespread European freshwater zooplankter, occurred in the stomachs of four common species of Lake Erie fish (yellow perch, Perca flavescens; white perch, Morone americana; white bass, M. chrysops; and walleye, Stizostedion vitreum vitreum) collected in early October 1985. The fish were collected at several stations in the nearshore open waters of the central basin between Ashtabula and Huron, Ohio. Other investigators have seen this species in other locations in Lake Erie and also in Lake Huron. The report of B. cederstroemi in Lake Huron in December 1984 appears to be the first record of this species in North America.

  20. Tephrostratigraphy the DEEP site record, Lake Ohrid

    NASA Astrophysics Data System (ADS)

    Leicher, N.; Zanchetta, G.; Sulpizio, R.; Giaccio, B.; Wagner, B.; Francke, A.

    2016-12-01

    In the central Mediterranean region, tephrostratigraphy has been proofed to be a suitable and powerful tool for dating and correlating marine and terrestrial records. However, for the period older 200 ka, tephrostratigraphy is incomplete and restricted to some Italian continental basins (e.g. Sulmona, Acerno, Mercure), and continuous records downwind of the Italian volcanoes are rare. Lake Ohrid (Macedonia/Albania) in the eastern Mediterranean region fits this requisite and is assumed to be the oldest continuously existing lake of Europe. A continous record (DEEP) was recovered within the scope of the ICDP deep-drilling campaign SCOPSCO (Scientific Collaboration on Past Speciation Conditions in Lake Ohrid). In the uppermost 450 meters of the record, covering more than 1.2 Myrs of Italian volcanism, 54 tephra layers were identified during core-opening and description. A first tephrostratigraphic record was established for the uppermost 248 m ( 637 ka). Major element analyses (EDS/WDS) were carried out on juvenile glass fragments and 15 out of 35 tephra layers have been identified and correlated with known and dated eruptions of Italian volcanoes. Existing 40Ar/39Ar ages were re-calculated by using the same flux standard and used as first order tie points to develop a robust chronology for the DEEP site succession. Between 248 and 450 m of the DEEP site record, another 19 tephra horizons were identified and are subject of ongoing work. These deposits, once correlated with known and dated tephra, will hopefully enable dating this part of the succession, likely supported by major paleomagnetic events, such as the Brunhes-Matuyama boundary, or the Cobb-Mountain or the Jaramillo excursions. This makes the Lake Ohrid record a unique continuous, distal record of Italian volcanic activity, which is candidate to become the template for the central Mediterranean tephrostratigraphy, especially for the hitherto poorly known and explored lower Middle Pleistocene period.

  1. Comparison of preconstruction and 2003 bathymetric and topographic survey of Lake McConaughy, Nebraska

    USGS Publications Warehouse

    Kress, Wade H.; Sebree, Sonja K.; Littin, Gregory R.; Drain, Michael A.; Kling, Michael E.

    2005-01-01

    The U.S. Geological Survey, in cooperation with The Central Nebraska Public Power and Irrigation District, conducted a study that used bathymetric and topographic surveying in conjunction with Geographical Information Systems techniques to determine the 2003 physical shape, current storage capacity, and the changes in storage capacity of Lake McConaughy that have occurred over the past 62 years. By combining the bathymetric and topographic survey data, the current surface area of Lake McConaughy was determined to be 30,413.0 acres, with a volume of 1,756,300 acre-feet at the lake conservation-pool elevation of 3,266.4 feet above North American Vertical Datum of 1988 (3,265.0 feet above Central datum). To determine the changes in storage of Lake McConaughy, the 2003 survey Digital Elevation Model (DEM) was compared to a preconstruction DEM compiled from historical contour maps. This comparison showed an increase in elevation at the dam site due to the installation of Kingsley Dam. Immediately to the west of the Kingsley Dam is an area of decline where a borrow pit for Kingsley Dam was excavated. The comparison of the preconstruction survey to the 2003 survey also was used to estimate the gross storage capacity reduction that occurred between 1941 and 2002. The results of this comparison indicate a gross storage capacity reduction of approximately 42,372 acre-feet, at the lake conservation-pool elevation of 3,266.4 feet in NAVD 88 (3,265.0 feet in Central datum). By comparing preconstruction and 2003 survey data and subtracting the Kingsley Dam and borrow pit, the total estimated net volume of sediment deposited over the past 62 years is 53,347,124 cubic yards, at an annual average rate of 860,437 cubic yards per year. The approximate decrease in the net storage capacity occurring over the past 62 years is 33,066 acre-feet, at an annual average decrease of approximately 533 acre-feet per year, which has resulted in a 1.8 percent decrease in storage capacity of Lake

  2. Impacts of Agricultural Practices and Tourism Activities on the Sustainability of Telaga Warna and Telaga Pengilon Lakes, Dieng Plateau, Central Java

    NASA Astrophysics Data System (ADS)

    Sudarmadji; Pudjiastuti, Hermin

    2018-02-01

    Telaga Warna and Telaga Pengilon are two volcanic lakes in the Dieng Plateau offer some unique phenomena which are interested for tourists to visit. Telaga Warna and Telaga Pengilon are located side by side in the Dieng Palteau. Those two lakes also have specific ecosystem which differ to other lakes. However as land use in the surrounding area is now gradually changing, the lake is now facing to environmental degradation. The land use in the surrounding area is for intensive agricultural which main crops are vegetable, especially potatoes. Meanwhile, the number of tourist visiting those two lakes is increasing; it may also give some impact to the lake environment. This research aims to study the impacts of agricultural practices and tourism activities to the lake environmental which lead to the environment sustainability of the lakes. The field survey was conducted to collect some data on lakes characteristics, agricultural and tourism activities. Some interviews to local people and tourists were also conducted. Some water and sediment samples were collected followed by laboratory analyses. Some secondary data from previous study was also collected. Data analysis was conducted based on qualitative and quantitative techniques. The study found that agricultural practices of potatoes plantation uses water from the Telaga Pengilon to irrigate the plant by pumping out the water using water pump and distributes the water over the plantation area. Agricultural practices lead to soil erosion, which contribute sediment to the lake carried by surface runoff. Therefore, the volume of lakes is gradually decreasing. The use of fertilizer in the agricultural practice contribute nutrient into the lake carried by surface runoff, leading to the eutrophication, due to the excess used of fertilizer. The study concludes that agricultural practices and tourism activities have some positive economic impacts to the local community, however it also give some adverse affects on the lakes

  3. Role of the Lakes in Groundwater Recharge and Discharge in the Young Glacial Area, Northern Poland.

    PubMed

    Jaworska-Szulc, Beata

    2016-07-01

    The aim of this research was to delineate characteristic hydrogeological lake types in the Young Glacial Area (YGA). The YGA is in the central and east part of the Kashubian Lake District (KLD) in Northern Poland, an area covered by deposits of Quaternary glaciation. All the bigger lakes were investigated in the area of about 1500 km(2) (39 lakes). The role of lakes in groundwater recharge and discharge was determined from total dissolved solids (TDS) in lake waters and also from groundwater flow simulation. The general trend was that gaining lakes, as determined by flow modeling, had higher values of TDS than losing lakes. In addition to typical gaining lakes (with TDS > 250 mg/l), there were losing lakes perched on glacial till deposits with very low TDS (<100 mg/l). Two groups of losing lakes were delineated: ones with very low TDS and another group with slightly higher TDS (due to local contact with groundwater). Flow-through lakes with TDS of 170-200 mg/l were also delineated. © 2015, National Ground Water Association.

  4. Faro Lake, a big picture from a small ecosystem

    NASA Astrophysics Data System (ADS)

    Saccà, Alessandro

    2017-04-01

    Faro Lake is a small coastal basin located by the Straits of Messina (Central Mediterranean Sea) and is the deepest basin in Sicily and one of the deepest coastal lakes in Italy. Considering the correspondence of the shorelines of the lake with half-graben faults, a tectonic event is the most likely explanation for its remarkable depth (30 m in the central region). Due to its funnel-shape bathymetry and its limited water exchanges with the nearby sea, Faro Lake shows the typical trait of a meromictic basin, that is a persistent physical and chemical stratification of the water column. While the upper water layer is well oxygenated, chiefly due to advection processes, the bottom layer is anoxic and characterized by a vertical gradient of hydrogen sulfide concentration, reaching a maximum at the water/sediment interface. A transition zone also exists between these two layers where oxygen concentration sharply decreases with depth. As a result of this environmental heterogeneity, a variety of ecological niches arise along the water column of Faro Lake, which are exploited by a host of prokaryote groups showing a multiplicity of metabolic pathways. These microbes, in turn, affect the chemical gradients of the water column in a complex interplay and also serve as a food source for microbial eukaryotes in the so-called microbial food web. In summer, thanks to enhanced light availability and higher water temperature, a bloom of brown-colored photosynthetic sulfur bacteria develops in the upper part of the anoxic zone, resulting in a distinct "red water layer", coupled with significantly high biomasses of ciliated protozoa. During my researches, I have documented and quantified the trophic interactions between phagotrophic protozoa and the prokaryotes thriving in the "red water layer". I have also found a peculiar photosynthetic sulfur bacterium and a unique bacteriochlorophyll homologue that have been retrieved, to date, only from Faro Lake and from the Black Sea. I have

  5. 75 FR 8645 - South Central Idaho Resource Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-25

    ... Central Idaho Resource Advisory Council AGENCY: Forest Service, USDA. ACTION: Notice of meeting. SUMMARY: The South Central Idaho RAC will meet in Twin Falls, Idaho. The committee is meeting as authorized... Springs Hotel, 1357 Blue Lakes Blvd. North, Twin Falls, Idaho 83301. Written comments should be sent to...

  6. An inventory of glacial lakes in the Austrian Alps

    NASA Astrophysics Data System (ADS)

    Buckel, Johannes; Otto, Jan-Christoph; Keuschnig, Markus; Götz, Joachim

    2016-04-01

    The formation of lakes is one of the consequences of glacier retreat due to climate change in mountain areas. Numerous lakes have formed in the past few decades in many mountain regions around the globe. Some of these lakes came into focus due to catastrophic hazard events especially in the Himalayas and the Andes. Glacial lake development and lifetime is controlled by the complex interplay of glacier dynamics, geomorphological process activity and geological boundary conditions. Besides the hazard potential new lakes in formerly glaciated areas will significantly contribute to a new landscape setting and to changing geomorphologic, hydrologic and ecologic conditions at higher alpine altitudes. We present an inventory of high alpine lakes in the Austrian Alps located above an altitude of 1700 m asl. Most of these lakes are assumed to be of glacial origin, but other causes for development, like mass movements are considered as well. The inventory is a central part of the project FUTURELAKES that aims at modelling the potential development of glacial lakes in Austria (we refer to the presentation by Helfricht et al. during the conference for more details on the modelling part). Lake inventory data will serve as one basis for model validation since modelling is performed on different time steps using glacier inventory data. The purpose of the lake inventory is to get new insights into boundary conditions for lake formation and evolution by analysing existing lake settings. Based on these information the project seeks to establish a model of lake sedimentation after glacier retreat in order to assess the potential lifetime of the new lakes in Austria. Lakes with a minimum size of 1000 m² were mapped using multiple aerial imagery sources. The dataset contains information on location, geometry, dam type, and status of sedimentation for each lake. Additionally, various geologic, geomorphic and morphometric parameters describe the lake catchments. Lake data is related to

  7. Evidence of offshore lake trout reproduction in Lake Huron

    USGS Publications Warehouse

    DeSorcie, Timothy J.; Bowen, Charles A.

    2003-01-01

    Six Fathom Bank-Yankee Reef, an offshore reef complex, was an historically important spawning area believed to represent some of the best habitat for the rehabilitation of lake trout Salvelinus namaycush in Lake Huron. Since 1986, lake trout have been stocked on these offshore reefs to reestablish self-sustaining populations. We sampled with beam trawls to determine the abundance of naturally reproduced age-0 lake trout on these offshore reefs during May-July in 1994-1998 and 2000-2002. In total, 123 naturally reproduced lake trout fry were caught at Six Fathom Bank, and 2 naturally reproduced lake trout fry were caught at nearby Yankee Reef. Our findings suggest that this region of Lake Huron contains suitable habitat for lake trout spawning and offers hope that lake trout rehabilitation can be achieved in the main basin of Lake Huron.

  8. Early fire history near Papineau lake, Ontario

    Treesearch

    Daniel C. Dey; Richard P. Guyette

    1996-01-01

    Research that defines the role of fire in upland red oak-pine ecosystems in central Ontario is being conducted by the Great Lakes-St. Lawrence Silviculture program. Site-specific fire histories are being developed that document fire frequency, fire behavior, fire effects on forest regeneration and grwoth, and the influnce of human activites on fire disturbances. This...

  9. Piping Plover Habitat Loss at the Nature Conservancy's John E. Williams Preserve, Central North Dakota: an Interdisciplinary Study of Alkaline Prairie Pothole Glacial Lakes, Groundwater, Gravel Beaches and Vegetation Encroachment

    NASA Astrophysics Data System (ADS)

    Sciamanda, M.; Kellner, J. R.; Lamb, M. A.; Clotts, R.; Pastika, D. W.; Welter, D. J.; Brown, J. M.; Schuweiler, T. K.; Mohanty, R. B.; Vang, K. M.; Nichols, K. S.; Lorah, P. A.; Robinson, D. O.

    2016-12-01

    The Piping Plover (Charadrius melodus) is a threatened migratory bird that nests along shores of alkaline lakes, the Great Lakes, and the Atlantic Ocean. John Williams Preserve, in central North Dakota, houses one of the largest breeding populations in the world. Over the past eighty years, vegetation has encroached and caused variable habitat loss from lake to lake (Root and Ryan, 2004). Processes operating on different time scales affect lake, beach and vegetation changes: long-term global climate changes, decadal drought cycles, and seasonal and local weather. To determine how these processes interact to affect vegetation growth, soil salinity and habitat loss, we began a multidisciplinary field study. Sampled lake cores provide a chemical record of historical events and possible habitat changes. Water chemistry samples taken in different months inform groundwater flow patterns and core interpretation. Spatial analyses of local and regional groundwater systems informed placement of piezometers to determine groundwater flow. Aerial drone imagery builds on previous ground studies and allows for a quantitative spatial analysis of vegetation encroachment and geomorphic analyses. The three main lakes in our study show a general increase in concentration of major ions from east to west —from Pelican to Peterson to Williams—that mirrors westerly groundwater flow. Geochemical data from sediment cores, including LOI, XRD and XRF data, show that Williams is the most variable chemically, Pelican the least. Williams contains the most evaporate minerals, including thernardite and burkeite. Land use changes in the last 120 years may have changed lake chemistry: at 60 cm depth in cores, there are changes in the organic matter concentration and major ion chemistry, suggesting an increase in runoff and sediment input. Historical research points to changing agricultural practices as a possible cause of these changes. Initial ArcGIS analyses of detailed drone topographic data

  10. Lake Nasser and Toshka Lakes, Egypt

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Lake Nasser (center) and the Toshka Lakes (center left) glow emerald green and black in this MODIS true-color image acquired March 8, 2002. Located on and near the border of Egypt and Norther Sudan, these lakes are an oasis of water in between the Nubian (lower right) and Libyan Deserts (upper left). Also visible are the Red Sea (in the upper right) and the Nile River (running north from Lake Nasser). Credit: Jacques Descloitres, MODIS Land Rapid Response Team, NASA/GSFC

  11. The Lateglacial and Holocene history of annually laminated Lake Tiefer See

    NASA Astrophysics Data System (ADS)

    Theuerkauf, Martin; Dräger, Nadine; Lampe, Reinhard; Lorenz, Sebastian; Kienel, Ulrike; Schult, Manuela; Słowiński, Michał; Wulf, Sabine; Zawiska, Izabela; Brauer, Achim

    2015-04-01

    Lake Tiefer See (N 53.59, E 12.53) is one of the rare lakes with a long sequence of annually laminated Holocene sediments in northern Central Europe. The lake is a valuable link between laminated lakes in more oceanic climates of the Eifel region and NW Germany and laminated lakes in the more continental climate of Poland. It thus provides great potential to study past climate, vegetation and human land use along that climate transition. The sediments of Lake Tiefer See show repeated changes in varve quality and composition. To disentangle in how far these changes relate to either past climate change, lake water level fluctuations or to changes in the local environment caused by e.g. human activity, we studied 16 sediment cores taken mainly from the lake margin. Almost all cores show interruptions in sedimentation namely during the mid-Holocene, suggesting that the lake water level has been lowered during this period. However, peat-gyttia alternations point at lake level fluctuations also during the early and late Holocene. Discontinuous sedimentation in cores from intermediate depth points at recurring slumping events. The pollen record additionally indicates prominent alternations in land use intensity throughout the late Holocene. By testing correlation between the hydrological changes, changes in land use intensity and changes in the sediment record we discuss effects of climate change and further factors on varve formation in Lake Tiefer See. This study is a contribution to the Virtual Institute of Integrated Climate and Landscape Evolution Analysis -ICLEA- of the Helmholtz Association; grant number VH-VI-415.

  12. Hydrology and water quality of East Lake Tohopekaliga, Osceola County, Florida

    USGS Publications Warehouse

    Schiffer, Donna M.

    1987-01-01

    East Lake Tohopekaliga, one of the major lakes in central Florida, is located in the upper Kissimmee River basin in north-east Osceola County. It is one of numerous lakes in the upper basin used for flood control, in addition to recreation and some irrigation of surrounding pasture. This report is the fourth in a series of lake reconnaissance studies in the Kissimmee River basin prepared in cooperation with the South Florida Water Management District. The purpose of the report is to provide government agencies and the public with a brief summary of the lake 's hydrology and water quality. Site information is given and includes map number, site name, location, and type of data available (specific conductivity, pH, alkalinity, turbidity, color, dissolved oxygen, hardness, dissolved chlorides, dissolved sodium, dissolved calcium, dissolved magnesium, dissolved potassium, nitrogen, ammonia, nitrates, carbon and phosphorus). The U.S. Geological Survey (USGS) maintained a lake stage gaging station on East Lake Tohopekaliga from 1942 to 1968. The South Florida Water Management District has recorded lake stage since 1963. Periodic water quality samples have been collected from the lake by the South Florida Water Management District and USGS. Water quality and discharge data have been collected for one major tributary to the lake, Boggy Creek. Although few groundwater data are available for the study area, results of previous studies of the groundwater resources of Osceola County are included in this report. To supplement the water quality data for East Lake Tohopekaliga, water samples were collected at selected sites in November 1982 (dry season) and in August 1983 (rainy season). Samples were taken at inflow points, and in the lake, and vertical profiles of dissolved oxygen and temperature were measured in the lake. A water budget from an EPA report on the lake is also included. (Lantz-PTT)

  13. Lake whitefish diet, condition, and energy density in Lake Champlain and the lower four Great Lakes following dreissenid invasions

    USGS Publications Warehouse

    Herbst, Seth J.; Marsden, J. Ellen; Lantry, Brian F.

    2013-01-01

    Lake Whitefish Coregonus clupeaformis support some of the most valuable commercial freshwater fisheries in North America. Recent growth and condition decreases in Lake Whitefish populations in the Great Lakes have been attributed to the invasion of the dreissenid mussels, zebra mussels Dreissena polymorpha and quagga mussels D. bugensis, and the subsequent collapse of the amphipod, Diporeia, a once-abundant high energy prey source. Since 1993, Lake Champlain has also experienced the invasion and proliferation of zebra mussels, but in contrast to the Great Lakes, Diporeia were not historically abundant. We compared the diet, condition, and energy density of Lake Whitefish from Lake Champlain after the dreissenid mussel invasion to values for those of Lake Whitefish from Lakes Michigan, Huron, Erie, and Ontario. Lake Whitefish were collected using gill nets and bottom trawls, and their diets were quantified seasonally. Condition was estimated using Fulton's condition factor (K) and by determining energy density. In contrast to Lake Whitefish from some of the Great Lakes, those from Lake Champlain Lake Whitefish did not show a dietary shift towards dreissenid mussels, but instead fed primarily on fish eggs in spring, Mysis diluviana in summer, and gastropods and sphaeriids in fall and winter. Along with these dietary differences, the condition and energy density of Lake Whitefish from Lake Champlain were high compared with those of Lake Whitefish from Lakes Michigan, Huron, and Ontario after the dreissenid invasion, and were similar to Lake Whitefish from Lake Erie; fish from Lakes Michigan, Huron, and Ontario consumed dreissenids, whereas fish from Lake Erie did not. Our comparisons of Lake Whitefish populations in Lake Champlain to those in the Great Lakes indicate that diet and condition of Lake Champlain Lake Whitefish were not negatively affected by the dreissenid mussel invasion.

  14. Modeling waves and circulation in Lake Pontchartrain, Louisiana

    USGS Publications Warehouse

    Signell, Richard P.; List, Jeffrey H.

    1997-01-01

    The U.S. Geological Survey is conducting a study of storm-driven sediment resuspension and transport in Lake Pontchartrain, Louisiana. Two critical processes related to sediment transport in the lake are (1) the resuspension of sediments due to wind-generated storm waves and (2) the movement of resuspended material by lake currents during storm wind events. The potential for sediment resuspension is being studied with the wave prediction model which simulates local generation of waves by wind and shallow-water effects on waves (refraction, shoaling, bottom friction, and breaking). Long-term wind measurements are then used to determine the regional "climate" of bottom orbital velocity (showing the spatial and temporal variability of wave-induced currents at the bottom). The circulation of the lake is being studied with a three-dimensional hydrodynamic model. Results of the modeling effort indicate that remote forcing due to water levels in Mississippi Sound dominate the circulation near the passes in the eastern end of the lake, while local wind forcing dominates water movement in the western end. During typical storms with winds from the north-northeast or the south-southeast, currents along the south coast near New Orleans generally transport material westward, while material in the central region moves against the wind. When periods of sustained winds are followed by a drop in coastal sea level, a large amount of suspended sediment can be flushed from the lake.

  15. View of Central Texas as seen from Apollo 9

    NASA Image and Video Library

    1969-03-09

    AS09-22-3341 (3-13 March 1969) --- Central Texas area as photographed from the Apollo 9 spacecraft during its Earth-orbital mission. Interstate 35 runs from Austin (right center edge of picture) to Waco (near bottom left corner). Also visible are the cities of Georgetown, Taylor, Temple and Killeen. The Colorado River runs through Austin. The Brazos River flows through Waco. Lake Travis is upstream from Austin. Lake Whitney is at bottom left corner of picture. The Belton Reservoir is near bottom center. The lake formed by the dam on the Lampasas River near Belton is also clearly visible.

  16. High Resolution Environmental Magnetic Study of a Holocene Sedimentary Record from Zaca Lake, Ca

    NASA Astrophysics Data System (ADS)

    Platzman, E. S.; Lund, S.; Kirby, M. E.; Feakins, S. J.

    2012-12-01

    Magnetic studies of Holocene lake sediments recovered from Zaca lake have yielded a 3000-year high resolution record of environmental variability and paleolimnology. Zaca lake is a small oligomictic lake ~12m deep situated 730 m above sea level in the steep canyons of the San Rafael mountains, NW of Santa Barbara. Throughout much of the year Zaca lake is anaerobic below 7m. Hydrogen sulfide, fed into the lake via runoff and local sulphur springs, is present throughout the hypolimnion with concentrations sometime exceeding 30 mg/ l. During the summer months when the lake is stratified, light colored carbonate rich microlaminae are formed; and often during the winter months when the lake overturns, killing the anaerobic bacteria, black microlamina rich in iron sulfide are deposited on the lake floor, creating a stratigraphy reflecting patterns of environmental variability on annual to millennial scales. Samples for magnetic analysis were obtained from 8.5 m of core recovered from the central region of Zaca lake. Ages, constrained using radiocarbon chronostratigraphy, yielded sedimentation rates of 2-10 mm/yr with an average rate of 3 mm per yr over the 3000 yr interval. Parameters reflecting decadal scale variability in magnetic concentration (susceptibility, ARM, SIRM) and grainsize (ARM/Chi) were measured every 2 cm. Additional rock magnetic tests, including thermal demagnetization of three component IRM, were applied at selected intervals to constrain the magnetic mineralogy. These data were combined with analyses of clastic grain size, % calcium carbonate and % organics to create a multiproxy record of environmental variability. Results show that Zaca lake has had a complex depositional history. Anthropogenic effects associated with European colonization are present in the upper meters. Most notable, however, is a dramatic shift in the magnetic parameters and mineralogy between the upper and lower half of the core (circa 1300 ybp) indicating a shift in regime

  17. Physical, chemical, and biological data for detailed study of the Sun River Irrigation Project, Freezout Lake Wildlife Management Area, and Benton Lake National Wildlife Refuge, west-central Montana, 1990-92, with selected data for 1987-89

    USGS Publications Warehouse

    Lambing, J.H.; Nimick, D.A.; Knapton, J.R.; Palawski, D.U.

