Sample records for lake catchment zone

  1. Factors affecting ground-water exchange and catchment size for Florida lakes in mantled karst terrain

    USGS Publications Warehouse

    Lee, Terrie Mackin

    2002-01-01

    In the mantled karst terrain of Florida, the size of the catchment delivering ground-water inflow to lakes is often considerably smaller than the topographically defined drainage basin. The size is determined by a balance of factors that act individually to enhance or diminish the hydraulic connection between the lake and the adjacent surficial aquifer, as well as the hydraulic connection between the surficial aquifer and the deeper limestone aquifer. Factors affecting ground-water exchange and the size of the ground-water catchment for lakes in mantled karst terrain were examined by: (1) reviewing the physical and hydrogeological characteristics of 14 Florida lake basins with available ground-water inflow estimates, and (2) simulating ground-water flow in hypothetical lake basins. Variably-saturated flow modeling was used to simulate a range of physical and hydrogeologic factors observed at the 14 lake basins. These factors included: recharge rate to the surficial aquifer, thickness of the unsaturated zone, size of the topographically defined basin, depth of the lake, thickness of the surficial aquifer, hydraulic conductivity of the geologic units, the location and size of karst subsidence features beneath and onshore of the lake, and the head in the Upper Floridan aquifer. Catchment size and the magnitude of ground-water inflow increased with increases in recharge rate to the surficial aquifer, the size of the topographically defined basin, hydraulic conductivity in the surficial aquifer, the degree of confinement of the deeper Upper Floridan aquifer, and the head in the Upper Floridan aquifer. The catchment size and magnitude of ground-water inflow increased with decreases in the number and size of karst subsidence features in the basin, and the thickness of the unsaturated zone near the lake. Model results, although qualitative, provided insights into: (1) the types of lake basins in mantled karst terrain that have the potential to generate small and large

  2. Conifer density within lake catchments predicts fish mercury concentrations in remote subalpine lakes

    USGS Publications Warehouse

    Eagles-Smith, Collin A.; Herring, Garth; Johnson, Branden L.; Graw, Rick

    2016-01-01

    Remote high-elevation lakes represent unique environments for evaluating the bioaccumulation of atmospherically deposited mercury through freshwater food webs, as well as for evaluating the relative importance of mercury loading versus landscape influences on mercury bioaccumulation. The increase in mercury deposition to these systems over the past century, coupled with their limited exposure to direct anthropogenic disturbance make them useful indicators for estimating how changes in mercury emissions may propagate to changes in Hg bioaccumulation and ecological risk. We evaluated mercury concentrations in resident fish from 28 high-elevation, sub-alpine lakes in the Pacific Northwest region of the United States. Fish total mercury (THg) concentrations ranged from 4 to 438 ng/g wet weight, with a geometric mean concentration (±standard error) of 43 ± 2 ng/g ww. Fish THg concentrations were negatively correlated with relative condition factor, indicating that faster growing fish that are in better condition have lower THg concentrations. Across the 28 study lakes, mean THg concentrations of resident salmonid fishes varied as much as 18-fold among lakes. We used a hierarchal statistical approach to evaluate the relative importance of physiological, limnological, and catchment drivers of fish Hg concentrations. Our top statistical model explained 87% of the variability in fish THg concentrations among lakes with four key landscape and limnological variables: catchment conifer density (basal area of conifers within a lake's catchment), lake surface area, aqueous dissolved sulfate, and dissolved organic carbon. Conifer density within a lake's catchment was the most important variable explaining fish THg concentrations across lakes, with THg concentrations differing by more than 400 percent across the forest density spectrum. These results illustrate the importance of landscape characteristics in controlling mercury bioaccumulation in fish.

  3. Conifer density within lake catchments predicts fish mercury concentrations in remote subalpine lakes.

    PubMed

    Eagles-Smith, Collin A; Herring, Garth; Johnson, Branden; Graw, Rick

    2016-05-01

    Remote high-elevation lakes represent unique environments for evaluating the bioaccumulation of atmospherically deposited mercury through freshwater food webs, as well as for evaluating the relative importance of mercury loading versus landscape influences on mercury bioaccumulation. The increase in mercury deposition to these systems over the past century, coupled with their limited exposure to direct anthropogenic disturbance make them useful indicators for estimating how changes in mercury emissions may propagate to changes in Hg bioaccumulation and ecological risk. We evaluated mercury concentrations in resident fish from 28 high-elevation, sub-alpine lakes in the Pacific Northwest region of the United States. Fish total mercury (THg) concentrations ranged from 4 to 438 ng/g wet weight, with a geometric mean concentration (±standard error) of 43 ± 2 ng/g ww. Fish THg concentrations were negatively correlated with relative condition factor, indicating that faster growing fish that are in better condition have lower THg concentrations. Across the 28 study lakes, mean THg concentrations of resident salmonid fishes varied as much as 18-fold among lakes. We used a hierarchal statistical approach to evaluate the relative importance of physiological, limnological, and catchment drivers of fish Hg concentrations. Our top statistical model explained 87% of the variability in fish THg concentrations among lakes with four key landscape and limnological variables: catchment conifer density (basal area of conifers within a lake's catchment), lake surface area, aqueous dissolved sulfate, and dissolved organic carbon. Conifer density within a lake's catchment was the most important variable explaining fish THg concentrations across lakes, with THg concentrations differing by more than 400 percent across the forest density spectrum. These results illustrate the importance of landscape characteristics in controlling mercury bioaccumulation in fish. Published by Elsevier

  4. Catchment and atmospheric effects on acidity of lakes in the northeastern United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, R.B.; Anderson, D.S.; Rhodes, T.E.

    1995-06-01

    Sedimentary evidence from 12 lakes in northeastern United States reveals that both catchment and atmospheric processes have caused changes in lake acidity. Diatom remains indicate pH 5.2 to 5.8 (one lake 6.8) for one to two centuries before impacts on the catchment by Euro-americans. These low-alkalinity lakes were very sensitive to altered fluxes of base cations and acids. Several lakes increased in pH by 0.2 to 0.6 unit in the 1800s and early 1900s when their catchments were logged. Re-acidification of some of the lakes was initially due to forest succession. Older sediment from one of the lakes also showsmore » alkalization by natural disturbance, and acidification paralleling forest succession. However, much of the recent acidification, to uniquely low levels by the 1970s is due to high sulfur deposition.« less

  5. Lithium isotopes and implications on chemical weathering in the catchment of Lake Donggi Cona, northeastern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Weynell, Marc; Wiechert, Uwe; Schuessler, Jan A.

    2017-09-01

    This study presents lithium (Li) isotope ratios (δ7Li) for rocks, sediments, suspended particulate material, and dissolved Li from the Lake Donggi Cona catchment, located on the northeastern Tibetan Plateau, China. The average δ7Li = +1.9‰ of the bedrocks is estimated from local loess. δ7Li values decrease progressively within the sediment cascade from loess, to river and lake floor sediments. The lake floor sediments average at -0.7‰. The difference between bedrock and lake sediments reflects the preferential fractionation of dissolved 6Li into clay minerals (mostly illite) in the weathering zone and grain-size sorting during fluvial sediment transport. The δ7Li values of stream and lake water samples range from +13.6 to +20.8‰, whereas thermal waters fall between +5.9 and +11.6‰. The δ7Li values of lake water samples are close to +17‰ and reflect mixing of waters from two perennial inflows and thermal waters. Dissolved Li in streams represents an integrated isotopic signal derived from soil solutions in the weathering zone. An apparent isotopic fractionation of -17.8 ± 1.6‰ (αsec-sol ∼ 0.982) between secondary minerals and solution was determined. An inflow that drains a sub-catchment in the north carries a high proportion of thermal waters. Despite of the high proportion of admixed thermal waters with high Li concentrations and low δ7Li, this stream has the highest δ7Li values of about +21‰. This is consistent with admixing of thermal waters to solutions in the weathering zone and subsequent fractionation by preferential uptake of isotopically light dissolved Li into secondary phases. Based on Li isotope ratios of the dissolved and solid export flux from the weathering zone we calculated that around five times more Li is exported in particles than dissolved in streams. An average δ7Li value of about +17‰ of most streams and the lake is reflecting a low weathering intensity and chemical weathering rate of about 4 t/km2/a. Low

  6. Lake sediment records on climate change and human activities in the Xingyun Lake catchment, SW China.

    PubMed

    Zhang, Wenxiang; Ming, Qingzhong; Shi, Zhengtao; Chen, Guangjie; Niu, Jie; Lei, Guoliang; Chang, Fengqin; Zhang, Hucai

    2014-01-01

    Sediments from Xinyun Lake in central Yunnan, southwest China, provide a record of environmental history since the Holocene. With the application of multi-proxy indicators (total organic carbon (TOC), total nitrogen (TN), δ13C and δ15N isotopes, C/N ratio, grain size, magnetic susceptibility (MS) and CaCO3 content), as well as accelerator mass spectrometry (AMS) 14C datings, four major climatic stages during the Holocene have been identified in Xingyun's catchment. A marked increase in lacustrine palaeoproductivity occurred from 11.06 to 9.98 cal. ka BP, which likely resulted from an enhanced Asian southwest monsoon and warm-humid climate. Between 9.98 and 5.93 cal. ka BP, a gradually increased lake level might have reached the optimum water depth, causing a marked decline in coverage by aquatic plants and lake productivity of the lake. This was caused by strong Asian southwest monsoon, and coincided with the global Holocene Optimum. During the period of 5.60-1.35 cal. ka BP, it resulted in a warm and dry climate at this stage, which is comparable to the aridification of India during the mid- and late Holocene. The intensifying human activity and land-use in the lake catchment since the early Tang Dynasty (∼1.35 cal. ka BP) were associated with the ancient Dian culture within Xingyun's catchment. The extensive deforestation and development of agriculture in the lake catchment caused heavy soil loss. Our study clearly shows that long-term human activities and land-use change have strongly impacted the evolution of the lake environment and therefore modulated the sediment records of the regional climate in central Yunnan for more than one thousand years.

  7. 77 FR 41686 - Safety Zone; Sheffield Lake Fireworks, Lake Erie, Sheffield Lake, OH

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-16

    ...-AA00 Safety Zone; Sheffield Lake Fireworks, Lake Erie, Sheffield Lake, OH AGENCY: Coast Guard, DHS. ACTION: Temporary final rule. SUMMARY: The Coast Guard is establishing a temporary safety zone on Lake Erie, Sheffield Lake, OH. This safety zone is intended to restrict vessels from a portion of Lake Erie...

  8. Application of the MAGIC model to the Glacier Lakes catchments

    Treesearch

    John O. Reuss

    1994-01-01

    The MAGIC model (Cosby et al. 1985, 1986) was calibrated for East and West Glacier Lakes, two adjacent high-altitude (3200 m- 3700 m) catchments in the Medicine Bow National Forest of southern Wyoming. This model uses catchment characteristics including weathering rates, soil chemical characteristics, hydrological parameters, and precipitation amounts and composition...

  9. Lake level fluctuations and catchment dynamics at Lake Ohrid (Macedonia, Albania) during MIS6 and MIS5

    NASA Astrophysics Data System (ADS)

    Francke, Alexander; Wagner, Bernd; Just, Janna; Sadori, Laura; Masi, Alessia; Vogel, Hendrik; Lindhorst, Katja; Krastel, Sebastian; Dosseto, Anthony; Rothacker, Leo; Leicher, Niklas; Gromig, Raphael

    2016-04-01

    191 ka and 71 ka can also be seen in the catchment dynamics around the lake. Extraordinary high sedimentation rates, high clastic and negligible authigenic matter concentrations in DEEP site sediments during MIS6 imply enhanced erosion in the catchment. Thereby, elemental ratios (Zr/K) and environmental magnetic data (S-ratio) suggest that predominantly the products of chemical weathered, K-depleted old soils were transported into the lake. In contrast, a low sedimentation rate despite high authigenic matter concentrations during MIS5 implies less erosion in the catchment. In order to obtain more information about the catchment dynamics at Lake Ohrid, future studies will encompass the analyses of uranium and lithium isotopes. U isotopes (234U and 238U) can be used to assess the balance between deep and shallow erosion, while Li isotopes (7Li and 6Li) can inform on the extent of chemical weathering in the sediment source area. The application of these tools on a Late Glacial to Holocene record from Lake Dojran (Macedonia, Greece) has recently shown that climatic perturbations (8.2 and 4.2 cooling event) and anthropogenic land use have a direct impact on the catchment dynamics.

  10. Hillslope versus riparian zone runoff contributions in headwater catchments: A multi-watershed comparison

    NASA Astrophysics Data System (ADS)

    McGlynn, B. L.; McGlynn, B. L.; McDonnell, J. J.; Hooper, R. P.; Shanley, J. B.; Hjerdt, K. N.; Hjerdt, K. N.

    2001-12-01

    It is often assumed that hillslope and riparian areas constitute the two most important and identifiable landscape units contributing to catchment runoff in upland humid catchments. Nevertheless, the relative amount and timing of hillslope versus riparian contributions to stormflow are poorly understood across different watersheds. We quantified the contributions of hillslopes and riparian zones to stormflow using physical, chemical, and isotopic techniques across 3 diverse ({ ~}15 ha) headwater catchments: a highly responsive steep wet watershed (Maimai, New Zealand), a moderately steep snowmelt dominated watershed (Sleepers, River, VT), and at a highly seasonal relatively low relief watershed (Panola Mt., Georgia). We monitored catchment runoff, internal hydrological response, and isotopic and solute dynamics for discrete riparian and hillslope zones within each catchment. Monitored catchment positions, including hillslope trenches at Maimai and Panola, were used to characterize directly, the hydrologic response and source water signatures for hillslope zones and riparian zones. We also examined the spatial and temporal source components of catchment stormflow using 3-component mass balance hydrograph separation techniques. At Maimai, NZ we found that hillslope runoff comprised 47-55% of total runoff during a 70 mm event. Despite the large amount of subsurface hillslope runoff in total catchment stormflow, riparian and channel zones accounted for 28% out of 29% of the total new water measured catchment runoff. Riparian water dominated the storm hydrograph composition early in the event, although hillslope water reached the catchment outlet soon after hillslope water tables were developed. Preliminary results for Sleepers River, VT and Panola Mountain, GA indicate that the timing and relative proportion of hillslope water in catchment runoff is later and smaller than at Maimai. Our multi-catchment comparison suggests that the ratio of the riparian reservoir to the

  11. Using groundwater age to understand sources and dynamics of nutrient contamination through the catchment into Lake Rotorua, New Zealand

    NASA Astrophysics Data System (ADS)

    Morgenstern, U.; Daughney, C. J.; Leonard, G.; Gordon, D.; Donath, F. M.; Reeves, R.

    2014-08-01

    The water quality of Lake Rotorua has declined continuously over the past 50 yr despite mitigation efforts over recent decades. Delayed response of the groundwater discharges to historic land-use intensification 50 yr ago was the reason suggested by early tritium measurements, which indicated large transit times through the groundwater system. We use the isotopic and chemistry signature of the groundwater for detailed understanding of the origin, fate, flow pathways, lag times, and future loads of contaminants. A unique set of high-quality tritium data over more than four decades, encompassing the time when the tritium spike from nuclear weapons testing moved through the groundwater system, allows us to determine detailed age distribution parameters of the water discharging into Lake Rotorua. The Rotorua volcanic groundwater system is complicated due to the highly complex geology that has evolved through volcanic activity. Vertical and steeply-inclined geological contacts preclude a simple flow model. The extent of the Lake Rotorua groundwater catchment is difficult to establish due to the deep water table in large areas, combined with inhomogeneous groundwater flow patterns. Hierarchical cluster analysis of the water chemistry parameters provided evidence of the recharge source of the large springs near the lake shore, with discharge from the Mamaku ignimbrite through lake sediment layers. Groundwater chemistry and age data show clearly the source of nutrients that cause lake eutrophication, nitrate from agricultural activities and phosphate from geologic sources. With a naturally high phosphate load reaching the lake continuously via all streams, the only effective way to limit algae blooms and improve lake water quality in such environments is by limiting the nitrate load. The groundwater in the Rotorua catchment, once it has passed through the soil zone, shows no further decrease in dissolved oxygen, indicating absence of electron donors in the aquifer that

  12. Simulating Lake-Groundwater Interactions During Decadal Climate Cycles: Accounting For Variable Lake Area In The Watershed

    NASA Astrophysics Data System (ADS)

    Virdi, M. L.; Lee, T. M.

    2009-12-01

    The volume and extent of a lake within the topo-bathymetry of a watershed can change substantially during wetter and drier climate cycles, altering the interaction of the lake with the groundwater flow system. Lake Starr and other seepage lakes in the permeable sandhills of central Florida are vulnerable to climate changes as they rely exclusively on rainfall and groundwater for inflows in a setting where annual rainfall and recharge vary widely. The groundwater inflow typically arrives from a small catchment area bordering the lake. The sinkhole origin of these lakes combined with groundwater pumping from underlying aquifers further complicate groundwater interactions. Understanding the lake-groundwater interactions and their effects on lake stage over multi-decadal climate cycles is needed to manage groundwater pumping and public expectation about future lake levels. The interdependence between climate, recharge, changing lake area and the groundwater catchment pose unique challenges to simulating lake-groundwater interactions. During the 10-year study period, Lake Starr stage fluctuated more than 13 feet and the lake surface area receded and expanded from 96 acres to 148 acres over drier and wetter years that included hurricanes, two El Nino events and a La Nina event. The recently developed Unsaturated Zone Flow (UZF1) and Lake (LAK7) packages for MODFLOW-2005 were used to simulate the changing lake sizes and the extent of the groundwater catchment contributing flow to the lake. The lake area was discretized to occupy the largest surface area at the highest observed stage and then allowed to change size. Lake cells convert to land cells and receive infiltration as receding lake area exposes the underlying unsaturated zone to rainfall and recharge. The unique model conceptualization also made it possible to capture the dynamic size of the groundwater catchment contributing to lake inflows, as the surface area and volume of the lake changed during the study

  13. Memory of the Lake Rotorua catchment - time lag of the water in the catchment and delayed arrival of contaminants from past land use activities

    NASA Astrophysics Data System (ADS)

    Morgenstern, Uwe; Daughney, Christopher J.; Stewart, Michael K.; McDonnell, Jeffrey J.

    2013-04-01

    The transit time distribution of streamflow is a fundamental descriptor of the flowpaths of water through a catchment and the storage of water within it, controlling its response to landuse change, pollution, ecological degradation, and climate change. Significant time lags (catchment memory) in the responses of streams to these stressors and their amelioration or restoration have been observed. Lag time can be quantified via water transit time of the catchment discharge. Mean transit times can be in the order of years and decades (Stewart et al 2012, Morgenstern et al., 2010). If the water passes through large groundwater reservoirs, it is difficult to quantify and predict the lag time. A pulse shaped tracer that moves with the water can allow quantification of the mean transit time. Environmental tritium is the ideal tracer of the water cycle. Tritium is part of the water molecule, is not affected by chemical reactions in the aquifer, and the bomb tritium from the atmospheric nuclear weapons testing represents a pulse shaped tracer input that allows for very accurate measurement of the age distribution parameters of the water in the catchment discharge. Tritium time series data from all catchment discharges (streams and springs) into Lake Rotorua, New Zealand, allow for accurate determination of the age distribution parameters. The Lake Rotorua catchment tritium data from streams and springs are unique, with high-quality tritium data available over more than four decades, encompassing the time when the bomb-tritium moved through the groundwater system, and from a very high number of streams and springs. Together with the well-defined tritium input into the Rotorua catchment, this data set allows for the best understanding of the water dynamics through a large scale catchment, including validation of complicated water mixing models. Mean transit times of the main streams into the lake range between 27 and 170 years. With such old water discharging into the lake

  14. A Tale of Two Lakes: Catchment-Specific Responses to Late Holocene Cooling in Northwest Iceland

    NASA Astrophysics Data System (ADS)

    Crump, S. E.; Florian, C. R.; Miller, G. H.; Geirsdottir, A.; Zalzal, K.

    2015-12-01

    Lake sediments are frequently utilized for reconstructing paleoclimate in the Arctic, particularly in Iceland, where high sedimentation rates and abundant tephra layers allow for the development high-resolution, well-dated records. However, when developing climate records using biological proxies, catchment-specific processes must be understood and separated from the primary climate signal in order to develop accurate reconstructions. In this study, we compare proxy records (biogenic silica [BSi], C:N, ∂13C, and algal pigments) of the last 2 ka from two nearby lakes in northwest Iceland in order to elucidate how different catchments respond to similar climate history. Torfdalsvatn and Bæjarvötn are two coastal lakes located 60 km apart; mean summer temperatures are highly correlated between the two sites over the instrumental record, and likely for the past 2 ka as well. Consistent with other Icelandic records, both lakes record cooling as decreasing aquatic productivity (BSi) over the last 2 ka. Both sediment cores also record the onset of landscape destabilization, reflected by increased terrestrial input (C:N and ∂13C), which suggests an intensification of cooling. However, the timing and magnitude of this shift differ markedly between lakes. Biological proxies indicate gradual landscape destabilization beginning ~900 AD at Torfdalsvatn in contrast to a sharper, more intense landscape destabilization at ~1400 AD at Bæjarvötn. Because temperatures at the two lakes are well correlated, contrasting proxy responses are likely the result of catchment-specific thresholds and processes. Specifically, a steeper catchment at Bæjarvötn may allow for a more pronounced influx of terrestrial material as the critical shear stress for soil erosion is surpassed more readily. The impact of human colonization on erosion rates is also critical to assess, and recent developments in lipid biomarkers will allow for more precise reconstructions of human activity in each

  15. 78 FR 53675 - Safety Zone; Lake Erie Heritage Foundation, Battle of Lake Erie Reenactment; Lake Erie, Put-in...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-30

    ...-AA00 Safety Zone; Lake Erie Heritage Foundation, Battle of Lake Erie Reenactment; Lake Erie, Put-in-Bay... temporary safety zone in the waters of Lake Erie in the vicinity of Put-In-Bay, OH. This safety zone is intended to restrict vessels from a portion of Lake Erie during Battle of Lake Erie Reenactment near Put-In...

  16. Assessment of Wetland Hydrological Dynamics in a Modified Catchment Basin: Case of Lake Buninjon, Victoria, Australia.

    PubMed

    Yihdego, Yohannes; Webb, John A

    2017-02-01

      The common method to estimate lake levels is the water balance equation, where water input and output result in lake storage and water level changes. However, all water balance components cannot always be quickly assessed, such as due to significant modification of the catchment area. A method that assesses general changes in lake level can be a useful tool in examining why lakes have different lake level variation patterns. Assessment of wetlands using the dynamics of the historical hydrological and hydrogeological data set can provide important insights into variations in wetland levels in different parts of the world. A case study from a saline landscape, Lake Buninjon, Australia, is presented. The aim of the present study was to determine how climate, river regime, and lake hydrological properties independently influence lake water levels and salinity, leaving the discrepancy, for the effect of the non-climatic/catchment modification in the past and the model shows that surface inflow is most sensitive variable. The method, together with the analysis and interpretation, might be of interest to wider community to assess its response to natural/anthropogenic stress and decision choices for its ecological, social, scientific value, and mitigation measures to safe guard the wetland biodiversity in a catchment basin.

  17. 77 FR 39638 - Safety Zone; Barbara Harder Wedding Fireworks, Lake Erie, Lake View, NY

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-05

    ...-AA00 Safety Zone; Barbara Harder Wedding Fireworks, Lake Erie, Lake View, NY AGENCY: Coast Guard, DHS. ACTION: Temporary final rule. SUMMARY: The Coast Guard is establishing a temporary safety zone on Lake Erie, Lake View, NY. This safety zone is intended to restrict vessels from a portion of Lake Erie...

  18. 75 FR 13232 - Safety Zone; Lake Mead Intake Construction, Lake Mead, Boulder City, NV

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-19

    ...-AA00 Safety Zone; Lake Mead Intake Construction, Lake Mead, Boulder City, NV AGENCY: Coast Guard, DHS... waters of Lake Mead in support of the construction project for Lake Mead's Intake 3. This safety zone is... for the placement of an Intake Pipe from Lake Mead throughout 2010. This safety zone is necessary to...

  19. Sources of core and intact branched tetraether membrane lipids in the lacustrine environment: Anatomy of Lake Challa and its catchment, equatorial East Africa

    NASA Astrophysics Data System (ADS)

    Buckles, Laura K.; Weijers, Johan W. H.; Verschuren, Dirk; Sinninghe Damsté, Jaap S.

    2014-09-01

    The MBT/CBT palaeotemperature proxy uses the distribution of branched glycerol dialkyl glycerol tetraethers (brGDGTs), membrane lipids that are supposed to derive from soil bacteria, to reconstruct mean annual air temperature (MAAT). Applied successfully in coastal marine sediments, its extension to lake-sediment records with potentially high time resolution would greatly expand its utility. Over the last years, however, studies have indicated the presence of additional sources of brGDGTs within lake systems. To constrain the factors influencing the MBT/CBT palaeotemperature proxy in lakes, detailed investigation of brGDGT fluxes in a modern lake system is necessary to identify their potential sources. This study concentrates on Lake Challa, a permanently stratified crater lake in equatorial East Africa with limited catchment area. An almost 3-year time series of approximately monthly samples of settling particles, supplemented with a depth profile of suspended particulate matter (SPM) and sets of profundal surface-sediment and catchment soil samples, were analysed for both the 'living' intact polar lipids (IPLs) and 'fossil' core lipids (CLs) of GDGTs. We found that brGDGTs are produced in oxic, suboxic and anoxic zones of the water column, and in substantial amounts compared to influxes from catchment soils. Additional in situ production within the lake sediments is most probable, but cannot be definitely confirmed at this time. These lacustrine brGDGTs display a different response to temperature variation than soil-derived brGDGTs, signifying either a different physiological adaptation to changing conditions within the water column and/or a different composition of the respective bacterial communities. Using this specific relationship with temperature, a local calibration based on brGDGT distributions in SPM generates relatively accurate water temperature estimates from settling particles but fails for surface sediments.

  20. Catchment-mediated atmospheric nitrogen deposition drives ecological change in two alpine lakes in SE Tibet.

    PubMed

    Hu, Zhujun; Anderson, Nicholas John; Yang, Xiangdong; McGowan, Suzanne

    2014-05-01

    The south-east margin of Tibet is highly sensitive to global environmental change pressures, in particular, high contemporary reactive nitrogen (Nr) deposition rates (ca. 40 kg ha(-1)  yr(-1) ), but the extent and timescale of recent ecological change is not well prescribed. Multiproxy analyses (diatoms, pigments and geochemistry) of (210) Pb-dated sediment cores from two alpine lakes in Sichuan were used to assess whether they have undergone ecological change comparable to those in Europe and North America over the last two centuries. The study lakes have contrasting catchment-to-lake ratios and vegetation cover: Shade Co has a relatively larger catchment and denser alpine shrub than Moon Lake. Both lakes exhibited unambiguous increasing production since the late 19th to early 20th. Principle component analysis was used to summarize the trends of diatom and pigment data after the little ice age (LIA). There was strong linear change in biological proxies at both lakes, which were not consistent with regional temperature, suggesting that climate is not the primary driver of ecological change. The multiproxy analysis indicated an indirect ecological response to Nr deposition at Shade Co mediated through catchment processes since ca. 1930, while ecological change at Moon Lake started earlier (ca. 1880) and was more directly related to Nr deposition (depleted δ(15) N). The only pronounced climate effect was evidenced by changes during the LIA when photoautotrophic groups shifted dramatically at Shade Co (a 4-fold increase in lutein concentration) and planktonic diatom abundance declined at both sites because of longer ice cover. The substantial increases in aquatic production over the last ca. 100 years required a substantial nutrient subsidy and the geochemical data point to a major role for Nr deposition although dust cannot be excluded. The study also highlights the importance of lake and catchment morphology for determining the response of alpine lakes to

  1. Modelling catchment hydrological responses in a Himalayan Lake as a function of changing land use and land cover

    NASA Astrophysics Data System (ADS)

    Badar, Bazigha; Romshoo, Shakil A.; Khan, M. A.

    2013-04-01

    In this paper, we evaluate the impact of changing land use/land cover (LULC) on the hydrological processes in Dal lake catchment of Kashmir Himalayas by integrating remote sensing, simulation modelling and extensive field observations. Over the years, various anthropogenic pressures in the lake catchment have significantly altered the land system, impairing, inter-alia, sustained biotic communities and water quality of the lake. The primary objective of this paper was to help a better understanding of the LULC change, its driving forces and the overall impact on the hydrological response patterns. Multi-sensor and multi-temporal satellite data for 1992 and 2005 was used for determining the spatio-temporal dynamics of the lake catchment. Geographic Information System (GIS) based simulation model namely Generalized Watershed Loading Function (GWLF) was used to model the hydrological processes under the LULC conditions. We discuss spatio-temporal variations in LULC and identify factors contributing to these variations and analyze the corresponding impacts of the change on the hydrological processes like runoff, erosion and sedimentation. The simulated results on the hydrological responses reveal that depletion of the vegetation cover in the study area and increase in impervious and bare surface cover due to anthropogenic interventions are the primary reasons for the increased runoff, erosion and sediment discharges in the Dal lake catchment. This study concludes that LULC change in the catchment is a major concern that has disrupted the ecological stability and functioning of the Dal lake ecosystem.

  2. Legacy effects of nitrogen and phosphorus in a eutrophic lake catchment: Slapton Ley, SW England

    NASA Astrophysics Data System (ADS)

    Burt, T. P.; Worrall, F.; Howden, N. J. K.

    2017-12-01

    Slapton Ley is a freshwater coastal lagoon in SW England. The Ley is part of a National Nature Reserve, which is divided into two basins: the Higher Ley (39 ha) is mainly reed swamp; the Lower Ley (77 ha) is a shallow lake (maximum depth 2.9 m). In the 1960s it became apparent that the Lower Ley was becoming increasingly eutrophic. In order to gauge water, sediment and nutrient inputs into the lake, measurements began on the main catchments in 1969. Continuous monitoring of discharge and a weekly water-sampling programme have been maintained by the Slapton Ley Field Centre ever since. The monitoring programme has been supplemented by a number of research projects which have sought to identify the salient hydrological processes operating within the Slapton catchments and to relate these to the delivery of sediment and solute to the stream system. Long-term monitoring data are also available for the catchment area including the lake from the Environment Agency.The nitrate issue has been of particular interest at Slapton; although many longer series exist for large river basins like the Thames, the long record of nitrate data for the Slapton catchments is unique in Britain for a small rural basin. Recent declines in nitrate concentration may reflect less intensive agricultural activity, lower fertiliser inputs in particular, but there may also be a legacy effect in the shallow groundwater system. Phosphorus concentrations in stream and lake water have also shown declining concentrations but a phosphorus legacy in the surficial lake sediments means that algal blooms continue to develop in most summers, as indicated by a continued rise in summer pH levels. Further field observation at the sediment-water interface is needed to better understand the biogeochemical drivers and the balance between N and P limitation in the lake. Successful management of the Nature Reserve requires better understanding of the links between hydrological and biogeochemical processes operating

  3. Rock magnetic properties of sediments from Lake Sanabria and its catchment (NW Spain): paleoenvironmental implications

    NASA Astrophysics Data System (ADS)

    Larrasoaña, J. C.; Borruel, V.; Gómez-Paccard, M.; Rico, M.; Valero-Garces, B.; Moreno-Caballud, A.; Soto, R.

    2013-12-01

    Lake Sanabria is located in the NW Spanish mountains at 1000 m a.s.l., and constitutes the largest lake of glacial origin in the Iberian Peninsula. Here we present an environmental magnetic study of a Late Pleistocene-Holocene sediment core from Lake Sanabria and from different lithologies that crop out in its catchment, which includes Paleozoic plutonic, metamorphic and vulcanosedimentary rocks, and Quaternary deposits of glacial origin. This study was designed to complement sedimentologic and geochemical studies aimed at unraveling the climatic evolution of the NW Iberian Peninsula during the last deglaciation. Our results indicate that magnetite and pyrrhotite dominate the magnetic assemblage of both the sediments from the lower half of the studied sequence (25.6 - 13 cal kyr BP) deposited in a proglacial environment, and the Paleozoic rocks that make up most of the catchment of the lake. The occurrence of these minerals both in the catchment rocks and in the lake sediments indicates that sedimentation was then driven by the erosion of a glacial flour, which suffered minimal chemical transformation in response to a rapid and short routing to the lake. Sediments from the upper half of the studied sequence, accumulated after 12.4 cal kyr BP in a fluviolacustrine environment, contain magnetite and greigite. This points to a prominent role of post-depositional reductive dissolution, driven by a sharp increase in the accumulation of organic matter into the lake and the creation of anoxic conditions in the sediments, in shaping the magnetic assemblage of Holocene sediments. Pyrrhotite is stable under reducing conditions as opposed to magnetite, which is unstable. We therefore interpret that previous pedogenic processes occurred in the then deglaciated catchment of the lake were responsible for the oxidation of pyrrhotite and authigenic formation of magnetite, which survived subsequent reductive diagenesis given its initial larger concentrations. This interpretation is

  4. An investigation of enhanced recessions in Poyang Lake: Comparison of Yangtze River and local catchment impacts

    NASA Astrophysics Data System (ADS)

    Zhang, Qi; Ye, Xu-chun; Werner, Adrian D.; Li, Yun-liang; Yao, Jing; Li, Xiang-hu; Xu, Chong-yu

    2014-09-01

    Changes in lake hydrological regimes and the associated impacts on water supplies and ecosystems are internationally recognized issues. During the past decade, the persistent dryness of Poyang Lake (the largest freshwater lake in China) has caused water supply and irrigation crises for the 12.4 million inhabitants of the region. There is conjecture as to whether this dryness is caused by climate variability and/or human activities. This study examines long-term datasets of catchment inflow and Lake outflow, and employs a physically-based hydrodynamic model to explore catchment and Yangtze River controls on the Lake's hydrology. Lake water levels fell to their lowest during 2001-2010 relative to previous decades. The average Lake size and volume reduced by 154 km2 and 11 × 108 m3 during the same period, compared to those for the preceding period (1970-2000). Model simulations demonstrated that the drainage effect of the Yangtze River was the primary causal factor. Modeling also revealed that, compared to climate variability impacts on the Lake catchment, modifications to Yangtze River flows from the Three Gorges Dam have had a much greater impact on the seasonal (September-October) dryness of the Lake. Yangtze River effects are attenuated in the Lake with distance from the River, but nonetheless propagate some 100 km to the Lake's upstream limit. Proposals to build additional dams in the upper Yangtze River and its tributaries are expected to impose significant challenges for the management of Poyang Lake. Hydraulic engineering to modify the flow regime between the Lake and the Yangtze River would somewhat resolve the seasonal dryness of the Lake, but will likely introduce other issues in terms of water quality and aquatic ecosystem health, requiring considerable further research.

  5. Using groundwater age and hydrochemistry to understand sources and dynamics of nutrient contamination through the catchment into Lake Rotorua, New Zealand

    NASA Astrophysics Data System (ADS)

    Morgenstern, U.; Daughney, C. J.; Leonard, G.; Gordon, D.; Donath, F. M.; Reeves, R.

    2015-02-01

    The water quality of Lake Rotorua has steadily declined over the past 50 years despite mitigation efforts over recent decades. Delayed response of the groundwater discharges to historic land-use intensification 50 years ago was the reason suggested by early tritium measurements, which indicated large transit times through the groundwater system. We use the isotopic and chemistry signature of the groundwater for detailed understanding of the origin, fate, flow pathways, lag times and future loads of contaminants. A unique set of high-quality tritium data over more than four decades, encompassing the time when the tritium spike from nuclear weapons testing moved through the groundwater system, allows us to determine detailed age distribution parameters of the water discharging into Lake Rotorua. The Rotorua volcanic groundwater system is complicated due to the highly complex geology that has evolved through volcanic activity. Vertical and steeply inclined geological contacts preclude a simple flow model. The extent of the Lake Rotorua groundwater catchment is difficult to establish due to the deep water table in large areas, combined with inhomogeneous groundwater flow patterns. Hierarchical cluster analysis of the water chemistry parameters provided evidence of the recharge source of the large springs near the lake shore, with discharge from the Mamaku ignimbrite through lake sediment layers. Groundwater chemistry and age data show clearly the source of nutrients that cause lake eutrophication, nitrate from agricultural activities and phosphate from geologic sources. With a naturally high phosphate load reaching the lake continuously via all streams, the only effective way to limit algae blooms and improve lake water quality in such environments is by limiting the nitrate load. The groundwater in the Rotorua catchment, once it has passed through the soil zone, shows no further decrease in dissolved oxygen, indicating an absence of bioavailable electron donors along

  6. A spatial classification and database for management, research, and policy making: The Great Lakes aquatic habitat framework

    USGS Publications Warehouse

    Wang, Lizhu; Riseng, Catherine M.; Mason, Lacey; Werhrly, Kevin; Rutherford, Edward; McKenna, James E.; Castiglione, Chris; Johnson, Lucinda B.; Infante, Dana M.; Sowa, Scott P.; Robertson, Mike; Schaeffer, Jeff; Khoury, Mary; Gaiot, John; Hollenhurst, Tom; Brooks, Colin N.; Coscarelli, Mark

    2015-01-01

    Managing the world's largest and most complex freshwater ecosystem, the Laurentian Great Lakes, requires a spatially hierarchical basin-wide database of ecological and socioeconomic information that is comparable across the region. To meet such a need, we developed a spatial classification framework and database — Great Lakes Aquatic Habitat Framework (GLAHF). GLAHF consists of catchments, coastal terrestrial, coastal margin, nearshore, and offshore zones that encompass the entire Great Lakes Basin. The catchments captured in the database as river pour points or coastline segments are attributed with data known to influence physicochemical and biological characteristics of the lakes from the catchments. The coastal terrestrial zone consists of 30-m grid cells attributed with data from the terrestrial region that has direct connection with the lakes. The coastal margin and nearshore zones consist of 30-m grid cells attributed with data describing the coastline conditions, coastal human disturbances, and moderately to highly variable physicochemical and biological characteristics. The offshore zone consists of 1.8-km grid cells attributed with data that are spatially less variable compared with the other aquatic zones. These spatial classification zones and their associated data are nested within lake sub-basins and political boundaries and allow the synthesis of information from grid cells to classification zones, within and among political boundaries, lake sub-basins, Great Lakes, or within the entire Great Lakes Basin. This spatially structured database could help the development of basin-wide management plans, prioritize locations for funding and specific management actions, track protection and restoration progress, and conduct research for science-based decision making.

  7. Characteristics of the water and dissolved matter circulation in the young-glacial catchment of the Czechowskie lake (Tuchola Pinewood Forest, Poland)

    NASA Astrophysics Data System (ADS)

    Brykala, Dariusz; Gierszewski, Piotr; Kaszubski, Michal

    2014-05-01

    The studies on the conditions of the water and dissolved matter circulation in the young-glacial catchment of the Czechowskie lake (Tuchola Pinewood Forest) have been conducted since 2012. They are implemented on the basis of an organised network monitoring surface water and groundwater. An important aim of the study is to assess the impact of both modern and fossil lakes on the regime of the outflow and the transformation of the water chemical properties. A high stability of the first groundwater table was recorded. During the study period the range of the groundwater level ranged from 0.17 to 0.92 m. In comparison with the small fluctuations in the groundwater level within the sandy outwash areas, a relatively high instability was shown by the shallow waters of the lake terraces. The measurements of the discharge showed that its average value at the outflow from the Czechowskie lake is 30 dm3s-1. It almost equals the total amount of water flowing into the lake through watercourses. The average specific runoff from the basin of the Czechowskie lake was 3 dm3s-1km-2. The total water mineralisation expressed as the sum of the ions is in the range from 70 to 750 mg dm-3. Both surface water, i.e. the water in streams and lakes, and underground water from different depths represent the bicarbonate-calcium-sulphate type characteristic of the young- glacial environment. The results of hydrochemical mapping and the analysis of the ionic composition of the water showed large spatial variability of the physico-chemical properties of the tested waters and, at the same time, high stability of their ionic composition. At the present stage of the research it is possible to identify the water enrichment zones in salts, which are basins of paleolakes filled with the organic-carbonate sediment, and the zones of salt precipitation within the contemporary lakes. The situation described above creates a specific, cascade model of the transformation of chemical properties of water

  8. 76 FR 48751 - Security Zones; Captain of the Port Lake Michigan Zone

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-09

    ...-AA87 Security Zones; Captain of the Port Lake Michigan Zone AGENCY: Coast Guard, DHS. ACTION: Notice of... in the Chicago area, the Captain of the Port Sector Lake Michigan has determined that to better... critical infrastructure in the Chicago area. Based on this review, the Captain of the Port Sector Lake...

  9. 78 FR 17869 - Safety Zone; Desert Storm Shootout; Lake Havasu, Lake Havasu City, AZ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-25

    ...-AA00 Safety Zone; Desert Storm Shootout; Lake Havasu, Lake Havasu City, AZ AGENCY: Coast Guard, DHS... navigable waters of the Colorado River in Lake Havasu, Lake Havasu City, Arizona in support of the Desert... Coast Guard to establish safety zones (33 U.S.C 1221 et seq.). Lake Racer LLC is sponsoring the Desert...

  10. Extraction and representation of nested catchment areas from digital elevation models in lake-dominated topography

    NASA Astrophysics Data System (ADS)

    Mackay, D. Scott; Band, Lawrence E.

    1998-04-01

    This paper presents a new method for extracting flow directions, contributing (upslope) areas, and nested catchments from digital elevation models in lake-dominated areas. Existing tools for acquiring descriptive variables of the topography, such as surface flow directions and contributing areas, were developed for moderate to steep topography. These tools are typically difficult to apply in gentle topography owing to limitations in explicitly handling lakes and other flat areas. This paper addresses the problem of accurately representing general topographic features by first identifying distinguishing features, such as lakes, in gentle topography areas and then using these features to guide the search for topographic flow directions and catchment marking. Lakes are explicitly represented in the topology of a watershed for use in water routing. Nonlake flat features help guide the search for topographic flow directions in areas of low signal to noise. This combined feature-based and grid-based search for topographic features yields improved contributing areas and watershed boundaries where there are lakes and other flat areas. Lakes are easily classified from remotely sensed imagery, which makes automated representation of lakes as subsystems within a watershed system tractable with widely available data sets.

  11. Mercury pollution in the lake sediments and catchment soils of anthropogenically-disturbed sites across England.

    PubMed

    Yang, Handong; Turner, Simon; Rose, Neil L

    2016-12-01

    Sediment cores and soil samples were taken from nine lakes and their catchments across England with varying degrees of direct human disturbance. Mercury (Hg) analysis demonstrated a range of impacts, many from local sources, resulting from differing historical and contemporary site usage and management. Lakes located in industrially important areas showed clear evidence for early Hg pollution with concentrations in sediments reaching 400-1600 ng g -1 prior to the mid-19th century. Control of inputs resulting from local management practices and a greater than 90% reduction in UK Hg emissions since 1970 were reflected by reduced Hg pollution in some lakes. However, having been a sink for Hg deposition for centuries, polluted catchment soils are now the major Hg source for most lakes and consequently recovery from reduced Hg deposition is being delayed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Variability of rainfall over Lake Kariba catchment area in the Zambezi river basin, Zimbabwe

    NASA Astrophysics Data System (ADS)

    Muchuru, Shepherd; Botai, Joel O.; Botai, Christina M.; Landman, Willem A.; Adeola, Abiodun M.

    2016-04-01

    In this study, average monthly and annual rainfall totals recorded for the period 1970 to 2010 from a network of 13 stations across the Lake Kariba catchment area of the Zambezi river basin were analyzed in order to characterize the spatial-temporal variability of rainfall across the catchment area. In the analysis, the data were subjected to intervention and homogeneity analysis using the Cumulative Summation (CUSUM) technique and step change analysis using rank-sum test. Furthermore, rainfall variability was characterized by trend analysis using the non-parametric Mann-Kendall statistic. Additionally, the rainfall series were decomposed and the spectral characteristics derived using Cross Wavelet Transform (CWT) and Wavelet Coherence (WC) analysis. The advantage of using the wavelet-based parameters is that they vary in time and can therefore be used to quantitatively detect time-scale-dependent correlations and phase shifts between rainfall time series at various localized time-frequency scales. The annual and seasonal rainfall series were homogeneous and demonstrated no apparent significant shifts. According to the inhomogeneity classification, the rainfall series recorded across the Lake Kariba catchment area belonged to category A (useful) and B (doubtful), i.e., there were zero to one and two absolute tests rejecting the null hypothesis (at 5 % significance level), respectively. Lastly, the long-term variability of the rainfall series across the Lake Kariba catchment area exhibited non-significant positive and negative trends with coherent oscillatory modes that are constantly locked in phase in the Morlet wavelet space.

  13. Fate and Transport of Polycyclic Aromatic Hydrocarbons in Upland Irish Headwater Lake Catchments

    PubMed Central

    Scott, Heidi E. M.; Aherne, Julian; Metcalfe, Chris D.

    2012-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are a concern due to their carcinogenicity and propensity for transboundary atmospheric transport. Ireland is located on the western periphery of Europe and assumed to receive clean Atlantic air. As such, it has been used as an atmospheric reference for comparison to other regions. Nonetheless, few studies have evaluated concentrations of PAHs within the Irish environment. In the current study, PAHs were measured at five upland (500–800 masl) headwater lake catchments in coastal regions around Ireland, remote from industrial point source emissions. Semipermeable membrane devices were deployed in lakes for a 6-month period in July 2009, and topsoils were sampled from each catchment during October 2010. The concentrations of PAHs were low at most study sites with respect to other temperate regions. Homologue groups partitioned between lake and soil compartments based on their molecular weight were: “lighter” substances, such as Phenanthrene and Fluorene, were found in higher proportions in lakes, whereas “heavier” compounds, such as Chrysene and Benz[a]anthracene, were more prominent in soils. Concentrations of PAHs were highest at the east coast sites, potentially due to contributions from historical transboundary and regional combustion sources. PMID:23346024

  14. 75 FR 20920 - Safety Zone; Lake Havasu Grand Prix, Lake Havasu, AZ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-22

    ...-AA00 Safety Zone; Lake Havasu Grand Prix, Lake Havasu, AZ AGENCY: Coast Guard, DHS. ACTION: Temporary... of Lake Havasu on the Colorado River in Lake Havasu City, Arizona for the Lake Havasu Grand Prix... established in support of the Lake Havasu Grand Prix, a marine event that includes participating vessels...

  15. Perylene in Lake Biwa sediments originating from Cenococcum geophilum in its catchment area

    NASA Astrophysics Data System (ADS)

    Itoh, Nobuyasu; Sakagami, Nobuo; Torimura, Masaki; Watanabe, Makiko

    2012-10-01

    Perylene, which is composed of five benzene rings, is commonly found in sediments throughout the world at concentrations and distributions that are different from those of other polycyclic aromatic hydrocarbons. The only information available on the origin of perylene comes from 4,9-dihydroxyperylene-3,10-quinone (DHPQ), which originates from fungal component symbiosis or from parasites on plants; however, there is no direct evidence of a mechanism of perylene formation. In this study, we examined the relationship between sedimentary perylene and Cenococcum geophilum (C. geophilum) in a catchment area at Lake Biwa. Sclerotium grains of C. geophilum containing DHPQ were found in this catchment area (approximately 40 balls kg-1 dried soil for >1 mm-ϕ), and small sclerotium grains were frequently found in the sediment. In the sediment sample, we also found broken particles containing perylene, and they had a porous structure characteristic of sclerotium grains. Furthermore, the particles contained DHPQ in different transformation stages to perylene via 3,10-perylenequinone (3,10-PQ). This finding was consistent with results from elemental analysis (oxygen/carbon). Because a remarkable amount of DHPQ originating from C. geophilum also exists in the humic acids of soils and because the inputs of compounds to the lake depend strongly on the rivers, perylene in the Lake Biwa sediment originates mainly from the DHPQ of C. geophilum in its catchment area.

  16. Small lakes in big landscape: Multi-scale drivers of littoral ecosystem in alpine lakes.

    PubMed

    Zaharescu, Dragos G; Burghelea, Carmen I; Hooda, Peter S; Lester, Richard N; Palanca-Soler, Antonio

    2016-05-01

    In low nutrient alpine lakes, the littoral zone is the most productive part of the ecosystem, and it is a biodiversity hotspot. It is not entirely clear how the scale and physical heterogeneity of surrounding catchment, its ecological composition, and larger landscape gradients work together to sustain littoral communities. A total of 113 alpine lakes from the central Pyrenees were surveyed to evaluate the functional connectivity between littoral zoobenthos and landscape physical and ecological elements at geographical, catchment and local scales, and to ascertain how they affect the formation of littoral communities. At each lake, the zoobenthic composition was assessed together with geolocation, catchment hydrodynamics, geomorphology and topography, riparian vegetation composition, the presence of trout and frogs, water pH and conductivity. Multidimensional fuzzy set models integrating benthic biota and environmental variables revealed that at geographical scale, longitude unexpectedly surpassed altitude and latitude in its effect on littoral ecosystem. This reflects a sharp transition between Atlantic and Mediterranean climates and suggests a potentially high horizontal vulnerability to climate change. Topography (controlling catchment type, snow coverage and lakes connectivity) was the most influential catchment-scale driver, followed by hydrodynamics (waterbody size, type and volume of inflow/outflow). Locally, riparian plant composition significantly related to littoral community structure, richness and diversity. These variables, directly and indirectly, create habitats for aquatic and terrestrial stages of invertebrates, and control nutrient and water cycles. Three benthic associations characterised distinct lakes. Vertebrate predation, water conductivity and pH had no major influence on littoral taxa. This work provides exhaustive information from relatively pristine sites, and unveils a strong connection between littoral ecosystem and catchment

  17. The recent climatic change of subarctic zone recorded in lake sediments in Hokkaido, Japan

    NASA Astrophysics Data System (ADS)

    Seto, K.; Takata, H.; Saito, M.; Katsuki, K.; Sonoda, T.; Kawajiri, T.; Watanabe, T.

    2010-12-01

    In the coastal area of the Sea of Okhotsk in the east part of Hokkaido located to for subarctic zone, many brackish-water lakes are distributed. Especially, the Okhotsk brackish-water lake group around Abashiri City is constituted by major lake in Japan such as Lake Abashiri, Lake Mokoto, Lake Tofutsu, and Lake Notoro. The each lake shows a different present environment and history. Therefore, the change that is common in those lakes seems to be the change concerning the climate. In this study, recent environment change in Abashiri region (after the Little Ice Age) is discussed by sedimentologic and geochemical high-resolution analysis of the cores collected from the Okhotsk brackish-water lake group. The cores collected from four lake shows the length of 1 to 3m. In Lake Mokoto, there was the Ta-a tephra (AD 1739) at the 350cm depth. The Ta-a tephra are found at the horizon of 250 cm in Lake Abashiri, of 78 cm in Lake Notoro, and of 44 cm in Lake Tofutsu. The differences of the sedimentation rate of that lake are caused by the size of lake and catchment area. In Lake Mokoto, the catchment area is most large, and the size of lake is smallest among the four lake of Abashiri City. The cores collected from Lake Abashiri and Lake Mokoto consist of organic mud with the lamination in all cores. The core top 56 cm shows the black (N1.5/0, L value: < 5), and it seems to indicate the euxinic environment as present. The organic mud of 56-77cm-depth show black (2.5GY2/1, L values = ca 20), and it is considered that it shows the freshwater environment. In history of Lake Abashiri, the lake water changes to brackish-water from freshwater in 1930’s. It is considered that the change of the lightness in 56 cm depth is correspondent to this timing. In the observation by the soft X-ray photograph, the pattern of the lamination of Lake Abashiri is similar to the Lake Mokoto. The cyclic lamination set is observed in the core from Lake Mokoto. It is considered that this cyclic

  18. Introduction to paleoenvironments of Bear Lake, Utah and Idaho, and its catchment

    USGS Publications Warehouse

    Rosenbaum, Joseph G.; Kaufman, Darrell S.

    2009-01-01

    In 1996 a group led by the late Kerry Kelts (University of Minnesota) and Robert Thompson (U.S. Geological Survey) acquired three piston cores (BL96-1, -2, and -3) from Bear Lake. The coring arose from their recognition of Bear Lake as a potential repository of long records of paleoenvironmental change. They recognized that the lake is located in an area that is sensitive to changes in regional climate patterns (Dean et al., this volume), that the lake basin is long lived (see Colman, 2006; Kaufman et al., this volume), and that, unlike many lakes in the Great Basin, Bear Lake was never dry during warm dry periods. Bear Lake lies in the northeastern Great Basin to the northeast of Great Salt Lake, just south of the Snake River drainage, and a short distance west of the Green River drainage that makes up part of the Upper Colorado River Basin (Fig. 1). Similarity among the historic Bear Lake and Great Salt Lake hydrographs and flows on the Green River indicates that the hydrology of Bear Lake reflects regional precipitation (Fig. 2). Therefore, paleorecords from Bear Lake are important to understanding past climate for a large region, including the Upper Colorado River Basin, the source of much of the water for the southwestern United States. Initially, paleoenvironmental studies of Bear Lake sediments focused on cores BL96-1, -2, and -3. Additional coring was conducted to elucidate the spatial distribution of sedimentary units and to extend the record back in time. The study was also expanded to include extensive study of the catchment, including the properties of catchment materials and the processes that could potentially affect the delivery of catchment materials to the lake. Cores BL96-1, -2, and -3 were taken with a Kullenburg piston corer along an east–west profile in roughly 50, 40, and 30 m of water, respectively (Table 1, Fig. 3). These three cores, each taken as a single 4- to 5-m-long segment, provide a nearly complete composite section from ca. 26 cal

  19. 78 FR 17097 - Safety Zone; Lake Havasu Triathlon; Lake Havasu City, AZ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-20

    ...-AA00 Safety Zone; Lake Havasu Triathlon; Lake Havasu City, AZ AGENCY: Coast Guard, DHS. ACTION... waters of Lake Havasu and the London Bridge Channel for the Lake Havasu Triathlon. This temporary safety... participants. The waterside swim course consists of 1500 meters in Lake Havasu and the London Bridge Channel...

  20. 78 FR 53677 - Safety Zone; Battle of Lake Erie Fireworks, Lake Erie, Put-In-Bay, OH

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-30

    ...-AA00 Safety Zone; Battle of Lake Erie Fireworks, Lake Erie, Put-In- Bay, OH AGENCY: Coast Guard, DHS... waters of Lake Erie, Put-In-Bay, Ohio. This zone is intended to restrict vessels from a portion of Lake Erie during the Battle of Lake Erie Fireworks. [[Page 53678

  1. 78 FR 21260 - Safety Zone; Lubbers Cup Regatta; Spring Lake, MI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-10

    ...-AA00 Safety Zone; Lubbers Cup Regatta; Spring Lake, MI AGENCY: Coast Guard, DHS. ACTION: Temporary final rule. SUMMARY: The Coast Guard is establishing a temporary safety zone on Spring Lake in Spring Lake, Michigan. This safety zone is intended to restrict vessels from a portion of Spring Lake due to...

  2. Bromine species fluxes from Lake Constance’s catchment, and a preliminary lake mass balance

    NASA Astrophysics Data System (ADS)

    Gilfedder, B. S.; Petri, M.; Wessels, M.; Biester, H.

    2011-06-01

    Bromine was historically termed a cyclic salt in terrestrial freshwater environments due to its perceived conservative cycling between the oceans and the continents. This basic assumption has been challenged recently, with evidence that bromine is involved in dynamic chemical cycles in soils and freshwaters. We present here a study on dissolved bromine species (bromide, organically bound bromine, DOBr) concentrations and fluxes as well as sediment trap bromine levels and fluxes in Lake Constance, a large lake in southern Germany. Water samples were obtained from all major and some minor inflows and outflows over one year, where-after dissolved bromine species were measured by a combination of ICP-MS and ion chromatography coupled to an ICP-MS (IC-ICP-MS). Sediment traps were deployed at two locations for two years with Br, Ti and Zr levels being measured by μ-XRF. 190 t yr -1 of total dissolved bromine (TDBr) was delivered to the lake via 14 rivers and precipitation, with the rivers Alpenrhein (84 t TDBr yr -1) and the Schussen (50 t TDBr yr -1) providing the largest sources. The estimated particulate bromine flux contributed an extra 24-26 t Br yr -1. In comparison, only 40 t TDBr yr -1 was deposited to the lake's catchment by precipitation, and thus ˜80% of the riverine TDBr flux came from soils and rocks. Bromide was the dominant species accounting for, on average, 78% of TDBr concentrations and 93% of TDBr flux to the lake. Despite some high concentrations in the smaller lowland rivers, DOBr was only a minor component of the total riverine bromine flux (˜12 t yr -1, 7%), most of which came from the rivers Schussen, Bregenzer Ach and Argen. In contrast, most of the bromine in the sediment traps was bound to organic matter, and showed a clear seasonal pattern in concentrations, with a maximum in winter and minimum in summer. The summer minimum is thought to be due to dilution of a high Br autochthonous component by low bromine mineral and organic material from

  3. 78 FR 11094 - Safety Zone; Lake Worth Dredge Operations, Lake Worth Inlet; West Palm Beach, FL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-15

    ... 1625-AA00 Safety Zone; Lake Worth Dredge Operations, Lake Worth Inlet; West Palm Beach, FL AGENCY... safety zone on Lake Worth Inlet, West Palm Beach, Florida, to provide for the safety of life and vessels..., dredging operations will be conducted on Lake Worth Inlet in West Palm Beach, Florida. These operations...

  4. Some climatological factors of pine in the lake toba catchment area

    NASA Astrophysics Data System (ADS)

    Nasution, Z.

    2018-02-01

    The article deals with climatological factors of Pine at the Lake Toba Catchment Area also called drained basin, Pinus merkusii is a plant endemic in Sumatra. A central population of Pine in North Sumatra is located in the Tapanuli region to south of Lake Toba. Junghuhn discovered the species in the mountains range of Sipirok. He provisionally named the species as Pinus sumatrana. The article presents a detail analysis of approaches to climate factors, considers rainfall, air temperature, humidity, stemflow, throughfall and Interception following calculation of regression to determine relationship between precipitation with stemflow and interception. Stemflow, it is highly significant with significance of difference between correlation coefficients and z normal distribution. Temperature and relative humidity are the important components in the climate. These components influence the evaporation process and rainfall in the catchment. Pinus merkusii has the big crown interception. Stemflow and Interception has an opposite relation. Increasing of interception capacity will decrease stemflow. This type of Pine also has rough bark however significant channels so that, it flows water even during the wet season and caused the stemflow in Pinus merkusii relatively bigger.

  5. 76 FR 63202 - Security Zones; Captain of the Port Lake Michigan Zone

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-12

    ...-AA87 Security Zones; Captain of the Port Lake Michigan Zone AGENCY: Coast Guard, DHS. ACTION: Final rule. SUMMARY: Based on a review of safety and security zones around critical infrastructure in the... Chicago Harbor & Burnham Park Harbor--Safety and Security Zone regulation and the Security Zones; Captain...

  6. 77 FR 22495 - Safety Zone; Lake Pontchartrain, New Orleans, LA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-16

    ...-AA00 Safety Zone; Lake Pontchartrain, New Orleans, LA AGENCY: Coast Guard, DHS. ACTION: Temporary final... from the South shores of Lake Pontchartrain adjacent to the East bank of the Lakefront Airport runways... proposed rulemaking (NPRM) entitled Safety Zone, Lake Pontchartrain, New Orleans, LA in the Federal...

  7. Preferential Flow Paths In A Karstified Spring Catchment: A Study Of Fault Zones As Conduits To Rapid Groundwater Flow

    NASA Astrophysics Data System (ADS)

    Kordilla, J.; Terrell, A. N.; Veltri, M.; Sauter, M.; Schmidt, S.

    2017-12-01

    In this study we model saturated and unsaturated flow in the karstified Weendespring catchment, located within the Leinetal graben in Goettingen, Germany. We employ the finite element COMSOL Multiphysics modeling software to model variably saturated flow using the Richards equation with a van Genuchten type parameterization. As part of the graben structure, the Weende spring catchment is intersected by seven fault zones along the main flow path of the 7400 m cross section of the catchment. As the Weende spring is part of the drinking water supply in Goettingen, it is particularly important to understand the vulnerability of the catchment and effect of fault zones on rapid transport of contaminants. Nitrate signals have been observed at the spring only a few days after the application of fertilizers within the catchment at a distance of approximately 2km. As the underlying layers are known to be highly impermeable, fault zones within the area are likely to create rapid flow paths to the water table and the spring. The model conceptualizes the catchment as containing three hydrogeological limestone units with varying degrees of karstification: the lower Muschelkalk limestone as a highly conductive layer, the middle Muschelkalk as an aquitard, and the upper Muschelkalk as another conductive layer. The fault zones are parameterized based on a combination of field data from quarries, remote sensing and literary data. The fault zone is modeled considering the fracture core as well as the surrounding damage zone with separate, specific hydraulic properties. The 2D conceptual model was implemented in COMSOL to study unsaturated flow at the catchment scale using van Genuchten parameters. The study demonstrates the importance of fault zones for preferential flow within the catchment and its effect on the spatial distribution of vulnerability.

  8. 33 CFR 165.T11-281 - Safety Zone; Lake Mead Intake Construction; Lake Mead, Boulder City, NV.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Safety Zone; Lake Mead Intake Construction; Lake Mead, Boulder City, NV. 165.T11-281 Section 165.T11-281 Navigation and Navigable Waters... Coast Guard District § 165.T11-281 Safety Zone; Lake Mead Intake Construction; Lake Mead, Boulder City...

  9. Analysis of land use changes over the last 200 years in the catchment of Lake Czechowskie (Pomerania, northern Poland)

    NASA Astrophysics Data System (ADS)

    Tyszkowski, Sebastian; Kaczmarek, Halina

    2014-05-01

    Changes in land cover in the catchment area are, beside climate change, some of the major factors affecting sedimentation processes in lakes. With increasing human impact, changes in land cover no longer depend primarily on climate. In relation to research on sediments of Lake Czechowskie in Pomeranian Province in North Poland, land use changes over the last 200 years were analysed, with particular reference to deforestation or afforestation. The study area was the lake catchment, which covers nearly 20 km2. The analysis was based on archival and contemporary cartographic and photogrammetric materials, georeferenced and rectified using ArcGIS software. The following materials were used: Schrötter-Engelhart, Karte von Ost-Preussen nebst Preussisch Litthauen und West-Preussen nebst dem Netzdistrict, 1:50 000, section 92, 93, 1796-1802; Map Messtishchblatt, 1:25000, sheet Czarnen, (mapping conducted in 1874), 1932; Map WIG (Military Geographical Institute - Wojskowy Instytut Geograficzny), 1:25000, sheet Osowo, (mapping conducted in 1929-31), 1933; aerial photos 1:13000, 1964, 1969; 1:25000, 1987; 1:26000, 1997; aerial ortophotomap , 1:5000, 2010. Today, over 60% of the catchment of Lake Czechowskie is covered with forests, dominated by planted Scots pine (Pinus sylvestris), while the remaining areas are used for agricultural purposes or are built up. The first cartographic materials indicate that in the late 18th c., forest covered almost 50% of the catchment surface. By the year 1870, there was a significant reduction in the forested area, as its contribution fell to 40%. Deforestation took place mainly between the main villages. In the 1920s the forest cover increased to 44%. Today, almost the entire lake is surrounded by forest and a wetland belt (at least 0.5 km wide). Deforestation in the catchment should not be attributed solely to logging because the area of Tuchola Forests (Bory Tucholskie) was repeatedly affected by natural disasters. In the 19th c. these

  10. A late Holocene record of solar-forced atmospheric blocking variability over Northern Europe inferred from varved lake sediments of Lake Kuninkaisenlampi

    NASA Astrophysics Data System (ADS)

    Saarni, Saija; Muschitiello, Francesco; Weege, Stefanie; Brauer, Achim; Saarinen, Timo

    2016-12-01

    This study presents a new varved lake sediment sequence from Lake Kuninkaisenlampi, Eastern Finland. The record is constituted by alternations of clastic and biogenic laminae and provides a precise chronology extending back to 3607 ± 94 varve yrs. BP. The seasonality of the boreal climatic zone, with cold winters and mild summers, is reflected in the varve structure as a succession of three laminae from bottom to top, (i) a coarse to fine-grained detrital lamina marked by detrital catchment material transported by spring floods; (ii) a biogenic lamina with diatoms, plant and insect remnants reflecting biological productivity during the season of lake productivity; and (iii) a very fine amorphous organic lamina deposited during the winter stratification. The thickness of the detrital lamina in the lake reflects changes in the rate of spring snow melt in the catchment and is, therefore, considered a proxy for winter conditions. Hence, the record allows reconstructing local climate and environmental conditions on inter-annual to the multi-centennial timescales. We find that minerogenic accumulation reflected in the detrital lamina exhibits a high multi-decadal to centennial-scale spectral coherency with proxies for solar activity, such as Δ14C, and Total Solar Irradiance, suggesting a strong link between solar variability and sediment transport to the lake basin. Increased catchment erosion is observed during periods of low solar activity, which we ascribe to the development of more frequent atmospheric winter blocking circulation induced by solar-forced changes in the stratosphere. We suggest that soil frost in the catchment of Lake Kuninkaisenlampi related to more frequent winter blocking led to increased surface run-off and ultimately to increased catchment erosion during spring. We conclude that, during the past ca 3600 years, solar forcing may have modulated multi-decadal to centennial variations in sedimentation regimes in lakes from Eastern Finland and

  11. 75 FR 21990 - Safety Zone; Extended Debris Removal in the Lake Champlain Bridge Construction Zone (Between...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-27

    ...-AA00 Safety Zone; Extended Debris Removal in the Lake Champlain Bridge Construction Zone (Between... surrounding the Lake Champlain Bridge construction zone between Chimney Point, VT and Crown Point, NY. This... of debris from the old Crown Point bridge demolition. The debris must be cleared from the navigable...

  12. 76 FR 2579 - Safety Zone; Lake Mead Intake Construction, Lake Mead, Boulder City, NV

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-14

    ...-AA00 Safety Zone; Lake Mead Intake Construction, Lake Mead, Boulder City, NV AGENCY: Coast Guard, DHS... waters of Lake Mead in support of the construction project for Lake Mead's Intake 3 during the first 6... blasting operations for the placement of a water intake pipe in Lake Mead during the first 6 months of 2011...

  13. Lakes-paleolakes cascade system and its role in shaping the runoff and chemical properties of water in the young-glacial catchment - example from the Tuchola Pinewood Forest (Northern Poland)

    NASA Astrophysics Data System (ADS)

    Gierszewski, Piotr; Brykała, Dariusz; Kaszubski, Michał; Plessen, Birgit

    2016-04-01

    The impact of paleolake basins, filled up with organic mineral deposits, in the transformation of the chemical properties of the outflow is generally ignored. Defining their role and importance in the water and matter cycles is one of the objectives of the hydrological and hydrochemical monitoring, which has been run in the catchment of Lake Czechowskie since mid-2012. The axis of the Lake Czechowskie catchment is a hydrographical system made of river and lake sections. Lake sections are not only present-day lakes (Głęboczek and Czechowskie), but also basins of the lakes functioned in the past, which are now biogenic plains. Lake sections of the system are connected by short valley sections, mostly of a gap character. The size and variability of surface water runoff from the basin is mainly affected by groundwater and the size of evaporation. Stable groundwater table provides stability of the river discharge, even during the periods of significant precipitation deficit. Groundwater fluctuation ranges registered during the period from May 2012 to September 2015 were between 0.17 and 1.25 m. The smallest were in the deepest piezometers located in watershed areas, and the largest in the shallow groundwater of lake terraces. The small dynamics of the groundwater states is reflected by slight fluctuations of water levels in Lake Czechowskie, which in the analyzed period amounted 0.40 cm. The surface of paleolake Trzechowskie, cut by a system of drainage ditches, is the area where an essential part of the surface runoff from the monitored catchment is formed. Large water resources in this part of the catchment are evidenced by the specific runoff value, which amounts to 25 dm3s-1km2. It is much larger than the whole basin specific runoff which reaches 11 dm3s-1km2. The measurements showed that the average surface runoff from Lake Czechowskie in the analyzed period was 0,065 m3s-1 and was similar to the size of the water influx via watercourses supplying the lake. On

  14. Long-Term Water Quality Studies in a Eutrophic Lake Catchment: Slapton Ley, SW England

    NASA Astrophysics Data System (ADS)

    Burt, T. P.; Worrall, F.; Howden, N. J. K.

    2014-12-01

    Monitoring is the process by which we keep the behaviour of the environment in view, an essential way of discovering whether there are significant undesirable changes taking place. Long-term datasets reveal important patterns for scientists to explain and are essential for testing hypotheses undreamt of at the time monitoring scheme was set up. Many environmental processes take place over relatively long periods of time; very often, subtle processes are embedded within highly variable systems so that their weak signal cannot be extracted without a long record. Slapton Ley is a freshwater coastal lagoon in SW England. The Ley is part of a National Nature Reserve, wetland 116 ha in area which is divided into two basins: the Higher Ley (39 ha) is mainly reed swamp; the Lower Ley (77 ha) is open water. In the 1960s it became apparent that the Ley was becoming increasingly eutrophic. In order to gauge water, sediment and nutrient inputs into the lake, measurements began on the main catchments in late 1969. Continuous monitoring of discharge and a weekly water-sampling programme have been maintained by the Slapton Ley Field Centre ever since. The monitoring programme has been supplemented by a number of research projects which have sought to identify the salient hydrological processes operating within the Slapton catchments and to relate these to the delivery of sediment and solute to the stream system. The nitrate issue has been of particular interest at Slapton; although many longer series exist for large rivers like the Thames, the long record of nitrate data for the Slapton catchments is unique in Britain for small rural basins. Other issues to be explored will be the phosphorus legacy in lake sediments and a long-term decline in lake pH. The Slapton water quality record has confirmed that undesirable changes are taking place, revealed evidence of important patterns to be explained, allowed testing of new hypotheses (e.g. links with land-use change) and helped

  15. 75 FR 33741 - Safety Zone; Tracey/Thompson Wedding, Lake Erie, Catawba Island, OH

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-15

    ...-AA00 Safety Zone; Tracey/Thompson Wedding, Lake Erie, Catawba Island, OH AGENCY: Coast Guard, DHS... zone on Lake Erie, Catawba Island, Ohio. This temporary safety zone is intended to restrict vessels from portions of Lake Erie during the Tracey/Thompson Wedding Fireworks. This temporary safety zone is...

  16. Monitoring wetland of Poyang Lake National Nature Reserve zone by remote sensing

    NASA Astrophysics Data System (ADS)

    Le, Xinghua; Fan, Zhewen; Fang, Yu; Yu, Yuping; Zhang, Yun

    2008-10-01

    In order to monitor the wetland of the Poyang Lake national nature reserve zone, we selected three different seasons TM image data which were achieved individually in April 23th in 1988, Nov 2nd in 1994, and Jan 1st in 2000. Based on the band 5, band 4 and band 3of TM image, we divided the land coverage of Poyang Lake national nature reserve zone into three classes--water field, meadow field and the other land use by rule of maximum likelihood. Using the outcome data to make the statistical analysis, combining with the GIS overlay function operation, the land coverage changes of the Poyang Lake national nature reserve zone can be achieved. Clipped by the Poyang Lake national nature reserve zone boundary, the land coverage changes of Poyang Lake national nature reserve zone in three different years can be attained. Compared with the different wetland coverage data in year of 1988, 1994, 2000, the Poyang Lake national nature reserve zone eco-environment can be inferred from it. After analyzing the land coverage changes data, we draw the conclusion that the effort of Poyang Lake national nature reserve administration bureaucracy has worked well in certain sense.

  17. Catchment sediment flux: a lake sediment perspective on the onset of the Anthropocene?

    NASA Astrophysics Data System (ADS)

    Chiverrell, Richard

    2014-05-01

    Definitions of the Anthropocene are varied but from a geomorphological perspective broadly can be described as the interval of recent Earth history during which 'humans have had an 'overwhelming' effect on the Earth system' (Brown et al., 2013). Identifying the switch to a human-dominated geomorphic process regime is actually a challenging process, with in the 'Old World' ramping up of human populations and impacts on earth surface processes since the Neolithic/Mesolithic transition and the onset of agriculture. In the terrestrial realm lakes offer a unique window on changes in human forcing of earth surface processes from a sedimentary flux perspective, because unlike alluvial and hill-slope systems sedimentation is broadly continuous and uninterrupted. Dearing and Jones (2003) showed for a global dataset of lakes a 5-10 fold increase in sediment delivery comparing pre- and post-anthropogenic disturbance. Here sediment records from several lakes in lowland agricultural landscapes are presented to examine the changes in the flux and composition of materials delivered from their catchments. By definition the lakes record the switch to a human dominated system, but not necessary in accelerated sediment accumulation rates with changes in sediment composition equally important. Data from Crose, Hatch and Peckforton Meres, in lowland northwest England are interrogated producing quantitative land-cover reconstructions from pollen spectra calculated using the REVEALS model (Sugita, 2007), geochemical evidence for changes sediment provenance and flux, and 14C and stable Pb pollutant based chronological models detecting changes in sediment accumulation rate. The lake sediment geochemistry points to several phases of heightened human impact within these small agricultural catchments. Following small-in-scale forest cover reductions and limited impacts in terms of sediment flux during the Neolithic, the Bronze to Iron Age saw the first substantial reductions in forest cover

  18. Modelling cascading and erosional processes for glacial lake outburst floods in the Quillcay catchment, Huaraz, Cordillera Blanca, Peru

    NASA Astrophysics Data System (ADS)

    Baer, Patrick; Huggel, Christian; Frey, Holger; Chisolm, Rachel; McKinney, Daene; McArdell, Brian; Portocarrero, Cesar; Cochachin, Alejo

    2016-04-01

    Huaraz as the largest city in Cordillera Blanca has faced a major disaster in 1941, when an outburst flood from Lake Palcacocha killed several thousand people and caused widespread destruction. Recent studies on glacial lake outburst flood (GLOF) modelling and early warning systems focussed on Lake Palcacocha which has regrown after the 1941 event, from a volume of half a million m3 in 1974 to a total volume of more than 17 million m3 today. However, little research has been conducted so far concerning the situation of other lakes in the Quillcay catchment, namely Lake Tullparaju (12 mill. m3) and Cuchillacocha (2.5 mill. m3), which both also pose a threat to the city of Huaraz. In this study, we modelled the cascading processes at Lake Tullparaju and Lake Cuchillacocha including rock/ice avalanches, flood wave propagation in the lake and the resulting outburst flood and debris flows. We used the 2D model RAMMS to simulate ice avalanches. Model output was used as input for analytical 2D and 3D calculations of impact waves in the lakes that allowed us to estimate dam overtopping wave height. Since the dimension of the hanging glaciers above all three lakes is comparable, the scenarios in this study have been defined similar to the previous study at Lake Palcacocha. The flow propagation model included sediment entrainment in the steeper parts of the catchment, adding up to 50% to the initial flow volume. The results for total travel time as well as for inundated areas and flow depth and velocity in the city of Huaraz are comparable to the previous studies at Lake Palcacocha. This underlines the importance of considering also these lakes within an integral hazard analysis for the city of Huaraz. A main challenge for modelling GLOFs in the Quillcay catchment using RAMMS is the long runout distance of over 22 km combined with the very low slope gradient of the river. Further studies could improve the process understanding and could focus on more detailed investigations

  19. Riparian zone flowpath dynamics during snowmelt in a small headwater catchment

    NASA Astrophysics Data System (ADS)

    McGlynn, B. L.; McDonnell, J. J.; Shanley, J. B.; Kendall, C.

    1999-09-01

    The hydrology of the near-stream riparian zone in upland humid catchments is poorly understood. We examined the spatial and temporal aspects of riparian flowpaths during snowmelt in a headwater catchment within the Sleepers River catchment in northern Vermont. A transect of 15 piezometers was sampled for Ca, Si, DOC, other major cations, and δ18O. Daily piezometric head values reflected variations in the stream hydrograph induced by melt and rainfall. The riparian zone exhibited strong upward discharge gradients. An impeding layer was identified between the till and surficial organic soil. Water solute concentrations increased toward the stream throughout the melt. Ca concentrations increased with depth and DOC concentrations decreased with depth. The concentrations of Ca in all piezometers were lower during active snowmelt than during post-melt low flow. Ca data suggest snowmelt infiltration to depth; however, only upslope piezometers exhibited snowmelt infiltration and consequent low δ18O values,(while δ18O values varied less than 0.5‰ in the deep riparian piezometers throughout the study period. Ca and δ18O values in upslope piezometers during low streamflow were comparable to Ca and δ18O in riparian piezometers during high streamflow. The upland water Ca and δ18O may explain the deep riparian Ca dilution and consistent δ18O composition. The temporal pattern in Ca and δ18O indicate that upland water moves to the stream via a lateral displacement mechanism that is enhanced by the presence of distinct soil/textural layers. Snowmelt thus initiates the flux of pre-melt, low Ca upland water to depth in the riparian zone, but itself does not appear at depth in the riparian zone during spring melt. This is despite the coincident response of upland groundwater and stream discharge.

  20. Nutrient sequestration in Aquitaine lakes (SW France) limits nutrient flux to the coastal zone

    NASA Astrophysics Data System (ADS)

    Buquet, Damien; Anschutz, Pierre; Charbonnier, Céline; Rapin, Anne; Sinays, Rémy; Canredon, Axel; Bujan, Stéphane; Poirier, Dominique

    2017-12-01

    Oligotrophic coastal zones are disappearing from increased nutrient loading. The quantity of nutrients reaching the coast is determined not only by their original source (e.g. fertilizers used in agriculture, waste water discharges) and the land use, but also by the pathways through which nutrients are cycled from the source to the river mouth. In particular, lakes sequester nutrients and, hence, reduce downstream transfer of nutrients to coastal environments. Here, we quantify the impact of Aquitaine great lakes on the fluxes of dissolved macro-nutrients (N, P, Si) to the Bay of Biscay. For that, we have measured nutrient concentrations and fluxes in 2014 upstream and downstream lakes of Lacanau and Carcans-Hourtin, which belongs to the catchment of the Arcachon Bay, which is the largest coastal lagoon of the Bay of Biscay French coast. Data were compared to values obtained from the Leyre river, the main freshwater and nutrient source for the lagoon. Results show that processes in lakes greatly limit nutrient flux to the lagoon compared to fluxes from Leyre river, although the watershed is similar in terms of land cover. In lakes, phosphorus and silicon are trapped for long term in the sediment, silicon as amorphous biogenic silica and phosphorus as organic P and P associated with Fe-oxides. Nitrogen that enters lakes mostly as nitrate is used for primary production. N is mineralized in the sediment; a fraction diffuses as ammonium. N2 production through benthic denitrification extracts only 10% of dissolved inorganic nitrogen from the aquatic system. The main part is sequestered in organic-rich sediment that accumulates below 5 m depth in both lakes.

  1. Impact of land use changes on hydrology of Mt. Kilimanjaro. The case of Lake Jipe catchment

    NASA Astrophysics Data System (ADS)

    Ngugi, Keziah; Ogindo, Harun; Ertsen, Maurits

    2015-04-01

    Mt. Kilimanjaro is an important water tower in Kenya and Tanzania. Land degradation and land use changes have contributed to dwindling surface water resources around Mt. Kilimanjaro. This study focuses on Lake Jipe catchment of about 451Km2 (Ndetei 2011) which is mainly drained by River Lumi, a tributary of river Pangani. River Lumi starts from Mt. Kilimanjaro and flows North east wards to cross the border from Tanzania to Kenya eventually flowing into Lake Jipe which is a trans-boundary lake. The main purpose of this study was to investigate historical land use changes and relate this to reduction in surface water resources. The study will propose measures that could restore the catchment thereby enhancing surface water resources feeding Lake Jipe. A survey was conducted to document community perspectives of historical land use changes. This information was corroborated using Landsat remote sensed images spanning the period 1985-2013 to determine changes in the land cover due to human activities on Lake Jipe Catchment. River Lumi flow data was obtained from Water Resources Management Authority and analyzed for flow trends. The dwindling extent of the Lake was obtained from the community's perspective survey and by Landsat images. Community survey and remote sensing indicated clearing of the forest on the mountain and conversion of the same to crop production fields; damming of river Lumi in Tanzania, conversion of bush land to crop production fields further downstream of river Lumi and irrigation. There is heavy infestation of the invasive species Prosopis juliflora which had aggressively colonized grazing land and blocked irrigation canals. Other land use changes include land fragmentation due to subdivision. Insecure land tenure was blamed for failure by farmers to develop soil and water conservation infrastructure. Available River gauging data showed a general decline in river flow. Heavy flooding occurred during rainy seasons. Towards Lake Jipe after the river

  2. 75 FR 34934 - Safety Zone; Fireworks for the Virginia Lake Festival, Buggs Island Lake, Clarksville, VA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-21

    ...-AA00 Safety Zone; Fireworks for the Virginia Lake Festival, Buggs Island Lake, Clarksville, VA AGENCY... Fireworks for the Virginia Lake Festival event. This action is intended to restrict vessel traffic movement... Virginia Lake Festival, Buggs Island Lake, Clarksville, VA (a) Regulated Area. The following area is a...

  3. 78 FR 45059 - Safety Zone; Sherman Private Party Fireworks, Lake Michigan, Winnetka, IL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-26

    ...-AA00 Safety Zone; Sherman Private Party Fireworks, Lake Michigan, Winnetka, IL AGENCY: Coast Guard, DHS. ACTION: Temporary final rule. SUMMARY: The Coast Guard is establishing a temporary safety zone on Lake Michigan near Winnetka, IL. This safety zone is intended to restrict vessels from a portion of Lake...