    1994-01-01

    Physical chemical, and biological data were collected in the lower Sun River area of west-central Montana during 1990-92 as part of a U.S. Department of the Interior detailed study of the extent, magnitude, sources, and potential biological impacts of contaminants associated with irrigation drainage. Physical and chemical data were collected from areas within and near the Sun River Irrigation Project and from wetland areas receiving irrigation drainage. Biological data were collected from areas in and near Freezout Lake Wildlife Management Area and Benton Lake National Wildlife Refuge. Additional biological data were collected previously during 1987-89 as part of a U.S. Fish and Wildlife Service program. This report presents data for selenium and other potentially toxic constituents in solid-phase, water, and biological media. Data consist of concentrations of major and trace elements in soil and drill cores; concen- trations of major ions, nutrients, and trace elements in ground water and surface water; and trace-element concentrations in bottom sediment and biological tissue. Hydrogeologic data for domestic and test wells and daily streamflow data for selected sites also are included.

  18. Citizen and Satellite Measurements Used to Estimate Lake Water Storage Variations

    NASA Astrophysics Data System (ADS)

    Parkins, G.; Pavelsky, T.; Yelton, S.; Ghafoor, S. K.; Hossain, F.

    2017-12-01

    Of the roughly 20-40 million lakes in the world larger than 0.01 km2, perhaps a few thousand receive regular water level monitoring, and only approximately a thousand are included in the largest lake level databases. The prospect for on-the-ground, automated monitoring of a significant fraction of the world's lakes is not high given the considerable expense involved. In comparison to many other measurements, however, measuring lake water level is relatively simple under most conditions. A staff gauge installed in a lake, essentially a leveled ruler, can be read relatively simply by both experts and ordinary citizens. Reliable staff gauges cost far less than automated systems, making them an attractive alternative. However, staff gauges are only effective when they are regularly observed and when those observations are communicated to a central database. We have developed and tested a system for citizen scientists to monitor water levels in 15 lakes in Eastern North Carolina, USA and to easily report those measurements to our project team. We combine these citizen measurements with Landsat measurements of inundated area to track variations in lake water storage. Here, we present the resulting lake water level, inundation extent, and lake storage change time series and assess measurement accuracy. Our primary validation method for citizen-measured lake water levels is comparison with heights from pressure transducers also installed in all fifteen lakes. We use the validated results to understand spatial patterns in the lake hydrology of Eastern North Carolina. Finally, we consider the motivations of citizens who participate in the project and discuss the feedback they have provided regarding our measurement and communication systems.

  19. Surficial geology and stratigraphy of Pleistocene Lake Manix, San Bernardino County, California

    USGS Publications Warehouse

    Reheis, Marith C.; Redwine, Joanna R.; Wan, Elmira; McGeehin, John P.; VanSistine, D. Paco

    2014-01-01

    Pluvial Lake Manix and its surrounding drainage basin, in the central Mojave Desert of California, has been a focus of paleoclimate, surficial processes, and neotectonic studies by the U.S. Geological Survey (USGS) since about 2004. The USGS initiated studies of Lake Manix deposits to improve understanding of the paleoclimatic record and the shifts in atmospheric circulation that controlled precipitation in the Mojave Desert. Until approximately 25,000 years ago, Lake Manix was the terminus of the Mojave River, which drains northeasterly from the San Bernardino Mountains; the river currently terminates in the Soda Lake and Silver Lake playas. Pleistocene Lake Manix occupied several subbasins at its maximum extent. This map focuses on the extensive exposures created by incision of the Mojave River and its tributaries into the interbedded lacustrine and alluvial deposits within the central (Cady) and northeastern (Afton) subbasins of Lake Manix, and extends from the head of Afton Canyon to Manix Wash. The map illuminates the geomorphic development and depositional history of the lake and alluvial fans within the active tectonic setting of the eastern California shear zone, especially interactions with the left-lateral Manix fault. Lake Manix left an extraordinarily detailed but complex record of numerous transgressive-regressive sequences separated by desiccation and deposition of fan, eolian, and fluvial deposits, and punctuated by tectonic movements and a catastrophic flood that reconfigured the lake basin. Through careful observation of the intercalated lacustrine and fan sequences and by determining the precise elevations of unit contacts, this record was decoded to understand the response of the lake and river system to the interplay of climatic, geomorphic, and tectonic forces. These deposits are exposed in steep badland topography. Mapping was carried out mostly at scales of 1:12,000, although the map is presented at 1:24,000 scale, and employs custom unit

  20. Lower Vistula fluvial lakes as possible places of deep groundwaters effluence (Grudziądz Basin, North Central Poland)

    NASA Astrophysics Data System (ADS)

    Kordowski, Jaroslaw; Kubiak-Wójcicka, Katarzyna; Solarczyk, Adam; Tyszkowski, Sebastian

    2014-05-01

    Regarding the outflow the Vistula River is the largest river in the Baltic catchment. In its lower course, below Bydgoszcz, in the Late Holocene Vistula channel adopted an weakly anastomosing fluvial pattern destroyed by intensive human hydrotechnical activity and by the regulation which have intensified about 200 years ago. Channel regulation have left many artificially separated fluvial lakes. Part of them infilled rapidly but the majority have persisted to present day almost unchanged. It has also arised the question: what drives the resistence for silting? To solve the problem there were conducted simultaneous hydrological and geomorphological investigations, because there were two concepts: one that the mineral material is removed from fluvial lakes while high stands by flood waters and second that the material is removed due to high groundwater "exchange" rate when the fluvial lake has a sufficient hydrological connectivity to the main Vistula channel. The Vistula valley crosses morainic plains of the last glaciation. On the average it has about 10 km width and is incised about 70 - 80 m deep, compared to neighbouring plains, dissecting all the Quaternary aquifers. On the floodplain area the Quaternary sediments lay with a layer of only 10-20 m thickness over Miocene and Oligocene sands. In favourable conditions, particularly while a low stand there exists the possibility of Tertiary water migration toward the surface of fluvial lakes provided they have not continuous flood sediments cover on their floors. As an example of such a lake with an intensive water exchange rate by supposed deep groundwaters was chosen the Old Vistula lake (Stara Wisła) near Grudziądz town. The lake has an area of 40 ha, mean depth 1,73 m, maximum depth 8 m, length about 4 km and medium width about 100 m. In the years 2011-2014, with two weeks frequency, in its surficial water layer were conducted measures which included temperature, pH, Eh, suspended matter amount, total and

  1. Spatial patterns in PCB concentrations of Lake Michigan lake trout

    USGS Publications Warehouse

    Madenjian, Charles P.; DeSorcie, Timothy J.; Stedman, Ralph M.; Brown, Edward H.; Eck, Gary W.; Schmidt, Larry J.; Hesselberg, Robert J.; Chernyak, Sergei M.; Passino-Reader, Dora R.

    1999-01-01

    Most of the PCB body burden in lake trout (Salvelinus namaycush) of the Great Lakes is from their food. PCB concentrations were determined in lake trout from three different locations in Lake Michigan during 1994–1995, and lake trout diets were analyzed at all three locations. The PCB concentrations were also determined in alewife (Alosa pseudoharengus), rainbow smelt (Osmerus mordax), bloater (Coregonus hoyi), slimy sculpin (Cottus cognatus), and deepwater sculpin (Myoxocephalus thompsoni), five species of prey fish eaten by lake trout in Lake Michigan, at three nearshore sites in the lake. Despite the lack of significant differences in the PCB concentrations of alewife, rainbow smelt, bloater, slimy sculpin, and deepwater sculpin from the southeastern nearshore site near Saugatuck (Michigan) compared with the corresponding PCB concentrations from the northwestern nearshore site near Sturgeon Bay (Wisconsin), PCB concentrations in lake trout at Saugatuck were significantly higher than those at Sturgeon Bay. The difference in the lake trout PCB concentrations between Saugatuck and Sturgeon Bay could be explained by diet differences. The diet of lake trout at Saugatuck was more concentrated in PCBs than the diet of Sturgeon Bay lake trout, and therefore lake trout at Saugatuck were more contaminated in PCBs than Sturgeon Bay lake trout. These findings were useful in interpreting the long-term monitoring series for contaminants in lake trout at both Saugatuck and the Wisconsin side of the lake.

  2. Anthropopression markers in lake bottom sediments

    NASA Astrophysics Data System (ADS)

    Nadolna, Anna; Nowicka, Barbara

    2014-05-01

    top layer of sediments consists of organic sediment ("sapropel" type). The littoral zone is dominated by sandy material from the shores denudation. In river mouths sandy deltas are formed. The most contaminated sediments are deposited in the central pool, which is a natural trap for the substances flowing with the river that is draining wastewaters from urban areas. At its mouth the sediment samples were significantly contaminated with chromium, zinc, cadmium, copper, nickel, lead and mercury. A high content of total phosphorus was also detected. A different role is played by a large river flowing through the lake. While flushing the sediments it reduces their pollution. The lowest content of markers was detected in headwater areas and in littoral zones exposed to waving.

  3. Potential strategies for recovery of lake whitefish and lake herring stocks in eastern Lake Erie

    USGS Publications Warehouse

    Oldenburg, K.; Stapanian, M.A.; Ryan, P.A.; Holm, E.

    2007-01-01

    Lake Erie sustained large populations of ciscoes (Salmonidae: Coregoninae) 120 years ago. By the end of the 19th century, abundance of lake whitefish (Coregonus clupeaformis) had declined drastically. By 1925, the lake herring (a cisco) population (Coregonus artedii) had collapsed, although a limited lake herring fishery persisted in the eastern basin until the 1950s. In the latter part of the 20th century, the composition of the fish community changed as oligotrophication proceeded. Since 1984, a limited recovery of lake whitefish has occurred, however no recovery was evident for lake herring. Current ecological conditions in Lake Erie probably will not inhibit recovery of the coregonine species. Recovery of walleye (Sander vitreus) and efforts to rehabilitate the native lake trout (Salvelinus namaycush) in Lake Erie will probably assist recovery because these piscivores reduce populations of alewife (Alosa psuedoharengus) and rainbow smelt (Osmerus mordax), which inhibit reproductive success of coregonines. Although there are considerable spawning substrates available to coregonine species in eastern Lake Erie, eggs and fry would probably be displaced by storm surge from most shoals. Site selection for stocking or seeding of eggs should consider the reproductive life cycle of the stocked fish and suitable protection from storm events. Two potential sites in the eastern basin have been identified. Recommended management procedures, including commercial fisheries, are suggested to assist in recovery. Stocking in the eastern basin of Lake Erie is recommended for both species, as conditions are adequate and the native spawning population in the eastern basin is low. For lake herring, consideration should be given to match ecophenotypes as much as possible. Egg seeding is recommended. Egg seeding of lake whitefish should be considered initially, with fingerling or yearling stocking suggested if unsuccessful. Spawning stocks of whitefish in the western basin of Lake

  4. The status of Limnocalanus macrurus (Copepoda: Calanoida: Centropagidae) in Lake Erie

    USGS Publications Warehouse

    Kane, Douglas D.; Gannon, John E.; Culver, David A.

    2004-01-01

    The calanoid copepod Limnocalanus macrurus showed large declines in abundance and a narrowing of spatial distribution with the onset of cultural eutrophication and increases in rainbow smelt (Osmerus mordax) abundances in Lake Erie in the mid 20th century. Since 1995, however, Limnocalanus macrurus appears to have repopulated in western Lake Erie to levels of abundance that have not been observed since the late 1930s. We hypothesize that phosphorus abatement and the subsequent decrease in low dissolved oxygen events have assisted this resurgence. However, Limnocalanus macrurusabundances have not increased in the central and eastern basins, even though water quality has improved there too. High densities of rainbow smelt and associated smelt predation pressure in the central and eastern basins may be responsible for the low numbers in these basins.

  5. Modern and late Holocene dolomite formation: Manito Lake, Saskatchewan, Canada

    NASA Astrophysics Data System (ADS)

    Last, Fawn M.; Last, William M.; Halden, Norman M.

    2012-12-01

    Major advances have occurred in our understanding of modern dolomite formation and penecontemporaneous dolomitization over the past several decades. Manito Lake, located in west-central Saskatchewan, Canada, is a large (65 km2), deep (zmax: 22 m) perennial saline (~ 45 ppt TDS) lake in which modern and late Holocene dolomite coexists with other endogenic and authigenic carbonate precipitates, including aragonite, monohydrocalcite, calcite, and Mg-calcite. Like many other lacustrine dolomites, Manito Lake dolomite is microcrystalline (less than 1 μm to 5 μm), Ca-rich and poor to moderately ordered. It occurs as relatively pure hardgrounds and as a component of nearshore microbialites. It also forms isopachous cements in consolidated siliciclastic shoreline sediments. Manito Lake dolomite is most likely forming by mainly biomediated precipitation at or near the sediment-water interface (i) in pore spaces of coarse siliciclastic sediments (i.e., beachrock), (ii) as fine laminae associated with microbialites, and (iii) as a major component of mudstone hardgrounds and pavements.

  6. Lake level fluctuations and catchment dynamics at Lake Ohrid (Macedonia, Albania) during MIS6 and MIS5

    NASA Astrophysics Data System (ADS)

    Francke, Alexander; Wagner, Bernd; Just, Janna; Sadori, Laura; Masi, Alessia; Vogel, Hendrik; Lindhorst, Katja; Krastel, Sebastian; Dosseto, Anthony; Rothacker, Leo; Leicher, Niklas; Gromig, Raphael

    2016-04-01

    Lake Ohrid, presumably the oldest lake of Europe located at the border of Macedonia and Albania, is about 30 km long, 15 km wide, and up to 290 m deep. In 2013, an ICDP deep drilling campaign was carried out under the umbrella of the Scientific Collaboration on Past Speciation Conditions in Lake Ohrid (SCOPSCO) project. At the main drill site (DEEP) in the central part of Lake Ohrid, the uppermost 568 m from a total sediment fill of ca. 700 m were recovered. Initial data from core catcher material indicate that the sediment sequence covers more than 1.2 million years. An age model, which is based on 11 tephrostratigragphic tie points and on tuning of biogeochemical proxy data versus orbital parameters reveals that that the upper 247 m of the DEEP site sequence cover the time period between 637 ka (MIS16) and the present. Inhere, we present sedimentological, (bio-)geochemical, environmental magnetic, and pollen data for the time period between MIS6 (191 ka) and MIS5 (71 ka). The data imply that MIS6 was one of the most severe glacial periods, while MIS5 was likely one of the more pronounced interglacial during the past 637 kyrs. The repercussions of these high amplitude climatic and environmental variations during this period are recorded in the sedimentological archive of Lake Ohrid. Previous studies based on hydro-acoustic and sediment core data from the northeastern part of the lake basin have shown that the lake level of Lake Ohrid was likely 60 m lower during MIS6. The ˜60 m lower lake level at Lake Ohrid during MIS6 can at least partly be explained by the ongoing subsidence, which persists in the basin until today. However, in the DEEP site sediments, the MIS6/MIS5 transition occurs at ca. 50 m sediment depth. This implies that climate-induced lake level fluctuation at Lake Ohrid are less severe compared for example to Lake Van (Turkey), were a 260 m lower lake level has been reported for the Younger Dryas. The imprint of the environmental variations between

  7. Nutrient and sediment transport in streams of the Lake Tahoe basin: a 30-year retrospective

    Treesearch

    Robert Coats

    2004-01-01

    Lake Tahoe, widely renowned for its astounding clarity and deep blue color, lies at an elevation of 1,898 meters (m) in the central Sierra Nevada, astride the California-Nevada border. The volume of the lake is 156 cubic kilometers (km3), and its surface area is 501 square kilometers (km2), 38 percent of the total basin...

  8. Archive of Digital Boomer Seismic Reflection Data Collected During USGS Field Activity 96LCA04 in Lakes Mabel and Starr, Central Florida, August 1996

    USGS Publications Warehouse

    Harrison, Arnell S.; Dadisman, Shawn V.; Swancar, Amy; Tihansky, Ann B.; Flocks, James G.; Wiese, Dana S.

    2008-01-01

    In August of 1996, the U.S. Geological Survey conducted geophysical surveys of Lakes Mabel and Starr, central Florida, as part of the Central Highlands Lakes project, which is part of a larger USGS Lakes and Coastal Aquifers (LCA) study. This report serves as an archive of unprocessed digital boomer seismic reflection data, trackline maps, navigation files, Geographic Information System (GIS) files, observer's logbook; and formal Federal Geographic Data Committee (FGDC) metadata. Filtered and gained (a relative increase in signal amplitude) digital images of the seismic profiles are also provided. Refer to the Acronyms page for expansions of acronyms and abbreviations used in this report. For detailed information about the hydrologic setting of Lake Starr and the interpretation of some of these seismic reflection data, see Swancar and others (2000) at http://fl.water.usgs.gov/publications/Abstracts/wri00_4030_swancar.html. The archived trace data are in standard Society of Exploration Geophysicists (SEG) SEG-Y format (Barry and others, 1975) and may be downloaded and processed with commercial or public domain software such as Seismic Unix (SU). Example SU processing scripts and USGS software for viewing the SEG-Y files (Zihlman, 1992) are also provided. The USGS Florida Integrated Science Center (FISC) - St. Petersburg assigns a unique identifier to each cruise or field activity. For example, 96LCA04 tells us the data were collected in 1996 for the Lakes and Coastal Aquifers (LCA) study and the data were collected during the fourth field activity for that project in that calendar year. Refer to http://walrus.wr.usgs.gov/infobank/programs/html/definition/activity.html for a detailed description of the method used to assign the field activity ID. The boomer plate is an acoustic energy source that consists of capacitors charged to a high voltage and discharged through a transducer in the water. The transducer is towed on a sled floating on the water surface and when

  9. Progress toward lake trout restoration in Lake Michigan

    USGS Publications Warehouse

    Holey, Mark E.; Rybicki, Ronald W.; Eck, Gary W.; Brown, Edward H.; Marsden, J. Ellen; Lavis, Dennis S.; Toneys, Michael L.; Trudeau, Tom N.; Horrall, Ross M.

    1995-01-01

    Progress toward lake trout restoration in Lake Michigan is described through 1993. Extinction of the native lake trout fishery by sea lamprey predation, augmented by exploitation and habitat destruction, resulted in an extensive stocking program of hatchery-reared lake trout that began in 1965. Sea lamprey abundance was effectively controlled using selective chemical toxicants. The initial stocking produced a measurable wild year class of lake trout by 1976 in Grand Traverse Bay, but failed to continue probably due to excessive exploitation. The overall lack of successful reproduction lakewide by the late 1970s led to the development and implementation in 1985 of a focused inter-agency lakewide restoration plan by a technical committee created through the Lake Committee structure of the Great Lakes Fishery Commission. Strategies implemented in 1985 by the plan included setting a 40% total mortality goal lakewide, creating two large refuges designed to encompass historically the most productive spawning habitat and protect trout stocked over their home range, evaluating several lake trout strains, and setting stocking priorities throughout the lake. Target levels for stocking in the 1985 Plan have never been reached, and are much less than the estimated lakewide recruitment of yearlings by the native lake trout stocks. Since 1985, over 90% of the available lake trout have been stocked over the best spawning habitat, and colonization of the historically productive offshore reefs has occurred. Concentrations of spawning lake trout large enough for successful reproduction, based on observations of successful hatchery and wild stocks, have developed at specific reefs. Continued lack of recruitment at these specific sites suggests that something other than stotk abundance has limited success. Poor survival of lake trout eggs, assumed to be related to contaminant burden, occurred in the late 1970s and early 1980s, but survival has since increased to equal survival in the

  10. Lake trout rehabilitation in Lake Huron

    USGS Publications Warehouse

    Eshenroder, Randy L.; Payne, N. Robert; Johnson, James E.; Bowen, Charles; Ebener, Mark P.

    1995-01-01

    Efforts to restore lake trout (Salvelinus namaycush) in Lake Huron after their collapse in the 1940s were underway in the early 1970s with completion of the first round of lampricide applications in tributary streams and the stocking of several genotypes. We assess results of rehabilitation and establish a historical basis for comparison by quantifying the catch of spawning lake trout from Michigan waters in 1929-1932. Sixty-eight percent of this catch occurred in northern waters (MH-1) and most of the rest (15%) was from remote reefs in the middle of the main basin. Sea lampreys (Petromyzon marinus) increased in the early 1980s in the main basin and depressed spawning populations of lake trout. This increase was especially severe in northern waters and appeared to be associated with untreated populations in the St. Marys River. Excessive commercial fishing stemming from unresolved treaty rights also contributed to loss of spawning fish in northern Michigan waters. Seneca-strain lake trout did not appear to be attacked by sea lampreys until they reached a size > 532 mm. At sizes > 632 mm, Seneca trout were 40-fold more abundant than the Marquette strain in matched-planting experiments. Natural reproduction past the fry stage has occurred in Thunder Bay and South Bay, but prospects for self-sustaining populations of lake trout in the main basin are poor because sea lampreys are too abundant, only one side of the basin is stocked, and stocking is deferred to allow commercial gillnetting in areas where most of the spawning occurred historically. Backcross lake trout, a lake trout x splake (s. Fontinalis x s. Namaycush) hybrid, did not reproduce in Georgian Bay, but this genotype is being replaced with pure-strain lake trout, whose early performance appears promising.

  11. Spatiotemporal patterns of high-mountain lakes and related hazards in western Austria

    NASA Astrophysics Data System (ADS)

    Emmer, Adam; Merkl, Sarah; Mergili, Martin

    2015-10-01

    Climate-induced environmental changes are triggering the dynamic evolution of high-mountain lakes worldwide, a phenomenon that has to be monitored in terms of lake outburst hazards. We analyzed the spatial distribution and recent temporal development of high-mountain lakes in a study area of 6139 km2, covering the central European Alps over most of the province of Tyrol and part of the province of Salzburg in western Austria. We identified 1024 natural lakes. While eight lakes are ice-dammed, one-third of all lakes are located in the immediate vicinity of recent glacier tongues, half of them impounded by moraines, half by bedrock. Two-thirds of all lakes are apparently related to LIA or earlier glaciations. One landslide-dammed lake was identified in the study area. The evolution of nine selected (pro)glacial lakes was analyzed in detail, using multitemporal remotely sensed images and field reconnaissance. Considerable glacier retreat led to significant lake growth at four localities, two lakes experienced stagnant or slightly negative areal trends, one lake experienced a more significant negative areal trend, and two lakes drained completely during the investigation period. We further (i) analyzed the susceptibility of selected lakes to glacial lake outburst floods (GLOFs), using two different methods; (ii) identified potential triggers and mechanisms of GLOFs; (iii) calculated possible flood magnitudes for predefined flood scenarios for a subset of the lakes; and (iv) delineated potentially impacted areas. We distinguished three phases of development of bedrock-dammed lakes: (a) a proglacial, (b) a glacier-detached, and (c) a nonglacial phase. The dynamics - and also the susceptibility of a lake to GLOFs - decrease substantially from (a) to (c). Lakes in the stages (a) and (b) are less prominent in our study area, compared to other glacierized high-mountain regions, leading us to the conclusion that (i) the current threat to the population by GLOFs is lower but

  12. Comparative Results of Using Different Methods for Discovery of Microorganisms in very Ancient Layers of the Central Antarctic Glacier above the Lake Vostok

    NASA Technical Reports Server (NTRS)

    Abyzov, S. S.; Hoover, R. B.; Imura, S.; Mitskevich, I. N.; Naganuma, T.; Poglazova, M. N.; Ivanov, M. V.

    2002-01-01

    The ice sheet of the Central Antarctic is considered by the scientific community worldwide, as a model to elaborate on different methods to search for life outside Earth. This became especially significant in connection with the discovery of the underglacial lake in the vicinity of the Russian Antarctic Station Vostok. Lake Vostok is considered by many scientists as an analog of the ice covered seas of Jupiter's satellite Europa. According to the opinion of many researchers there is the possibility that relict forms of microorganisms, well preserved since the Ice Age, may be present in this lake. Investigations throughout the thickness of the ice sheet above Lake Vostok show the presence of microorganisms belonging to different well-known taxonomic groups, even in the very ancient horizons near close to floor of the glacier. Different methods were used to search for microorganisms that are rarely found in the deep ancient layers of an ice sheet. The method of aseptic sampling from the ice cores and the results of controlled sterile conditions in all stages when conducting these investigations, are described in detail in previous reports. Primary investigations tried the usual methods of sowing samples onto different nutrient media, and the result was that only a few microorganisms grew on the media used. The possibility of isolating the organisms obtained for further investigations, by using modern methods including DNA-analysis, appears to be the preferred method. Further investigations of the very ancient layers of the ice sheet by radioisotopic, luminescence, and scanning electron microscopy methods at different modifications, revealed the quantity and morphological diversity of the cells of microorganisms that were distributed on the different horizons. Investigations over many years have shown that the microflora in the very ancient strata of the Antarctic ice cover, nearest to the bedrock, support the effectiveness of using a combination of different methods

  13. Lead isotope ratios in six lake sediment cores from Japan Archipelago: Historical record of trans-boundary pollution sources.

    PubMed

    Hosono, Takahiro; Alvarez, Kelly; Kuwae, Michinobu

    2016-07-15

    Sediment cores from six lakes situated from north to south on the Japanese Archipelago were collected during 2009-2010 to investigate the hypothesis that deposition of lead (Pb) was coming from East Asia (including China, South Korea and eastern part of Russia). Accumulation rates and ages of the lake sediment were estimated by the (210)Pb constant rate of supply model and (137)Cs inputs to reconstruct the historical trends of Pb accumulation. Cores from four lakes located in the north and central Japan, showed clear evidence of Pb pollution with a change in the (206)Pb/(207)Pb and (208)Pb/(207)Pb ratios in the recent sediment as compared to the deeper sediment. Among the six studied lakes, significant inputs of anthropogenic lead emissions were observed at Lake Mikazuki (north Hokkaido in north Japan), Lake Chokai (north of Honshu), and Lake Mikuriga (central part of Honshu). Pb isotopic comparison of collected core sediment and previously reported data for wet precipitation and aerosols from different Asian regions indicate that, before 1900, Pb accumulated in these three lakes was not affected by trans-boundary sources. Lake Mikazuki started to receive Pb emissions from Russia in early 1900s, and during the last two decades, this lake has been affected by trans-boundary Pb pollution from northern China. Lake Chokai has received Pb pollutant from northern China since early 1900s until 2009, whereas for the Lake Mikuriga the major Pb contaminant was transported from southern China during the past 100years. The results of our study demonstrate that Japan Archipelago has received trans-boundary Pb emissions from different parts of East Asian region depending on location, and the major source region has changed historically. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Potential area for floating net fishery in Lake Toba

    NASA Astrophysics Data System (ADS)

    Rustini, H. A.; Harsono, E.; Ridwansyah, I.

    2018-02-01

    Lake Toba in North Sumatera, Indonesia, is now designated to be a world-class tourism destination. Aside from its infrastructure development, this largest lake in the Southeast Asia needs to be restored, especially its water quality. While an oligotrophic status is required for tourism purposes, several studies showed that Toba is mesotrophic at its best and hyper-eutrophic at its worst. Numerous studies and reports blame floating net fishery (FNF) for water quality decline in Lake Toba and propose limitation for its production. While the central government allowed FNF to be positioned in certain areas according to its depth and distance from the lakeshore, increasing number of FNF means adding more nutrients to the lake and thus may inhibit the lake’s restoration process. Hence, it is important to identify which areas are potential for FNF location to assist the authorities to regulate FNF. This study used SPOT-6, SPOT-7, and Pleiades satellite imagery to locate the position of existing FNF and to analyse the result to identify a potential location for FNF.

  15. Evolution of alkaline lakes - Lake Van case study

    NASA Astrophysics Data System (ADS)

    Tillman Meyer, Felix; Viehberg, Finn; Bahroun, Sonya; Wolf, Annabel; Immenhauser, Adrian; Kwiecien, Ola

    2017-04-01

    Lake Van in Eastern Anatolia (Turkey) is the largest terminal soda lake on Earth. The lake sedimentary profile covers ca. 600 ka (Stockhecke et al. 2014) Based on lithological changes, the presence of freshwater microfossils and close-to-freshwater pH value in the pore water, members of ICDP PALEOVAN concluded that Lake Van might have started as an open lake. Here we show paleontological and geochemical evidence in favour of this idea and constrain the time, when Lake Van likely transformed into a closed lake. Additionally we provide the first conceptual model of how this closure may have happened. Our archives of choice are inorganic and biogenic carbonates, separated by wet sieving. We identified microfossil assemblages (fraction > 125 µm) and performed high-resolution oxygen isotope (delta18O) and elemental (Mg/Ca, Sr/Ca) analyses of the fraction < 63 µm assuming that it represents only carbonates precipitating in the water column. Microfossil assemblage consists of three different species of ostracods (Candona spp, Loxoconcha sp, Amnicythere spp.), diatoms, gastropods and bivalves. Brakish-water ostracods, Loxoconcha sp and Amnicythere sp occur more often after 530 ka. Additionaly, Loxoconcha sp is a shallow-water species relaying on plants growing in the photic zone as food supply. These two aspects point to an increasing salinity in a shallowing lake. The delta18O values of inorganic carbonates are relatively low during the initial phase of Lake Van and increase abruptly (ca. 7‰) after 530 ka BP. At approximately the same time combination of Sr/Ca and Mg/Ca data suggest first occurrence of aragonite. Again, these findings suggest geochemical changes of the lake water concurrent with transition documented by microfossils. Comparison between Lake Van and Lake Ohrid (Lacey et al. 2016) delta18O data, precludes regional climate change (e.g.: increased evaporation) as the main driver of observed changes. With no evidence for increased volcanic or tectonic

  16. Embryotoxicity of an extract from Great Lakes lake trout to rainbow trout and lake trout

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, P.J.; Tillitt, D.E.

    1995-12-31

    Aquatic ecosystems such as the Great Lakes are known to be contaminated with chemicals that are toxic to fish. However, the role of these contaminants in reproductive failures of fishes, such as lake trout recruitment, has remained controvertible. It was the objective to evaluate dioxin-like embryotoxicity of a complex mixture of chemicals and predict their potential to cause the lack of recruitment in Great Lakes lake trout. Graded doses of a complex environmental extract were injected into eggs of both rainbow trout and lake trout. The extract was obtained from whole adult lake trout collected from Lake Michigan in 1988.more » The extract was embryotoxic in rainbow trout, with LD50 values for Arlee strain and Erwin strain of 33 eggEQ and 14 eggEQ respectively. The LOAEL for hemorrhaging, yolk-sac edema, and craniofacial deformities in rainbow trout were 2, 2, and 4 eggEQ, respectively. Subsequent injections of the extract into lake trout eggs were likewise embryotoxic, with an LD50 value of 7 eggEQ. The LOAEL values for the extract in lake trout for hemorrhaging, yolk-sac edema, and craniofacial deformities were 0.1, 1, and 2 eggEQ, respectively. The current levels of contaminants in lake trout eggs are above the threshold for hemorrhaging and yolk-sac edema. The results also support the use of an additive model of toxicity to quantify PCDDs, PCDFs, Non-o-PCBs, and Mono-o-PCBs in relation to early life stage mortality in Lake Michigan lake trout.« less

  17. Comparative study of fluvial lakes in floodplains of the Elbe, Lužnice and Svratka Rivers based on hydrochemical and biological approach.

    PubMed

    Havlíková, Petra; Chuman, Tomáš; Janský, Bohumír

    2017-11-17

    The aim of the thesis was to specify key differences in chemistry and biota (zooplankton communities) among fluvial lakes in three regions of the Czech Republic: the central part of the Elbe River, the upper part of the Lužnice River and the upper part of the Svratka River. The ten studied lakes of the three regions differ in size, geology, shading, connection with the river and the level of anthropogenic impact. The following hypotheses were tested: (1) The water chemistry of fluvial lakes significantly differs in different floodplains. In the central Elbe River floodplain, there are the highest values of conductivity and concentrations of organic matter and nutrients. Fluvial lakes of the Svratka River floodplain show the lowest level of these parameters, and fluvial lakes of the upper Lužnice River have levels intermediate between the two previous regions. (2) The chemistry of fluvial lakes that have contact with the river through surface connection is significantly influenced by the river. (3) The structure of zooplankton differs in different lakes due to the geographical distance between locations, their different altitude and water chemistry. The PCA analysis of selected parameters of the water chemistry revealed a close relationship of locations in the central Elbe River floodplain on the one side and close relationship of the locations in the upper Lužnice River and Svratka River on the other. However, the amount of organic matter, nitrogen (with the exception of nitrates) and phosphorus was independent of the region. The relationship between the extent of the lake-river connection and the water chemistry was not significant. The hypothesis that the zooplankton differ in different lakes was not proved-the species composition was similar in all the lakes.

  18. Panel Discussion: Red Lake Forestry Greenhouse Operations

    Treesearch

    Gloria Whitefeather-Spears

    2006-01-01

    The tribal lands of the Red Lake Band of the Chippewa Indians are comprised of four districts in north central Minnesota. The Diminished Reservation, where most tribal members live and work, is approximately 532,000 ac (215,290 ha) in size and includes forests, wetlands, and grasslands. An additional 262,000 ac (106,030 ha) comprise ceded lands, called the Northwest...

  19. Abundance, composition, and distribution of crustacean zooplankton in relation to hypolimnetic oxygen depletion in west-central Lake Erie

    USGS Publications Warehouse

    Heberger, Roy F.; Reynolds, James B.

    1977-01-01

    Samples of crustacean zooplankton were collected monthly in west-central Lake Erie in April and June to October 1968, and in July and August 1970, before and during periods of hypolimnetic dissolved oxygen (DO) depletion. The water column at offshore stations was thermally stratified from June through September 1968, and the hypolimnion contained no DO in mid-August of 1968 or 1970. Composition, abundance, and vertical distribution of crustacean zooplankton changed coincidentally with oxygen depletion. From July to early August, zooplankton abundance dropped 79% in 1968 and 50% in 1970. The declines were attributed largely to a sharp decrease in abundance of planktonic Cyclops bicuspidatus thomasi. Zooplankton composition shifted from mainly cyclopoid copepods in July to mainly cladocerans and copepod nauplii in middle to late August. We believe that mortality of adults and dormancy of copepodites in response to anoxia was the probable reason for the late summer decline in planktonic C. b. thomasi.

  20. Hydrogeologic Controls on Lake Level at Mountain Lake, Virginia

    NASA Astrophysics Data System (ADS)

    Roningen, J. M.; Burbey, T. J.

    2011-12-01

    Mountain Lake in Giles County, Virginia has a documented history of severe natural lake-level changes involving groundwater seepage that extend over the past 4200 years. Featured in the 1986 movie Dirty Dancing, the natural lake dried up completely in September 2008 and levels have not yet recovered. A hydrogeologic investigation was undertaken in an effort to determine the factors influencing lake level changes. A daily water balance, dipole-dipole electrical resistivity surveying, well logging and chemical sampling have shed light on: 1) the influence of a fault not previously discussed in literature regarding the lake, 2) the seasonal response to precipitation of a forested first-order drainage system in fractured rock, and 3) the possibility of flow pathways related to karst features. Geologic controls on lake level were investigated using several techniques. Geophysical surveys using dipole-dipole resistivity located possible subsurface flowpaths both to and from the lake. Well logs, lineament analysis, and joint sampling were used to assess structural controls on lake hydrology. Major ions were sampled at wells, springs, streams, and the lake to evaluate possible mixing of different sources of water in the lake. Groundwater levels were monitored for correlation to lake levels, rainfall events, and possible seismic effects. The hydrology of the lake was quantified with a water balance on a daily time step. Results from the water balance indicate steady net drainage and significant recharge when vegetation is dormant, particularly during rain-on-snow melt events. The resistivity survey reveals discrete areas that represent flow pathways from the lake, as well as flowpaths to springs upgradient of the lake located in the vicinity of the fault. The survey also suggests that some flowpaths may originate outside of the topographic watershed of the lake. Chemical evidence indicates karst may underlie the lakebed. Historical data suggest that artificial intervention

  1. Lake-level frequency analysis for Devils Lake, North Dakota

    USGS Publications Warehouse

    Wiche, Gregg J.; Vecchia, Aldo V.

    1996-01-01

    Two approaches were used to estimate future lake-level probabilities for Devils Lake. The first approach is based on an annual lake-volume model, and the second approach is based on a statistical water mass-balance model that generates seasonal lake volumes on the basis of seasonal precipitation, evaporation, and inflow. Autoregressive moving average models were used to model the annual mean lake volume and the difference between the annual maximum lake volume and the annual mean lake volume. Residuals from both models were determined to be uncorrelated with zero mean and constant variance. However, a nonlinear relation between the residuals of the two models was included in the final annual lakevolume model.Because of high autocorrelation in the annual lake levels of Devils Lake, the annual lake-volume model was verified using annual lake-level changes. The annual lake-volume model closely reproduced the statistics of the recorded lake-level changes for 1901-93 except for the skewness coefficient. However, the model output is less skewed than the data indicate because of some unrealistically large lake-level declines. The statistical water mass-balance model requires as inputs seasonal precipitation, evaporation, and inflow data for Devils Lake. Analysis of annual precipitation, evaporation, and inflow data for 1950-93 revealed no significant trends or long-range dependence so the input time series were assumed to be stationary and short-range dependent.Normality transformations were used to approximately maintain the marginal probability distributions; and a multivariate, periodic autoregressive model was used to reproduce the correlation structure. Each of the coefficients in the model is significantly different from zero at the 5-percent significance level. Coefficients relating spring inflow from one year to spring and fall inflows from the previous year had the largest effect on the lake-level frequency analysis.Inclusion of parameter uncertainty in the model

  2. Lake-level frequency analysis for Devils Lake, North Dakota

    USGS Publications Warehouse

    Wiche, Gregg J.; Vecchia, Aldo V.

    1995-01-01

    Two approaches were used to estimate future lake-level probabilities for Devils Lake. The first approach is based on an annual lake-volume model, and the second approach is based on a statistical water mass-balance model that generates seasonal lake volumes on the basis of seasonal precipitation, evaporation, and inflow.Autoregressive moving average models were used to model the annual mean lake volume and the difference between the annual maximum lake volume and the annual mean lake volume. Residuals from both models were determined to be uncorrelated with zero mean and constant variance. However, a nonlinear relation between the residuals of the two models was included in the final annual lake-volume model.Because of high autocorrelation in the annual lake levels of Devils Lake, the annual lakevolume model was verified using annual lake-level changes. The annual lake-volume model closely reproduced the statistics of the recorded lake-level changes for 1901-93 except for the skewness coefficient However, the model output is less skewed than the data indicate because of some unrealistically large lake-level declines.The statistical water mass-balance model requires as inputs seasonal precipitation, evaporation, and inflow data for Devils Lake. Analysis of annual precipitation, evaporation, and inflow data for 1950-93 revealed no significant trends or long-range dependence so the input time series were assumed to be stationary and short-range dependent.Normality transformations were used to approximately maintain the marginal probability distributions; and a multivariate, periodic autoregressive model was used to reproduce the correlation structure. Each of the coefficients in the model is significantly different from zero at the 5-percent significance level. Coefficients relating spring inflow from one year to spring and fall inflows from the previous year had the largest effect on the lake-level frequency analysis.Inclusion of parameter uncertainty in the model

  3. Lake trout in northern Lake Huron spawn on submerged drumlins

    USGS Publications Warehouse

    Riley, Stephen C.; Binder, Thomas; Wattrus, Nigel J.; Faust, Matthew D.; Janssen, John; Menzies, John; Marsden, J. Ellen; Ebener, Mark P.; Bronte, Charles R.; He, Ji X.; Tucker, Taaja R.; Hansen, Michael J.; Thompson, Henry T.; Muir, Andrew M.; Krueger, Charles C.

    2014-01-01

    Recent observations of spawning lake trout Salvelinus namaycush near Drummond Island in northern Lake Huron indicate that lake trout use drumlins, landforms created in subglacial environments by the action of ice sheets, as a primary spawning habitat. From these observations, we generated a hypothesis that may in part explain locations chosen by lake trout for spawning. Most salmonines spawn in streams where they rely on streamflows to sort and clean sediments to create good spawning habitat. Flows sufficient to sort larger sediment sizes are generally lacking in lakes, but some glacial bedforms contain large pockets of sorted sediments that can provide the interstitial spaces necessary for lake trout egg incubation, particularly if these bedforms are situated such that lake currents can penetrate these sediments. We hypothesize that sediment inclusions from glacial scavenging and sediment sorting that occurred during the creation of bedforms such as drumlins, end moraines, and eskers create suitable conditions for lake trout egg incubation, particularly where these bedforms interact with lake currents to remove fine sediments. Further, these bedforms may provide high-quality lake trout spawning habitat at many locations in the Great Lakes and may be especially important along the southern edge of the range of the species. A better understanding of the role of glacially-derived bedforms in the creation of lake trout spawning habitat may help develop powerful predictors of lake trout spawning locations, provide insight into the evolution of unique spawning behaviors by lake trout, and aid in lake trout restoration in the Great Lakes.

  4. Late Holocene environmental reconstruction of Lake Issyk-Kul (Rep. Kyrgyzstan)

    NASA Astrophysics Data System (ADS)

    Giralt, Santiago; Hernández, Armand; Sáez, Alberto; José Pueyo, Juan; Cañellas-Boltà, Núria; Margalef, Olga

    2010-05-01

    Lake Issyk-Kul is an endorheic mountain lake located at 1608 m a.s.l., in the northern Tien Shan ranges, in the Republic of Kyrgyzstan, Central Asia. It has an area of 6236 km2, a length of 180 km, a width of 60 km, and a maximum depth of 668 m making it the fifth deepest lake in the world. The lake is monomictic, brackish (6 g/l), oligotrophic to ultra-oligotrophic (2 - 3.8 ?g/l of phosphorous), and it has high values of dissolved oxygen (6.5 - 7.5 mg/l at the bottom of the lake). In August 2000, a gravity 150 cm long core (C142a, 42°34'312' N - 77°20'030' E) was recovered at 150 m of water depth at the central northern shore of the lake. This core was characterized using X-Ray Fluorescence (XRF) core scanner (measurements every 300 μm), X-Ray Diffraction (XRD) every 3 mm, and elemental (TC and TN) and isotopic composition (δ13C and δ15N) of bulk organic matter every centimeter. The preliminary chronological framework was constructed with 4 AMS 14C dates. Statistical analyses (clusters, Principal Component (PCA) and Redundant (RDA) Analyses) were employed to identify and isolate the environmental forcings that have triggered the input, distribution and deposition of sediments within the lake. The core records the last ca. 4,000 cal. yrs BP and, during this time its primary productivity has steadily increased (higher values of TC and TN). δ13C and δ15N values suggest that the main primary producer are blue-green algae. The last ca. 100 years, the primary productivity has experienced a dramatic increase. Furthermore, PCA on XRF data also highlights that more than the 50% of the total variance is related to changes in primary productivity (the first eigenvector (EV) is tied by the opposition of the terrigenous - organic matter geochemical indicators). This EV shows that the primary productivity oscillated at decadal and centennial frequencies. The main forcing of these primary productivity fluctuations seems to be temperature changes linked to both solar

  5. Isotopic tracers of paleohydrologic change in large lakes of the Bolivian Altiplano

    NASA Astrophysics Data System (ADS)

    Placzek, Christa J.; Quade, Jay; Patchett, P. Jonathan

    2011-01-01

    We have developed an 87Sr/ 86Sr, 234U/ 238U, and δ 18O data set from carbonates associated with late Quaternary paleolake cycles on the southern Bolivian Altiplano as a tool for tracking and understanding the causes of lake-level fluctuations. Distinctive groupings of 87Sr/ 86Sr ratios are observed. Ratios are highest for the Ouki lake cycle (120-95 ka) at 0.70932, lowest for Coipasa lake cycle (12.8-11.4 ka) at 0.70853, and intermediate at 0.70881 to 0.70884 for the Salinas (95-80 ka), Inca Huasi (~ 45 ka), Sajsi (24-20.5 ka), and Tauca (18.1-14.1 ka) lake cycles. These Sr ratios reflect variable contributions from the eastern and western Cordilleras. The Laca hydrologic divide exerts a primary influence on modern and paleolake 87Sr/ 86Sr ratios; waters show higher 87Sr/ 86Sr ratios north of this divide. Most lake cycles were sustained by slightly more rainfall north of this divide but with minimal input from Lake Titicaca. The Coipasa lake cycle appears to have been sustained mainly by rainfall south of this divide. In contrast, the Ouki lake cycle was an expansive lake, deepest in the northern (Poópo) basin, and spilling southward. These results indicate that regional variability in central Andean wet events can be reconstructed using geochemical patterns from this lake system.

  6. Lake sturgeon population characteristics in Rainy Lake, Minnesota and Ontario

    USGS Publications Warehouse

    Adams, W.E.; Kallemeyn, L.W.; Willis, D.W.

    2006-01-01

    Rainy Lake contains a native population of lake sturgeon Acipenser fulvescens that has been largely unstudied. The aims of this study were to document the population characteristics of lake sturgeon in Rainy Lake and to relate environmental factors to year-class strength for this population. Gill-netting efforts throughout the study resulted in the capture of 322 lake sturgeon, including 50 recaptures. Lake sturgeon in Rainy Lake was relatively plump and fast growing compared with a 32-population summary. Population samples were dominated by lake sturgeon between 110 and 150 cm total length. Age–structure analysis of the samples indicated few younger (<10 years) lake sturgeon, but the smallest gill net mesh size used for sampling was 102 mm (bar measure) and would not retain small sturgeon. Few lake sturgeon older than age 50 years were captured, and maximum age of sampled fish was 59 years. Few correlations existed between lake sturgeon year-class indices and both annual and monthly climate variables, except that mean June air temperature was positively correlated with year-class strength. Analysis of Rainy Lake water elevation and resulting lake sturgeon year-class strength indices across years yielded consistent but weak negative correlations between late April and early June, when spawning of lake sturgeon occurs. The baseline data collected in this study should allow Rainy Lake biologists to establish more specific research questions in the future.

  7. Defining Chlorophyll-a Reference Conditions in European Lakes

    PubMed Central

    Alves, Maria Helena; Argillier, Christine; van den Berg, Marcel; Buzzi, Fabio; Hoehn, Eberhard; de Hoyos, Caridad; Karottki, Ivan; Laplace-Treyture, Christophe; Solheim, Anne Lyche; Ortiz-Casas, José; Ott, Ingmar; Phillips, Geoff; Pilke, Ansa; Pádua, João; Remec-Rekar, Spela; Riedmüller, Ursula; Schaumburg, Jochen; Serrano, Maria Luisa; Soszka, Hanna; Tierney, Deirdre; Urbanič, Gorazd; Wolfram, Georg

    2010-01-01

    The concept of “reference conditions” describes the benchmark against which current conditions are compared when assessing the status of water bodies. In this paper we focus on the establishment of reference conditions for European lakes according to a phytoplankton biomass indicator—the concentration of chlorophyll-a. A mostly spatial approach (selection of existing lakes with no or minor human impact) was used to set the reference conditions for chlorophyll-a values, supplemented by historical data, paleolimnological investigations and modelling. The work resulted in definition of reference conditions and the boundary between “high” and “good” status for 15 main lake types and five ecoregions of Europe: Alpine, Atlantic, Central/Baltic, Mediterranean, and Northern. Additionally, empirical models were developed for estimating site-specific reference chlorophyll-a concentrations from a set of potential predictor variables. The results were recently formulated into the EU legislation, marking the first attempt in international water policy to move from chemical quality standards to ecological quality targets. PMID:20401659

  8. Predicting Great Lakes fish yields: tools and constraints

    USGS Publications Warehouse

    Lewis, C.A.; Schupp, D.H.; Taylor, W.W.; Collins, J.J.; Hatch, Richard W.

    1987-01-01

    Prediction of yield is a critical component of fisheries management. The development of sound yield prediction methodology and the application of the results of yield prediction are central to the evolution of strategies to achieve stated goals for Great Lakes fisheries and to the measurement of progress toward those goals. Despite general availability of species yield models, yield prediction for many Great Lakes fisheries has been poor due to the instability of the fish communities and the inadequacy of available data. A host of biological, institutional, and societal factors constrain both the development of sound predictions and their application to management. Improved predictive capability requires increased stability of Great Lakes fisheries through rehabilitation of well-integrated communities, improvement of data collection, data standardization and information-sharing mechanisms, and further development of the methodology for yield prediction. Most important is the creation of a better-informed public that will in turn establish the political will to do what is required.

  9. Bathymetry of Lake Manatee, Manatee County, Florida, 2009

    USGS Publications Warehouse

    Bellino, Jason C.; Pfeiffer, William R.

    2010-01-01

    Lake Manatee, located in central Manatee County, Florida, is the principal drinking-water source for Manatee and Sarasota Counties. The drainage basin of Lake Manatee encompasses about 120 square miles, and the reservoir covers a surface area of about 1,450 acres at an elevation of 38.8 feet above NAVD 88 or 39.7 feet above NGVD 29. The full pool water-surface elevation is 39.1 feet above NAVD 88 (40.0 feet above NGVD 29), and the estimated minimum usable elevation is 25.1 feet above NAVD 88 (26.0 feet above NGVD 29). The minimum usable elevation is based on the elevation of water intake structures. Manatee County has used the stage/volume relation that was developed from the original survey in the 1960s to estimate the volume of water available for consumption. Concerns about potential changes in storage capacity of the Lake Manatee reservoir, coupled with a recent drought, led to this bathymetry mapping effort.

  10. Diapiric transfer of melt in Kilauea Iki lava lake, Hawaii: a quick, efficient process of igneous differentiation

    USGS Publications Warehouse

    Helz, R.T.; Kirschenbaum, H.; Marinenko, J.W.

    1989-01-01

    Kilauea Iki lava lake, formed in 1959, is a large pond of picritic basalt (average MgO content = 15.34% by weight), which has cooled and crystallized as a small, self-roofed magma chamber. Differentiation processes recognized as active in the lake include rather inefficient settling of the larger (2-10 mm) olivine phenocrysts, formation of segregation veins, and formation of diapir-like vertical olivine-rich bodies, all processes which occur in one or more of the other Kilauean lava lakes as well. In addition, most of the central part of Kilauea Iki has been affected by diapiric melt transfer. Diapiric melt transfer was active from 1960 to 1971 and has affected most of the central part of the lake from 13 m to at least 80 m. The process ran simultaneously with the other three main differentiation processes but started and stopped independently of the others. Calculations suggest that between 21 and 42 wt % liquid has been extracted from the depleted zone at 56-78 m in the center of the lake, making this a very efficient process of chemical differentiation. -from Authors

  11. Runoff variations in Lake Balkhash Basin, Central Asia, 1779-2015, inferred from tree rings

    NASA Astrophysics Data System (ADS)

    Panyushkina, Irina P.; Meko, D. M.; Macklin, M. G.; Toonen, W. H. J.; Mukhamadiev, N. S.; Konovalov, V. G.; Ashikbaev, N. Z.; Sagitov, A. O.