  4. 78 FR 36662 - Safety Zone; Fairport Harbor Mardi Gras, Lake Erie, Fairport, OH

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-19

    ...-AA00 Safety Zone; Fairport Harbor Mardi Gras, Lake Erie, Fairport, OH AGENCY: Coast Guard, DHS. ACTION: Temporary final rule. SUMMARY: The Coast Guard is establishing a temporary safety zone on Lake Erie, Fairport Harbor, OH. This safety zone is intended to restrict vessels from a portion of Lake Erie during...

  5. Sulfur isotope dynamics in a high-elevation catchment, West Glacier Lake, Wyoming

    Treesearch

    J. B. Finley; J. I. Drever; J. T. Turk

    1995-01-01

    Stable isotopes of S are used in conjunction with dissolved SO2-|4 concentrations to evaluate the utility of ä34S ratios in tracing contributions of bedrock-derived S to SO2-|4 in runoff. Water samples were collected over the annual hydrograph from two tributaries in the West Glacier Lake, Wyoming, catchment. Concentrations of SO2-|4 ranged from 12.6 to 43.0 Ìeq L-1;...

  6. Coastal/Great Lakes Forecasts by Zone

    Science.gov Websites

    Hazards Rip Currents Hypothermia Hurricanes Thunderstorms Lightning Coastal Flooding Tsunamis 406 EPIRB's Coastal/Great Lakes Forecasts by Zone >>Click on the area of interest below<< Coastal and

  7. 77 FR 62440 - Safety Zone; Wounded Warriors Benefit, Lake Erie, Huron, OH

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-15

    ...-AA00 Safety Zone; Wounded Warriors Benefit, Lake Erie, Huron, OH AGENCY: Coast Guard, DHS. ACTION: Temporary final rule. SUMMARY: The Coast Guard is establishing a temporary safety zone on the waters of Lake Erie, East Huron, Ohio. This regulation is intended to restrict vessels from portions of Lake Erie...

  8. The Honey Lake fault zone, northeastern California: Its nature, age, and displacement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagner, D.L.; Saucedo, G.J.; Grose, T.L.T.

    The Honey Lake fault zone of northeastern California is composed of en echelon, northwest trending faults that form the boundary between the Sierra Nevada and the Basin Ranges provinces. As such the Honey Lake fault zone can be considered part of the Sierra Nevada frontal fault system. It is also part of the Walker Lane of Nevada. Faults of the Honey Lake zone are vertical with right-lateral oblique displacements. The cumulative vertical component of displacement along the fault zone is on the order of 800 m and right-lateral displacement is at least 10 km (6 miles) but could be considerablymore » more. Oligocene to Miocene (30 to 22 Ma) age rhyolite tuffs can be correlated across the zone, but mid-Miocene andesites do not appear to be correlative indicating the faulting began in early to mid-Miocene time. Volcanic rocks intruded along faults of the zone, dated at 16 to 8 Ma, further suggest that faulting in the Honey Lake zone was initiated during mid-Miocene time. Late Quaternary to Holocene activity is indicated by offset of the 12,000 year old Lake Lahontan high stand shoreline and the surface rupture associated with the 1950 Fort Sage earthquake.« less

  9. 75 FR 19246 - Safety Zone; Desert Storm, Lake Havasu, AZ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-14

    ...-AA00 Safety Zone; Desert Storm, Lake Havasu, AZ AGENCY: Coast Guard, DHS. ACTION: Temporary final rule... navigable waters of the Colorado River in Lake Havasu, Lake Havasu City, Arizona in support of the Desert.... Background and Purpose The Lake Racer LLC is sponsoring the Desert Storm Charity Poker Run and Exhibition Run...

  10. 77 FR 35857 - Safety Zone, Fireworks Display, Lake Superior; Duluth, MN

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-15

    ... 1625-AA00 Safety Zone, Fireworks Display, Lake Superior; Duluth, MN AGENCY: Coast Guard, DHS. ACTION... of Lake Superior during the Duluth Fourth Fest fireworks display. This temporary safety zone is necessary to protect spectators and vessels from the hazards associated with fireworks displays. DATES: This...

  11. 76 FR 58110 - Safety Zone; Giannangeli Wedding Fireworks, Lake St. Clair, Harrison Township, MI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-20

    ...-AA00 Safety Zone; Giannangeli Wedding Fireworks, Lake St. Clair, Harrison Township, MI AGENCY: Coast... zone on Lake St. Clair, Harrison Township, MI. This zone is intended to restrict vessels from a portion of Lake St. Clair during the Giannangeli Wedding Fireworks. DATES: This rule is effective and will be...

  12. Forging the Link: Using a Conservative Mixing Framework to Characterize Connections between Rivers and Great Lakes in River-lake Transition Zones

    EPA Science Inventory

    River-to-Great Lake transition zones are hydrologically, biogeochemically and biologically dynamic areas that regulate nutrient and energy fluxes between rivers and Great Lakes. Our goal is to characterize the biogeochemical properties of the river-lake transition zones and under...

  13. 78 FR 30765 - Safety Zone; Bay Village Independence Day Fireworks, Lake Erie, Bay Village, OH

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-23

    ...-AA00 Safety Zone; Bay Village Independence Day Fireworks, Lake Erie, Bay Village, OH AGENCY: Coast... zone on Lake Erie, Bay Village, OH. This safety zone is intended to restrict vessels from a portion of Lake Erie during the Bay Village Independence Day Fireworks display. This temporary safety zone is...

  14. 77 FR 39420 - Safety Zone; Bay Village Independence Day Fireworks, Lake Erie, Bay Village, OH

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-03

    ...-AA00 Safety Zone; Bay Village Independence Day Fireworks, Lake Erie, Bay Village, OH AGENCY: Coast... zone on Lake Erie, Bay Village, OH. This safety zone is intended to restrict vessels from a portion of Lake Erie during the Bay Village Independence Day Fireworks display. This temporary safety zone is...

  15. Emergent Archetype Hydrological-Biogeochemical Response Patterns in Heterogeneous Catchments

    NASA Astrophysics Data System (ADS)

    Jawitz, J. W.; Gall, H. E.; Rao, P.

    2013-12-01

    What can spatiotemporally integrated patterns observed in stream hydrologic and biogeochemical signals generated in response to transient hydro-climatic and anthropogenic forcing tell us about the interactions between spatially heterogeneous soil-mediated hydrological and biogeochemical processes? We seek to understand how the spatial structure of solute sources coupled with hydrologic responses affect observed concentration-discharge (C-Q) patterns. These patterns are expressions of the spatiotemporal structure of solute loads exported from managed catchments, and their likely ecological consequences manifested in receiving water bodies (e.g., wetlands, rivers, lakes, and coastal waters). We investigated the following broad questions: (1) How does the correlation between flow-generating areas and biogeochemical source areas across a catchment evolve under stochastic hydro-climatic forcing? (2) What are the feasible hydrologic and biogeochemical responses that lead to the emergence of the observed archetype C-Q patterns? and; (3) What implications do these coupled dynamics have for catchment monitoring and implementation of management practices? We categorize the observed temporal signals into three archetypical C-Q patterns: dilution; accretion, and constant concentration. We introduce a parsimonious stochastic model of heterogeneous catchments, which act as hydrologic and biogeochemical filters, to examine the relationship between spatial heterogeneity and temporal history of solute export signals. The core concept of the modeling framework is considering the types and degree of spatial correlation between solute source zones and flow generating zones, and activation of different portions of the catchments during rainfall events. Our overarching hypothesis is that each of the archetype C-Q patterns can be generated by explicitly linking landscape-scale hydrologic responses and spatial distributions of solute source properties within a catchment. The model

  16. Designing cost efficient buffer zone programs: An application of the FyrisSKZ tool in a Swedish catchment.

    PubMed

    Collentine, Dennis; Johnsson, Holger; Larsson, Peter; Markensten, Hampus; Persson, Kristian

    2015-03-01

    Riparian buffer zones are the only measure which has been used extensively in Sweden to reduce phosphorus losses from agricultural land. This paper describes how the FyrisSKZ web tool can be used to evaluate allocation scenarios using data from the Svärta River, an agricultural catchment located in central Sweden. Three scenarios are evaluated: a baseline, a uniform 6-m-wide buffer zone in each sub-catchment, and an allocation of areas of buffer zones to sub-catchments based on the average cost of reduction. The total P reduction increases by 30 % in the second scenario compared to the baseline scenario, and the average reduction per hectare increases by 90 % while total costs of the program fall by 32 %. In the third scenario, the average cost per unit of reduction (163 kg P(-1)) is the lowest of the three scenarios (58 % lower than the baseline) and has the lowest total program costs.

  17. Characterizing chromophoric dissolved organic matter in Lake Tianmuhu and its catchment basin using excitation-emission matrix fluorescence and parallel factor analysis.

    PubMed

    Zhang, Yunlin; Yin, Yan; Feng, Longqing; Zhu, Guangwei; Shi, Zhiqiang; Liu, Xiaohan; Zhang, Yuanzhi

    2011-10-15

    Chromophoric dissolved organic matter (CDOM) is an important optically active substance that transports nutrients, heavy metals, and other pollutants from terrestrial to aquatic systems and is used as a measure of water quality. To investigate how the source and composition of CDOM changes in both space and time, we used chemical, spectroscopic, and fluorescence analyses to characterize CDOM in Lake Tianmuhu (a drinking water source) and its catchment in China. Parallel factor analysis (PARAFAC) identified three individual fluorophore moieties that were attributed to humic-like and protein-like materials in 224 water samples collected between December 2008 and September 2009. The upstream rivers contained significantly higher concentrations of CDOM than did the lake water (a(350) of 4.27±2.51 and 2.32±0.59 m(-1), respectively), indicating that the rivers carried a substantial load of organic matter to the lake. Of the three main rivers that flow into Lake Tianmuhu, the Pingqiao River brought in the most CDOM from the catchment to the lake. CDOM absorption and the microbial and terrestrial humic-like components, but not the protein-like component, were significantly higher in the wet season than in other seasons, indicating that the frequency of rainfall and runoff could significantly impact the quantity and quality of CDOM collected from the catchment. The different relationships between the maximum fluorescence intensities of the three PARAFAC components, CDOM absorption, and chemical oxygen demand (COD) concentration in riverine and lake water indicated the difference in the composition of CDOM between Lake Tianmuhu and the rivers that feed it. This study demonstrates the utility of combining excitation-emission matrix fluorescence and PARAFAC to study CDOM dynamics in inland waters. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. 78 FR 36426 - Safety Zone; Queen's Cup; Lake Michigan; Milwaukee, WI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-18

    ...-AA00 Safety Zone; Queen's Cup; Lake Michigan; Milwaukee, WI AGENCY: Coast Guard, DHS. ACTION: Temporary... Lake Michigan due to the 2013 Queen's Cup Race. This temporary safety zone is necessary to protect the... Queen's Cup Regatta. The Queen's Cup Regatta is a race from Milwaukee, WI to Ludington, MI that is...

  19. 75 FR 34936 - Safety Zone; Chicago Tall Ships Fireworks, Lake Michigan, Chicago, IL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-21

    ...-AA00 Safety Zone; Chicago Tall Ships Fireworks, Lake Michigan, Chicago, IL AGENCY: Coast Guard, DHS... waters of Lake Michigan within Chicago Harbor, Chicago, Illinois. This zone is intended to restrict... CWO2 Jon Grob, U.S. Coast Guard, Sector Lake Michigan, telephone (414)747-7188, e-mail [email protected

  20. 78 FR 37712 - Safety Zone; Chicago Match Cup Race; Lake Michigan; Chicago, IL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-24

    ... Zone; Chicago Match Cup Race; Lake Michigan; Chicago, IL AGENCY: Coast Guard, DHS. ACTION: Notice of enforcement of regulation. SUMMARY: The Coast Guard will enforce the safety zone on Lake Michigan near Chicago... the Captain of the Port, Lake Michigan. DATES: This regulation will be enforced at the dates and times...

  1. The Stream-Catchment (StreamCat) and Lake-Catchment ...

    EPA Pesticide Factsheets

    Background/Question/MethodsLake and stream conditions respond to both natural and human-related landscape features. Characterizing these features within contributing areas (i.e., delineated watersheds) of streams and lakes could improve our understanding of how biological conditions vary spatially and improve the use, management, and restoration of these aquatic resources. However, the specialized geospatial techniques required to define and characterize stream and lake watersheds has limited their widespread use in both scientific and management efforts at large spatial scales. We developed the StreamCat and LakeCat Datasets to model, predict, and map the probable biological conditions of streams and lakes across the conterminous US (CONUS). Both StreamCat and LakeCat contain watershed-level characterizations of several hundred natural (e.g., soils, geology, climate, and land cover) and anthropogenic (e.g., urbanization, agriculture, mining, and forest management) landscape features for ca. 2.6 million stream segments and 376,000 lakes across the CONUS, respectively. These datasets can be paired with field samples to provide independent variables for modeling and other analyses. We paired 1,380 stream and 1,073 lake samples from the USEPAs National Aquatic Resource Surveys with StreamCat and LakeCat and used random forest (RF) to model and then map an invertebrate condition index and chlorophyll a concentration, respectively. Results/ConclusionsThe invertebrate

  2. Assessment of heavy metal contamination in the sediments of Nansihu Lake Catchment, China.

    PubMed

    Liu, Enfeng; Shen, Ji; Yang, Liyuan; Zhang, Enlou; Meng, Xianghua; Wang, Jianjun

    2010-02-01

    At present, anthropogenic contribution of heavy metals far exceeds natural input in some aquatic sediment, but the proportions are difficult to differentiate due to the changes in sediment characters. In this paper, the metal (Al, Fe, K, Mg, Ca, Cr, Cu, Ni, and Zn) concentrations, grain size, and total organic carbon (TOC) content in the surface and core sediments of Nansihu Lake Catchment (the open lake and six inflow rivers) were determined. The chemical speciations of the metals (Al, Fe, Cr, Cu, Ni, and Zn) in the surface sediments were also analyzed. Approaches of factor analysis, normalized enrichment factor (EF) and the new non-residual fractions enrichment factor (K(NRF)) were used to differentiate the sources of the metals in the sediments, from detrital clastic debris or anthropogenic input, and to quantify the anthropogenic contamination. The results indicate that natural processes were more dominant in concentrating the metals in the surface and core sediments of the open lake. High concentration of Ca and deficiency of other metals in the upper layers of the sediment core were attributed to the input of carbonate minerals in the catchment with increasing human activities since 1980s. High TOC content magnified the deficiency of the metals. Nevertheless, the EF and K(NRF) both reveal moderate to significant anthropogenic contamination of Cr, Cu, Ni, and Zn in the surface sediments of Laoyun River and the estuary and Cr in the surface sediments of Baima River. The proportion of non-residual fractions (acid soluble, reducible, and oxidizable fractions) of Cr, Cu, Ni, and Zn in the contaminated sediments increased to 37-99% from the background levels less than 30%.

  3. 75 FR 34932 - Safety Zone; Michigan City Super Boat Grand Prix, Lake Michigan, Michigan City, IN

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-21

    ...-AA00 Safety Zone; Michigan City Super Boat Grand Prix, Lake Michigan, Michigan City, IN AGENCY: Coast... zone on Lake Michigan near Michigan City, Indiana. This zone is intended to restrict vessels from a... of proposed rulemaking (NPRM) entitled Safety Zone; Michigan City Super Boat Grand Prix, Lake...

  4. 77 FR 9879 - Safety Zone; Lake Pontchartrain, New Orleans, LA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-21

    ...-AA00 Safety Zone; Lake Pontchartrain, New Orleans, LA AGENCY: Coast Guard, DHS. ACTION: Notice of... of the South shores of Lake Pontchartrain adjacent to the East bank of the Lakefront Airport runways... Blue Angels Air Show, to take place over the waters of Lake Pontchartrain. The Blue Angels Air Show is...

  5. Rock glaciers in crystalline catchments: Hidden permafrost-related threats to alpine headwater lakes.

    PubMed

    Ilyashuk, Boris P; Ilyashuk, Elena A; Psenner, Roland; Tessadri, Richard; Koinig, Karin A

    2018-04-01

    A global warming-induced transition from glacial to periglacial processes has been identified in mountainous regions around the world. Degrading permafrost in pristine periglacial environments can produce acid rock drainage (ARD) and cause severe ecological damage in areas underlain by sulfide-bearing bedrock. Limnological and paleolimnological approaches were used to assess and compare ARDs generated by rock glaciers, a typical landform of the mountain permafrost domain, and their effects on alpine headwater lakes with similar morphometric features and underlying bedrock geology, but characterized by different intensities of frost action in their catchments during the year. We argue that ARD and its effects on lakes are more severe in the alpine periglacial belt with mean annual air temperatures (MAAT) between -2°C and +3°C, where groundwater persists in the liquid phase for most of the year, in contrast to ARD in the periglacial belt where frost action dominates (MAAT < -2°C). The findings clearly suggest that the ambient air temperature is an important factor affecting the ARD production in alpine periglacial environments. Applying the paleoecological analysis of morphological abnormalities in chironomids through the past millennium, we tested and rejected the hypothesis that unfavorable conditions for aquatic life in the ARD-stressed lakes are largely related to the temperature increase over recent decades, responsible for the enhanced release of ARD contaminants. Our results indicate that the ARDs generated in the catchments are of a long-lasting nature and the frequency of chironomid morphological deformities was significantly higher during the Little Ice Age (LIA) than during pre- or post-LIA periods, suggesting that lower water temperatures may increase the adverse impacts of ARD on aquatic invertebrates. This highlights that temperature-mediated modulations of the metabolism and life cycle of aquatic organisms should be considered when reconstructing

  6. 75 FR 22228 - Regulated Navigation Area; Lake Champlain Bridge Construction Zone, NY and VT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-28

    ...-AA11 Regulated Navigation Area; Lake Champlain Bridge Construction Zone, NY and VT AGENCY: Coast Guard... establishing a regulated navigation area around the construction zone of the Lake Champlain Bridge between... on all vessels transiting the navigable waters of Lake Champlain in the vicinity of the bridge...

  7. 77 FR 52681 - Reorganization and Expansion of Foreign-Trade Zone 87 Lake Charles, LA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-30

    ... Foreign-Trade Zone 87 Lake Charles, LA Pursuant to its authority under the Foreign-Trade Zones Act of June 18, 1934, as amended (19 U.S.C. 81a-81u), the Foreign-Trade Zones Board (the Board) adopts the following Order: Whereas, the Lake Charles Harbor & Terminal District, grantee of Foreign-Trade Zone 87...

  8. Lower Respiration in the Littoral Zone of a Subtropical Shallow Lake

    PubMed Central

    They, Ng Haig; da Motta Marques, David; Souza, Rafael Siqueira

    2013-01-01

    Macrophytes are important sources of dissolved organic carbon (DOC) to littoral zones of lakes, but this DOC is believed to be mostly refractory to bacteria, leading to the hypothesis that bacterial metabolism is different in littoral and pelagic zones of a large subtropical shallow lake. We tested this hypothesis by three approaches: (I) dissolved inorganic carbon (DIC) accumulation in littoral and pelagic water; (II) O2 consumption estimate for a cloud of points (n = 47) covering the entire lake; (III) measurement of O2 consumption and CO2 accumulation in dark bottles, pCO2 in the water, lake-atmosphere fluxes of CO2 (fCO2) and a large set of limnological variables at 19 sampling points (littoral and pelagic zones) during seven extensive campaigns. For the first two approaches, DIC and O2 consumption were consistently lower in the littoral zone, and O2 consumption increased marginally with the distance to the nearest shore. For the third approach, we found in the littoral zone consistently lower DOC, total phosphorus (TP), and chlorophyll a, and a higher proportion of low-molecular-weight substances. Regression trees confirmed that high respiration (O2 consumption and CO2 production) was associated to lower concentration of low-molecular-weight substances, while pCO2 was associated to DOC and TP, confirming that CO2 supersaturation occurs in an attempt to balance phosphorus deficiency of macrophyte substrates. Littoral zone fCO2 showed a tendency to be a CO2 sink, whereas the pelagic zone showed a tendency to act as CO2 source to the atmosphere. The high proportion of low-molecular-weight, unreactive substances, together with lower DOC and TP may impose lower rates of respiration in littoral zones. This effect of perennial stands of macrophytes may therefore have important, but not yet quantified implications for the global carbon metabolism of these lakes, but other issues still need to be carefully addressed before rejecting the general belief that

  9. Signs of lateral transport of CO2 and CH4 in freshwater systems in boreal zone

    NASA Astrophysics Data System (ADS)

    Ojala, A.; Pumpanen, J. S.

    2013-12-01

    The numerous waterbodies and their riparian zones in the boreal zone are important to lateral carbon transport of terrestrial origin. These freshwater systems are also significant for carbon cycling on the landscape level. However, the lateral signals of carbon gases can be difficult to detect and thus, we used here different approaches to verify the phenomenon. We installed continuous measurement systems with CO2 probes in the riparian zone soil matrix around a small pristine headwater lake, in the lake, and in the outflowing stream and followed up the seasonal variation in CO2 concentration and in rain event-driven changes. We also used the probes in a second-order stream discharging a catchment of managed forest. The conventional weekly sampling protocol on water column CO2 and CH4 concentrations as well as gas fluxes was applied in three lakes surrounded by managed forests and some crop land but having different size and water quality. In two of the lakes most drastic changes in gas fluxes occurred not in spring but during or just after the summer rains when the clear water lake changed from a small carbon sink to carbon source and in the humic lake almost half of the CO2 and CH4 fluxes occurred during or just after the rainy period. Gas concentrations in the water columns revealed that the high surface water concentrations resulting in peak fluxes were not due to transport from hypolimnia rich in gases, but were due to soil processes and export from the flooded catchments. In the third lake, seasonal peak fluxes took place just after ice out, but again this was not a result of carbon gases accumulated under the ice, but gases originated from the surrounding catchment. In this lake, ca. 30 % of the annual CO2 flux occurred in May and 13 % of CH4 was emitted during one single week in May. In general, CH4 appeared as a good tracer for lateral transport. In the soil-lake-stream continuum, seasonal variation in CO2 was greatest and concentrations highest deep in

  10. 76 FR 27251 - Safety Zone; Coughlin Wedding Fireworks, Lake St. Clair, Harrison Township, MI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-11

    ...-AA00 Safety Zone; Coughlin Wedding Fireworks, Lake St. Clair, Harrison Township, MI AGENCY: Coast Guard... Lake St. Clair, Harrison Township, MI. This safety zone is intended to restrict vessels from a portion of Lake St. Clair during the Coughlin Wedding Fireworks. DATES: This rule is effective from 10 p.m...

  11. 78 FR 77594 - Safety Zone; Barge Launches; Gulfport Lake; Gulfport, MS

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-24

    ... 1625-AA00 Safety Zone; Barge Launches; Gulfport Lake; Gulfport, MS AGENCY: Coast Guard, DHS. ACTION... Lake, Gulfport, MS. This action is necessary for the protection of persons and vessels on navigable waters during the launching of barges in Gulfport Lake, Gulfport, MS, particularly small craft in the...

  12. 78 FR 25410 - Safety Zone; Tall Ship Safety Zones; War of 1812 Bicentennial Commemoration, Great Lakes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-01

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 165 [Docket No. USCG-2013-0192] RIN 1625-AA00 Safety Zone; Tall Ship Safety Zones; War of 1812 Bicentennial Commemoration, Great Lakes AGENCY... 2013 and the War of 1812 Bicentennial Commemoration. These safety zones will ensure the safety of...

  13. Catchment nitrogen saturation drives ecological change in an alpine lake in SW China (eastern margin of Tibet)

    NASA Astrophysics Data System (ADS)

    Anderson, N. J.; Hu, Z.; Yang, X.; Zhang, E.

    2011-12-01

    There is substantial evidence for recent (last ca. 120 years) ecological change in remote arctic and alpine lakes (increased productivity, altered biological structure). Initially, these changes were attributed to global warming which has altered the heat budgets of these lakes (stronger stratification, longer ice free periods). The emphasis on temperature, however, ignores that global environmental change is driven by a range of multiple stressors (e.g. altered biogeochemical cycles, land cover change). One of the characteristics of the observed change in remote lakes is the expansion of small species of the planktonic diatom genus Cyclotella. It is increasingly obvious that the recent success of this diatom genus is driven by other factors (nutrients, light, mixing depth) as much as temperature. SE Asia is a major hotspot for the emission of reactive nitrogen as a result of intensive agriculture and fossil fuel combustion. In this study we report recent ecological change in a small, oligotrophic alpine lake (ShadeCo; altitude 4423 m) located in Sichuan Province (SW China), one of many relatively unstudied alpine lakes on the eastern margin of Tibet. The lake is located above the tree-line and there is no cultural land-use; the catchment vegetation is dominated by alpine shrub (predominantly Rhododendron). We used a multi-proxy palaeolimnological approach (diatom, geochemical and stable isotope analyses of a 210-Pb dated core) coupled with regional long-term climate data to understand the pronounced 20th century changes in the diatom record, notably an expansion of Cyclotella spp from around 1920. This initial increase is coincident with warming in SW China but the maximum Cyclotella abundance occurs in in the 1970s and 1980s, a period of regional cooling and major changes in catchment-lake biogeochemistry as indicated by geochemical analyses. The possible drivers of the observed changes (nitrogen deposition, temperature) at this site are discussed in the context

  14. 77 FR 38490 - Safety Zone; Mentor Harbor Yachting Club Fireworks, Lake Erie, Mentor, OH

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-28

    ...-AA00 Safety Zone; Mentor Harbor Yachting Club Fireworks, Lake Erie, Mentor, OH AGENCY: Coast Guard, DHS... Erie, Mentor, OH. This safety zone is intended to restrict vessels from a portion of Lake Erie during the Mentor Harbor Yachting Club fireworks display. This temporary safety zone is necessary to protect...

  15. 77 FR 49349 - Safety Zone; Chicago Air and Water Show, Lake Michigan, Chicago, IL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-16

    ... Zone; Chicago Air and Water Show, Lake Michigan, Chicago, IL AGENCY: Coast Guard, DHS. ACTION... Water Show safety zone on Lake Michigan near Lincoln Park. This action is necessary to accurately reflect the enforcement dates and times for this safety zone due to changes made in this year's air show...

  16. 76 FR 43896 - Safety Zone; Kathleen Whelan Wedding Fireworks, Lake St. Clair, Grosse Pointe Farms, MI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-22

    ...-AA00 Safety Zone; Kathleen Whelan Wedding Fireworks, Lake St. Clair, Grosse Pointe Farms, MI AGENCY... safety zone on Lake St. Clair, Grosse Pointe Farms, MI. This zone is intended to restrict vessels from a portion of Lake St. Clair during the Kathleen Whelan Wedding Fireworks. DATES: This rule is effective from...

  17. 76 FR 21637 - Safety Zone; Ford Estate Wedding Fireworks, Lake St. Clair, Grosse Pointe Shores, MI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-18

    ...-AA00 Safety Zone; Ford Estate Wedding Fireworks, Lake St. Clair, Grosse Pointe Shores, MI AGENCY: Coast... zone on Lake St. Clair, Grosse Pointe Shores, MI. This zone is intended to restrict vessels from a portion of Lake St. Clair River during the Ford Estate Wedding Fireworks. DATES: This rule is effective...

  18. Towards a Detailed Seismic Structure of the Valley of Mexico's Xochimilco Lake Zone.

    NASA Astrophysics Data System (ADS)

    Rabade, S.; Sanchez-Sanchez, J.; Ayala Hernandez, M.; Macias, M. A.; Aguilar Calderon, L. A.; Alcántara, L.; Almora Mata, D.; Castro Parra, G.; Delgado, R.; Leonardo Suárez, M.; Molina Avila, I.; Mora, A.; Perez-Yanez, C.; Ruiz, A. L.; Sandoval, H.; Torres Noguez, M.; Vazquez Larquet, R.; Velasco Miranda, J. M.; Aguirre, J.; Ramirez-Guzmán, L.

    2017-12-01

    Six centuries of gradual, intentional sediment filling in the Xochimilco Lake Zone have drastically reduced the size of the lake. The basin structure and the lake's clay limits and thickness are poorly constrained, and yet, essential to explain the city's anomalous ground motion. Therefore, we conducted an experiment to define the 3D velocity model of Mexico's capital; the CDMX-E3D. The initial phase involved the deployment of a moving set of 18-broadband stations with an interstation distance of 500m over a period of 19 weeks. We collected the data and analyzed the results for the Xochimilco Lake Zone using H/V Spectral Ratios (Nakamura, 1989), which provided an improved fundamental period map of the region. Results show that periods in the former lake zone have larger variability than values previously estimated. In order to obtain group velocity maps at different periods, we estimated Green's functions from ambient noise cross-correlations following standard methodologies to invert Rayleigh wave travel times (Bensen et al., 2007). Preliminary result show very low-velocity zones (100 m/s) and thick sediment layers in most of the former Xochimilco Lake area. This Project was funded by the Secretaria de Ciencia, Tecnología e Innovación (SECITI) of Mexico City. Project SECITI/073/2016.

  19. 77 FR 37321 - Safety Zone, Barrel Recovery, Lake Superior; Duluth, MN

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-21

    ... 1625-AA00 Safety Zone, Barrel Recovery, Lake Superior; Duluth, MN AGENCY: Coast Guard, DHS. ACTION... suspected to contain munitions waste materials which were dumped in the 1960's in a portion of Lake Superior... offshore in a portion of Lake Superior approximately 50 years ago. C. Discussion of the Final Rule The...

  20. Characterization of lake water and ground water movement in the littoral zone of Williams Lake, a closed-basin lake in North central Minnesota

    USGS Publications Warehouse

    Schuster, P.F.; Reddy, M.M.; LaBaugh, J.W.; Parkhurst, R.S.; Rosenberry, D.O.; Winter, T.C.; Antweiler, Ronald C.; Dean, W.E.

    2003-01-01

    Williams Lake, Minnesota is a closed-basin lake that is a flow-through system with respect to ground water. Ground-water input represents half of the annual water input and most of the chemical input to the lake. Chemical budgets indicate that the lake is a sink for calcium, yet surficial sediments contain little calcium carbonate. Sediment pore-water samplers (peepers) were used to characterize solute fluxes at the lake-water-ground-water interface in the littoral zone and resolve the apparent disparity between the chemical budget and sediment data. Pore-water depth profiles of the stable isotopes ??18O and ??2H were non-linear where ground water seeped into the lake, with a sharp transition from lake-water values to ground-water values in the top 10 cm of sediment. These data indicate that advective inflow to the lake is the primary mechanism for solute flux from ground water. Linear interstitial velocities determined from ??2H profiles (316 to 528 cm/yr) were consistent with velocities determined independently from water budget data and sediment porosity (366 cm/yr). Stable isotope profiles were generally linear where water flowed out of the lake into ground water. However, calcium profiles were not linear in the same area and varied in response to input of calcium carbonate from the littoral zone and subsequent dissolution. The comparison of pore-water calcium profiles to pore-water stable isotope profiles indicate calcium is not conservative. Based on the previous understanding that 40-50 % of the calcium in Williams Lake is retained, the pore-water profiles indicate aquatic plants in the littoral zone are recycling the retained portion of calcium. The difference between the pore-water depth profiles of calcium and ??18O and ??2H demonstrate the importance of using stable isotopes to evaluate flow direction and source through the lake-water-ground-water interface and evaluate mechanisms controlling the chemical balance of lakes. Published in 2003 by John Wiley

  1. Hydrology, nutrient concentrations, and nutrient yields in nearshore areas of four lakes in northern Wisconsin, 1999-2001

    USGS Publications Warehouse

    Graczyk, David J.; Hunt, Randall J.; Greb, Steven R.; Buchwald, Cheryl A.; Krohelski, James T.

    2003-01-01

    larger than samples from the wooded areas and upgradient wells. Median nutrient yields in surface runoff from lawns always were greater than those from the wooded catchments. Runoff volumes were the most important factor in determining whether lawns or wooded catchments contribute more nutrients to the lake. The ground-water system had appreciable nutrient concentrations, and are likely an important pathway for nutrient transport to the lake. The nitrate plus nitrite nitrogen and total phosphorus yields to the ground-water system from a lawn catchment were approximately 3 to 4 times greater than those from the wooded catchment. There was no difference in the yields of dissolved inorganic phosphorus to the ground-water system from the lawn and wooded catchments. Study results demonstrate that choosing the appropriate landscape position for locating lawns in sloped areas (specifically, slopes that do not terminate at the lake or areas with intervening flat or buffer zones between lawn and lake) can help reduce the adverse effect of lawns on the shallow ground water and, ultimately, the lake. Additional information would be needed to extrapolate these results to a large drainage area of a lake.

  2. 75 FR 34362 - Safety Zone; Festivals & Fireworks Celebration, East Moran Bay, Lake Huron, St. Ignace, MI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-17

    ...-AA00 Safety Zone; Festivals & Fireworks Celebration, East Moran Bay, Lake Huron, St. Ignace, MI AGENCY... safety zone on East Moran Bay, Lake Huron, St. Ignace, MI. This zone is intended to restrict vessels from... portion of East Moran Bay, Lake Huron, St. Ignace, MI between 9 p.m. and 11 p.m. on June 26, July 10, July...

  3. The constructed catchment Chicken Creek as Critical Zone Observatory under transition

    NASA Astrophysics Data System (ADS)

    Gerwin, Werner; Schaaf, Wolfgang; Elmer, Michael; Hinz, Christoph

    2014-05-01

    The constructed catchment Chicken Creek was established in 2005 as an experimental landscape laboratory for ecosystem research. The 6 ha area with clearly defined horizontal as well as vertical boundary conditions was left for an unrestricted primary succession. All Critical Zone elements are represented at this site, which allows the study of most processes occurring at the interface of bio-, pedo-, geo- and hydrosphere. It provides outstanding opportunities for investigating interactions and feedbacks between different evolving compartments during ecosystem development. The catchment is extensively instrumented since 2005 in order to detect transition stages of the ecosystem. Data recorded with a high spatial and temporal resolution include hydrological, geomorphological, pedological, limnological as well as biological parameters. In contrast to other Critical Zone Observatories, this site offers the unique situation of an early stage ecosystem with highly dynamic system properties. The first years of development were characterized by a fast formation of geomorphological structures due to massive erosion processes at the initially non-vegetated surface. Hydrological processes led to the establishment of a local groundwater body within 5 years. In the following years the influence of biological structures like vegetation patterns gained an increasing importance. Feedbacks between developing vegetation and e.g. hydrological features became more and more dominant. As a result, different phases of ecosystem development could be distinguished until now. This observatory offers manifold possibilities to identify and disentangle complex interactions between Critical Zone processes in situ under natural conditions. The originally low complexity of the system is growing with time facilitating the identification of influences of newly developing structures on system functions. Thus, it is possible to study effects of small-scale processes on the whole system at the

  4. 77 FR 40511 - Safety Zone; GR Symphony Fireworks Display, Kalamazoo Lake, Saugatuck, MI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-10

    ...-AA00 Safety Zone; GR Symphony Fireworks Display, Kalamazoo Lake, Saugatuck, MI AGENCY: Coast Guard, DHS... Kalamazoo Lake during the GR Symphony Fireworks display. This temporary safety zone is necessary to protect spectators and vessels from the hazards associated with a fireworks display. DATES: This rule will be...

  5. Hydrological Footprints of Urban Developments in the Lake Simcoe Watershed, Canada: A Combined Paired-Catchment and Change Detection Modeling Approach

    NASA Astrophysics Data System (ADS)

    Oni, S. K.; Futter, M. N.; Buttle, J. M.; Dillon, P.

    2014-12-01

    Urban sprawl and regional climate variability are major stresses on surface water resources in many places. The Lake Simcoe watershed (LSW) Ontario, Canada, is no exception. The LSW is predominantly agricultural but is experiencing rapid population growth due to its proximity to the greater Toronto area. This has led to extensive land use changes which have impacted its water resources and altered runoff patterns in some rivers draining to the lake. Here, we use a paired-catchment approach, hydrological change detection modelling and remote sensing analysis of satellite images to evaluate the impacts of land use change on the hydrology of the LSW (1994 to 2008). Results show that urbanization increased up to 16% in Lovers Creek, the most-urban impacted catchment. Annual runoff from Lovers Creek increased from 239 to 442 mm/yr in contrast to the reference catchment (Black River at Washago) where runoff was relatively stable with an annual mean of 474 mm/yr. Increased annual runoff from Lovers Creek was not accompanied by an increase in annual precipitation. Discriminant function analysis suggests that early (1992-1997; pre-major development) and late (2004-2009; fully urbanized) periods for Lovers Creek separated mainly based on model parameter sets related to runoff flashiness and evapotranspiration. As a result, parameterization in either period cannot be used interchangeably to produce credible runoff simulations in Lovers Creek due to greater scatter between the parameters in canonical space. Separation of early and late period parameter sets for the reference catchment was based on climate and snowmelt related processes. This suggests that regional climatic variability could be influencing hydrologic change in the reference catchment whereas urbanization amplified the regional natural hydrologic changes in urbanizing catchments of the LSW.

  6. The response of sediment source and transfer dynamics to land use (change) in the Lake Manyara catchment

    NASA Astrophysics Data System (ADS)

    Wynants, Maarten; Munishi, Linus; Solomon, Henok; Grenfell, Michael; Taylor, Alex; Millward, Geoff; Boeckx, Pascal; Ndakidemi, Patrick; Gilvear, David; Blake, William

    2017-04-01

    The Lake Manyara basin in the East African Rift Region of Tanzania is considered to be an important driver for sustainable development in northern Tanzania in terms of biodiversity conservation, ecotourism, fisheries, pastoralism and (irrigation) agriculture. Besides local conservation, Lake Manyara National Park and its surroundings also have a vital function as a wildlife corridor connecting the Tarangire and Maasai steppe ecosystem with the entire northern Tanzania and Southern Kenya collective of national parks and ecosystems. However, driven by population pressure, increasing number of farmers are establishing agricultural operations in the catchment, causing a shift of the natural vegetation towards agricultural land. Furthermore, pastoralists with ever growing cattle stocks are roaming the grasslands, causing a decrease in soil structure due to overgrazing and compaction of the soil. We hypothesize that these processes increase the vulnerability to erosion, which presents a credible threat to ecosystem service provision, on the one hand the agricultural- and rangelands where loss of this finite resource threatens food security and people's livelihoods and on the other hand the water bodies, where siltation and eutrophication threatens the water quality and biodiversity. Knowledge of sediment source and transfer dynamics in the main tributaries of Lake Manyara and the response of these dynamics to land use (change) is critical to inform sustainable management policy decisions to maintain and enhance future food and water security. Using geochemical tracing techniques and Bayesian unmixing models we were able to attribute the lake sediment proportionally to its contributing tributaries. Furthermore, we were able to identify differences in erosion processes in different tributary systems using gamma spectrometry measurements of surface-elevated fallout radionuclides (137Cs and 210Pb). In our results we found that almost half of the sediment in the lake could be

  7. 75 FR 35652 - Safety Zone; Northern California Annual Fireworks Events, Fourth of July Fireworks, South Lake...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-23

    ... Zone; Northern California Annual Fireworks Events, Fourth of July Fireworks, South Lake Tahoe Gaming... will enforce Lights on the Lake Fireworks Display safety zone for South Lake Tahoe, from 8:30 a.m. on... the Lake Fireworks in 33 CFR 165.1191 on July 4, 2010, from 8:30 a.m. on July 1, 2010 through 10 p.m...

  8. Hydrochemistry dynamics in remote mountain lakes and its relation to catchment and atmospheric features: the case study of Sabocos Tarn, Pyrenees.

    PubMed

    Santolaria, Zoe; Arruebo, Tomas; Urieta, José Santiago; Lanaja, Francisco Javier; Pardo, Alfonso; Matesanz, José; Rodriguez-Casals, Carlos

    2015-01-01

    Increasing the understanding of high mountain lake dynamics is essential to use these remote aquatic ecosystems as proxies of global environmental changes. With this aim, at Sabocos, a Pyrenean cirque glacial lake or tarn, this study shows the main results of a morphological and catchment characterization, along with statistical analyses of its hydrochemical trends and their concomitant driving factors from 2010 to 2013. Dissolved oxygen, water temperature stratification, and its snow and ice cover composition and dynamics have been also investigated. According to morphological analyses, Sabocos can be classified as a medium-large and deep lake, having a circular contour and a long water retention time as compared to Pyrenean glacial lake average values. Sabocos hydrochemistry is mainly determined by very high alkalinity, pH and conductivity levels, and high Ca(2+), Mg(2+), and SO4(2-) content, coming from the easily weatherable limestone-dolomite bedrock. Thus, lake water is well buffered, and therefore, Sabocos tarn is non-sensitive to acidification processes. On the other hand, the main source of K(+), Na(+), and Cl(-) (sea salts) and nutrients (NH4(+), NO3(-), and phosphorous) to lake water appears to be atmospheric deposition. Primary production is phosphorous limited, and due to the N-saturation stage of the poorly developed soils of Sabocos catchment, NO3(-) is the chief component in the total nitrogen pool. External temperature seems to be the major driver regulating lake productivity, since warm temperatures boot primary production. Although precipitation might also play an important role in lake dynamics, especially regarding to those parameters influenced by the weathering of the bedrock, its influence cannot be easily assessed due to the seasonal isolation produced by the ice cover. Also, as occurs in the whole Pyrenean lake district, chemical composition of bulk deposition is highly variable due to the contribution of air masses with different origin.

  9. The impact of hydrologic segmentation on the Critical Zone water fluxes of headwater catchments

    NASA Astrophysics Data System (ADS)

    Gutierrez-Jurado, H. A.; Dominguez, M.; Guan, H.

    2017-12-01

    Headwater catchments are usually located on areas with complex terrain, where variability in aspect and microclimate give rise to contrasting vegetation cover and soil properties. This fine-scale variability in land surface conditions within a catchment is usually overlooked in hydrologic models, and the resulting differences in hydrologic dynamics across the slopes neglected. In this work we evaluate the impact of the differential hydrologic response, or as we define it here, "hydrologic segmentation" on the partition of water fluxes of contrasting slopes within a series of headwater catchments across a latitudinal gradient. Our aim is to investigate the effect of hydrologically segmenting the slopes of headwater catchments as a function of their unique aspect-vegetation-soils associations, on the water fluxes of the catchments and their potential consequences on the water balance at a regional scale. Using a distributed hydrologic model and data from a series of catchments with varying land cover and climatic conditions, we run a set of simulations with and without hydrologic segmentation to assess the effect of changing the architecture of the top part of the critical zone on the evaporation, transpiration, infiltration and runoff fluxes of each catchment slope. We calibrate and compare the simulation results with observations from a network of hydrologic sensors and independent field estimates of the various water fluxes. Our results suggest that hydrologic segmentation will significantly affect both the timing and partition of evapotranspiration fluxes with direct impacts on soil moisture residence times and the potential for deep infiltration and aquifer recharge.

  10. Differential Millennial-scale Responses of Terrestrial Carbon Cycling Dynamics to Warming from two Contrasting Lake Catchments in Arctic Alaska

    NASA Astrophysics Data System (ADS)

    Longo, W. M.; Huang, Y.; Russell, J. M.; Giblin, A. E.; McNichol, A. P.; Xu, L.; Daniels, W.

    2016-12-01

    Earth's permafrost carbon (C) reservoir is more than twice as large as global atmospheric C and its vulnerability to warming makes it a significant potential feedback to climate change. Predicted rates of warming could result in the release of 5 to 15% of permafrost C to the atmosphere by 2100 (Schuur et al., 2015); however the uncertainty around this estimate hinders our ability to quantify the arctic temperature-carbon feedback. To elucidate the long-term response of terrestrial C to warming in regions underlain by continuous permafrost, we present geologic records of changes in temperature and terrestrial C cycling dynamics from sediment cores from two contrasting lake catchments in arctic Alaska. The sediment records feature independent chronologies, biomarker-based temperature reconstructions, and geochemical measurements of vascular plant biomarkers (lignin phenols) that provide insight into terrestrial carbon quality, its release from permafrost soils and its transit time on the landscape. Our results indicate that both abrupt and sustained increases in temperature over the past 20,000 years resulted in increased carbon normalized yields of lignin phenols (Λ8, Λ6), which indicate increased mobilization of terrestrial organic carbon from permafrost soils. Lignin phenol indicators of terrestrial carbon quality (Ad:Al(s), Ad:Al(v)), indicated that carbon quality decreased with increasing temperature. These results demonstrate covariation between temperature and both the decay of terrestrial organic matter and lignin alteration resulting from dissolution and sorption processes. Compound specific radiocarbon analyses of lignin phenols and their offsets from depositional ages quantify transit times of terrestrial carbon on the landscape. These measurements revealed the presence of a persistent "pre-aged" terrestrial organic carbon pool, which is likely sourced from degrading permafrost. We also observe different responses of terrestrial organic carbon cycling to

  11. 76 FR 23524 - Safety Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-27

    ...-AA00 Safety Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago... safety zone from Brandon Road Lock and Dam to Lake Michigan. This proposed safety zone will cover 77.... This TIR established a 77 mile long safety zone from Brandon Road Lock to Lake Michigan in Chicago, IL...

  12. 76 FR 70704 - Foreign-Trade Zone 87-Lake Charles, LA; Application for Reorganization/Expansion

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-15

    ... Charles, LA; Application for Reorganization/Expansion An application has been submitted to the Foreign-Trade Zones Board (the Board) by the Lake Charles Harbor & Terminal District, grantee of FTZ 87, requesting authority to reorganize and expand the zone in Lake Charles. The application was submitted...

  13. Spatial trends and pollution assessment for mercury in the surface soils of the Nansi Lake catchment, China.

    PubMed

    Ren, Ming-Yi; Yang, Li-Yuan; Wang, Long-Feng; Han, Xue-Mei; Dai, Jie-Rui; Pang, Xu-Gui

    2018-01-01

    Surface soil samples collected from Nansi Lake catchment were analyzed for mercury (Hg) to determine its spatial trends and environmental impacts. Results showed that the average soil Hg contents were 0.043 mg kg -1 . A positive correlation was shown between TOC and soil Hg contents. The main type of soil with higher TOC contents and lower pH values showed higher soil Hg contents. Soil TOC contents and CV values were both higher in the eastern catchment. The eastern part of the catchment, where the industry is developed, had relatively high soil Hg contents and a banding distribution of high Hg contents was corresponded with the southwest-northeast economic belt. Urban soils had higher Hg contents than rural soils. The urbanization pattern that soil Hg contents presented a decreasing trend from city center to suburb was shown clearly especially in the three cities. Soil Hg contents in Jining City showed a good consistency with the urban land expansion. The spatial trends of soil Hg contents in the catchment indicated that the type and the intensity of human activities have a strong influence on the distribution of Hg in soils. Calculated risk indices showed that the western part of the catchment presented moderately polluted condition and the eastern part of the catchment showed moderate to strong pollution level. The area with high ecological risk appeared mainly along the economic belt.

  14. 77 FR 49401 - Safety Zones; Revolution 3 Triathlon, Lake Erie, Sandusky Bay, Cedar Point, OH

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-16

    ...-AA00 Safety Zones; Revolution 3 Triathlon, Lake Erie, Sandusky Bay, Cedar Point, OH AGENCY: Coast Guard... permanent safety zones on Lake Erie near Sandusky, OH. This action is necessary to provide for the safety of... injuries or fatalities. The Captain of the Port Detroit proposes to establish this safety zone to protect...

  15. Systematically variable planktonic carbon metabolism along a land-to-lake gradient in a Great Lakes coastal zone.

    PubMed

    Weinke, Anthony D; Kendall, Scott T; Kroll, Daniel J; Strickler, Eric A; Weinert, Maggie E; Holcomb, Thomas M; Defore, Angela A; Dila, Deborah K; Snider, Michael J; Gereaux, Leon C; Biddanda, Bopaiah A

    2014-11-01

    During the summers of 2002-2013, we measured rates of carbon metabolism in surface waters of six sites across a land-to-lake gradient from the upstream end of drowned river-mouth Muskegon Lake (ML) (freshwater estuary) to 19 km offshore in Lake Michigan (LM) (a Great Lake). Despite considerable inter-year variability, the average rates of gross production (GP), respiration (R) and net production (NP) across ML (604 ± 58, 222 ± 22 and 381 ± 52 µg C L -1 day -1 , respectively) decreased steeply in the furthest offshore LM site (22 ± 3, 55 ± 17 and -33 ± 15 µg C L -1 day -1 , respectively). Along this land-to-lake gradient, GP decreased by 96 ± 1%, whereas R only decreased by 75 ± 9%, variably influencing the carbon balance along this coastal zone. All ML sites were consistently net autotrophic (mean GP:R = 2.7), while the furthest offshore LM site was net heterotrophic (mean GP:R = 0.4). Our study suggests that pelagic waters of this Great Lakes coastal estuary are net carbon sinks that transition into net carbon sources offshore. Reactive and dynamic estuarine coastal zones everywhere may contribute similarly to regional and global carbon cycles.

  16. Chemical fractionation of lake sediments to determine the effects of land-use change on nutrient loading

    NASA Astrophysics Data System (ADS)

    Heathwaite, A. L.

    1994-07-01

    Lake studies allow contemporary sediment and nutrient dynamics to be placed in a historical context in order that trends and rates of change in catchment inputs may be calculated. Here, a synthesis of the temporal information contained in catchment and lake sediment records is attempted. A chemical fractionation technique is used to isolate the different sediment sources contained in the lake core, and 210Pb dates provide an accurate record of changes in lake sediment sources over the past 100 years. The extent to which land-use records, collated from agricultural census returns, and process-based studies of sediment and nutrient export from different catchment land uses can be used to explain the trends observed in the lake sediments is examined. Sediment influx to the study lake has increased from less than 2 mm year -1 prior to the Second World War to over 10 mm year -1 at present. The source of the sediment is largely unaltered and unweathered allochthonous material eroded from the catchment. Land-use records suggest that the intensification of agriculture, characterized by a shift towards arable land immediately postwar, followed by an increase in the area of temporary grass in the 1960s, may be the cause of accelerated catchment erosion; both land-use changes would have increased the area of ploughed land in the catchment. An increase in the number of cattle and sheep in the catchment from around 2000 and 6000, respectively, in the 1940s, to a peak of nearly 7000 cattle and over 15 000 sheep in the 1980s, provides a further source of sediment and nutrients. Livestock are grazed on permanent grassland which is commonly located on steep hillslopes and in riparian zones where saturation-excess surface runoff may be an important hydrological pathway. Rainfall simulation experiments show that surface runoff from heavily grazed grassland has a high suspended sediment, ammonium-nitrogen and particulate phosphorus load. The combined effect of the long-term increase

  17. Determining the groundwater potential recharge zone and karst springs catchment area: Saldoran region, western Iran

    NASA Astrophysics Data System (ADS)

    Karami, Gholam Hossein; Bagheri, Rahim; Rahimi, Fahimeh

    2016-12-01

    Assessing the groundwater recharge potential zone and differentiation of the spring catchment area are extremely important to effective management of groundwater systems and protection of water quality. The study area is located in the Saldoran karstic region, western Iran. It is characterized by a high rate of precipitation and recharge via highly permeable fractured karstic formations. Pire-Ghar, Sarabe-Babaheydar and Baghe-rostam are three major karstic springs which drain the Saldoran anticline. The mean discharge rate and electrical conductivity values for these springs were 3, 1.9 and 0.98 m3/s, and 475, 438 and 347 μS/cm, respectively. Geology, hydrogeology and geographical information system (GIS) methods were used to define the catchment areas of the major karstic springs and to map recharge zones in the Saldoran anticline. Seven major influencing factors on groundwater recharge rates (lithology, slope value and aspect, drainage, precipitation, fracture density and karstic domains) were integrated using GIS. Geology maps and field verification were used to determine the weights of factors. The final map was produced to reveal major zones of recharge potential. More than 80 % of the study area is terrain that has a recharge rate of 55-70 % (average 63 %). Evaluating the water budget of Saldoran Mountain showed that the total volume of karst water emerging from the Saldoran karst springs is equal to the total annual recharge on the anticline. Therefore, based on the geological and hydrogeological investigations, the catchment area of the mentioned karst springs includes the whole Saldoran anticline.

  18. 76 FR 37650 - Safety Zone; Northern California Annual Fireworks Events, Fourth of July Fireworks, South Lake...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-28

    ... Zone; Northern California Annual Fireworks Events, Fourth of July Fireworks, South Lake Tahoe Gaming... will enforce the safety zone for the annual Fourth of July Fireworks, South Lake Tahoe Gaming Alliance (Lights on the Lake Fireworks Display). This action is necessary to control vessel traffic and to ensure...

  19. Extent and drainage status of organic soils in the Lake Victoria catchment

    NASA Astrophysics Data System (ADS)

    Barthelmes, Reni; Barthelmes, Alexandra; Joosten, Hans

    2016-04-01

    When considering peatlands and organic soils in the tropics, the huge areas in SE Asia prevail in public and scientific perception, whereas Africa has largely been out of focus. However, East Africa contains large areas of organic soils as well. They basically occur in the high altitudes of the uplifted flanks of the East African Rift System, isolated volcanoes and the Ethiopian highlands, in the Zambezian floodplains (e.g. Zambia), and in coastal environments (e.g. Mozambique and Madagascar). We used a mapping approach that integrates old field data and maps, specialized landscape and peatland-related knowledge, and modern RS and GIS techniques to elaborate a comprehensive and rather reliable overview of organic soils (incl. peatlands) in the Lake Victoria catchment. Maps at a scale of 1:25,000 have been prepared for Burundi, Kenya, Rwanda, Tanzania and Uganda. The land use intensity has been estimated for all organic soil areas based on satellite and aerial imagery. Feeding the Nile River, sustaining a fast growing and widely poor population and already facing climatic changes, organic soils of the Lake Victoria neighbouring countries are partially under heavy threat. We mapped 10,645 km2 of organic soils for the entire area of which 8,860 km2 (83.2%) seem to be in near natural condition. We assume slightly drainage and low degradation for 564 km2 (5.3%) and intensive drainage and heavy degradation for 1,222 km2 (11.5%). Degradation hotspot is Burundi with 522 km2 (79.5%) of heavily drained and degrading organic soils. This area assessment has been quite conservative to not overestimate the extent of organic soils. A reserve of 5-7,000 km2 of wetlands in the Lake Victoria catchment may include peatlands too, which needs to be confirmed in field surveys. Considering the key role of peatlands and organic soils for water provision and regulation and their rapid degradation due to drainage and inappropriate use, this inventory might be a step towards organic soil

  20. 78 FR 49684 - Safety Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-15

    ...-AA00 Safety Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago... the Safety Zone; Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago... the Safety Zone; Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago...

  1. 77 FR 65478 - Safety Zone, Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-29

    ...-AA00 Safety Zone, Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago... the Safety Zone; Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago... segment of the Safety Zone; Brandon Road Lock and Dam to Lake Michigan including Des Plaines River...

  2. 77 FR 60044 - Safety Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-02

    ...-AA00 Safety Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago... the Safety Zone; Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago... segment of the Safety Zone; Brandon Road Lock and Dam to Lake Michigan including Des Plaines River...

  3. 75 FR 64673 - Safety Zone, Brandon Road Lock and, Dam to Lake Michigan Including Des Plaines River, Chicago...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-20

    ... Zone, Brandon Road Lock and, Dam to Lake Michigan Including Des Plaines River, Chicago Sanitary and... Safety Zone, Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago Ship and...: The Coast Guard will enforce Safety Zone, Brandon Road Lock and Dam to Lake Michigan including Des...

  4. 78 FR 65874 - Safety Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-04

    ...-AA00 Safety Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago... the Safety Zone; Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago... Guard will enforce a segment of the Safety Zone; Brandon Road Lock and Dam to Lake Michigan including...

  5. Integrative investigations on sediments in the Belauer See catchment (northern Germany)

    NASA Astrophysics Data System (ADS)

    Dreibrodt, Stefan

    2015-04-01

    The Holocene history of lake development, catchment vegetation, soil formation and human impact since the onset of the Neolithic period was reconstructed via the analysis of sediment sequences at Lake Belau (northern Germany). The chronology of the annually laminated lake sediment sequence was established via varve counts, radiocarbon dating and tephra analysis. Sequences of colluvial sediments and buried soils studied in 19 large exposures and supplementing auger cores within the lake catchment area were dated via radiocarbon dating and archaeological dating of embedded artifacts. The long term development of the lake status was found to be strongly influenced by local human activity. This is indicated by coincidence of phases of landscape openness deduced from pollen data with input of detritus and solutes into the lake. A comparison with palaeo-climate reconstructions reveals that calcite precipitation in the lake reflects climate variability at least to a certain degree. Calibrating the sediment record of the sub-recent lake sediments (micro-facies) on limnological and meteorological records discovered the influence of the NAO as well as solar activity on the limnological processes during the last century reflected by distinguished sedimentation patterns. A comparative study of additional laminated surface sediment sequences from northern Germany corroborates the results. A high resolution reconstruction of Neolithic weather conditions in northern Germany based on the varves of Lake Belau and Lake Poggensee was facilitated by the calibration. The quantitative records of sediments originating from soil erosion (colluvial sediments, allochthonous input into the lake) illustrate the dominance of short distance surface processes (slopes) acting in Holocene mid-latitude landscapes. Coincidence of gully incision in the lake catchment area and increased allochthonous input into the lake indicates the former occurrence of hydrological high energy runoff events (e. g

  6. Application of a Three-Dimensional Water Quality Model as a Decision Support Tool for the Management of Land-Use Changes in the Catchment of an Oligotrophic Lake

    NASA Astrophysics Data System (ADS)

    Trolle, Dennis; Spigel, Bob; Hamilton, David P.; Norton, Ned; Sutherland, Donna; Plew, David; Allan, Mathew G.

    2014-09-01

    While expansion of agricultural land area and intensification of agricultural practices through irrigation and fertilizer use can bring many benefits to communities, intensifying land use also causes more contaminants, such as nutrients and pesticides, to enter rivers, lakes, and groundwater. For lakes such as Benmore in the Waitaki catchment, South Island, New Zealand, an area which is currently undergoing agricultural intensification, this could potentially lead to marked degradation of water clarity as well as effects on ecological, recreational, commercial, and tourism values. We undertook a modeling study to demonstrate science-based options for consideration of agricultural intensification in the catchment of Lake Benmore. Based on model simulations of a range of potential future nutrient loadings, it is clear that different areas within Lake Benmore may respond differently to increased nutrient loadings. A western arm (Ahuriri) could be most severely affected by land-use changes and associated increases in nutrient loadings. Lake-wide annual averages of an eutrophication indicator, the trophic level index (TLI) were derived from simulated chlorophyll a, total nitrogen, and total phosphorus concentrations. Results suggest that the lake will shift from oligotrophic (TLI = 2-3) to eutrophic (TLI = 4-5) as external loadings are increased eightfold over current baseline loads, corresponding to the potential land-use intensification in the catchment. This study provides a basis for use of model results in a decision-making process by outlining the environmental consequences of a series of land-use management options, and quantifying nutrient load limits needed to achieve defined trophic state objectives.

  7. 75 FR 22333 - Safety Zone; Michigan City Super Boat Grand Prix, Lake Michigan, Michigan City, IN

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-28

    ...-AA00 Safety Zone; Michigan City Super Boat Grand Prix, Lake Michigan, Michigan City, IN AGENCY: Coast... temporary safety zone on Lake Michigan near Michigan City, Indiana. This zone is intended to restrict... ensure the safety of vessels from the hazards associated with the Michigan City Super Boat Grand Prix...

  8. 75 FR 32664 - Safety Zone; Milwaukee Air and Water Show, Lake Michigan, Milwaukee, WI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-09

    .... ACTION: Temporary final rule. SUMMARY: The Coast Guard is establishing a safety zone on Lake Michigan... of Lake Michigan due to a large-scale air show and a fireworks display. This temporary safety zone is... air show and fireworks display. DATES: This regulation is effective from 12:01 a.m. on June 10, 2010...

  9. Anthropopression markers in lake bottom sediments

    NASA Astrophysics Data System (ADS)

    Nadolna, Anna; Nowicka, Barbara

    2014-05-01

    Lakes are vulnerable to various types of anthropogenic disturbances. Responses of lake ecosystems to environmental stressors are varied and depend not only on the type of a factor but also on the lake natural resistance to degradation. Within the EULAKES project an evaluation of anthropogenic stress extent in a flow-through, postglacial, ribbon lake (Lake Charzykowskie) was carried out. It was assumed, that this impact manifests unevenly, depending on a type and degree of the pressure on the shore zones, water quality of tributaries, lake basin shape and dynamics of a water movement. It was stated, that anthropogenic markers are substances accumulated in bottom sediments as a result of allochthonous substances inflow from the catchment and atmosphere. Along the selected transects 105 samples from the top layer of sediments (about 20 cm) was collected representing the contemporary accumulation (about 15 years). The content of selected chemical elements and compounds was examined, including nutrients (TN and TP), heavy metals (arsenic, cadmium, lead, chromium, nickel, copper, zinc, mercury, iron, and manganese) and pesticides (DDT, DDD, DDE, DMDT , γ-HCH). The research was conducted in the deepest points of each lake basin and along the research transects - while choosing the spots, the increased intensity of anthropogenic impact (ports, roads with heavy traffic, wastewater discharge zones, built-up areas) was taken into consideration. The river outlets to the lake, where there are ecotonal zones between limnic and fluvial environment, were also taken into account. Analysis of the markers distribution was carried out against the diversity of chemical characteristics of limnic sediments. Ribbon shape of the lake basin and the dominant wind direction provide an opportunity of easy water mixing to a considerable depth. Intensive waving processes cause removal of the matter from the littoral zone towards lake hollows (separated by the underwater tresholds), where the

  10. 77 FR 38492 - Safety Zone; Olcott Fireworks, Lake Ontario, Olcott, NY

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-28

    ... 1625-AA00 Safety Zone; Olcott Fireworks, Lake Ontario, Olcott, NY AGENCY: Coast Guard, DHS. ACTION... the Olcott fireworks on July 3, 2012. The safety zone is necessary to protect participants, spectators, and vessels from the hazards associated with a firework display. [[Page 38493

  11. 77 FR 30451 - Safety Zone; Olcott Fireworks, Lake Ontario, Olcott, NY

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-23

    ...-AA00 Safety Zone; Olcott Fireworks, Lake Ontario, Olcott, NY AGENCY: Coast Guard, DHS. ACTION: Notice... Ontario during the Olcott fireworks display. The safety zone established by this proposed rule is necessary to protect spectators, participants, and vessels from the hazards associated with firework display...

  12. Trace element distribution in the water and sediments of certain storage lakes from the Jijia catchment, (Romania)

    NASA Astrophysics Data System (ADS)

    Dughila, A.; Iancu, O. G.; Romanescu, G. T.

    2012-04-01

    The present study aims at investigating the concentrations and distribution levels of a series of trace elements in water and sediment samples collected from six storage lakes located in the Jijia catchment - NE of Romania. The lakes are multi-purpose water reservoirs, three of them being mainly used as a source of municipal drinking water, or for fishing, irrigation for the farms in the area, protection against floods and the regulation of river flows. By contrast, agricultural wastes, fertilizers, raw sewage effluents and road runoff constitute the predominant anthropogenic sources, which supply the lakes in question with Cd, Cu, Pb and Zn. The present study was conducted on a series of 63 sediment samples and 18 water samples, collected from the same locations, in order to establish the distribution levels of certain trace elements from the water through sediments. Sediment cores were collected from two sections across each lake by means of a motor boat, using a system that consists of a graduated sampling tube (0.9 m in length and 72.5 mm in diameter) made of Plexiglas (Eijkelkamp sample tube guide). Prior to the analyses, the samples were air-dried, ground and homogenized using an agate mortar, oven-dried at 50 °C for 6 days and then sieved through 63 µm sieves. The sediment and water samples were subjected to a digestion technique with concentrated nitric acid using a microwave oven (Berghof type), and analyzed for the following elements: Pb, Zn, Cu, Cd, Cr and Ni. The total concentration of the elements was measured through atomic absorption spectrometry (AAS) with an RSD of < 10 % from solutions. The vertical distribution of most elements in the cores examined could be characterized as relatively uniform, with higher concentrations for those collected from the lakes which are more influenced by anthropogenic factors, compared to those situated in forested areas. The lake-water quality characteristics were below the recommended drinking water standards

  13. Probing the melt zone of Kilauea Iki lava lake, Kilauea volcano, Hawaii

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hardee, H.C.; Dunn, J.C.; Hills, R.G.

    1981-12-01

    New drilling techniques were recently used to drill and core the melt zone of Kilauea Iki lava lake to a depth of 93 m. A partial melt zone was found to exist at depths between 58 m and 89 m consisting of 40 volume percent melt. Downhole seismic shots detonated in and below the melt zone resulted in the first in situ measurements of seismic velocity directly through well characterized partial melt zone. Periodic seismic sources were used to effectively penetrate the highly fractured hydrothermal zone of the lava lake crust. Low velocity P-wave layers (< or =2.0 km/s) weremore » found at the surface, at 40 m depth, and at 90 m depth. Thermal convective experiments in the melt zone resulted in the first controlled in situ measurements of the interaction of water with a basaltic melt zone. Transient energy rates of 900 kW (980 kW/m/sup 2/) and steady rates of 85 kW (93 kW/m/sup 2/) were observed. The full water recovery (100%), high downhole steam temperatures (670 C), and high energy transfer rates (93 to 980 kW/m/sup 2/) observed in these thermal experiments are consistent with a closed cavity model where the injected water/steam directly contacted basaltic melt or near melt. In addition to understanding lava lakes, these seismic and thermal experiments have applications for the location of magma bodies in the crust and for the efficient extraction of energy from these bodies.« less

  14. 76 FR 37646 - Safety Zone; Northern California Annual Fireworks Events, Fourth of July Fireworks, Lake Tahoe, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-28

    ... Zone; Northern California Annual Fireworks Events, Fourth of July Fireworks, Lake Tahoe, CA AGENCY... annual safety zone for the Fourth of July Fireworks, Lake Tahoe, California, located off Incline Village...,000 foot safety zone for the annual Fourth of July Fireworks Display in 33 CFR 165.1191 on July 4...

  15. 77 FR 40515 - Safety Zone; Detroit Symphony Orchestra at Ford House Fireworks, Lake St. Clair, Grosse Pointe...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-10

    ...-AA00 Safety Zone; Detroit Symphony Orchestra at Ford House Fireworks, Lake St. Clair, Grosse Pointe... Detroit Symphony Orchestra at the Ford House Fireworks. This zone will be effective and enforced from 10.... 165.T09-0600 Safety Zone; Detroit Symphony Orchestra at Ford House Fireworks, Lake St. Clair, Grosse...

  16. Strontium isotopic evidence of shifting inflows to Eocene Lake Uinta in the Laramide foreland of Utah

    NASA Astrophysics Data System (ADS)

    Davis, S. J.; Wiegand, B. A.; Chamberlain, C. P.

    2007-12-01

    Isotopic records from the Uinta basin in Utah are evidence of an evolving landscape during the early Cenozoic. Combined with studies of provenance and paleoflow, oxygen and carbon isotopic results have recently been interpreted to reflect changes in hydrology and catchment hypsometry as the basin responded to developing relief in the foreland. We now present strontium isotope data from lacustrine limestones indicating significant and rapid (< 1 my) shifts in the source of inflowing surface waters. Provenance of Eocene sediments has been used to argue that water spilling south from an overfilled Lake Gosiute in the Greater Green River basin caused a highstand of the lake in the Piceance Creek basin, which in turn overtopped the Douglas Creek Arch and connected with Lake Uinta in the Uinta basin. The lake highstand was extremely productive, and resulted in the deposition of the rich "Mahogany zone" oil shales. New data shows that the 87Sr/86Sr ratio of lacustrine limestones collected in the Uinta basin is generally low (< 0.7105) for most of the Eocene, but spikes higher (to 0.7122) in samples of the Main Body of the Green River Formation near and within the Mahogany zone. We interpret this data to reflect a period of input of water from Lake Gosiute, where that lake's catchments included exposed basement that was much more radiogenic. The strontium data further supports the interpretation that intraforeland basin development in the central North American Cordillera was largely controlled by shifting drainage patterns as the landscape responded to ongoing Laramide tectonism.

  17. Phylogenetic diversity of archaea and bacteria in the anoxic zone of a meromictic lake (Lake Pavin, France).

    PubMed

    Lehours, Anne-Catherine; Evans, Paul; Bardot, Corinne; Joblin, Keith; Gérard, Fonty

    2007-03-01

    The compositions of archaeal and bacterial populations at different depths (60 m [mixolimnion-chemocline interface], 70 m [chemocline-subchemocline interface], 90 m, and 92 m [the water-sediment interface]) in the anoxic zone of the water column in Lake Pavin, a freshwater permanently stratified mountain lake in France, were determined. Phylogenetic trees were constructed from sequences to assess archaeal and bacterial diversity at the four sites.

  18. Influence of catchment vegetation on mercury accumulation in lake sediments from a long-term perspective.

    PubMed

    Rydberg, Johan; Rösch, Manfred; Heinz, Emanuel; Biester, Harald

    2015-12-15

    Organic matter (OM) cycling has a large impact on the cycling of mercury (Hg) in the environment. Hence, it is important to have a thorough understanding on how changes in, e.g., catchment vegetation - through its effect on OM cycling - affect the behavior of Hg. To test whether shifts in vegetation had an effect on Hg-transport to lakes we investigated a sediment record from Herrenwieser See (Southern Germany). This lake has a well-defined Holocene vegetation history: at ~8700years BP Corylus avellana (hazel) was replaced by Quercus robur (oak), which was replaced by Abies alba (fir) and Fagus sylvatica (beech) ~5700years BP). We were particularly interested in testing if coniferous vegetation leads to a larger export of Hg to aquatic systems than deciduous vegetation. When hazel was replaced by oak, reduced soil erosion and increased transport of DOM-bound mercury from the catchment resulted in increases in both Hg-concentrations and accumulation rates (61ngg(-1) and 5.5ngcm(-2)yr.(-)(1) to 118ngg(-1) and 8.5ngcm(-2)yr.(-)(1)). However, even if Hg-concentrations increased also in association with the introduction of fir and beech (173ngg(-1)), as a result of higher Hg:C, there was no increase in Hg-accumulation rates (7.6ngcm(-2)yr.(-)(1)), because of a decreased input of OM. At around 2500years BP Hg-accumulation rates and Hg-concentration indicated an additional input of Hg to the sediment (316ngg(-1) and 10.3ngcm(-2)yr.(-)(1)), which might be due to increased human activities in the area, e.g., forest burning or mining. Our results contrast those of several paired-catchment studies that suggest a higher release of Hg from coniferous than deciduous forest, and there is a need for studies with a long-term perspective to increase our understanding of the effects of slow and gradual processes on mercury cycling. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Groundwater discharge to lakes (GDL) - the disregarded component of lake nutrient budgets

    NASA Astrophysics Data System (ADS)

    Lewandowski, J.; Meinikmann, K.; Pöschke, F.; Nützmann, G.

    2012-04-01

    Eutrophication is a major threat to lakes in temperate climatic zones. It is necessary to determine the relevance of different nutrient sources to conduct effective management measures, to understand in-lake processes and to model future scenarios. A prerequisite for such nutrient budgets are water budgets. While most components of the water budget can be determined quite accurate the quantification of groundwater discharge to lakes (GDL) and surface water infiltration into the aquifer are much more difficult. For example, it is quite common to determine the groundwater component as residual in the water and nutrient budget which is extremely problematic since in that case all errors of the budget terms are summed up in the groundwater term. In total, we identified 10 different reasons for disregarding the groundwater path in nutrient budgets. We investigated the fate of the nutrients nitrogen and phosphorus on their pathway from the catchment through the reactive aquifer-lake interface into the lake. We reviewed the international literature and summarized numbers reported for GDL of nutrients. Since literature is quite sparse we also had a look at numbers reported for submarine groundwater discharge (SGD) of nutrients for which much more literature exists and which is despite some fundamental differences in principal comparable to GDL.

  20. Water balance of a lake with floodplain buffering: Lake Tana, Blue Nile Basin, Ethiopia

    NASA Astrophysics Data System (ADS)

    Dessie, Mekete; Verhoest, Niko E. C.; Pauwels, Valentijn R. N.; Adgo, Enyew; Deckers, Jozef; Poesen, Jean; Nyssen, Jan

    2015-03-01

    Lakes are very important components of the earth's hydrological cycle, providing a variety of services for humans and ecosystem functioning. For a sustainable use of lakes, a substantial body of knowledge on their water balance is vital. We present here a detailed daily water balance analysis for Lake Tana, the largest lake in Ethiopia and the source of the Blue Nile. Rainfall on the lake is determined by Thiessen polygon procedure, open water evaporation is estimated by the Penman-combination equation and observed inflows for the gauged catchments as well as outflow data at the two lake outlets are directly used. Runoff from ungauged catchments is estimated using a simple rainfall-runoff model and runoff coefficients. Hillslope catchments and floodplains are treated separately, which makes this study unique compared to previous water balance studies. Impact of the floodplain on the lake water balance is analyzed by conducting scenario-based studies. We found an average yearly abstraction of 420 × 106 m3 or 6% of river inflows to the lake by the floodplain in 2012 and 2013. Nearly 60% of the inflow to the lake is from the Gilgel Abay River. Simulated lake levels compare well with the observed lake levels (R2 = 0.95) and the water balance can be closed with a closure error of 82 mm/year (3.5% of the total lake inflow). This study demonstrates the importance of floodplains and their influence on the water balance of the lake and the need of incorporating the effects of floodplains and water abstraction for irrigation to improve predictions.

  1. TUM Critical Zone Observatory, Germany

    NASA Astrophysics Data System (ADS)

    Völkel, Jörg; Eden, Marie

    2014-05-01

    Founded 2011 the TUM Critical Zone Observatory run by the Technische Universität München and partners abroad is the first CZO within Germany. TUM CZO is both, a scientific as well as an education project. It is a watershed based observatory, but moving behind this focus. In fact, two mountainous areas are integrated: (1) The Ammer Catchment area as an alpine and pre alpine research area in the northern limestone Alps and forelands south of Munich; (2) the Otter Creek Catchment in the Bavarian Forest with a crystalline setting (Granite, Gneiss) as a mid mountainous area near Regensburg; and partly the mountainous Bavarian Forest National Park. The Ammer Catchment is a high energy system as well as a sensitive climate system with past glacial elements. The lithology shows mostly carbonates from Tertiary and Mesozoic times (e.g. Flysch). Source-to-sink processes are characteristic for the Ammer Catchment down to the last glacial Ammer Lake as the regional erosion and deposition base. The consideration of distal depositional environments, the integration of upstream and downstream landscape effects are characteristic for the Ammer Catchment as well. Long term datasets exist in many regards. The Otter Creek catchment area is developed in a granitic environment, rich in saprolites. As a mid mountainous catchment the energy system is facing lower stage. Hence, it is ideal comparing both of them. Both TUM CZO Catchments: The selected catchments capture the depositional environment. Both catchment areas include historical impacts and rapid land use change. Crosscutting themes across both sites are inbuilt. Questions of ability to capture such gradients along climosequence, chronosequence, anthroposequence are essential.

  2. Climate-landform effects on lateglacial vegetation pattern in northeastern Tuchola Pinewoods (northern Poland): multiproxy evidence from the Lake Czechowskie catchment, northern Poland.

    NASA Astrophysics Data System (ADS)

    Noryśkiewicz, Agnieszka M.; Kordowski, Jarosław; Tyszkowski, Sebastian; Kramkowski, Mateusz; Zawiska, Izabela; Rzodkiewicz, Monika; Mirosław-Grabowska, Joanna; Ott, Florian; Słowiński, Michał; Obremska, Milena; Błaszkiewicz, Mirosław; Brauer, Achim

    2016-04-01

    The study area is located in northern Poland in the northeastern part of Tuchola Pinewoods in a young glacially formed and diversified landscape. It comprises the entire lake catchment of Lake Czechowskie (19.76 km2), which comprises a second lake upstream as well as a palaeolake (Trzechowskie) located between the two present-day lakes. Biogenic sediments from eight cores were studied by multiproxy analyses to reconstruct the environmental changes and climate signals during the last Late Glacial and early Holocene. The cores were collected along a W-E transect from Głęboczek Lake to the Czechowskie Lake and were located in different topographic positions (deepest and shallow part of the lake, old lake-bed plains and paleolakes) with a maximum distance of 2.2 km. Detailed and high resolution analyses (pollen, diatoms, cladocera, stable isotopes, geochemistry, varve chronology and radiocarbon dating) to identify the main stages in the development of the natural environment were made. Palynological data indicate melting of the buried ice blocks and the following the onset of biogenic lacustrine sedimentation. The general pattern of vegetation changes in all profiles is similar and includes Late Glacial steppe-tundra plant communities at the onset of organic lake sedimentation. The palynological record of the most profiles shows a high participation of seabuckthorn (Hippophae) in the initial stadium of vegetation history. The lack of this succession in the most western core (Głęboczek Lake) indicates a later period of melt-out processes of the buried dead-ice blocks in the Głęboczek Lake basin. The thickness and type of the accumulated sediments differ significantly during the Bolling-Alerod complex and Younger Dryas Period between our sites. These differences are also reflected in variations of plant species among the different sites. The comparison of different profiles within one catchment allows us to distinguish site specific local responses to climate

  3. 78 FR 36091 - Safety Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-17

    ... Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago Sanitary and Ship...; Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago Sanitary and Ship Canal... the Safety Zone; Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago...

  4. Sources and yields of dissolved carbon in northern Wisconsin stream catchments with differing amounts of Peatland

    USGS Publications Warehouse

    Elder, J.F.; Rybicki, N.B.; Carter, V.; Weintraub, V.

    2000-01-01

    In five tributary streams (four inflowing and one outflowing) of 1600-ha Trout Lake in northern Wisconsin, USA, we examined factors that can affect the magnitude of stream flow and transport of dissolved organic and inorganic carbon (DOC and DIC) through the streams to the lake. One catchment, the Allequash Creek basin, was investigated in more detail to describe the dynamics of carbon flow and to identify potential carbon sources. Stream flows and carbon loads showed little or no relation to surface-water catchment area. They were more closely related to ground-water watershed area because ground-water discharge, from both local and regional sources, is a major contributor to the hydrologic budgets of these catchments. An important factor in determining carbon influx to the stream is the area of peatland in the catchment. Peatland porewaters contain DOC concentrations up to 40 mg l-1 and are a significant potential carbon source. Ground-water discharge and lateral flow through peat are the suspected mechanisms for transport of that carbon to the streams. Carbon and nitrogen isotopes suggested that the sources of DOC in Allequash Creek above Allequash Lake were wetland vegetation and peat and that the sources below Allequash Lake were filamentous algae and wild rice. Catchments with high proportions of peatland, including the Allequash Creek catchment, tended to have elevated DOC loads in outflowing stream water. Respiration and carbon mineralization in lakes within the system tend to produce low DOC and low DOC/DIC in lake outflows, especially at Trout Lake. In Allequash Lake, however, the shallow peat island and vegetation-filled west end were sources of DOC. Despite the vast carbon reservoir in the peatlands, carbon yields were very low in these catchments. Maximum yields were on the order of 2.5 g m-2 y-1 DOC and 5.5 g m-2 y-1 DIC. The small yields were attributable to low stream flows due to lack of significant overland runoff and very limited stream channel

  5. Climate change effects on runoff, catchment phosphorus loading and lake ecological state, and potential adaptations.

    PubMed

    Jeppesen, Erik; Kronvang, Brian; Meerhoff, Mariana; Søndergaard, Martin; Hansen, Kristina M; Andersen, Hans E; Lauridsen, Torben L; Liboriussen, Lone; Beklioglu, Meryem; Ozen, Arda; Olesen, Jørgen E

    2009-01-01

    Climate change may have profound effects on phosphorus (P) transport in streams and on lake eutrophication. Phosphorus loading from land to streams is expected to increase in northern temperate coastal regions due to higher winter rainfall and to a decline in warm temperate and arid climates. Model results suggest a 3.3 to 16.5% increase within the next 100 yr in the P loading of Danish streams depending on soil type and region. In lakes, higher eutrophication can be expected, reinforced by temperature-mediated higher P release from the sediment. Furthermore, a shift in fish community structure toward small and abundant plankti-benthivorous fish enhances predator control of zooplankton, resulting in higher phytoplankton biomass. Data from Danish lakes indicate increased chlorophyll a and phytoplankton biomass, higher dominance of dinophytes and cyanobacteria (most notably of nitrogen fixing forms), but lower abundance of diatoms and chrysophytes, reduced size of copepods and cladocerans, and a tendency to reduced zooplankton biomass and zooplankton:phytoplankton biomass ratio when lakes warm. Higher P concentrations are also seen in warm arid lakes despite reduced external loading due to increased evapotranspiration and reduced inflow. Therefore, the critical loading for good ecological state in lakes has to be lowered in a future warmer climate. This calls for adaptation measures, which in the northern temperate zone should include improved P cycling in agriculture, reduced loading from point sources, and (re)-establishment of wetlands and riparian buffer zones. In the arid Southern Europe, restrictions on human use of water are also needed, not least on irrigation.

  6. 78 FR 30762 - Safety Zone; 2013 Fish Festival Fireworks, Lake Erie, Vermilion, OH

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-23

    ...-AA00 Safety Zone; 2013 Fish Festival Fireworks, Lake Erie, Vermilion, OH AGENCY: Coast Guard, DHS... during the 2013 Fish Festival Fireworks display. This temporary safety zone is necessary to protect... necessary to ensure the safety of spectators and vessels during the 2013 Fish Festival Fireworks. This zone...

  7. 76 FR 2829 - Safety Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-18

    ... Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago Sanitary and Ship...; Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago Sanitary and Ship Canal... enforce a segment of the Safety Zone; Brandon Road Lock and Dam to Lake Michigan including Des Plaines...