    2018-01-01

    Long highly-resolved proxies for runoff are in high demand for hydrological forecasts and water management in arid Central Asia. An accurate (R2 = 0.53) reconstruction of October-September discharge of the Ili River in Kazakhstan, 1779-2015, is developed from moisture-sensitive tree rings of spruce sampled in the Tian Shan Mountains. The fivefold extension of the gauged discharge record represents the variability of runoff in the Lake Balkhash Basin for the last 235 years. The reconstruction shows a 40 year long interval of low discharge preceded a recent high peak in the first decade of the 2000s followed by a decline to more recent levels of discharge not seen since the start of the gauged record. Most reconstructed flow extremes (± 2σ) occur outside the instrumental record (1936-2015) and predate the start of large dam construction (1969). Decadal variability of the Ili discharge corresponds well with hydrological records of other Eurasian internal drainages modeled with tree rings. Spectral analysis identifies variance peaks (highest near 42 year) consistent with main hemispheric oscillations of the Eurasian climatic system. Seasonal comparison of the Ili discharge with sea-level-pressure and geopotential height data suggests periods of high flow likely result from the increased contribution of snow to runoff associated with the interaction of Arctic air circulation with the Siberian High-Pressure System and North Atlantic Oscillation.

  12. Rock magnetic and geochemical proxies for iron mineral diagenesis in a tropical lake: Lago Verde, Los Tuxtlas, East Central Mexico

    NASA Astrophysics Data System (ADS)

    Ortega, Beatriz; Caballero, Margarita; Lozano, Socorro; Vilaclara, Gloria; Rodríguez, Alejandro

    2006-10-01

    Magnetic and non-magnetic mineral analyses were conducted on a lacustrine sequence from Lago Verde in the tropical coast along the Gulf of Mexico that covers the last 2000 years. The site witnessed the transformation of the environment since the early Olmec societies until forest clearance in the last century. Through these analyses we investigated the processes that affected the magnetic mineralogy in order to construct a model of past environmental changes, and compare this model with the archeological record and inferred climatic changes in the northern hemisphere of tropical America. Volcanic activity has played a major influence on sediment magnetic properties, as a purveyor of Ti-magnetites/Ti-maghemites, and as a factor of instability in the environment. Anoxic reductive conditions are evident in most of Lago Verde's sedimentary record. Direct observations of magnetic minerals and ratios of geochemical (Fe, Ti), and ferrimagnetic ( χf) and paramagnetic ( χp) susceptibility ( χ) data, are used as parameters for magnetite dissolution ( χp/ χ, Fe/ χf), and precipitation ( χf/Ti) of magnetic minerals. Intense volcanic activity and anoxia are recorded before A.D. 20, leading to the formation of framboidal pyrite. Increased erosion, higher evaporation rates, lower lake levels, anoxia and reductive diagenesis in non-sulphidic conditions are inferred for laminated sediments between A.D. 20-850. This deposit matches the period of historical crisis and multiyear droughts that contributed to the collapse of the Maya civilization. Dissolution of magnetite, a high organic content and framboidal pyrite point to anoxic, sulphidic conditions and higher lake levels after A.D. 850. Higher lake levels in Lago Verde broadly coincide with the increased precipitation documented during the Medieval Warm Period (A.D. 950-1350) in the northern tropical and subtropical regions of the American continent. For the Little Ice Age (A.D. 1400-1800), the relatively moist conditions

  13. The volcanic, sedimentologic, and paleolimnologic history of the Crater Lake caldera floor, Oregon:Evidence for small caldera evolution

    USGS Publications Warehouse

    Nelson, C. Hans; Bacon, Charles R.; Robinson, Stephen W.; Adam, David P.; Bradbury, J. Platt; Barber, John H.; Schwartz, Deborah; Vagenas, Ginger

    1994-01-01

    Apparent phreatic explosion craters, caldera-floor volcanic cones, and geothermal features outline a ring fracture zone along which Mount Mazama collapsed to form the Crater Lake caldera during its climactic eruption about 6,850 yr B.P. Within a few years, subaerial deposits infilled the phreatic craters and then formed a thick wedge (10-20 m) of mass flow deposits shed from caldera walls. Intense volcanic activity (phreatic explosions, subaerial flows, and hydrothermal venting) occurred during this early postcaldera stage, and a central platform of subaerial andesite flows and scoria formed on the caldera floor.Radiocarbon ages suggest that deposition of Iacustrine hemipelagic sediment began on the central platform about 150 yr after the caldera collapse. This is the minimum time to fill the lake halfway with water and cover the platform assuming present hydrologic conditions of precipitation and evaporation but with negligible leakage of lake water. Wizard Island formed during the final part of the 300-yr lake-filling period as shown by its (1) upper subaerial lava flows from 0 to -70 m below present water level and lower subaqueous lava flows from -70 to -500 m and by (2) lacustrine turbidite sand derived from Wizard Island that was deposited on the central platform about 350 yr after the caldera collapse. Pollen stratigraphy indicates that the warm and dry climate of middle Holocene time correlates with the early lake deposits. Diatom stratigraphy also suggests a more thermally stratified and phosphate-rich environment associated respectively with this climate and greater hydrothermal activity during the early lake history.Apparent coarse-grained and thick-bedded turbidites of the early lake beds were deposited throughout northwest, southwest, and eastern basins during the time that volcanic and seismic activity formed the subaqueous Wizard Island, Merriam Cone, and rhyodacite dome. The last known postcaldera volcanic activity produced a subaqueous rhyodacite

  14. Lake carbonate-δ 18O records from the Yukon Territory, Canada: Little Ice Age moisture variability and patterns

    NASA Astrophysics Data System (ADS)

    Anderson, Lesleigh; Finney, Bruce P.; Shapley, Mark D.

    2011-04-01

    A 1000-yr history of climate change in the central Yukon Territory, Canada, is inferred from sediment composition and isotope geochemistry from small, groundwater fed, Seven Mile Lake. Recent observations of lake-water δ 18O, lake level, river discharge, and climate variations, suggest that changes in regional effective moisture (precipitation minus evaporation) are reflected by the lake's hydrologic balance. The observations indicate that the lake is currently 18O-enriched by summer evaporation and that during years of increased precipitation, when groundwater inflow rates to the lake increase, lake-water δ 18O values decrease. Past lake-water δ 18O values are inferred from oxygen isotope ratios of fine-grained sedimentary endogenic carbonate. Variations in carbonate δ 18O, supplemented by those in carbonate and organic δ 13C, C/N ratios, and organic carbon, carbonate and biogenic silica accumulation rates, document changes in effective moisture at decadal time scales during the early Little Ice Age period to present. Results indicate that between ˜AD 1000 and 1600, effective moisture was higher than today. A shift to more arid climate conditions occurred after ˜AD 1650. The 19th and 20th centuries have been the driest of the past millennium. Temporal variations correspond with inferred shifts in summer evaporation from Marcella Lake δ 18O, a similarly small, stratified, alkaline lake located ˜250 km to the southwest, suggesting that the combined reconstructions accurately document the regional paleoclimate of the east-central interior. Comparison with regional glacial activity suggests differing regional moisture patterns during early and late Little Ice Age advances.

  15. Mid- to Late Holocene climate development in Central Asia as revealed from multi-proxy analyses of sediments from Lake Son Kol (Kyrgyzstan)

    NASA Astrophysics Data System (ADS)

    Lauterbach, Stefan; Dulski, Peter; Gleixner, Gerd; Hettler-Riedel, Sabine; Mingram, Jens; Plessen, Birgit; Prasad, Sushma; Schwalb, Antje; Schwarz, Anja; Stebich, Martina; Witt, Roman

    2013-04-01

    A mid-Holocene shift from predominantly wet to significantly drier climate conditions, attributed to the weakening of the Asian summer monsoon (ASM), is documented in numerous palaeoclimate records from the monsoon-influenced parts of Asia, e.g. the Tibetan Plateau and north- and southeastern China. In contrast, Holocene climate development in the arid regions of mid-latitude Central Asia, located north and northwest of the Tibetan Plateau, is less well-constrained but supposed to have been influenced by a complex interaction between the mid-latitude Westerlies and the ASM. Hence, well-dated and highly resolved palaeoclimate records from Central Asia might provide important information about spatio-temporal changes in the regional interplay between Westerlies and ASM and thus aid the understanding of global climate teleconnections. As a part of the project CADY (Central Asian Climate Dynamics), aiming at reconstructing past climatic and hydrological variability in Central Asia, several sediment cores were recovered from alpine Lake Son Kol (41° 48'N, 75° 12'E, 3016 m a. s. l.) in the Central Tian Shan of Kyrgyzstan. A radiocarbon-dated sediment sequence of 154.5 cm length, covering approximately the last 6000 years, was investigated by using a multi-proxy approach, including sedimentological, (bio)geochemical, isotopic and micropalaeontological analyses. Preliminary proxy data indicate hydrologically variable but predominantly wet conditions until ca. 5100 cal. a BP, characterized by the deposition of finely laminated organic-carbonatic sediments. In contrast to monsoonal Asia, where a distinct trend towards drier conditions is observed since the mid-Holocene, the hydrologically variable interval at Lake Son Kol was apparently followed by an only short-term dry episode between ca. 5100 and 4200 cal. a BP. This is characterized by a higher δD of the C29 n-alkanes, probably reflecting increased evapotranspiration. Also pollen, diatom and ostracod data point

  16. Lake carbonate-δ18 records from the Yukon Territory, Canada: Little Ice Age moisture variability and patterns

    USGS Publications Warehouse

    Anderson, Lesleigh; Finney, Bruce P.; Shapley, Mark D.

    2011-01-01

    A 1000-yr history of climate change in the central Yukon Territory, Canada, is inferred from sediment composition and isotope geochemistry from small, groundwater fed, Seven Mile Lake. Recent observations of lake-water δ18O, lake level, river discharge, and climate variations, suggest that changes in regional effective moisture (precipitation minus evaporation) are reflected by the lake’s hydrologic balance. The observations indicate that the lake is currently 18O-enriched by summer evaporation and that during years of increased precipitation, when groundwater inflow rates to the lake increase, lake-water δ18O values decrease. Past lake-water δ18O values are inferred from oxygen isotope ratios of fine-grained sedimentary endogenic carbonate. Variations in carbonate δ18O, supplemented by those in carbonate and organic δ13C, C/N ratios, and organic carbon, carbonate and biogenic silica accumulation rates, document changes in effective moisture at decadal time scales during the early Little Ice Age period to present. Results indicate that between ∼AD 1000 and 1600, effective moisture was higher than today. A shift to more arid climate conditions occurred after ∼AD 1650. The 19th and 20th centuries have been the driest of the past millennium. Temporal variations correspond with inferred shifts in summer evaporation from Marcella Lake δ18O, a similarly small, stratified, alkaline lake located ∼250 km to the southwest, suggesting that the combined reconstructions accurately document the regional paleoclimate of the east-central interior. Comparison with regional glacial activity suggests differing regional moisture patterns during early and late Little Ice Age advances.

  17. Simultaneous abrupt shifts in hydrology and fish assemblage structure in a floodplain lake in the central Amazon

    PubMed Central

    Röpke, Cristhiana P.; Amadio, Sidinéia; Zuanon, Jansen; Ferreira, Efrem J. G.; Deus, Cláudia Pereira de; Pires, Tiago H. S.; Winemiller, Kirk O.

    2017-01-01

    Combined effects of climate change and deforestation have altered precipitation patterns in the Amazon. This has led to changes in the frequency of extreme events of flood and drought in recent decades and in the magnitude of the annual flood pulse, a phenomenon that influences virtually all aspects of river-floodplain ecosystem dynamics. Analysis of long-term data revealed abrupt and synchronous changes in hydrology and fish assemblage structure of a floodplain lake near the confluence of Amazon and Negro rivers. After an intense drought in 2005, the assemblage assumed a different and fairly persistent taxonomic composition and functional structure. Declines in abundance after 2005 were more pronounced for species of all sizes having equilibrium life history strategy, large species with periodic life history strategy, and for all trophic levels except primary consumers. Our results suggest that the extreme drought triggered changes in the fish assemblage and subsequent anomalous hydrological conditions have hampered assemblage recovery. These findings stress the need to account for climatic-driven hydrological changes in conservation efforts addressing aquatic biodiversity and fishery resources in the central Amazon. PMID:28071701

  18. Simultaneous abrupt shifts in hydrology and fish assemblage structure in a floodplain lake in the central Amazon.

    PubMed

    Röpke, Cristhiana P; Amadio, Sidinéia; Zuanon, Jansen; Ferreira, Efrem J G; Deus, Cláudia Pereira de; Pires, Tiago H S; Winemiller, Kirk O

    2017-01-10

    Combined effects of climate change and deforestation have altered precipitation patterns in the Amazon. This has led to changes in the frequency of extreme events of flood and drought in recent decades and in the magnitude of the annual flood pulse, a phenomenon that influences virtually all aspects of river-floodplain ecosystem dynamics. Analysis of long-term data revealed abrupt and synchronous changes in hydrology and fish assemblage structure of a floodplain lake near the confluence of Amazon and Negro rivers. After an intense drought in 2005, the assemblage assumed a different and fairly persistent taxonomic composition and functional structure. Declines in abundance after 2005 were more pronounced for species of all sizes having equilibrium life history strategy, large species with periodic life history strategy, and for all trophic levels except primary consumers. Our results suggest that the extreme drought triggered changes in the fish assemblage and subsequent anomalous hydrological conditions have hampered assemblage recovery. These findings stress the need to account for climatic-driven hydrological changes in conservation efforts addressing aquatic biodiversity and fishery resources in the central Amazon.

  19. Chronological framework for the deglaciation of the Lake Michigan lobe of the Laurentide ice sheet from ice-walled lake deposits

    USGS Publications Warehouse

    Curry, B.; Petras, J.

    2011-01-01

    A revised chronological framework for the deglaciation of the Lake Michigan lobe of the south-central Laurentide Ice Sheet is presented based on radiocarbon ages of plant macrofossils archived in the sediments of low-relief ice-walled lakes. We analyze the precision and accuracy of 15 AMS 14C ages of plant macrofossils obtained from a single ice-walled lake deposit. The semi-circular basin is about 0.72km wide and formed of a 4- to 16-m-thick succession of loess and lacustrine sediment inset into till. The assayed material was leaves, buds and stems of Salix herbacea (snowbed willow). The pooled mean of three ages from the basal lag facies was 18 270??50 14C a BP (21 810cal. a BP), an age that approximates the switch from active ice to stagnating conditions. The pooled mean of four ages for the youngest fossil-bearing horizon was 17 770??40 14C a BP (21 180cal. a BP). Material yielding the oldest and youngest ages may be obtained from sediment cores located at any place within the landform. Based on the estimated settling times of overlying barren, rhythmically bedded sand and silt, the lacustrine environment persisted for about 50 more years. At a 67% confidence level, the dated part of the ice-walled lake succession persisted for between 210 and 860cal. a (modal value: 610cal. a). The deglacial age of five moraines or morainal complexes formed by the fluctuating margin of the Lake Michigan lobe have been assessed using this method. There is no overlap of time intervals documenting when ice-walled lakes persisted on these landforms. The rapid readvances of the lobe during deglaciation after the last glacial maximum probably occurred at some point between the periods of ice-walled lake sedimentation. ?? 2011 John Wiley & Sons, Ltd.

  20. Planning applications in east central Florida. [resources management and planning, land use, and lake algal blooms in Brevard County from Skylab imagery

    NASA Technical Reports Server (NTRS)

    Hannah, J. W.; Thomas, G. L.; Esparza, F. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Lake Apopka and three lakes downstream of it (Dora, Eustis, and Griffin) are in an advanced state of eutrophication with high algal concentrations. This feature has shown up consistently on ERTS-1 images in the form of a characteristic water color for those lakes. As expected, EREP photographs also show a characteristic color for those lakes. What was not expected is that Lake Griffin shows a clear pattern of this coloration. Personnel familiar with the lake believe that the photograph does, indeed, show an algal bloom. It is reported that the algal concentration is often significantly higher in the southern portion of the lake. What the photograph shows that was not otherwise known is the pattern of the algal bloom. A similar, but less pronounced, effect is seen in Lake Tohopekaliga. Personnel stationed at Kissimmee reported that there was an algal bloom on that lake at the time of the EREP pass and that its extent corresponded approximately to that shown on the photograph. Again, the EREP photograph gives information about the extent of the bloom that could not be obtained practically by sampling. ERTS-1 images give some indication of this algal distribution on Lake Griffin in some cases, but are inconclusive.

  1. 78 FR 53675 - Safety Zone; Lake Erie Heritage Foundation, Battle of Lake Erie Reenactment; Lake Erie, Put-in...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-30

    ...-AA00 Safety Zone; Lake Erie Heritage Foundation, Battle of Lake Erie Reenactment; Lake Erie, Put-in-Bay... temporary safety zone in the waters of Lake Erie in the vicinity of Put-In-Bay, OH. This safety zone is intended to restrict vessels from a portion of Lake Erie during Battle of Lake Erie Reenactment near Put-In...

  2. Effects of exploitation, environmental changes, and new species on the fish habitats and resources of Lake Erie

    USGS Publications Warehouse

    Hartman, Wilbur L.

    1973-01-01

    No other lake as large as Lake Erie (surface area, 25,690 km2) has been subjected to such extensive changes in the drainage basin, the lake environment, and the fish populations over the last 150 years. Deforestation and prairie burning led to erosion of the watershed and siltation of valuable spawning grounds. Marsh spawning areas were drained. Lake-to-river spawning migrations of sturgeon, walleye, and other fishes were blocked by mill dams. Accelerated cultural nutrient loading increased total dissolved solids by nearly 50% (1920-70). Phosphate loading reached 469 metric tons per year by the 1950's and continued to increase. The biomass of phytoplankton increased 20-fold between 1919 and 1963. Oxygen demand for decomposition of these algae so degraded oxygen regimes in the western and central basins by the 1950's that the once abundant mayfly nymphs were destroyed and the central basin hypolimnion became anoxic. The sequence of disappearance or severe depletion of fish species was as follows: lake trout, sturgeon, lake herring, lake whitefish, sauger, blue pike, and walleye. Yellow perch are now declining. All resources were intensively exploited at one time or another. Lake trout suffered only this stress, but changes in the watershed significantly stressed sturgeon and lake whitefish. Degradation of the lake spawning grounds, benthos, and oxygen regimes culminated in severe stress by the 1950's on the remnants of the lake herring and lake whitefish, and on the sauger, blue pike, and walleye. Additional mortality may have been imposed on walleye and blue pike fry by predacious smelt that successfully colonized Lake Erie after first appearing in 1932. The cultural stresses, in the probable order of greatest to least net effects on the fish community of Lake Erie, appear to have been: (1) an intense, opportunistic, ineffectively controlled commercial fishery; (2) changes in the watershed, such as erosion and siltation of stream beds and inshore lake areas, and

  3. Late Holocene evolution of playa lakes in the central Ebro depression based on geophysical surveys and morpho-stratigraphic analysis of lacustrine terraces

    NASA Astrophysics Data System (ADS)

    Gutiérrez, F.; Valero-Garcés, B.; Desir, G.; González-Sampériz, P.; Gutiérrez, M.; Linares, R.; Zarroca, M.; Moreno, A.; Guerrero, J.; Roqué, C.; Arnold, L. J.; Demuro, M.

    2013-08-01

    The origin and morpho-stratigraphic evolution of the largest playa-lake system (La Playa-El Pueyo) in the Bujaraloz-Sástago endorheic area, located in the semiarid central sector of the Ebro Depression, are analysed. The enclosed depressions are developed on gypsiferous Tertiary bedrock and show a prevalent WNW-ESE orientation parallel to the direction of the prevalent strong local wind (Cierzo). Yardangs have been carved in bedrock and unconsolidated terrace deposits in the leeward sector of the largest lake basins. A sequence of three lacustrine terrace levels has been identified by detailed geomorphological mapping. The treads of the upper, middle and lower terrace levels are situated at + 9 m, + 6 m and + 0.5 m above the playa-lake floors, respectively. Seismic refraction and electrical resistivity profiles acquired in La Playa reveal a thin basin fill (~ 2 m) with a planar base. These data allow ruling out the genetic hypothesis for the depressions involving the collapse of large bedrock cavities and support a mixed genesis of combined widespread dissolution and subsidence by groundwater discharge and eolian deflation during dry periods. The 5 m thick deposit of the middle terrace was investigated in hand-dug and backhoe trenches. Six AMS radiocarbon ages from this terrace indicate an aggradation phase between 3.9 ka and ca. 2 ka. These numerical ages yield a maximum average aggradation rate of 2.6 mm/yr and a minimum excavation rate by wind deflation of 3 mm/yr subsequent to the accumulation of the middle terrace. The latter figure compares well with those calculated in several arid regions of the world using yardangs carved in palaeolake deposits. The aggradation phase between 4 and 2 ka is coherent with other Iberian and Mediterranean records showing relatively more humid conditions after 4 ka, including the Iron Ages and the Iberian-Roman Period.

  4. Lake-level variability and water availability in the Great Lakes

    USGS Publications Warehouse

    Wilcox, Douglas A.; Thompson, Todd A.; Booth, Robert K.; Nicholas, J.R.

    2007-01-01

    In this report, we present recorded and reconstructed (pre-historical) changes in water levels in the Great Lakes, relate them to climate changes of the past, and highlight major water-availability implications for storage, coastal ecosystems, and human activities. 'Water availability,' as conceptualized herein, includes a recognition that water must be available for human and natural uses, but the balancing of how much should be set aside for which use is not discussed. The Great Lakes Basin covers a large area of North America. The lakes capture and store great volumes of water that are critical in maintaining human activities and natural ecosystems. Water enters the lakes mostly in the form of precipitation and streamflow. Although flow through the connecting channels is a primary output from the lakes, evaporation is also a major output. Water levels in the lakes vary naturally on timescales that range from hours to millennia; storage of water in the lakes changes at the seasonal to millennial scales in response to lake-level changes. Short-term changes result from storm surges and seiches and do not affect storage. Seasonal changes are driven by differences in net basin supply during the year related to snowmelt, precipitation, and evaporation. Annual to millennial changes are driven by subtle to major climatic changes affecting both precipitation (and resulting streamflow) and evaporation. Rebounding of the Earth's surface in response to loss of the weight of melted glaciers has differentially affected water levels. Rebound rates have not been uniform across the basin, causing the hydrologic outlet of each lake to rise in elevation more rapidly than some parts of the coastlines. The result is a long-term change in lake level with respect to shoreline features that differs from site to site. The reconstructed water-level history of Lake Michigan-Huron over the past 4,700 years shows three major high phases from 2,300 to 3,300, 1,100 to 2,000, and 0 to 800

  5. AMS radiocarbon analyses from Lake Baikal, Siberia: Challenges of dating sediments from a large, oligotrophic lake

    USGS Publications Warehouse

    Colman, Steven M.; Jones, Glenn A.; Rubin, M.; King, J.W.; Peck, J.A.; Orem, W.H.

    1996-01-01

    A suite of 146 new accelerator-mass spectrometer (AMS) radiocarbon ages provides the first reliable chronology for late Quaternary sediments in Lake Baikal. In this large, highly oligotrophic lake, biogenic and authigenic carbonate are absent, and plant macrofossils are extremely rare. Total organic carbon is therefore the primary material available for dating. Several problems are associated with the TOC ages. One is the mixture of carbon sources in TOC, not all of which are syndepositional in age. This problem manifests itself in apparent ages for the sediment surface that are greater than zero. However, because most of the organic carbon in Lake Baikal sediments is algal (autochthonous) in origin, this effect is limited to about 1000+500 years, which can be corrected, at least for young deposits. The other major problem with dating Lake Baikal sediments is the very low carbon contents of glacial-age deposits, which makes them extremely susceptible to contamination with modern carbon. This problem can be minimized by careful sampling and handling procedures. The ages show almost an order of magnitude difference in sediment-accumulation rates among different sedimentary environments in Lake Baikal, from about 0.04 mm/year on isolated banks such as Academician Ridge, to nearly 0.3 mm/year in the turbidite depositional areas beneath the deep basin floors, such as the Central Basin. The new AMS ages clearly indicate that the dramatic increase in diatom productivity in the lake, as evidenced by increases in biogenic silica and organic carbon, began about 13 ka, in contrast to previous estimates of 7 ka for the age of this transition. Holocene net sedimentation rates may be less than, equal to, or greater than those in the late Pleistocene, depending on the site. This variability reflects the balance between variable terrigenous sedimentation and increased biogenic sedimentation during interglaciations. The ages reported here, and the temporal and spatial variation in

  6. Short-term expansion of glacial lakes in the Himalayas

    NASA Astrophysics Data System (ADS)

    Nagai, H.; Tadono, T.

    2017-12-01

    A glacial lake outburst flood (GLOF) is a serious mountainous hazard that is related to glacial shrinkage. Despite technical developments in satellite-based lake expansion monitoring, small glacial lakes were collapsed in Bhutan in June 2015 and in Nepal in May 2017. Relatively heavy rainfall was reported downstream just before the floods. Does a large amount of short-term precipitation have a possibility of triggering a GLOF? To answer this question, the temporal change in the glacial lake area is assessed by means of satellite-based synthetic aperture radar, coupled with satellite-derived spatial and temporal distribution of precipitation to evaluate the contribution of rainfall in glacial lake expansion. The Phased Array type L-band Synthetic Aperture Radar-2 (PALSAR-2) observed the Mande Chu river basin in central Bhutan on Aug 11, 2016. Glacial lakes were manually delineated from the orthorectified backscatter amplitude image. They were compared with those delineated from the old satellite images of ALOS ( 2011), PALSAR-2 (2014-2016), and Landsat-8 (2016). The temporal and spatial distributions of precipitation (2010-2016) are obtained from the Global Satellite Mapping of Precipitation (GSMaP) data (10-km spatial / 60-min. temporal resolutions), calibrated by in situ rain gauges (GSMap_RNL/MVL). The outlines of 11 glacial lakes in the study site were successfully traced from 2011 to 2016; rapid expansion was recorded especially in the period between March and July 2016. In this period, exceeding 500 mm of the total amount of precipitation is recorded by GSMaP, whereas the mean precipitation amount is 300-400 mm in the previous years. This implies that relatively larger precipitation occurred in 2016, which is related to the short-term expansion of the glacial lakes. The rapid expansion of smaller lakes can be explained by their relatively shallow depths, which is sensitive to the increase in inflow water volume. This study highlights the importance of high

  7. Lake Life.

    ERIC Educational Resources Information Center

    Ohrn, Deborah Gore, Ed.

    1993-01-01

    This quarterly publication of the State Historical Society of Iowa features articles and activities for elementary school students. This summer issue focuses on the topic of lake life. The issue includes the following features: (1) "Where the Lakes Are Map"; (2) "Letter from the Lake"; (3) "Lake People"; (4)…

  8. Patterns and potential drivers of dramatic changes in Tibetan lakes, 1972-2010.

    PubMed

    Li, Yingkui; Liao, Jingjuan; Guo, Huadong; Liu, Zewen; Shen, Guozhuang

    2014-01-01

    Most glaciers in the Himalayas and the Tibetan Plateau are retreating, and glacier melt has been emphasized as the dominant driver for recent lake expansions on the Tibetan Plateau. By investigating detailed changes in lake extents and levels across the Tibetan Plateau from Landsat/ICESat data, we found a pattern of dramatic lake changes from 1970 to 2010 (especially after 2000) with a southwest-northeast transition from shrinking, to stable, to rapidly expanding. This pattern is in distinct contrast to the spatial characteristics of glacier retreat, suggesting limited influence of glacier melt on lake dynamics. The plateau-wide pattern of lake change is related to precipitation variation and consistent with the pattern of permafrost degradation induced by rising temperature. More than 79% of lakes we observed on the central-northern plateau (with continuous permafrost) are rapidly expanding, even without glacial contributions, while lakes fed by retreating glaciers in southern regions (with isolated permafrost) are relatively stable or shrinking. Our study shows the limited role of glacier melt and highlights the potentially important contribution of permafrost degradation in predicting future water availability in this region, where understanding these processes is of critical importance to drinking water, agriculture, and hydropower supply of densely populated areas in South and East Asia.

  9. Hydrogeologic setting, water budget, and preliminary analysis of ground-water exchange at Lake Starr, a seepage lake in Polk County, Florida

    USGS Publications Warehouse

    Swancar, Amy; Lee, T.M.; O'Hare, T. M.

    2000-01-01

    Lake Starr, a 134-acre seepage lake of multiple-sinkhole origin on the Lake Wales Ridge of central Florida, was the subject of a detailed water-budget study from August 1996 through July 1998. The study monitored the effects of hydrogeologic setting, climate, and ground-water pumping on the water budget and lake stage. The hydrogeologic setting of the Lake Starr basin differs markedly on the two sides of the lake. Ground water from the surficial aquifer system flows into the lake from the northwest side of the basin, and lake water leaks out to the surficial aquifer system on the southeast side of the basin. Lake Starr and the surrounding surficial aquifer system recharge the underlying Upper Floridan aquifer. The rate of recharge to the Upper Floridan aquifer is determined by the integrity of the intermediate confining unit and by the downward head gradient between the two aquifers. On the inflow side of the lake, the intermediate confining unit is more continuous, allowing ground water from the surficial aquifer system to flow laterally into the lake. Beneath the lake and on the southeast side of the basin, breaches in the intermediate confining unit enhance downward flow to the Upper Floridan aquifer, so that water flows both downward and laterally away from the lake through the ground-water flow system in these areas. An accurate water budget, including evaporation measured by the energy-budget method, was used to calculate net ground-water flow to the lake, and to do a preliminary analysis of the relation of net ground-water fluxes to other variables. Water budgets constructed over different timeframes provided insight on processes that affect ground-water interactions with Lake Starr. Weekly estimates of net ground-water flow provided evidence for the occurrence of transient inflows from the nearshore basin, as well as the short-term effects of head in the Upper Floridan aquifer on ground-water exchange with the lake. Monthly water budgets showed the effects

  10. Reevaluation of lake trout and lake whitefish bioenergetics models

    USGS Publications Warehouse

    Madenjian, Charles P.; Pothoven, Steve A.; Kao, Yu-Chun

    2013-01-01

    Using a corrected algorithm for balancing the energy budget, we reevaluated the Wisconsin bioenergetics model for lake trout (Salvelinus namaycush) in the laboratory and for lake whitefish (Coregonus clupeaformis) in the laboratory and in the field. For lake trout, results showed that the bioenergetics model slightly overestimated food consumption by the lake trout when they were fed low and intermediate rations, whereas the model predicted food consumption by lake trout fed ad libitum without any detectable bias. The slight bias in model predictions for lake trout on restricted rations may have been an artifact of the feeding schedule for these fish, and we would therefore recommend application of the Wisconsin lake trout bioenergetics model to lake trout populations in the field without any revisions to the model. Use of the Wisconsin bioenergetics model for coregonids resulted in overestimation of food consumption by lake whitefish both in the laboratory and in the field by between 20 and 30%, on average. This overestimation of food consumption was most likely due to overestimation of respiration rate. We therefore adjusted the respiration component of the bioenergetics model to obtain a good fit to the observed consumption in our laboratory tanks. The adjusted model predicted the consumption in the laboratory and the field without any detectable bias. Until a detailed lake whitefish respiration study can be conducted, we recommend application of our adjusted version of the Wisconsin generalized coregonid bioenergetics model to lake whitefish populations in the field.

  11. Plasma steroid concentrations and male phallus size in juvenile alligators from seven Florida lakes

    USGS Publications Warehouse

    Guillette, L.J.; Woodward, A.R.; Crain, D.A.; Pickford, D.B.; Rooney, A.A.; Percival, H.F.

    1999-01-01

    Neonatal and juvenile alligators from contaminated Lake Apopka in central Florida exhibit abnormal plasma sex steroid concentrations as well as morphological abnormalities of the gonad and phallus. This study addresses whether similar abnormalities occur in juvenile alligators inhabiting six other lakes in Florida. For analysis, animals were partitioned into two subsets, animals 40-79 cm total length (1-3 years old) and juveniles 80-130 cm total length (3-7 years old). Plasma testosterone (T) concentrations were lower in small males from lakes Apopka, Griffin, and Jessup than from Lake Woodruff National Wildlife Refuge (NWR). Similar differences were observed in the larger juveniles, with males from lakes Jessup, Apopka, and Okeechobee having lower plasma T concentrations than Lake Woodruff males. Plasma estradiol-17?? (E2) concentrations were significantly elevated in larger juvenile males from Lake Apopka compared to Lake Woodruff NWR. When compared to small juvenile females from Lake Woodruff NWR, females from lakes Griffin, Apopka, Orange, and Okeechobee had elevated plasma E2 concentrations. Phallus size was significantly smaller in males from lakes Griffin and Apopka when compared to males from Lake Woodruff NWR. An association existed between body size and phallus size on all lakes except Lake Apopka and between phallus size and plasma T concentration on all lakes except lakes Apopka and Orange. Multiple regression analysis, with body size and plasma T concentration as independent covariables, explained the majority of the variation in phallus size on all lakes. These data suggest that the differences in sex steroids and phallus size observed in alligators from Lake Apopka are not limited to that lake, nor to one with a history of a major pesticide spill. Further work examining the relationship of sex steroids and phallus size with specific biotic and abiotic factors, such as antiandrogenic or estrogenic contaminants, is needed.

  12. Phylogenetic Analysis of a Microbialite-Forming Microbial Mat from a Hypersaline Lake of the Kiritimati Atoll, Central Pacific

    PubMed Central

    Schneider, Dominik; Arp, Gernot; Reimer, Andreas; Reitner, Joachim; Daniel, Rolf

    2013-01-01

    On the Kiritimati atoll, several lakes exhibit microbial mat-formation under different hydrochemical conditions. Some of these lakes trigger microbialite formation such as Lake 21, which is an evaporitic, hypersaline lake (salinity of approximately 170‰). Lake 21 is completely covered with a thick multilayered microbial mat. This mat is associated with the formation of decimeter-thick highly porous microbialites, which are composed of aragonite and gypsum crystals. We assessed the bacterial and archaeal community composition and its alteration along the vertical stratification by large-scale analysis of 16S rRNA gene sequences of the nine different mat layers. The surface layers are dominated by aerobic, phototrophic, and halotolerant microbes. The bacterial community of these layers harbored Cyanobacteria (Halothece cluster), which were accompanied with known phototrophic members of the Bacteroidetes and Alphaproteobacteria. In deeper anaerobic layers more diverse communities than in the upper layers were present. The deeper layers were dominated by Spirochaetes, sulfate-reducing bacteria (Deltaproteobacteria), Chloroflexi (Anaerolineae and Caldilineae), purple non-sulfur bacteria (Alphaproteobacteria), purple sulfur bacteria (Chromatiales), anaerobic Bacteroidetes (Marinilabiacae), Nitrospirae (OPB95), Planctomycetes and several candidate divisions. The archaeal community, including numerous uncultured taxonomic lineages, generally changed from Euryarchaeota (mainly Halobacteria and Thermoplasmata) to uncultured members of the Thaumarchaeota (mainly Marine Benthic Group B) with increasing depth. PMID:23762495

  13. Modeling Prairie Pothole Lakes: Linking Satellite Observation and Calibration (Invited)

    NASA Astrophysics Data System (ADS)

    Schwartz, F. W.; Liu, G.; Zhang, B.; Yu, Z.

    2009-12-01

    This paper examines the response of a complex lake wetland system to variations in climate. The focus is on the lakes and wetlands of the Missouri Coteau, which is part of the larger Prairie Pothole Region of the Central Plains of North America. Information on lake size was enumerated from satellite images, and yielded power law relationships for different hydrological conditions. More traditional lake-stage data were made available to us from the USGS Cottonwood Lake Study Site in North Dakota. A Probabilistic Hydrologic Model (PHM) was developed to simulate lake complexes comprised of tens-of-thousands or more individual closed-basin lakes and wetlands. What is new about this model is a calibration scheme that utilizes remotely-sensed data on lake area as well as stage data for individual lakes. Some ¼ million individual data points are used within a Genetic Algorithm to calibrate the model by comparing the simulated results with observed lake area-frequency power law relationships derived from Landsat images and water depths from seven individual lakes and wetlands. The simulated lake behaviors show good agreement with the observations under average, dry, and wet climatic conditions. The calibrated model is used to examine the impact of climate variability on a large lake complex in ND, in particular, the “Dust Bowl Drought” 1930s. This most famous drought of the 20th Century devastated the agricultural economy of the Great Plains with health and social impacts lingering for years afterwards. Interestingly, the drought of 1930s is unremarkable in relation to others of greater intensity and frequency before AD 1200 in the Great Plains. Major droughts and deluges have the ability to create marked variability of the power law function (e.g. up to one and a half orders of magnitude variability from the extreme Dust Bowl Drought to the extreme 1993-2001 deluge). This new probabilistic modeling approach provides a novel tool to examine the response of the

  14. Late Quaternary megafloods from Glacial Lake Atna, Southcentral Alaska, U.S.A.

    NASA Astrophysics Data System (ADS)

    Wiedmer, Michael; Montgomery, David R.; Gillespie, Alan R.; Greenberg, Harvey

    2010-05-01

    Geomorphic, stratigraphic, geotechnical, and biogeographic evidence indicate that failure of a Pleistocene ice dam between 15.5 and 26 ka generated a megaflood from Glacial Lake Atna down the Matanuska Valley. While it has long been recognized that Lake Atna occupied ≥ 9000 km 2 of south-central Alaska's Copper River Basin, little attention has focused on the lake's discharge locations and behaviors. Digital elevation model and geomorphic analyses suggest that progressive lowering of the lake level by decanting over spillways exposed during glacial retreat led to sequential discharges down the Matanuska, Susitna, Tok, and Copper river valleys. Lake Atna's size, ˜ 50 ka duration, and sequential connection to four major drainages likely made it a regionally important late Pleistocene freshwater refugium. We estimate a catastrophic Matanuska megaflood would have released 500-1400 km 3 at a maximum rate of ≥ 3 × 10 6 m 3 s - 1 . Volumes for the other outlets ranged from 200 to 2600 km 3 and estimated maximum discharges ranged from 0.8 to 11.3 × 10 6 m 3 s - 1 , making Lake Atna a serial generator of some of the largest known freshwater megafloods.

  15. Late Holocene lake-level fluctuations in Walker Lake, Nevada, USA

    USGS Publications Warehouse

    Yuan, F.; Linsley, B.K.; Howe, S.S.; Lund, S.P.; McGeehin, J.P.

    2006-01-01

    Walker Lake, a hydrologically closed, saline, and alkaline lake, is situated along the western margin of the Great Basin in Nevada of the western United States. Analyses of the magnetic susceptibility (??), total inorganic carbon (TIC), and oxygen isotopic composition (??18O) of carbonate sediments including ostracode shells (Limnocythere ceriotuberosa) from Walker Lake allow us to extend the sediment record of lake-level fluctuations back to 2700??years B.P. There are approximately five major stages over the course of the late Holocene hydrologic evolution in Walker Lake: an early lowstand (> 2400??years B.P.), a lake-filling period (??? 2400 to ??? 1000??years B.P.), a lake-level lowering period during the Medieval Warm Period (MWP) (??? 1000 to ??? 600??years B.P.), a relatively wet period (??? 600 to ??? 100??years B.P.), and the anthropogenically induced lake-level lowering period (< 100??years B.P.). The most pronounced lowstand of Walker Lake occurred at ??? 2400??years B.P., as indicated by the relatively high values of ??18O. This is generally in agreement with the previous lower resolution paleoclimate results from Walker Lake, but contrasts with the sediment records from adjacent Pyramid Lake and Siesta Lake. The pronounced lowstand suggests that the Walker River that fills Walker Lake may have partially diverted into the Carson Sink through the Adrian paleochannel between 2700 to 1400??years B.P. ?? 2006 Elsevier B.V. All rights reserved.

  16. Spatial Evaluation of Heavy Metals Concentrations in the Surface Sediment of Taihu Lake.

    PubMed

    Niu, Yong; Jiao, Wei; Yu, Hui; Niu, Yuan; Pang, Yong; Xu, Xiangyang; Guo, Xiaochun

    2015-11-27

    With regard to the size of China's freshwater lakes, Taihu Lake ranks third and it plays an important role in the supply of drinking water, flood prevention, farming and navigation, as well as in the travelling industry. The problem of environmental pollution has attracted widespread attention in recent years. In order to understand the levels, distribution and sources of heavy metals in sediments of Taihu Lake, random selection was carried out to obtain 59 samples of surface sediment from the entire lake and study the concentrations of Pb, Cd, Cu, Zn, Cr and Ni. Toxic units were also calculated to normalize the toxicities caused by various heavy metals. As a result, Cd and Cu in sediment were considered lower than the effect range low (ERL) at all regions where samples were gathered, while Pb and Ni were categorized into ERL-effect range median (ERM) at over 22% of the regions where samples were obtained. Nevertheless, all average concentrations of the samples were below the level of potential effect. According to the findings of this research, significant spatial heterogeneity existed in the above heavy metals. In conclusion, the distribution areas of heavy metals with higher concentrations were mainly the north bays, namely Zhushan Bay, Meiliang Bay as well as Gonghu Bay. The distribution areas of Cu, Zn, Cr and Ni with higher concentration also included the lake's central region, whereas the uniform distribution areas of those with lower concentrations were the lake's southeast region. In addition, it was most probable that the spatial distribution of heavy metals was determined by river inputs, whereas atmospheric precipitation caused by urban and traffic contamination also exerted considerable effects on the higher concentrations of Pb and Cd. Through evaluating the total amount of toxic units (ΣTU), it was found that higher toxicity existed primarily in the north bays and central region of the lake. If the heavy metals were sorted by the reduction of mean

  17. Subglacial Lake CECs: Discovery and in situ survey of a privileged research site in West Antarctica

    NASA Astrophysics Data System (ADS)

    Rivera, Andrés.; Uribe, José; Zamora, Rodrigo; Oberreuter, Jonathan

    2015-05-01

    We report the discovery and on-the-ground radar mapping of a subglacial lake in Antarctica, that we have named Lake CECs (Centro de Estudios Científicos) in honor of the institute we belong to. It is located in the central part of the West Antarctic Ice Sheet, right underneath the Institute Ice Stream and Minnesota Glacier ice divide, and has not experienced surface elevation changes during the last 10 years. The ratio between the area of the subglacial lake and that of its feeding basin is larger than those for either subglacial lakes Ellsworth or Whillans, and it has a depth comparable to that of Ellsworth and greater than that of Whillans. Its ice thickness is ˜600 m less than that over Ellsworth. The lake is very likely a system with long water residence time. The recent finding of microbial life in Lake Whillans emphasizes the potential of Subglacial Lake CECs for biological exploration.

  18. Bathymetry and Geology of the Floor of Yellowstone Lake, Yellowstone National Park, Wyoming, Idaho, and Montana

    USGS Publications Warehouse

    Morgan, L.A.; Shanks, Wayne C.; Lee, G.K.; Webring, M.W.

    2007-01-01

    High-resolution, multi-beam sonar mapping of Yellowstone Lake was conducted by the U.S. Geological Survey in conjunction with the National Park Service from 1999 to 2002. Yellowstone Lake is the largest high-altitude lake in North America, at an altitude of 2,357 m with a surface area of 341 km2. More than 140 rivers and streams flow into Yellowstone Lake. The Yellowstone River, which enters at the southern end of the lake into the Southeast Arm, dominates the inflow of water and sediment (Shanks and others, 2005). The only outlet from the lake is at Fishing Bridge where the Yellowstone River flows northward discharging 375 to 4,600 cubic feet per second. The multi-beam sonar mapping occurred over a four-year period beginning in 1999 with mapping of the northern basin, continued in 2000 in West Thumb basin, in 2001 in the central basin, and in 2002 in the southern part of the lake including the Flat Mountain, South, and Southeast Arms.

  19. A chronology for glacial Lake Agassiz shorelines along Upham's namesake transect

    NASA Astrophysics Data System (ADS)

    Lepper, Kenneth; Buell, Alex W.; Fisher, Timothy G.; Lowell, Thomas V.

    2013-07-01

    Four traditionally recognized strandline complexes in the southern basin of glacial Lake Agassiz are the Herman, Norcross, Tintah and Campbell, whose names correspond to towns in west-central Minnesota that lie on a linear transect defined by the Great Northern railroad grade; the active corridor for commerce at the time when Warren Upham was mapping and naming the shorelines of Lake Agassiz (ca.1880-1895). Because shorelines represent static water planes, their extension around the lake margin establishes time-synchronous lake levels. Transitions between shoreline positions represent significant water-level fluctuations. However, geologic ages have never been obtained from sites near the namesake towns in the vicinity of the southern outlet. Here we report the first geologic ages for Lake Agassiz shorelines obtained at field sites along the namesake transect, and evaluate the emerging chronology in light of other paleoclimate records. Our current work from 11 sampling sites has yielded 16 independent ages. These results combined with a growing OSL age data set for Lake Agassiz's southern basin provide robust age constraints for the Herman, Norcross and Campbell strandlines with averages and standard deviations of 14.1 ± 0.3 ka, 13.6 ± 0.2 ka, and 10.5 ± 0.3 ka, respectively.

  20. Bathythermal habitat use by strains of Great Lakes- and Finger Lakes-origin lake trout in Lake Huron after a change in prey fish abundance and composition

    USGS Publications Warehouse

    Bergstedt, Roger A.; Argyle, Ray L.; Krueger, Charles C.; Taylor, William W.

    2012-01-01

    A study conducted in Lake Huron during October 1998–June 2001 found that strains of Great Lakes-origin (GLO) lake trout Salvelinus namaycush occupied significantly higher temperatures than did Finger Lakes-origin (FLO; New York) lake trout based on data from archival (or data storage) telemetry tags that recorded only temperature. During 2002 and 2003, we implanted archival tags that recorded depth as well as temperature in GLO and FLO lake trout in Lake Huron. Data subsequently recorded by those tags spanned 2002–2005. Based on those data, we examined whether temperatures and depths occupied by GLO and FLO lake trout differed during 2002–2005. Temperatures occupied during those years were also compared with occupied temperatures reported for 1998–2001, before a substantial decline in prey fish biomass. Temperatures occupied by GLO lake trout were again significantly higher than those occupied by FLO lake trout. This result supports the conclusion of the previous study. The GLO lake trout also occupied significantly shallower depths than FLO lake trout. In 2002–2005, both GLO and FLO lake trout occupied significantly lower temperatures than they did in 1998–2001. Aside from the sharp decline in prey fish biomass between study periods, the formerly abundant pelagic alewife Alosa pseudoharengus virtually disappeared and the demersal round goby Neogobius melanostomus invaded the lake and became locally abundant. The lower temperatures occupied by lake trout in Lake Huron during 2002–2005 may be attributable to changes in the composition of the prey fish community, food scarcity (i.e., a retreat to cooler water could increase conversion efficiency), or both.

  1. Chemours Pompton Lakes Works Site, Pompton Lakes, NJ

    EPA Pesticide Factsheets

    E.I. DuPont De Nemours & Company is located at 2000 Cannonball Road, Pompton Lakes, New Jersey. The DuPont Pompton Lakes Works site (DuPont) occupies approximately 570 acres of land in Pompton Lakes and Wanaque.

  2. Newly Collected Multibeam Swath Bathymetry Data Herald a New Phase in Gas-hydrate Research on Lake Baikal

    NASA Astrophysics Data System (ADS)

    Naudts, L.; Khlystov, O.; Khabuev, A.; Seminskiy, I.; Casier, R.; Cuylaerts, M.; 'chenko, P., General; Synaeve, J.; Vlamynck, N.; de Batist, M. A.; Grachev, M. A.

    2009-12-01

    Lake Baikal is a large rift lake in Southern Siberia (Russian Federation). It occupies the three central depressions of the Baikal Rift Zone (BRZ): i.e. the Southern, Central and Northern Baikal Basins. Rifting started ca. 30 Ma ago and is still active with a present-day average extension rate of about 4 mm/yr. With a depth of 1637 m, Lake Baikal is the deepest lake in the World. It also holds 20 % of the world’s liquid surface fresh water, which makes it the largest lake in the World in terms of volume. Lake Baikal is also the only freshwater lake in the World with demonstrated occurrences of gas hydrates in its sedimentary infill. Methane hydrates are stable at water depths below 375 m. The presence of hydrates in the sedimentary infill is evidenced by a widespread BSR. Hydrates have also been encountered locally, in the near-bottom sediments of mud-volcano-like structures. In the summer of 2009, the lake floor has been mapped with multibeam swath bathymetry for the first time during a two-month-long survey with RV Titov. Swath bathymetry data were acquired with RCMG’s mobile 50 kHz SeaBeam 1050 multibeam system. In total 12600 km of echosounder tracks were sailed covering 15000 km2, including the Academician Ridge Accommodation Zone, the Central Baikal Basin, the Selenga Delta Accommodation Zone en the South Baikal Basin. In general, the lake floor was mapped starting from water depths of about -200 m to -1637 m, with an average survey depth of -1000 m. The new bathymetric data image the lake-floor morphology in unprecedented detail, revealing many small- and large-scall morphosedimentary, morphostructural and fluid-flow-related features, many of which were hitherto unknown. Known mud-volcano provinces in the Southern and Central Baikal Basins (i.e. the Posolsky Bank mud-volcano province, the Kukuy Canyon mud volcano province and the Olkhon Gate mud-volcano province) were mapped in detail, and several new, often isolated, mud-volcano-like structures were

  3. Climatic data for Williams Lake, Hubbard County, Minnesota, 1983

    USGS Publications Warehouse

    Sturrock, A.M.; Rosenberry, D.O.; Engelbrecht, L.G.; Gothard, W.A.; Winter, T.C.