  8. 77 FR 20295 - Safety Zone, Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-04

    ... Zone, Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago Sanitary and Ship...; Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago Sanitary and Ship Canal... enforce a segment of the Safety Zone; Brandon Road Lock and Dam to Lake Michigan including Des Plaines...

  9. 78 FR 36092 - Safety Zone; Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-17

    ... Zone; Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago Sanitary and Ship...; Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago Sanitary and Ship Canal... Coast Guard will enforce a segment of the Safety Zone; Brandon Road Lock and Dam to Lake Michigan...

  10. 77 FR 35854 - Safety Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-15

    ... Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago Sanitary and Ship...; Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago Sanitary and Ship Canal... enforce a segment of the Safety Zone; Brandon Road Lock and Dam to Lake Michigan including Des Plaines...

  11. 75 FR 52462 - Safety Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-26

    ... Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago Sanitary and Ship...; Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago Sanitary and Ship Canal... enforce a segment of the Safety Zone; Brandon Road Lock and Dam to Lake Michigan including Des Plaines...

  12. 78 FR 40635 - Safety Zone; Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-08

    ... Zone; Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago Sanitary and Ship...; Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago Sanitary and Ship Canal... Coast Guard will enforce a segment of the Safety Zone; Brandon Road Lock and Dam to Lake Michigan...

  13. 75 FR 73966 - Safety Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-30

    ... Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago Sanitary and Ship...; Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago Sanitary and Ship Canal... enforce a segment of the Safety Zone; Brandon Road Lock and Dam to Lake Michigan including Des Plaines...

  14. 76 FR 35106 - Safety Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-16

    ...-AA00 Safety Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago..., DHS. ACTION: Final rule. SUMMARY: The Coast Guard is establishing a permanent safety zone from Brandon... Safety Zones; Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago Sanitary...

  15. Development of a zoning-based environmental-ecological-coupled model for lakes to assess lake restoration effect

    NASA Astrophysics Data System (ADS)

    Xu, Mengjia; Zou, Changxin; Zhao, Yanwei

    2017-04-01

    Environmental/ecological models are widely used for lake management as they provide a means to understand physical, chemical and biological processes in highly complex ecosystems. Most research focused on the development of environmental (water quality) and ecological models, separately. Limited studies were developed to couple the two models, and in these limited coupled models, a lake was regarded as a whole for analysis (i.e., considering the lake to be one well-mixed box), which was appropriate for small-scale lakes and was not sufficient to capture spatial variations within middle-scale or large-scale lakes. This paper seeks to establish a zoning-based environmental-ecological-coupled model for a lake. The Baiyangdian Lake, the largest freshwater lake in Northern China, was adopted as the study case. The coupled lake models including a hydrodynamics and water quality model established by MIKE21 and a compartmental ecological model used STELLA software have been established for middle-sized Baiyangdian Lake to realize the simulation of spatial variations of ecological conditions. On the basis of the flow field distribution results generated by MIKE21 hydrodynamics model, four water area zones were used as an example for compartmental ecological model calibration and validation. The results revealed that the developed coupled lake models can reasonably reflected the changes of the key state variables although there remain some state variables that are not well represented by the model due to the low quality of field monitoring data. Monitoring sites in a compartment may not be representative of the water quality and ecological conditions in the entire compartment even though that is the intention of compartment-based model design. There was only one ecological observation from a single monitoring site for some periods. This single-measurement issue may cause large discrepancies particularly when sampled site is not representative of the whole compartment. The

  16. Lakes as sentinels of climate change

    PubMed Central

    Adrian, Rita; O’Reilly, Catherine M.; Zagarese, Horacio; Baines, Stephen B.; Hessen, Dag O.; Keller, Wendel; Livingstone, David M.; Sommaruga, Ruben; Straile, Dietmar; Van Donk, Ellen; Weyhenmeyer, Gesa A.; Winder, Monika

    2010-01-01

    While there is a general sense that lakes can act as sentinels of climate change, their efficacy has not been thoroughly analyzed. We identified the key response variables within a lake that act as indicators of the effects of climate change on both the lake and the catchment. These variables reflect a wide range of physical, chemical, and biological responses to climate. However, the efficacy of the different indicators is affected by regional response to climate change, characteristics of the catchment, and lake mixing regimes. Thus, particular indicators or combinations of indicators are more effective for different lake types and geographic regions. The extraction of climate signals can be further complicated by the influence of other environmental changes, such as eutrophication or acidification, and the equivalent reverse phenomena, in addition to other land-use influences. In many cases, however, confounding factors can be addressed through analytical tools such as detrending or filtering. Lakes are effective sentinels for climate change because they are sensitive to climate, respond rapidly to change, and integrate information about changes in the catchment. PMID:20396409

  17. Long-term chloride concentrations in North American and European freshwater lakes

    PubMed Central

    Dugan, Hilary A.; Summers, Jamie C.; Skaff, Nicholas K.; Krivak-Tetley, Flora E.; Doubek, Jonathan P.; Burke, Samantha M.; Bartlett, Sarah L.; Arvola, Lauri; Jarjanazi, Hamdi; Korponai, János; Kleeberg, Andreas; Monet, Ghislaine; Monteith, Don; Moore, Karen; Rogora, Michela; Hanson, Paul C.; Weathers, Kathleen C.

    2017-01-01

    Anthropogenic sources of chloride in a lake catchment, including road salt, fertilizer, and wastewater, can elevate the chloride concentration in freshwater lakes above background levels. Rising chloride concentrations can impact lake ecology and ecosystem services such as fisheries and the use of lakes as drinking water sources. To analyze the spatial extent and magnitude of increasing chloride concentrations in freshwater lakes, we amassed a database of 529 lakes in Europe and North America that had greater than or equal to ten years of chloride data. For each lake, we calculated climate statistics of mean annual total precipitation and mean monthly air temperatures from gridded global datasets. We also quantified land cover metrics, including road density and impervious surface, in buffer zones of 100 to 1,500 m surrounding the perimeter of each lake. This database represents the largest global collection of lake chloride data. We hope that long-term water quality measurements in areas outside Europe and North America can be added to the database as they become available in the future. PMID:28786983

  18. Long-term chloride concentrations in North American and European freshwater lakes.

    PubMed

    Dugan, Hilary A; Summers, Jamie C; Skaff, Nicholas K; Krivak-Tetley, Flora E; Doubek, Jonathan P; Burke, Samantha M; Bartlett, Sarah L; Arvola, Lauri; Jarjanazi, Hamdi; Korponai, János; Kleeberg, Andreas; Monet, Ghislaine; Monteith, Don; Moore, Karen; Rogora, Michela; Hanson, Paul C; Weathers, Kathleen C

    2017-08-08

    Anthropogenic sources of chloride in a lake catchment, including road salt, fertilizer, and wastewater, can elevate the chloride concentration in freshwater lakes above background levels. Rising chloride concentrations can impact lake ecology and ecosystem services such as fisheries and the use of lakes as drinking water sources. To analyze the spatial extent and magnitude of increasing chloride concentrations in freshwater lakes, we amassed a database of 529 lakes in Europe and North America that had greater than or equal to ten years of chloride data. For each lake, we calculated climate statistics of mean annual total precipitation and mean monthly air temperatures from gridded global datasets. We also quantified land cover metrics, including road density and impervious surface, in buffer zones of 100 to 1,500 m surrounding the perimeter of each lake. This database represents the largest global collection of lake chloride data. We hope that long-term water quality measurements in areas outside Europe and North America can be added to the database as they become available in the future.

  19. Snow cover distribution over elevation zones in a mountainous catchment

    NASA Astrophysics Data System (ADS)

    Panagoulia, D.; Panagopoulos, Y.

    2009-04-01

    A good understanding of the elevetional distribution of snow cover is necessary to predict the timing and volume of runoff. In a complex mountainous terrain the snow cover distribution within a watershed is highly variable in time and space and is dependent on elevation, slope, aspect, vegetation type, surface roughness, radiation load, and energy exchange at the snow-air interface. Decreases in snowpack due to climate change could disrupt the downstream urban and agricultural water supplies, while increases could lead to seasonal flooding. Solar and longwave radiation are dominant energy inputs driving the ablation process. Turbulent energy exchange at the snow cover surface is important during the snow season. The evaporation of blowing and drifting snow is strongly dependent upon wind speed. Much of the spatial heterogeneity of snow cover is the result of snow redistribution by wind. Elevation is important in determining temperature and precipitation gradients along hillslopes, while the temperature gradients determine where precipitation falls as rain and snow and contribute to variable melt rates within the hillslope. Under these premises, the snow accumulation and ablation (SAA) model of the US National Weather Service (US NWS) was applied to implement the snow cover extent over elevation zones of a mountainous catchment (the Mesochora catchment in Western-Central Greece), taking also into account the indirectly included processes of sublimation, interception, and snow redistribution. The catchment hydrology is controlled by snowfall and snowmelt and the simulated discharge was computed from the soil moisture accounting (SMA) model of the US NWS and compared to the measured discharge. The elevationally distributed snow cover extent presented different patterns with different time of maximization, extinction and return during the year, producing different timing of discharge that is a crucial factor for the control and management of water resources systems.

  20. A catchment-scale palaeolimnological investigation into multiple forcings of algal community change

    NASA Astrophysics Data System (ADS)

    Moorhouse, H. L.; McGowan, S.; Jones, M.; Brayshaw, S.; Barker, P.; Leavitt, P.

    2013-12-01

    A catchment-scale palaeolimnological investigation of sedimentary algal pigments spanning the past ~200 years was undertaken on lakes which drain into Windermere, England's largest and longest lake. We aimed to determine the relative influence of past regional (climatic, atmospheric deposition) and local (land-use, hydrological modification, point-source pollution) drivers of algal community change by comparing three fertile lowland lakes (Blelham Tarn, Esthwaite Water and Rydal Water) and two upland tarns (Stickle and Easedale Tarns) to better inform a catchment-wide management strategy for Windermere. Drivers of change at the upland sites included atmospheric acid deposition, climatic change and structural modifications caused by dam installation, whereas the influence of agriculture and point-source pollution is greater in the lakes in the lowland parts of the catchment. As a result, contrasting algal responses were noted in the lakes. For example, the cyanobacterial pigment zeaxanthin and the cryptophte pigment alloxanthin increased at Stickle Tarn (359% and 321% respectively) corresponding with the establishment of a dam at the outflow of the tarn in 1838. However, post-1900's the concentration of these pigments declined both at Stickle and at Easedale Tarn coincident with increased storm events and in the later decades of the century (~1980s onwards) decreases in acid deposition. In the lowland sites the cyanobacterial pigment aphanizophyll increased by 400-7000% and the indicator of total algal production β-carotene increased as much as six-fold indicating a substantial degradation in water quality and the onset of cyanobacterial blooms since the 1950's. In the lowland sites, degradation of water quality was closely linked to sewage installations and treatment work upgrades during the 1950's-70's and intensification of agricultural practices most notably increases in sheep stocking densities, which expanded in the 1950's. In lowland lakes with a higher

  1. 75 FR 26094 - Safety Zone, Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-11

    ...-AA00 Safety Zone, Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago... establishing a temporary safety zone from Brandon Road Lock and Dam to Lake Michigan. This temporary safety...

  2. A perspective on stream-catchment connections

    USGS Publications Warehouse

    Bencala, Kenneth E.

    1993-01-01

    Ecological study of the hyporheic zone is leading to recognition of a need for additional hydrologic understanding. Some of this understanding can be obtained by viewing the hyporheic zone as a succession of isolated boxes adjacent to the stream. Further understanding, particularly relevant to catchment-scale ecology, may come from studies focussed on the fluid mechanics of the flow-path connections between streams and their catchments.

  3. 75 FR 35296 - Safety Zones; 2010 Muskegon Summer Celebration Air Show, Muskegon Lake, Muskegon, MI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-22

    ...-AA00 Safety Zones; 2010 Muskegon Summer Celebration Air Show, Muskegon Lake, Muskegon, MI AGENCY: Coast... portions of Muskegon Lake due to the 2010 Muskegon Summer Celebration Air Show. These temporary safety... 2010 Muskegon Summer Celebration Air Show. The Captain of the Port, Sector Lake Michigan, has...

  4. Ecological impacts of winter water level drawdowns on lake littoral zones: A review

    USGS Publications Warehouse

    Roy, Allison

    2017-01-01

    Freshwater littoral zones harbor diverse ecological communities and serve numerous ecosystem functions that are controlled, in part, by natural water level fluctuations. However, human alteration of lake hydrologic regimes beyond natural fluctuations threaten littoral zone ecological integrity. One type of hydrologic alteration in lakes is winter water level drawdowns, which are frequently employed for hydropower, flood control, and macrophyte control, among other purposes. Here, we synthesize the abiotic and biotic responses to annual and novel winter water level drawdowns in littoral zones of lakes and reservoirs. The dewatering, freezing, and increased erosion of exposed lakebeds drive changes in the littoral zone. Shoreline-specific physicochemical conditions such as littoral slope and shoreline exposure further induce modifications. Loss of fine sediment decreases nutrient availability over time, but desiccation may promote a temporary nutrient pulse upon re-inundation. Annual winter drawdowns can decrease taxonomic richness of macrophytes and benthic invertebrates and shift assemblage composition to favor taxa with r-selected life history strategies and with functional traits resistant to direct and indirect drawdown effects. Fish assemblages, though less directly affected by winter drawdowns (except where there is critically low dissolved oxygen), experience negative effects via indirect pathways like decreased food resources and spawning habitat. We identify eight general research gaps to guide future research that could improve our understanding about the complex effects of winter drawdowns on littoral zone ecology.

  5. Understanding groundwater, surface water, and hyporheic zone biogeochemical processes in a Chalk catchment using fluorescence properties of dissolved and colloidal organic matter

    NASA Astrophysics Data System (ADS)

    Lapworth, D. J.; Gooddy, D. C.; Allen, D.; Old, G. H.

    2009-09-01

    Understanding groundwater-surface water (GW-SW) interaction in Chalk catchments is complicated by the degree of geological heterogeneity. At this study site, in southern United Kingdom, alluvial deposits in the riparian zone can be considered as a patchwork of varying grades and types with an equally varied lateral connectivity. Some display good connection with the river system and others good connection with the groundwater system and, by definition, poorer connectivity with the surface water. By coupling tangential flow fractionation (TFF) with fluorescence analysis we were able to characterize the organic matter in the river and hyporheic zone. There is a significant proportion of particulate and colloidal fluorescent organic matter (FOM) within the river system and at depth within the gravels beneath the river channel. At depth in the hyporheic zone, the surface water inputs are dampened by mixing with deeper groundwater FOM. The shallow (0-0.5 m below river bed) hyporheic zone is highly dynamic as a result of changing surface water inputs from upstream processes. Labile C in the form of protein-like FOM appears to be attenuated preferentially compared to fulvic-like fluorescence in the hyporheic zone compared to the adjacent gravel and sand deposits. These preliminary findings have important implications for understanding nutrient and trace element mobility and attenuation within the groundwater, surface water, and hyporheic zone of permeable Chalk catchments. Fluorescence analysis of dissolved organic matter has been shown to be a useful environmental tracer that can be used in conjunction with other methods to understand GW-SW processes within a permeable Chalk catchment.

  6. 75 FR 35649 - Safety Zone; Fourth of July Fireworks, Lake Tahoe, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-23

    ... Zone; Fourth of July Fireworks, Lake Tahoe, CA AGENCY: Coast Guard, DHS. ACTION: Notice of enforcement of regulation. SUMMARY: The Coast Guard will enforce the Fourth of July Fireworks safety zone from 9... Fourth of July Fireworks Display in 33 CFR 165.1191 on July 3, 2010. The fireworks launch site is...

  7. 77 FR 47284 - Safety Zone; Dredge Arthur J, Lake Huron, Lakeport, MI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-08

    ...-AA00 Safety Zone; Dredge Arthur J, Lake Huron, Lakeport, MI AGENCY: Coast Guard, DHS. ACTION: Temporary... preparation for and salvage operations of the Arthur J. dredge vessel. This temporary safety zone is necessary... sinking of the dredge vessel Arthur J. precluded the Coast Guard from having sufficient time to publish an...

  8. 75 FR 61619 - Safety Zone; IJSBA World Finals, Lower Colorado River, Lake Havasu, AZ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-06

    ...-AA00 Safety Zone; IJSBA World Finals, Lower Colorado River, Lake Havasu, AZ AGENCY: Coast Guard, DHS... Sports Boating Association (IJSBA) World Finals. This temporary safety zone is necessary to provide for... notice of proposed rulemaking (NPRM) entitled Safety Zone; IJSBA World Finals in the Federal Register (75...

  9. Downscaling Satellite Data for Predicting Catchment-scale Root Zone Soil Moisture with Ground-based Sensors and an Ensemble Kalman Filter

    NASA Astrophysics Data System (ADS)

    Lin, H.; Baldwin, D. C.; Smithwick, E. A. H.

    2015-12-01

    Predicting root zone (0-100 cm) soil moisture (RZSM) content at a catchment-scale is essential for drought and flood predictions, irrigation planning, weather forecasting, and many other applications. Satellites, such as the NASA Soil Moisture Active Passive (SMAP), can estimate near-surface (0-5 cm) soil moisture content globally at coarse spatial resolutions. We develop a hierarchical Ensemble Kalman Filter (EnKF) data assimilation modeling system to downscale satellite-based near-surface soil moisture and to estimate RZSM content across the Shale Hills Critical Zone Observatory at a 1-m resolution in combination with ground-based soil moisture sensor data. In this example, a simple infiltration model within the EnKF-model has been parameterized for 6 soil-terrain units to forecast daily RZSM content in the catchment from 2009 - 2012 based on AMSRE. LiDAR-derived terrain variables define intra-unit RZSM variability using a novel covariance localization technique. This method also allows the mapping of uncertainty with our RZSM estimates for each time-step. A catchment-wide satellite-to-surface downscaling parameter, which nudges the satellite measurement closer to in situ near-surface data, is also calculated for each time-step. We find significant differences in predicted root zone moisture storage for different terrain units across the experimental time-period. Root mean square error from a cross-validation analysis of RZSM predictions using an independent dataset of catchment-wide in situ Time-Domain Reflectometry (TDR) measurements ranges from 0.060-0.096 cm3 cm-3, and the RZSM predictions are significantly (p < 0.05) correlated with TDR measurements [r = 0.47-0.68]. The predictive skill of this data assimilation system is similar to the Penn State Integrated Hydrologic Modeling (PIHM) system. Uncertainty estimates are significantly (p < 0.05) correlated to cross validation error during wet and dry conditions, but more so in dry summer seasons. Developing an

  10. SWAT-CS: Revision and testing of SWAT for Canadian Shield catchments

    NASA Astrophysics Data System (ADS)

    Fu, Congsheng; James, April L.; Yao, Huaxia

    2014-04-01

    Canadian Shield catchments are under increasing pressure from various types of development (e.g., mining and increased cottagers) and changing climate. Within the southern part of the Canadian Shield, catchments are generally characterized by shallow forested soils with high infiltration rates and low bedrock infiltration, generating little overland flow, and macropore and subsurface flow are important streamflow generation processes. Large numbers of wetlands and lakes are also key physiographic features, and snow-processes are critical to catchment modeling in this climate. We have revised the existing, publicly available SWAT (version 2009.10.1 Beta 3) to create SWAT-CS, a version representing hydrological processes dominating Canadian Shield catchments, where forest extends over Precambrian Shield bedrock. Prior to this study, very few studies applying SWAT to Canadian Shield catchments exist (we have found three). We tested SWAT-CS using the Harp Lake catchment dataset, an Ontario Ministry of Environment research station located in south-central Ontario. Simulations were evaluated against 30 years of observational data, including streamflow from six headwater sub-catchments (0.1-1.9 km2), outflow from Harp Lake (5.4 km2) and five years of weekly snow water equivalent (SWE). The best Nash-Sutcliffe efficiency (NSE) results for daily streamflow calibration, daily streamflow validation, and SWE were 0.60, 0.65, and 0.87, respectively, for sub-catchment HP4 (with detailed land use and soil data). For this range of catchment scales, land cover and soil properties were found to be transferable across sub-catchments with similar physiographic features, namely streamflow from the remaining five sub-catchments could be modeled well using sub-catchment HP4 parameterization. The Harp Lake outflow was well modeled using the existing reservoir-based target release method, generating NSEs of 0.72 and 0.67 for calibration and verification periods respectively. With

  11. Patterns and multi-scale drivers of phytoplankton species richness in temperate peri-urban lakes.

    PubMed

    Catherine, Arnaud; Selma, Maloufi; Mouillot, David; Troussellier, Marc; Bernard, Cécile

    2016-07-15

    Local species richness (SR) is a key characteristic affecting ecosystem functioning. Yet, the mechanisms regulating phytoplankton diversity in freshwater ecosystems are not fully understood, especially in peri-urban environments where anthropogenic pressures strongly impact the quality of aquatic ecosystems. To address this issue, we sampled the phytoplankton communities of 50 lakes in the Paris area (France) characterized by a large gradient of physico-chemical and catchment-scale characteristics. We used large phytoplankton datasets to describe phytoplankton diversity patterns and applied a machine-learning algorithm to test the degree to which species richness patterns are potentially controlled by environmental factors. Selected environmental factors were studied at two scales: the lake-scale (e.g. nutrients concentrations, water temperature, lake depth) and the catchment-scale (e.g. catchment, landscape and climate variables). Then, we used a variance partitioning approach to evaluate the interaction between lake-scale and catchment-scale variables in explaining local species richness. Finally, we analysed the residuals of predictive models to identify potential vectors of improvement of phytoplankton species richness predictive models. Lake-scale and catchment-scale drivers provided similar predictive accuracy of local species richness (R(2)=0.458 and 0.424, respectively). Both models suggested that seasonal temperature variations and nutrient supply strongly modulate local species richness. Integrating lake- and catchment-scale predictors in a single predictive model did not provide increased predictive accuracy; therefore suggesting that the catchment-scale model probably explains observed species richness variations through the impact of catchment-scale variables on in-lake water quality characteristics. Models based on catchment characteristics, which include simple and easy to obtain variables, provide a meaningful way of predicting phytoplankton species

  12. Relationship between catchment events (earthquake and heavy rain) and sediment core analysis result in Taiwan.

    NASA Astrophysics Data System (ADS)

    Chen, Hsin-Ying; Lin, Jiun-Chuan

    2015-04-01

    Lake sediments contains material from the catchment. In those sediments, there are some features which can indicate characteristic or status of the catchment. These features were formed by different mechanisms, including some events like earthquakes or heavy rain, which are very common in Taiwan. By analyzing and discussing features of sediments there is a chance to identify historical events and rebuild catchment history. In this study, we compare features of sediment core ( including density, mineral grain size, whole grain size, and biogenic silica content) and earthquake, precipitation records. Sediment cores are collected from Emerald peak lake (24.514980, 121.605844; 77.5, 77.2, 64cm depth), Liyutan lake (23.959878, 120.996585; 43.2, 78.1 cm depth), Sun Moon Lake (23.847043, 120.909869; 181 cm depth), and Dongyuan lake (22.205742, 120.854984; 45.1, 44.2cm depth) in 2014. We assume that there are regular material and organic output in catchments. And rain will provide impetus to move material into lakes. The greater the rain is the larger the material can move. So, if there is a heavy rainfall event, grain size of lake sediment may increase. However, when earthquakes happen, it will produce more material which have lower organic composition than ordinary. So we suggest that after earthquakes there will be more material stored in catchment than often. And rainfall event provides power to move material into lakes, cause more sediment and mineral content higher than usual. Comparing with earthquake record(from 1949, by USGS) and precipitation record(from1940, by Central Weather Bureau,Taiwan), there were few earthquakes which happened near lakes and scale were more than 7 ML. There were 28 rainfall events near Emerald peak lake; 32 near Liyutan lake and Sun Moon Lake; 58 near Dongyuan lake ( rainfall event: >250 mm/day ). In sediment analytical results, ratio of whole and mineral grain size indeed have similar trends with earthquake record. However, rainfall

  13. 78 FR 39597 - Safety Zone; “Lights on the Lake” Fourth of July Fireworks, South Lake Tahoe, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-02

    ... Zone; ``Lights on the Lake'' Fourth of July Fireworks, South Lake Tahoe, CA AGENCY: Coast Guard, DHS... the ``Lights on the Lake'' Fourth of July Fireworks display, South Lake Tahoe, CA in the Captain of...) for the ``Lights on the Lake'' Fourth of July Fireworks, South Lake Tahoe, CA in 33 CFR 165.1191...

  14. Phylogenetic Diversity of Archaea and Bacteria in the Anoxic Zone of a Meromictic Lake (Lake Pavin, France)▿ †

    PubMed Central

    Lehours, Anne-Catherine; Evans, Paul; Bardot, Corinne; Joblin, Keith; Gérard, Fonty

    2007-01-01

    The compositions of archaeal and bacterial populations at different depths (60 m [mixolimnion-chemocline interface], 70 m [chemocline-subchemocline interface], 90 m, and 92 m [the water-sediment interface]) in the anoxic zone of the water column in Lake Pavin, a freshwater permanently stratified mountain lake in France, were determined. Phylogenetic trees were constructed from sequences to assess archaeal and bacterial diversity at the four sites. PMID:17261512

  15. Simple Kinematic Pathway Approach (KPA) to Catchment-scale Travel Time and Water Age Distributions

    NASA Astrophysics Data System (ADS)

    Soltani, S. S.; Cvetkovic, V.; Destouni, G.

    2017-12-01

    The distribution of catchment-scale water travel times is strongly influenced by morphological dispersion and is partitioned between hillslope and larger, regional scales. We explore whether hillslope travel times are predictable using a simple semi-analytical "kinematic pathway approach" (KPA) that accounts for dispersion on two levels of morphological and macro-dispersion. The study gives new insights to shallow (hillslope) and deep (regional) groundwater travel times by comparing numerical simulations of travel time distributions, referred to as "dynamic model", with corresponding KPA computations for three different real catchment case studies in Sweden. KPA uses basic structural and hydrological data to compute transient water travel time (forward mode) and age (backward mode) distributions at the catchment outlet. Longitudinal and morphological dispersion components are reflected in KPA computations by assuming an effective Peclet number and topographically driven pathway length distributions, respectively. Numerical simulations of advective travel times are obtained by means of particle tracking using the fully-integrated flow model MIKE SHE. The comparison of computed cumulative distribution functions of travel times shows significant influence of morphological dispersion and groundwater recharge rate on the compatibility of the "kinematic pathway" and "dynamic" models. Zones of high recharge rate in "dynamic" models are associated with topographically driven groundwater flow paths to adjacent discharge zones, e.g. rivers and lakes, through relatively shallow pathway compartments. These zones exhibit more compatible behavior between "dynamic" and "kinematic pathway" models than the zones of low recharge rate. Interestingly, the travel time distributions of hillslope compartments remain almost unchanged with increasing recharge rates in the "dynamic" models. This robust "dynamic" model behavior suggests that flow path lengths and travel times in shallow

  16. Chemical fluxes and sensitivity to acidification of two high elevation catchments in southern Wyoming

    Treesearch

    J. O. Reuss; F. A. Vertucci; R. C. Musselman; R. A. Sommerfeld

    1995-01-01

    Hydrological and chemical fluxes were examined for East and West Glacier Lakes and their adjacent high-elevation (3200-3700 m) catchments in the Snowy Range of southern Wyoming. Both lakes are approximately 3 ha, but the East Glacier catchment (29 ha) is about half the size of West Glacier. Bedrock is primarily quartzite that has been heavily fractured and crossed with...

  17. Using high-frequency sensors to identify hydroclimatological controls on storm-event variability in catchment nutrient fluxes and source zone activation

    NASA Astrophysics Data System (ADS)

    Blaen, Phillip; Khamis, Kieran; Lloyd, Charlotte; Krause, Stefan

    2017-04-01

    At the river catchment scale, storm events can drive highly variable behaviour in nutrient and water fluxes, yet short-term dynamics are frequently missed by low resolution sampling regimes. In addition, nutrient source contributions can vary significantly within and between storm events. Our inability to identify and characterise time dynamic source zone contributions severely hampers the adequate design of land use management practices in order to control nutrient exports from agricultural landscapes. Here, we utilise an 8-month high-frequency (hourly) time series of streamflow, nitrate concentration (NO3) and fluorescent dissolved organic matter concentration (FDOM) derived from optical in-situ sensors located in a headwater agricultural catchment. We characterised variability in flow and nutrient dynamics across 29 storm events. Storm events represented 31% of the time series and contributed disproportionately to nutrient loads (43% of NO3 and 36% of CDOM) relative to their duration. Principal components analysis of potential hydroclimatological controls on nutrient fluxes demonstrated that a small number of components, representing >90% of variance in the dataset, were highly significant model predictors of inter-event variability in catchment nutrient export. Hysteresis analysis of nutrient concentration-discharge relationships suggested spatially discrete source zones existed for NO3 and FDOM, and that activation of these zones varied on an event-specific basis. Our results highlight the benefits of high-frequency in-situ monitoring for characterising complex short-term nutrient dynamics and unravelling connections between hydroclimatological variability and river nutrient export and source zone activation under extreme flow conditions. These new process-based insights are fundamental to underpinning the development of targeted management measures to reduce nutrient loading of surface waters.

  18. Does historical wildfire activity alter metal fluxes to northern lakes?

    NASA Astrophysics Data System (ADS)

    Pelletier, N.; Chetelat, J.; Vermaire, J. C.; Palmer, M.; Black, J.; Pellisey, J.; Tracz, B.; van der Wielen, S.

    2017-12-01

    Current drought conditions in northwestern Canada are conducive to more frequent and severe wildfires that may mobilize mercury and other metals accumulated in soil and biomass. There is evidence that wildfires can remobilize and transport mercury within and outside catchments by atmospheric volatilization, particulate emissions and catchment soil erosion. However, the effect of fires on mercury fluxes to nearby lake sediments remains unclear. In this study, we use a combination of 10 dated lake sediment cores and four nearby ombrotrophic peatland cores to investigate the effects of wildfires on mercury fluxes to lake sediments. Lakes varying in catchment size and distance from recent fire events were sampled. Mercury concentrations in the environmental archives were measured, and macroscopic charcoal particles (>100 um) were counted at high resolution in the sediments to observe the co-variation of the local fire history and mercury fluxes. Mercury flux recorded in ombrotrophic peat cores provided an estimate of the historical atmospheric mercury flux from local and regional atmospheric deposition. The mercury flux recorded in lake sediments corresponds to the sum of direct atmospheric deposition and catchment transport. In combination, these archives will allow for the partitioning of mercury loading attributable to catchment transport from direct atmospheric deposition. After correcting the fluxes for particle focusing and terragenic elements input, flux from different lakes will be compared based on their catchment size and their temporal and spatial proximity known fire events. Altogether, our preliminary results using these paleolimnological methods will provide new insights on mercury transport processes that are predicted to become more important under a changing climate.

  19. Mycobacterium avium subsp. paratuberculosis in Lake Catchments, in River Water Abstracted for Domestic Use, and in Effluent from Domestic Sewage Treatment Works: Diverse Opportunities for Environmental Cycling and Human Exposure

    PubMed Central

    Pickup, R. W.; Rhodes, G.; Bull, T. J.; Arnott, S.; Sidi-Boumedine, K.; Hurley, M.; Hermon-Taylor, J.

    2006-01-01

    Mycobacterium avium subsp. paratuberculosis from infected animals enters surface waters and rivers in runoff from contaminated pastures. We studied the River Tywi in South Wales, United Kingdom, whose catchment comprises 1,100 km2 containing more than a million dairy and beef cattle and more than 1.3 million sheep. The River Tywi is abstracted for the domestic water supply. Between August 2002 and April 2003, 48 of 70 (68.8%) twice-weekly river water samples tested positive by IS900 PCR. In river water, the organisms were associated with a suspended solid which was depleted by the water treatment process. Disposal of contaminated slurry back onto the land established a cycle of environmental persistence. A concentrate from 100 liters of finished water tested negative, but 1 of 54 domestic cold water tanks tested positive, indicating the potential for these pathogens to access domestic outlets. In the separate English Lake District region, with hills up to 980 m, tests for M. avium subsp. paratuberculosis in the high hill lakes and sediments were usually negative, but streams and sediments became positive lower down the catchment. Sediments from 9 of 10 major lakes receiving inflow from these catchments were positive, with sediment cores indicating deposition over at least 40 to 50 years. Two of 12 monthly 1-liter samples of effluent and a single 100-liter sample from the Ambleside sewage treatment works were positive for M. avium subsp. paratuberculosis. Since Lake Ambleside discharges into Lake Windermere, which is available for domestic supply, there is a potential for these organisms to cycle within human populations. PMID:16751517

  20. Phosphorus zoning in olivine of Kilauea Iki lava lake, Hawaii

    NASA Astrophysics Data System (ADS)

    Fabbrizio, Alessandro; Beckett, John R.; Baker, Michael B.; Stolper, Edward M.

    2010-05-01

    Kilauea Iki lava lake was formed when the lavas of the 1959 summit eruption of Kilauea volcano ponded in Kilauea Iki pit crater, as described by [1]. The main chamber of this lake has been drilled repeatedly from 1960 to 1981 as the lake has cooled and crystallized and partial descriptions of core can be found in [2-7]. The bulk of the core consists of a gray, olivine-phyric basalt matrix [3]. Rapid diffusion of divalent cations through olivine at magmatic temperatures can delete information on early-formed zoning and thus information on early magmatic history, recorded in olivine during its growth, is often largely lost [8-11]. In the last years many studies [8-11] have shown that natural olivine, terrestrial and extraterrestrial, from several localities and rock types can preserve a complex zoning in P (sometimes associated with Cr and Al). Simple crystallization experiments conducted by [10] and [11] were able to replicate these features (i.e., sector and oscillatory zoning). Here, we describe P, Cr and Al zoning in olivine from the 1981 drilling of Kilauea Iki lava lake hole #1 (KI81-1) [6]. Kα X-ray intensity maps and major and minor element quantitative analyses were obtained using the Caltech JEOL JXA-8200 electron microprobe. We acquired P, Cr, Al, Fe and Ti X-ray maps simultaneously at 15 kV and 400 nA, a beam diameter of 1 μm, pixel spacing of 1-2 μm, and count times of 420-1500 msec/step were used depending on the dimension of the crystal. 15 kV and 40 nA with a beam diameter of 1 μm were used to collect quantitative analyses. P2O5 contents of the Iki olivines range from below detection limit to 0.30 wt%. Zoning in phosphorus, based on X-ray intensity maps, was observed in all olivines we examined. The P zoning patterns of the olivines display several styles. P shows oscillatory zoning comparable to that seen in terrestrial and extraterrestrial igneous olivines and in experimentally grown olivine [8-11]; high P regions, inside the crystals, outline

  1. 75 FR 38754 - Safety Zone; IJSBA World Finals; Lower Colorado River, Lake Havasu, AZ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-06

    ...-AA00 Safety Zone; IJSBA World Finals; Lower Colorado River, Lake Havasu, AZ AGENCY: Coast Guard, DHS... navigable waters of Lake Havasu on the lower Colorado River in support of the IJSBA World Finals. This... International Jet Sports Boating Association is sponsoring the IJSBA World Finals. The event will consist of 300...

  2. The impact of lake and reservoir parameterization on global streamflow simulation.

    PubMed

    Zajac, Zuzanna; Revilla-Romero, Beatriz; Salamon, Peter; Burek, Peter; Hirpa, Feyera A; Beck, Hylke

    2017-05-01

    Lakes and reservoirs affect the timing and magnitude of streamflow, and are therefore essential hydrological model components, especially in the context of global flood forecasting. However, the parameterization of lake and reservoir routines on a global scale is subject to considerable uncertainty due to lack of information on lake hydrographic characteristics and reservoir operating rules. In this study we estimated the effect of lakes and reservoirs on global daily streamflow simulations of a spatially-distributed LISFLOOD hydrological model. We applied state-of-the-art global sensitivity and uncertainty analyses for selected catchments to examine the effect of uncertain lake and reservoir parameterization on model performance. Streamflow observations from 390 catchments around the globe and multiple performance measures were used to assess model performance. Results indicate a considerable geographical variability in the lake and reservoir effects on the streamflow simulation. Nash-Sutcliffe Efficiency (NSE) and Kling-Gupta Efficiency (KGE) metrics improved for 65% and 38% of catchments respectively, with median skill score values of 0.16 and 0.2 while scores deteriorated for 28% and 52% of the catchments, with median values -0.09 and -0.16, respectively. The effect of reservoirs on extreme high flows was substantial and widespread in the global domain, while the effect of lakes was spatially limited to a few catchments. As indicated by global sensitivity analysis, parameter uncertainty substantially affected uncertainty of model performance. Reservoir parameters often contributed to this uncertainty, although the effect varied widely among catchments. The effect of reservoir parameters on model performance diminished with distance downstream of reservoirs in favor of other parameters, notably groundwater-related parameters and channel Manning's roughness coefficient. This study underscores the importance of accounting for lakes and, especially, reservoirs and

  3. 75 FR 38723 - Safety Zone; St. Ignace 4th of July Fireworks, East Moran Bay, Lake Huron, St. Ignace, MI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-06

    ...-AA00 Safety Zone; St. Ignace 4th of July Fireworks, East Moran Bay, Lake Huron, St. Ignace, MI AGENCY... safety zone on East Moran Bay, Lake Huron, St. Ignace, Michigan. This zone is intended to restrict vessels from a portion of East Moran Bay during the St. Ignace 4th of July Fireworks display, July 4, 2010...

  4. The relationship of catchment topography and soil hydraulic characteristics to lake alkalinity in the northeastern United States

    USGS Publications Warehouse

    Wolock, D.M.; Hornberger, G.M.; Beven, K.J.; Campbell, W.G.

    1989-01-01

    We undertook the task of determining whether base flow alkalinity of surface waters in the northeastern United States is related to indices of soil contact time and flow path partitioning that are derived from topographic and soils information. The influence of topography and soils on catchment hydrology has been incorporated previously in the variable source area model TOPMODEL as the relative frequency distribution of ln (a/Kb tan B), where ln is the Naperian logarithm, “a” is the area drained per unit contour, K is the saturated hydraulic conductivity, b is the soil depth, and tan B is the slope. Using digital elevation and soil survey data, we calculated the ln (a/Kb tan B) distribution for 145 catchments. Indices of flow path partitioning and soil contact time were derived from the ln (a/Kb tan B) distributions and compared to measurements of alkalinity in lakes to which the catchments drain. We found that alkalinity was, in general, positively correlated with the index of soil contact time, whereas the correlation between alkalinity and the flow path partitioning index was weak at best. A portion of the correlation between the soil contact time index and alkalinity was attributable to covariation with soil base saturation and cation exchange capacity, while another portion was found to be independent of these factors. Although our results indicate that catchments with long soil contact time indices are most likely to produce high alkalinity base flow, a sensitivity analysis of TOPMODEL suggests that surface waters of these same watersheds may be susceptible to alkalinity depressions during storm events, due to the role of flow paths.

  5. Chemical composition of natural waters of contaminated area: The case for the Imandra Lake catchment (the Kola Peninsula)

    NASA Astrophysics Data System (ADS)

    Evtyugina, Z. A.; Guseva, N. V.; Kopylova, J. G.; A, Vorobeva D.

    2016-03-01

    The study of the current chemical composition of natural waters in the eastern and western parts of the Imandra Lake catchment was performed using ion chromatography, potentiometry and inductively coupled plasma mass spectrometry. It was found that the content of trace elements in the surface water is considerably higher than that in the groundwater. The nickel and copper concentrations exceed the background levels over 19 and 2 times respectively in groundwater, and 175 and 61 times in the surface waters. These data show that the Severonikel influences negatively air and surface water.

  6. 76 FR 61261 - Safety Zone; IJSBA World Finals; Lower Colorado River, Lake Havasu, AZ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-04

    ...-AA00 Safety Zone; IJSBA World Finals; Lower Colorado River, Lake Havasu, AZ AGENCY: Coast Guard, DHS... Boating Association (IJSBA) World Finals. This temporary safety zone is necessary to provide for the... The International Jet Sports Boating Association is sponsoring the IJSBA World Finals. The event will...

  7. 78 FR 20852 - Safety Zones; Marine Week Air Ground Demonstration, Lake Washington; Seattle, WA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-08

    ...-AA00 Safety Zones; Marine Week Air Ground Demonstration, Lake Washington; Seattle, WA AGENCY: Coast... safety zones around vessels and persons involved in the Marine Week Seattle Special Marine Air Ground...: Docket Management Facility (M-30), U.S. Department of Transportation, West Building Ground Floor, Room...

  8. 77 FR 40266 - Safety Zone; Conneaut 4th of July Festival, Lake Erie, Conneaut, OH

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-09

    ... 1625-AA00 Safety Zone; Conneaut 4th of July Festival, Lake Erie, Conneaut, OH AGENCY: Coast Guard, DHS... the Conneaut 4th of July Festival Fireworks display. This temporary safety zone is necessary to... vessels during the Conneaut 4th of July Festival Fireworks. This zone will be effective and enforced from...

  9. 78 FR 37963 - Safety Zone; Chicago to Mackinac Race; Lake Michigan; Chicago, IL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-25

    ... Zone; Chicago to Mackinac Race; Lake Michigan; Chicago, IL AGENCY: Coast Guard, DHS. ACTION: Notice of..., Illinois for the 105th Race to Mackinac. This zone will be enforced from 2 p.m. until 4:30 p.m. on July 12... of life on the navigable waters during the 105th Race to Mackinac. During the aforementioned periods...

  10. Nitrogen attenuation along delivery pathways in agricultural catchments

    NASA Astrophysics Data System (ADS)

    McAleer, Eoin; Mellander, Per-Erik; Coxon, Catherine; Richards, Karl G.

    2014-05-01

    Hillslope hydrologic systems and in particular near-stream saturated zones are active sites of nitrogen (N) biogeochemical dynamics. The efficiency of N removal and the ratio of reaction products (nitrous oxide and dinitrogen) in groundwater is highly variable and depends upon aquifer hydrology, mineralogy, dissolved oxygen, energy sources and redox chemistry. There are large uncertainties in the closing of N budgets in agricultural catchments. Spatial and temporal variability in groundwater physico-chemistry, catchment hydrology and land-use gives rise to hotspots and hot moments of N attenuation. In addition the production, consumption and movement of denitrification products remains poorly understood. The focus of this study is to develop a holistic understanding of N dynamics in groundwater as it moves from the top of the hillslope to the stream. This includes saturated groundwater flow, exchange at the groundwater-surface water interface and hyporheic zone flow. This project is being undertaken in two ca. 10km2 Irish catchments, characterised by permeable soils. One catchment is dominated by arable land overlying slate bedrock and the other by grassland overlying sandstone. Multi-level monitoring wells have been installed at the upslope, midslope and bottom of each hillslope. The piezometers are screened to intercept the subsoil, weathered bedrock and competent bedrock zones. Groundwater samples for nitrate (NO3-N) nitrite (NO2-N), ammonium (NH4-N) and total nitrogen are collected on a monthly basis while dissolved gas concentrations are collected seasonally. Groundwater NO3-N profiles from monitoring data to date in both catchments differ markedly. Although the two catchments had similar 3 year mean concentrations of 6.89 mg/L (arable) and 6.24 mg/L (grassland), the grassland catchment had higher spatial and temporal variation. The arable catchment showed relatively homogenous NO3-N concentrations in all layers and zones (range: 1.2 - 12.13 mg/L, SD = 1.60 mg

  11. New insight into defining the lakes of the southern Baltic coastal zone.

    PubMed

    Cieśliński, Roman; Olszewska, Alicja

    2018-01-29

    There exist many classification systems of hydrographic entities such as lakes found along the coastlines of seas and oceans. Each system has its advantages and can be used with some success in the area of protection and management. This paper aims to evaluate whether the studied lakes are only coastal lakes or rather bodies of water of a completely different hydrological and hydrochemical nature. The attempt to create a new classification system of Polish coastal lakes is related to the incompleteness of lake information in existing classifications. Thus far, the most frequently used are classifications based solely on lake basin morphogenesis or hydrochemical properties. The classifications in this paper are based not only on the magnitude of lake water salinity or hydrochemical analysis but also on isolation from the Baltic Sea and other sources of water. The key element of the new classification system for coastal bodies of water is a departure from the existing system used to classify lakes in Poland and the introduction of ion-"tracking" methods designed to identify anion and cation distributions in each body of water of interest. As a result of the work, a new classification of lakes of the southern Baltic Sea coastal zone was created. Featured objects such as permanently brackish lakes, brackish lakes that may turn into freshwater lakes from time to time, freshwater lakes that may turn into brackish lakes from time to time, freshwater lakes that experience low levels of salinity due to specific incidents, and permanently freshwater lakes. The authors have adopted 200 mg Cl -  dm -3 as a maximum value of lake water salinity. There are many conditions that determine the membership of a lake to a particular group, but the most important is the isolation lakes from the Baltic Sea. Changing a condition may change the classification of a lake.

  12. Estimation of root zone storage capacity at the catchment scale using improved Mass Curve Technique

    NASA Astrophysics Data System (ADS)

    Zhao, Jie; Xu, Zongxue; Singh, Vijay P.

    2016-09-01

    The root zone storage capacity (Sr) greatly influences runoff generation, soil water movement, and vegetation growth and is hence an important variable for ecological and hydrological modelling. However, due to the great heterogeneity in soil texture and structure, there seems to be no effective approach to monitor or estimate Sr at the catchment scale presently. To fill the gap, in this study the Mass Curve Technique (MCT) was improved by incorporating a snowmelt module for the estimation of Sr at the catchment scale in different climatic regions. The "range of perturbation" method was also used to generate different scenarios for determining the sensitivity of the improved MCT-derived Sr to its influencing factors after the evaluation of plausibility of Sr derived from the improved MCT. Results can be showed as: (i) Sr estimates of different catchments varied greatly from ∼10 mm to ∼200 mm with the changes of climatic conditions and underlying surface characteristics. (ii) The improved MCT is a simple but powerful tool for the Sr estimation in different climatic regions of China, and incorporation of more catchments into Sr comparisons can further improve our knowledge on the variability of Sr. (iii) Variation of Sr values is an integrated consequence of variations in rainfall, snowmelt water and evapotranspiration. Sr values are most sensitive to variations in evapotranspiration of ecosystems. Besides, Sr values with a longer return period are more stable than those with a shorter return period when affected by fluctuations in its influencing factors.

  13. A reworked Lake Zone margin: Chronological and geochemical constraints from the Ordovician arc-related basement of the Hovd Zone (western Mongolia)

    NASA Astrophysics Data System (ADS)

    Soejono, Igor; Buriánek, David; Janoušek, Vojtěch; Svojtka, Martin; Čáp, Pavel; Erban, Vojtěch; Ganpurev, Nyamtsetseg

    2017-12-01

    The primary relationships and character of the boundaries between principal lithotectonic domains in the Mongolian tract of the Central Asian Orogenic Belt (CAOB) are still poorly constrained. This brings much uncertainty in understanding of the orogeny configuration and the complete accretionary history. The plutonic Khuurai Tsenkher Gol Complex and the mainly metasedimentary Bij Group represent associated medium- to high-grade basement complexes exposed in the Hovd Zone close to its boundary with the Lake Zone in western Mongolia. The Khuurai Tsenkher Gol Complex is composed of variously deformed acid to basic magmatic rocks intimately associated with the metamorphosed sedimentary and volcanic rocks of the Bij Group. Results of our field work, new U-Pb zircon ages and whole-rock geochemical data suggest an existence of two separate magmatic events within the evolution of the Khuurai Tsenkher Gol Complex. Early to Mid-Ordovician (476 ± 5 Ma and 467 ± 4 Ma protoliths) normal- to high-K calc-alkaline orthogneisses, metadiorites and metagabbros predominate over Mid-Silurian (430 ± 3 Ma) tholeiitic-mildly alkaline quartz monzodiorites. Whereas the geochemical signature of the former suite unequivocally demonstrates its magmatic-arc origin, that of the latter quartz monzodiorite suggests an intra-plate setting. As shown by Sr-Nd isotopic data, the older arc-related magmas were derived from depleted mantle and/or were generated by partial melting of juvenile metabasic crust. Detrital zircon age populations of the metasedimentary rocks together with geochemical signatures of the associated amphibolites imply that the Bij Group was a volcano-sedimentary sequence, formed probably in the associated fore-arc wedge basin. Moreover, our data argue for an identical provenance of the Altai and Hovd domains, overall westward sediment transport during the Early Palaeozoic and the east-dipping subduction polarity. The obvious similarities of the Khuurai Tsenkher Gol Complex

  14. 77 FR 24880 - Safety Zone; Jet Express Triathlon, Sandusky Bay, Lake Erie, Lakeside, OH

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-26

    ...-AA00 Safety Zone; Jet Express Triathlon, Sandusky Bay, Lake Erie, Lakeside, OH AGENCY: Coast Guard, DHS... Erie during the Jet Express Triathlon. This proposed safety zone is necessary to protect participants... Erie. The participants will begin by jumping off the ferry boat JET EXPRESS II at the designated...

  15. Assessment of suitable habitat for Phragmites australis (common reed) in the Great Lakes coastal zone

    USGS Publications Warehouse

    Carlson Mazur, Martha L.; Kowalski, Kurt P.; Galbraith, David

    2014-01-01

    In the Laurentian Great Lakes, the invasive form of Phragmites australis (common reed) poses a threat to highly productive coastal wetlands and shorelines by forming impenetrable stands that outcompete native plants. Large, dominant stands can derail efforts to restore wetland ecosystems degraded by other stressors. To be proactive, landscape-level management of Phragmites requires information on the current spatial distribution of the species and a characterization of areas suitable for future colonization. Using a recent basin-scale map of this invasive plant’s distribution in the U.S. coastal zone of the Great Lakes, environmental data (e.g., soils, nutrients, disturbance, climate, topography), and climate predictions, we performed analyses of current and predicted suitable coastal habitat using boosted regression trees, a type of species distribution modeling. We also investigated differential influences of environmental variables in the upper lakes (Lakes Superior, Michigan, and Huron) and lower lakes (Lakes St. Clair, Erie, and Ontario). Basin-wide results showed that the coastal areas most vulnerable to Phragmites expansion were in close proximity to developed lands and had minimal topographic relief, poorly drained soils, and dense road networks. Elevated nutrients and proximity to agriculture also influenced the distribution of Phragmites. Climate predictions indicated an increase in suitable habitat in coastal Lakes Huron and Michigan in particular. The results of this study, combined with a publicly available online decision support tool, will enable resource managers and restoration practitioners to target and prioritize Phragmites control efforts in the Great Lakes coastal zone.

  16. Holocene evolution of a montane lake catchment inferred from multiproxy sediment analysis : climatic and anthropic impacts in french prealps

    NASA Astrophysics Data System (ADS)

    Bajard, Manon; Sabatier, Pierre; Poulenard, Jérôme; David, Fernand; Arnaud, Fabien; Develle, Anne-Lise; Reyss, Jean-Louis; Fanget, Bernard; Malet, Emmanuel; Crouzet, Christian

    2015-04-01

    Lake La Thuile in the Massif des Bauges (874 m a.s.l. French Alps) provides a 18 meters sedimentary sequence. Due to its mid-altitude position, this lake is one of the first to be formed through the glacial retreat and documents the evolution of its catchment since the Late Glacial Maximum. The first 6 meters of the core cover the last 12 000 years, and allowed to study human/climate/environment interactions in a carbonated environment. This study is the first one to investigate a mid-altitude lake in the French Alps for paleoenvironment reconstruction from lake sediment archive. Its altitudinal position presents the advantage to be very accessible to human activities and allows more developed agriculture than in higher altitude. This study aims to determined how and when is expressed the erosive response of such an environment to human settlement. High resolution multiproxy analysis of the first 6 meters including sedimentological, palynological and geochemical data associated to a well-constrained chronology over the Holocene period allows us to understand the respective impacts of both climate and human on the evolution of Lake La Thuile environment. Five major phases of evolution have been highlighted over this period. From 12 000 to 10 000 yr cal. BP, the vegetation is developing with the onset of hardwood species and the disappearance of Pinus. From 10 000 to 4500 yr cal. BP the warmer climatic conditions of the middle of the Holocene allows the forest to densify and the very low sedimentation rate indicates that the forest stabilizes slopes and prevents from the erosion on the watershed. The climate cooling of the Neoglacial period triggers a first erosive phase with a decreasing of the forest around 3300 cal. BP. Human settlements are suggested at La Thuile from 2500 yr cal. BP by palynological evidence of anthropic taxa. The triggered clearing is accompanied by a second erosive phase related to anthropic activities during the Roman period. Erosion

  17. Elucidating Critical Zone Process Interactions with an Integrated Hydrology Model in a Headwaters Research Catchment

    NASA Astrophysics Data System (ADS)

    Collins, C.; Maxwell, R. M.

    2017-12-01

    Providence Creek (P300) watershed is an alpine headwaters catchment located at the Southern Sierra Critical Zone Observatory (SSCZO). Evidence of groundwater-dependent vegetation and drought-induced tree mortality at P300 along with the effect of subsurface characterization on mountain ecohydrology motivates this study. A hyper resolution integrated hydrology model of this site, along with extensive instrumentation, provides an opportunity to study the effects of lateral groundwater flow on vegetation's tolerance to drought. ParFlow-CLM is a fully integrated surface-subsurface model that is driven with reconstructed meteorology, such as the North American Land Data Assimilation System project phase 2 (NLDAS-2) dataset. However, large-scale data products mute orographic effects on climate at smaller scales. Climate variables often do not behave uniformly in highly heterogeneous mountain regions. Therefore, forcing physically-based integrated hydrologic models—especially of mountain headwaters catchments—with a large-scale data product is a major challenge. Obtaining reliable observations in complex terrain is challenging and while climate data products introduce uncertainties likewise, documented discrepancies between several data products and P300 observations suggest these data products may suffice. To tackle these issues, a suite of simulations was run to parse out (1) the effects of climate data source (data products versus observations) and (2) the effects of climate data spatial variability. One tool for evaluating the effect of climate data on model outputs is the relationship between latent head flux (LH) and evapotranspiration (ET) partitioning with water table depth (WTD). This zone of LH sensitivity to WTD is referred to as the "critical zone." Preliminary results suggest that these critical zone relationships are preserved despite forcing albeit significant shifts in magnitude. These results demonstrate that integrated hydrology models are sensitive

  18. Anthropogenic Sources of Arsenic and Copper to Sediments of a Suburban Lake, 1964-1998

    NASA Astrophysics Data System (ADS)

    Rice, K. C.; Conko, K. M.; Hornberger, G. M.

    2002-05-01

    Nonpoint-source pollution from urbanization is becoming a widespread problem. Long-term monitoring data are necessary to document geochemical processes in urban settings and changes in sources of chemical contaminants over time. In the absence of long-term data, lake-sediment cores can be used to reconstruct past processes, because they serve as integrators of sources of pollutants from the contributing airshed and catchment. Lake Anne is a 10.9-ha man-made lake in a 235-ha suburban catchment in Reston, Virginia, with a population density of 1,116 people/km2. Three sediment cores, collected in 1996 and 1997, indicate increasing concentrations of arsenic and copper since 1964, when the lake was formed. The cores were compared to a core collected from a forested catchment in the same airshed that showed no increases in concentrations of these elements. Neither an increase in atmospheric deposition nor diagenesis and remobilization were responsible for the trends in the Lake Anne cores. Mass balances of sediment, arsenic, and copper were calculated using 1998 data on precipitation, streamwater, road runoff, and a laboratory leaching experiment on pressure-treated lumber. Sources of arsenic to the lake in 1998 were in-lake leaching of pressure-treated lumber (52%) and streamwater (47%). Road runoff was a greater (93%) source of copper than leaching of pressure-treated lumber (4%). Atmospheric deposition was an insignificant source (<3%) of both elements. Urbanization of the catchment was confirmed as a major cause of the increasing arsenic and copper in the lake cores through an annual historical reconstruction of the deposition of sediment, arsenic, and copper to the lake for 1964-1997. Aerial photography indicated that the area of roads and parking lots in the catchment increased to 26% by 1997 and that the number of docks on the lake also increased over time. The increased mass of arsenic and copper in the lake sediments corresponded to the increased amount of

  19. 33 CFR 165.904 - Lake Michigan at Chicago Harbor & Burnham Park Harbor-Safety and Security Zone.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Harbor, to the northwest point. (b) Effective times and dates. This safety and security zone will be in... & Burnham Park Harbor-Safety and Security Zone. 165.904 Section 165.904 Navigation and Navigable Waters... Guard District § 165.904 Lake Michigan at Chicago Harbor & Burnham Park Harbor—Safety and Security Zone...

  20. Morphology, geology and water quality assessment of former tin mining catchment.

    PubMed

    Ashraf, Muhammad Aqeel; Maah, Mohd Jamil; Yusoff, Ismail

    2012-01-01

    Bestari Jaya, former tin mining catchment covers an area of 2656.31 hectares comprised of four hundred and forty-two different-size lakes and ponds. The present study area comprise of 92 hectares of the catchment that include four large size lakes. Arc GIS version 9.2 used to develop bathymetric map, Global Positioning System (GPS) for hydrographical survey and flow meter was utilized for water discharge analysis (flow routing) of the catchment. The water quality parameters (pH, temperature, electric conductivity, dissolved oxygen DO, total dissolved solids TDS, chlorides, ammonium, nitrates) were analyzed by using Hydrolab. Quality assurance (QA) and quality control (QC) procedures were strictly followed throughout the field work and data analysis. Different procedures were employed to evaluate the analytical data and to check for possible transcription or dilution errors, changes during analysis, or unusual or unlikely values. The results obtained are compared with interim national water quality standards for Malaysia indicates that water quality of area is highly degraded. It is concluded that Bestri Jaya ex-mining catchment has a high pollution potential due to mining activities and River Ayer Hitam, recipient of catchment water, is a highly polluted river.

  1. Morphology, Geology and Water Quality Assessment of Former Tin Mining Catchment

    PubMed Central

    Ashraf, Muhammad Aqeel; Maah, Mohd. Jamil; Yusoff, Ismail

    2012-01-01

    Bestari Jaya, former tin mining catchment covers an area of 2656.31 hectares comprised of four hundred and forty-two different-size lakes and ponds. The present study area comprise of 92 hectares of the catchment that include four large size lakes. Arc GIS version 9.2 used to develop bathymetric map, Global Positioning System (GPS) for hydrographical survey and flow meter was utilized for water discharge analysis (flow routing) of the catchment. The water quality parameters (pH, temperature, electric conductivity, dissolved oxygen DO, total dissolved solids TDS, chlorides, ammonium, nitrates) were analyzed by using Hydrolab. Quality assurance (QA) and quality control (QC) procedures were strictly followed throughout the field work and data analysis. Different procedures were employed to evaluate the analytical data and to check for possible transcription or dilution errors, changes during analysis, or unusual or unlikely values. The results obtained are compared with interim national water quality standards for Malaysia indicates that water quality of area is highly degraded. It is concluded that Bestri Jaya ex-mining catchment has a high pollution potential due to mining activities and River Ayer Hitam, recipient of catchment water, is a highly polluted river. PMID:22761549

  2. Cyanotoxins in inland lakes of the continental United States: Photic Zone Occurrence and potential recreational health risks in the 2007 Survey of the Nation's lakes

    EPA Science Inventory

    The largest spatial survey of cylindrospermosins, microcystins, and saxitoxins in the United States was conducted as part of the 2007 U.S. Survey of the Nation’s Lakes. Integrated photic zone samples were collected from 1,161 lakes during May-September 2007. Cyanotoxin, cya...

  3. 75 FR 33995 - Safety Zone; Michigan Orthopaedic Society 50th Anniversary Fireworks, Lake Huron, Mackinac Island...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-16

    ...-AA00 Safety Zone; Michigan Orthopaedic Society 50th Anniversary Fireworks, Lake Huron, Mackinac Island... from a portion of Lake Huron during the Michigan Orthopaedic Society 50th Anniversary Fireworks display... launching of fireworks in conjunction with the Michigan Orthopaedic Society 50th Anniversary Fireworks...

  4. Vulnerability of European freshwater catchments to climate change.

    PubMed

    Markovic, Danijela; Carrizo, Savrina F; Kärcher, Oskar; Walz, Ariane; David, Jonathan N W

    2017-09-01

    Climate change is expected to exacerbate the current threats to freshwater ecosystems, yet multifaceted studies on the potential impacts of climate change on freshwater biodiversity at scales that inform management planning are lacking. The aim of this study was to fill this void through the development of a novel framework for assessing climate change vulnerability tailored to freshwater ecosystems. The three dimensions of climate change vulnerability are as follows: (i) exposure to climate change, (ii) sensitivity to altered environmental conditions and (iii) resilience potential. Our vulnerability framework includes 1685 freshwater species of plants, fishes, molluscs, odonates, amphibians, crayfish and turtles alongside key features within and between catchments, such as topography and connectivity. Several methodologies were used to combine these dimensions across a variety of future climate change models and scenarios. The resulting indices were overlaid to assess the vulnerability of European freshwater ecosystems at the catchment scale (18 783 catchments). The Balkan Lakes Ohrid and Prespa and Mediterranean islands emerge as most vulnerable to climate change. For the 2030s, we showed a consensus among the applied methods whereby up to 573 lake and river catchments are highly vulnerable to climate change. The anthropogenic disruption of hydrological habitat connectivity by dams is the major factor reducing climate change resilience. A gap analysis demonstrated that the current European protected area network covers <25% of the most vulnerable catchments. Practical steps need to be taken to ensure the persistence of freshwater biodiversity under climate change. Priority should be placed on enhancing stakeholder cooperation at the major basin scale towards preventing further degradation of freshwater ecosystems and maintaining connectivity among catchments. The catchments identified as most vulnerable to climate change provide preliminary targets for

  5. Large catchment area recharges Titan's Ontario Lacus

    NASA Astrophysics Data System (ADS)

    Dhingra, Rajani D.; Barnes, Jason W.; Yanites, Brian J.; Kirk, Randolph L.

    2018-01-01

    We seek to address the question of what processes are at work to fill Ontario Lacus while other, deeper south polar basins remain empty. Our hydrological analysis indicates that Ontario Lacus has a catchment area spanning 5.5% of Titan's surface and a large catchment area to lake surface area ratio. This large catchment area translates into large volumes of liquid making their way to Ontario Lacus after rainfall. The areal extent of the catchment extends to at least southern mid-latitudes (40°S). Mass conservation calculations indicate that runoff alone might completely fill Ontario Lacus within less than half a Titan year (1 Titan year = 29.5 Earth years) assuming no infiltration. Cassini Visual and Infrared Mapping Spectrometer (VIMS) observations of clouds over the southern mid and high-latitudes are consistent with precipitation feeding Ontario's large catchment area. This far-flung rain may be keeping Ontario Lacus filled, making it a liquid hydrocarbon oasis in the relatively dry south polar region.

  6. Simulation of 1998-Big Flood in Changjiang River Catchment, China

    NASA Astrophysics Data System (ADS)

    Nakayama, T.; Watanabe, M.

    2006-05-01

    Almost every year, China is affected by severe flooding, which causes considerable economic loss and serious damage to towns and farms. Big floods are mainly concentrated in the middle and lower reaches of the "seven big rivers", which include the Changjiang (Yangtze) River, the Yellow (Huanghe) River, and the Huaihe River. The Changjiang River is the fourth largest water resource to the oceans after the Amazon, Zaire, and Orinoco Rivers. In addition to abnormal weather, artificial effects were considered as main causes of the big flood disaster in the Changjiang River catchment by the previous researches; (i) extreme deforestation and soil erosion in the upper reaches, (ii) shrinking of lake water volumes and their reduced connection with the Changjiang River due to reclamation of lakes that retarded water in the middle reaches, and (iii) restriction of channel capacity following levee construction. Because there is an urgent need to quantify these relations on the spatial scale of the whole catchment in order to prevent flood damage as small as possible, it is very important to evaluate the complicated phenomena of water/heat dynamics in the Changjiang River catchment by using process-based models. The present research focuses on simulating the water/heat dynamics for 1998 big-flood with 60-year recurrent period in the Changjiang River catchment. We compared the flood period of 1998 with the normal period of 1987-1988. We expanded the NIES Integrated Catchment-based Eco-hydrology (NICE) model (Nakayama and Watanabe, 2004; Nakayama et al., 2006) for the application to broader catchments in order to evaluate large- scale flooding in the Changjiang River (NICE-FLD). We simulated the water/heat dynamics in the entire catchment (3,000 km wide by 1,000 km long) with a resolution of 10 km mesh by using the NICE-FLD. The model reproduced excellently the river discharge, soil moisture, evapotranspiration, groundwater level, et al. Furthermore, we evaluated the role of

  7. 76 FR 30908 - Foreign-Trade Zone 203-Moses Lake, Washington, Export-Only Manufacturing Authority, SGL...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-27

    ... DEPARTMENT OF COMMERCE Foreign-Trade Zones Board [A(32b)-1-2011] Foreign-Trade Zone 203--Moses Lake, Washington, Export-Only Manufacturing Authority, SGL Automotive Carbon Fibers, LLC, (Carbon Fiber... Automotive Carbon Fibers, LLC (SGL) to manufacture carbon fiber under FTZ procedures solely for export within...

  8. Guide to the littoral zone vascular flora of Carolina bay lakes (U.S.A.)

    PubMed Central

    Howell, Nathan; Braham, Richard R

    2016-01-01

    Abstract Background Carolina bays are elliptic, directionally aligned basins of disputed origin that occur on the Atlantic Coastal Plain from the Delmarva Peninsula to southern Georgia. In southeastern North Carolina, several large, natural, lacustrine systems (i.e., Carolina bay lakes) exist within the geomorphological features known as Carolina bays. Within the current distribution of Carolina bays, Bladen and Columbus counties (North Carolina) contain the only known examples of Carolina bay lakes. The Carolina bay lakes can be split into two major divisions, the “Bladen Lakes Group” which is characterized as being relatively unproductive (dystrophic – oligotrophic), and Lake Waccamaw, which stands alone in Columbus County and is known for its high productivity and species richness. Although there have been several studies conducted on these unique lentic systems, none have documented the flora comprehensively. New information Over the 2013−2014 growing seasons, the littoral zone flora of Carolina bay lakes was surveyed and vouchered. Literature reviews and herbarium crawls complemented this fieldwork to produce an inventory of the vascular plant species. This survey detected 205 taxa (species/subspecies and varieties) in 136 genera and 80 vascular plant families. Thirty-one species (15.2%) are of conservation concern. Lake Waccamaw exhibited the highest species richness with 145 catalogued taxa and 26 species of conservation concern. Across all sites, the Cyperaceae (25 spp.), Poaceae (21 spp.), Asteraceae (13 spp.), Ericaceae (8 spp.), Juncaceae (8 spp.), and Lentibulariaceae (6 spp.) were the six most species-rich vascular plant families encountered. A guide to the littoral zone flora of Carolina bay lakes is presented herein, including dichotomous keys, species accounts (including abundance, habitat, phenology, and exsiccatae), as well as images of living species and vouchered specimens. PMID:27350764

  9. River Suspended Sediment and Particulate Organic Carbon Transport in Two Montane Catchments in the Luquillo Critical Zone Observatory of Puerto Rico over 25 years: 1989 to 2014

    NASA Astrophysics Data System (ADS)

    Clark, K. E.; Plante, A. F.; Willenbring, J. K.; Jerolmack, D. J.; Gonzalez, G.; Stallard, R. F.; Murphy, S. F.; Vann, D. R.; Leon, M.; McDowell, W. H.

    2015-12-01

    Physical erosion in mountain catchments mobilizes large amounts of sediment, while exporting carbon and nutrients from forest ecosystems. This study expands from previous studies quantifying river suspended sediment and particulate organic carbon loads in the Luquillo Critical Zone Observatory, in Puerto Rico. We evaluate the influences on river suspended load due to i) underlying basin geology, ii) hillslope debris and biomass supply, and iii) hurricanes and large storms. In the Mameyes and Icacos catchments of the Luquillo Mountains, we estimate suspended sediment and particulate organic carbon yields over a 25-year period using streamflow discharge determined from stage measurements at 15-intervals, with estimates of discharge replacing gaps in data, and over 3000 suspended sediment samples. We estimate variation in suspended sediment loads over time, and examine variation in particulate organic carbon loads. Mass spectrometry was used to determine organic carbon concentrations. We confirm that higher suspended sediment fluxes occurred i) in the highly weathered quartz diorite catchment rather than the predominantly volcaniclastic catchment, ii) on the rising limb of the hydrograph once a threshold discharge had been reached, and iii) during hurricanes and other storm events, and we explore these influences on particulate organic carbon transport. Transport of suspended sediment and particulate organic carbon in the rivers shows considerable hysteresis, and we evaluate the extent to which hysteresis affects particulate fluxes over time and between catchments. Because particulate organic carbon is derived from the critical zone and transported during high flow, our research highlights the role of major tropical storms in controlling carbon storage in the critical zone and the coastal ocean.

  10. [Evaluation of comprehensive capacity of resources and environments in Poyang Lake Eco-economic Zone].

    PubMed

    Song, Yan-Chun; Yu, Dan

    2014-10-01

    With the development of the society and economy, the contradictions among population, resources and environment are increasingly worse. As a result, the capacity of resources and environment becomes one of the focal issues for many countries and regions. Through investigating and analyzing the present situation and the existing problems of resources and environment in Poyang Lake Eco-economic Zone, seven factors were chosen as the evaluation criterion layer, namely, land resources, water resources, biological resources, mineral resources, ecological-geological environment, water environment and atmospheric environment. Based on the single factor evaluation results and with the county as the evaluation unit, the comprehensive capacity of resources and environment was evaluated by using the state space method in Poyang Lake Eco-economic Zone. The results showed that it boasted abundant biological resources, quality atmosphere and water environment, and relatively stable geological environment, while restricted by land resource, water resource and mineral resource. Currently, although the comprehensive capacity of the resources and environments in Poyang Lake Eco-economic Zone was not overloaded as a whole, it has been the case in some counties/districts. State space model, with clear indication and high accuracy, could serve as another approach to evaluating comprehensive capacity of regional resources and environment.

  11. 77 FR 45490 - Safety Zone, Barrel Recovery, Lake Superior; Duluth, MN

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-01

    ... suspected to contain munitions waste materials which were dumped in the 1960's in a portion of Lake Superior... recreational vessels and marine traffic from any unknown hazards as well as provide a safe work zone for... Waterways Management, U.S. Coast Guard Marine Safety Unit Duluth; telephone number (218) 720- 5286...

  12. 76 FR 65609 - Safety Zone, Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-24

    ... Zone, Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago Sanitary and Ship...; Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago Sanitary and Ship Canal...; Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago Sanitary and Ship Canal...

  13. The Immatsiak network of groundwater wells in a small catchment basin in the discontinuous permafrost zone of Northern Quebec, Canada: A unique opportunity for monitoring the impacts of climate change on groundwater (Invited)

    NASA Astrophysics Data System (ADS)

    Fortier, R.; Lemieux, J.; Molson, J. W.; Therrien, R.; Ouellet, M.; Bart, J.

    2013-12-01

    During a summer drilling campaign in 2012, a network of nine groundwater monitoring wells was installed in a small catchment basin in a zone of discontinuous permafrost near the Inuit community of Umiujaq in Northern Quebec, Canada. This network, named Immatsiak, is part of a provincial network of groundwater monitoring wells to monitor the impacts of climate change on groundwater resources. It provides a unique opportunity to study cold region groundwater dynamics in permafrost environments and to assess the impacts of permafrost degradation on groundwater quality and availability as a potential source of drinking water. Using the borehole logs from the drilling campaign and other information from previous investigations, an interpretative cryo-hydrogeological cross-section of the catchment basin was produced which identified the Quaternary deposit thickness and extent, the depth to bedrock, the location of permafrost, one superficial aquifer located in a sand deposit, and another deep aquifer in fluvio-glacial sediments and till. In the summer of 2013, data were recovered from water level and barometric loggers which were installed in the wells in August 2012. Although the wells were drilled in unfrozen zones, the groundwater temperature is very low, near 0.4 °C, with an annual variability of a few tenths of a degree Celsius at a depth of 35 m. The hydraulic head in the wells varied as much as 6 m over the last year. Pumping tests performed in the wells showed a very high hydraulic conductivity of the deep aquifer. Groundwater in the wells and surface water in small thermokarst lakes and at the catchment outlet were sampled for geochemical analysis (inorganic parameters, stable isotopes of oxygen (δ18O) and hydrogen (δ2H), and radioactive isotopes of carbon (δ14C), hydrogen (tritium δ3H) and helium (δ3He)) to assess groundwater quality and origin. Preliminary results show that the signature of melt water from permafrost thawing is observed in the

  14. 75 FR 57167 - Safety Zone; CLS Fall Championship Hydroplane Race, Lake Sammamish, WA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-20

    ... waters of Lake Sammamish, WA for the Composite Laminate Specialties (CLS) Fall Championship Hydroplane... Delegation No. 0170.1 0 2. Add Sec. 165.T13-162 to read as follows: Sec. 165.T13-162 Safety Zone; Composite...

  15. [Chromophoric dissolved organic matter absorption characteristics with relation to fluorescence in typical macrophyte, algae lake zones of Lake Taihu].

    PubMed

    Zhang, Yun-lin; Qin, Bo-qiang; Ma, Rong-hua; Zhu, Guang-wei; Zhang, Lu; Chen, Wei-min

    2005-03-01

    Chromophoric dissolved organic matter (CDOM) represents one of the primary light-absorbing species in natural waters and plays a critical in determining the aquatic light field. CDOM shows a featureless absorption spectrum that increases exponentially with decreasing wavelength, which limits the penetration of biologically damaging UV-B radiation (wavelength from 280 to 320 nm) in the water column, thus shielding aquatic organisms. CDOM absorption measurements and their relationship with dissolved organic carbon (DOC), and fluorescence are presented in typical macrophyte and algae lake zone of Lake Taihu based on a field investigation in April in 2004 and lab analysis. Absorption spectral of CDOM was measured from 240 to 800 nm using a Shimadzu UV-2401PC UV-Vis recording spectrophotometer. Fluorescence with an excitation wavelength of 355 nm, an emission wavelength of 450 nm is measured using a Shimadzu 5301 spectrofluorometer. Concentrations of DOC ranged from 6.3 to 17.2 mg/L with an average of 9.08 +/- 2.66 mg/L. CDOM absorption coefficients at 280 nm and 355 nm were in the range of 11.2 - 32.6 m(-1) (average 17.46m(-1) +/- 5.75 m(-1) and 2.4 - 8.3 m(-1) (average 4.17m(-1) +/- 1.47 m(-l)), respectively. The values of the DOC-specific absorption coefficient at 355 nm ranged from 0.31 to 0.64 L x (mg x m)-1. Fluorescence emission at 450 nm, excited at 355 nm, had a mean value of 1.32nm(-1) +/- 0.84 nm(-1). A significant lake zone difference is found in DOC concentration, CDOM absorption coefficient and fluorescence, but not in DOC-specific absorption coefficient and spectral slope coefficient. This regional distribution pattern is in agreement with the location of sources of yellow substance: highest concentrations close to river mouth under the influence of river inflow, lower values in East Lake Taihu. The values of algae lake zone are obvious larger than those of macrophyte lake zone. In Meiliang Bay, CDOM absorption, DOC concentration and fluorescence tend to

  16. Catchment tracers reveal discharge, recharge and sources of groundwater-borne pollutants in a novel lake modelling approach

    NASA Astrophysics Data System (ADS)

    Kristensen, Emil; Madsen-Østerbye, Mikkel; Massicotte, Philippe; Pedersen, Ole; Markager, Stiig; Kragh, Theis

    2018-02-01

    groundwater discharge sites located mainly in the eastern part of the lake with a single site in the southern part. Observations from the eastern part of the lake revealed an impermeable clay layer that promotes discharge during heavy precipitation events, which would otherwise be difficult to identify using traditional hydrological methods. In comparison to the lake concentrations, high tracer concentrations in the southern part showed that only a smaller fraction of water could originate from this area, thereby confirming the model results. A Euclidean cluster analysis of δ18O isotopes identified recharge sites corresponding to areas adjacent to drainage channels, and a cluster analysis of the microbially influenced FDOM component C4 further identified five sites that showed a tendency towards high groundwater recharge rate. In conclusion, it was found that this methodology can be applied to smaller lakes within a short time frame, providing useful information regarding the WRT of the lake and more importantly the groundwater recharge and discharge sites around the lake. Thus, it is a tool for specific management of the catchment.

  17. History of metal contamination in Lake Illawarra, NSW, Australia.

    PubMed

    Schneider, Larissa; Maher, William; Potts, Jaimie; Batley, Graeme; Taylor, Anne; Krikowa, Frank; Chariton, Anthony; Zawadzki, Atun; Heijnis, Henk; Gruber, Bernd

    2015-01-01

    Lake Illawarra has a long history of sediment contamination, particularly by metals, as a result of past and current industrial operations and land uses within the catchment. In this study, we examined the history of metal contamination in sediments using metal analysis and (210)Pb and (137)Cs dating. The distributions of copper, zinc, arsenic, selenium, cadmium and lead concentrations within sediment cores were in agreement with historical events in the lake, and indicated that metal contamination had been occurring since the start of industrial activities in Port Kembla in the late 1800 s. Most metal contamination, however, has occurred since the 1960s. Sedimentation rates were found to be 0.2 cm year(-1) in Griffins Bay and 0.3 cm year(-1) in the centre of the lake. Inputs from creeks bringing metals from Port Kembla in the northeast of the lake and a copper slag emplacement from a former copper refinery on the Windang Peninsula were the main sources of metal inputs to Lake Illawarra. The metals of highest concern were zinc and copper, which exceeded the Australian and New Zealand sediment quality guideline values at some sites. Results showed that while historical contamination persists, current management practices have resulted in reduced metal concentrations in surface sediments in the depositional zones in the centre of the lake. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Predicting risk of rill initiation in a sub-catchment of Lake Balaton, Hungary

    NASA Astrophysics Data System (ADS)

    Hausner, C.; Sisák, I.

    2009-04-01

    Rill erosion is an accelerated form of soil degradation. It removes much more soil and nutrients from the agricultural land than sheet erosion. Soils in the southern sub-watershed of Lake Balaton are especially prone to rill erosion and they contribute to siltation of ditches, to muddy floods and to eutrofication of the lake. The parent material in this region is mainly (sandy) loess and the soils are already moderately or strongly eroded thus, the low tolerance of loess against erosion determines erodibility. Identification of soils with high risk of rill erosion is crucial to plan mitigation measures. Soil erodibility has been investigated in this study in the catchment of Tetves stream. The USLE soil erodibility factor and soil slaking are widely accepted indicators for soil erosion. Both of them are published for all soil texture classes in handbooks of soil mapping. We have found that erodibility derived from our physical model has a close linear correlation with the product of the USLE soil erodibility factor and soil slaking grade thus, USLE could be directly used to assess parameters for physical based models. Rill erosion is highly probable if the product of KUSLE X slaking grade is above 2. Digital maps were produced to delineate soils with high potential for rill erosion. The basic data for the soil properties were drawn from the 1:10,000 soil map. Soil texture classes were used to assign KUSLE and slaking grade to the soil units. Beyond soil properties, other factors also influence rill formation: slope, surface cover, rainfall intensity. However, identifying soil properties, which make soils prone to rill erosion, is an important initial step for the reduction of diffuse agricultural loads to Lake Balaton. It might be the objective of River Basin Management Plans in the Water Framework Directive to prevent rill erosion and our study provides scientific evidence for targeting this policy.

  19. Remote sensing appraisal of Lake Chad shrinkage connotes severe impacts on green economics and socio-economics of the catchment area.

    PubMed

    Onamuti, Olapeju Y; Okogbue, Emmanuel C; Orimoloye, Israel R

    2017-11-01

    Lake Chad commonly serves as a major hub of fertile economic activities for the border communities and contributes immensely to the national growth of all the countries that form its boundaries. However, incessant and multi-decadal drying via climate change pose greater threats to this transnational water resource, and adverse effects on ecological sustainability and socio-economic status of the catchment area. Therefore, this study assessed the extent of shrinkage of Lake Chad using remote sensing. Landsat imageries of the lake and its surroundings between 1987 and 2005 were retrieved from Global Land Cover Facility website and analysed using Integrated Land and Water Information System version 3.3 (ILWIS 3.3). Supervised classification of area around the lake was performed into various land use/land cover classes, and the shrunk part of its environs was assessed based on the land cover changes. The shrinkage trend within the study period was also analysed. The lake water size reduced from 1339.018 to 130.686 km 2 (4.08-3.39%) in 1987-2005. The supervised classification of the Landsat imageries revealed an increase in portion of the lake covered by bare ground and sandy soil within the reference years (13 490.8-17 503.10 km 2 ) with 4.98% total range of increase. The lake portion intersected with vegetated ground and soil also reduced within the period (11 046.44-10 078.82 km 2 ) with 5.40% (967.62 km 2 ) total decrease. The shrunk part of the lake covered singly with vegetation increased by 2.74% from 1987 to 2005. The shrunk part of the lake reduced to sand and turbid water showed 5.62% total decrease from 1987 to 2005 and a total decrease of 1805.942 km 2 in area. The study disclosed an appalling rate of shrinkage and damaging influences on the hydrologic potential, eco-sustainability and socio-economics of the drainage area as revealed using ILWIS 3.3.

  20. Mercury in the central European lake district - case study Plešné lake

    NASA Astrophysics Data System (ADS)

    Navratil, Tomas; Rohovec, Jan; Novakova, Tereza; Matouskova, Sarka; Kopacek, Jiri; Kana, Jiri

    2017-04-01

    The central European lake district extends within the Bohemian forest and Bavarian forest Mountains. It includes 8 glacial lakes extending in altitudes from 935 to 1087 m a.s.l. All of them have been oligotrophic and forests of the lake catchments are dominated by Norway spruce (Picea abies). Plešné lake (PL) catchment is at 1087 m .a.s.l. and it covers area of 0.67 km2. In 2004, the forest at PL catchment was infested by the bark beetle (Ips typographus) and 88%-99% of trees had died by 2011. In contrast to relatively detailed research of North American and Scandinavian lake ecosystems the information concerning Hg contamination of central European lake ecosystems are rather scarce. The PL ecosystem can provide base for assessment of Hg contamination as well as for changes induced by the bark beetle infestation. In 2016, mean annual Hg concentration in bulk precipitation at Plešné lake reached 3.0 ng/L and bulk Hg deposition flux amounted at 4.6 µg/m2. The most important pathway of Hg deposition to the forest ecosystems has been litterfall. The highest Hg concentrations in litterfall material at PL were found in lichens 205 µg/kg, mixture of unidentifiable organic debris 159 µg/kg and bark 123 µg/kg. Litterfall spruce needles averaged at 56 µg/kg, only. Removal of spruce due to bark beetle infestation caused decrease of litterfall Hg fluxes. Recent litterfall fluxes in the unimpacted stands reached 55.8 µg/m2, while in the impacted dead stands they amounted 23.0 µg/m2, only. The qualitative composition of the litterfall in the infested stands was typical with absence of needles and prevalence of twigs and bark. To assess changes in Hg distribution within the soil profile due to forest dieback the soil data from year 1999 were compared with 2015 data. The mean Hg concentrations in the O horizons decreased from 424 to 311 µg/kg between years 1999 and 2015, and in A horizons the situation was reversed and an increase from 353 to 501 µg/kg occurred. The

  1. Impacts of forestry planting on primary production in upland lakes from north-west Ireland.

    PubMed

    Stevenson, Mark A; McGowan, Suzanne; Anderson, N John; Foy, Robert H; Leavitt, Peter R; McElarney, Yvonne R; Engstrom, Daniel R; Pla-Rabés, Sergi

    2016-04-01

    Planted forests are increasing in many upland regions worldwide, but knowledge about their potential effects on algal communities of catchment lakes is relatively unknown. Here, the effects of afforestation were investigated using palaeolimnology at six upland lake sites in the north-west of Ireland subject to different extents of forest plantation cover (4-64% of catchment area). (210)Pb-dated sediment cores were analysed for carotenoid pigments from algae, stable isotopes of bulk carbon (δ(13)C) and nitrogen (δ(15)N), and C/N ratios. In lakes with >50% of their catchment area covered by plantations, there were two- to sixfold increases in pigments from cryptophytes (alloxanthin) and significant but lower increases (39-116%) in those from colonial cyanobacteria (canthaxanthin), but no response from biomarkers of total algal abundance (β-carotene). In contrast, lakes in catchments with <20% afforestation exhibited no consistent response to forestry practices, although all lakes exhibited fluctuations in pigments and geochemical variables due to peat cutting and upland grazing prior to forest plantation. Taken together, patterns suggest that increases in cyanobacteria and cryptophyte abundance reflect a combination of mineral and nutrient enrichment associated with forest fertilization and organic matter influx which may have facilitated growth of mixotrophic taxa. This study demonstrates that planted forests can alter the abundance and community structure of algae in upland humic lakes of Ireland and Northern Ireland, despite long histories of prior catchment disturbance. © 2015 John Wiley & Sons Ltd.

  2. The Cora Lake Shear Zone: Strain Localization in an Ultramylonitic, Deep Crustal Shear Zone, Athabasca Granulite Terrain, Western Churchill Province, Canada

    NASA Astrophysics Data System (ADS)

    Regan, S.; Williams, M. L.; Mahan, K. H.; Orlandini, O. F.; Jercinovic, M. J.; Leslie, S. R.; Holland, M.

    2012-12-01

    Ultramylonitic shear zones typically involve intense strain localization, and when developed over large regions can introduce considerable heterogeneity into the crust. The Cora Lake shear zone (CLsz) displays several 10's to 100's of meters-wide zones of ultramylonite distributed throughout its full 3-5 km mylonitized width. Detailed mapping, petrography, thermobarometry, and in-situ monazite geochronology suggest that it formed during the waning phases of granulite grade metamorphism and deformation, within one of North America's largest exposures of polydeformed lower continental crust. Anastomosing zones of ultramylonite contain recrystallized grain-sizes approaching the micron scale and might appear to suggest lower temperature mylonitization. However, feldspar and even clinopyroxene are dynamically recrystallized, and quantitative thermobarometry of syn-deformational assemblages indicate high P and T conditions ranging from 0.9 -10.6 GPa and 775-850 °C. Even at these high T's, dynamic recovery and recrystallization were extremely limited. Rocks with low modal quartz have extremely small equilibrium volumes. This is likely the result of inefficient diffusion, which is further supported by the unannealed nature of the crystals. Local carbonate veins suggests that H2O poor, CO2 rich conditions may have aided in the preservation of fine grain sizes, and may have inhibited dynamic recovery and recrystallization. The Cora Lake shear zone is interpreted to have been relatively strong and to have hardened during progressive deformation. Garnet is commonly fractured perpendicular to host rock fabric, and statically replaced by both biotite and muscovite. Pseudotachylite, with the same sense of shear, occurs in several ultramylonitized mafic granulites. Thus, cataclasis and frictional melt are interpreted to have been produced in the lower continental crust, not during later reactivation. We suggest that strengthening of rheologically stiffer lithologies led to

  3. 75 FR 34379 - Safety Zone; Mackinac Island 4th of July Fireworks, Lake Huron, Mackinac Island, MI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-17

    ...-AA00 Safety Zone; Mackinac Island 4th of July Fireworks, Lake Huron, Mackinac Island, MI AGENCY: Coast... of Lake Huron during the Mackinac Island 4th of July Fireworks display on July 4, 2010. This... and vessels during the setup, and launching of fireworks in conjunction with the Mackinac Island 4th...

  4. Hydrologic functioning of the deep Critical Zone and contributions to streamflow in a high elevation catchment: testing of multiple conceptual models

    NASA Astrophysics Data System (ADS)

    Dwivedi, R.; Meixner, T.; McIntosh, J. C.; Ferre, T. P. A.; Eastoe, C. J.; Minor, R. L.; Barron-Gafford, G.; Chorover, J.

    2017-12-01

    The composition of natural mountainous waters maintains important control over the water quality available to downstream users. Furthermore, the geochemical constituents of stream water in the mountainous catchments represent the result of the spatial and temporal evolution of critical zone structure and processes. A key problem is that high elevation catchments involve rugged terrain and are subject to extreme climate and landscape gradients; therefore, high density or high spatial resolution hydro-geochemical observations are rare. Despite such difficulties, the Santa Catalina Mountains Critical Zone Observatory (SCM-CZO), Tucson, AZ, generates long-term hydrogeochemical data for understanding not only hydrological processes and their seasonal characters, but also the geochemical impacts of such processes on streamflow chemical composition. Using existing instrumentation and hydrogeochemical observations from the last 9+ years (2009 through 2016 and an initial part of 2017), we employed a multi-tracer approach along with principal component analysis to identify water sources and their seasonal character. We used our results to inform hydrological process understanding (flow paths, residence times, and water sources) for our study site. Our results indicate that soil water is the largest contributor to streamflow, which is ephemeral in nature. Although a 3-dimensional mixing space involving precipitation, soil water, interflow, and deep groundwater end-members could explain most of the streamflow chemistry, geochemical complexity was observed to grow with catchment storage. In terms of processes and their seasonal character, we found soil water and interflow were the primary end-member contributors to streamflow in all seasons. Deep groundwater only contributes to streamflow at high catchment storage conditions, but it provides major ions such as Na, Mg, and Ca that are lacking in other water types. In this way, our results indicate that any future efforts aimed

  5. Structural controls on geothermal circulation in Surprise Valley, California: A re-evaluation of the Lake City fault zone

    USGS Publications Warehouse

    Anne E. Egger,; Glen, Jonathan; McPhee, Darcy K.

    2014-01-01

    Faults and fractures play an important role in the circulation of geothermal fluids in the crust, and the nature of that role varies according to structural setting and state of stress. As a result, detailed geologic and geophysical mapping that relates thermal springs to known structural features is essential to modeling geothermal systems. Published maps of Surprise Valley in northeastern California suggest that the “Lake City fault” or “Lake City fault zone” is a significant structural feature, cutting obliquely across the basin and connecting thermal springs across the valley. Newly acquired geophysical data (audio-magnetotelluric, gravity, and magnetic), combined with existing geochemical and geological data, suggest otherwise. We examine potential field profiles and resistivity models that cross the mapped Lake City fault zone. While there are numerous geophysical anomalies that suggest subsurface structures, they mostly do not coincide with the mapped traces of the Lake City fault zone, nor do they show a consistent signature in gravity, magnetics, or resistivities that would suggest a through-going fault that would promote connectivity through lateral fluid flow. Instead of a single, continuous fault, we propose the presence of a deformation zone associated with the growth of the range-front Surprise Valley fault. The implication for geothermal circulation is that this is a zone of enhanced porosity but lacks length-wise connectivity that could conduct fluids across the valley. Thermal fluid circulation is most likely controlled primarily by interactions between N-S–trending normal faults.

  6. Hydro-meteorological trends in the Gidabo catchment of the Rift Valley Lakes Basin of Ethiopia

    NASA Astrophysics Data System (ADS)

    Belihu, Mamuye; Abate, Brook; Tekleab, Sirak; Bewket, Woldeamlak

    2018-04-01

    The global and regional variability and changes of climate and stream flows are likely to have significant influence on water resource availability. The magnitude and impacts of climate variability and change differs spatially and temporally. This study examines the long term hydroclimatic changes, analyses of the hydro-climate variability and detect whether there exist significant trend or not in the Gidabo catchment, rift valley lakes basin of Ethiopia. Precipitation, temperature and stream flow time series data were used in monthly, seasonal and annual time scales. The precipitation and temperature data span is between 1982 and 2014 and that of stream flow is between 1976 and 2006. To detect trends the analysis were done by using Mann Kendal (MK), Sen's graphical method and to detect change point using the Pettit test. The comparison of trend analysis between MK trend test and Sen graphical method results depict mostly similar pattern. The annual rainfall trends exhibited a significant decrease by about 12 mm per year in the upstream, which is largely driven by the significant decrease in the peak season rainfall. The Pettit test revealed that the years 1997 and 2007 were the change points. It is noted that the rise of temperature over a catchment might have decreased the availability of soil moisture which resulted in less runoff. The temperature analyses also revealed that the catchment was getting warmer; particularly in the upstream. The minimum temperature trend showed a significant increase about 0.08°c per annum. There is generally a decreasing trend in stream flow. The monthly stream flow also exhibited a decreasing trend in February, March and September. The decline in annual and seasonal rainfall and the increase in temperature lead to more evaporation and directly affecting the stream flow negatively. This trend compounded with the growth of population and increasing demand for irrigation water exacerbates the competing demand for water resources. It

  7. 76 FR 63199 - Safety Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-12

    ... Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago Sanitary and Ship...; Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago Sanitary and Ship Canal... of Engineers' scheduled maintenance shutdown of Barrier IIB. During the enforcement period, entry...

  8. Phosphorus Loadings to the World's Largest Lakes: Sources and Trends

    NASA Astrophysics Data System (ADS)

    Fink, Gabriel; Alcamo, Joseph; Flörke, Martina; Reder, Klara

    2018-04-01

    Eutrophication is a major water quality issue in lakes worldwide and is principally caused by the loadings of phosphorus from catchment areas. It follows that to develop strategies to mitigate eutrophication, we must have a good understanding of the amount, sources, and trends of phosphorus pollution. This paper provides the first consistent and harmonious estimates of current phosphorus loadings to the world's largest 100 lakes, along with the sources of these loadings and their trends. These estimates provide a perspective on the extent of lake eutrophication worldwide, as well as potential input to the evaluation and management of eutrophication in these lakes. We take a modeling approach and apply the WorldQual model for these estimates. The advantage of this approach is that it allows us to fill in large gaps in observational data. From the analysis, we find that about 66 of the 100 lakes are located in developing countries and their catchments have a much larger average phosphorus yield than the lake catchments in developed countries (11.1 versus 0.7 kg TP km-2 year-1). Second, the main source of phosphorus to the examined lakes is inorganic fertilizer (47% of total). Third, between 2005-2010 and 1990-1994, phosphorus pollution increased at 50 out of 100 lakes. Sixty percent of lakes with increasing pollution are in developing countries. P pollution changed primarily due to changing P fertilizer use. In conclusion, we show that the risk of P-stimulated eutrophication is higher in developing countries.

  9. Southeastern extension of the Lake Basin fault zone in south- central Montana: implications for coal and hydrocarbon exploration ( USA).

    USGS Publications Warehouse

    Robinson, L.N.; Barnum, B.E.

    1986-01-01

    The Lake Basin fault zone consists mainly of en echelon NE-striking normal faults that have been interpreted to be surface expressions of left-lateral movement along a basement wrench fault. Information gathered from recent field mapping of coal beds and from shallow, closely-spaced drill holes resulted in detailed coal bed correlations, which revealed another linear zone of en echelon faulting directly on the extended trend of the Lake Basin fault zone. This faulted area, referred to as the Sarpy Creek area, is located 48 km E of Hardin, Montana. It is about 16 km long, 13 km wide, and contains 21 en echelon normal faults that have an average strike of N 63oE. We therefore extend the Lake Basin fault zone 32 km farther SE than previously mapped to include the Sarpy Creek area. The Ash Creek oil field, Wyoming, 97 km due S of the Sarpy Creek area, produces from faulted anticlinal structues that have been interpreted to be genetically related to the primary wrench-fault system known as the Nye-Bowler fault zone. The structural similarities between the Sarpy Creek area and the Ash Creek area indicate that the Sarpy Creek area is a possible site for hydrocarbon accumulation.-from Authors

  10. 76 FR 78161 - Safety Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-16

    ... Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago Sanitary and Ship...; Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago Sanitary and Ship Canal... the U.S. Army Corps of Engineers' maintenance operations of dispersal barrier IIB. During these...

  11. 77 FR 25595 - Safety Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-01

    ... Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago Sanitary and Ship...; Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago Sanitary and Ship Canal... Corps of Engineers' post-maintenance testing of Barrier IIA and IIB. During the enforcement period...

  12. Sedimentology of the saline lakes of the Cariboo Plateau, Interior British Columbia, Canada

    NASA Astrophysics Data System (ADS)

    Renaut, Robin W.; Long, Peter R.

    1989-10-01

    There are several hundred saline lakes in Interior British Columbia, including muddy siliciclastic playas, saline playas, perennial lakes (including meromictic sulphate lakes), and ephemeral lakes, some with permanent salts. The lake waters have highly variable compositions, with Na-CO 3-Cl, Na-CO 3-(SO 4)-Cl, Mg-Na-SO 4 and Na-Mg-SO 4, the dominant types of brine. On the Cariboo Plateau, where they are most abundant, the saline lakes are small, shallow, and occupy depressions within glacial and glacio-fluvial deposits. Most are groundwater-fed. The region is characterized by extremely cold winters and short hot summers. Dense coniferous forest mantles much of the plateau and surrounds most of the lakes. Most basins comprise three main subenvironments—hillslope, mudflat (saline and dry) and lake (ephemeral or perennial). Fluvial sediments are of little significance. Mudflats are primarily a zone of extensive interstitial carbonate precipitation from shallow groundwaters, including abundant magnesite and hydromagnesite. The amount of carbonate formed varies with groundwater composition. Some mudflats are carbonate-dominated; others are predominantly siliciclastic with only highly soluble interstitial salts forming. Sedimentary structures are disrupted by carbonate precipitation and displacive salt crystallization. Springs and ephemeral seepages are locally present. Microbial mats form extensively along many littoral zones and around springs; laminates are preserved in some cores. Efflorescent salt crusts cover saline mudflats around most lakes and playas. Subaqueous salts (including natron, epsomite, bloedite, mirabilite) are precipitated during late summer, autumn and winter in several hypersaline lakes, some by evaporative concentration, others by brine cooling and freeze-out. Several hypersaline, ephemeral lakes have an unusual "spotted" morphology, with hundreds of individual brine pools within carbonate-siliciclastic muds. Most recent sedimentation in the

  13. Basin-floor Lake Bonneville stratigraphic section as revealed in paleoseismic trenches at the Baileys Lake site, West Valley fault zone, Utah

    USGS Publications Warehouse

    Hylland, Michael D.; DuRoss, Christopher B.; McDonald, Greg N.; Olig, Susan S.; Oviatt, Charles G.; Mahan, Shannon; Crone, Anthony J.; Personius, Stephen

    2012-01-01

     Recent paleoseismic trenching on the Granger fault of the West Valley fault zone in Salt Lake County, Utah, exposed a nearly complete section of late Pleistocene Lake Bonneville deposits, and highlights challenges related to accurate interpretation of basin-floor stratigraphy in the absence of numerical age constraints. We used radiocarbon and luminescence dating as well as ostracode biostratigraphy to provide chronostratigraphic control on the Lake Bonneville section exposed at the Baileys Lake trench site. The fault trenches exposed folded and faulted pre- to post- Bonneville sediments, including about 0.7 m of pre-Bonneville wetland/fluvial-marsh deposits, a nearly complete Bonneville section 2.5–4.0 m thick, and 0.4–1.0 m of post-Bonneville deposits consisting primarily of loess with minor scarp-derived colluvium. The relatively thin Bonneville section compares favorably with basin-floor Bonneville sections documented in boreholes and seismic reflection profiles beneath Great Salt Lake. Distinctive features of the Bonneville section at the Baileys Lake site include a sequence of turbidites in the upper part of the Bonneville transgressive deposits, evidence for an earthquake during Provo-shoreline time that disturbed lake-bottom sediments and destroyed any stratigraphic signature of the Bonneville Flood, tufa deposition associated with Gilbert-phase shoreline transgression, and stratigraphic evidence for two Gilbert transgressions across the site.

  14. Preliminary estimating the contemporary sedimentation trend in dry valley bottoms of first-order catchments of different landscape zones of the Russian Plain using the 137Cs as a chronomarker

    NASA Astrophysics Data System (ADS)

    Sharifullin, A.; Gusarov, A.; Gafurov, A.; Essuman-Quainoo, B.

    2018-01-01

    A general trend of erosion processes over the last 50-60 years can be estimated by dating sediments washed off from arable lands and accumulated in the first-order dry valleys bottoms. Three small (first-order) catchments were chosen as objects of the study. They are located, respectively, in the southern part of the taiga zone, the zone of temperate broad-leaf forests and the forest-steppe zone of the Russian Plain. To date the sediments accumulated in the bottoms the radioactive caesium-137 (137Cs) of global (since 1954) and Chernobyl origin (1986) had been used as a chronomarker. The average (for all the catchments) sedimentation rates during the global 137Cs fallout period (1963(1954)-1986) are at least 0.88-2.71 cm per year.For the period that has passed since the Chernobyl accident (1986-2015(2016)) the average rates were 0.15-1.07 cm per year. The greatest reduction in the sedimentation rates is observed in the subzone of the southern taiga, the lowest one is in the forest-steppe zone of the Russian Plain. The main reason for such significant reduction in the rates of sedimentation of the soil erosion products in the dry valley bottoms was a reduction of surface runoff within the catchments during a snowmelt period, as well as crop-rotation changes there.

  15. Direct versus indirect climate controls on Holocene diatom assemblages in a sub-tropical deep, alpine lake (Lugu Hu, Yunnan, SW China)

    NASA Astrophysics Data System (ADS)

    Wang, Qian; Yang, Xiangdong; Anderson, Nicholas John; Dong, Xuhui

    2016-07-01

    The reconstruction of Holocene environmental changes in lakes on the plateau region of southwest China provides an understanding of how these ecosystems may respond to climate change. Fossil diatom assemblages were investigated from an 11,000-year lake sediment core from a deep, alpine lake (Lugu Hu) in southwest China, an area strongly influenced by the southwest (or the Indian) summer monsoon. Changes in diatom assemblage composition, notably the abundance of the two dominant planktonic species, Cyclotella rhomboideo-elliptica and Cyclostephanos dubius, reflect the effects of climate variability on nutrient dynamics, mediated via thermal stratification (internal nutrient cycling) and catchment-vegetation processes. Statistical analyses of the climate-diatom interactions highlight the strong effect of changing orbitally-induced solar radiation during the Holocene, presumably via its effect on the lake's thermal budget. In a partial redundancy analysis, climate (solar insolation) and proxies reflecting catchment process (pollen percentages, C/N ratio) were the most important drivers of diatom ecological change, showing the strong effects of climate-catchment-vegetation interactions on lake functioning. This diatom record reflects long-term ontogeny of the lake-catchment ecosystem and suggests that climatic changes (both temperature and precipitation) impact lake ecology indirectly through shifts in thermal stratification and catchment nutrient exports.

  16. Influence of hydroclimatic variations on solute concentration dynamics in nested subtropical catchments with heterogeneous landscapes.

    PubMed

    Piazza, Gustavo Antonio; Dupas, Rémi; Gascuel-Odoux, Chantal; Grimaldi, Catherine; Pinheiro, Adilson; Kaufmann, Vander

    2018-04-20

    Despite global efforts to monitor water quality in catchments worldwide, tropical and subtropical zones still lack data to study the influence of human activities and climate variations on solute dynamics. In this study, we monitored ten solutes every two weeks for six years (2010-2015) in three nested catchments (2 to30 km 2 ), which contained heterogeneous landscapes composed of forests and agricultural land, and one small neighboring forested catchment (0.4 km 2 ). Data analysis revealed that i) rainfall, discharge and solute concentrations displayed no clear seasonal patterns, unlike many catchments of the temperate zone; ii) solute concentrations in the agricultural area were higher than those in the forested area, but both areas displayed similar temporal patterns due to a common hydroclimatic driver; iii) all four catchments displayed a chemostatic export regime for most of the solutes, similar to catchments of the temperate zone; and iv) a positive correlation was observed between anion concentrations and ENSO (El Niño-Southern Oscillation) index. ENSO appeared to influence both hydroclimatic and anion dynamics in these subtropical catchments. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Catchment-fed cyanobacterial blooms in brownified temperate lakes

    NASA Astrophysics Data System (ADS)

    Senar, O.; Creed, I. F.

    2017-12-01

    One of the most significant impacts of global atmospheric change is the alteration of hydrological regimes and the associated disruption of hydrological connectivity within watersheds. We show how changes in the frequency, magnitude, and duration of hydrological connectivity and disconnectivity is compromising the capacity of forest soils to store organic carbon, and increasing its export to both aquatic and atmospheric systems. Increases in dissolved organic matter (DOM) loads from forested landscapes to aquatic systems and the shift of the DOM pool to a more refractory mixture of organic compounds, a process known as brownification, alters the physical and chemical characteristics of lake environments. Furthermore, by characterizing the stages of brownification (from low to high concentrations of refractory DOM), we show a shift in the limiting factors for phytoplankton growth from macronutrients (nitrogen -N- and phosphorus -P) to micronutrients (iron -Fe) and light availability. This shift is driven by the low concentrations of DOM supplying N and P in early stages of brownification, to the strong Fe-binding capacity of refractory DOM in brownified lakes. As lakes undergo brownification, cyanobacteria adapted to scavenge Fe from DOM-Fe complexes have a competitive advantage leading to the formation of cyanobacterial blooms. Our findings provide evidence that brownification is a driving force leading to cyanobacterial blooms in lakes on forested landscapes, with expected cascading consequences to lake food webs.

  18. A Global Classification System for Catchment Hydrology

    NASA Astrophysics Data System (ADS)

    Woods, R. A.

    2004-05-01

    It is a shocking state of affairs - there is no underpinning scientific taxonomy of catchments. There are widely used global classification systems for climate, river morphology, lakes and wetlands, but for river catchments there exists only a plethora of inconsistent, incomplete regional schemes. By proceeding without a common taxonomy for catchments, freshwater science has missed one of its key developmental stages, and has leapt from definition of phenomena to experiments, theories and models, without the theoretical framework of a classification. I propose the development of a global hierarchical classification system for physical aspects of river catchments, to help underpin physical science in the freshwater environment and provide a solid foundation for classification of river ecosystems. Such a classification scheme can open completely new vistas in hydrology: for example it will be possible to (i) rationally transfer experimental knowledge of hydrological processes between basins anywhere in the world, provided they belong to the same class; (ii) perform meaningful meta-analyses in order to reconcile studies that show inconsistent results (iii) generate new testable hypotheses which involve locations worldwide.

  19. Phase 2 development of Great Lakes algorithms for Nimbus-7 coastal zone color scanner

    NASA Technical Reports Server (NTRS)

    Tanis, Fred J.

    1984-01-01

    A series of experiments have been conducted in the Great Lakes designed to evaluate the application of the NIMBUS-7 Coastal Zone Color Scanner (CZCS). Atmospheric and water optical models were used to relate surface and subsurface measurements to satellite measured radiances. Absorption and scattering measurements were reduced to obtain a preliminary optical model for the Great Lakes. Algorithms were developed for geometric correction, correction for Rayleigh and aerosol path radiance, and prediction of chlorophyll-a pigment and suspended mineral concentrations. The atmospheric algorithm developed compared favorably with existing algorithms and was the only algorithm found to adequately predict the radiance variations in the 670 nm band. The atmospheric correction algorithm developed was designed to extract needed algorithm parameters from the CZCS radiance values. The Gordon/NOAA ocean algorithms could not be demonstrated to work for Great Lakes waters. Predicted values of chlorophyll-a concentration compared favorably with expected and measured data for several areas of the Great Lakes.

  20. Investigating point zero: The artificial catchment 'Chicken Creek' as an observatory to study critical zone structures and processes of the critical zone in an initial ecosystem

    NASA Astrophysics Data System (ADS)

    Hüttl, Reinhard F.; Gerwin, Werner

    2010-05-01

    Recently, earth surface structures reaching from vegetation to the groundwater in the near underground have been termed "critical zone". This zone is "critical" to supporting life on Earth and, thus, the understanding of processes within this zone is of great importance in environmental sciences. Investigating the critical zone requires interdisciplinary and integrative research approaches across the fields of geomorphology, ecology, biology, soil science, hydrology and environmental modeling. A central motivation of the critical zone concept is the need for moving beyond traditional disciplinary boundaries to a more holistic and integrated study of the Earth surface system. However, the critical zone is characterized by complex interactions between abiotic and biotic structures and processes which need to be analyzed for improving our understanding of ecosystem functioning as well as of ecosystem development. To gain a better understanding of these fundamental questions it might be helpful to look at initial ecosystems, i.e. at ecosystems in the initial phase of development. It can be hypothesized that the complexity of a very young ecosystem is lower compared to mature systems and, therefore, structure-process interactions might become more obvious at early than at later stages of development. In this context, an artificial watershed was constructed with well known boundary conditions to investigate the initial ecosystem phase. The catchment ‘Chicken Creek' in Lusatia (Germany; 150 km SE from Berlin) has an area of 6 ha. It was set up with a layer of post-glacial sandy sediments overlying an aquiclude made of clay at the base. These hydrological starting conditions allowed for the formation of a groundwater body within the sandy layer of the experimental catchment. Further, after completion of the construction works in September 2005 the site was left to natural succession and no measures like planting or fertilization were carried out. As the initial phase of

  1. Using isotopes to quantify evaporation and non-stationary transit times distributions in lake water budgets

    NASA Astrophysics Data System (ADS)

    Smith, A. A.; Tetzlaff, D.; Soulsby, C.

    2017-12-01

    Evaporative fluxes from northern lakes are essential components of catchment water balances, providing large supplies of water to the atmosphere, and affecting downstream water availability. However, measurement of lake evaporation is difficult in many catchments due to remoteness and inaccessibility. Evaporative flux may also influence mean transit times of lakes and catchments, identified through water- and tracer mass-balance. We combined stable water isotopes (δ2H and δ18O), transit, and residence time distributions in a non-stationary transit time model to estimate the evaporative flux from two lakes in the Scottish Highlands. The lakes were in close proximity to each other ( 2km), shallow (mean depth, 1.5 m) with one large (0.88km2) and one small (0.4km2). Model calibration used measurements of precipitation, air temperature, water level, and isotopic stream compositions of lake inflow and outflows. Evaporation flux was identified using lake fractionation of δ2H and δ18O. Mixing patterns of the lakes and their respective outlet isotopic compositions were accounted for by comparing three probability distributions for discharge and evaporation. We found that the evaporation flux was strongly influenced by these discharge and evaporation distributions. Decreased mixing within the lake resulted in greater evaporation fluxes. One of the three distributions yielded similar mean daily evaporation and uncertainty for both lakes (max 5mm/day), while evaporation using the other two distributions was inconsistent between the lakes. Importantly, our approach also estimated distributions of evaporation age, which were significantly different between the lakes, reflecting a combination of inflow stream magnitude and the mixing regimes. The mean evaporation flux age of the large lake was 160 days, and 14 days for the small lake. Our integrated approach of stable isotopes, time variant transit time distributions has shown to be a useful tool for quantifying evaporative

  2. Biomass burning and its relationship with water cycle dynamics of the Chari-Logone catchment of Lake Chad Basin

    NASA Astrophysics Data System (ADS)

    Black, F. W.; Lee, J.; Ellison, L.; Gupta, M.; Bolten, J. D.; Gatebe, C. K.; Ichoku, C. M.

    2016-12-01

    The cause of shrinkage of Lake Chad has been of great interest for issues of global warming and climate change. The present study investigates the effect of biomass burning on the water cycle dynamics of Lake Chad Basin in the Northern Sub-Saharan Africa. Burning activities increase from November to April when monsoonal precipitation is at its lowest and decreases dramatically from May to October when precipitation peaks. To circumvent weather station scarcity in the region, a variety of satellite products were used as input into a water balance model. The datasets include TRMM 3B31 for precipitation, SRTM for elevation, and MODIS: MOD11C3 for temperature, MOD12Q1 for land cover, and MOD14A for fire count. Non-satellite based data sources include soil maps from the Harmonized World Soil Database and wind speed from NOAA NCDC stations. The Chari-Logone catchment of the Lake Chad Basin was selected since it supplies over 90% of the water input to the Lake. Fire count data from MOD14A were integrated with land cover albedo changes to determine monthly potential evapotranspiration (PET) using a Penman equation. The resolution of the model is 2 km x 2 km which allows for delineation of physical features such as lakes and other water bodies. Fire counts, also at a resolution of 2 km x 2 km, vary dramatically depending on the season. A separate land cover dataset was created to account for the effect of burning of different vegetative land types, which affects vegetative area, bare area, leaf area index, vegetation height, Manning coefficient, and aerodynamic resistance. Two water balance simulations, one considering burning and one without, were compared from the years 2005 to 2010. Results indicate biomass burning contribute to an increase in average monthly runoff and a decrease in groundwater recharge. Actual evapotranspiration shows variation depending on the month.

  3. Long-term changes of hydrophytes range as an indicator of lake shore zone vulnerability to transformations

    NASA Astrophysics Data System (ADS)

    Nowicka, Barbara; Nadolna, Anna

    2013-04-01

    Lake shore zone management in conditions of changing climate and increasing anthropopression requires the identification of littoral zones particularly sensitive to changes. The following study assumed that one way of indication of such sites is a spatial picture of long-term changes of emergent and submerged hydrophytes range. Referring to the evaluation works describing pressure, naturalness or buffer capacities of the shoreline, a synthetic map was developed to assess the transformation degree of hydrophytes occurrence. Research in this area was carried out at the Institute of Meteorology and Water Management - National Research Institute within the EULAKES project ('European Lakes Under Environmental Stressors' is implemented through the CENTRAL EUROPE Programme co-financed by the ERDF). Studies were carried out based on the example of Lake Charzykowskie which belongs to the UNESCO World Network of Biosphere Reserves. It is a large (A = 13.6 km2) flow-through gutter lake with a small amplitude of water level (up to 1 m). In the shoreline zone the anthropopression intensity is varied. Most of the shore zone is covered by forest. Buildings constitute a small percentage. The ecological status of the lake is a subject to fluctuations. In the hydrophytes transformations study a 70-year time horizon was assumed. In the late '40s of the 20th century the studied lake was characterized by poor trophic status. These conditions were considered as reference. At the turn of the '80s and '90s (the period of hydrological drought and increased anthropopressure) the lake state has deteriorated (hypertrophy, blooms on the lake). Nowadays, it is observed that the conditions improve to moderate eutrophy. Archival materials from 1949 served as a reference point. A contemporary image was obtained on the basis of mapping of emergent and underwater vegetation range (made in 2011 and 2012) using modern measuring techniques (GPS and hydroacoustic equipment). However, in comparative

  4. Eutrophication of the Strzeszyńskie Lake: Sources, Consequences and Remedies

    NASA Astrophysics Data System (ADS)

    Zawadzki, Paweł; Murat-Błażejewska, Sadżide; Błażejewski, Ryszard

    2016-06-01

    The paper presents history and recent review of investigations on ecological status of the Strzeszyńskie Lake, located within borders of town Poznań. The lake is a popular rest place, also for bathing and angling, therefore its state concerns many institutions and inhabitants. Recently, a deterioration of its ecological state has been observed due to pollution from a tributary catchment (Row Złotnicki), lake's direct catchment, precipitation and fallen leaves. Phosphorus balance for an average year was estimated. A review of applied remedies was provided but an assessment of their effectiveness was unfeasible due to simultaneity and relatively short duration of their application.

  5. Controls on ecohydrological dynamics of riparian zones in Alpine catchments: A comparison study of two rivers in the Eastern Italian Alps

    NASA Astrophysics Data System (ADS)

    Engel, Michael; Penna, Daniele; Frentress, Jay; Andreoli, Andrea; Hecher, Peter; Van Meerveld, Ilja; Comiti, Francesco

    2017-04-01

    soil depth. In contrast, soil water at Mareit River seemed to depend stronger on the topographical location of the site than on the soil depth. Groundwater in the Ahr catchment at the end of July 2016 showed isotopic depletion (δ2H: -89 ‰), which occurred about one month later than the isotopic depletion observed in the stream (δ2H: -96 ‰). This may indicate a stream-groundwater connectivity with a specific time lag. These observations may provide a first insight into the main controls on the complex interactions between stream and vegetation in the riparian zone. Keywords: stable isotopes of water; sap; alpine rivers; riparian zone connectivity; ecohydrology

  6. Detecting Land-based Signals in the Near-shore Zone of Lake Erie During Summer 2009

    EPA Science Inventory

    We conducted two styles of nearshore surveys in Lake Erie during August to mid-September 2009. The first used a spatially-balanced probability survey (SBS) design to establish discrete stations within a GIS-defined target populationthe nearshore zone extending approximately 5 km...

  7. Microplastic pollution in lakes and lake shoreline sediments - A case study on Lake Bolsena and Lake Chiusi (central Italy).

    PubMed

    Fischer, Elke Kerstin; Paglialonga, Lisa; Czech, Elisa; Tamminga, Matthias

    2016-06-01

    Rivers and effluents have been identified as major pathways for microplastics of terrestrial sources. Moreover, lakes of different dimensions and even in remote locations contain microplastics in striking abundances. This study investigates concentrations of microplastic particles at two lakes in central Italy (Lake Bolsena, Lake Chiusi). A total number of six Manta Trawls have been carried out, two of them one day after heavy winds occurred on Lake Bolsena showing effects on particle distribution of fragments and fibers of varying size categories. Additionally, 36 sediment samples from lakeshores were analyzed for microplastic content. In the surface waters 2.68 to 3.36 particles/m(3) (Lake Chiusi) and 0.82 to 4.42 particles/m(3) (Lake Bolsena) were detected, respectively. Main differences between the lakes are attributed to lake characteristics such as surface and catchment area, depth and the presence of local wind patterns and tide range at Lake Bolsena. An event of heavy winds and moderate rainfall prior to one sampling led to an increase of concentrations at Lake Bolsena which is most probable related to lateral land-based and sewage effluent inputs. The abundances of microplastic particles in sediments vary from mean values of 112 (Lake Bolsena) to 234 particles/kg dry weight (Lake Chiusi). Lake Chiusi results reveal elevated fiber concentrations compared to those of Lake Bolsena what might be a result of higher organic content and a shift in grain size distribution towards the silt and clay fraction at the shallow and highly eutrophic Lake Chiusi. The distribution of particles along different beach levels revealed no significant differences. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. The Distribution of Antarctic Subglacial Lake Environments With Implications for Their Origin and Evolution

    NASA Astrophysics Data System (ADS)

    Blankenship, D. D.; Young, D. A.; Carter, S. P.

    2006-12-01

    Ice-penetrating radar records across the Antarctic Ice Sheet show regions with strong flat mirror-like reflections from the subglacial interface that are interpreted to be from subglacial lakes. The majority of subglacial lakes are found in East Antarctica, primarily in topographically low areas of basins beneath the thick ice divides. Occasionally lakes are observed "perched" at higher elevations within local depressions of rough morphological regions. In addition, a correlation between the "onset" of enhanced glacial flow and subglacial lakes was identified. The greatest concentration of known lakes was found in the vicinity of Dome C. A second grouping of lakes lying near Ridge B includes Lake Vostok and several smaller lakes. Subglacial lakes were also discovered near the South Pole, within eastern Wilkes Land, west of the Transantarctic Mountains, and within West Antarctica's Whitmore Mountains. Aside from Lake Vostok, typical lengths of subglacial lakes were found to range from a few to about 20 kilometers. A recent inventory includes 145 subglacial lakes. Approximately 81% of detected lakes lie at elevations less than a few hundred meters above sea level while the majority of the remaining lakes are "perched" at higher elevations. We present the locations from the subglacial lake inventory on local "ice divides" calculated from the satellite derived surface elevations with and find the distance of each lake from these divides. Most significantly, we found that 66% of the lakes identified lie within 50 km of a local ice divide and 88% lie within 100 km of a local divide. In particular, note that lakes located far from the Dome C/Ridge B cluster and even those associated with very narrow catchments lie either on or within a few tens of kilometers of the local divide marked by the catchment boundary. The distance correlation of subglacial lakes with local ice divides leads to a fundamental question for the evolution of subglacial lake environments: Does the

  9. 33 CFR 165.T09-0452 - Safety Zone; Festivals & Fireworks Celebration, East Moran Bay, Lake Huron, St. Ignace, MI.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Safety Zone; Festivals & Fireworks Celebration, East Moran Bay, Lake Huron, St. Ignace, MI. 165.T09-0452 Section 165.T09-0452... Celebration, East Moran Bay, Lake Huron, St. Ignace, MI. (a) Location. The following area is a temporary...

  10. Regional versus local drivers of water quality in the Windermere catchment, Lake District, UK: the dominant influence of wastewater pollution over the past 200 years.

    PubMed

    Moorhouse, Heather L; McGowan, Suzanne; Taranu, Zofia E; Gregory-Eaves, Irene; Leavitt, Peter R; Jones, Matthew D; Barker, Philip; Brayshaw, Susan A

    2018-05-10

    Freshwater ecosystems are threatened by multiple anthropogenic stressors acting over different spatial and temporal scales, resulting in toxic algal blooms, reduced water quality, and hypoxia. However, while catchment characteristics act as a 'filter' modifying lake response to disturbance, little is known of the relative importance of different drivers and possible differentiation in the response of upland remote lakes in comparison to lowland, impacted lakes. Moreover, many studies have focussed on single lakes rather than looking at responses across a set of individual, yet connected lake basins. Here we used sedimentary algal pigments as an index of changes in primary producer assemblages over the last ~200 years in a northern temperate watershed consisting of 11 upland and lowland lakes within the Lake District, UK, to test our hypotheses about landscape drivers. Specifically, we expected that the magnitude of change in phototrophic assemblages would be greatest in lowland rather than upland lakes due to more intensive human activities in the watersheds of the former (agriculture, urbanization). Regional parameters, such as climate dynamics, would be the predominant factors regulating lake primary producers in remote upland lakes and thus, synchronize the dynamic of primary producer assemblages in these basins. We found broad support for the hypotheses pertaining to lowland sites as wastewater treatment was the main predictor of changes to primary producer assemblages in lowland lakes. In contrast, upland headwaters responded weakly to variation in atmospheric temperature, and dynamics in primary producers across upland lakes were asynchronous. Collectively, these findings show that nutrient inputs from point sources overwhelm climatic controls of algae and nuisance cyanobacteria, but highlights that large-scale stressors do not always initiate coherent regional lake response. Further, a lake's position in its landscape, its connectivity and proximity to point

  11. 33 CFR 165.904 - Lake Michigan at Chicago Harbor & Burnham Park Harbor-Safety and Security Zone.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... & Burnham Park Harbor-Safety and Security Zone. 165.904 Section 165.904 Navigation and Navigable Waters... Guard District § 165.904 Lake Michigan at Chicago Harbor & Burnham Park Harbor—Safety and Security Zone... entrance of the harbor connecting coordinates 41°51′09″ N, 087°36′36″W and 41°51′11″ N, 087°36′22″ W. (b...

  12. 33 CFR 165.904 - Lake Michigan at Chicago Harbor & Burnham Park Harbor-Safety and Security Zone.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... & Burnham Park Harbor-Safety and Security Zone. 165.904 Section 165.904 Navigation and Navigable Waters... Guard District § 165.904 Lake Michigan at Chicago Harbor & Burnham Park Harbor—Safety and Security Zone... entrance of the harbor connecting coordinates 41°51′09″ N, 087°36′36″ W and 41°51′11″ N, 087°36′22″ W. (b...

  13. 33 CFR 165.904 - Lake Michigan at Chicago Harbor & Burnham Park Harbor-Safety and Security Zone.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... & Burnham Park Harbor-Safety and Security Zone. 165.904 Section 165.904 Navigation and Navigable Waters... Guard District § 165.904 Lake Michigan at Chicago Harbor & Burnham Park Harbor—Safety and Security Zone... entrance of the harbor connecting coordinates 41°51′09″ N, 087°36′36″W and 41°51′11″ N, 087°36′22″ W. (b...

  14. Development of Great Lakes algorithms for the Nimbus-G coastal zone color scanner

    NASA Technical Reports Server (NTRS)

    Tanis, F. J.; Lyzenga, D. R.

    1981-01-01

    A series of experiments in the Great Lakes designed to evaluate the application of the Nimbus G satellite Coastal Zone Color Scanner (CZCS) were conducted. Absorption and scattering measurement data were reduced to obtain a preliminary optical model for the Great Lakes. Available optical models were used in turn to calculate subsurface reflectances for expected concentrations of chlorophyll-a pigment and suspended minerals. Multiple nonlinear regression techniques were used to derive CZCS water quality prediction equations from Great Lakes simulation data. An existing atmospheric model was combined with a water model to provide the necessary simulation data for evaluation of the preliminary CZCS algorithms. A CZCS scanner model was developed which accounts for image distorting scanner and satellite motions. This model was used in turn to generate mapping polynomials that define the transformation from the original image to one configured in a polyconic projection. Four computer programs (FORTRAN IV) for image transformation are presented.

  15. DIN retention-transport through four hydrologically connected zones in a headwater catchment of the Upper Mississippi River

    USGS Publications Warehouse

    Triska, F.J.; Duff, J.H.; Sheibley, R.W.; Jackman, A.P.; Avanzino, R.J.

    2007-01-01

    Dissolved inorganic nitrogen (DIN) retention-transport through a headwater catchment was synthesized from studies encompassing four distinct hydrologic zones of the Shingobee River Headwaters near the origin of the Mississippi River. The hydrologic zones included: (1) hillslope ground water (ridge to bankside riparian); (2) alluvial riparian ground water; (3) ground water discharged through subchannel sediments (hyporheic zone); and (4) channel surface water. During subsurface hillslope transport through Zone 1, DIN, primarily nitrate, decreased from ???3 mg-N/l to <0.1 mg-N/l. Ambient seasonal nitrate:chloride ratios in hillslope flow paths indicated both dilution and biotic processing caused nitrate loss. Biologically available organic carbon controlled biotic nitrate retention during hillslope transport. In the alluvial riparian zone (Zone 2) biologically available organic carbon controlled nitrate depletion although processing of both ambient and amended nitrate was faster during the summer than winter. In the hyporheic zone (Zone 3) and stream surface water (Zone 4) DIN retention was primarily controlled by temperature. Perfusion core studies using hyporheic sediment indicated sufficient organic carbon in bed sediments to retain ground water DIN via coupled nitrification-denitrification. Numerical simulations of seasonal hyporheic sediment nitrification-denitrification rates from perfusion cores adequately predicted surface water ammonium but not nitrate when compared to 5 years of monthly field data (1989-93). Mass balance studies in stream surface water indicated proportionally higher summer than winter N retention. Watershed DIN retention was effective during summer under the current land use of intermittently grazed pasture. However, more intensive land use such as row crop agriculture would decrease nitrate retention efficiency and increase loads to surface water. Understanding DIN retention capacity throughout the system, including special channel

  16. Catchment-scale groundwater recharge and vegetation water use efficiency

    NASA Astrophysics Data System (ADS)

    Troch, P. A. A.; Dwivedi, R.; Liu, T.; Meira, A.; Roy, T.; Valdés-Pineda, R.; Durcik, M.; Arciniega, S.; Brena-Naranjo, J. A.

    2017-12-01

    Precipitation undergoes a two-step partitioning when it falls on the land surface. At the land surface and in the shallow subsurface, rainfall or snowmelt can either runoff as infiltration/saturation excess or quick subsurface flow. The rest will be stored temporarily in the root zone. From the root zone, water can leave the catchment as evapotranspiration or percolate further and recharge deep storage (e.g. fractured bedrock aquifer). Quantifying the average amount of water that recharges deep storage and sustains low flows is extremely challenging, as we lack reliable methods to quantify this flux at the catchment scale. It was recently shown, however, that for semi-arid catchments in Mexico, an index of vegetation water use efficiency, i.e. the Horton index (HI), could predict deep storage dynamics. Here we test this finding using 247 MOPEX catchments across the conterminous US, including energy-limited catchments. Our results show that the observed HI is indeed a reliable predictor of deep storage dynamics in space and time. We further investigate whether the HI can also predict average recharge rates across the conterminous US. We find that the HI can reliably predict the average recharge rate, estimated from the 50th percentile flow of the flow duration curve. Our results compare favorably with estimates of average recharge rates from the US Geological Survey. Previous research has shown that HI can be reliably estimated based on aridity index, mean slope and mean elevation of a catchment (Voepel et al., 2011). We recalibrated Voepel's model and used it to predict the HI for our 247 catchments. We then used these predicted values of the HI to estimate average recharge rates for our catchments, and compared them with those estimated from observed HI. We find that the accuracies of our predictions based on observed and predicted HI are similar. This provides an estimation method of catchment-scale average recharge rates based on easily derived catchment

  17. The role of metabolism in modulating CO2 fluxes in boreal lakes

    NASA Astrophysics Data System (ADS)

    Bogard, Matthew J.; del Giorgio, Paul A.

    2016-10-01

    Lake CO2 emissions are increasingly recognized as an important component of the global CO2 cycle, yet the origin of these emissions is not clear, as specific contributions from metabolism and in-lake cycling, versus external inputs, are not well defined. To assess the coupling of lake metabolism with CO2 concentrations and fluxes, we estimated steady state ratios of gross primary production to respiration (GPP:R) and rates of net ecosystem production (NEP = GPP-R) from surface water O2 dynamics (concentration and stable isotopes) in 187 boreal lakes spanning long environmental gradients. Our findings suggest that internal metabolism plays a dominant role in regulating CO2 fluxes in most lakes, but this pattern only emerges when examined at a resolution that accounts for the vastly differing relationships between lake metabolism and CO2 fluxes. Fluxes of CO2 exceeded those from NEP in over half the lakes, but unexpectedly, these effects were most common and typically largest in a subset ( 30% of total) of net autotrophic lakes that nevertheless emitted CO2. Equally surprising, we found no environmental characteristics that distinguished this category from the more common net heterotrophic, CO2 outgassing lakes. Excess CO2 fluxes relative to NEP were best predicted by catchment structure and hydrologic properties, and we infer from a combination of methods that both catchment inputs and internal anaerobic processes may have contributed this excess CO2. Together, our findings show that the link between lake metabolism and CO2 fluxes is often strong but can vary widely across the boreal biome, having important implications for catchment-wide C budgets.

  18. Mercury in a stream-lake network of Andean Patagonia (Southern Volcanic Zone): Partitioning and interaction with dissolved organic matter.

    PubMed

    Soto Cárdenas, Carolina; Diéguez, María Del Carmen; Queimaliños, Claudia; Rizzo, Andrea; Fajon, Vesna; Kotnik, Jože; Horvat, Milena; Ribeiro Guevara, Sergio

    2018-04-01

    Lake Nahuel Huapi (NH) is a large, ultraoligotrophic deep system located in Nahuel Huapi National Park (NHNP) and collecting a major headwater network of Northwestern Patagonia (Argentina). Brazo Rincón (BR), the westernmost branch of NH, is close to the active volcanic formation Puyehue-Cordón Caulle. In BR, aquatic biota and sediments display high levels of total Hg (THg), ranging in contamination levels although it is an unpolluted region. In this survey, Hg species and fractionation were assessed in association with dissolved organic matter (DOM) in several aquatic systems draining to BR. THg varied between 16.8 and 363 ng L -1 , with inorganic Hg (Hg 2+ ) contributing up to 99.8% and methyl mercury (MeHg) up to 2.10%. DOC levels were low (0.31-1.02 mg L -1 ) resulting in high THg:DOC and reflecting in high Hg 2+ availability for binding particles (partitioning coefficient log K d up to 6.03). In streams, Hg fractionation and speciation related directly with DOM terrestrial prints, indicating coupled Hg-DOM inputs from the catchment. In the lake, DOM quality and photochemical and biological processing drive Hg fractionation, speciation and vertical levels. Dissolved gaseous Hg (Hg 0 ) reached higher values in BR (up to 3.8%), particularly in upper lake layers where solar radiation enhances the photoreduction of Hg 2+ and Hg-DOM complexes. The environmental conditions in BR catchment promote Hg 2+ binding to abiotic particles and bioaccumulation and the production of Hg 0 , features enhancing Hg mobilization among ecosystem compartments. Overall, the aquatic network studied can be considered a "natural Hg hotspot" within NHNP. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. [Construction and evaluation of ecological network in Poyang Lake Eco-economic Zone, China.

    PubMed

    Chen, Xiao Ping; Chen, Wen Bo

    2016-05-01

    Large-scale ecological patches play an important role in regional biodiversity conservation. However, with the rapid progress of China's urbanization, human disturbance on the environment is becoming stronger. Large-scale ecological patches will degrade not only in quantity, but also in quality, threatening the connections among them due to isolation and seriously affecting the biodiversity protection. Taking Poyang Lake Eco-economic Zone as a case, this paper established the potential ecological corridors by minimum cost model and GIS technique taking the impacts of landscape types, slope and human disturbance into consideration. Then, based on gravity quantitative model, we analyzed the intensity of ecological interactions between patches, and the potential ecological corridors were divided into two classes for sake of protection. Finally, the important ecological nodes and breaking points were identified, and the structure of the potential ecological network was analyzed. The results showed that forest and cropland were the main landscape types of ecological corridor composition, interaction between ecological patches differed obviously and the structure of the composed regional ecological network was complex with high connectivity and closure. It might provide a scientific basis for the protection of biodiversity and ecological network optimization in Poyang Lake Eco-economic Zone.

  20. Strong influence of the littoral zone on sedimentary lipid biomarkers in a meromictic lake.

    PubMed

    Bovee, R J; Pearson, A

    2014-11-01

    Planktonic sulfur bacteria growing in zones of photic zone euxinia (PZE) are important primary producers in stratified, sulfur-rich environments. The potential for export and burial of microbial biomass from anoxic photic zones remains relatively understudied, despite being of fundamental importance to interpreting the geologic record of bulk total organic carbon (TOC) and individual lipid biomarkers. Here we report the relative concentrations and carbon isotope ratios of lipid biomarkers from the water column and sediments of meromictic Mahoney Lake. The data show that organic matter in the central basin sediments is indistinguishable from material at the lake shoreline in both its lipid and carbon isotopic compositions. However, this material is not consistent with either the lipid profile or carbon isotope composition of biomass obtained directly from the region of PZE. Due to the strong density stratification and the intensive carbon and sulfur recycling pathways in the water column, there appears to be minimal direct export of the sulfur-oxidizing planktonic community to depth. The results instead suggest that basinal sediments are sourced via the littoral environment, a system that integrates an indigenous shoreline microbial community, the degraded remains of laterally rafted biomass from the PZE community, and detrital remains of terrigenous higher plants. Material from the lake margins appears to travel downslope, traverse the strong density gradient, and become deposited in the deep basin; its final composition may be largely heterotrophic in origin. This suggests an important role for clastic and/or authigenic minerals in aiding the burial of terrigenous and mat-derived organic matter in euxinic systems. Downslope or mineral-aided transport of anoxygenic, photoautotrophic microbial mats may have been a significant sedimentation process in early Earth history. © 2014 John Wiley & Sons Ltd.

  1. 33 CFR 165.930 - Safety Zone, Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Safety Zone, Brandon Road Lock... Guard District § 165.930 Safety Zone, Brandon Road Lock and Dam to Lake Michigan including Des Plaines... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY REGULATED NAVIGATION...

  2. Accounting for Ecohydrologic Separation Alters Interpreted Catchment Hydrology

    NASA Astrophysics Data System (ADS)

    Cain, M. R.; Ward, A. S.; Hrachowitz, M.

    2017-12-01

    Recent studies have demonstrated that in in some catchments, compartmentalized pools of water supply either plant transpiration (poorly mobile water) or streamflow and groundwater (highly mobile water), a phenomenon referred to as ecohydrologic separation. Although the literature has acknowledged that omission of ecohydrologic separation in hydrological models may influence estimates of residence times of water and solutes, no study has investigated how and when this compartmentalization might alter interpretations of fluxes and storages within a catchment. In this study, we develop two hydrochemical lumped rainfall-runoff models, one which incorporates ecohydrologic separation and one which does not for a watershed at the H.J. Andrews Experimental Forest (Oregon, USA), the study site where ecohydrologic separation was first observed. The models are calibrated against stream discharge, as well as stream chloride concentration. The objectives of this study are (1) to compare calibrated parameters and identifiability across models, (2) to determine how and when compartmentalization of water in the vadose zone might alter interpretations of fluxes and stores within the catchment, and (3) to identify how and when these changes alter residence times. Preliminary results suggest that compartmentalization of the vadose zone alters interpretations of fluxes and storages in the catchment and improves our ability to simulate solute transport.

  3. Biogeochemical zonation of sulfur during the discharge of groundwater to lake in desert plateau (Dakebo Lake, NW China).

    PubMed

    Su, Xiaosi; Cui, Geng; Wang, Huang; Dai, Zhenxue; Woo, Nam-Chil; Yuan, Wenzhen

    2018-06-01

    As one of the important elements of controlling the redox system within the hyporheic and hypolentic zone, sulfur is involved in a series of complex biogeochemical processes such as carbon cycle, water acidification, formation of iron and manganese minerals, redox processes of trace metal elements and a series of important ecological processes. Previous studies on biogeochemistry of the hyporheic and hypolentic zones mostly concentrated on nutrients of nitrogen and phosphorus, heavy metals and other pollutants. Systematic study of biogeochemical behavior of sulfur and its main controlling factors within the lake hypolentic zone is very urgent and important. In this paper, a typical desert plateau lake, Dakebo Lake in northwestern China, was taken for example within which redox zonation and biogeochemical characteristics of sulfur affected by hydrodynamic conditions were studied based on not only traditional hydrochemical analysis, but also environmental isotope evidence. In the lake hypolentic zone of the study area, due to the different hydrodynamic conditions, vertical profile of sulfur species and environmental parameters differ at the two sites of the lake (western side and center). Reduction of sulfate, deposition and oxidation of sulfide, dissolution and precipitation of sulfur-bearing minerals occurred are responded well to Eh, dissolved oxygen, pH, organic carbon and microorganism according to which the lake hypolentic zone can be divided into reduced zone containing H 2 S, reduced zone containing no H 2 S, transition zone and oxidized zone. The results of this study provide valuable insights for understanding sulfur conversion processes and sulfur biogeochemical zonation within a lake hypolentic zone in an extreme plateau arid environment and for protecting the lake-wetland ecosystem in arid and semiarid regions.

  4. Tsunami history of an Oregon coastal lake reveals a 4600 yr record of great earthquakes on the Cascadia subduction zone

    USGS Publications Warehouse

    Kelsey, H.M.; Nelson, A.R.; Hemphill-Haley, E.; Witter, R.C.

    2005-01-01

    Bradley Lake, on the southern Oregon coastal plain, records local tsunamis and seismic shaking on the Cascadia subduction zone over the last 7000 yr. Thirteen marine incursions delivered landward-thinning sheets of sand to the lake from nearshore, beach, and dune environments to the west. Following each incursion, a slug of marine water near the bottom of the freshwater lake instigated a few-year-to-several-decade period of a brackish (??? 4??? salinity) lake. Four additional disturbances without marine incursions destabilized sideslopes and bottom sediment, producing a suspension deposit that blanketed the lake bottom. Considering the magnitude and duration of the disturbances necessary to produce Bradley Lake's marine incursions, a local tsunami generated by a great earthquake on the Cascadia subduction zone is the only accountable mechanism. Extreme ocean levels must have been at least 5-8 m above sea level, and the cumulative duration of each marine incursion must have been at least 10 min. Disturbances without marine incursions require seismic shaking as well. Over the 4600 yr period when Bradley Lake was an optimum tsunami recorder, tsunamis from Cascadia plate-boundary earthquakes came in clusters. Between 4600 and 2800 cal yr B.P., tsunamis occurred at the average frequency of ??? 3-4 every 1000 yr. Then, starting ???2800 cal yr B.P., there was a 930-1260 yr interval with no tsunamis. That gap was followed by a ???1000 yr period with 4 tsunamis. In the last millennium, a 670-750 yr gap preceded the A.D. 1700 earthquake and tsunami. The A.D. 1700 earthquake may be the first of a new cluster of plate-boundary earthquakes and accompanying tsunamis. Local tsunamis entered Bradley Lake an average of every 390 yr, whereas the portion of the Cascadia plate boundary that underlies Bradley Lake ruptured in a great earthquake less frequently, about once every 500 yr. Therefore, the entire length of the subduction zone does not rupture in every earthquake, and Bradley

  5. The impact of climate and environmental processes on vegetation pattern in the Czechowskie lake catchment Czechowo Region (Northern Tuchola Pinewoods) during the Younger Dryas cooling

    NASA Astrophysics Data System (ADS)

    Noryśkiewicz, Agnieszka Maria; Kramkowski, Mateusz; Słowiński, Michał; Zawiska, Izabela; Lutyńska, Monika; Błaszkiewicz, Mirosław; Brauer, Achim

    2014-05-01

    Czechowskie lake is located in the northern part of the Tuchola Pinewoods District (Northern Poland) in a young glacial landscape. At present, the majority of the area is forested or used for agricultural purposes, but among them a high amount of basins filled with biogenic sediments are present. This area is very suitable for the postglacial vegetation development investigation because of the LST ash and laminated sediments which we found in the Trzechowskie palaeolake and Czechowskie Lake (Wulf et. all 2013). The aim of the research was to reconstruct the past landscape and vegetation response to Younger Dryas cooling and we present the results of the palinological analysis done for 6 core of biogenic sediments. Our main objective was to determine whether local factors such as topography and soil cover have a significant impact on the vegetation, eutrophy and sedimentation rate at this time. In the lake Czechowskie lake catchment we have six cores that cover postglacial succession (Lake Czechowskie small basin - profile JC-12-s; Lake Czechowskiego terrace - profile TK; Lake Czechowskie vicinity - profile "Oko and Cz/80; Trzechowskie paleolake - profile T/trz; Valley between paleolake Trzechowskie and Lake Czechowskie - profile DTCZ-4). The paleoecological research carried out involved an analysis of pollen, macrofossils, Cladocera, diatom, loss-on-ignition and CaCO3 content. The results show, that the dominant plant communities during the Youngers Dryas in the region nearby Lake Czechowskie are heliophytes xeric herb vegetation with juniper (Juniperus communis) shrubs and birch (Betula) and pine (Pinus sylvestris). In the pollen diagrams there was the difference noted in the participation of the dominant pollen, the juniper pollen was always high but varied from 18 to 37%, birch average pollen share was between 17-27%. The thickness and type of the sediment accumulated in Younger Dryas in the presented profiles differs significantly. In the profiles which

  6. [The main radionuclides and dose formation in fish of the Chernobyl NPP exclusion zone].

    PubMed

    Gudkov, D I; Kaglian, A E; Kireev, S I; Nazarov, A B; Klenus, V G

    2008-01-01

    The results of the researches of spices-specificity, accumulation dynamics and distribution of 90Sr, of 137Cs and of transuranic elements in fish of the Chernobyl NPP exclusion zone are analysed. The data of estimations of absorbed doze rate from incorporated radionuclides for pray fish and predatory species are given. For the fish from the lake of the left-bank floodplain of the Pripyat River the increase of 90Sr specific activity is registered which is presumably connected with the dynamics of the physical-chemical forms of the radionuclide in soils and their wash out in water bodies from the catchment basin. Now about 90% of internal dose rate of fish from closed aquatic ecosystems within the Chernobyl NPP exclusion zone is caused by 90Sr incorporation.

  7. The Lake-Catchment (LakeCat) Dataset for characterizing hydrologically-relevant landscape features for lakes across the conterminous US

    EPA Science Inventory

    Lake conditions, including their biota, respond to both natural and human-related landscape features. Characterizing these features within the contributing areas (i.e., delineated watersheds) of lakes could improve the analysis and the sustainable use and management of these impo...

  8. Assessing risk of non-compliance of phosphorus standards for lakes in England and Wales

    NASA Astrophysics Data System (ADS)

    Duethmann, D.; Anthony, S.; Carvalho, L.; Spears, B.

    2009-04-01

    High population densities, use of inorganic fertilizer and intensive livestock agriculture have increased phosphorus loads to lakes, and accelerated eutrophication is a major pressure for many lakes. The EC Water Framework Directive (WFD) requires that good chemical and ecological quality is restored in all surface water bodies by 2015. Total phosphorus (TP) standards for lakes in England and Wales have been agreed recently, and our aim was to estimate what percentage of lakes in England and Wales is at risk of failing these standards. With measured lake phosphorus concentrations only being available for a small number of lakes, such an assessment had to be model based. The study also makes a source apportionment of phosphorus inputs into lakes. Phosphorus loads were estimated from a range of sources including agricultural loads, sewage effluents, septic tanks, diffuse urban sources, atmospheric deposition, groundwater and bank erosion. Lake phosphorus concentrations were predicted using the Vollenweider model, and the model framework was satisfactorily tested against available observed lake concentration data. Even though predictions for individual lakes remain uncertain, results for a population of lakes are considered as sufficiently robust. A scenario analysis was carried out to investigate to what extent reductions in phosphorus loads would increase the number of lakes achieving good ecological status in terms of TP standards. Applying the model to all lakes in England and Wales greater than 1 ha, it was calculated that under current conditions roughly two thirds of the lakes would fail the good ecological status with respect to phosphorus. According to our estimates, agricultural phosphorus loads represent the most frequent dominant source for the majority of catchments, but diffuse urban runoff also is important in many lakes. Sewage effluents are the most frequent dominant source for large lake catchments greater than 100 km². The evaluation in terms of

  9. Relating runoff generation mechanisms to concentration-discharge relationships in catchments with well-characterized Critical Zone structures and hydrologic dynamics

    NASA Astrophysics Data System (ADS)

    Hahm, W. J.; Wang, J.; Druhan, J. L.; Rempe, D.; Dietrich, W. E.

    2017-12-01

    Stream solute concentration-discharge (C-Q) relationships integrate catchment-scale hydrologic and geochemical processes, potentially yielding valuable information about runoff generation and weathering mechanisms. However, recent compilations have established that chemostasis—the condition where solute concentrations are invariant across large ranges of runoff—is observed in watersheds of diverse lithology, climate, and topography, suggesting an equifinality of the C-Q relationship independent of hydrologic process. Here we explore C-Q signals in contrasting catchments of the Eel River Critical Zone (CZ) Observatory in the Northern California Coast Ranges, where, unlike most watersheds where chemostasis has been observed, hillslope hydrologic processes are well characterized via years of intensive hydrologic monitoring. Our two catchments in the Franciscan Complex have radically different runoff generation mechanisms arising from differences in CZ structure: at Elder Creek (Coastal Belt), rain passes vertically as unsaturated flow through soil, saprolite, and a thick weathered rock zone before perching as groundwater on fresh bedrock and flowing laterally through fractures to generate streamflow, resulting in nearly chemostatic major cation behavior (power law C-Q slopes (B) ≈ 0 to -0.1). At Dry Creek (Central Belt), the thin (2 to 3 m) hydrologically active CZ completely saturates in most storm events, generating saturation overland flow across the landscape. New data from Dry Creek reveal log-log C-Q relationships for major cations that exhibit negative curvature, indicating a trend towards increasing dilution at higher flow rates and a possible C-Q signature of overland flow. High geomorphic channel drainage density (16.9 km/km2) results in short flow paths and, presumably, short water hillslope residence times at high runoff when overland flow dominates (> 50 mm d-1). Surprisingly, even at these high runoff rates, pure dilution does not occur (high

  10. Temporal coherence of two alpine lake basins of the Colorado Front Range, USA

    USGS Publications Warehouse

    Baron, Jill S.; Caine, N.

    2000-01-01

    1. Knowledge of synchrony in trends is important to determining regional responses of lakes to disturbances such as atmospheric deposition and climate change. We explored the temporal coherence of physical and chemical characteristics of two series of mostly alpine lakes in nearby basins of the Colorado Rocky Mountains. Using year-to-year variation over a 10-year period, we asked whether lakes more similar in exposure to the atmosphere be-haved more similarly than those with greater influence of catchment or in-lake processes.2. The Green Lakes Valley and Loch Vale Watershed are steeply incised basins with strong altitudinal gradients. There are glaciers at the heads of each catchment. The eight lakes studied are small, shallow and typically ice-covered for more than half the year. Snowmelt is the dominant hydrological event each year, flushing about 70% of the annual discharge from each lake between April and mid-July. The lakes do not thermally stratify during the period of open water. Data from these lakes included surface water temper-ature, sulphate, nitrate, calcium, silica, bicarbonate alkalinity and conductivity.3. Coherence was estimated by Pearson's correlation coefficient between lake pairs for each of the different variables. Despite close geographical proximity, there was not a strong direct signal from climatic or atmospheric conditions across all lakes in the study. Individual lake characteristics overwhelmed regional responses. Temporal coherence was higher for lakes within each basin than between basins and was highest for nearest neighbours.4. Among the Green Lakes, conductivity, alkalinity and temperature were temporally coherent, suggesting that these lakes were sensitive to climate fluctuations. Water tem-perature is indicative of air temperature, and conductivity and alkalinity concentrations are indicative of dilution from the amount of precipitation flushed through by snowmelt.5. In Loch Vale, calcium, conductivity, nitrate, sulphate and

  11. 78 FR 48311 - Special Local Regulations; Regattas and Marine Parades in the Captain of the Port Lake Michigan Zone

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-08

    ... Zone AGENCY: Coast Guard, DHS. ACTION: Final rule. SUMMARY: The Coast Guard is amending special local regulations for annual regattas and marine parades in the Captain of the Port Lake Michigan Zone. This rule is intended to provide for the safety of life and property on navigable waters immediately prior to, during...

  12. Vegetation, climate and lake changes over the last 7000 years at the boreal treeline in north-central Siberia

    NASA Astrophysics Data System (ADS)

    Klemm, Juliane; Herzschuh, Ulrike; Pestryakova, Luidmila A.

    2016-09-01

    Palaeoecological investigations in the larch forest-tundra ecotone in northern Siberia have the potential to reveal Holocene environmental variations, which likely have consequences for global climate change because of the strong high-latitude feedback mechanisms. A sediment core, collected from a small lake (radius ∼100 m), was used to reconstruct the development of the lake and its catchment as well as vegetation and summer temperatures over the last 7100 calibrated years. A multi-proxy approach was taken including pollen and sedimentological analyses. Our data indicate a gradual replacement of open larch forests by tundra with scattered single trees as found today in the vicinity of the lake. An overall trend of cooling summer temperature from a ∼2 °C warmer-than-present mid-Holocene summer temperatures until the establishment of modern conditions around 3000 years ago is reconstructed based on a regional pollen-climate transfer function. The inference of regional vegetation changes was compared to local changes in the lake's catchment. An initial small water depression occurred from 7100 to 6500 cal years BP. Afterwards, a small lake formed and deepened, probably due to thermokarst processes. Although the general trends of local and regional environmental change match, the lake catchment changes show higher variability. Furthermore, changes in the lake catchment slightly precede those in the regional vegetation. Both proxies highlight that marked environmental changes occurred in the Siberian forest-tundra ecotone over the course of the Holocene.

  13. Geologic map of the Bartlett Springs Fault Zone in the vicinity of Lake Pillsbury and adjacent areas of Mendocino, Lake, and Glenn Counties, California

    USGS Publications Warehouse

    Ohlin, Henry N.; McLaughlin, Robert J.; Moring, Barry C.; Sawyer, Thomas L.

    2010-01-01

    The Lake Pillsbury area lies in the eastern part of the northern California Coast Ranges, along the east side of the transform boundary between the Pacific and North American plates (fig. 1). The Bartlett Springs Fault Zone is a northwest-trending zone of faulting associated with this eastern part of the transform boundary. It is presently active, based on surface creep (Svarc and others, 2008), geomorphic expression, offset of Holocene units (Lienkaemper and Brown, 2009), and microseismicity (Bolt and Oakeshott, 1982; Dehlinger and Bolt, 1984; DePolo and Ohlin, 1984). Faults associated with the Bartlett Springs Fault Zone at Lake Pillsbury are steeply dipping and offset older low to steeply dipping faults separating folded and imbricated Mesozoic terranes of the Franciscan Complex and interleaved rocks of the Coast Range Ophiolite and Great Valley Sequence. Parts of this area were mapped in the late 1970s and 1980s by several investigators who were focused on structural relations in the Franciscan Complex (Lehman, 1978; Jordan, 1975; Layman, 1977; Etter, 1979). In the 1980s the U.S. Geological Survey (USGS) mapped a large part of the area as part of a mineral resource appraisal of two U.S. Forest Service Roadless areas. For evaluating mineral resource potential, the USGS mapping was published at a scale of 1:62,500 as a generalized geologic summary map without a topographic base (Ohlin and others, 1983; Ohlin and Spear, 1984). The previously unpublished mapping with topographic base is presented here at a scale of 1:30,000, compiled with other mapping in the vicinity of Lake Pillsbury. The mapping provides a geologic framework for ongoing investigations to evaluate potential earthquake hazards and structure of the Bartlett Springs Fault Zone. This geologic map includes part of Mendocino National Forest (the Elk Creek Roadless Area) in Mendocino, Glenn, and Lake Counties and is traversed by several U.S. Forest Service Routes, including M1 and M6 (fig. 2). The study

  14. Impacts of Recent Wetting on Snow Processes and Runoff Generation in a Terminal Lake Basin, Devils Lake, North Dakota.

    NASA Astrophysics Data System (ADS)

    Mahmood, T. H.; Van Hoy, D.

    2016-12-01

    The Devils Lake Basin, only terminal lake basin in North America, drains to a terminal lake called Devils Lake. Terminal lakes are susceptible to climate and land use changes as their water levels fluctuate to these changes. The streamflow from the headwater catchments of the Devils Lake basin exerts a strong control on the water level of the lake. Since, the mid-1980s, the Devils Lake Basin as well as other basins in the northern Great Plains have faced a large and abrupt surge in precipitation regime resulting in a series of wetter climatic condition and flooding around the Devils Lake area. Nevertheless, the impacts of the recent wetting on snow processes such as snow accumulations, blowing snow transport, in-transit sublimation, frozen soil infiltration and snowmelt runoff generations in a headwater catchment of the Devils Lake basin are poorly understood. In this study, I utilize a physically-based, distributed cold regions hydrological model to simulate the hydrological responses in the Mauvais Coulee basin that drains to Devils Lake. The Mauvais Coulee basin ( 1072 km2), located in the north-central North Dakota, is set in a gently rolling landscape with low relief ( 220 m) and an average elevation of 500 m. Major land covers are forest areas in turtle mountains ( 10%) and crops ( 86%), with wheat ( 25%) and canola ( 20%) as the major crops. The model set up includes ten sub-basins, each of which is divided into several hydrological response units (HRUs): riparian forest, river channel, reservoir, wheat, canola, other crops, and marsh. The model is parameterized using local and regional measurements and the findings from previous scientific studies. The model is evaluated against streamflow observations at the Mauvais Coulee gauge (USGS) during 1994-2013 periods using multiple performance criteria. Finally, the impacts of recent increases in precipitation on hydrologic responses are investigated using modeled hydrologic processes.

  15. Radio-echo sounding of 'active' Antarctic subglacial lakes

    NASA Astrophysics Data System (ADS)

    Siegert, M. J.; Ross, N.; Blankenship, D. D.; Young, D. A.; Greenbaum, J. S.; Richter, T.; Rippin, D. M.; Le Brocq, A. M.; Wright, A.; Bingham, R.; Corr, H.; Ferraccioli, F.; Jordan, T. A.; Smith, B. E.; Payne, A. J.; Dowdeswell, J. A.; Bamber, J. L.

    2013-12-01

    Repeat-pass satellite altimetry has revealed 124 discrete surface height changes across the Antarctic Ice Sheet, interpreted to be caused by subglacial lake discharges (surface lowering) and inputs (surface uplift). Few of these active lakes have been confirmed by radio-echo sounding (RES) despite several attempts, however. Over the last 5 years, major geophysical campaigns have acquired RES data from several 'active' lake sites, including the US-UK-Australian ICECAP programme in East Antactica and the UK survey of the Institute Ice Stream in West Antarctica. In the latter case, a targeted RES survey of one 'active' lake was undertaken. RES evidence of the subglacial bed beneath 'active' lakes in both East and West Antarctica will be presented, and the evidence for pooled subglacial water from these data will be assessed. Based on this assessment, the nature of 'active' subglacial lakes, and their associated hydrology and relationship with surrounding topography will be discussed, as will the likelihood of further 'active' lakes in Antarctica. Hydraulic potential map of the Byrd Glacier catchment with contours at 5 MPa intervals. Predicted subglacial flowpaths are shown in blue. Subglacial lakes known from previous geophysical surveys are shown as black triangles while the newly discovered 'Three-tier lakes' are shown in dashed black outline. Surface height change features within the Byrd subglacial catchment are shown in outline and are shaded to indicate whether they were rising or falling during the ICESat campaign. Those features are labelled in-line with the numbering system of Smith et al. (J. Glac. 2009).

  16. Runoff and Solute Mobilisation in a Semi-arid Headwater Catchment

    NASA Astrophysics Data System (ADS)

    Hughes, J. D.; Khan, S.; Crosbie, R.; Helliwell, S.; Michalk, D.

    2006-12-01

    Runoff and solute transport processes contributing to stream flow were determined in a small headwater catchment in the eastern Murray-Darling Basin of Australia using hydrometric and tracer methods. Stream flow and electrical conductivity were monitored from two gauges draining a portion of upper catchment area (UCA), and a saline scalded area respectively. Results show that the bulk of catchment solute export, occurs via a small saline scald (< 2% of catchment area) where solutes are concentrated in the near surface zone (0-40 cm). Non-scalded areas of the catchment are likely to provide the bulk of catchment runoff, although the scalded area is a higher contributor on an areal basis. Runoff from the non-scalded area is about two orders of magnitude lower in electrical conductivity than the scalded area. This study shows that the scalded zone and non-scalded parts of the catchment can be managed separately since they are effectively de-coupled except over long time scales, and produce runoff of contrasting quality. Such differences are "averaged out" by investigations that operate at larger scales, illustrating that observations need to be conducted at a range of scales. EMMA modelling using six solutes shows that "event" or "new" water dominated the stream hydrograph from the scald. This information together with hydrometric data and soil physical properties indicate that saturated overland flow is the main form of runoff generation in both the scalded area and the UCA. Saturated areas make up a small proportion of the catchment, but are responsible for production of all run off in conditions experienced throughout the experimental period. The process of saturation and runoff bears some similarities to the VSA concept (Hewlett and Hibbert 1967).

  17. Influence of permafrost on lake terraces of Lake Heihai (NE Tibetan Plateau)

    NASA Astrophysics Data System (ADS)

    Lockot, Gregori; Hartmann, Kai; Wünnemann, Bernd

    2013-04-01

    The Tibetan Plateau (TP) is one of the key regions for climatic global change. Besides the poles the TP is the third highest storage of frozen water in glaciers. Here global warming is three times higher than in the rest of the world. Additionally the TP provides water for billions of people and influences the moisture availability from the Indian and East Asian monsoon systems. During the Holocene extent and intensity of the monsoonal systems changed. Hence, in the last decades, a lot of work was done to reconstruct timing and frequency of monsoonal moisture, to understand the past and give a better forecast for the future. Comparative workings often show very heterogeneous patterns of timing and frequency of the Holocene precipitation and temperature maximum, emphasizing the local importance of catchment dynamics. In this study we present first results of lake Heihai (36°N, 93°15'E, 4500m a.s.l.), situated at the north-eastern border of the TP. The lake is surrounded by a broad band of near-shore lake sediments, attesting a larger lake extent in the past. These sediments were uplifted by permafrost, reaching nowadays heights ca. +8 meters above present lake level. Due to the uplift one of the main inflows was blocked and the whole hydrology of the catchment changed. To quantify the uplift of permafrost Hot Spot Analysis were accomplished at a DEM of the near-shore area. As a result regions of high permafrost uplift and those which mirror the original height of lake ground were revealed. The most obvious uplift took place in the northern and western part of the lake, where the four uplift centers are located. In contrast the southern and eastern areas show a rather degraded pattern (probably by fluvial erosion, thermokarst, etc.). The ancient lake bottom, without permafrost uplift was estimated to be 4-6 meters above the modern lake level. For a better understanding of permafrost interaction inside the terrace bodies a 5m sediment profile was sampled and

  18. Effects of Climate Change on Stratification-Destratification Cycles and Resulting Cyanobacterial Blooms in Shallow Lakes of the North Temperate Zone

    NASA Astrophysics Data System (ADS)

    King, A. T.; Schaffner, L. R.; Gilman, B.; Gronwall, T. R.; Gronwall, D.; Dietz, E. R.; Hairston, N., Jr.

    2016-12-01

    "Harmful Algal Blooms" of cyanobacteria (cyanoHABs) have become more frequent and larger in extent for inland waters across the globe. Honeoye Lake, the shallowest of the New York State Finger Lakes (9 m max depth, 7 km long), has experienced recent problematic blooms. We use this lake as a model system for understanding the effects of climate change on cyanoHABs in shallow lakes. Cyanobacteria thrive in warm waters with high phosphorus concentrations. While high P is often caused by external nutrient loading via surface runoff, it can also result from internal loading when P-rich sediment is exposed to anoxic/reducing conditions in a lake's hypolimnion after prolonged stratification. In deep lakes, hypolimnetic water remains isolated from the epilimnion throughout the summer with the dissolved P separated from illuminated surface water; in very shallow lakes where the entire water column remains oxygenated/oxidizing, P is bound in insoluble inorganic complexes. However, in lakes of intermediate depth, hypolimnetic water high in soluble reactive P may mix into the photic zone if sufficiently strong winds occur, stimulating a cyanoHAB. We suggest that repeated cycles of stratification, hypolimnetic anoxia, and subsequent mixing may result in "phosphorus pumping" with recurrent cyanoHABs throughout summer. Climate change is causing stronger thermal stratification in lakes through increased surface warming but also causing more frequent storms that can break down stratification in a shallow lake. We use Honeoye Lake as a model system for understanding the extent to which P-pumping occurs and the likely effects of climate change on cyanoHABs. Field data collected in summer 2016 were used to calibrate the publically available General Lake Model (GLM) to predict Honeoye's discontinuous polymictic pattern of stratification punctuated by overturn events and spikes in epilimnetic P and cyanobacterial biomass. We use the calibrated model to determine cyanoHAB incidence as a

  19. Time-Scales of Storm Flow Response in the Stream and Hyporheic Zone of a Small, Steep Forested Catchment - Contrasting the Potential Contributions from the Hillslope, Riparian-Hyporheic Zones, and the Stream Channel

    NASA Astrophysics Data System (ADS)

    Wondzell, S. M.; Corson-rikert, H.; Haggerty, R.

    2016-12-01

    Storm-flow responses of small catchments are widely studied to identify water sources and mechanisms routing water through catchments. These studies typically observe rapid responses to rainfall with peak concentrations of many chemical constituents occurring on rising leg of the hydrograph. To explain this, some conceptual models suggest that stream water early in storm periods is dominated by riparian water sources with hillslope water sources dominating later in the storm. We examined changes in both stream and hyporheic water chemistry during a small, autumn storm in a forested mountain catchment to test this conceptual model. Our study site was located in WS01 at the H.J. Andrews Experimental Forest, in Oregon, USA. The watershed has a narrow valley floor, always less than 15 m wide and occasionally interrupted by narrow, constrained bedrock sections. The valley floor has a longitudinal gradient of approximately 14%. Hyporheic water tends to flow parallel the valley axis and flow paths change little with changes in stream discharge, even during storm events. A well network is located in a 30-m reach near the bottom of the watershed. We sampled the stream, 9 hyporheic wells, and a hillslope well for DOC, DIC, Cl-, and NO3- during the storm. As expected, concentrations of DOC and NO3- increased rapidly on the rising leg of the hydrograph in both the stream and the hyporheic wells. However, the stream always had higher concentrations of DOC, and lower concentrations of NO3-, than did either the hillslope well or the hyporheic wells. These data suggest that the riparian/hyporheic zone is not a likely source of water influencing stream water chemistry on the rising leg of the hydrograph. These data agree with median travel time estimates of water flowing along hyporheic flow paths - it takes many 10s of hours for water to move from the riparian/hyporheic zone to the stream - a time scale that is far too slow to explain the rapid changes observed on the rising leg

  20. Biomonitoring using invasive species in a large Lake: Dreissena distribution maps hypoxic zones

    USGS Publications Warehouse

    Karatayev, Alexander Y.; Burlakova, Lyubov E.; Mehler, Knut; Bocaniov, Serghei A.; Collingsworth, Paris D.; Warren, Glenn; Kraus, Richard T.; Hinchey, Elizabeth K.