    1984-01-01

    Research on the hydrology of Williams Lake, north-central Minnesota includes study of evaporation. Presented here are those climatic data needed for energy-budget and mass-transfer studies,including: water-surface temperature, dry-bulb and wet-bulb air temperatures, wind speed, precipitation, and solar radiation. Data are collected at raft and land stations.

  4. Porewater salinity reveals past lake-level changes in Lake Van, the Earth's largest soda lake.

    PubMed

    Tomonaga, Yama; Brennwald, Matthias S; Livingstone, David M; Kwiecien, Olga; Randlett, Marie-Ève; Stockhecke, Mona; Unwin, Katie; Anselmetti, Flavio S; Beer, Jürg; Haug, Gerald H; Schubert, Carsten J; Sturm, Mike; Kipfer, Rolf

    2017-03-22

    In closed-basin lakes, sediment porewater salinity can potentially be used as a conservative tracer to reconstruct past fluctuations in lake level. However, until now, porewater salinity profiles did not allow quantitative estimates of past lake-level changes because, in contrast to the oceans, significant salinity changes (e.g., local concentration minima and maxima) had never been observed in lacustrine sediments. Here we show that the salinity measured in the sediment pore water of Lake Van (Turkey) allows straightforward reconstruction of two major transgressions and a major regression that occurred during the last 250 ka. We observed strong changes in the vertical salinity profiles of the pore water of the uppermost 100 m of the sediments in Lake Van. As the salinity balance of Lake Van is almost at steady-state, these salinity changes indicate major lake-level changes in the past. In line with previous studies on lake terraces and with seismic and sedimentological surveys, we identify two major transgressions of up to +105 m with respect to the current lake level at about 135 ka BP and 248 ka BP starting at the onset of the two previous interglacials (MIS5e and MIS7), and a major regression of about -200 m at about 30 ka BP during the last ice age.

  5. Comparison of energy-budget evaporation losses from two morphometrically different Florida seepage lakes

    USGS Publications Warehouse

    Sacks, L.A.; Lee, T.M.; Radell, M.J.

    1994-01-01

    Evaporation was computed by the energy-budget method for two north Florida lakes with similar surface areas but different depths, for the period May 1989 to December 1990. Lake Barco, in north-central Florida, is shallow, with an average depth of 3 m; Lake Five-O, in the Florida panhandle, is considerably deeper, with an average depth of 9.5 m. As a result, the thermal regime and seasonal evaporation rates of the lakes are different. Evaporation from the shallower lake was higher than that from the deeper lake in the winter and spring. In the late summer and autumn, however, the situation is reversed. Evaporation from the shallow lake is directly related to the amount of incoming shortwave radiation because of its limited ability to store energy. The lag in evaporation at the deeper lake is a function of the greater amount of heat that it seasonally stores and releases. The difference in annual evaporation between Lake Barco (151 cm year-1) and Lake Five-O (128 cm year-1) is related to differences in regional climatic conditions between the two sites. Additionally, higher than normal evaporation rates at the two lakes are probably related to drought conditions experienced in north Florida during 1990, which resulted in higher temperatures and more incoming radiation. Monthly evaporation at Lake Barco could usually be estimated within 10% of the energy-budget evaporation using a constant pan coefficient. This lake may be representative of other shallow lakes that do not store considerable heat. Monthly evaporation at Lake Five-O, however, could not be estimated accurately by using an annual pan coefficient because of the large seasonal influence of change in stored heat. Monthly mass-transfer evaporation compared well with energy-budget evaporation at Lake Barco, but did not compare well at Lake Five-O. These errors may also be associated with changes in heat storage. Thus, the thermal regime of the lake must be considered to estimate accurately the seasonal

  6. Spatiotemporal variability of carbon dioxide and methane in a eutrophic lake

    NASA Astrophysics Data System (ADS)

    Loken, Luke; Crawford, John; Schramm, Paul; Stadler, Philipp; Stanley, Emily

    2017-04-01

    well represented by a sample collected at lake's central buoy, and thus, extrapolations from a single sampling location may not be adequate to assess lake-wide CO2 and CH4 dynamics in human-dominated landscapes.

  7. Concentrations and loads of nutrients in the tributaries of the Lake Okeechobee watershed, south-central Florida, water years 2004-2008

    USGS Publications Warehouse

    Byrne, Michael J.; Wood, Molly S.

    2011-01-01

    Lake Okeechobee in south-central Florida is the second largest freshwater lake in the contiguous United States. Excessive phosphorus loading, harmful high and low water levels, and rapid expansion of non-native vegetation have threatened the health of the lake in recent decades. A study was conducted to monitor discharge and nutrient concentrations from selected tributaries into Lake Okeechobee and to evaluate nutrient loads. The data analysis was performed at 16 monitoring stations from December 2003 to September 2008. Annual and seasonal discharge measured at monitoring stations is affected by rainfall. Hurricanes affected three wet years (2004, 2005, and the latter part of 2008) and resulted in substantially greater discharge than the drought years of 2006, 2007, and the early part of 2008. Rainfall supplies about 50 percent of the water to Lake Okeechobee, discharge from the Kissimmee River supplies about 25 percent, and discharge from tributaries and groundwater seepage along the lake perimeter collectively provide the remaining 25 percent. Annually, tributary discharge from basins located on the west side of the Kissimmee River is about 5 to 6 times greater than that from basins located on the east side. For the purposes of this study, the basins on the east side of the Kissimmee River are called "priority basins" because of elevated phosphorus concentrations, while those on the west side are called "nonpriority" basins. Total annual discharge in the non-priority basins ranged from 245,000 acre-feet (acre-ft) in 2007 to 1,322,000 acre-ft in 2005, while annual discharge from the priority basins ranged from 41,000 acre-ft in 2007 to 219,000 acre-ft in 2005. Mean total phosphorus concentrations ranged from 0.10 to 0.54 milligrams per liter (mg/L) at the 16 tributaries during 2004–2008. Mean concentrations were significantly higher at priority basin sites than at non-priority basin sites, particularly at Arbuckle Creek and C 41A Canal. Concentrations of organic

  8. Spatial and temporal genetic diversity of lake whitefish (Coregonus clupeaformis (Mitchill)) from Lake Huron and Lake Erie

    USGS Publications Warehouse

    Stott, Wendylee; Ebener, Mark P.; Mohr, Lloyd; Hartman, Travis; Johnson, Jim; Roseman, Edward F.

    2013-01-01

    Lake whitefish (Coregonus clupeaformis (Mitchill)) are important commercially, culturally, and ecologically in the Laurentian Great Lakes. Stocks of lake whitefish in the Great Lakes have recovered from low levels of abundance in the 1960s. Reductions in abundance, loss of habitat and environmental degradation can be accompanied by losses of genetic diversity and overall fitness that may persist even as populations recover demographically. Therefore, it is important to be able to identify stocks that have reduced levels of genetic diversity. In this study, we investigated patterns of genetic diversity at microsatellite DNA loci in lake whitefish collected between 1927 and 1929 (historical period) and between 1997 and 2005 (contemporary period) from Lake Huron and Lake Erie. Genetic analysis of lake whitefish from Lakes Huron and Erie shows that the amount of population structuring varies from lake to lake. Greater genetic divergences among collections from Lake Huron may be the result of sampling scale, migration patterns and demographic processes. Fluctuations in abundance of lake whitefish populations may have resulted in periods of increased genetic drift that have resulted in changes in allele frequencies over time, but periodic genetic drift was not severe enough to result in a significant loss of genetic diversity. Migration among stocks may have decreased levels of genetic differentiation while not completely obscuring stock boundaries. Recent changes in spatial boundaries to stocks, the number of stocks and life history characteristics of stocks further demonstrate the potential of coregonids for a swift and varied response to environmental change and emphasise the importance of incorporating both spatial and temporal considerations into management plans to ensure that diversity is preserved.

  9. Solar Cycle Driven Environmental Changes on Decadal to Centennial Scale of Late Miocene Lake Sediments (tortonian, Lake Pannon, Central Europe)

    NASA Astrophysics Data System (ADS)

    Piller, W. E.; Kern, A. K.; Harzhauser, M.; Soliman, A.; Mandic, O.

    2012-12-01

    High time resolution is a key issue in reconstructing past climate systems. This is of particular importance when searching for model predictions of future climate change, such as the warm Late Miocene. For this study we selected Lake Pannon, a paleo-ancient, alkaline, brackish lake in Europe during the Tortonian (early Late Miocene). On a continuous sediment core including the interval from ca. 10.5 - 10.4 Ma we show the power of high resolution multiproxy analyses for reconstructing paleoclimatology on a decadal scale over several millennia of Late Miocene time. To demonstrate this high-resolution interpretation we selected a core from the western margin of Lake Pannon and studied it in respect to 2 different time resolutions. A continuous 6-m-core clearly displays regular fluctuations and modulations within three different environmental proxies (natural gamma radiation, magnetic susceptibility, total abundance of ostracods). Lomb-Scargle and REDFIT periodograms next to wavelet spectra of all data sets reveal distinct frequencies. Only few of these are deciphered in all proxy data sets at the same power, while some occur only in two or one proxies. A higher resolution study was conducted on a 1.5-m-long core interval based on pollen and dinoflagellate cysts, ostracod abundance, carbon and sulfur contents as well as magnetic susceptibility and natural gamma radiation. Based on an already established age model the study covers about two millennia of Late Miocene time with a resolution of ~13.7 years per sample. No major ecological turnovers are expected in respect to this very short interval. Thus, the pollen record suggests rather stable wetland vegetation with a forested hinterland. Shifts in the spectra can be mainly attributed to variations in transport mechanism, represented by few phases of fluvial input but mainly by changes in wind intensity and probably also wind direction. Even within this short time span, dinoflagellates document rapid changes between

  10. Changes in surface area of the Böön Tsagaan and Orog lakes (Mongolia, Valley of the Lakes, 1974-2013) compared to climate and permafrost changes

    NASA Astrophysics Data System (ADS)

    Szumińska, Danuta

    2016-07-01

    The main aim of the study is the analysis of changes in surface area of lake Böön Tsagaan (45°35‧N, 99°8‧E) and lake Orog (45°3‧N, 100°44‧E) taking place in the last 40 years in the context of climate conditions and permafrost degradation. The lakes, located in Central Mongolia, at the borderline of permafrost range are fed predominantly by river waters and groundwater from the surrounding mountain areas, characterized by continuous and discontinuous permafrost occurrence - mostly the Khangai. The analysis of the Böön Tsagaan and Orog lake surface area in 1974-2013 was conducted based on satellite images, whereas climate conditions were analysed using the NOAA climate data and CRU dataset. Principal Component Analysis (PCA) was used to study the relationship patterns between the climatic factors and changes in the surface area of the lakes. A tendency for a decrease in surface area, intermittent with short episodes of resupply, was observed in both studied lakes. Climate changes recorded in the analysed period had both direct and indirect impacts on water supply to lakes. Taking into account the results of PCA analysis, the most significant factors include: fluctuation of annual precipitation, increase in air temperature and thickness of snow cover. The extended duration of snow cover in the last decades of the 20th century may constitute a key factor in relation to permafrost degradation.

  11. Natural reservoirs and triggered seismicity: a study of two northern Utah Lakes

    NASA Astrophysics Data System (ADS)

    Whidden, K. M.; Hansen, K.; Timothy, M.; Boltz, M. S.; Pankow, K. L.; Koper, K. D.

    2014-12-01

    The Great Salt Lake (GSL) and Utah Lake (UL) in northern Utah are in the middle of the Intermountain Seismic Belt, a band of active seismicity extending from western Montana through central Utah to northern Arizona. The proximity of these water bodies to an active earthquake zone is ideal for an investigation of lake-triggered seismicity. Both GSL and UL are shallow (10 and 4.3 m, respectively). The fresh water UL drains via the Jordan River into the salty GSL, which has no outlet. GSL has an aerial extent of 4400 km2, and the shallow depth and lack of outlet cause the surface area to change greatly as the lake volume increases and decreases. UL is much smaller with an almost constant aerial extent of 385 km2. For each lake, we compare yearly earthquake counts near the lake to yearly average lake level for years 1975-2013. GSL seismicity and lake level data correlate well, with seismicity increasing 3-5 years after lake level rise (cross correlation coefficient=0.56, P-value=0.0005). There is an especially large increase in seismicity in 1989 NE of the GSL following the historic lake level high stand in the mid-1980s. The 1989 seismicity has characteristics of both a swarm and a traditional mainshock/aftershock sequence. We will use a double-difference method (HypoDD) to relocate these earthquakes. UL seismicity does not correlate well with the lake level. The different results for the two lakes could perhaps be explained by the lakes' different sizes and the fact that UL has an outlet while GSL does not. The difference might also be explained by subsurface fluid pathways and available faults for nucleating earthquakes. We will further explore the significance of the GSL seismicity and lake level correlation by generating synthetic earthquake catalogs and cross correlating their yearly earthquake counts with the lake level data.

  12. Movements of hatchery-reared lake trout in Lake Superior

    USGS Publications Warehouse

    Pycha, Richard L.; Dryer, William R.; King, George R.

    1965-01-01

    The history of stocking of lake trout (Salvelinus namaycush) in the Great Lakes is reviewed. The study of movements is based on capture of 24,275 fin-clipped lake trout taken in experimental gill nets and trawls and commercial gill nets. Yearling lake trout planted from shore dispersed to 15-fath (27-m) depths in 3A? hr. Most fish remained within 2 miles (3.2 km) of the planting site 2 months, but within 4 months some fish had moved as much as 17 miles (27 km). The highest abundance of planted lake trout was in areas 2-4 miles (3.2-6.4 km) from the planting site even 3 years after release. Distance moved and size of fish were not correlated. Dispersal of lake trout begins at planting and probably continues until the fish are mature. Most movement was eastward in southern Lake Superior and followed the counterclockwise surface currents. Movement is most rapid in areas of strong currents and slowest in areas of weak currents or eddies. Movement to areas west of the Keweenaw Peninsula was insignificant from plantings in Keweenaw Bay and nil from other plantings farther east. Lake trout planted in the eastern third of the lake dispersed more randomly than those planted farther west. Few fish moved farther offshore than the 50-fath (91-m) contour. Lake trout planted in Canadian waters made insignificant contributions to populations in US waters.

  13. Modeling Hydrodynamics, Water Temperature, and Suspended Sediment in Detroit Lake, Oregon

    USGS Publications Warehouse

    Sullivan, Annett B.; Rounds, Stewart A.; Sobieszczyk, Steven; Bragg, Heather M.

    2007-01-01

    Detroit Lake is a large reservoir on the North Santiam River in west-central Oregon. Water temperature and suspended sediment are issues of concern in the river downstream of the reservoir. A CE-QUAL-W2 model was constructed to simulate hydrodynamics, water temperature, total dissolved solids, and suspended sediment in Detroit Lake. The model was calibrated for calendar years 2002 and 2003, and for a period of storm runoff from December 1, 2005, to February 1, 2006. Input data included lake bathymetry, meteorology, reservoir outflows, and tributary inflows, water temperatures, total dissolved solids, and suspended sediment concentrations. Two suspended sediment size groups were modeled: one for suspended sand and silt with particle diameters larger than 2 micrometers, and another for suspended clay with particle diameters less than or equal to 2 micrometers. The model was calibrated using lake stage data, lake profile data, and data from a continuous water-quality monitor on the North Santiam River near Niagara, about 6 kilometers downstream of Detroit Dam. The calibrated model was used to estimate sediment deposition in the reservoir, examine the sources of suspended sediment exiting the reservoir, and examine the effect of the reservoir on downstream water temperatures.

  14. Climatic data for Williams Lake, Hubbard County, Minnesota, 1984

    USGS Publications Warehouse

    Sturrock, A.M.; Rosenberry, D.O.; Scarborough, J.L.; Winter, T.C.

    1986-01-01

    Research on the hydrology of Williams Lake, north-central Minnesota includes study of evaporation. Presented here are those climatic data needed for energy-budget and mass-transfer studies, including: water-surface temperature, dry-bulb and wet-bulb air temperatures, wind speed, precipitation, and solar and atmospheric radiation. Data are collected at raft and land stations.

  15. Climatic data for Williams Lake, Hubbard County, Minnesota, 1985

    USGS Publications Warehouse

    Sturrock, A.M.; Rosenberry, D.O.; Winter, T.C.

    1987-01-01

    Research on the hydrology of Williams Lake, north-central Minnesota includes study of evaporation. Presented here are those climatic data needed for energy-budget and mass-transfer studies, including: water-surface temperature, dry-bulb and wet-bulb air temperatures, wind speed, precipitation, and solar and atmospheric radiation. Data are collected at raft and land stations.

  16. Exploring the Food Environment on the Spirit Lake Reservation

    ERIC Educational Resources Information Center

    Pattanaik, Swaha; Gold, Abby; McKay, Lacey; Azure, Lane; Larson, Mary

    2014-01-01

    The purpose of this research project was to understand the food environment of the Fort Totten community on the Spirit Lake reservation in east-central North Dakota, as perceived by tribal members and employees at Cankdeska Cikana Community College (CCCC). According to a 2010 report from the Center for Disease Control and Prevention, the food…

  17. Recent and Late Holocene Alaskan Lake Changes Identified from Water Isotopes

    NASA Astrophysics Data System (ADS)

    Anderson, L.; Birks, S. J.; Rover, J.; Guldager, N.

    2014-12-01

    To identify the existence and cause of recent lake area changes in the Yukon Flats, a region of discontinuous permafrost in north central Alaska, we evaluate lake water isotope compositions with remotely sensed imagery and hydroclimatic parameters. Estimates of the ratio of water lost by evaporation to that gained by inflow (E/I) were derived from an isotope-based water balance model. The isotope labels are also used to identify the dominant sources for lakes such as rainfall and snowfall, groundwater, rivers, or thawed permafrost. These parameters are then used in conjunction with climatic data and remotely sensed imagery to identify the patterns and causes of recent lake area changes and for evaluation with lake sediment oxygen isotope records of late Holocene lake water isotope variations. Lake water isotope samples from 83 lakes were acquired in July, August or September between 2007 and 2010 by fixed wing aircraft. An additional set of smaller lakes (n = 33) was sampled by helicopter in September 2009. In July 2011 59 lakes were sampled on foot within five distinct 11.2-km2 areas. River water data used here are previously collected during the months of June through October between 2006 and 2008. Isotope compositions indicate that mixtures of precipitation, river water, and groundwater source ~95% of the studied lakes. The remaining minority are more dominantly sourced by snowmelt and/or permafrost thaw. Isotope-based water balance estimates indicate 58% of lakes lose more than half of inflow by evaporation. For 26% of the lakes studied, evaporative losses exceeded supply. Surface area trend analysis indicates that most lakes were near their maximum extent in the early 1980s during a relatively cool and wet period. Subsequent reductions can be explained by moisture deficits and greater evaporation. Comparison with late Holocene isotope values and trends indicates recent changes are within the range of late Holocene variability. The records indicate a drier and

  18. Water budget and water quality of Ward Lake, flow and water-quality characteristics of the Braden River estuary, and the effects of Ward Lake on the hydrologic system, west-central Florida

    USGS Publications Warehouse

    Trommer, J.T.; DelCharco, M.J.; Lewelling, B.R.

    1999-01-01

    The Braden River is the largest tributary to the Manatee River. The river was dammed in 1936 to provide the city of Bradenton a source of freshwater supply. The resulting impoundment was called Ward Lake and had a storage capacity of about 585 million gallons. Reconstruction in 1985 increased the size of the reservoir to about 1,400 million gallons. The lake has been renamed the Bill Evers Reservoir and drains about 59 square miles. The Braden River watershed can be subdivided into three hydrologic reaches. The upper reach consists of a naturally incised free-flowing channel. The middle reach consists of a meandering channel affected by backwater as a result of the dam. The lower reach is a tidal estuary. Water budgets were calculated for the 1993 through 1997 water years. Mean surface-water inflow to Ward Lake for the 5-year period was 1,645 inches per year (equivalent depth over the surface of the lake), or about 81.8 percent of total inflow. Mean ground-water inflow was 311 inches per year, or about 15.5 percent. A mean of 55 inches of rain fell directly on the lake and accounted for only 2.7 percent. Mean surface-water outflow was 1,736 inches, or about 86.4 percent of total water leaving the lake. There was no net ground-water outflow from the lake. Mean surface-water withdrawal for public supply was 229 inches per year, or about 11.4 percent. Mean evaporation was 45 inches and accounted for only 2.2 percent of the mean outflow. Change in lake storage on the budget was negligible. Most chemical constituents contained in water flowing to Ward Lake meet the standards specified by the Florida Department of Environmental Protection and the U.S. Environmental Protection Agency. Phosphorus is the exception, exceeding the U.S. Environmental Protection Agency limits of 0.10 milligram per liter in most samples. However, the source of the phosphorus is naturally occurring phosphate deposits underlying the watershed. Organic nitrogen and orthophosphate are the dominant

  19. Influences on Bythotrephes longimanus life-history characteristics in the Great Lakes

    USGS Publications Warehouse

    Pothoven, Steven A.; Vanderploeg, Henry A.; Warner, David M.; Schaeffer, Jeffrey S.; Ludsin, Stuart A.; Claramunt, Randall M.; Nalepa, Thomas F.

    2012-01-01

    We compared Bythotrephes population demographics and dynamics to predator (planktivorous fish) and prey (small-bodied crustacean zooplankton) densities at a site sampled through the growing season in Lakes Michigan, Huron, and Erie. Although seasonal average densities of Bythotrephes were similar across lakes (222/m2 Erie, 247/m2 Huron, 162/m2 Michigan), temporal trends in abundance differed among lakes. In central Lake Erie where Bythotrephes' prey assemblage was dominated by small individuals (60%), where planktivorous fish densities were high (14,317/ha), and where a shallow water column limited availability of a deepwater refuge, the Bythotrephes population was characterized by a small mean body size, large broods with small neonates, allocation of length increases mainly to the spine rather than to the body, and a late summer population decline. By contrast, in Lake Michigan where Bythotrephes' prey assemblage was dominated by large individuals (72%) and planktivorous fish densities were lower (5052/ha), the Bythotrephes population was characterized by a large mean body size (i.e., 37–55% higher than in Erie), small broods with large neonates, nearly all growth in body length occurring between instars 1 and 2, and population persistence into fall. Life-history characteristics in Lake Huron tended to be intermediate to those found in Lakes Michigan and Erie, reflecting lower overall prey and predator densities (1224/ha) relative to the other lakes. Because plasticity in life history can affect interactions with other species, our findings point to the need to understand life-history variation among Great Lakes populations to improve our ability to model the dynamics of these ecosystems.

  20. Energy density of lake whitefish Coregonus clupeaformis in Lakes Huron and Michigan

    USGS Publications Warehouse

    Pothoven, S.A.; Nalepa, T.F.; Madenjian, C.P.; Rediske, R.R.; Schneeberger, P.J.; He, J.X.

    2006-01-01

    We collected lake whitefish Coregonus clupeaformis off Alpena and Tawas City, Michigan, USA in Lake Huron and off Muskegon, Michigan USA in Lake Michigan during 2002–2004. We determined energy density and percent dry weight for lake whitefish from both lakes and lipid content for Lake Michigan fish. Energy density increased with increasing fish weight up to 800 g, and then remained relatively constant with further increases in fish weight. Energy density, adjusted for weight, was lower in Lake Huron than in Lake Michigan for both small (≤800 g) and large fish (>800 g). Energy density did not differ seasonally for small or large lake whitefish or between adult male and female fish. Energy density was strongly correlated with percent dry weight and percent lipid content. Based on data from commercially caught lake whitefish, body condition was lower in Lake Huron than Lake Michigan during 1981–2003, indicating that the dissimilarity in body condition between the lakes could be long standing. Energy density and lipid content in 2002–2004 in Lake Michigan were lower than data for comparable sized fish collected in 1969–1971. Differences in energy density between lakes were attributed to variation in diet and prey energy content as well as factors that affect feeding rates such as lake whitefish density and prey abundance.

  1. Effects of lake trout refuges on lake whitefish and cisco in the Apostle Islands Region of Lake Superior

    USGS Publications Warehouse

    Zuccarino-Crowe , Chiara M.; Taylor, William W.; Hansen, Michael J.; Seider, Michael J.; Krueger, Charles C.

    2016-01-01

    Lake trout refuges in the Apostle Islands region of Lake Superior are analogous to the concept of marine protected areas. These refuges, established specifically for lake trout (Salvelinus namaycush) and closed to most forms of recreational and commercial fishing, were implicated as one of several management actions leading to successful rehabilitation of Lake Superior lake trout. To investigate the potential significance of Gull Island Shoal and Devils Island Shoal refuges for populations of not only lake trout but also other fish species, relative abundances of lake trout, lake whitefish (Coregonus clupeaformis), and cisco (Coregonus artedi) were compared between areas sampled inside versus outside of refuge boundaries. During 1982–2010, lake trout relative abundance was higher and increased faster inside the refuges, where lake trout fishing was prohibited, than outside the refuges. Over the same period, lake whitefish relative abundance increased faster inside than outside the refuges. Both evaluations provided clear evidence that refuges protected these species. In contrast, trends in relative abundance of cisco, a prey item of lake trout, did not differ significantly between areas inside and outside the refuges. This result did not suggest indirect or cascading refuge effects due to changes in predator levels. Overall, this study highlights the potential of species-specific refuges to benefit other fish species beyond those that were the refuges' original target. Improved understanding of refuge effects on multiple species of Great Lakes fishes can be valuable for developing rationales for refuge establishment and predicting associated fish community-level effects.

  2. Using oxygen isotopes of phosphate to trace phosphorus sources and cycling in lake Erie

    USGS Publications Warehouse

    Elsbury, K.E.; Paytan, A.; Ostrom, N.E.; Kendall, C.; Young, M.B.; McLaughlin, K.; Rollog, M.E.; Watson, S.

    2009-01-01

    Water samples collected during three sampling trips to Lake Erie displayed oxygen isotopic values of dissolved phosphate (??18O p) that were largely out of equilibrium with ambient conditions, indicating that source signatures may be discerned. ??18O p values in the Lake ranged from +10??? to +17???, whereas the equilibrium value was expected to be around +14???. The riverine weighted average ??18Op value was +11??? and may represent one source of phosphate to the Lake. The lake ?? 18Op values indicated that there must be one or more as yet uncharacterized source(s) of phosphate with a high ?? 18Op value. Potential sources other than rivers are not yet well-characterized with respect to ??18O of phosphate, but we speculate that a likely source may be the release of phosphate from sediments under reducing conditions created during anoxic events in the hypolimnion of the central basin of Lake Erie. Identifying potential phosphorus sources to the Lake is vital for designing effective management plans for reducing nutrient inputs and associated eutrophication. ?? 2009 American Chemical Society.

  3. Future volcanic lake research: revealing secrets from poorly studied lakes

    NASA Astrophysics Data System (ADS)

    Rouwet, D.; Tassi, F.; Mora-Amador, R. A.

    2012-04-01

    Volcanic lake research boosted after the 1986 Lake Nyos lethal gas burst, a limnic rather than volcanic event. This led to the formation of the IAVCEI-Commission on Volcanic Lakes, which grew out into a multi-disciplinary scientific community since the 1990's. At Lake Nyos, a degassing pipe is functional since 2001, and two additional pipes were added in 2011, aimed to prevent further limnic eruption events. There are between 150 and 200 volcanic lakes on Earth. Some acidic crater lakes topping active magmatic-hydrothermal systems are monitored continuously or discontinuously. Such detailed studies have shown their usefulness in volcanic surveillance (e.g. Ruapehu, Yugama-Kusatsu-Shiran, Poás). Others are "Nyos-type" lakes, with possible gas accumulation in bottom waters and thus potentially hazardous. "Nyos-type" lakes tend to remain stably stratified in tropical and sub-tropical climates (meromictic), leading to long-term gas build-up and thus higher potential risk. In temperate climates, such lakes tend to turn over in winter (monomictic), and thus liberating its gas charge yearly. We line out research strategies for the different types of lakes. We believe a complementary, multi-disciplinary approach (geochemistry, geophysics, limnology, biology, statistics, etc.) will lead to new insights and ideas, which can be the base for future following-up and monitoring. After 25 years of pioneering studies on rather few lakes, the scientific community should be challenged to study the many poorly studied volcanic lakes, in order to better constrain the related hazard, based on probabilistic approaches.

  4. Gas exchange on Mono Lake and Crowley Lake, California

    NASA Technical Reports Server (NTRS)

    Wanninkhof, Rik; Ledwell, James R.; Broecker, Wallace S.

    1987-01-01

    Gas exchange coefficients (k) have been determined for freshwater Crowley Lake and saline Mono Lake through the use of a man-made purposefully injected gas, SF6. The concentration decreased from an initial value of 40 to 4 pmol/L for Mono Lake and from 20 to 1 pmol/L for Crowley lake over a period of 6 wks. Wind-speed (u) records from anemometers on the shore of each lake made it possible to determine the relationship between k and u. The average u and k values for the experiment were identical for the two lakes, despite the large chemical differences. It is estimated that, for the u values observed over Mono Lake from July to December 1984, the exchange of CO2 occurred 2.5 times faster than without chemical enhancement. This is a factor of 4 lower than needed to explain the high invasion rate of C-14 produced by nuclear bomb tests.

  5. A satellite-based climatology (1989-2012) of lake surface water temperature from AVHRR 1-km for Central European water bodies

    NASA Astrophysics Data System (ADS)

    Riffler, Michael; Wunderle, Stefan

    2013-04-01

    The temperature of lakes is an important parameter for lake ecosystems influencing the speed of physio-chemical reactions, the concentration of dissolved gazes (e.g. oxygen), and vertical mixing. Even small temperature changes might have irreversible effects on the lacustrine system due to the high specific heat capacity of water. These effects could alter the quality of lake water depending on parameters like lake size and volume. Numerous studies mention lake water temperature as an indicator of climate change and in the Global Climate Observing System (GCOS) requirements it is listed as an essential climate variable. In contrast to in situ observations, satellite imagery offers the possibility to derive spatial patterns of lake surface water temperature (LSWT) and their variability. Moreover, although for some European lakes long in situ time series are available, the temperatures of many lakes are not measured or only on a non-regular basis making these observations insufficient for climate monitoring. However, only few satellite sensors offer the possibility to analyze time series which cover more than 20 years. The Advanced Very High Resolution Radiometer (AVHRR) is among these and has been flown on the National Oceanic and Atmospheric Administration (NOAA) Polar Operational Environmental Satellites (POES) and on the Meteorological Operational Satellites (MetOp) from the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) as a heritage instrument for almost 35 years. It will be carried on for at least ten more years finally offering a unique opportunity for satellite-based climate studies. Herein we present the results from a study initiated by the Swiss GCOS office to generate a satellite-based LSWT climatology for the pre-alpine water bodies in Switzerland. It relies on the extensive AVHRR 1-km data record (1985-2012) of the Remote Sensing Research Group at the University of Bern (RSGB) and has been derived from the AVHRR/2

  6. Sedimentation in Lake Elgygytgyn, NE Russia, during the past 340.000 years

    NASA Astrophysics Data System (ADS)

    Juschus, O.; Melles, M.; Wennrich, V.; Nowaczyk, N.; Brigham-Grette, J.; Minyuk, P.

    2009-12-01

    In spring 2009, an ICDP drilling operation on Lake Elgygytgyn, located in a 3.6 Myr old meteorite impact crater in NE Siberia, penetrated 312 m of lake sediments above a suevite layer and brecciated bedrock. In the uppermost ca. 140 m, the lake sediments according to on-site core descriptions and susceptibility measurements are comparable to those occurring in up to 16.0 m long sediment cores from the central lake part, which were recovered and investigated within the site survey for the drilling project. Assuming comparable sedimentation rates, the upper 80 m of the sediment record may represent the depositional history during the past ca. 3.0 Myr. This poster summarizes the results thus far available from the upper 16 m, in order to illustrate the potential the drilled upper lake sediment record has for reconstructing the environmental and climatic history of the terrestrial Arctic during the Quaternary. Besides two volcanic ash layers and a number of fine-grained turbidites, by far most of the sediments in the central part of Lake Elgygytgyn originate from fluvial and eolian input, and from the biological production in the lake. These pelagic sediments can be distinguished into four depositional units of contrasting lithological and biogeochemical composition, reflecting past environmental conditions associated with relatively warm, peak warm, cold and dry, and cold but more moist climate modes. A relatively warm climate, resulting in complete summer melt of the lake ice cover and seasonal mixing of the water column, prevailed during the Holocene and Marine Isotope Stages (MIS) 3, 5.1 - 5.3, 6.1, 6.3, 6.5, 7.1 - 7.3, 7.5, 8.1, 8.3 and 9.1. MIS 5.5 (Eemian) and 9.5 were characterized by significantly enhanced aquatic primary production and organic matter supply from the catchment, indicating peak warm conditions. During MIS 2, 5.4, 6.2, 6.6, 8.2, 8.4, and 10 the climate was cold and dry, leading to perennial lake ice cover, little regional snowfall, and a

  7. Lake

    ERIC Educational Resources Information Center

    Wien, Carol Anne

    2008-01-01

    The lake is blue black and deep. It is a glaciated finger lake, clawed out of rock when ice retracted across Nova Scotia in a northerly direction during the last ice age. The lake is narrow, a little over a mile long, and deep, 90 to 190 feet in places according to local lore, off the charts in others. The author loves to swim there, with a sense…

  8. Nitrate and pesticides in surficial aquifers and trophic state and phosphorus sources for selected lakes, eastern Otter Tail County, west-central Minnesota, 1993-96

    USGS Publications Warehouse

    Ruhl, J.F.

    1997-01-01

    Phosphorus at depth in Little Pine and Big Pine Lakes was mostly orthophosphate. During the fall turnover of the lakes, this orthophosphate may have circulated to near the lake surface and became an available nutrient for phytoplankton during the following growing season. The internal phosphorus load to Little Pine Lake may have been important because about three-fourths of the lake probably became stratified and anoxic in the hypolimnion. The internal phosphorus load to Big Pine Lake may not have been important because only a small portion of the lake became stratified and anoxic at depth.

  9. Decreased glutathione S-transferase expression and activity and altered sex steroids in Lake Apopka brown bullheads (Ameriurus nebulosus)

    USGS Publications Warehouse

    Gallagher, E.P.; Gross, T.S.; Sheehy, K.M.

    2001-01-01

    A number of freshwater lakes and reclaimed agricultural sites in Central Florida have been the receiving waters for agrochemical and municipal runoff. One of these sites, Lake Apopka, is also a eutrophic system that has been the focus of several case studies reporting altered reproductive activity linked to bioaccumulation of persistent organochlorine chemicals in aquatic species. The present study was initiated to determine if brown bullheads (Ameriurus nebulosus) from the north marsh of Lake Apopka (Lake Apopka Marsh) exhibit an altered capacity to detoxify environmental chemicals through hepatic glutathione S-transferase (GST)-mediated conjugation as compared with bullheads from a nearby reference site (Lake Woodruff). We also compared plasma sex hormone concentrations (testosterone, 17-?? estradiol, and 11 keto-testosterone) in bullheads from the two sites. Female bullheads from Lake Apopka had 40% lower initial rate GST conjugative activity toward 1-chloro-2,4-dinitrobenzene (CDNB), 50% lower activity towards p-nitrobutyl chloride (NBC), 33% lower activity toward ethacrynic acid (ECA), and 43% lower activity toward ??5-androstene-3,17-dione (??5-ADI), as compared with female bullheads from Lake Woodruff. Enzyme kinetic analyses demonstrated that female bullheads from Lake Apopka had lower GST-catalyzed CDNB clearance than did female Lake Woodruff bullheads. Western blotting studies of bullhead liver cytosolic proteins demonstrated that the reduced GST catalytic activities in female Lake Apopka bullheads were accompanied by lower expression of hepatic GST protein. No site differences were observed with respect to GST activities or GST protein expression in male bullheads. Female Lake Apopka bullheads also had elevated concentrations of plasma androgens (testosterone and 11-ketotestosterone) as compared with females from Lake Woodruff. In contrast, male Lake Apopka bullheads had elevated levels of plasma estrogen but similar levels of androgens as compared with

  10. Lake seasonality across the Tibetan Plateau and their varying relationship with regional mass changes and local hydrology

    NASA Astrophysics Data System (ADS)

    Lei, Yanbin; Yao, Tandong; Yang, Kun; Sheng, Yongwei; Kleinherenbrink, Marcel; Yi, Shuang; Bird, Broxton W.; Zhang, Xiaowen; Zhu, La; Zhang, Guoqing

    2017-01-01

    The recent growth and deepening of inland lakes in the Tibetan Plateau (TP) may be a salient indicator of the consequences of climate change. The seasonal dynamics of these lakes is poorly understood despite this being potentially crucial for disentangling contributions from glacier melt and precipitation, which are all sensitive to climate, to lake water budget. Using in situ observations, satellite altimetry and gravimetry data, we identified two patterns of lake level seasonality. In the central, northern, and northeastern TP, lake levels are characterized by considerable increases during warm seasons and decreases during cold seasons, which is consistent with regional mass changes related to monsoon precipitation and evaporation. In the northwestern TP, however, lake levels exhibit dramatic increases during both warm and cold seasons, which deviate from regional mass changes. This appears to be more connected with high spring snowfall and large summer glacier melt. The variable lake level response to different drivers indicates heterogeneous sensitivity to climate change between the northwestern TP and other regions.

  11. Reconnaissance data on lakes in the Alpine Lakes Wilderness Area, Washington

    USGS Publications Warehouse

    Dethier, David P.; Heller, Paul L.; Safioles, Sally A.

    1979-01-01

    Sixty lakes in the Alpine Lakes Wilderness Area have been sampled from rubber rafts or helicopter to obtain information on their physical setting and on present water-quality conditions. The lakes are located near the crest of the Cascade Range in Chelan and King Counties, Washington. Basic data from these lakes will be useful for planners concerned with lake and wilderness management, and of interest to hikers and other recreationists who use the lakes.

  12. Slip along the Sultanhanı Fault in Central Anatolia from deformed Pleistocene shorelines of palaeo-lake Konya and implications for seismic hazards in low-strain regions

    NASA Astrophysics Data System (ADS)

    Melnick, Daniel; Yıldırım, Cengiz; Hillemann, Christian; Garcin, Yannick; Çiner, Attila; Pérez-Gussinyé, Marta; Strecker, Manfred R.

    2017-06-01

    Central Anatolia is a low-relief, high-elevation region where decadal-scale deformation rates estimated from space geodesy suggest low strain rates within a stiff microplate. However, numerous Quaternary faults have been mapped within this low-strain region and estimating their slip rate and seismic potential is important for hazard assessments in an area of increasing infrastructural development. Here we focus on the Sultanhanı Fault (SF), which constitutes an integral part of the Eskişehir-Cihanbeyli Fault System, and use deformed maximum highstand shorelines of palaeo-lake Konya to estimate tectonic slip rates at millennial scale. Some of these shorelines were previously interpreted as fault scarps, but we provide conclusive evidence for their erosional origin. We found that shoreline-angle elevations estimated from differential GPS profiles record vertical displacements of 10.2 m across the SF. New radiocarbon ages of lacustrine molluscs suggest 22.4 m of relative lake-level fall between 22.1 ± 0.3 and 21.7 ± 0.4 cal. ka BP, constraining the timing of abrupt abandonment of the highstand shoreline. Models of lithospheric rebound associated with regressions of the Tuz Gölü and Konya palaeo-lakes predict only ∼1 m of regional-scale uplift across the Konya Basin. Dislocation models of displaced shorelines suggest fault-slip rates of 1.5 and 1.8 mm yr-1 for planar and listric fault geometries, respectively, providing reasonable results for the latter. We found fault scarps in the Nasuhpınar mudflat that likely represent the most recent ground-breaking rupture of the SF, with an average vertical displacement of 1.2 ± 0.5 m estimated from 54 topographic profiles, equivalent to a M ∼ 6.5-6.9 earthquake based on empirical scaling laws. If such events were characteristic during the ultimate 21 ka, a relatively short recurrence time of ∼800-900 yr would be needed to account for the millennial slip rate. Alternatively, the fault scarp at Nasuhpınar might

  13. Genetic diversity of small eukaryotes in lakes differing by their trophic status.

    PubMed

    Lefranc, Marie; Thénot, Aurélie; Lepère, Cécile; Debroas, Didier

    2005-10-01

    Small eukaryotes, cells with a diameter of less than 5 mum, are fundamental components of lacustrine planktonic systems. In this study, small-eukaryote diversity was determined by sequencing cloned 18S rRNA genes in three libraries from lakes of differing trophic status in the Massif Central, France: the oligotrophic Lake Godivelle, the oligomesotrophic Lake Pavin, and the eutrophic Lake Aydat. This analysis shows that the least diversified library was in the eutrophic lake (12 operational taxonomic units [OTUs]) and the most diversified was in the oligomesotrophic lake (26 OTUs). Certain groups were present in at least two ecosystems, while the others were specific to one lake on the sampling date. Cryptophyta, Chrysophyceae, and the strictly heterotrophic eukaryotes, Ciliophora and fungi, were identified in the three libraries. Among the small eukaryotes found only in two lakes, Choanoflagellida and environmental sequences (LKM11) were not detected in the eutrophic system whereas Cercozoa were confined to the oligomesotrophic and eutrophic lakes. Three OTUs, linked to the Perkinsozoa, were detected only in the Aydat library, where they represented 60% of the clones of the library. Chlorophyta and Haptophyta lineages were represented by a single clone and were present only in Godivelle and Pavin, respectively. Of the 127 clones studied, classical pigmented organisms (autotrophs and mixotrophs) represented only a low proportion regardless of the library's origin. This study shows that the small-eukaryote community composition may differ as a function of trophic status; certain lineages could be detected only in a single ecosystem.

  14. Genetic Diversity of Small Eukaryotes in Lakes Differing by Their Trophic Status

    PubMed Central

    Lefranc, Marie; Thénot, Aurélie; Lepère, Cécile; Debroas, Didier

    2005-01-01

    Small eukaryotes, cells with a diameter of less than 5 μm, are fundamental components of lacustrine planktonic systems. In this study, small-eukaryote diversity was determined by sequencing cloned 18S rRNA genes in three libraries from lakes of differing trophic status in the Massif Central, France: the oligotrophic Lake Godivelle, the oligomesotrophic Lake Pavin, and the eutrophic Lake Aydat. This analysis shows that the least diversified library was in the eutrophic lake (12 operational taxonomic units [OTUs]) and the most diversified was in the oligomesotrophic lake (26 OTUs). Certain groups were present in at least two ecosystems, while the others were specific to one lake on the sampling date. Cryptophyta, Chrysophyceae, and the strictly heterotrophic eukaryotes, Ciliophora and fungi, were identified in the three libraries. Among the small eukaryotes found only in two lakes, Choanoflagellida and environmental sequences (LKM11) were not detected in the eutrophic system whereas Cercozoa were confined to the oligomesotrophic and eutrophic lakes. Three OTUs, linked to the Perkinsozoa, were detected only in the Aydat library, where they represented 60% of the clones of the library. Chlorophyta and Haptophyta lineages were represented by a single clone and were present only in Godivelle and Pavin, respectively. Of the 127 clones studied, classical pigmented organisms (autotrophs and mixotrophs) represented only a low proportion regardless of the library's origin. This study shows that the small-eukaryote community composition may differ as a function of trophic status; certain lineages could be detected only in a single ecosystem. PMID:16204507

  15. Patterns and Potential Drivers of Dramatic Changes in Tibetan Lakes, 1972–2010

    PubMed Central

    Li, Yingkui; Liao, Jingjuan; Guo, Huadong; Liu, Zewen; Shen, Guozhuang

    2014-01-01

    Most glaciers in the Himalayas and the Tibetan Plateau are retreating, and glacier melt has been emphasized as the dominant driver for recent lake expansions on the Tibetan Plateau. By investigating detailed changes in lake extents and levels across the Tibetan Plateau from Landsat/ICESat data, we found a pattern of dramatic lake changes from 1970 to 2010 (especially after 2000) with a southwest-northeast transition from shrinking, to stable, to rapidly expanding. This pattern is in distinct contrast to the spatial characteristics of glacier retreat, suggesting limited influence of glacier melt on lake dynamics. The plateau-wide pattern of lake change is related to precipitation variation and consistent with the pattern of permafrost degradation induced by rising temperature. More than 79% of lakes we observed on the central-northern plateau (with continuous permafrost) are rapidly expanding, even without glacial contributions, while lakes fed by retreating glaciers in southern regions (with isolated permafrost) are relatively stable or shrinking. Our study shows the limited role of glacier melt and highlights the potentially important contribution of permafrost degradation in predicting future water availability in this region, where understanding these processes is of critical importance to drinking water, agriculture, and hydropower supply of densely populated areas in South and East Asia. PMID:25372787

  16. [Determination of vanadium concentration in foods produced on the Eastern Coast of Lake Maracaibo].

    PubMed

    Tudares, C M; Villalobos, H D

    1998-04-01

    In the northeastern coast of Lake Maracaibo it has been reported some years ago a high incidence of congenital malformations of the Central Nervous Systems (Neural Tube Defects Type). This epidemiological problem is present in other countries too (Ireland and New Zealand) and has been associated with oil activities. In fact, some experimental works inform about the vanadium compounds cellular toxic effects mainly in the Central Nervous System of mammals. The main goal of this work is to measure the vanadium content in foods produced in the northeastern coast of Lake Maracaibo. Lagunillas, Valmore Rodriguez, and Baralt were the districts selected for the work. The digestion of the samples achieved by the methodology reported by Myron et al., with Graphite Furnace Atomic Absorption. The amounts of vanadium in the different foods analized were higher than the controls in the bibliographic reports. At this moment, there is not definitive proofs that vanadium compounds are the etiological agents of the Neural Tube Defects, but, these compounds are presents in foods produced in the northeastern coast of Lake Maracaibo.

  17. Late Quaternary sedimentary features of Bear Lake, Utah and Idaho

    USGS Publications Warehouse

    Smoot, J.P.

    2009-01-01

    Bear Lake sediments were predominantly aragonite for most of the Holocene, reflecting a hydrologically closed lake fed by groundwater and small streams. During the late Pleistocene, the Bear River flowed into Bear Lake and the lake waters spilled back into the Bear River drainage. At that time, sediment deposition was dominated by siliciclastic sediment and calcite. Lake-level fluctuation during the Holocene and late Pleistocene produced three types of aragonite deposits in the central lake area that are differentiated primarily by grain size, sorting, and diatom assemblage. Lake-margin deposits during this period consisted of sandy deposits including well-developed shoreface deposits on margins adjacent to relatively steep gradient lake floors and thin, graded shell gravel on margins adjacent to very low gradient lake-floor areas. Throughout the period of aragonite deposition, episodic drops in lake level resulted in erosion of shallow-water deposits, which were redeposited into the deeper lake. These sediment-focusing episodes are recognized by mixing of different mineralogies and crystal habits and mixing of a range of diatom fauna into poorly sorted mud layers. Lake-level drops are also indicated by erosional gaps in the shallow-water records and the occurrence of shoreline deposits in areas now covered by as much as 30 m of water. Calcite precipitation occurred for a short interval of time during the Holocene in response to an influx of Bear River water ca. 8 ka. The Pleistocene sedimentary record of Bear Lake until ca. 18 ka is dominated by siliciclastic glacial fl our derived from glaciers in the Uinta Mountains. The Bear Lake deep-water siliciclastic deposits are thoroughly bioturbated, whereas shallow-water deposits transitional to deltas in the northern part of the basin are upward-coarsening sequences of laminated mud, silt, and sand. A major drop in lake level occurred ca. 18 ka, resulting in subaerial exposure of the lake floor in areas now covered by

  18. Changes in the radiocarbon reservoir age in Lake Xingyun, Southwestern China during the Holocene.

    PubMed

    Zhou, Aifeng; He, Yuxin; Wu, Duo; Zhang, Xiaonan; Zhang, Can; Liu, Zhonghui; Yu, Junqing

    2015-01-01

    Chronology is a necessary component of paleoclimatology. Radiocarbon dating plays a central role in determining the ages of geological samples younger than ca. 50 ka BP. However, there are many limitations for its application, including radiocarbon reservoir effects, which may cause incorrect chronology in many lakes. Here we demonstrate temporal changes in the radiocarbon reservoir age of Lake Xingyun, Southwestern China, where radiocarbon ages based on bulk organic matter have been reported in previous studies. Our new radiocarbon ages, determined from terrestrial plant macrofossils suggest that the radiocarbon reservoir age changed from 960 to 2200 years during the last 8500 cal a BP years. These changes to the reservoir effect were associated with inputs from either pre-aged organic carbon or 14C-depleted hard water in Lake Xingyun caused by hydrological change in the lake system. The radiocarbon reservoir age may in return be a good indicator for the carbon source in lake ecosystems and depositional environment.

  19. 75 FR 20920 - Safety Zone; Lake Havasu Grand Prix, Lake Havasu, AZ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-22

    ...-AA00 Safety Zone; Lake Havasu Grand Prix, Lake Havasu, AZ AGENCY: Coast Guard, DHS. ACTION: Temporary... of Lake Havasu on the Colorado River in Lake Havasu City, Arizona for the Lake Havasu Grand Prix... established in support of the Lake Havasu Grand Prix, a marine event that includes participating vessels...

  20. Water-Balance Model to Simulate Historical Lake Levels for Lake Merced, California

    NASA Astrophysics Data System (ADS)

    Maley, M. P.; Onsoy, S.; Debroux, J.; Eagon, B.