    2017-01-01

    Due to cultural eutrophication and global climate change, an exponential increase in the number and extent of hypoxic zones in marine and freshwater ecosystems has been observed in the last few decades. Hypoxia, or low dissolved oxygen (DO) concentrations, can produce strong negative ecological impacts and, therefore, is a management concern. We measured biomass and densities of Dreissena in Lake Erie, as well as bottom DO in 2014 using 19 high frequency data loggers distributed throughout the central basin to validate a three-dimensional hydrodynamic-ecological lake model. We found that a deep, offshore hypoxic zone was formed by early August, restricting the Dreissena population to shallow areas of the central basin. Deeper than 20 m, where bottom hypoxia routinely develops, only young of the year mussels were found in small numbers, indicating restricted recruitment and survival of young Dreissena. We suggest that monitoring Dreissenadistribution can be an effective tool for mapping the extent and frequency of hypoxia in freshwater. In addition, our results suggest that an anticipated decrease in the spatial extent of hypoxia resulting from nutrient management has the potential to increase the spatial extent of profundal habitat in the central basin available for Dreissena expansion.

  1. One century sedimentary record of lead and zinc pollution in Yangzong Lake, a highland lake in southwestern China.

    PubMed

    Zhang, Enlou; Liu, Enfeng; Shen, Ji; Cao, Yanmin; Li, Yanling

    2012-01-01

    Reconstruction of trace metal pollution histories and sources may help us to regulate current pollutant discharge. This is especially important for the highland lakes in southwestern China, which are facing trace metals pollution. We present sedimentary records of 11 metals accumulated in Yangzong Lake since the 1870's, a highland lake in southwestern China. Pollution of lead and zinc (Pb and Zn) was differentiated based on principal component analysis, geochemical normalization, and lead isotope ratios. Nearly all the metals as well as grain size composition show generally constant values before the mid-1980's, denoting stable detrital input in the catchment. Fluctuations in the concentrations of the metals as well as grain size composition since the mid-1980's indicate an increase in soil erosion with strengthened human disturbance in the catchment. After geochemical normalization, Pb and Zn showed constant values before 1990 AD and then a gradual increase in parallel with the variations in 208Pb/206Pb and 207Pb/206Pb ratios, indicating that Pb and Zn pollution occurred. Combining the data of 208pb/206Pb and 207Pb/6Pb ratios in the sediments of Yangzong Lake, leaded gasoline, Pb-Zn ore and coal, and consumption or production historical trends, we deduced that the enhanced Pb and Zn pollution in Yangzong Lake is caused primarily by ore mining and refining.

  2. Deep structure beneath Lake Ontario: Crustal-scale Grenville subdivisions

    USGS Publications Warehouse

    Forsyth, D. A.; Milkereit, B.; Zelt, Colin A.; White, D. J.; Easton, R. M.; Hutchinson, Deborah R.

    1994-01-01

    Lake Ontario marine seismic data reveal major Grenville crustal subdivisions beneath central and southern Lake Ontario separated by interpreted shear zones that extend to the lower crust. A shear zone bounded transition between the Elzevir and Frontenac terranes exposed north of Lake Ontario is linked to a seismically defined shear zone beneath central Lake Ontario by prominent aeromagnetic and gravity anomalies, easterly dipping wide-angle reflections, and fractures in Paleozoic strata. We suggest the central Lake Ontario zone represents crustal-scale deformation along an Elzevir–Frontenac boundary zone that extends from outcrop to the south shore of Lake Ontario.Seismic images from Lake Ontario and the exposed western Central Metasedimentary Belt are dominated by crustal-scale shear zones and reflection geometries featuring arcuate reflections truncated at their bases by apparent east-dipping linear reflections. The images show that zones analogous to the interpreted Grenville Front Tectonic Zone are also present within the Central Metasedimentary Belt and support models of northwest-directed crustal shortening for Grenvillian deep crustal deformation beneath most of southeastern Ontario.A Precambrian basement high, the Iroquoian high, is defined by a thinning of generally horizontal Paleozoic strata over a crestal area above the basement shear zone beneath central Lake Ontario. The Iroquoian high helps explain the peninsular extension into Lake Ontario forming Prince Edward County, the occurrence of Precambrian inlier outcrops in Prince Edward County, and Paleozoic fractures forming the Clarendon–Linden structure in New York.

  3. Impact of papyrus wetland encroachment on spatial and temporal variabilities of stream flow and sediment export from wet tropical catchments.

    PubMed

    Ryken, N; Vanmaercke, M; Wanyama, J; Isabirye, M; Vanonckelen, S; Deckers, J; Poesen, J

    2015-04-01

    During the past decades, land use change in the Lake Victoria basin has significantly increased the sediment fluxes to the lake. These sediments as well as their associated nutrients and pollutants affect the food and water security of millions of people in one of Africa's most densely populated regions. Adequate catchment management strategies, based on a thorough understanding of the factors controlling runoff and sediment discharge are therefore crucial. Nonetheless, studies on the magnitude and dynamics of runoff and sediment discharge are very scarce for the Lake Victoria basin and the African Rift region. We therefore conducted runoff discharge and sediment export measurements in the Upper Rwizi, a catchment in Southwest Uganda, which is representative for the Lake Victoria basin. Land use in this catchment is characterized by grazing area on the high plateaus, banana cropping on the slopes and Cyperus papyrus L. wetlands in the valley bottoms. Due to an increasing population pressure, these papyrus wetlands are currently encroached and transformed into pasture and cropland. Seven subcatchments (358 km2-2120 km2), with different degrees of wetland encroachment, were monitored during the hydrological year June 2009-May 2010. Our results indicate that, due to their strong buffering capacity, papyrus wetlands have a first-order control on runoff and sediment discharge. Subcatchments with intact wetlands have a slower rainfall-runoff response, smaller peak runoff discharges, lower rainfall-runoff ratios and significantly smaller suspended sediment concentrations. This is also reflected in the measured annual area-specific suspended sediment yields (SYs): subcatchments with encroached papyrus swamps have SY values that are about three times larger compared to catchments with intact papyrus vegetation (respectively 106-137 ton km(-2) y(-1) versus 34-37 ton km(-2) y(-1)). We therefore argue that protecting and (where possible) rehabilitating these papyrus wetlands

  4. Monitoring mountain lakes in a changing Alpine cryosphere: the Lago Nero project (Ticino, Switzerland)

    NASA Astrophysics Data System (ADS)

    Scapozza, Cristian; Bruder, Andreas; Domenici, Mattia; Lepori, Fabio; Pera, Sebastian; Pozzoni, Maurizio; Rioggi, Stefano; Colombo, Luca

    2017-04-01

    Mountain lakes and their catchments of the Alpine cryosphere are facing global pressures including climate warming and deposition of atmospheric pollutants. Due to their remoteness, often low buffer capacities and sensitive biotic communities, alpine lake catchments are particularly well suited as sentinels of environmental change. Lago Nero is the object of an intensive survey, aimed at developing predictive models of catchment-wide ecosystem responses to environmental change (Bruder et al. 2016). Lago Nero is located at the head of Val Bavona (Canton Ticino, southern Switzerland), in a southwest-facing catchment, with altitude ranging from 2385 to 2842 m asl. The substrate is dominated by gneissic bedrock with patches of grassy vegetation and shallow soils. The catchment is snow-covered approximately from November to May. For a similar period, the lake is ice-covered. Lago Nero is an oligotrophic, soft-water lake with a surface of approximatively 13 ha and a maximal depth of 73 m. According to the regional model of potential permafrost distribution in the southern Swiss Alps (Scapozza & Mari 2010), the presence of discontinuous permafrost is probable in almost the entire surface of the catchment covered by loose debris. A direct evidence of permafrost occurrence is the presence of a small active/inactive rock glacier in the south-eastern part of the catchment (front altitude: 2560 m asl). Monitoring of the site began in summer 2014, with an initial phase aimed at developing and testing methodologies and at evaluating the suitability of the catchment and the feasibility of the monitoring program. The intensive survey at Lago Nero measures a wide array of ecosystem responses, including runoff quantity and chemistry, catchment soil temperature (also on the rock glacier) and composition of terrestrial vegetation. Sampling frequency depends on the parameter measured, varying from nearly continuous (e.g. runoff and temperature) to five-year intervals (e.g. soil and

  5. Modeling the Hydrological Regime of Turkana Lake (Kenya, Ethiopia) by Combining Spatially Distributed Hydrological Modeling and Remote Sensing Datasets

    NASA Astrophysics Data System (ADS)

    Anghileri, D.; Kaelin, A.; Peleg, N.; Fatichi, S.; Molnar, P.; Roques, C.; Longuevergne, L.; Burlando, P.

    2017-12-01

    Hydrological modeling in poorly gauged basins can benefit from the use of remote sensing datasets although there are challenges associated with the mismatch in spatial and temporal scales between catchment scale hydrological models and remote sensing products. We model the hydrological processes and long-term water budget of the Lake Turkana catchment, a transboundary basin between Kenya and Ethiopia, by integrating several remote sensing products into a spatially distributed and physically explicit model, Topkapi-ETH. Lake Turkana is the world largest desert lake draining a catchment of 145'500 km2. It has three main contributing rivers: the Omo river, which contributes most of the annual lake inflow, the Turkwel river, and the Kerio rivers, which contribute the remaining part. The lake levels have shown great variations in the last decades due to long-term climate fluctuations and the regulation of three reservoirs, Gibe I, II, and III, which significantly alter the hydrological seasonality. Another large reservoir is planned and may be built in the next decade, generating concerns about the fate of Lake Turkana in the long run because of this additional anthropogenic pressure and increasing evaporation driven by climate change. We consider different remote sensing datasets, i.e., TRMM-V7 for precipitation, MERRA-2 for temperature, as inputs to the spatially distributed hydrological model. We validate the simulation results with other remote sensing datasets, i.e., GRACE for total water storage anomalies, GLDAS-NOAH for soil moisture, ERA-Interim/Land for surface runoff, and TOPEX/Poseidon for satellite altimetry data. Results highlight how different remote sensing products can be integrated into a hydrological modeling framework accounting for their relative uncertainties. We also carried out simulations with the artificial reservoirs planned in the north part of the catchment and without any reservoirs, to assess their impacts on the catchment hydrological

  6. The Evolution of Root Zone Storage Capacity after Land Use Change

    NASA Astrophysics Data System (ADS)

    Nijzink, Remko C.; Hutton, Christopher; Pechlivanidis, Ilias; Capell, René; Arheimer, Berit; Wagener, Thorsten; Savenije, Hubert H. G.; Hrachowitz, Markus

    2016-04-01

    Root zone storage capacity forms a crucial parameter in ecosystem functioning as it is the key parameter that determines the partitioning between runoff and transpiration. There is increasing evidence from several case studies for specific plants that vegetation adapts to the critical situation of droughts. For example, trees will, on the long term, try to improve their internal hydraulic conductivity after droughts, for example by allocating more biomass for roots. In spite of this understanding, the water storage capacity in the root zone is often treated as constant in hydrological models. In this study, it was hypothesized that root zone storage capacities are altered by deforestation and the regrowth of the ecosystem. Three deforested sub catchments as well as not affected, nearby control catchments of the experimental forests of HJ Andrews and Hubbard Brook were selected for this purpose. Root zone storage capacities were on the one hand estimated by a climate-based approach similar to Gao et al. (2014), making use of simple water balance considerations to determine the evaporative demand of the system. In this way, the maximum deficit between evaporative demand and precipitation allows a robust estimation of the root zone storage capacity. On the other hand, three conceptual hydrological models (FLEX, HYPE, HYMOD) were calibrated in a moving window approach for all catchments. The obtained model parameter values representing the root zone storage capacities of the individual catchments for each moving window period were then compared to the estimates derived from climate data for the same periods. Model- and climate-derived estimates of root zone storage capacities both showed a similar evolution. In the deforested catchments, considerable reductions of the root zone storage capacities, compared to the pre-treatment situation and control catchments, were observed. In addition, the years after forest clearing were characterized by a gradual recovery of the

  7. 78 FR 36424 - Special Local Regulations for Summer Events; Captain of the Port Lake Michigan Zone

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-18

    ... Guard, DHS. ACTION: Temporary final rule. SUMMARY: The Coast Guard is establishing temporary special local regulations for three summer events within the Captain of the Port Lake Michigan Zone. This rule is intended to provide for the safety of life and property on navigable waters immediately prior to...

  8. Nitrogen Concentrations and Exports in Baseflow and Stormflow from Three Small Urban Catchments in Central Florida

    NASA Astrophysics Data System (ADS)

    Luo, J.; Hochmuth, G.; Clark, M. W.

    2014-12-01

    Export of nitrogen from different watersheds across the United States is receiving increasing attention due to the impairment of water quality in receiving water bodies. Researchers have indicated that different land uses exerted a substantial influence on the water quality. Nitrogen loadings on the watershed scale are being studied in many large ecosystems, such as the Baltimore Ecosystem and Arizona Ecosystem, but only a few focuses in a smaller scale such as catchment scale. Characterization of the land use in catchment scale can better explain the observed environmental phenomena under the watershed scale and enrich the related watershed studies. Nitrogen fluxes have been studied at Lake Alice watershed in Gainesville, Florida with a focus on the rarely studied catchments such as sports fields with intensive fertilization management (SFC), urban area with reclaimed water irrigation (RWC) and urban area without irrigation (CC). The entire study started from May 2013. Discharge was monitored in the three catchments by transducers every 5 minutes. Regular biweekly grab samples in the three catchments were used to estimate the baseflow N loads, composite samples in 13 storms were collected to estimate the stormflow N loads. The results showed that in the baseflow, the average NO3-N concentration in SFC was 12.19 mg/l, which was significantly different from the urban catchments. Also there was a significant difference between the NO3-N concentrations in RWC (1.17 mg/l on average) and CC (0.60 mg/l on average). A separate log-log relationship was developed between discharge and N loads to estimate the baseflow N loads and stormflow N loads. It showed that baseflow contributed more N loads than stormflow in the three catchments in the annual N load. In conclusion, the recreational catchment received the greatest N load compared to the other catchments, so it should be the priority catchment when it comes to adopting nutrient management practices in the Lake Alice

  9. Effects of lakes and reservoirs on annual river nitrogen, phosphorus, and sediment export in agricultural and forested landscapes

    USGS Publications Warehouse

    Powers, Stephen M.; Robertson, Dale M.; Stanley, Emily H.

    2014-01-01

    Recently, effects of lakes and reservoirs on river nutrient export have been incorporated into landscape biogeochemical models. Because annual export varies with precipitation, there is a need to examine the biogeochemical role of lakes and reservoirs over time frames that incorporate interannual variability in precipitation. We examined long-term (~20 years) time series of river export (annual mass yield, Y, and flow-weighted mean annual concentration, C) for total nitrogen (TN), total phosphorus (TP), and total suspended sediment (TSS) from 54 catchments in Wisconsin, USA. Catchments were classified as small agricultural, large agricultural, and forested by use of a cluster analysis, and these varied in lentic coverage (percentage of catchment lake or reservoir water that was connected to river network). Mean annual export and interannual variability (CV) of export (for both Y and C) were higher in agricultural catchments relative to forested catchments for TP, TN, and TSS. In both agricultural and forested settings, mean and maximum annual TN yields were lower in the presence of lakes and reservoirs, suggesting lentic denitrification or N burial. There was also evidence of long-term lentic TP and TSS retention, especially when viewed in terms of maximum annual yield, suggesting sedimentation during high loading years. Lentic catchments had lower interannual variability in export. For TP and TSS, interannual variability in mass yield was often >50% higher than interannual variability in water yield, whereas TN variability more closely followed water (discharge) variability. Our results indicate that long-term mass export through rivers depends on interacting terrestrial, aquatic, and meteorological factors in which the presence of lakes and reservoirs can reduce the magnitude of export, stabilize interannual variability in export, as well as introduce export time lags.

  10. Transposing Concentration-Discharge Curves onto Unmonitored Catchments to Estimate Seasonal Nutrient Loads

    NASA Astrophysics Data System (ADS)

    Minaudo, C.; Moatar, F.; Abbott, B. W.; Dupas, R.; Gascuel-Odoux, C.; Pinay, G.; Roubeix, V.; Danis, P. A.

    2017-12-01

    Many lakes and reservoirs in Europe suffer from severe eutrophication. Accurate quantification of nutrient loads are critical for effective mitigation measures, but this information is often unknown. For example, in France, only 50 out of 481 lakes and reservoirs have national monitoring allowing estimation of interannual nitrogen and phosphorus loads, and even these loads are computed from low-frequency data. To address this lack of data, we developed a straightforward method to predict seasonal loads in lake tributaries. First, we analyzed concentration-discharge (C-Q) curves in monitored catchments and identified slopes, intercepts, and coefficient of variation of the log(C)-log(Q) regressions determined for both low and high flows, separated by the median daily flow [Moatar et al., 2017]. Then, we used stepwise multiple linear regression models to empirically link the characteristics of C-Q curves with a set of catchment descriptors such as land use, lithology, morphology indices, climate, and hydrological indicators. Modeled C-Q relationships were then used to estimate annual and seasonal nutrient loads in nearby and similar unmonitored catchments. We implemented this approach on a large dataset from France where stream flow was surveyed daily and water quality (suspended solids, nitrate, total phosphorus, and orthophosphate concentrations) was measured on a monthly basis at 233 stations over the past 20 years in catchments from 10 to 3000 km². The concentration at the median daily flow (seen here as a metric of the general level of contamination in a catchment) was predicted with uncertainty ranging between 30 and 100 %, depending on the variable. C-Q slopes were predicted with large errors, but a sensitivity analysis was conducted to determine the impact of C-Q slopes uncertainties on computed annual and seasonal loads. This approach allows estimation of seasonal and annual nutrient loads and could be potentially implemented to improve protection and

  11. USE OF A LUMPED MODEL (MAGIC) TO BOUND THE ESTIMATION OF POTENTIAL FUTURE EFFECTS OF SULFUR AND NITROGEN DEPOSITION ON LAKE CHEMISTRY IN THE ADIRONDACK MOUNTAINS

    EPA Science Inventory

    Leaching of atmospherically deposited nitrogen from forested watersheds can acidify lakes and streams. Using a modified version of the Model of Acidification of Groundwater in Catchments, we made computer simulations of such effects for 36 lake catchments in the Adirondack Mount...

  12. Hydrochemical buffer assessment in agricultural landscapes: from local to catchment scale.

    PubMed

    Viaud, Valérie; Merot, Philippe; Baudry, Jacques

    2004-10-01

    Non-point-source pollution of surface and groundwater is a prominent environmental issue in rural catchments, with major consequences on water supply and aquatic ecosystem quality. Among surface-water protection measures, environmental or landscape management policies support the implementation and the management of buffer zones. Although a great number of studies have focused on buffer zones, quantification of the buffer effect is still a recurring question. The purpose of this article is a critical review of the assessment of buffer-zone functioning. Our objective is to provide land planners and managers with a set of variables to assess the limits and possibilities for quantifying buffer impact at the catchment scale. We first consider the scale of the local landscape feature. The most commonly used empirical method for assessing buffers is to calculate water/nutrient budgets from inflow-outflow monitoring at the level of landscape structures. We show that several other parameters apart from mean depletion of flux can be used to describe buffer functions. Such parameters include variability, with major implication for water management. We develop a theoretical framework to clarify the assessment of the buffer effect and propose a systematic analysis taking account of temporal variability. Second, we review the current assessment of buffer effects at the catchment scale according to the theoretical framework established at the local scale. Finally, we stress the limits of direct empirical assessment at the catchment scale and, in particular, we emphasize the hierarchy in hydrological processes involved at the catchment scale: The landscape feature function is constrained by other factors (climate and geology) that are of importance at a broader spatial and temporal scale.

  13. Chromophoric Dissolved Organic Matter in Southwestern Greenland Lakes

    NASA Astrophysics Data System (ADS)

    Osburn, C. L.; Giles, M. E.; Underwood, G. J. C.

    2014-12-01

    Dissolved organic matter (DOM) is an important property of Arctic lake ecosystems, originating from allochthonous inputs from catchments and autochthonous production by plankton in the water column. Little is known about the quality of DOM in Arctic lakes that lack substantial inputs from catchments and such lakes are abundant in southwestern Greenland. Colored dissolved organic matter (CDOM), the fraction that absorbs ultraviolet (UV) and visible light, is the controlling factor for the optical properties of many surface waters and as well informs on the quality of DOM. We examined the quality of CDOM in 21 lakes in southwestern Greenland, from the ice sheet to the coast, as part of a larger study examining the role of DOM in regulating microbial communities in these lakes. DOM was size fractioned and absorbance and fluorescence was measured on each size fraction, as well as on bulk DOM. The specific ultraviolet absorbance (SUVA) at 254 nm (SUVA254), computed by normalizing absorption (a254) to dissolved organic carbon (DOC) concentration, provided an estimate of the aromatic carbon content of DOM. SUVA values were generally <2, indicating low aromatic content. Parallel factor analysis (PARAFAC) of CDOM fluorescence was used to determine the relative abundance of allochthonous and autochthonous DOM in all size fractions. Younger lakes near the ice sheet and lakes near the coast had lower amounts of CDOM and appeared more microbial in quality. However, lakes centrally located between the ice sheet and the coast had the highest CDOM concentrations and exhibited strong humic fluorescence. Overall distinct differences in CDOM quality were observed between lake locations and among DOM size fractions.

  14. Data set: A modeling dataset that spans the rain - snow transition zone: Johnston Draw catchment, Reynolds Creek Experimental Watershed, Idaho, USA

    USDA-ARS?s Scientific Manuscript database

    Hydrometeorological data from the rain-to-snow transition zone in mountain basins are limited. As the climate warms, the transition from rain to snow in mountain regions is moving to higher elevations, and these changes are altering the timing of water delivery to the downstream streams, lakes and w...

  15. Phosphorus Export Model Development in a Terminal Lake Basin using Concentration-Streamflow Relationship

    NASA Astrophysics Data System (ADS)

    Jeannotte, T.; Mahmood, T. H.; Matheney, R.; Hou, X.

    2017-12-01

    Nutrient export to streams and lakes by anthropogenic activities can lead to eutrophication and degradation of surface water quality. In Devils Lake, ND, the only terminal lake in the Northern Great Plains, the algae boom is of great concern due to the recent increase in streamflow and consequent rise in phosphorus (P) export from prairie agricultural fields. However, to date, very few studies explored the concentration (c) -streamflow (q) relationship in the headwater catchments of the Devils Lake basin. A robust watershed-scale quantitative framework would aid understanding of the c-q relationship, simulating P concentration and load. In this study, we utilize c-q relationships to develop a simple model to estimate phosphorus concentration and export from two headwater catchments of different size (Mauvais Coulee: 1032 km2 and Trib 3: 160 km2) draining to Devils Lake. Our goal is to link the phosphorus export model with a physically based hydrologic model to identify major drivers of phosphorus export. USGS provided the streamflow measurements, and we collected water samples (filtered and unfiltered) three times daily during the spring snowmelt season (March 31, 2017- April 12, 2017) at the outlets of both headwater catchments. Our results indicate that most P is dissolved and very little is particulate, suggesting little export of fine-grained sediment from agricultural fields. Our preliminary analyses in the Mauvais Coulee catchment show a chemostatic c-q relationship in the rising limb of the hydrograph, while the recession limb shows a linear and positive c-q relationship. The poor correlation in the rising limb of the hydrograph suggests intense flushing of P by spring snowmelt runoff. Flushing then continues in the recession limb of the hydrograph, but at a more constant rate. The estimated total P load for the Mauvais Coulee basin is 193 kg/km2, consistent with other catchments of similar size across the Red River of the North basin to the east. We expect

  16. Investigation of the complexity of streamflow fluctuations in a large heterogeneous lake catchment in China

    NASA Astrophysics Data System (ADS)

    Ye, Xuchun; Xu, Chong-Yu; Li, Xianghu; Zhang, Qi

    2018-05-01

    The occurrence of flood and drought frequency is highly correlated with the temporal fluctuations of streamflow series; understanding of these fluctuations is essential for the improved modeling and statistical prediction of extreme changes in river basins. In this study, the complexity of daily streamflow fluctuations was investigated by using multifractal detrended fluctuation analysis (MF-DFA) in a large heterogeneous lake basin, the Poyang Lake basin in China, and the potential impacts of human activities were also explored. Major results indicate that the multifractality of streamflow fluctuations shows significant regional characteristics. In the study catchment, all the daily streamflow series present a strong long-range correlation with Hurst exponents bigger than 0.8. The q-order Hurst exponent h( q) of all the hydrostations can be characterized well by only two parameters: a (0.354 ≤ a ≤ 0.384) and b (0.627 ≤ b ≤ 0.677), with no pronounced differences. Singularity spectrum analysis pointed out that small fluctuations play a dominant role in all daily streamflow series. Our research also revealed that both the correlation properties and the broad probability density function (PDF) of hydrological series can be responsible for the multifractality of streamflow series that depends on watershed areas. In addition, we emphasized the relationship between watershed area and the estimated multifractal parameters, such as the Hurst exponent and fitted parameters a and b from the q-order Hurst exponent h( q). However, the relationship between the width of the singularity spectrum (Δ α) and watershed area is not clear. Further investigation revealed that increasing forest coverage and reservoir storage can effectively enhance the persistence of daily streamflow, decrease the hydrological complexity of large fluctuations, and increase the small fluctuations.

  17. Effects of acidic deposition on in-lake phosphorus availability: a lesson from lakes recovering from acidification.

    PubMed

    Kopáček, Jiří; Hejzlar, Josef; Kaňa, Jiří; Norton, Stephen A; Stuchlík, Evžen

    2015-03-03

    Lake water concentrations of phosphorus (P) recently increased in some mountain areas due to elevated atmospheric input of P rich dust. We show that increasing P concentrations also occur during stable atmospheric P inputs in central European alpine lakes recovering from atmospheric acidification. The elevated P availability in the lakes results from (1) increasing terrestrial export of P accompanying elevated leaching of dissolved organic carbon and decreasing phosphate-adsorption ability of soils due to their increasing pH, and (2) decreasing in-lake P immobilization by aluminum (Al) hydroxide due to decreasing leaching of ionic Al from the recovering soils. The P availability in the recovering lakes is modified by the extent of soil acidification, soil composition, and proportion of till and meadow soils in the catchment. These mechanisms explain several conflicting observations of the acid rain effects on surface water P concentrations.

  18. Biogeochemical fluxes in the Glacier Lakes catchments

    Treesearch

    John O. Reuss; Frank A. Vertucci; Robert C. Musselman; Richard A. Sommerfeld

    1993-01-01

    These lakes are moderately sensitive to acid deposition; acidification would require precipitation at least as acidic as that presently found in the more heavily impacted areas of eastern North America. Because most snowpack contaminants are released early in the melting process, seasonal acidification pulses would probably occur at much lower levels of acidic inputs...

  19. Impact of catchment geophysical characteristics and climate on the regional variability of dissolved organic carbon (DOC) in surface water.

    PubMed

    Cool, Geneviève; Lebel, Alexandre; Sadiq, Rehan; Rodriguez, Manuel J

    2014-08-15

    Dissolved organic carbon (DOC) is a recognized indicator of natural organic matter (NOM) in surface waters. The aim of this paper is twofold: to evaluate the impact of geophysical characteristics, climate and ecological zones on DOC concentrations in surface waters and, to develop a statistical model to estimate the regional variability of these concentrations. In this study, multilevel statistical analysis was used to achieve three specific objectives: (1) evaluate the influence of climate and geophysical characteristics on DOC concentrations in surface waters; (2) compare the influence of geophysical characteristics and ecological zones on DOC concentrations in surface waters; and (3) develop a model to estimate the most accurate DOC concentrations in surface waters. The case study involved 115 catchments from surface waters in the Province of Quebec, Canada. Results showed that mean temperatures recorded 60 days prior to sampling, total precipitation 10 days prior to sampling and percentages of wetlands, coniferous forests and mixed forests have a significant positive influence on DOC concentrations in surface waters. The catchment mean slope had a significant negative influence on DOC concentrations in surface waters. Water type (lake or river) and deciduous forest variables were not significant. The ecological zones had a significant influence on DOC concentrations. However, geophysical characteristics (wetlands, forests and slope) estimated DOC concentrations more accurately. A model describing the variability of DOC concentrations was developed and can be used, in future research, for estimating DBPs in drinking water as well evaluating the impact of climate change on the quality of surface waters and drinking water. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Modeling the effects of climatic and land use changes on phytoplankton and water quality of the largest Turkish freshwater lake: Lake Beyşehir.

    PubMed

    Bucak, Tuba; Trolle, Dennis; Tavşanoğlu, Ü Nihan; Çakıroğlu, A İdil; Özen, Arda; Jeppesen, Erik; Beklioğlu, Meryem

    2018-04-15

    Climate change and intense land use practices are the main threats to ecosystem structure and services of Mediterranean lakes. Therefore, it is essential to predict the future changes and develop mitigation measures to combat such pressures. In this study, Lake Beyşehir, the largest freshwater lake in the Mediterranean basin, was selected to study the impacts of climate change and various land use scenarios on the ecosystem dynamics of Mediterranean freshwater ecosystems and the services that they provide. For this purpose, we linked catchment model outputs to the two different processed-based lake models: PCLake and GLM-AED, and tested the scenarios of five General Circulation Models, two Representation Concentration Pathways and three different land use scenarios, which enable us to consider the various sources of uncertainty. Climate change and land use scenarios generally predicted strong future decreases in hydraulic and nutrient loads from the catchment to the lake. These changes in loads translated into alterations in water level as well as minor changes in chlorophyll a (Chl-a) concentrations. We also observed an increased abundance of cyanobacteria in both lake models. Total phosphorus, temperature and hydraulic loading were found to be the most important variables determining cyanobacteria biomass. As the future scenarios revealed only minor changes in Chl-a due to the significant decrease in nutrient loads, our results highlight that reduced nutrient loading in a warming world may play a crucial role in offsetting the effects of temperature on phytoplankton growth. However, our results also showed increased abundance of cyanobacteria in the future may threaten ecosystem integrity and may limit drinking water ecosystem services. In addition, extended periods of decreased hydraulic loads from the catchment and increased evaporation may lead to water level reductions and may diminish the ecosystem services of the lake as a water supply for irrigation and

  1. Water stable isotope shifts of surface waters as proxies to quantify evaporation, transpiration and carbon uptake on catchment scales

    NASA Astrophysics Data System (ADS)

    Barth, Johannes; van Geldern, Robert; Veizer, Jan; Karim, Ajaz; Freitag, Heiko; Fowlwer, Hayley

    2017-04-01

    Comparison of water stable isotopes of rivers to those of precipitation enables separation of evaporation from transpiration on the catchment scale. The method exploits isotope ratio changes that are caused exclusively by evaporation over longer time periods of at least one hydrological year. When interception is quantified by mapping plant types in catchments, the amount of water lost by transpiration can be determined. When in turn pairing transpiration with the water use efficiency (WUE i.e. water loss by transpiration per uptake of CO2) and subtracting heterotrophic soil respiration fluxes (Rh), catchment-wide carbon balances can be established. This method was applied to several regions including the Great Lakes and the Clyde River Catchments ...(Barth, et al., 2007, Karim, et al., 2008). In these studies evaporation loss was 24 % and 1.3 % and transpiration loss was 47 % and 22 % when compared to incoming precipitation for the Great Lakes and the Clyde Catchment, respectively. Applying WUE values for typical plant covers and using area-typical Rh values led to estimates of CO2 uptake of 251 g C m-2 a-1 for the Great Lakes Catchment and CO2 loss of 21 g C m2 a-1 for the Clyde Catchment. These discrepancies are most likely due to different vegetation covers. The method applies to scales of several thousand km2 and has good potential for improvement via calibration on smaller scales. This can for instance be achieved by separate treatment of sub-catchments with more detailed mapping of interception as a major unknown. These previous studies have shown that better uncertainty analyses are necessary in order to estimate errors in water and carbon balances. The stable isotope method is also a good basis for comparison to other landscape carbon balances for instance by eddy covariance techniques. This independent method and its up-scaling combined with the stable isotope and area-integrating methods can provide cross validation of large-scale carbon budgets

  2. [Land layout for lake tourism based on ecological restraint].

    PubMed

    Wang, Jian-Ying; Li, Jiang-Feng; Zou, Li-Lin; Liu, Shi-Bin

    2012-10-01

    To avoid the decrease and deterioration of lake wetlands and the other ecological issues such as lake water pollution that were caused by the unreasonable exploration of lake tourism, a land layout for the tourism development of Liangzi Lake with the priority of ecological security pattern was proposed, based on the minimal cumulative resistance model and by using GIS technology. The study area was divided into four ecological function zones, i. e., core protection zone, ecological buffer zone, ecotone zone, and human activity zone. The core protection zone was the landscape region of ecological source. In the protection zone, new tourism land was forbidden to be increased, and some of the existing fundamental tourism facilities should be removed while some of them should be upgraded. The ecological buffer zone was the landscape region with resistance value ranged from 0 to 4562. In the buffer zone, expansion of tourism land should be forbidden, the existing tourism land should be downsized, and human activities should be isolated from ecological source by converting the human environment to the natural environment as far as possible. The ecotone zone was the landscape region with resistance value ranged from 4562 to 30797. In this zone, the existing tourism land was distributed in patches, tourism land could be expanded properly, and the lake forestry ecological tourism should be developed widely. The human activity zone was the landscape region with resistance value ranged from 30797 to 97334, which would be the key area for the land layout of lake tourism. It was suggested that the land layout for tourism with the priority of landscape ecological security pattern would be the best choice for the lake sustainable development.

  3. Integrated assessment of land use and cover changes in the Malagarasi river catchment in Tanzania

    NASA Astrophysics Data System (ADS)

    Kashaigili, J. J.; Majaliwa, A. M.

    Malagarasi river catchment represents one of the largest and most significant transboundary natural ecosystems in Africa. The catchment constitutes about one third of the catchment area of Lake Tanganyika and contains ecosystems of both national and international importance (i.e. Muyovozi Wetland Ramsar site). It has been increasingly said that increased anthropogenic activities have had negative impacts on the Muyovozi wetland in particular and other catchment resources. Nevertheless, these beliefs are little supported by quantitative data. A study on the dynamics of land use and cover in the Malagarasi river catchment therefore investigated long-term and seasonal changes that have occurred as a result of human activities in the area for the periods between 1984 and 2001. Landsat TM and ETM+ images were used to locate and quantify the changes. Perceptions of local people on historical changes and drivers for the changes were also collected and integrated in the assessment. The study revealed a significant change in land use and cover within a period of 18 year. Between 1984 and 2001, the woodland and wetland vegetation covers declined by 0.09% and 2.51% per year. Areas with settlements and cultivation increased by 1.05% annually while bushed grassland increased at 1.93% annually. The perceived principal drivers for the changes were found to include fire, cultivation along rivers and lake shores, overgrazing, poor law enforcement, insufficient knowledge on environmental issues, increasing poverty, deforestation and population growth. The human population growth rate stands at 4.8% against a national figure of 2.9%. The most perceived environmental problems include drying of streams and rivers, change in rainfall, loss of soil fertility, soil erosion and reduced crop yield. The study concludes that, there has been significant changes in land use and cover in the catchment and these require concerted actions to reverse the changes. The study highlights the importance

  4. Glacial lakes amplify glacier recession in the central Himalaya

    NASA Astrophysics Data System (ADS)

    King, Owen; Quincey, Duncan; Carrivick, Jonathan; Rowan, Ann

    2016-04-01

    store large amounts of ice in broad accumulation zones and are more equidimensional (HI -1.2 to 1.2). Glaciers flowing onto the Tibetan Plateau have a similar hypsometric distribution to glaciers of the Dudh Koshi, but terminate at a higher altitude overall, approximately 500 m higher than glaciers of the Dudh Koshi or Tama Koshi. We estimate the approximate Equilibrium Line Altitudes (ELA) of the last 15 years to be above a substantial portion (66%- Dudh Koshi; 87%- Tama Koshi; 83% Tibetan Plateau) of the glacierised area for all three catchments. Future ice recession may therefore be governed primarily by glacier hypsometry, but is likely to be amplified by the continued development of new, or growth of current glacial lakes.

  5. Insight into dissolved organic matter fractions in Lake Wivenhoe during and after a major flood.

    PubMed

    Aryal, Rupak; Grinham, Alistair; Beecham, Simon

    2016-03-01

    Dissolved organic matter is an important component of biogeochemical processes in aquatic environments. Dissolved organic matter may consist of a myriad of different fractions and resultant processing pathways. In early January 2011, heavy rainfall occurred across South East Queensland, Australia causing significant catchment inflow into Lake Wivenhoe, which is the largest water supply reservoir for the city of Brisbane, Australia. The horizontal and vertical distributions of dissolved organic matter fractions in the lake during the flood period were investigated and then compared with stratified conditions with no catchment inflows. The results clearly demonstrate a large variation in dissolved organic matter fractions associated with inflow conditions compared with stratified conditions. During inflows, dissolved organic matter concentrations in the reservoir were fivefold lower than during stratified conditions. Within the dissolved organic matter fractions during inflow, the hydrophobic and humic acid fractions were almost half those recorded during the stratified period whilst low molecular weight neutrals were higher during the flood period compared to during the stratified period. Information on dissolved organic matter and the spatial and vertical variations in its constituents' concentrations across the lake can be very useful for catchment and lake management and for selecting appropriate water treatment processes.

  6. Assessment of heavy metal enrichment and its human impact in lacustrine sediments from four lakes in the mid-low reaches of the Yangtze River, China.

    PubMed

    Bing, Haijian; Wu, Yanhong; Liu, Enfeng; Yang, Xiangdong

    2013-07-01

    Sediments from four lakes in the mid-low reaches of the Yangtze River, Taibai Lake, Longgan Lake, Chaohu Lake and Xijiu Lake, were chosen to evaluate their enrichment state and history. The state of heavy metal enrichment was at a low level in the sediment of Taibai Lake and Longgan Lake. The enrichment state of Co, Cr and Ni was also low in the sediment of Chaohu Lake and Xijiu Lake, while Cu, Pb and Zn enrichment reached a higher level. Mass accumulation fluxes were calculated to quantitatively evaluate the anthropogenic contribution to heavy metals in the sediment. The anthropogenic accumulation fluxes were lower in the sediment of Taibai Lake and Longgan Lake compared with the other two lakes, where heavy metals, especially Cu, Pb and Zn, were mainly from anthropogenic sources. Heavy metal accumulation did not vary greatly in the sediment of Taibai Lake and Longgan Lake, while that in Chaohu Lake and Xijiu Lake increased since the 1950s and substantially increased since the 1980s, although a decrease occurred since 2000 AD in Xijiu Lake. Heavy metal enrichment was strongly related to human activities in the catchment. The development of urbanization and industrialization was much more rapid in the catchments of Chaohu Lake and Xijiu Lake than of the other two lakes, and thus large amounts of anthropogenically sourced heavy metals were discharged into the lakes, which resulted in a higher contamination risk. However, human activities in the Longgan Lake and Taibai Lake catchments mainly involved agriculture, which contributed a relatively small portion of heavy metals to the lakes.

  7. Differences in the Composition of Archaeal Communities in Sediments from Contrasting Zones of Lake Taihu

    PubMed Central

    Fan, Xianfang; Xing, Peng

    2016-01-01

    In shallow lakes, different primary producers might impact the physiochemical characteristics of the sediment and the associated microbial communities. Until now, little was known about the features of sediment Archaea and their variation across different primary producer-dominated ecosystems. Lake Taihu provides a suitable study area with cyanobacteria- and macrophyte-dominated zones co-occurring in one ecosystem. The composition of the sediment archaeal community was assessed using 16S rRNA gene amplicon sequencing technology, based on which the potential variation with respect to the physiochemical characteristics of the sediment was analyzed. Euryarchaeota (30.19% of total archaeal sequences) and Bathyarchaeota (28.00%) were the two most abundant phyla, followed by Crenarchaeota (11.37%), Aigarchaeota (10.24%) and Thaumarchaeota (5.98%). The differences found in the composition of the archaeal communities between the two zones was significant (p = 0.005). Sediment from macrophyte-dominated zones had high TOC and TN content and an abundance of archaeal lineages potentially involved in the degradation of complex organic compounds, such as the order Thermoplasmatales. In the area dominated by Cyanobacteria, archaeal lineages related to sulfur metabolism, for example, Sulfolobales and Desulfurococcales, were significantly enriched. Among Bathyarchaeota, subgroups MCG-6 and MCG-15 were significantly accumulated in the sediment of areas dominated by macrophytes whereas MCG-4 was consistently dominant in both type of sediments. The present study contributes to the knowledge of sediment archaeal communities with different primary producers and their possible biogeochemical functions in sediment habitats. PMID:27708641

  8. The structure and toxicity of winter cyanobacterial bloom in a eutrophic lake of the temperate zone.

    PubMed

    Wejnerowski, Łukasz; Rzymski, Piotr; Kokociński, Mikołaj; Meriluoto, Jussi

    2018-06-22

    Winter cyanobacterial blooms have become increasingly common in eutrophic lakes advocating a need for their monitoring and risk assessment. The present study evaluated the toxicity of a winter cyanobacterial bloom in a eutrophicated freshwater lake located in Western Poland. The bloom was dominated by potentially toxic species: Planktothrix agardhii, Limnothrix redekei, and Aphanizomenon gracile. The toxin analysis revealed the presence of demethylated forms of microcystin-RR and microcystin-LR in ranges of 24.6-28.7 and 6.6-7.6 µg/L, respectively. The toxicity of sampled water was further evaluated in platelet-rich plasma isolated from healthy human subjects using lipid peroxidation and lactate dehydrogenase assays. No significant adverse effects were observed. The present study demonstrates that toxicity of some winter cyanobacterial blooms in the temperate zone, like that in Lubosińskie Lake, may not exhibit significant health risks despite microcystin production.

  9. Synchronicity of long-term nitrate patterns in forested catchments across the northeastern U.S.

    EPA Science Inventory

    Nitrogen movement through minimally-disturbed catchments can be affected by a variety of biogeochemical processes, climatic effects, hydrology and in-stream or in-lake processes. These combine to create dizzying complexity in long-term and seasonal nitrate patterns, with adjacen...

  10. Investigations into early rift development and geothermal resources in the Pyramid Lake fault zone, Western Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eisses, A.; Kell, A.; Kent, G.

    A. K. Eisses, A. M. Kell, G. Kent, N. W. Driscoll, R. E. Karlin, R. L. Baskin, J. N. Louie, S. Pullammanappallil, 2010, Investigations into early rift development and geothermal resources in the Pyramid Lake fault zone, Western Nevada: Abstract T33C-2278 presented at 2010 Fall Meeting, AGU, San Francisco, Calif., 13-17 Dec.

  11. Glacialmorphological reconstruction of glacier advances and glacial lake outburst floods at the Cachapoal glacier in the Dry Central Andes of Chile (34°S)

    NASA Astrophysics Data System (ADS)

    Iturrizaga, Lasafam; Charrier, Reynaldo

    2013-04-01

    Throughout the Andes Mountain range of South America a general trend of glacier shrinkage has taken place in the last century. Only a few glaciers have shown a rather non-continuous trend of glacier retreat and temporally advanced or even surged during the mid-19th to 20th century. One of the earliest assumed glacier surges has occurred in the upper Cachapoal catchment area at the homonymous glacier. In climatic respect the Cachapoal glacier is located in the transition zone from the most southern part of the Dry Central Andes of Chile to the more humid zone of the Wet Andes. The region is affected mainly by winter precipitation deriving from the Westerlies. The debris-covered, 12 km-long Cachapoal glacier represents one of the largest valley glaciers in the Central Andes. It is an avalanche-fed glacier with an almost 1500 m-high head wall in its upper catchment area flowing down from Picos del Barroso (5180 m) and terminates at an elevation of 2630 m a.s.l. with a bifurcated glacier tongue. A large moraine complex, almost 2 km in length and 500 m in width, separates the two glacier lobes. During times of advanced glacier tongue positions the Ríos Molina and Cachapoal may be have blocked independently at two distinct localities which are situated about 2300 m apart from each other. A blockage with temporal lake formation has occurred at least in the years 1848, 1955 and 1981 (cf. Plagemann 1887, Peña 1981), from which the rupture of the earliest glacier barrier has been the most devastating. This event is locally reminded as "la gran avenida en seco" in the historical record. Geomorphological evidence of the past historical and modern glacier expansions is given in the proglacial area by a fresh dead-ice hummocky topography and glacial trimlines at the valley flanks. More down valley broad outwash plains and boulder clusters indicate past high energy floods produced by glacier lake outbursts. Regarding the small size of the catchment area of the Río Molina

  12. Landscape drivers of regional variation in the relationship between total phosphorus and chlorophyll in lakes

    USGS Publications Warehouse

    Wagner, Tyler; Soranno, Patricia A.; Webster, Katherine E.; Cheruvelil, Kendra Spence

    2011-01-01

    1. For north temperate lakes, the well-studied empirical relationship between phosphorus (as measured by total phosphorus, TP), the most commonly limiting nutrient and algal biomass (as measured by chlorophyll a, CHL) has been found to vary across a wide range of landscape settings. Variation in the parameters of these TP–CHL regressions has been attributed to such lake variables as nitrogen/phosphorus ratios, organic carbon and alkalinity, all of which are strongly related to catchment characteristics (e.g. natural land cover and human land use). Although this suggests that landscape setting can help to explain much of the variation in ecoregional TP–CHL regression parameters, few studies have attempted to quantify relationships at an ecoregional spatial scale.2. We tested the hypothesis that lake algal biomass and its predicted response to changes in phosphorus are related to both local-scale features (e.g. lake and catchment) and ecoregional-scale features, all of which affect the availability and transport of covarying solutes such as nitrogen, organic carbon and alkalinity. Specifically, we expected that land use and cover, acting at both local and ecoregional scales, would partially explain the spatial pattern in parameters of the TP–CHL regression.3. We used a multilevel modelling framework and data from 2105 inland lakes spanning 35 ecoregions in six US states to test our hypothesis and identify specific local and ecoregional features that explain spatial heterogeneity in TP–CHL relationships. We include variables such as lake depth, natural land cover (for instance, wetland cover in the catchment of lakes and in the ecoregions) and human land use (for instance, agricultural land use in the catchment of lakes and in the ecoregions).4. There was substantial heterogeneity in TP–CHL relationships across the 35 ecoregions. At the local scale, CHL was negatively and positively related to lake mean depth and percentage of wooded wetlands in the

  13. Identifying the Dynamic Catchment Storage That Does Not Drive Runoff

    NASA Astrophysics Data System (ADS)

    Dralle, D.; Hahm, W. J.; Rempe, D.; Karst, N.; Thompson, S. E.; Dietrich, W. E.

    2017-12-01

    The central importance of subsurface water storage in hydrology has resulted in numerous attempts to develop hydrograph and mass balance based techniques to quantify catchment storage state or capacity. In spite of these efforts, relatively few studies have linked catchment scale storage metrics to Critical Zone (CZ) structure and the status of water in hillslopes. Elucidating these relationships would increase the interpretability of catchment storage metrics, and aid the development of hydrologic models. Here, we propose that catchment storage consists of a dynamic component that varies on seasonal timescales, and a static component with negligible time variation. Discharge is assumed to be explicitly sensitive to changes in some fraction of the dynamic storage, while the remaining dynamic storage varies without directly influencing flow. We use a coupled mass balance and storage-discharge function approach to partition dynamic storage between these driving and non-driving storage pools, and compare inferences with direct observations of saturated and unsaturated dynamic water storages at two field sites in Northern California. We find that most dynamic catchment water storage does not drive streamflow in both sites, even during the wettest times of year. Moreover, the physical character of non-driving dynamic storage depends strongly on catchment CZ structure. At a site with a deep profile of weathered rock, the dynamic storage that drives streamflow occurs as a seasonally perched groundwater table atop fresh bedrock, and that which does not drive streamflow resides as seasonally dynamic unsaturated water in shallow soils and deep, weathered rock. At a second site with a relatively thin weathered zone, water tables rapidly rise to intersect the ground surface with the first rains of the wet season, yet only a small fraction of this dynamic saturated zone storage drives streamflow. Our findings emphasize how CZ structure governs the overlap in time and space of

  14. Scale effects on headwater catchment runoff timing, flow sources, and groundwater‐streamflow relations

    USGS Publications Warehouse

    McGlynn, Brian L.; McDonnell, Jeffery J.; Seibert, Jan; Kendall, Carol

    2004-01-01

    The effects of catchment size and landscape organization on runoff generation are poorly understood. Little research has integrated hillslope and riparian runoff investigation across catchments of different sizes to decipher first‐order controls on runoff generation. We investigated the role of catchment sizes on riparian and hillslope dynamics based on hydrometric and tracer data observed at five scales ranging from trenched hillslope sections (55–285 m2) to a 280‐ha catchment at Maimai on the west coast of the South Island, New Zealand. The highly organized landscape is comprised of similar headwater catchments, regular geology, steep highly dissected topography, relatively consistent soil depths, and topographically controlled shallow through flow. We found a strong correlation between riparian zone groundwater levels and runoff for the headwaters, whereas the water tables in the valley bottom of the larger catchments were uncorrelated to runoff for 14 months of record. While there was no clear relationship between catchment size and new water contribution to runoff in the two storms analyzed in detail, lag times of tracer responses increased systematically with catchment size. The combination of hydrometric and tracer data allowed assessment of the runoff contributions from different parts of the landscape. Runoff was generated consistently in headwater riparian zones. This agreed also with the observed variations of tracer (18O and silica) responses for the different catchments. During wetter antecedent conditions or during larger events (>30 mm under dry antecedent conditions) hillslope and valley bottom floodplains did contribute to event runoff directly. We propose that analysis of landscape‐scale organization and the distribution of dominant landscape features provide a structure for investigation of runoff production and solute transport, especially as catchment‐scale increases from headwaters to the mesoscale.

  15. 75 FR 35294 - Safety Zone; Marquette 4th of July Fireworks, Marquette Harbor, Lake Superior, Marquette, MI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-22

    ...-AA00 Safety Zone; Marquette 4th of July Fireworks, Marquette Harbor, Lake Superior, Marquette, MI... vessels from a portion of Marquette Harbor during the Marquette 4th of July Fireworks display. This... vessels during the setup and launching of fireworks in conjunction with the Marquette 4th of July...

  16. Occurrence and food habits of the round goby in the profundal zone of southwestern Lake Ontario

    USGS Publications Warehouse

    Walsh, M.G.; Dittman, D.E.; O'Gorman, R.

    2007-01-01

    Little is known about the ecology of round goby (Neogobius melanostomus), an invasive benthic fish, in the profundal zone of the Great Lakes. In April 2002–2005 we caught increasing numbers of round gobies with a bottom trawl in the 45–150 m depth range of southwestern Lake Ontario. In 2005, we examined gut contents of 30 round gobies from each of three depths, 55, 95, and 130 m, and qualitatively compared gut contents with density of benthic invertebrates determined by Ponar grabs. Round goby guts contained mostly Dreissena spp. and opposum shrimp, Mysis relicta (Mysis); the frequency of occurrence of dreissenids in guts decreased with depth, whereas the frequency of occurrence of Mysis in guts increased with depth. Abundance of these invertebrates in the environment followed the same pattern, although dreissenids of optimum edible size (3–12 mm) were still abundant (1,373/m2) at 130 m, where round gobies primarily consumed Mysis, suggesting that round gobies may switch from dreissenids to more profitable prey when it is available. Other food items were ostracods and fish, with ostracods generally eaten by smaller round gobies and fish eaten by larger round gobies. Occurrence and increasing abundance of round gobies in the profundal zone and predation on Mysis by round goby could have far-reaching consequences for the Lake Ontario fish community.

  17. 33 CFR 165.T09-0166 - Safety Zone, Brandon Road Lock and Dam to Lake Michigan including Des Plaines River, Chicago...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Safety Zone, Brandon Road Lock... Areas Ninth Coast Guard District § 165.T09-0166 Safety Zone, Brandon Road Lock and Dam to Lake Michigan.... waters of the Des Plaines River located between mile marker 286.0 (Brandon Road Lock and Dam) and mile...

  18. Permafrost and lakes control river isotope composition across a boreal Arctic transect in the Western Siberian lowlands

    NASA Astrophysics Data System (ADS)

    Ala-aho, P.; Soulsby, C.; Pokrovsky, O. S.; Kirpotin, S. N.; Karlsson, J.; Serikova, S.; Manasypov, R.; Lim, A.; Krickov, I.; Kolesnichenko, L. G.; Laudon, H.; Tetzlaff, D.

    2018-03-01

    The Western Siberian Lowlands (WSL) store large quantities of organic carbon that will be exposed and mobilized by the thawing of permafrost. The fate of mobilized carbon, however, is not well understood, partly because of inadequate knowledge of hydrological controls in the region which has a vast low-relief surface area, extensive lake and wetland coverage and gradually increasing permafrost influence. We used stable water isotopes to improve our understanding of dominant landscape controls on the hydrology of the WSL. We sampled rivers along a 1700 km South-North transect from permafrost-free to continuous permafrost repeatedly over three years, and derived isotope proxies for catchment hydrological responsiveness and connectivity. We found correlations between the isotope proxies and catchment characteristics, suggesting that lakes and wetlands are intimately connected to rivers, and that permafrost increases the responsiveness of the catchment to rainfall and snowmelt events, reducing catchment mean transit times. Our work provides rare isotope-based field evidence that permafrost and lakes/wetlands influence hydrological pathways across a wide range of spatial scales (10-105 km2) and permafrost coverage (0%-70%). This has important implications, because both permafrost extent and lake/wetland coverage are affected by permafrost thaw in the changing climate. Changes in these hydrological landscape controls are likely to alter carbon export and emission via inland waters, which may be of global significance.

  19. Fine-scale delineation of the location of and relative ground shaking within the San Andreas Fault zone at San Andreas Lake, San Mateo County, California

    USGS Publications Warehouse

    Catchings, R.D.; Rymer, M.J.; Goldman, M.R.; Prentice, C.S.; Sickler, R.R.

    2013-01-01

    The San Francisco Public Utilities Commission is seismically retrofitting the water delivery system at San Andreas Lake, San Mateo County, California, where the reservoir intake system crosses the San Andreas Fault (SAF). The near-surface fault location and geometry are important considerations in the retrofit effort. Because the SAF trends through highly distorted Franciscan mélange and beneath much of the reservoir, the exact trace of the 1906 surface rupture is difficult to determine from surface mapping at San Andreas Lake. Based on surface mapping, it also is unclear if there are additional fault splays that extend northeast or southwest of the main surface rupture. To better understand the fault structure at San Andreas Lake, the U.S. Geological Survey acquired a series of seismic imaging profiles across the SAF at San Andreas Lake in 2008, 2009, and 2011, when the lake level was near historical lows and the surface traces of the SAF were exposed for the first time in decades. We used multiple seismic methods to locate the main 1906 rupture zone and fault splays within about 100 meters northeast of the main rupture zone. Our seismic observations are internally consistent, and our seismic indicators of faulting generally correlate with fault locations inferred from surface mapping. We also tested the accuracy of our seismic methods by comparing our seismically located faults with surface ruptures mapped by Schussler (1906) immediately after the April 18, 1906 San Francisco earthquake of approximate magnitude 7.9; our seismically determined fault locations were highly accurate. Near the reservoir intake facility at San Andreas Lake, our seismic data indicate the main 1906 surface rupture zone consists of at least three near-surface fault traces. Movement on multiple fault traces can have appreciable engineering significance because, unlike movement on a single strike-slip fault trace, differential movement on multiple fault traces may exert compressive and

  20. A Tibetan lake sediment record of Holocene Indian summer monsoon variability

    NASA Astrophysics Data System (ADS)

    Bird, Broxton W.; Polisar, Pratigya J.; Lei, Yanbin; Thompson, Lonnie G.; Yao, Tandong; Finney, Bruce P.; Bain, Daniel J.; Pompeani, David P.; Steinman, Byron A.

    2014-08-01

    Sedimentological data and hydrogen isotopic measurements of leaf wax long-chain n-alkanes (δDwax) from an alpine lake sediment archive on the southeastern Tibetan Plateau (Paru Co) provide a Holocene perspective of Indian summer monsoon (ISM) activity. The sedimentological data reflect variations in lake level and erosion related to local ISM rainfall over the Paru Co catchment, whereas δDwax reflects integrated, synoptic-scale ISM dynamics. Our results indicate that maximum ISM rainfall occurred between 10.1 and ˜5.2 ka, during which time there were five century-scale high and low lake stands. After 5.2 ka, the ISM trended toward drier conditions to the present, with the exception of a pluvial event centered at 0.9 ka. The Paru Co results share similarities with paleoclimate records from across the Tibetan Plateau, suggesting millennial-scale ISM dynamics were expressed coherently. These millennial variations largely track gradual decreases in orbital insolation, the southward migration of the Intertropical Convergence Zone (ITCZ), decreasing zonal Pacific sea surface temperature (SST) gradients and cooling surface air temperatures on the Tibetan Plateau. Centennial ISM and lake-level variability at Paru Co closely track reconstructed surface air temperatures on the Tibetan Plateau, but may also reflect Indian Ocean Dipole events, particularly during the early Holocene when ENSO variability was attenuated. Variations in the latitude of the ITCZ during the early and late Holocene also appear to have exerted an influence on centennial ISM rainfall.

  1. Holocene glacier activity reconstructed from proglacial lake Gjøavatnet on Amsterdamøya, NW Svalbard

    NASA Astrophysics Data System (ADS)

    de Wet, Gregory A.; Balascio, Nicholas L.; D'Andrea, William J.; Bakke, Jostein; Bradley, Raymond S.; Perren, Bianca

    2018-03-01

    Well-dated and highly resolved paleoclimate records from high latitudes allow for a better understanding of past climate change. Lake sediments are excellent archives of environmental change, and can record processes occurring within the catchment, such as the growth or demise of an upstream glacier. Here we present a Holocene-length, multi-proxy lake sediment record from proglacial lake Gjøavatnet on the island of Amsterdamøya, northwest Svalbard. Today, Gjøavatnet receives meltwater from the Annabreen glacier and contains a record of changes in glacier activity linked to regional climate conditions. We measured changes in organic matter content, dry bulk density, bulk carbon isotopes, elemental concentrations via Itrax core-scanning, and diatom community composition to reconstruct variability in glacier extent back through time. Our reconstruction indicates that glacially derived sedimentation in the lake decreased markedly at ∼11.1 cal kyr BP, although a glacier likely persisted in the catchment until ∼8.4 cal kyr BP. During the mid-Holocene (∼8.4-1.0 cal kyr BP) there was significantly limited glacial influence in the catchment and enhanced deposition of organic-rich sediment in the lake. The deposition of organic rich sediments during this time was interrupted by at least three multi-centennial intervals of reduced organic matter accumulation (∼5.9-5.0, 2.7-2.0, and 1.7-1.5 cal kyr BP). Considering our chronological information and a sedimentological comparison with intervals of enhanced glacier input, we interpret these intervals not as glacial advances, but rather as cold/dry episodes that inhibited organic matter production in the lake and surrounding catchment. At ∼1.0 cal kyr BP, input of glacially derived sediment to Gjøavatnet abruptly increased, representing the rapid expansion of the Annabreen glacier.

  2. Origin of middle rare earth element enrichments in acid waters of a Canadian high Arctic lake.

    NASA Astrophysics Data System (ADS)

    Johannesson, Kevin H.; Zhou, Xiaoping

    1999-01-01

    -Middle rare earth element (MREE) enriched rock-normalized rare earth element (REE) patterns of a dilute acidic lake (Colour Lake) in the Canadian High Arctic, were investigated by quantifying whole-rock REE concentrations of rock samples collected from the catchment basin, as well as determining the acid leachable REE fraction of these rocks. An aliquot of each rock sample was leached with 1 N HNO 3 to examine the readily leachable REE fraction of each rock, and an additional aliquot was leached with a 0.04 M NH 2OH · HCl in 25% (v/v) CH 3COOH solution, designed specifically to reduce Fe-Mn oxides/oxyhydroxides. Rare earth elements associated with the leachates that reacted with clastic sedimentary rock samples containing petrographically identifiable Fe-Mn oxide/oxyhydroxide cements and/or minerals/amorphous phases, exhibited whole-rock-normalized REE patterns similar to the lake waters, whereas whole-rock-normalized leachates from mafic igneous rocks and other clastic sedimentary rocks from the catchment basin differed substantially from the lake waters. The whole-rock, leachates, and lake water REE data support acid leaching or dissolution of MREE enriched Fe-Mn oxides/oxyhydroxides contained and identified within some of the catchment basin sedimentary rocks as the likely source of the unique lake water REE patterns. Solution complexation modelling of the REEs in the inflow streams and lake waters indicate that free metal ions (e.g., Ln 3+, where Ln = any REE) and sulfate complexes (LnSO 4+) are the dominant forms of dissolved REEs. Consequently, solution complexation reactions involving the REEs during weathering, transport to the lake, or within the lake, cannot be invoked to explain the MREE enrichments observed in the lake waters.

  3. 75 FR 38721 - Safety Zone; Munising 4th of July Fireworks, South Bay, Lake Superior, Munising, MI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-06

    ...-AA00 Safety Zone; Munising 4th of July Fireworks, South Bay, Lake Superior, Munising, MI AGENCY: Coast... portion of South Bay during the Munising 4th of July Fireworks display, July 4, 2010. This temporary... from hazards associated with the Munising 4th of July Fireworks display. Based on the explosive hazards...

  4. A 500 year sediment lake record of anthropogenic and natural inputs to Windermere (English Lake District) using double-spike lead isotopes, radiochronology, and sediment microanalysis.

    PubMed

    Miller, Helen; Croudace, Ian W; Bull, Jonathan M; Cotterill, Carol J; Dix, Justin K; Taylor, Rex N

    2014-07-01

    A high-resolution record of pollution is preserved in recent sediments from Windermere, the largest lake in the English Lake District. Data derived from X-ray core scanning (validated against wavelength dispersive X-ray fluorescence), radiochronological techniques ((210)Pb and (137)Cs) and ultrahigh precision, double-spike mass spectrometry for lead isotopes are combined to decipher the anthropogenic inputs to the lake. The sediment record suggests that while most element concentrations have been stable, there has been a significant increase in lead, zinc, and copper concentrations since the 1930s. Lead isotope down-core variations identify three major contributory sources of anthropogenic (industrial) lead, comprising gasoline lead, coal combustion lead (most likely source is coal-fired steam ships), and lead derived from Carboniferous Pb-Zn mineralization (mining activities). Periods of metal workings do not correlate with peaks in heavy metals due to the trapping efficiency of up-system lakes in the catchment. Heavy metal increases could be due to flood-induced metal inwash after the cessation of mining and the weathering of bedrock in the catchment. The combination of sediment analysis techniques used provides new insights into the pollutant depositional history of Windermere and could be similarly applied to other lake systems to determine the timing and scale of anthropogenic inputs.

  5. Dramatic water-level fluctuations in lakes under intense human impact: modelling the effect of vegetation, climate and hydrogeology

    NASA Astrophysics Data System (ADS)

    Vainu, M.

    2012-04-01

    Lakes form a highly important ecosystem in the glacial terrain of northern Europe and America, but their hydrology remains understudied. When the water-level of a lake drops significantly and rises again in a time span of half a century and the widespread explanation of the fluctuations seems insufficient, then it raises a question: how do different anthropogenic and natural processes actually affect the formation of a lakes' water body. The abovementioned scenario applies to three small closed-basin Estonian lakes (L. Ahnejärv, L. Kuradijärv and L. Martiska) analysed in the current study. These lakes suffered a major water-level drop (up to 3.8 m) between 1946 and 1987 and a major rise between 1987 and 2010, from 1 m (L. Ahnejärv) to 2.5 m (L. Kuradijärv). Decreasing and increasing groundwater abstraction near the lakes has been widely considered to be the only reason for the fluctuations. It is true that the most severe drop in the lake levels did occur after 1972 when groundwater abstraction for drinking water started in the vicinity of the lakes. However, the lake levels started to fall before the groundwater abstraction began and for the time being the lake levels have risen to a higher level than in the 1970s when the quantity of annually abstracted groundwater was similar to nowadays. Therefore the processes affecting the formation of the lakes' water body prove to be more complex than purely the hydrogeological change caused by groundwater abstraction. A new deterministic water balance model (where the evaporation from the lake surface was calculated by Penman equation and the catchment runoff by Thornthwaite-Mather soil-moisture model), compiled for the study, coupled with LiDAR-based GIS-modelling of the catchments was used to identify the different factors influencing the lakes' water level. The modelling results reveal that the moderate drop in lake water levels before the beginning of groundwater abstraction was probably caused by the growth of a

  6. Catchment Systems Engineering: A New Paradigm in Water Management

    NASA Astrophysics Data System (ADS)

    Quinn, P. F.; Wilkinson, M. E.; Burke, S.; O'Donnell, G. M.; Jonczyk, J.; Barber, N.; Nicholson, A.

    2012-04-01

    Recent catchment initiatives have highlighted the need for new holistic approaches to sustainable water management. Catchment Systems Engineering seeks to describe catchment the function (or role) as the principal driver for evaluating how it should be managed in the future. Catchment Systems Engineering does not seek to re-establish a natural system but rather works with natural processes in order to engineer landscapes to accrue multiple benefits. The approach involves quantifying and assessing catchment change, impacts and most importantly, suggests an urgent and proactive agenda for future planning. In particular, an interventionist approach to managing hydrological flow pathways across scale is proposed. It is already accepted that future management will require a range of scientific expertise and full engagement with stakeholders. This inclusive concept under a Catchment Systems Engineering agenda forces any consortia to commit to actively changing and perturbing the catchment system and thus learn, in situ, how to manage the environment for collective benefits. The shared cost, the design, the implementation, the evaluation and any subsequent modifications should involve all relevant parties in the consortia. This joint ownership of a 'hands on' interventionist agenda to catchment change is at the core of Catchment Systems Engineering. In this paper we show a range of catchment engineering projects from the UK that have addressed multi-disciplinary approaches to flooding, pollution and ecosystem management, whilst maintaining economic food production. Examples using soft engineered features such as wetlands, ponds, woody debris dams and infiltration zones will be shown. Local scale demonstration activities, led by local champions, have proven to be an effective means of encouraging wider uptake. Evidence that impacts can be achieved at local catchment scale will be introduced. Catchment Systems Engineering is a concept that relies on all relevant parties

  7. 76 FR 65609 - Safety Zone, Brandon Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-24

    ... Road Lock and Dam to Lake Michigan Including Des Plaines River, Chicago Sanitary and Ship Canal... enforcement of regulation. SUMMARY: The Coast Guard will enforce a segment of the Safety Zone; Brandon Road....S. Army Corps of Engineers' dispersal barrier maintenance operations. During the enforcement period...

  8. Lake ecosystem response to rapid lateglacial climate changes in lake sediments from northern Poland

    NASA Astrophysics Data System (ADS)

    Słowiński, Michał; Zawiska, Izabela; Ott, Florian; Noryśkiewicz, Agnieszka M.; Apolinarska, Karina; Lutyńska, Monika; Michczyńska, Danuta J.; Brauer, Achim; Wulf, Sabine; Skubała, Piotr; Błaszkiewicz, Mirosław

    2013-04-01

    During the Late Glacial Period environment changes were triggered by climatic oscillations which in turn controlled processes like, for example, permafrost thawing, vegetation development and ground water circulation. These environmental changes are ideally recorded in lake sediments and thus can be reconstructed applying a multi-poxy approach. Here, we present the results from the Trzechowskie paleolake, located in the northern Polish lowlands (eastern part of the Pomeranian Lakeland). The site is situated on the outwash plain of the Wda River, which was formed during the Pomeranian phase of the Vistulian glaciation ca 16,000 14C yrs BP. The depression of the Trzechowskie lake basin formed after melting of a buried ice block during the Allerød (13903±170 cal yrs BP). We reconstructed environmental changes in the Trzechowskie paleolake and its catchment using biotic proxies (macrofossils, pollen, cladocera, diatoms, oribatidae mite) and geochemical proxies (δ18O, δ13C, loss-on-ignition (LOI), CaCO3 content). In addition, we carried out µ-XRF element core scanning. The chronology has been established by means of biostratigraphyAMS14C dating on plant macro remains, varve counting in laminated intervals and the late Allerød Laacher See Tephra isochrone. Our results showed that biogenic accumulation in the lake started during the Bølling. Development of coniferous forest during the Allerød with dominance of Pinus sylvestris lead to leaching of carbonates in the catchment due to low pH increasing the flux of Ca ions into the lake. In consequence calcite precipitating in the lake increased as evidences by increasing CaCO3 contents. Both biotic and physical proxies clearly reflect the rapid decrease in productivity at the onset of the Younger Dryas. We compare the data from the Trzechowskie paleolake with the Meerfelder Maar and Rehwiese lake records based on tephrochronological synchronization using the Laacher See Tephra. This study is a contribution to the

  9. Spatial and temporal variations of Rb/Sr ratios of the bulk surface sediments in Lake Qinghai

    PubMed Central

    2010-01-01

    The Rb/Sr ratios of lake sediments have been suggested as indicators of weathering intensity by increasing work. However, the geochemistry of Rb/Sr ratios of lake sediments is variable between different lakes. In this study, we investigated the spatial and temporal patterns of Rb/Sr ratios, as well as those of other major elements in surface sediments of Lake Qinghai. We find that the spatial pattern of Rb/Sr ratios of the bulk sediments correlates well with that of the mass accumulation rate, and those of the terrigenous fractions, e.g., SiO2, Ti, and Fe. The temporal variations of Rb/Sr ratios also synchronize with those of SiO2, Ti, and Fe of each individual core. These suggest that Rb/Sr ratios of the surface sediments are closely related to terrigenous input from the catchment. Two out of eight cores show similar trends between Rb/Sr ratios and precipitation indices on decadal scales; however, the other cores do not show such relationship. The result of this study suggests that physical weathering and chemical weathering in Lake Qinghai catchment have opposite influence on Rb/Sr ratios of the bulk sediments, and they compete in dominating the Rb/Sr ratios of lake sediments on different spatial and temporal scales. Therefore, it is necessary to study the geochemistry of Rb/Sr ratio of lake sediments (especially that on short term timescales) particularly before it is used as an indicator of weathering intensity of the catchment. PMID:20615264

  10. Numerical simulation of steady state three-dimensional groundwater flow near lakes

    USGS Publications Warehouse

    Winter, Thomas C.

    1978-01-01

    Numerical simulation of three-dimensional groundwater flow near lakes shows that the continuity of the boundary encompassing the local groundwater flow system associated with a lake is the key to understanding the interaction of a lake with the groundwater system. The continuity of the boundary can be determined by the presence of a stagnation zone coinciding with the side of the lake nearest the downgradient side of the groundwater system. For most settings modeled in this study the stagnation zone underlies the lakeshore, and it generally follows its curvature. The length of the stagnation zone is controlled by the geometry of the lake's drainage basin divide on the side of the lake nearest the downgradient side of the groundwater system. In the case of lakes that lose water to the groundwater system, three-dimensional modeling also allows for estimating the area of lake bed through which outseepage takes place. Analysis of the effects of size and lateral and vertical distribution of aquifers within the groundwater system on the outseepage from lakes shows that the position of the center point of the aquifer relative to the littoral zone on the side of the lake nearest the downgradient side of the groundwater system is a critical factor. If the center point is downslope from this part of the littoral zone, the local flow system boundary tends to be weak or outseepage occurs. If the center point is upslope from this littoral zone, the stagnation zone tends to be stronger (to have a higher head in relation to lake level), and outseepage is unlikely to occur.

  11. Thermal processes of thermokarst lakes in the continuous permafrost zone of northern Siberia - observations and modeling (Lena River Delta, Siberia)

    NASA Astrophysics Data System (ADS)

    Boike, J.; Georgi, C.; Kirilin, G.; Muster, S.; Abramova, K.; Fedorova, I.; Chetverova, A.; Grigoriev, M.; Bornemann, N.; Langer, M.

    2015-10-01

    Thermokarst lakes are typical features of the northern permafrost ecosystems, and play an important role in the thermal exchange between atmosphere and subsurface. The objective of this study is to describe the main thermal processes of the lakes and to quantify the heat exchange with the underlying sediments. The thermal regimes of five lakes located within the continuous permafrost zone of northern Siberia (Lena River Delta) were investigated using hourly water temperature and water level records covering a 3-year period (2009-2012), together with bathymetric survey data. The lakes included thermokarst lakes located on Holocene river terraces that may be connected to Lena River water during spring flooding, and a thermokarst lake located on deposits of the Pleistocene Ice Complex. Lakes were covered by ice up to 2 m thick that persisted for more than 7 months of the year, from October until about mid-June. Lake-bottom temperatures increased at the start of the ice-covered period due to upward-directed heat flux from the underlying thawed sediment. Prior to ice break-up, solar radiation effectively warmed the water beneath the ice cover and induced convective mixing. Ice break-up started at the beginning of June and lasted until the middle or end of June. Mixing occurred within the entire water column from the start of ice break-up and continued during the ice-free periods, as confirmed by the Wedderburn numbers, a quantitative measure of the balance between wind mixing and stratification that is important for describing the biogeochemical cycles of lakes. The lake thermal regime was modeled numerically using the FLake model. The model demonstrated good agreement with observations with regard to the mean lake temperature, with a good reproduction of the summer stratification during the ice-free period, but poor agreement during the ice-covered period. Modeled sensitivity to lake depth demonstrated that lakes in this climatic zone with mean depths > 5 m develop

  12. A conceptual framework for Lake Michigan coastal/nearshore ecosystems, with application to Lake Michigan Lakewide Management Plan (LaMP) objectives

    USGS Publications Warehouse

    Seelbach, Paul W.; Fogarty, Lisa R.; Bunnell, David Bo; Haack, Sheridan K.; Rogers, Mark W.

    2013-01-01

    The Lakewide Management Plans (LaMPs) within the Great Lakes region are examples of broad-scale, collaborative resource-management efforts that require a sound ecosystems approach. Yet, the LaMP process is lacking a holistic framework that allows these individual actions to be planned and understood within the broader context of the Great Lakes ecosystem. In this paper we (1) introduce a conceptual framework that unifies ideas and language among Great Lakes managers and scientists, whose focus areas range from tributary watersheds to open-lake waters, and (2) illustrate how the framework can be used to outline the geomorphic, hydrologic biological, and societal processes that underlie several goals of the Lake Michigan LaMP, thus providing a holistic and fairly comprehensive roadmap for tackling these challenges. For each selected goal, we developed a matrix that identifies the key ecosystem processes within the cell for each lake zone and each discipline; we then provide one example where a process is poorly understood and a second where a process is understood, but its impact or importance is unclear. Implicit in these objectives was our intention to highlight the importance of the Great Lakes coastal/nearshore zone. Although the coastal/nearshore zone is the important linkage zone between the watershed and open-lake zones—and is the zone where most LaMP issues are focused--scientists and managers have a relatively poor understanding of how the coastal/nearshore zone functions. We envision follow-up steps including (1) collaborative development of a more detailed and more complete conceptual model of how (and where) identified processes are thought to function, and (2) a subsequent gap analysis of science and monitoring priorities.

  13. Vulnerability of boreal zone for increased nitrogen loading due to climate change

    NASA Astrophysics Data System (ADS)

    Rankinen, Katri; Holmberg, Maria

    2016-04-01

    The observed rapid warming of the boreal zone that has been observed in Finland (0.14 °C by decade) is expected to continue (http://www.ipcc.ch/report/ar5/wg1/). Also precipitation is assumed to increase in future. These changes may increase nitrogen (N) loading from terrestrial environments to water bodies by accelerating soil organic matter decay and by increasing runoff. Nitrogen is limiting nutrient in the Baltic Sea but also in some lakes, so increased loading may increase eutrophication. Further, high nitrate levels in drinking water may cause methaemoglobin anemia for humans, and nitrate is also connected to increased risk of diabetes and cancer. Thus EU has set upper limits to nitrate concentration in drinking water. MONIMET (LIFE12 ENV/FI/000409) is a project about Climate Change Indicators and Vulnerability of Boreal Zone. We simulated N loading from two boreal catchments to the receiving waters by the dynamic, catchment scale model INCA in different climate change and land use change scenarios. We calculated land use specific N loading values for these two well monitored catchments that belong to the LTER (The Long Term Ecological Research) monitoring network. We upscaled the results to the larger river basin, combining them with the information on drinking water supply to assess the vulnerability. Specific emphasis was paid on nitrate concentrations in soil water and groundwater. In general, land use change has higher influence on N loading than increase in precipitation and temperature alone. Peak runoff will sift from snow melting peak in April to late autumn and winter. Growing season will become longer allowing more efficient vegetation uptake of nutrients. Small groundwater aquifers and private wells in the middle of agricultural fields will be in the risk of increased N concentrations, if agricultural N loading increases due to changes in agricultural patterns and land use change.

  14. The Lake-Catchment (LakeCat) Dataset: Characterizing landscape features for lake basins within the conterminous USA

    EPA Science Inventory

    Natural and human-related landscape features influence the ecology and water quality within lakes. It is critical, therefore, to quantify landscape features in a hydrologically meaningful way to effectively manage these important ecosystems. Such summaries of the landscape are of...

  15. Reviewing Landmark Nitrogen Cap and Trade Legislation in New Zealand's Taupo Catchment: What Have We Learned after 5+ Years?

    NASA Astrophysics Data System (ADS)

    Baisden, W. T.; Hamilton, D. P.

    2014-12-01

    In 2007, the first cap and trade legislation for a catchment nitrogen (N) budget was enacted to protect water quality in New Zealand's iconic Lake Taupo. The clarity of the 616 km² N-limited oligotrophic lake was declining due to human-induced increases in N losses from the 3,487 km² catchment. Focus was placed on reversing increases in N inputs from agriculture, and to a lesser degree sewerage sources. The legislation imposed a cap equal to 20% reduction in the N inputs to the lake, and enabled trading. The landmark legislation could have failed during appeal. Sources of disagreement included the N budgeting model and grand-parenting method that benchmarked the N leaching of individual farms. The N leaching rates for key land uses were also a major battleground, with strong effects on the viability of trading and relative value of enterprises. Sufficient science was applied to resolve the substantive issues in the appeal by 2008. Crucially, the decision recognized that N inputs to the "N cascade" mattered more than leaching evidence including land-use legacies. Other catchment cap-and-trade schemes followed. Rotorua Lakes had already capped inputs and established a ~33% N input reduction target after acceptance of a trading scheme compatible with groundwater lag times. In the Upper Manawatu catchment, a cap-and-trade scheme now governs river N loads in a more typical farming region, with an innovative allocation scheme based on the natural capital of soils. Collectively, these schemes have succeeded in imposing a cap, and signaling the intention of reductions over time. I conclude with common themes in the successes, and examine the role of science in the success and ongoing implementation. Central to success has been the role of science in framing N budgets at farm and catchment scales. Long-term data has been invaluable, despite the need to correct biases. Cap-and-trade policies alter future science needs toward reducing uncertainty in overall budgets, the

  16. Terrestrial organic matter as subsidies that aid in the recovery of macroinvertebrates in industrially damaged lakes.

    PubMed

    Szkokan-Emilson, E J; Wesolek, B E; Gunn, J M

    2011-09-01

    The importance of allochthonous carbon to the productivity of stream ecosystems in temperate ecozones is well understood, but this relationship is less established in oligotrophic lakes. The nearshore littoral zones, at the interface of terrestrial and aquatic systems, are areas where the influence of terrestrial subsidies is likely greatest. We investigated the response of nearshore communities to variation in the quantity and composition of allochthonous materials, determined the landscape characteristics that regulate the variation of this subsidy, and explored the potential for terrestrial restoration practices to influence the export of organic matter to lakes. Stepwise multiple regressions revealed that diversity of nearshore macroinvertebrate families increased with the amount of fine particulate organic matter (FPOM) captured in sediment traps. The quantity of FPOM (g) increased with forest cover, and the relative amount of FPOM (percentage of total particulate material) in the traps increased with surface area of wetland in the catchments. These models suggest that terrestrially derived subsidies are important in smelter-impacted watersheds, and that the restoration of forests and wetlands will speed the return of nearshore consumer community diversity in industrially damaged lakes.

  17. Assessment of lake sensitivity to acidic deposition in national parks of the Rocky Mountains.

    PubMed

    Nanus, L; Williams, M W; Campbell, D H; Tonnessen, K A; Blett, T; Clow, D W

    2009-06-01

    The sensitivity of high-elevation lakes to acidic deposition was evaluated in five national parks of the Rocky Mountains based on statistical relations between lake acid-neutralizing capacity concentrations and basin characteristics. Acid-neutralizing capacity (ANC) of 151 lakes sampled during synoptic surveys and basin-characteristic information derived from geographic information system (GIS) data sets were used to calibrate the statistical models. The explanatory basin variables that were considered included topographic parameters, bedrock type, and vegetation type. A logistic regression model was developed, and modeling results were cross-validated through lake sampling during fall 2004 at 58 lakes. The model was applied to lake basins greater than 1 ha in area in Glacier National Park (n = 244 lakes), Grand Teton National Park (n = 106 lakes), Great Sand Dunes National Park and Preserve (n = 11 lakes), Rocky Mountain National Park (n = 114 lakes), and Yellowstone National Park (n = 294 lakes). Lakes that had a high probability of having an ANC concentration <100 microeq/L, and therefore sensitive to acidic deposition, are located in basins with elevations >3000 m, with <30% of the catchment having northeast aspect and with >80% of the catchment bedrock having low buffering capacity. The modeling results indicate that the most sensitive lakes are located in Rocky Mountain National Park and Grand Teton National Park. This technique for evaluating the lake sensitivity to acidic deposition is useful for designing long-term monitoring plans and is potentially transferable to other remote mountain areas of the United States and the world.

  18. An evaluation of catchment-scale phosphorus mitigation using load apportionment modelling.

    PubMed

    Greene, S; Taylor, D; McElarney, Y R; Foy, R H; Jordan, P

    2011-05-01

    Functional relationships between phosphorus (P) discharge and concentration mechanisms were explored using a load apportionment model (LAM) developed for use in a freshwater catchment in Ireland with fourteen years of data (1995-2008). The aim of model conceptualisation was to infer changes in point and diffuse sources from catchment P loading during P mitigation, based upon a dataset comprising geospatial and water quality data from a 256km(2) lake catchment in an intensively farmed drumlin region of the midlands of Ireland. The model was calibrated using river total P (TP), molybdate reactive P (MRP) and runoff data from seven subcatchments. Temporal and spatial heterogeneity of P sources existed within and between subcatchments; these were attributed to differences in agricultural intensity, soil type and anthropogenically-sourced effluent P loading. Catchment rivers were sensitive to flow regime, which can result in eutrophication of rivers during summer and lake enrichment from frequent flood events. For one sewage impacted river, the LAM estimated that point sourced P contributed up to of 90% of annual MRP load delivered during a hydrological year and in this river point P sources dominated flows up to 92% of days. In the other rivers, despite diffuse P forming a majority of the annual P exports, point sources of P dominated flows for up to 64% of a hydrological year. The calibrated model demonstrated that lower P export rates followed specific P mitigation measures. The LAM estimated up to 80% decreases in point MRP load after enhanced P removal at waste water treatments plants in urban subcatchments and the implementation of septic tank and agricultural bye-laws in rural subcatchments. The LAM approach provides a way to assess the long-term effectiveness of further measures to reduce P loadings in EU (International) River Basin Districts and subcatchments. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Impact of Holocene terrestrial vegetation succession on the biogeochemical structure and function of an Arctic lake, Alaska

    NASA Astrophysics Data System (ADS)

    Langdon, P. G.; Whiteford, E.; Hopla, E.; van Hardenbroek, M.; Turner, S.; Edwards, M. E.; Jones, V.; McGowan, S.; Wiik, E.; Anderson, N. J.

    2016-12-01

    Vegetation changes are occurring in the Arctic as warming progresses, a process often referred to as "greening". The northward expansion of woody shrubs influence nutrient cycling in soils, including carbon (C) cycling, but the extent to which they will change the storage or release of carbon at a landscape scale is uncertain. The role that lakes play in this system is not fully understood, but it is known that many lakes in the tundra and northern forests are today releasing carbon dioxide (and methane) into the atmosphere in significant amounts, and a proportion of this carbon comes into the lake from the vegetation and soils of the surrounding landscape. Furthermore, the number of lakes contributing to this gas release has been hitherto underestimated, and it is thus likely that lakes play a far greater role in terms of total gas emissions. In order to assess the relationships between vegetation succession and lake biogeochemical cycling we have studied palaeoenvironmental change in a suite of lakes across the Arctic in a NERC funded project LAC (Lakes and the Arctic Carbon Cycle). This abstract is focused on a full Holocene sequence from an Alaskan Lake (Woody Bottom Pond), with palaeo records of major elements (scanning XRF), diatoms, pollen, stable isotopes and pigments. The small size of the catchment likely leads to strong coupling between catchment processes such as vegetation succession and fire and aquatic biogeochemical responses. For example the arrival of alder is followed by marked shift in diatom assemblage and pigments associated with changes in N cycling. This approach allows us to assess how catchment change affects aquatic ecosystems and the resultant balance between heterotrophy and autotrophy in arctic lakes over long timescales.

  20. Influence of the Little Ice Age on the biological structure of lakes in South West Greenland

    NASA Astrophysics Data System (ADS)

    McGowan, S.; Hogan, E. J.; Jones, V.; Anderson, N. J.; Simpson, G.

    2013-12-01

    Arctic lakes are considered to be particularly sensitive to environmental change, with biological remains in lake sediment records being interpreted as reflecting climate forcing. However the influence that differences in catchment properties and lake morphometries have on the sedimentary record is rarely considered. We investigated sediment cores from three lakes located close to the inland ice sheet margin in the Kangerlussuaq area of South West Greenland but within a few kilometres of one another. This regional replication allowed for direct comparisons of biological change in lakes exposed to identical environmental pressures (cooling, increased wind speeds) over the past c.2000 years. Sedimentary pigments were used as a proxy for whole-lake production and to investigate differences in phytoplankton community structure whilst fossil diatom assemblages were studied to determine differences in ecological responses during this time. We noted several major effects of the Little Ice Age cooling (LIA, c. 1400-1850AD). The organic content of sediments in all three lakes declined, and this effect was most pronounced in lakes closest to the inland ice sheet margin, which suggests that aeolian inputs derived from the glacial outwash plains (sandurs), and wind-scouring of the thin catchment soils by strong katabatic winds associated with the regional cooling might have both contributed to this sedimentary change. During the LIA total algal production (as indicated by chlorophyll and carotenoid pigments) was lower in all three lakes, most likely because of extended ice-cover and shorter growing seasons, and the ratio of planktonic: benthic diatom taxa increased, possibly because of lower light availability or fertilization from loess material. Despite this coherence in lake response to the LIA, diatom community composition changes in individual lakes differed, reflecting individual lake morphometry and catchment characteristics. These findings highlight the importance of

  1. Catchment chemostasis revisited: water quality responds differently to variations in weather and climate

    NASA Astrophysics Data System (ADS)

    Godsey, Sarah; Kirchner, James

    2017-04-01

    Solute concentrations in streamflow typically vary systematically with stream discharge, and the resulting concentration-discharge relationships are important signatures of catchment (bio)geochemical processes. Solutes derived from mineral weathering often exhibit decreasing concentrations with increasing flows, suggesting dilution of a kinetically limited weathering flux by a variable flux of water. However, Godsey et al. (2009) showed that concentration-discharge relationships of weathering-derived solutes in 59 headwater catchments were much flatter than this simple dilution model would predict. Instead, their analysis showed that these catchments behaved almost like chemostats, with rates of solute production and/or mobilization that were nearly proportional to water fluxes, on both event and inter-annual time scales. Here we re-examine these findings using data from roughly 1000 catchments, ranging from ˜10 to >1,000,000 km2 in drainage area, and spanning a wide range of lithologic and climatic settings. Concentration-discharge relationships among this much larger set of much larger catchments are broadly consistent with the chemostatic behavior described by Godsey et al. (2009). Among these same catchments, however, site-to-site variations in mean concentrations are strongly (negatively) correlated with long-term average precipitation and discharge, suggesting strong dilution of stream concentrations under long-term leaching of the critical zone. The picture that emerges is one in which, on event and inter-annual time scales, stream solute concentrations are chemostatically buffered by groundwater storage and fast chemical reactions (such as ion exchange), but on much longer time scales, the catchment's chemostatic "set point" is determined by climatically driven critical zone evolution. Examples illustrating the different influences of (short-term) weather and (long-term) climate on water quality will be presented, and their implications will be discussed

  2. Satellite-based Paleo and Recent Lake Changes across the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Sheng, Y.; Luo, J.; Shah, C. A.; Kroll, C. N.; Li, X.; Yao, T.; Wu, Y.

    2007-12-01

    The Tibetan Plateau, home to the world's largest high-altitude lake group, is experiencing significant climate change with a pronounced temperature rise of 0.16°C per decade. Tibetan lakes have been impacted greatly, and in return they serve as a sensitive indicator of regional and global climate and water cycle variability. Past lake dynamics is essential for us to better understand the current and inferred future lake changes. Owing to fact that paleo lake shores have been extensively preserved on this remote plateau, paleo lake change since the late Pleistocene (about 25 ka BP) can be inferred with the assistance of digital elevation models from paleo shorelines visible on high-resolution imagery. We have recovered the lake extent more than 650 major contemporary lakes occupying a total area of 21,613 km2, and it turns out that these lakes were broken from original 173 late Pleistocene mega lakes. The total lake area shrinkage and water loss are conservatively estimated at 42,109 km2 and 2,936 km3 respectively. Nearly two-thirds of late Pleistocene lake area has disappeared. More recent lake dynamics over the past 30 years is monitored using archived satellite data, and only minor changes are found in most areas. The detected paleo and recent lake changes exhibit strong spatial patterns. Three distinct zones of paleo changes can be identified trending in the northeast to the southwest direction. Lakes in the first zone have only minor water-level drops (less than 20 meters). The second zone is the moderate zone, with 20-60 meter water level drops. Lakes in the third zone have the greatest water-level drop, up to 285 meters. Paleo shorelines are found extensively in this zone. The spatial distribution of the zones is found highly related to the Quaternary glaciation patterns. Glacial dynamics and stream network changes and other factors may explain the detected recent lake changes. It is found that glacial dynamics has the greatest impact on the detected paleo

  3. Catchment organisation, free energy dynamics and network control on critical zone water flows

    NASA Astrophysics Data System (ADS)

    Zehe, E.; Ehret, U.; Kleidon, A.; Jackisch, C.; Scherer, U.; Blume, T.

    2012-04-01

    as that these flow structures organize and dominate flows of water, dissolved matter and sediments during rainfall driven conditions at various scales: - Surface connected vertical flow structures of anecic worm burrows or soil cracks organize and dominated vertical flows at the plot scale - this is usually referred to as preferential flow; - Rill networks at the soil surface organise and dominate hillslope scale overland flow response and sediment yields; - Subsurface pipe networks at the bedrock interface organize and dominate hillslope scale lateral subsurface water and tracer flows; - The river net organizes and dominates flows of water, dissolved matter and sediments to the catchment outlet and finally across continental gradients to the sea. Fundamental progress with respect to the parameterization of hydrological models, subscale flow networks and to understand the adaptation of hydro-geo ecosystems to change could be achieved by discovering principles that govern the organization of catchments flow networks in particular at least during steady state conditions. This insight has inspired various scientists to suggest principles for organization of ecosystems, landscapes and flow networks; as Bejans constructural law, Minimum Energy Expenditure , Maximum Entropy Production. In line with these studies we suggest that a thermodynamic/energetic treatment of the catchment is might be a key for understanding the underlying principles that govern organisation of flow and transport. Our approach is to employ a) physically based hydrological model that address at least all the relevant hydrological processes in the critical zone in a coupled way, behavioural representations of the observed organisation of flow structures and textural elements, that are consistent with observations in two well investigated research catchments and have been tested against distributed observations of soil moisture and catchment scale discharge; to simulate the full concert of hydrological

  4. Boron isotopes at the catchment scale, a new potential tool to infer critical zone processes.

    NASA Astrophysics Data System (ADS)

    Gaillardet, J.; Noireaux, J.; Braun, J. J.; Riotte, J.; Louvat, P.; Bouchez, J.; Lemarchand, D.; Muddu, S.; Mohan Kumar, M.; Candaudap, F.

    2017-12-01

    Boron is a mid-mass element that has two isotopes, 10B and 11B. These isotopes are largely fractioned by a number of chemical, biological and physical processes. Boron as a great affinity for clays and is useful for life, making it a double tracer of critical zone processes. This study focuses on the Mule Hole Critical Zone Observatory in South India. This is part of the French Research Infrastructure OZCAR and has benefited from the fruitful Indo-French collaboration (Indo-French Cell for Water Sciences) for more that 15 years. Boron and its isotopes were measured in the different compartment of the CZ in Mule Hole, vegetation, atmosphere, throughfall, soil, soil water, river water and compared to the behavior of other elements. The well constrained hydrology in Mule Hole allowed us to calculate the main fluxes affecting boron in the Critical Zone and came to the first order conclusion that the recycling of boron by vegetation is by far the most important flux within the system, reaching 15-20 times the catchment outlet flux. From an isotopic point of view, the total range of variation is measured between -3 ‰ and 77‰, with a bedrock value at 10‰ in classical delta unit, making boron a well suited tracer for constraining CZ processes. The flux of boron most enriched in heavy boron is the throughfall, showing the importance of biological processes in controlling the boron isotopic composition of the stream. Boron in soils in depleted in the heavy isotope but is enriched in boron compared to the bedrock, a surprising situation that we interpret as the legacy of a previous stage of transient weathering. These results indicate a strong decoupling between the behaviors of boron at the surface of the CZ and at depth.

  5. Textural, mineralogical and stable isotope studies of hydrothermal alteration in the main sulfide zone of the Great Dyke, Zimbabwe and the precious metals zone of the Sonju Lake Intrusion, Minnesota, USA

    USGS Publications Warehouse

    Li, C.; Ripley, E.M.; Oberthur, T.; Miller, J.D.; Joslin, G.D.

    2008-01-01

    Stratigraphic offsets in the peak concentrations of platinum-group elements (PGE) and base-metal sulfides in the main sulfide zone of the Great Dyke and the precious metals zone of the Sonju Lake Intrusion have, in part, been attributed to the interaction between magmatic PGE-bearing base-metal sulfide assemblages and hydrothermal fluids. In this paper, we provide mineralogical and textural evidence that indicates alteration of base-metal sulfides and mobilization of metals and S during hydrothermal alteration in both mineralized intrusions. Stable isotopic data suggest that the fluids involved in the alteration were of magmatic origin in the Great Dyke but that a meteoric water component was involved in the alteration of the Sonju Lake Intrusion. The strong spatial association of platinum-group minerals, principally Pt and Pd sulfides, arsenides, and tellurides, with base-metal sulfide assemblages in the main sulfide zone of the Great Dyke is consistent with residual enrichment of Pt and Pd during hydrothermal alteration. However, such an interpretation is more tenuous for the precious metals zone of the Sonju Lake Intrusion where important Pt and Pd arsenides and antimonides occur as inclusions within individual plagioclase crystals and within alteration assemblages that are free of base-metal sulfides. Our observations suggest that Pt and Pd tellurides, antimonides, and arsenides may form during both magmatic crystallization and subsolidus hydrothermal alteration. Experimental studies of magmatic crystallization and hydrothermal transport/deposition in systems involving arsenides, tellurides, antimonides, and base metal sulfides are needed to better understand the relative importance of magmatic and hydrothermal processes in controlling the distribution of PGE in mineralized layered intrusions of this type. ?? Springer-Verlag 2007.

  6. Validation of a side-scan sonar method for quantifying walleye spawning habitat availability in the littoral zone of northern Wisconsin Lakes

    USGS Publications Warehouse

    Richter, Jacob T.; Sloss, Brian L.; Isermann, Daniel A.

    2016-01-01

    Previous research has generally ignored the potential effects of spawning habitat availability and quality on recruitment of Walleye Sander vitreus, largely because information on spawning habitat is lacking for many lakes. Furthermore, traditional transect-based methods used to describe habitat are time and labor intensive. Our objectives were to determine if side-scan sonar could be used to accurately classify Walleye spawning habitat in the nearshore littoral zone and provide lakewide estimates of spawning habitat availability similar to estimates obtained from a transect–quadrat-based method. Based on assessments completed on 16 northern Wisconsin lakes, interpretation of side-scan sonar images resulted in correct identification of substrate size-class for 93% (177 of 191) of selected locations and all incorrect classifications were within ± 1 class of the correct substrate size-class. Gravel, cobble, and rubble substrates were incorrectly identified from side-scan images in only two instances (1% misclassification), suggesting that side-scan sonar can be used to accurately identify preferred Walleye spawning substrates. Additionally, we detected no significant differences in estimates of lakewide littoral zone substrate compositions estimated using side-scan sonar and a traditional transect–quadrat-based method. Our results indicate that side-scan sonar offers a practical, accurate, and efficient technique for assessing substrate composition and quantifying potential Walleye spawning habitat in the nearshore littoral zone of north temperate lakes.

  7. Non-Linear Response to Holocene Insolation Forcing Recorded by High-Resolution Lake Sediment Records Across Iceland

    NASA Astrophysics Data System (ADS)

    Geirsdottir, A.; Miller, G. H.; Axford, Y.

    2009-12-01

    Many Icelandic lakes have sedimentation rates in excess of 1 m ka-1 throughout the Holocene. Such high rates offer the potential for decadally resolved (or better) records of environmental change at this sensitive North Atlantic site. Abundant well-defined tephra provide a secure geochronology. The fidelity of the common climate proxies biogenic silica (BSi) and total organic carbon (TOC), was tested by comparing these proxies in three lakes with very different catchment characteristics. Hestvatn (HST, 60 m deep) in southern Iceland receives overflow from a large river originating in the glaciated highlands of central Iceland, whereas the nearby lake Vestra Gislholtsvatn (VGHV, 15 m deep) has a small, low elevation catchment without glaciers. Haukadalsvatn (HAK, 42 m deep), in northwestern Iceland, has a large, high relief catchment. The BSi record from HAK has been shown to reflect April-May temperatures, with BSi highest when spring temperatures are at their maximum. The first- and second-order trends in BSi are similar in all three lakes for most of the Holocene. This supports the contention that BSi reflects primary productivity, and is less influenced by changes in sedimentation rate. In all three lakes, BSi reaches a maximum value shortly after 8 ka, and then declines gradually toward present, reflecting a relatively late Holocene thermal maximum, potentially due to the influence of meltwater from the lingering Laurentide Ice Sheet. A steady reduction in summer insolation determines this first-order trend towards lower BSi through the middle and late Holocene. Large, abrupt departures from the overall decrease in BSi characterize all three records after 8 ka. Following each rapid BSi decrease, BSi usually exhibits a step-function change, re-equilibrating at a lower BSi value. Some of the strongest departures (ca. 6 ka, 4 to 4.5 ka and ca. 3 ka) may be related to Icelandic volcanism, but the lack of a full recovery to pre-existing values after the eruptions

  8. Faulting along the southern margin of Reelfoot Lake, Tennessee

    USGS Publications Warehouse

    Van Arsdale, R.; Purser, J.; Stephenson, W.; Odum, J.

    1998-01-01

    The Reelfoot Lake basin, Tennessee, is structurally complex and of great interest seismologically because it is located at the junction of two seismicity trends of the New Madrid seismic zone. To better understand the structure at this location, a 7.5-km-long seismic reflection profile was acquired on roads along the southern margin of Reelfoot Lake. The seismic line reveals a westerly dipping basin bounded on the west by the Reelfoot reverse fault zone, the Ridgely right-lateral transpressive fault zone on the east, and the Cottonwood Grove right-lateral strike-slip fault in the middle of the basin. The displacement history of the Reelfoot fault zone appears to be the same as the Ridgely fault zone, thus suggesting that movement on these fault zones has been synchronous, perhaps since the Cretaceous. Since the Reelfoot and Ridgely fault systems are believed responsible for two of the mainshocks of 1811-1812, the fault history revealed in the Reelfoot Lake profile suggests that multiple mainshocks may be typical of the New Madrid seismic zone. The Ridgely fault zone consists of two northeast-striking faults that lie at the base of and within the Mississippi Valley bluff line. This fault zone has 15 m of post-Eocene, up-to-the-east displacement and appears to locally control the eastern limit of Mississippi River migration. The Cottonwood Grove fault zone passes through the center of the seismic line and has approximately 5 m up-to-the-east displacement. Correlation of the Cottonwood Grove fault with a possible fault scarp on the floor of Reelfoot Lake and the New Markham fault north of the lake suggests the Cottonwood Grove fault may change to a northerly strike at Reelfoot Lake, thereby linking the northeast-trending zones of seismicity in the New Madrid seismic zone.

  9. Changes in water and sediment exchange between the Changjiang River and Poyang Lake under natural and anthropogenic conditions, China.

    PubMed

    Gao, Jian Hua; Jia, Jianjun; Kettner, Albert J; Xing, Fei; Wang, Ya Ping; Xu, Xia Nan; Yang, Yang; Zou, Xin Qing; Gao, Shu; Qi, Shuhua; Liao, Fuqiang

    2014-05-15

    To study the fluvial interaction between Changjiang River and Poyang Lake, we analyze the observed changes of riverine flux of the mid-upstream of Changjiang River catchment, the five river systems of Poyang Lake and Poyang Lake basin. Inter-annual and seasonal variations of the water discharge and sediment exchange processes between Changjiang River and Poyang Lake are systematically explored to determine the influence of climate change as well as human impact (especially the Three Gorges Dam (TGD)). Results indicate that climate variation for the Changjiang catchment and Poyang Lake watershed is the main factor determining the changes of water exchanges between Changjiang River and Poyang Lake. However, human activities (including the emplacement of the TGD) accelerated this rate of change. Relative to previous years (1956-1989), the water discharge outflow from Poyang Lake during the dry season towards the Changjiang catchment increased by 8.98 km(3)y(-1) during 2003-2010. Evidently, the water discharge flowing into Poyang Lake during late April-late May decreased. As a consequence, water storage of Poyang Lake significantly reduced during late April-late May, resulting in frequent spring droughts after 2003. The freshwater flux of Changjiang River towards Poyang Lake is less during the flood season as well, significantly lowering the magnitude and frequency of the backflow of the Changjiang River during 2003-2010. Human activities, especially the emplacement and operation of the TGD and sand mining at Poyang Lake impose a major impact on the variation of sediment exchange between Changjiang main river and Poyang Lake. On average, sediments from Changjiang River deposited in Poyang Lake before 2000. After 2000, Changjiang River no longer supplied sediment to Poyang Lake. As a consequence, the sediment load of Changjiang River entering the sea increasingly exists of sediments from Lake Poyang during 2003-2010. As a result, Poyang Lake converted from a

  10. Lake whitefish and lake herring population structure and niche in ten south-central Ontario lakes

    USGS Publications Warehouse

    Carl, Leon M.; McGuiness, Fiona

    2006-01-01

    This study compares simple fish communities of ten oligotrophic lakes in south-central Ontario. Species densities and population size structure vary significantly among these lake communities depending on fish species present beyond the littoral zone. Lake whitefish are fewer and larger in the presence of lake herring than in their absence. Diet analysis indicates that lake whitefish shift from feeding on both plankton and benthic prey when lake herring are absent to a primarily benthic feeding niche in the presence of lake herring. When benthic round whitefish are present, lake whitefish size and density decline and they move lower in the lake compared to round whitefish. Burbot are also fewer and larger in lakes with lake herring than in lakes without herring. Burbot, in turn, appear to influence the population structure of benthic coregonine species. Lower densities of benthic lake whitefish and round whitefish are found in lakes containing large benthic burbot than in lakes with either small burbot or where burbot are absent. Predation on the pelagic larvae of burbot and lake whitefish by planktivorous lake herring alters the size and age structure of these populations. As life history theory predicts, those species with poor larval survival appear to adopt a bet-hedging life history strategy of long-lived individuals as a reproductive reserve.

  11. Water and chemical recharge in subsurface catchment: observations and consequences for modeling

    NASA Astrophysics Data System (ADS)

    Gascuel-odoux, C.; Aquilina, L.; Faucheux, M.; Merot, P.; Molenat, J.; de Monteti, V.; Sebilo, M.; Rouxel, M.; Ruiz, L.

    2011-12-01

    Shallow groundwater that develops on hillslopes is the main compartment in headwater catchments for flow and solute transport to rivers. Although spatial and temporal variations in its chemical composition are reported in the literature, there is no coherent description of the way these variations are organized, nor is there an accepted conceptual model for the recharge mechanisms and flows in the groundwater involved. We instrumented an intensive farming and subsurface dominant catchment located in Oceanic Western Europe (France), included in AgrHyS catchments (for Agro-Hydro-SyStem) and a part of the French network of catchments for environmental research (SOERE RBV dedicated to the Critical Zone). It is strongly constrained by anthropogenic pressures (agriculture) and is characterized by a clear non-equilibrium status. A network of 42 nested piezometers was installed along a 200 m hillslope allowing water sampling in the permanent water table as well as in what we call the fluctuating zone, characterized by seasonal alternance of saturated and unsaturated conditions. Water composition was monitored at high frequency (weekly) over a 3-year period for major anion composition and over a one year period for detailed 15N, CFC, SF6 and other dissolved gases composition. The results demonstrated that (i) the anionic composition in water table fluctuation zone varied significantly compared to deeper portions of the aquifer on the hillslope, confirming that this layer constitutes a main compartment for the mixing of new recharge water and old groundwater, (ii) seasonally, the variations of 15N and CFC are much higher during the recharge period than during the recession period, confirming the preferential flow during early recharge events, iii) variations of nitrate 15N and O18 composition was suggesting any significant denitrification process in the fluctuating zone, confirming the dominance of the mixing processes in the fluctuating zone, iv) deeper parts of the aquifer

  12. Linkage between Three Gorges Dam impacts and the dramatic recessions in China’s largest freshwater lake, Poyang Lake

    PubMed Central

    Mei, Xuefei; Dai, Zhijun; Du, Jinzhou; Chen, Jiyu

    2015-01-01

    Despite comprising a small portion of the earth’s surface, lakes are vitally important for global ecosystem cycling. However, lake systems worldwide are extremely fragile, and many are shrinking due to changing climate and anthropogenic activities. Here, we show that Poyang Lake, the largest freshwater lake in China, has experienced a dramatic and prolonged recession, which began in late September of 2003. We further demonstrate that abnormally low levels appear during October, 28 days ahead of the normal initiation of the dry season, which greatly imperiled the lake’s wetland areas and function as an ecosystem for wintering waterbirds. An increase in the river-lake water level gradient induced by the Three Gorges Dam (TGD) altered the lake balance by inducing greater discharge into the Changjiang River, which is probably responsible for the current lake shrinkage. Occasional episodes of arid climate, as well as local sand mining, will aggravate the lake recession crisis. Although impacts of TGD on the Poyang Lake recession can be overruled by episodic extreme droughts, we argue that the average contributions of precipitation variation, human activities in the Poyang Lake catchment and TGD regulation to the Poyang Lake recession can be quantified as 39.1%, 4.6% and 56.3%, respectively. PMID:26657816

  13. Linkage between Three Gorges Dam impacts and the dramatic recessions in China’s largest freshwater lake, Poyang Lake

    NASA Astrophysics Data System (ADS)

    Mei, Xuefei; Dai, Zhijun; Du, Jinzhou; Chen, Jiyu

    2015-12-01

    Despite comprising a small portion of the earth’s surface, lakes are vitally important for global ecosystem cycling. However, lake systems worldwide are extremely fragile, and many are shrinking due to changing climate and anthropogenic activities. Here, we show that Poyang Lake, the largest freshwater lake in China, has experienced a dramatic and prolonged recession, which began in late September of 2003. We further demonstrate that abnormally low levels appear during October, 28 days ahead of the normal initiation of the dry season, which greatly imperiled the lake’s wetland areas and function as an ecosystem for wintering waterbirds. An increase in the river-lake water level gradient induced by the Three Gorges Dam (TGD) altered the lake balance by inducing greater discharge into the Changjiang River, which is probably responsible for the current lake shrinkage. Occasional episodes of arid climate, as well as local sand mining, will aggravate the lake recession crisis. Although impacts of TGD on the Poyang Lake recession can be overruled by episodic extreme droughts, we argue that the average contributions of precipitation variation, human activities in the Poyang Lake catchment and TGD regulation to the Poyang Lake recession can be quantified as 39.1%, 4.6% and 56.3%, respectively.

  14. Shifts in the Source and Composition of Dissolved Organic Matter in Southwest Greenland Lakes Along a Regional Hydro-climatic Gradient

    NASA Astrophysics Data System (ADS)

    Osburn, Christopher L.; Anderson, Nicholas J.; Stedmon, Colin A.; Giles, Madeline E.; Whiteford, Erika J.; McGenity, Terry J.; Dumbrell, Alex J.; Underwood, Graham J. C.

    2017-12-01

    Dissolved organic matter (DOM) concentration and quality were examined from Arctic lakes located in three clusters across south-west (SW) Greenland, covering the regional climatic gradient: cool, wet coastal zone; dry inland interior; and cool, dry ice-marginal areas. We hypothesized that differences in mean annual precipitation between sites would result in a reduced hydrological connectivity between lakes and their catchments and that this concentrates degraded DOM. The DOM in the inland lake group was characterized by a lower aromaticity and molecular weight, a low soil-like fluorescence, and carbon stable isotope (δ13C-DOC) values enriched by 2‰ relative to the coastal group. DOC-specific absorbance (SUVA254) and DOC-specific soil-like fluorescence (SUVFC1) revealed seasonal and climatic gradients across which DOM exhibited a dynamic we term "pulse-process": Pulses of DOM exported from soils to lakes during snow and ice melt were followed by pulses of autochthonous DOM inputs (possibly from macrophytes), and their subsequent photochemical and microbial processing. These effects regulated the dynamics of DOM in the inland lakes and suggested that if circumpolar lakes currently situated in cool wetter climatic regimes with strong hydrological connectivity have reduced connectivity under a drier future climate, they may evolve toward an end-point of large stocks of highly degraded DOC, equivalent to the inland lakes in the present study. The regional climatic gradient across SW Greenland and its influence on DOM properties in these lakes provide a model of possible future changes to lake C cycling in high-latitude systems where climatic changes are most pronounced.

  15. Disentangling Holocene lake level changes with a transect of lake sediment cores - a case study from Lake Fürstenseer See, northeastern Germany

    NASA Astrophysics Data System (ADS)

    Dietze, Elisabeth; Slowinski, Michal; Kienel, Ulrike; Zawiska, Izabela; Brauer, Achim

    2014-05-01

    Deciphering the main processes contributing to lake and landscape evolution in the northern central European lowlands on different temporal scales is one of the main targets of the Virtual Institute of Integrated Climate and Landscape Evolution Analysis (ICLEA) of the Helmholtz Association. In the context of future climatic changes especially the hydrological system is a vulnerable landscape component that showed considerably large changes in the recent past. The analysis of lake sediment archives can help to infer long-term dynamics of regional lake and groundwater levels, although available proxy information needs to be studied carefully, as water level changes are only one trigger. Lake Fürstenseer See (53°19'N, 13°12'E, lake level in 2009: 63.3 m a.s.l.) formed after the retreat of the Weichselian ice sheet in a subglacial channel in the direct forefront of the Pommerian ice margin. The ~2 km2 large lake (zmax = 24.5 m) has a (sub-) surficial catchment area of ~(20) 40 km2 including other smaller lakes and peatlands. In the past, the lake system was artificially dammed for the operation of water mills. Located within the well-drained sandur substrate, the lake levels vary with groundwater levels in response to hydrological and catchment-related groundwater recharge. Detrital matter input from fluvial activity can be excluded. Lake sediment cores at four sites along a transect down to 23 m water depth show distinct sediment facies patterns. Stratigraphic descriptions and non-destructive continuous micro-XRF scanning allowed the differentiation of the main sediment facies, which were microscopically described using thin sections. Quantification of total organic and inorganic matter (TOC, TIC, C/N-composition) and discontinuous macrorest, diatom and Cladocera analysis helped to approach the sedimentation history. Stable isotopes of (delta-180, delta-13C) were used for characterization of carbonates. A high amount of non-reworked terrestrial plant remains from

  16. Long-term scientific benefits from preserving old-growth hemlock stands at Clear Lake near Minden, Ontario, Canada

    Treesearch

    R. A. Reid; K. M. Somers; J. E. Nighswander; A. M. Zobel

    2000-01-01

    Clear Lake is located in the centre of the 1300 ha Clear Lake Conservation Reserve in Haliburton County, Ontario, Canada. In 1988, the reserve was designated as a protected area representing undisturbed, old-growth ecosystems. The reserve includes several headwater lakes and their associated catchments which support old-growth hemlock stands that are estimated to be up...

  17. GloboLakes: A global observatory of lake responses to environmental change.

    NASA Astrophysics Data System (ADS)

    Groom, Steve; Tyler, Andrew; Hunter, Peter; Spyrakos, Evangelos; Martinez-Vicente, Victor; Merchant, Chris; Cutler, Mark; Rowan, John; Dawson, Terry; Maberly, Stephen; Cavalho, Laurence; Elliot, Alex; Thackery, Stephen; Miller, Claire; Scott, Marian

    2014-05-01

    The world's freshwater ecosystems are vital components of the global biosphere, yet are vulnerable to climate and other human-induced change. There is increasing recognition that lakes play an important role in global biogeochemical cycling and provide key ecosystem services. However, our understanding of how lakes respond to environmental change at a global scale, and how this impacts on their status and function, is hampered by limited information on their chemical, physical and ecological condition. There are estimated to be over 300 million lakes globally, of which over 17,000 are greater than 10 km2 in surface area. These numbers have limited the systematic study of lake ecosystems. GloboLakes is a five-year UK research programme investigating the state of lakes and their response to climatic and other environmental drivers of change. It will establish a satellite-based observatory with archive and near-real time data processing to produce a time series of observed biogeochemical parameters and lake temperature for over 1000 lakes globally. This will be supported by linked ancillary data on climate and catchment land-use. The ability to monitor a large number of lakes consistently at high frequency and globally will facilitate a paradigm shift in our understanding of how lakes respond to environmental change at different spatial and temporal scales. A key requirement is to validate satellite retrieval algorithms and test the time-series of resulting lake properties such as chlorophyll-a by comparison with in situ data. To support the former extensive bio-optical and constituent data were taken in year 1 of the project in a number of UK lakes with a variety of trophic states. Furthermore, for wider validation activities GloboLakes has established the LIMNADES initiative to create a centralised database of ground bio-optical measurements of worldwide lakes through voluntary cooperation across the international scientific community. This presentation will

  18. High temporal resolution water chemistry information for catchment understanding and management

    NASA Astrophysics Data System (ADS)

    Reaney, S. M.; Deasy, C.; Ockenden, M.; Perks, M.; Quinton, J.

    2013-12-01

    Many rivers and lakes are currently not meeting their full ecological potential due to environmental pressures including non-point source pollution from the catchment. These pressures include sediment, nitrogen and phosphorus from agriculture and other sources. Each of these pollutants is transferred through the landscape with different hydrological processes and along different pathways. Therefore, to effectively select and spatially target mitigation actions in the landscape, an understanding of the dominant hydrological processes and dynamics which are causing the transfer of material is required. Recent advances in environmental monitoring have enabled the collection of new rich datasets with a high temporal sampling frequency. In the UK, these techniques have been implemented in the Defra Demonstration Test Catchments project and with Natural England for targeted site investigations. Measurements include weather, hydrological flows, sediment, oxygen isotopes, nitrogen and phosphorus from a combination of in-field labs, water chemistry sondes and storm samplers. The detailed time series data can then be analysed to give insights into catchment processes through the analysis of the measured process dynamics. For example, evidence of the transfer of material along surface (or pipe) flow paths can be found from the co-incident timing of the sediment and flow record, or the timing of temperature variations after a storm event can give insight into the contribution of shallow groundwater. Given this evidence of catchment hydrological dynamics it is possible to determine the probable pathways which are transferring pollutants and hence it is possible to select suitable mitigation options in the landscape to improve the river or lake. For example, evidence of a pollutant transfer occurring as shallow soil flows suggests that buffer strips would not be an effective solution since these measures intercept surface pathways. Information on catchment residence time not

  19. A soil-landscape framework for understanding spatial and temporal variability in biogeochemical processes in catchments

    NASA Astrophysics Data System (ADS)

    McGuire, K. J.; Bailey, S. W.; Ross, D. S.

    2017-12-01

    Heterogeneity in biophysical properties within catchments challenges how we quantify and characterize biogeochemical processes and interpret catchment outputs. Interactions between the spatiotemporal variability of hydrological states and fluxes and soil development can spatially structure catchments, leading to a framework for understanding patterns in biogeochemical processes. In an upland, glaciated landscape at the Hubbard Brook Experimental Forest (HBEF) in New Hampshire, USA, we are embracing the structure and organization of soils to understand the spatial relations between runoff production zones, distinct soil-biogeochemical environments, and solute retention and release. This presentation will use observations from the HBEF to demonstrate that a soil-landscape framework is essential in understanding the spatial and temporal variability of biogeochemical processes in this catchment. Specific examples will include how laterally developed soils reveal the location of active runoff production zones and lead to gradients in primary mineral dissolution and the distribution of weathering products along hillslopes. Soil development patterns also highlight potential carbon and nitrogen cycling hotspots, differentiate acidic conditions, and affect the regulation of surface water quality. Overall, this work demonstrates the importance of understanding the landscape-level structural organization of soils in characterizing the variation and extent of biogeochemical processes that occur in catchments.

  20. The glacial/deglacial history of sedimentation in Bear Lake, Utah and Idaho

    USGS Publications Warehouse

    Rosenbaum, J.G.; Heil, C.W.

    2009-01-01

    Bear Lake, in northeastern Utah and southern Idaho, lies in a large valley formed by an active half-graben. Bear River, the largest river in the Great Basin, enters Bear Lake Valley ???15 km north of the lake. Two 4-m-long cores provide a lake sediment record extending back ???26 cal k.y. The penetrated section can be divided into a lower unit composed of quartz-rich clastic sediments and an upper unit composed largely of endogenic carbonate. Data from modern fluvial sediments provide the basis for interpreting changes in provenance of detrital material in the lake cores. Sediments from small streams draining elevated topography on the east and west sides of the lake are characterized by abundant dolomite, high magnetic susceptibility (MS) related to eolian magnetite, and low values of hard isothermal remanent magnetization (HIRM, indicative of hematite content). In contrast, sediments from the headwaters of the Bear River in the Uinta Mountains lack carbonate and have high HIRM and low MS. Sediments from lower reaches of the Bear River contain calcite but little dolomite and have low values of MS and HIRM. These contrasts in catchment properties allow interpretation of the following sequence from variations in properties of the lake sediment: (1) ca. 26 cal ka-onset of glaciation; (2) ca. 26-20 cal ka-quasicyclical, millennial-scale variations in the concentrations of hematite-rich glacial fl our derived from the Uinta Mountains, and dolomite- and magnetite-rich material derived from the local Bear Lake catchment (reflecting variations in glacial extent); (3) ca. 20-19 cal ka-maximum content of glacial fl our; (4) ca. 19-17 cal ka-constant content of Bear River sediment but declining content of glacial fl our from the Uinta Mountains; (5) ca. 17-15.5 cal ka-decline in Bear River sediment and increase in content of sediment from the local catchment; and (6) ca. 15.5-14.5 cal ka-increase in content of endogenic calcite at the expense of detrital material. The onset

  1. The isotopic imprint of fixed nitrogen elimination in the redox transition zone of Lake Lugano, Switzerland

    NASA Astrophysics Data System (ADS)

    Wenk, Christine; Blees, Jan; Niemann, Helge; Zopfi, Jakob; Schubert, Carsten J.; Veronesi, Mauro; Simona, Marco; Koba, Keisuke; Lehmann, Moritz F.

    2010-05-01

    Nitrogen (N) loading in lakes from natural and anthropogenic sources is partially mitigated by microbially mediated processes that take place in redox transition zones (RTZ) in the water column and in sediments. However, the role of lakes as a terrestrial sink of fixed N is still poorly constrained. Furthermore, modes of suboxic N2 (and N2O) production other than canonical denitrification (e.g. anaerobic ammonium oxidation, or anammox) have barely been investigated in lakes, and the microbial communities involved in N transformations in lacustrine RTZ are mostly unknown. The isotopic composition of dissolved nitrogen species can serve as a reliable indicator of N-transformations in aquatic environments. However, the successful application of N (and O) isotope measurements in natural systems requires a solid understanding of the various N-transformation-specific isotope effects. The deep, south-alpine Lake Lugano, with a permanent chemocline in its North Basin, is an excellent model system for a biogeochemically dynamic lake, in which to study N isotope ratio variations associated with fixed N elimination and regeneration processes. We present the first comprehensive dataset of hydrochemical parameters (including N2/Ar and dissolved N2O concentrations), natural abundance stable isotope ratios of dissolved inorganic nitrogen (DIN) compounds (nitrate, nitrite, ammonium, dinitrogen, nitrous oxide), and the isotopomeric composition of water column N2O for the North Basin of Lake Lugano. Isotopic data will be integrated with molecular microbiological phylogenetic analyses and results from incubation experiments with 15N-labeled N-substrates. Strong gradients in DIN concentrations, as well as in the N and O isotope (and isotopomeric) compositions of nitrate and N2O towards the redox-transition zone indicate nitrate reduction, occurring with a high community N-fractionation. The site preference of N2O isotopomers above the chemocline indicates that the N2O is not only

  2. Lateral weathering gradients in glaciated catchments

    NASA Astrophysics Data System (ADS)

    McGuire, K. J.; Bailey, S. W.; Ross, D. S.; Strahm, B. D.; Schreiber, M. E.

    2016-12-01

    Mineral dissolution and the distribution of weathering products are fundamental processes that drive development and habitability of the Earth's critical zone; yet, the spatial configuration of these processes in some systems is not well understood. Feedbacks between hydrologic flows and weathering fluxes are necessary to understanding how the critical zone develops. In upland glaciated catchments of the northeastern USA, primary mineral dissolution and the distribution of weathering products are spatially distinct and predictable over short distances. Hillslopes, where shallow soils force lateral hydrologic fluxes through accumulated organic matter, produce downslope gradients in mineral depletion, weathering product accumulation, soil development, and solute chemistry. We propose that linked gradients in hydrologic flow paths, soil depth, and vegetation lead to predictable differences in the location and extent of mineral dissolution in regolith (soil, subsoil, and rock fragments) and bedrock, and that headwater catchments within the upland glaciated northeast show a common architecture across hillslopes as a result. Examples of these patterns and processes will be illustrated using observations from the Hubbard Brook Experimental Forest in New Hampshire where laterally distinct soils with strong morphological and biogeochemical gradients have been documented. Patterns in mineral depletion and product accumulation are essential in predicting how ecosystems will respond to stresses, disturbance, and management.

  3. Mechanisms underlying export of N from high-elevation catchments during seasonal transitions

    USGS Publications Warehouse

    Sickman, J.O.; Leydecker, A.L.; Chang, Cecily C.Y.; Kendall, C.; Melack, J.M.; Lucero, D.M.; Schimel, J.

    2003-01-01

    Mechanisms underlying catchment export of nitrogen (N) during seasonal transitions (i.e., winter to spring and summer to autumn) were investigated in high-elevation catchments of the Sierra Nevada using stable isotopes of nitrate and water, intensive monitoring of stream chemistry and detailed catchment N-budgets. We had four objectives: (1) determine the relative contribution of snowpack and soil nitrate to the spring nitrate pulse, (2) look for evidence of biotic control of N losses at the catchment scale, (3) examine dissolved organic nitrogen (DON) export patterns to gain a better understanding of the biological and hydrological controls on DON loss, and (4) examine the relationship between soil physico-chemical conditions and N export. At the Emerald Lake watershed, nitrogen budgets and isotopic analyses of the spring nitrate pulse indicate that 50 to 70% of the total nitrate exported during snowmelt (ca. April to July) is derived from catchment soils and talus; the remainder is snowpack nitrate. The spring nitrate pulse occurred several weeks after the start of snowmelt and was different from export patterns of less biologically labile compounds such as silica and DON suggesting that: (1) nitrate is produced and released from soils only after intense flushing has occurred and (2) a microbial N-sink is operating in catchment soils during the early stages of snowmelt. DON concentrations varied less than 20-30% during snowmelt, indicating that soil processes tightly controlled DON losses.

  4. Sensitivity of the East African rift lakes to climate variability

    NASA Astrophysics Data System (ADS)

    Olaka, L.; Trauth, M. H.

    2009-04-01

    Lakes in the East African Rift have provided excellent proxies to reconstruct past climate changes in the low latitudes. The lakes occupy volcano-tectonic depressions with highly variable climate and hydrological setting, that present a good opportunity to study the climatic and hydrogeological influences on the lake water budget. Previous studies have used lake floor sediments to establish the sensitivity of the East African rift lakes. This study focuses on geomorphology and climate to offer additional or alternative record of lake history that are key to quantifying sensitivity of these lakes as archives to external and internal climatic forcings. By using the published Holocene lake areas and levels, we analyze twelve lakes on the eastern arm of the East African rift; Ziway, Awassa, Turkana, Suguta, Baringo, Nakuru, Elmenteita, Naivasha, Natron, Manyara and compare with Lake Victoria, that occupies the plateau between the east and the western arms of the rift. Using the SRTM data, Hypsometric (area-altitude) analysis has been used to compare the lake basins between latitude 80 North and 30 South. The mean elevation for the lakes, is between 524 and 2262 meters above sea level, the lakes' hypsometric integrals (HI), a measure of landmass volume above the reference plane, vary from 0.31 to 0.76. The aridity index (Ai), defined as Precipitation/ Evapotranspiration, quantifies the water available to a lake, it encompasses land cover and climatic effects. It is lowest (arid) in the basin between the Ethiopian rift and the Kenyan rift and at the southern termination of the Kenyan Rift in the catchments of lake Turkana, Suguta, Baringo and Manyara with values of 0.55, 0.43, 0.43 and 0.5 respectively. And it is highest (wet) in the catchments of, Ziway, Awassa, Nakuru and Naivasha as 1.33,1.03 and 1.2 respectively, which occupy the highest points of the rift. Lake Victoria has an index of 1.42 the highest of these lakes and receives a high precipitation. We use a

  5. Morphology and morphometry of upland lakes over lateritic crust, Serra dos Carajás, southeastern Amazon region.

    PubMed

    Silva, Marcio S DA; Guimarães, José T F; Souza Filho, Pedro W M; Nascimento Júnior, Wilson; Sahoo, Prafulla K; Costa, Francisco R DA; Silva Júnior, Renato O; Rodrigues, Tarcísio M; Costa, Marlene F DA

    2018-01-01

    High-resolution satellite images, digital elevation models, bathymetric and sedimentological surveys coupled with statistical analysis were used to understand the physical environment and discuss their influence on water quality of the five upland lakes of Serra Sul dos Carajás, southeast Amazonia. The lakes have mid-altitude ranges (elevation), very small (catchment) and shallow to very shallow (central basins). Based on the length, area and volume, Violão and TI (Três Irmãs)-3 lakes may present large vertical movements of the water due to wind action and weakly stratified waters. Trophic conditions based on depth and shore development (Ld) parameters must be used with caution, since Amendoim Lake is relatively deep, but it is oligotrophic to ultra-oligotrophic. Ld values suggest that the lakes are circular to subcircular and are likely formed by solution process, as also suggested by volume development. TI-2 Lake is only presenting convex central basin and has highest dynamic ratio (DR), thus it may have high sedimentation and erosion rates. Based on the relationship between studied parameters, morphometric index and DR likely influence temperature and dissolved oxygen of waters of TI-2 Lake due to its depth profile and wind-induced surface mixing. Nevertheless, water quality parameters are controlled by catchment characteristics of the lakes.

  6. Variation in reciprocal subsidies between lakes and land: perspectives from the mountains of California

    Treesearch

    Jonah Piovia-Scott; Steven Sadro; Roland A. Knapp; James Sickman; Karen L. Pope; Sudeep Chandra

    2016-01-01

    Lakes are connected to surrounding terrestrial habitats by reciprocal flows of energy and nutrients. We synthesize data from California’s mountain lake catchments to investigate how these reciprocal subsidies change along an elevational gradient and with the introduction of a top aquatic predator. At lower elevations, well-developed terrestrial vegetation provides...

  7. Photochemical Reactivity of Dissolved Organic Matter in Boreal Lakes

    NASA Astrophysics Data System (ADS)

    Gu, Y.; Vuorio, K.; Tiirola, M.; Perämäki, S.; Vahatalo, A.

    2016-12-01

    Boreal lakes are rich in dissolved organic matter (DOM) that terrestrially derived from forest soil and wetland, yet little is known about potential for photochemical transformation of aquatic DOM in boreal lakes. Transformation of chromophoric dissolved organic matter (CDOM) can decrease water color and enhance microbial mineralization, affecting primary production and respiration, which both affect the CO2 balance of the lakes. We used laboratory solar radiation exposure experiments with lake water samples collected from 54 lakes located in Finland and Sweden, representing different catchment composition and watershed location to assess photochemical reactivity of DOM. The pH of water samples ranged from 5.4 to 8.3, and the concentrations of dissolved iron (Fe) were between < 0.06 and 22 μmol L-1. The filtered water samples received simulated solar radiation corresponding to a daily dose of sunlight, and photomineralization of dissolved organic carbon (DOC) to dissolved inorganic carbon (DIC) was measured for determination of spectral apparent quantum yields (AQY). During irradiation, photobleaching decreased the absorption coefficients of CDOM at 330 nm between 4.9 and 79 m-1 by 0.5 to 11 m-1. Irradiation generated DIC from 2.8 to 79 μmol C L-1. The AQY at 330 nm ranged between 31 and 273 ×10-6 mol C mol photons-1 h-1, which was correlated positively with concentration of dissolved Fe, and negatively with pH. Further statistical analyze indicated that the interaction between pH and Fe may explain much of the photochemical reactivity of DOM in the examined lakes, and land cover concerns main catchment areas also can have impact on the photoreaction process. This study may suggest how environmental conditions regulate DOM photomineralization in boreal lakes.

  8. Late-glacial and early Holocene changes in vegetation and lake-level at Hauterive/Rouges-Terres, Lake Neuchâtel (Switzerland)

    NASA Astrophysics Data System (ADS)

    Magny, Michel; Thew, Nigel; Hadorn, Philippe

    2003-01-01

    Palynological and sedimentological analyses of a sedimentary sequence sampled at Hauterive/Rouges-Terres, Lake Neuchâtel (Switzerland) provide documentation of changes in vegetation and lake-level during the Bølling, Younger Dryas and Preboreal pollen zones, and have allowed a comparison with sequences covering the same period from other sites located in the western part of the Swiss Plateau. The Juniperus-Hippophaë zone (regional pollen assemblage zone (RPAZ) CHb-2, first part of the Bølling, ca. 14 650-14 450 cal. yr BP) was characterised by a generally low lake-level. A weak rise occurred during this zone. The Juniperus-Hippophaë to Betula zone transition coincided with a lake-level lowering, interrupted by a short-lived but marked phase of higher lake-level recorded at the neighbouring site of Hauterive-Champréveyres, but not present at Hauterive/Rouges-Terres owing to an erosion surface. Shortly after the beginning of the Betula zone (RPAZ CHb-3, second part of the Bølling, ca 14 450-14 000 cal. yr BP), a marked rise in lake-level occurred. It was composed of two successive periods of higher level, coinciding with high values of Betula, separated by a short episode of relatively lower lake-level associated with raised values in Artemisia and other non-arboreal pollen. The last part of RPAZ CHb-3 saw a fall in lake-level. The lower lake-levels during RPAZ CHb-2 to early RPAZ CHb-3 can be correlated with the abrupt warming at the beginning of the Greenland Interstadial (GI) 1e thermal maximum. The successive episodes of higher lake-level punctuating the GI 1e might be linked to the so-called Intra-Bølling Cold Oscillations identified from several palaeoclimatic records in the North Atlantic area, and also documented in oxygen-isotope data sets from Swiss Plateau lakes. The Hauterive/Rouges-Terres lake-level record provides evidence for marked climatic drying through the second part of the Younger Dryas event (GS1), during the GS1-Preboreal (RPAZ CHb-4b-4

  9. Supraglacial Lakes in the Percolation Zone of the Western Greenland Ice Sheet: Formation and Development using Operation IceBridge Snow Radar and ATM (2009-2014)

    NASA Astrophysics Data System (ADS)

    Chen, C.; Howat, I. M.; de la Peña, S.

    2015-12-01

    Surface meltwater lakes on the Greenland Ice Sheet have appeared at higher elevations, extending well into the percolation zone, under recent warming, with the largest expansion occurring in the western Greenland Ice Sheet. The conditions that allow lakes to form atop firn are poorly constrained, but the formation of new lakes imply changes in the permeability of the firn at high elevations, promoting meltwater runoff. We explore the formation and evolution of new surface lakes in this region above 1500 meters, using a combination of satellite imagery and repeat Snow (2-6.5 GHz) radar echograms and LIDAR measurements from NASA's Operation IceBridge of 2009-2014. We identify conditions for surface lake formation at their farthest inland extent and suggest behaviors of persistence and lake drainage are due to differences in regional ice dynamics.

  10. The topographic wetness index as a predictor for hot spots of DOC export from catchments

    NASA Astrophysics Data System (ADS)

    Musolff, Andreas; Oosterwoud, Marieke; Tittel, Jörg; Selle, Benny; Fleckenstein, Jan H.

    2015-04-01

    . These soils are distributed in riparian wetlands along all streams within the catchments. As a readily available proxy for wetland soils percentiles of the probability distribution of the TWI in the sub-catchments were found to be good predictors for mean DOC concentrations in catchment outlet as well as for loads. In the larger dataset across Germany (ii) we also found a surprisingly good correlation between the TWI within the catchments and mean DOC concentrations. Thus we can show that, despite the wide range of topographies, land use types, geological setups and climatic conditions within this dataset the dominant source zones of DOC export is well captured by the TWI as a proxy for the share of wetland soils and DOC source zones within the catchments.

  11. Rainy Lake wrench zone: An example of an Archaean subprovince boundary in northwestern Ontario

    NASA Technical Reports Server (NTRS)

    Poulsen, K. H.

    1986-01-01

    The Superior Province of the Canadian Shield comprises an alternation of subprovinces with contrasting lithological, structural and metamorphic styles. Rocks of the Rainly Lake area form a fault bounded wedge between two of these subprovinces, the Wabigoon granite-greenstone terrain to the north and the Quetico metasedimentary terrain to the south. The Quetico and Seine River-Rainy Lake Faults bound this wedge within which interpretation of the stratigraphy has been historically contentious. In the eastern part of the wedge, volcanic rocks and coeval tonalitic sills are unconformably overlain by fluviatile conglomerate and arenite of the Seine Group; in the western part of the wedge, metamorphosed wacke and mudstone of the Coutchiching Group are cut by granodioritic plutons. The Coutchiching Group has previously been correlated with the Seine Group and with the turbiditic Quetico metasediments of the Quetico Subprovince and these correlations are the cornerstone of earlier tectonic models which relate the subprovinces. The structural geology of the Rainy Lake area is characterized by attributes which compare favourably with the known characteristics of dextral wrench or 'transpressive zones based both on experimental data and natural examples. Much of this deformation involved the Seine Group, the youngest stratigraphic unit in the area, and predates the emplacement of late-to-post-tectonic granodioritic plutons for which radiometric data indicate a Late Archean age.

  12. Projecting the impact of regional land-use change and water management policies on lake water quality: an application to periurban lakes and reservoirs.

    PubMed

    Catherine, Arnaud; Mouillot, David; Maloufi, Selma; Troussellier, Marc; Bernard, Cécile

    2013-01-01

    As the human population grows, the demand for living space and supplies of resources also increases, which may induce rapid change in land-use/land-cover (LULC) and associated pressures exerted on aquatic habitats. We propose a new approach to forecast the impact of regional land cover change and water management policies (i.e., targets in nutrient loads reduction) on lake and reservoir water eutrophication status using a model that requires minimal parameterisation compared with alternative methods. This approach was applied to a set of 48 periurban lakes located in the Ile de France region (IDF, France) to simulate catchment-scale management scenarios. Model outputs were subsequently compared to governmental agencies' 2030 forecasts. Our model indicated that the efforts made to reduce pressure in the catchment of seepage lakes might be expected to be proportional to the gain that might be obtained, whereas drainage lakes will display little improvement until a critical level of pressure reduction is reached. The model also indicated that remediation measures, as currently planned by governmental agencies, might only have a marginal impact on improving the eutrophication status of lakes and reservoirs within the IDF region. Despite the commitment to appropriately managing the water resources in many countries, prospective tools to evaluate the potential impacts of global change on freshwater ecosystems integrity at medium to large spatial scales are lacking. This study proposes a new approach to investigate the impact of region-scale human-driven changes on lake and reservoir ecological status and could be implemented elsewhere with limited parameterisation. Issues are discussed that relate to model uncertainty and to its relevance as a tool applied to decision-making.

  13. Projecting the Impact of Regional Land-Use Change and Water Management Policies on Lake Water Quality: An Application to Periurban Lakes and Reservoirs

    PubMed Central

    Catherine, Arnaud; Mouillot, David; Maloufi, Selma; Troussellier, Marc; Bernard, Cécile

    2013-01-01

    As the human population grows, the demand for living space and supplies of resources also increases, which may induce rapid change in land-use/land-cover (LULC) and associated pressures exerted on aquatic habitats. We propose a new approach to forecast the impact of regional land cover change and water management policies (i.e., targets in nutrient loads reduction) on lake and reservoir water eutrophication status using a model that requires minimal parameterisation compared with alternative methods. This approach was applied to a set of 48 periurban lakes located in the Ile de France region (IDF, France) to simulate catchment-scale management scenarios. Model outputs were subsequently compared to governmental agencies’ 2030 forecasts. Our model indicated that the efforts made to reduce pressure in the catchment of seepage lakes might be expected to be proportional to the gain that might be obtained, whereas drainage lakes will display little improvement until a critical level of pressure reduction is reached. The model also indicated that remediation measures, as currently planned by governmental agencies, might only have a marginal impact on improving the eutrophication status of lakes and reservoirs within the IDF region. Despite the commitment to appropriately managing the water resources in many countries, prospective tools to evaluate the potential impacts of global change on freshwater ecosystems integrity at medium to large spatial scales are lacking. This study proposes a new approach to investigate the impact of region-scale human-driven changes on lake and reservoir ecological status and could be implemented elsewhere with limited parameterisation. Issues are discussed that relate to model uncertainty and to its relevance as a tool applied to decision-making. PMID:23991066

  14. On the methane paradox: Transport from shallow water zones rather than in situ methanogenesis is the major source of CH4 in the open surface water of lakes

    NASA Astrophysics Data System (ADS)

    Encinas Fernández, Jorge; Peeters, Frank; Hofmann, Hilmar

    2016-10-01

    Estimates of global methane (CH4) emissions from lakes and the contributions of different pathways are currently under debate. In situ methanogenesis linked to algae growth was recently suggested to be the major source of CH4 fluxes from aquatic systems. However, based on our very large data set on CH4 distributions within lakes, we demonstrate here that methane-enriched water from shallow water zones is the most likely source of the basin-wide mean CH4 concentrations in the surface water of lakes. Consistently, the mean surface CH4 concentrations are significantly correlated with the ratio between the surface area of the shallow water zone and the entire lake, fA,s/t, but not with the total surface area. The categorization of CH4 fluxes according to fA,s/t may therefore improve global estimates of CH4 emissions from lakes. Furthermore, CH4 concentrations increase substantially with water temperature, indicating that seasonally resolved data are required to accurately estimate annual CH4 emissions.

  15. CAOS: the nested catchment soil-vegetation-atmosphere observation platform

    NASA Astrophysics Data System (ADS)

    Weiler, Markus; Blume, Theresa

    2016-04-01

    Most catchment based observations linking hydrometeorology, ecohydrology, soil hydrology and hydrogeology are typically not integrated with each other and lack a consistent and appropriate spatial-temporal resolution. Within the research network CAOS (Catchments As Organized Systems), we have initiated and developed a novel and integrated observation platform in several catchments in Luxembourg. In 20 nested catchments covering three distinct geologies the subscale processes at the bedrock-soil-vegetation-atmosphere interface are being monitored at 46 sensor cluster locations. Each sensor cluster is designed to observe a variety of different fluxes and state variables above and below ground, in the saturated and unsaturated zone. The numbers of sensors are chosen to capture the spatial variability as well the average dynamics. At each of these sensor clusters three soil moisture profiles with sensors at different depths, four soil temperature profiles as well as matric potential, air temperature, relative humidity, global radiation, rainfall/throughfall, sapflow and shallow groundwater and stream water levels are measured continuously. In addition, most sensors also measure temperature (water, soil, atmosphere) and electrical conductivity. This setup allows us to determine the local water and energy balance at each of these sites. The discharge gauging sites in the nested catchments are also equipped with automatic water samplers to monitor water quality and water stable isotopes continuously. Furthermore, water temperature and electrical conductivity observations are extended to over 120 locations distributed across the entire stream network to capture the energy exchange between the groundwater, stream water and atmosphere. The measurements at the sensor clusters are complemented by hydrometeorological observations (rain radar, network of distrometers and dense network of precipitation gauges) and linked with high resolution meteorological models. In this

  16. The relative influence of climate and catchment properties on hydrological drought

    NASA Astrophysics Data System (ADS)

    Van Loon, Anne; Laaha, Gregor; Koffler, Daniel

    2014-05-01

    Studying hydrological drought (a below-normal water availability in groundwater, lakes and streams) is important to society and the ecosystem, but can also reveal interesting information about catchment functioning. This information can later be used for predicting drought in ungauged basins and to inform water management decisions. In this study, we used an extensive Austrian dataset of discharge measurements in clusters of catchments and combine this dataset with thematic information on climate and catchment properties. Our aim was to study the relative effects of climate and catchment characteristics on drought duration and deficit and on hydrological drought typology. Because the climate of the region is roughly uniform, our hypothesis was that the effect of differences of catchment properties would stand out. From time series of precipitation and discharge we identified droughts with the widely-used threshold level approach, defining a drought when a variable falls below a pre-defined threshold representing the regime. Drought characteristics that were analysed are drought duration and deficit. We also applied the typology of Van Loon & Van Lanen (2012). To explain differences in drought characteristics between catchments we did a correlation analysis with climate and catchment characteristics, based on Pearson correlation. We found very interesting patterns in the correlations of drought characteristics with climate and catchment properties: 1) Droughts with long duration (mean and maximum) and composite droughts are related to catchments with a high BFI (high baseflow) and a high percentage of shallow groundwater tables. 2) The deficit (mean and maximum) of both meteorological droughts and hydrological droughts is strongly related to catchment humidity, in this case quantified by average annual precipitation. 3) The hydrological drought types that are related to snow, i.e. cold snow season drought and snow melt drought, occur in catchments that are have a

  17. Predictability of littoral-zone fish communities through ontogeny in Lake Texoma, Oklahoma-Texas, USA

    USGS Publications Warehouse

    Eggleton, M.A.; Ramirez, R.; Hargrave, C.W.; Gido, K.B.; Masoner, J.R.; Schnell, G.D.; Matthews, W.J.

    2005-01-01

    We sampled larval, juvenile and adult fishes from littoral-zone areas of a large reservoir (Lake Texoma, Oklahoma-Texas) (1) to characterize environmental factors that influenced fish community structure, (2) to examine how consistent fish-environment relationships were through ontogeny (i.e., larval vs. juvenile and adult), and (3) to measure the concordance of larval communities sampled during spring to juvenile and adult communities sampled at the same sites later in the year. Larval, juvenile and adult fish communities were dominated by Atherinidae (mainly inland silverside, Menidia beryllina) and Moronidae (mainly juvenile striped bass, Morone saxatilis) and were consistently structured along a gradient of site exposure to prevailing winds and waves. Larval, juvenile and adult communities along this gradient varied from atherinids and moronids at highly exposed sites to mostly centrarchids (primarily Lepomis and Micropterus spp.) at protected sites. Secondarily, zooplankton densities, water clarity, and land-use characteristics were related to fish community structure. Rank correlation analyses and Mantel tests indicated that the spatial consistency and predictability of fish communities was high as larval fishes sampled during spring were concordant with juvenile and adult fishes sampled at the same sites during summer and fall in terms of abundance, richness, and community structure. We propose that the high predictability and spatial consistency of littoral-zone fishes in Lake Texoma was a function of relatively simple communities (dominated by 1-2 species) that were structured by factors, such as site exposure to winds and waves, that varied little through time. ?? Springer 2005.

  18. Understanding and Predicting the Fate of Semivolatile Organic Pesticides in a Glacier-Fed Lake Using a Multimedia Chemical Fate Model.

    PubMed

    Wu, Xiaolin; Davie-Martin, Cleo L; Steinlin, Christine; Hageman, Kimberly J; Cullen, Nicolas J; Bogdal, Christian

    2017-10-17

    Melting glaciers release previously ice-entrapped chemicals to the surrounding environment. As glacier melting accelerates under future climate warming, chemical release may also increase. This study investigated the behavior of semivolatile pesticides over the course of one year and predicted their behavior under two future climate change scenarios. Pesticides were quantified in air, lake water, glacial meltwater, and streamwater in the catchment of Lake Brewster, an alpine glacier-fed lake located in the Southern Alps of New Zealand. Two historic-use pesticides (endosulfan I and hexachlorobenzene) and three current-use pesticides (dacthal, triallate, and chlorpyrifos) were frequently found in both air and water samples from the catchment. Regression analysis indicated that the pesticide concentrations in glacial meltwater and lake water were strongly correlated. A multimedia environmental fate model was developed for these five chemicals in Brewster Lake. Modeling results indicated that seasonal lake ice cover melt, and varying contributions of input from glacial melt and streamwater, created pulses in pesticide concentrations in lake water. Under future climate scenarios, the concentration pulse was altered and glacial melt made a greater contribution (as mass flux) to pesticide input in the lake water.

  19. Holocene multi-proxy environmental reconstruction from lake Hakluytvatnet, Amsterdamøya Island, Svalbard (79.5°N)

    NASA Astrophysics Data System (ADS)

    Gjerde, Marthe; Bakke, Jostein; D'Andrea, William J.; Balascio, Nicholas L.; Bradley, Raymond S.; Vasskog, Kristian; Ólafsdóttir, Sædis; Røthe, Torgeir O.; Perren, Bianca B.; Hormes, Anne

    2018-03-01

    High resolution proxy records of past climate are sparse in the Arctic due to low organic production that restricts the use of radiocarbon dating and challenging logistics that make data collection difficult. Here, we present a new lake record from lake Hakluytvatnet at Amsterdamøya island (79.5°N), the northwesternmost island on Svalbard. Multi-proxy analyses of lake sediments in combination with geomorphological mapping reveal large environmental shifts that have taken place at Amsterdamøya during the Holocene. A robust chronology has been established for the lake sediment core through 28 AMS radiocarbon ages, and this gives an exceptionally well-constrained age control for a lake at this latitude. The Holocene was a period with large changes in the Hakluytvatnet catchment, and the onset of the Neoglacial (ca. 5 ka) marks the start of modern-day conditions in the catchment. The Neoglacial is characterized by fluctuations in the minerogenic input to the lake as well as internal productivity, and we suggest that these fluctuations are driven by atmospherically forced precipitation changes as well as sea ice extent modulating the amount of moisture that can reach Hakluytvatnet.

  20. Where the lake meets the sea: strong reproductive isolation is associated with adaptive divergence between lake resident and anadromous three-spined sticklebacks.

    PubMed

    Ravinet, Mark; Hynes, Rosaleen; Poole, Russell; Cross, Tom F; McGinnity, Phil; Harrod, Chris; Prodöhl, Paulo A

    2015-01-01

    Contact zones between divergent forms of the same species are often characterised by high levels of phenotypic diversity over small geographic distances. What processes are involved in generating such high phenotypic diversity? One possibility is that introgression and recombination between divergent forms in contact zones results in greater phenotypic and genetic polymorphism. Alternatively, strong reproductive isolation between forms may maintain distinct phenotypes, preventing homogenisation by gene flow. Contact zones between divergent freshwater-resident and anadromous stickleback (Gasterosteus aculeatus L.) forms are numerous and common throughout the species distribution, offering an opportunity to examine these contrasting hypotheses in greater detail. This study reports on an interesting new contact zone located in a tidally influenced lake catchment in western Ireland, characterised by high polymorphism for lateral plate phenotypes. Using neutral and QTL-linked microsatellite markers, we tested whether the high diversity observed in this contact zone arose as a result of introgression or reproductive isolation between divergent forms: we found strong support for the latter hypothesis. Three phenotypic and genetic clusters were identified, consistent with two divergent resident forms and a distinct anadromous completely plated population that migrates in and out of the system. Given the strong neutral differentiation detected between all three morphotypes (mean FST = 0.12), we hypothesised that divergent selection between forms maintains reproductive isolation. We found a correlation between neutral genetic and adaptive genetic differentiation that support this. While strong associations between QTL linked markers and phenotypes were also observed in this wild population, our results support the suggestion that such associations may be more complex in some Atlantic populations compared to those in the Pacific. These findings provide an important foundation

  1. Where the Lake Meets the Sea: Strong Reproductive Isolation Is Associated with Adaptive Divergence between Lake Resident and Anadromous Three-Spined Sticklebacks

    PubMed Central

    Ravinet, Mark; Hynes, Rosaleen; Poole, Russell; Cross, Tom F.; McGinnity, Phil; Harrod, Chris; Prodöhl, Paulo A.

    2015-01-01

    Contact zones between divergent forms of the same species are often characterised by high levels of phenotypic diversity over small geographic distances. What processes are involved in generating such high phenotypic diversity? One possibility is that introgression and recombination between divergent forms in contact zones results in greater phenotypic and genetic polymorphism. Alternatively, strong reproductive isolation between forms may maintain distinct phenotypes, preventing homogenisation by gene flow. Contact zones between divergent freshwater-resident and anadromous stickleback (Gasterosteus aculeatus L.) forms are numerous and common throughout the species distribution, offering an opportunity to examine these contrasting hypotheses in greater detail. This study reports on an interesting new contact zone located in a tidally influenced lake catchment in western Ireland, characterised by high polymorphism for lateral plate phenotypes. Using neutral and QTL-linked microsatellite markers, we tested whether the high diversity observed in this contact zone arose as a result of introgression or reproductive isolation between divergent forms: we found strong support for the latter hypothesis. Three phenotypic and genetic clusters were identified, consistent with two divergent resident forms and a distinct anadromous completely plated population that migrates in and out of the system. Given the strong neutral differentiation detected between all three morphotypes (mean FST = 0.12), we hypothesised that divergent selection between forms maintains reproductive isolation. We found a correlation between neutral genetic and adaptive genetic differentiation that support this. While strong associations between QTL linked markers and phenotypes were also observed in this wild population, our results support the suggestion that such associations may be more complex in some Atlantic populations compared to those in the Pacific. These findings provide an important foundation

  2. Sediment tracing by `customised' magnetic fingerprinting: from the sub-catchment to the ocean scale

    NASA Astrophysics Data System (ADS)

    Maher, B.

    2009-04-01

    Robust identification of catchment suspended sediment sources is a prerequisite both for understanding sediment delivery processes and targeting of effective mitigation measures. Fine sediment delivery can pose management problems, especially with regard to nutrient run-off and siltation of water courses and bodies. Suspended sediment load constitutes the dominant mode of particulate material loss from catchments but its transport is highly episodic. Identification of suspended sediment sources and fluxes is therefore a prerequisite both for understanding of fluvial geomorphic process and systems and for designing strategies to reduce sediment transport, delivery and yields. Here will be discussed sediment ‘fingerprinting', using the magnetic properties of soils and sediments to characterise sediment sources and transport pathways over a very wide variety of spatial scales, from Lake Bassenthwaite in the English Lake District to the Burdekin River in Queensland and even the North Atlantic Ocean during the last glacial maximum. The applicability of magnetic ‘fingerprinting' to such a range of scales and environments has been significantly improved recently through use of new and site-appropriate magnetic measurement techniques, statistical processing and sample treatment options.

  3. Metal ion complex formation in small lakes of the Western Siberian Arctic zone

    NASA Astrophysics Data System (ADS)

    Kremleva, Tatiana; Dinu, Marina

    2017-04-01

    be predominantly in free, ionic or bound form with inorganic ligands. This state means paradox consequence that the increase of dissolved Fe content will lead to toxicity rise of other elements having less affinity to organic material. For surface waters of Western Siberian Arctic zone this situation is quite common. The total concentration of iron and aluminum ions in most lakes of tundra and northern taiga zones is approximately equal to water complexing ability. From the other side humic substances participation in inactivation of other more toxic metals (Cu, Pb, Cd, Cr, Ni et al.) will be poor. Arctic part of Western Siberia undergoes significant anthropogenic load due to extensive oil and gas recovery in this zone. Surface waters of Western Siberia are characterized by high natural content of iron, aluminum and copper ions and anthropogenic load of heavy metals makes the situation more serious.

  4. Quantifying nonpoint source emissions and their water quality responses in a complex catchment: A case study of a typical urban-rural mixed catchment

    NASA Astrophysics Data System (ADS)

    Chen, Lei; Dai, Ying; Zhi, Xiaosha; Xie, Hui; Shen, Zhenyao

    2018-04-01

    As two key threats to receiving water bodies, the generation mechanisms and processes of urban and agricultural nonpoint sources (NPSs) show clear differences, which lead to distinct characteristics of water quality responses with mixed land-uses catchments compared to single land-use ones. However, few studies have provided such insights in these characteristic or quantified different water environment responses to NPS pollution. In this study, an integrated modelling approach was developed for those complex catchments by combining three commonly used models: SWMM (Storm Water Management Model), SWAT (Soil and Water Assessment Tool) and MIKE 11. A case study was performed in a typical urban-rural catchment of Chao Lake, China. The simulated results indicated that urban NPS pollution responded sensitively to rainfall events and was greatly affected by the antecedent dry days. Compare to urban NPS, agricultural NPS pollution was characterized with the time-lag to rainfall depended on soil moisture and the post-rain-season emissions carried by lateral flows, and were also affected by the local farm-practice schedule. With comprehensive impacts from urban-rural land-uses, the time-interleaved urban and agricultural NPS pollution emissions and more abundant pollution accumulation both led to a decrease in the responsive time and an increase in the frequency of peak pollution concentration values even during the dry season. These obtained characteristics can provide guidance for drafting watershed management plans in similar mixed land use catchments.

  5. DEM-based analysis of landscape organization: 2) Application to catchment comparison

    NASA Astrophysics Data System (ADS)

    Seibert, J.; McGlynn, B.

    2003-04-01

    The delineation of homogeneous landscape elements (or "hydrologic response units") is often a prerequisite in field investigations and the application of semi-distributed hydrologic (or coupled hydrologic and biogeochemical) models. Delineation and quantification of dominant landscape elements requires methods to extract the features from digital elevation data or other readily available information. It is often assumed that hillslope and riparian areas constitute the two most important and identifiable landscape units contributing to catchment runoff in upland humid catchments. In addition, we have found that that the degree of hillslope water expression in stormflow is partially a function of riparian to hillslope reservoir ratios and landscape organization. Therefore, we developed a simple approach for quantifying landscape organization and distributed riparian to hillslope area ratios (riparian buffer ratios), as described in the accompanying contribution. Here we use this method as a framework for comparing and classifying diverse catchments located in Europe, the U.S., and New Zealand. Based on the three catchments Maimai (New Zealand), Panola (Georgia) and Sleepers (Vermont) we obtained the following preliminary results: (1) Local area entering the stream channels was most variable at Maimai and consistently diffuse at Sleepers and Panola. Also the median local area entering the channel network was largest at Maimai and smallest at Sleepers and Panola. This demonstrates the degree of landscape dissection (highest for Maimai) and the concentration of hillslope inputs along the stream network. (2) Riparian areas were smallest at Maimai, larger at Sleepers, and largest at Panola. The combination of riparian zone extent and focused (Maimai) versus diffuse (Sleepers and Panola) hillslope inputs to riparian zones controls local riparian to hillslope area ratios (riparian buffer capacities). (3) Area was accumulated to a large extend in the channel heads in all

  6. High resolution analysis of northern Patagonia lake sediments

    NASA Astrophysics Data System (ADS)

    Jarvis, S. W.; Croudace, I. W.; Langdon, P. G.; Rindby, A.

    2009-04-01

    Sediment cores covering the period from the last glacial maximum through the Holocene to the present have been collected from sites in the Chacubuco valley, southern Chile (around 47°08'S, 72°25'W, to the east of the North Patagonian Icecap). Cores were taken from five lakes and one recently dried lake bed. Short cores (0.2 to 0.5m), covering approximately the last two hundred years, were taken from all the lakes. Additionally, long sequences were obtained from one of the lakes and from the dried lake bed, the latter sequence extending back to the last glacial maximum as indicated by thick clay at the base. Each of the lakes are small-medium sized and are open systems situated at 300-1000m above sea level. The shorter cores comprise predominantly clastic gyttja but show a number of distinct changes in colour and chemical composition that suggest major environmental changes over the period of sediment accumulation. This is also reflected in variations in the loss on ignition of samples from the cores and in elemental profiles produced by scanning the cores with the Itrax micro-XRF corescanner at 200μm resolution. The long sequence from the dried lake bed has very low organic content glacial clay at the base, interpreted as last glacial maximum basal clay following determination in the field that this layer exceeded 2m in thickness. Similar sediments occur within a stratigraphically discrete section of approximately 14cm and may relate to a stadial event. The latter section also shows a drop in organic content and appears to be glacial clay incorporating some coarse sandy components indicative of detrital input from the catchment. The second long sequence, from a carbonate lake, includes two mineral layers indicating increased detrital input from the catchment. The deeper and thicker of these layers appears similar to the 14cm layer in the first long sequence, while the upper layer comprises a fine grain size indicative of rock flour and hence also of glacial

  7. Changes in discharge dynamics under the constraints of local and global changes in the Chao Lake basin (China)

    NASA Astrophysics Data System (ADS)

    Chu, Y.; Salles, C.; Rodier, C.; Crès, F.-N.; Huang, L.; Tournoud, M.-G.

    2012-04-01

    Located on the Yangtze basin, the Chao Lake is the fifth largest freshwater lake in China and of great importance in terms of water resources and aquaculture. Its catchment (9130 km2) includes the city of Hefei and large extends of agricultural and rural areas. Fast changes are expected in land uses and agricultural practices for the future, due to the touristic appeal of the Chao Lake shore and the growth of the city of Hefei. Climate changes are also expected in this region, with a high impact on rainfall regime. The consequences of these changes on the sustainability of the water inflows into the lake are a major issue for the economical development of the Chao Lake area even though they are little-known. Our study aims to give tools for estimating such consequences, accounting for uncertainties in scenario data and model parameters. The dynamics of rivers flowing into the Chao Lake is not very well-known, except for the Fengle River. The Fengle catchment (1480 km2) is mainly rural. River discharges are recorded at Taoxi station, upstream its outlet into the lake. 20-year records of daily discharges are available. Nine rain gauges, with daily data, daily temperature and evapotranspiration data are also available. The current dynamics of the Fengle River is characterized in terms of flood frequencies on discharge-duration-frequency curves. The ATHYS freely available hydrological tool (www.athys-soft.org) is used to calibrate and validate a distributed model of the Fengle catchment. Four calibration runs are done on four independent 5-year discharge records. Four different sets of model parameters are discussed. The model is then run for validation. The uncertainties in model predictions are evaluated in terms of errors in the simulated discharges during the validation period, with regards to the 5-year period used for calibration. The model is then applied on scenarios of changes in land uses and climate. Uncertainties in scenarios of changes are estimated

  8. DYNAMICS OF NUTRIENTS AND HYDROLOGY IN A LAKE SUPERIOR COASTAL WETLAND

    EPA Science Inventory

    Coastal wetlands are hydrologically complex ecosystems situated at the interface of upland catchments and oligotrophic Lake Superior. Little is known about nutrient dynamics within coastal wetlands or their role in modifying or contributing to nutrient fluxes from watersheds to ...

  9. Hydrologic response to modeled snowmelt input in alpine catchments in the Southwestern United States

    NASA Astrophysics Data System (ADS)

    Driscoll, J. M.; Molotch, N. P.; Jepsen, S. M.; Meixner, T.; Williams, M. W.; Sickman, J. O.