    2009-12-01

    Lake Merced is a freshwater lake located in southwestern San Francisco, California. In the late 1980s and early 1990s, an extended, severe drought impacted the area that resulted in significant declines in Lake Merced lake levels that raised concerns about the long-term health of the lake. In response to these concerns, the Lake Merced Water Level Restoration Project was developed to evaluate an engineered solution to increase and maintain Lake Merced lake levels. The Lake Merced Lake-Level Model was developed to support the conceptual engineering design to restore lake levels. It is a spreadsheet-based water-balance model that performs monthly water-balance calculations based on the hydrological conceptual model. The model independently calculates each water-balance component based on available climate and hydrological data. The model objective was to develop a practical, rule-based approach for the water balance and to calibrate the model results to measured lake levels. The advantage of a rule-based approach is that once the rules are defined, they enhance the ability to then adapt the model for use in future-case simulations. The model was calibrated to historical lake levels over a 70-year period from 1939 to 2009. Calibrating the model over this long historical range tested the model over a variety of hydrological conditions including wet, normal and dry precipitation years, flood events, and periods of high and low lake levels. The historical lake level range was over 16 feet. The model calibration of historical to simulated lake levels had a residual mean of 0.02 feet and an absolute residual mean of 0.42 feet. More importantly, the model demonstrated the ability to simulate both long-term and short-term trends with a strong correlation of the magnitude for both annual and seasonal fluctuations in lake levels. The calibration results demonstrate an improved conceptual understanding of the key hydrological factors that control lake levels, reduce uncertainty

  1. Exploring the long-term balance between net precipitation and net groundwater exchange in Florida seepage lakes

    USGS Publications Warehouse

    Lee, Terrie M.; Sacks, Laura A.; Swancar, Amy

    2014-01-01

    The long-term balance between net precipitation and net groundwater exchange that maintains thousands of seepage lakes in Florida’s karst terrain is explored at a representative lake basin and then regionally for the State’s peninsular lake district. The 15-year water budget of Lake Starr includes El Niño Southern Oscillation (ENSO)-related extremes in rainfall, and provides the longest record of Bowen ratio energy-budget (BREB) lake evaporation and lake-groundwater exchanges in the southeastern United States. Negative net precipitation averaging -25 cm/yr at Lake Starr overturns the previously-held conclusion that lakes in this region receive surplus net precipitation. Net groundwater exchange with the lake was positive on average but too small to balance the net precipitation deficit. Groundwater pumping effects and surface-water withdrawals from the lake widened the imbalance. Satellite-based regional estimates of potential evapotranspiration at five large lakes in peninsular Florida compared well with basin-scale evaporation measurements from seven open-water sites that used BREB methods. The regional average lake evaporation estimated for Lake Starr during 1996-2011 was within 5 percent of its measured average, and regional net precipitation agreed within 10 percent. Regional net precipitation to lakes was negative throughout central peninsular Florida and the net precipitation deficit increased by about 20 cm from north to south. Results indicate that seepage lakes farther south on the peninsula receive greater net groundwater inflow than northern lakes and imply that northern lakes are in comparatively leakier hydrogeologic settings. Findings reveal the peninsular lake district to be more vulnerable than was previously realized to drier climate, surface-water withdrawals from lakes, and groundwater pumping effects.

  2. Use of isotopic data to estimate water residence times of the Finger Lakes, New York

    USGS Publications Warehouse

    Michel, Robert L.; Kraemer, Thomas F.

    1995-01-01

    Water retention times in the Finger Lakes, a group of 11 lakes in central New York with similar hydrologic and climatic characteristics, were estimated by use of a tritium-balance model. During July 1991, samples were collected from the 11 lakes and selected tributary streams and were analyzed for tritium, deuterium, and oxygen-18. Additional samples from some of the sites were collected in 1990, 1992 and 1993. Tritium concentration in lake water ranged from 24.6 Tritium Units (TU) (Otisco Lake) to 43.2 TU (Seneca Lake).The parameters in the model used to obtain water retention time (WRT) included relative humidity, evaporation rate, tritium concentrations of inflowing water and lake water, and WRT of the lake. A historical record of tritium concentrations in precipitation and runoff was obtained from rainfall data at Ottawa, Canada, analyses of local wines produced during 1977–1991, and streamflow samples collected in 1990–1991. The model was simulated in yearly steps for 1953–1991, and the WRT was varied to reproduce tritium concentrations measured in each lake in 1991. Water retention times obtained from model simulations ranged from 1 year for Otisco Lake to 12 years for Seneca Lake, and with the exception of Seneca Lake and Skaneateles Lake, were in agreement with earlier estimates obtained from runoff estimates and chloride balances. The sensitivity of the model to parameter changes was tested to determine possible reasons for the differences calculated for WRT's for Seneca Lake and Skaneateles Lake. The shorter WRT obtained from tritium data for Lake Seneca (12 years as compared to 18 years) can be explained by a yearly addition of less than 3% by lake volume of ground water to the lake, the exact percentage depending on tritium concentration in the ground water.

  3. Holocene rainfall runoff in the central Ethiopian highlands and evolution of the River Nile drainage system as revealed from a sediment record from Lake Dendi

    NASA Astrophysics Data System (ADS)

    Wagner, Bernd; Wennrich, Volker; Viehberg, Finn; Junginger, Annett; Kolvenbach, Anne; Rethemeyer, Janet; Schaebitz, Frank; Schmiedl, Gerhard

    2018-04-01

    A 12 m long sediment sequence was recovered from the eastern Dendi Crater lake, located on the central Ethiopian Plateau and in the region of the Blue Nile headwaters. 24 AMS radiocarbon dates from bulk organic carbon samples indicate that the sediment sequence spans the last ca. 12 cal kyr BP. Sedimentological and geochemical data from the sediment sequence that were combined with initial diatom information show only moderate change in precipitation and catchment runoff during that period, probably due to the elevated location of the study region in the Ethiopian highlands. Less humid conditions prevailed during the Younger Dryas (YD). After the return to full humid conditions of the African Humid Period (AHP), a 2 m thick tephra layer, probably originating from an eruption of the Wenchi crater 12 km to the west of the lake, was deposited at 10.2 cal kyr BP. Subsequently, single thin horizons of high clastic matter imply that short spells of dry conditions and significantly increased rainfall, respectively, superimpose the generally humid conditions. The end of the AHP is rather gradual and precedes relatively stable and less humid conditions around 3.9 cal kyr BP. Subsequently, slightly increasing catchment runoff led to sediment redeposition, increasing nutrient supply, and highest trophic states in the lake until 1.5 cal kyr BP. A highly variable increase in clastic matter indicates fluctuating and increasing catchment runoff over the last 1500 years. The data from Lake Dendi show, in concert with other records from the Nile catchment and the Eastern Mediterranean Sea (EMS), that the Blue Nile discharge was relatively high between ca. 10.0 and 8.7 cal kyr BP. Subsequent aridification peaked with some regional differences between ca. 4.0 and 2.6 cal kyr BP. Higher discharge in the Blue Nile hydraulic regime after 2.6 cal kyr BP is probably triggered by more local increase in rainfall, which is tentatively caused by a change in the influence of the Indian Ocean

  4. [Relationships between urbanization and water resource utilization in Dongting Lake District of South-central China].

    PubMed

    Li, Jing-Zhi; Zhu, Xiang; Li, Jing-Bao; Xu, Mei

    2013-06-01

    By using analytic hierarchy process and entropy method, the evaluation index system and the response relationship model of comprehensive development level of urbanization and comprehensive development and utilization potential of water resources in Dongting Lake District were constructed, with the key affecting factors, their change characteristics, and response characteristics from 2001 to 2010 analyzed. During the study period, the Dongting Lake District was undergoing a rapid development of urbanization, and at a scale expansion stage. The economic and social development level was lagged behind the population and area increase, and the quality and efficiency of urbanization were still needed to be improved. With the advance of urbanization, the water consumption increased yearly, and the water resources utilization efficiency and management level improved steadily. However, the background condition of water resources and their development and utilization level were more affected by hydrological environment rather than urbanization. To a certain extent, the development of urbanization in 2001, 2002, 2005, 2006, 2007, 2009 was slowed down by the shortage of water resources. At present, Dongting Lake region was confronted with the dual task of improving the level and quality of urbanization, and hence, it would be necessary to reform the traditional epitaxial expansion of urbanization and to enhance the water resource support capability.

  5. White Lake AOC

    EPA Pesticide Factsheets

    White Lake is in Muskegon County along the eastern shore of Lake Michigan. It was named an Area of Concern on the Great Lakes under the Great Lakes Water Quality Agreement of 1987 and delisted in 2014.

  6. Tectonic-karstic origin of the alleged "impact crater" of Lake Isli (Imilchil district, High Atlas, Morocco)

    NASA Astrophysics Data System (ADS)

    Ibouh, Hassan; Michard, André; Charrière, André; Benkaddour, Abdelfattah; Rhoujjati, Ali

    2014-03-01

    The scenic lakes Tislit and Isli of the Imilchil area in the central High Atlas of Morocco have been recently promoted to the rank of "dual impact crater" by a group of geoscientists. This was promptly denied by a group of meteorite specialists, but the first team reiterated their impact crater interpretation, now restricted to Lake Isli. This alleged 40-kyr-old impact crater would be associated with the Agoudal meteorite recognized further in the southeast. Here, we show that the lake formed during the Lowe-Middle Pleistocene in a small Pliocene (?) pull-apart basin through additional collapsing due to karst phenomena in the underlying limestones. This compares with the formation of a number of lakes of the Atlas Mountains. None of the "proofs" produced in support of a meteoritic origin of Lake Isli coincides with the geology of the area.

  7. SIMULATION AND VALIDATION OF FISH THERMAL DO HABITAT IN NORTH-CENTRAL US LAKES UNDER DIFFERENT CLIMATE SCENARIOS. (R824801)

    EPA Science Inventory

    Abstract

    Fish habitat in lakes is strongly constrained by water temperature and available dissolved oxygen (DO). Suitable fish habitat for three fish assemblages (cold-, cool-, and warm-water) in Minnesota (US) lakes was therefore determined from simulated daily water ...

  8. In-lake Modeling Recommendation Report for Lake Champlain TMDL

    EPA Pesticide Factsheets

    This report describes the recommended modeling approach for the in-lake modeling component of the Lake Champlain TMDL project. The report was prepared by Tetra Tech, with input from the Lake Champlain modeling workgroup. (TetraTech, 2012b)

  9. Thermal and hydrologic suitability of Lake Erie and its major tributaries for spawning of Asian carps

    USGS Publications Warehouse

    Kocovsky, Patrick M.; Chapman, Duane C.; McKenna, James E.

    2012-01-01

    Bighead carp Hypophthalmichthys nobilis, silver carp H. molitrix, and grass carp Ctenopharyngodon idella (hereafter Asian carps) have expanded throughout the Mississippi River basin and threaten to invade Lakes Michigan and Erie. Adult bighead carp and grass carp have been captured in Lake Erie, but self-sustaining populations probably do not exist. We examined thermal conditions within Lake Erie to determine if Asian carps would mature, and to estimate time of year when fish would reach spawning condition. We also examined whether thermal and hydrologic conditions in the largest tributaries to western and central Lake Erie were suitable for spawning of Asian carps. We used length of undammed river, predicted summer temperatures, and predicted water velocity during flood events to determine whether sufficient lengths of river are available for spawning of Asian carps. Most rivers we examined have at least 100 km of passable river and summer temperatures suitable (> 21 C) for rapid incubation of eggs of Asian carps. Predicted water velocity and temperature were sufficient to ensure that incubating eggs, which drift in the water column, would hatch before reaching Lake Erie for most flood events in most rivers if spawned far enough upstream. The Maumee, Sandusky, and Grand Rivers were predicted to be the most likely to support spawning of Asian carps. The Black, Huron, Portage, and Vermilion Rivers were predicted to be less suitable. The weight of the evidence suggests that the largest western and central Lake Erie tributaries are thermally and hydrologically suitable to support spawning of Asian carps.

  10. A New, Continuous 5400 Yr-long Paleotsunami Record from Lake Huelde, Chiloe Island, South Central Chile.

    NASA Astrophysics Data System (ADS)

    Kempf, P.; Moernaut, J.; Vandoorne, W.; Van Daele, M. E.; Pino, M.; Urrutia, R.; De Batist, M. A. O.

    2014-12-01

    After the last decade of extreme tsunami events with catastrophic damage to infrastructure and a horrendous amount of casualties, it is clear that more and better paleotsunami records are needed to improve our understanding of the recurrence intervals and intensities of large-scale tsunamis. Coastal lakes (e.g. Bradley Lake, Cascadia; Kelsey et al., 2005) have the potential to contain long and continuous sedimentary records, which is an important asset in view of the centennial- to millennial-scale recurrence times of great tsunami-triggering earthquakes. Lake Huelde on Chiloé Island (42.5°S), Chile, is a coastal lake located in the middle of the Valdivia segment, which is known for having produced the strongest ever instrumentally recorded earthquake in 1960 AD (MW: 9.5), and other large earthquakes prior to that: i.e. 1837 AD, 1737 AD (no report of a tsunami) and 1575 AD (Lomnitz, 1970, 2004, Cisternas et al., 2005). We present a new 5400 yr-long paleotsunami record with a Bayesian age-depth model based on 23 radiocarbon dates that exceeds all previous paleotsunami records from the Valdivia segment, both in terms of length and of continuity. 18 events are described and a semi-quantitative measure of the event intensity at the study area is given, revealing at least two predecessors of the 1960 AD event in the mid to late Holocene that are equal in intensity. The resulting implications from the age-depth model and from the semi-quantitative intensity reconstruction are discussed in this contribution.

  11. Hot springs of the central Sierra Nevada, California

    USGS Publications Warehouse

    Mariner, R.H.; Presser, T.S.; Evans, William C.

    1977-01-01

    Thermal springs of the central Sierra Nevada issue dilute to slightly saline sodium chloride, sodium bicarbonate, or sodium mixed-anion waters ranging in pH from 6.4 to 9.3. The solubility of chalcedony appears to control the silica concentration in most of the spring waters. Fales Hot Springs may be associated with a higher temperature aquifer, 150 degrees Celsius or more, in which quartz is controlling the silica concentration. Carbon dioxide is the predominant gas escaping from Fales Hot Springs, the unnamed hot spring on the south side of Mono Lake, and the two thermal springs near Bridgeport. Most of the other thermal springs issue small amounts of gas consisting principally of nitrogen. Methane is the major component of the gas escaping from the unnamed spring on Paoha Island in Mono Lake. The deuterium and oxygen isotopic composition of most of the thermal waters are those expected for local meteoric water which has undergone minor water-rock reaction. The only exceptions are the hot spring on Paoha Island in Mono Lake and perhaps the unnamed warm spring (south side of Mono Lake) which issues mixtures of thermal water and saline lake water. (Woodard-USGS)

  12. The potential of Lake Karakul in the eastern Pamirs as a long-term climate archive

    NASA Astrophysics Data System (ADS)

    Mischke, S.; Rajabov, I.; Mustaeva, N.; Zhang, C.; Boomer, I.; Sherlock, S. C.; Myrbo, A.; Noren, A.; Brady, K.; Herzschuh, U.; Schudack, M. E.; Ito, E.

    2008-12-01

    Lake Karakul is a large closed-basin lake in the eastern Pamirs (NE Tajikistan) at an altitude of 3930 m. The lake fills a large basin about 45 km in diameter which may originate from a meteorite impact in the late Neogene. Exposed lake sediments at the northwestern shore 20 m above the lake display a bizarre Yardang relief indicating higher water levels in the past. Eroded remnants of lake, playa and fluvial sediments can be found on the northeastern slopes of the basin 200 m above the lake but their depositional age remains unknown. A field survey of the Lake Karakul region was conducted in July 2008 as a first attempt to evaluate the potential of the lake as a long-term climate archive in Central Asia. Sediment samples from the lake's bottom, water samples from the lake and inflowing streams, aquatic and terrestrial plant samples, and rock samples were collected to enable an interdisciplinary investigation of the lake and its catchment. A 1.04 m sediment core was obtained near the centre of the more shallow and flat eastern sub-basin of the lake at 19 m water depth. Corresponding to the lack of outlet and the resulting high pH (9.1) and electrical conductivity of the lake (10.3 mS/cm), fine aragonite needles constitute most of the sediments. Additionally, ostracod shells, aquatic plant fragments, detrital grains and Radix (Gastropoda) shells were recorded. First results of AMS 14C dating and ostracod analysis will be used to infer the environmental and climatic evolution of Lake Karakul in the Late Holocene.

  13. Rates, timing, and cyclicity of Holocene eolian activity in north-central United States: Evidence from varved lake sediments

    USGS Publications Warehouse

    Dean, W.E.

    1997-01-01

    Most of the sediment components that accumulated in Elk Lake, northwestern Minnesota, during the Holocene are autochthonous or biogenic, delivered to the sediment-water interface on a seasonal schedule, preserved in distinct annual laminae (varves). The main allochthonous component is detrital clastic material, as measured by bulk-sediment concentrations of aluminum, sodium, potassium, titanium, and quartz, that enters the lake mostly as eolian dust. The eolian clastic influx to Elk Lake was considerably greater during the mid-Holocene (8-4 ka) than it has been for the past 4000 yr, when periods of increased eolian activity correspond to the time of the Little Ice Age and the dust bowl. Geochemical records of eolian activity exhibit distinct cyclicities with dominant periodicities of 400 and 84 yr.

  14. Water quality of Lake Austin and Town Lake, Austin, Texas

    USGS Publications Warehouse

    Andrews, Freeman L.; Wells, Frank C.; Shelby, Wanda J.; McPherson, Emma

    1988-01-01

    Water-quality data collected from Lake Austin and Town Lake, following runoff, generally were not adequate to fully determine the effects of runoff on the lakes. Data collection should not to be limited to fixed-station sampling following runoff, and both lakes need to be sampled simultaneously as soon as possible following significant precipitation.

  15. Bathymetry of Bonnie Doone Lake, Kornbow Lake, Mintz Pond, and Glenville Lake, Cumberland County, North Carolina, 1996-98

    USGS Publications Warehouse

    Giorgino, M.J.; Strain, R.E.

    1999-01-01

    Bathymetric surveys were conducted at four water-supply impoundments of Little Cross Creek in Cumberland County, North Carolina. The surveys were conducted in April 1996 at Mintz Pond and Glenville Lake, and in January 1998 at Bonnie Doone Lake and Kornbow Lake. The resulting bathymetric maps are the first to cover the entire range in depth for these reservoirs and provide a framework for future evaluations of bathymetry and storage capacity. Bathymetric maps were constructed from depth and position data collected at each reservoir. A boat-mounted, research-grade fathometer was used to record water depths with a vertical accuracy of 0.1 foot. At Mintz Pond and Glenville Lake, position was measured by using a wide-band laser tracking system interfaced with a total station survey instrument. This positioning method required multiple land-based control points to be established and was hampered by line-of-sight restrictions between the control points and the boat. At Bonnie Doone Lake and Kornbow Lake, a global positioning system was used to collect differentially corrected location data. This positioning method enabled more rapid data collection, eliminated the need for land-based control points, and provided improved data coverage. Spillway elevations range from 172.8 feet above mean sea level at Bonnie Doone Lake to 113.1 feet at Glenville Lake. Surface area and storage volume were computed for each reservoir and were related to water-surface elevations at 1-foot intervals. The combined surface acreage of the four Little Cross Creek reservoirs at their full-pool elevations is 120.97 acres, consisting of 21.20 acres at Bonnie Doone Lake, 47.09 acres at Kornbow Lake, 15.56 acres at Mintz Pond, and 37.12 acres at Glenville Lake. The four reservoirs have a combined usable storage capacity of 674.91 acre-feet, which is the sum of 127.93 acre-feet in Bonnie Doone Lake, 320.62 acre-feet in Kornbow Lake, 53.25 acre-feet in Mintz Pond, and 173.11 acre-feet in Glenville Lake.

  16. Reconstructing Environmental Change Using Lake Varves as a Climate Proxy

    ERIC Educational Resources Information Center

    Dempsey, Christopher; Bodzin, Alec; Cirucci, Lori; Anastasio, David; Sahagian, Dork

    2012-01-01

    In this article, the authors describe an investigative activity in which their eighth-grade students reconstructed past environmental change in the New England area using data from lake varves in central Vermont to examine evidence of climate change. The investigation uses an authentic paleoclimate record (Ridge 2011) from the Pleistocene epoch,…

  17. Lake trout in the Great Lakes: Basin-wide stock collapse and binational restoration

    USGS Publications Warehouse

    Hansen, Michael J.; Taylor, William W.; Ferreri, C. Paola

    1999-01-01

    The lake trout (Salvelinus namaycush) was important to the human settlement of each of the Great Lakes, and underwent catastrophic collapses in each lake in the nineteenth and twentieth centuries. The timing of lake trout stock collapses were different in each lake, as were the causes of the collapses, and have been the subject of much scientific inquiry and debate. The purpose of this chapter is to summarize and review pertinent information relating historical changes in Great Lakes lake trout stocks, binational efforts to restore those stocks, and progress toward stock restoration. This presentation attempts to generalize patterns across the Great Lakes, rather than to focus within each lake. Lake specific analyses have been used to understand lake specific causes and effects, but there is continuing debate about some of these causes and effects. A basinwide review may suggest mechanisms for observed changes that are not evident by lake specific analysis.

  18. STUDY OF PATHOGENIC FREE-LIVING AMEBAS IN FRESH-WATER LAKES IN VIRGINIA

    EPA Science Inventory

    Pathogenic free-living amebas may produce fatal infection of the central nervous system known as Primary Amebic Meningoencephalitis (PAM). In Richmond, Virginia, 17 cases have occurred, more than in any other location in the world. The objectives were to examine freshwater lakes ...

  19. Quantitative estimates of Mid- to late Holocene Climate Variability in northeastern Siberia inferred from chironomids in lake sediments

    NASA Astrophysics Data System (ADS)

    Nazarova, Larisa; Diekmann, Bernhard; Pestrjakova, Ludmila; Herzschuh, Ulrike; Subetto, Dmitry

    2010-05-01

    Yakutia (Russia, northeastern part of Eurasia) represents one of Earths most extreme climatic settings in the world with deep-reaching frozen ground and a semiarid continental climate with highest seasonal temperature contrasts in the northern hemisphere. The amplitude of temperature variations around the year sometimes exceeds 100oC. There are few examples of quantitative palaeoecological studies in Siberia and these data have to be tested by quantitative studies from other sites in this region, inferred from different proxies and using regional calibration datasets and temperature models that are still lacking. Chironomid midges (Insecta, Diptera, Chironomidae) have been widely used to reconstruct past climate variability in many areas of Western Europe and North America. A chironomid-mean July air temperature inference model has been developed, based on a modern calibration set of 200 lakes sampled along a transect from 110° to 159° E and 61° to73° N in northern Russia. The inference model was applied to sediment cores from 2 lakes in the Central Yakutia in order to reconstruct past July air temperatures. The lacustrine records span mid- to late Holocene. The downcore variability in the chironomid assemblages and the composition of organic matter give evidence of climate-driven and interrelated changes in biological productivity, lacustrine trophic states, and lake-level fluctuations. Three phases of the climate development in Central Yakutia can be derived from the geochemical composition of the lake cores and according to the inferred from chironomid assemblages mean July air ToC. Content of organic matters reached maximal values in the period between 7000-4500 yBP. Sedimentation rate is especially high, numerous molluscs shells are found in sediments. All this along with the reconstructed air temperature confirmed that Mid Holocene optimum in Central Yakutia took place in this period with the maximal temperatures up to 4oC above present day ToC. Strong

  20. GloboLakes: A global observatory of lake responses to environmental change.

    NASA Astrophysics Data System (ADS)

    Groom, Steve; Tyler, Andrew; Hunter, Peter; Spyrakos, Evangelos; Martinez-Vicente, Victor; Merchant, Chris; Cutler, Mark; Rowan, John; Dawson, Terry; Maberly, Stephen; Cavalho, Laurence; Elliot, Alex; Thackery, Stephen; Miller, Claire; Scott, Marian

    2014-05-01

    The world's freshwater ecosystems are vital components of the global biosphere, yet are vulnerable to climate and other human-induced change. There is increasing recognition that lakes play an important role in global biogeochemical cycling and provide key ecosystem services. However, our understanding of how lakes respond to environmental change at a global scale, and how this impacts on their status and function, is hampered by limited information on their chemical, physical and ecological condition. There are estimated to be over 300 million lakes globally, of which over 17,000 are greater than 10 km2 in surface area. These numbers have limited the systematic study of lake ecosystems. GloboLakes is a five-year UK research programme investigating the state of lakes and their response to climatic and other environmental drivers of change. It will establish a satellite-based observatory with archive and near-real time data processing to produce a time series of observed biogeochemical parameters and lake temperature for over 1000 lakes globally. This will be supported by linked ancillary data on climate and catchment land-use. The ability to monitor a large number of lakes consistently at high frequency and globally will facilitate a paradigm shift in our understanding of how lakes respond to environmental change at different spatial and temporal scales. A key requirement is to validate satellite retrieval algorithms and test the time-series of resulting lake properties such as chlorophyll-a by comparison with in situ data. To support the former extensive bio-optical and constituent data were taken in year 1 of the project in a number of UK lakes with a variety of trophic states. Furthermore, for wider validation activities GloboLakes has established the LIMNADES initiative to create a centralised database of ground bio-optical measurements of worldwide lakes through voluntary cooperation across the international scientific community. This presentation will