    2012-12-01

    Snowmelt from high elevation catchments is the primary source of water resources in the Southwestern United States. Timing and duration of snowmelt and resulting catchment response can show the physical and chemical importance of storage at the catchment scale. Storage of waters in subsurface materials provides a physical and chemical buffer to hydrologic input variability. We expect the hydrochemistry of catchments with less storage capacity will more closely reflect input waters than a catchment with more storage and therefore more geochemical evolution of waters. Two headwater catchments were compared for this study; Emerald Lake Watershed (ELW) in the southern Sierra Nevada and Green Lake 4 (GL4) in the Colorado Front Range. These sites have geochemically similar granitic terrane, and negligible evaporation and transpiration due to their high-elevation setting. Eleven years of data (1996-2006) from spatially-distributed snowmelt models were spatially and temporally aggregated to generate daily values of snowmelt volume for each catchment area. Daily storage flux was calculated as the difference between snowmelt input and catchment outflow at a daily timestep, normalized to the catchment area. Daily snowmelt values in GL4 are more consistent (the annual standard deviation ranged from 0.19 to 0.76 cm) than the daily snowmelt in ELW (0.60 to 1.04 cm). Outflow follows the same trend, with an even narrower range of standard deviations from GL4 (0.27 to 0.54 cm) compared to the standard deviation of outflow in ELW (0.38 to 0.98 cm). The dampening of the input variability could be due to storage in the catchment; the larger effect would mean a larger storage capacity in the catchment. Calculations of storage flux (the input snowmelt minus the output catchment discharge) show the annual sum of water into storage in ELW ranges from -0.9200 to 1.1124 meters, in GL4 the ranger is narrower, from -0.655 to 0.0992 meters. Cumulative storage for each year can be negative

  10. The impact of papyrus wetland encroachment on the spatial and temporal variability of stream flow and sediment export in the upper Rwizi catchment, Southwest Uganda

    NASA Astrophysics Data System (ADS)

    Ryken, Nick; Vanmaercke, Matthias; Wanyama, Joshua; Deckers, Jozef; Isabirye, Moses; Poesen, Jean

    2014-05-01

    During the past 30 years, human activities in the Lake Victoria basin are responsible for eutrophication of Lake Victoria via sediment-bound nutrients. This affects food security for millions on people. Addressing this problem in this densely populated region will require adequate catchment management strategies. However, sediment yield and runoff data to develop such a strategy are currently unavailable. Also in general, sediment yields for catchments in tropical environments are very scarce, especially in East-Africa. Therefore, runoff discharge and sediment export measurements were conducted in the upper Rwizi, a representative catchment for the Lake Victoria basin which is located in Southwest Uganda. Land use in this catchment is characterized by grazing area on the high plateaus, banana cropping on the slopes and Cyperus papyrus L. wetlands in the river valleys. These papyrus wetlands are currently encroached and transformed into cropland. Eight subcatchments (99 km2 - 2120 km2), with different degrees of wetland encroachment, were monitored during the hydrological year June 2009 - May 2010. Temporal and spatial variations in runoff discharge give strong indications that papyrus wetlands are crucial for buffering runoff and sediment discharge towards Lake Victoria. Subcatchments with intact wetlands show a slower runoff response to rainfall, smaller peak runoff discharges and lower runoff coefficients. Yearly runoff depths of subcatchment with intact wetlands are three to four times smaller compared to subcatchments with encroached wetlands. Suspended sediment concentrations (SSC) show a similar result, with significant smaller SSC in the subcatchments having intact papyrus wetlands. In the subcatchments where no encroachment occurred, annual area-specific suspended sediment yields (SSY) varied between 0,26 ton ha-1 yr-1and 0,33 ton ha-1 yr-1 , while the SSY of the encroached subcatchments varied between 1,20 ton ha-1 yr-1and 2,61 ton ha-1 yr-1. This study

  11. Mercury concentrations in fish from forest harvesting and fire-impacted Canadian Boreal lakes compared using stable isotopes of nitrogen.

    PubMed

    Garcia, Edenise; Carignan, Richard

    2005-03-01

    Total mercury (Hg) concentration was determined in several piscivorous and nonpiscivorous species of fish from 38 drainage lakes with clear-cut, burnt, or undisturbed catchments located in the Canadian Boreal Shield. Mercury concentrations increased with increasing fish trophic position as estimated using stable isotopes of nitrogen (N; r2 = 0.52, 0.49, and 0.30 for cut, reference, and burnt lakes, respectively; p < 0.01). Mercury biomagnification per thousand delta15N varied from 22 to 29% in the three groups of lakes. Mercury availability to organisms at the base of the food chain in lakes with cut catchments was higher than that in reference lakes. In cut lakes, Hg concentrations in fish were significantly related to ratio of the clear-cut area to lake area (or lake volume; r = +0.82 and +0.74, respectively, p < 0.01). Both impact ratios were, in turn, significantly correlated with dissolved organic carbon. These findings suggest that differential loading of organic matter-bound Hg to lakes can affect Hg cycling. In addition, Hg concentrations exceeded the advisory limit for human consumption (0.5 microg/g wet wt) from the World Health Organization in all top predatory species (northern pike, walleye, and burbot) found in cut and in two partially burnt lakes. Thus, high Hg concentrations in fish from forest-harvested and partially burnt lakes may reflect increased exposure to Hg relative to that in lakes not having these watershed disturbances.

  12. Hillslope hydrologic connectivity controls riparian groundwater turnover: Implications of catchment structure for riparian buffering and stream water sources

    Treesearch

    Kelsey G. Jencso; Brian L. McGlynn; Michael N. Gooseff; Kenneth E. Bencala; Steven M. Wondzell

    2010-01-01

    Hydrologic connectivity between catchment upland and near stream areas is essential for the transmission of water, solutes, and nutrients to streams. However, our current understanding of the role of riparian zones in mediating landscape hydrologic connectivity and the catchment scale export of water and solutes is limited. We tested the relationship between the...

  13. Soil moisture controlled runoff mechanisms in a small agricultural catchment in Austria.

    NASA Astrophysics Data System (ADS)

    Vreugdenhil, Mariette; Szeles, Borbala; Silasari, Rasmiaditya; Hogan, Patrick; Oismueller, Markus; Strauss, Peter; Wagner, Wolfgang; Bloeschl, Guenter

    2017-04-01

    Understanding runoff generation mechanisms is pivotal for improved estimation of floods in small catchments. However, this requires in situ measurements with a high spatial and temporal resolution of different land surface parameters, which are rarely available distributed over the catchment scale and for a long period. The Hydrological Open Air Laboratory (HOAL) is a hydrological observatory which comprises a complex agricultural catchment, covering 66 ha. Due to the agricultural land use and low permeability of the soil part of the catchment was tile drained in the 1940s. The HOAL is equipped with an extensive soil moisture network measuring at 31 locations, 4 rain gauges and 12 stream gauges. By measuring with so many sensors in a complex catchment, the collected data enables the investigation of multiple runoff mechanisms which can be observed simultaneously in different parts of the catchment. The aim of this study is to identify and characterize different runoff mechanisms and the control soil moisture dynamics exert on them. As a first step 72 rainfall events were identified within the period 2014-2015. By analyzing event discharge response, measured at the different stream gauges, and root zone soil moisture, four different runoff mechanisms are identified. The four mechanisms exhibit contrasting soil moisture-discharge relationships. In the presented study we characterize the runoff response types by curve-fitting the discharge response to the soil moisture state. The analysis provides insights in the main runoff processes occurring in agricultural catchments. The results of this study a can be of assistance in other catchments to identify catchment hydrologic response.

  14. High Resolution Seismic Imaging of the Trench Canyon Fault Zone, Mono Lake, Northeastern California

    NASA Astrophysics Data System (ADS)

    Novick, M. W.; Jayko, A. S.; Roeske, S.; McClain, J. S.; Hart, P. E.; Boyle, M.

    2009-12-01

    High resolution seismic imaging of Mono Lake, located in northeastern California, has revealed an approximately northwest striking fault in the area to the west of aerially exposed Negit Volcano. This fault, henceforth referred to as the Trench Canyon Fault (TCF), has also been mapped onshore along a correlating strike as far north as Cedar Hill Volcano, located to the northeast of the lake on the California/Nevada border. Onshore, the TCF was mapped for approximately 10 kilometers using air photos, DEM images, and standard geologic pace and compass mapping techniques. The TCF post- dates the last glacial maximum, evidenced by the cutting of wave cut benches along Cedar Hill Volcano. Relict, non-historic shorelines, left by the steady evaporation of Mono Lake beginning approximately 13k, are also repeatedly cut by the fault. Additional evidence of fault presence includes sag ponds, pressure ridges, tectonically fractured rocks, and normal fault scarps found along strike. Offshore, DEM images show a northeast striking structure to the northwest of Negit Volcano, which is co-linear with the onshore TCF. High resolution seismic imaging of the structure, using an applied acoustic/SIG mini-sparker system, reveals steeply dipping Holocene sediments, as well as volcanic deposits from active vents which have erupted in the last 1000 years, offset by the fault. Detailed structural analysis of the previously unstudied Trench Canyon Fault (TFC) and faults in the Cedar Hill region of northern California, along with seismic studies of sediments beneath Mono Lake not only allow for a better comprehension of this minor fault system, but provide greater understanding of the larger and more complex Walker Lane Shear Zone. Fault analyses, combined and correlated with those from CHV, give a better understanding of how slip is transferred into the complicated Mina defection to the east, from the dextral and normal faults along the Sierra Nevada Range front.

  15. In-lake carbon dioxide concentration patterns in four distinct phases in relation to ice cover dynamics

    NASA Astrophysics Data System (ADS)

    Denfeld, B. A.; Wallin, M.; Sahlee, E.; Sobek, S.; Kokic, J.; Chmiel, H.; Weyhenmeyer, G. A.

    2014-12-01

    Global carbon dioxide (CO2) emission estimates from inland waters include emissions at ice melt that are based on simple assumptions rather than evidence. To account for CO2 accumulation below ice and potential emissions into the atmosphere at ice melt we combined continuous CO2 concentrations with spatial CO2 sampling in an ice-covered small boreal lake. From early ice cover to ice melt, our continuous surface water CO2 concentration measurements at 2 m depth showed a temporal development in four distinct phases: In early winter, CO2 accumulated continuously below ice, most likely due to biological in-lake and catchment inputs. Thereafter, in late winter, CO2 concentrations remained rather constant below ice, as catchment inputs were minimized and vertical mixing of hypolimnetic water was cut off. As ice melt began, surface water CO2 concentrations were rapidly changing, showing two distinct peaks, the first one reflecting horizontal mixing of CO2 from surface and catchment waters, the second one reflecting deep water mixing. We detected that 83% of the CO2 accumulated in the water during ice cover left the lake at ice melt which corresponded to one third of the total CO2 storage. Our results imply that CO2 emissions at ice melt must be accurately integrated into annual CO2 emission estimates from inland waters. If up-scaling approaches assume that CO2 accumulates linearly under ice and at ice melt all CO2 accumulated during ice cover period leaves the lake again, present estimates may overestimate CO2 emissions from small ice covered lakes. Likewise, neglecting CO2 spring outbursts will result in an underestimation of CO2 emissions from small ice covered lakes.

  16. Shallow subsurface storm flow in a forested headwater catchment: Observations and modeling using a modified TOPMODEL

    USGS Publications Warehouse

    Scanlon, Todd M.; Raffensperger, Jeff P.; Hornberger, George M.; Clapp, Roger B.

    2000-01-01

    Transient, perched water tables in the shallow subsurface are observed at the South Fork Brokenback Run catchment in Shenandoah National Park, Virginia. Crest piezometers installed along a hillslope transect show that the development of saturated conditions in the upper 1.5 m of the subsurface is controlled by total precipitation and antecedent conditions, not precipitation intensity, although soil heterogeneities strongly influence local response. The macroporous subsurface storm flow zone provides a hydrological pathway for rapid runoff generation apart from the underlying groundwater zone, a conceptualization supported by the two‐storage system exhibited by hydrograph recession analysis. A modified version of TOPMODEL is used to simulate the observed catchment dynamics. In this model, generalized topographic index theory is applied to the subsurface storm flow zone to account for logarithmic storm flow recessions, indicative of linearly decreasing transmissivity with depth. Vertical drainage to the groundwater zone is required, and both subsurface reservoirs are considered to contribute to surface saturation.

  17. Long term response of acid-sensitive Vermont Lakes to sulfate deposition

    EPA Science Inventory

    Atmospheric deposition of sulfur can negatively affect the health of lakes and streams, particularly in poorly buffered catchments. In response to the Clean Air Act Amendments, wet deposition of sulfate decreased more than 35% in Vermont between 1990 and 2008. However, most of ...

  18. The Effect of Catchment Urbanization on Nutrient Uptake and Biofilm Enzyme Activity in Lake Superior (USA) Tributary Streams

    EPA Science Inventory

    We used landscape, habitat, and chemistry variables, along with nutrient spiraling metrics and biofilm extracellular enzyme activity (EEA), to assess the response of streams to the level of urbanization within their catchments. For this study nine streams of similar catchment are...

  19. The catchment based approach using catchment system engineering

    NASA Astrophysics Data System (ADS)

    Jonczyk, Jennine; Quinn, Paul; Barber, Nicholas; Wilkinson, Mark

    2015-04-01

    The catchment based approach (CaBa) has been championed as a potential mechanism for delivery of environmental directives such as the Water Framework Directive in the UK. However, since its launch in 2013, there has been only limited progress towards achieving sustainable, holistic management, with only a few of examples of good practice ( e.g. from the Tyne Rivers trust). Common issues with developing catchment plans over a national scale include limited data and resources to identify issues and source of those issues, how to systematically identify suitable locations for measures or suites of measures that will have the biggest downstream impact and how to overcome barriers for implementing solutions. Catchment System Engineering (CSE) is an interventionist approach to altering the catchment scale runoff regime through the manipulation of hydrological flow pathways throughout the catchment. A significant component of the runoff generation can be managed by targeting hydrological flow pathways at source, such as overland flow, field drain and ditch function, greatly reducing erosive soil losses. Coupled with management of farm nutrients at source, many runoff attenuation features or measures can be co-located to achieve benefits for water quality and biodiversity. A catchment, community-led mitigation measures plan using the CSE approach will be presented from a catchment in Northumberland, Northern England that demonstrate a generic framework for identification of multi-purpose features that slow, store and filter runoff at strategic locations in the landscape. Measures include within-field barriers, edge of field traps and within-ditch measures. Progress on the implementation of measures will be reported alongside potential impacts on the runoff regime at both local and catchment scale and costs.

  20. Can structural and functional characteristics be used to identify riparian zone width in southern Appalachian headwater catchments?

    Treesearch

    Barton Clinton; James Vose; Jennifer Knoepp; Katherine Elliott; Barbara Reynolds; Stanley Zarnock

    2010-01-01

    We characterized structural and functional attributes along hillslope gradients in headwater catchments. We endeavored to identify parameters that described significant transitions along the hillslope. On each of four catchments, we installed eight 50 m transects perpendicular to the stream. Structural attributes included woody and herbaceous vegetation; woody debris...

  1. Factors controlling mercury transport in an upland forested catchment

    USGS Publications Warehouse

    Scherbatskoy, T.; Shanley, J.B.; Keeler, G.J.

    1998-01-01

    Total mercury (Hg) deposition and input/output relationships were investigated in an 11-ha deciduous forested catchment in northern Vermont as part of ongoing evaluations of rig cycling and transport in the Lake Champlain basin. Atmospheric Hg deposition (precipitation + modeled vapor phase downward flux) was 425 mg ha-1 during the one-year period March 1994 through February 1995 and 463 mg ha-1 from March 1995 through February 1996. In the same periods, stream export of total Hg was 32 mg ha-1 and 22 mg ha-1, respectively. Thus, there was a net retention of Hg by the catchment of 92% the first year and 95% the second year. In the first year, 16.9 mg ha-1 or about half of the annual stream export, occurred on the single day of peak spring snowmelt in April. In contrast, the maximum daily export in the second year, when peak stream flow was somewhat lower, was 3.5 mg ha-1 during a January thaw. The fate of file Hg retained by this forested catchment is not known. Dissolved (< 0.22 ??m) Hg concentrations in stream water ranged from 0.5-2.6 ng L-1, even when total (unfiltered) concentrations were greater than 10 ng L-1 during high flow events. Total Hg concentrations in stream water were correlated with the total organic fraction of suspended sediment, suggesting the importance of organic material in Hg transport within the catchment. High flow events and transport with organic material may be especially important mechanisms for the movement of Hg through forested ecosystems.

  2. The evolution of root-zone moisture capacities after deforestation: a step towards hydrological predictions under change?

    NASA Astrophysics Data System (ADS)

    Nijzink, Remko; Hutton, Christopher; Pechlivanidis, Ilias; Capell, René; Arheimer, Berit; Freer, Jim; Han, Dawei; Wagener, Thorsten; McGuire, Kevin; Savenije, Hubert; Hrachowitz, Markus

    2016-12-01

    The core component of many hydrological systems, the moisture storage capacity available to vegetation, is impossible to observe directly at the catchment scale and is typically treated as a calibration parameter or obtained from a priori available soil characteristics combined with estimates of rooting depth. Often this parameter is considered to remain constant in time. Using long-term data (30-40 years) from three experimental catchments that underwent significant land cover change, we tested the hypotheses that: (1) the root-zone storage capacity significantly changes after deforestation, (2) changes in the root-zone storage capacity can to a large extent explain post-treatment changes to the hydrological regimes and that (3) a time-dynamic formulation of the root-zone storage can improve the performance of a hydrological model.A recently introduced method to estimate catchment-scale root-zone storage capacities based on climate data (i.e. observed rainfall and an estimate of transpiration) was used to reproduce the temporal evolution of root-zone storage capacity under change. Briefly, the maximum deficit that arises from the difference between cumulative daily precipitation and transpiration can be considered as a proxy for root-zone storage capacity. This value was compared to the value obtained from four different conceptual hydrological models that were calibrated for consecutive 2-year windows.It was found that water-balance-derived root-zone storage capacities were similar to the values obtained from calibration of the hydrological models. A sharp decline in root-zone storage capacity was observed after deforestation, followed by a gradual recovery, for two of the three catchments. Trend analysis suggested hydrological recovery periods between 5 and 13 years after deforestation. In a proof-of-concept analysis, one of the hydrological models was adapted to allow dynamically changing root-zone storage capacities, following the observed changes due to

  3. Hydrologic Synthesis Across the Critical Zone Observatory Network: A Step Towards Understanding the Coevolution of Critical Zone Function and Structure

    NASA Astrophysics Data System (ADS)

    Wlostowski, A. N.; Harman, C. J.; Molotch, N. P.

    2017-12-01

    The physical and biological architecture of the Earth's Critical Zone controls hydrologic partitioning, storage, and chemical evolution of precipitated water. The Critical Zone Observatory (CZO) Network provides an ideal platform to explore linkages between catchment structure and hydrologic function across a gradient of geologic and climatic settings. A legacy of hypothesis-motivated research at each site has generated a wealth of data characterizing the architecture and hydrologic function of the critical zone. We will present a synthesis of this data that aims to elucidate and explain (in the sense of making mutually intelligible) variations in hydrologic function across the CZO network. Top-down quantitative signatures of the storage and partitioning of water at catchment scales extracted from precipitation, streamflow, and meteorological data will be compared with each other, and provide quantitative benchmarks to assess differences in perceptual models of hydrologic function at each CZO site. Annual water balance analyses show that CZO sites span a wide gradient of aridity and evaporative partitioning. The aridity index (PET/P) ranges from 0.3 at Luquillo to 4.3 at Reynolds Creek, while the evaporative index (E/P) ranges from 0.3 at Luquillo (Rio Mamayes) to 0.9 at Reynolds Creek (Reynolds Creek Outlet). Snow depth and SWE observations reveal that snowpack is an important seasonal storage reservoir at three sites: Boulder, Jemez, Reynolds Creek and Southern Sierra. Simple dynamical models are also used to infer seasonal patterns of subsurface catchment storage. A root-zone water balance model reveals unique seasonal variations in plant-available water storage. Seasonal patterns of plant-available storage are driven by the asynchronicity of seasonal precipitation and evaporation cycles. Catchment sensitivity functions are derived at each site to infer relative changes in hydraulic storage (the apparent storage reservoir responsible for modulating streamflow

  4. Diverse, discrete, mantle-derived batches of basalt erupted along a short normal fault zone: The Poison Lake chain, southernmost Cascades

    USGS Publications Warehouse

    Muffler, L.J.P.; Clynne, M.A.; Calvert, A.T.; Champion, D.E.

    2011-01-01

    The Poison Lake chain consists of small, monogenetic, calc-alkaline basaltic volcanoes located east of the Cascade arc axis, 30 km ENE of Lassen Peak in northeastern California. This chain consists of 39 distinguishable units in a 14-km-long and 2-kmwide zone trending NNW, parallel to nearby Quaternary normal faults. The 39 units fall into nine coherent groups based on stratigraphy, field characteristics, petrography, and major-element compositions. Petrographic differences among groups are expressed by different amounts and proportions of phenocrysts. MgO-SiO 2, K 2O-SiO 2, and TiO 2-SiO 2 variation diagrams illustrate clear differences in compatible and incompatible elements among the groups. Variation of K 2O/ TiO 2 and K 2O/P 2O 5 with MgO indicates that most of the basalts of the Poison Lake chain cannot be related by crystal fractionation at different pressures and that compositions have not been affected significantly by incorporation of low-degree silicic crustal melt or interaction with sialic crust. Limited traceelement and whole-rock isotopic data also suggest little if any incorporation of uppercrustal material, and that compositional variation among groups primarily reflects source compositional differences. Precise 40Ar/ 39Ar determinations show that the lavas were erupted between 100 and 110 ka. The migration of paleomagnetic remanent directions over 30?? suggests that the entire Poison Lake chain could represent three short-lived episodes of volcanism within a period as brief as 500 yr. The diverse geologic, petrographic, chemical, paleomagnetic, and age data indicate that each of the nine groups represents a small, discrete magma batch generated in the mantle and stored briefly in the lower crust. A NNW normal fault zone provided episodic conduits that allowed rapid ascent of these batches to the surface, where they erupted as distinct volcanic groups, each aligned along a segment of the Poison Lake chain. Compositional diversity of these primitive

  5. Terrain representation impact on periurban catchment morphological properties

    NASA Astrophysics Data System (ADS)

    Rodriguez, F.; Bocher, E.; Chancibault, K.

    2013-04-01

    SummaryModelling the hydrological behaviour of suburban catchments requires an estimation of environmental features, including land use and hydrographic networks. Suburban areas display a highly heterogeneous composition and encompass many anthropogenic elements that affect water flow paths, such as ditches, sewers, culverts and embankments. The geographical data available, either raster or vector data, may be of various origins and resolutions. Urban databases often offer very detailed data for sewer networks and 3D streets, yet the data covering rural zones may be coarser. This study is intended to highlight the sensitivity of geographical data as well as the data discretisation method used on the essential features of a periurban catchment, i.e. the catchment border and the drainage network. Three methods are implemented for this purpose. The first is the DEM (for digital elevation model) treatment method, which has traditionally been applied in the field of catchment hydrology. The second is based on urban database analysis and focuses on vector data, i.e. polygons and segments. The third method is a TIN (or triangular irregular network), which provides a consistent description of flow directions from an accurate representation of slope. It is assumed herein that the width function is representative of the catchment's hydrological response. The periurban Chézine catchment, located within the Nantes metropolitan area in western France, serves as the case study. The determination of both the main morphological features and the hydrological response of a suburban catchment varies significantly according to the discretization method employed, especially on upstream rural areas. Vector- and TIN-based methods allow representing the higher drainage density of urban areas, and consequently reveal the impact of these areas on the width function, since the DEM method fails. TINs seem to be more appropriate to take streets into account, because it allows a finer

  6. The Impact of Eutrophication on Mercury Cycling in Lake 227 at the Experimental Lakes Area in Northwestern Ontario

    NASA Astrophysics Data System (ADS)

    Kirk, J.; Lehnherr, I.; Gleason, A.; St. Louis, V. L.; Muir, D.

    2012-12-01

    Mercury (Hg) is a pollutant of global concern as concentrations of methyl mercury (MeHg), the toxic and bioaccumulative form of Hg, are often present in fish at levels high enough to pose health risks to consumers. Although we are beginning to understand the factors controlling MeHg production in freshwater lakes, the impacts of environmental disturbances, such as eutrophication, on Hg cycling are not known. As part of a larger project examining controls on eutrophication, we are studying Hg cycling and MeHg production in the artificially eutrophied Lake 227 at the Experimental Lakes Area in northwestern Ontario. In addition to 40 years of ancillary data, Lake 227 is ideal for this study as it has an anoxic hypolimnion which may be an important zone of microbial MeHg production. To determine sources and losses of inorganic Hg(II) and MeHg from the lake, we are using a mass balance approach including: detailed lake profiles to determine the water column pools of Hg(II) and MeHg, Hg(II) and MeHg inputs via precipitation, and losses of Hg(II) and MeHg from the lake via gaseous elemental Hg(0) evasion and MeHg photodemethylation, respectively. Rates of water column MeHg production are also being determined using Hg stable isotope tracer experiments. 2010-2011 water column profiles demonstrated that although total Hg (THg) and MeHg concentrations were fairly low in Lake 227 surface waters (2.42 ± 0.64 and 0.11 ± 0.06 ng/L, respectively), MeHg concentrations (1.08 ± 0.39 ng/L) and the % THg that was MeHg (16 ± 5%) were high in deep regions of the water column (6-9 m). The zone of elevated water column MeHg expanded throughout summers 2010-2011, closely following the zone of anoxia, suggesting MeHg is produced in the anoxic hypolimnion. The zone of high particulate-bound THg (62 ± 6%) also migrated with the zone of anoxia over the summer suggesting that particle sinking and sediment resuspension, which are controlled by the timing of algal blooms, are important

  7. 33 CFR 100.35T09-0327 - Special Regulated Areas for summer events; Captain of the Port Lake Michigan Zone.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Special Regulated Areas for summer events; Captain of the Port Lake Michigan Zone. 100.35T09-0327 Section 100.35T09-0327 Navigation... OF LIFE ON NAVIGABLE WATERS § 100.35T09-0327 Special Regulated Areas for summer events; Captain of...

  8. Hydrological hysteresis and its value for assessing process consistency in catchment conceptual models

    NASA Astrophysics Data System (ADS)

    Fovet, O.; Ruiz, L.; Hrachowitz, M.; Faucheux, M.; Gascuel-Odoux, C.

    2015-01-01

    While most hydrological models reproduce the general flow dynamics, they frequently fail to adequately mimic system-internal processes. In particular, the relationship between storage and discharge, which often follows annual hysteretic patterns in shallow hard-rock aquifers, is rarely considered in modelling studies. One main reason is that catchment storage is difficult to measure, and another one is that objective functions are usually based on individual variables time series (e.g. the discharge). This reduces the ability of classical procedures to assess the relevance of the conceptual hypotheses associated with models. We analysed the annual hysteric patterns observed between stream flow and water storage both in the saturated and unsaturated zones of the hillslope and the riparian zone of a headwater catchment in French Brittany (Environmental Research Observatory ERO AgrHys (ORE AgrHys)). The saturated-zone storage was estimated using distributed shallow groundwater levels and the unsaturated-zone storage using several moisture profiles. All hysteretic loops were characterized by a hysteresis index. Four conceptual models, previously calibrated and evaluated for the same catchment, were assessed with respect to their ability to reproduce the hysteretic patterns. The observed relationship between stream flow and saturated, and unsaturated storages led us to identify four hydrological periods and emphasized a clearly distinct behaviour between riparian and hillslope groundwaters. Although all the tested models were able to produce an annual hysteresis loop between discharge and both saturated and unsaturated storage, the integration of a riparian component led to overall improved hysteretic signatures, even if some misrepresentation remained. Such a system-like approach is likely to improve model selection.

  9. Phosphorus Fate and Transport across Fields and Catchments: Addressing the Paradoxical Dilemma

    NASA Astrophysics Data System (ADS)

    Sharpley, Andrew; Jarvie, Helen; Johnson, Laura; Smith, Doug

    2017-04-01

    Awareness and scrutiny of agriculture's role in contributing phosphorus (P) to surface water impairment has increased due to recent high profile harmful algal bloom outbreaks. In addition, an inability to meet target P-load reductions in large catchments in the USA, such as Chesapeake Bay, Lake Erie, and Mississippi River, has brought into question the effectiveness of current and future conservation strategies designed to mitigate such loads. This has led many to question the efficacy of these measures and to call for stricter land and P-management strategies and the recognition of several paradoxes related to the management of agricultural P. "The Finite Resource and Environmental Abundance Paradox" While P is a finite resource, with an expected life of 300 years using modern mining technologies, less than 20% of mined fertilizer P reaches the food products consumed, only 10% of the P in human wastes is recycled back onto agricultural land, yet P deficits occur across 30% of global cropland. "The Blue - Green Paradox" An increasingly affluent population is becoming more demanding of cheap, reliable food sources and wanting inexpensive clean, safe water for many essential and recreational uses. We now face many challenges in balancing competing demands for protecting and restoring water quality and aquatic ecology, with sustainable and efficient agricultural production. After the low hanging fruit of remedial measures are adopted, remaining conservation practices become increasingly less cost-beneficial and raises the old conundrum of "who benefits and who pays?" "The Conservation Legacy P Paradox" Many conservation practices have been implemented to retain (e.g., no-tillage, cover crops, contour plowing, ridge tillage) and trap P (e.g., buffer strips, riparian zones, wetlands) on the landscape rather than enter waterways. Yet, the capacity of those practices to retain is finite and there are more and more examples of conservation practices transitioning from P

  10. Combining XAS speciation and Zn isotopes to track past eutrophication in lake sediments : The example of Baldeggersee (Switzerland)

    NASA Astrophysics Data System (ADS)

    Noël, V. S.; Voegelin, A.; Jouvin, D.; Louvat, P.; gelabert, A.; Mueller, B.; Benedetti, M. F.; Juillot, F.

    2011-12-01

    Among transition elements, Zn has attracted a great deal of interest because it is an essential nutrient at low concentrations, but it can also be toxic when present at high concentrations in ecosystems (Morel et al., 2003). In the present study, the isotopic signature and crystal-chemical of Zn were followed along a sediment core from a prealpine lake that experienced a marked eutrophication in order to explore the potential of this approach at tracking past environmental conditions of continental lake-catchment systems. Lake Baldeggersee (Luzern, Switzerland) is located at an elevation of 900 m in the Swiss Prealps. It experienced a period of strong eutrophication due to intensive farming in its catchment (Lotter et al., 1997). These led to the formation of varved sediments over one century prior to artificial lake aeration (Wehrli et al., 1997). This enabled us to correlate Zn speciation and isotopic signatures to the history of the water column. Results indicate that both Zn speciation and isotopes are distinct between sediments deposited during mesotrophic and eutrophic conditions in the water column: During the mesotrophic period, sedimentation was mainly detrital and Zn is mainly found associated with clay minerals in the sediments. During the eutrophic period, sedimentation was dominated by biological activity in the lake and Zn mainly occurs as ZnS in the sediments. Zn isotopes recorded these changes in the sedimentation regime, with δ66ZnJMC values around +0.2 % for the sediments of the mesotrophic period and δ66ZnJMC values around 0 % for the sediments of the eutrophic period. Comparison with the results from a study on the seasonal variation of the isotope signature of Zn in settling sediment of another prealpine lake (Peel et al., 2010) suggests that the enrichment in light Zn isotopes in the eutrophic sediments is in line with predominant Zn input with settling biomass (algae). Since lake eutrophication is mainly related to hydrological conditions

  11. Climate Change Increasing Calcium and Magnesium Leaching from Granitic Alpine Catchments.

    PubMed

    Kopáček, Jiří; Kaňa, Jiří; Bičárová, Svetlana; Fernandez, Ivan J; Hejzlar, Josef; Kahounová, Marie; Norton, Stephen A; Stuchlík, Evžen

    2017-01-03

    Climate change can reverse trends of decreasing calcium and magnesium [Ca + Mg] leaching to surface waters in granitic alpine regions recovering from acidification. Despite decreasing concentrations of strong acid anions (-1.4 μeq L -1 yr -1 ) during 2004-2016 in nonacidic alpine lakes in the Tatra Mountains (Central Europe), the average [Ca + Mg] concentrations increased (2.5 μeq L -1 yr -1 ), together with elevated terrestrial export of bicarbonate (HCO 3 - ; 3.6 μeq L -1 yr -1 ). The percent increase in [Ca + Mg] concentrations in nonacidic lakes (0.3-3.2% yr -1 ) was significantly and positively correlated with scree proportion in the catchment area and negatively correlated with the extent of soil cover. Leaching experiments with freshly crushed granodiorite, the dominant bedrock, showed that accessory calcite and (to a lesser extent) apatite were important sources of Ca. We hypothesize that elevated terrestrial export of [Ca + Mg] and HCO 3 - resulted from increased weathering caused by accelerated physical erosion of rocks due to elevated climate-related mechanical forces (an increasing frequency of days with high precipitation amounts and air temperatures fluctuating around 0 °C) during the last 2-3 decades. These climatic effects on water chemistry are especially strong in catchments where fragmented rocks are more exposed to weathering, and their position is less stable than in soil.

  12. Runoff and solute mobilization processes in a semiarid headwater catchment

    NASA Astrophysics Data System (ADS)

    Hughes, Justin D.; Khan, Shahbaz; Crosbie, Russell S.; Helliwell, Stuart; Michalk, David L.

    2007-09-01

    Runoff and solute transport processes contributing to streamflow were determined in a small headwater catchment in the eastern Murray-Darling Basin of Australia using hydrometric and tracer methods. Streamflow and electrical conductivity were monitored from two gauges draining a portion of the upper catchment area (UCA) and a saline scalded area, respectively. Runoff in the UCA was related to the formation of a seasonally perched aquifer in the near-surface zone (0-0.4 m). A similar process was responsible for runoff generation in the saline scalded area. However, saturation in the scald area was related to the proximity of groundwater rather than low subsurface hydraulic conductivity. Because of higher antecedent water content, runoff commenced earlier in winter from the scald than did the UCA. Additionally, areal runoff from the scald was far greater than from the UCA. Total runoff from the UCA was higher than the scald (15.7 versus 3.5 mL), but salt export was far lower (0.6 and 5.4 t for the UCA and scald area, respectively) since salinity of the scald runoff was far higher than that from the UCA, indicating the potential impact of saline scalded areas at the catchment scale. End-member mixing analysis modeling using six solutes indicated that most runoff produced from the scald was "new" (40-71%) despite the proximity of the groundwater surface and the high antecedent moisture levels. This is a reflection of the very low hydraulic conductivity of soils in the study area. Nearly all chloride exported to the stream from the scald emanated from the near-surface zone (77-87%). Runoff and solute mobilization processes depend upon seasonal saturation occurring in the near-surface zone during periods of low evaporative demand and generation of saturated overland flow.

  13. 33 CFR 165.T09-0073 - Safety and Security Zones; Tall Ships Challenge 2010; Great Lakes; Cleveland, OH; Bay City, MI...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Safety and Security Zones; Tall Ships Challenge 2010; Great Lakes; Cleveland, OH; Bay City, MI; Duluth, MN; Green Bay, WI; Sturgeon Bay...; Cleveland, OH; Bay City, MI; Duluth, MN; Green Bay, WI; Sturgeon Bay, WI; Chicago, IL; Erie, PA. (a...

  14. Effects of land use on lake nutrients: The importance of scale, hydrologic connectivity, and region

    USGS Publications Warehouse

    Soranno, Patricia A.; Cheruvelil, Kendra Spence; Wagner, Tyler; Webster, Katherine E.; Bremigan, Mary Tate

    2015-01-01

    Catchment land uses, particularly agriculture and urban uses, have long been recognized as major drivers of nutrient concentrations in surface waters. However, few simple models have been developed that relate the amount of catchment land use to downstream freshwater nutrients. Nor are existing models applicable to large numbers of freshwaters across broad spatial extents such as regions or continents. This research aims to increase model performance by exploring three factors that affect the relationship between land use and downstream nutrients in freshwater: the spatial extent for measuring land use, hydrologic connectivity, and the regional differences in both the amount of nutrients and effects of land use on them. We quantified the effects of these three factors that relate land use to lake total phosphorus (TP) and total nitrogen (TN) in 346 north temperate lakes in 7 regions in Michigan, USA. We used a linear mixed modeling framework to examine the importance of spatial extent, lake hydrologic class, and region on models with individual lake nutrients as the response variable, and individual land use types as the predictor variables. Our modeling approach was chosen to avoid problems of multi-collinearity among predictor variables and a lack of independence of lakes within regions, both of which are common problems in broad-scale analyses of freshwaters. We found that all three factors influence land use-lake nutrient relationships. The strongest evidence was for the effect of lake hydrologic connectivity, followed by region, and finally, the spatial extent of land use measurements. Incorporating these three factors into relatively simple models of land use effects on lake nutrients should help to improve predictions and understanding of land use-lake nutrient interactions at broad scales.

  15. Occurrence, spatiotemporal distribution, and ecological risks of steroids in a large shallow Chinese lake, Lake Taihu.

    PubMed

    Zhou, Li-Jun; Zhang, Bei-Bei; Zhao, Yong-Gang; Wu, Qinglong L

    2016-07-01

    Steroids have been frequently detected in surface waters, and might pose adverse effects on aquatic organisms. However, little information is available regarding the occurrence and spatiotemporal distribution of steroids in lake environments. In addition to pollution sources, the occurrence and spatiotemporal distribution of steroids in lake environments might be related to lake types (shallow or deep), lake hydrodynamics, and sorption-desorption processes in the water-sediment systems. In this study, the occurrence, spatiotemporal distribution, and ecological risks of 36 steroids in a large shallow lake were evaluated by investigating surface water and sediment samples at 32 sites in Lake Taihu over two seasons. Twelve and 15 analytes were detected in aqueous and sedimentary phases, respectively, with total concentrations ranging from 0.86 to 116ng/L (water) and from 0.82 to 16.2ng/g (sediment, dry weight). Temporal variations of steroid concentrations in the water and sediments were statistically significant, with higher concentrations in winter. High concentrations of steroids were found in the seriously polluted bays rather than in the pelagic zone of the lake. Strong lake currents might mix pelagic waters, resulting in similar concentrations of steroids in the pelagic zone. Mass balance analysis showed that sediments in shallow lakes are in general an important sink for steroids. Steroids in the surface water and sediments of Lake Taihu might pose potential risks to aquatic organisms. Overall, our study indicated that the concentrations and spatiotemporal distribution of steroids in the large shallow lake are influenced simultaneously by pollution sources and lake hydrodynamics. Steroids in the large shallow Lake Taihu showed clear temporal and spatial variations and lake sediments may be a potential sink of steroids. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Sanctuaries for lake trout in the Great Lakes

    USGS Publications Warehouse

    Stanley, Jon G.; Eshenroder, Randy L.; Hartman, Wilbur L.

    1987-01-01

    Populations of lake trout, severely depleted in Lake Superior and virtually extirpated from the other Great Lakes because of sea lamprey predation and intense fishing, are now maintained by annual plantings of hatchery-reared fish in Lakes Michigan, Huron, and Ontario and parts of Lake Superior. The extensive coastal areas of the Great Lakes and proximity to large populations resulted in fishing pressure on planted lake trout heavy enough to push annual mortality associated with sport and commercial fisheries well above the critical level needed to reestablish self-sustaining stocks. The interagency, international program for rehabilitating lake trout includes controlling sea lamprey abundance, stocking hatchery-reared lake trout, managing the catch, and establishing sanctuaries where harvest is prohibited. Three lake trout sanctuaries have been established in Lake Michigan: the Fox Island Sanctuary of 121, 500 ha, in the Chippewa-Ottawa Treaty fishing zone in the northern region of the lake; the Milwaukee Reef Sanctuary of 160, 000 ha in midlake, in boundary waters of Michigan and Wisconsin; and Julian's Reef Sanctuary of 6, 500 ha, in Illinois waters. In northern Lake Huron, Drummond Island Sanctuary of 55, 000 ha is two thirds in Indian treaty-ceded waters in Michigan and one third in Ontario waters of Canada. A second sanctuary, Six Fathom Bank-Yankee Reef Sanctuary, in central Lake Huron contains 168, 000 ha. Sanctuary status for the Canadian areas remains to be approved by the Provincial government. In Lake Superior, sanctuaries protect the spawning grounds of Gull Island Shoal (70, 000 ha) and Devils Island Shoal (44, 000 ha) in Wisconsin's Apostle Island area. These seven sanctuaries, established by the several States and agreed upon by the States, Indian tribes, the U.S. Department of the Interior, and the Province of Ontario, contribute toward solving an interjurisdictional fishery problem.

  17. Modeling Hydrologic Transport through the Critical Zone: Lessons from Catchment-Scale and Lysimeter Studies

    NASA Astrophysics Data System (ADS)

    Benettin, P.; Queloz, P.; Bailey, S. W.; McGuire, K. J.; Rinaldo, A.; Botter, G.

    2015-12-01

    Water age distributions can be used to address a number of environmental challenges, such as modeling the dynamics of river water quality, quantifying the interactions between shallow and deep flow systems and understanding nutrient loading persistence. Moreover, as the travel time of a water particle is the time available for biogeochemical reactions, it can be explicitly used to predict the concentration of non-conservative solutes, as e.g. those derived by mineral weathering. In recent years, many studies acknowledged the dynamic nature of streamflow age and linked it to observed variations in stream water quality. In this new framework, water stored within a catchment can be seen as a pool that is selectively "sampled" by streams and vegetation, determining the chemical composition of discharge and evapotranspiration. We present results from a controlled lysimeter experiment and real-world catchments, where the theoretical framework has been used to reproduce water quality datasets including conservative tracers (e.g. chloride and water stable isotopes) and weathering-derived solutes (like silicon and sodium). The approach proves useful to estimate the catchment water storage involved in solute mixing and sheds light on how solutes and water of different ages are selectively removed by vegetation and soil drainage.

  18. Calibration of a transient transport model to tritium data in streams and simulation of groundwater ages in the western Lake Taupo catchment, New Zealand

    NASA Astrophysics Data System (ADS)

    Gusyev, M. A.; Toews, M.; Morgenstern, U.; Stewart, M.; White, P.; Daughney, C.; Hadfield, J.

    2013-03-01

    Here we present a general approach of calibrating transient transport models to tritium concentrations in river waters developed for the MT3DMS/MODFLOW model of the western Lake Taupo catchment, New Zealand. Tritium has a known pulse-shaped input to groundwater systems due to the bomb tritium in the early 1960s and, with its radioactive half-life of 12.32 yr, allows for the determination of the groundwater age. In the transport model, the tritium input (measured in rainfall) passes through the groundwater system, and the simulated tritium concentrations are matched to the measured tritium concentrations in the river and stream outlets for the Waihaha, Whanganui, Whareroa, Kuratau and Omori catchments from 2000-2007. For the Kuratau River, tritium was also measured between 1960 and 1970, which allowed us to fine-tune the transport model for the simulated bomb-peak tritium concentrations. In order to incorporate small surface water features in detail, an 80 m uniform grid cell size was selected in the steady-state MODFLOW model for the model area of 1072 km2. The groundwater flow model was first calibrated to groundwater levels and stream baseflow observations. Then, the transient tritium transport MT3DMS model was matched to the measured tritium concentrations in streams and rivers, which are the natural discharge of the groundwater system. The tritium concentrations in the rivers and streams correspond to the residence time of the water in the groundwater system (groundwater age) and mixing of water with different age. The transport model output showed a good agreement with the measured tritium values. Finally, the tritium-calibrated MT3DMS model is applied to simulate groundwater ages, which are used to obtain groundwater age distributions with mean residence times (MRTs) in streams and rivers for the five catchments. The effect of regional and local hydrogeology on the simulated groundwater ages is investigated by demonstrating groundwater ages at five model

  19. Evolution of Late Miocene to Contemporary Displacement Transfer Between the Northern Furnace Creek and Southern Fish Lake Valley Fault Zones and the Central Walker Lane, Western Great Basin, Nevada

    NASA Astrophysics Data System (ADS)

    Oldow, J. S.; Geissman, J. W.

    2013-12-01

    Late Miocene to contemporary displacement transfer from the north Furnace Creek (FCF) and southern Fish Lake Valley (FLVF) faults to structures in the central Walker Lane was and continues to be accommodated by a belt of WNW-striking left-oblique fault zones in the northern part of the southern Walker Lane. The WNW fault zones are 2-9 km wide belts of anastomosing fault strands that intersect the NNW-striking FCF and southern FLVF in northern Death Valley and southern Fish Lake Valley, respectively. The WNW fault zones extend east for over 60 km where they merge with a 5-10 km wide belt of N10W striking faults that marks the eastern boundary of the southern Walker Lane. Left-oblique displacement on WNW faults progressively decreases to the east, as motion is successively transferred northeast on NNE-striking faults. NNE faults localize and internally deform extensional basins that each record cumulative net vertical displacements of between 3.0 and 5.2 km. The transcurrent faults and associated basins decrease in age from south to north. In the south, the WNW Sylvania Mountain fault system initiated left-oblique motion after 7 Ma but does not have evidence of contemporary displacement. Farther north, the left-oblique motion on the Palmetto Mountain fault system initiated after 6.0 to 4.0 Ma and has well-developed scarps in Quaternary deposits. Cumulative left-lateral displacement for the Sylvania Mountain fault system is 10-15 km, and is 8-12 km for the Palmetto fault system. The NNE-striking faults that emanate from the left-oblique faults merge with NNW transcurrent faults farther north in the eastern part of the Mina deflection, which links the Owens Valley fault of eastern California to the central Walker Lane. Left-oblique displacement on the Sylvania Mountain and Palmetto Mountain fault zones deformed the Furnace Creek and Fish Lake Valley faults. Left-oblique motion on Sylvania Mountain fault deflected the FCF into the 15 km wide Cucomungo Canyon restraining

  20. Seasonal variation of oxygen-18 in precipitation and surface water of the Poyang Lake Basin, China.

    PubMed

    Hu, Chunhua; Froehlich, Klaus; Zhou, Peng; Lou, Qian; Zeng, Simiao; Zhou, Wenbin

    2013-06-01

    Based on the monthly δ(18)O value measured over a hydrology period in precipitation, runoff of five tributaries and the main lake of the Poyang Lake Basin, combined with hydrological and meteorological data, the characteristics of δ(18)O in precipitation (δ(18)OPPT) and runoff (δ(18)OSUR) are discussed. The δ(18)OPPT and δ(18)OSUR values range from-2.75 to-14.12 ‰ (annual mean value=-7.13 ‰ ) and from-2.30 to-8.56 ‰, respectively. The seasonal variation of δ(18)OPPT is controlled by the air mass circulation in this region, which is dominated by the Asian summer monsoon and the Siberian High during winter. The correlation between the wet seasonal averages of δ(18)OSUR in runoff of the rivers and δ(18)OPPT of precipitation at the corresponding stations shows that in the Poyang Lake catchment area the river water consists of 23% direct runoff (precipitation) and 77% base flow (shallow groundwater). This high proportion of groundwater in the river runoff points to the prevalence of wetland conditions in the Poyang Lake catchment during rainy season. Considering the oxygen isotopic composition of the main body of Poyang Lake, no isotopic enrichment relative to river inflow was found during the rainy season with maximum expansion of the lake. Thus, evaporation causing isotopic enrichment is a minor component of the lake water balance in the rainy period. During dry season, a slight isotopic enrichment has been observed, which suggests a certain evaporative loss of lake water in that period.

  1. The Stream-Catchment (StreamCat) and Lake-Catchment (LakeCat) Datasets: leveraging existing geospatial frameworks and data to characterize lotic and lentic ecosystems across the conterminous US for ecological and environmental modeling

    EPA Science Inventory

    Background/Question/MethodsLake and stream conditions respond to both natural and human-related landscape features. Characterizing these features within contributing areas (i.e., delineated watersheds) of streams and lakes could improve our understanding of how biological conditi...

  2. Improvements in lake water budget computations using Landsat data

    NASA Technical Reports Server (NTRS)

    Gervin, J. C.; Shih, S. F.

    1979-01-01

    A supervised multispectral classification was performed on Landsat data for Lake Okeechobee's extensive littoral zone to provide two types of information. First, the acreage of a given plant species as measured by satellite was combined with a more accurate transpiration rate to give a better estimate of evapotranspiration from the littoral zone. Second, the surface area coupled by plant communities was used to develop a better estimate of the water surface as a function of lake stage. Based on this information, more detailed representations of evapotranspiration and total water surface (and hence total lake volume) were provided to the water balance budget model for lake volume predictions. The model results based on information derived from satellite demonstrated a 94 percent reduction in cumulative lake stage error and a 70 percent reduction in the maximum deviation of the lake stage.

  3. Groundwater recharge from point to catchment scale

    NASA Astrophysics Data System (ADS)

    Leterme, Bertrand; Di Ciacca, Antoine; Laloy, Eric; Jacques, Diederik

    2016-04-01

    Accurate estimation of groundwater recharge is a challenging task as only a few devices (if any) can measure it directly. In this study, we discuss how groundwater recharge can be calculated at different temporal and spatial scales in the Kleine Nete catchment (Belgium). A small monitoring network is being installed, that is aimed to monitor the changes in dominant processes and to address data availability as one goes from the point to the catchment scale. At the point scale, groundwater recharge is estimated using inversion of soil moisture and/or water potential data and stable isotope concentrations (Koeniger et al. 2015). At the plot scale, it is proposed to monitor the discharge of a small drainage ditch in order to calculate the field groundwater recharge. Electrical conductivity measurements are necessary to separate shallow from deeper groundwater contribution to the ditch discharge (see Di Ciacca et al. poster in session HS8.3.4). At this scale, two or three-dimensional process-based vadose zone models will be used to model subsurface flow. At the catchment scale though, using a mechanistic, process-based model to estimate groundwater recharge is debatable (because of, e.g., the presence of numerous drainage ditches, mixed land use pixels, etc.). We therefore investigate to which extent various types of surrogate models can be used to make the necessary upscaling from the plot scale to the scale of the whole Kleine Nete catchment. Ref. Koeniger P, Gaj M, Beyer M, Himmelsbach T (2015) Review on soil water isotope based groundwater recharge estimations. Hydrological Processes, DOI: 10.1002/hyp.10775

  4. An assessment of mean annual precipitation in Rajasthan, India needed to maintain Mid-Holocene lakes

    NASA Astrophysics Data System (ADS)

    Gill, E.; Rajagopalan, B.; Molnar, P. H.

    2013-12-01

    Paleo-climate literature reports evidence of freshwater lakes over Rajasthan, a region of northwestern India, during the mid-Holocene (~6ka), where desert conditions prevail in present time. It's suggested that mid-Holocene temperatures were warmer, precipitation was nearly double current levels, and there was an enhanced La Niña-like state. While previous analyses infer the lakes were sustained by generally high precipitation and low evaporation, we provide a systematic analysis on the relevant energy budget quantities and the dynamic relationships between them. We have built a hydrological lake model to reconstruct lake levels throughout the Holocene. Model output is evaporation from the lake. Inputs are precipitation over the lake and catchment runoff, determined using precipitation, Preistley-Taylor evapotranspiration, interception and infiltration. Initial tests of the model have been completed with current climate conditions to ensure accurate behavior. Contemporary runs used station precipitation and temperature data [Rajeevan et al., 2006] for the region surrounding Lake Didwana (27°N 74°E). Digital elevation maps were used to compile lake bathymetry for Lake Didwana. Under current climate conditions, a full Lake Didwana (~ 9 m) empties over the first several years. While lake depth varies yearly, increasing with each monsoon season, variations following the initial decline are minimal (~ × 1.0 m). We ran the model with a 2000-year sequence of precipitation and temperature generated by resampling the observed weather sequences, with a suite of base line fractions of vegetation cover and increased precipitation, with solar insolation appropriate during the mid-Holocene period. Initial runs revealed that precipitation amount and percent of vegetated catchment area influence lake levels, but insolation alone does not. Incrementally changing precipitation (between current levels and a 75% increase) and percent of vegetated area (between 10-90%) reveals that

  5. 36 CFR 13.1602 - Subsistence resident zone.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Lake Clark National Park and Preserve... resident zone for Lake Clark National Park: Iliamna, Lime Village, Newhalen, Nondalton, Pedro Bay, and Port...

  6. 36 CFR 13.1602 - Subsistence resident zone.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Lake Clark National Park and Preserve... resident zone for Lake Clark National Park: Iliamna, Lime Village, Newhalen, Nondalton, Pedro Bay, and Port...

  7. Evaluation of catchment delineation methods for the medium-resolution National Hydrography Dataset

    USGS Publications Warehouse

    Johnston, Craig M.; Dewald, Thomas G.; Bondelid, Timothy R.; Worstell, Bruce B.; McKay, Lucinda D.; Rea, Alan; Moore, Richard B.; Goodall, Jonathan L.

    2009-01-01

    Different methods for determining catchments (incremental drainage areas) for stream segments of the medium-resolution (1:100,000-scale) National Hydrography Dataset (NHD) were evaluated by the U.S. Geological Survey (USGS), in cooperation with the U.S. Environmental Protection Agency (USEPA). The NHD is a comprehensive set of digital spatial data that contains information about surface-water features (such as lakes, ponds, streams, and rivers) of the United States. The need for NHD catchments was driven primarily by the goal to estimate NHD streamflow and velocity to support water-quality modeling. The application of catchments for this purpose also demonstrates the broader value of NHD catchments for supporting landscape characterization and analysis. Five catchment delineation methods were evaluated. Four of the methods use topographic information for the delineation of the NHD catchments. These methods include the Raster Seeding Method; two variants of a method first used in a USGS New England study-one used the Watershed Boundary Dataset (WBD) and the other did not-termed the 'New England Methods'; and the Outlet Matching Method. For these topographically based methods, the elevation data source was the 30-meter (m) resolution National Elevation Dataset (NED), as this was the highest resolution available for the conterminous United States and Hawaii. The fifth method evaluated, the Thiessen Polygon Method, uses distance to the nearest NHD stream segments to determine catchment boundaries. Catchments were generated using each method for NHD stream segments within six hydrologically and geographically distinct Subbasins to evaluate the applicability of the method across the United States. The five methods were evaluated by comparing the resulting catchments with the boundaries and the computed area measurements available from several verification datasets that were developed independently using manual methods. The results of the evaluation indicated that the two

  8. Movement patterns and spatial segregation of two populations of lake trout Salvelinus namaycush in Lake Huron

    USGS Publications Warehouse

    Binder, Thomas; Marsden, J. Ellen; Riley, Stephen; Johnson, James E.; Johnson, Nicholas; He, Ji; Ebener, Mark P.; Holbrook, Christopher; Bergstedt, Roger A.; Bronte, Charles R.; Hayden, Todd A.; Krueger, Charles C.

    2017-01-01

    Movement ecology is an important component of life history and population dynamics, and consequently its understanding can inform successful fishery management decision-making. While lake trout populations in Lake Huron have shown signs of recovery from near extinction in recent years, knowledge of their movement behavior remains incomplete. We used acoustic telemetry to describe and compare movement patterns of two Lake Huron lake trout populations: Drummond Island and Thunder Bay. Both populations showed high spawning site fidelity, with no evidence of co-mingling during non-spawning season. Detections between spawning periods were mainly limited to receivers within 100 km of spawning locations, and suggested that the two populations likely remained segregated throughout the year. Drummond Island fish, which spawn inside the Drummond Island Refuge, primarily dispersed east into Canadian waters of Lake Huron, with 79–92% of fish being detected annually on receivers outside the refuge. In contrast, Thunder Bay fish tended to disperse south towards Saginaw Bay. Large proportions (i.e., > 80%) of both populations were available to fisheries outside the management zone containing their spawning location. Thunder Bay fish moved relatively quickly to overwinter habitat after spawning, and tended to repeat the same post-spawning movement behavior each year. The consistent, predictable movement of both populations across management zones highlights the importance of understanding population dynamics to effective management of Lake Huron lake trout.

  9. Community managed forests dominate the catchment sediment cascade in the mid-hills of Nepal: A compound-specific stable isotope analysis.

    PubMed

    Upadhayay, Hari Ram; Smith, Hugh G; Griepentrog, Marco; Bodé, Samuel; Bajracharya, Roshan Man; Blake, William; Cornelis, Wim; Boeckx, Pascal

    2018-05-08

    Soil erosion by water is critical for soil, lake and reservoir degradation in the mid-hills of Nepal. Identification of the nature and relative contribution of sediment sources in rivers is important to mitigate water erosion within catchments and siltation problems in lakes and reservoirs. We estimated the relative contribution of land uses (i.e. sources) to suspended and streambed sediments in the Chitlang catchment using stable carbon isotope signature (δ 13 C) of long-chain fatty acids as a tracer input for MixSIAR, a Bayesian mixing model used to apportion sediment sources. Our findings reveal that the relative contribution of land uses varied between suspended and streambed sediment, but did not change over the monsoon period. Significant over- or under-prediction of source contributions could occur due to overlapping source tracer values, if source groups are classified on a catchment-wide basis. Therefore, we applied a novel deconvolutional framework of MixSIAR (D-MixSIAR) to improve source apportionment of suspended sediment collected at tributary confluences (i.e. sub-catchment level) and at the outlet of the entire catchment. The results indicated that the mixed forest was the dominant (41 ± 13%) contributor of sediment followed by broadleaf forest (15 ± 8%) at the catchment outlet during the pre-wet season, suggesting that forest disturbance as well as high rainfall and steep slopes interact for high sediment generation within the study catchment. Unpaved rural road tracks located on flat and steep slopes (11 ± 8 and 9 ± 7% respectively) almost equally contributed to the sediment. Importantly, agricultural terraces (upland and lowland) had minimal contribution (each <7%) confirming that proper terrace management and traditional irrigation systems played an important role in mitigating sediment generation and delivery. Source contributions had a small temporal, but large spatial, variation in the sediment cascade of Chitlang stream

  10. C, N, P export regimes from headwater catchments to downstream reaches

    NASA Astrophysics Data System (ADS)

    Dupas, R.; Musolff, A.; Jawitz, J. W.; Rao, P. S.; Jaeger, C. G.; Fleckenstein, J. H.; Rode, M.; Borchardt, D.

    2017-12-01

    Excessive amounts of nutrients and dissolved organic matter in freshwater bodies affect aquatic ecosystems. In this study, the spatial and temporal variability in nitrate (NO3), dissolved organic carbon (DOC) and soluble reactive phosphorus (SRP) was analyzed in the Selke river continuum from headwaters draining 1 - 3 km² catchments to downstream reaches representing spatially integrated signals from 184 - 456 km² catchments (part of TERENO - Terrestrial Environmental Observatories, in Germany). Three headwater catchments were selected as archetypes of the main landscape units (land use x lithology) present in the Selke catchment. Export regimes in headwater catchments were interpreted in terms of NO3, DOC and SRP land-to-stream transfer processes. Headwater signals were subtracted from downstream signals, with the differences interpreted in terms of in-stream processes and contribution of point-source emissions. The seasonal dynamics for NO3 were opposite those of DOC and SRP in all three headwater catchments, and spatial differences also showed NO3 contrasting with DOC and SRP. These dynamics were interpreted as the result of the interplay of hydrological and biogeochemical processes, for which riparian zones were hypothesized to play a determining role. In the two downstream reaches, NO3 was transported almost conservatively, whereas DOC was consumed and produced in the upper and lower river sections, respectively. The natural export regime of SRP in the three headwater catchments mimicked a point-source signal, which may lead to overestimation of domestic contributions in the downstream reaches. Monitoring the river continuum from headwaters to downstream reaches proved effective to investigate jointly land-to-stream and in-stream transport and transformation processes.

  11. How wet is wet? Strontium isotopes as paleo-lake level indicators in the Chew Bahir basin (S-Ethiopia)

    NASA Astrophysics Data System (ADS)

    Junginger, A.; Vonhof, H.; Foerster, V. E.; Asrat, A.; Cohen, A. S.; Lamb, H. F.; Schaebitz, F.; Trauth, M. H.

    2016-12-01

    A major challenge in paleo-anthropology is to understand the impact of climatic changes on human evolution. The Hominin Sites and Paleo-lakes Drilling Project (HSPDP) is currently meeting that challenge by providing records that cover the last 3.7 Ma of paleoenvironmental change all located in close proximity to key paleo-anthropological findings in East Africa. One of the cored climatic archives comes from the dried up Chew Bahir basin in southern Ethiopia, where duplicate sediment cores, each 280 m long, are expected to provide valuable insights about East African environmental variability during the last >500 ka. The lake basins in the eastern branch of the East African Rift System today contain mainly shallow and alkaline lakes. However, paleo-shorelines in the form of wave cut notches, shell beds, and beach ridges are common morphological evidences for deep freshwater lakes that have filled the basins up to their overflow level during pronounced humid episodes, such as the African Humid Period (AHP, 15-5 ka). Unfortunately, further back in time, many of those morphological features disappear due to erosion and the estimation of paleo-water depths depend merely on qualitative proxies from core analyses. We here present a new method that shows high potential to translate qualitative proxy signals from sediment core analyses to quantitative climate signals in the Ethiopian Rift. The method aims at water level reconstruction of multiple paleo-lake episodes in the Chew Bahir basin using strontium isotope ratios (87Sr/86Sr, SIR) in lacustrine fossils and microfossils. SIR preserved in lacustrine fossils reflect the lithology of the drained catchment. The catchment of Chew Bahir consists mainly of Precambrian basement rocks producing high SIR in the lake waters. During humid periods, its catchment enlarged when higher elevated paleo-lakes Abaya, Chamo and Awassa were cascading down into Chew Bahir. These basins drain mainly volcanic rocks producing low SIR. First

  12. Modeling Antarctic Subglacial Lake Filling and Drainage Cycles

    NASA Technical Reports Server (NTRS)

    Dow, Christine F.; Werder, Mauro A.; Nowicki, Sophie; Walker, Ryan T.

    2016-01-01

    The growth and drainage of active subglacial lakes in Antarctica has previously been inferred from analysis of ice surface altimetry data. We use a subglacial hydrology model applied to a synthetic Antarctic ice stream to examine internal controls on the filling and drainage of subglacial lakes. Our model outputs suggest that the highly constricted subglacial environment of our idealized ice stream, combined with relatively high rates of water flow funneled from a large catchment, can combine to create a system exhibiting slow-moving pressure waves. Over a period of years, the accumulation of water in the ice stream onset region results in a buildup of pressure creating temporary channels, which then evacuate the excess water. This increased flux of water beneath the ice stream drives lake growth. As the water body builds up, it steepens the hydraulic gradient out of the overdeepened lake basin and allows greater flux. Eventually this flux is large enough to melt channels that cause the lake to drain. Lake drainage also depends on the internal hydrological development in the wider system and therefore does not directly correspond to a particular water volume or depth. This creates a highly temporally and spatially variable system, which is of interest for assessing the importance of subglacial lakes in ice stream hydrology and dynamics.

  13. Effects of Land Use on Lake Nutrients: The Importance of Scale, Hydrologic Connectivity, and Region

    PubMed Central

    Soranno, Patricia A.; Cheruvelil, Kendra Spence; Wagner, Tyler; Webster, Katherine E.; Bremigan, Mary Tate

    2015-01-01

    Catchment land uses, particularly agriculture and urban uses, have long been recognized as major drivers of nutrient concentrations in surface waters. However, few simple models have been developed that relate the amount of catchment land use to downstream freshwater nutrients. Nor are existing models applicable to large numbers of freshwaters across broad spatial extents such as regions or continents. This research aims to increase model performance by exploring three factors that affect the relationship between land use and downstream nutrients in freshwater: the spatial extent for measuring land use, hydrologic connectivity, and the regional differences in both the amount of nutrients and effects of land use on them. We quantified the effects of these three factors that relate land use to lake total phosphorus (TP) and total nitrogen (TN) in 346 north temperate lakes in 7 regions in Michigan, USA. We used a linear mixed modeling framework to examine the importance of spatial extent, lake hydrologic class, and region on models with individual lake nutrients as the response variable, and individual land use types as the predictor variables. Our modeling approach was chosen to avoid problems of multi-collinearity among predictor variables and a lack of independence of lakes within regions, both of which are common problems in broad-scale analyses of freshwaters. We found that all three factors influence land use-lake nutrient relationships. The strongest evidence was for the effect of lake hydrologic connectivity, followed by region, and finally, the spatial extent of land use measurements. Incorporating these three factors into relatively simple models of land use effects on lake nutrients should help to improve predictions and understanding of land use-lake nutrient interactions at broad scales. PMID:26267813

  14. Temporal Dynamics and Decay of Putatively Allochthonous and Autochthonous Viral Genotypes in Contrasting Freshwater Lakes

    PubMed Central

    Barbosa, Jorge G.; Brown, Julia M.; Donelan, Ryan P.; Eaglesham, James B.; Eggleston, Erin M.; LaBarre, Brenna A.

    2012-01-01

    Aquatic viruses play important roles in the biogeochemistry and ecology of lacustrine ecosystems; however, their composition, dynamics, and interactions with viruses of terrestrial origin are less extensively studied. We used a viral shotgun metagenomic approach to elucidate candidate autochthonous (i.e., produced within the lake) and allochthonous (i.e., washed in from other habitats) viral genotypes for a comparative study of their dynamics in lake waters. Based on shotgun metagenomes prepared from catchment soil and freshwater samples from two contrasting lakes (Cayuga Lake and Fayetteville Green Lake), we selected two putatively autochthonous viral genotypes (phycodnaviruses likely infecting algae and cyanomyoviruses likely infecting picocyanobacteria) and two putatively allochthonous viral genotypes (geminiviruses likely infecting terrestrial plants and circoviruses infecting unknown hosts but common in soil libraries) for analysis by genotype-specific quantitative PCR (TaqMan) applied to DNAs from viruses in the viral size fraction of lake plankton, i.e., 0.2 μm > virus > 0.02 μm. The abundance of autochthonous genotypes largely reflected expected host abundance, while the abundance of allochthonous genotypes corresponded with rainfall and storm events in the respective catchments, suggesting that viruses with these genotypes may have been transported to the lake in runoff. The decay rates of allochthonous and autochthonous genotypes, assessed in incubations where all potential hosts were killed, were generally lower (0.13 to 1.50% h−1) than those reported for marine virioplankton but similar to those for freshwater virioplankton. Both allochthonous and autochthonous viral genotypes were detected at higher concentrations in subsurface sediments than at the water-sediment interface. Our data indicate that putatively allochthonous viruses are present in lake plankton and sediments, where their temporal dynamics reflect active transport to the lake during

  15. Spectroscopic study of the microbial community in chemocline zones of relic meromictic lakes separating from the White Sea

    NASA Astrophysics Data System (ADS)

    Kharcheva, Anastasia V.; Krasnova, Elena D.; Voronov, Dmitry A.; Patsaeva, Svetlana V.

    2015-03-01

    As a result of a recent years study on the Karelia shore of the White Sea more than ten relict lakes in different stages of separation from the sea have been discovered. Five of them are located close to the Nikolai Pertsov White Sea Biological Station of Moscow State University. Such separated lakes are interesting to explore for their firm vertical stratification. Water layers differ not only by temperature, salinity and other physic and chemical characteristics and optical properties, but also by ibhabiting microorganisms and by the quality of dissolved organic matter. To study phototropic organisms in water sampled from different depths we used spectroscopic techniques. Identification of the main bands in the absorption and fluorescence spectra showed that there are two main groups of photosynthetic organisms in the redox zone (chemocline): unicellular algae containing chlorophyll a and green sulfur bacteria with bacteriochlorophylls c, d, e. Spectral data were compared with physical and chemical characteristics of the water layer (temperature, salinity, pH, dissolved oxygen and sunlight illumination at certain depth). It gave an opportunity to compare vertical profiles of oxygen and hydrogen sulphide concentration with the number and distribution of oxygenic and anoxygenic phototrophic microorganisms. Maximum abundance of both algae and green sulfur bacteria were achieved within the redox zone. Typical thickness of the layer with the highest concentration of microorganisms did not exceed 10-20 cm.

  16. Source identification and mass balance studies of mercury in Lake An-dong, S. Korea

    NASA Astrophysics Data System (ADS)

    Han, J.; Byeon, M.; Yoon, J.; Park, J.; Lee, M.; Huh, I.; Na, E.; Chung, D.; Shin, S.; Kim, Y.

    2009-12-01

    In this study, mercury and methylmercury were measured in atmospheric, tributary, open-lake water column, sediment, planktons and fish samples in the catchments area of Lake An-dong, S. Korea. Lake An-dong, an artificial freshwater lake is located on the upstream of River Nak-dong. It has 51.5 km2 of open surface water and 1.33 year of hydraulic residence time. It is a source of drinking water for 0.3 million S. Koreans. Recently, the possibilities of its mercury contamination became an issue since current studies showed that the lake had much higher mercury level in sediment and certain freshwater fish species than any other lakes in S. Korea. This catchments area has the possibilities of historical mercury pollution by the location of more than 50 abandoned gold mines and Young-poong zinc smelter. The objective of this study was to develop a mercury mass balance and identify possible mercury sources in the lake. The results of this study are thus expected to offer valuable insights for the sources of mercury loading through the watershed. In order to estimate the mercury flux, TGM, RGM and particulate mercury were measured using TEKRAN 2537 at the five sites surrounding Lake An-dong from May, 2009 with wet and dry deposition. The fate and transport of mercury in water body were predicted by using EFDC (Environmental Dynamic Fluid Code) and Mercury module in WASP7 (Water quality analysis program) after subsequent distribution into water body, sediments, followed by bioaccumulation and ultimate uptake by humans. The mercury mass balance in Young-poong zinc smelter was also pre-estimated by measuring mercury content in zinc ores, emission gases, sludge, wastewater and products.

  17. Development of a regional littoral benthic macroinvertebrate multi-metric index (MMI) for lakes from the National Lakes Assessment

    EPA Science Inventory

    During the 2007 National Lakes Assessment (NLA) benthic macroinvertebrate samples were collected from the lake littoral zone. The purpose of the sampling was to assess the feasibility of a multi-metric index (MMI) to assess the condition of the littoral benthic macroinvertebrate...

  18. Spatially explicit exposure assessment for small streams in catchments of the orchard growing region `Lake Constance

    NASA Astrophysics Data System (ADS)

    Golla, B.; Bach, M.; Krumpe, J.

    2009-04-01

    1. Introduction Small streams differ greatly from the standardised water body used in the context of aquatic risk assessment for the regulation of plant protection products in Germany. The standard water body is static, with a depth of 0.3 m and a width of 1.0 m. No dilution or water replacement takes place. Spray drift happens always in direction to the water body. There is no variability in drift deposition rate (90th percentile spray drift deposition values [2]). There is no spray drift filtering by vegetation. The application takes place directly adjacent to the water body. In order to establish a more realistic risk assessment procedure the Federal Office for Consumer Protection and Food Safety (BVL) and the Federal Environment Agency (UBA) aggreed to replace deterministic assumptions with data distributions and spatially explicit data and introduce probabilistic methods [3, 4, 5]. To consider the spatial and temporal variability in the exposure situations of small streams the hydraulic and morphological characteristics of catchments need to be described as well as the spatial distribution of fields treated with pesticides. As small streams are the dominant type of water body in most German orchard regions, we use the growing region Lake Constance as pilot region. 2. Materials and methods During field surveys we derive basic morphological parameters for small streams in the Lake Constance region. The mean water width/depth ratio is 13 with a mean depth of 0.12 m. The average residence time is 5.6 s/m (n=87) [1]. Orchards are mostly located in the upper parts of the catchments. Based on an authoritative dataset on rivers and streams of Germany (ATKIS DLM25) we constructed a directed network topology for the Lake Constance region. The gradient of the riverbed is calculated for river stretches of > 500 m length. The network for the pilot region consists of 2000 km rivers and streams. 500 km stream length are located within a distance of 150 m to orchards. Within

  19. 33 CFR 334.520 - Lake George, Fla.; naval bombing area.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Lake George, Fla.; naval bombing....; naval bombing area. (a) The danger zone. An area in the eastern part of Lake George described as follows.... (2) Prior to each bombing operation the danger zone will be patrolled by naval aircraft which will...

  20. 33 CFR 334.520 - Lake George, Fla.; naval bombing area.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Lake George, Fla.; naval bombing....; naval bombing area. (a) The danger zone. An area in the eastern part of Lake George described as follows.... (2) Prior to each bombing operation the danger zone will be patrolled by naval aircraft which will...

  1. Environmental care in agricultural catchments: Toward the communicative catchment

    NASA Astrophysics Data System (ADS)

    Martin, Peter

    1991-11-01

    Substantial land degradation of agricultural catchments in Australia has resulted from the importation of European farming methods and the large-scale clearing of land. Rural communities are now being encouraged by government to take responsibility for environmental care. The importance of community involvement is supported by the view that environmental problems are a function of interactions between people and their environment. It is suggested that the commonly held view that community groups cannot care for their resources is due to inappropriate social institutions rather that any inherent disability in people. The communicative catchment is developed as a vision for environmental care into the future. This concept emerges from a critique of resource management through the catchment metaphors of the reduced, mechanical, and the complex, evolving catchment, which reflect the development of systemic and people-centered approaches to environmental care. The communicative catchment is one where both community and resource managers participate collaboratively in environmental care. A methodology based on action research and systemic thinking (systemic action research) is proposed as a way of moving towards the communicative catchment of the future. Action research is a way of taking action in organizations and communities that is participative and informed by theory, while systemic thinking takes into account the interconnections and relationships between social and natural worlds. The proposed vision, methodology, and practical operating principles stem from involvement in an action research project looking at extension strategies for the implementation of total catchment management in the Hunter Valley, New South Wales.

  2. Assessing the role of urban developments on storm runoff response through multi-scale catchment experiments

    NASA Astrophysics Data System (ADS)

    Wilkinson, Mark; Owen, Gareth; Geris, Josie; Soulsby, Chris; Quinn, Paul

    2015-04-01

    Many communities across the world face the increasing challenge of balancing water quantity and quality issues with accommodating new growth and urban development. Urbanisation is typically associated with detrimental changes in water quality, sediment delivery, and effects on water storage and flow pathways (e.g. increases in flooding). In particular for mixed rural and urban catchments where the spatio-temporal variability of hydrological responses is high, there remains a key research challenge in evaluating the timing and magnitude of storage and flow pathways at multiple scales. This is of crucial importance for appropriate catchment management, for example to aid the design of Green Infrastructure (GI) to mitigate the risk of flooding, among other multiple benefits. The aim of this work was to (i) explore spatio-temporal storm runoff generation characteristics in multi-scale catchment experiments that contain rural and urban land use zones, and (ii) assess the (preliminary) impact of Sustainable Drainage (SuDs) as GI on high flow and flood characteristics. Our key research catchment, the Ouseburn in Northern England (55km2), has rural headwaters (15%) and an urban zone (45%) concentrated in the lower catchment area. There is an intermediate and increasingly expanding peri-urban zone (currently 40%), which is defined here as areas where rural and urban features coexist, alongside GIs. Such a structure is typical for most catchments with urban developments. We monitored spatial precipitation and multiscale nested (five gauges) runoff response, in addition to the storage dynamics in GIs for a period of 6 years (2007-2013). For a range of events, we examined the multiscale nested runoff characteristics (lag time and magnitude) of the rural and urban flow components, assessed how these integrated with changing land use and increasing scale, and discussed the implications for flood management in the catchment. The analyses indicated three distinctly different

  3. Detection of Critical LUCC Indices and Sensitive Watershed Regions Related to Lake Algal Blooms: A Case Study of Taihu Lake

    PubMed Central

    Lin, Chen; Ma, Ronghua; Su, Zhihu; Zhu, Qing

    2015-01-01

    Taihu Lake in China has suffered from severe eutrophication over the past 20 years which is partly due to significant land use/cover change (LUCC). There is an increasing need to detect the critical watershed region that significantly affects lake water degradation, which has great significance for environmental protection. However, previous studies have obtained conflicting results because of non–uniform lake indicators and inadequate time periods. To identify the sensitive LUCC indices and buffer distance regions, three lake divisions (Meiliang Lake, Zhushan Lake and Western Coastal region) and their watershed region within the Taihu Lake basin were chosen as study sites, the algal area was used as a uniform lake quality indicator and modeled with LUCC indices over the whole time series. Results showed that wetland (WL) and landscape index such as Shannon diversity index (SHDI) appeared to be sensitive LUCC indices when the buffer distance was less than 5 km, while agricultural land (AL) and landscape fragmentation (Ci) gradually became sensitive indices as buffer distances increased to more than 5 km. For the relationship between LUCC and lake algal area, LUCC of the WC region seems to have no significant effect on lake water quality. Conversely, LUCC within ML and ZS region influenced algal area of corresponding lake divisions greatly, while the most sensitive regions were found in 3 km to 5 km, rather than the whole catchment. These results will be beneficial for the further understanding of the relationship between LUCC and lake water quality, and will provide a practical basis for the identification of critical regions for lake. PMID:25642691

  4. Spatial and temporal variability of water salinity in an ephemeral, arid-zone river, central Australia

    NASA Astrophysics Data System (ADS)

    Costelloe, Justin F.; Grayson, Rodger B.; McMahon, Thomas A.; Argent, Robert M.

    2005-10-01

    This study describes the spatial and temporal variability of water salinity of the Neales-Peake, an ephemeral river system in the arid Lake Eyre basin of central Australia. Saline to hypersaline waterholes occur in the lower reaches of the Neales-Peake catchment and lie downstream of subcatchments containing artesian mound springs. Flood pulses are fresh in the upper reaches of the rivers (<200 mg l-1). In the salt-affected reaches, flood pulses become increasingly saline during their recession. It is hypothesized that leakage from the Great Artesian Basin deposits salt at the surface. This salt is then transported by infrequent runoff events into the main river system over long periods of time. The bank/floodplain store downstream of salt-affected catchments contains high salt concentrations, and this salt is mobilized during the flow recession when bank/floodplain storage discharges into the channel. The salinity of the recession increases as the percentage of flow derived from this storage increases. A simple conceptual model was developed for investigating the salt movement processes during flow events. The model structure for transport of water and salt in the Neales-Peake catchment generated similar spatial and temporal patterns of salt distribution in the floodplain/bank storage and water flow as observed during flow events in 2000-02. However, more field-data collection and modelling are required for improved calibration and description of salt transport and storage processes, particularly with regard to the number of stores required to represent the salt distribution in the upper zone of the soil profile.

  5. Parameter Set Cloning Based on Catchment Similarity for Large-scale Hydrologic Modeling

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Kaheil, Y.; McCollum, J.

    2016-12-01

    Parameter calibration is a crucial step to ensure the accuracy of hydrological models. However, streamflow gauges are not available everywhere for calibrating a large-scale hydrologic model globally. Thus, assigning parameters appropriately for regions where the calibration cannot be performed directly has been a challenge for large-scale hydrologic modeling. Here we propose a method to estimate the model parameters in ungauged regions based on the values obtained through calibration in areas where gauge observations are available. This parameter set cloning is performed according to a catchment similarity index, a weighted sum index based on four catchment characteristic attributes. These attributes are IPCC Climate Zone, Soil Texture, Land Cover, and Topographic Index. The catchments with calibrated parameter values are donors, while the uncalibrated catchments are candidates. Catchment characteristic analyses are first conducted for both donors and candidates. For each attribute, we compute a characteristic distance between donors and candidates. Next, for each candidate, weights are assigned to the four attributes such that higher weights are given to properties that are more directly linked to the hydrologic dominant processes. This will ensure that the parameter set cloning emphasizes the dominant hydrologic process in the region where the candidate is located. The catchment similarity index for each donor - candidate couple is then created as the sum of the weighted distance of the four properties. Finally, parameters are assigned to each candidate from the donor that is "most similar" (i.e. with the shortest weighted distance sum). For validation, we applied the proposed method to catchments where gauge observations are available, and compared simulated streamflows using the parameters cloned by other catchments to the results obtained by calibrating the hydrologic model directly using gauge data. The comparison shows good agreement between the two models

  6. Salinity and hydrology of closed lakes

    USGS Publications Warehouse

    Langbein, Walter Basil

    1961-01-01

    Lakes without outlets, called closed lakes, are exclusively features of the arid and semiarid zones where annual evaporation exceeds rainfall. The number of closed lakes increases with aridity, so there are relatively few perennial closed lakes, but "dry" lakes that rarely contain water are numerous.Closed lakes fluctuate in level to a much greater degree than the open lakes of the humid zone, because variations in inflow can be compensated only by changes in surface area. Since the variability of inflow increases with aridity, it is possible to derive an approximate relationship for the coefficient of variation of lake area in terms of data on rates of evaporation, lake area, lake depth, and drainage area.The salinity of closed lakes is highly variable, ranging from less than 1 percent to over 25 percent by weight of salts. Some evidence suggests that the tonnage of salts in a lake solution is substantially less than the total input of salts into the lake over the period of existence of the closed lake. This evidence suggests further that the salts in a lake solution represent a kind of long-term balance between factors of gain and loss of salts from the solution.Possible mechanisms for the loss of salts dissolved in the lake include deposition in marginal bays, entrapment in sediments, and removal by wind. Transport of salt from the lake surface in wind spray is also a contributing, but seemingly not major, factor.The hypothesis of a long-term balance between input to and losses from the lake solution is checked by deriving a formula for the equilibrium concentration and comparing the results with the salinity data. The results indicate that the reported salinities seemingly can be explained in terms of their geometric properties and hydrologic environment.The time for accumulation of salts in the lake solution the ratio between mass of salts in the solution and the annual input may also be estimated from the geometric and hydrologic factors, in the absence of

  7. 3D simulation of the influence of internal mixing dynamics on the propagation of river plumes in Lake Constance

    NASA Astrophysics Data System (ADS)

    Pflugbeil, Thomas; Pöschke, Franziska; Noffke, Anna; Winde, Vera; Wolf, Thomas

    2017-04-01

    Lake Constance is one of most important drinking water resources in southern Germany. Furthermore, the lake and its catchment is a meaningful natural habitat as well as economical and cultural area. In this context, sustainable development and conservation of the lake ecosystem and drinking water quality is of high importance. However, anthropogenic pressures (e.g. waste water, land use, industry in catchment area) on the lake itself and its external inflows are high. The project "SeeZeichen" (ReWaM-project cluster by BMBF, funding number 02WRM1365) is investigating different immission pathways (groundwater, river, superficial inputs) and their impact on the water quality of Lake Constance. The investigation includes the direct inflow areas as well as the lake-wide context. The present simulation study investigates the mixing dynamics of Lake Constance and its impacts on river inflows and vice versa. It considers different seasonal (mixing and stratification periods), hydrological (flood events, average and low discharge) and transport conditions (sediment loads). The simulations are focused on two rivers: The River Alpenrhein delivers about 60 % of water and material input into Lake Constance. The River Schussen was chosen since it is highly anthropogenic influenced. For this purpose, a high-resolution three-dimensional hydrodynamic model of the Lake Constance is set up with Delft3D-Flow model system. The model is calibrated and validated with long term data sets of water levels, discharges and temperatures. The model results will be analysed for residence times of river water within the lake and particle distributions to evaluate potential impacts of river plume water constituents on the general water quality of the lake.

  8. Photochemical reactivities of dissolved organic matter (DOM) in a sub-alpine lake revealed by EEM-PARAFAC: An insight into the fate of allochthonous DOM in alpine lakes affected by climate change.

    PubMed

    Du, Yingxun; Zhang, Yuanyuan; Chen, Feizhou; Chang, Yuguang; Liu, Zhengwen

    2016-10-15

    Due to climate change, tree line advance is occurring in many alpine regions. Within the next 50 to 100years, alpine lake catchments are expected to develop increased vegetation cover similar to that of sub-alpine lake catchments which currently exist below the tree line. Such changes in vegetation could trigger increased allochthonous DOM inputs to alpine lakes. To understand the fate of allochthonous DOM in alpine lakes impacted by climate change, the photochemical reactivity of DOM in sub-alpine Lake Tiancai (located 200m below the tree line) was investigated by excitation emission matrix fluorescence combined with parallel factor analysis (EEM-PARAFAC) and UV-Vis spectra analysis. With photo-exposure, a decrease in apparent DOM molecular weight was observed and 32% DOM was photomineralized to CO2. Interestingly, the aromaticity of DOM increased after photodegradation, as evidenced by increases in both the specific UV absorbance at 254nm (SUVA254) and the humification index (HIX). Five EEM-PARAFAC components were identified, including four terrestrially-derived substances (C1, C2, C3 and C4; allochthonous) and one tryptophan-like substance (C5; autochthonous). Generally, allochthonous DOM represented by C2 and C3 exhibited greater photoreactivity than autochthonous DOM represented by C5. C4 was identified as a possible photoproduct with relatively high aromaticity and photorefractive tendencies and contributed to the observed increase in SUVA254 and HIX. UV light facilitated the photodegradation of DOM and had the greatest effect on the removal of C3. This study provides information on the transformation of EEM-PARAFAC components in a sub-alpine lake, which is important in understanding the fate of increased allochthonous DOM inputs to alpine lakes impacted by climate change. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Mixed stock analysis of Lake Michigan's Lake Whitefish Coregonus clupeaformis commercial fishery

    USGS Publications Warehouse

    Andvik, Ryan; Sloss, Brian L.; VanDeHey, Justin A.; Claramunt, Randall M.; Hansen, Scott P.; Isermann, Daniel A.

    2016-01-01

    Lake whitefish (Coregonus clupeaformis) support the primary commercial fishery in Lake Michigan. Discrete genetic stocks of lake whitefish have been identified and tagging data suggest stocks are mixed throughout much of the year. Our objectives were to determine if (1) differential stock harvest occurs in the commercial catch, (2) spatial differences in genetic composition of harvested fish were present, and (3) seasonal differences were present in the harvest by commercial fisheries that operate in management zones WI-2 and WFM-01 (Green Bay, Lake Michigan). Mixed stock analysis was conducted on 17 commercial harvest samples (n = 78–145/sample) collected from various ports lake-wide during 2009–2010. Results showed significant mixing with variability in stock composition across most samples. Samples consisted of two to four genetic stocks each accounting for ≥ 10% the catch. In 10 of 17 samples, the stock contributing the largest proportion made up < 60% of the harvest. In general, seasonal and annual differences existed in the proportional stock contribution at a single capture location. Samples from Wisconsin's primary commercial fishing management zone (WI-2) were composed predominately of fish from the Big Bay de Noc (Michigan) stock as opposed to the geographically proximate, North–Moonlight Bay (Wisconsin) stock. These findings have implications for management and allocation of fish to various quotas. Specifically, geographic location of harvest, the current means of allocating harvest quotas, is not the best predictor of genetic stock harvest.

  10. Temporal 222Rn distributions to reveal groundwater discharge into desert lakes: Implication of water balance in the Badain Jaran Desert, China

    NASA Astrophysics Data System (ADS)

    Luo, Xin; Jiao, Jiu Jimmy; Wang, Xu-sheng; Liu, Kun

    2016-03-01

    How lake systems are maintained and water is balanced in the lake areas in the Badain Jaran Desert (BJD), northeast of China have been debated for about a decade. In this study, continuous 222Rn measurement is used to quantify groundwater discharge into two representative fresh and brine water lakes in the desert using a steady-state mass-balance model. Two empirical equations are used to calculate atmospheric evasion loss crossing the water-air interface of the lakes. Groundwater discharge rates yielded from the radon mass balance model based on the two empirical equations are well correlated and of almost the same values, confirming the validity of the model. The fresh water and brine lakes have a daily averaged groundwater discharge rate of 7.6 ± 1.7 mm d-1 and 6.4 ± 1.8 mm d-1, respectively. The temporal fluctuations of groundwater discharge show similar patterns to those of the lake water level, suggesting that the lakes are recharged from nearby groundwater. Assuming that all the lakes have the same discharge rate as the two studied lakes, total groundwater discharge into all the lakes in the desert is estimated to be 1.59 × 105 m3 d-1. A conceptual model of water balance within a desert lake catchment is proposed to characterize water behaviors within the catchment. This study sheds lights on the water balance in the BJD and is of significance in sustainable regional water resource utilization in such an ecologically fragile area.

  11. Phytoplankton assemblages in high-elevation lakes in the northern Cascade Mountains, Washington State, USA

    USGS Publications Warehouse

    Larson, Gary L.; McIntire, C.D.; Truitt, R.E.; Liss, W.J.; Hoffman, Robert L.; Deimling, E.; Lomnicky, G.A.

    1998-01-01

    Phytoplankton assemblages in high-elevation lakes of North Cascades National Park Service Complex were studied during the open-water period in 1989. Collectively, 93 taxa were identified in 55 samples from 51 lakes. Based on cell densities, cyanobacteria had the highest relative abundance (36.7 %), followed by chlorophytes (29.8 %), and chrysophytes (19.6 %). Aphanocapsa delicatissima had the highest proportional abundance (14.0 %). Only 15.1 % percent of the taxa occurred in more than 20 samples. Phytoplankton cell densities increased following a gradient of increasing lake-water temperature, alkalinity, and concentration of total Kjeldahl-N with decreasing lake elevation. Chrysophytes and cyanobacteria were quantitatively (relative abundance) the most important taxa in alpine and subalpine lakes, whereas cyanobacteria had the highest relative abundances in high-forest and low-forest lakes. Chlorophytes had their highest relative abundance in high-forest lakes. Although low in relative abundance, diatoms and dinoflagellates were most abundant in alpine lakes. An ordination by correspondence analysis indicated that most alpine, subalpine, and high-forest lakes had similar floras. Although a few subalpine lakes exhibited deviations from this pattern, the main differences in phytoplankton composition were found in a group of low-forest and high-forest lakes. Canonical correspondence analysis (CCA) provided evidence that the distribution of samples and taxa in ordination space was correlated with a gradient of decreasing lake elevation and increasing water temperature, alkalinity, and concentration of nitrogen. When CCA was used to examine relationships among phytoplankton taxa and vegetation zones, a continuous distribution of taxa was found from the low-forest zone to the subalpine zone, with a large number of taxa occurring primarily in the subalpine and high-forest zones. Three phytoplankton taxa occurred primarily in alpine lakes, whereas five taxa co-occurred in

  12. Stable isotopes and Digital Elevation Models to study nutrient inputs in high-Arctic lakes

    NASA Astrophysics Data System (ADS)

    Calizza, Edoardo; Rossi, David; Costantini, Maria Letizia; Careddu, Giulio; Rossi, Loreto

    2016-04-01

    Ice cover, run-off from the watershed, aquatic and terrestrial primary productivity, guano deposition from birds are key factors controlling nutrient and organic matter inputs in high-Arctic lakes. All these factors are expected to be significantly affected by climate change. Quantifying these controls is a key baseline step to understand what combination of factors subtends the biological productivity in Arctic lakes and will drive their ecological response to environmental change. Basing on Digital Elevation Models, drainage maps, and C and N elemental content and stable isotope analysis in sediments, aquatic vegetation and a dominant macroinvertebrate species (Lepidurus arcticus Pallas 1973) belonging to Tvillingvatnet, Storvatnet and Kolhamna, three lakes located in North Spitsbergen (Svalbard), we propose an integrated approach for the analysis of (i) nutrient and organic matter inputs in lakes; (ii) the role of catchment hydro-geomorphology in determining inter-lake differences in the isotopic composition of sediments; (iii) effects of diverse nutrient inputs on the isotopic niche of Lepidurus arcticus. Given its high run-off and large catchment, organic deposits in Tvillingvatnet where dominated by terrestrial inputs, whereas inputs were mainly of aquatic origin in Storvatnet, a lowland lake with low potential run-off. In Kolhamna, organic deposits seem to be dominated by inputs from birds, which actually colonise the area. Isotopic signatures were similar between samples within each lake, representing precise tracers for studies on the effect of climate change on biogeochemical cycles in lakes. The isotopic niche of L. aricticus reflected differences in sediments between lakes, suggesting a bottom-up effect of hydro-geomorphology characterizing each lake on nutrients assimilated by this species. The presented approach proven to be an effective research pathway for the identification of factors subtending to nutrient and organic matter inputs and transfer

  13. Remotely Sensed Based Lake/Reservoir Routing in Congo River Basin

    NASA Astrophysics Data System (ADS)

    Raoufi, R.; Beighley, E.; Lee, H.

    2017-12-01

    Lake and reservoir dynamics can influence local to regional water cycles but are often not well represented in hydrologic models. One challenge that limits their inclusion in models is the need for detailed storage-discharge behavior that can be further complicated in reservoirs where specific operation rules are employed. Here, the Hillslope River Routing (HRR) model is combined with a remotely sensed based Reservoir Routing (RR) method and applied to the Congo River Basin. Given that topographic data are often continuous over the entire terrestrial surface (i.e., does not differentiate between land and open water), the HRR-RR model integrates topographic derived river networks and catchment boundaries (e.g., HydroSHEDs) with water boundary extents (e.g., Global Lakes and Wetlands Database) to develop the computational framework. The catchments bordering lakes and reservoirs are partitioned into water and land portions, where representative flowpath characteristics are determined and vertical water balance and lateral routings is performed separately on each partition based on applicable process models (e.g., open water evaporation vs. evapotranspiration). To enable reservoir routing, remotely sensed water surface elevations and extents are combined to determine the storage change time series. Based on the available time series, representative storage change patterns are determined. Lake/reservoir routing is performed by combining inflows from the HRR-RR model and the representative storage change patterns to determine outflows. In this study, a suite of storage change patterns derived from remotely sensed measurements are determined representative patterns for wet, dry and average conditions. The HRR-RR model dynamically selects and uses the optimal storage change pattern for the routing process based on these hydrologic conditions. The HRR-RR model results are presented to highlight the importance of lake attenuation/routing in the Congo Basin.

  14. Monitoring Lake Victoria Water Quality from Space: Opportunities for Strengthening Trans-boundary Information Sharing for Effective Resource Management

    NASA Astrophysics Data System (ADS)

    Mugo, R. M.; Korme, T.; Farah, H.; Nyaga, J. W.; Irwin, D.; Flores, A.; Limaye, A. S.; Artis, G.

    2014-12-01

    Lake Victoria (LV) is an important freshwater resource in East Africa, covering 68,800 km2, and a catchment that spans 193,000km2. It is an important source of food, energy, drinking and irrigation water, transport and a repository for agricultural, human and industrial wastes generated from its catchment. For such a lake, and a catchment transcending 5 international boundaries, collecting data to guide informed decision making is a hard task. Remote sensing is currently the only tool capable of providing information on environmental changes at high spatio-temporal scales. To address the problem of information availability for LV, we tackled two objectives; (1) we analyzed water quality parameters retrieved from MODIS data, and (2) assessed land cover changes in the catchment area using Landsat data. We used L1A MODIS-Aqua data to retrieve lake surface temperature (LST), total suspended matter (TSM), chlorophyll-a (CHLa) and diffuse attenuation coefficient (KD490) in four temporal periods i.e. daily, weekly, monthly and seasonal scales. An Empirical Orthogonal Function (EOF) analysis was done on monthly data. An analysis of land cover change was done using Landsat data for 3 epochs in order to assess if land degradation contributes to water quality changes. Our results indicate that MODIS-Aqua data provides synoptic views of water quality changes in LV at different temporal scales. The Winam Gulf in Kenya, the shores of Jinja town in Uganda, as well as the Mwanza region in Tanzania represent water quality hotspots due to their relatively high TSM and CHLa concentrations. High levels of KD490 in these areas would also indicate high turbidity and thus low light penetration due to the presence of suspended matter, algal blooms, and/or submerged vegetation. The EOF analysis underscores the areas where LST and water color variability are more significant. The changes can be associated with corresponding land use changes in the catchment, where for instance wetlands are

  15. An ecohydrological-based management of Lake Beratan in Bedugul, Bali

    NASA Astrophysics Data System (ADS)

    Atmaja, D. M.; Budiastuti, M. S.; Setyono, P.; Sunarto

    2018-04-01

    Lake Beratan is one of waterway ecosystems located in the upper land of Bedugul, Bali and has become a tourist object which is visited by many foreign as well as domestic tourists. This is supported by a sufficiently high economic growth which, without the community’s being aware of, has caused environmental problems such as the shallowing of the lake, erosion, and water pollution to such an extent that have resulted in the degradation of the function of the lake as the site of catchment. The degradation of the function of the lake can be overcome by ecohydrological-based management. This study was aimed at developing an integrated and long lasting Lake Beratan environment management concept. The study used a descriptive qualitative approach using a survey, by collecting primary and secondary data. On the basis of those data the mapping of the potentials of the lake and problems of the lake which were then integrated to formulate criteria for sustainable use of Lake Beratan waters environment resources. The determination of zonation of the lake was done based on those criteria and the community’s existence consideration as well as the exising system of the lake waterway environment use. Based on the study in the field, some recommendations could be made concerning Lake Beratan waterway sustainable and integrated management.

  16. Geothermal activity and hydrothermal mineral deposits at southern Lake Bogoria, Kenya Rift Valley: Impact of lake level changes

    NASA Astrophysics Data System (ADS)

    Renaut, Robin W.; Owen, R. Bernhart; Ego, John K.

    2017-05-01

    Lake Bogoria, a saline alkaline closed-lake in a drainage basin of Neogene volcanic rocks in the central Kenya Rift, is fed partly by ∼200 hot alkaline springs located in three groups along its margins. Hot springs along the midwest shoreline (Loburu, Chemurkeu) and their travertine deposits have been studied, but little is known about the geothermal activity at southern Lake Bogoria. Observations, field measurements and analyses (geochemical and mineralogical) of the spring waters and deposits, spanning three decades, show that the southern spring waters are more saline, the hydrothermal alteration there is more intense, and that most hot spring deposits are siliceous. Geothermal activity at southern Lake Bogoria (Ng'wasis, Koibobei, Losaramat) includes littoral boiling springs and geysers, with fumaroles at slightly higher elevations. Modern spring deposits are ephemeral sodium carbonates, opal-A crusts and silica gels. Local fossil spring deposits include diatomaceous silica-cemented conglomerates that formed subaqueously when the lake was then dilute and higher than today, and outlying calcite tufa deposits. In contrast, mineral deposits around neighbouring fumarole vents and sites of hydrothermal alteration include clays (kaolinite), sulfate minerals (jarosite, alunite), and Fe-oxyhydroxides linked to rising acidic fluids. When lake level falls, the zone of acidity moves downwards and may overprint older alkaline spring deposits. In contrast, rising lake level leads to lake water dilution and vents in the lower parts of the acidic zone may become dilute alkaline springs. The new evidence at Lake Bogoria shows the potential for using the mineralogy of geothermal sediments to indicate former changes in lake level.

  17. Ecosystem responses during Late Glacial period recorded in the sediments of Lake Łukie (East Poland)

    NASA Astrophysics Data System (ADS)

    Zawiska, Izabela; Słowiński, Michał; Correa-Metrio, Alex; Obremska, Milena; Luoto, Tomi; Nevalainen, Liisa; Woszczyk, Michał; Milecka, Krystyna

    2014-05-01

    The main objectives of this study was to reconstruct climate impact on the functioning of Lake Łukie and its catchment (Łęczna Włodawa Lake District, East European Plain) during Late Glacial period. In order to reconstruct climatic fluctuations and corresponding ecosystem responses, we analysed lake sediments for pollen, subfossil Cladocera, plant macrofossils and chemical composition of the sediment. Of these, plant macrofossils and Cladocera were used to infer minimum and mean July temperatures and ordination analysis was used to examine biotic community shifts. Multiproxy analyses of late-glacial sediments of Lake Łukie clearly show that the main driver of aquatic and terrestrial ecosystems as well as geomorphological processes in the catchment was climate variation. The history of the lake initiated during the Older Dryas. In that period, Łęczna Włodawa Lake District was covered by open habitats dominated by grasses (Poaceae), humid sites were occupied by tundra plant communities with less clubmoss (Selaginella selaginoides), dry sites by dominated by steppe-like vegetation with light-demanding species such as Helianthemum, Artemisia, Chenopodiaceae, and juniper bushes (Juniperus). Cold climate limited the growth and development of organisms in the lake, Cladocera community species composition was poor, with only few species present there all the time. During this time period, permafrost was still present in the ground limiting infiltration of rainwater and causing high erosion in the catchment area. Surface runoff is confirmed by the presence of sclerotia of Cenococcum geophilum and high terrigenous silica content. The warming of the early Allerød caused a remarkable change in the natural environment of this area. This is in accordance with the temperature rise reconstructed with the use of plant macrofossils though the Cladocera reconstruction did not recorded the rise than. This temperature increase resulted in turnover of vegetation in the

  18. [Effect of schistosomiasis control strategy based on infection source control of Poyang Lake region in Yongxiu County promotion zone].

    PubMed

    Chen, Zhe; Rao, Xian-long; Li, Yi-feng; Gu, Xiao-nan; Xu, Mei-xin; Lin, Dan-dan

    2015-12-01

    To evaluate the effect of schistosomiasis control strategy with emphasis on infection source control in the Yongxiu County promotion zone of Poyang Lake region. The Wucheng Township of Yongxiu County was selected as the observation site, and the effect of the comprehensive control strategy was evaluated by using the method of field surveys combined with retrospective investigations. In 2010, there were 17 persons whose stool tests for schistosome infection were positive, and the number of calculated schistosomiasis patients was 2,331. The infection rate of cattle was 4.5%, and the area with infected Oncomelania hupensis snails was 10.00 hm². In 2011, the comprehensive control strategy was carried out, and in 2012, there were no cattle in the promotion zone. In 2013 and 2014, there were no schistosomiasis patients with positive stool tests. In 2014, no schistosome infected snails were found. The control strategy with emphasis on infection source control effectively controls the transmission of schistosomiasis in Yongxiu County promotion zone.

  19. Estimation of design floods in ungauged catchments using a regional index flood method. A case study of Lake Victoria Basin in Kenya

    NASA Astrophysics Data System (ADS)

    Nobert, Joel; Mugo, Margaret; Gadain, Hussein

    Reliable estimation of flood magnitudes corresponding to required return periods, vital for structural design purposes, is impacted by lack of hydrological data in the study area of Lake Victoria Basin in Kenya. Use of regional information, derived from data at gauged sites and regionalized for use at any location within a homogenous region, would improve the reliability of the design flood estimation. Therefore, the regional index flood method has been applied. Based on data from 14 gauged sites, a delineation of the basin into two homogenous regions was achieved using elevation variation (90-m DEM), spatial annual rainfall pattern and Principal Component Analysis of seasonal rainfall patterns (from 94 rainfall stations). At site annual maximum series were modelled using the Log normal (LN) (3P), Log Logistic Distribution (LLG), Generalized Extreme Value (GEV) and Log Pearson Type 3 (LP3) distributions. The parameters of the distributions were estimated using the method of probability weighted moments. Goodness of fit tests were applied and the GEV was identified as the most appropriate model for each site. Based on the GEV model, flood quantiles were estimated and regional frequency curves derived from the averaged at site growth curves. Using the least squares regression method, relationships were developed between the index flood, which is defined as the Mean Annual Flood (MAF) and catchment characteristics. The relationships indicated area, mean annual rainfall and altitude were the three significant variables that greatly influence the index flood. Thereafter, estimates of flood magnitudes in ungauged catchments within a homogenous region were estimated from the derived equations for index flood and quantiles from the regional curves. These estimates will improve flood risk estimation and to support water management and engineering decisions and actions.

  20. Catchment-scale environmental controls of sediment-associated contaminant dispersal

    NASA Astrophysics Data System (ADS)

    Macklin, Mark

    2010-05-01

    Globally river sediment associated contaminants, most notably heavy metals, radionuclides, Polychlorinated Biphenyls (PCBs), Organochlorine pesticides (OCs) and phosphorous, constitute one the most significant long-term risks to ecosystems and human health. These can impact both urban and rural areas and, because of their prolonged environmental residence times, are major sources of secondary pollution if contaminated soil and sediment are disturbed by human activity or by natural processes such as water or wind erosion. River catchments are also the primary source of sediment-associated contaminants to the coastal zone, and to the ocean, and an understanding of the factors that control contaminated sediment fluxes and delivery in river systems is essential for effective environmental management and protection. In this paper the catchment-scale controls of sediment-associated contaminant dispersal are reviewed, including climate-related variations in flooding regime, land-use change, channel engineering, restoration and flood defence. Drawing on case studies from metal mining impacted catchments in Bolivia (Río Pilcomayo), Spain (Río Guadiamar), Romania (River Tisa) and the UK (River Swale) some improved methodologies for identifying, tracing, modelling and managing contaminated river sediments are proposed that could have more general application in similarly affected river systems worldwide.

  1. Groundwater denitrification in two agricultural river catchments: influence of hydro-geological setting and aquifer geochemistry

    NASA Astrophysics Data System (ADS)

    McAleer, Eoin; Mellander, Per-Erik; Coxon, Catherine; Richards, Karl G.; Jahangir, Mohammad M. R.

    2015-04-01

    products (excess N2 mean: 1.57 mg/l, N2O mean: 1.61µg/l). Groundwater in the sandstone catchment had a comparable mean NO3--N concentration to that of the slate site (6.24mg/l) and while temporal variation was low (SD: 0.9 mg/l), spatial variation was substantially greater (SD: 3.63 mg/l). The accumulation of denitrification products in the sandstone catchment showed a large contrast to that of the slate with excess N2 ranging from 0.16-8.77 mg/l and N2O from 0.07-66.42 µg/l. Mean dissolved oxygen concentration and redox potential were 5.6mg/l and 67.5mV respectively. The near stream zones in particular were marked by favourable denitrifying conditions: hydraulic conductivity (<2m/day), Eh (<50mV) and DO (<5mg/l). Winter recharge had a diluting effect, increasing the concentration of DO and Eh with a concurrent decrease in excess N2 and N2O. The evolution of groundwater geochemistry along a subsurface flow path is a function of residence time. While both catchments are characterised as permeable, the slate catchment exhibits greater hydraulic conductivity values, particularly at depth, with groundwater geochemistry in all horizons reflective of recently recharged water. The deeper groundwater pathways and near stream zones in the sandstone catchment have a lower hydraulic conductivity. As such, dissolved oxygen and redox gradients occur with depth, causing the development of NO3- reducing zones.

  2. Paleoecological inferences of recent alluvial damming of a lake basin due to retrogressive permafrost thaw slumping

    NASA Astrophysics Data System (ADS)

    Quinlan, R.; Delaney, S.; Lamoureux, S. F.; Kokelj, S. V.; Pisaric, M. F.

    2014-12-01

    Expected climate impacts of future warming in the Arctic include thawing of permafrost landscapes in northern latitudes. Thawing permafrost is expected to have major consequences on hydrological dynamics, which will affect the limnological conditions of Arctic lakes and ponds. In this study we obtained a sediment core from a small lake (informally named "FM1") near Fort McPherson, Northwest Territories, Canada, with a large retrogressive thaw slump (nearly 1 kilometre in diameter) within its catchment. A radiocarbon date from the base of the FM1 sediment core suggests the lake formed between 990-1160 Cal AD. The analysis of aerial photographs indicate the thaw slump initiated between 1970-1990, and sediment geochemistry analysis indicated major changes in sediment content at 54-cm sediment core depth. Analyses of subfossil midge (Chironomidae) fossils inferred that, pre-slump, lake FM1 was shallow with a large bog or wetland environment, with midge assemblages dominated by taxa such as Limnophyes and Parametriocnemus. Post-thaw midge assemblages were dominated by subfamily Chironominae (Tribe Tanytarsini and Tribe Chironomini) taxa, and the appearance of deepwater-associated taxa such as Sergentia suggests that lake FM1 deepened, possibly as a result of alluvial damming from slump materials washing into the lake near its outlet. Most recent stratigraphic intervals infer a reversion back to shallower conditions, with a slight recovery of bog or wetland-associated midge taxa, possibly due to rapid basin infilling from increased deposition rates of catchment-derived materials. Results emphasize that there may be a variety of different outcomes to Arctic lake and pond ecosystems as a result of permafrost thawing, contingent on system-specific characteristics such as slump location relative to the lake basin, and relative inflow and outflow locations within the lake basin.

  3. Oxygen Minimum Zones in Miniature: Microbial Community Diversity, Activity, and Assembly Across Oxygen Gradients in Meromictic Marine Lakes, Palau

    NASA Astrophysics Data System (ADS)

    Beman, J. M.

    2016-02-01

    Oxygen minimum zones (OMZs) play a central role in biogeochemical cycles and are expanding as a consequence of climate change, yet our understanding of these changes is limited by a lack of systematic analyses of low-oxygen ecosystems. In particular, forecasting biogeochemical feedbacks to deoxygenation requires detailed knowledge of microbial community assembly and activity as oxygen declines. Marine `lakes'—isolated bodies of seawater surrounded by land—are an ideal comparative system, as they provide a pronounced oxygen gradient extending from well-mixed, holomictic lakes to stratified, meromictic lakes that vary in their extent of anoxia. We examined 13 marine lakes using pyrosequencing of 16S rRNA genes, quantitative PCR for nitrogen (N)- and sulfur (S)-cycling functional genes and groups, and N- and carbon (C)-cycling rate measurements. All lakes were inhabited by well-known marine bacteria, demonstrating the broad relevance of this study system. Microbial diversity was typically highest in the anoxic monimolimnion of meromictic lakes, with marine cyanobacteria, SAR11, and other common bacteria replaced by anoxygenic phototrophs, sulfate-reducing bacteria (SRBs), and SAR406 in the monimolimnion. Denitrifier nitrite reductase (nirS) genes were also detected alongside high abundances (>106 ml-1) of dissimilatory sulfite reductase (dsrA) genes from SRBs in the monimolimnion. Sharp changes in community structure were linked to environmental gradients (constrained variation in redundancy analysis=76%) and deterministic processes dominated community assembly at all depths (nearest taxon index values >4). These results indicate that oxygen is a strong, deterministic driver of microbial community assembly. We also observed enhanced N- and C-cycling rates along the transition from hypoxic to anoxic to sulfidic conditions, suggesting that microbial communities form a positive feedback loop that may accelerate deoxygenation and OMZ expansion.

  4. Soil water dynamics of lateritic catchments as affected by forest clearing for pasture

    NASA Astrophysics Data System (ADS)

    Sharma, M. L.; Barron, R. J. W.; Williamson, D. R.

    1987-10-01

    Aspects of soil water dynamics as affected by land use changes were examined over a period of five years (1974-1979) in two groups of adjacent catchments located in 1200 mm yr -1 and 800 mm yr -1 rainfall zones near Collie, Western Australia. In the summer of 1976/1977, after three years of calibration, 100% of one high rainfall catchment, Wights, and 53% of one lower rainfall catchment, Lemon, was cleared of native eucalyptus forest and replaced with pasture. The soil water storage down to 6m was measured in-situ using a neutron probe in fifteen access tubes located at five stratified sites in each catchment. Considerable spatial variability in soil water storage was encountered within a site, between sites within a catchment, and between paired catchments; the dominant variability being between sites. Comparisons between the pre- and postclearing states within a catchment and between the cleared and uncleared control catchments were used to evaluate the effect of change in land use on soil water dynamics. Within two years of the change from forest to pasture, a significant increase in soil water storage had occurred in the profiles in both cleared catchments. Concurrently, there was a small decrease in the uncleared control catchments. The increases following clearing were greater in the higher than in the lower rainfall catchment, more pronounced in the first year than in the second year, and occurred mostly at depths greater than 2m. In Wights catchment, the increase in summer minimum soil water storage in the first and second years amounted to 220 and 58 mm respectively, whilst for Lemon catchment the increase for the first year was < 50 mm. This increased soil water storage was due to a substantially lower evapotranspiration from the shallow-rooted, seasonally active pasture which extracts water from the top 1 m or so, compared with the perennial native eucalyptus forest which extracts water from depths down to 6 m and beyond. Due to the relatively low water

  5. Catchment systems science and management: from evidence to resilient landscapes

    NASA Astrophysics Data System (ADS)

    Quinn, Paul

    2014-05-01

    highly unlikely owing to a growing world population and future climates may be driven by more intense rainfall. Together these will increase runoff rates further, generating more erosion, water pollution and floods. A reduction in recharge to the deeper soil and aquifers also increases the chance of droughts as the natural groundwater reservoirs are not replenished. Hence the urgent need to put back the infiltration and buffering capacity for whole catchments. A strategic plan for where, what and how we grow crops and rear animals within catchments is the first step. Example case studies will be presented that provide evidence that intense farming activities can be offset by the creation of soft engineered wetlands, runoff attenuation ponds, buffer strips and high infiltration zones. A fresh look at how our catchments work and an assessment of what is a healthy food and water dynamic for that system is reviewed. Through gathering local evidence of problems and solutions we can demonstrate how healthy catchments should function for the long term.

  6. Oscillations in the Indian summer monsoon during the Holocene inferred from a stable isotope record from pyrogenic carbon from Lake Chenghai, southwest China

    NASA Astrophysics Data System (ADS)

    Sun, Weiwei; Zhang, Enlou; Liu, Enfeng; Ji, Ming; Chen, Rong; Zhao, Cheng; Shen, Ji; Li, Yanling

    2017-02-01

    A robust, well-dated record of centennial-scale abrupt changes in the Asian summer monsoon is crucial for understanding the potential forcing factors and their environmental effects. In this study, we analyzed the stable carbon isotopes of pyrogenic carbon (δ13CPC) in a 556-cm long sediment core retrieved from Lake Chenghai in the Yunnan Plateau, China. The results provide a continuous 7660-year precipitation record of the Indian summer monsoon (ISM). They indicate that from ∼7600 cal yr BP precipitation in the Lake Chenghai catchment gradually increased until 5030 cal yr BP, and then subsequently decreased in the second half of the Holocene. In addition, at least six centennial-scale droughts occurred at about 7300, 6300, 5500, 3400, 2500 and 500 cal yr BP. Our findings suggest that ISM intensity is primary controlled by variations in solar irradiance on a centennial time scale. This external forcing may be amplified by North Atlantic cooling events and El Niño-Southern Oscillation activity in the eastern tropical Pacific, which shift the intertropical convergence zone further southwards.

  7. Elaboration of a complex GIS application in a catchment area.

    PubMed

    Németh, T; Szabó, J; Pásztor, L; Bakacsi, Zs

    2002-01-01

    Rearrangement of land resources after political changes has not yet been finished in Hungary. It is almost impossible to collect information necessary for planning activities on outer areas of settlements. The data are distributed among various organizations and can be found in diverse forms or there are no available data at all. However water quality protection has become legally ordered concerning municipal activities around Lake Balaton which is considered as the most important recreation area and tourist target in Hungary and is also affected by a number of factors providing sources of environmental conflicts. Settlements in a catchment area (Tetves Creek) on the southern shoreline of Lake Balaton in Central Hungary tendered a complex project for collecting sources of authentic data of the Hungarian rural areas along with systematizing and saving these data in a uniform GIS. An application using Autodesk MapGuide Program for Internet realization was developed. The implemented web-based system can be used in Internet and Intranet environments.

  8. Pollution indicators in groundwater of two agricultural catchments in Lower Silesia (Poland)

    NASA Astrophysics Data System (ADS)

    Kasperczyk, Lidia; Modelska, Magdalena; Staśko, Stanisław

    2016-12-01

    The article discusses the content and source of mineral nitrogen compounds in groundwater, based on the data collected in two river catchments in two series (spring and autumn 2014). The study area comprises two catchments located in Lower Silesia, Poland - Cicha Woda and Sąsiecznica. Both catchments are characterised agricultural character of development. In the both researched areas, the points of State Environmental Monitoring (SEM) are located but only the Cicha Woda area is classified as nitrate vulnerable zone (NVZ). To analyse and compare the contamination of Quaternary and Neogene aquifers, the concentration of nitrates, nitrites, ammonium and potassium ions was measured primarily. Results showed the exceedance of nitrogen mineral forms of shallow groundwater Quaternary aquifer in both basins. The concentration of nitrates range from 0.08 to 142.12 mgNO3 -/dm3 (Cicha Woda) and from 2.6 to 137.65 mg NO3 -/dm3 (Sąsiecznica). The major source of pollution is probably the intensive agriculture activity. It causes a degradation of the shallow groundwater because of nitrate, nitrite, potassium, phosphates and ammonium contents. There was no observed contamination of anthropogenic origin in the deeper Neogene aquifer of Cicha Woda catchment.

  9. A bottom up approach for engineering catchments through sustainable runoff management

    NASA Astrophysics Data System (ADS)

    Wilkinson, M.; Quinn, P. F.; Jonczyk, J.; Burke, S.

    2010-12-01

    There is no doubt that our catchments are under great stress. There have been many accounts around the world of severe flood events and water quality issues within channels. As a result of these, ecological habitats in rivers are also under pressure. Within the United Kingdom, all these issues have been identified as key target areas for policy. Traditionally this has been managed by a policy driven top down approach which is usually ineffective. A one ‘size fits all’ attitude often does not work. This paper presents a case study in northern England whereby a bottom up approach is applied to multipurpose managing of catchments at the source (in the order of 1-10km2). This includes simultaneous tackling of water quality, flooding and ecological issues by creating sustainable runoff management solutions such as storage ponds, wetlands, beaver dams and willow riparian features. In order to identify the prevailing issues in a specific catchment, full and transparent stakeholder engagement is essential, with everybody who has a vested interest in the catchment being involved from the beginning. These problems can then be dealt with through the use of a novel catchment management toolkit, which is transferable to similar scale catchments. However, evidence collected on the ground also allows for upscaling of the toolkit. The process gathers the scientific evidence about the effectiveness of existing or new measures, which can really change the catchment functions. Still, we need to get better at communicating the science to policy makers and policy therefore must facilitate a bottom up approach to land and water management. We show a test site for this approach in the Belford burn catchment (6km2), northern England. This catchment has problems with flooding and water quality. Increased sediment loads are affecting the nearby estuary which is an important ecological zone and numerous floods have affected the local village. A catchment engineering toolkit has been

  10. Alpine glacier-fed turbid lakes are discontinuous cold polymictic rather than dimictic

    PubMed Central

    Peter, Hannes; Sommaruga, Ruben

    2017-01-01

    Abstract Glacier retreat as a consequence of climate change influences freshwater ecosystems in manifold ways, yet the physical and chemical bases of these effects are poorly studied. Here, we characterize how water temperature differs between alpine lakes with and without direct glacier influence on seasonal and diurnal timescales. Using high temporal resolution monitoring of temperature in 4 lakes located in a catchment influenced by glacier retreat, we reported unexpectedly high surface temperatures, even in proglacial lakes located 2600 m a.s.l. Cold glacier meltwater and low nighttime air temperatures caused a distinct diurnal pattern of water temperature in the water column of glacier-influenced lakes. Precipitation onto glacier surfaces apparently leads to rapid cooling of the glacier-fed lakes and disrupts the thermal stratification with several mixing events during the summer. Taken together, these mechanisms contribute to the unique seasonal and diurnal dynamics of glacier-influenced lakes that contrast with the typical dimictic pattern of clear alpine lakes and represent an example of discontinuous cold polymictic lake type. This work contributes to the basic description of how climate and meteorology affect the physical properties of an increasingly common lake type. PMID:28690780

  11. Using a Data-Driven Approach to Understand the Interaction between Catchment Characteristics and Water Quality Responses

    NASA Astrophysics Data System (ADS)

    Western, A. W.; Lintern, A.; Liu, S.; Ryu, D.; Webb, J. A.; Leahy, P.; Wilson, P.; Waters, D.; Bende-Michl, U.; Watson, M.

    2016-12-01

    Many streams, lakes and estuaries are experiencing increasing concentrations and loads of nutrient and sediments. Models that can predict the spatial and temporal variability in water quality of aquatic systems are required to help guide the management and restoration of polluted aquatic systems. We propose that a Bayesian hierarchical modelling framework could be used to predict water quality responses over varying spatial and temporal scales. Stream water quality data and spatial data of catchment characteristics collected throughout Victoria and Queensland (in Australia) over two decades will be used to develop this Bayesian hierarchical model. In this paper, we present the preliminary exploratory data analysis required for the development of the Bayesian hierarchical model. Specifically, we present the results of exploratory data analysis of Total Nitrogen (TN) concentrations in rivers in Victoria (in South-East Australia) to illustrate the catchment characteristics that appear to be influencing spatial variability in (1) mean concentrations of TN; and (2) the relationship between discharge and TN throughout the state. These important catchment characteristics were identified using: (1) monthly TN concentrations measured at 28 water quality gauging stations and (2) climate, land use, topographic and geologic characteristics of the catchments of these 28 sites. Spatial variability in TN concentrations had a positive correlation to fertiliser use in the catchment and average temperature. There were negative correlations between TN concentrations and catchment forest cover, annual runoff, runoff perenniality, soil erosivity and catchment slope. The relationship between discharge and TN concentrations showed spatial variability, possibly resulting from climatic and topographic differences between the sites. The results of this study will feed into the hierarchical Bayesian model of river water quality.

  12. Extreme drought causes distinct water acidification and eutrophication in the Lower Lakes (Lakes Alexandrina and Albert), Australia

    NASA Astrophysics Data System (ADS)

    Li, Siyue; Bush, Richard T.; Mao, Rong; Xiong, Lihua; Ye, Chen

    2017-01-01

    Droughts are set to increase in frequency and magnitude with climate change and water extraction, and understanding their influence on ecosystems is urgent in the Holocene. Low rainfall across the Murray-Darling Basin (MDB) of Australia resulted in an unprecedented water level decline in the Lower Lakes (Lakes Alexandrina and Albert) at the downstream end of the river system. A comprehensive data covering pre-drought (2004-2006), drought (2007-2010) and post-drought (2010-2013) was firstly used to unravel drought effects on water quality in the contrasting main parts and margins of the two Lakes, particularly following water acidification resulting from acid sulfate soil oxidation. Salinity, nutrients and Chl-a significantly increased during the drought in the Lake main waterbody, while pH remained stable or showed minor shifts. In contrast to the Lake Alexandrina, total dissolved solid (TDS) and electrical conductivity (EC) during the post-drought more than doubled the pre-drought period in the Lake Albert as being a terminal lake system with narrow and shallow entrance. Rewetting of the exposed pyrite-containing sediment resulted in very low pH (below 3) in Lake margins, which positively contributed to salinity increases via SO42- release and limestone dissolution. Very acidic water (pH 2-3) was neutralised naturally by lake refill, but aerial limestone dosing was required for neutralisation of water acidity during the drought period. The Lower Lakes are characterized as hypereutrophic with much higher salinity, nutrient and algae concentrations than guideline levels for aquatic ecosystem. These results suggest that, in the Lower Lakes, drought could cause water quality deterioration through water acidification and increased nutrient and Chl-a concentrations, more effective water management in the lake catchment is thus crucial to prevent the similar water quality deterioration since the projected intensification of droughts. A comparative assessment on lake

  13. Learning from catchments to understand hydrological drought (HS Division Outstanding ECS Award Lecture)

    NASA Astrophysics Data System (ADS)

    Van Loon, Anne

    2017-04-01

    Drought is a global challenge. To be able to manage drought effectively on global or national scales without losing smaller scale variability and local context, we need to understand what the important hydrological drought processes are at different scales. Global scale models and satellite data are providing a global overview and catchment scale studies provide detailed site-specific information. I am interested in bridging these two scale levels by learning from catchments from around the world. Much information from local case studies is currently underused on larger scales because there is too much complexity. However, some of this complexity might be crucial on the level where people are facing the consequences of drought. In this talk, I will take you on a journey around the world to unlock catchment scale information and see if the comparison of many catchments gives us additional understanding of hydrological drought processes on the global scale. I will focus on the role of storage in different compartments of the terrestrial hydrological cycle, and how we as humans interact with that storage. I will discuss aspects of spatial and temporal variability in storage that are crucial for hydrological drought development and persistence, drawing from examples of catchments with storage in groundwater, lakes and wetlands, and snow and ice. The added complexity of human activities shifts the focus from natural to catchments with anthropogenic increases in storage (reservoirs), decreases in storage (groundwater abstraction), and changes in hydrological processes (urbanisation). We learn how local information is providing valuable insights, in some cases challenging theoretical understanding or model outcomes. Despite the challenges of working across countries, with a high number of collaborators, in a multitude of languages, under data-scarce conditions, the scientific advantages of bridging scales are substantial. The comparison of catchments around the world can

  14. Preferential flow and mixing process in the chemical recharge in subsurface catchments: observations and modeling

    NASA Astrophysics Data System (ADS)

    Gascuel-Odoux, C.; Rouxel, M.; Molenat, J.; Ruiz, L.; Aquilina, L.; Faucheux, M.; Labasque, T.; Sebilo, M.

    2012-04-01

    Shallow groundwater that develops on hillslopes is the main compartment in headwater catchments for flow and solute transport to rivers. Although spatial and temporal variations in its chemical composition are reported in the literature, there is no coherent description of the way these variations are organized, nor is there an accepted conceptual model for the recharge mechanisms and flows in the groundwater involved. We instrumented an intensive farming and subsurface dominant catchment located in Oceanic Western Europe (Kerbernez, Brittany, France), a headwater catchment included in the Observatory for Research on Environment AgrHyS (Agro-Hydro-System) and a part of the French Network of catchments for environmental research (SOERE RBV focused on the Critical Zone). These systems are strongly constrained by anthropogenic pressures (agriculture) and are characterized by a clear non-equilibrium status. A network of 42 nested piezometers was installed along a 200 m hillslope allowing water sampling along two transects in the permanent water table as well as in what we call the "fluctuating zone", characterized by seasonal alternance of saturated and unsaturated conditions. Water composition was monitored at high frequency (weekly) over a 3-year period for major anion composition and over a one year period for detailed 15N, CFC, SF6 and other dissolved gases. The results demonstrated that (i) the anionic composition in water table fluctuation zone varied significantly compared to deeper portions of the aquifer on the hillslope, confirming that this layer constitutes a main compartment for the mixing of new recharge water and old groundwater, (ii) seasonally, the variations of 15N and CFC are much higher during the recharge period than during the recession period, confirming the preferential flow during early recharge events, iii) variations of nitrate 15N and O18 composition was suggesting any significant denitrification process in the fluctuating zone, confirming

  15. Limnological and geochemical survey of Williams Lake, Hubbard County, Minnesota

    USGS Publications Warehouse

    LaBaugh, J.W.; Groschen, G.E.; Winter, Thomas C.

    1981-01-01

    Calcium and bicarbonate represent more than 90 percent of the dissolved constituents in Williams Lake and the contiguous ground-water system. Major mineralogical constituents of the lake sediments are quartz, dolomite, and calcite. Marl is present only in the littoral zone of the lake. Organic sediments in the lake consist of loose organic floe and gyttja.

  16. Riparian ecosystem resilience and livelihood strategies under test: lessons from Lake Chilwa in Malawi and other lakes in Africa.

    PubMed

    Kafumbata, Dalitso; Jamu, Daniel; Chiotha, Sosten

    2014-04-05

    This paper reviews the importance of African lakes and their management challenges. African inland lakes contribute significantly to food security, livelihoods and national economies through direct exploitation of fisheries, water resources for irrigation and hydropower generation. Because of these key contributions, the ecosystem services provided are under significant stress mainly owing to high demand by increasing populations, negative anthropogenic impacts on lake catchments and high levels of poverty which result in unsustainable use. Climate variability exacerbates the stress on these ecosystems. Current research findings show that the lakes cannot sustain further development activities on the scale seen over the past few decades. Millions of people are at risk of losing livelihoods through impacts on livestock and wildlife. The review further shows that the problems facing these lakes are beyond the purview of current management practices. A much better understanding of the interactions and feedbacks between different components of the lake socio-ecological systems is needed to address the complex challenges of managing these ecosystem services. This review suggests that the three small wetlands of Chad, Chilwa and Naivasha provide an opportunity for testing novel ideas that integrate sustainability of natural resource management with livelihoods in order to inform policy on how future land use and climatic variability will affect both food security and the ecosystem services associated with it.

  17. Biological studies of atmospheric deposition impact on biota in Kola North Mountain Lakes, Russia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yakovlev, V.; Sharov, A.; Vandysh, O.

    1996-12-31

    In the framework of the AL:PE projects, biological studies of phyto-, zooplankton and zoobenthos communities of a small lakes situated in Chuna tundra and Chibiny mountains in Murmansk region were performed in 1993-1995. The lakes are the typical oligotrophic mountain lakes. In the Chibiny lake phytoplankton were presented mostly by species from rock catchment area. Summer phytoplankton state in the lakes showed no acidification in 1993-1995. However, the great number dead cells of acid tolerance diatoms, such as Tabellaria flocculosa found in the Chuna lake in summer period, may indicate a presence of acid episodes. Zooplankton of the lakes ismore » typical for high oligotrophic mountain lakes. However, lack of the acid sensitive daphniidae cladocerans seems to be a result of acidification effects. There were no significant relationships between benthic invertebrates species composition and present water acidity of the lakes. The typical for mountain lakes taxa (Prodiamesinae chironomids, stone flies and mayflies) were found in lake shore and streams. Despite the only little evidence of damage in biota, the further biological studies would be useful for long-term monitoring of the mountain lakes.« less

  18. Stationarity and Inequality from the Mississippi to the Kissimmee: Climatic Control of Temporal Patterns in Catchment Discharge and Solute Export

    NASA Astrophysics Data System (ADS)

    Jawitz, J. W.

    2011-12-01

    What are the relative contributions of climatic variability, land management, and local geomorphology in determining the temporal dynamics of streamflow and the export of solutes from watersheds to receiving water bodies? A simple analytical framework is introduced for characterizing the temporal inequality of stream discharge and solute export from catchments using Lorenz diagrams and the associated Gini coefficient. These descriptors are used to illustrate a broad range of observed flow variability with a synthesis of multi-decadal flow data from 22 rivers in Florida. The analytical framework is extended to comprehensively link variability in flows and loads to climatically-driven inputs in terms of these inequality-based metrics. Further, based on a synthesis of data from the basins of the Baltic Sea, the Mississippi River, the Kissimmee River and other tributaries to Lake Okeechobee, FL, it is shown that inter-annual variations in exported loads for geogenic constituents, and for total N and total P, are dominantly controlled by discharge. Emergence of this consistent pattern across diverse managed catchments is attributed to the anthropogenic legacy of accumulated nutrient sources generating memory, similar to ubiquitously present sources for geogenic constituents. Multi-decadal phosphorus load data from 4 of the primary tributaries to Lake Okeechobee and sodium and nitrate load data from 9 of the Hubbard Brook, NH long-term study site catchments are used to examine the relation between inequality of climatic inputs, river flows and catchment loads. The intra-annual loads to Lake Okeechobee are shown to be highly unequal, such that 90% of annual load is delivered in as little as 15% of the time. Analytic expressions are developed for measures of inequality in terms of parameters of the lognormal distribution under general conditions that include intermittency. In cases where climatic variability is high compared to that of concentrations (chemostatic

  19. Experimental modeling of thaw lake water evolution in discontinuous permafrost zone: Role of peat, lichen leaching and ground fire.

    PubMed

    Manasypov, Rinat M; Shirokova, Liudmila S; Pokrovsky, Oleg S

    2017-02-15

    Thaw of frozen peat in discontinuous permafrost zone produces a significant number of thermokarst lakes, which are known to contribute to Green House Gases (GHG) emission in the atmosphere. In palsa peatland of western Siberia, the thermokarst lake formation includes soil subsidences, lichen submergence and peat abrasion, leading to lateral spreading of the lake border, often intensified by ground fires. Mesocosm experiments were conducted during 3weeks on two thermokarst lake waters interacting in 30-L tanks with surface horizon of peat, the dominant ground vegetation (lichen Cladonia sp.) and the ash produced by lichen burning at 450°C. The obtained results allowed a better understanding of physico-chemical factors controlling the enrichment of thermokarst lake water in organic carbon and metals, and evaluating CO 2 sequestration/emission potential. The changes of dissolved organic carbon (DOC) and dissolved inorganic carbon (DIC), major element and divalent metal concentration in response to peat and lichen biomass addition were less than a factor of 2 over full duration of the experiment. Iron (Fe) concentration in the lake water decreased by a factor of 2 to 3 after the addition of peat and lichen biomass. The concentration of low-soluble trivalent and tetravalent hydrolysates decreased by ca. 30 to 50%, presumably due to their co-precipitation with Fe hydroxide. The dissolved carbon dioxide (CO 2 ) in tank with lichen increased by a factor of 5.5±0.5, likely due to respiration of algal component in closed environment. Strong enrichment of the lake water in DIC, P, K, Ca, Mg, Si, Al, Ti, Mn, Mo, Rb, As, Sb and U upon the ash addition persisted over full duration of experiments and was significant (p<0.0001) compared to peat and lichen biomass treatments. These elements may serve as indicators of ground fire impact on thermokarst lake water's chemistry. The overall effect of ash leaching on aquatic ecosystems after ground fire of frozen Siberian peatland is

  20. Sedimentation influx and volcanic interactions in the Fuji Five Lakes: implications for paleoseismological records

    NASA Astrophysics Data System (ADS)

    Lamair, Laura; Hubert-Ferrari, Aurélia; Yamamoto, Shinya; El Ouahabi, Meriam; Garrett, Ed; Shishikura, Masanobu; Schmidt, Sabine; Boes, Evelien; Obrochta, Stephen; Nakamura, Atsunori; Miyairi, Yosuke; Yokoyama, Yusuke; De Batist, Marc; Heyvaert, Vanessa M. A.

    2017-04-01

    The Fuji Fives Lakes are located at the foot of Mount Fuji volcano close to the triple junction, where the North American Plate, the Eurasian plate and the Philippine Sea Plate meet. These lakes are ideally situated to study Mount Fuji volcanism and the interaction between volcanism, changes in lake sedimentation rates and the ability of lakes to record paleoearthquakes. Here, we present newly acquired geological data of Lake Yamanaka and Lake Motosu, including seismic reflection profiles, gravity and piston cores. These two lakes and their respective watersheds were affected by several eruptions of Mount Fuji. Lake Yamanaka, a very shallow lake (max. depth 14 m), was heavily impacted by the scoria fall-out of the A.D. 1707 Hoei eruption of Mount Fuji. A detailed investigation of the effect of the Hoei eruption was conducted on short gravity cores, using high resolution XRD, C/N and 210Pb/137Cs analyses. The preliminary results suggest that the sedimentation rate of Lake Yamanaka drastically reduced after the Hoei eruption, followed by an increase until the present day. Similarly, lacustrine sedimentation in Lake Motosu (max. depth 122 m) was disturbed by Mount Fuji volcanism at a larger scale. The watershed of Lake Motosu was impacted by several lava flows and scoria cones. For example, the Omuro scoria cone reduced the catchment size of Lake Motosu and modified its physiography. The related scoria fall out covered an extensive part of the lake catchment and reduced terrigenous sedimentary influx to Lake Motosu. Within the deep basin of Lake Motosu, seismic reflection data shows two different periods that are distinguished by a major change in the dominant sedimentary processes. During the first period, sublacustrine landslides and turbidity currents were the dominant sedimentation processes. During the second one, the seismic stratigraphy evidences only deposition of numerous turbidites interrupting the hemipelagic sedimentation. Changes in sedimentary processes

  1. A Catchment-Based Land Surface Model for GCMs and the Framework for its Evaluation

    NASA Technical Reports Server (NTRS)

    Ducharen, A.; Koster, R. D.; Suarez, M. J.; Kumar, P.

    1998-01-01

    A new GCM-scale land surface modeling strategy that explicitly accounts for subgrid soil moisture variability and its effects on evaporation and runoff is now being explored. In a break from traditional modeling strategies, the continental surface is disaggregated into a mosaic of hydrological catchments, with boundaries that are not dictated by a regular grid but by topography. Within each catchment, the variability of soil moisture is deduced from TOP-MODEL equations with a special treatment of the unsaturated zone. This paper gives an overview of this new approach and presents the general framework for its off-line evaluation over North-America.

  2. Evaluation of a distributed catchment scale water balance model

    NASA Technical Reports Server (NTRS)

    Troch, Peter A.; Mancini, Marco; Paniconi, Claudio; Wood, Eric F.

    1993-01-01

    The validity of some of the simplifying assumptions in a conceptual water balance model is investigated by comparing simulation results from the conceptual model with simulation results from a three-dimensional physically based numerical model and with field observations. We examine, in particular, assumptions and simplifications related to water table dynamics, vertical soil moisture and pressure head distributions, and subsurface flow contributions to stream discharge. The conceptual model relies on a topographic index to predict saturation excess runoff and on Philip's infiltration equation to predict infiltration excess runoff. The numerical model solves the three-dimensional Richards equation describing flow in variably saturated porous media, and handles seepage face boundaries, infiltration excess and saturation excess runoff production, and soil driven and atmosphere driven surface fluxes. The study catchments (a 7.2 sq km catchment and a 0.64 sq km subcatchment) are located in the North Appalachian ridge and valley region of eastern Pennsylvania. Hydrologic data collected during the MACHYDRO 90 field experiment are used to calibrate the models and to evaluate simulation results. It is found that water table dynamics as predicted by the conceptual model are close to the observations in a shallow water well and therefore, that a linear relationship between a topographic index and the local water table depth is found to be a reasonable assumption for catchment scale modeling. However, the hydraulic equilibrium assumption is not valid for the upper 100 cm layer of the unsaturated zone and a conceptual model that incorporates a root zone is suggested. Furthermore, theoretical subsurface flow characteristics from the conceptual model are found to be different from field observations, numerical simulation results, and theoretical baseflow recession characteristics based on Boussinesq's groundwater equation.

  3. Critical loads of acidity for 90,000 lakes in northern Saskatchewan: A novel approach for mapping regional sensitivity to acidic deposition

    NASA Astrophysics Data System (ADS)

    Cathcart, H.; Aherne, J.; Jeffries, D. S.; Scott, K. A.

    2016-12-01

    Atmospheric emissions of sulphur dioxide (SO2) from large point sources are the primary concern for acidic deposition in western Canada, particularly in the Athabasca Oil Sands Region (AOSR) where prevailing winds may potentially carry SO2 over acid-sensitive lakes in northern Saskatchewan. A novel catchment-scale regression kriging approach was used to assess regional sensitivity and critical loads of acidity for the total lake population of northern Saskatchewan (89,947 lakes). Lake catchments were delineated using Thiessen polygons, and surface water chemistry was predicted for sensitivity indicators (calcium, pH, alkalinity, and acid neutralizing capacity). Critical loads were calculated with the steady state water chemistry model using regression-kriged base cations, sulphate, and dissolved organic carbon concentrations modelled from surface water observations (n > 800) and digital landscape-scale characteristics, e.g., climate, soil, vegetation, landcover, and geology maps. A large region (>13,726 km2) of two or more indicators of acid sensitivity (pH < 6 and acid neutralizing capacity, alkalinity, calcium < 50 μeq L-1) and low critical loads < 5 meq m-2 yr-1 were predicted on the Athabasca Basin. Exceedance of critical loads under 2006 modelled total sulphate deposition was predicted for 12% of the lakes (covering an area of 3742 km2), primarily located on the Athabasca Basin, within 100 km of the AOSR. There have been conflicting scientific reports of impacts from atmospheric emissions from the AOSR; the results of this study suggest that catchments in the Athabasca Basin within 100 km of the AOSR have received acidic deposition in excess of their critical loads and many of them may be at risk of ecosystem damage owing to their sensitivity.

  4. Soil surface lowering due to soil erosion in villages near Lake Victoria, Uganda

    NASA Astrophysics Data System (ADS)

    de Meyer, A.; Deckers, J.; Poesen, J.; Isabirye, M.

    2009-04-01

    In the effort to pinpoint the sources of sediment pollution in Lake Victoria, the contribution of sedi-ment from compounds, landing sites, main roads and footpaths is determined in the catchment of Na-bera Bay and Kafunda Bay at the northern shore of Lake Victoria in southern Uganda. The amount of soil loss in compounds and landing sites is determined by the reconstruction of the original and current soil surface according to botanical and man-made datable objects. The soil erosion rate is then deter-mined by dividing the eroded soil volume (corrected for compaction) by the age of the oldest datable object. In the study area, the average soil erosion rate in compounds amounts to 107 Mg ha-1 year-1 (per unit compound) and in landing sites to 207 Mg ha-1 year-1 (per unit landing site). Although com-pounds and landing sites occupy a small area of the study area (1.1 %), they are a major source of sediment to Lake Victoria (63 %). The soil loss on footpaths and main roads is calculated by multip-lying the total length of footpaths and main roads with the average width and depth (measured towards a reference surface). After the correction for compaction is carried out, the soil erosion rate on foot-paths amounts to 34 Mg ha-1 year-1 and on main roads to 35 Mg ha-1 year-1. Also footpaths and main roads occupy a small area of the study area (1.1 %), but contribute disproportionately to the total soil loss in the catchment (22 %). In this research, the information about the village/compound given by the villager/owner is indispensable. In accordance to an adaptation of the model of McHugh et al. (2002), 32 % of the sediment that is generated in the catchment, is deposited in Lake Victoria (i.e. 2 209 Mg year-1 or 0.7 Mg ha-1 year-1). The main buffer in the study area is papyrus at the shore of Lake Victoria. Also sugarcane can be a major buffer. However, the sugarcane-area is intersected by com-pounds, landing sites, footpaths and main roads that generate large amounts of

  5. Geological setting of the Concordia Trench-Lake system in East Antarctica

    NASA Astrophysics Data System (ADS)

    Cianfarra, P.; Forieri, A.; Salvini, F.; Tabacco, I. E.; Zirizotti, A.

    2009-06-01

    This study presents the interpretation of radio echo-sounding (RES) data collected during the 2003 geophysical campaign of PNRA (Italian National Research Project in Antarctica), which focused on the exploration of the Concordia Trench-Lake system in East Antarctica. The data allow us to identify a new lake (ITL-28) at the southern edge of the Concordia Trench and a series of N-S trending subglacial troughs cutting through the Belgica Highlands. We have mapped the bedrock morphology at 3 km resolution, which led to an improved geographical and geomorphological characterization of the Concordia Trench, Concordia Ridge, Concordia Lake and South Hills. Improved knowledge of the Concordia Trench allowed us to model the 3-D geometry of the Concordia fault, suggesting that it played a role in governing the morpho-tectonic evolution of the bedrock in the Dome C region, and to propose a Cenozoic age for its activity. We recognize the importance of catchment basin morphology in hosting subglacial lakes, and discuss the role played by tectonics, glacial scouring and volcanism in the origin of the trench lakes, basin lakes and relief lakes, respectively.

  6. Littoral zone fish assemblages of northern Cayuga Lake.

    USGS Publications Warehouse

    McKenna, James E.

    2001-01-01

    Fish assemblages from northern Cayuga Lake were examined for patterns in temporal structure. Fish assemblages changed significantly between seasons. Bluegill (Lepomis macrochirus), bluntnose minnow (Pimephales notatus), and smallmouth bass (Micropterus dolomieu) formed the basis for most assemblages, but the spring assemblage was dominated by common carp (Cyprinus carpio). Correlations between community structure and abiotic factors were identified. Ten abiotic factors strongly influenced species assemblages, including phosphorus concentration, but could not fully explain differences between assemblages. Results indicate that the seasonal pattern of fish assemblage structure and abundance of fish that tend to feed in the water column were related to the annual cycle of productivity in the lake and behavioral adaptations of the fish.

  7. Late Glacial lakes - uniform or contrasting ecosystems?

    NASA Astrophysics Data System (ADS)

    Zawiska, Izabela; Rzodkiewicz, Monika; Noryśkiewicz, Agnieszka M.; Obremska, Milena; Ott, Florian; Kramkowski, Mateusz; Słowiński, Michał; Błaszkiewicz, Mirosław; Brauer, Achim

    2015-04-01

    Climate changes are one of the most investigated topic in paleolimnology. The Late Glacial and Early Holocene time are specially interesting as than most abrupt changes happened. Lake sediments are known to be great source of information of the past environments. They are functioning as natural archives because in them preserve animal and plants remains. In this study we investigated three cores of the biogenic sediments from the lakes located in close vicinity in Tuchola Forest (Northern Poland): paleolake Trzechowskie, Lake Czechowskie-deepest part and Lake Czechowskie-bay. We made Cladocera, diatom and pollen analysis, the chronology was determined by varve counting, Laacher See Tephra (12,880 yrs BP) and 14C dating. The aim of our research was to find out the response of zooplankton, phytoplankton, lake and catchment vegetation to abrupt climate changes. We were interested in similarities and differences between those three locations in response of entire communities but also species composition. The preliminary results revealed that the Cladocera, diatoms and plants communities were sensitive to climatic shifts and it is well shown in the results of ordination method (PCA). However in the Cladocera and diatoms assemblages, which reflect well lake environment conditions, the dominant species and total number of species present, were different in all three locations. Especially great difference was noted between paleolake Trzechowskie and Lake Czechowskie (core from the deepest part). The results of our research shows that in Late Glacial time landscape in Lake Czechowskie region (Tuchola Forest, Northern Poland) had mosaic character. Local factors such as relief, edaphic conditions strongly modified type of vegetation and in close vicinity existed lakes that had very diverse environments.

  8. Adaptations of a physical-based hydrological model for alpine catchments. Application to the upper Durance catchment.

    NASA Astrophysics Data System (ADS)

    Lafaysse, Matthieu; Hingray, Benoit

    2010-05-01

    The impact of global change on water resources is expected to be especially pronounced in mountainous areas. Future hydrological scenarios required for impact studies are classically simulated with hydrological models from future meteorological scenarios based on GCMs outputs. Future hydrological regimes of French rivers were estimated following this methodology by Boé et al. (2009) with the physical-based hydrological model SAFRAN-ISBA-MODCOU (SIM), developed by Météo-France. Scenarios obtained for the Alps seem however not very reliable due to the poor performance achieved by the model for the present climate over this region. This work presents possible improvements of SIM for a more relevant simulation of alpine catchments hydrological behavior. Results obtained for the upper Durance catchment (3580 km2) are given for illustration. This catchment is located in Southern French Alps. Its outlet is the Serre-Ponçon lake, a large dam operated for hydropower production, with a key role for water supply in southeastern France. With altitudes ranging from 700 to 4100 meters, the catchment presents highly seasonal flows: minimum and maximum discharges are observed in winter and spring respectively due to snow accumulation and melt, low flows are sustained by glacier melt in late summer (39 km2 are covered by glaciers), major floods can be observed in fall due to large liquid precipitation amounts. Two main limitations of SIM were identified for this catchment. First the 8km-side grid discretization gives a bad representation of the spatial variability of hydrological processes induced by elevation and orientation. Then, low flows are not well represented because the model doesn't include deep storage in aquifers nor ice melt from glaciers. We modified SIM accordingly. For the first point, we applied a discretization based on topography : we divided the catchment in 9 sub-catchments and further 300 meters elevation bands. The vertical variability of meteorological

  9. A new perspective on catchment storage gained from a nested catchment experiment in Luxembourg (Europe)

    NASA Astrophysics Data System (ADS)

    Pfister, Laurent; Klaus, Julian; Hissler, Christophe; François Iffly, Jean; Gourdol, Laurent; Martinez-Carreras, Nuria; McDonnell, Jeffrey J.

    2014-05-01

    Recent hydrological process research focussed on how much water a catchment can store and how these catchments store and release water. Storage can be a valuable metric for catchment description, inter-comparison, and classification. Further storage controls catchment mixing, non-linearities in rainfall-runoff transformation and eco-hydrological processes. Various methods exist to determine catchment storage (e.g. natural tracer, soil moisture and groundwater data, hydrological models). Today it remains unclear what parts of the catchment storage are measured with the different models. Here we present a new hydrometric approach to answer the question how much water a catchment can store. We tested our approach in a dense hydro-climatological monitoring network that encompasses 16 recording streamgauges and 21 pluviographs in the Alzette River basin in Luxembourg (Europe). Catchment scales are ranging from 0.47 to 285 km2 and they have clean- and mixed combinations of distinct geologies ranging from schists to marls, sandstone, dolomite and limestone. Previous investigations in the area of interest have shown that geology largely controls winter runoff coefficients. Here, we focus at how catchment geology is ultimately affecting catchment storage. We used the approach of Sayama et al. (2011) to compute catchment dynamic storage changes for each winter season over the period 2002-2012 (based on precipitation as input; discharge and evapotranspiration as output). We determined dynamic storage changes for each winter semester (October to March) in all 16 catchments over the period 2002-2012. At the beginning of each hydrological winter season, all catchments showed similar trends in storage change. A few weeks into the winter season, catchments with lowest permeability (e.g. marls) started to plateau. The highest storage values were reached several months later in the season in catchments dominated by permeable substrate (e.g. sandstone). For most catchments, we found

  10. Panama Canal Zone as seen from STS-62

    NASA Image and Video Library

    1994-03-05

    STS062-85-095 (4-18 March 1994) --- Gatun Lake and the forested Panama Canal Zone can be seen in this north northwest-looking low oblique photograph obtained in March 1994. The shipping chanel of the canal is 82.4 kilometers (51.2 miles) long, though the canal zone is only 65 kilometers (40 miles) long. The width of the canal zones extends generally 8 kilometers (5 miles) on either side of the shipping channel, except near Madden Lake. The canal connects the Atlantic Ocean (coastal city of Colon) with the Pacific Ocean near Panama City in a line that takes a northwest to southeast course because of the configuration of the isthmus. The canal zigzags across the isthmus to take advantage of the geographic features of the area such as the Chagres River. The controlled water supply for the canal is provided by the three artificial lakes: Gatun near the Atlantic terminus, Miraflores near the Pacific terminus and Madden about halfway across the isthmus. Gatun is the largest of the three lakes covering an area of 429 square kilometers (165 square miles). In the midst of this lake is Barro Colorado Island, a world-famous wild game perserve. Madden Lake was built as a large supplemental reservoir to keep water levels up in the canal during the dry season. All three lakes are vital sources of water for maintaining the ship channel over the continental divide (Gaillard Cut) and for regulating the flow of water that enables hugh vessels to be lifted and lowered in massive locks.

  11. Sediment tracing in the upper Hunter catchment using elemental and mineralogical compositions: Implications for catchment-scale suspended sediment (dis)connectivity and management

    NASA Astrophysics Data System (ADS)

    Fryirs, Kirstie; Gore, Damian

    2013-07-01

    River bed colmation layers clog the interstices of gravel-bed rivers, impeding the vertical exchange of water and nutrients that drives ecosystem function in the hyporheic zone. In catchments where fine-grained sediment supply has increased since human disturbance, understanding sediment provenance and the (dis)connectivity of supply allows practitioners to target sediment source problems and treat them within catchment management plans. Release of alluvial fine-grained sediment from channel bank erosion since European settlement has resulted in the formation of a colmation layer along the upper Hunter River at Muswellbrook, eastern Australia. X-ray fluorescence spectrometry (XRF) and X-ray diffractometry (XRD) are used to determine the elemental and mineralogical signatures of colmation layer and floodplain sediment sources across this 4480 km2 catchment. This sediment tracing technique is used to construct a picture of how suspended sediment supply and (dis)connectivity operates in this catchment. In this system, the primary source areas are subcatchments in which sediments are stored largely in partly confined floodplain pockets, but from which sediment supply is unimpeded and directly connected to the receiving reach. Subcatchments in which alluvial sediment storage is significant — and which contain large, laterally unconfined valleys — are essentially 'switched off' or disconnected from the receiving reach. This is because large sediment sinks act to trap fine-grained sediment before it reaches the receiving reach, forming a buffer along the sediment conveyor belt. Given the age structure of floodplains in the receiving reach, this pattern of source area contributions and (dis)connectivity must have occurred throughout the Holocene.

  12. Impact of Groundwater-Lake Interaction on Levels of E. coli in Near-Shore Swimming Waters at Beaches of the Great Lakes

    NASA Astrophysics Data System (ADS)

    Crowe, A. S.

    2009-12-01

    Beaches throughout the Great Lakes frequently are under health advisories for swimming due to elevated levels of E. coli. Many studies have shown that there are several potential sources of this E. coli (e.g., livestock, sewage treatment facilities, gulls and geese), and several mechanisms for delivering E. coli to the shoreline (e.g., rivers, creeks, storm water drains, currents, waves). But, groundwater is a mechanism for E. coli transport to the shoreline that is typically overlooked. Field studies undertaken at beaches throughout the Great lakes have measured levels of E. coli in the groundwater and sand at the groundwater-lake interface that are commonly over a 1000 times above Recreational Water Quality Guidelines, and that these high levels of E. coli are restricted to a zone below the beach adjacent to and within a few metres of the lake. Groundwater flow below beaches is always towards the shoreline with almost all groundwater discharge occurring at the groundwater-lake interface (i.e., not several or a few metres off-shore). Thus, groundwater discharge of the E. coli from zone represents a substantial and long-term reservoir for E. coli loading to the near shore recreational waters, and presents a potential health risk to swimmers. The high levels of E. coli in the sand and groundwater adjacent to the lake is also due to groundwater-lake interaction. During storms, wave runup and subsequent infiltration of lake water containing E. coli at the swash zone is the primary mechanism for delivering E. coli to the groundwater and sand adjacent to the lake. Field and modeling experiments show that storm events as short as a few hours can introduce substantial levels of E. coli to the groundwater because of the high inward groundwater velocities. However, its migration into the beach away from the shoreline is restricted to a few metres beyond the maximum extent of wave runup because groundwater flow below the beach continues to flow towards the shoreline creating

  13. Thermokarst lake dynamics and its influence on biogeochemical sediment characteristics: A case study from the discontinuous permafrost zone in Interior Alaska

    NASA Astrophysics Data System (ADS)

    Lenz, J.; Walter Anthony, K. M.; Maio, C. V.; Matuszewski, F.; Grosse, G.

    2017-12-01

    Under currently projected scenarios of climate warming, discontinuous warm permafrost in Interior Alaska is expected to experience widespread disappearance. Thermokarst ponds and lakes are evidence for rapid permafrost thaw and amplify deep thaw by talik development. During the thawing process, previously preserved organic matter is made available for decomposition and former permafrost carbon is potentially released as greenhouse gases carbon dioxide and methane. In the course of lake development and shoreline expansion, both, younger near-surface and older organic matter from slumping shores are potentially deposited in the lake basin. Lake internal bioproductivity is complementing carbon accumulation in lacustrine deposits and provides an additional source of young carbon. This study presents results of two intersecting, limnolithological transects of 5 sediment cores from Goldstream Lake, a typical small, boreal thermokarst lake in Interior Alaska. We here distinguish external terrestrial and internal aquatic carbon contributions to sediments based on sediment samples that were analyzed for the total organic carbon/total nitrogen ratio (C/N) as well as stable carbon isotopes. The littoral zone with actively eroding shorelines is characterized by methane seeps produced from anaerobic microbial decomposition; however, near-shore sediments have surprisingly low total organic carbon contents with a mean of 1.5 wt%; the low C/N ratio of 8.7 indicate a dominance of lacustrine plant material. Very similar results were found for sediments in the central basin, but here a clear shift to a terrestrial carbon signal (C/N of 22) with total organic carbon content of almost 30 wt% is presumably indicating the presence of a trash layer featuring largely terrestrial plants submerged during the initial lake phase. The talik sediments have carbon storage similar to the lake sediments but in contrast are not layered. Subarctic aquatic environments such as Goldstream Lake

  14. Differential response of vegetation in Hulun Lake region at the northern margin of Asian summer monsoon to extreme cold events of the last deglaciation

    NASA Astrophysics Data System (ADS)

    Zhang, Shengrui; Xiao, Jule; Xu, Qinghai; Wen, Ruilin; Fan, Jiawei; Huang, Yun; Yamagata, Hideki

    2018-06-01

    The response of vegetation to extreme cold events during the last deglaciation is important for assessing the impact of possible extreme climatic events on terrestrial ecosystems under future global warming scenarios. Here, we present a detailed record of the development of regional vegetation in the northern margin of Asian summer monsoon during the last deglaciation (16,500-11,000 cal yr BP) based on a radiocarbon-dated high-resolution pollen record from Hulun Lake, northeast China. The results show that the regional vegetation changed from subalpine meadow-desert steppe to mixed coniferous and deciduous forest-typical steppe during the last deglaciation. However, its responses to the Heinrich event 1 (H1) and the Younger Dryas event (YD) were significantly different: during the H1 event, scattered sparse forest was present in the surrounding mountains, while within the lake catchment the vegetation cover was poor and was dominated by desert steppe. In contrast, during the YD event, deciduous forest developed and the proportion of coniferous forest increased in the mountains, the lake catchment was occupied by typical steppe. We suggest that changes in Northern Hemisphere summer insolation and land surface conditions (ice sheets and sea level) caused temperature and monsoonal precipitation variations that contributed to the contrasting vegetation response during the two cold events. We conclude that under future global warming scenarios, extreme climatic events may cause a deterioration of the ecological environment of the Hulun Lake region, resulting in increased coniferous forest and decreased total forest cover in the surrounding mountains, and a reduction in typical steppe in the lake catchment.

  15. Morphology and biology of Cyclops scutifer Sars, 1863 in high mountain lakes of East Siberia (including Lake Amut)

    NASA Astrophysics Data System (ADS)

    Sheveleva, Natalya G.; Itigilova, Mydygma Ts.; Chananbaator, Ayushcuren

    2017-03-01

    Data on zooplankton from 13 high-mountain lakes of East Siberia have shown that the Holarctic copepod Cyclops scutifer Sars, 1863 dominates among crustaceans. In July, its abundance comprised 64%-98% of the total plankton fauna in the pelagial of these lakes, approximately 30% in the littoral zone and 10% in small northern thermokarst lakes. Biometric measurements and morphological descriptions based on scanning microscope images are supplemented by the data on its geographic distribution and phenology.

  16. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Base-Flow Index, 2002

    USGS Publications Warehouse

    Wieczorek, Michael; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents the mean base-flow index expressed as a percent, compiled for every catchment of MRB_E2RF1 catchments of Major River Basins (MRBs, Crawford and others, 2006). Base flow is the component of streamflow that can be attributed to ground-water discharge into streams. The source data set is Base-Flow Index for the Conterminous United States (Wolock, 2003). The MRB_E2RF1 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every catchment of MRB_E2RF1 catchments for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

  17. Groundwater Resources Evolution in Degrading Permafrost Environments: A Small Catchment-Scale Study in Northern Quebec, Canada

    NASA Astrophysics Data System (ADS)

    Molson, John; Lemieux, Jean-Michel; Fortier, Richard; Therrien, Rene; Ouellet, Michel; Barth, Johannes; van Geldern, Robert; Cochand, Marion; Sottas, Jonathan; Murray, Renaud; Banville, David

    2015-04-01

    A two square kilometre catchment in a discontinuous permafrost zone near the Inuit community of Umiujaq on the eastern shore of Hudson Bay in Northern Quebec, Canada, is being investigated to determine the impact of permafrost degradation on groundwater resources. The catchment, which became deglaciated about 7500 years ago, lies in a valley which includes about 30-40 m of glacial-fluvial and marine Quaternary sediments. Permafrost mounds at the site extend from a few meters below ground surface to depths of about 10-30 m. Instrumentation has been installed to measure groundwater levels and temperature, as well as groundwater and surface water geochemistry, isotope signatures (including δ18O and 3H) and stream flow. Preliminary groundwater isotope data reflect depleted δ18O signals that differ from expected values for local groundwater, possibly representing permafrost thaw. In addition, stable water isotopes indicate evaporation from shallow thermokarst lakes. Meteorological conditions including air temperatures, precipitation and snowpack are also being monitored. Near-surface geophysical surveys using electrical resistivity tomography (ERT), induced polarization tomography (IPT), georadar and seismic refraction tomography have been carried out to characterize the catchment and to build a 3D geological site model. A numerical model of coupled groundwater flow and heat transport, including thermal advection, conduction, freeze-thaw and latent heat, is being developed for the site to help develop the conceptual model and to assess future impacts of permafrost degradation due to climate warming. The model (Heatflow/3D) includes nonlinear functions for the temperature-dependent unfrozen moisture content and relative permeability, and has been tested against analytical solutions and using benchmarks developed by the INTERFROST modelling consortium. A conceptual 2D vertical-plane model including several permafrost mounds along a 1 km section shows dynamic seasonal

  18. Mercury bioaccumulation in fishes from subalpine lakes of the Wallowa-Whitman National Forest, northeastern Oregon and western Idaho

    USGS Publications Warehouse

    Eagles-Smith, Collin A.; Herring, Garth; Johnson, Branden L.; Graw, Rick

    2013-01-01

    Mercury (Hg) is a globally distributed pollutant that poses considerable risks to human and wildlife health. Over the past 150 years since the advent of the industrial revolution, approximately 80 percent of global emissions have come from anthropogenic sources, largely fossil fuel combustion. As a result, atmospheric deposition of Hg has increased by up to 4-fold above pre-industrial times. Because of their isolation, remote high-elevation lakes represent unique environments for evaluating the bioaccumulation of atmospherically deposited Hg through freshwater food webs, as well as for evaluating the relative importance of Hg loading versus landscape influences on Hg bioaccumulation. The increase in Hg deposition to these systems over the past century, coupled with their limited exposure to direct anthropogenic disturbance make them useful indicators for estimating how changes in Hg emissions may propagate to changes in Hg bioaccumulation and ecological risk. In this study, we evaluated Hg concentrations in fishes of high-elevation, sub-alpine lakes in the Wallowa-Whitman National Forest in northeastern Oregon and western Idaho. Our goals were to (1) assess the magnitude of Hg contamination in small-catchment lakes to evaluate the risk of atmospheric Hg to human and wildlife health, (2) quantify the spatial variability in fish Hg concentrations, and (3) determine the ecological, limnological, and landscape factors that are best correlated with fish total mercury (THg) concentrations in these systems. Across the 28 study lakes, mean THg concentrations of resident salmonid fishes varied as much as 18-fold among lakes. Importantly, our top statistical model explained 87 percent of the variability in fish THg concentrations among lakes with four key landscape and limnological variables— catchment conifer density (basal area of conifers within a lake’s catchment), lake surface area, aqueous dissolved sulfate, and dissolved organic carbon. The basal area of conifers

  19. Catchment-scale herbicides transport: Theory and application

    NASA Astrophysics Data System (ADS)

    Bertuzzo, E.; Thomet, M.; Botter, G.; Rinaldo, A.

    2013-02-01

    This paper proposes and tests a model which couples the description of hydrologic flow and transport of herbicides at catchment scales. The model accounts for streamflow components' age to characterize short and long term fluctuations of herbicide flux concentrations in stream waters, whose peaks exceeding a toxic threshold are key to exposure risk of aquatic ecosystems. The model is based on a travel time formulation of transport embedding a source zone that describes near surface herbicide dynamics. To this aim we generalize a recently proposed scheme for the analytical derivation of travel time distributions to the case of solutes that can be partially taken up by transpiration and undergo chemical degradation. The framework developed is evaluated by comparing modeled hydrographs and atrazine chemographs with those measured in the Aabach agricultural catchment (Switzerland). The model proves reliable in defining complex transport features shaped by the interplay of long term processes, related to the persistence of solute components in soils, and short term dynamics related to storm inter-arrivals. The effects of stochasticity in rainfall patterns and application dates on concentrations and loads in runoff are assessed via Monte Carlo simulations, highlighting the crucial role played by the first rainfall event occurring after herbicide application. A probabilistic framework for critical determinants of exposure risk to aquatic communities is defined. Modeling of herbicides circulation at catchment scale thus emerges as essential tools for ecological risk assessment.

  20. Local response of a glacier to annual filling and drainage of an ice-marginal lake

    USGS Publications Warehouse

    Walder, J.S.; Trabant, D.C.; Cunico, M.; Fountain, A.G.; Anderson, S.P.; Anderson, R. Scott; Malm, A.

    2006-01-01

    Ice-marginal Hidden Creek Lake, Alaska, USA, outbursts annually over the course of 2-3 days. As the lake fills, survey targets on the surface of the 'ice dam' (the glacier adjacent to the lake) move obliquely to the ice margin and rise substantially. As the lake drains, ice motion speeds up, becomes nearly perpendicular to the face of the ice dam, and the ice surface drops. Vertical movement of the ice dam probably reflects growth and decay of a wedge of water beneath the ice dam, in line with established ideas about jo??kulhlaup mechanics. However, the distribution of vertical ice movement, with a narrow (50-100 m wide) zone where the uplift rate decreases by 90%, cannot be explained by invoking flexure of the ice dam in a fashion analogous to tidal flexure of a floating glacier tongue or ice shelf. Rather, the zone of large uplift-rate gradient is a fault zone: ice-dam deformation is dominated by movement along high-angle faults that cut the ice dam through its entire thickness, with the sense of fault slip reversing as the lake drains. Survey targets spanning the zone of steep uplift gradient move relative to one another in a nearly reversible fashion as the lake fills and drains. The horizontal strain rate also undergoes a reversal across this zone, being compressional as the lake fills, but extensional as the lake drains. Frictional resistance to fault-block motion probably accounts for the fact that lake level falls measurably before the onset of accelerated horizontal motion and vertical downdrop. As the overall fault pattern is the same from year to year, even though ice is lost by calving, the faults must be regularly regenerated, probably by linkage of surface and bottom crevasses as ice is advected toward the lake basin.